
SQL Remote™

Version 12.0.1

January 2012

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Version 12.0.1
January 2012

Copyright © 2012 iAnywhere Solutions, Inc. Portions copyright © 2012 Sybase, Inc. All rights reserved.

This documentation is provided AS IS, without warranty or liability of any kind (unless provided by a separate written agreement between
you and iAnywhere).

You may use, print, reproduce, and distribute this documentation (in whole or in part) subject to the following conditions: 1) you must
retain this and all other proprietary notices, on all copies of the documentation or portions thereof, 2) you may not modify the
documentation, 3) you may not do anything to indicate that you or anyone other than iAnywhere is the author or source of the
documentation.

iAnywhere®, Sybase®, and the marks listed at http://www.sybase.com/detail?id=1011207 are trademarks of Sybase, Inc. or its subsidiaries.
® indicates registration in the United States of America.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

http://www.sybase.com/detail?id=1011207

Contents

About this book ... vii

SQL Remote systems .. 1

SQL Remote components ... 1
Typical SQL Remote setups ... 3
SQL Remote replication process ... 6

Creating SQL Remote systems .. 9

Publications and articles .. 10
User permissions ... 18
Subscriptions ... 31
Transaction log-based replication ... 32
Replication conflicts and errors ... 40
Update conflicts ... 41
Row not found errors .. 49
Referential integrity errors .. 49
Duplicate primary key errors .. 52
Row partitioning among remote databases .. 58
Disjoint data partitions .. 58
Overlap partitions .. 63
Unique identification numbers for remote databases 70

Managing SQL Remote systems .. 73

Remote database extraction ... 74
Remote database extraction to a reload file ... 75
SQL Remote Message Agent (dbremote) .. 80
SQL Remote performance .. 86
Guaranteed Message Delivery System .. 96
Message size .. 100
SQL Remote message systems ... 102
SQL Remote system backups .. 116

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 iii

Recovering consolidated databases manually ... 121
Recovering consolidated databases automatically 123
Replication error reporting and handling .. 125
Security ... 130
Upgrades and resynchronization ... 131
SQL Remote passthrough mode .. 132
Subscription resynchronization ... 135

Tutorial: Creating a SQL Remote system .. 139

Lesson 1: Creating the consolidated database .. 139
Lesson 2: Granting PUBLISH and REMOTE permissions at the
consolidated database .. 141
Lesson 3: Creating publications and subscriptions 142
Lesson 4: Creating a SQL Remote message type .. 142
Lesson 5: Extracting the remote database ... 143
Lesson 6: Sending data from the consolidated database to the remote
database ... 144
Lesson 7: Receiving data at the remote database 145
Lesson 8: Sending data from the remote database to the consolidated
database ... 146

Tutorial: Setting up a replication system using the HTTP
message system .. 149

Lesson 1: Creating the consolidated database .. 149
Lesson 2: Creating the message server .. 151
Lesson 3: Creating the remote database .. 153
Lesson 4: Adding and replicating data in the consolidated and remote
databases ... 154
Lesson 5: Cleaning up .. 156

Tutorial: Setting up a replication system using the HTTP
message system with the consolidated database as the message
server .. 159

Lesson 1: Creating the consolidated database .. 159

SQL Remote™

iv Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Lesson 2: Configuring the consolidated database to act as the message
server .. 161
Lesson 3: Creating the remote database .. 162
Lesson 4: Adding and replicating data in the consolidated and remote
databases ... 163
Lesson 5: Cleaning up .. 166

Tutorial: Setting up a replication system using the HTTP
message system and the consolidated database as the message
server via Relay Server ... 167

Lesson 1: Creating the consolidated database .. 167
Lesson 2: Configuring the Relay Server ... 169
Lesson 3: Configuring the consolidated database to act as the message
server .. 170
Lesson 4: Creating the remote database .. 172
Lesson 5: Adding and replicating data in the consolidated and remote
databases ... 173
Lesson 6: Cleaning up .. 176

SQL Remote reference .. 177

SQL Remote utilities and options reference ... 177
SQL Remote system tables .. 203
SQL Remote SQL statements ... 204

Index ... 211

SQL Remote™

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 v

vi Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

About this book
This book describes the SQL Remote data replication system for mobile computing, which enables
sharing of data between a SQL Anywhere consolidated database and many SQL Anywhere remote
databases using an indirect link such as email or file transfer.

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 vii

viii Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SQL Remote systems
SQL Remote is a message-based technology designed for the two-way replication of database transactions
between a consolidated database and large numbers of remote databases. Administration and resource
requirements at the remote sites are minimal, making SQL Remote well suited to mobile devices.

SQL Remote provides the following functionality:

● Multiple subscriber support SQL Remote allows occasionally connected users to replicate data
between a SQL Anywhere consolidated database and a large number of remote SQL Anywhere
databases, typically including many mobile databases.

● Transaction log-based replication SQL Remote uses the transaction log for replication. As a
result, only changed data is replicated during an update. It ensures proper transaction atomicity
throughout the replication system and maintains consistency among the databases involved in the
replication.

● Central administration SQL Remote is centrally administered at the consolidated database. A
company can have a large mobile workforce with many unique databases without maintaining each
remote database individually. In addition, SQL Remote operation is invisible to the end user.

● Economical memory use To run efficiently, SQL Remote uses memory economically. This
allows you to use SQL Remote on existing remote computers and devices without having to invest in
new hardware. Replication is possible to and from remote computers and devices with limited space;
only relevant data is replicated from the consolidated database to the remote databases.

● Multi-platform support SQL Remote is supported on several operating systems and message
links. SQL Anywhere databases can be copied from one file or operating system to another

See also
● http://www.sybase.com/detail?id=1061806.
● “Creating SQL Remote systems” on page 9
● “Managing SQL Remote systems” on page 73
● “SQL Remote reference” on page 177

SQL Remote components
The following components are required for SQL Remote:

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 1

http://www.sybase.com/detail?id=1061806

● Database server A SQL Anywhere database is required at the consolidated site and each remote
site.

● SQL Remote To send and receive replication messages from database to database, SQL Remote
must be installed at the consolidated site and the remote sites.

The SQL Remote Message Agent connects to the database server via a client/server connection. The
SQL Remote Message Agent may run on the same computer as the database server or on a different
computer.

● Message system client software SQL Remote uses existing message systems to transport
replication messages.

If you are using a shared file or FTP message system, the message system is included with your
operating system.

If you are using an SMTP email system, you must have an email client installed at the consolidated
site and each remote site.

● Client applications The client application can use ODBC, embedded SQL, or several other
programming interfaces. Client applications do not have to know if they are using a consolidated or

SQL Remote systems

2 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

remote database. From the client application perspective, there is no difference. For specific details
about the SQL Anywhere programming interfaces, see the list below:

○ “SQL Anywhere .NET support” [SQL Anywhere Server - Programming]
○ “ODBC support” [SQL Anywhere Server - Programming]
○ “OLE DB and ADO development” [SQL Anywhere Server - Programming]
○ “Embedded SQL” [SQL Anywhere Server - Programming]
○ “JDBC support” [SQL Anywhere Server - Programming]
○ “Sybase Open Client support” [SQL Anywhere Server - Programming]
○ “SQL Anywhere C API support” [SQL Anywhere Server - Programming]
○ “Perl DBI support” [SQL Anywhere Server - Programming]
○ “SQL Anywhere PHP extension” [SQL Anywhere Server - Programming]
○ “Python support” [SQL Anywhere Server - Programming]
○ “SQL Anywhere Ruby API support” [SQL Anywhere Server - Programming]

Typical SQL Remote setups
SQL Remote is designed for replication systems with the following requirements:

● Large numbers of remote databases SQL Remote can support thousands of remote databases
in a single installation because the messages for many remote databases can be prepared
simultaneously.

● Occasionally connected SQL Remote supports databases that are occasionally connected or
indirectly connected to the network. SQL Remote is not designed for instantaneous data availability at
each site. For example, it may use an SMTP email system to carry the replication.

● Low to high latency High latency means a long lag time between data being entered at one
database and being replicated to each database in the system. With SQL Remote, replication messages
can be sent at intervals of seconds, minutes, hours, or days.

● Low to moderate volume As replication messages are delivered occasionally, a high transaction
volume at each remote database can lead to a large volume of messages. SQL Remote is best suited to
systems with a relatively low volume of replicated data per remote database. At the consolidated
database, SQL Remote can prepare messages for multiple databases simultaneously.

● Homogeneous databases Each SQL Anywhere database in the system must have a similar
schema.

See also
● “Synchronization technology comparison” [SQL Anywhere 12 - Introduction]
● “Synchronization technology considerations” [SQL Anywhere 12 - Introduction]

Typical SQL Remote setups

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 3

Server-to-remote database replication for mobile
workforces

In the following example, SQL Remote provides two-way replication between a consolidated database on
an office network, and personal databases on the laptop computers of sales representatives. An SMTP
email system is used as a message transport.

To manage the consolidated database, the office network server runs a SQL Anywhere database server.
SQL Remote connects to the consolidated database in the same way as any other client application.

Each sales representative's laptop computer includes a SQL Anywhere personal server, a SQL Anywhere
remote database, and SQL Remote.

While away from the office, a sales representative can connect to the internet to run SQL Remote, which
carries out the following functions:

● Collects publication updates from the consolidated database on the office network server.

● Submits any local updates, such as new orders, to the consolidated database on the office network
server.

The publication updates from the office network database may include new specials on the products the
sales representative handles, or new pricing and inventory information. These updates are read by SQL

SQL Remote systems

4 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Remote on the laptop and applied to the sales representative's remote database automatically, without
requiring any additional action from the sales representative.

The new orders recorded by the sales representative are also automatically submitted and applied to the
office network database without any extra action from the sales representative.

Server-to-server database replication among offices
In this example, SQL Remote provides two-way replication between the database servers at the sales
offices or outlets, and the central company office. The only work required at the sales offices is the initial
setup and ongoing maintenance of the server.

Layers can be added to SQL Remote hierarchies: for example, each sales office server could act as a
consolidated database, supporting remote subscribers who work from that office.

Typical SQL Remote setups

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 5

SQL Remote can be configured to allow each office to receive its own set of data. Tables such as staff
records can be kept private in the same database as the replicated data.

SQL Remote replication process
With SQL Remote, messages are always sent two ways. The consolidated database sends messages
containing publication updates to remote databases, and remote databases send updated data and receipt
confirmation messages to the consolidated database.

SQL Remote systems

6 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

When remote database users modify data, their changes are replicated to the consolidated database. When
these changes are applied at the consolidated database, they become part of the consolidated database's
publication, and are included with the updates sent to all remote databases (except the one the update
came from). In this way, replication from remote database to remote database takes place via the
consolidated database.

For example, if data in a publication at a consolidated database is updated, those updates are sent to the
remote databases. Even if the data is never updated at the remote database, confirmation messages are still
sent back to the consolidated database to keep track of the status of the replication.

Steps involved in the SQL Remote replication process

1. At each consolidated and remote database participating in replication, there is a message agent and a
transaction log that manages replication. All committed changes are recorded and stored in the
transaction log.

SQL Remote replication process

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 7

2. Periodically, the SQL Remote Message Agent on the consolidated database scans the transaction log
and packages all the committed transactions made to each publication (section of data) into messages.
The consolidated database's SQL Remote Message Agent then sends the relevant changes to remote
users who subscribe to those publications. The SQL Remote Message Agent sends the changes using
a messaging system. SQL Remote supports SMTP email systems, FTP, and FILE.

3. The SQL Remote Message Agent at the remote database accepts the messages sent from the
consolidated database and sends a confirmation to the consolidated database that the messages have
been received. Then, the SQL Remote Message Agent applies the transactions to the remote database.

4. At any time, a remote user can run the SQL Remote Message Agent to package the transactions made
at the remote database into messages and send them back to the consolidated database.

5. The SQL Remote Message Agent at the consolidated site processes the messages from the remote
database and applies the transactions to the consolidated database.

See also
● “Creating SQL Remote systems” on page 9
● “Managing SQL Remote systems” on page 73

SQL Remote systems

8 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Creating SQL Remote systems
Use the consolidated database to complete all SQL Remote administrative tasks. The following is a
summary of the steps you need to complete to create a SQL Remote system.

Create a SQL Remote system

1. Choose your SQL Anywhere consolidated database or create a new SQL Anywhere database. The
remote databases, which are also SQL Anywhere databases, are created from the consolidated
database.

When creating a new SQL Anywhere database, keep in mind how SQL Remote uses primary keys
(there is the potential for duplicate primary keys when remotes replicate to the consolidated database).
A good practice is to choose BIGINT with GLOBAL AUTOINCREMENT for the primary key
column data type.

2. Determine what data to replicate.

To create an efficient replication system, you need to decide on the tables that you want to use, the
columns from those tables, and finally the subset of rows to replicate. Only include the information
that is needed.

3. Create publications on the consolidated database.

SQL Remote uses a publish and subscribe model to ensure that the correct information reaches its
intended user. Arrange the data that you want to replicate into publications on the consolidated
database.

4. Create a publisher user on the consolidated database.

A publisher is a user with PUBLISH authority.

5. Create the remote users on the consolidated database.

A remote user is used to uniquely identify a remote database.

When you create a remote user, you define the message type to use when transporting the data and,
optionally, you define how frequently to send the data.

6. Subscribe the remote users to publications by creating subscriptions.

7. Determine how the remote users can use the data.

Remote users can always read their data. You can also allow them to update, delete, and insert data.

8. Choose a method for resolving conflicts.

Conflicts can occur during replication when your remote users update, delete, or insert data. You must
implement methods for resolving conflicts.

9. Deploy the SQL Remote system.

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 9

Create the remote databases and install the appropriate software.

See also
● “Duplicate primary key errors” on page 52
● “Publications and articles” on page 10
● “PUBLISH permission” on page 21
● “REMOTE permission” on page 23
● “Creating message types” on page 103
● “Subscriptions” on page 31
● “Transaction log-based replication” on page 32
● “Default resolution for update conflicts” on page 42
● “Managing SQL Remote systems” on page 73

Publications and articles
A publication defines the set of data to be replicated. A publication can include data from several
database tables. An article refers to a table in a publication. Each article in a publication can consist of the
entire table or a subset of the rows and columns in the table.

Limitations
A publication cannot include views or stored procedures.

Viewing publications and articles (Sybase Central)
In Sybase Central, publications appear in the Publications folder in the left pane. Any articles you create
for a publication appear on the Articles tab in the right pane when you select a publication.

Creating SQL Remote systems

10 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “Procedure replication” on page 36
● “Trigger replication” on page 36

Creating publications
You create publications based on existing tables in the consolidated database. Use the following
procedures to create publications that consist of all the columns and rows in a table.

Publish tables (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the consolidated database as a user with DBA
authority.

2. In the left pane, click the Publications folder.

3. Click File » New » Publication.

4. In the What Do You Want To Name The New Publication field, type a name for the publication.
Click Next.

5. Click Next.

6. In the Available Tables list, click a table. Click Add.

7. Click Finish.

Publish tables (SQL)

1. Connect to the consolidated database as a user with DBA authority.

2. Execute a CREATE PUBLICATION statement that specifies the name of the new publication and the
table you want to publish.

For example, the following statement creates a publication that publishes the entire Customers table:

CREATE PUBLICATION PubCustomers (
 TABLE Customers
);

The following statement creates a publication that publishes the entire SalesOrders, SalesOrderItems,
and Products tables:

CREATE PUBLICATION PubSales (
 TABLE SalesOrders,
 TABLE SalesOrderItems,
 TABLE Products
);

See also
● “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]

Publications and articles

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 11

Publishing only some columns in a table
Use the following procedures to create a publication that contains all the rows, but only some of the
columns, of a table.

Publish only some columns in a table (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the consolidated database as a user with DBA
authority.

2. In the left pane, expand the Publications folder.

3. Click File » New » Publication.

4. In the What Do You Want To Name The New Publication field, type a name for the publication.
Click Next.

5. Click Next.

6. On the Available Tables list, click a table. Click Add. Click Next.

7. On the Available Columns tab, double-click the table's icon to expand the list of Available Columns.
Click each column you want to publish and click Add. Click Next.

8. Click Finish.

Publish only some columns in a table (SQL)

1. Connect to the consolidated database as a user with DBA authority.

2. Execute a CREATE PUBLICATION statement that specifies the publication name and the table
name. List the published columns in parentheses following the table name.

For example, the following statement creates a publication that publishes all the rows of the ID,
CompanyName, and City columns of the Customers table. This publication does not publish the
Surname, GivenName, Street, State, Country, PostalCode, and Phone columns of the Customers table.

CREATE PUBLICATION PubCustomers (
 TABLE Customers (
 ID,
 CompanyName,
 City)
);

See also
● “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “Referential integrity errors” on page 49

Creating SQL Remote systems

12 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Publish only some rows in a table
To create a publication that contains only some of the rows in a table, you must write a search condition
that matches only the rows you want to publish. Use of one of the following clauses in your search
condition:

● SUBSCRIBE BY clause Use the SUBSCRIBE BY clause when multiple subscribers to a
publication receive different rows from a table.

The SUBSCRIBE BY clause is recommended when your SQL Remote system requires a large
number of subscriptions. The SUBSCRIBE BY clause allows many subscriptions to be associated
with a single publication, whereas the WHERE clause does not. Subscribers receive rows depending
on the value of a supplied expression.

Publications using a SUBSCRIBE BY clause are more compact, easier to understand, and provide
better performance than maintaining several WHERE clause publications.

● WHERE clause Use a WHERE clause to include a subset of rows in an article. All subscribers to
the publication containing this article receive the rows that satisfy the WHERE clause.

All unpublished rows must have a default value. Otherwise, when the remote database tries to insert
new rows from the consolidated database, an error occurs.

You can combine a WHERE clause in an article.

The database server must add information to the transaction log, and scan the transaction log to send
messages, in direct proportion to the number of publications. The WHERE clause does not allow
many subscriptions to be associated with a single publication; however the SUBSCRIBE BY clause
does.

Example
You need a publication that enables each sales representative to:

● Subscribe to their sales orders.

● Update their sales orders locally.

● Replicate their sales to the consolidated database.

If you use the WHERE clause, you would need to create separate publications for each sales
representative. The following publication is for a sales representative named Sam Singer; each of the
other sales representatives would need a similar publication.

CREATE PUBLICATION PubOrdersSamSinger (
 TABLE SalesOrders
 WHERE Active = 1
);

The following statement subscribes Sam Singer to the PubsOrdersSamSinger publication.

Publications and articles

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 13

CREATE SUBSCRIPTION
TO PubOrdersSamSinger
FOR Sam_Singer;

If you use the SUBSCRIBE BY clause, you need only one publication. All of the sales representatives can
use the following publication:

CREATE PUBLICATION PubOrders (
 TABLE SalesOrders
 SUBSCRIBE BY SalesRepresentativeID
);

The following statement subscribes Sam Singer to the PubsOrders publication by his ID, 8887.

CREATE SUBSCRIPTION
TO PubOrders ('8887')
FOR Sam_Singer;

See also
● “Publishing only some rows using the SUBSCRIBE BY clause” on page 14
● “Publishing only some rows using a WHERE clause” on page 16
● “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “CREATE SUBSCRIPTION statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]

Publishing only some rows using the SUBSCRIBE BY clause

Use the following procedure to create a publication using the SUBSCRIBE BY clause. For information
about using the SUBSCRIBE BY clause and its alternative the WHERE clause, see “Publish only some
rows in a table” on page 13.

Create a publication using the SUBSCRIBE BY clause (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the consolidated database as a user with DBA
authority.

2. In the left pane, click the Publications folder.

3. Click File » New » Publication.

4. In the What Do You Want To Name The New Publication field, type a name for the publication.
Click Next.

5. Click Next.

6. In the Available Tables list, click a table. Click Add. Click Next.

7. On the Available Columns tab, double-click the table's icon to expand the list of Available Columns.
Click each column you want to publish and click Add. Click Next.

8. Click Next.

Creating SQL Remote systems

14 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

9. On the Specify SUBSCRIBE BY Restrictions page:

a. Click a table in the Articles list.

b. Click Column and click a column from the dropdown list.

10. Click Finish.

Create a publication using the SUBSCRIBE BY clause (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a CREATE PUBLICATION statement that includes a SUBSCRIBE BY clause.

Examples
The following statement creates a publication that publishes the ID, CompanyName, City, State, and
Country columns of the Customers table and to match the rows with subscribers uses the value of the
State column:

CREATE PUBLICATION PubCustomers (
 TABLE Customers (
 ID,
 CompanyName,
 City,
 State,
 Country)
 SUBSCRIBE BY State
);

The following statements subscribe two employees to the publication. Ann Taylor receives the customers
in Georgia (GA), and Sam Singer receives the customers in Massachusetts (MA).

CREATE SUBSCRIPTION
 TO PubCustomers ('GA')
 FOR Ann_Taylor;
CREATE SUBSCRIPTION
 TO PubCustomers ('MA')
 FOR Sam_Singer;

Users can subscribe to more than one publication, and can have more than one subscription to a single
publication.

See also
● “Publishing only some rows using a WHERE clause” on page 16
● “Disjoint data partitions” on page 58
● “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “CREATE SUBSCRIPTION statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “Subscribe to a publication” on page 31

Publications and articles

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 15

Publishing only some rows using a WHERE clause
Use the following procedures to create a publication that uses a WHERE clause to include all the
columns, but only some of the rows of a table. For information about using the WHERE clause and its
alternative the SUBSCRIBE BY clause, see “Publish only some rows in a table” on page 13.

Create a publication using a WHERE clause (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the consolidated database as a user with DBA
authority.

2. In the left pane, click the Publications folder.

3. Click File » New » Publication.

4. In the What Do You Want To Name The New Publication field, type a name for the publication.
Click Next.

5. Click Next.

6. In the Available Tables list, click a table. Click Add. Click Next.

7. On the Available Columns tab, double-click the table's icon to expand the list of Available Columns.
Click each column you want to publish and click Add. Click Next.

8. On the Specify WHERE Clauses page:

a. Click a table in the Articles list.

b. Type a WHERE clause into the The Selected Article Has The Following WHERE Clause field.

9. Click Finish.

Create a publication using a WHERE clause (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a CREATE PUBLICATION statement that uses a WHERE clause to include the rows you
want to include in the publication.

For example, the following statement creates a publication that publishes the ID, CompanyName,
City, State, and Country columns of the Customers table, for customers marked as active in the Status
column. The Status column is not published.

CREATE PUBLICATION PubCustomers (
 TABLE Customers (
 ID,
 CompanyName,
 City,
 State,
 Country)
 WHERE Status = 'active'
);

Creating SQL Remote systems

16 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The following statements subscribe two employees to the same publication. Both Ann Taylor and Sam
Singer receive the same data.

CREATE SUBSCRIPTION
TO PubCustomers
FOR Ann_Taylor;
CREATE SUBSCRIPTION
TO PubCustomers
FOR Sam_Singer;

Users can subscribe to more than one publication, and can have more than one subscription to a single
publication.

See also
● “WHERE clause and primary keys” on page 49
● “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “CREATE SUBSCRIPTION statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]

Altering publications
You alter a publication by adding, modifying, deleting articles, or by renaming the publication.

Caution
Altering publications in a running SQL Remote system can cause replication errors and a loss of data in
the replication system. See “Upgrades and resynchronization” on page 131.

Alter a publication (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user who owns the publication or
as a user with DBA authority.

2. In the left pane, click the Publications folder.

3. Right-click the article you want to alter and click Properties to edit the publication.

Alter a publication (SQL)

1. Connect to the database as a user who owns the publication or as a user with DBA authority.

2. Execute an ALTER PUBLICATION statement.

For example, the following statement adds the Customers table to the PubContacts publication.

ALTER PUBLICATION PubContacts
 ADD TABLE Customers;

For example, the following statement redefines the Customers article in the PubContacts publication.

Publications and articles

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 17

ALTER PUBLICATION PubContacts
 ALTER ARTICLE Customers (name, surname);

See also
● “ALTER PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]

Dropping a publication
When you drop a publication, all subscriptions to that publication are automatically deleted.

Caution
Dropping publications in a running SQL Remote system can cause replication errors and a loss of data in
the replication system. See “Upgrades and resynchronization” on page 131.

Delete a publication (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with DBA authority.

2. In the left pane, expand the Publications folder.

3. Right-click the desired publication and click Delete.

Delete a publication (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a DROP PUBLICATION statement.

For example, the following statement drops the publication named PubOrders.

DROP PUBLICATION PubOrders;

See also
● “DROP PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]

User permissions
SQL Remote uses a consistent system to manage the users who have permissions on remote and
consolidated databases.

Users of databases involved in SQL Remote replication are identified by one or more of the following
permissions:

● PUBLISH Every database in a SQL Remote system publishes information. Therefore, every
database must have a publisher. To create a publisher, grant one user PUBLISH permission. The

Creating SQL Remote systems

18 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

publisher user must be unique throughout the SQL Remote system. When sending data, the publisher
represents the database. For example, when a database sends a message, its publisher user name is
included with the message. When a database receives a message, it can identify the database that sent
the message by the publisher name in the message.

● REMOTE A database, such as a consolidated database, that sends messages to other databases must
specify which remote databases it sends messages to. To specify these remote databases on the
consolidated database, grant REMOTE permission to the publishers of the remote databases.
REMOTE permission identifies databases that receive messages from the current database.

● CONSOLIDATE Each remote database must specify the consolidated database that it receives
messages from. To specify a consolidated database on the remote database, grant CONSOLIDATE
permission to the publisher of the consolidated database. A remote database can only receive
messages from one consolidated database. CONSOLIDATE permission identifies the database that
sends messages to this remote database.

Information about these permissions is held in the SQL Remote system tables, and these permissions are
independent of other database authorities and permissions.

Extraction utility (dbxtract) sets permissions automatically
By default, the Extraction utility (dbxtract) and the Extract Database Wizard grant the appropriate
PUBLISH and CONSOLIDATE permissions to users in the remote databases.

See also
● “Extraction utility (dbxtract)” on page 187

Single-tiered hierarchy
In a single-tiered hierarchy, there is one consolidated database with one or more remote databases
underneath. In such a hierarchy, the consolidated database grants REMOTE permission to the publishers
of the remote databases. Each remote database grants CONSOLIDATE permission to the consolidated
database publisher.

For example, there is a consolidated database identified by its publisher, HeadOffice, and a remote
database identified by its publisher, RegionalOffice.

On the consolidated database, HeadOffice, you:

● Create a user with the same name as the publisher of the remote database: RegionalOffice.

● Grant REMOTE permission to RegionalOffice. This identifies RegionalOffice as a database that
receives messages from HeadOffice.

On the remote database, RegionalOffice, you:

● Create a user with the same name as the publisher of the consolidated database: HeadOffice.

● Grant CONSOLIDATE permission to HeadOffice. This identifies HeadOffice as the consolidated
database for RegionalOffice; that is, HeadOffice is the database that sends messages to RegionalOffice.

User permissions

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 19

Dbxtract sets permissions automatically
By default, the Extraction utility (dbxtract) and the Extract Database Wizard grant the appropriate
PUBLISH and CONSOLIDATE permissions to users in the remote databases.

See also
● “Extraction utility (dbxtract)” on page 187

Multi-tiered hierarchy

In a multi-tier hierarchy, all remote databases immediately below the current database are granted
REMOTE permission. The database immediately above the current database in the hierarchy is granted
CONSOLIDATE permission.

For example, there is a consolidated database identified by its publisher, HeadOffice, which has a remote
database, RegionalOffice. However, the RegionalOffice database also has a remote database: Office.

On the consolidated database, HeadOffice, you:

● Create a user with the same name as the publisher of the remote database RegionalOffice.

● Grant REMOTE permission to the user RegionalOffice. This identifies RegionalOffice as a database
that receives messages from HeadOffice.

On the RegionalOffice database, you:

● Create a user with the same name as the publisher of the consolidated database HeadOffice.

● Grant CONSOLIDATE permission to HeadOffice. This identifies HeadOffice as the consolidated
database for RegionalOffice; that is, HeadOffice is the database that sends messages to RegionalOffice.

● Create a user with the same name as the database immediately below RegionalOffice: Office.

Creating SQL Remote systems

20 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● Grant REMOTE permission to Office. This identifies Office as a database that receives messages from
RegionalOffice.

On the Office database, you:

● Create a user with the same name as the publisher of the consolidated database: RegionalOffice.

● Grant Consolidate permission to the RegionalOffice user. This identifies RegionalOffice as the
consolidated database for Office; that is RegionalOffice sends messages to Office.

PUBLISH permission
Every database in a SQL Remote system requires a publisher, which is a unique user with PUBLISH
permission. All outgoing SQL Remote messages, including publication updates and receipt confirmations,
are identified by their publisher. Every database in a SQL Remote system sends receipt confirmations.

PUBLISH permission has no authority except to identify the publisher in outgoing messages.

When PUBLISH permission is granted to a user name with GROUP permission, it is not inherited by
members of the group.

You create a publisher by granting a user PUBLISH permission.

Creating a publisher
Use the following procedures to create users and grant them PUBLISH permission.

Create a publisher (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with DBA authority.

2. Create a user to serve as the publisher, if one doesn't already exist.

User permissions

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 21

a. In the left pane, click the Users & Groups folder.

b. Click File » New » User.

c. Follow the instructions in the Create User Wizard. Assign the user a password.

3. In the Users & Groups folder, right-click the user you created, and click Change To Publisher.

Create a publisher (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a CREATE USER statement to create a user to serve as the publisher. Assign the user a
password.

For example the following creates a user named cons with the password SQL:

CREATE USER cons IDENTIFIED BY SQL;

3. Execute a GRANT CONNECT statement to grant CONNECT permission to the user.

For example, the following statement grants CONNECT permission to the user cons:

GRANT CONNECT TO cons IDENTIFIED BY SQL;

4. Execute a GRANT PUBLISH statement to grant PUBLISH permission to the user.

For example, the following statement grants PUBLISH permission to the user cons:

GRANT PUBLISH TO cons;

Extraction utility (dbxtract)
When a remote database is extracted by the Extraction utility (dbxtract) or the Extract Database Wizard,
the remote user becomes the publisher of the remote database, and is granted PUBLISH permission.

See also
● “GRANT statement” [SQL Anywhere Server - SQL Reference]
● “GRANT PUBLISH statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “Revoking PUBLISH permission” on page 22
● “Viewing the publisher” on page 23

Revoking PUBLISH permission
Use the following procedure to revoke the PUBLISH permission from a user.

Caution
Changing the publisher at a remote database or at the consolidated database can cause serious problems
for any subscriptions that the database is involved in, including the loss of information. See “Changes to
avoid on a running system” on page 131.

Creating SQL Remote systems

22 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Revoke PUBLISH permission (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with DBA authority.

2. In the left pane, click the Users & Groups folder.

3. Right-click the user who has PUBLISH permission and click Revoke Publisher.

Revoke PUBLISH permission (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a REVOKE PUBLISH statement to revoke the PUBLISH permission from the current
publisher.

For example:

REVOKE PUBLISH FROM cons;

See also
● “PUBLISH permission” on page 21
● “REVOKE PUBLISH statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “Viewing the publisher” on page 23

Viewing the publisher
Identify the publisher (Sybase Central)

● In the left pane, click the Users & Groups folder.

In the right pane, the publisher is the user whose Type is Publisher.

Identify the publisher (SQL)

● Use the CURRENT PUBLISHER constant. The following statement retrieves the publisher user
name:

SELECT CURRENT PUBLISHER;

See also
● “PUBLISH permission” on page 21
● “Revoking PUBLISH permission” on page 22

REMOTE permission
Granting REMOTE permission is also referred to as adding a remote user to the database. Publishers of
databases directly below the current database in a SQL Remote hierarchy are granted REMOTE
permission by the current database.

User permissions

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 23

When granting REMOTE permission to a user, you must configure the following settings:

● Message system You cannot create a new remote user until at least one message system is
defined in the database.

● Send frequency When you use SQL statements to grant REMOTE permission, setting the send
frequency is optional

Granting REMOTE permission to a user:

● Identifies the user as a remote user.

● Specifies a message type to use for exchanging messages with this remote user.

● Provides an address to send messages to.

● Indicates how often messages should be sent to the remote user.

The publisher for a database cannot have REMOTE and CONSOLIDATE permission on the same
database. This would identify the publisher as both the sender and recipient of outgoing messages.

Granting REMOTE permission to groups
Although, you can grant REMOTE permission to a group, the REMOTE permission does not
automatically apply to all users in the group. You must explicitly grant REMOTE permission to each user
in the group.

See also
● “SQL Remote message systems” on page 102
● “Setting the send frequency” on page 83
● “GRANT REMOTE statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]

Granting REMOTE permission
Use the following procedures to add a remote user.

Create a remote user (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with DBA authority.

2. In the left pane, click the SQL Remote Users folder.

3. Click File » New » SQL Remote User.

4. Follow the instructions in the Create Remote User Wizard.

Make an existing user a remote user (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with DBA authority.

2. In the left pane, click the SQL Remote Users folder.

Creating SQL Remote systems

24 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

3. Right-click the user and click Change To Remote User.

4. In the window, click the message type, enter an address, click the send frequency, and click OK.

Create a remote user (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a CREATE USER statement to create a user.

For example:

CREATE USER remote1;

3. Execute a GRANT CONNECT statement to grant the user CONNECT permission.

For example:

GRANT CONNECT TO remote1;

4. Execute a GRANT REMOTE statement to grant the user REMOTE permission.

For example:

GRANT REMOTE TO userid;

For example, the following statement grants REMOTE permission to user S_Beaulieu, and specifies
that the remote database:

● Uses an SMTP email as its message system.

● Sends messages using the email address s_beaulieu@acme.com:

● Sends message daily at 10 P.M.

GRANT REMOTE TO S_Beaulieu
TYPE smtp
ADDRESS 's_beaulieu@acme.com'
SEND AT '22:00';

The following statement grants REMOTE permission to user rem1, and specifies that rem1's remote
database uses a FILE message system with the address rem1.

GRANT CONNECT TO rem1 IDENTIFIED BY SQL
GRANT REMOTE TO rem1 TYPE FILE ADDRESS 'rem1';

See also
● “GRANT statement” [SQL Anywhere Server - SQL Reference]
● GRANT REMOTE statement [SQL Remote]
● “Revoke REMOTE permission” on page 26

User permissions

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 25

Revoke REMOTE permission

Revoking a user's REMOTE permission:

● Removes a user from the SQL Remote system.

● Reverts that user or group to a normal user/group.

● Unsubscribes the user or group from all publications.

Revoke REMOTE permission (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the consolidated database as a user with DBA
authority.

2. In the left pane, expand either the Users & Groups folder or the SQL Remote Users folder.

3. Right-click the remote user or group and click Revoke Remote.

Revoke REMOTE permission (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a REVOKE REMOTE statement to revoke the REMOTE permission from the current user or
group.

For example, the following statement revokes REMOTE permission from user S_Beaulieu.

REVOKE REMOTE FROM S_Beaulieu;

See also
● “Granting REMOTE permission” on page 24
● “REVOKE REMOTE statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]

CONSOLIDATE permission
Databases directly above the current database in a SQL Remote hierarchy are granted CONSOLIDATE
permission by the current database. At each remote database, the consolidated database must be granted
CONSOLIDATE permission.

CONSOLIDATE permission must be granted even from read-only remote databases to the consolidated
database, because receipt confirmations are sent from the remote databases to the consolidated database.

When granting CONSOLIDATE permission to a user, you must configure the following settings:

● Message system You cannot create a new consolidated user until at least one message system is
defined in the database.

Creating SQL Remote systems

26 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● Send frequency When you use SQL statements to grant CONSOLIDATE permission, setting the
send frequency is optional.

Granting CONSOLIDATE permission:

● Identifies a user as a consolidated user.

● Specifies a message type to use for exchanging messages with this consolidated user.

● Provides an address to send messages to.

● Indicates how often messages should be sent to the consolidated user.

The publisher for a database cannot have REMOTE and CONSOLIDATE permissions on the same
database. This would identify the publisher as both the sender and recipient of outgoing messages.

Extraction utility (dbxtract)
When a remote database is extracted by the Extraction utility (dbxtract) or the Extract Database Wizard,
the GRANT CONSOLIDATE statement is executed automatically on the remote database.

See also
● “SQL Remote message systems” on page 102
● “Setting the send frequency” on page 83

Granting CONSOLIDATE permission

Use the following procedures to grant CONSOLIDATE permission to a user.

It is recommended that you grant CONSOLIDATE permission to the publisher of the consolidated
database.

Specify a consolidated database (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with DBA authority.

2. In the left pane, click the database, and then click File » Properties.

3. Click the SQL Remote tab.

4. Click This Remote Database Has A Corresponding Consolidated Database.

5. Configure the Message Type, Address, and Send Frequency settings.

6. Click OK to close the Consolidated Database Properties window.

Specify a consolidated database (SQL)

1. Execute a GRANT CONNECT statement to grant CONNECT permission to the publisher of the
consolidated database.

User permissions

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 27

For example:

GRANT CONNECT TO cons;

2. Execute a GRANT CONSOLIDATE statement to grant CONSOLIDATE permission to the
consolidated user.

For example, the following statement grants CONSOLIDATE permission to the hq_user user and
specifies that the consolidated database uses the SMTP email system:

GRANT CONSOLIDATE TO hq_user
TYPE SMTP
ADDRESS 'hq_address';

There is no SEND clause in this GRANT CONSOLIDATE statement, so SQL Remote sends
messages to the consolidated database and then stops.

For example, the following statement grants CONSOLIDATE permission to the cons user and
specifies that the consolidated database uses the FILE system:

GRANT CONNECT TO "cons" IDENTIFIED BY SQL;
GRANT CONSOLIDATE TO "cons" TYPE "FILE" ADDRESS 'cons';
GRANT CONNECT TO "rem1" IDENTIFIED BY SQL;
GRANT PUBLISH TO "rem1";
CREATE REMOTE MESSAGE TYPE FILE ADDRESS 'rem1';

See also
● “GRANT statement” [SQL Anywhere Server - SQL Reference]
● “GRANT CONSOLIDATE statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “Revoke CONSOLIDATE permission” on page 28

Revoke CONSOLIDATE permission

When you revoke CONSOLIDATE permission from a user, SQL Anywhere:

● Removes the user from the SQL Remote system.

● Reverts that user or group to a normal user/group.

● Unsubscribes the user or group from all publications.

Revoke CONSOLIDATE permission (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with DBA authority.

2. Expand either the Users & Groups folder or the SQL Remote Users folder.

3. Right-click the consolidated user or group and click Revoke Consolidated.

4. Click Yes.

Creating SQL Remote systems

28 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Revoke CONSOLIDATE permission (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a REVOKE CONSOLIDATE statement to revoke CONSOLIDATE permission from the
current user or group.

For example:

REVOKE CONSOLIDATE FROM Cons_User;

See also
● “Granting CONSOLIDATE permission” on page 27
● “REVOKE CONSOLIDATE statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]

REMOTE DBA authority
A user name with REMOTE DBA authority has full DBA authority on the database only when
connecting from SQL Remote. With REMOTE DBA authority, SQL Remote has full access to the
database and can make changes specified in the messages. Only users with REMOTE DBA or DBA
authority can run SQL Remote.

As a special authority, REMOTE DBA, has the following properties:

● No distinct permissions when not connected from SQL Remote A user that is granted
REMOTE DBA authority has no extra privileges on any connection apart from SQL Remote.
Therefore, even if the user name and password for a REMOTE DBA user are widely distributed, there
are no security issues. As long as the user name has no permissions beyond CONNECT granted on the
database, no one can use this user name to access data in the database.

● Full DBA permission from SQL Remote When connecting from SQL Remote, a user with
REMOTE DBA authority has full DBA permission on the database.

When to grant REMOTE DBA authority
It is recommended that when you are creating users on the consolidated database that you grant REMOTE
DBA authority to the publisher of the consolidated database and to each remote user. When a remote
database is extracted by the Extraction utility (dbxtract) or the Extract Database Wizard, the remote user
becomes the publisher of the remote database, and is granted PUBLISH permission and REMOTE DBA
authority.

This recommendation simplifies the administration of users. Each remote user only needs one user name
to connect to the database, whether from the SQL Remote (which provides the user with full DBA
authority) or from any other client application (in which case the REMOTE DBA authority grants the user
no extra permissions).

User permissions

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 29

See also
● “REMOTE DBA authority” [SQL Anywhere Server - Database Administration]
● “GRANT REMOTE DBA statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]

Granting REMOTE DBA authority
Grant REMOTE DBA authority (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with DBA authority.

2. In the left pane, click either the Users & Groups folder or the SQL Remote Users folder.

3. Right-click the user and click Properties.

4. Click the Authorities tab and click the Remote DBA option.

5. Click Apply and then click OK.

Grant REMOTE DBA authority (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a GRANT REMOTE DBA statement to grant REMOTE DBA authority to a user.

For example:

GRANT REMOTE DBA TO dbremote
IDENTIFIED BY dbremote;

See also
● “REMOTE DBA authority” [SQL Anywhere Server - Database Administration]
● “GRANT REMOTE DBA statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]

Revoke REMOTE DBA authority

Revoking REMOTE DBA authority removes the user's ability to have full DBA authority on the database
when connected from SQL Remote.

Use the following procedure to revoke REMOTE DBA authority from a user.

Revoke REMOTE DBA authority (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with DBA authority.

2. In the left pane, click either the Users & Groups folder or the SQL Remote Users folder.

3. Right-click the user and click Properties.

Creating SQL Remote systems

30 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

4. Click the Authorities tab and clear the Remote DBA option.

5. Click OK.

Revoke REMOTE DBA authority (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a REVOKE REMOTE DBA statement to revoke REMOTE DBA authority from a user.

For example:

REVOKE REMOTE DBA FROM dbremote;

See also
● “REMOTE DBA authority” on page 29
● “REVOKE REMOTE DBA statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “Granting REMOTE permission” on page 24

Subscriptions
You subscribe a user to a publication by creating a subscription. Each database that shares information in
a publication must have a subscription to the publication.

Periodically, the changes made to each publication in a database are replicated to all subscribers of that
publication. These replications are called publication updates.

Subscribe to a publication
To subscribe a user to a publication, you need the following information:

● Publication name The name of the publication to which the user is being subscribed.

● Subscription value The subscription value only applies if your publication includes a
SUBSCRIBE BY clause. The subscription value is the value that is tested against the SUBSCRIBE
BY clause of the publication. For example, if a publication has the name of a column containing an
employee ID as a SUBSCRIBE BY clause, the value of the employee ID of the subscribing user must
be provided when the subscription is created. The subscription value is always a string.

This value is only needed when the publication has a SUBSCRIBE BY clause.

● Subscriber-id The user who is being subscribed to the publication. At the consolidated database,
when you create a subscription to a remote user, the remote user must have been granted REMOTE
permission. At the remote database, when you create a subscription to the consolidated user, that user
must have been granted CONSOLIDATED permission. By default, the Extraction utility (dbxtract)
and the Extract Database Wizard grant the appropriate PUBLISH and CONSOLIDATE permissions
to users in the remote databases.

Subscriptions

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 31

Subscribe a user to the publication (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with DBA authority.

2. In the left pane, click the Publications folder.

3. Click a publication.

4. In the right pane, click the SQL Remote Subscriptions tab.

5. Click File » New » SQL Remote Subscription.

6. Follow the instructions in the Create SQL Remote Subscription Wizard.

The details of the subscription are different depending on whether the publication uses a subscription
expression.

Subscribe a remote user to a publication (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a CREATE SUBSCRIPTION statement to subscribe a user to a publication.

For example, the following statement creates a subscription for user name SamS to the CustomerPub
publication, which was created using a WHERE clause:

CREATE SUBSCRIPTION
 TO CustomerPub
 FOR SamS;

For example, the following statement creates a subscription for user name SamS to the PubOrders
publication, defined with a subscription expression SalesRepresentative, requesting the rows for Sam
Singer's own sales:

CREATE SUBSCRIPTION
 TO PubOrders ('856')
 FOR SamS;

See also
● “CREATE SUBSCRIPTION statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “GRANT REMOTE statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “Publishing only some rows using the SUBSCRIBE BY clause” on page 14

Transaction log-based replication
SQL Remote replicates:

● Committed changes Changes that have been made to databases as recorded in their transaction
log.

Creating SQL Remote systems

32 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● Changes that modify data that belong to publications SQL Remote scans the transaction log
for committed changes to rows that belong to publications, packages the SQL statements into
messages, and sends them to the subscribed databases.

On the consolidated database, all committed transactions in the transaction log that belong to publications
are sent periodically to the remote databases.

On the remote databases, all committed transactions in the transaction log that belong to publications are
sent periodically to the consolidated database.

The database server handles publications
The SQL Anywhere database server is the component that evaluates the publications and writes the
information to the transaction log. The more publications you have, the more work the database server
must do.

SQL Anywhere evaluates the subscription expression for each update made to a table that is part of a
publication. It adds the value of the expression to the transaction log, both before and after the update. For
a table that is part of more than one publication, the subscription expression is evaluated before and after
the update for each publication.

The additional information in the transaction log can affect performance in the following cases:

● Expensive expressions When a subscription expression is expensive to evaluate, it can affect
performance.

● Many publications When a table belongs to several publications, many expressions must be
evaluated. In contrast, the number of subscriptions is irrelevant to the database server.

● Many-valued expressions Some expressions are many-valued, which can lead to additional
information in the transaction log. This can affect performance.

