
MobiLink™
Getting Started

Version 12.0.1

January 2012

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Version 12.0.1
January 2012

Copyright © 2012 iAnywhere Solutions, Inc. Portions copyright © 2012 Sybase, Inc. All rights reserved.

This documentation is provided AS IS, without warranty or liability of any kind (unless provided by a separate written agreement between
you and iAnywhere).

You may use, print, reproduce, and distribute this documentation (in whole or in part) subject to the following conditions: 1) you must
retain this and all other proprietary notices, on all copies of the documentation or portions thereof, 2) you may not modify the
documentation, 3) you may not do anything to indicate that you or anyone other than iAnywhere is the author or source of the
documentation.

iAnywhere®, Sybase®, and the marks listed at http://www.sybase.com/detail?id=1011207 are trademarks of Sybase, Inc. or its subsidiaries.
® indicates registration in the United States of America.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

http://www.sybase.com/detail?id=1011207

Contents

About this book ... v

MobiLink technology ... 1

MobiLink synchronization .. 1
MobiLink plug-in for Sybase Central ... 20
CustDB sample for MobiLink .. 48
MobiLink Contact sample ... 62

MobiLink tutorials .. 75

Tutorial: Introducing MobiLink ... 75
Tutorial: Using MobiLink with a SQL Anywhere consolidated database 96
Tutorial: Using MobiLink with an Oracle Database 10g 109
Tutorial: Using MobiLink with an Adaptive Server Enterprise
consolidated database .. 124
Tutorial: Using Java synchronization logic .. 142
Tutorial: Using .NET synchronization logic .. 149
Tutorial: Using Java or .NET for custom user authentication 159
Tutorial: Using direct row handling ... 165
Tutorial: Synchronizing with Microsoft Excel ... 188
Tutorial: Synchronizing with XML .. 205
Tutorial: Using central administration of remote databases 223
Tutorial: Changing a schema using the script version clause 243
Tutorial: Changing a schema using the ScriptVersion extended option ... 249
Tutorial: Simulating multiple MobiLink clients using the MobiLink
Replay utility .. 254

Index ... 267

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 iii

iv Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

About this book
This book introduces MobiLink, a session-based relational-database synchronization system. MobiLink
technology allows two-way replication and is well suited to mobile computing environments.

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 v

vi Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

MobiLink technology
This section introduces MobiLink synchronization technology and describes how to use it to replicate
data between two or more databases.

MobiLink synchronization
MobiLink is a session-based synchronization technology designed to synchronize UltraLite and SQL
Anywhere remote databases with a consolidated database.

Parts of a MobiLink application

In MobiLink synchronization, many clients synchronize through the MobiLink server to central data
sources.

● MobiLink clients The client can be installed on a mobile device, a server or desktop computer, or
a smartphone. Two types of clients are supported: UltraLite and SQL Anywhere databases. Either or
both can be used in a MobiLink installation. See “MobiLink clients” [MobiLink - Client
Administration].

● Network The connection between the MobiLink server and the MobiLink client can use several
protocols. See:

○ MobiLink server: “-x mlsrv12 option” [MobiLink - Server Administration]
○ UltraLite and SQL Anywhere clients: “MobiLink client network protocol options” [MobiLink -

Client Administration]

● MobiLink server This server manages the synchronization process and provides the interface
between all MobiLink clients and the consolidated database server. See “MobiLink server” [MobiLink
- Server Administration].

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 1

● Consolidated database This database typically contains the central copy of your application
information in the synchronization system. It also typically holds system tables and procedures that
are required by MobiLink synchronization, and state information needed to synchronize. See
“MobiLink consolidated databases” [MobiLink - Server Administration].

● State information The MobiLink server typically maintains synchronization information in
system tables in the consolidated database. It does this over an ODBC connection.

You can also choose to store your state information in a separate database. See “MobiLink system
database” [MobiLink - Server Administration].

● SQL row handling If you provide the MobiLink server with SQL scripts, it uses these scripts to
transfer rows to and from the consolidated database over an ODBC connection. See “Options for
writing server-side synchronization logic” on page 11.

● Direct row handling In addition to a consolidated database, you can optionally synchronize with
other data sources using MobiLink direct row handling. See “Direct row handling” [MobiLink - Server
Administration].

● Synchronization scripts You write synchronization scripts for each table in the remote database
and you save these scripts in MobiLink system tables in the consolidated database. These scripts
determine what is done with the uploaded data, and what data to download. There are two types of
script: table scripts and connection-level scripts. See:

○ “Overview of MobiLink events” [MobiLink - Server Administration]
○ “Synchronization script writing” [MobiLink - Server Administration]
○ “Synchronization events” [MobiLink - Server Administration]
○ “Options for writing server-side synchronization logic” on page 11

MobiLink features
MobiLink synchronization is adaptable and flexible. The following are some of its key features:

Features
● Easy to get started Using the Create Synchronization Model Wizard, you can create

synchronization applications quickly. The wizard can handle many difficult implementation details of
complex synchronization systems. Sybase Central allows you to view a synchronization model
offline, provides an easy interface for making changes, and has a deployment option for you to deploy
the model to your consolidated database.

● Monitoring and reporting MobiLink provides three mechanisms for monitoring your
synchronizations: the MobiLink Monitor, The SQL Anywhere Monitor for MobiLink, and statistical
scripts.

● Performance tuning There are several mechanisms for tuning MobiLink performance. For
example, you can adjust the degree of contention, upload cache size, number of database connections,
logging verbosity, or BLOB cache size.

MobiLink technology

2 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● Scalability MobiLink is an extremely scalable and robust synchronization platform. A single
MobiLink server can handle thousands of simultaneous synchronizations, and multiple MobiLink
servers can be run simultaneously using load balancing. The MobiLink server is multi-threaded and
uses connection pooling with the consolidated database.

● Security MobiLink provides extensive security options, including user authentication that can be
integrated with your existing authentication, encryption, and transport-layer security that works by the
exchange of secure certificates. MobiLink also provides FIPS-certified security options.

● Relay server and Sybase Relay Server hosting service The Relay Server enables secure,
load-balanced communication between mobile devices and back-end servers through a web server.
See “Introduction to the Relay Server” [Relay Server].

The Sybase Relay Server hosting service is a farm of Relay Servers hosted by Sybase that enables you
to more easily develop and evaluate mobile applications that use MobiLink data synchronization,
especially where data is sent using public wireless networks. See “Sybase Hosted Relay Service”
[Relay Server].

The diagram below shows how the Relay Server fits into a MobiLink environment.

Architecture
● Data coordination MobiLink allows you to choose selected portions of the data for

synchronization. MobiLink synchronization also allows you to resolve conflicts between changes
made in different databases. The synchronization process is controlled by synchronization logic,
which can be written as a SQL, Java, or .NET application. Each piece of logic is called a script. With
scripts, for example, you can specify how uploaded data is applied to the consolidated database,
specify what gets downloaded, and handle different schema and names between the consolidated and
remote databases. Event-based scripting provides great flexibility in the design of the synchronization
process, including such features as conflict resolution, error reporting, and user authentication.

● Two-way synchronization Changes to a database can be made at any location.

MobiLink synchronization

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 3

● Upload-only or download-only synchronization By default synchronization is two-way, with
both an upload and a download. However, you can also choose to perform an upload-only
synchronization or a download-only synchronization.

● File-based download Downloads can be distributed as files, enabling offline distribution of
synchronization changes. This feature includes functionality to ensure that the correct data is applied.

● Server-initiated synchronization You can initiate MobiLink synchronization from the
consolidated database. This means you can push data updates to remote databases, and cause remote
databases to upload data to the consolidated database. See “MobiLink - Server-Initiated
Synchronization”.

You can use server-initiated remote tasks (SIRT) as an alternative to server-initiated synchronization.
For more information, see “Central administration of remote databases” [MobiLink - Server
Administration] and “Server-initiated remote tasks (SIRT)” [MobiLink - Server Administration].

● Choice of network protocols Synchronization can occur over TCP/IP, HTTP, or HTTPS.
Windows Mobile devices can synchronize using Microsoft ActiveSync.

● Session-based All changes can be uploaded in a single transaction and downloaded in a single
transaction. At the end of each successful synchronization, the consolidated and remote databases are
consistent. (If you want to preserve the order of transactions, you can also choose to have each
transaction on the remote database uploaded as a separate transaction.)

Either a whole transaction is synchronized, or none of it is synchronized. This ensures transactional
integrity for each database.

● Data consistency MobiLink operates using a loose consistency policy. All changes are
synchronized with each site over time in a consistent manner, but different sites may have different
copies of data at any instant.

● Wide variety of hardware and software platforms A variety of widely-used database
management systems can be used as a MobiLink consolidated database, or you can define
synchronization to an arbitrary data source using the MobiLink server API. Remote databases can be
SQL Anywhere or UltraLite. The MobiLink server runs on Windows, Unix, Linux, and Mac OS X.
SQL Anywhere runs on Windows, Windows Mobile, or Unix, Linux, and Mac OS X. UltraLite runs
on Windows Mobile or BlackBerry. See “Supported platforms” [SQL Anywhere 12 - Introduction].

● MobiLink arbiter A MobiLink arbiter ensures that only a single MobiLink server in a server farm
is running as the primary server. This prevents redundant notifications in a server-initiated
synchronization environment and preserves messages in a QAnywhere messaging environment. The
diagram below shows the MobiLink arbiter in a server farm environment.

MobiLink technology

4 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Quick start to MobiLink
MobiLink is designed to synchronize data among many remote applications that connect intermittently
with one or more central data sources. In a basic MobiLink application, your remote clients are SQL
Anywhere or UltraLite databases, and your central data source is one of the supported ODBC-compliant
relational databases. This architecture can be extended using the MobiLink server API so that there are
virtually no restrictions on what you synchronize to on the server side.

In all MobiLink applications, the MobiLink server is the key to the synchronization process.
Synchronization typically begins when a MobiLink remote site opens a connection to a MobiLink server.
During synchronization, the MobiLink client at the remote site can upload database changes that were
made to the remote database since the previous synchronization. On receiving this data, the MobiLink
server updates the consolidated database, and then can download changes from the consolidated database
to the remote database.

The quickest way to start developing a MobiLink application is to use the Create Synchronization
Model Wizard. When you use the wizard, most of the steps outlined below are handled for you. See
“Synchronization models” on page 25.

MobiLink synchronization

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 5

However, even when using a MobiLink model, you need to understand the process and components of
MobiLink synchronization.

Overview of a MobiLink application
Create a MobiLink application

1. Set up a consolidated database.

● Run setup scripts against the database to add system objects required by MobiLink synchronization.
Alternatively, you can create a separate system database to hold these objects.

See “MobiLink consolidated databases” [MobiLink - Server Administration].

2. Set up remote databases.

● Your remote databases can be SQL Anywhere, UltraLite, or a combination of the two.

● In your remote databases, create MobiLink users. See “MobiLink users” [MobiLink - Client
Administration].

● To determine the upload in a SQL Anywhere remote database, create publications and
subscriptions. See “Publications” [MobiLink - Client Administration].

To determine the upload in an UltraLite remote database, create publications. See “Publishing data
in UltraLite” [UltraLite - Database Management and Reference].

3. To determine how the upload is applied, create server synchronization logic. See “Synchronization
script writing” [MobiLink - Server Administration].

4. To download data that has changed since the last download, set up timestamp-based synchronization.
See “Implementing timestamp-based downloads” [MobiLink - Server Administration].

5. Start the MobiLink server. See “Running the MobiLink server” [MobiLink - Server Administration].

6. Initiate synchronization on the client.

● For SQL Anywhere remote databases, see “Synchronization initiation” [MobiLink - Client
Administration].

● For UltraLite remote databases, see “UltraLite client synchronization design” [UltraLite - Database
Management and Reference].

Introductory reading
● “MobiLink synchronization” on page 1
● “Synchronization techniques” [MobiLink - Server Administration]

MobiLink technology

6 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Tutorials
● “Tutorial: Introducing MobiLink” on page 75
● “CustDB sample for MobiLink” on page 48
● “Tutorial: Building the UltraLite CustDB sample application” [UltraLite - Database Management and

Reference]
● “MobiLink Contact sample” on page 62
● “Tutorial: Using MobiLink with an Oracle Database 10g” on page 109
● “Tutorial: Using MobiLink with an Adaptive Server Enterprise consolidated database” on page 124
● “Tutorial: Using Java synchronization logic” on page 142
● “Tutorial: Using .NET synchronization logic” on page 149
● “Tutorial: Using Java or .NET for custom user authentication” on page 159
● “Tutorial: Using direct row handling” on page 165
● “Tutorial: Synchronizing with Microsoft Excel” on page 188
● “Tutorial: Synchronizing with XML” on page 205

Other resources for getting started

● MobiLink provides samples that you can examine and run to explore MobiLink functionality.
MobiLink samples are installed with the product in %SQLANYSAMP12%\MobiLink.

● MobiLink code exchange samples are located at http://www.sybase.com/detail?id=1058600#319. You
need a Sybase.com login to view this page.

MobiLink application design

There are two basic architectures for database applications:

● Online applications Users update data by connecting to the central database directly. When a
connection is unavailable, the user cannot work.

● Occasionally connected smart client applications Each user has a local database. Their
database application is always available to them, regardless of connectivity, and is kept synchronized
with other databases in the system.

MobiLink is designed for creating occasionally connected smart client applications. Smart client
applications can greatly increase the usability, efficiency, and scalability of an application, but they pose
new issues for application developers. This section describes some of the major issues facing developers
of smart client applications, and describes how you can implement solutions in a MobiLink
synchronization environment.

Synchronize only what you need
In most applications it would be a disaster to download the entire consolidated database every time you
want to update any piece of data on your remote device. The time and bandwidth would be prohibitive,
making the whole system unworkable. There are various techniques for ensuring you upload and
download only what each user needs.

MobiLink synchronization

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 7

http://www.sybase.com/detail?id=1058600#319

First, each remote database should only contain a subset of the tables and columns in the consolidated
database. For example, a salesperson in Region A may need different tables and columns than a
salesperson in Region B or a supervisor.

Of the tables and columns that you put on a remote device, you only want to mark ones for
synchronization that need to be synchronized. In a MobiLink application you can map tables and
columns, regardless of their names, as long as the data types match. By default, data is both uploaded and
downloaded, but MobiLink also allows you to specify that certain columns are upload-only or download-
only.