Subscriptions are handled by SQL Remote
SQL Remote is the component that carries out the replication of statements.

During the send phase, the SQL Remote Message Agent maps the current subscriptions to the publication
information in the transaction log and generates the appropriate messages for each remote user.

Transaction log-based replication

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 33

See also
● “The SQL Remote Message Agent (dbremote)” on page 86
● “The transaction log” [SQL Anywhere Server - Database Administration]

INSERT and DELETE statement replication
For SQL Remote, the INSERT and DELETE statements are the simplest statements to replicate:

● When an INSERT statement is executed on one database, it is sent as an INSERT statement to the
subscribed databases in the SQL Remote system.

● When a DELETE statement is executed on one database, it is sent as a DELETE statement to the
subscribed databases in the SQL Remote system.

Consolidated database
SQL Remote copies each INSERT or DELETE statement from the consolidated database transaction log,
and sends them to each remote database that subscribes to the row being inserted or deleted. When only a
subset of the columns in the table is subscribed to, the INSERT statements sent to the remote databases
contain only those columns.

Remote databases
SQL Remote copies each INSERT or DELETE statement from a remote database transaction log and
sends it to the consolidated database that subscribes to the row being inserted or deleted. The consolidated
database then applies the statement, which results in writing to its transaction log. When the consolidated
database transaction log is processed by SQL Remote, the changes are eventually propagated to the other
remote sites. SQL Remote ensures that statements are not sent to the remote user that initially executed
them.

See also
● “Duplicate primary key errors” on page 52
● “Row not found errors” on page 49

UPDATE statement replication
UPDATE statements might not be replicated exactly as they are entered in the database. The following
scenarios describe how an UPDATE statement is replicated:

● When an UPDATE statement has the effect of updating a row in a given remote user's subscription, it is
sent to that user as an UPDATE statement.

● When an UPDATE statement has the effect of removing a row from a given remote user's subscription,
it is sent to that user as a DELETE statement.

● When an UPDATE statement has the effect of adding a row to a given remote user's subscription, it is
sent to that user as an INSERT statement.

Creating SQL Remote systems

34 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

To demonstrate how an UPDATE statement can be replicated, the following example uses a consolidated
database and three remote databases for the users: Ann, Marc, and ManagerSteve.

On the consolidated database, there is a publication, named cons, that is created with the following
statement:

CREATE PUBLICATION "cons"."p1" (
 TABLE "DBA"."customers" ("ID", "Rep") SUBSCRIBE BY repid
);

Ann and Marc subscribe to the cons publication by their respective Rep column values. ManagerSteve
subscribes to the cons publication with both Ann and Marc's Rep column values. The following
statements subscribe the three users to the publication cons:

CREATE SUBSCRIPTION
 TO "cons"."p1"('Ann')
 FOR "Ann";
CREATE SUBSCRIPTION
 TO "cons"."p1"('Marc')
 FOR "Marc";
CREATE SUBSCRIPTION
 TO "cons"."p1"('Ann')
 FOR "ManagerSteve";
CREATE SUBSCRIPTION
 TO "cons"."p1"('Marc')
 FOR "ManagerSteve";

On the consolidated database, an UPDATE statement that changes the Rep value of a row from Marc to
Ann is replicated to:

● Marc as a DELETE statement.

● Ann as an INSERT statement.

● ManagerSteve as an UPDATE statement.

Transaction log-based replication

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 35

This reassignment of rows among subscribers is sometimes called territory realignment because it is a
common feature of sales force automation applications, where customers are periodically reassigned
among representatives.

See also
● “Update conflicts” on page 41
● “UPDATE statement” [SQL Anywhere Server - SQL Reference]

Procedure replication
SQL Remote replicates procedures by replicating the actions of a procedure. The procedure call is not
replicated. Instead, the individual actions (INSERT, UPDATE, and DELETE statements) of the procedure
are replicated.

Trigger replication
Typically, remote databases have the same triggers defined as the consolidated database does.

By default, SQL Remote does not replicate the actions performed by the triggers. Instead, when an action
that fires a trigger on the consolidated database is replicated on the remote database, the duplicate trigger
is automatically fired on the remote database. This avoids permissions issues and the possibility of each
action occurring twice. There are some exceptions to this rule:

● Replication of RESOLVE UPDATE triggers The actions carried out by conflict resolution, or
RESOLVE UPDATE triggers are replicated from the consolidated database to all remote databases,
including the remote database that sent the message that created the conflict.

● Replication of BEFORE triggers The actions of a BEFORE trigger that modifies a row being
updated are replicated before the UPDATE statement actions.

For example, a BEFORE UPDATE trigger that increases a counter column in the row to keep track of
the number of times a row is updated would double count if replicated as the BEFORE UPDATE
trigger fires on the remote database when the UPDATE statement is replicated.

Creating SQL Remote systems

36 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

A BEFORE UPDATE trigger that sets a column to the time of the last update also receives the time
the UPDATE statement is replicated.

To prevent this problem, you must ensure that, at the subscriber database, the BEFORE UPDATE
trigger is not present or does not perform the replicated action.

An option to replicate trigger actions
To replicate all trigger actions when sending messages, use the -t option for the SQL Remote Message
Agent (dbremote).

When you use the -t option, ensure that the trigger actions are not carried out twice at remote databases,
once when the replicated trigger actions are applied, and once when the trigger is fired on the remote
database.

To ensure that trigger actions are not carried out twice, use one of the following options:

● Wrap an IF CURRENT REMOTE USER IS NULL ... END IF statement around the body of the
trigger.

● Set the SQL Anywhere fire_triggers option to Off for the SQL Remote user name.

Avoiding trigger errors
If a publication includes only a subset of a database, a trigger at the consolidated database can refer to
tables or rows that are present at the consolidated database, but are not present on the remote databases.
When such a trigger is fired on the remote database, errors occur. To avoid these errors, use an IF
statement to make the trigger actions conditional, and:

● Have the actions of the trigger be conditional on the value of CURRENT PUBLISHER.

● Have the actions of the trigger be conditional on the object_id function not returning NULL. The
object_id function takes a table or other object as argument, and returns the ID number of that object or
NULL if the object does not exist.

● Have actions of the trigger be conditional on a SELECT statement that determines if the rows exist.

Extraction utility (dbxtract)
By default, the database Extraction utility (dbxtract) and the Extract Database Wizard extract the trigger
definitions.

See also
● “Default resolution for update conflicts” on page 42
● “Using the CURRENT REMOTE USER special value” on page 46
● “SQL Remote Message Agent utility (dbremote)” on page 177
● “fire_triggers option” [SQL Anywhere Server - Database Administration]
● “CURRENT PUBLISHER special value” [SQL Anywhere Server - SQL Reference]
● “System functions” [SQL Anywhere Server - SQL Reference]

Transaction log-based replication

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 37

Data definition statements
Data definition statements (CREATE, ALTER, and DROP) are not replicated by SQL Remote unless they
are executed in passthrough mode.

See also
● “SQL Remote passthrough mode” on page 132

Data types
SQL Remote does not perform any character set conversions.

Use compatible sort orders and character sets
The character set and collation used by the SQL Anywhere consolidated database must be the same as the
remote database's. For information about supported character sets, see “International languages and
character sets” [SQL Anywhere Server - Database Administration].

BLOBs

BLOBs include the LONG VARCHAR, LONG BINARY, TEXT, and IMAGE data types.

When SQL Remote replicates an INSERT or UPDATE statement, it uses a variable in place of the BLOB
value. That is, the BLOB is broken into pieces and replicated in chunks. At the recipient database, the
pieces are reconstituted by using a SQL variable and concatenated. The value of the variable is built up by
a sequence of statements of the form:

SET vble = vble || 'more_stuff';

The variable makes the size of the SQL statements involving long values smaller, so they fit within a
single message.

The SET statements are separate SQL statements, so that the BLOB is effectively split over several SQL
Remote messages.

Controlling replication of BLOBs
The SQL Anywhere blob_threshold option allows further control over the replication of long values. Any
value that is longer than the blob_threshold option is replicated as though it is a BLOB value.

Using the verify_threshold option to minimize message size
The verify_threshold database option can prevent long values from being verified (in the VERIFY clause
of a replicated UPDATE statement). The default value for the option is 1000. When the data type of a
column is longer than the threshold, old values for the column are not verified when an UPDATE
statement is replicated. This reduces the size of SQL Remote messages, but has the disadvantage that
conflicting updates of long values are not detected.

Creating SQL Remote systems

38 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Use the following technique to detect conflicts when the verify_threshold option is being used to reduce
the size of messages.

Detect conflicts with BLOB values when the verify_threshold is set

1. Configure your databases so that whenever a BLOB is updated, a last_modified column in the same
table is also updated.

2. Configure your publications so that the last_modified column is replicated with the BLOB column.

When the BLOB column and the last_modified column are replicated, the values in the last_modified
column can be verified. If there is a conflict with the last_modified column, then there is a conflict
with the BLOB column as well.

Using a work table to avoid redundant updates
Repeated updates to a BLOB should be done in a work table, and the final version should be assigned to
the replicated table. For example, if a document in progress is updated 20 times throughout the day and
SQL Remote is run once at the end of the day, all 20 updates are replicated. If the document is 200 KB in
length, then 4 MB of messages are sent.

It is recommended that you use a document_in_progress table. When the user is done revising a
document, the application moves it from the document_in_progress table to the replicated table. This
results in a single update (200 KB of messages).

See also
● “SET statement” [SQL Anywhere Server - SQL Reference]
● “blob_threshold option [SQL Remote]” [SQL Anywhere Server - Database Administration]
● “verify_threshold option [SQL Remote]” [SQL Anywhere Server - Database Administration]

Dates and times

When date or time columns are replicated, SQL Remote uses the setting of the sr_date_format,
sr_time_format, and sr_timestamp_format database options to format the date.

For example, the following option setting instructs SQL Remote to send a date of May 2, 1998 as
1998-05-02.

SET OPTION sr_date_format = 'yyyy-mm-dd';

When replicating dates and times:

● The time, date, and timestamp formats must be consistent throughout the SQL Remote system.

● The order of the year, month, and day used for the date and timestamp formats must match the setting
of the date_order database option.

● The date_order option for the duration of each connection can be changed.

Transaction log-based replication

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 39

See also
● “sr_date_format option [SQL Remote]” [SQL Anywhere Server - Database Administration]
● “sr_time_format option [SQL Remote]” [SQL Anywhere Server - Database Administration]
● “sr_timestamp_format [SQL Remote]” [SQL Anywhere Server - Database Administration]
● “date_order option” [SQL Anywhere Server - Database Administration]

Replication conflicts and errors
SQL Remote allows databases to be updated at multiple databases. Careful design is required to avoid
replication errors, especially when the database has a complicated structure.

Replication conflicts
Replication conflicts are different from errors. When properly handled, conflicts are not a problem in SQL
Remote.

Conflicts occur in many systems. SQL Remote allows appropriate resolution of conflicts as part of the
regular operation of a SQL Remote system, using triggers and procedures.

Replication errors
Replication errors fall into the following categories:

● Row not found errors A user deletes a row (with a given primary key value.) A second user
updates or deletes the same row at another site. In this case, the second statement fails, as the row is
not found.

● Referential integrity errors When a column containing a foreign key is included in a publication,
but the associated primary key is not included, INSERT statements that reference the foreign key fail.

Also, referential integrity errors can occur when a primary table has a SUBSCRIBE BY expression
and the associated foreign table does not: rows from the foreign table may be replicated, but the rows
from the primary table may be excluded from the publication.

● Duplicate primary key errors Two users insert a row using the same primary key values, or one
user updates a primary key and a second user inserts a primary key of the new value. The second
operation to reach a given database in the replication system fails because it would produce a
duplicate primary key.

Delivery errors
For information about delivery errors and how they are handled, see “Guaranteed Message Delivery
System” on page 96.

Creating SQL Remote systems

40 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “Default resolution for update conflicts” on page 42
● “Replication error reporting and handling” on page 125
● “Update conflicts” on page 41
● “Row not found errors” on page 49
● “Referential integrity errors” on page 49
● “Duplicate primary key errors” on page 52

Update conflicts
Update conflicts cannot happen when data is shared for reading, or when each row (as identified by its
primary key) is updated at only one database. Update conflicts only occur when data is updated at more
than one database.

To replicate UPDATE statements, SQL Remote issues a separate UPDATE statement for each row. These
single-row statements can fail for one of the following reasons:

● The row to be updated differs in one or more of its columns When one of the values
expected to be present has been changed by some other user, an update conflict occurs.

On remote databases, the update takes place regardless of the values in the row.

On the consolidated database, SQL Remote allows conflict resolution operations to take place. For
example, when a conflict is detected, the consolidated database can:

○ Use the default conflict resolution.

○ Use a customized conflict resolution that uses the VERIFY clause.

○ Use a customized conflict resolution that uses triggers.

Note
UPDATE statement conflicts do not apply to primary key updates. You should not update primary
keys in a SQL Remote system. Primary key conflicts must be excluded from the system by proper
design.

● The row to be updated does not exist Each row is identified by its primary key values. If the
row has been deleted or if a primary key has been altered by another user, the row to be updated
cannot be found.

On remote databases, the update does not occur.

On the consolidated database, the update does not occur.

● A table without a primary key or unique constraint refers to all columns in the WHERE
clause of replicated updates When two remote databases make separate updates to the same row
and replicate the changes to the consolidated database, the first changes to arrive on the consolidated
database are applied; changes from the second database are not applied.

Update conflicts

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 41

As a result, databases become inconsistent. All replicated tables should have a primary key or a
unique constraint and the columns in the constraint should never be updated.

See also
● “Default resolution for update conflicts” on page 42
● “Custom conflict resolution using a VERIFY clause” on page 43
● “Custom conflict resolution using triggers” on page 45

Default resolution for update conflicts
Update conflicts only occur when data is being updated at more than one site. For example:

1. User 1 updates a row at remote site 1.

2. User 2 updates the same row at remote site 2.

3. The update from User 1 is sent and applied to the consolidated database.

4. The update from User 2 is sent to the consolidated database.

The default method for resolving this type of update conflict is the following:

a. The more recent operation (in this example that from User 2) succeeds. It becomes the value in
the consolidated database and it is the value that is replicated to all other databases subscribed to
that row.

b. All other updates (in this example that from User 1) are lost.

c. No report is made of the conflict.

Creating SQL Remote systems

42 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “Row not found errors” on page 49

Custom conflict resolution using a VERIFY clause

SQL Remote generates UPDATE statements in the messages that use the VERIFY clause. An UPDATE
statement changes the value of one or more rows from the existing value to a new value. UPDATE
statements that include a VERIFY clause also contain the existing value of the row.

When applying an UPDATE statement, the consolidated database compares its existing value of the row
with what the remote database expects the existing value of the row to be. An update conflict is detected
by the database server when the VERIFY clause values don't match the rows in the database.

For example, an update conflict occurs when the following sequence of events takes place:

1. User 1 updates a row at remote site 1.

2. User 2 updates the same row at remote site 2.

3. The update from User 1 is sent and applied to the consolidated database.

4. The update from User 2 is sent to the consolidated database.

Update conflicts

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 43

Because the UPDATE statement contains a VERIFY clause, the consolidated database can detect
conflicts. On the consolidated database, SQL remote compares the value in its row with the old row
value that User 2 sent. As these values are not the same, there is an update conflict.

When an update conflict is detected, the consolidated database:

a. Fires any conflict resolution triggers defined for the operation.

You define conflict resolution triggers to handle update conflicts. Conflict resolution triggers
are fired only at a consolidated database, when messages are applied by a remote user.

b. Executes the UPDATE statements.

c. Sends any actions of the conflict resolution trigger and the UPDATE statement to all remote
databases, including the sender of the message that triggered the conflict.

Typically, SQL Remote does not replicate the actions of triggers; the trigger is assumed present
on the remote database. Conflict resolution triggers are fired only on consolidated databases, and
so their actions are replicated to remote databases.

5. The remote databases receives the UPDATE statements from the consolidated database.

On remote databases, RESOLVE UPDATE triggers are not fired when a message from a
consolidated database contains an update conflict.

6. On the remote database, the UPDATE statements are processed.

At the end of the process, the data is consistent throughout the system.

See also
● “Custom conflict resolution using triggers” on page 45

UPDATE statements with a VERIFY clause
An UPDATE statement with a VERIFY clause takes the following form:

UPDATE table-list
SET column-name = expression, ...
[VERIFY (column-name, ...)
 VALUES (expression, ...)]
[WHERE search-condition]
[ORDER BY expression [ASC | DESC], ...]

The VERIFY clause can be used only when the table-list parameter consists of a single table. It compares
the values of specified columns to a set of expected values, which are the values that were present in the
publisher database when the UPDATE statement was applied. When the VERIFY clause is specified, only
one table can be updated at a time.

The VERIFY clause is useful only for single-row updates. However, a multi-row UPDATE statement
executed on a database is replicated as a set of single-row UPDATE statements by the SQL Remote, so
this imposes no constraints on client applications.

Creating SQL Remote systems

44 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “UPDATE statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]

The verify_all_columns option

By default, the database option verify_all_columns is Off. When it is set to Off, only those columns that
are updated are checked. When the verify_all_columns option is set to On, then:

● All columns are verified on replicated UPDATE statements.

● A RESOLVE UPDATE trigger is fired whenever any column is different.

● The size of messages is bigger, because more information is sent for each UPDATE statement.

You can set the verify_all_columns option either for the PUBLIC group or just for the user contained in
the SQL Remote connection string.

The Extraction utility (dbxtract)
When the verify_all_columns option is set on the consolidated database before the remote databases are
extracted, then the verify_all_columns option on the remote databases is set by Extraction utility
(dbxtract) and the Extract Database Wizard.

See also
● “verify_all_columns option [SQL Remote]” [SQL Anywhere Server - Database Administration]

Custom conflict resolution using triggers
Custom conflict resolution can take several forms. For example, in some applications, resolution can:

● Compare the dates of the original transactions.

● Perform calculations on the results of two or more updates.

● Report the conflict into a table.

Custom conflict resolution requires you to write RESOLVE UPDATE triggers.

Using the RESOLVE UPDATE conflict resolution trigger
RESOLVE UPDATE triggers fire before each row is updated. The syntax for a RESOLVE UPDATE
trigger is as follows:

CREATE TRIGGER trigger-name
RESOLVE UPDATE
OF column-name ON table-name
[REFERENCING [OLD AS old-val]
 [NEW AS new-val]
 [REMOTE AS remote-val]]

Update conflicts

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 45

FOR EACH ROW
BEGIN
 ...
END

The REFERENCING clause allows access to the values in the row of the table to be updated (OLD), to
the values the row is to be updated to (NEW) and to the rows that should be present according to the
VERIFY clause (REMOTE). Only columns present in the VERIFY clause can be referenced in the
REMOTE AS clause; other columns return an error.

Using the CURRENT REMOTE USER special value
The CURRENT REMOTE USER special value is set by the receive phase of SQL Remote when it is
applying messages to the database. The CURRENT REMOTE USER special value is most useful in
triggers to determine whether the operations being applied are being applied by the receive phase of SQL
Remote, and if they are, which remote user generated the operations being applied.

See also
● “Date conflict resolution” on page 46
● “Inventory conflict resolution” on page 47
● “CREATE TRIGGER statement” [SQL Anywhere Server - SQL Reference]
● “UPDATE statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “Trigger replication” on page 36
● “-t option, SQL Remote Message Agent utility (dbremote)” on page 184

Date conflict resolution

To illustrate how you can resolve date conflicts, suppose a table in a contact management system has a
column holding the more recent contact with each customer.

One representative talks with a customer on a Friday, but does not upload his changes to the consolidated
database until Monday. Meanwhile, a second representative meets the customer on the Saturday, and
updates the changes that evening.

There is no conflict when the Saturday update is replicated to the consolidated database, but when the
Monday update arrives, it finds the row already changed.

By default, the Monday update would proceed, leaving the column with the incorrect information that the
more recent contact occurred on Friday. However, update conflicts on this column should be resolved by
inserting the more recent date in the row.

Implementing the solution
The following RESOLVE UPDATE trigger chooses the more recent of the two new values and enters it
in the database.

CREATE TRIGGER contact_date RESOLVE UPDATE
 ON Contacts
 REFERENCING OLD AS old_name
 NEW AS new_name

Creating SQL Remote systems

46 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 FOR EACH ROW
 BEGIN
 IF new_name.contact_date <
 old_name.contact_date THEN
 SET new_name.contact_date
 = old_name.contact_date
 END IF
 END;

If the value being updated is later than the value that would replace it, the new value is reset to leave the
entry unchanged.

Inventory conflict resolution
Consider a warehouse system for a manufacturer of sporting goods. There is a table of product
information, with a Quantity column holding the number of each product left in stock. An update to this
column typically depletes the quantity in stock or, if a new shipment is brought in, adds to it.

A sales representative at a remote database enters an order, depleting the stock of small, tank top, tee
shirts by five, from 28 to 23, and enters this in her database. Meanwhile, before this update is replicated to
the consolidated database, another sales representative receives 40 returned tee shirts. This sales
representative enters the returns into his remote database and replicates the changes to the consolidated
database at the warehouse, adding 40 to the Quantity column to make it 68.

The warehouse entry is added to the database: the Quantity column now shows there are 68 small tank-top
tee shirts in stock. When the update from the first sales representative arrives, it causes a conflict—SQL
Anywhere detects that the update is from 28 to 23, but that the current value of the column is 68.

By default, the more recent update succeeds, and the inventory level is set to the incorrect value of 23.

Update conflicts

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 47

In this example, the conflict should be resolved by summing the changes to the inventory column to
produce the result, so that a final value of 63 is placed into the database.

Implementing the solution
A suitable RESOLVE UPDATE trigger for this situation would add the increments from the two updates.
For example:

CREATE TRIGGER resolve_quantity
 RESOLVE UPDATE OF Quantity
 ON "DBA".Products
 REFERENCING OLD AS old_name
 NEW AS new_name
 REMOTE AS remote_name
 FOR EACH ROW
 BEGIN
 SET new_name.Quantity = new_name.Quantity
 + old_name.Quantity
 - remote_name.Quantity
 END;

This trigger adds the difference between the old value in the consolidated database (68) and the old value
in the remote database when the original UPDATE statement was executed (28) to the new value being
sent, before the UPDATE statement is implemented. So, new_name.Quantity becomes 63 (= 23 + 68 -
28), and this value is entered into the Quantity column.

Consistency is maintained on the remote database as follows:

1. The original remote UPDATE statement changed the value from 28 to 23.

Creating SQL Remote systems

48 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

2. The warehouse's entry is replicated to the remote database, but fails as the old value is not what was
expected.

3. The changes made by the RESOLVE UPDATE trigger are replicated to the remote database.

Row not found errors
A user deletes a row (with a given primary key value.) A second user updates or deletes the same row at
another site. In this case, the second statement fails, as the row is not found.

To replicate UPDATE and DELETE statements correctly, you must include all of the primary key
columns in the article.

When an UPDATE or a DELETE statement is replicated, SQL Remote uses the primary key columns to
uniquely identify the row being updated or deleted. All tables being replicated must have a declared
primary key or unique constraint. A unique index is not enough.

WHERE clause and primary keys
The primary key columns are used in the WHERE clause of replicated UPDATE and DELETE
statements. When a table has no primary key, the WHERE clause refers to all columns in the table.

See also
● “Replication error reporting and handling” on page 125
● “Default resolution for update conflicts” on page 42
● “INSERT and DELETE statement replication” on page 34

Referential integrity errors
The tables in a relational database are often related through foreign key references. As a result, referential
integrity constraints ensure that the database remains consistent.

When you replicate only a part of a database, you must ensure that the replicated database still has
referential integrity.

You want to avoid unreplicated referenced table errors. Your remote databases should not contain foreign
keys that point to unreplicated tables.

For example, in a consolidated database the SalesOrders table has a foreign key to the Employees table.
SalesOrders.SalesRepresentative is the foreign key that references the primary key,
Employees.EmployeeID.

Row not found errors

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 49

A publication, PubSales, is created that excludes the Employees table, but includes the entire SalesOrder
table.

CREATE PUBLICATION PubSales (
 TABLE Customers,
 TABLE SalesOrders,
 TABLE SalesOrderItems,
);

A remote user, Rep1, subscribes to the PubSales publication. Then, you extract Rep1 from the
consolidated database and try to create a database for Rep1. However, the database creation fails because
Rep1 is missing the Employees table. To avoid this problem, you can:

● Remove the foreign key reference To exclude foreign key references, specify the -xf option
when using the Extraction utility (dbxtract).

However, if you remove the foreign key reference from the remote database, then there is no
constraint in the remote database to prevent an invalid value from being inserted into the
SalesRepresentative column of the SalesOrders table.

If an invalid value is inserted in the SalesRepresentative column at the remote database, the replicated
INSERT statement fails on the consolidated database.

● Include the missing table in the publication Include the Employees table (or at least its
primary key) in the publication. For example:

CREATE PUBLICATION PubSales (
 TABLE Customers,

Creating SQL Remote systems

50 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 TABLE SalesOrders,
 TABLE SalesOrderItems,
 TABLE Products,
 TABLE Employees
);

See also
● “Replication error reporting and handling” on page 125
● “Entity and referential integrity” [SQL Anywhere Server - SQL Usage]

Insert errors
When replicating INSERT statements from a remote database to a consolidated database, you can only
exclude the following columns from the publication:

● Columns that allow NULL.

● Columns that have defaults.

If you exclude any column that does not satisfy one of these requirements, INSERT statements carried out
at a remote database fail when replicated on the consolidated database.

Note
An exception to this example is when a BEFORE trigger is used to maintain the columns that are not
included in the INSERT statement.

See also
● “Replication conflicts and errors” on page 40

Referential integrity errors

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 51

Duplicate primary key errors
When all users are connected to the same database, there is no problem ensuring that each INSERT
statement uses a unique primary key. If a user tries to re-use a primary key, the INSERT statement fails.

The situation is different in a replication system because users are connected to many databases. A
potential problem arises when two users, connected to different remote databases, insert a row using the
same primary key value. Each of their statements succeeds because the primary key value is unique on
each remote database.

However, when these two users replicate their databases with the same consolidated database, a problem
arises. The first database to replicate with the consolidated database succeeds. However, the second insert
to reach a given database in the replication system fails.

Primary key values must be unique
To avoid primary key errors, you must ensure that when a database inserts a row, its primary key is
guaranteed to be unique across all databases in the system. There are several techniques for achieving this
goal, including:

1. Using the default GLOBAL AUTOINCREMENT feature of SQL Anywhere databases.

2. Using a primary key pool to maintain a list of unused, unique primary key values at each site.

These techniques can be used either separately or together to avoid duplicate primary keys.

See also
● “Replication error reporting and handling” on page 125
● “GLOBAL AUTOINCREMENT columns” on page 52
● “Primary key pools” on page 53

GLOBAL AUTOINCREMENT columns

Use the GLOBAL AUTOINCREMENT default to assign each remote database a unique global database
identification number.

When you specify the GLOBAL AUTOINCREMENT default for a column, the domain of values for that
column is partitioned. Each partition contains the same number of values. For example, if you set the
partition size for an integer column in a database to 1000, one partition extends from 1001 to 2000, the
next from 2001 to 3000, and so on.

SQL Anywhere supplies default values in a database only from the partition uniquely identified by that
database's number. For example, if you assigned a remote database the identity number 10, the default
values in that database would be chosen in the range 10001-11000. Another remote database, assigned the
identification number 11, would supply default value for the same column in the range 11001-12000.

Creating SQL Remote systems

52 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “The GLOBAL AUTOINCREMENT default” [SQL Anywhere Server - SQL Usage]

DEFAULT GLOBAL AUTOINCREMENT declaration
You can set default values in your database by selecting the column properties in Sybase Central, or by
including the DEFAULT GLOBAL AUTOINCREMENT clause in a CREATE TABLE or ALTER
TABLE statement.

Partition size
Optionally, the partition size can be specified in parentheses immediately following the
AUTOINCREMENT keyword. The partition size may be any non-negative integer, although the partition
size is generally chosen so that the supply of numbers within any one partition is rarely exhausted.

For columns of type INT or UNSIGNED INT, the default partition size is 216 = 65536; for columns of
other types the default partition size is 232 = 4294967296. Since these defaults may be inappropriate,
especially if your column is not of type INT or BIGINT, it is recommended that you specify the partition
size explicitly.

Example
The following statement creates a table with two columns: an integer that holds a customer identification
number and a character string that holds the customer's name. The identification number column, ID, uses
the GLOBAL AUTOINCREMENT default and has a partition size of 5000.

CREATE TABLE Customers (
 ID INT DEFAULT GLOBAL AUTOINCREMENT (5000),
 name VARCHAR(128) NOT NULL,
 PRIMARY KEY (ID)
);

See also
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TABLE statement” [SQL Anywhere Server - SQL Reference]

Primary key pools
A primary key pool is a table that contains a set of primary key values for each database in a SQL
Remote system. A master primary key pool table is created and stored on the consolidated database.
Remote users subscribe to the consolidated database primary key pool table to receive their own set of
primary key values. When a remote user inserts a new row into a table, they use a stored procedure to
select a valid primary key from their pool. The pool is maintained by periodically running a procedure on
the consolidated database that replenishes the supply.

The primary key pool technique requires the following components:

● Primary key pool table On the consolidated database, you need a table to hold valid primary key
values for each database in the system.

Duplicate primary key errors

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 53

● Replenishment procedure On the consolidated database, you need a stored procedure to keep the
key pool table filled.

● Sharing of key pools Each remote database in the system must subscribe to its own set of valid
values from the consolidated database key pool table.

● Data entry procedures On the remote databases, new rows are entered using a stored procedure
that picks the next valid primary key value from the pool and then deletes that value from the key
pool.

See also
● “Creating a primary key pool table” on page 54
● “Replicate the primary key pool” on page 55
● “Fill and replenish the key pool” on page 55
● “Using the primary keys from the key pool” on page 56

Creating a primary key pool table
Create a primary key pool table (SQL)

1. On the consolidated database, execute the following statement to create a primary key pool table:

CREATE TABLE KeyPool (
 table_name VARCHAR(128) NOT NULL,
 value INTEGER NOT NULL,
 location CHAR(12) NOT NULL,
 PRIMARY KEY (table_name, value),
);

Column Description

table_name Holds the names of tables for which primary key pools must be maintained. For
example, if new sales representatives are added only on the consolidated data-
base, only the Customers table needs a primary key pool and this column is re-
dundant.

value Holds a list of primary key values. Each value is unique for each table listed in
table_name.

location An identifier for the recipient. In some systems, this can be the same as the
rep_key value of the SalesReps table. In other systems, there are users other
than sales representatives; in such systems, the two identifiers should be dis-
tinct.

2. To increase performance, execute the following statement to create an index on the primary key table:

CREATE INDEX KeyPoolLocation
ON KeyPool (table_name, location, value);

Creating SQL Remote systems

54 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Replicate the primary key pool
You can either incorporate the primary key pool into an existing publication or share it as a separate
publication. Use the following procedure to create a separate publication for the primary key pool and
subscribe users to it.

Replicate the primary key pool (SQL)

1. On the consolidated database, create a publication for the primary key pool data.

CREATE PUBLICATION KeyPoolData (
 TABLE KeyPool SUBSCRIBE BY location
);

2. Create subscriptions for each remote database to the KeyPoolData publication.

CREATE SUBSCRIPTION
 TO KeyPoolData('user1')
 FOR user1;
CREATE SUBSCRIPTION
 TO KeyPoolData('user2')
 FOR user2;
...

The subscription argument is the location identifier.

See also
● “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “CREATE SUBSCRIPTION statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]

Fill and replenish the key pool
Every time a remote user adds a new customer, the remote user's pool of available primary keys is
depleted by one. Periodically, you need to replenish the contents of the primary key pool table on the
consolidated database and then replicate the new primary keys to the remote databases.

Initially fill the primary key pool (SQL)

1. On the consolidated database, create a procedure to fill the primary key pool.

Note
You cannot use a trigger to replenish the key pool, as trigger actions are not replicated.

For example:

CREATE PROCEDURE ReplenishPool()
BEGIN
 FOR EachTable AS TableCursor
 CURSOR FOR
 SELECT table_name
 AS CurrTable, max(value) as MaxValue
 FROM KeyPool

Duplicate primary key errors

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 55

 GROUP BY table_name
 DO
 FOR EachRep AS RepCursor
 CURSOR FOR
 SELECT location
 AS CurrRep, COUNT(*) AS NumValues
 FROM KeyPool
 WHERE table_name = CurrTable
 GROUP BY location
 DO
 // make sure there are 100 values.
 // Fit the top-up value to your
 // requirements
 WHILE NumValues < 100 LOOP
 SET MaxValue = MaxValue + 1;
 SET NumValues = NumValues + 1;
 INSERT INTO KeyPool
 (table_name, location, value)
 VALUES
 (CurrTable, CurrRep, MaxValue);
 END LOOP;
 END FOR;
 END FOR;
END;

2. Insert an initial primary key value in the primary key pool for each user.

The ReplenishPool procedure requires at least one primary key value to exist for each subscriber, so
that it can find the maximum value and add one to generate the next set.

To initially fill the pool, you can insert a single value for each user, and then call ReplenishPool to fill
up the rest. The following example illustrates this for three remote users and a single consolidated user
named Office:

INSERT INTO KeyPool VALUES('Customers', 40, 'user1');
INSERT INTO KeyPool VALUES('Customers', 41, 'user2');
INSERT INTO KeyPool VALUES('Customers', 42, 'user3');
INSERT INTO KeyPool VALUES('Customers', 43, 'Office');
CALL ReplenishPool();

The ReplenishPool procedure fills the pool for each user up to 100 values. The value you need
depends on how often users are inserting rows into the tables in the database.

3. Periodically run ReplenishPool.

The ReplenishPool procedure must be run periodically on the consolidated database to refill the pool
of primary key values in the key pool table.

Using the primary keys from the key pool
Use the primary keys (SQL)

When a sales representative adds a new customer to the Customers table, the primary key value to be
inserted is obtained using a stored procedure. This example uses a stored procedure to supply the primary
key value, and a stored procedure to do the insert.

Creating SQL Remote systems

56 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

1. Create a procedure to run on the remote databases to obtain a primary key from the primary key pool
table.

For example, the NewKey procedure supplies an integer value from the key pool and deletes the value
from the pool.

CREATE PROCEDURE NewKey(
 IN @table_name VARCHAR(40),
 OUT @value INTEGER)
BEGIN
 DECLARE NumValues INTEGER;

 SELECT COUNT(*), MIN(value)
 INTO NumValues, @value
 FROM KeyPool
 WHERE table_name = @table_name
 AND location = CURRENT PUBLISHER;
 IF NumValues > 1 THEN
 DELETE FROM KeyPool
 WHERE table_name = @table_name
 AND value = @value;
 ELSE
 // Never take the last value, because
 // ReplenishPool will not work.
 // The key pool should be kept large enough
 // that this never happens.
 SET @value = NULL;
 END IF;
END;

The NewKey procedure takes advantage of the fact that the Sales Representative identifier is the
CURRENT PUBLISHER of the remote database.

2. Create a procedure that runs on the remote databases to insert a new row in a subscribed table.

For example, the NewCustomers procedure inserts a new customer into the table, using the value
obtained by NewKey to construct the primary key.

CREATE PROCEDURE NewCustomers(
 IN customer_name CHAR(40))
BEGIN
 DECLARE new_cust_key INTEGER ;
 CALL NewKey('Customers', new_cust_key);
 INSERT
 INTO Customers (
 cust_key,
 name,
 location
)
 VALUES (
 'Customers ' ||
 CONVERT (CHAR(3), new_cust_key),
 customer_name,
 CURRENT PUBLISHER
);
END

You can enhance this procedure by testing the new_cust_key value obtained from NewKey to check
that it is not NULL, and prevent the insert if it is NULL.

Duplicate primary key errors

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 57

Row partitioning among remote databases
Each remote database can contain a different subset of the data stored in the consolidated database. You
can create your publications and subscriptions so that data is partitioned among remote databases.

The partitioning can be disjoint, or it can contain overlaps. For example, if each employee has their own
set of customers, with no shared customers, the partitioning is disjoint. If there are shared customers who
appear in more than one remote database, the partitioning contains overlaps.

Sometimes, the rows of a table need to be partitioned even when the subscription expression does not
exist in the table.

Sometimes, when there is a many-to-many relationship in the database, the tables need to be partitioned.

See also
● “Disjoint data partitions” on page 58
● “Overlap partitions” on page 63

Disjoint data partitions
Data partitioning is disjoint when the remote databases do not share data. For example, each sales
representative has their own set of customers and they do not share customers with other sales
representatives.

In the following example, three tables store information about the interactions between sales
representatives and customers: Customers, Contacts, and SalesReps. Each sales representative sells to
several customers. For some customers, there is a single contact, and for other customers there are
multiple contacts.

Description of Contacts, Customers, and SalesReps tables
The following table describes the Customers, Contacts, and SalesReps database tables. For more
information about these tables, see “Disjoint data partitions” on page 58.

Creating SQL Remote systems

58 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Table Description Table definition

Contacts All individual contacts that do business with the
company. Each contact belongs to a single customer.
The Contacts table includes the following columns:

● contact_key An identifier for each contact.
This is the primary key.

● name The name of each contact.

● cust_key An identifier for the customer to
which the contact belongs. This is a foreign key
to the Customers table.

CREATE TABLE Contacts (
 contact_key
CHAR(12) NOT NULL,
 name CHAR(40) NOT
NULL,
 cust_key CHAR(12)
NOT NULL,
 FOREIGN KEY
REFERENCES Customers,
 PRIMARY KEY
(contact_key)
);

Customers All customers that do business with the company.
The Customers table includes the following col-
umns:

● cust_key An identifier for each customer.
This is the primary key.

● name The name of each customer.

● rep_key An identifier for the sales representa-
tive in a sales relationship. This is a foreign key
to the SalesReps table.

CREATE TABLE Customers (
 cust_key CHAR(12)
NOT NULL,
 name CHAR(40) NOT
NULL,
 rep_key CHAR(12) NOT
NULL,
 FOREIGN KEY
REFERENCES SalesReps,
 PRIMARY KEY
(cust_key)
);

SalesReps All sales representatives that work for the company.
The SalesReps table includes the following columns:

● rep_key An identifier for each sales represen-
tative. This is the primary key.

● name The name of each sales representative.

CREATE TABLE SalesReps (
 rep_key CHAR(12) NOT
NULL,
 name CHAR(40) NOT
NULL,
 PRIMARY KEY (rep_key)
);

A sales representative must subscribe to a publication that provides the following information:

● A list of the all the sales representatives working for the company The following statement
creates a publication that publishes the entire SalesRep table:

CREATE PUBLICATION SalesRepData (
 Table SalesReps ...)
);

● A list of customers assigned to them This information is available in the Customers table. The
following statement creates a publication that publishes the Customers table, which contains the rows
that match the value of the rep_key column in the Customers table:

CREATE PUBLICATION SalesRepData (
 TABLE Customers SUBSCRIBE BY rep_key ...
);

Disjoint data partitions

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 59

● A list of the contact information for their assigned customers This information is available
in the Contacts table. The Contacts table must be partitioned among the sales representatives, but there
is no reference to the rep_key value in the SalesRep table. To solve this problem, you can use a
subquery in the Contacts article that references the rep_key column of the Customers table.

The following statement creates a publication that publishes the Contacts table, which contains the
rows that reference the rep_key column of the Customers table.

CREATE PUBLICATION SalesRepData (...
 TABLE Contacts
 SUBSCRIBE BY (SELECT rep_key
 FROM Customers
 WHERE Contacts.cust_key = Customers.cust_key)
);

One row in the Customers table has the cust_key value in the current row of the Contacts table; the
WHERE clause in the SUBSCRIBE BY statement ensures that the subquery only returns a single
value.

The following statement creates the complete publication:

CREATE PUBLICATION SalesRepData (
 TABLE SalesReps,
 TABLE Customers
 SUBSCRIBE BY rep_key,
 TABLE Contacts
 SUBSCRIBE BY (SELECT rep_key
 FROM Customers
 WHERE Contacts.cust_key = Customers.cust_key)
);

BEFORE UPDATE triggers
In the following example, three tables store information about the interactions between sales
representatives and customers: Customers, Contacts, and SalesReps. Each sales representative sells to
several customers. For some customers, there is a single contact, and for other customers there are
multiple contacts.

For detailed descriptions of the tables, see “Description of Contacts, Customers, and SalesReps tables”
on page 58.

A sales representative subscribes to a publication that provides a copy of the SalesRep table, a copy of the
Customers table with the details of the customers assigned to them, and a copy of the Contacts table with
the details of the contacts that correspond to their customers. For example, each sales representative
subscribes to the following publication:

CREATE PUBLICATION SalesRepData (
 TABLE SalesReps,

Creating SQL Remote systems

60 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 TABLE Customers
 SUBSCRIBE BY rep_key,
 TABLE Contacts
 SUBSCRIBE BY (SELECT rep_key
 FROM Customers
 WHERE Contacts.cust_key = Customers.cust_key)
);

For a detailed description of this publication, see “Disjoint data partitions” on page 58.

Maintaining referential integrity
This reassignment of rows among subscribers is sometimes called territory realignment because it is a
common feature of sales force automation applications, where customers are periodically reassigned
among representatives.

On the consolidated database, when a customer is reassigned to a new sales representative, the rep_key
value in the Customers table is updated.

The following statement reassigns a customer, cust1, to another sales representative, rep2.

UPDATE Customers
SET rep_key = 'rep2'
WHERE cust_key = 'cust1';

This update is replicated:

● As a DELETE statement to the Customers table on the old sales representative's remote database.

● As an INSERT statement to the Customers table on the new sales representative's remote database.

The Contacts table is not changed. There are no entries in the consolidated database transaction log about
the Contacts table. As a result, SQL Remote on the remote databases cannot reassign the cust_key rows of
the Contacts table. This inability causes the following referential integrity problem: the Contacts table on
the remote database of the old sales representative contains a cust_key value for which there is no longer a
customer.

A solution is to use a BEFORE UPDATE trigger. A BEFORE UPDATE trigger does not make any
change to the database tables, but does create an entry in the consolidated database transaction log.

This BEFORE UPDATE trigger must be fired:

● Before the UPDATE statement is executed, so that the BEFORE value of the row is evaluated and
added to the transaction log.

● FOR EACH ROW rather than for each statement. The information provided by the trigger must be the
new subscription expression.

For example, the following statement creates a BEFORE UPDATE trigger.

CREATE TRIGGER "UpdateCustomer" BEFORE UPDATE OF "rep_key"
// only fire the trigger when rep_key is modified, not any other column
ORDER 1 ON "Cons"."Customers"
/* REFERENCING OLD AS old_name NEW AS new_name */
REFERENCING NEW AS NewRow

Disjoint data partitions

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 61

 OLD AS OldRow
FOR EACH ROW
BEGIN
// determine the new subscription expression
 // for the Customers table
 UPDATE Contacts
 PUBLICATION SalesRepData
 OLD SUBSCRIBE BY (OldRow.rep_key)
 NEW SUBSCRIBE BY (NewRow.rep_key)
 WHERE cust_key = NewRow.cust_key;
END
;

SQL Remote uses the information placed in the transaction log to determine which subscribers receive
which rows.

The consolidated database transaction log contains two entries after this statement is executed:

● INSERT and DELETE statements for the Contacts table generated by the BEFORE UPDATE trigger.

--BEGIN TRIGGER-1029-0000461705
--BEGIN TRANSACTION-1029-0000461708
BEGIN TRANSACTION
go
--UPDATE PUBLICATION-1029-0000461711 Cons.Contacts
--PUBLICATION-1029-0000461711-0002-NEW_SUBSCRIBE_BY-rep2
--PUBLICATION-1029-0000461711-0002-OLD_SUBSCRIBE_BY-rep1
--NEW-1029-0000461711
--INSERT INTO Cons.Contacts(contact_key,name,cust_key)
--VALUES ('5','Joe','cust1')
go
--OLD-1029-0000461711
--DELETE FROM Cons.Contacts
-- WHERE contact_key='5'
go
--END TRIGGER-1029-0000461743

● The original UPDATE statement that was executed, as well as INSERT and DELETE statements for
those users that gained or lost the row respectively.

--PUBLICATION-1029-0000461746-0002-NEW_SUBSCRIBE_BY-rep2
--PUBLICATION-1029-0000461746-0002-OLD_SUBSCRIBE_BY-rep1
--NEW-1029-0000461746
--INSERT INTO Cons.Customers(cust_key,name,rep_key)
--VALUES ('cust1','company1','rep2')
go
--OLD-1029-0000461746
--DELETE FROM Cons.Customers
-- WHERE cust_key='cust1'
go
--UPDATE-1029-0000461746
UPDATE Cons.Customers
 SET rep_key='rep2'
VERIFY (rep_key)
VALUES ('1')
 WHERE cust_key='cust1'
go
--COMMIT-1029-0000461785
COMMIT WORK

Creating SQL Remote systems

62 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SQL Remote scans the transaction log for the BEFORE and AFTER tags. Based on this information, it
can determine which remote users get an INSERT, UPDATE, or DELETE statement.

● When a user is in the BEFORE list and not in the AFTER list, then a DELETE statement is sent on the
Contacts table.

● When a user is in the AFTER list and not the BEFORE list, then an INSERT statement is sent on the
Contacts table.