Your synchronization should only download rows to a remote database that are relevant to the user. You
might want to partition your download by remote database, by user, or by other criteria. For example, a
sales rep in Region A may only need data updates about Region A.

You only want to update data that has changed. In a MobiLink application the upload is based on the
transaction log and so by default, data is only uploaded if it has changed on the remote database. To do
the same for the download, you specify timestamp-based synchronization so that your system records the
time that data is successfully downloaded, and data is downloaded only if it has changed since then.

You may also want to implement a system of high priority synchronization: time-sensitive data is
scheduled to be updated frequently, but less time-critical data is scheduled to be updated at night or when
the device is in a cradle. You can implement high-priority synchronization by creating different
publications that are scheduled to run at different times.

In addition, your users may benefit from a push-synchronization system, where data is effectively pushed
down to remote devices when needed. For example, if a trucking company dispatcher learns of a traffic
disruption, they can download an update to the truck drivers who are heading towards that area. In
MobiLink, this is called server-initiated synchronization.

Handle upload conflicts
Say you have a warehouse. Each employee has a mobile device that they use to update inventory as they
add or remove boxes. They start a shift with 100 boxes, so each employee's remote database registers 100,
as does the consolidated database. David removes 20 boxes. He updates his database and synchronizes.
Now both his database and the consolidated database register 80. Now Susan removes ten boxes. But
when Susan updates her database and synchronizes, her application expects the consolidated database to
have 100 boxes, not 80. This generates an upload conflict.

In this warehouse application, the solution is to create conflict resolution logic that says that the correct
value is whatever David updated it to, minus the original value less Susan's value:

80 - (100 - 90) = 70

While this conflict resolution logic works for inventory-based applications such as a warehouse, it isn't
appropriate in all business applications. With MobiLink, you can define conflict resolution logic to cover:

● Inventory model Update the row for the correct number of units.

● Date The latest update wins (based on when the value was changed in the database, not when the
value was synchronized).

MobiLink technology

8 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● Person For example, the manager always wins or the owner of the record always wins.

● Custom Just about any other business logic you need to implement.

Sometimes you can design your system so that upload conflicts cannot occur. If data is partitioned on the
remotes so that there is no overlap, conflicts may be avoided. However, if conflicts can happen, you
should create a programmatic solution for detecting and resolving them.

Unique primary keys
To upload data, detect upload conflicts, and synchronize deleted rows on the consolidated database, you
must have unique primary keys on every synchronized table in your database system. Each row must have
a primary key that is unique not only within the database, but within the entire database system. Primary
keys must not be updated.

MobiLink provides several ways to guarantee unique primary keys. One is to set the data type of the
primary key to a GUID. GUID, which stands for Globally Unique Identifier, is a 16-byte hexadecimal
number. MobiLink provides a NEWID function that causes a GUID to be created automatically for a new
row.

Another solution is a composite key. In MobiLink, each remote database has a unique value called a
remote ID. Your primary keys could be formed from the remote ID plus a regular primary key, such as an
ordinal value.

SQL Anywhere also offers a global autoincrement solution. You declare a column as GLOBAL
AUTOINCREMENT and then when a row is added, the primary key is automatically created by
incrementing the last value. This solution works best when your consolidated database is SQL Anywhere.

Finally, you can create a pool of primary key values that are distributed to remote databases.

How you choose which primary key system to use, like many decisions in developing a synchronization
solution, has to do with the level of control you have over the consolidated and remote databases. Often,
the remote databases must be able to operate without any administration. You may also find that it is
difficult to change the schema on the consolidated database. In addition, your choice of RDBMS for the
consolidated database may limit your options, as not all RDBMSs support all features.

Handling deletes
Another issue in a synchronization system is how to handle rows that are deleted from the consolidated
database. Say I delete a row from the consolidated database. The next time David synchronizes his remote
database, the delete is downloaded—deleting the row from David's database. But what do I do with it on
the consolidated database? I can't delete it because I need to download the delete to Susan as well.

Here are two ways you can handle download deletes. First, you can add a status column to each table that
indicates whether the row is deleted or not. In this case, the row is never deleted—it is just marked for
deletion. You can occasionally clean up the rows marked for deletion, once you are sure that all the
remote databases are up to date. Alternatively, you can create a shadow table for each table. The shadow
table stores the primary key values of deleted rows. When a row is deleted, a trigger populates the shadow
table, and the values in the shadow table determine what to delete on the remote database.

MobiLink synchronization

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 9

Transactions
In a synchronized database system, only database transactions that are committed should be synchronized.
In addition, all committed transactions involving data that is to be synchronized should be synchronized,
or an error should be generated. This is the default behavior in MobiLink.

You also need to consider the isolation level of the connection to the consolidated database. You need to
use an isolation level that provides the best performance possible while ensuring data consistency.
Isolation level 0 (READ UNCOMMITTED) is generally unsuitable for synchronization as it can lead to
inconsistent data.

By default, MobiLink uses the isolation level SQL_TXN_READ_COMMITTED for uploads, and if
possible it uses snapshot isolation for downloads (otherwise it uses SQL_TXN_READ_COMMITTED).
Snapshot isolation eliminates the problem of downloads being blocked until transactions are closed on the
consolidated database, but not all RDBMSs support it.

Daylight savings time
The annual change to daylight savings time can pose a problem for synchronized databases during the
hour that the time changes. In the autumn the time moves back an hour; 2:00 AM becomes 1:00 AM. If
you attempt to synchronize between 1:00 AM and 2:00 AM, the timestamp of the synchronization is
ambiguous: is it the first 1:15 AM or the second 1:15 AM?

To resolve this problem you can shut down for an hour when the time changes in the autumn, or you can
put your consolidated database server on coordinated universal time (UTC) time.

See also
● “Synchronization techniques” [MobiLink - Server Administration]

MobiLink application development options
MobiLink provides a variety of ways to develop an application. You can use these methods alone or in
combination.

● Create Synchronization Model Wizard The wizard walks you through the development of your
application. You start with a central database that has schema, and you can create remote databases
and the scripts needed for synchronization. The wizard can also create shadow tables on your
consolidated database to handle things like download deletes. When the wizard completes, you can
further customize the model. There is a Deploy Synchronization Model Wizard that creates
databases and tables, updates the MobiLink system tables, and creates scripts that run MobiLink
utilities.

Once you have deployed a MobiLink model, if you have further customizations to it you can still
make changes using one of the methods described below.

● Sybase Central The MobiLink 12 plug-in for Sybase Central enables you to update all the
elements of your MobiLink application.

● System procedures When you set up a central database to operate as a consolidated database,
system objects are created that are used by MobiLink synchronization. These include MobiLink

MobiLink technology

10 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

system tables, where the server side of your MobiLink application is largely stored. They also include
system procedures and utilities that you can use to insert MobiLink scripts into your MobiLink system
tables, register remote users, and so on.

● Direct manipulation of MobiLink system tables Advanced users may want to add, delete, and
update data in the MobiLink system tables directly. Doing so requires an advanced understanding of
how MobiLink works.

See also
● “MobiLink plug-in for Sybase Central” on page 20
● “Synchronization model tasks” on page 28
● “MobiLink server system procedures” [MobiLink - Server Administration]
● “MobiLink utilities” [MobiLink - Server Administration]
● “MobiLink server system tables” [MobiLink - Server Administration]

Options for writing server-side synchronization logic

MobiLink synchronization scripts can be written in SQL, or they can be written in Java (using the
MobiLink server API for Java) or in .NET (using the MobiLink server API for .NET).

SQL synchronization logic is usually best when synchronizing to a supported consolidated database.

Java and .NET are useful if you are synchronizing against something other than a supported consolidated
database. They may also be useful if your design is restricted by the limitations of the SQL language or by
the capabilities of your database management system, or if you simply want portability across different
RDBMS types.

Java and .NET synchronization logic can function just as SQL logic functions. The MobiLink server can
make calls to Java or .NET methods on the occurrence of MobiLink events just as it can access SQL
scripts on the occurrence of MobiLink events. When you are working in Java or .NET, you can use the
events to do some extra processing, but when you are processing scripts for events that directly handle
upload or download rows, your implementation must return a SQL string. With the exception of the two
events used in direct row handling, uploads and downloads are not directly accessible from Java or .NET
synchronization logic: MobiLink executes the string returned by Java or .NET as SQL.

Direct row handling, which uses the events handle_UploadData and handle_DownloadData to
synchronize against a data source, does directly manipulate the upload and download rows.

The following are some scenarios where you might want to consider writing scripts in Java or .NET:

● Direct row handling With Java and .NET synchronization logic, you can use MobiLink to access
data from data sources other than your consolidated database, such as application servers, web servers,
and files.

● Authentication A user authentication procedure can be written in Java or .NET so that MobiLink
authentication integrates with your corporate security policies.

MobiLink synchronization

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 11

● Stored procedures If your RDBMS lacks the ability to use user-defined stored procedures, you
can create a method in Java or .NET.

● External calls If your program calls for contacting an external server midway through a
synchronization event, you can use Java or .NET synchronization logic to perform actions triggered
by synchronization events. Java and .NET synchronization logic can be shared across multiple
connections.

● Variables If your database lacks the ability to handle variables, you can create a variable in Java
or .NET that persists throughout your connection or synchronization. (Alternatively, with SQL scripts
you can use user-defined named parameters, which work with all consolidated database types. See
“User-defined named parameters” [MobiLink - Server Administration].)

MobiLink server APIs
Java and .NET synchronization logic are available via the MobiLink server APIs. The MobiLink server
APIs are sets of classes and interfaces for MobiLink synchronization.

The MobiLink server API for Java offers you:

● Access to the existing ODBC connection to the consolidated database as a JDBC connection.

● Access to alternate data sources using interfaces such as JDBC, web services, and JNI.

● The ability to create new JDBC connections to the consolidated database to make database changes
outside the current synchronization connection. For example, you can use this for error logging or
auditing, even if the synchronization connection does a rollback.

● For synchronizing with the consolidated database, the ability to write and debug Java code before it is
executed by the MobiLink server. SQL development environments for many database management
systems are relatively primitive compared to those available for Java applications.

● Both SQL row handling and direct row handling.

● The full richness of the Java language and its large body of existing code and libraries.

See “MobiLink server Java API reference” [MobiLink - Server Administration].

The MobiLink server API for .NET offers you:

● Access to the existing ODBC connection to the consolidated database using iAnywhere classes that call
ODBC from .NET.

● Access to alternate data sources using interfaces such as ADO.NET, web services, and OLE DB.

● For synchronizing with the consolidated database, the ability to write and debug .NET code before it is
executed by the MobiLink server. SQL development environments for many database management
systems are relatively primitive compared to those available for .NET applications.

● Both SQL row handling and direct row handling.

MobiLink technology

12 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● Code that runs inside the .NET Common Language Runtime (CLR) and allows access to all .NET
libraries, including both SQL row handling and direct row handling.

See “MobiLink server .NET API reference” [MobiLink - Server Administration].

See also
● “Synchronization script writing” [MobiLink - Server Administration]
● “Synchronization techniques” [MobiLink - Server Administration]
● “Synchronization script writing in Java” [MobiLink - Server Administration]
● “Synchronization script writing in .NET” [MobiLink - Server Administration]
● “Direct row handling” [MobiLink - Server Administration]

The synchronization process
A synchronization is a process of data exchange between MobiLink clients and a central data source.
During this process, the client must establish and maintain a session with the MobiLink server. If
successful, the session leaves the remote and consolidated databases in a mutually consistent state.

The client normally initiates the synchronization process. It begins by establishing a connection to the
MobiLink server.

The upload and the download
To upload rows, MobiLink clients prepare and send an upload that contains a list of all the rows that have
been updated, inserted, or deleted on the remote database since the last synchronization. Similarly, to
download rows, the MobiLink server prepares and sends a download that contains a list of inserts,
updates, and deletes.

● Upload By default, the MobiLink client automatically keeps track of which rows in the remote
database have been inserted, updated, or deleted since the last successful synchronization. Once the
connection is established, the MobiLink client uploads a list of all these changes to the MobiLink
server.

The upload consists of a set of new and old row values for rows modified in the remote database.
(Updates have new and old row values; deletes have old values; and inserts have new values.) If a row
has been updated or deleted, the old values are those that were present immediately following the last
successful synchronization. If a row has been inserted or updated, the new values are the current row
values. No intermediate values are sent, even if the row was modified several times before arriving at
its current state.

The MobiLink server receives the upload and executes upload scripts that you define. By default it
applies all the changes in a single transaction. When it has finished, the MobiLink server commits the
transaction.

● Download The MobiLink server compiles a list of rows to insert, update, or delete on the
MobiLink client, using synchronization logic that you create. It downloads these rows to the
MobiLink client. To compile this list, the MobiLink server opens a new transaction on the
consolidated database.

MobiLink synchronization

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 13

The MobiLink client receives the download. It takes the arrival of the download as confirmation that
the consolidated database has successfully applied all uploaded changes. It ensures that these changes
are not sent to the consolidated database again.

Next, the MobiLink client automatically processes the download, deleting old rows, inserting new
rows, and updating rows that have changed. It applies all these changes in a single transaction in the
remote database. When finished, it commits the transaction.

During MobiLink synchronization, there are few distinct exchanges of information. The client builds and
uploads the entire upload. In response, the MobiLink server builds and downloads the entire download. It
is important to limit the verbosity of the protocol when communication is slower and has higher latency,
such as when using telephone lines or public wireless networks.

Note
MobiLink operates using the ODBC isolation level SQL_TXN_READ_COMMITTED as the default
isolation level for the consolidated database. If the RDBMS used for the consolidated database supports
snapshot isolation, and if snapshot is enabled for the database, then by default MobiLink uses snapshot
isolation for downloads. See “MobiLink isolation levels” [MobiLink - Server Administration].

See also
● “Overview of MobiLink events” [MobiLink - Server Administration]
● “Events during upload” [MobiLink - Server Administration]
● “Events during download” [MobiLink - Server Administration]

MobiLink events

When the MobiLink client initiates a synchronization, several synchronization events occur. At the
occurrence of a synchronization event, MobiLink looks for a script to match the event. The script contains
instructions detailing what you want done. If you have defined a script for the event and put it in a
MobiLink system table, it is invoked.