● When a user is in both the BEFORE and AFTER lists, nothing is done to the Contacts table but the
UPDATE statement on the Customers table is sent.

When the BEFORE and AFTER lists are identical, the remote user already has the row and an UPDATE
statement is sent.

Notes on the trigger
In the following example, you must use a BEFORE UPDATE trigger. In other contexts, BEFORE
DELETE and BEFORE INSERT are necessary.

UPDATE table-name
PUBLICATION pub-name
 SUBSCRIBE BY sub-expression
WHERE search-condition;

In this example, you use a BEFORE trigger.

UPDATE table-name
PUBLICATION publication-name
 OLD SUBSCRIBE BY old-subscription-expression
 NEW SUBSCRIBE BY new-subscription-expression
WHERE search-condition;

The UPDATE statement lists the affected publication and table. The WHERE clause in the statement
describes the affected rows. This UPDATE statement does not change the data in the table; it makes
entries in the transaction log.

In this example, the subscription expression returns a single value. However, subqueries returning
multiple values can also be used. The value of the subscription expression must be the value after the
update.

In this example, the only subscriber to the row is the new sales representative. For an example of a row
that has existing and new subscribers, see “Overlap partitions” on page 63.

Overlap partitions
Data partitioning overlaps when the remote databases share data. For example, sales representatives share
customers amongst themselves.

Suppose three tables store information about the interactions between sales representatives and customers:
Customers, Policy, and SalesReps. Each sales representative sells to several customers, and some

Overlap partitions

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 63

customers deal with more than one sales representative. The Policy table has foreign keys to both the
Customers and SalesReps tables. There is a many-to-many relationship between Customers and
SalesReps.

Description of Customers, Policy, and SalesReps tables
The following table describes Customers, Policy, and SalesReps database tables as discussed in “Overlap
partitions” on page 63.

Table Description

Customers All customers that do business with the company. The Customers table has the
following columns:

● cust_key A primary key column containing an identifier for each custom-
er.

● name A column containing the name of each customer.

The following statements create this table:

CREATE TABLE Customers (
 cust_key CHAR(12) NOT NULL,
 name CHAR(40) NOT NULL,
 PRIMARY KEY (cust_key)
);

Creating SQL Remote systems

64 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Table Description

Policy A three-column table that maintains the many-to-many relationship between cus-
tomers and sales representatives. The Policy table has the following columns:

● policy_key A primary key column containing an identifier for the sales
relationship.

● cust_key A column containing a foreign key for the customer representa-
tive in a sales relationship.

● rep_key A column containing a foreign key for the sales representative in
a sales relationship.

The following statements create this table:

CREATE TABLE Policy (
 policy_key CHAR(12) NOT NULL,
 cust_key CHAR(12) NOT NULL,
 rep_key CHAR(12) NOT NULL,
 FOREIGN KEY (cust_key)
 REFERENCES Customers (cust_key),
 FOREIGN KEY (rep_key)
 REFERENCES SalesReps (rep_key),
 PRIMARY KEY (policy_key)
);

SalesReps All sales representatives that work for the company. The SalesReps table has the
following columns:

● rep_key An identifier for each sales representative. This is the primary
key.

● name The name of each sales representative.

The following statements create this table:

CREATE TABLE SalesReps (
 rep_key CHAR(12) NOT NULL,
 name CHAR(40) NOT NULL,
 PRIMARY KEY (rep_key)
);

Partitioning data
The many-to-many relationship between customers and sales representatives introduces new challenges
for sharing information properly.

Sales representatives must subscribe to a publication that provides the following information:

● The entire SalesReps table There are no qualifiers to this article, so the entire SalesReps table is
included in the publication.

Overlap partitions

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 65

...
 TABLE SalesReps,
...

● Those rows from the Policy table that include sales relationships involving the sales
representative subscribed to the data This article uses a SUBSCRIBE BY subscription
expression to specify a column used to partition the data among the sales representatives:

...
 TABLE Policy
 SUBSCRIBE BY rep_key,
...

The subscription expression ensures that each sales representative receives only those rows in the
table for which the value of the rep_key column matches the value provided in the subscription.

The Policy table partitioning is disjoint: there are no rows that are shared with more than one
subscriber.

● Those rows from the Customers table listing customers that deal with the sales
representative subscribed to the data The Customers table has no reference to the sales
representative value that is used in the subscriptions to partition the data. This problem can be
addressed by using a subquery in the publication.

Each row in the Customers table may be related to many rows in the SalesReps table, and shared with
many sales representatives' databases. That is, there are overlapping subscriptions.

A subscription expression with a subquery is used to define the partition. The article is defined as
follows:

...
 TABLE Customers SUBSCRIBE BY (
 SELECT rep_key
 FROM Policy
 WHERE Policy.cust_key =
 Customers.cust_key
),
...

The Customers partitioning is non-disjoint: some rows are shared with more than one subscriber.

The following statement creates the complete publication:

CREATE PUBLICATION SalesRepData (
 TABLE SalesReps,
 TABLE Policy SUBSCRIBE BY rep_key,
 TABLE Customers SUBSCRIBE BY (
 SELECT rep_key FROM Policy
 WHERE Policy.cust_key =
 Customers.cust_key
)
);

Multiple-valued subqueries in publications
The subquery in the Customers article returns a single column (rep_key) in its result set, but may return
multiple rows, corresponding to all the sales representatives that deal with the particular customer. When

Creating SQL Remote systems

66 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

a subscription expression has multiple values, the row is replicated to all subscribers whose subscription
matches any of the values. This ability to have multiple-valued subscription expressions allows
overlapping partitioning of a table.

See also
● “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]

Referential integrity maintenance when reassigning rows
among subscribers

To cancel a sales relationship between a customer and a sales representative, a row in the Policy table is
deleted. In this example, the Policy table change is properly replicated to the old sales representative.
However, no change has been made to the Customers table, and so no changes to the Customers table are
replicated to the old sales representative.

In the absence of triggers, this can leave a subscriber with incorrect data in their Customers table. The
same kind of problem arises when a new row is added to the Policy table.

Using triggers to solve the problem
The solution is to write BEFORE triggers that fire when changes are made to the Policy table. These
special triggers makes no changes to the database tables, but they do make an entry in the transaction log
that SQL Remote uses to maintain data in subscriber databases.

A BEFORE INSERT trigger
For example, the following statements create a BEFORE INSERT trigger that tracks inserts into the
Policy table, and ensures that remote databases contain the proper data.

CREATE TRIGGER InsPolicy
BEFORE INSERT ON Policy
REFERENCING NEW AS NewRow
FOR EACH ROW
BEGIN
 UPDATE Customers
 PUBLICATION SalesRepData
 SUBSCRIBE BY (
 SELECT rep_key
 FROM Policy
 WHERE cust_key = NewRow.cust_key
 UNION ALL
 SELECT NewRow.rep_key
)
 WHERE cust_key = NewRow.cust_key;
END;

A BEFORE DELETE trigger
The following statements create a BEFORE DELETE trigger that tracks deletes from the Policy table:

CREATE TRIGGER DelPolicy
BEFORE DELETE ON Policy

Overlap partitions

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 67

REFERENCING OLD AS OldRow
FOR EACH ROW
BEGIN
 UPDATE Customers
 PUBLICATION SalesRepData
 SUBSCRIBE BY (
 SELECT rep_key
 FROM Policy
 WHERE cust_key = OldRow.cust_key
 AND Policy_key <> OldRow.Policy_key
)
 WHERE cust_key = OldRow.cust_key;
END;

The SUBSCRIBE BY clause of the UPDATE PUBLICATION statement contains a subquery, and this
subquery can be multiple-valued.

Multiple-valued subqueries
The subquery in the SUBSCRIBE clause of the UPDATE PUBLICATION is a UNION expression, and
can be multiple-valued:

...
SELECT rep_key
FROM Policy
WHERE cust_key = NewRow.cust_key
UNION ALL
SELECT NewRow.rep_key
...

● The first part of the UNION is the set of existing sales representatives dealing with the customer, taken
from the Policy table.

The result set of the subscription query must be all those sales representatives receiving the row, not
just the new sales representatives.

● The second part of the UNION is the rep_key value for the new sales representative dealing with the
customer, taken from the INSERT statement.

The subquery in the BEFORE DELETE trigger is multiple-valued:

...
SELECT rep_key
FROM Policy
WHERE cust_key = OldRow.cust_key
AND rep_key <> OldRow.rep_key
...

● The subquery takes rep_key values from the Policy table. The values include the primary key values of
all those sales representatives who deal with the customer being transferred (WHERE cust_key =
OldRow.cust_key), with the exception of the one being deleted (AND rep_key <> OldRow.rep_key).

The result set of the subscription query must be all those values matched by sales representatives
receiving the row following the delete.

Notes
● Data in the Customers table is not identified with an individual subscriber (by a primary key value, for

example) and is shared among more than one subscriber. This allows the possibility of the data being

Creating SQL Remote systems

68 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

updated at more than one remote site between replication messages, which can lead to replication
conflicts. You can address this issue either by permissions (allowing only certain users the right to
update the Customers table, for example) or by adding RESOLVE UPDATE triggers to the database to
handle the conflicts programmatically.

● Updates on the Policy table have not been described here. Either they should be prevented, or a
BEFORE UPDATE trigger must be created that combines features of the BEFORE INSERT and
BEFORE DELETE triggers shown in the example.

subscribe_by_remote option with many-to-many
relationships

When the subscribe_by_remote option is set to On, operations from remote databases on rows with a
SUBSCRIBE BY value of NULL or an empty string assume the remote user is subscribed to the row. By
default, the subscribe_by_remote option is set to On.

The subscribe_by_remote option solves a problem that otherwise would arise with some publications. The
following publication uses a subquery for the Customers table subscription expression because customers
can belong to several sales representatives:

CREATE PUBLICATION SalesRepData (
 TABLE SalesReps,
 TABLE Policy SUBSCRIBE BY rep_key,
 TABLE Customers SUBSCRIBE BY (
 SELECT rep_key FROM Policy
 WHERE Policy.cust_key =
 Customers.cust_key
),
);

For example, Marc Dill is a Sales representative who has just arranged a policy with a new customer. He
inserts a new row in the Customers table and inserts a row in the Policy table to assign the new customer
to himself.

On the consolidated database, SQL Remote carries out the insert of the Customers row and SQL
Anywhere records the subscription value in the transaction log, at the time of the insert.

Later, when the SQL Remote scans the transaction log, it builds a list of subscribers from the subscription
expression, and Marc Dill is not on the list, as the row in the Policy table assigning the customer to him
has not yet been applied. If subscribe_by_remote were set to Off, the result would be that the new
Customer is sent back to Marc Dill as a DELETE statement.

Overlap partitions

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 69

As long as subscribe_by_remote is set to On, the SQL Remote assumes the row belongs to the Sales
representative who inserted it, the INSERT statement is not replicated back to Marc Dill, and the
replication system is intact.

If subscribe_by_remote is set to Off, you must ensure that the Policy row is inserted before the Customers
row, with the referential integrity violation avoided by postponing checking to the end of the transaction.

See also
● “subscribe_by_remote option [SQL Remote]” [SQL Anywhere Server - Database Administration]

Unique identification numbers for remote databases
You must assign a different identification number to each remote database. You can create and distribute
the identification numbers by a variety of means. One method is to place the values in a table and
download the correct row to each database based on some other unique property, such as user name.

Using the global_database_id option
The public option global_database_id in each database must be set to a unique, non-negative integer. The
range of default values for a particular database is pn + 1 to p(n + 1), where p is the partition size and n is
the value of the public option global_database_id. For example, if the partition size is 1000 and
global_database_id is set to 3, then the range is from 3001 to 4000.

When global_database_id is set to a non-negative integer, SQL Anywhere chooses default values by
applying the following rules:

● When the column contains no values in the current partition, the first default value is pn + 1.

● When the column contains values in the current partition, but all are less than p(n + 1), the next default
value is one greater than the previous maximum value in this range.

● Default column values are not affected by values in the column outside the current partition; that is, by
numbers less than pn + 1 or greater than p(n + 1). Such values may be present if they have been
replicated from another database via MobiLink synchronization.

If the public option global_database_id is set to the default value of 2147483647, a NULL value is
inserted into the column. Should NULL values not be permitted, the attempt to insert the row causes an
error. This situation arises, for example, when the column is contained in the table's primary key.

Because the public option global_database_id cannot be set to negative values, the values chosen are
always positive. The maximum identification number is restricted only by the column data type and the
partition size.

Null default values are also generated when the supply of values within the partition has been exhausted.
In this example, a new value of global_database_id should be assigned to the database to allow default
values to be chosen from another partition. Attempting to insert the NULL value causes an error when the
column does not permit nulls. To detect that the supply of unused values is low and handle this condition,
create an event of type GlobalAutoincrement.

Creating SQL Remote systems

70 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Should the values in a particular partition become exhausted, you can assign a new database ID to that
database. You can assign new database ID numbers in any convenient manner. However, one possible
technique is to maintain a pool of unused database ID values. This pool is maintained in the same manner
as a pool of primary keys.

You can set an event handler to automatically notify the database administrator (or do some other action)
when the partition is nearly exhausted.

See also
● “global_database_id option” [SQL Anywhere Server - Database Administration]
● “Primary key pools” on page 53
● “DEFAULT GLOBAL AUTOINCREMENT declaration” on page 53
● “Trigger conditions for events” [SQL Anywhere Server - Database Administration]

Setting the global_database_id value

Set the global database identification number (SQL)

● Set the value of the global_database_id option. The identification number must be a non-negative
integer.

For example, the following statement sets the database identification number to 20.

SET OPTION PUBLIC.global_database_id = 20;

If the partition size for a particular column is 5000, default values for this database are selected from
the range 100001-105000.

See also
● “global_database_id option” [SQL Anywhere Server - Database Administration]

Unique database identification numbers when extracting
databases

If you use the Extraction utility (dbxtract) or the Extract Database Wizard to create your remote
databases, you can write a stored procedure to automate the task of setting unique database identification
numbers.

Automate setting unique database identification numbers

1. Create a stored procedure named sp_hook_dbxtract_begin.

For example, to extract a database for remote user user2 with a user_id of 1001, execute the following
statements:

Unique identification numbers for remote databases

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 71

SET OPTION "PUBLIC"."global_database_id" = '1';
CREATE TABLE extract_id (next_id INTEGER NOT NULL) ;
INSERT INTO extract_id VALUES(1);
CREATE PROCEDURE sp_hook_dbxtract_begin
AS
 DECLARE @next_id INTEGER
 UPDATE extract_id SET next_id = next_id + 1000
 SELECT @next_id = (next_id)
 FROM extract_id
 COMMIT
 UPDATE #hook_dict
 SET VALUE = @next_id
 WHERE NAME = 'extracted_db_global_id';

Each extracted or re-extracted database gets a different global_database_id. The first starts at 1001,
the next at 2001, and so on.

2. Run the Extraction utility (dbxtract) with the -v option or the Extract Database Wizard to extract
your remote databases. The Extraction utility does the following tasks:

a. Creates a temporary table name #hook_dict, with the following contents:

name value

extracted_db_global_id user ID being extracted

When you write a sp_hook_dbxtract_begin procedure to modify the value column of the row, that
value is used as the global_database_id option of the extracted database, and marks the beginning
of the range of primary key values for DEFAULT GLOBAL AUTOINCREMENT values.

● When you do not define an sp_hook_dbxtract_begin procedure, the extracted database has a
global_database_id set to 101.

● When you define a sp_hook_dbxtract_begin procedure that does not modify any rows in the
#hook_dict, then the global_database_id is still set to 101.

b. Calls the sp_hook_dbxtract_begin.

c. Outputs the following information to assist in debugging procedure hooks:

● The procedure hooks found.

● The contents of #hook_dict before the procedure hook is called.

● The contents of #hook_dict after the procedure hook is called.

See also
● “The #hook_dict table” on page 200
● “SQL Remote system procedures” on page 200
● “global_database_id option” [SQL Anywhere Server - Database Administration]

Creating SQL Remote systems

72 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Managing SQL Remote systems
You deploy and administer a SQL Remote system from the consolidated database.

Deploy and administer a SQL Remote system

1. Set up the consolidated database.

See “Creating SQL Remote systems” on page 9.

2. Review and test your SQL Remote system.

Thorough testing of your SQL Remote system should be done before deployment, especially if you
have a large number of remote databases.

3. Create remote databases and deploying the design.

As the DBA of the consolidated database, you deploy SQL Remote by:

a. Creating a SQL Anywhere database for each remote user, with their own initial copy of the data,
and starting their subscriptions. See “Remote database extraction” on page 74.

b. Installing on each remote user's computer the SQL Anywhere database server, the remote
database, SQL Remote, and the client application. See “Embedded database application
deployment” [SQL Anywhere Server - Programming] and “SQL Remote deployment” [SQL
Anywhere Server - Programming].

4. Run the SQL Remote Message Agent (dbremote) to exchange messages.

To exchange messages, you need to:

a. Decide whether to run the SQL Remote Message Agent (dbremote) in continuous mode or batch
mode on the consolidated and remote databases. See “SQL Remote Message Agent (dbremote)
modes” on page 81.

b. Ensure that the system is properly configured with correct user names, SQL Remote Message
Agent (dbremote) connection strings, permissions, and so on. See “SQL Remote Message Agent
(dbremote)” on page 80.

5. Manage messages.

Use the Guaranteed Message Delivery System to manage the messages being sent back and forth
among many databases. See “Guaranteed Message Delivery System” on page 96.

6. Improve performance.

See “SQL Remote performance” on page 86.

7. Implement a backup and recovery strategy.

You must create and implement a backup and recovery strategy for the consolidated database. See
“SQL Remote system backups” on page 116.

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 73

8. Handle errors.

See “Replication error reporting and handling” on page 125.

9. Upgrade the software and database schemas as required.

See “Upgrades and resynchronization” on page 131.

Remote database extraction
To create a database for a remote user, you extract the remote database from the consolidated database.

You can use either the Extract Database Wizard or the Extraction utility (dbxtract) to extract a remote
database from a consolidated database for a specified remote user. Either method allows you to do one or
more of the following tasks:

● Automatically extract and reload the schema and data directly into a new or existing
database This is an appropriate method to use when learning about SQL Remote. If you use this
method, no interim copy of the data is created on disk. This method provides greater security for your
data. However, it is more time consuming to implement.

● Extract the schema and data to files, and then load them into a new or existing
database When deploying SQL Remote, this method is preferred. You can edit the schema file to
customize the extraction and creation of your remote databases.

One method to increase efficiency is to create more than one remote database.

See also
● “Extracting remote databases automatically” on page 74
● “Remote database extraction to a reload file” on page 75
● “Creating multiple remote databases” on page 79

Extracting remote databases automatically
For information about extracting remote databases to a reload file, see “Remote database extraction”
on page 74.

Use the following procedure to extract a consolidated database and reload the schema and data into a new
database. No interim copy of the data is created on disk.

Automatically extract a remote database (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the consolidated database as a user with DBA
authority.

2. From the Tools menu, click SQL Anywhere 12 » Extract Database.

Managing SQL Remote systems

74 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

3. When prompted, click Extract And Reload Into A New Database.

When prompted, click Extract Structure And Data.

4. Follow the instructions in the wizard and accept the defaults.

The new remote database is created with the appropriate schema, remote users, publications,
subscriptions, and triggers. By default, the data from the consolidated database is extracted to the
remote database and the subscriptions are started. However, the wizard does not start the SQL Remote
Message Agent, so no messages are exchanged.

Automatically extract a remote database (SQL)

1. Connect to the consolidated database as a user with DBA authority.

2. Run the Extraction utility (dbxtract) and specify the -ac option to extract to an existing database or the
-an option to extract to a new database.

If you specify the -an option, you must create an empty database before running the Extraction utility
(dbxtract). For example, the following command creates an empty database named mydata.db:

dbinit c:\remote\mydata.db

Run the following command to extract a new remote database from a consolidated database located at
c:\consolidateddata.db. The new database is for the remote user named field_user and the new
database is created at c:\remote\mydata.db:

dbxtract -c "UID=DBA;PWD=sql;DBF=c:\consolidateddata.db"
-an c:\remote\mydata.db field_user

The new remote database, mydata.db, is created with the appropriate schema, remote users,
publications, subscriptions, and triggers. By default, the data from the consolidated database is
extracted into the remote databases and the subscriptions are started. However, the Extraction utility
(dbxtract) does not start the SQL Remote Message Agent, so no messages are exchanged.

See also
● “SQL Remote Message Agent (dbremote)” on page 80
● “Remote database extraction to a reload file” on page 75
● “Extraction utility (dbxtract)” on page 187

Remote database extraction to a reload file
For information about automatically extracting remote databases, see “Remote database extraction”
on page 74.

In most deployment scenarios, you need to customize the extraction and creation of remote databases.
You can create a custom extraction by choosing to extract the database into a script file and a series of
text files. Then, you can edit these files as required.

Remote database extraction to a reload file

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 75

When you extract the database into files, you decide whether to create:

● A SQL script file named reload.sql that contains the statements necessary to build the
remote database schema See -n option “Extraction utility (dbxtract)” on page 187.

For example, run the following command:

dbxtract -c "UID=DBA;PWD=sql;DBF=c:\cons\cons.db" -n "c:\remote
\reload.sql" UserName

● A series of data files, each of which contains the contents of a database table A series of
data files, each of which contains the contents of a database table. A new directory is created, named
extract, to contain the data files. You can use these files to load data into an existing remote database.
See -d option “Extraction utility (dbxtract)” on page 187.

For example, run the following command:

dbxtract -c "UID=DBA;PWD=sql;DBF=c:\cons\cons.db" -d "c:\remote1" UserName

● Both the reload.sql file and the data files A new directory is created, named extract, to contain
the data files. The reload.sql file contains instructions to load the data files. For example, run the
following command:

dbxtract -c "UID=DBA;PWD=sql;DBF=c:\cons\cons.db" "c:\remote1\reload.sql"
UserName

The reload.sql file
The reload.sql file contains the SQL statements necessary to build the database schema, including
statements to create:

● Publishers, remote, and consolidated users
● Publications and subscriptions
● Message types
● Tables
● Views
● Triggers
● Procedures

Note
You may need to edit reload.sql when you create remote databases. The Extraction utility (dbxtract) is
intended to assist in preparing remote databases, but is not intended as a black box solution for all
circumstances.

Create a remote database from the reload.sql file (command line)

1. Use the Extraction utility (dbxtract) to extract the database schema and data to files. For example, run
the following command:

dbxtract -c "UID=DBA;PWD=sql;DBF=c:\cons\cons.db" "c:\remote\reload.sql"
UserName

By default, subscriptions for the specified remote user are started automatically.

Managing SQL Remote systems

76 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

2. Edit the reload.sql, if required.

3. Create an empty SQL Anywhere database.

For example, run the following command:

dbinit c:\rem1\rem1.db

4. Connect to the database from Interactive SQL, and run the reload.sql script file.

For example, run the following command:

READ remote\reload.sql

The new remote database, rem1.db, is created with the appropriate schema, remote users, publications,
subscriptions, and triggers. However, the Extraction utility (dbxtract) does not start the SQL Remote
Message Agent, so no messages are exchanged.

See also
● “Extracting remote databases automatically” on page 74
● “reload.sql file editing” on page 77
● “SQL Remote Message Agent (dbremote)” on page 80

reload.sql file editing
You should edit the reload.sql script file as needed when creating remote databases. For example, you
must edit the reload.sql file in the following cases:

Adding unreplicated tables to remote database
Remote databases can have tables that are not present at their consolidated database as long as these tables
do not take part in replication. The Extraction utility (dbxtract) and Extract Database Wizard cannot
extract unreplicated tables from a consolidated database.

After extracting the database, you should edit reload.sql to add such tables.

Extracting procedures, triggers, and views
By default, the Extraction utility (dbxtract) and Extract Database Wizard extract all stored procedures,
triggers, and views from the database. While some of these views and procedures are likely to be required
on the remote site, others may not be required. For example, a procedure could refer to parts of the
database that are not included in the remote site.

After extracting the database, you should edit reload.sql to remove unnecessary procedures, triggers, and
views.

Using the Extraction utility (dbxtract) in multi-tiered systems
See “Database extraction for a multi-tier hierarchy system” on page 78.

Remote database extraction to a reload file

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 77

See also
● “Creating multiple remote databases” on page 79
● “Remote database extraction to a reload file” on page 75

Database extraction for a multi-tier hierarchy system

To understand the role of the Extraction utility (dbxtract) and the Extract Database Wizard in multi-
tiered arrangements, consider a three-tiered SQL Remote system. This system is illustrated in the
following diagram.

Create the remote databases for a three-tiered system

1. Use the Extraction utility (dbxtract) on the top-level, consolidated database, HQ, to create the second-
level databases Region 1 and Region 2.

2. Use the Extraction utility (dbxtract), on the second-level databases, Region 1 and Region 2, to create
the third-level databases for users Laptop 1, Laptop 2, and Laptop 3. The second-level databases are
remote databases to the first-level database, HQ, and are consolidated databases to the third-level
databases, Laptop 1, Laptop 2, and Laptop 3.

Re-extracting databases in a multi-tier hierarchy system
If you have to re-extract the schema for the second-level database from the top-level consolidated
database, the Extraction utility (dbxtract) deletes the remote users (Laptop 1, Laptop 2, and Laptop 3)
along with their subscriptions and permissions. As a result, you must recreate those third-level users and
their subscriptions manually.

If you only have to re-extract the data from the second-level databases from the top-level consolidated
database, the Extraction utility (dbxtract) does not affect the remote users. See the -d option “Extraction
utility (dbxtract)” on page 187.

Managing SQL Remote systems

78 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Fully qualified publication definitions
Fully qualified publication definitions contain WHERE and SUBSCRIBE BY clauses. Usually you do not
need to extract fully qualified publication definitions for a remote database, since the remote database
typically replicates all rows back to the consolidated database.

See also
● “Creating multiple remote databases” on page 79
● “Remote database extraction to a reload file” on page 75

Creating multiple remote databases
Create multiple remote databases

Use the following steps to increase efficiency when creating more than one remote database.

1. Make a copy of the consolidated database and start the subscriptions for the remote users from the
consolidated database. For example:

a. Start the subscriptions and then immediately shut down the consolidated database and the SQL
Remote Message Agent (if it is running).
The subscriptions must be started at the same time that the consolidated database copy is made.
Any operations that take place between copying the database and starting the subscriptions can be
lost, and can lead to errors at remote databases. Starting subscriptions on the consolidated
database allows messages to be packaged and sent to subscribers, even if the subscriber databases
do not exist yet.
To start several subscriptions within a single transaction, use the REMOTE RESET statement.

b. Copy the consolidated database.
By default, both the Extraction utility (dbxtract) and the Extract Database Wizard run at
isolation level 3. This isolation level ensures that data in the extracted database is consistent with
data on the database server; however, it can prevent other users from using the database. It is
recommended that you extract your remote database against a copy of the consolidated database.

c. Re-start the consolidated database, and if it was running, re-start the SQL Remote Message Agent
on the consolidated database.

2. Extract the remote database schema from the copy of the consolidated database. As the database is a
copy, there are no locking and concurrency problems; nevertheless, for a large number of remote
databases, this process can take a while.

When extracting the remote database schema, choose the following options:

a. Extract only the schema for the remote database.
By default, both the Extraction utility (dbxtract) and the Extract Database Wizard extract one
database at a time, including the schema and data for each user. However, in most deployment
scenarios the remote databases use the same schema but different data. Using the Extraction
utility (dbxtract) or the Extract Database Wizard to extract both schema and data for each user

Remote database extraction to a reload file

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 79

results in repeatedly extracting the same schema. See the -n option “Extraction utility (dbxtract)”
on page 187.

b. Order the data by primary key.
By default, the data in each table is ordered by primary key. Loading data into the remote
database is faster when the data is ordered by primary key. See the -u option “Extraction utility
(dbxtract)” on page 187.

3. Create an empty remote database using the reload.sql file. Copy this database file to create the
required number of remote databases.

4. For each remote database, define the SQL Remote definitions specific to each remote user.

5. For each remote user, extract only their corresponding data from the consolidated database. See the -d
option “Extraction utility (dbxtract)” on page 187.

6. Load the data for each remote user into the corresponding remote database.

As each remote database is created, its data is out of date with the live consolidated database.

However, when you run the SQL Remote Message Agent (dbremote), each user can receive and apply
messages that have been sent from the live consolidated database to bring themselves up to date.

See also
● “Database extraction for a multi-tier hierarchy system” on page 78
● “Remote database extraction to a reload file” on page 75
● “reload.sql file editing” on page 77
● “Starting subscriptions” on page 137
● “SQL Remote Message Agent (dbremote)” on page 80
● “START SUBSCRIPTION statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “REMOTE RESET statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “User permissions” on page 18

SQL Remote Message Agent (dbremote)
The SQL Remote Message Agent (dbremote) is a key component in SQL Remote replication. It must be
installed and run on the every database in the system. The SQL Remote Message Agent (dbremote)
handles both sending and receiving messages.

It carries out the following functions:

● SQL Remote Message Agent (dbremote) tasks when sending messages

○ It scans the transaction log at each publisher database and translates the transaction log entries into
messages for subscribers.

○ It sends the messages to subscribers.

Managing SQL Remote systems

80 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

○ When it receives a request to resend messages, the SQL Remote Message Agent (dbremote) resends
the messages to the database that made the request.

○ It maintains message information in the system tables, and manages the Guaranteed Message
Delivery System.

● SQL Remote Message Agent (dbremote) tasks when receiving messages

○ It processes incoming messages, and applies them in the proper order to the database.

○ It requests that missing messages be re-sent.

○ It maintains the message information in the system tables, and manages the Guaranteed Message
Delivery System.

Connections
The SQL Remote Message Agent (dbremote) uses several connections to the database server. These are:

● One global connection This connection is active all the time the SQL Remote Message Agent
(dbremote) is running.

● One connection for scanning the transaction log This connection is active during the scan
phase only.

● One connection for executing commands from the transaction log-scanning thread This
connection is active during the scan phase only.

● One connection for processing synchronize subscription requests This connection is
active during the send phase only.

● One connection for each worker thread These connections are alive during the receive phase
only.

See also
● “Tasks to send messages” on page 92
● “Tasks to receive messages” on page 87

SQL Remote Message Agent (dbremote) modes
The SQL Remote Message Agent (dbremote) can be run in one of two modes:

● Continuous mode In continuous mode, the SQL Remote Message Agent (dbremote) periodically
sends messages, at times specified by the send frequency properties of each remote user. When it is
not sending messages, it receives messages as they arrive.

Continuous mode is useful at consolidated databases, where messages may be coming in and going
out at any time, to spread out the workload and to ensure prompt replication.

SQL Remote Message Agent (dbremote)

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 81

● Batch mode In batch mode, the SQL Remote Message Agent (dbremote) receives and processes
incoming messages, scans the transaction log once, creates and sends the outgoing messages, and then
stops.

Batch mode is useful at occasionally-connected remote databases, where messages can only be
exchanged with the consolidated database when a connection is made, for example, when the remote
database dials up to the main network.

SQL Remote Message Agent (dbremote) requirements
SQL Remote is very flexible. Within a system, you can run the SQL Remote Message Agent (dbremote)
in both modes, on multiple devices, and on multiple operating systems. However, SQL Remote has the
following requirements:

● REMOTE DBA authority or DBA authority required The SQL Remote Message Agent
(dbremote) must be run by a user with REMOTE DBA authority or DBA authority.

● The maximum message length must be the same for each SQL Remote Message Agent
(dbremote) in the system This length can be restricted by operating system memory allocation
limits. Received messages that are longer than the limit are deleted as corrupt messages. The default
value is 50000 bytes. This length is configurable, using the SQL Remote Message Agent (dbremote) -l
option.

See also
● “Run the SQL Remote Message Agent (dbremote) in continuous mode” on page 82
● “Running the SQL Remote Message Agent (dbremote) in batch mode” on page 84
● “REMOTE DBA authority” on page 29
● “SQL Remote Message Agent utility (dbremote)” on page 177

Run the SQL Remote Message Agent (dbremote) in
continuous mode

Typically, the consolidated database is run in continuous mode.

Run the SQL Remote Message Agent (dbremote) in continuous mode

1. Ensure that every user with REMOTE authority either has a SEND AT or SEND EVERY frequency
specified.

In continuous mode, the SQL Remote Message Agent (dbremote) sends messages at times specified
by the SEND AT or SEND EVERY frequency in the properties of each remote user.

2. Start the SQL Remote Message Agent (dbremote) without the -b option.

On Windows, the SQL Remote Message Agent (dbremote) is named dbremote.exe. On Unix, the
name is dbremote. On Mac OS X, you can also use SyncConsole to start the SQL Remote Message
Agent (dbremote).

Managing SQL Remote systems

82 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

For example, the following statement runs dbremote in continuous mode on a database file named c:
\mydata.db, connecting with user name ManagerSteve and password sql:

dbremote -c "UID=ManagerSteve;PWD=sql;DBF=c:\mydata.db" -l 40000

The user name, ManagerSteve, must have either REMOTE DBA authority or DBA authority. The
maximum message length, as defined by the -l option, must be the same for all databases in the
system.

See also
● “SQL Remote Message Agent (dbremote)” on page 80
● “SQL Remote Message Agent utility (dbremote)” on page 177
● “SQL Remote Message Agent (dbremote) requirements” on page 82
● “Run the SQL Remote Message Agent (dbremote) on Mac OS X” on page 85
● “Run the SQL Remote Message Agent (dbremote) on Unix” on page 86
● “Setting the send frequency” on page 83

Running the SQL Remote Message Agent (dbremote) as a service in continuous mode
When you run the SQL Remote Message Agent (dbremote) in continuous mode, you can choose to keep
the SQL Remote Message Agent (dbremote) running whenever the database server is running. You can do
this by running the SQL Remote Message Agent (dbremote) as a Windows service. A service can be
configured to keep running even when the current user logs out and to start when the operating system is
started.

See also
● “Service utility (dbsvc) for Windows” [SQL Anywhere Server - Database Administration]

Setting the send frequency

To run the SQL Remote Message Agent (dbremote) in continuous mode, for example on the consolidated
database, you must ensure that every REMOTE user either has a send frequency specified. In continuous
mode, the SQL Remote Message Agent (dbremote) sends messages at the times specified with the SEND
AT or SEND EVERY property.

The SQL Remote Message Agent (dbremote) supports the following send frequency values:

● SEND EVERY Specifies a length of time to wait between sending messages.

When any user with SEND EVERY set is sent messages, all users with the same frequency are sent
messages at the same time. For example, all remote users who receive updates every twelve hours are
sent updates at the same time, rather than being staggered. This reduces the number of times the SQL
Anywhere transaction log has to be processed. You should use as few unique frequencies as possible.

A send frequency can be specified in hours, minutes, and seconds in the format HH:MM:SS.

● SEND AT Specifies a time of day at which messages are sent.

SQL Remote Message Agent (dbremote)

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 83

Updates are sent daily at the specified time. You should use as few distinct times as possible rather
than staggering the send times. You should choose times when the database is not busy.

● Default setting (no SEND clause) If any user has no SEND AT or SEND EVERY clause
specified, the SQL Remote Message Agent (dbremote) runs in batch mode, sending messages every
time it is run, and then stopping.

Sending messages too frequently
If you send messages frequently, there is a greater chance of small messages being sent. Sending
messages less frequently allows more instructions to be grouped in a single message. If a large number of
small messages is a concern for your message system, then you should avoid using very small send
frequency periods.

Set the send frequency (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with DBA authority.

2. In the left pane, click the SQL Remote Users directory.

3. Right-click a user and click Properties.

4. Click the SQL Remote tab.

5. Click either Send Every or Send Daily At and specify a time.

See also
● “GRANT REMOTE statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “Running the SQL Remote Message Agent (dbremote) in batch mode” on page 84

Running the SQL Remote Message Agent (dbremote) in
batch mode

Run the SQL Remote Message Agent (dbremote) in batch mode

Use the following procedure to run SQL Remote in batch mode.

1. Ensure that at least one remote user has neither a SEND AT nor a SEND EVERY option in their
remote properties.

If all of your remote users have a SEND AT or a SEND EVERY clause defined, and you want to send
and receive messages and then shut down, you must start the SQL Remote Message Agent (dbremote)
using the -b option.

2. Start the SQL Remote Message Agent (dbremote).

On Windows, the SQL Remote Message Agent (dbremote) is named dbremote.exe. On Unix, the
name is dbremote. On Mac OS X, you can also use SyncConsole to start the SQL Remote Message
Agent (dbremote).

Managing SQL Remote systems

84 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

For example, the following statement runs dbremote in batch mode on a database file named c:
\mydata.db, connecting with user name ManagerSteve and password sql:

dbremote -c "UID=ManagerSteve;PWD=sql;DBF=c:\mydata.db"

The SQL Remote Message Agent (dbremote) receives and processes incoming messages, scans the
transaction log once, creates and sends the outgoing messages, and then stops.

The username, ManagerSteve, must have either REMOTE DBA authority or DBA authority. The
maximum message length, as defined by the -l option, must be the same for all databases in the
system.

See also
● “SQL Remote Message Agent utility (dbremote)” on page 177
● “SQL Remote Message Agent (dbremote) requirements” on page 82
● “SQL Remote Message Agent (dbremote)” on page 80
● “Run the SQL Remote Message Agent (dbremote) on Mac OS X” on page 85
● “Run the SQL Remote Message Agent (dbremote) on Unix” on page 86

Run the SQL Remote Message Agent (dbremote) on Mac
OS X

SQL Anywhere includes an application called SyncConsole that can be used to start the SQL Remote
Message Agent (dbremote) on Mac OS X. You can also start the SQL Remote Message Agent on Mac OS
X using the dbremote utility.

Start SyncConsole

1. In the Finder, go to /Applications/SQLAnywhere12.

2. Double-click SyncConsole.

3. Click File » New » SQL Remote.

A client options window appears.

4. Specify the connection information for the SQL Remote Message Agent (dbremote).

For example, the following connection parameter uses an ODBC data source for the SQL Anywhere
sample database:

DSN="SQL Anywhere 12 Demo"

The user name must have either REMOTE DBA authority or DBA authority. The message length, as
defined by the -l option, must be the same on all databases in the system.

SQL Remote Message Agent (dbremote)

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 85

See also
● “SQL Remote Message Agent (dbremote) requirements” on page 82
● “SQL Remote Message Agent utility (dbremote)” on page 177

Run the SQL Remote Message Agent (dbremote) on Unix
On Unix platforms, you run the SQL Remote Message Agent (dbremote) as a daemon by supplying the -
ud option. See -ud option “SQL Remote Message Agent utility (dbremote)” on page 177.

The user name must have either REMOTE DBA authority or DBA authority. The maximum message
length, as defined by the -l option, must be the same on all databases in the system. See “SQL Remote
Message Agent (dbremote) requirements” on page 82.

For a complete list of dbremote options you can specify, see “SQL Remote Message Agent utility
(dbremote)” on page 177.

SQL Remote performance
Each time a row in a table is inserted, deleted, or updated, a message is created for those users subscribed
to the row. In addition, an update may cause the subscription expression to change, so that the statement is
sent to some subscribers as a delete, some as an update, and some as an insert.

The task of determining who gets what is divided between the database server and the SQL Remote
Message Agent (dbremote).

The database server
The database server handles publications.

The SQL Remote Message Agent (dbremote)
The SQL Remote Message Agent (dbremote) handles subscriptions.

The SQL Remote Message Agent (dbremote) reads the evaluated subscription expressions or subscription
column entries from the transaction log, and matches the before and after values against the subscription
value for each subscriber to the publication. In this way, the SQL Remote Message Agent (dbremote)
sends the correct operations to each subscriber.

While a large number of subscribers do not have any effect on database server performance, they can
affect SQL Remote Message Agent (dbremote) performance. The work in matching subscription values
against large numbers of subscription values, and the work in sending the messages, can be demanding.

See also
● “The database server handles publications” on page 33

Managing SQL Remote systems

86 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Tasks to receive messages
The SQL Remote Message Agent (dbremote) performs the following tasks when it receives messages:

● Polling for incoming messages To check for new messages that have arrived at a database, the
SQL Remote Message Agent (dbremote) polls for new messages.

● Reading the messages When messages arrive, they are read and stored in cache memory by the
SQL Remote Message Agent (dbremote) until they can be applied.

If a message is missing and the SQL Remote Message Agent (dbremote) is running in continuous
mode, then the SQL Remote Message Agent (dbremote) waits for the message to arrive in a
subsequent poll. The number of polls that SQL Remote Message Agent (dbremote) waits is referred to
as its patience, and is specified by the -rp option.

○ If the missing message arrives before the SQL Remote Message Agent (dbremote) patience expires,
then the missing message is added, in the correct order, to the cache.

○ If the missing message does not arrive and the SQL Remote Message Agent (dbremote) patience
expires, then the SQL Remote Message Agent (dbremote) sends a request to re-send the message
from the publisher database.

Messages continue to be read and added to the cache until the cache memory usage is exceeded. When
the cache memory usage specified using the -m option is exceeded, messages are deleted.

● Applying the messages The SQL Remote Message Agent (dbremote) applies the messages, in
the correct order, to the subscriber database.

● Waiting for confirmation that the messages are applied on the subscriber
databases Once the message has been received and applied at the subscribed database,
confirmation is sent back to the publisher. When the publisher SQL Remote Message Agent
(dbremote) receives the confirmation, it keeps track of the confirmation in a system table.

See also
● “Polling interval adjustments to check for new messages” on page 88
● “Throughput adjustments by caching received messages” on page 89
● “Request adjustments to resend messages” on page 90
● “Adjusting the number of worker threads” on page 91
● “Guaranteed Message Delivery System” on page 96

Performance when receiving messages
The major bottleneck for total throughput in a SQL Remote system is generally receiving messages from
many remote databases and applying them to the database. To reduce this lag time, when running a SQL
Remote Message Agent (dbremote) in continuous mode, you can adjust the following variables:

● How often the SQL Remote Message Agent (dbremote) checks for incoming messages.

SQL Remote performance

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 87

● How much memory is used by the SQL Remote Message Agent (dbremote) for holding messages to be
sent.

● How long the SQL Remote Message Agent (dbremote) waits for an out-of-order message to arrive
before requesting that the message be re-sent.

● How many worker threads are used to process the received messages.

See also
● “Polling interval adjustments to check for new messages” on page 88
● “Throughput adjustments by caching received messages” on page 89
● “Request adjustments to resend messages” on page 90
● “Adjusting the number of worker threads” on page 91

Polling interval adjustments to check for new messages
To check for new messages that have arrived at a database, the SQL Remote Message Agent (dbremote)
polls for new messages. The default polling interval from the end of one poll to the start of another is 1
minute. You can configure the polling interval using the -rd option, but the default is generally sufficient.

Increasing the polling interval
You can poll more frequently by using a value in seconds. For example, the following command polls
every thirty seconds:

dbremote -c "DSN=SQL Anywhere 12 Demo" -rd 30s

In general, do not use a small polling interval unless you have a specific reason for requiring a very quick
response time for messages. Setting a very small interval can have a detrimental effect on overall system
throughput because:

● You can waste resources polling when no messages are in the queue. For example, if you are using
email, each poll of the mail server places a load on your message system. Too frequent polling may
affect your message system and produce no benefits.

● You can overload your system with resend requests. When adjusting the polling interval, you should
also adjust the SQL Remote Message Agent (dbremote) patience. The patience is the number of polls
the SQL Remote Message Agent (dbremote) waits for an out-of-sequence message to arrive before
requesting that it be sent again.

Decreasing the polling interval
You can poll less frequently, as in the following command, which polls every five minutes:

dbremote -c "DSN=SQL Anywhere 12 Demo" -rd 5

Setting larger polling intervals can provide a better overall throughput of messages in your system, it can
increase the time it takes to apply an individual messages. For example, if your polling period for
incoming messages is too long, compared to the frequency with which messages are arriving, you can end
up with messages sitting in the queue, waiting to be processed.

Managing SQL Remote systems

88 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “Performance when receiving messages” on page 87
● “Throughput adjustments by caching received messages” on page 89
● “Request adjustments to resend messages” on page 90
● “Adjusting the number of worker threads” on page 91
● “Performance when sending messages” on page 93

Throughput adjustments by caching received messages

When messages arrive, the SQL Remote Message Agent (dbremote) reads the messages and then stores
them in cache memory until they are applied. This caching of messages prevents:

● Rereading of out-of-order messages from the message system, which may lower performance on large
systems. Caching of messages is useful when messages are being read over a WAN (such as Remote
Access Services or POP3 through a modem).

● Contention between database worker threads reading messages (a single threaded task) because the
message contents are cached.

How messages are cached
Messages are stored in memory until they are applied by the SQL Remote Message Agent (dbremote)
when one of the following conditions occurs:

● The transactions are so large that they require multi-part messages.

● The messages arrive out of order.

Specifying the message cache size
Use the SQL Remote Message Agent (dbremote) -m option to specify the size of the message cache. The
-m option specifies the maximum amount of memory to be used by the SQL Remote Message Agent
(dbremote) for holding messages. The allowed size can be specified as n (in bytes), nK, or nM. The
default is 2048K (2M). When the specified cache memory usage is exceeded, messages are deleted.

The -m option is useful when you have a single consolidated database and a large number of remote
databases. See the -m option in “SQL Remote Message Agent utility (dbremote)” on page 177.