MobiLink scripts
Whenever an event occurs, the MobiLink server executes the associated script if you have created one. If
no script exists, the next event in the sequence occurs.

Note
When you use the Create Synchronization Model Wizard to create your MobiLink application, all the
required MobiLink scripts are created for you. However, you can customize the default scripts, including
creating new scripts.

The following are the typical upload scripts for tables. The first event, upload_insert, triggers the running
of the upload_insert script, which inserts any changes in the emp_id and emp_name columns into the emp
table. The upload_delete and upload_update scripts perform similar functions for delete and update
actions on the emp table.

MobiLink technology

14 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Event Example script contents

upload_insert INSERT INTO
emp (emp_id,emp_name)
VALUES ({ml r.emp_id}, {ml r.emp_name})

upload_delete DELETE FROM emp
WHERE emp_id = {ml r.emp_id}

upload_update UPDATE emp
SET emp_name = {ml r.emp_name}
WHERE emp_id = {ml r.emp_id}

The download script uses a cursor. The following is an example of a download_cursor script:

SELECT order_id, cust_id
FROM ULOrder
WHERE last_modified >= {ml s.last_table_download}
AND emp_name = {ml r.emp_id}

For more information about events and scripts, see:

● “Synchronization script writing” [MobiLink - Server Administration]
● “Synchronization events” [MobiLink - Server Administration]

Scripts can be written in SQL, Java, or .NET
You can write scripts using the native SQL dialect of your consolidated database, or using Java or .NET
synchronization logic. Java and .NET synchronization logic allow you to write code, invoked by the
MobiLink server, to connect to a database, manipulate variables, directly manipulate uploaded row
operations, or add row operations to the download. There is a MobiLink server API for Java and a
MobiLink server API for .NET that provide classes and methods to suit the needs of synchronization.

See “Options for writing server-side synchronization logic” on page 11.

For information about RDBMS-dependent scripting, see “MobiLink consolidated databases” [MobiLink -
Server Administration].

Storing scripts
SQL scripts are stored in MobiLink system tables in the consolidated database. For scripts written with
the MobiLink server APIs, you store the fully qualified method name as the script. You can add scripts to
a consolidated database in several ways:

● When you use the Create Synchronization Model Wizard, scripts are stored in the MobiLink system
tables when you deploy your project.

● You can manually add scripts to the system tables by using stored procedures that are installed when
you set up a consolidated database.

● You can manually add scripts to the system tables using Sybase Central.

See “Adding and deleting scripts” [MobiLink - Server Administration].

MobiLink synchronization

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 15

Transactions in the synchronization process

The MobiLink server incorporates changes uploaded from each MobiLink client into the consolidated
database in one transaction. It commits these changes once it has completed inserting new rows, deleting
old rows, making updates, and resolving any conflicts.

Caution
There should be no implicit or explicit commit or rollback in your SQL synchronization scripts or the
procedures or triggers that are called from your SQL synchronization scripts. COMMIT or ROLLBACK
statements within SQL scripts alter the transactional nature of the synchronization steps. If you use them,
MobiLink cannot guarantee the integrity of your data in the event of a failure.

Tracking downloaded information
MobiLink uses a last download timestamp, stored in the remote database, to help simplify how downloads
are created.

The primary role of the download transaction is to select rows in the consolidated database. If the
download fails, the remote database uploads the same last download timestamp over again, and no data is
lost.

Begin and end transactions
The MobiLink client processes information in the download in one transaction. Rows are inserted,
updated, and deleted to bring the remote database up to date with the consolidated data.

The MobiLink server uses two other transactions, one at the beginning of synchronization and one at the
end. These transactions allow you to record information regarding each synchronization and its duration.
So, you can record statistics about attempted synchronizations, successful synchronizations, and the
duration of synchronizations. Since data is committed at various points in the process, these transactions
also let you commit data that can be useful when analyzing failed synchronization attempts.

See also
● “Last download times in scripts” [MobiLink - Server Administration]
● “Overview of MobiLink events” [MobiLink - Server Administration]
● “Events during upload” [MobiLink - Server Administration]
● “Events during download” [MobiLink - Server Administration]

How synchronization failure is handled

MobiLink synchronization is fault tolerant. For example, if a communication link fails during
synchronization, both the remote database and the consolidated database are left in a consistent state.

On the client, failure is indicated by a return code.

Synchronization failure is handled differently depending on when it happens. The following cases are
handled in different ways:

MobiLink technology

16 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● Failure during upload If the failure occurs while building or applying the upload, the remote
database is left in exactly the same state as at the start of synchronization. At the server, any part of
the upload that has been applied is rolled back.

● Failure between upload and download If the failure occurs once the upload is complete, but
before the MobiLink client receives the download, the client cannot be certain whether the uploaded
changes were successfully applied to the consolidated database. The upload might be fully applied and
committed, or the failure may have occurred before the server applied the entire upload. The
MobiLink server automatically rolls back incomplete transactions in the consolidated database.

The MobiLink client maintains a record of all uploaded changes. The next time the client
synchronizes, it requests the state of the previous upload before building the new upload. If the
previous upload was not committed, the new upload contains all changes from the previous upload.

● Failure during download When a failure occurs on the remote device while applying the
download, any part of the download that has been applied is rolled back and the remote database is
left in the same state as before the download.

If you are using non-blocking download acknowledgement, the download transaction has already been
committed, but neither the nonblocking_download_ack script nor the
publication_nonblocking_download_ack script is invoked.

If you are not using download acknowledgement, there is no server-side consequence of a download
failure.

No data is lost when a failure occurs. The MobiLink server and the MobiLink client manage this for you.
Neither you nor the user need to worry about maintaining consistent data in their application.

How the upload is processed

When the MobiLink server receives an upload from a MobiLink client, the entire upload is stored until the
synchronization is complete. This is done for the following reasons:

● Filtering download rows The most common technique for determining which rows to download
is to download rows that have been modified since the most recent download. When synchronizing,
the upload precedes the download. Any rows that are inserted or updated during the upload are rows
that have been modified since the previous download.

It would be difficult to write a download_cursor script that omits from the download rows that were
sent as part of the upload. For this reason, the MobiLink server automatically removes these rows
from the download.

● Processing inserts and updates By default, tables in the upload are applied to the consolidated
database in an order that avoids referential integrity violations. The tables in the upload are ordered
based on foreign key relationships. For example, if table A and table C both have foreign keys that
reference a primary key column in B, then inserts and updates for table B rows are uploaded first.

● Processing deletes after inserts and updates Deletes are applied to the consolidated database
after all inserts and updates are applied. When deletes are applied, tables are processed in the opposite

MobiLink synchronization

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 17

order from the way they appear in the upload. When a row being deleted references a row in another
table that is also being deleted, this order of operations ensures that the referencing row is deleted
before the referenced row is deleted.

● Deadlock When an upload is being applied to the consolidated database, it may encounter
deadlock due to concurrency with other transactions. These transactions might be upload transactions
from other MobiLink server database connections, or transactions from other applications using the
consolidated database. When an upload transaction is deadlocked, it is rolled back and the MobiLink
server automatically starts applying the upload again, from the beginning.

Note

Performance tip It is important to write your synchronization scripts to avoid contention as much
as possible. Contention has a significant impact on performance when multiple users are
synchronizing simultaneously.

Referential integrity and synchronization

All MobiLink clients, with the exception of UltraLite for BlackBerry or J2SE, enforce referential integrity
when they incorporate the download into the remote database.

Rather than failing the download transaction, by default the MobiLink client automatically deletes all
rows that violate referential integrity.

This feature has the following benefits:

● Protection from mistakes in your synchronization scripts. Given the flexibility of the scripts, it is
possible to accidentally download rows that would break the integrity of the remote database. The
MobiLink client automatically maintains referential integrity without requiring intervention.

● You can use this referential integrity mechanism to delete information from a remote database
efficiently. By only sending a delete to a parent record, the MobiLink client removes all the child
records automatically for you. This can greatly reduce the amount of traffic MobiLink must send to the
remote database.

MobiLink clients provide notification if they have to explicitly delete rows to maintain referential
integrity, as follows:

● For SQL Anywhere clients, dbmlsync writes an entry in the log. There are also dbmlsync event hooks
that you can use. See:

○ “sp_hook_dbmlsync_download_ri_violation” [MobiLink - Client Administration]
○ “sp_hook_dbmlsync_download_log_ri_violation” [MobiLink - Client Administration]

● For UltraLite clients, the warning
SQLE_ROW_DELETED_TO_MAINTAIN_REFERENTIAL_INTEGRITY is raised. This warning
takes a parameter which is the table name. To maintain referential integrity, the warning is raised on
every row that is deleted. Your application can ignore the warnings if you want synchronization to

MobiLink technology

18 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

proceed. If you want to explicitly handle the warnings, you can use the error callback function to trap
them and, for example, count the number of rows that are deleted.

If you want synchronization to fail when the warning is raised, you must implement a synchronization
observer and then signal the observer (perhaps through a global variable) from the error callback
function. In this case, synchronization fails on the next call to the observer.

Referential integrity checked at the end of the transaction
The MobiLink client incorporates changes from the download in a single transaction. To offer more
flexibility, referential integrity checking occurs at the end of this transaction. Because checking is
delayed, the database may temporarily pass through states where referential integrity is violated. This is
because rows that violate referential integrity are automatically removed before the download is
committed.

Example
Suppose that an UltraLite sales application contains the following two tables. One table contains sales
orders. Another table contains items that were sold in each order. They have the following relationship:

If you use the download_delete_cursor for the sales_order table to delete an order, the default referential
integrity mechanism automatically deletes all rows in the sales_order_items table that point to the deleted
sales order.

This arrangement has the following advantages:

● You do not require a sales_order_items table script because rows from this table are deleted
automatically.

● The efficiency of synchronization is improved. You need not download rows to delete from the
sales_order_items table. If each sales order contains many items, the performance improves because the
download is now smaller. This technique is particularly valuable when using slow communication
methods.

Changing the default behavior
For SQL Anywhere clients, you can use the sp_hook_dbmlsync_download_ri_violation client event hook
to handle the referential integrity violation. Dbmlsync also writes an entry to its log.

See:

● “sp_hook_dbmlsync_download_log_ri_violation” [MobiLink - Client Administration]
● “sp_hook_dbmlsync_download_ri_violation” [MobiLink - Client Administration]

MobiLink synchronization

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 19

Security
There are several aspects to securing data throughout a widely distributed system such as a MobiLink
installation:

● Protecting data in the consolidated database Data in the consolidated database can be
protected using the database user authentication system and other security features.

For more information, see your database documentation. If you are using a SQL Anywhere
consolidated database, see “Data security” [SQL Anywhere Server - Database Administration].

● Protecting data in the remote databases If you are using SQL Anywhere remote databases, the
data can be protected using SQL Anywhere security features. By default, these features are designed
to prevent unauthorized access through client/server communications, but should not be considered a
sure-fire method of preventing a serious attempt to extract information directly from the database file.

Files on the client are protected by the security features of the client operating system.

If you are using a SQL Anywhere remote database, see “Data security” [SQL Anywhere Server -
Database Administration].

If you are using an UltraLite database, see “UltraLite database security” [UltraLite - Database
Management and Reference].

● Protecting data during synchronization Communication from MobiLink clients to MobiLink
servers can be protected by the MobiLink transport layer security features. See “Transport-layer
security” [SQL Anywhere Server - Database Administration].

● Protecting the synchronization system from unauthorized users MobiLink synchronization
can be secured by a password-based user authentication system. This mechanism prevents
unauthorized users from synchronizing data. See “MobiLink users” [MobiLink - Client
Administration].

MobiLink plug-in for Sybase Central
The MobiLink plug-in for Sybase Central has been redesigned in version 12. In previous versions, the
plug-in had two modes: model mode and admin mode. The MobiLink functionality was split between
these two modes, so you needed to be aware of which mode you were in at any given time. In version 12,
these modes no longer exist, as shown below.

MobiLink technology

20 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The top level functions available through the Folders pane of the MobiLink plug-in are:

● Working with MobiLink projects. See “Creating a MobiLink project” on page 22.

● Working with consolidated databases. See “Adding a consolidated database” on page 23.

● Working with remote schema names. See “Working with Agents in Sybase Central” [MobiLink -
Server Administration].

● Working with groups. See “Working with Agents in Sybase Central” [MobiLink - Server
Administration].

● Working with remote tasks. See “Remote tasks” [MobiLink - Server Administration].

● Working with synchronization models. See “Synchronization models” on page 25.

Remote schema names, groups and remote tasks are all part of the central administration of remote
databases feature. See “Central administration of remote databases” [MobiLink - Server Administration].

To start working with MobiLink in Sybase Central, you must first define a MobiLink project.

MobiLink plug-in for Sybase Central

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 21

A MobiLink project is a framework that organizes the synchronization models, consolidated databases,
and remote tasks that are related to a mobile application.

A MobiLink project is a named collection of the following:

● A list of synchronization models

● A list of designed but undeployed remote tasks

● A list of connections to a consolidated database

● A list of MobiLink users

● A list of user-defined groups, remote databases or devices

● A list of remote databases

● A list of notifiers

Creating a MobiLink project
You must create a MobiLink project before working with MobiLink in Sybase Central.

Prerequisites

There are no prerequisites for performing this task.

Context and remarks

A sample MobiLink project is provided in %sqlanysamp12%\MobiLink\CustDB\project.mlp.

Create a MobiLink project

1. In the Folders view of Sybase Central, right-click MobiLink 12 » New » Project.

2. In the Name field, type a name for the project.

3. In the Location field, type the location of the project folder or click Browse to select the folder for
your project file.

4. Click Finish to save your project with just the name and location, or click Next to specify additional
information in the following steps.

5. If you clicked Next, click Add A Consolidated Database To The Project if you know which
consolidated database you want to associate with the project.

a. In the Database Display Name field, type the display name you want to use for the consolidated
database. This is the name that is listed in the consolidated database list in your project.

b. In the Connection String field, type the database connection parameters to use to connect to the
consolidated database or click Edit to go open a window to connect to an ODBC data source.

MobiLink technology

22 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

c. Select Remember The Password if you want to save the password you used to connect to the
database.

d. Click Next.

6. Decide whether you want to add a synchronization model or create one later. Choose one of the
following options:

● Do Not Add A Model Choose this option if you do not want to add or create a synchronization
model now or you can add one later.