Example
The following command starts a SQL Remote Message Agent (dbremote) using 12 MB of memory as a
message cache:

dbremote -c "DSN=SQL Anywhere 12 Demo" -m 12M

SQL Remote performance

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 89

See also
● “Performance when receiving messages” on page 87
● “Polling interval adjustments to check for new messages” on page 88
● “Request adjustments to resend messages” on page 90
● “Adjusting the number of worker threads” on page 91
● “Performance when sending messages” on page 93

Request adjustments to resend messages

When a message is missing from a sequence, the SQL Remote Message Agent (dbremote) waits a
specified number of polls before requesting that the missing message be re-sent. The number of polls that
the SQL Remote Message Agent (dbremote) waits is referred to as its patience. By default, the SQL
Remote Message Agent (dbremote) has a patience of 1.

If the SQL Remote Message Agent (dbremote) has a patience of 1 and it expects to receive message 6 but
it receives message 7, the SQL Remote Message Agent (dbremote) takes no action. Instead, the SQL
Remote Message Agent (dbremote) waits for the results of the next poll. If after the next poll, Message 6
is still missing, then the SQL Remote Message Agent (dbremote) issues a resend request for Message 6.

Increasing the resend patience
Suppose you have a very small polling interval, and a message system that does not preserve the order in
which messages arrive. It may be common for out-of-sequence messages to arrive after two or three polls
have been completed. In this example, it is recommended that you use the -rp option to increase the SQL
Remote Message Agent (dbremote) patience so that a large number of unnecessary resend requests are not
sent. The -rp option is often used in conjunction with the -rd option that sets the polling interval.

Example
There are two remote users, named user1 and user2, both of which run the SQL Remote Message Agent
(dbremote) with a polling interval of 30 seconds and a patience of 3 polls. For example, they use the
following command to run their SQL Remote Message Agents (dbremote):

dbremote -c "DSN=SQL Anywhere 12 Demo" -rd 30s -rp 3

In the following sequence of operations, messages are marked as userX.n where X is the user name and n
is the message number. For example, user1.5 is the fifth message from user1. The SQL Remote Message
Agent (dbremote) expects messages to start at number 1 for both users.

At time 0 seconds:

1. The SQL Remote Message Agent (dbremote) reads user1.1, user2.4

2. The SQL Remote Message Agent (dbremote) applies user1.1

3. The SQL Remote Message Agent (dbremote) patience is now user1: N/A, user2: 3, as an out of
sequence message has arrived from user 2

At time 30 seconds:

Managing SQL Remote systems

90 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

1. The SQL Remote Message Agent (dbremote) reads: no new messages

2. The SQL Remote Message Agent (dbremote) applies: nothing

3. The SQL Remote Message Agent (dbremote) patience is now user1: N/A, user2: 2

At time 60 seconds:

1. The SQL Remote Message Agent (dbremote) reads: user1.3

2. The SQL Remote Message Agent (dbremote) applies: no new messages

3. The SQL Remote Message Agent (dbremote) patience: user1: 3, user2: 1

At time 90 seconds:

1. The SQL Remote Message Agent (dbremote) reads: user1.4

2. The SQL Remote Message Agent (dbremote) applies: none

3. The SQL Remote Message Agent (dbremote) patience user1: 3, user2: 0

4. The SQL Remote Message Agent (dbremote) issues resend to user2

When a user receives a new message, it resets the SQL Remote Message Agent (dbremote) patience even
if that message is not the one expected.

At time 120 seconds:

1. The SQL Remote Message Agent (dbremote) reads: user1.2 and user2.2

2. The SQL Remote Message Agent (dbremote) applies user1.2, user1.3, user1.4, and user2.2

3. The SQL Remote Message Agent (dbremote) patience user1: N/A, user2: N/A

See also
● “Performance when receiving messages” on page 87
● “Polling interval adjustments to check for new messages” on page 88
● “Throughput adjustments by caching received messages” on page 89
● “Adjusting the number of worker threads” on page 91
● “Performance when sending messages” on page 93

Adjusting the number of worker threads

The following steps describe how the SQL Remote Message Agent (dbremote) applies incoming
messages:

1. It reads the messages. Messages are read and the header information is examined (to determine the
correct order of application). Reading messages from the message system is single-threaded.

SQL Remote performance

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 91

2. It applies the messages. Read messages are passed off to database worker threads to be applied.

On remote databases, the messages are usually applied serially. In a multi-tier system, a remote
database can also be a consolidated database for other remotes. On this type of a remote database, the
messages are applied as on a consolidated database.

On the consolidated database, the default is to apply the messages serially. You can use additional
database worker threads to apply incoming messages from remote users in parallel. See the -w option
in “SQL Remote Message Agent utility (dbremote)” on page 177.

When database worker threads are used on a consolidated database:

● Messages from different remote users are applied in parallel.

● Messages from a single remote user are applied serially.

For example, ten messages from a single remote user are applied by a single worker thread in the
correct order.

Advantages of using database worker threads
Using database worker threads on the consolidated database can improve throughput by allowing
messages to be applied in parallel rather than serially. The performance advantage is significant when the
database server is on a system with a striped drive array.

Disadvantages of using database worker threads
Using database worker threads on the consolidated database can decrease throughput if they cause a lot of
locking between users.

A deadlock is handled by re-applying the rolled-back transaction later.

Set the number of database worker threads

● On the consolidated database, use the -w option to set the number of database worker threads.

For example, the following command sets the number of worker threads to 5:

dbremote -c "DSN=SQL Anywhere 12 Demo" -w 5

See also
● “Run the SQL Remote Message Agent (dbremote) in continuous mode” on page 82
● “Performance when receiving messages” on page 87
● “Polling interval adjustments to check for new messages” on page 88
● “Throughput adjustments by caching received messages” on page 89
● “Request adjustments to resend messages” on page 90
● “Performance when sending messages” on page 93

Tasks to send messages
The SQL Remote Message Agent (dbremote) performs the following tasks to send messages:

Managing SQL Remote systems

92 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● Scanning the publisher transaction log The SQL Remote Message Agent (dbremote) scans the
transaction log of the publisher database and translates the transaction log entries into messages for
subscribers. The maximum message length, as defined by the -l option, must be the same on all
databases in the system.

For large transactions, the SQL Remote Message Agent (dbremote) creates multi-part messages.
These messages each contain a sequence number that keeps track of their place in the transaction. The
SQL Remote Message Agent (dbremote) on the subscriber database uses the sequence number to
ensure that the messages are applied in the correct order and that no message is lost.

● Sending messages to the remote databases The SQL Remote Message Agent (dbremote)
sends messages at times specified by the send frequency properties of each remote user.

The SQL Remote Message Agent (dbremote) sends messages earlier if its cache memory exceeds the
set value. The SQL Remote Message Agent (dbremote) stores its messages in cache memory. When
the cache memory being used exceeds the specified value, messages are sent.

● Processing resend requests from remote databases When a user requests that a message be
re-sent, the SQL Remote Message Agent (dbremote) on the publisher database interrupts the regular
message sending process to process the resend request.

You control the urgency with which these resend requests are processed with the -ru option.

● Sending confirmations to the publisher database Once a message has been received and
applied at the subscribed database, confirmation is sent back to the publisher.

See also
● “Send delay adjustments” on page 94
● “Throughput adjustments by caching sent messages” on page 94
● “Re-send request processing speed” on page 95
● “Guaranteed Message Delivery System” on page 96

Performance when sending messages
The major performance issue for sending messages is the turnaround time between when the data is
entered at one site to when it appears at other sites. To reduce this lag time, when sending messages with
the SQL Remote Message Agent (dbremote), you can adjust the following variables:

● How often messages are sent to remote databases.

● The size of the messages.

● How quickly resend requests are processed.

See also
● “Send delay adjustments” on page 94
● “Performance when receiving messages” on page 87
● “Re-send request processing speed” on page 95

SQL Remote performance

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 93

Send delay adjustments
To create messages to send, the SQL Remote Message Agent (dbremote) polls for new data from the
transaction log. The send delay is the time to wait between polls for more transaction log data to send.
The default polling interval from the end of one poll to the start of another is 1 minute. You can configure
the send delay using the -sd option, but the default is generally sufficient. The send delay should be less
than or equal to the remote users' send frequency.

Decreasing the send delay
You can poll more frequently by using a value in seconds. For example, the following command polls
every thirty seconds:

dbremote -c "DSN=SQL Anywhere 12 Demo" -sd 30s ...

Increasing the send delay
You can poll less frequently, as in the following command, which polls every 60 minutes:

dbremote -c "DSN=SQL Anywhere 12 Demo" -sd 60

Typically, larger send intervals mean that the SQL Remote Message Agent (dbremote) does most of the
message creation work before sending the messages. Smaller intervals are generally preferred as they
spread out the message creation work.

See also
● “Throughput adjustments by caching sent messages” on page 94
● “Re-send request processing speed” on page 95
● “SQL Remote Message Agent utility (dbremote)” on page 177

Throughput adjustments by caching sent messages

The SQL Remote Message Agent (dbremote) caches messages to be sent in a configurable area of
memory.

When all remote databases are receiving unique subsets of the operations being replicated, a separate
message for each remote database is built up concurrently. Only one message is built for a group of
remote users that is receiving the same operations. Messages are sent when:

● The send frequency is reached.

● When the cache memory being used exceeds the -m value.

● When the size of the message reaches its maximum size (as specified by the -l option).

Specifying the message cache size
The size of the message cache is specified on the SQL Remote Message Agent (dbremote) command,
using the -m option.

Managing SQL Remote systems

94 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The -m option specifies the maximum amount of memory to be used by the SQL Remote Message Agent
(dbremote) for building messages. The allowed size can be specified as n (in bytes), nK, or nM. The
default is 2048K (2M).

The -m option is useful when you have a single consolidated database and a large number of remote
databases. See the -m option “SQL Remote Message Agent utility (dbremote)” on page 177.

Example
The following command starts a SQL Remote Message Agent (dbremote) using 12 MB of memory as a
message cache:

dbremote -c "DSN=SQL Anywhere 12 Demo" -m 12M

See also
● “Send delay adjustments” on page 94
● “Re-send request processing speed” on page 95

Re-send request processing speed
Because resending a message interrupts the regular message sending process, the SQL Remote Message
Agent (dbremote) delays processing resend requests. By default, the SQL Remote Message Agent
(dbremote) waits for a time that is half of the send frequency of the remote user who requested the resend.

To resend a message, the SQL Remote Message Agent (dbremote) does the following tasks:

● It stops scanning the transaction log and stops building new messages.

● It deletes the current messages that are stored in its cache waiting to be sent. All of the work that the
SQL Remote Message Agent (dbremote) did in reading the transaction log and building those messages
is lost.

● It re-reads the transaction log from the offset requested in the resend request. The SQL Remote
Message Agent (dbremote) builds the messages and stores them in its cache.

● It waits until the next send frequency time occurs and then sends the messages.

You must balance the urgency of sending requests for re-sent messages with the priority of processing
regular messages.

The -ru option controls the urgency of the resend requests. To delay processing resend requests until more
have arrived, set this option to a longer time. For example, the following command waits one hour before
processing a resend request:

dbremote -c "DSN=SQL Anywhere 12 Demo" -ru 1h

SQL Remote performance

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 95

See also
● “Send delay adjustments” on page 94
● “Throughput adjustments by caching sent messages” on page 94
● “Request adjustments to resend messages” on page 90
● “SQL Remote Message Agent utility (dbremote)” on page 177

Guaranteed Message Delivery System
The Guaranteed Message Delivery System ensures that:

● All replicated operations are applied in the correct order.

● No replicated operations are missed.

● No replicated operation is applied twice.

The Guaranteed Message Delivery System uses the following information:

● The status information maintained in the SYSREMOTEUSER system table This table
contains a row for each subscriber, with status information for messages sent to and received by that
subscriber. For example:

○ On the consolidated database, the SYSREMOTEUSER system table contains a row for each remote
user.

○ On each remote database, the SYSREMOTEUSER system table contains a single row with
information about the consolidated database.

The SYSREMOTEUSER system table is maintained by the SQL Remote Message Agent (dbremote).

On the subscriber database, the SQL Remote Message Agent (dbremote) sends a confirmation to the
publisher database to ensure that the SYSREMOTEUSER system table is maintained correctly at each
end of the subscription.

● The information in the header of the messages The SQL Remote Message Agent (dbremote)
reads the header information in the messages and uses this information to update the
SYSREMOTEUSER system table. A message includes the following information in its header:

○ Its resend_count A counter that keeps track of the number of times the receiving database
has lost messages.

In the following example, the resend_count is 1.

Current message's header: (1-0000942712-0001119170-0)

○ The transaction log offset of the last COMMIT in the previous message In the following
example, the transaction log offset of the last commit in the previous message is 0000942712.

Managing SQL Remote systems

96 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Previous message's header:(0-0000923357-0000942712-0)
Current message's header: (0-0000942712-0001119170-0)

○ The transaction log offset of the last COMMIT in the current message In the following
example, the last commit in the current message is 0001119170:

Current message's header: (0-0000942712-0001119170-0)

If a transaction spans several messages, both transaction log offsets can be identical until the final
message contains a COMMIT.

In the following example, the COMMIT does not occur until the fourth message:

(0-0000942712-0000942712-0)
(0-0000942712-0000942712-1)
(0-0000942712-0000942712-2)
(0-0000942712-0001119170-3)

○ A sequence number When a transaction spans several messages, this sequence number is
used to order the messages correctly.

A sequence number of zero can indicate that:

● The message is not part of a multi-part message if the transaction log offsets are different.

In the following example, the messages are not part of a multi-part message:

(0-0000923200-0000923357-0)
(0-0000923357-0000942712-0)

● The message is the first of a multi-part message if the transaction log offsets are the same.

In the following example, the first message is part of a multi-part message:

(0-0000942712-0000942712-0)
(0-0000942712-0000942712-1)
(0-0000942712-0000942712-2)
(0-0000942712-0001119170-3)

See also
● “Order of operations” on page 97
● “Lost or corrupt messages” on page 99
● “Messages are applied only once” on page 100

Order of operations
To ensure that the replicated statements are applied in the correct order, the Guaranteed Message Delivery
System uses the transaction log offsets of the publisher and subscriber databases. Each COMMIT is
marked in the transaction log by a well-defined offset. The order of transactions can be determined by
comparing their transaction log offset values.

Guaranteed Message Delivery System

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 97

Each message includes the following transaction log offsets:

● The transaction log offset of the last COMMIT in the previous message. If a transaction spans several
messages, there is a sequence number within the transaction to order the messages correctly.

● The transaction log offset of the last COMMIT in the message.

Message ordering
When messages are sent, they are ordered by the offset of the last COMMIT of the preceding message. If
a transaction spans several messages, a sequence number within the transaction is used to order the
messages correctly.

Sending messages
The log_sent column in the SYSREMOTEUSER system table holds the local transaction log offset for the
last message sent to the subscriber.

The following describes how the SYSREMOTEUSER system tables are updated when messages are sent.

1. When the publisher SQL Remote Message Agent (dbremote) sends a message to a subscriber, it also
sets the log_sent value to the transaction log offset value of the last COMMIT in the sent message.

For example, the publisher sends the following message to user1.

(0-0000923200-0000923357-0)

In the publisher's SYSREMOTEUSER system table, the publisher sets the log_sent value to
0000923357 for user1.

2. When the message is received and applied at the subscriber database, a confirmation is sent to the
publisher. The confirmation includes the last transaction log offset that was applied by the subscriber
database.

For example, the message confirms that user1 applied all of the transactions up to and including the
transaction log offset 0000923357.

3. When the publisher SQL Remote Message Agent (dbremote) receives the confirmation, it sets the
confirm_sent column to the value of the confirmation offset for the user in the SYSREMOTEUSER
system table.

For example, the publisher sets the confirm_sent column to 0000923357 for user1 in the publisher's
SYSREMOTEUSER system table.

Both the log_sent and confirm_sent values contain transaction log offsets of the publisher's transaction
log. The confirm_sent value cannot be a later offset than log_sent value.

Receiving messages
The following describes how the SYSREMOTEUSER system tables are updated when messages are
received.

Managing SQL Remote systems

98 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

1. When the SQL Remote Message Agent (dbremote) at a subscriber database receives and applies a
replication update, it updates the log_received column in the SYSREMOTEUSER system table with
the offset of the last COMMIT in the message.

For example, when the subscriber receives and applies the following message, the log_received value
in the SYSREMOTEUSER system table is set to 0000923357.

(0-0000923200-0000923357-0)

The log_received column at any subscriber database contains a transaction log offset that exists in the
publisher database transaction log.

2. When the operations are received and applied, the subscriber SQL Remote Message Agent
(dbremote) sets the confirm_received value in its SYSREMOTEUSER system table, and then sends
confirmation to the publisher database.

See also
● “Order of operations” on page 97
● “Lost or corrupt messages” on page 99
● “Messages are applied only once” on page 100

Lost or corrupt messages

The SYSREMOTEUSER system table contains two columns that manage resending messages:

● resend_count column A counter that keeps track of the number of times that the subscriber
database has lost messages.

● rereceive_count column A counter that keeps track of the number of times the SQL Remote
Message Agent (dbremote) has determined that messages from a publisher user have been lost.

When messages are received in the proper order at a subscriber database:

1. The subscriber SQL Remote Message Agent (dbremote) applies the messages in the correct order and
updates its SYSREMOTEUSER system table.

2. The subscriber SQL Remote Message Agent (dbremote) sends a confirmation message to the
publisher.

3. When the publisher receives the confirmation, its SQL Remote Message Agent (dbremote) updates
its SYSREMOTEUSER system table.

When messages are not received in the proper order:

1. The subscriber SQL Remote Message Agent (dbremote) sends a resend request and increments the
rereceive_count value in its SYSREMOTEUSER system table.

Guaranteed Message Delivery System

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 99

2. When the publisher receives the resend request, it increments the resend_count value in its
SYSREMOTEUSER system table for the subscriber.

3. In the publisher's SYSREMOTEUSER system table, the log_sent value is set to the value in the
confirm_sent column. Resetting of the log_sent value causes operations to be re-sent.

See also
● “Order of operations” on page 97
● “Messages are applied only once” on page 100

Messages are applied only once
The subscriber SQL Remote Message Agent (dbremote) compares the resend_count value in a messages
header with the rereceive_count in its local SYSREMOTEUSER system table. If the resend_count value
is smaller than rereceive_count, the message is not applied; it is deleted. This behavior ensures that
operations are not applied more than once.

See also
● “Order of operations” on page 97
● “Lost or corrupt messages” on page 99

Message size
The following section discusses the message encoding and compression scheme in SQL Remote Message
Agent (dbremote).

The SQL Remote Message Agent provides the following encoding and compression features:

● Compatibility The system can be set to be compatible with previous versions of SQL Anywhere.

● Compression You can select a level of compression for your messages.

Message size affects the efficiency with which messages pass through a system. Compressed
messages can be processed more efficiently by a message system than uncompressed messages.
However, compression can take a significant amount of time.

● Encoding SQL Remote encodes messages to ensure that they pass through message systems
uncorrupted. The encoding scheme can be customized to provide extra features.

See also
● “SQL Remote upgrades” [SQL Anywhere 12 - Changes and Upgrading]
● “compression option [SQL Remote]” [SQL Anywhere Server - Database Administration]
● “Prevention of message corruption with encoding” on page 101
● “SQL Remote Message Agent (dbremote) requirements” on page 82

Managing SQL Remote systems

100 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Prevention of message corruption with encoding
SQL Remote encodes messages to ensure that they pass through message systems uncorrupted. The
default message-encoding behavior of SQL Remote is as follows:

● If the message system can use binary message formats, the messages are not encoded.

● If the message system, for example SMTP, requires text-based message formats, then an encoding DLL
(dbencod12.dll) translates the messages into a text format before sending. The message format is
unencoded at the receiving end using the same DLL.

You can customize the encoding scheme to provide extra features.

● If the compression database option is set to -1, then a version 5 compatible encoding is used for all
message systems.

See also
● “Custom encoding schemes” on page 101
● “SQL Remote upgrades” [SQL Anywhere 12 - Changes and Upgrading]

Custom encoding schemes

To implement a custom encoding scheme, you can build a custom encoding DLL. You can use this
custom DLL to apply special features required for a particular messages system, or to collect statistics,
such as how many messages are sent to each user.

The header file %SQLANY12%\SDK\Include\dbrmt.h includes an application programming interface that
you can use to build a custom encoding scheme.

To use your custom DLL, set the message control parameter encode_dll to a value that is the full path to
the custom DLL. For example:

SET REMOTE FTP OPTION "Public"."encode_dll" = 'c:\\sqlany12\\Bin32\
\custom.dll';

Note
Encoding and decoding must be compatible: if you implement a custom encoding, you must make sure
that the DLL is present at the receiving end, and that the DLL is in place to decode your messages
properly.

See also
● “SET REMOTE OPTION statement [SQL Remote]” on page 204

Message size

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 101

SQL Remote message systems
In SQL Remote replication, a message system is a protocol for exchanging messages between the
consolidated database and a remote database. SQL Remote exchanges data among databases using one or
more underlying message systems. SQL Remote supports the following message systems:

● File sharing A simple system requiring no extra software.

● FTP Internet file transfer protocol.

● HTTP Hypertext transfer protocol.

● SMTP/POP Internet email protocol.

You choose a message system when you assign REMOTE or CONSOLIDATE permission to a user.

Each message system that is used in a SQL Remote system has control parameters and other settings that
must be set up.

Not all message systems are supported on all operating systems.

Setting up a message system
Before you can use a message system, you must set the publisher's address.

Each message type definition includes the message system type name (FILE, FTP, HTTP, or SMTP)
and the address of the publisher under that message type.

The address supplied with a message type definition is closely tied to the publisher ID of the database.

Extraction utility (dbxtract)
The publisher address at a consolidated database is used by the Extraction utility (dbxtract) and the
Extract Database Wizard as a return address when creating remote databases. It is also used by the SQL
Remote Message Agent (dbremote) to identify the location of incoming messages for the FILE system.

See also
● “The FILE message system” on page 106
● “The FTP message system” on page 108
● “The SMTP message system” on page 114
● “The HTTP message system” on page 110
● “Granting REMOTE permission” on page 24
● “Granting CONSOLIDATE permission” on page 27
● “Supported platforms” [SQL Anywhere 12 - Introduction]

Managing SQL Remote systems

102 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Creating message types

Add a message type (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with DBA authority.

2. In the left pane, expand the SQL Remote Users directory.

3. In the right pane, click the Message Types tab.

4. Click File » New » Message Type.

5. In the What Do You Want To Name The New Message Type field, type a name for the message
type. The name should correspond to a message-type DLL already installed in your SQL Anywhere
installation directory. Click Next.

6. In the What Is The Publisher Address field, type a publisher address. Click Finish.

Create a message type (SQL)

1. Verify that you have created an address for the publisher under the message type.

2. Execute a CREATE REMOTE MESSAGE TYPE statement.

CREATE REMOTE MESSAGE TYPE message-type ADDRESS publisher-address

For example:

CREATE REMOTE MESSAGE TYPE FILE
ADDRESS 'company';

Create a remote message type on Windows Mobile
If you have Windows Mobile services installed, you can set up SQL Remote for ActiveSync
synchronization from Sybase Central. This option modifies registry values on your Windows Mobile
device and sets your directory for FILE message link messages to be the Microsoft ActiveSync directory.
It is important to note that SQL Remote will only read message link parameters from the registry if no
message link parameters are defined in the remote database. When you dock your Windows Mobile
device to your desktop computer, Microsoft ActiveSync keeps the files in your desktop computer's
Microsoft ActiveSync directory synchronized with those in the Windows Mobile ActiveSync directory.

Set up SQL Remote ActiveSync synchronization

1. Dock your Windows Mobile device to your desktop computer.

2. From Tools, click SQL Anywhere 12 » Edit Windows Mobile Message Types.

3. If necessary, change the value for the Directory parameter to be the directory on the Windows Mobile
device that is synchronized with your desktop.

4. Click OK to save your changes in the registry of the Windows Mobile device.

SQL Remote message systems

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 103

See also
● “CREATE REMOTE MESSAGE TYPE statement [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “Alter message types” on page 104
● “Deleting message types” on page 104

Alter message types
To change address of a publisher, alter its message type. You cannot change the name of an existing
message type; instead, you must delete it and create a new message type with the new name.

Alter a remote message type (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with DBA authority.

2. In the left pane, expand the SQL Remote Users directory for a database.

3. In the right pane, click the Message Types tab.

4. In the right pane, right-click the message type you want to alter and click Properties.

5. Update the message type properties and click OK.

Alter a remote message type (SQL)

1. Connect to a database as a user with DBA authority.

2. Make sure you have decided on a new address for the publisher under the message type.

3. Execute an ALTER REMOTE MESSAGE TYPE statement.

See also
● “ALTER REMOTE MESSAGE TYPE statement [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “Creating message types” on page 103
● “Deleting message types” on page 104

Deleting message types
Deleting a message type removes the publisher address from the definition.

Delete a message type (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with DBA authority.

2. In the left pane, expand the SQL Remote Users directory for a database.

Managing SQL Remote systems

104 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

3. In the right pane, click the Message Types tab.

4. In the right pane, right-click the message type you want to remove and click Delete.

5. Click Yes.

Delete a message type (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a DROP REMOTE MESSAGE TYPE statement.

See also
● “DROP REMOTE MESSAGE TYPE statement [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “Creating message types” on page 103
● “Alter message types” on page 104

Setting remote message type control parameters
The message control parameters are held in the database. Use the following procedure to set the control
parameter.

Set a message control parameter (SQL)

● Execute a SET REMOTE OPTION statement.

For example, the following statement sets the FTP host to ftp.mycompany.com for the FTP link for
user myuser:

SET REMOTE FTP OPTION myuser.host = 'ftp.mycompany.com';

View the message link parameters (SQL)

● Query the SYSREMOTEOPTION system view.

For example:

SELECT * from SYSREMOTEOPTION;

Message link parameters stored on disk
Earlier versions of SQL Remote stored the message link parameters outside the database. The external
storage of message link parameters is not recommended.

The message link control parameters are stored in the following locations:

● Windows In the registry, at the following location:

SQL Remote message systems

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 105

\\HKEY_CURRENT_USER
 \Software
 \Sybase
 \SQL Remote

The parameters for each message link are stored in a key under the SQL Remote key, with the name
of the message link (4, SMTP, for example).

● Unix The FILE system directory setting is stored in the SQLREMOTE environment variable.

The SQL Remote environment variable stores a path that can be used as an alternative to one of the
control parameters for the FILE messaging system.

When the SQL Remote Message Agent (dbremote) loads a message link, the link uses the setting of the
current publisher or, if a setting is not specified, of groups to which the publisher belongs.

On Windows, when the SQL Remote Message Agent (dbremote) that supports storing the message link
parameters in the database is run for the first time, it copies the link options from the registry to the
database.

See also
● “SET REMOTE OPTION statement [SQL Remote]” on page 204
● “SYSREMOTEOPTION system view” [SQL Anywhere Server - SQL Reference]

The FILE message system

SQL Remote can be used even if you do not have an email or FTP system in place, by using the FILE
message system.

Addresses in the FILE message system
The FILE message system is a simple FILE-sharing system. A FILE address for a remote user is a
subdirectory into which all their messages are written. To retrieve messages, an application reads the
messages from the directory containing the user's files. Return messages are sent to the address (written to
the directory) of the consolidated database.

When the SQL Remote Message Agent (dbremote) is running as a service, the account it is running under
must have permissions to read from and write to all necessary directories. If the correct permissions are
not assigned, the SQL Remote Message Agent is unable to access network drives.

Root directory for addresses
Typically, the FILE message system addresses are subdirectories of a shared directory that is available to
all SQL Remote users, whether by modem or a local area network. Each user should have a registry entry,
initialization file entry, or SQLREMOTE environment variable pointing to the shared directory.

You can also use the FILE system to put the messages in directories on the consolidated and remote
computers. You can use a simple file transfer mechanism to exchange files and complete replication.

Managing SQL Remote systems

106 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

FILE message control parameters
The FILE message system uses the following control parameters that are set by the SET REMOTE
OPTION statement:

● directory The directory under which the messages are stored. This parameter is an alternative to
the SQLREMOTE environment variable.

● debug The setting for this parameter is either YES or NO. The default is NO. When set to YES, all
FILE system calls made by the FILE link are displayed in the output log.

● encode_dll If you are using a custom encoding scheme, you must set this parameter to the full path
of the custom encoding DLL that you created.

● invalid_extensions A comma-separated list of file extensions that you do not want the SQL
Remote Message Agent (dbremote) to use when generating files in the messaging system.

● max_retries By default, when SQL Remote is running in continuous mode and an error occurs
when accessing the message system, it shuts down after the send and/or receive phases. Use this
parameter to specify the number of times you want SQL Remote to retry the send and/or receive
phases before it shuts down.

● pause_after_failure This parameter applies when the max_retries parameter is specified to a value
other than zero and SQL Remote is running in continuous mode. When an error occurs in the message
system, this parameter defines the number of seconds SQL Remote waits between retrying the send
and/or receive phases.

● unlink_delay The number of seconds to wait before attempting to delete a file if the previous
attempt to delete the file failed. If no value is defined for unlink_delay, then the default behavior is set
to pause for 1 second after the first failed attempt, 2 seconds after the second failed attempt, 3 seconds
after the third failed attempt, and 4 seconds after the fourth failed attempt.

Windows Mobile and Microsoft ActiveSync
The SQL Remote Message Agent (dbremote) searches in C:\My Documents\Synchronized Files for the
FILE link. On the consolidated database computer, the SQLREMOTE environment variable or directory
message link parameter for the FILE link should be set to the following directory where userid and
Windows-mobile-device-name are set to the appropriate values:

%SystemRoot%\Profiles\userid\Personal\Windows-mobile-device-name
\Synchronized Files

With this system, Microsoft ActiveSync automatically synchronizes the message files between the
consolidated database computer and the Windows Mobile device.

To verify that FILE synchronization is activated, check Mobile Devices » Tools » ActiveSync Options.

SQL Remote message systems

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 107

See also
● “The FTP message system” on page 108
● “The SMTP message system” on page 114
● “The HTTP message system” on page 110
● “CREATE REMOTE MESSAGE TYPE statement [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “SET REMOTE OPTION statement [SQL Remote]” on page 204
● “SQLREMOTE environment variable” [SQL Anywhere Server - Database Administration]
● “Message size” on page 100

The FTP message system
In the FTP message system, messages are stored in directories under a root directory on an FTP host. The
FTP host and the root directory are specified by message system control parameters held in the registry or
initialization file, and the address of each user is the subdirectory where their messages are held.

FTP message control parameters
The FTP message system uses the following control parameters that are set by the SET REMOTE
OPTION statement:

● host The host name of the computer where the FTP server is running. This parameter can be a host
name (such as FTP.ianywhere.com) or an IP address (such as 192.138.151.66).

● user The user name for accessing the FTP host.

● password The password for accessing the FTP host.

● root_directory The root directory within the FTP host site that the messages are stored under.

● port The IP port number used for the FTP connection. This parameter is usually not required.

● debug This parameter is set either to YES or NO. The default is NO. When set to YES, debugging
output is displayed in the output log.

● active_mode This parameter controls how SQL Remote establishes the server/client connection.
This parameter is set either to YES or NO. The default is NO (passive mode). Passive mode is the
preferred transfer mode and the default for the FTP message link. In passive mode, all data transfer
connections are initiated by the client, in this case, the message link. In active mode, the FTP server
initiates all data connections.

● reconnect_retries The number of times the link should try to open a socket with the server before
failing. The default value is 4. When you set this parameter, only reconnections are affected. The
initial connection made by the FTP link is not affected.

● reconnect_pause The time in seconds to pause between each connection attempt. The default
setting is 30 seconds. When you set this parameter, only reconnections are affected. The initial
connection made by the FTP link is not affected.

Managing SQL Remote systems

108 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● suppress_dialogs This parameter is set to TRUE or FALSE. If it is set to TRUE, the Connect
window does not appear after failed attempts to connect to the FTP server. Instead, an error is
generated.

● invalid_extensions A comma-separated list of file extensions that you do not want dbremote to
use when generating files in the messaging system.

● encode_dll If you have implemented a custom encoding scheme, you must set this parameter to
the full path of the custom encoding DLL that you created.

● max_retries By default, when SQL Remote is running in continuous mode and an error occurs
when accessing the message system, it shuts down after the send and/or receive phases. Use this
parameter to specify the number of times you want SQL Remote to retry the send and/or receive
phases before it shuts down.

● pause_after_failure This parameter applies when the max_retries parameter is specified to a value
other than zero and SQL Remote is running in continuous mode. When an error occurs in the message
system, this parameter defines the number of seconds SQL Remote waits between retrying the send
and/or receive phases.

See also
● “Supported platforms” [SQL Anywhere 12 - Introduction]
● “Message size” on page 100
● “The FILE message system” on page 106
● “The SMTP message system” on page 114
● “CREATE REMOTE MESSAGE TYPE statement [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “SET REMOTE OPTION statement [SQL Remote]” on page 204

Troubleshooting FTP problems

Most problems with the FTP message link are caused by network system issues. This section provides a
list of tests you can use to troubleshoot problems.

● Set the DEBUG message control parameter Review the debug output to determine whether
you are connecting to the FTP server. If you are connecting, the debug output should indicate which
FTP commands are failing.

● Ping the FTP server If the FTP link is not able to connect to the FTP server, test your system
network configuration. For example, run the following command:

ping FTP-server-name

The IP address of the FTP server and the ping (round trip) time to the FTP server should be returned.
If you cannot ping the FTP server, then you have a network configuration problem, and you should
contact you network administrator.

SQL Remote message systems

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 109

● Check that passive mode works If the FTP link is connecting to the FTP server, but is unable to
open a data connection, make sure that an FTP client can use passive mode to transfer data with the
server.

Passive mode is the preferred transfer mode and the default for the FTP message link. In passive
mode, all data transfer connections are initiated by the client, in this case, the message link. In active
mode, the FTP server initiates all data connections. If your FTP server is behind an incorrectly
configured firewall, you may not be able to use the default passive transfer mode because the firewall
blocks socket connections to the FTP server on ports other than the FTP control port.

Using an FTP user program that allows you to set the transfer mode between active and passive, set
the transfer mode to passive and try to upload or download a file. If the client you are using cannot
transfer the file without using active mode then you should reconfigure the firewall and FTP server to
allow passive mode transfers or set the active_mode message control parameter to YES. Active mode
transfers may not work in all network configurations. For example, if your client is behind an IP
masquerading gateway incoming connections may fail depending on your gateway software.

● Check permissions and directory structures If the FTP server is connecting and having
problems getting directory listings or manipulating files, make sure your permissions are set up
correctly and the required directories exist.

Log in to the FTP server using an FTP program. Change directories to the location stored in the
root_directory parameter. If the directories you need do not appear, the root_directory control
parameter may be set incorrectly or the directories may not exist.

Test permissions by fetching a file in your message directory and uploading a file to the consolidated
database directory. If errors are returned, your FTP server permissions are set up incorrectly.

The HTTP message system
Using HTTP, SQL Remote sends messages using the hypertext transfer protocol (HTTP) over the
Internet. The messages are encoded in a text format and sent via HTTP to the target database. The
messages are sent and received using a SQL Anywhere database acting as an HTTP server.

For a list of operating systems for which HTTP is supported, see “Supported platforms” [SQL Anywhere
12 - Introduction].

Setting up the HTTP message server
You use the SQL Anywhere database server to act as the HTTP server that transfers SQL Remote
messages to and from remote databases. By default, a newly initialized SQL Anywhere database does not
have the web services defined to allow it to act as a message server. Three system stored procedures,
sr_add_message_server, sr_drop_message_server and sr_update_message_server are defined in newly
created SQL Anywhere databases to allow you to define the required database objects so that the database
can act as an HTTP Server to transfer SQL Remote messages.

Managing SQL Remote systems

110 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Note
The database must have been initialized with SQL Anywhere 12.0.1 and initialized with a database server
with a build number of 3336 or greater. Query the SYS.SYSHISTORY system table to determine which
version and build of the database server were used to initialize the database. If the database was initialized
with 12.0.1 and a build number less than 3336, update the database by executing "ALTER DATABASE
UPGRADE PROCEDURE ON".

You need to decide whether you want to run a separate database server, or whether you want to use the
existing consolidated database as your message server. Consider the following when making this
decision:

1. When a remote database authenticates with the message server, it uses the publisher of the remote
database and the provided password to authenticate. While the user exists in the consolidated
database, it may not have a defined password (the remote user may not have connect permissions),
which is a requirement of the HTTP message system. If granting CONNECT permissions to the
remote users in the consolidated database is a security concern, set up a separate database to act as
your message server.

2. If the consolidated database is heavily loaded, adding message server functionality to it may
overwhelm the resources on the computer when the consolidated database runs.

To set up the required database objects for the database to act as a message server, call the
sr_add_message_server stored procedure, which queries the SQL Remote definitions in the database. See
“sr_add_message_server system procedure” on page 198.

If you are creating the message server as a separate database, you need to define a second database with
SQL Remote definitions matching those of the consolidated database. Use the dbunload utility to create a
copy of the consolidated database and specify the -n switch to unload only the schema of the consolidated
database, not the data:

dbunload -n -an -c "ENG=cons.DBN=cons;UID=DBA;PWD=sql"

If you are using a separate database as the message server, when changes are made to the SQL Remote
definitions in the consolidated database, corresponding changes must also be made in the message server
database.

To set up the message server, the directory where SQL Remote messages are stored must be accessible to
the database server. To define the directory where messages are stored, use the SET REMOTE OPTION
command and set the root_directory HTTP message parameter to the directory under which SQL
Remote messages are stored. Next, choose the database user that will own the new objects that will be
created, and ensure that the user is a group. Finally, execute the sr_add_message_server stored procedure,
and pass in the name of the user that will own the objects. See “SET REMOTE OPTION statement [SQL
Remote]” on page 204 and “sr_add_message_server system procedure” on page 198.

Whenever changes are made to the SQL Remote definition of the message server (such as adding or
removing remote users), run the sr_update_message_system stored procedure to update the definition of
the objects required to support the message server. The message server will be unavailable for replication
for a short period of time while the stored procedure runs and objects are dropped and recreated. See
“sr_update_message_server system procedure” on page 199.

SQL Remote message systems

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 111

If you are no longer using the database as a message server, you can run the sr_drop_message_system
stored procedure to remove the objects that were created to support the message server. See
“sr_drop_message_server system procedure” on page 199.

Starting the message server database server
After the objects required to support the message server are created, when you start the message server
database server you need to enable HTTP (and/or HTTPS) support to the database server using the -xs
switch. For more information on using -xs, see “-xs dbeng12/dbsrv12 server option” [SQL Anywhere
Server - Database Administration]. The HTTP server-side protocol options of interest to those who have
defined the objects needed for the message server:

● ServerPort | PORT Specifies the port number that the database server uses to listen for HTTP or
HTTPS requests in case the default ports of 80 and 443 are already being used on the computer. See
“ServerPort (PORT) protocol option” [SQL Anywhere Server - Database Administration].

● MaxRequestSize | MAXSIZE Specifies the maximum size of a single HTTP request. The default
value is 100 KB. If you have defined your SQL Remote messages size (-l option on the dbremote
command line) to be greater than 100 KB, you also need to increase the size of the largest HTTP
request that the database server can accept. The default SQL Remote message size is 50 KB. See
“MaxRequestSize (MAXSIZE) protocol option” [SQL Anywhere Server - Database Administration].

● Identity (HTTPS only) When you use HTTPS, the identity file contains the public certificate and
its private key, and for certificates that are not self-signed, the identity file also contains all of the
signing certificates, which include, among other things, the encryption certificate. The password for
this certificate must be specified with the Identity_Password parameter. See “Identity protocol
option” [SQL Anywhere Server - Database Administration].

● Identity_Password (HTTPS only) When you use transport-layer security, this option specifies the
password that matches the password for the encryption certificate specified by the Identity protocol
option. See “Identity_Password protocol option” [SQL Anywhere Server - Database Administration].

HTTP addresses and user IDs
To use SQL Remote and HTTP, each database participating in the system requires an HTTP address, a
user ID and a password. These are distinct identifiers: the HTTP address is the destination of each
message, and the user ID and password are the name and password entered by a user when they
authenticate against the server.

HTTP message control parameters
Before the SQL Remote Message Agent (dbremote) connects to the message system to send or receive
messages, the user must have a set of control parameters already set on their computer, or the user is
prompted to specify needed information. This information is needed only on the first connection. It is
saved and used as the default for subsequent connections.

The HTTP message system uses the following control parameters that are set using the SET REMOTE
OPTION statement:

● certificate To make a secure (HTTPS) request, a client must have access to the certificate used by
the HTTPS server. The necessary information is specified in a string of semicolon-separated key/value

Managing SQL Remote systems

112 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

pairs. You can use the file key to specify the file name of the certificate. You cannot specify a file and
certificate key together. The following keys are available:

Key Abbreviation Description

file The file name of the certificate

certificate cert The certificate itself

company co The company specified in the certificate

unit The company unit specified in the certificate

name The common name specified in the certificate

Certificates are required only for requests that are either directed to an HTTPS server, or can be
redirected from a non-secure to a secure server. Only PEM formatted certificates are supported.
certificate='file=filename'

● client_port Identifies the port number on which SQL Remote communicates using HTTP. It is
provided for, and recommended only for, connections through firewalls that filter "outgoing" TCP/IP
connections. You can specify a single port number, ranges of port numbers, or a combination of the
two. Specifying a low number of client ports could result in SQL Remote being unable to send and
receive messages if the operating system has not released the ports in a timely manner after SQL
Remote closes the port on a previous run. client_port=nnnnn[-mmmmm]'

● debug When set to YES, all HTTP commands and responses are displayed in the output log. This
information can be used for troubleshooting HTTP support problems. The default is NO.

● https Specify whether to use HTTPS (https=yes) or HTTP (https=no).

● password The message server database password. Authenticates to third-party HTTP servers and
gateways using RFC 2617 Basic authentication. password='password'

● proxy_host Specifies the URI of a proxy server. For use when SQL Remote must access the
network through a proxy server. Indicates that SQL Remote is to connect to the proxy server and send
the request to the message server through it.proxy_host=' http://proxy-server[:port-number]'

● reconnect_retries The number of times the link should try to open a socket with the server before
failing. The default value is 4. When you set this parameter, only reconnections are affected. The
initial connection made by the FTP link is not affected.

● reconnect_pause The time in seconds to pause between each connection attempt. The default
setting is 30 seconds. When you set this parameter, only reconnections are affected. The initial
connection made by the FTP link is not affected.

● root_directory This HTTP control parameter is ignored when specified at the client side. You
define this control parameter in the message server prior to calling the sr_add_message_server or
sr_update_message_server stored procedure. Specify the directory accessible by the message server
under which the SQL Remote messages are stored. Note that when using the HTTP message system,

SQL Remote message systems

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 113

the address specified for a remote user or publisher can only contain a single subdirectory, and not
multiple subdirectories. root_directory='c:\msgs'

● url Specify the server name or IP address and, optionally, the port number of the HTTP server
being used, separated by a semicolon. If requests are being passed through the Relay Server, you can
optionally add a URL extension to indicate which server farm the request should be passed to. url
='server-name[:port-number][url-extension]'

● user The message server database user ID. Authenticates to third-party HTTP servers and gateways
using RFC 2617 Basic authentication. user='userid'

See also
● “The FILE message system” on page 106
● “The SMTP message system” on page 114
● “The FTP message system” on page 108
● “CREATE REMOTE MESSAGE TYPE statement [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “Tutorial: Setting up a replication system using the HTTP message system” on page 149
● “Tutorial: Setting up a replication system using the HTTP message system with the consolidated

database as the message server” on page 159
● “Tutorial: Setting up a replication system using the HTTP message system and the consolidated

database as the message server via Relay Server” on page 167
● “SET REMOTE OPTION statement [SQL Remote]” on page 204

The SMTP message system
With the SMTP system, SQL Remote sends messages using Internet mail. The messages are encoded in a
text format and sent in an email message to the target database. The messages are sent using an SMTP
server, and retrieved from a POP server.

For a list of operating systems for which SMTP is supported, see “Supported platforms” [SQL Anywhere
12 - Introduction].

SMTP addresses and user IDs
To use SQL Remote and an SMTP message system, each database participating in the system requires an
SMTP address and a POP3 user ID and password. These are distinct identifiers: the SMTP address is the
destination of each message, and the POP3 user ID and password are the name and password entered by a
user when they connect to their email server.

Note
It is recommended that you use a separate POP email account to send and receive SQL Remote messages.
See “SMTP/POP address sharing” on page 116.

SMTP message control parameters
Before the SQL Remote Message Agent (dbremote) connects to the message system to send or receive
messages, the user must have a set of control parameters already set on their computer, or the user is

Managing SQL Remote systems

114 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

prompted to specify needed information. This information is needed only on the first connection. It is
saved and used as the default entries for subsequent connections.

The SMTP message system uses the following control parameters that are set by the SET REMOTE
OPTION statement:

● local_host The name of the local computer. It is useful on computers where SQL Remote is unable
to determine the local host name. The local host name is needed to initiate a session with any SMTP
server. In most network environments, the local host name can be determined automatically and this
entry is not needed.

● top_supported SQL Remote uses a POP3 command called TOP when enumerating incoming
messages. The TOP command may not be supported by all POP servers. When you set the
top_supported parameter to NO, SQL Remote uses the RETR command, which is less efficient but
works with all POP servers. The default is YES.