● Create A New Model Choose this option to create a new synchronization model. The Create
Synchronization Model Wizard is launched when you finish creating the project. See
“Synchronization models” on page 25.

● Import The Model From The Following File Choose this option to import an existing
synchronization model. In the empty field, type the path and file name of the synchronization
model to import, or click Browse to select the synchronization model file. This creates a copy of
the synchronization model file in your project folder.

7. Select Add A Remote Schema Name To The Project if you want to identify a group of remote
databases that have the same schema or you can add one later. If you are adding a remote schema
name, specify the following:

● What Do You Want To Name The New Remote Schema Name? Type the name you want
to use to identify the group of remote databases that share the same schema. It might be a good
idea to include a version number.

● Which Type Of Database Does The Remote Schema Name Apply To? Select the type of
database that the remote schema name applies to. This can be either SQL Anywhere or UltraLite.

8. Click Finish to save the new project.

Results

The MobiLink project is created.

Next

None.

See also
● “Central administration concepts” [MobiLink - Server Administration]

Adding a consolidated database
You can add one or more consolidated databases to a MobiLink project in Sybase Central.

Prerequisites

There must be a MobiLink project defined.

MobiLink plug-in for Sybase Central

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 23

Context and remarks

A remote task must have at least one consolidated database assigned to it before it can be deployed.

Add a consolidated database

1. Ensure the MobiLink project you are working with is selected in the Folders view in the left pane,
then right-click the project name and click New » Consolidated Database.

2. Enter the required database connection parameters and click Next to connect to the database.

3. In the Display Name field, type the name you want to use for this database in your project. The
default display name is the ODBC data source name and if you want to provide a description of the
database, type it in the Description field.

4. Select Remember The Password if you want to save the password you used to connect to the
database.

5. Click Finish to add the consolidated database to the project.

Results

The consolidated database is added to the MobiLink project.

Next

None.

See also
● “Central administration concepts” [MobiLink - Server Administration]

MobiLink system setup

You must add objects such as tables, columns, and triggers that are required for synchronization before
you can use a database as a MobiLink consolidated database. You add these objects by running a setup
script against the database. There is a separate setup script for each supported RDBMS. These scripts are
all located in the %SQLANY12%\MobiLink\setup folder. You can verify exactly what the script does by
opening it in a text editor.

When you add a consolidated database to your MobiLink project, it checks the MobiLink system setup. If
it is missing, you are prompted to install the MobiLink system setup, or you can install it later. You may
also be prompted to upgrade if the check found an older version. You are also prompted to install the
MobiLink system setup when you deploy a synchronization model, if you have not already done so.

See also
● “Checking MobiLink system setup” on page 25
● “Consolidated database setup” [MobiLink - Server Administration]
● “Synchronization model deployment” on page 40

MobiLink technology

24 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Checking MobiLink system setup
System setup checks for the objects required for synchronization.

Prerequisites

There must be a MobiLink project defined.

Context and remarks

Many.

Check MobiLink system setup

1. Ensure the MobiLink project you are working with is selected in the Folders view in the left pane,
then right-click the consolidated database you want to check and click Check MobiLink System
Setup.

2. If setup is not already installed or is not up to date, click Yes to install it or update it, then click OK.

Results

System setup is installed or updated, as specified.

Next

None.

Synchronization models
A synchronization model is a tool that makes it easy for you to create MobiLink applications. A
synchronization model is a file that is created by the Create Synchronization Model Wizard in Sybase
Central.

After you complete the Create Synchronization Model Wizard, you can continue to customize your
model. No changes are made to your consolidated database or remote database until you deploy the
model. Your model is stored in a model file with the extension .mlsm, and a reference to that file is stored
in your synchronization model file.

When your model is complete, you use the Deploy Synchronization Model Wizard to deploy it. The
Deploy Synchronization Model Wizard creates script files to run the MobiLink server and client using
deployment options you choose. You can choose to make changes to your existing databases when you
deploy or you can choose to have the wizard create files that you run. Files that are created for the remote
database can be used in remote tasks.

After you deploy, you can continue to customize the synchronization model or databases and then
redeploy. If necessary, you can modify the deployed synchronization system out of Sybase Central, using
the techniques that are described throughout the MobiLink documentation.

MobiLink plug-in for Sybase Central

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 25

Setting up a MobiLink application with the Create Synchronization
Model Wizard

Use the Create Synchronization Model Wizard in Sybase Central to set up synchronization logic for a
MobiLink application.

Prerequisites

There must be a MobiLink project defined.

Context and remarks

Many.

Set up a MobiLink application with the Create Synchronization Model Wizard

1. Use the MobiLink plug-in to create a MobiLink project for your consolidated database if you have not
already created one.

See “Creating a MobiLink project” on page 22.

2. In the Folders view of Sybase Central, expand MobiLink 12 and your MobiLink project name, and
then click Synchronization Models.

3. From the File menu, click New » Synchronization Model to start the Create Synchronization
Model Wizard.

4. From the Welcome page, choose a name for your synchronization model. Your model is stored as
a .mlsm file in the project directory. Click Next.

5. On the Primary Key Requirements page, select the three checkboxes and then click Next. For more
information about primary keys, see “Unique primary keys” [MobiLink - Server Administration].

6. On the Consolidated Database Schema page, select the consolidated database for obtaining your
consolidated database schema from the list, and then click Next. The schema from the consolidated
database is loaded.

If you chose an Oracle database, you may be prompted to choose a subset of owners because loading
schema for all owners can take a long time.

7. The Remote Database Schema page appears. You can create your remote database schema based on
the consolidated database schema or an existing remote database. The existing remote database can be
SQL Anywhere or UltraLite. For help deciding, see “Remote schemas” on page 27.

8. Follow the remaining instructions in the Create Synchronization Model Wizard. Default
recommendations based on best practices are used where possible.

9. Click Finish.

MobiLink technology

26 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Results

When you click Finish, the synchronization model is opened in the left pane of Sybase Central. You are
now working offline and you can make changes to the model. No changes are made outside the model
until you deploy the model: the consolidated database does not change and the remote database is not
created or changed until that time. See “Synchronization model tasks” on page 28.

Next

Use the Deploy Synchronization Model Wizard to deploy the completed model. See “Synchronization
model deployment” on page 40.

Remote schemas

A synchronization model contains schema for a remote database. This schema can be obtained from an
existing remote database or from the consolidated database.

Use an existing remote database in the following cases:

● If you already have a remote database, especially if its schema is not a subset of the consolidated
database schema.

● If your consolidated and remote columns need to have different types.

● If your remote tables need to have different owners from the tables on the consolidated database. For
new SQL Anywhere remote schemas created from the consolidated database, the owner of the remote
tables is the same as the owner of the corresponding consolidated database tables. If you want a
different owner, you should use an existing SQL Anywhere remote database with table ownership you
set up.

Note
You can manually change an existing database schema and then run the Update Schema Wizard to
update the synchronization model in your MobiLink project. See “Updating schemas” on page 39.

When you deploy your model, you have three options for your remote database, regardless of how you
created the remote schema in the model. Your deploy-time options for the remote database are:

● Create a New Remote Database Deployment can create a new remote database using the remote
schema from the synchronization model. The database is created with default options.

● Update an Existing Remote Database That Has No User Tables If you deploy to an empty
remote database, then the remote schema from the model is created in the database. This option is
useful when you want to use non-default database creation options, such as collation.

For SQL Anywhere databases, there are options that cannot be set after the database is created. See
“Remarks, Initialization utility (dbinit)” [SQL Anywhere Server - Database Administration].

For UltraLite databases, database properties cannot be changed after the database is created. See
“Specify UltraLite creation parameters” [UltraLite - Database Management and Reference].

MobiLink plug-in for Sybase Central

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 27

● Update an Existing Remote Database That Has a Schema Matching the Schema in the
Model This option is useful when you have an existing remote database that you want to
synchronize. When you deploy directly to an existing remote database, no changes are made to any
existing remote data. If you try to deploy directly to an existing remote database whose schema
doesn't match the remote schema in the model, you are prompted to update the remote schema in the
model.

For a SQL Anywhere remote database, tables have the same owners as the original database. UltraLite
database tables do not have owners.

See also
● “Synchronization model deployment” on page 40

Synchronization model tasks

You can perform several tasks with your synchronization model after creating it with the Create
Synchronization Model Wizard. Changes are saved to the synchronization model file only. They are not
saved to your consolidated or remote databases until the synchronization model is deployed.

You can modify synchronization models outside of Sybase Central but you cannot reverse-engineer
changes back into the model. For example, you can add or modify MobiLink scripts using system
procedures. See “MobiLink server system procedures” [MobiLink - Server Administration].

Modifying table and column mappings

Table mappings indicate which tables should be synchronized, how tables should be synchronized, and
how the synchronized data should be mapped between the consolidated and remote databases.

Upload-only, download-only, and non-synchronized tables or columns
By default, MobiLink does a complete, bi-directional synchronization. You can change each table to be
upload-only or download-only. You can also choose to not synchronize a table, which removes its table
mapping.

In a synchronization model, you can only specify tables as download-only; you cannot create download-
only publications.

Change the table mapping direction

1. In the Folders view of Sybase Central, expand MobiLink 12, your MobiLink project name,
Synchronization Models, and then select your synchronization model name.

2. Open the Mappings tab in the right pane.

3. In the Table Mappings pane, select a consolidated table.

4. In the Mapping Direction dropdown list, select one of the following:

MobiLink technology

28 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● Not synchronized. Choosing this option is the same as deleting the table mapping.

● Bi-directional

● Download to Remote Only

● Upload to Consolidated Only

Remove a table mapping

1. In the Folders view of Sybase Central, expand MobiLink 12, your MobiLink project name,
Synchronization Models, and then select your synchronization model name.

2. Open the Mappings tab in the right pane.

3. In the Table Mappings pane, select a table mapping.

4. In the Mapping Direction dropdown list, click Not Synchronized. The mapping is deleted the next
time you save the synchronization the model.

Changing table and column mappings
If your model is based on an existing remote database, the table and column mappings represent a best
guess. You should check them and customize them as required.

Change table mappings

1. In the Folders view of Sybase Central, expand MobiLink 12, your MobiLink project name,
Synchronization Models, and then select your synchronization model name.

2. Open the Mappings tab in the right pane.

3. In the Table Mappings pane, select a table mapping.

4. To change the remote table that is mapped, from the Remote Table context menu, select a different
table from the list of unsynchronized remote tables.

● You can only choose remote tables that are not already mapped to consolidated tables.

● If you want to add tables to your remote schema, see “Updating schemas” on page 39.

5. To add a table mapping for an unmapped consolidated table, use File » New » Table Mappings to
open the Create New Table Mappings window where you choose the tables. To avoid any changes
to the remote schema, disable the option to also add corresponding tables to the remote schema if they
do not already exist. If you want to add the tables but not all columns to the remote schema, enable the
option to let you choose the columns.

By default consolidated database tables with names like synchronization model shadow table names
are not shown, since such shadow tables should not be synchronized.

You can map a column in a synchronized consolidated table to a remote table column, a value determined
when synchronizing, or exclude the column from synchronization. When mapping to a value, you can use
the MobiLink user name, the remote database ID, or a SQL expression (which can include MobiLink

MobiLink plug-in for Sybase Central

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 29

named parameters). When you map a primary key column to a value and the table mapping is bi-
directional, you need to prevent duplicate primary keys when downloading to remote databases.

Change a column mapping for a table mapping

1. In the Table Mappings pane, select the table mapping.

2. In the lower pane, open the Column Mappings tab.

3. Right-click the column mapping you want to change, and select one of the following from the context
menu:

● None
● MobiLink User Name
● Remote ID
● Custom
● An unmapped remote column

To synchronize the consolidated column with a remote column, select the unmapped remote column
from the bottom group of the menu. Only unmapped remote columns are listed.

To exclude the consolidated column from synchronization, click None. The Direction icon shows that
the consolidated column will not be synchronized.

To map the consolidated column to a value, you can choose the MobiLink User Name, the Remote
ID, or use Custom to enter a SQL expression that is evaluated when the remote table's upload_insert,
upload_update and upload_delete synchronization scripts are executed during the synchronization.
The Direction icon shows that the value will only be uploaded; the consolidated column will not be
downloaded to the remote database.

Modifying the download type

The download type of a table mapping can be timestamp, snapshot, or custom. You change the download
type in the Table Mappings pane of the Mappings tab.

● Timestamp-based download Choose this option to use timestamp-based download as the
default. Only rows that have been changed since the last synchronization are downloaded. See
“Implementing timestamp-based downloads” [MobiLink - Server Administration].

● Snapshot download Choose this option to use snapshot download as the default. All rows are
downloaded even if they have not been changed since the last synchronization. See:

○ “Snapshot synchronization” [MobiLink - Server Administration]
○ “When to use snapshot synchronization” [MobiLink - Server Administration]

MobiLink technology

30 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● Custom download logic Choose this option if you want to write your own download_cursor and
download_delete_cursor scripts instead of having them generated for you. See:

○ “Synchronization script writing” [MobiLink - Server Administration]
○ “download_cursor scripts” [MobiLink - Server Administration]
○ “download_delete_cursor scripts” [MobiLink - Server Administration]

Change the download type

1. In the Folders view of Sybase Central, expand MobiLink 12, your MobiLink project name,
Synchronization Models, and then select your synchronization model name.

2. Open the Mappings tab in the right pane.

3. In the Table Mappings pane, select a table mapping.

4. In the Download Type dropdown list, select Timestamp, Snapshot, or Custom.

5. If you chose Custom, click the Events tab then type in your download_cursor script and
download_delete_cursor scripts.

Modifying how deletes are recorded

If you are using snapshot download, all rows in the remote database are deleted before the snapshot is
downloaded. If you are using timestamp-based download, you can decide how you want deletes on the
consolidated database to be recorded for downloading to the remote database.

If you want to delete rows from remote databases when they are deleted from the consolidated database,
you need to keep a record of the row to delete it. You can do this with shadow tables or by using logical
deletes.

Change how deletes are recorded

1. In the Folders view of Sybase Central, expand MobiLink 12, your MobiLink project name,
Synchronization Models, and then select your synchronization model name.

2. Open the Mappings tab in the right pane.

3. In the Table Mappings pane, select a table mapping.

4. In the Delete column, select the checkbox if you want to download deletes from the consolidated
database. Clear the checkbox if you do not want to download deletes from the consolidated database.

5. If you chose to download deletes, open the Download Deletes tab in the lower pane.

To record deletions, you can choose to use a shadow table or logical deletes.

Logical deletes
The MobiLink synchronization model support for logical deletes assumes that a logical delete column is
only on the consolidated database and not on the remote database. When copying a consolidated schema

MobiLink plug-in for Sybase Central

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 31

to a new remote schema, leave out any columns that match the logical delete column in the
synchronization model settings.

Columns matching the default logical delete column name are automatically not copied to new remote
schemas.

If you do want to use logical deletes in the remote database, choose to not download deletes and if
necessary, update the remote schema to include the logical delete column.

Note
You need to set the column mapping for the logical delete column in the remote schema to the logical
delete column in the consolidated schema.

See also
● “Deletes” [MobiLink - Server Administration]
● “download_delete_cursor scripts” [MobiLink - Server Administration]
● “download_cursor table event” [MobiLink - Server Administration]

Modifying the download subset

Each MobiLink remote database can synchronize a subset of the data in the consolidated database. You
can customize the download subset for each table.

The download subset options are:

● User Choose this option to partition data by MobiLink user name, which downloads different data
to different registered MobiLink users.

To use this option, the MobiLink user names must be in your consolidated database. You choose your
MobiLink user names when you deploy, so you can choose names that match existing values on your
consolidated database. (The column you use for MobiLink user names must be of a type that can hold
the values you are using for the user name.) If the MobiLink user names are in a different table from
the one you are subsetting, you must join to that table.

● Remote ID Choose this option to partition data by remote ID, which downloads different data to
different remote databases.

To use this option, the remote IDs must be in your consolidated database. Remote IDs are created as
GUIDs by default, but you can set the remote IDs to match existing values on your consolidated
database. (The column you use for remote IDs must be of a type that can hold the values you are using
for the remote IDs.) If the remote IDs are in a different table from the one you are subsetting, you
must join to that table.

Note
It is usually better to partition by user or by authentication parameter than by remote ID, because the
remote ID can change if the remote computer is reset or replaced.

MobiLink technology

32 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● Custom Choose this option to use a SQL expression that determines which rows are downloaded.
Each synchronization only downloads rows where your SQL expression is true. This SQL expression
is added to the WHERE clause of the generated download_cursor script. You can use MobiLink
named parameters in the expression. You can also refer to other tables. If you refer to other tables, you
must list the other tables in the field above the expression, and include the join condition in your
expression.

Change the download subset

1. In the Folders view of Sybase Central, expand MobiLink 12, your MobiLink project name,
Synchronization Models, and then select your synchronization model name.

2. Open the Mappings tab in the right pane.

3. In the Table Mappings pane, select a remote table.

4. In the Download Subset dropdown list, choose one of the following download subsets: None, User,
Remote, or Custom.

5. If you chose User, Remote, or Custom, open the Download Subset tab in the lower pane.

6. If you chose User or Remote, the Download Subset tab allows you to identify the column that
contains the MobiLink user names or remote IDs, either in the synchronized table or in a joined table.
With a joined table, you must specify the columns for the join condition.

7. If you chose Custom, the Download Subset tab has two text boxes where you add information to
construct a download_cursor script. You do not have to write a complete download_cursor. You only
need to add extra information to identify the join and other restrictions for the download subset.

● In the first text box (Tables To Add To The Download Cursor's FROM Clause), enter the table
name(s) if your download_cursor requires a join to other tables. If the join requires multiple tables,
separate them with commas.

● In the second box (SQL Expression To Use In The Download Cursor's WHERE Clause), enter
a SQL expression to be added to the generated WHERE clause that specifies the download subset
condition and join condition. You can use MobiLink named parameters, including authentication
parameters, in the expression. By default, the same expression and joined tables are used for the
download delete subset. If you are using a shadow table to track deletes and want to use the same
expression, avoid using the base table name in the expression. If that is not possible, use a custom
download delete subset.

See also
● “MobiLink users” [MobiLink - Client Administration]
● “Remote IDs” [MobiLink - Client Administration]
● “Partitioning rows among remote databases” [MobiLink - Server Administration]
● “Remote IDs and MobiLink user names in scripts” [MobiLink - Client Administration]
● “Last download times in scripts” [MobiLink - Server Administration]
● “download_cursor scripts” [MobiLink - Server Administration]

MobiLink plug-in for Sybase Central

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 33

Example (User)
For example, the ULOrder table in CustDB can be shared between users. By default, orders are assigned
to the employee who created them, but there are times when another employee needs to see orders created
by someone else. For example, a manager may need to see all the orders created by employees in their
department. The CustDB database has a provision for this via the ULEmpCust table. It allows you to
assign customers to employees. They download all orders for that employee customer relationship.

To see how this is done, first view the download_cursor script for ULOrder without download subsetting.
Select the ULEmpCust table in the Mapping tab. Choose Timestamp-based for the Download Type
column and None for the Download Subset column. Right-click the table and click Go To Events. The
download_cursor for the table looks like this:

SELECT "DBA"."ULOrder"."order_id",
 "DBA"."ULOrder"."cust_id",
 "DBA"."ULOrder"."prod_id",
 "DBA"."ULOrder"."emp_id",
 "DBA"."ULOrder"."disc",
 "DBA"."ULOrder"."quant",
 "DBA"."ULOrder"."notes",
 "DBA"."ULOrder"."status"
FROM "DBA"."ULOrder"
WHERE "DBA"."ULOrder"."last_modified" >= {ml s.last_table_download}

Now go back to the Mappings tab. Change the Download Subset column for ULOrder to User. Open the
Download Subset tab in the lower pane. Select Use A Column In A Joined Relationship Table. For the
table to join, select ULEmpCust. For the column to match, select emp_id. The join condition should be
emp_id = emp_id.

Right-click the table in the top pane and click Go To Events. The download_cursor for the table now
looks like this (the new lines are shown in bold):

SELECT "DBA"."ULOrder"."order_id",
 "DBA"."ULOrder"."cust_id",
 "DBA"."ULOrder"."prod_id",
 "DBA"."ULOrder"."emp_id",
 "DBA"."ULOrder"."disc",
 "DBA"."ULOrder"."quant",
 "DBA"."ULOrder"."notes",
 "DBA"."ULOrder"."status"
FROM "DBA"."ULOrder", "DBA"."ULEmpCust"
WHERE "DBA"."ULOrder"."last_modified" >= {ml s.last_table_download}
AND "DBA"."ULOrder"."emp_id" = "DBA"."ULEmpCust"."emp_id"
AND "DBA"."ULEmpCust"."emp_id" = {ml s.username}

Example (Custom)
For example, assume you want to subset the download of a table called Customer by MobiLink user and
you also want to only download rows where active=1. The MobiLink user names do not exist in the table
you are subsetting, so you need to create a join to a table called SalesRep, which contains the MobiLink
user names.

In the Mappings tab, click Timestamp-based for the Download Type column and Custom for the
Download Subset column of the Customer table mapping. Open the Download Subset tab in the lower
pane. In the first box (Tables To Add To The Download Cursor's FROM Clause), type:

SalesRep

MobiLink technology

34 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

In the second box (SQL Expression To Use In The Download Cursor's WHERE Clause), type:

SalesRep.ml_username = {ml s.username}
 AND Customer.active = 1
 AND Customer.cust_id = SalesRep.cust_id

Note that both tables have a cust_id column, so references to those columns have to be prefixed with the
table name in the expression. If you use a shadow table for tracking deletes to be downloaded, you need to
use None or Custom in the Download Delete Subset column for the Customer table mapping, since the
shadow table is called Customer_del instead of Customer.

Right-click the table in the top pane and click Go To Events. The download_cursor for the table now
looks like this:

SELECT "DBA"."Customer"."cust_id",
 "DBA"."Customer"."cust_name"
FROM "DBA"."Customer", SalesRep
WHERE "DBA"."Customer"."last_modified" >= {ml s.last_table_download}
 AND SalesRep.ml_username = {ml s.username}
 AND Customer.active = 1
 AND Customer.cust_id = SalesRep.cust_id

The final line of the WHERE clause creates a key join of Customer to SalesRep.

Modifying the download delete subset
If you are using a download subset to synchronize a subset of the data on the consolidated database, then
by default the download delete subset is set to Same, which makes it exactly the same as the download
subset. You can choose to change it to None or Custom. If the download subset is Custom and you are
using a shadow table to track deletes, you need to ensure the shadow table has the required columns and
that the expression does not explicitly reference the consolidated table. Open the Download Delete
Subset tab in the lower pane to add any non-primary key columns used in your custom download subset
SQL expression to the shadow table.

You can set up a custom download delete subset in the same way as a custom download subset, except
that you can also choose extra columns for the shadow table if you are using a shadow table to track
deletes.

See also
● “Modifying the download subset” on page 32

Modifying conflict detection and resolution

When a row is updated on both the remote and consolidated databases, a conflict occurs the next time the
databases are synchronized.

You have the following options for detecting conflicts:

● No conflict detection Choose this option if you do not want any conflict detection. Uploaded
updates are applied without checking for conflicts. This avoids having to fetch current row values
from the consolidated database, so the synchronization of updates may be faster.

MobiLink plug-in for Sybase Central

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 35

● Row-based conflict detection A conflict is detected if the row has been updated by both the
remote and consolidated databases since the last synchronization.

This option defines an upload_fetch script and upload_update script. See “Conflict detection with
upload_fetch or upload_fetch_column_conflict scripts” [MobiLink - Server Administration].

● Column-based conflict detection A conflict is detected if the same column has been updated for
the row in both the remote and consolidated databases.

This option defines an upload_fetch_column_conflict script. See “Conflict detection with
upload_fetch or upload_fetch_column_conflict scripts” [MobiLink - Server Administration].

If a table has BLOBs and you choose column-based conflict detection, row-based conflict detection is
used.

You have the following options for resolving conflicts:

● Consolidated First in wins: uploaded updates that conflict are rejected.

● Remote Last in wins: uploaded updates are always applied.

Only use this option with column-based conflict detection. Otherwise, you get the same results and
better performance by choosing no conflict detection.

● Timestamp The newest update wins. To use this option, you must create and maintain a
TIMESTAMP column for the table. This TIMESTAMP column should record the last time that a row
was changed. The column should exist on both the consolidated and remote databases and not be the
same column used for timestamp-based downloads. To work, your remote and consolidated databases
must use the same time zone (preferably UTC) and their clocks must be synchronized.

● Custom You write your own resolve_conflict scripts. You do this in the Events tab after the
wizard completes.

See “Conflict resolution with resolve_conflict scripts” [MobiLink - Server Administration].

Customize conflict detection and resolution

1. In the Folders view of Sybase Central, expand MobiLink 12, your MobiLink project name,
Synchronization Models, and then select your synchronization model name.

2. Open the Mappings tab in the right pane.

3. In the Table Mappings pane, select a table mapping.

4. In the Conflict Detection dropdown list, click None, Row-based, or Column-based. If you chose
None, you are done.

5. If you chose Row-based or Column-based, choose Consolidated, Remote, Timestamp, or Custom
from the Conflict Resolution dropdown list.

MobiLink technology

36 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

6. If you chose Timestamp conflict resolution, open the Conflict Resolution tab in the lower pane and
enter the name of a TIMESTAMP column to use.

7. If you chose Custom conflict resolution, open the Events tab and write a resolve_conflict script for
the table.

See also
● “Conflict handling” [MobiLink - Server Administration]

Modifying scripts in a synchronization model

You modify scripts in a synchronization model using the Events tab.

The Events tab allows you to perform the following tasks:

● View and modify the scripts that were generated by the Create Synchronization Model Wizard.

● Create new scripts.

The top of the Events tab indicates the group that the selected script belongs to. All scripts for a single
table are grouped together. The top of the Events tab also indicates the name of the selected script and
whether it was generated by the Create Synchronization Model Wizard, whether it was user-defined, or
whether a generated script was overridden. It also indicates whether the synchronization logic is written in
SQL, .NET, or Java.

The script is fully under your control when you add a script of override a generated script; it does not
change automatically when you change a related setting. For example, if you change a
download_delete_cursor for a model and then clear the Del column in the Table Mappings pane under
the Mappings tab, your customized download_delete_cursor is not affected.

You can use options in the File menu to restore generated scripts you have overridden, restore scripts that
you have set to be ignored, or to remove new scripts you have added. Select the script(s) you want to
restore or remove and click File to view your options.

Locate a script for a particular table

1. In the Folders view of Sybase Central, expand MobiLink 12, your MobiLink project name,
Synchronization Models, and then select your synchronization model name.

2. Open the Table Mappings tab in the right pane.

3. In the Table Mappings pane, select a table mapping.

4. From the File menu, click Go To Events.

The Events tab opens, and you can view all scripts for that particular table.

5. In the Event field, choose the script name that you want to locate.

MobiLink plug-in for Sybase Central

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 37

The cursor moves to that script and you can make the necessary changes.

Existing scripts are highlighted in bold.

Authenticating to an external server

Authenticate to an external POP3, IMAP, or LDAP server

You enable synchronization authentication to an external server for a synchronization model using the
Authentication tab.

1. In the Folders view of Sybase Central, expand MobiLink 12, your MobiLink project name,
Synchronization Models, and then select your synchronization model name.

2. Open the Authentication tab in the right pane.

3. Select Enable Custom Authentication For This Synchronization Model.

4. Select the server that you want to authenticate to.

5. Enter the appropriate host, port, and URL information in their respective fields.

For more information about these fields, see “External authenticator properties” [MobiLink - Client
Administration].

Setting up server-initiated synchronization in a synchronization model

Server-initiated synchronization allows you to initiate synchronization on the client database when
something changes on the consolidated database. You can enable server-initiated synchronization in a
synchronization model. This method allows you to deploy a limited version of server-initiated
synchronization that is easy to set up and run.

When enabling server-initiated synchronization in a synchronization model, the MobiLink server uses a
download_cursor script for a table to determine when to initiate a synchronization. It uses the
download_cursor script to generate a request_cursor for the Notifier. You cannot customize your
request_cursor using this method.

Set up server-initiated synchronization in a synchronization model

1. In the Folders view of Sybase Central, expand MobiLink 12, your MobiLink project name,
Synchronization Models, and then select your synchronization model name.