● smtp_authenticate Determines whether the SMTP link authenticates the user. The default value is
YES. Set this parameter to NO to turn off SMTP authentication.

● smtp_userid The user ID for SMTP authentication. By default, this parameter takes the same
value as the pop3_userid parameter. The smtp_userid only needs to be set if the user ID is different
from that of the POP server.

● smtp_password The password for SMTP authentication. By default, this parameter takes the
same value as the pop3_password parameter. The smtp_password only needs to be set if the user ID is
different from that of the POP server.

● smtp_host The name of the computer on which the SMTP server is running. It corresponds to the
SMTP host field in the SMTP/POP3 login window.

● pop3_host The name of the computer on which the POP host is running. Typically, it is the same
name as the SMTP host. It corresponds to the POP3 host field in the SMTP/POP3 login window.

● pop3_userid The user ID used to retrieve mail. The POP user ID corresponds to the user ID field
in the SMTP/POP3 login window. You must obtain a user ID from your POP host administrator.

● pop3_password The password used to retrieve mail. It corresponds to the password field in the
SMTP/POP3 login window.

● debug When set to YES, all SMTP and POP3 commands and responses are displayed in the output
log. This information can be used for troubleshooting SMTP/POP support problems. The default is
NO.

● suppress_dialogs When this parameter is set to true, the Connect window does not appear after
failed attempts to connect to the mail server. Instead, an error is generated.

● encode_dll If you have implemented a custom encoding scheme, you must set this to the full path
of the custom encoding DLL that you created. See “Message size” on page 100.

● max_retries By default, when SQL Remote is running in continuous mode and an error occurs
when accessing the message system, it shuts down after the send and/or received phases. Use this

SQL Remote message systems

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 115

parameter to specify the number of times you want SQL Remote to retry the send and/or receive
phases before it shuts down.

● pause_after_failure This parameter applies when the max_retries parameter is specified to a value
other than zero and SQL Remote is running in continuous mode. When an error occurs in the message
system, this parameter defines the number of seconds SQL Remote waits between retrying the send
and/or receive phases.

See also
● “The FILE message system” on page 106
● “The FTP message system” on page 108
● “CREATE REMOTE MESSAGE TYPE statement [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “SET REMOTE OPTION statement [SQL Remote]” on page 204

SMTP/POP address sharing

You should use a separate email account for SQL Remote messages. It is not recommended that you send
and receive SQL Remote messages through the same email account that you use for personal or business
email messages.

If you need to share the same email account for SQL Remote messages and regular email messages, then
you must ensure that your email program does not download and delete all messages from the mail server,
including SQL Remote email and personal messages. You must configure the email program so that it
does not alter or delete SQL Remote messages when it downloads your regular email messages. SQL
Remote messages contain the subject ---SQL Remote--.

Troubleshooting SMTP Link
If you cannot get the SMTP Link to work, connect to the SMTP/POP3 server from the same computer on
which the SQL Remote Message Agent (dbremote) is running, using the same account and password. Use
an Internet email program that supports SMTP/POP3. Disable this program once the SMTP message link
is working.

Check that email is working properly
If SQL Remote messages are not being sent and received properly and you are using an email message
system, you should confirm that email is working properly between the two computers.

SQL Remote system backups
SQL Remote replication depends on access to operations in the transaction log, and access to old
transaction logs. Any backup strategy that you implement must incorporate the maintenance of the
transaction logs for SQL Remote.

Managing SQL Remote systems

116 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The SQL Remote Message Agent (dbremote) must have access to the current and old transaction logs
until they are no longer needed.

A consolidated database no longer needs its transaction logs when all remote databases have received and
have confirmed that the messages contained in the transaction logs have been successfully applied.

A remote database no longer needs its transaction logs when the consolidated database has received and
confirmed that it has successfully applied the messages contained in the transaction logs.

Backing up remote databases
For your remote databases, you need to decide whether to:

● Rely on replication to the consolidated database as a backup method Backup procedures
are not as crucial on remote databases as on the consolidated database. You can rely on replication to
the consolidated database as a data backup method.

If you choose this method, then you should create a strategy for maintaining the remote database
transaction logs.

● Create a backup strategy for the remote database If the changes made on the remote
databases are crucial, then you need to create a backup strategy for the remote databases that includes
the maintenance of the transaction logs.

Backing up consolidated databases
You must have a backup strategy for your consolidated database that includes the maintenance of the
transaction logs.

The Backup utility (dbbackup) and the SQL Remote Message Agent (dbremote) -x option
On a database, you should never run both the SQL Remote Message Agent (dbremote) with the -x option
and the Backup utility (dbbackup).

The -x option is used to manage transaction logs for replication. The -x option ensures that SQL Remote
Message Agent has access to old transaction logs and deletes the transaction logs when they are no longer
needed. The -x option does not back up the transaction log.

The Backup utility (dbbackup) is used to back up the current transaction log. When the Backup utility
(dbbackup) is run with the -r and -n options, it backs up the current transaction log to a backup directory
and renames and restarts the current transaction log. The Backup utility (dbbackup) assumes that the
current transaction log is the same transaction log that it renamed and restarted after the previous back up.

If you try to run both the SQL Remote Message Agent -x option and the Backup utility (dbbackup) on the
same database, they interfere with each other. You can lose transaction logs when both are running.

Only run the SQL Remote Message Agent (dbremote) with the -x option on a remote database that is not
being backed up.

SQL Remote system backups

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 117

See also
● “Maintaining transaction logs for remote databases” on page 118
● “Backing up remote databases” on page 118
● “Protect the consolidated database from media failures” on page 119

Maintaining transaction logs for remote databases
Use the following procedure to maintain your remote database transaction logs when you are relying on
replication to the consolidated database to back up your remote databases. That is, you are not running the
Backup utility (dbbackup) on the remote databases and transaction logs.

Caution
Do not run the SQL Remote Message Agent (dbremote) with the -x option on a database that is being
backed up.

Maintain remote database transaction logs

1. On the remote database, run the SQL Remote Message Agent (dbremote) with the -x option and
specify a size for the transaction log. This option causes the SQL Remote Message Agent (dbremote)
to rename and restart the transaction log when the transaction log exceeds the specified size.

The following deletes the transaction log when it is larger than 1 MB:

dbremote -x 1M -c "UID=ManagerSteve;PWD=sql;DBF=c:\mydata.db"

2. On the remote database, set the delete_old_logs option to On. Setting the delete_old_logs_option
causes the old transaction log files to be deleted automatically by the SQL Remote Message Agent
(dbremote) when they are no longer needed for replication.

A transaction log is no longer needed when all subscribers have confirmed that they have received and
successfully applied all the changes recorded in that transaction log file. You can set the
delete_old_logs option either for the PUBLIC group or just for the user contained in the SQL Remote
Message Agent (dbremote) connection string.

The following statement sets the public delete_old_logs option to delete logs that were created more
than 10 days ago:

SET OPTION PUBLIC.delete_old_logs = '10 days';

Backing up remote databases
Use the following procedure to back up your remote databases. This procedure includes a maintenance
strategy for the use of the transaction logs by SQL Remote. Do not use this procedure and run the SQL
Remote Message Agent (dbremote) with the -x option.

Back up remote databases using the Backup utility (dbbackup)

1. Make a full backup of the remote database.

Managing SQL Remote systems

118 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

a. Connect to the database as a user with DBA authority.

b. Run dbbackup with the -r and -n options.
For example, assume that the backup directory is e:\archive, the database file is located in the c:
\live directory and its corresponding transaction log file is located in the d:\live directory:

dbbackup -r -n -c "UID=DBA;PWD=sql;DBF=c:\live\remotedatabase.db" e:
\archive

The transaction logs in the d:\live directory are not altered by the full backup.

c. Copy the backup files located in the e:\archive directory to an off-site drive or to a DVD.

d. Run the SQL Remote Message Agent (dbremote) with access to the current transaction log files
using the following command:

dbremote -c "UID=DBA;PWD=sql;DBF=c:\live\remotedatabase.db" d:\live

Caution
Do not run the SQL Remote Message Agent (dbremote) with the -x option on a database that is being
backed up.

2. Set up the Backup utility (dbbackup) to make incremental backups of the remote database's
transaction log.

a. Connect to the database as a user with DBA authority.

b. Run dbbackup with the -r, -n, and -t options.
For example:

dbbackup -r -n -t -c "UID=DBA;PWD=sql;DBF=c:\live\remotedatabase.db"
e:\archive

c. Run the SQL Remote Message Agent (dbremote) with access to the current transaction log files
using the following command:

dbremote -c "UID=DBA;PWD=sql;DBF=c:\live\remotedatabase.db" d:\live

Protect the consolidated database from media failures
To protect your SQL Remote replication system against media failure:

● Replicate only backed-up transactions Send messages that contain only backed-up
transactions. By sending only backed-up transactions, the replication system is protected against
media failure on the transaction log. You can accomplish this by:

○ Running the SQL Remote Message Agent (dbremote) with the -u option. When the SQL Remote
Message Agent (dbremote) is run with the -u option, only committed transactions that have been
backed up are packaged into messages to be sent.

The -u option provides additional protection against total site failure, if backups are carried out to
another site.

SQL Remote system backups

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 119

● Use a transaction log mirror Using a transaction log mirror protects against media failure on the
transaction log device.

● Do not run SQL Remote Message Agent (dbremote) with the -x option on the consolidated
database Never run the SQL Remote Message Agent (dbremote) with the -x option against a
database that is being backed up. The -x option maintains the transaction logs for replication, not for
backup or recovery.

See also
● “SQL Remote Message Agent utility (dbremote)” on page 177
● “Transaction log mirrors” [SQL Anywhere Server - Database Administration]
● “Back up the consolidated database” on page 120

Back up the consolidated database
Back up your consolidated database by making a full backup of the consolidated database and transaction
log, and then make incremental backups of the transaction log.

Back up SQL Remote consolidated databases

1. Make a full back up of the consolidated database and its transaction log.

a. Connect to the database as a user with DBA authority.

b. Run dbbackup with the -r and -n options.
For example:

dbbackup -r -n -c "UID=DBA;PWD=sql;DBF=c:\live\database.db" e:\archive

2. Make incremental backups of the consolidated database transaction log. When backing up the
transaction log, choose to rename and restart the transaction log.

a. Connect to the database as a user with DBA authority.

b. Run dbbackup with the -r and -n and -t options.
For example:

dbbackup -r -n -t -c "UID=DBA;PWD=sql;DBF=c:\live\database.db" e:
\archive

3. Run the SQL Remote Message Agent (dbremote) with access to the current transaction log.

For example:

dbremote -c "UID=DBA;PWD=sql;DBF=c:\live\database.db" d:\live

Caution
Do not run the SQL Remote Message Agent (dbremote) with the -x option on a database that is being
backed up.

The figure below illustrates a database named database.db in the c:\live directory, with a transaction log
named database.log in the d:\live directory.

Managing SQL Remote systems

120 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

When you back up the transaction log to a backup directory e:\archive using the -r and -n options to
rename and restart the transaction log the Backup utility (dbbackup) carries out the following tasks:

1. Renames the current transaction log file to 971201xx.log, where xx are sequential characters ranging
from AA to ZZ.

2. Backs up the transaction log file to the backup directory, creating a backup file named 971201xx.log.

Note
Before the release of SQL Anywhere 8.0.1, the old transaction log files were named yymmdd01.log,
yymmdd02.log, and so on. The name change was introduced to allow more old transaction logs to be
stored. As the SQL Remote Message Agent (dbremote) scans all the files in the specified directory,
regardless of their names, the name change should not affect existing applications.

3. Starts a new transaction log, as database.log.

After several backups, the live directory and the archive directory contain a set of sequential transaction
logs.

See also
● “Protect the consolidated database from media failures” on page 119
● “Transaction log backup copy naming” [SQL Anywhere Server - Database Administration]
● “Backup utility (dbbackup)” [SQL Anywhere Server - Database Administration]

Recovering consolidated databases manually
The following procedure describes how to recover a consolidated database by applying each transaction
log to the database

Recovering consolidated databases manually

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 121

Recover the database using the -a option

1. Make a copy of the database and transaction log file. This procedure assumes that previous backups of
the database file have been made and are available, for example on tape.

2. Create a temporary directory.

3. Restore the most recent back up of the database (.db) file, not the transaction log file, from tape into a
temporary directory.

In the temporary directory:

a. Start the backup copy of the database.

b. Apply the old transaction logs using the -a option.

c. Shut down the database.

d. Start the database using the current transaction log and the -a option to apply the transactions and
bring the database file up to date.

e. Shut down the database.

f. Back up the database.

4. Copy the database to the production directory.

5. Start the database.

Any new activity is appended to the current transaction log.

Example: Applying transaction logs individually
Suppose you have a consolidated database file named c:\dbdir\cons.db, a transaction log file c:\dbdir
\cons.log, and a transaction log mirror file d:\mirdir\cons.mlg.

Assume that you perform full backups weekly, and you perform incremental backups daily using the
following command:

dbbackup -c "UID=DBA;PWD=sql" -r -n -t e:\backdir

This command backs up the transaction log cons.log to the directory e:\backdir. The transaction log file is
then renamed to datexx.log, where date is the current date and xx is the next set of letters in sequence, and
a new transaction log is started. The directory e:\backdir is then backed up using a third-party utility.

In this scenario, you run the SQL Remote Message Agent (dbremote) with the optional directory to point
to the renamed transaction log files. For example:

dbremote -c "UID=DBA;PWD=sql" c:\dbdir

On the third day following the weekly backup, the database file is corrupted because of a bad disk block.

Recover from media failure on the C drive

1. Back up the transaction log mirror file d:\mirdir\cons.mlg.

Managing SQL Remote systems

122 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

2. Create a temporary directory to perform the recovery in. In this example, the directory is called c:
\recover.

3. Restore the most recent backup of the database file, cons.db to c:\recover\cons.db.

4. Apply the renamed transaction logs in order, as follows:

dbeng12 -a c:\dbdir\dateAA.log c:\recover\cons.db
dbeng12 -a c:\dbdir\dateAB.log c:\recover\cons.db

5. Copy the current transaction log, d:\mirdir\cons.log to the recovery directory, giving c:\recover
\cons.log.

6. Start the database using the following command:

dbeng12 c:\recover\cons.db

7. Shut down the database server.

8. Back up the recovered database and transaction log from c:\recover.

9. Copy the files from c:\recover to the appropriate production directories:

● Copy c:\recover\cons.db to c:\dbdir\cons.db.

● Copy c:\recover\cons.log to c:\dbdir\cons.log, and to d:\mirdir\cons.mlg.

10. Restart your system as normal.

See also
● “Recovering consolidated databases automatically” on page 123
● “-a dbeng12/dbsrv12 database option” [SQL Anywhere Server - Database Administration]

Recovering consolidated databases automatically
The following procedure describes how to automatically recover a consolidated database. To apply the
transaction logs manually, see “Recovering consolidated databases manually” on page 121.

Recover the database using the -ad option

1. Make a copy of the database and transaction log file. This procedure assumes that previous backups of
the database file have been made and are available, for example on tape.

2. Restore the most recent backed up copy of the database (.db) file, not the transaction log file, from
tape into a temporary directory.

3. In the temporary directory:

a. Start the database, applying the transaction logs using the -ad option.

Recovering consolidated databases automatically

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 123

When you specify the -ad option, the database server looks in the specified directory for the
transaction logs for the database. It then determines the correct order to apply the logs based on
the transaction log offsets.

b. Copy the current transaction log, to the temporary directory.

c. Start the database and apply the current transaction log.

d. Shut down the database server.

e. Back up the database and transaction log.

4. Copy database and transaction log files to the appropriate production directories.

5. Restart your system as normal.

Any new activity is appended to the current transaction log.

Example
Suppose you have a consolidated database file named c:\dbdir\cons.db, a transaction log file c:\dbdir
\cons.log, and a transaction log mirror file d:\mirdir\cons.mlg.

Assume that you perform full backups weekly using the following command:

dbbackup -c "UID=DBA;PWD=sql" -r -n e:\backdir

Assume that you also perform incremental backups daily using the following command:

dbbackup -c "UID=DBA;PWD=sql" -r -n -t e:\backdir

This command backs up the transaction log cons.log to the directory e:\backdir. The transaction log file is
then renamed to datexx.log, where date is the current date and xx is the next set of letters in sequence, and
a new transaction log is started. The directory e:\backdir is then backed up using a third-party utility.

In this scenario, you would run the SQL Remote Message Agent (dbremote) with the optional directory to
point to the renamed transaction log files. For example:

dbremote -c "UID=DBA;PWD=sql" c:\dbdir

On the third day following the weekly backup, the database file is corrupted because of a bad disk block.

Recover from media failure on the c drive

1. Replace the c:\ drive.

2. Back up the transaction log mirror file d:\mirdir\cons.mlg.

3. Create a temporary directory to perform the recovery in. In this example, it is called c:\recover.

4. Restore the most recent backup of the database file, cons.db to c:\recover\cons.db.

5. Copy the backed up transaction logs to c:\dbdir.

6. Apply the renamed transaction logs:

Managing SQL Remote systems

124 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

dbeng12 c:\recover\cons.db -ad c:\dbdir

7. Copy the current transaction log, d:\mirdir\cons.log to the recovery directory, giving c:\recover
\cons.log.

8. Start the database using the following command:

dbeng12 c:\recover\cons.db

9. Shut down the database server.

10. Back up the recovered database and transaction log from c:\recover.

11. Copy the files from c:\recover to the appropriate production directories:

● Copy c:\recover\cons.db to c:\dbdir\cons.db.

● Copy c:\recover\cons.log to c:\dbdir\cons.log, and to d:\mirdir\cons.mlg.

12. Restart your system as normal.

See also
● “-ad dbeng12/dbsrv12 database option” [SQL Anywhere Server - Database Administration]

Replication error reporting and handling
The following errors can occur on a SQL Remote system:

● Row not found errors See “Row not found errors” on page 49.

● Referential integrity errors See “Referential integrity errors” on page 49.

● Duplicate primary key errors See “Duplicate primary key errors” on page 52.

By default, when an error occurs, the SQL Remote Message Agent (dbremote) prints the error in its log
output window. The SQL Remote Message Agent (dbremote) can print more information in the output
messages file than in the messages window.

The SQL Remote Message Agent (dbremote) messages log file includes the following information:

● Applied messages
● Failed SQL statements
● Other errors

To print an error to the output log file, run the SQL Remote Message Agent (dbremote) with the -o
option.

When an error occurs, you can configure SQL Remote to:

Replication error reporting and handling

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 125

● Run an error-handling procedure By default, no procedure is called. However, you can use the
replication_error database option to specify a stored procedure to be called by the SQL Remote
Message Agent (dbremote) when an error occurs.

For example, you can configure SQL Remote to:

○ Send portions of a remote database's output log to the consolidated database and written to a file.

○ Send an email notification when an error occurs at a remote database.

● Ignore the error There might be instances when you do not want to the SQL Remote Message
Agent (dbremote) to report an error. For example, you can choose to ignore an error when you know
the conditions under which the error occurs and you are sure that the error does not produce
inconsistent data. See “Ignoring replication errors” on page 130.

See also
● “SQL Remote Message Agent utility (dbremote)” on page 177
● “Run an error-handling procedure” on page 126
● “Collecting errors from the remote database” on page 127
● “Receiving email notification about remote database errors” on page 128

Run an error-handling procedure
Set the replication_error option to call a procedure when a SQL error occurs. By default, no procedure is
called when a SQL error occurs.

The procedure that is called must have a single argument type of CHAR, VARCHAR, or LONG
VARCHAR. The procedure is called once with the SQL error message and once with the SQL statement
that causes the error.

Set the replication_error option

● Execute the following statement. The remote-user is the publisher name on the SQL Remote Message
Agent (dbremote) command and procedure-name is the procedure called when a SQL error is
detected.

SET OPTION
remote-user.replication_error
= 'procedure-name';

See also
● “replication_error option [SQL Remote]” [SQL Anywhere Server - Database Administration]

Managing SQL Remote systems

126 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Collecting errors from the remote database

Use the following procedure to send portions of a remote database's output log to the consolidated
database. The information is written to a file and the file can contain output logging information from
some or all remote databases in the system.

Configure SQL Remote to collect output log information from remote databases

1. Configure the remote databases to send output log information to the consolidated database.

a. Use the SET REMOTE statement with the output_log_send_on_error option to send log
information when an error occurs.
On the remote database, execute the following command:

SET REMOTE link-name OPTION
PUBLIC.output_log_send_on_error = 'Yes';

When the SQL Remote Message Agent (dbremote) reads any messages that start with the error
indicator E, it sends the output log information to the consolidated database.

b. This step is optional. Set the SET REMOTE statement with the output_log_send_limit option to
limit the amount of information that is sent to the consolidated database. The
output_log_send_limit option specifies the number of bytes at the end of the output log (that is,
the most recent entries) that are sent to the consolidated database. The default is 5K.
If you supply an output_log_send_limit value that exceeds the maximum message size, SQL
Remote overrides the output_log_send_limit value and sends only what can fit within the
maximum message size.
On the remote database, execute the following command:

SET REMOTE link-name OPTION
PUBLIC.output_log_send_limit = '7K';

2. Configure the consolidated database to receive log information.

On the consolidated database, run the SQL Remote Message Agent (dbremote) with either the -ro or
the -rt options.

3. This step is optional. To test your configurations, set the output_log_send_now option to send output
log information to the consolidated database.

On the remote database, set the output_log_send_now option to YES.

On the next poll, the remote database sends the output log information and then resets the
output_log_send_now option to NO.

See also
● “SET REMOTE OPTION statement [SQL Remote]” on page 204
● “SQL Remote Message Agent utility (dbremote)” on page 177
● “Receiving email notification about remote database errors” on page 128

Replication error reporting and handling

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 127

Receiving email notification about remote database errors
Use the following procedure to send email notification when an error occurs at a remote database. You
can use email or a paging system to receive the notifications.

Set up SQL Remote to send email notification of errors (SQL)

1. Use the SQL Anywhere 12 plug-in to connect to the consolidated database as user Cons.

2. Create a stored procedure that notifies the DBA user by email that an error has occurred.

For example, execute the following to create the sp_LogReplicationError procedure:

CREATE PROCEDURE cons.sp_LogReplicationError
 (IN error_text LONG VARCHAR)
BEGIN
 DECLARE current_remote_user CHAR(255);
 SET current_remote_user = CURRENT REMOTE USER;
 // Log the error
 INSERT INTO cons.replication_audit
 (remoteuser, errormsg)
 VALUES
 (current_remote_user, error_text);
 COMMIT WORK;
 //Now notify the DBA by email that an error has occurred
 // on the consolidated database. The email should contain the error
 // strings that the SQL Remote Message Agent is passing to the
procedure.
 IF CURRENT PUBLISHER = 'cons' THEN
 CALL sp_notify_DBA(error_text);
 END IF
END;

3. Create a stored procedure that manages the sending of email.

For example, execute the following statement to create the sp_notifiy_DBA procedure:

CREATE PROCEDURE sp_notify_DBA(in msg long varchar)
BEGIN
 DECLARE rc INTEGER;
 rc=call xp_startmail(mail_user='davidf');
 //If successful logon to mail
 IF rc=0 THEN
 rc=call xp_sendmail(
 recipient='Doe, John; Smith, Elton',
 subject='SQL Remote Error',
 "message"=msg);
 //If mail sent successfully, stop
 IF rc=0 THEN
 call xp_stopmail()
 END IF
 END IF
END;

4. Set the replication_error database option to call the procedure that notifies the DBA by email that an
error occurs.

For example, execute the following statement to call the sp_LogReplicationError procedure when an
error occurs:

Managing SQL Remote systems

128 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SET OPTION PUBLIC.replication_error =
 'cons.sp_LogReplicationError';

5. Create an audit table.

For example, execute the following to create the replication_audit table:

CREATE TABLE replication_audit (
 id INTEGER DEFAULT AUTOINCREMENT,
 pub CHAR(30) DEFAULT CURRENT PUBLISHER,
 remoteuser CHAR(30),
 errormsg LONG VARCHAR,
 timestamp DATETIME DEFAULT CURRENT TIMESTAMP,
 PRIMARY KEY (id,pub)
);

The following table describes the columns of the replication_audit table:

Column Description

pub Current publisher of the database (identifies the database in which the publish-
er was inserted).

remoteuser Remote user applying the message (identifies the database from which the re-
mote user came from).

errormsg Error message passed to the replication_error procedure.

6. Test your procedures.

For example, insert a row on the consolidated database that uses the same primary key as a row on a
remote database. When this row from the consolidated database is replicated to the remote database, a
primary key conflict error occurs and:

● The remote database SQL Remote Message Agent (dbremote) prints the following message to its
output log:

Received message from "cons" (0-0000000000-0)
SQL statement failed: (-193) primary key for table 'reptable' is not
unique
INSERT INTO cons.reptable(id,text,last_contact)
VALUES (2,'dave','1997/apr/21 16:02:38.325')
COMMIT WORK

● The following INSERT statement is sent to the consolidated database:

INSERT INTO cons.replication_audit
 (id,
 pub,
 remoteuser,
 errormsg,
 "timestamp")
VALUES
 (1,
 'cons',
 'sales',
 'primary key for table ''reptable'' is not unique (-193)',

Replication error reporting and handling

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 129

 '1997/apr/21 16:03:13.836');
COMMIT WORK;

● An email is sent to John Doe and Elton Smith with the following message:

primary key for table 'reptable' is not unique (-193)
INSERT INTO cons.reptable(id,text,last_contact)
 VALUES (2,'dave','1997/apr/21 16:02:52.605')

See also
● “Collecting errors from the remote database” on page 127

Ignoring replication errors
Ignore replication errors (SQL)

● Create a BEFORE trigger on the action that causes the known error. This trigger should signal an
error.

For example, if you want to ignore INSERT statement errors that occur when a table is missing a
referenced column, create a BEFORE INSERT trigger that signals the
SQLE_REMOTE_STATEMENT_FAILED SQLSTATE when the referenced column does not exist.
The INSERT statement fails, but this failure is not reported in the SQL Remote Message Agent
(dbremote) output log.

See also
● “Remote statement failed” [Error Messages]

Security
Use the following features are available to protect your data.

● REMOTE DBA authority It is recommended that you connect to the SQL Remote Message Agent
(dbremote) with a user that has REMOTE DBA authority.

● Database encryption You can encrypt your database using the -ek option. See “Extraction utility
(dbxtract)” on page 187.

● Message encryption The SQL Remote Message Agent (dbremote) uses a simple encryption
algorithm to protect the messages against casual snooping. However, this encryption scheme is not
intended to provide full protection against determined efforts to decipher them. For information about
database encryption, see “Database encryption and decryption” [SQL Anywhere Server - Database
Administration].

See also
● “REMOTE DBA authority” on page 29

Managing SQL Remote systems

130 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Upgrades and resynchronization
Use caution when upgrading a SQL Remote system. You can upgrade a SQL Remote system in any of the
following ways:

● Upgrading software For information about upgrading SQL Remote, see “SQL Remote upgrades”
[SQL Anywhere 12 - Changes and Upgrading].

● Changing the database schemas To make changes to the database schema, you can:

○ Use passthrough mode The passthrough mode allows schema changes to be sent to some or
all databases in a SQL Remote system, but it requires careful planning and execution.

○ Re-synchronize subscriptions Re-synchronization involves copying new copies of the data
to the remote databases. When there are many remote databases, resynchronization can be a time-
consuming process involving work interruptions and possible data loss.

See also
● “PASSTHROUGH statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “SQL Remote passthrough mode” on page 132
● “Subscription resynchronization” on page 135

Changes to avoid on a running system
The following changes should not be made to a deployed and running SQL Remote system, except under
the conditions stated:

● Changing publishers Problems can occur if you change the publisher user name on a
consolidated database of a deployed and running SQL Remote system. If you need to change the
consolidated database publisher user name, you must shut down the SQL Remote system and
resynchronize all remote users.

Changing the user name of a publisher at a remote database causes problems for any subscriptions that
the remote database is involved in, including the loss of information. If you need to change a remote
database publisher user name, shut down the remote database and resynchronize the remote user.

● Making restrictive changes to tables You cannot make restrictive changes to tables. For
example, do not drop a column or alter a column to disallow NULL values because messages can exist
in the system that reference these columns.

● Making permissive changes to tables You can make permissive changes using passthrough
mode. Use passthrough mode to make the changes to the remote database schema and publications.
Permissive changes include adding a new table or column, adding new users, resynchronizing users,
dropping users, and changing the address, message type, or send frequency for a remote user.

● Altering publications Publication definitions must be maintained on both the consolidated and the
remote databases. Altering publications in a running SQL Remote system can cause replication errors
and can lead to a loss of data in the replication system.

Upgrades and resynchronization

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 131

● Deleting subscriptions You can delete a subscription, but you must use passthrough mode to
remove the data on the remote database.

● Unloading and reloading databases You must ensure that the transaction log is properly
maintained.

● Making changes in a multi-tier hierarchy For information about re-extracting database schemas
in a multi-tier hierarchy, see “Database extraction for a multi-tier hierarchy system” on page 78.

See also
● “ALTER PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “SQL Remote passthrough mode” on page 132
● “PASSTHROUGH statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “Passthrough mode limitations” on page 133
● “Subscription resynchronization” on page 135
● “Rebuilding databases involved in synchronization or replication” [SQL Anywhere Server - SQL

Usage]

SQL Remote passthrough mode
Use passthrough mode to pass standard SQL statements to a remote database where they can be executed.

You can use passthrough mode to complete the following tasks on a running SQL Remote system:

● Add new users.
● Resynchronize users.
● Delete users from the system.
● Change the address, message type, or frequency for a remote user.
● Add a column to a table.

Caution

● SQL Remote relies on each database in the system having the same objects; when a table is altered at
some sites but not at others, attempts to replicate data changes fail. Additional schema changes
executed on a running SQL Remote system might cause problems.

● Always test your passthrough operations on a copy of the consolidated database with a copy of a
remote database subscribed. Never run untested passthrough scripts on a production database.

● You should always qualify object names with the owner name. PASSTHROUGH statements are not
executed on remote databases from the same user name. Object names without the owner name
qualifier may not be resolved correctly.

Managing SQL Remote systems

132 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “Changes to avoid on a running system” on page 131
● “PASSTHROUGH statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]

Passthrough mode limitations
● Passthrough works on only one level of a hierarchy In a multi-tier SQL Remote system, it is

important that passthrough statements work immediately below the current level. In a multi-tier
system, passthrough statements must be entered at each consolidated database, for the level beneath it.

● Calling procedures When a stored procedure is called in passthrough mode using a CALL or
EXEC statement:

○ The procedure must exist in the consolidated database that calls the passthrough command, even if
the procedure is not executed on the consolidated database.

○ The procedure must also exist on the remote database. The CALL or EXEC statement is replicated,
but none of the statements inside the procedure is replicated. It is assumed that the procedure on the
replicated database has the correct effect.

● Control statements Control statements such as IF and LOOP and any cursor operations, are not
replicated in passthrough mode. Any statements within the loop or control structure are replicated.

● Cursor operations Operations on cursors are not replicated.

● SQL SET OPTION statements Static embedded SQL SET OPTION statements are not replicated.
However, dynamic SQL statements are replicated. See “Static and dynamic SQL” [SQL Anywhere
Server - Programming].

For example, the following statement is not replicated in passthrough mode:

EXEC SQL SET OPTION ...

However, the following dynamic SQL statement is replicated:

EXEC SQL EXECUTE IMMEDIATE "SET OPTION ... "

● Batch statements Batch statements (a group of statements surrounded with a BEGIN and END)
are not replicated in passthrough mode. If you try to use batch statements in passthrough mode, an
error occurs.

See also
● “PASSTHROUGH statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “Control statements” [SQL Anywhere Server - SQL Usage]
● “Subscription resynchronization” on page 135

SQL Remote passthrough mode

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 133

Start and stop passthrough mode
Passthrough mode is started using the PASSTHROUGH statement and it is stopped using the
PASSTHROUGH STOP statement. A passthrough session refers to the statements entered between the
PASSTHROUGH statements. Statements entered in a passthrough session:

● Are checked for syntax errors.

● Are executed at the consolidated database unless you supply the ONLY keyword. When ONLY is
specified, the statements are sent to the remote database without being executed on the consolidated
database.

The following statement starts a passthrough session, which passes the statements to a list of two
named subscribers, without being executed at the current database:

PASSTHROUGH ONLY
FOR userid_1, userid_2;

● Are passed to the identified subscriber database. Passthrough statements are replicated in sequence with
normal replication messages, in the order in which the statements are recorded in the transaction log.

● Are executed at the subscriber database.

Direct passthrough statements
The following statement starts a passthrough session that passes the statements to all users who are
subscribed to the pubname publication:

PASSTHROUGH ONLY
FOR SUBSCRIPTION TO [owner].pubname statement1;

Passthrough mode is additive. In the following example, statement_1 is sent to user_1, and statement_2 is
sent to both user_1 and user_2.

PASSTHROUGH ONLY FOR user_1 ;
statement_1;
PASSTHROUGH ONLY FOR user_2 ;
statement_2;

The following statement stops a passthrough session for all remote users:

PASSTHROUGH STOP;

Data manipulation language (DML)
Passthrough mode is commonly used to send data manipulation statements. In this case, replicated DML
statements use the before schema before the passthrough and the after schema following the passthrough.

The following example drops a table on the remote database and the consolidated database.

-- Drop a table on the remote database
-- and at the consolidated database
PASSTHROUGH FOR Joe_Remote;
DROP TABLE CrucialData;
PASSTHROUGH STOP;

The following example drops a table on the remote database only.

Managing SQL Remote systems

134 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

-- Drop a table on the remote database only
PASSTHROUGH ONLY FOR Joe_Remote;
DROP TABLE CrucialData;
PASSTHROUGH STOP;

See also
● “PASSTHROUGH statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “Data manipulation statements” [SQL Anywhere Server - SQL Usage]

Subscription resynchronization
When you create a remote database, you extract both the schema and data from the consolidated database
and use them to build the remote database. This process ensures that each database has an initial copy of
the data. After deployment, you might consider resynchronizing subscriptions in the following
circumstances:

● After you complete significant maintenance to the consolidated database For example,
you make changes to the consolidated database, which updates every row in the database. By default,
SQL Remote creates and sends update messages to each subscribed remote. These update messages
could include the UPDATE, DELETE, and INSERT statements for each row.

If you chose to synchronize the subscription using a SYNCHRONIZE SUBSCRIPTION statement,
you only send the statements required to delete all the rows in the subscribed tables and the INSERT
statements to insert all new rows.

● When a remote database is out-of-step with the consolidated database If a remote
database becomes out-of-step with the consolidated database, you can try to use passthrough mode.

If using passthrough mode doesn't work, you can synchronize the subscriptions. When you
synchronize subscriptions, you force the remote database into step with the consolidated database. A
SYNCHRONIZE SUBSCRIPTION statement includes statements to delete the contents of the
subscribed tables in the remote database and statements to insert the rows of the subscription from the
consolidated database to the remote database.

Limitations
● Synchronization applies to an entire subscription You cannot synchronize a single table.

● Data loss on synchronization Any data on the remote database that is part of the subscription,
which has not been replicated to the consolidated database, is lost.

Before synchronizing the database, use the Unload Database Wizard in Sybase Central or the
Unload utility (dbunload) to unload or back up the remote database.

Subscription resynchronization

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 135

See also
● “SQL Remote passthrough mode” on page 132
● “PASSTHROUGH statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “SYNCHRONIZE SUBSCRIPTION statement [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “Export data with the Unload Database Wizard” [SQL Anywhere Server - SQL Usage]
● “Unload utility (dbunload)” [SQL Anywhere Server - Database Administration]

Synchronize
It is recommended that you use either the Extraction utility (dbxtract) or the Extract Database Wizard to
extract the data for the specified remote database and then manually load the data into the remote
database.

Caution
Do not run the SQL Remote Message Agent (dbremote) when running the Extraction utility (dbxtract) or
the Extract Database Wizard.

Synchronize a subscription (Sybase Central)

1. Shut down the SQL Remote Message Agent on the remote database and the consolidated database.

2. Use the SQL Anywhere 12 plug-in to connect to the consolidated database as a user with DBA
authority.

3. In the left pane, expand the Publications directory.

4. Click a publication.

5. In the right pane, click the SQL Remote Subscriptions tab.

6. Manually synchronize subscriptions:

a. Right-click the user in the Subscribers list and click Properties.

b. Click the Advanced tab.

c. Click Synchronize Now.
The subscriptions are affected when you click the Synchronize Now button. Subsequently
clicking Cancel on the properties window does not cancel the synchronize action.

7. Click OK.

See also
● “SYNCHRONIZE SUBSCRIPTION statement [SQL Remote]” [SQL Anywhere Server - SQL

Reference]

Managing SQL Remote systems

136 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Synchronize with the SQL Remote Message Agent
(dbremote)

It is recommended that you use the Extraction utility (dbxtract) or the Extract Database Wizard to
synchronize subscriptions. See “Synchronize” on page 136.

Extracting a large number of subscriptions, or synchronizing subscriptions to large, frequently-used
tables, can slow database access. You can use the SEND AT clause to specify a time to synchronize when
the consolidated database is not in heavy use.

Synchronize a subscription with the message system (Interactive SQL)

1. Connect to the consolidated database as a user with DBA authority.

2. Execute a SYNCHRONIZE SUBSCRIPTION statement.

The SQL Remote Message Agent (dbremote) on the consolidated database sends a copy of all rows in
the subscription to the subscriber. The SQL Remote Message Agent (dbremote) assumes that an
appropriate database schema is in place at the remote databases.

The SQL Remote Message Agent (dbremote) on the subscriber database receives the synchronization
message and it replaces the current contents of the subscribed tables with the new copy.

Cautions
● Do not execute a SYNCHRONIZE SUBSCRIPTION statement on a remote

database Execute SYNCHRONIZE SUBSCRIPTION statements at the consolidated database.

● Large volume of messages may result Synchronizing databases over a message system can
require large volumes of messages. Also, the size of the message can exceed the size of the remote
database. Synchronizing many subscriptions over a message link can increase the amount of message
traffic.

Often, it is recommended that you extract the remote databases and then manually load the data.

See also
● “SYNCHRONIZE SUBSCRIPTION statement [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “Setting the send frequency” on page 83

Starting subscriptions
Start a subscription (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with DBA authority.

2. In the left pane, expand the Publications directory.

Subscription resynchronization

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 137

3. Click a publication.

4. In the right pane, click the SQL Remote Subscriptions tab.

5. Manually synchronize subscriptions:

a. Right-click the user in the Subscribers list and click Properties.

b. Click the Advanced tab.

c. Click Synchronize Now.
The subscriptions are affected when you click the Synchronize Now button. Subsequently
clicking Cancel on the properties window does not cancel the synchronize action.

Start a subscription (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a START SUBSCRIPTION statement.

To start several subscriptions within a single transaction, use the REMOTE RESET statement.

See also
● “START SUBSCRIPTION statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “REMOTE RESET statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]

Stopping subscriptions
Stop a subscription (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with DBA authority.

2. In the left pane, expand the Publications directory.

3. Click the desired publication.

4. In the right pane, click the SQL Remote Subscriptions tab.

5. To manually synchronize subscriptions, click the user in the Subscribers list and click Properties.

Click the Advanced tab. On this tab, click Stop Now to stop subscriptions.

The subscriptions are affected when you click the Stop Now button. Subsequently clicking Cancel on
the properties window does not cancel your stop synchronization action.

Managing SQL Remote systems

138 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Tutorial: Creating a SQL Remote system
Use the lessons in this tutorial to learn how to set up a SQL Remote replication system that uses both a
SQL Anywhere consolidated and remote database.

In this tutorial you:

● Create a consolidated SQL Anywhere database and a remote SQL Anywhere database that contains a
subset of the data in the consolidated database.

● Create a file-sharing replication system with the single SQL Anywhere remote database.

● Replicate data between the consolidated and remote databases.

Lesson 1: Creating the consolidated database
Create the consolidated database and directories for the tutorial

1. Create the directories c:\tutorial, c:\tutorial\hq, and c:\tutorial\field.

2. From the c:\tutorial directory, run the following command to create the consolidated database (hq):

dbinit hq.db

3. Connect to the consolidated database (hq) from Interactive SQL.

dbisql -c "UID=DBA;PWD=sql;SERVER=server_hq;DBF=c:\tutorial\hq.db"

4. Execute the following statements to create two tables in the consolidated database (hq):

CREATE TABLE SalesReps (
 rep_key CHAR(12) NOT NULL,
 name CHAR(40) NOT NULL,
 PRIMARY KEY (rep_key)
);
CREATE TABLE Customers (
 cust_key CHAR(12) NOT NULL,
 name CHAR(40) NOT NULL,
 rep_key CHAR(12) NOT NULL,
 FOREIGN KEY (rep_key)
 REFERENCES SalesReps (rep_key),
 PRIMARY KEY (cust_key)
);

The following figure shows the consolidated database (hq) schema for the tutorial:

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 139

● Each sales representative is represented by one row in the SalesReps table.

● Each customer is represented by one row in the Customers table.

● Each customer is assigned to a single sales representative, and this assignment is built into the
database as a foreign key from the Customers table to the SalesReps table. The relationship between
the Customers table and the SalesReps table is many-to-one.

Table
name

Description

Sales-
Rep

In the SalesReps table, there is a row for each sales representative that works for the
company. The SalesReps table has the following columns:

● rep_key An identifier for each sales representative. This is the primary key.

● name The name of each sales representative.

Custom-
ers

In the Customers table, there is one row for each customer that does business with the
company. The Customers table includes the following columns:

● cust_key An identifier for each customer. This is the primary key.

● name The name of each customer.

● rep_key An identifier for the sales representative in a sales relationship. This is a
foreign key to the SalesReps table.

5. Execute the following statements to add sample data to the SalesReps and Customers tables:

INSERT INTO SalesReps (rep_key, name)
VALUES ('rep1', 'Field User');
INSERT INTO SalesReps (rep_key, name)
VALUES ('rep2', 'Another User');
COMMIT;
INSERT INTO Customers (cust_key, name, rep_key)
VALUES ('cust1', 'Ocean Sports', 'rep1');
INSERT INTO Customers (cust_key, name, rep_key)
VALUES ('cust2', 'Sports Plus', 'rep2');
COMMIT;

6. Execute the following statements to confirm that the tables were created:

SELECT * FROM SalesReps;

The above query returns the following data from the SalesReps table:

rep_key name

rep1 Field User

rep2 Another User

SELECT * FROM Customers;

The above query returns the following data from the Customers table:

Tutorial: Creating a SQL Remote system

140 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

cust_key name rep_key

cust1 Ocean Sports rep1

cust2 Sports Plus rep2

Lesson 2: Granting PUBLISH and REMOTE
permissions at the consolidated database

Every database in a SQL Remote system requires a publisher, which is a unique user with PUBLISH
permission. All outgoing SQL Remote messages, including publication updates and receipt confirmations,
are identified by their publisher. Every database in a SQL Remote system sends receipt confirmations.

Create the publisher for the consolidated database (Interactive SQL)

1. If you are not currently connected to the consolidated database (hq), run the following command:

dbisql -c "UID=DBA;PWD=sql;SERVER=server_hq;DBF=c:\tutorial\hq.db"

2. Execute the following statement to create the user hq_user that has CONNECT and PUBLISH
permissions:

CREATE USER hq_user IDENTIFIED BY hq_pwd;
GRANT CONNECT TO hq_user IDENTIFIED BY hq_pwd;
GRANT PUBLISH TO hq_user;

3. Execute the following statement to check the publishing user ID of the database:

SELECT CURRENT PUBLISHER;

A database, such as a consolidated database, that sends messages to other databases must specify which
remote databases it sends messages to. To specify these remote databases on the consolidated database,
grant REMOTE permission to the publishers of the remote databases. REMOTE permission identifies
databases that receive messages from the current database.

Grant remote permission

● Execute the following statements to create the remote user field_user with the password field_pwd
that has CONNECT and REMOTE permissions:

CREATE USER field_user IDENTIFIED BY field_pwd;
GRANT CONNECT TO field_user IDENTIFIED BY field_pwd;
GRANT REMOTE TO field_user
TYPE file
ADDRESS 'field';

Lesson 2: Granting PUBLISH and REMOTE permissions at the consolidated database

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 141

Lesson 3: Creating publications and subscriptions
A publication describes the set of data to be replicated. In this lesson you create a publication named
SalesRepData that replicates all rows of the SalesReps table, and some rows of the Customers table. You
subscribe a user to a publication by creating a subscription.

Create the publication on the consolidated database (Interactive SQL)

1. If you are not currently connected to the consolidated database (hq), run the following command:

dbisql -c "UID=DBA;PWD=sql;SERVER=server_hq;DBF=c:\tutorial\hq.db"

2. Execute the following statement to create a publication named SalesRepData:

CREATE PUBLICATION SalesRepData (
 TABLE SalesReps,
 TABLE Customers SUBSCRIBE BY rep_key
);

The SalesRepData publication publishes:

● The entire SalesReps table

● All of the columns in the Customers table but only the rows that match a specified rep_key value

3. Execute the following statement to create a subscription to SalesRepData:

CREATE SUBSCRIPTION
TO SalesRepData ('rep1')
FOR field_user;

The value rep1 is the rep_key value for the user Field User in the SalesReps table.