2. Open the Notification tab in the right pane.

3. Select Enable Server-Initiated Synchronization.

4. Select a consolidated database table to use for notification.

MobiLink technology

38 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

A change to the data in this table results in a notification being sent to the remote database. The
notification triggers a synchronization.

Note
You can only choose tables for this purpose for which you have defined a timestamp-based download
cursor (the default). The notification is based on the contents of the download cursor.

5. Select a polling interval.

The polling interval is the time between polls. You can choose a predefined polling interval or you can
specify your own. The default is 30 seconds.

If the Notifier loses the database connection, it recovers automatically at the first polling interval after
the database becomes available again.

6. Change the isolation level of the Notifier's database connection. (Optional)

The default is read committed. Be aware of the consequences of setting the isolation level. Higher
levels increase contention, and may adversely affect performance. Isolation level 0 allows reads of
uncommitted data—data which may eventually be rolled back.

See also
● “MobiLink - Server-Initiated Synchronization”
● “Quick start to server-initiated synchronization” [MobiLink - Server-Initiated Synchronization]

Updating schemas

The Update Schema Wizard allows you to update the consolidated and remote database schemas in your
synchronization model.

The Update Schema Wizard is most useful after you have deployed your model and:

● You made a change to the remote database schema that needs to be included in the model.

● You made a change to the consolidated database schema that needs to be included in the model.

For example, you need to run Update Schema before redeploying a model that created timestamp-based
download for one or more tables. The previous deployment changed the schema of the consolidated
database by adding a TIMESTAMP column or shadow table, so the schema needs to be updated.

Update the schema of a synchronization model

1. In the Folders view of Sybase Central, expand MobiLink 12, your MobiLink project name,
Synchronization Models, and then select your synchronization model name.

2. Click File » Update Schema.

3. Choose one of the following options:

MobiLink plug-in for Sybase Central

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 39

● The Consolidated Database Schema The consolidated schema in the model is updated. The
remote schema in the model is unchanged.

● The Remote Database Schema The remote schema in the model is updated. The
consolidated schema in the model is unchanged.

● Both The Consolidated And Remote Database Schemas Both the consolidated and
remote schemas are updated in the model to match the schemas of the existing databases.

4. Follow the instructions in the Update Schema Wizard.

When you click Finish, no changes are made outside the model until you deploy the synchronization
model; the consolidated database does not change and the remote database is not created or changed
until that time.

5. Map the new remote tables in the Mappings tab.

See also
● “Modifying table and column mappings” on page 28

Synchronization model deployment

You deploy synchronization models with the Deploy Synchronization Model Wizard.

The following items can be deployed:

● Changes to the consolidated database.

● SQL Anywhere or UltraLite remote databases (you can choose to create a database, or add tables to an
existing empty database, or use an existing database that already has your remote tables).

● Batch files to deploy the model (the generated batch files have variable declarations at the beginning
that you can edit before running the batch files).

● Batch files to run the MobiLink server and the MobiLink client.

● Server-initiated synchronization configuration.

Deploying to the consolidated database
The Deploy Synchronization Model Wizard provides two options for deploying to the consolidated
database:

● Apply your synchronization model directly to your consolidated database by populating MobiLink
system tables and creating all required shadow tables, columns, triggers, and stored procedures.

● Create a UTF-8 encoded SQL file that contains all the same changes and a batch file to run the SQL
file against your consolidated database. You can inspect this file, alter it, and run it anytime. The
effect is identical to applying the changes directly.

MobiLink technology

40 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Deploy a consolidated database from a SQL file

Note
If your deployment creates shadow tables, you must connect to the consolidated database as either the
owner of the base tables for which shadow tables are created, or as an administrator.

● When you ran the Deploy Synchronization Model Wizard, if you chose to create a file to run later
(on the Consolidated Database Deployment Destination page), you must run the batch file that is
located in the consolidated sub-folder of your model. This file creates all the objects you chose to
have created in the consolidated database, including synchronization scripts, shadow tables, and
triggers. It can also register MobiLink users in the consolidated database.

To run this file, navigate to the consolidated directory and run the file that ends with
_consolidated.bat or _consolidated.sh. You must include connection information. For example, run:

MyModel_consolidated.bat
"DSN=my_odbc_datasource;UID=myuserid;PWD=mypassword"

For some drivers, the ODBC data source can include the user ID and password so they do not need to
be specified.

Deploying remote databases
You can choose to use an existing remote database or have the wizard create one for you. The wizard can
create remote databases directly or you can have it create a UTF-8 encoded SQL file and a batch file that
you run to create or update remote databases.

The wizard creates a remote database (either SQL Anywhere or UltraLite) with default database creation
options using the database owner that you specified in the model. Alternatively, you can create a remote
database outside the Deploy Synchronization Model Wizard with your own custom settings and use the
wizard to add the required remote tables, or you can deploy to an existing remote database that already
has the remote tables.

Deploy a remote database from a SQL file

● When you ran the Deploy Synchronization Model Wizard, if you chose to create a file to run later
(on the New SQL Anywhere Remote Database page or New UltraLite Remote Database page),
you must run the batch file that was created with the SQL file in the remote directory. This file creates
all the objects you chose to have created in the remote database, including tables, publications,
subscriptions, and MobiLink users.

To run this file, navigate to the remote directory and run the file that ends with _remote.bat or
_remote.sh. For example, run:

MyModel_remote.bat

You are prompted for a password if you are using an existing remote database.

MobiLink plug-in for Sybase Central

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 41

Deploying batch files to run synchronization tools
The wizard can create the following batch files:

● A batch file to run the MobiLink server with options that you specify.
● For SQL Anywhere remote databases, a batch file to run dbmlsync with options that you specify.
● For UltraLite remote databases, a batch file to run ulsync with options that you specify. Ulsync is used

for testing synchronization, so it helps you get started when you don't have a working UltraLite
application.

● If you set up server-initiated synchronization for your synchronization model, the Deploy
Synchronization Model Wizard can also create batch files to run the Notifier and the MobiLink
Listener.

Deploy a model

1. In the Folders view of Sybase Central, expand MobiLink 12, your MobiLink project name,
Synchronization Models, and then select your synchronization model name.

2. From the File menu, click Deploy.

3. Follow the instructions in the Deploy Synchronization Model Wizard.

4. When you are finished, the changes you selected are deployed. If there are existing files of the same
name, they are overwritten.

5. To synchronize your application, see “Deployed model synchronization” on page 43.

Synchronization model redeployment

You can alter a synchronization model after deploying it by making changes to the synchronization model
and then redeploying. You can also alter your model using system procedures or other methods. However,
you cannot reverse-engineer the changes back into the synchronization model when you alter a deployed
model outside of Sybase Central. Changes made outside of Sybase Central are overwritten when you
redeploy the model.

Deployment often causes schema changes, so you may need to update the schema even if you haven't
made any other changes. For example, if you deploy a model that adds a TIMESTAMP column to each
synchronized table on the consolidated database (which is the default behavior when you create a model),
you need to update the consolidated schema in the model before redeploying. Likewise, if you add a table
to the consolidated database and then want to redeploy, you need to update the consolidated schema in the
model and then create new remote tables.

See “Updating schemas” on page 39.

Note
Redeploying a synchronization model drops the recreates shadow tables. To avoid losing shadow table
data, deploy the file and edit the SQL file to not recreate the shadow tables.

MobiLink technology

42 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Deployed model synchronization

When you deploy a model, directories and files are optionally created under the location you chose on the
first page of the Create Synchronization Model Wizard. The files and directories are named according
to the model name you chose at that time.

Assume you named your model MyModel and saved it under c:\SyncModels. Depending on the
deployment options you chose, you might have the following files:

Directories (based on example name
and location)

Description and contents (based on example name)

c:\SyncModels Contains your model file, saved as MyModel.mlsm.

c:\SyncModels\MyModel Contains folders holding your deployment files.

c:\SyncModels\MyModel\consolidated Contains deployment files for the consolidated database:

● MyModel_consolidated.sql - a SQL file for setting up
the consolidated database.

● MyModel_consolidated.bat - a batch file for running
the SQL file.

c:\SyncModels\MyModel\mlsrv Contains deployment files for the MobiLink server:

● MyModel_mlsrv.bat - a batch file for running the Mo-
biLink server. If you have set up server-initiated syn-
chronization, it also starts the Notifier.

MobiLink plug-in for Sybase Central

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 43

Directories (based on example name
and location)

Description and contents (based on example name)

c:\SyncModels\MyModel\remote Contains deployment files for the remote databases:

● dblsn.txt - if you set up server-initiated synchroniza-
tion, this is a text file with Listener option settings. It
is used by MyModel_dblsn.bat.

● MyModel_dblsn.bat - if you set up server-initiated
synchronization, this is a batch file for running the
MobiLink Listener.

● MyModel_dbmlsync.bat - if you deployed a SQL
Anywhere remote database, this is a batch file for
synchronizing SQL Anywhere databases with
dbmlsync.

● MyModel_remote.bat - a batch file for running My-
Model_remote.sql.

● MyModel_remote.db - if you chose to create a new
SQL Anywhere remote database, this is the database
file.

● MyModel_remote.sql - a SQL file for setting up the
new SQL Anywhere remote database.

● MyModel_remote.udb - if you chose to create a new
UltraLite remote database, this is the database file.

● MyModel_ulsync.bat - if you deployed an UltraLite
database, a batch file for testing synchronization with
an UltraLite remote database using the ulsync utility.

Running the batch files
You must run the batch files that are created by the Deploy Synchronization Model Wizard from the
command line, and for many you must include connection information. You may need to create ODBC
data sources before running these batch files.

See “ODBC data sources” [SQL Anywhere Server - Database Administration].

Synchronize your synchronization model using batch files

1. If you have not yet run MobiLink setup scripts on consolidated database, run them before deploying.

See “Consolidated database setup” [MobiLink - Server Administration].

2. When you ran the Deploy Synchronization Model Wizard, if you chose to create a file to run later
(on the Consolidated Database Deployment Destination page), you must run the batch file that is
located in the consolidated sub-folder of your model. This file creates all the objects you chose to
have created in the consolidated database, including synchronization scripts, shadow tables, and
triggers. It can also register MobiLink users in the consolidated database.

MobiLink technology

44 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

To run this file, navigate to the consolidated directory and run the file that ends with
_consolidated.bat or _consolidated.sh. You must include connection information on the command
line. For example, run:

MyModel_consolidated.bat "DSN=MY_ODBC_DATASOURCE"

3. When you ran the Deploy Synchronization Model Wizard, if you chose to create a file to run later
(on the New SQL Anywhere Remote Database page or New UltraLite Remote Database page),
you must run the batch file in the remote directory. This file creates all the objects you chose to have
created in the remote database, including tables, publications, subscriptions, and MobiLink users.

To run this file, navigate to the remote directory and run the file that ends with _remote.bat or
_remote.sh. For example, run:

MyModel_remote.bat

You are prompted for a password if you are using an existing remote database.

4. Start the MobiLink server by running mlsrv\MyModel_mlsrv.bat. If you set up server-initiated
synchronization, this also starts the Notifier. You must include connection information for the
consolidated database on the command line. For example, run:

MyModel_mlsrv.bat "DSN=MY_ODBC_DATASOURCE"

5. Synchronize.

For a SQL Anywhere remote database:

● Grant REMOTE DBA authority to a user other than DBA (recommended). For example, execute
the following in Interactive SQL:

GRANT REMOTE DBA
TO userid, IDENTIFIED BY password

● Connect as the user with REMOTE DBA authority.

● Start the remote database that is located in the remote directory. For example, run:

dbeng12 MyModel_remote.db
● Start dbmlsync, the SQL Anywhere MobiLink client. Run the file that ends with _dbmlsync.bat in

the remote directory. You must include connection information on the command line. For example,
run:

MyModel_dbmlsync.bat "UID=DBA;PWD=sql;SERVER=MyModel_remote"

For an UltraLite remote database:

● To test your synchronization, run the file that ends with _ulsync.bat in the remote directory.

● Alternatively, run your UltraLite application.

6. If you set up server-initiated synchronization, you need to perform a first synchronization and then
start the MobiLink Listener. The first synchronization is required to create a remote ID file. To start
the MobiLink Listener, run the file that ends with _dblsn.bat in the remote directory. For example,
run:

MobiLink plug-in for Sybase Central

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 45

MyModel_dblsn.bat

See also
● “GRANT REMOTE DBA statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “Permissions for dbmlsync” [MobiLink - Client Administration]

Limitations of synchronization models

The following are some restrictions of synchronization models:

● Changes made outside the model cannot be redeployed If you deploy a synchronization
model and then make changes to it outside the model, those changes are not saved in the model. This
practice is fine if you want to use the model as a starting point, deploy, and then make all your
changes outside the model. However, if you want to redeploy the model, you are better off making
your changes to your MobiLink project so that they are saved and can be redeployed.

● Versions A synchronization model can have only one version. See “Script versions” [MobiLink -
Server Administration].

● MobiLink system database You cannot use a MobiLink system database that is separate from
the consolidated database when deploying a synchronization model. See “MobiLink system database”
[MobiLink - Server Administration].

● Multiple publications You cannot create multiple publications. After you have deployed your
model you can add more publications using non-model methods such as the CREATE
PUBLICATION statement, but you cannot reverse-engineer these additions back into your model. See
“Publications” [MobiLink - Client Administration].

● Views It is not possible to select a view when you are selecting consolidated database tables for
table mappings.

● Computed columns You cannot upload to computed columns in a consolidated database table. If
you deploy a synchronization model with computed columns, the deployment may have errors
creating the trigger used for timestamp-based downloads. You can either exclude the column from
synchronization, or configure the table as download-only (and either use snapshot download or edit
the generated consolidated SQL file to remove the computed column from the trigger definition).

Copying computed columns causes a syntax error when deploying the new remote schema to create a
new remote database. When dealing with computed columns you should do one of the following:

○ Deploy the synchronization model to an existing remote database.

○ Exclude the computed column from the remote schema. Note that if you want to synchronize a
consolidated database table that has computed columns, you cannot upload to the table.

The Microsoft SQL Server AdventureWorks sample database contains computed columns. Set the
columns to be download-only or exclude the columns from synchronization when using this database
to create a model.

MobiLink technology

46 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Deployment considerations
● Spatial columns Spatial columns are copied, though the spatial subtype and SRID may not be

copied if the consolidated RDBMS does not have metadata support for obtaining those, such as the
ST_GEOMETRY_COLUMNS view of the SQL/MM standard. Spatial support in UltraLite is limited
to one type (ST_GEOMETRY) that only supports point values and column SRID constraints of
SRID=0 or SRID=4326, so you may get a warning or error when deploying an incompatible spatial
type to a new UltraLite database.

● Long object names The database objects that are created when deploying may have names that
are longer than the database supports (because the new object names are created by adding suffixes to
the base table names). If this happens, deploy only to file (not directly to a database) and edit the
generated SQL file to replace all occurrences of the name that is too long.

● New remote schemas If you create a new remote schema in the Create Synchronization Model
Wizard, the new remote database columns do not contain indexes of the columns in the consolidated
database. Foreign keys and default column values are copied to the new remote database, however,
this support relies on database metadata returned by the ODBC driver and syntax or other errors may
occur due to driver problems. For example, if a driver reports a default column value in a format that
cannot be used to declare such a default in a SQL Anywhere or UltraLite remote database, then errors
can occur (including syntax errors when deploying).

UltraLite does not support NCHAR(n), NVARCHAR(n), or LONG NVARCHAR column types.
When deploying a synchronization model to a new UltraLite database, such columns in the remote
schema are converted to CHAR(4n), VARCHAR(4n), or LONG VARCHAR. If 4n is larger than the
maximum length for CHAR and VARCHAR, the maximum length is used and you get a warning.

You can use an existing remote database to create a synchronization model or to update the remote
schema in a model.

● Proxy tables It is possible to synchronize with consolidated database tables that are proxy tables to
another database, but you need to add the TIMESTAMP column to both the base table and the proxy
table if you use a TIMESTAMP column for timestamp-based downloads. The Deploy
Synchronization Model Wizard cannot add a column to a proxy table or its base, so you either need
to use an existing column on both the base and proxy, or you need to use a shadow table or snapshot
download.

● Materialized views If you are using timestamp-based downloads and have chosen to add a
TIMESTAMP column to consolidated tables, you must disable any materialized views that depend on
the tables before deploying. Otherwise you may get errors when trying to alter the tables. For SQL
Anywhere consolidated databases, use the sa_dependent_views system procedure to find out if a table
has dependent materialized views. See “sa_dependent_views system procedure” [SQL Anywhere
Server - SQL Reference].

Other considerations
● Creating remote databases based on an Oracle consolidated database When you are using

an Oracle consolidated database as the basis for your SQL Anywhere or UltraLite remote database,
you may want to change DATE columns in the consolidated database to TIMESTAMP. Otherwise,
sub-second information is lost on upload.

MobiLink plug-in for Sybase Central

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 47

CustDB sample for MobiLink
CustDB is a sales-status application. The CustDB sample is a valuable resource for the MobiLink
developer. It provides you with examples of how to implement many of the techniques you need to
develop MobiLink applications.

The application has been designed to illustrate several common synchronization techniques. To get the
most out of this section, study the sample application as you read.

A version of CustDB is supplied for each supported operating system and for each supported database
type.

A MobiLink project that uses CustDB consolidated database is available in the %SQLANYSAMP12%
\MobiLink\CustDB\project.mlp directory. You can open this project in Sybase Central to work with
CustDB projects and view database scripts.

CustDB Scenario
A consolidated database is located at the head office. The following data is stored in the consolidated
database:

● The MobiLink system tables that hold the synchronization metadata, including the synchronization
scripts that implement synchronization logic.

● The CustDB data, including all customer, product, and order information, stored in the rows of base
tables.

There are two types of remote databases, mobile managers and sales representatives.

Each mobile sales representative's database contains all products but only those orders assigned to that
sales representative, while a mobile manager's database contains all products and orders.

Synchronization design
The synchronization design in the CustDB sample application uses the following features:

● Complete table downloads All rows and columns of the ULProduct table are shared in their
entirety with the remote databases.

● Column subsets All rows, but not all columns, of the ULCustomer table are shared with the
remote databases.

● Row subsets Different remote users get different sets of rows from the ULOrder table.

For more information about row subsets, see “Partitioning rows among remote databases” [MobiLink -
Server Administration].

● Timestamp-based synchronization This is a way of identifying changes that were made to the
consolidated database since the last time a device synchronized. The ULCustomer and ULOrder tables
are synchronized using a method based on timestamps.

MobiLink technology

48 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See “Implementing timestamp-based downloads” [MobiLink - Server Administration].

● Snapshot synchronization This is a simple method of synchronization that downloads all rows
in every synchronization. The ULProduct table is synchronized in this way.

See “Snapshot synchronization” [MobiLink - Server Administration].

● Primary key pools to maintain unique primary keys It is essential to ensure that primary key
values are unique across a complete MobiLink installation. The primary key pool method used in this
application is one way of ensuring unique primary keys.

See “Primary key pools” [MobiLink - Server Administration].

For other ways to ensure that primary keys are unique, see “Unique primary keys” [MobiLink - Server
Administration].

See also
● “Tutorial: Building the UltraLite CustDB sample application” [UltraLite - Database Management and

Reference]
● “Tutorial: Building the UltraLite CustDB sample application” [UltraLite - Database Management and

Reference]
● “The CustDB sample database application” [SQL Anywhere 12 - Introduction]
● “Setting up the CustDB consolidated database” on page 49

CustDB setup
This section describes the pieces that make up the code for the CustDB sample application and database.
These include:

● The sample SQL scripts, located in the %SQLANYSAMP12%\MobiLink\CustDB.

● The application code, located in %SQLANYSAMP12%\UltraLite\CustDB.

● Platform-specific user interface code, located in subdirectories of %SQLANYSAMP12%\UltraLite
\CustDB named for each operating system.

Setting up the CustDB consolidated database

The CustDB consolidated database can be any MobiLink supported consolidated database.

SQL Anywhere 12 CustDB
A SQL Anywhere 12 CustDB consolidated database is provided in %SQLANYSAMP12%\UltraLite
\CustDB\custdb.db. A DSN called SQL Anywhere 12 CustDB is included with your installation.

You can rebuild this database using the file %SQLANYSAMP12%\UltraLite\CustDB\makedbs.cmd.

CustDB sample for MobiLink

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 49

If you want to explore the way the CustDB sample is created, you can view the file %SQLANYSAMP12%
\MobiLink\CustDB\custdb.sql.

CustDB for other RDBMSs
The following SQL scripts are provided in %SQLANYSAMP12%\MobiLink\CustDB to build the CustDB
consolidated database as any one of these supported RDBMSs:

RDBMS Custdb setup script

Adaptive Server Enterprise custase.sql

SQL Server custmss.sql

Oracle custora.sql

DB2 LUW custdb2.sql

MySQL custmys.sql

For more information about preparing a database for use as a consolidated database, see “Consolidated
database setup” [MobiLink - Server Administration].

Set up a consolidated database (Adaptive Server Enterprise, MySQL, Oracle, SQL Server)

The following procedure creates a CustDB consolidated database for each of the supported RDBMS.

1. Create a database in your RDBMS.

2. Add the MobiLink system objects by running one of the following SQL scripts, located in the
MobiLink\setup subdirectory of your SQL Anywhere 12 installation:

● For an Adaptive Server Enterprise consolidated database, run syncase.sql.

● For a MySQL consolidated database, run syncmys.sql.

● For an Oracle consolidated database, run syncora.sql.

● For a SQL Server consolidated database, run syncmss.sql.

3. Add sample user tables, stored procedures and MobiLink synchronization scripts to the CustDB
database by running one of the following SQL scripts, located in %SQLANYSAMP12%\MobiLink
\CustDB:

● For an Adaptive Server Enterprise consolidated database, run custase.sql.

● For a MySQL consolidated database, run custmys.sql.

● For an Oracle consolidated database, run custora.sql.

● For a SQL Server consolidated database, run custmss.sql.

4. Create an ODBC data source called CustDB that references your database on the client computer.

MobiLink technology

50 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

a. Choose Start » Programs » SQL Anywhere 12 » Administration Tools » ODBC Data Source
Administrator.

b. Click Add.

c. Select the appropriate driver from the list.
Click Finish.

d. Name the ODBC data source CustDB.

e. Click the Login tab. Enter the User ID and Password for your database.

Set up a consolidated database (DB2 LUW)

1. Create a consolidated database on the DB2 LUW server named CustDB.

2. Ensure that the default table space (usually called USERSPACE1) uses 8 KB pages.

If the default table space does not use 8 KB pages, complete the following steps:

a. Verify that at least one of your buffer pools has 8 KB pages. If not, create a buffer pool with 8 KB
pages.

b. Create a new table space and temporary table space with 8 KB pages.
For more information, consult your DB2 LUW documentation.

3. Add the MobiLink system objects to the DB2 LUW consolidated database using the file MobiLink
\setup\syncdb2.sql:

a. Change the connect command at the top of the file syncdb2.sql. Replace DB2Database with the
name of your database (or its alias). In this example, the database is called CustDB. You can also
add your DB2 user name and password as follows:

connect to CustDB user userid using password ~
b. Open a DB2 LUW Command Window on either the server or client computer. Run syncdb2.sql

by typing the following command:

db2 -c -ec -td~ +s -v -f syncdb2.sql

4. Add data tables, stored procedures and MobiLink synchronization scripts to the CustDB database:

a. If necessary, change the connect command in custdb2.sql. For example, you could add the user
name and password as follows. Replace userid and password with your user name and password.

connect to CustDB user userid using password
b. Open a DB2 Command Window on either the server or client computer.

c. Run custdb2.sql by typing the following command:

db2 -c -ec -td~ +s -v -f custdb2.sql
d. When processing is complete, enter the following command to close the command window:

exit

CustDB sample for MobiLink

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 51

5. Create an ODBC data source called CustDB that references the DB2 LUW database on the DB2 LUW
client.

a. Start the ODBC Data Source Administrator:
Choose Start » Programs » SQL Anywhere 12 » Administration Tools » ODBC Data Source
Administrator.
The ODBC Data Source Administrator appears.

b. On the User DSN tab, click Add.

c. In the Create New Data Source window, select the ODBC driver for your DB2 LUW database.
For example, choose IBM DB2 UDB ODBC Driver. Click Finish.
For information about how to configure your ODBC driver, see:

● Your DB2 LUW documentation
● http://www.sybase.com/detail?id=1011880

See also
● “IBM DB2 LUW consolidated database” [MobiLink - Server Administration]

Setting up an UltraLite remote database

The following procedure creates a remote database for CustDB. The CustDB remote database must be an
UltraLite database.

The application logic for the remote database is located in %SQLANYSAMP12%\UltraLite\CustDB. It
includes the following files:

● Embedded SQL logic The file custdb.sqc contains the SQL statements needed to query and
modify information from the UltraLite database, and the calls required to start synchronization with
the consolidated database.

● C++ API logic The file custdbcpp.cpp contains the C++ API logic.

● User-interface features These features are stored separately, in platform-specific subdirectories
of Samples\UltraLite\CustDB.

Install the sample application to a remote device and synchronize

You complete the following steps to install the sample application to a remote device that is running
UltraLite:

1. Start the consolidated database.

2. Start the MobiLink server.

3. Install and start the sample application to your client device.

4. Synchronize the sample application.

MobiLink technology

52 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

http://www.sybase.com/detail?id=1011880

Example
The following example illustrates how to install the CustDB sample on a Windows desktop running
against a DB2 consolidated database.

1. Ensure that the consolidated database is running:

For a DB2 LUW database, open a DB2 Command Window. Type the following command, where
userid and password are the user ID and password for connecting to the DB2 LUW database:

db2 connect to CustDB user userid using password

2. Start the MobiLink server:

For a DB2 LUW database, at a command prompt, run the following command:

mlsrv12 -c "DSN=CustDB" -zp

3. Start the CustDB sample application:

a. Click Start » Programs » SQL Anywhere 12 » MobiLink » Synchronization Server Sample.

b. Enter a value of 50 for the employee ID and click OK.

The application automatically synchronizes and a set of customers, products, and orders are
downloaded to the application from the CustDB consolidated database.

4. Synchronize the remote application with the consolidated database.

From the File menu, choose Synchronize.

You only need to complete this step when you have made changes to the database.

Tables in the CustDB databases
The table definitions for the CustDB database are in platform-specific files in %SQLANYSAMP12%
\MobiLink\CustDB.

For an entity-relationship diagram of the CustDB tables, see “The CustDB sample database application”
[SQL Anywhere 12 - Introduction].

Both the consolidated and the remote databases contain the following five tables, although their
definitions are slightly different in each location.

ULCustomer
The ULCustomer table contains a list of customers.

In the remote database, ULCustomer has the following columns:

● cust_id A primary key column that holds a unique integer that identifies the customer.

CustDB sample for MobiLink

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 53

● cust_name A 30-character string containing the name of the customer.

In the consolidated database, ULCustomer has the following additional column:

● last_modified A timestamp containing the last time the row was modified. This column is used for
timestamp-based synchronization.

ULProduct
The ULProduct table contains a list of products.

In both the remote and consolidated databases, ULProduct has the following columns:

● prod_id A primary key column that contains a unique integer that identifies the product.

● price An integer identifying the unit price.

● prod_name A 30-character string that contains the name of the product.

ULOrder
The ULOrder table contains a list of orders, including details of the customer who placed the order, the
employee who took the order, and the product being ordered.

In the remote database, ULOrder has the following columns:

● order_id A primary key column that holds a unique integer identifying the order.

● cust_id A foreign key column referencing ULCustomer.

● prod_id A foreign key column referencing ULProduct.

● emp_id A foreign key column referencing ULEmployee.

● disc An integer containing the discount applied to the order.

● quant An integer containing the number of products ordered.

● notes A 50-character string containing notes about the order.

● status A 20-character string describing the status of the order.

In the consolidated database, ULOrder has the following additional column:

● last_modified A timestamp containing the last time the row was modified. This column is used for
timestamp-based synchronization.

ULOrderIDPool
The ULOrderIDPool table is a primary key pool for ULOrder.

In the remote database, ULOrderIDPool has the following column:

● pool_order_id A primary key column that holds a unique integer identifying the order ID.

MobiLink technology

54 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

In the consolidated database, ULOrderIDPool has the following additional columns:

● pool_emp_id An integer column containing the employee ID of the owner of the remote database
to which the order ID has been assigned.

● last_modified A timestamp containing the last time the row was modified.