Note
In this tutorial, there is no protection against duplicate entries of primary key values. For information,
see “Creating SQL Remote systems” on page 9.

Lesson 4: Creating a SQL Remote message type
Define the message type to use when sending the data/messages. All messages that are sent as part of a
replication use a message type. A message type description has two parts:

● A message system supported by SQL Remote This tutorial uses the FILE message system.
The FILE message system is a simple file-sharing system

● A FILE address A user's FILE address is a subdirectory to which all their incoming messages are
sent. An application retrieves the messages from this directory. In this tutorial the FILE address of the
consolidated database is hq and it is a subdirectory of c:\tutorial.

Create the message type (Interactive SQL)

1. If you are not currently connected to the consolidated database (hq), run the following command:

Tutorial: Creating a SQL Remote system

142 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

dbisql -c "UID=DBA;PWD=sql;SERVER=server_hq;DBF=c:\tutorial\hq.db"

2. Execute the following statement to create a FILE message type:

CREATE REMOTE MESSAGE
TYPE file
ADDRESS 'hq';

Lesson 5: Extracting the remote database
In this lesson you create a database for a remote user by extracting the remote database from the
consolidated database (hq).

The remote database must be configured to send and receive messages and participate in a SQL Remote
system. Like the consolidated database (hq), the remote database needs a CURRENT PUBLISHER to
identify the source of outgoing messages. It also needs to have the consolidated database (hq) identified as
a subscriber.

Run the dbxtract utility to create a remote database that contains:

● a subscription to the consolidated database

● a publication

● a current copy of the data

Extract the remote database

1. Extract the remote database schema from the consolidated database (hq) for the user field_user by
running the following command from the c:\tutorial directory:

dbxtract -v -c "UID=DBA;PWD=sql;SERVER=server_hq;DBF=C:\tutorial\hq.db" c:
\tutorial field_user

This command:

● Creates a SQL script file named reload.sql in the current directory. The reload.sql file contains the
schema and instructions to load it into a new database.

● Creates a data file in the c:\tutorial directory.

● Starts the subscriptions to the remote user.

2. From the c:\tutorial directory, run the following command to create the remote database (field):

dbinit field.db

Caution
In a production environment, do not store two replicating databases in the same directory.

3. Load the database information into the remote database (field).

Connect to the remote database (field) from Interactive SQL as a user with DBA authority.

Lesson 5: Extracting the remote database

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 143

dbisql -c "UID=DBA;PWD=sql;SERVER=server_field;DBF=c:\tutorial\field.db"

4. Execute the following statement to read the reload.sql file:

READ C:\tutorial\reload.sql;

The reload.sql script file:

● Creates a message type at the remote database (field).

● Grants PUBLISH permission to the remote database (field).

● Creates the SalesReps and Customers tables in the remote database (field). These tables contain the
same data as in the consolidated database (hq).

● Creates a publication to identify the data being replicated.

● Creates the subscription for the consolidated database (hq), and starts the subscription.

5. Execute the following statements to confirm that the tables were created:

SELECT * FROM SalesReps;

The above query returns the following data from the SalesReps table:

rep_key name

rep1 Field User

rep2 Another User

SELECT * FROM Customers;

The above query returns the following data from the Customers table:

cust_key name rep_key

cust1 Ocean Sports rep1

Lesson 6: Sending data from the consolidated
database to the remote database

In this lesson, data is replicated from the consolidated database(hq) to the remote database (field).

Enter data at the consolidated database (hq) (Interactive SQL)

1. If you are not currently connected to the consolidated database (hq), run the following command:

dbisql -c "UID=DBA;PWD=sql;SERVER=server_hq;DBF=c:\tutorial\hq.db"

2. Execute the following statements to add sample data to the SalesReps and Customers tables:

Tutorial: Creating a SQL Remote system

144 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

INSERT INTO SalesReps (rep_key, name)
VALUES ('rep3', 'Example User');
INSERT INTO Customers (cust_key, name, rep_key)
VALUES ('cust3', 'Land Sports', 'rep1');
INSERT INTO Customers (cust_key, name, rep_key)
VALUES ('cust4', 'Air Plus', 'rep2');
COMMIT;

3. Execute the following statements to confirm that the data has been entered:

SELECT * FROM SalesReps;
SELECT * FROM Customers;

To send the rows to the remote database (field), run the Message Agent on the consolidated database (hq).

Send data from the consolidated database (hq) to the remote database (field)

1. At the consolidated database (hq) run the Message Agent from the c:\tutorial directory:

dbremote -c "UID=DBA;PWD=sql;SERVER=server_hq;DBF=c:\tutorial\hq.db"

This command assumes that the consolidated database (hq) is currently running on the default server.
If the database is not running, you must supply a DBF parameter with the database file name instead
of the DBN parameter.

2. When the Message Agent window displays Execution Completed, click Shutdown.

3. Browse to c:\tutorial\field.

A file named hq.0 is listed in the directory. This file contains the changes sent from the consolidated
database (hq).

Lesson 7: Receiving data at the remote database
In this lesson you run the Message Agent on the remote database (field) to receive the data that was sent
from the consolidated database (hq).

Receive data at the remote database (field)

1. If you are not currently connected to the remote database (field), run the following command:

dbisql -c "UID=DBA;PWD=sql;SERVER=server_field;DBF=c:\tutorial\field.db"

2. At the remote database (field) run the Message Agent from the c:\tutorial directory:

dbremote -c "UID=DBA;PWD=sql;SERVER=server_field;DBF=c:\tutorial
\field.db;"

3. When the Message Agent window displays Execution Completed, click Shutdown.

The c:\tutorial\field\hq.0 file has been replaced by a file named c:\tutorial\hq\field.0. The field.0 file
contains the receipt confirmation.

Lesson 7: Receiving data at the remote database

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 145

4. Verify that the remote database (field) contains data,

a. Execute the following statement to view the contents of the SalesReps table:

SELECT * FROM SalesReps;

The SalesReps table contains both rows entered at the consolidated database (hq). This is because
the SalesRepData publication included all the data from the SalesReps table.

rep_key name

rep1 Field User

rep2 Another User

rep3 Example User

b. Execute the following statement to view the contents of the Customers table:

SELECT * FROM Customers;

The Customers table now also contains a row with the Land Sports customer data that was
entered at the consolidated database (hq).

cust_key name rep_key

cust1 Ocean Sports rep1

cust3 Land Sports rep1

5. At the consolidated database (hq) run the Message Agent from the c:\tutorial directory:

dbremote -c "UID=DBA;PWD=sql;SERVER=server_hq;DBF=c:\tutorial\hq.db"

In the c:\tutorial\hq directory, the file field.0 disappears.

Lesson 8: Sending data from the remote database to
the consolidated database

In this lesson you send data from the remote database (field) to the consolidated database (hq).

Replicate data from the remote database (field) to the consolidated database (hq)
(Interactive SQL)

1. If you are not currently connected to the remote database (field), run the following command:

dbisql -c "UID=DBA;PWD=sql;SERVER=server_hq;DBF=c:\tutorial\field.db"

2. Execute the following statement to insert a row at the remote database (field):

Tutorial: Creating a SQL Remote system

146 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

INSERT INTO Customers (cust_key, name, rep_key)
VALUES ('cust5', 'North Land Trading', 'rep1');
COMMIT;

3. From the c:\tutorial directory, run the dbremote utility against the remote database (field):

dbremote -c "UID=DBA;PWD=sql;SERVER=server_field;DBF=c:\tutorial\field.db"

In the c:\tutorial\hq directory, the file field.1 appears.

Receive data at the consolidated database (hq)

1. If you are not currently connected to the consolidated database (hq), run the following command:

dbisql -c "UID=DBA;PWD=sql;SERVER=server_hq;DBF=c:\tutorial\hq.db

2. At the consolidated database (hq) run the Message Agent from the c:\tutorial directory:

dbremote -c "UID=DBA;PWD=sql;SERVER=server_hq;DBF=c:\tutorial\hq.db"

3. When the Message Agent window displays Execution Completed, click Shutdown.

4. Browse to c:\tutorial\field.

The hq.1 file has been replaced by a file named hq.2. The hq.2 file contains the receipt confirmation.

5. Execute the following statement to view the data in the Customers table in the consolidated database
(hq):

SELECT * FROM Customers;

This query returns the following results:

cust_key name rep_key

cust1 Ocean Sports rep1

cust2 Sports Plus rep2

cust3 Land Sports rep1

cust4 Air Plus rep2

cust5 North Landing Trading rep1

Lesson 8: Sending data from the remote database to the consolidated database

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 147

148 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Tutorial: Setting up a replication system
using the HTTP message system

Use the lessons in this tutorial to learn how to set up a SQL Remote replication system that uses both a
SQL Anywhere consolidated database and a remote database. The consolidated database uses the FILE
message system to replicate changes, while the remote database uses the HTTP message system to
replicate changes.

In this tutorial you:

● Create a consolidated SQL Anywhere database and a remote SQL Anywhere database that contains all
the data in the consolidated database.

● Create a directory structure to store the messages generated by SQL Remote. The consolidated database
accesses the files using the FILE message system, while the remote database uses the HTTP message
system.

● Create a message server SQL Anywhere database to act as a web server to receive messages from the
remote database using the HTTP protocol.

● Replicate data between the consolidated and remote databases.

Lesson 1: Creating the consolidated database
In this lesson you create the directories needed to store the databases and their transactions logs, as well as
the directory structure for the messages. You also define the schema of the consolidated database,
including creation of the remote user and the publication and subscription needed to replicate data. When
SQL Remote runs against the consolidated database, it uses the FILE message system to send and receive
messages, but the remote database uses the HTTP message system.

Create the consolidated database and directories for the tutorial

1. Create the following directories to hold the consolidated database, the remote database, and the
message server database:

● c:\tutorial
● c:\tutorial\cons
● c:\tutorial\rem
● c:\tutorial\msgsrv

2. Create the following directories to hold the message files generated by the consolidated database and
the remote database:

● c:\tutorial\messages
● c:\tutorial\messages\cons
● c:\tutorial\messages\rem

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 149

3. From the c:\tutorial\cons directory, run the following command to create the consolidated database
(cons):

dbinit cons.db

4. Using Interactive SQL, connect to the consolidated database (cons) as a user with DBA authority, and
ensure that you leave the database running when you disconnect by specifying AutoStop=NO for the
AutoStop connection parameter:

dbisql -c "UID=DBA;PWD=sql;SERVER=cons;DBF=c:\tutorial\cons
\cons.db;autostop=no"

5. To set the global database ID for the consolidated database (cons), execute the following statement
(the global database ID is needed so that distinct primary keys are chosen for all databases when using
the GLOBAL AUTOINCREMENT default):

SET OPTION public.global_database_id=0;

6. The schema for the database in this tutorial consists of a single table that replicates, and all the
columns and rows from the table replicate to every remote user. Execute the following statements on
the consolidated database (cons) to create the single table in the database:

CREATE TABLE employees (
 employee_id BIGINT NOT NULL DEFAULT GLOBAL AUTOINCREMENT(1000000)
PRIMARY KEY,
 first_name VARCHAR(128) NOT NULL,
 last_name VARCHAR(128) NOT NULL,
 hire_date TIMESTAMP NOT NULL DEFAULT TIMESTAMP
);

7. Execute the following statements on the consolidated database (cons) to add sample data to the
employees table:

INSERT INTO employees (first_name, last_name) VALUES ('Kelly', 'Meloy');
INSERT INTO employees (first_name, last_name) VALUES ('Melisa', 'Boysen');
COMMIT;

8. Execute the following statement on the consolidated database (cons) to confirm that the table was
created and populated with data:

SELECT * FROM employees;

The query returns the following data from the employees table, although the hire_date column
contains the time you inserted the row, and not the values you see in the following table:

employee_id first_name last_name hire_date

1 Kelly Meloy 2011-03-25 08:27:56.310

2 Melisa Boysen 2011-03-25 08:27:56.310

9. In this tutorial, the publisher and remote users are not assigned passwords, so while the users exist in
the database, you cannot connect to the database with these users. Execute the following statements to
create the user cons that has CONNECT and PUBLISH permissions:

Tutorial: Setting up a replication system using the HTTP message system

150 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

GRANT CONNECT TO cons;
GRANT PUBLISH TO cons;

10. For performance reasons, the HTTP message system can only be used at the remote database, and not
at the consolidated. The following statements configure the use of the FILE-based message system at
the consolidated database:

CREATE REMOTE MESSAGE TYPE FILE ADDRESS 'cons';
SET REMOTE FILE OPTION public.directory='c:\\tutorial\\messages';
SET REMOTE FILE OPTION public.debug='yes';

11. Execute the following statements to create the remote user rem without a password, and then grant
REMOTE permissions while defining the user's address in the FILE message system:

GRANT CONNECT TO rem;
GRANT REMOTE TO rem TYPE FILE ADDRESS 'rem';

12. A publication describes the set of data to be replicated. Create a publication named pub_employees
that replicates all rows of the employees table. You subscribe a user to a publication by creating a
subscription.

CREATE PUBLICATION pub_employees (TABLE employees);
CREATE SUBSCRIPTION TO pub_employees FOR rem;

13. Disconnect from Interactive SQL.

14. Proceed to “Lesson 2: Creating the message server” on page 151.

Lesson 2: Creating the message server
While it is possible to use the consolidated database as your message server, in this tutorial, you use a
separate database server to host the message server. This helps distribute the amount of work performed
to process messages between the two database servers, and also adds a level of security because you
haven't opened up HTTP access to your consolidated database.

Create the message server

1. From the c:\tutorial\msgsrv directory, run the following command to create the message server
database (msgsrv):

dbinit msgsrv.db

2. Start the message server:

dbeng12 -n msgsrv c:\tutorial\msgsrv\msgsrv.db -xs http(port=8033)

-xs http(8033) is required on the command line because this is the database server that accepts HTTP
requests from the remote database and accesses the messages files that exist in the c:\tutorial
\messages directory. While no web services have been defined at the time the database server starts,
they are created in this lesson. As well, only the personal database server has been started, so only
SQL Remote processes on this computer can communicate with the message server using HTTP. In a
production environment, you would typically use the network server so that SQL Remote processes

Lesson 2: Creating the message server

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 151

on other computers would also have access to the web services. For more information about using -xs,
see “-xs dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration].

3. When you create a separate message server, you need to copy much of the schema of the consolidated
database into the message server, particularly information about the remote users that are defined and
their addresses. While you can do this manually, the easiest way to accomplish this task is to use the
dbunload utility to create a new database with the same schema as the consolidated database:

dbunload -n -xx -ac "SERVER=msgsrv;DBN=msgsrv;UID=DBA;PWD=sql" -c
"SERVER=cons;DBN=cons;UID=DBA;PWD=sql"

The options used in the dbunload command do the following:

● -n Indicates that only the schema is to be unloaded, and none of the data in the consolidated
database is added to the message server.

● -xx Performs an external unload and reload, which is needed when both databases involved are
already running.

● -ac "SERVER=msgsrv;DBN=msgsrv;UID=DBA;PWD=sql" Defines the destination
connection for the unload, which for this lesson is the message server.

● -c "SERVER=cons;DBN=cons;UID=DBA;PWD=sql" Specifies the source connection for
the unload, which for this lesson is the consolidated database.

4. Using Interactive SQL, connect to the message server database (msgsrv) as a user with DBA
authority:

dbisql -c "SERVER=msgsrv;DBN=msgsrv;UID=DBA;PWD=sql"

In lesson 1, you did not create passwords for the publisher (cons) and remote user (rem), so neither of
those users is able to connect to the consolidated database. A password is required for these users in
the message server, since the HTTP requests that come from remote users use the publisher of the
remote database and the password that you supply to authenticate with the message server. Execute
the following statements on the message server database (msgsrv) to define passwords for the
publisher and remote user:

GRANT CONNECT TO cons IDENTIFIED BY cons;
GRANT CONNECT TO rem IDENTIFIED BY rem;

5. When a database is first initialized, none of the web services needed to accept HTTP requests from
remote users is defined, and neither are definitions to allow the database server to access the directory
where the message files are stored. The creation of these objects is automated with the use of the
sr_add_message_server stored procedure, which takes an optional parameter to specify who owns all
the objects. Execute the following statements for the message server database (msgsrv) to define all
the objects needed for the message server and specify that all the objects are owned by the cons user:

GRANT GROUP TO cons;
SET REMOTE http OPTION cons.root_directory='c:\\tutorial\\messages';
CALL sr_add_message_server('cons');
COMMIT;

For more information, see “sr_add_message_server system procedure” on page 198.

6. Disconnect from Interactive SQL.

Tutorial: Setting up a replication system using the HTTP message system

152 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

7. Proceed to “Lesson 3: Creating the remote database” on page 153.

Lesson 3: Creating the remote database
In this lesson, you extract the remote database and then replace the FILE message system at the remote
database with the HTTP message system.

Create the remote database

1. From the c:\tutorial\rem directory, run the following command to create the remote database (rem):

dbinit rem.db

2. In this lesson, you use dbxtract to create the remote database. Run the following command to extract
the database for the rem user from the consolidated database, and leave the database server for the
remote database running after the extraction:

dbxtract -xx -ac "SERVER=rem;DBN=rem;dbf=c:\tutorial\rem
\rem.db;UID=DBA;PWD=sql;autostop=no" -c
"SERVER=cons;DBN=cons;UID=DBA;PWD=sql" rem

3. If you are not currently connected to the remote database (rem), run the following command:

 dbisql -c "SERVER=rem;DBN=rem;UID=DBA;PWD=sql"

4. The consolidated database uses the FILE message system, so when dbxtract runs, it creates SQL
Remote definitions assuming that the rem remote database is also using the FILE message system. To
configure the remote database to use the HTTP message system, execute the following statements on
the remote database (rem) to remove the FILE message system for this remote database:

CREATE REMOTE TYPE "FILE" ADDRESS '';
SET REMOTE FILE OPTION public.directory='';
SET REMOTE FILE OPTION public.debug='';

5. Execute the following statements on the remote database (rem) to configure the HTTP message
system for this remote database:

CREATE REMOTE TYPE "HTTP" ADDRESS 'rem';
GRANT CONSOLIDATE TO "cons" TYPE "HTTP" ADDRESS 'cons';
SET REMOTE HTTP OPTION public.user_name='rem';
SET REMOTE HTTP OPTION public.password='rem';
SET REMOTE HTTP OPTION public.debug='yes';
SET REMOTE HTTP OPTION public.https='no';
SET REMOTE HTTP OPTION public.url='localhost:8033';
COMMIT;

6. Verify that the remote database (rem) contains the two rows of data that existed in the consolidated
database after the extraction; Execute the following statement to view the contents of the employees
table:

SELECT * FROM employees;

The query returns the following data from the employees table, although the hire_date column
contains the time you inserted the row, and not the values you see in the following table:

Lesson 3: Creating the remote database

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 153

employee_id first_name last_name hire_date

1 Kelly Meloy 2011-03-25 08:27:56.310

2 Melisa Boysen 2011-03-25 08:27:56.310

7. Disconnect from Interactive SQL.

8. Proceed to “Lesson 4: Adding and replicating data in the consolidated and remote databases”
on page 154.

Lesson 4: Adding and replicating data in the
consolidated and remote databases

In this lesson, you add data to the consolidated and remote databases, run SQL Remote to replicate the
changes, and then confirm that the data is consistent in both databases.

Add data to the consolidated database

1. If you are not currently connected to the consolidated database (cons), run the following command:

dbisql -c "SERVER=cons;DBN=cons;UID=DBA;PWD=sql"

2. Execute the following statements on the consolidated database (cons) to add additional sample data to
the employees table:

INSERT INTO employees (first_name, last_name) VALUES ('Javier', 'Spoor');
COMMIT;

3. Disconnect from Interactive SQL.

Add data to the remote database

1. If you are not currently connected to the remote database (rem), run the following command:

dbisql -c "SERVER=rem;DBN=rem;UID=DBA;PWD=sql"

2. Execute the following statements on the remote database (rem) to add additional sample data to the
employees table:

INSERT INTO employees (first_name, last_name) VALUES ('Nelson',
'Kreitzer');
COMMIT;

3. Disconnect from Interactive SQL.

Replicate changes between the consolidated and remote databases

1. At the consolidated database (cons), run the Message Agent:

Tutorial: Setting up a replication system using the HTTP message system

154 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

dbremote -c "SERVER=cons;DBN=cons;UID=DBA;PWD=sql" -qc -v -o c:\tutorial
\cons1.txt

This scans the transaction log of the consolidated database (cons) and generates a message for the
remote database (rem) using the FILE message system. Since the debug message system parameter
has been set for the FILE message system in the consolidated database, you can look at the c:\tutorial
\cons1.txt file and verify that you see debug messages indicating that messages are being written to the
c:\tutorial\messages\rem directory. For example:

I. 2011-03-25 11:03:31. Processing transactions from active transaction
log
I. 2011-03-25 11:03:31. Sending message to "rem"
(0-0000000000-0000550994-0)
I. 2011-03-25 11:03:31. sopen "c:\tutorial\messages\rem\cons.0"
I. 2011-03-25 11:03:31. write " c:\tutorial\messages\rem\cons.0"
I. 2011-03-25 11:03:31. close " c:\tutorial\messages\rem\cons.0"

2. At the remote database (rem), run the Message Agent:

dbremote -c "SERVER=rem;DBN=rem;UID=DBA;PWD=sql" -qc -v -o c:\tutorial
\rem.txt

Using the HTTP messaging system, this command receives and applies the message that was just
generated by the consolidated database. It then scans the transaction log and sends a message back to
the consolidated database with the new row that was added in the remote database. Since the debug
message system parameter has been set for the HTTP message system in the remote database, you can
look at the c:\tutorial\rem.txt file and verify that you see debug messages indicating that the HTTP
message system is being used. For example:

I. 2011-03-25 11:10:02. Sending message to "cons"
(0-0000000000-0000557411-0)
I. 2011-03-25 11:10:02. HTTPWriteMessage "rem.0"
I. 2011-03-25 11:10:02. HTTPWriteMessage: success -- filename "rem.0"
I. 2011-03-25 11:10:02. HTTPDisconnect

3. At the consolidated database (cons), run the Message Agent:

dbremote -c "SERVER=cons;DBN=cons;UID=DBA;PWD=sql" -qc -v -o c:\tutorial
\cons2.txt

This command receives and applies the message that was just generated by the remote database using
the FILE-based message system.

Verify the data at the consolidated and remote databases

1. If you are not currently connected to the consolidated database (cons), run the following command:

dbisql -c "SERVER=cons;DBN=cons;UID=DBA;PWD=sql"

2. To verify that the consolidated database contains all four rows of data, execute the following
statement to view the contents of the employees table:

 SELECT * FROM employees;

The query returns the following data from the employees table, although the hire_date column
contains the time you inserted the row, and not the values you see in the following table:

Lesson 4: Adding and replicating data in the consolidated and remote databases

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 155

employee_id first_name last_name hire_date

1 Kelly Meloy 2011-03-25 08:27:56.310

2 Melisa Boysen 2011-03-25 08:27:56.310

3 Javier Spoor 2011-03-25 08:30:26.110

102000001 Nelson Kreitzer 2011-03-25 08:31:51.970

3. Disconnect from Interactive SQL.

4. If you are not currently connected to the remote database (rem), run the following command:

dbisql -c "SERVER=rem;DBN=rem;UID=DBA;PWD=sql"

Verify that the remote database (rem) contains all four rows of data by executing the following
statement to view the contents of the employees table:

SELECT * FROM employees;

The query returns the following data from the employees table, although the hire_date column
contains the time you inserted the row, and not the values you see in the following table:

employee_id first_name last_name hire_date

1 Kelly Meloy 2011-03-25 08:27:56.310

2 Melisa Boysen 2011-03-25 08:27:56.310

3 Javier Spoor 2011-03-25 08:30:26.110

102000001 Nelson Kreitzer 2011-03-25 08:31:51.970

5. Disconnect from Interactive SQL.

6. Proceed to “Lesson 5: Cleaning up” on page 156.

Lesson 5: Cleaning up
In the final lesson, you shut down the three database servers you started in this tutorial.

Shut down the database servers

1. Run the following command to shut down the remote database:

dbstop -y -c "SERVER=rem;DBN=rem;UID=DBA;PWD=sql"

2. Run the following command to shut down the message server database:

Tutorial: Setting up a replication system using the HTTP message system

156 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

dbstop -y -c "SERVER=msgsrv;DBN=msgsrv;UID=DBA;PWD=sql"

3. Run the following command to shut down the consolidated database:

dbstop -y -c "SERVER=cons;DBN=cons;UID=DBA;PWD=sql"

Lesson 5: Cleaning up

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 157

158 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Tutorial: Setting up a replication system
using the HTTP message system with the
consolidated database as the message server

Use the lessons in this tutorial to learn how to set up a SQL Remote replication system that uses both a
SQL Anywhere consolidated database and a remote database. The consolidated database uses the FILE
message system to replicate changes, while the remote database uses the HTTP message system to
replicate changes.

In this tutorial you:

● Create a consolidated SQL Anywhere database and a remote SQL Anywhere database that contains all
the data in the consolidated database.

● Create a directory structure to store the messages generated by SQL Remote. The consolidated database
accesses the files using the FILE message system, while the remote database uses the HTTP message
system.

● Configure the consolidated database to act as the message server for the HTTP message system.

● Create a remote database that sends messages using the HTTP messaging system.

● Replicate data between the consolidated and remote databases.

Lesson 1: Creating the consolidated database
In this lesson you create the directories needed to store the databases and their transactions logs, as well as
the directory structure for the messages. You also define the schema of the consolidated database,
including creation of the remote user and the publication and subscription needed to replicate data. When
SQL Remote runs against the consolidated database, it uses the FILE message system to send and receive
messages, but the remote database uses the HTTP message system.

Create the consolidated database and directories for the tutorial

1. Create the following directories to hold the consolidated database and the remote database:

● c:\tutorial
● c:\tutorial\cons
● c:\tutorial\rem

2. Create the following directories to hold the message files generated by the consolidated database, the
remote database, and the message server database:

● c:\tutorial\messages
● c:\tutorial\messages\cons
● c:\tutorial\messages\rem

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 159

3. From the c:\tutorial\cons directory, run the following command to create the consolidated database
(cons):

dbinit cons.db

4. Start the consolidated database:

dbeng12 -n cons c:\tutorial\cons\cons.db -xs http(port=8033)

-xs http(8033) is required on the command line because this is the database server that will be
accepting HTTP requests from the remote database and accessing the message files that exist in the c:
\tutorial\messages directory. While no web services are defined at the time you start the database
server, they are created in the next lesson. In this lesson, you only start the personal database server,
so only SQL Remote processes on this computer are able to communicate with the message server
using HTTP. In a production environment, you would typically use the network server so that SQL
Remote processes on other computers would also have access to the web services. For more
information about using -xs, see “-xs dbeng12/dbsrv12 server option” [SQL Anywhere Server -
Database Administration].

5. Using Interactive SQL, connect to the consolidated database (cons) as a user with DBA authority:

dbisql -c "UID=DBA;PWD=sql;SERVER=cons;DBN"

6. To set the global database ID for the consolidated database (cons), execute the following statement
(the global database ID is needed so that distinct primary keys are chosen for all databases when using
the GLOBAL AUTOINCREMENT default):

SET OPTION public.global_database_id=0;

7. The schema for the database in this tutorial consists of a single table and all the columns and rows
from the table replicate to every remote user. Execute the following statements for the consolidated
database (cons) to create the single table in the database:

CREATE TABLE employees (
 employee_id BIGINT NOT NULL DEFAULT GLOBAL AUTOINCREMENT(1000000)
PRIMARY KEY,
 first_name VARCHAR(128) NOT NULL,
 last_name VARCHAR(128) NOT NULL,
 hire_date TIMESTAMP NOT NULL DEFAULT TIMESTAMP
);

8. Execute the following statements on the consolidated database (cons) to add sample data to the
employees table:

INSERT INTO employees (first_name, last_name) VALUES ('Kelly', 'Meloy');
INSERT INTO employees (first_name, last_name) VALUES ('Melisa', 'Boysen');
COMMIT;

9. Execute the following statement on the consolidated database (cons) to confirm that the tables were
created and populated with data:

SELECT * FROM employees;

10. The query returns the following data from the employees table, although the hire_date column
contains the time you inserted the row, and not the values you see in the following table:

Tutorial: Setting up a replication system using the HTTP message system with the consolidated
database as the message server

160 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

employee_id first_name last_name hire_date

1 Kelly Meloy 2011-03-25 08:27:56.310

2 Melisa Boysen 2011-03-25 08:27:56.310

11. In this tutorial, the publisher and remote users are assigned passwords because the consolidated
database will be acting as the message server for the HTTP message system. Execute the following
statements to create the user cons that has CONNECT and PUBLISH permissions:

GRANT CONNECT TO cons;
GRANT PUBLISH TO cons;

12. For performance reasons, the HTTP message system can only be used at the remote database, and not
at the consolidated. The following statements configure the use of the FILE-based message system at
the consolidated database:

CREATE REMOTE MESSAGE TYPE FILE ADDRESS 'cons';
SET REMOTE FILE OPTION public.directory='c:\\tutorial\\messages';
SET REMOTE FILE OPTION public.debug='yes';

13. Execute the following statements to create the remote user rem without a password, and then grant
REMOTE permissions, while defining the user's address in the FILE message system:

GRANT CONNECT TO rem IDENTIFIED BY rem;
GRANT REMOTE TO rem TYPE FILE ADDRESS 'rem';

14. A publication describes the set of data to be replicated. Create a publication named pub_employees
that replicates all rows of the employees table. You subscribe a user to a publication by creating a
subscription.

CREATE PUBLICATION pub_employees (TABLE employees);
CREATE SUBSCRIPTION TO pub_employees FOR rem;

15. Disconnect from Interactive SQL.

16. Proceed to “Lesson 2: Configuring the consolidated database to act as the message server”
on page 161.

Lesson 2: Configuring the consolidated database to
act as the message server

In this lesson, you configure the consolidated database to act as the message server for the HTTP message
system. It is also possible to configure a separate database and database server to act as the message
server.

Configure the consolidated database to act as the message server

1. Using Interactive SQL, connect to the consolidated database as a user with DBA authority:

dbisql -c "SERVER=cons;DBN=cons;UID=DBA;PWD=sql"

Lesson 2: Configuring the consolidated database to act as the message server

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 161

2. When a database is first initialized, none of the web services needed to accept HTTP requests from
remote users is defined, and neither are definitions to allow the database server to access the directory
where the message files are stored. The creation of these objects is automated with the use of the
sr_add_message_server stored procedure, which takes an optional parameter to specify who owns all
the objects. Execute the following statements on the consolidated database (cons) to define all the
objects needed for the message server, and specify that all the objects are owned by the cons user:

GRANT GROUP TO cons;
SET REMOTE http OPTION cons.root_directory='c:\\tutorial\\messages';
CALL sr_add_message_server('cons');
COMMIT;

3. Disconnect from Interactive SQL.

4. Proceed to “Lesson 3: Creating the remote database” on page 162.

Lesson 3: Creating the remote database
In this lesson, you extract the remote database, and then replace the FILE message system at the remote
database with the HTTP message system.

Create the remote database

1. From the c:\tutorial\rem directory, run the following command to create the remote database (rem):

dbinit rem.db

2. In this lesson, you use dbxtract to create the remote database. Run the following command to extract
the database for the rem user from the consolidated database, and leave the database server for the
remote database running after the extraction:

dbxtract -xx -ac "SERVER=rem;DBN=rem;dbf=c:\tutorial\rem
\rem.db;UID=DBA;PWD=sql;autostop=no" -c
"SERVER=cons;DBN=cons;UID=DBA;PWD=sql" rem

If you are not currently connected to the remote database (rem), run the following command:

 dbisql -c "SERVER=rem;DBN=rem;UID=DBA;PWD=sql"

3. The consolidated database uses the FILE message system, so when dbxtract runs, it creates SQL
Remote definitions assuming that the rem remote database also uses the FILE message system. To set
the remote database to use the HTTP message system, execute the following statements on the remote
database (rem) to remove the FILE message system for this remote database:

CREATE REMOTE TYPE "FILE" ADDRESS '';
SET REMOTE FILE OPTION public.directory='';
SET REMOTE FILE OPTION public.debug='';

4. Execute the following statements on the remote database (rem) to configure the HTTP message
system for this remote database:

CREATE REMOTE TYPE "HTTP" ADDRESS 'rem';
GRANT CONSOLIDATE TO "cons" TYPE "HTTP" ADDRESS 'cons';

Tutorial: Setting up a replication system using the HTTP message system with the consolidated
database as the message server

162 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SET REMOTE HTTP OPTION public.user_name='rem';
SET REMOTE HTTP OPTION public.password='rem';
SET REMOTE HTTP OPTION public.debug='yes';
SET REMOTE HTTP OPTION public.https='no';
SET REMOTE HTTP OPTION public.url='localhost:8033';
COMMIT;

5. Verify that the employees table in the remote database (rem) contains the two rows of data that existed
in the consolidated database after the extraction. Execute the following statement to view the contents
of the employees table:

SELECT * FROM employees

The query returns the following data from the employees table, although the hire_date column
contains the time you inserted the row, and not the data you see in the following table:

employee_id first_name last_name hire_date

1 Kelly Meloy 2011-03-25 08:27:56.310

2 Melisa Boysen 2011-03-25 08:27:56.310

6. Disconnect from Interactive SQL.

7. Proceed to “Lesson 4: Adding and replicating data in the consolidated and remote databases”
on page 163.

Lesson 4: Adding and replicating data in the
consolidated and remote databases

In this lesson, you add data to the consolidated and remote database, run SQL Remote to replicate the
changes, and then confirm that the data is consistent in both databases.

Add data to the consolidated database

1. If you are not currently connected to the consolidated database (cons), run the following command:

dbisql -c "SERVER=cons;DBN=cons;UID=DBA;PWD=sql"

2. Execute the following statements on the consolidated database (cons) to add additional sample data to
the employees table:

INSERT INTO employees (first_name, last_name) VALUES ('Javier', 'Spoor');
COMMIT;

3. Disconnect from Interactive SQL.

Add data to the remote database

1. If you are not currently connected to the remote database (rem), run the following command:

dbisql -c "SERVER=rem;DBN=rem;UID=DBA;PWD=sql"

Lesson 4: Adding and replicating data in the consolidated and remote databases

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 163

2. Execute the following statements on the remote database (rem) to add additional sample data to the
employees table:

INSERT INTO employees (first_name, last_name) VALUES ('Nelson',
'Kreitzer');
COMMIT;

3. Disconnect from Interactive SQL.

Replicate changes between the consolidated and remote databases

1. At the consolidated database (cons), run the Message Agent:

dbremote -c "SERVER=cons;DBN=cons;UID=DBA;PWD=sql" -qc -v -o c:\tutorial
\cons1.txt

This scans the transaction log of the consolidated database (cons) and generates a message for the
remote database (rem) using the FILE message system. Since the debug message system parameter
has been set for the FILE message system in the consolidated database, you can look at the c:\tutorial
\cons1.txt file and verify that you see debug messages indicating that messages are being written to the
c:\tutorial\messages\rem directory. For example:

I. 2011-03-25 11:03:31. Processing transactions from active transaction
log
I. 2011-03-25 11:03:31. Sending message to "rem"
(0-0000000000-0000550994-0)
I. 2011-03-25 11:03:31. sopen "c:\tutorial\messages\rem\cons.0"
I. 2011-03-25 11:03:31. write " c:\tutorial\messages\rem\cons.0"
I. 2011-03-25 11:03:31. close " c:\tutorial\messages\rem\cons.0"

2. At the remote database (rem) run the Message Agent:

dbremote -c "SERVER=rem;DBN=rem;UID=DBA;PWD=sql" -qc -v -o c:\tutorial
\rem.txt

Using the HTTP message system, this command receives and applies the message that was just
generated by the consolidated database. It then scans the transaction log and sends a message back to
the consolidated database with the new row that was added in the remote database. Since the debug
message system parameter has been set for the HTTP message system in the remote database, you can
look at the c:\tutorial\rem.txt file and verify that you see debug messages indicating that the HTTP
message system is being used. For example:

I. 2011-03-25 11:10:02. Sending message to "cons"
(0-0000000000-0000557411-0)
I. 2011-03-25 11:10:02. HTTPWriteMessage "rem.0"
I. 2011-03-25 11:10:02. HTTPWriteMessage: success -- filename "rem.0"
I. 2011-03-25 11:10:02. HTTPDisconnect

3. At the consolidated database (cons) run the Message Agent:

dbremote -c "SERVER=cons;DBN=cons;UID=DBA;PWD=sql" -qc -v -o c:\tutorial
\cons2.txt

This command receives and applies the message that was just generated by the remote database using
the FILE-based message system.

Tutorial: Setting up a replication system using the HTTP message system with the consolidated
database as the message server

164 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Verify the data at the consolidated and remote databases

1. If you are not currently connected to the consolidated database (cons), run the following command:

dbisql -c "SERVER=cons;DBN=cons;UID=DBA;PWD=sql"

2. To verify that the consolidated database contains all four rows of data, execute the following
statement to view the contents of the employees table:

 SELECT * FROM employees

The query returns the following data from the employees table, although the hire_date column
contains the time you inserted the row, and not the values you see in the following table:

employee_id first_name last_name hire_date

1 Kelly Meloy 2011-03-25 08:27:56.310

2 Melisa Boysen 2011-03-25 08:27:56.310

3 Javier Spoor 2011-03-25 08:30:26.110

102000001 Nelson Kreitzer 2011-03-25 08:31:51.970

3. Disconnect from Interactive SQL.

4. If you are not currently connected to the remote database (rem), run the following command:

dbisql -c "SERVER=rem;DBN=rem;UID=DBA;PWD=sql"

Verify that the remote database (rem) contains all four rows of data by executing the following
statement to view the contents of the employees table:

SELECT * FROM employees

The query returns the following data from the employees table, although the hire_date column
contains the time you inserted the row, and not the data you see in the following table:

employee_id first_name last_name hire_date

1 Kelly Meloy 2011-03-25 08:27:56.310

2 Melisa Boysen 2011-03-25 08:27:56.310

3 Javier Spoor 2011-03-25 08:30:26.110

102000001 Nelson Kreitzer 2011-03-25 08:31:51.970

5. Disconnect from Interactive SQL.

6. Proceed to “Lesson 5: Cleaning up” on page 166.

Lesson 4: Adding and replicating data in the consolidated and remote databases

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 165

Lesson 5: Cleaning up
In the final lesson, you shut down the two database servers you started in this tutorial.

Shut down the database servers

1. Run the following command to shut down the remote database:

dbstop -y -c "SERVER=rem;DBN=rem;UID=DBA;PWD=sql"

2. Run the following command to shut down the consolidated database:

dbstop -y -c "SERVER=cons;DBN=cons;UID=DBA;PWD=sql"

3. Delete the directories you created in lesson 1.

Tutorial: Setting up a replication system using the HTTP message system with the consolidated
database as the message server

166 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Tutorial: Setting up a replication system
using the HTTP message system and the
consolidated database as the message server
via Relay Server

Use the lessons in this tutorial to learn how to set up a SQL Remote replication system that uses a SQL
Anywhere consolidated database, Relay Server to forward HTTP traffic to the consolidated database, and
a remote database. The consolidated database uses the FILE message system to replicate changes, while
the remote database uses the HTTP message system to replicate changes.

In this tutorial you:

● Create a consolidated SQL Anywhere database and a remote SQL Anywhere database that contains all
the data in the consolidated database.

● Create a directory structure to store the messages generated by SQL Remote. The consolidated database
accesses the files using the FILE message system, while the remote database uses the HTTP message
system.

● Configure an existing Relay Server to forward HTTP traffic to the consolidated database.

● Configure the consolidated database to act as the message server for the HTTP message system and
accept forwarded HTTP traffic from the Relay Server.

● Create a remote database that sends messages using the HTTP messaging system.

● Replicate data between the consolidated and remote databases.

Lesson 1: Creating the consolidated database
In this lesson you create the directories needed to store the databases and their transactions logs, as well as
the directory structure for the messages. You also define the schema of the consolidated database,
including creation of the remote user and the publication and subscription needed to replicate data. When
SQL Remote runs against the consolidated database, it uses the FILE message system to send and receive
messages, but the remote database uses the HTTP message system. For the purposes of this tutorial, the
name of the computer where the consolidated database, and thus the message server, is running is named
machine_cons.

Create the consolidated database and directories for the tutorial

1. Create the following directories to hold the consolidated database and the remote database:

● c:\tutorial
● c:\tutorial\cons
● c:\tutorial\rem

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 167

2. Create the following directories to hold the message files generated by the consolidated database and
the remote database:

● c:\tutorial\messages
● c:\tutorial\messages\cons
● c:\tutorial\messages\rem

3. From the c:\tutorial\cons directory, run the following command to create the consolidated database
(cons):

dbinit cons.db

4. Start the consolidated database:

dbsrv12 -n cons c:\tutorial\cons\cons.db -xs http(port=8033)

-xs http(8033) is required on the command line, because this is the database server that will be
accepting HTTP requests from the remote database and accessing the messages files that exist in the
c:\tutorial\messages directory. While no web services are defined at the time you start the database
server, they are created in the next lesson. In this lesson, you only start the personal database server,
so only SQL Remote processes on this computer are able to communicate with the message server
using HTTP. In a production environment, you would typically use the network server so that SQL
Remote processes on other computers would also have access to the web services. You have started a
network server in this lesson and named it cons. If there is another database server in your network
already running with this name, you must choose a different name for the network server and modify
the connection strings in the remainder of this tutorial to use the alternative name. For more
information about using -xs, see “-xs dbeng12/dbsrv12 server option” [SQL Anywhere Server -
Database Administration].

5. Using Interactive SQL, connect to the consolidated database (cons) as a user with DBA authority:

dbisql -c "UID=DBA;PWD=sql;SERVER=cons;DBN"

6. To set the global database ID for the consolidated database (cons), execute the following statement
(the global database ID is needed so that distinct primary keys are chosen for all databases when using
the GLOBAL AUTOINCREMENT default):

SET OPTION public.global_database_id=0;

7. The schema for the database in this tutorial consists of a single table and all the columns and rows
from the table replicate to every remote user. Execute the following statements on the consolidated
database (cons) to create the single table in the database:

CREATE TABLE employees (
 employee_id BIGINT NOT NULL DEFAULT GLOBAL AUTOINCREMENT(1000000)
PRIMARY KEY,
 first_name VARCHAR(128) NOT NULL,
 last_name VARCHAR(128) NOT NULL,
 hire_date TIMESTAMP NOT NULL DEFAULT TIMESTAMP
);

8. Execute the following statements on the consolidated database (cons) to add sample data to the
employees table:

Tutorial: Setting up a replication system using the HTTP message system and the consolidated
database as the message server via Relay Server

168 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

INSERT INTO employees (first_name, last_name) VALUES ('Kelly', 'Meloy');
INSERT INTO employees (first_name, last_name) VALUES ('Melisa', 'Boysen');
COMMIT;

9. Execute the following statement on the consolidated database (cons) to confirm that the table was
created and populated with data:

SELECT * FROM employees;

The query returns the following data from the employees table, although the hire_date column
contains the time you inserted the row, and not the values you see in the following table:

employee_id first_name last_name hire_date

1 Kelly Meloy 2011-03-25 08:27:56.310

2 Melisa Boysen 2011-03-25 08:27:56.310

10. In this tutorial, the publisher and remote users are assigned passwords because the consolidated
database acts as the message server for the HTTP message system. Execute the following statements
to create the user cons that has CONNECT and PUBLISH permissions:

GRANT CONNECT TO cons;
GRANT PUBLISH TO cons;

11. For performance reasons, the HTTP message system can only be used at the remote database, and not
at the consolidated. The following statements configure the use of the FILE-based message system at
the consolidated database:

CREATE REMOTE MESSAGE TYPE FILE ADDRESS 'cons';
SET REMOTE FILE OPTION public.directory='c:\\tutorial\\messages';
SET REMOTE FILE OPTION public.debug='yes';

12. Execute the following statements to create the remote user rem without a password, and then grant
REMOTE permissions, while defining the user's address in the FILE message system:

GRANT CONNECT TO rem IDENTIFIED BY rem;
GRANT REMOTE TO rem TYPE FILE ADDRESS 'rem';

13. A publication describes the set of data to be replicated. Create a publication named pub_employees
that replicates all rows of the employees table. You subscribe a user to a publication by creating a
subscription.

CREATE PUBLICATION pub_employees (TABLE employees);
CREATE SUBSCRIPTION TO pub_employees FOR rem;

14. Disconnect from Interactive SQL.

15. Proceed to “Lesson 2: Configuring the Relay Server” on page 169.

Lesson 2: Configuring the Relay Server
In this lesson, you modify the configuration of the Relay Server to forward HTTP requests to the back-
end SQL Anywhere database. Configuring the Relay Server relies only on modifying the rs.config file

Lesson 2: Configuring the Relay Server

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 169

used by the Relay Server and then refreshing or restarting the rshost process. For the purpose of this
tutorial, the following assumptions have been made:

1. The name of the computer where the Relay Server is running is called machine_iis, and is a Windows
2008 Server R2 running IIS 7.5.

2. The setup instructions for the Relay Server have been followed exactly as outlined in the
documentation:

● “Relay Server”
● “Relay Server deployment” [Relay Server]

3. You have deployed the Relay Server components to Microsoft IIS 7.0 or 7.5 on Windows Server
2008/Windows Server 2008 R2. See “Deploying the Relay Server components to Microsoft IIS 7.0 or
7.5 on Windows Server 2008/Windows Server 2008 R2” [Relay Server].

Configure the consolidated database to act as the message server

1. Modify the rs.config file used by the rshost process on machine_iis to add entries for the back-end
SQL Anywhere database server acting as the message server:

[backend_farm]
id=srhttp_tutorial_farm
description=SQL Anywhere Web Services farm for tutorial
active_cookie=yes
active_header=no
enable=yes
verbosity=5
[backend_server]
id= srhttp_tutorial_server
description=SQL Anywhere Web Services server for tutorial
farm= srhttp_tutorial_farm
enable=yes
verbosity=5

2. From the %SQLANY12%\RelayServer\IIS\Bin64\Server directory, run the following command line to
apply the configuration update:

rshost -u -f rs.config

3. Proceed to “Lesson 3: Configuring the consolidated database to act as the message server”
on page 170.

Lesson 3: Configuring the consolidated database to
act as the message server

In this lesson, you configure the consolidated database to act as the message server for the HTTP message
system. It is also possible to configure a separate database and database server to act as the message
server.

Tutorial: Setting up a replication system using the HTTP message system and the consolidated
database as the message server via Relay Server

170 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Configure the consolidated database to act as the message server

1. Using Interactive SQL, connect as a user with DBA authority:

dbisql -c "SERVER=cons;DBN=cons;UID=DBA;PWD=sql"

2. When a database is first initialized, none of the web services needed to accept HTTP requests from
remote users is defined, and neither are definitions to allow the database server to access the directory
where the message files are stored. The creation of these objects is automated with the use of the
sr_add_message_server stored procedure, which takes an optional parameter to specify who owns all
the objects. Execute the following statements on the consolidated database (cons) to define all the
objects needed for the message server, and specify that all the objects are owned by the cons user:

GRANT GROUP TO cons;
SET REMOTE http OPTION cons.root_directory='c:\\tutorial\\messages';
CALL sr_add_message_server('cons');
COMMIT;

3. Some extra configuration is needed when the Relay Server will be forwarding HTTP requests to a
back-end SQL Anywhere server. It is possible to set up a high-availability environment for your back-
end SQL Anywhere servers where some nodes are defined as read-only and some are defined as read-
write nodes. In this tutorial, there is only a single database server in the system, so you need to define
the database as a read-write node. Execute the following statements on the consolidated database
(cons) to define all the objects needed so that the Relay Server recognizes this database server as a
read-write node:

CREATE PROCEDURE sp_oe_read_status()
RESULT (doc LONG VARCHAR)
BEGIN
DECLARE res LONG VARCHAR;
SET res='AVAILABLE=TRUE';
CALL sa_set_http_header('Content-Length', LENGTH(res));
SELECT res;
END;
GO

CREATE SERVICE oe_read_status
TYPE 'raw'
AUTHORIZATION OFF
SECURE OFF
USER DBA
AS CALL sp_oe_read_status();
GO

4. Disconnect from Interactive SQL.

5. The outbound enabler acts as a channel between the Relay Server and the back-end SQL Anywhere
database. On the machine_cons computer start the Relay Server Outbound Enabler (RSOE) with the
following command line:

rsoe -cr "host=machine_iis;port=80;url_suffix=/rs/server/rs_server.dll"
-cs "host=machine_cons;port=8033;status_url=/oe_read_status"
-f srhttp_tutorial_farm -id srhttp_tutorial_server -v 5 -o rsoe.log

6. Proceed to “Lesson 4: Creating the remote database” on page 172.

Lesson 3: Configuring the consolidated database to act as the message server

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 171

Lesson 4: Creating the remote database
In this lesson, you extract the remote database, and then replace the FILE message system at the remote
database with the HTTP message system.

Create the remote database

1. From the c:\tutorial\rem directory, run the following command to create the remote database (rem):

dbinit rem.db

2. In this lesson, you use dbxtract to create the remote database. Run the following command to extract
the database for the rem user from the consolidated database, and leave the database server for the
remote database running after the extraction:

dbxtract -xx -ac "SERVER=rem;DBN=rem;DBF=c:\tutorial\rem
\rem.db;UID=DBA;PWD=sql;autostop=no" -c
"SERVER=cons;DBN=cons;UID=DBA;PWD=sql" rem

3. If you are not currently connected to the remote database (rem) from Interactive SQL, run the
following command:

dbisql -c "SERVER=rem;DBN=rem;UID=DBA;PWD=sql"

4. The consolidated database uses the FILE message system, so when dbxtract runs, it will have created
SQL Remote definitions assuming that the rem remote database is also using the FILE message
system. To configure the remote database to use the HTTP message system, execute the following
statements for the remote database (rem) to remove the FILE message system for this remote
database:

CREATE REMOTE TYPE "FILE" ADDRESS '';
SET REMOTE FILE OPTION public.directory='';
SET REMOTE FILE OPTION public.debug='';

5. Execute the following statements on the remote database (rem) to configure the HTTP message
system for this remote database:

CREATE REMOTE TYPE "HTTP" ADDRESS 'rem';
GRANT CONSOLIDATE TO "cons" TYPE "HTTP" ADDRESS 'cons';
SET REMOTE HTTP OPTION public.user_name='rem';
SET REMOTE HTTP OPTION public.password='rem';
SET REMOTE HTTP OPTION public.debug='yes';
SET REMOTE HTTP OPTION public.https='no';
SET REMOTE HTTP OPTION public.url='machine_iis:80/rs/client/rs_client.dll/
srhttp_tutorial_farm';
COMMIT;

6. Verify that the remote database (rem) contains the two rows of data that existed in the consolidated
database after the extraction. Execute the following statement to view the contents of the employees
table:

SELECT * FROM employees;

The query returns the following data from the employees table, although the hire_date column
contains the time you inserted the row, and not the data you see in the following table:

Tutorial: Setting up a replication system using the HTTP message system and the consolidated
database as the message server via Relay Server

172 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

employee_id first_name last_name hire_date

1 Kelly Meloy 2011-03-25 08:27:56.310

2 Melisa Boysen 2011-03-25 08:27:56.310

7. Disconnect from Interactive SQL.

8. Proceed to “Lesson 5: Adding and replicating data in the consolidated and remote databases”
on page 173.

Lesson 5: Adding and replicating data in the
consolidated and remote databases

In this lesson, you add data to the consolidated and remote database, run SQL Remote to replicate the
changes, and then confirm that the data is consistent in both databases.

Add data to the consolidated database

1. If you are not currently connected to the consolidated database (cons), run the following command:

dbisql -c "SERVER=cons;DBN=cons;UID=DBA;PWD=sql"

2. Execute the following statements on the consolidated database (cons) to add additional sample data to
the employees table:

INSERT INTO employees (first_name, last_name) VALUES ('Javier', 'Spoor');
COMMIT;

3. Disconnect from Interactive SQL.

Add data to the remote database

1. If you are not currently connected to the remote database (rem), run the following command:

dbisql -c "SERVER=rem;DBN=rem;UID=DBA;PWD=sql"

2. Execute the following statements on the remote database (rem) to add additional sample data to the
employees table:

INSERT INTO employees (first_name, last_name) VALUES ('Nelson',
'Kreitzer');
COMMIT;

3. Disconnect from Interactive SQL.

Replicate changes between the consolidated and remote databases

1. At the consolidated database (cons), run the Message Agent:

Lesson 5: Adding and replicating data in the consolidated and remote databases

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 173

dbremote -c "SERVER=cons;DBN=cons;UID=DBA;PWD=sql" -qc -v -o c:\tutorial
\cons1.txt

This scans the transaction log of the consolidated database (cons) and generates a message for the
remote database (rem) using the FILE message system. Since the debug message system parameter
has been set for the FILE message system in the consolidated database, you can look at the c:\tutorial
\cons1.txt file and verify that you see debug messages indicating that messages are being written to the
c:\tutorial\messages\rem directory. For example:

I. 2011-04-12 09:33:03. Processing transactions from active transaction
log
I. 2011-04-12 09:33:03. Sending message to "rem"
(0-0000000000-0000550994-0)
I. 2011-04-12 09:33:03. sopen "c:\tutorial\messages\rem\cons.0"
I. 2011-04-12 09:33:03. write " c:\tutorial\messages\rem\cons.0"
I. 2011-04-12 09:33:03. close " c:\tutorial\messages\rem\cons.0"

2. At the remote database (rem), run the Message Agent:

dbremote -c "SERVER=rem;DBN=rem;UID=DBA;PWD=sql" -qc -v -o c:\tutorial
\rem.txt

Using the HTTP message system, this command receives and applies the message that was just
generated by the consolidated database. It then scans the transaction log and sends a message back to
the consolidated database with the new row that was added in the remote database. Since the debug
message system parameter has been set for the HTTP message system in the remote database, you can
look at the c:\tutorial\rem.txt file and verify that you see debug messages indicating that the HTTP
message system is being used. For example:

I. 2011-04-12 09:34:03. Sending message to "cons"
(0-0000000000-0000576448-0)
I. 2011-04-12 09:34:03. HTTPWriteMessage "rem.0"
I. 2011-04-12 09:34:03. HTTPWriteMessage: success -- filename "rem.0"
I. 2011-04-12 09:34:03. HTTPDisconnect

3. You could also confirm that the request went through the Relay Server by looking at the output file
generated by the RSOE and verifying that information is being printed to the log.

I. 2011-04-12 09:34:03. <UpChannel-0000> PacketRead packet-len:257
I. 2011-04-12 09:34:03. <UpChannel-0000> PacketRead packet-opcode:0xf004
I. 2011-04-12 09:34:03. <UpChannel-0000> packet read..
I. 2011-04-12 09:34:03. <UpChannel-0000> successful packet read..
processing it..
I. 2011-04-12 09:34:03. <UpChannel-0000> 259
RS_CLI_SESSION_BEGIN(snum=0006 sfp=4e0e5291 ridx=0)
I. 2011-04-12 09:34:03. <UpChannel-0000> Notifying worker thread

4. At the consolidated database (cons), run the Message Agent:

dbremote -c "SERVER=cons;DBN=cons;UID=DBA;PWD=sql" -qc -v -o c:\tutorial
\cons2.txt

This command receives and applies the message that was just generated by the remote database using
the FILE-based message system.

Verify the data at the consolidated and remote databases

1. If you are not currently connected to the consolidated database (cons), run the following command:

Tutorial: Setting up a replication system using the HTTP message system and the consolidated
database as the message server via Relay Server

174 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

dbisql -c "SERVER=cons;DBN=cons;UID=DBA;PWD=sql"

2. To verify that the consolidated database contains all four rows of data, execute the following
statement to view the contents of the employees table:

 SELECT * FROM employees;

The query returns the following data from the employees table, although the hire_date column
contains the time you inserted the row, and not the values you see in the following table:

employee_id first_name last_name hire_date

1 Kelly Meloy 2011-03-25 08:27:56.310

2 Melisa Boysen 2011-03-25 08:27:56.310

3 Javier Spoor 2011-03-25 08:30:26.110

102000001 Nelson Kreitzer 2011-03-25 08:31:51.970

3. Disconnect from Interactive SQL.

4. If you are not currently connected to the remote database (rem), run the following command:

dbisql -c "SERVER=rem;DBN=rem;UID=DBA;PWD=sql"

Verify that the remote database (rem) contains all four rows of data by executing the following
statement to view the contents of the employees table:

SELECT * FROM employees;

The query returns the following data from the employees table, although the hire_date column
contains the time you inserted the row, and not the data you see in the following table:

employee_id first_name last_name hire_date

1 Kelly Meloy 2011-03-25 08:27:56.310

2 Melisa Boysen 2011-03-25 08:27:56.310

3 Javier Spoor 2011-03-25 08:30:26.110

102000001 Nelson Kreitzer 2011-03-25 08:31:51.970

5. Disconnect from Interactive SQL.

6. Proceed to “Lesson 6: Cleaning up” on page 176.

Lesson 5: Adding and replicating data in the consolidated and remote databases

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 175

Lesson 6: Cleaning up
In the final lesson, you shut down the RSOE and the consolidated and remote databases.

Shut down the database servers

1. Run the following command to shut down the RSOE:

rsoe -s -cr "host=machine_iis;port=80;url_suffix=/rs/server/
rs_server.dll"
-cs "host=machine_cons-t3500;port=8033;status_url=/oe_read_status"
-f srhttp_tutorial_farm -id srhttp_tutorial_server

2. Run the following command to shut down the consolidated database:

dbstop -y -c "SERVER=cons;DBN=cons;UID=DBA;PWD=sql"

Run the following command to shut down the remote database:

dbstop -y -c "SERVER=rem;UID=DBA;PWD=sql"

Tutorial: Setting up a replication system using the HTTP message system and the consolidated
database as the message server via Relay Server

176 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SQL Remote reference
This section provides reference material for SQL Remote.

SQL Remote utilities and options reference

SQL Remote Message Agent utility (dbremote)
Sends and applies SQL Remote messages, and maintains the message tracking system to ensure message
delivery.

Syntax
dbremote [options] [directory]

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 177

Option Description

@data Reads in options from the specified environment variable or con-
figuration file. If both exist with the same name, the environment
variable is used. See “Configuration files” [SQL Anywhere Server -
Database Administration].

If you want to protect passwords or other information in the con-
figuration file, you can use the File Hiding utility to obfuscate the
contents of the configuration file. See “File Hiding utility
(dbfhide)” [SQL Anywhere Server - Database Administration].

The environment variable can contain any set of options. For ex-
ample, the first of the following pair of statements sets an environ-
ment variable holding a set of options for a SQL Remote process
that starts with a cache size of 4 MB, receives messages only, and
connects to a database named field on a database server named
myserver. The SET statement should be entered all on one line:

SET envvar=-m 4096 -r
 -c
"Server=myserver;DBN=field;UID=sa;PWD=sysadmin"
dbremote @envvar

The configuration file contains line breaks, and can contain any set
of options. For example, the following command file holds a set of
options for a SQL Remote Message Agent that starts with a cache
size of 4 MB, sends messages only, and connects to a database
named field on a database server named myserver:

-m 4096
-s
-c "Server=myserver;DBN=field;UID=sa;PWD=sysadmin"

If this configuration file is saved as c:\config.txt, it can be used in a
command as follows:

dbremote @c:\config.txt

-a Processes the received messages (those in the inbox) without ap-
plying them to the database. Used together with -v (for verbose
output) and -p (so the messages are not purged), this option can
help detect problems with incoming messages. Used without -p,
this option purges the inbox without applying the messages, which
may be useful if a subscription is being restarted.

-b Runs in batch mode. In this mode, the SQL Remote Message
Agent processes incoming messages, scans the transaction log
once, processes outgoing messages, and then stops.

SQL Remote reference

178 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Option Description

-c "keyword=value; ..." Specifies connection parameters. If this option is not specified, the
environment variable SQLCONNECT is used.

For example, the following statement runs dbremote on a database
file located at c:\mydata.db, connecting with user ID DBA and
password sql:

dbremote -c "UID=DBA;PWD=sql;DBF=c:\mydata.db"

The SQL Remote Message Agent must be run by a user with RE-
MOTE DBA authority or DBA authority. See “REMOTE DBA au-
thority” on page 29.

The SQL Remote Message Agent supports the full range of SQL
Anywhere connection parameters. See “Connection parameters”
[SQL Anywhere Server - Database Administration].

-dl Displays messages in the SQL Remote Message Agent window or
at a command prompt and in the log file if specified.

-ek key Specifies that you want to be prompted at a command prompt for
the encryption key for strongly encrypted databases. If you have a
strongly encrypted database, you must provide the encryption key
to use the database or transaction log in any way, including offline
transaction logs. For strongly encrypted databases, you must speci-
fy either -ek or -ep, but not both. The command fails if you do not
specify a key for a strongly encrypted database.

-ep Specifies that you want to be prompted for the encryption key.
This option causes a window to appear, in which you enter the en-
cryption key. It provides an extra measure of security by never al-
lowing the encryption key to be seen in clear text. For strongly en-
crypted databases, you must specify either -ek or -ep, but not both.
The command fails if you do not specify a key for a strongly en-
crypted database.

-g n Instructs the SQL Remote Message Agent to group transactions
containing fewer than n operations together with transactions that
follow. The default is twenty operations. Increasing the value of n
can speed up processing of incoming messages by doing fewer
commits. However, it can also cause deadlock and blocking by in-
creasing the size of transactions.

SQL Remote utilities and options reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 179

Option Description

-l length Specifies the maximum length of each message to be sent. The size
is the amount of memory, in bytes. Use k, m, or g to specify units
of kilobytes, megabytes, or gigabytes, respectively. Longer trans-
actions are split into more than one message. The default is 50000
bytes and the minimum length is 10000 bytes.

Caution
The maximum message length must be the same at all sites in an
installation.

For platforms with restricted memory allocation, the value must be
less than the maximum memory allocation of the operating system.

-m size Specifies a maximum amount of memory to be used by the SQL
Remote Message Agent for building messages and caching incom-
ing messages. The size is the amount of memory, in bytes. Use k,
m, or g to specify units of kilobytes, megabytes, or gigabytes, re-
spectively. The default is 2048 kilobytes (2 MB).

When all remote databases are receiving unique subsets of the op-
erations being replicated, a separate message for each remote data-
base is built up concurrently. Only one message is built for a group
of remote users that are receiving the same operations. When the
memory being used exceeds the -m value, messages are sent before
reaching their maximum size (as specified by the -l option).

When messages arrive, they are stored in memory by the SQL Re-
mote Message Agent until they are applied. This caching of mes-
sages prevents rereading messages that are out of order from the
message system, which may lower performance on large installa-
tions. When the memory usage specified using the -m option is ex-
ceeded, messages are deleted in a least-recently used fashion.

SQL Remote reference

180 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Option Description

-ml directory Specifies the location of offline transaction log mirror files. This
option makes it possible for dbremote to delete old transaction log
mirror files when either of the following two circumstances occur:

● the offline transaction log mirror is located in a different directo-
ry from the transaction log mirror

● dbremote is run on a different computer from the remote data-
base server

In a typical setup, the active transaction log mirror and renamed
transaction log mirrors are located in the same directory, and dbre-
mote is run on the same computer as the remote database, so this
option is not required and old transaction log mirror files are auto-
matically deleted. Transaction logs in this directory are only affec-
ted if the delete_old_logs database option is set to a value other
than Off. See “delete_old_logs option [SQL Remote]” [SQL Any-
where Server - Database Administration].

-o file Prints messages to an output log file. The default is to print output
to the screen.

-os size Specifies the maximum file size for logging output messages. The
size is the amount of memory, in bytes. Use k, m, or g to specify
units of kilobytes, megabytes, or gigabytes, respectively. By de-
fault, there is no limit, and the minimum limit is 10000 bytes.

Before SQL Remote logs output messages to an output log file, it
checks the current file size. If the log message will make the file
size exceed the specified size, SQL Remote renames the output file
to yymmddxx.dbs, where xx is a number that starts at 00 and contin-
ues incrementing (note that xx may be more than 2 digits long),
and yymmdd represents the current year, month, and date.

If the SQL Remote Message Agent is running in continuous mode
for a long time, this option allows you to manually delete old out-
put log files and free up disk space.

-ot file Truncates the output log file and then appends output messages to
it. The default is to send output to the screen.

-p Does not purge messages.

-q Starts the SQL Remote Message Agent with a minimized window.
This option applies to Windows operating systems only.

SQL Remote utilities and options reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 181

Option Description

-qc Closes SQL Remote window on completion.

-r Receives messages. If neither -r or -s is specified, the SQL Remote
Message Agent executes both phases. Otherwise, only the indica-
ted phases are executed.

The SQL Remote Message Agent runs in continuous mode if it is
started with the -r option. To have the SQL Remote Message
Agent shut down after receiving messages, use the -b option in ad-
dition to -r.

-rd minutes Specifies the polling frequency for incoming messages. By default,
the SQL Remote Message Agent polls for incoming messages ev-
ery minute. This option (rd stands for receive delay) allows the
polling frequency to be configured, which is useful when polling is
expensive.

You can use a suffix of s after the number to indicate seconds,
which may be useful if you want frequent polling. For example, the
following command polls every thirty seconds.

dbremote -rd 30s

The -rd option is often used in conjunction with the -rp option that
sets the number of polls for which the SQL Remote Message
Agent waits before requesting that a missing message be re-sent.

See “Performance when receiving messages” on page 87.

-rho filename Logs remote output to file. This option is for use at consolidated
sites. When remote databases are configured to send output log in-
formation to the consolidated database, this option writes the infor-
mation to a file. The option is provided to help administrators trou-
bleshoot errors at remote sites.

See “Collecting errors from the remote database” on page 127.

SQL Remote reference

182 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Option Description

-rp number Specifies the number of receive polls before a message is assumed
lost. When running in continuous mode, the SQL Remote Message
Agent polls at certain intervals for messages. After polling a set
number of times (by default, one), if a message is missing, the SQL
Remote Message Agent assumes it has been lost and requests that
the message be re-sent. On slow message systems, this behavior
can result in many unnecessary resend requests. You can set the
number of polls before a resend request is issued using this option
to minimize the number of resend requests.

For more information about configuring this option, see “Perform-
ance when receiving messages” on page 87.

The -rp option is often used in conjunction with the -rd option that
sets the polling frequency for incoming messages.

-rt filename Truncates the output log file on startup, and then appends the log
output from the remote database to the file. This option is for use at
consolidated sites. It is identical to the -rho option except that the
file is truncated on startup.

-ru time Specifies the waiting period to re-scan the log on receipt of a re-
send.

This option controls the resend urgency. This is the time between
detection of a resend request and when the SQL Remote Message
Agent starts fulfilling the request. Use this option to help the SQL
Remote Message Agent collect resend requests from multiple users
before rescanning the log. The time unit can be s (seconds), m (mi-
nutes), h (hours), or d (days).

-s Sends messages. If neither -r or -s is specified, the SQL Remote
Message Agent executes both phases. Otherwise, only the indica-
ted phases are executed.

-sd time Controls the delay between polls of the database transaction log.
The -sd option is only used when running in continuous mode.

Controls the send delay that is the time to wait between polls for
more transaction log data to send.

SQL Remote utilities and options reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 183

Option Description

-t Replicates all triggers. If you use this option, you must ensure that
the trigger actions are not carried out twice at remote databases,
once by the trigger being fired at the remote site, and once by the
explicit application of the replicated actions from the consolidated
database.

To ensure that trigger actions are not carried out twice, you can
wrap an IF CURRENT REMOTE USER IS NULL ... END IF
statement around the body of the triggers. See “Using the CUR-
RENT REMOTE USER special value” on page 46.

-u Processes only transactions that exist in offline transaction logs.
This option prevents the SQL Remote Message Agent from pro-
cessing transactions since the latest backup. Using this option, out-
going transactions and confirmation of incoming transactions are
not sent until they exist in offline transaction logs.

This means that only transactions from renamed logs are pro-
cessed.

-ud Runs the SQL Remote Message Agent as a daemon on Unix plat-
forms. If you run the SQL Remote Message Agent as a daemon,
you must also supply the -o or -ot option to log output information.

If you run the SQL Remote Message Agent as a daemon and are
using FTP or SMTP message links, you must store the message
link parameters in the database because the SQL Remote Message
Agent does not prompt the user for these options when running as
a daemon.

For information about message link parameters, see “Setting re-
mote message type control parameters” on page 105.

When you start the SQL Remote Message Agent as a daemon, its
permissions are controlled by the current user's umask setting. It is
recommended that you set the umask value before starting the SQL
Remote Message Agent to ensure that the it has the appropriate
permissions.

-ui For Linux with X window server support, starts the SQL Remote
Message Agent in shell mode if a usable display is not available.

SQL Remote reference

184 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Option Description

-ux Opens the SQL Remote Message Agent window on Solaris and Li-
nux.

When -ux is specified, dbremote must be able to find a usable dis-
play. If it cannot find one, for example because the DISPLAY en-
vironment variable is not set or because the X window server is not
running, dbremote fails to start. On Windows, the SQL Remote
messages window appears automatically.

-v Displays verbose output. This option displays the SQL statements
contained in the messages to the messages window and, if the -o or
-ot option is used, to a log file.

-w n Specifies the number of database worker threads to apply incoming
messages. This option is not supported on Windows Mobile.

The default is zero, which means all messages are applied by the
main (and only) thread. A value of 1 (one) would have one thread
receiving messages from the message system and one thread apply-
ing messages to the database. The maximum number of database
worker threads is 50.

The -w option makes it possible to increase the throughput of in-
coming messages with hardware upgrades. Putting the consolida-
ted database on a device that can perform many concurrent opera-
tions (a RAID array with a striped logical drive), can improve
throughput of incoming messages. Multiple processors in the com-
puter running the SQL Remote Message Agent could also improve
throughput of incoming messages.

The -w option does not improve performance significantly on hard-
ware that cannot perform many concurrent operations.

Incoming messages from a single remote database are never ap-
plied on multiple threads. Messages from a single remote database
are always applied serially in the correct order.

SQL Remote utilities and options reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 185

Option Description

-x [size] Renames and restarts the transaction log after it has been scanned
for outgoing messages. In some circumstances, replicating data to a
consolidated database can take the place of backing up remote da-
tabases, or renaming the transaction log when the database server
is shut down.

If the optional size qualifier is supplied, the transaction log is re-
named only if it is larger than the specified size. The size is the
amount of memory, in bytes. Use k, m, or g to specify units of kil-
obytes, megabytes, or gigabytes, respectively. The default is 0.

-y Overwrites the command file without confirmation. Without speci-
fying this option, you are prompted to confirm the replacement of
an existing command file.

directory Specifies the directory in which old transaction logs are held.

The optional directory parameter specifies a directory in which old
transaction logs are held, so that the SQL Remote Message Agent
has access to events from before the current log was started.

Remarks
You can run the SQL Remote Message Agent from your own application by calling into the DBTools
library. For more information, see the file dbrmt.h in the %SQLANY12%\SDK\Include\ directory.

The user ID in the SQL Remote Message Agent command must have either REMOTE DBA or DBA
authority.

The SQL Remote Message Agent uses several database connections.

● Message system control parameters SQL Remote uses several registry settings to control
aspects of message link behavior.

On Windows, the message link control parameters are stored in the registry, at the following location:

\\HKEY_CURRENT_USER
 \Software
 \Sybase
 \SQL Remote

See also
● “SQL Remote Message Agent (dbremote)” on page 80
● “SQL Remote message systems” on page 102
● “REMOTE DBA authority” on page 29

SQL Remote reference

186 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Extraction utility (dbxtract)
Extracts a remote database from a consolidated SQL Anywhere database.

Syntax
dbxtract [options] [directory] subscriber

Option Description

@data Reads in options from a configuration file. See “@data dbeng12/
dbsrv12 server option” [SQL Anywhere Server - Database Adminis-
tration].

Use this option to read in options from the specified environment vari-
able or configuration file. If both exist with the same name, the envi-
ronment variable is used. See “Configuration files” [SQL Anywhere
Server - Database Administration].

If you want to protect passwords or other information in the configu-
ration file, you can use the File Hiding utility to obfuscate the contents
of the configuration file. See “File Hiding utility (dbfhide)” [SQL Any-
where Server - Database Administration].

-ac "keyword=value; ..." Connects to the database specified in the connection string to do the
reload.

You can combine the operation of unloading a database and reloading
the results into an existing database using this option.

For example, the following command (entered all on one line) loads a
copy of the data for the field_user subscriber into an existing database
file named c:\field.db:

dbxtract -c "UID=DBA;PWD=sql;DBF=c:\cons.db"
-ac "UID=DBA;PWD=sql;DBF=c:\field.db" field_user

If you use this option, no copy of the data is created on disk, so you do
not specify an unload directory in the command. This provides greater
security for your data, but at some cost for performance.

-al filename Specifies the transaction log file name for the new database if using
the -an option.

SQL Remote utilities and options reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 187

Option Description

-an database Creates a database file with the same settings as the database being
extracted and automatically reloads it.

You can combine the operations of unloading a database, creating a
new database, and loading the data using this option.

For example, the following command (entered all on one line) creates
a new database file named c:\field.db and copies the schema and data
for the field_user subscriber of c:\cons.db into it:

dbxtract -c "UID=DBA;PWD=sql;DBF=c:\cons.db"
-an c:\field.db field_user

If you use this option, no copy of the data is created on disk, so you do
not specify an unload directory in the command. This provides greater
security for your data, but at some cost for performance.

-ap size [k] Sets the page size of the new database. This option is ignored unless -
an is used. The page size for a database can be (in bytes) 2048, 4096,
8192, 16384, or 32768, with the default being the page size of the
original database. Use k to specify units of kilobytes (for example, -ap
4k). If there are already databases running on the database server, the
server's page size (set with the -gp option) must be large enough to
handle the new page size. See “-gp dbeng12/dbsrv12 server option”
[SQL Anywhere Server - Database Administration].

-b Does not start subscriptions. If this option is specified, subscriptions at
the consolidated database (for the remote database) and at the remote
database (for the consolidated database) must be started explicitly us-
ing the START SUBSCRIPTION statement for replication to begin.
See “START SUBSCRIPTION statement [SQL Remote]” [SQL Any-
where Server - SQL Reference].

SQL Remote reference

188 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Option Description

-c "keyword=value; ..." Specifies database connection parameters, in a string.

The user ID should have DBA authority to ensure that the user has
permissions on all the tables in the database.

For example, the following statement (entered all on one line) extracts
a database for remote user ID joe_remote from the sample database
running on the sample_server database server, connecting as user ID
DBA with password sql. The data is unloaded into the c:\extract di-
rectory.

dbxtract -c "Server=sample_server;DBN=demo;
UID=DBA;PWD=sql" c:\extract joe_remote

If connection parameters are not specified, connection parameters
from the SQLCONNECT environment variable are used, if set.

-d Extracts data only. If this option is specified, the schema definition is
not unloaded and publications and subscriptions are not created at the
remote database. This option is used when a remote database already
exists with the proper schema, and only needs to be filled with data.

SQL Remote utilities and options reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 189

Option Description

-ea alg Specifies the encryption algorithm for the new database. This option
allows you to choose a strong encryption algorithm to encrypt your
new database. You can choose either AES (the default) or AES_FIPS
for the FIPS-certified algorithm. AES_FIPS uses a separate library
and is not compatible with AES.

For greater security, specify AES or AES256 for 128-bit or 256-bit
strong encryption, respectively. Specify AES_FIPS or AES256_FIPS
for 128-bit or 256-bit FIPS-certified encryption, respectively. For
strong encryption, you must also specify the -ek or -ep option. For
more information about strong encryption, see “Strong encryption”
[SQL Anywhere Server - Database Administration].

To create a database that is not encrypted, specify -ea none, or do not
include the -ea option (and do not specify -e, -et, -ep, or -et).

If you do not specify the -ea option, the default behavior is as follows:

● -ea none, if -ek, -ep, or -et is not specified
● -ea AES, if -ek or -ep is specified (with or without -et)
● -ea simple, if -et is used without -ek or -ep

Algorithm names are case insensitive.

Note
Separately licensed component required.

ECC encryption and FIPS-certified encryption require a separate li-
cense. All strong encryption technologies are subject to export regula-
tions.

See “Separately licensed components” [SQL Anywhere 12 - Introduc-
tion].

SQL Remote reference

190 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Option Description

-ek key Specifies the encryption key for the new database. This option allows
you to create a strongly encrypted database by specifying an encryp-
tion key directly in the command. The algorithm used to encrypt the
database is AES or AES_FIPS as specified by the -ea option. If you
specify the -ek option without specifying -ea, the AES algorithm is
used.

Caution
For strongly encrypted databases, be sure to store a copy of the key in
a safe location. If you lose the encryption key, there is no way to ac-
cess the data, even with the assistance of technical support. The data-
base must be discarded and you must create a new database.

-ep Prompts for the encryption key for the new database. This option
specifies that you want to create a strongly encrypted database by typ-
ing the encryption key in a window. This provides an extra measure of
security by never allowing the encryption key to be seen in clear text.

You must input the encryption key twice to confirm that it was en-
tered correctly. If the keys don't match, the initialization fails. See
“Strong encryption” [SQL Anywhere Server - Database Administra-
tion].

-er Removes encryption from encrypted tables during an unload proce-
dure.

When extracting from a database that has table encryption enabled,
you must specify either -er or -et to indicate whether the new database
has table encryption enabled, otherwise you get an error when at-
tempting to load the data into the new database.

The following command (entered all on one line) extracts a database
(cons.db) that has encrypted tables, into a new database (field.db) that
does not have table encryption enabled, removing encryption from
any encrypted tables:

dbxtract -an c:\field.db -er -c "UID=DBA;PWD=sql;
DBF=c:\cons.db;DBKEY=29bN8cj1z field_user"

SQL Remote utilities and options reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 191

Option Description

-et Enables database table encryption in the new database (-an or -ar must
also be specified). If you specify the -et option without the -ea option,
the AES algorithm is used. If you specify the -et option, you must also
specify -ep or -ek. You can change the table encryption settings for
the new database to be different from those of the database you are
unloading.

When rebuilding a database that has table encryption enabled, you
must specify either -er or -et to indicate whether the new database has
table encryption enabled, otherwise you get an error when attempting
to load the data into the new database.

The following example (entered all on one line) unloads a database
(cons.db) that has tables encrypted with the simple encryption algo-
rithm, into a new database (field.db) that has table encryption enabled,
and uses AES_FIPS encryption with the key 34jh:

dbxtract -an c:\field.db -et -ea AES_FIPS -ek 34jh
-c "UID=DBA;PWD=sql;DBF=c:\cons.db field_user"

-f Extracts fully qualified publications. Usually you do not need to ex-
tract fully qualified publication definitions for the remote database,
since it typically replicates all rows back to the consolidated database.

However, you may want fully qualified publications for multi-tier set-
ups or for setups where the remote database has rows that are not in
the consolidated database.

SQL Remote reference

192 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Option Description

-g ● Materialized views By default, materialized views defined as
MANUAL REFRESH are not initialized after a reload. If you
want these materialized views to be initialized as part of the reload
process, specify the -g option. Specifying -g causes the database
server to execute the sa_refresh_materialized_views system proce-
dure. See “sa_refresh_materialized_views system procedure”
[SQL Anywhere Server - SQL Reference].

When deciding whether to use the -g option, consider that initializ-
ing all materialized views may cause the reload process to take
significantly longer to complete. However, not using the -g option
means that the first query that attempts to use an uninitialized ma-
terialized view must wait while the database server initializes the
view, which may cause an unexpected delay. If you do not use the
-g option, you can also manually initialize materialized views after
the reload completes. See “Initializing a materialized view” [SQL
Anywhere Server - SQL Usage].

● Text indexes By default, text indexes defined as MANUAL
REFRESH are not initialized after a reload. If you want the text
indexes initialized as part of the reload process, specify the -g op-
tion. Specifying -g causes the database server to execute the sa_re-
fresh_text_indexes system procedure. See “sa_refresh_text_in-
dexes system procedure” [SQL Anywhere Server - SQL Refer-
ence].

-ii Performs an internal unload and internal reload. Using this option
forces the reload script to use the internal UNLOAD and LOAD TA-
BLE statements rather than the Interactive SQL OUTPUT and INPUT
statements to unload and load data, respectively. This combination of
operations is the default behavior.

External operations take the path of the data files relative to the cur-
rent working directory of dbxtract, while internal statements take the
path relative to the database server.

-ix Performs an internal unload and external reload. Using this option
forces the reload script to use the internal UNLOAD statement to un-
load data, and the Interactive SQL INPUT statement to load the data
into the new database.

External operations take the path of the data files relative to the cur-
rent working directory of dbxtract, while internal statements take the
path relative to the database server.

SQL Remote utilities and options reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 193

Option Description

-l level Performs all extraction operations at specified isolation level. The de-
fault setting is an isolation level of 0. If you are extracting a database
from an active database server, you should run it at isolation level 3 to
ensure that data in the extracted database is consistent with data on the
database server. Increasing the isolation level may result in large num-
bers of locks being used by the Extraction utility (dbxtract), and may
restrict database use by other users. See “Extraction utility (dbxtract)”
on page 187.

-n Extracts the schema definition only. With this definition, none of the
data is unloaded. The reload file contains SQL statements to build the
database schema only. You can use the SYNCHRONIZE SUBSCRIP-
TION statement to load the data over the messaging system. See
“SYNCHRONIZE SUBSCRIPTION statement [SQL Remote]” [SQL
Anywhere Server - SQL Reference]. Publications, subscriptions, PUB-
LISH, and SUBSCRIBE permissions are part of the schema.

dbxtract -c "UID=DBA;PWD=sql;DBF=c:\remote\cons
\cons.db"
-n "c:\remote\reload.sql" UserName

-nl Extracts the structure (the same behavior as the -n option), but the re-
sulting reload.sql file also includes LOAD TABLE or INPUT state-
ments for each table. No user data is extracted when this option is
used. When you specify -nl, you must also include a data directory so
that the LOAD/INPUT statements can be generated, even though no
files are written to the directory. This option allows you to generate a
reload script without unloading data. You can extract the data by spec-
ifying -d. If a database contains a table whose data should not be un-
loaded, you can avoid unloading the data for that table by using
dbxtract -d -e table-name.

-o file Outputs messages to an output log file.

-p character Specifies an escape character. The default escape character (\) can be
replaced by another character using this option.

-q Operates quietly: does not display messages or show windows. When
this option is specified, -y must also be specified or the operation fails.

This option is available only for the command line utility.

-r file Specifies the name of the generated reload Interactive SQL script file.

The default name for the reload script file is reload.sql in the current
directory. You can specify a different file name with this option.

SQL Remote reference

194 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Option Description

-u Does not order data during the unload. By default, the data in each ta-
ble is ordered by primary key. Unloads are faster with the -u option,
but loading the data into the remote database is slower.

-v Displays verbose messages. The name of the table being unloaded, the
number of rows unloaded, and the SELECT statement used.

-xf Excludes foreign keys. You can use this option if the remote database
contains a subset of the consolidated database schema, and some for-
eign key references are not present in the remote database.

-xh Excludes procedure hooks.

-xi Performs an external unload and internal reload. The default behavior
for unloading the database is to use the UNLOAD statement, which is
executed by the database server. If you choose an external unload,
dbxtract uses the OUTPUT statement instead. The OUTPUT state-
ment is executed on the client.

External operations take the path of the data files relative to the cur-
rent working directory of dbxtract, while internal statements take the
path relative to the database server.

-xp Does not extract stored procedures from the database.

-xt Does not extract triggers from the database.

-xv Does not extract views from the database.

-xx Performs an external unload and an external load. Use the OUTPUT
statement to unload the data, and the INPUT statement to load the data
into the new database.

The default unload behavior is to use the UNLOAD statement, and the
default loading behavior is to use the LOAD TABLE statement. The
internal UNLOAD and LOAD TABLE statements are faster than
OUTPUT and INPUT.

External operations take the path of the data files relative to the cur-
rent working directory of dbxtract, while internal statements take the
path relative to the database server.

directory Specifies the directory the files are written to. This is not needed if
you specify -an or -ac.

subscriber Specifies the subscriber for whom the database is being extracted.

SQL Remote utilities and options reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 195

Remarks
By default, the Extraction utility (dbxtract) runs at isolation level zero. If you are extracting a database
from an active database server, you should run it at isolation level 3 to ensure that data in the extracted
database is consistent with data on the database server. Running at isolation level 3 may hamper others'
turnaround time on the database server because of the large number of locks required. It is recommended
that you run the Extraction utility (dbxtract) when the database server is not busy, or run it against a copy
of the database.

The Extraction utility (dbxtract) creates a SQL script file and a set of associated data files. The script file
can be run against a newly-initialized database to create the database objects and load the data for the
remote database.

By default, the SQL script file is named reload.sql.

If the remote user is a group, then all the user IDs that are members of that group are extracted. This
allows multiple users on a remote database with different user IDs, without requiring a custom extraction
process.

When using the Extraction utility (dbxtract) or the Extract Database Wizard with a version 10.0.0 or
later database, the version of dbxtract used must match the version of the database server used to access
the database. If an older version of dbxtract is used with a newer database server, or vice versa, an error is
reported.

The Extraction utility (dbxtract) and Extract Database Wizard do not unload the objects created for the
dbo user ID during database creation. Changes made to these objects, such as redefining a system
procedure, are lost when the data is unloaded. Any objects created by the dbo user ID since the
initialization of the database are unloaded by the Extraction utility (dbxtract), and so these objects are
preserved.

See also
● “Remote database extraction” on page 74
● “Database extraction” [SQL Anywhere Server - SQL Usage]

SQL Remote options

Replication options are database options included to provide control over replication behavior.

Syntax
SET [TEMPORARY] OPTION
[userid. | PUBLIC.]option-name = [option-value]

Parameter Description

option-name The name of the option being changed.

option-value A string containing the setting for the option.

SQL Remote reference

196 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Remarks
These options are used by the SQL Remote Message Agent, and should be set for the user ID specified in
the SQL Remote Message Agent command. They can also be set for general public use.

Option Values Default

“blob_threshold option [SQL Remote]”
[SQL Anywhere Server - Database Ad-
ministration]

Integer (in bytes) 256

“compression option [SQL Remote]”
[SQL Anywhere Server - Database Ad-
ministration]

Integer, from -1 to 9 6

“delete_old_logs option [SQL Re-
mote]” [SQL Anywhere Server - Data-
base Administration]

On, Off, Delay, n days Off

“external_remote_options [SQL Re-
mote]” [SQL Anywhere Server - Data-
base Administration]

On, Off Off

“qualify_owners option [SQL Re-
mote]” [SQL Anywhere Server - Data-
base Administration]

On, Off On

“quote_all_identifiers option [SQL Re-
mote]” [SQL Anywhere Server - Data-
base Administration]

On, Off Off

“replication_error option [SQL Re-
mote]” [SQL Anywhere Server - Data-
base Administration]

Stored procedure name (no procedure)

“replication_error_piece option [SQL
Remote]” [SQL Anywhere Server - Da-
tabase Administration]

Stored procedure name (no procedure)

“save_remote_passwords option [SQL
Remote]” [SQL Anywhere Server - Da-
tabase Administration]

On, Off On

“sr_date_format option [SQL Remote]”
[SQL Anywhere Server - Database Ad-
ministration]

date-string YYYY/MM/DD

SQL Remote utilities and options reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 197

Option Values Default

“sr_time_format option [SQL Re-
mote]” [SQL Anywhere Server - Data-
base Administration]

time-string HH:NN:SS.SSSSSS

“sr_timestamp_format [SQL Remote]”
[SQL Anywhere Server - Database Ad-
ministration]

timestamp-string YYYY/MM/DD
HH:NN:SS.SSSSSS

“subscribe_by_remote option [SQL
Remote]” [SQL Anywhere Server - Da-
tabase Administration]

On, Off On

“verify_all_columns option [SQL Re-
mote]” [SQL Anywhere Server - Data-
base Administration]

On, Off Off

“verify_threshold option [SQL Re-
mote]” [SQL Anywhere Server - Data-
base Administration]

Integer (in bytes) 1000

SQL Remote stored procedures
You can use the following stored procedures to manage an HTTP messaging system.

sr_add_message_server system procedure

This procedure defines the web services needed to accept HTTP requests from remote users and also the
definitions to allow the database server to access the directory where the message files are stored.

Syntax
CALL sr_add_message_server('owner');

Return value
None. An error is returned if there are issues creating the objects required to define the message server.

Remarks
When a database is first initialized, none of the web services needed to accept HTTP requests from remote
users is defined, and neither are definitions to allow the database server to access the directory where the
message files are stored. The creation of these objects is automated with the use of the
sr_add_message_server stored procedure, which takes an optional parameter to specify who owns all the
objects. Object names cannot be duplicated.

SQL Remote reference

198 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “sr_drop_message_server system procedure” on page 199
● “sr_update_message_server system procedure” on page 199

Example
The following statements cause the message server database (msgsrv) to define all the objects needed for
the message server, and specify that all the objects are owned by the cons user (the consolidated database
in this instance).

GRANT GROUP TO cons;
SET REMOTE http OPTION cons.root_directory='c:\\tutorial\\messages';
CALL sr_add_message_server('cons');
COMMIT;

sr_drop_message_server system procedure

This procedure deletes all objects created by sr_add_message_server.

Syntax
CALL sr_drop_message_server;

Return value
None. An error is returned if there are issues creating the objects required to define the message server.

Remarks
This stored procedure is used to delete all objects created by sr_add_message_server.

See also
● “sr_add_message_server system procedure” on page 198
● “sr_update_message_server system procedure” on page 199

sr_update_message_server system procedure

This procedure needs to be called whenever the SQL Remote definitions in the message server change.

Syntax
CALL sr_update_message_server('owner');

Return value
None. An error is returned if there are issues creating the objects required to define the message server.

Remarks
This procedure takes an optional parameter, the user that will own the objects created in the stored
procedure.

SQL Remote utilities and options reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 199

See also
● “sr_add_message_server system procedure” on page 198
● “sr_drop_message_server system procedure” on page 199

SQL Remote system procedures
The following stored procedure names and arguments provide the interface for customizing replication at
SQL Remote databases.

Notes
Unless otherwise stated, the following conditions apply to event-hook procedures:

● The stored procedures must have DBA authority.

● The procedure must not commit or rollback operations, or perform any action that performs an implicit
commit. The actions of the procedure are automatically committed by the calling application.

● You can troubleshoot the hooks by turning on the SQL Remote Message Agent verbose mode.

The #hook_dict table
The #hook_dict table is created immediately before a hook is called using the following CREATE
statement:

CREATE TABLE #hook_dict(
NAME VARCHAR(128) NOT NULL UNIQUE,
value VARCHAR(255) NOT NULL);

The SQL Remote Message Agent uses the #hook_dict table to pass values to hook functions; hook
functions use the #hook_dict table to pass values back to the SQL Remote Message Agent.

sp_hook_dbremote_begin system procedure

Use this system procedure to add custom actions at the beginning of the replication process.

Rows in #hook_dict table

Name Values Description

send true or false Indicates if the process is performing the send phase of replica-
tion.

receive true or false Indicates if the process is performing the receive phase of repli-
cation.

Remarks
If a procedure of this name exists, it is called when the SQL Remote Message Agent starts.

SQL Remote reference

200 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

sp_hook_dbremote_end system procedure

Use this system procedure to add custom actions just before the SQL Remote Message Agent exits.

Rows in #hook_dict table

Name Values Description

send true or false Indicates if the process is performing the send phase of replica-
tion.

receive true or false Indicates if the process is performing the receive phase of repli-
cation.

exit code integer A non-zero exit code indicates an error.

Remarks
If a procedure of this name exists, it is called as the last event before the SQL Remote Message Agent
shuts down.

sp_hook_dbremote_shutdown system procedure

Use this system procedure to initiate a SQL Remote Message Agent shutdown.

Rows in #hook_dict table

Name Values Description

send true or false Indicates if the process is performing the send phase of replica-
tion.

receive true or false Indicates if the process is performing the receive phase of repli-
cation.

shutdown true or false This row is false when the procedure is called. If the procedure
updates the row to true the SQL Remote Message Agent is shut
down.

Remarks
If a procedure of this name exists, it is called when the SQL Remote Message Agent is neither sending
nor receiving messages, and permits a hook-initiated shutdown of the SQL Remote Message Agent.

sp_hook_dbremote_receive_begin system procedure

Use this system procedure to perform actions before the start of the receive phase of replication.

SQL Remote utilities and options reference

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 201

Rows in #hook_dict
None

sp_hook_dbremote_receive_end system procedure

Use this system procedure to perform actions after the end of the receive phase of replication.

Rows in #hook_dict
None

sp_hook_dbremote_send_begin

Use this stored procedure to perform actions before the start of the send phase of replication.

Rows in #hook_dict
None

sp_hook_dbremote_send_end

Use this stored procedure to perform actions after the end of the send phase of replication.

Rows in #hook_dict
None

sp_hook_dbremote_message_sent

Use this stored procedure to perform actions after any message is sent.

Rows in #hook_dict

Name Values

remote user The message destination.

sp_hook_dbremote_message_missing

Use this stored procedure to perform actions when the SQL Remote Message Agent has determined that
one or more messages is missing from a remote user.

SQL Remote reference

202 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Rows in #hook_dict

Name Values

remote user The name of the remote user who will have to resend messages.

sp_hook_dbremote_message_apply_begin

Use this stored procedure to perform actions just before the SQL Remote Message Agent applies a set of
messages from a user.

Rows in #hook_dict

Name Values

remote user The name of the remote user who sent the messages about to be applied.

sp_hook_dbremote_message_apply_end

Use this stored procedure to perform actions just after the SQL Remote Message Agent has applied a set
of messages from a user.

Rows in #hook_dict

Name Values

remote user The name of the remote user who sent the messages that have been applied.

SQL Remote system tables
SQL Remote system information is held in the SQL Anywhere catalog. A more comprehensible version
of this information is held in a set of system views. You can use the following views to access SQL
Remote data:

● “SYSARTICLE system view” [SQL Anywhere Server - SQL Reference]
● “SYSARTICLECOL system view” [SQL Anywhere Server - SQL Reference]
● “SYSPUBLICATION system view” [SQL Anywhere Server - SQL Reference]
● “SYSREMOTEOPTION system view” [SQL Anywhere Server - SQL Reference]
● “SYSREMOTEOPTIONTYPE system view” [SQL Anywhere Server - SQL Reference]
● “SYSREMOTETYPE system view” [SQL Anywhere Server - SQL Reference]
● “SYSREMOTEUSER system view” [SQL Anywhere Server - SQL Reference]
● “SYSSUBSCRIPTION system view” [SQL Anywhere Server - SQL Reference]

SQL Remote system tables

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 203

SQL Remote SQL statements
Use the following SQL statements to execute SQL Remote commands:

● “ALTER PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL
Reference]

● “ALTER REMOTE MESSAGE TYPE statement [SQL Remote]” [SQL Anywhere Server - SQL
Reference]

● “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL
Reference]

● “CREATE REMOTE MESSAGE TYPE statement [SQL Remote]” [SQL Anywhere Server - SQL
Reference]

● “CREATE SUBSCRIPTION statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “CREATE TRIGGER statement” [SQL Anywhere Server - SQL Reference]
● “DROP PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “DROP REMOTE MESSAGE TYPE statement [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “DROP SUBSCRIPTION statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “GRANT CONSOLIDATE statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “GRANT PUBLISH statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “GRANT REMOTE statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “GRANT REMOTE DBA statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “PASSTHROUGH statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “REMOTE RESET statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “REVOKE CONSOLIDATE statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “REVOKE PUBLISH statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “REVOKE REMOTE statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “REVOKE REMOTE DBA statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “SET REMOTE OPTION statement [SQL Remote]”
● “START SUBSCRIPTION statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “STOP SUBSCRIPTION statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “SYNCHRONIZE SUBSCRIPTION statement [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “UPDATE statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]

SET REMOTE OPTION statement [SQL Remote]
Sets a message control parameter for a SQL Remote message link.

Syntax
SET REMOTE link-name OPTION
[userid.| PUBLIC.]link-option-name = link-option-value

SQL Remote reference

204 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

link-name :
file
| ftp
| http
| smtp

link-option-name :
common-options
| file-options
| ftp-options
| smtp-options

common-options :
debug
| encode_dll
| max_retries
| output_log_send_on_error
| output_log_send_limit
| output_log_send_now
| pause_after_failure

file-options :
directory
| invalid_extensions
| unlink_delay

ftp-options :
active_mode
| host
| invalid_extensions
| password
| port
| root_directory
| reconnect_retries
| reconnect_pause
| suppress_dialogs
| user

http-options :
| certificate
| client_port
| https
| password
| proxy
| reconnect_retries
| reconnect_pause
| root_directory
| url
| user

smtp-options :
 local_host
| pop3_host
| pop3_password
| pop3_userid
| smtp_authenticate
| smtp_option

SQL Remote SQL statements

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 205

| smtp_password
| smtp_userid
| suppress_dialogs
| top_supported

link-option-value : string

Parameters
userid If you do not specify a userid, then the current publisher is assumed.

common-options These options are common to the FILE, FTP, HTTP, and SMTP message systems:

○ debug This parameter is set either to YES or NO. The default is NO. When set to YES, debug
output specific to the message system is displayed. This information can be used for troubleshooting
problems in the message system.

○ max_retries By default, when SQL Remote is running in continuous mode and an error occurs
when accessing the message system, it shuts down after the send and/or received phases. Use this
parameter to specify the number of times you want SQL Remote to retry the send and/or receive
phases before it shuts down.

○ output_log_send_on_error Sends log information when an error occurs.

○ output_log_send_limit Limits the amount of information that is sent to the consolidated database.
The output_log_send_limit option specifies the number of bytes at the end of the output log (that is,
the most recent entries) that are sent to the consolidated database. The default is 5K.

○ output_log_send_now When set to YES, sends output log information to the consolidated
database. On the next poll, the remote database sends the output log information and then resets the
output_log_send_now option to NO.

○ pause_after_failure This parameter applies when the max_retries parameter is specified to a value
other than zero and SQL Remote is running in continuous mode. When an error occurs in the message
system, this parameter defines the number of seconds SQL Remote waits between retrying the send
and/or receive phases.

○ encode_dll If you have implemented a custom encoding scheme, you must set this to the full path
of the custom encoding DLL that you created.

file-options These options apply to the FILE message system only:

○ directory The directory under which the messages are stored. This parameter is an alternative to
the SQLREMOTE environment variable.

○ invalid_extensions A comma-separated list of file extensions that you do not want the SQL
Remote Message Agent (dbremote) to use when generating files in the messaging system.

○ unlink_delay The number of seconds to wait before attempting to delete a file if the previous
attempt to delete the file failed. If no value is defined for unlink_delay, then the default behavior is set
to pause for 1 second after the first failed attempt, 2 seconds after the second failed attempt, 3 seconds
after the third failed attempt, and 4 seconds after the fourth failed attempt.

SQL Remote reference

206 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

ftp-options These options apply to the FTP message system only:

○ active_mode This parameter controls how SQL Remote establishes the server/client connection.
This parameter is set either to YES or NO. The default is NO (passive mode). Passive mode is the
preferred transfer mode and the default for the FTP message link. In passive mode, all data transfer
connections are initiated by the client, in this case, the message link. In active mode, the FTP server
initiates all data connections.

○ host The host name of the computer where the FTP server is running. This parameter can be a host
name (such as FTP.ianywhere.com) or an IP address (such as 192.138.151.66).

○ invalid_extensions A comma-separated list of file extensions that you do not want dbremote to
use when generating files in the messaging system.

○ password The password for accessing the FTP host.

○ port The IP port number used for the FTP connection. This parameter is usually not required.

○ reconnect_retries The number of times the link should try to open a socket with the server before
failing. The default value is 4. When you set this parameter, only reconnections are affected. The
initial connection made by the FTP link is not affected.

○ reconnect_pause The time in seconds to pause between each connection attempt. The default
setting is 30 seconds. When you set this parameter, only reconnections are affected. The initial
connection made by the FTP link is not affected.

○ root_directory The root directory within the FTP host site that the messages are stored under.

○ suppress_dialogs This parameter is set to TRUE or FALSE. If it is set to TRUE, the Connect
window does not appear after failed attempts to connect to the FTP server. Instead, an error is
generated.

○ user The user name for accessing the FTP host.

http-options These options apply to the HTTP message system only:

○ certificate To make a secure (HTTPS) request, a client must have access to the certificate used by
the HTTPS server. The necessary information is specified in a string of semicolon-separated key/value
pairs. You can use the file key to specify the file name of the certificate. You cannot specify a file and
certificate key together. The following keys are available:

Key Abbreviation Description

file The file name of the certificate

certificate cert The certificate itself

company co The company specified in the certificate

unit The company unit specified in the certificate

SQL Remote SQL statements

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 207

Key Abbreviation Description

name The common name specified in the certificate

Certificates are required only for requests that are either directed to an HTTPS server or can be
redirected from a non-secure to a secure server. Only PEM formatted certificates are supported.
certificate='file=filename'

○ client_port Identifies the port number on which SQL Remote communicates using HTTP. It is
provided for, and recommended only for, connections through firewalls that filter "outgoing" TCP/IP
connections. You can specify a single port number, ranges of port numbers, or a combination of the
two. Specifying a low number of client ports could result in SQL Remote being unable to send and
receive messages if the operating system has not released the ports in a timely manner after SQL
Remote closes the port on a previous run.

○ debug When set to YES, all HTTP commands and responses are displayed in the output log. This
information can be used for troubleshooting HTTP support problems. The default is NO.

○ https Specify whether to use HTTPS (https=yes) or HTTP (https=no).

○ password The message server database password. The password authenticates to third-party
HTTP servers and gateways using RFC 2617 Basic authentication.

○ proxy_host Specifies the URI of a proxy server. For use when SQL Remote must access the
network through a proxy server. Indicates that SQL Remote is to connect to the proxy server and send
the request to the message server through it.

'

○ reconnect_retries The number of times the link should try to open a socket with the server before
failing. The default value is 4. When you set this parameter, only reconnections are affected. The
initial connection made by the FTP link is not affected.

○ reconnect_pause The time in seconds to pause between each connection attempt. The default
setting is 30 seconds. When you set this parameter, only reconnections are affected. The initial
connection made by the FTP link is not affected.

○ root_directory This HTTP control parameter is ignored when specified at the client side. You
define this control parameter in the message server prior to calling the sr_add_message_server or
sr_update_message_server stored procedure. When using the HTTP message system, the address
specified for a remote user or publisher can only contain a single subdirectory, and not multiple
subdirectories.

○ url Specify the server name or IP address and optionally the port number of the HTTP server being
used, separated by a semicolon. If requests are being passed through the Relay Server, you can
optionally add a URL extension to indicate which server farm the request should be passed to.

○ user The message server database user ID. Authenticates to third-party HTTP servers and gateways
using RFC 2617 Basic authentication.

SQL Remote reference

208 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

smtp-options These options apply to the SMTP message system only:

○ local_host The name of the local computer. It is useful on computers where SQL Remote is unable
to determine the local host name. The local host name is needed to initiate a session with any SMTP
server. In most network environments, the local host name can be determined automatically and this
entry is not needed.

○ pop3_host The name of the computer on which the POP host is running. Typically, it is the same
name as the SMTP host. It corresponds to the POP3 host field in the SMTP/POP3 login window.

○ pop3_password The password used to retrieve mail. It corresponds to the password field in the
SMTP/POP3 login window.

○ pop3_userid The user ID used to retrieve mail. The POP user ID corresponds to the user ID field
in the SMTP/POP3 login window. You must obtain a user ID from your POP host administrator.

○ smtp_host The name of the computer on which the SMTP server is running. It corresponds to the
SMTP host field in the SMTP/POP3 login window

○ top_supported SQL Remote uses a POP3 command called TOP when enumerating incoming
messages. The TOP command may not be supported by all POP servers. When you set the
top_supported parameter to NO, SQL Remote uses the RETR command, which is less efficient but
works with all POP servers. The default is YES.

○ smtp_authenticate Determines whether the SMTP link authenticates the user. The default value is
YES. Set this parameter to NO to turn off SMTP authentication.

○ smtp_userid The user ID for SMTP authentication. By default, this parameter takes the same
value as the pop3_userid parameter. The smtp_userid only needs to be set if the user ID is different
from that of the POP server.

○ smtp_password The password for SMTP authentication. By default, this parameter takes the
same value as the pop3_password parameter. The smtp_password only needs to be set if the user ID is
different from that of the POP server.

○ suppress_dialogs When this parameter is set to true, the Connect window does not appear after
failed attempts to connect to the mail server. Instead, an error is generated.

Remarks
The SQL Remote (dbremote) Message Agent saves message link parameters when the user enters them in
the message link window when the message link is first used. In this case, it is not necessary to use this
statement explicitly. This statement is most useful when preparing a consolidated database for extracting
many databases.

The option names are case sensitive. The case sensitivity of option values depends on the option: Boolean
values are case insensitive, while the case sensitivity of passwords, directory names, and other strings
depend on the case sensitivity of the file system (for directory names), or the database (for user IDs and
passwords).

SQL Remote SQL statements

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 209

Permissions
DBA authority. The publisher can set their own options.

Side effects
Automatic commit.

See also
● “Collecting errors from the remote database” on page 127
● “Setting remote message type control parameters” on page 105
● “Custom encoding schemes” on page 101
● “SET OPTION statement” [SQL Anywhere Server - SQL Reference]
● “The FTP message system” on page 108
● “The FILE message system” on page 106
● “The HTTP message system” on page 110
● “Tutorial: Setting up a replication system using the HTTP message system” on page 149
● “The SMTP message system” on page 114

Standards and compatibility
● SQL/2008 Vendor extension.

Examples
The following statement sets the FTP host to ftp.mycompany.com for the FTP link for user myuser:

SET REMOTE FTP OPTION myuser.host = 'ftp.mycompany.com';

The following statement stops SQL Remote from using the specified file extensions for messages that are
generated:

SET REMOTE FTP OPTION
"Public"."invalid_extensions"='exe,pif,dll,bat,cmd,vbs';

The following statement sets the URL to point to the localhost for the HTTP link for user myuser:

SET REMOTE HTTP OPTION myuser.url='localhost:8033';

The following statement sets the HTTP URL to point to a Relay Server that forwards the request to the
srhttp farm:

SET REMOTE HTTP OPTION "public"."url"='iis7.company.com:80/rs/client/
rs_client.dll/srhttp';

SQL Remote reference

210 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Index
Symbols
#hook_dict table

SQL Remote Message Agent utility (dbremote),
200
SQL Remote unique primary keys, 71

-a option
SQL Remote Message Agent utility (dbremote),
178

-ac option
SQL Remote extraction utility (dbxtract), 187

-al option
SQL Remote extraction utility (dbxtract), 187

-an option
SQL Remote extraction utility (dbxtract), 187

-ap option
SQL Remote extraction utility (dbxtract), 187

-b option
SQL Remote extraction utility (dbxtract), 187
SQL Remote Message Agent utility (dbremote),
178

-c option
SQL Remote extraction utility (dbxtract), 187
SQL Remote Message Agent utility (dbremote),
178

-d option
SQL Remote extraction utility (dbxtract), 187

-dl option
SQL Remote Message Agent utility (dbremote),
178

-ea option
SQL Remote extraction utility (dbxtract), 187

-ek option
SQL Remote extraction utility (dbxtract), 187
SQL Remote Message Agent utility (dbremote),
178

-ep option
SQL Remote extraction utility (dbxtract), 187
SQL Remote Message Agent utility (dbremote),
178

-er option
SQL Remote extraction utility (dbxtract), 187

-et option
SQL Remote extraction utility (dbxtract), 187

-f option

SQL Remote extraction utility (dbxtract), 187
-g option

SQL Remote extraction utility (dbxtract), 187
SQL Remote Message Agent utility (dbremote),
178

-ii option
SQL Remote extraction utility (dbxtract), 187

-ix option
SQL Remote extraction utility (dbxtract), 187

-l option
SQL Remote extraction utility (dbxtract), 187
SQL Remote Message Agent utility (dbremote),
178

-m option
SQL Remote Message Agent utility (dbremote),
178

-ml option
SQL Remote Message Agent utility (dbremote),
178

-n option
SQL Remote extraction utility (dbxtract), 187

-nl option
SQL Remote extraction utility (dbxtract), 187

-o option
SQL Remote extraction utility (dbxtract), 187
SQL Remote Message Agent utility (dbremote),
178

-os option
SQL Remote Message Agent utility (dbremote),
178

-ot option
SQL Remote Message Agent utility (dbremote),
178

-p option
SQL Remote extraction utility (dbxtract), 187
SQL Remote Message Agent utility (dbremote),
178

-q option
SQL Remote extraction utility (dbxtract), 187
SQL Remote Message Agent utility (dbremote),
178

-qc option
SQL Remote Message Agent utility (dbremote),
178

-r option
SQL Remote extraction utility (dbxtract), 187
SQL Remote Message Agent utility (dbremote),
178

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 211

-rd option
SQL Remote Message Agent utility (dbremote),
178

-rho option
SQL Remote Message Agent utility (dbremote),
178

-rp option
SQL Remote Message Agent utility (dbremote),
178

-rt option
SQL Remote Message Agent utility (dbremote),
178

-ru option
SQL Remote Message Agent utility (dbremote),
178

-s option
SQL Remote Message Agent utility (dbremote),
178

-sd option
SQL Remote Message Agent utility (dbremote),
178

-t option
SQL Remote Message Agent utility (dbremote),
178

-u option
SQL Remote extraction utility (dbxtract), 187
SQL Remote Message Agent utility (dbremote),
178

-ud option
SQL Remote Message Agent utility (dbremote),
178

-ui option
SQL Remote Message Agent utility (dbremote),
178

-ux option
SQL Remote Message Agent utility (dbremote),
178

-v option
SQL Remote extraction utility (dbxtract), 187
SQL Remote Message Agent utility (dbremote),
178

-w option
SQL Remote Message Agent utility (dbremote),
178

-x option
SQL Remote Message Agent utility (dbremote),
178

-xf option

SQL Remote extraction utility (dbxtract), 187
-xh option

SQL Remote extraction utility (dbxtract), 187
-xi option

SQL Remote extraction utility (dbxtract), 187
-xp option

SQL Remote extraction utility (dbxtract), 187
-xt option

SQL Remote extraction utility (dbxtract), 187
-xv option

SQL Remote extraction utility (dbxtract), 187
-xx option

SQL Remote extraction utility (dbxtract), 187
-y option

SQL Remote extraction utility (dbxtract), 187
@data option

SQL Remote extraction utility (dbxtract), 187
SQL Remote Message Agent utility (dbremote),
178

A
ActiveSync

SQL Remote synchronization for Windows
Mobile, 107

addresses
SQL Remote FILE sharing, 107
SQL Remote FTP, 108

administering
SQL Remote, 73

administering SQL Remote
about, 73

ALTER PUBLICATION statement
SQL Remote avoid changing running systems, 131
SQL Remote using, 17

ALTER REMOTE MESSAGE TYPE statement
using, 104

articles
INSERT statements, 51
SQL Remote creation, 10

authorities
SQL Remote revoking REMOTE DBA, 30

B
backups

SQL Remote transaction log management, 118
batch mode

SQL Remote Message Agent utility (dbremote), 84

Index

212 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

BEFORE triggers
SQL Remote ignoring errors, 126

BLOBs
SQL Remote, 38

C
cache

SQL Remote received messages, 89
SQL Remote sent messages, 94

ccMail
SQL Remote, 102

certificate control parameter
SQL Remote HTTP message type, 112

client_port control parameter
SQL Remote HTTP message type, 113

confirm_received column
SQL Remote, 98

conflict resolution
SQL Remote approaches, 41
SQL Remote triggers, 43

conflicts
SQL Remote, 40
SQL Remote management, 42

connections
SQL Remote Message Agent, 178

CONSOLIDATE permissions
SQL Remote, 26
SQL Remote granting, 27

consolidated databases
setting, 27
SQL Remote, 6

contacts SQL Remote example
about, 58

continuous mode
SQL Remote Message Agent utility (dbremote), 82

control parameters
(see also message control parameters)
FILE message system [SQL Remote], 106, 107
FTP message system [SQL Remote], 108
HTTP message system [SQL Remote], 110
SMTP message system [SQL Remote], 114

create article wizard
SQL Remote adding articles in , 17

create publication wizard
SQL Remote, 10

create SQL Remote message type wizard
adding message types in Sybase Central, 103

create SQL Remote subscription wizard
using, 31

CREATE SUBSCRIPTION statement
SQL Remote, 31

CURRENT REMOTE USER special value
SQL Remote using, 46

D
daemon

SQL Remote Message Agent utility (dbremote),
178

data exchange
SQL Remote, 1

data movement technologies
SQL Remote replication, 1

data recovery
SQL Remote, 118

data types
SQL Remote replicating, 38

database extraction utility (dbxtract)
SQL Remote syntax, 187

databases
setting a consolidated database, 27

dbo user
SQL Remote system objects, 187

dbremote utility
options, 177
SQL Remote #hook_dict table, 200
SQL Remote about, 80
SQL Remote daemon, 178
SQL Remote introduction, 1
SQL Remote security, 130
starting on Mac OS X, 85
syntax, 177

dbunload utility
SQL Remote, 131

dbxtract utility
SQL Remote about, 135
SQL Remote options, 187
SQL Remote sp_hook_dbxtract_begin procedure,
71
SQL Remote syntax, 187

debug control parameter
SQL Remote FILE message type, 107
SQL Remote FTP message type, 108
SQL Remote HTTP message type, 113
SQL Remote SMTP message type, 115

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 213

Deleting Corrupt Message error
SQL Remote, 100

deploying
SQL Remote databases, 74

design overview
SQL Remote, 32

directory control parameter
SQL Remote FILE message type, 107

directory option
SQL Remote (dbremote), 177
SQL Remote extraction utility (dbxtract) syntax,
187

DLL
SQL Remote replicating, 38

document_in_progress table
SQL Remote usage, 39

dropping
SQL Remote message types, 105
SQL Remote publications, 18

E
encode_dll control parameter

SQL Remote FILE message type, 107
SQL Remote FTP message type, 108

encoding
SQL Remote custom, 101

encoding and compressing messages
SQL Remote, 100

encoding scheme
SQL Remote, 101

encryption
SQL Remote, 130

errors
SQL Remote default handling, 125
SQL Remote reporting by SQL Remote Message
Agent (dbremote), 125

event hooks
sp_hook_dbremote_message_sent stored
procedure, 202
SQL Remote about, 200
SQL Remote sp_hook_dbremote_begin stored
procedure, 200
SQL Remote sp_hook_dbremote_end , 201
SQL Remote
sp_hook_dbremote_message_apply_begin stored
procedure, 203

SQL Remote
sp_hook_dbremote_message_apply_end stored
procedure, 203
SQL Remote sp_hook_dbremote_message_missing
stored procedure, 202
SQL Remote sp_hook_dbremote_receive_begin
stored procedure, 201
SQL Remote sp_hook_dbremote_receive_end
stored procedure, 202
SQL Remote sp_hook_dbremote_send_begin
stored procedure, 202
SQL Remote sp_hook_dbremote_send_end stored
procedure, 202
SQL Remote sp_hook_dbremote_shutdown stored
procedure, 201

extracting
SQL Remote deploying databases, 74
SQL Remote reload files, 75

extraction utility (dbxtract)
SQL Remote options, 187
SQL Remote synchronizing databases, 135
SQL Remote syntax, 187

F
FILE message type

SQL Remote, 106
SQL Remote control parameters, 107
SQL Remote using, 102

frequency
SQL Remote setting send frequency, 83

FTP message system
about, 108

FTP message type
SQL Remote, 108
SQL Remote control parameters, 108
SQL Remote troubleshooting, 109
SQL Remote using, 102

G
global autoincrement

SQL Remote, 52
global_database_id option

SQL Remote, 71
GRANT PUBLISH statement

SQL Remote about, 21
GRANT REMOTE DBA statement

SQL Remote using, 29

Index

214 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

guaranteed message delivery system
SQL Remote , 96

H
handling lost or corrupt messages

SQL Remote, 99
hooks

SQL Remote about, 200
host

SQL Remote FTP message type, 108
HTTP message type

SQL Remote, 110
SQL Remote control parameter, 112

https control parameter
SQL Remote HTTP message type, 113

I
invalid_extensions parameter

SQL Remote FILE message type, 107
SQL Remote FTP message type, 108

L
log_received column

SQL Remote, 98
log_sent column

SQL Remote, 98
Lotus Notes

SQL Remote supported message types, 102

M
Mac OS X

running dbremote, 85
many-to-many relationships

SQL Remote publication design, 63
max_retries control parameter

SQL Remote FILE message type, 107
SQL Remote FTP message type, 108
SQL Remote SMTP message type, 115

media failures
SQL Remote, 118

message
SQL Remote administration, 73

message agent
SQL Remote Message Agent, vii

Message Agent (dbremote)
syntax, 177

message control parameters

FILE message system [SQL Remote], 106
FTP message system [SQL Remote], 108
HTTP message system [SQL Remote], 110
setting, 204
SMTP message system [SQL Remote], 114

message systems
about, 102

message type control parameters
SQL Remote, 105

message types
SQL Remote , 102
SQL Remote dropping, 105
SQL Remote FILE sharing, 107
SQL Remote FTP, 108
SQL Remote HTTP, 112
SQL Remote SMTP, 114
SQL Remote using, 102

messages
SQL Remote caching, 89
SQL Remote synchronizing databases, 137

multi-level hierarchies
SQL Remote passthrough mode limitation, 133
SQL Remote permissions, 20

multi-tier hierarchy
SQL Remote worker threads, 91

multi-tiered installations
SQL Remote permissions, 20

mutli-level hierarchies
SQL Remote database extraction, 78

N
Notes

(see also Lotus Notes)
SQL Remote, 102

O
options

setting remote, 204
SQL Remote, 196

output_log_send_limit
SQL Remote syntax, 204
SQL Remote troubleshooting, 127

output_log_send_now
SQL Remote syntax, 204
SQL Remote troubleshooting, 127

output_log_send_on_error
SQL Remote syntax, 204

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 215

SQL Remote troubleshooting, 127

P
partitioning

SQL Remote, 10
passthrough mode

SQL Remote, 132
PASSTHROUGH statement

SQL Remote, 132
password control parameter

SQL Remote FTP message type, 108
SQL Remote HTTP message type, 113

patience
SQL Remote, 87

pause_after_failure control parameter
SQL Remote FILE message type, 107
SQL Remote FTP message type, 108
SQL Remote SMTP message type, 115

performance
SQL Remote Message Agent utility (dbremote), 87
SQL Remote publications, 10

permissions
SQL Remote granting CONSOLIDATE, 27
SQL Remote management, 26
SQL Remote multi-tier installations, 20

policy example
SQL Remote publications, 63

pop3_host control parameter
SQL Remote SMTP message type, 115

pop3_password control parameter
SQL Remote SMTP message type, 115

pop3_userid control parameter
SQL Remote SMTP message type, 115

port control parameter
SQL Remote FTP message type, 108

primary key pools
SQL Remote, 53

primary keys
SQL Remote, 49
SQL Remote primary key pools, 53
SQL Remote unique values, 52

proxy control parameter
SQL Remote HTTP message type, 113

publications
SQL Remote alteration, 17
SQL Remote creation, 10
SQL Remote design, 10

SQL Remote dropping, 18
SQL Remote many-to-many relationships, 63
SQL Remote replication, 31

PUBLISH permission
SQL Remote, 26

publishing
SQL Remote, 10

R
reconnect_pause control parameter

SQL Remote HTTP message type, 113
reconnect_pause parameter

SQL Remote FTP message type, 108
reconnect_retries control parameter

SQL Remote HTTP message type, 113
reconnect_retries parameter

SQL Remote FTP message type, 108
recovery

SQL Remote, 118
referential integrity

SQL Remote, 49
reload files

SQL Remote database extraction, 75
reload.sql

SQL Remote, 75
remote message types

SQL Remote altering, 104
SQL Remote creating, 103

remote options
SET REMOTE OPTION statement [SQL Remote],
204

REMOTE permission
SQL Remote, 26

replication
(see also SQL Remote)
about SQL Remote, 1
publication design, 10
SQL Remote backup procedures, 118
SQL Remote backups, 118
SQL Remote BLOBs, 38
SQL Remote conflicts, 40
SQL Remote data definition statements, 38
SQL Remote data recovery, 118
SQL Remote data types, 38
SQL Remote dbremote, 177
SQL Remote files, 38
SQL Remote Message Agent, 177

Index

216 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SQL Remote passthrough mode, 132
SQL Remote primary key errors, 49
SQL Remote primary keys, 52
SQL Remote procedures, 36
SQL Remote publications, 31
SQL Remote referential integrity errors , 49
SQL Remote subscriptions, 31
SQL Remote transaction log management, 118
SQL Remote triggers, 36
SQL Remote triggers designing, 37
SQL statements, 132

replication conflicts
SQL Remote management, 49
SQL Remote update conflicts, 42

replication errors
SQL Remote, 40

replication errors and conflicts
SQL Remote, 40

replication_error option
SQL Remote error handling procedures, 126
tracking SQL errors, 126

reporting errors
SQL Remote Message Agent utility (dbremote),
125

rereceive_count column
SQL Remote, 99

resend requests
SQL Remote, 90

resend_count column
SQL Remote, 99

RESOLVE UPDATE
example, 46

RESOLVE UPDATE trigger
custom conflict resolution, 45

REVOKE PUBLISH statement
SQL Remote about, 21

REVOKE REMOTE DBA statement
SQL Remote using, 30

revoking consolidate permissions
SQL Remote, 28

revoking REMOTE DBA authority
SQL Remote, 30

revoking remote permissions
SQL Remote, 26

root control parameter
SQL Remote FTP message type, 108

root_directory control parameter
SQL Remote HTTP message type, 113

S
samples

SQL Remote policy example, 63
selecting a send frequency

SQL Remote about, 83
SEND AT clause

SQL Remote frequency setting, 83
SEND EVERY clause

SQL Remote frequency setting, 83
send frequency

SQL Remote batch mode, 84
SQL Remote continuous mode, 82
SQL Remote setting, 83

services
SQL Remote Message Agent utility (dbremote), 83

SET REMOTE OPTION statement
common options, 206
file options, 206
ftp options, 207
http options, 207
smtp options, 209
SQL Remote syntax, 204

setting
remote options, 204

SMTP message type
SQL Remote, 114
SQL Remote control parameter, 114
SQL Remote using, 102

SMTP/POP
SQL Remote addresses, 116

smtp_authenticate control parameter
SQL Remote SMTP message type, 115

smtp_host control parameter
SQL Remote SMTP message type, 115

smtp_password control parameter
SQL Remote SMTP message type, 115

smtp_userid control parameter
SQL Remote SMTP message type, 115

sp_hook_dbremote_begin stored procedure
SQL Remote syntax, 200

sp_hook_dbremote_end stored procedure
SQL Remote syntax, 201

sp_hook_dbremote_message_apply_begin stored
procedure

SQL Remote syntax, 203
sp_hook_dbremote_message_apply_end stored
procedure

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 217

SQL Remote syntax, 203
sp_hook_dbremote_message_missing stored
procedure

syntax, 202
sp_hook_dbremote_message_sent stored procedure

SQL Remote syntax, 202
sp_hook_dbremote_receive_begin stored procedure

SQL Remote syntax, 201
sp_hook_dbremote_receive_end stored procedure

SQL Remote syntax, 202
sp_hook_dbremote_send_begin stored procedure

SQL Remote syntax, 202
sp_hook_dbremote_send_end stored procedure

SQL Remote syntax, 202
sp_hook_dbremote_shutdown stored procedure

SQL Remote syntax, 201
sp_hook_dbxtract_begin procedure

SQL Remote, 71
specifying a consolidated database

about, 27
SQL Remote

(see also replication)
about, 1
ActiveSync and Windows Mobile, 107
administering, 73
administration overview, 73
backup procedures, 118
backup procedures at remote databases, 118
components, 1
concepts, 1
dbxtract utility, 187
deployment overview, 74
design principles, 32
event hooks, 200
extracting remote databases, 75
guaranteed message delivery system, 96
mobile workforces, 1
publications, 31
receiving message tasks, 87
reload.sql, 76
replicating data types, 38
replicating dates, 39
replicating DDL statements, 38
replicating deletes, 34
replicating inserts, 34
replicating procedures, 36
replicating times, 39
replicating triggers, 36

replicating updates, 34
replication system recovery procedures, 118
resolving date conflicts, 46
running as a service, 83
setting remote options, 204
SQL Anywhere system tables, 203
SQL Remote Message Agent (dbremote)
performance, 87
SQL Remote Message Agent introduction, 1
SQL Remote trigger replication, 37
SQL statements, 204
stored procedures, 198
subscribers, 1
subscriptions, 31
supported message systems, 102
system objects, 203
transaction log management, 118
tutorial, 139, 149, 159, 167
unloading databases, 131
users, 18
utilities and options reference, 177
Windows Mobile and ActiveSync, 107

SQL Remote components
about, 1

SQL Remote concepts
about, 1

SQL Remote Message Agent (dbremote)
guaranteed message delivery system, 96
running on Mac OS X, 85
SQL Remote about, 80
SQL Remote administration, 73
SQL Remote backup procedures, 118
SQL Remote batch mode, 84
SQL Remote continuous mode, 82
SQL Remote daemon, 178
SQL Remote introduction, 1
SQL Remote Message Agent utility (dbremote),
178
SQL Remote output , 125
SQL Remote performance, 87
SQL Remote reporting errors, 125
SQL Remote running as a service, 83
SQL Remote security, 130
SQL Remote settings, 82
SQL Remote transaction log management about,
118
SQL Remote tuning throughput, 91
syntax, 177

Index

218 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SQL Remote options
about, 196

SQL Remote stored procedures
about, 198

SQL statements
SQL Remote list, 204

SQLANY.INI
SQL Remote, 105

SQLREMOTE environment variable
alternative to, 107
setting message control parameters, 105

sr_add_message_server
syntax, 198

sr_drop_message_server
syntax, 199

sr_update_message_server
syntax, 199

stable queue
SQL Remote cleaning, 178

statements
SQL Remote, 204

stored procedures
SQL Remote, 198
sr_add_message_server, 198
sr_drop_message_server, 199
sr_update_message_server, 199

subscriber option
SQL Remote extraction utility (dbxtract), 187

subscription expressions
SQL Remote cost of evaluating, 33
SQL Remote using, 14

subscriptions
SQL Remote creation, 31
SQL Remote replication, 31

suppress_dialogs control parameter
SQL Remote SMTP message type, 115

suppress_dialogs parameter
SQL Remote FTP message type, 108

Sybase Central
setting a consolidated database, 27

SyncConsole
starting dbremote, 85

synchronization
SQL Remote, 135

synchronizing
SQL Remote synchronizing databases, 135

synchronizing data over a message system
SQL Remote, 137

syntax
SQL Remote stored procedures, 198
sr_add_message_server, 198, 199
sr_drop_message_server, 199

SYSREMOTEUSER
confirm_received column, 98
log_received column, 98
log_sent column, 98
rereceive_count column, 99
resend_count column, 99
SQL Remote, 96

system objects
SQL Remote, 203
SQL Remote dbo user, 187

system tables
SQL Remote, 203

T
territory realignment

SQL Remote foreign keys, 60
SQL Remote many-to-many relationships, 67
SQL Remote UPDATES, 34

testing
SQL Remote deployments, 73

tracking SQL errors
SQL Remote, 126

transaction log
SQL Remote guaranteed message delivery, 97
SQL Remote Message Agent, 177
SQL Remote offsets, 96
SQL Remote publications, 86

transaction log mirror
SQL Remote, 118

triggers
SQL Remote, 37
SQL Remote designing, 63

troubleshooting
SQL Remote errors, 125

tutorials
SQL Remote HTTP messaging system, 149
SQL Remote HTTP messaging system using Relay
Server, 167
SQL Remote HTTP messaging system using the
consolidated database as the message server, 159
SQL Remote system, 139

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 219

U
unique column values

SQL Remote, 52
Unix

SQL Remote supported message types, 102
unlink_delay control parameter

SQL Remote FILE message type, 107
unloading

SQL Remote consolidated databases, 131
UPDATE conflicts

SQL Remote, 42
UPDATE statement

SQL Remote territory realignment, 34
url parameter

SQL Remote HTTP message type, 114
user control parameter

SQL Remote FTP message type, 108
SQL Remote HTTP message type, 114

utilities
SQL Remote extraction (dbxtract), 187
SQL Remote Message Agent (dbremote) syntax,
177

V
verify_all_columns option

about, 45

W
Windows

SQL Remote supported message types, 102
Windows Mobile

SQL Remote, 107

Index

220 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

	SQL Remote
	Contents
	About this book
	SQL Remote systems
	SQL Remote components
	Typical SQL Remote setups
	Server-to-remote database replication for mobile workforces
	Server-to-server database replication among offices

	SQL Remote replication process

	Creating SQL Remote systems
	Publications and articles
	Creating publications
	Publishing only some columns in a table
	Publish only some rows in a table
	Publishing only some rows using the SUBSCRIBE BY clause
	Publishing only some rows using a WHERE clause

	Altering publications
	Dropping a publication

	User permissions
	Single-tiered hierarchy
	Multi-tiered hierarchy
	PUBLISH permission
	Creating a publisher
	Revoking PUBLISH permission
	Viewing the publisher

	REMOTE permission
	Granting REMOTE permission
	Revoke REMOTE permission

	CONSOLIDATE permission
	Granting CONSOLIDATE permission
	Revoke CONSOLIDATE permission

	REMOTE DBA authority
	Granting REMOTE DBA authority
	Revoke REMOTE DBA authority

	Subscriptions
	Transaction log-based replication
	INSERT and DELETE statement replication
	UPDATE statement replication
	Procedure replication
	Trigger replication
	Data definition statements
	Data types
	BLOBs
	Dates and times

	Replication conflicts and errors
	Update conflicts
	Default resolution for update conflicts
	Custom conflict resolution using a VERIFY clause
	UPDATE statements with a VERIFY clause
	The verify_all_columns option

	Custom conflict resolution using triggers
	Date conflict resolution
	Inventory conflict resolution

	Row not found errors
	Referential integrity errors
	Insert errors

	Duplicate primary key errors
	GLOBAL AUTOINCREMENT columns
	DEFAULT GLOBAL AUTOINCREMENT declaration

	Primary key pools
	Creating a primary key pool table
	Replicate the primary key pool
	Fill and replenish the key pool
	Using the primary keys from the key pool

	Row partitioning among remote databases
	Disjoint data partitions
	BEFORE UPDATE triggers

	Overlap partitions
	Referential integrity maintenance when reassigning rows among subscribers
	subscribe_by_remote option with many-to-many relationships

	Unique identification numbers for remote databases
	Setting the global_database_id value
	Unique database identification numbers when extracting databases

	Managing SQL Remote systems
	Remote database extraction
	Extracting remote databases automatically

	Remote database extraction to a reload file
	reload.sql file editing
	Database extraction for a multi-tier hierarchy system
	Creating multiple remote databases

	SQL Remote Message Agent (dbremote)
	SQL Remote Message Agent (dbremote) modes
	Run the SQL Remote Message Agent (dbremote) in continuous mode
	Setting the send frequency

	Running the SQL Remote Message Agent (dbremote) in batch mode
	Run the SQL Remote Message Agent (dbremote) on Mac OS X
	Run the SQL Remote Message Agent (dbremote) on Unix

	SQL Remote performance
	Tasks to receive messages
	Performance when receiving messages
	Polling interval adjustments to check for new messages
	Throughput adjustments by caching received messages
	Request adjustments to resend messages
	Adjusting the number of worker threads

	Tasks to send messages
	Performance when sending messages
	Send delay adjustments
	Throughput adjustments by caching sent messages
	Re-send request processing speed

	Guaranteed Message Delivery System
	Order of operations
	Lost or corrupt messages
	Messages are applied only once

	Message size
	Prevention of message corruption with encoding
	Custom encoding schemes

	SQL Remote message systems
	Creating message types
	Alter message types
	Deleting message types
	Setting remote message type control parameters
	The FILE message system
	The FTP message system
	Troubleshooting FTP problems

	The HTTP message system
	The SMTP message system
	SMTP/POP address sharing
	Troubleshooting SMTP Link

	SQL Remote system backups
	Maintaining transaction logs for remote databases
	Backing up remote databases

	Protect the consolidated database from media failures
	Back up the consolidated database

	Recovering consolidated databases manually
	Recovering consolidated databases automatically
	Replication error reporting and handling
	Run an error-handling procedure
	Collecting errors from the remote database
	Receiving email notification about remote database errors

	Ignoring replication errors

	Security
	Upgrades and resynchronization
	Changes to avoid on a running system

	SQL Remote passthrough mode
	Passthrough mode limitations
	Start and stop passthrough mode

	Subscription resynchronization
	Synchronize
	Synchronize with the SQL Remote Message Agent (dbremote)
	Starting subscriptions
	Stopping subscriptions

	Tutorial: Creating a SQL Remote system
	Lesson 1: Creating the consolidated database
	Lesson 2: Granting PUBLISH and REMOTE permissions at the consolidated database
	Lesson 3: Creating publications and subscriptions
	Lesson 4: Creating a SQL Remote message type
	Lesson 5: Extracting the remote database
	Lesson 6: Sending data from the consolidated database to the remote database
	Lesson 7: Receiving data at the remote database
	Lesson 8: Sending data from the remote database to the consolidated database

	Tutorial: Setting up a replication system using the HTTP message system
	Lesson 1: Creating the consolidated database
	Lesson 2: Creating the message server
	Lesson 3: Creating the remote database
	Lesson 4: Adding and replicating data in the consolidated and remote databases
	Lesson 5: Cleaning up

	Tutorial: Setting up a replication system using the HTTP message system with the consolidated database as the message server
	Lesson 1: Creating the consolidated database
	Lesson 2: Configuring the consolidated database to act as the message server
	Lesson 3: Creating the remote database
	Lesson 4: Adding and replicating data in the consolidated and remote databases
	Lesson 5: Cleaning up

	Tutorial: Setting up a replication system using the HTTP message system and the consolidated database as the message server via Relay Server
	Lesson 1: Creating the consolidated database
	Lesson 2: Configuring the Relay Server
	Lesson 3: Configuring the consolidated database to act as the message server
	Lesson 4: Creating the remote database
	Lesson 5: Adding and replicating data in the consolidated and remote databases
	Lesson 6: Cleaning up

	SQL Remote reference
	SQL Remote utilities and options reference
	SQL Remote Message Agent utility (dbremote)
	Extraction utility (dbxtract)
	SQL Remote options
	SQL Remote stored procedures
	sr_add_message_server system procedure
	sr_drop_message_server system procedure
	sr_update_message_server system procedure

	SQL Remote system procedures
	sp_hook_dbremote_begin system procedure
	sp_hook_dbremote_end system procedure
	sp_hook_dbremote_shutdown system procedure
	sp_hook_dbremote_receive_begin system procedure
	sp_hook_dbremote_receive_end system procedure
	sp_hook_dbremote_send_begin
	sp_hook_dbremote_send_end
	sp_hook_dbremote_message_sent
	sp_hook_dbremote_message_missing
	sp_hook_dbremote_message_apply_begin
	sp_hook_dbremote_message_apply_end

	SQL Remote system tables
	SQL Remote SQL statements
	SET REMOTE OPTION statement [SQL Remote]

	Index