ULCustomerIDPool
The ULCustomerIDPool table is a primary key pool for ULCustomer.

In the remote database, ULCustomerIDPool has the following column:

● pool_cust_id A primary key column that holds a unique integer identifying the customer ID.

In the consolidated database, ULCustomerIDPool has the following additional columns:

● pool_emp_id An integer column containing the employee ID that is used for a new employee
generated at a remote database.

● last_modified A timestamp containing the last time the row was modified.

The following tables are contained in the consolidated database only:

ULIdentifyEmployee_nosync
The ULIdentifyEmployee_nosync table exists only in the consolidated database. It has a single column as
follows:

● emp_id This primary key column contains an integer representing an employee ID.

ULEmployee
The ULEmployee table exists only in the consolidated database. It contains a list of sales employees.

ULEmployee has the following columns:

● emp_id A primary key column that holds a unique integer identifying the employee.

● emp_name A 30-character string containing the name of the employee.

ULEmpCust
The ULEmpCust table controls which customers' orders are downloaded. If the employee needs a new
customer's orders, inserting the employee ID and customer ID forces the orders for that customer to be
downloaded.

● emp_id A foreign key to ULEmployee.emp_id.

● cust_id A foreign key to ULCustomer.cust_id. The primary key consists of emp_id and cust_id.

● action A character used to determine if an employee record should be deleted from the remote
database. If the employee no longer requires a customer's orders, set to D (delete). If the orders are
still required, the action should be set to null.

CustDB sample for MobiLink

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 55

A logical delete must be used in this case so that the consolidated database can identify which rows to
remove from the ULOrder table. Once the deletes have been downloaded, all records for that
employee with an action of D can also be removed from the consolidated database.

● last_modified A timestamp containing the last time the row was modified. This column is used for
timestamp-based synchronization.

ULOldOrder and ULNewOrder
These tables exists only in the consolidated database. They are for conflict resolution and contain the
same columns as ULOrder. In SQL Anywhere and Microsoft SQL Server, these are temporary tables. In
Adaptive Server Enterprise, these are normal tables and @@spid. DB2 LUW and Oracle do not have
temporary tables, so MobiLink needs to be able to identify which rows belong to the synchronizing user.
Since these are base tables, if five users are synchronizing, they might each have a row in these tables at
the same time.

For more information about @@spid, see “Variables” [SQL Anywhere Server - SQL Reference].

Users in the CustDB sample

There are two types of users in the CustDB sample, sales people and mobile managers. The differences
are as follows:

● Sales people User IDs 50, 51, and 52 identify remote databases that are associated with sales
people. Sales people can perform the following tasks:

○ View lists of customers and products.

○ Add new customers.

○ Add or delete orders.

○ Scroll through the list of outstanding orders.

○ Synchronize changes with the consolidated database.

● Mobile managers User ID 53 identifies the remote database associated with the mobile manager.
The mobile manager can perform the same tasks as a sales person. In addition, the mobile manager
can perform the following task:

○ Accept or deny orders.

Synchronization logic source code
You can use Sybase Central to inspect the synchronization scripts in the consolidated database.

MobiLink technology

56 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Script types and events
The custdb.sql file adds each synchronization script to the consolidated database by calling
ml_add_connection_script or ml_add_table_script.

Example
The following lines in custdb.sql add a table-level script for the ULProduct table, which is executed
during the download_cursor event. The script consists of a single SELECT statement.

call ml_add_table_script(
'CustDB 12.0',
'ULProduct', 'download_cursor',
'SELECT prod_id, price, prod_name FROM ULProduct')
go

Synchronization of orders in the CustDB sample

Business rules
The business rules for the ULOrder table are as follows:

● Orders are downloaded only if they are not approved or the status is null.

● Orders can be modified at both the consolidated and remote databases.

● Each remote database contains only the orders assigned to an employee.

Downloads
Orders can be inserted, deleted, or updated at the consolidated database. The scripts corresponding to
these operations are as follows:

● download_cursor The first parameter in the download_cursor script is the last download
timestamp. It is used to ensure that only rows that have been modified on either the remote or the
consolidated database since the last synchronization are downloaded. The second parameter is the
employee ID. It is used to determine which rows to download.

The download_cursor script for CustDB is as follows:

CALL ULOrderDownload({ml s.last_table_download}, {ml s.username})

The ULOrderDownload procedure for CustDB is as follows:

CREATE PROCEDURE ULOrderDownload (IN LastDownload timestamp, IN
EmployeeID integer)
BEGIN
 SELECT o.order_id, o.cust_id, o.prod_id, o.emp_id, o.disc, o.quant,
o.notes, o.status
 FROM ULOrder o, ULEmpCust ec
 WHERE o.cust_id = ec.cust_id
 AND ec.emp_id = EmployeeID
 AND (o.last_modified >= LastDownload
 OR ec.last_modified >= LastDownload)
 AND (o.status IS NULL OR o.status != 'Approved')

CustDB sample for MobiLink

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 57

 AND (ec.action IS NULL)
END

● download_delete_cursor The download_delete_cursor script for CustDB is as follows:

SELECT o.order_id
 FROM ULOrder o, dba.ULEmpCust ec
 WHERE o.cust_id = ec.cust_id
 AND ((o.status = ''Approved'' AND o.last_modified >= {ml
s.last_table_download})
 OR (ec.action = ''D''))
 AND ec.emp_id = {ml s.username}

Uploads
Orders can be inserted, deleted or updated at the remote database. The scripts corresponding to these
operations are as follows:

● upload_insert The upload_insert script for CustDB is as follows:

INSERT INTO ULOrder (order_id, cust_id, prod_id, emp_id, disc, quant,
notes, status)
 VALUES({ml r.order_id, r.cust_id, r.prod_id, r.emp_id, r.disc,
r.quant, r.notes, r.status })

● upload_update The upload_update script for CustDB is as follows:

UPDATE ULOrder
 SET cust_id = {ml r.cust_id},
 prod_id = {ml r.prod_id},
 emp_id = {ml r.emp_id},
 disc = {ml r.disc},
 quant = {ml r.quant},
 notes = {ml r.notes},
 status = {ml r.status}
 WHERE order_id = {ml r.order_id}

● upload_delete The upload_delete script for CustDB is as follows:

DELETE FROM ULOrder WHERE order_id = {ml r.order_id}

● upload_fetch The upload_fetch script for CustDB is as follows:

SELECT order_id, cust_id, prod_id, emp_id, disc, quant, notes, status
 FROM ULOrder WHERE order_id = {ml r.order_id}

● upload_old_row_insert The upload_old_row_insert script for CustDB is as follows:

INSERT INTO ULOldOrder (order_id, cust_id, prod_id, emp_id, disc, quant,
notes, status)
 VALUES({ml r.order_id, r.cust_id, r.prod_id, r.emp_id, r.disc,
r.quant, r.notes, r.status })

● upload_new_row_insert The upload_new_row_insert script for CustDB is as follows:

INSERT INTO ULNewOrder (order_id, cust_id, prod_id, emp_id, disc, quant,
notes, status)
 VALUES({ml r.order_id, r.cust_id, r.prod_id, r.emp_id, r.disc,
r.quant, r.notes, r.status })

MobiLink technology

58 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Conflict resolution
● resolve_conflict The resolve_conflict script for CustDB is as follows:

CALL ULResolveOrderConflict

The ULResolveOrderConflict procedure for CustDB is as follows:

CREATE PROCEDURE ULResolveOrderConflict()
BEGIN
 -- approval overrides denial
 IF 'Approved' = (SELECT status FROM ULNewOrder) THEN
 UPDATE ULOrder o
 SET o.status = n.status, o.notes = n.notes
 FROM ULNewOrder n
 WHERE o.order_id = n.order_id;
 END IF;
 DELETE FROM ULOldOrder;
 DELETE FROM ULNewOrder;
END

Synchronization of customers in the CustDB sample

Business rules
The business rules governing customers are as follows:

● Customer information can be modified at both the consolidated and remote databases.

● Both the remote and consolidated databases contain a complete listing of customers.

Downloads
Customer information can be inserted or updated at the consolidated database. The script corresponding to
these operations is as follows:

● download_cursor The following download_cursor script downloads all customers for whom
information has changed since the last time the user downloaded information.

SELECT cust_id, cust_name FROM ULCustomer WHERE last_modified >= {ml
s.last_table_download}

Uploads
Customer information can be inserted, updated, or deleted at the remote database. The scripts
corresponding to these operations are as follows:

● upload_insert The upload_insert script for CustDB is as follows:

INSERT INTO ULCustomer(cust_id, cust_name)
 VALUES({ml r.cust_id, r.cust_name })

● upload_update The upload_update script for CustDB is as follows:

UPDATE ULCustomer SET cust_name = {ml r.cust_name}
 WHERE cust_id = {ml r.cust_id}

CustDB sample for MobiLink

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 59

Conflict detection is not performed on this table.

● upload_delete The upload_delete script for CustDB is as follows:

DELETE FROM ULCustomer WHERE cust_id = {ml r.cust_id}

Synchronization of products in the CustDB sample

Business rules
All rows are downloaded for ULProduct—this is called snapshot synchronization.

See “Snapshot synchronization” [MobiLink - Server Administration].

The business rules for the ULProduct table are as follows:

● Products can only be modified at the consolidated database.

● Each remote database contains all the products.

Downloads
Product information can be inserted, deleted, or updated at the consolidated database. The script
corresponding to these operations is as follows:

● download_cursor The following download_cursor script downloads all the rows and columns of
the ULProduct table at each synchronization:

SELECT prod_id, price, prod_name FROM ULProduct

Maintenance of the customer and order primary key pools
The CustDB sample database uses primary key pools to maintain unique primary keys in the ULCustomer
and ULOrder tables. The primary key pools are the ULCustomerIDPool and ULOrderIDPool tables.

ULCustomerIDPool
The following scripts are defined in the ULCustomerIDPool table:

Downloads
● download_cursor

SELECT pool_cust_id FROM ULCustomerIDPool
 WHERE last_modified >= {ml s.last_table_download}
 AND pool_emp_id = {ml s.username}

Uploads
● upload_insert The upload_insert script for CustDB is as follows:

MobiLink technology

60 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

INSERT INTO ULCustomerIDPool (pool_cust_id)
 VALUES({ml r.pool_cust_id})

● upload_delete The upload_delete script for CustDB is as follows:

DELETE FROM ULCustomerIDPool
 WHERE pool_cust_id = {ml r.pool_cust_id}

● end_upload The following end_upload script ensures that after each upload 20 customer IDs
remain in the customer ID pool:

CALL ULOrderIDPool_maintain({ml s.username})

The ULCustomerIDPool_maintain procedure for CustDB is as follows:

CREATE PROCEDURE ULCustomerIDPool_maintain (IN syncuser_id INTEGER)
BEGIN
 DECLARE pool_count INTEGER;
 -- Determine how many ids to add to the pool
 SELECT COUNT(*) INTO pool_count
 FROM ULCustomerIDPool
 WHERE pool_emp_id = syncuser_id;
 -- Top up the pool with new ids
 WHILE pool_count < 20 LOOP
 INSERT INTO ULCustomerIDPool (pool_emp_id)
 VALUES (syncuser_id);
 SET pool_count = pool_count + 1;
 END LOOP;
END

ULOrderIDPool
The following scripts are defined in the ULOrderIDPool table:

Downloads
● download_cursor The download_cursor script for CustDB is as follows:

SELECT pool_order_id FROM ULOrderIDPool
 WHERE last_modified >= {ml s.last_table_download}
 AND pool_emp_id = {ml s.username}

Uploads
● end_upload The following end_upload script ensures that after each upload 20 order IDs remain

in the order ID pool.

CALL ULOrderIDPool_maintain({ml s.username})

The ULOrderIDPool_maintain procedure for CustDB is as follows:

ALTER PROCEDURE ULOrderIDPool_maintain (IN syncuser_id INTEGER)
BEGIN
 DECLARE pool_count INTEGER;
 -- Determine how many ids to add to the pool
 SELECT COUNT(*) INTO pool_count
 FROM ULOrderIDPool
 WHERE pool_emp_id = syncuser_id;
 -- Top up the pool with new ids

CustDB sample for MobiLink

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 61

 WHILE pool_count < 20 LOOP
 INSERT INTO ULOrderIDPool (pool_emp_id)
 VALUES (syncuser_id);
 SET pool_count = pool_count + 1;
 END LOOP;
END

● upload_insert The upload_insert script for CustDB is as follows:

INSERT INTO ULOrderIDPool (pool_order_id)
 VALUES({ml r.pool_order_id}

● upload_delete The upload_delete script for CustDB is as follows:

DELETE FROM ULOrderIDPool
 WHERE pool_order_id = {ml r.pool_order_id}

Restoring the CustDB database
To restore the sample, run the following command from the %SQLANYSAMP12%\UltraLite\CustDB
directory:

makedbs

MobiLink Contact sample
The Contact sample is a valuable resource for the MobiLink developer. It provides you with an example
of how to implement many of the techniques you need to develop MobiLink applications.

The Contact sample application includes a SQL Anywhere consolidated database and two SQL Anywhere
remote databases. It illustrates several common synchronization techniques. To get the most out of this
section, study the sample application as you read.

Although the consolidated database is a SQL Anywhere database, the synchronization scripts consist of
SQL statements that should work with minimal changes on other database management systems.

The Contact sample is in %SQLANYSAMP12%\MobiLink\Contact.

Synchronization design
The synchronization design in the Contact sample application uses the following features:

● Column subsets A subset of the columns of the Customer, Product, SalesRep, and Contact tables
on the consolidated database are shared with the remote databases.

● Row subsets All the columns, but only one of the rows of the SalesRep table on the consolidated
database are shared with each remote database. See “Partitioning rows among remote databases”
[MobiLink - Server Administration].

● Timestamp-based synchronization This is a way of identifying changes that were made to the
consolidated database since the last time a device synchronized. The Customer, Contact, and Product

MobiLink technology

62 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

tables are synchronized using a method based on timestamps. See “Implementing timestamp-based
downloads” [MobiLink - Server Administration].

Contact sample setup
A Windows batch file called build.bat is provided to build the Contact sample databases. On Unix
systems, the file is build.sh. You may want to examine the contents of the batch file. It performs the
following actions:

● Creates ODBC data source definitions for a consolidated database and each of two remote databases.

● Creates a consolidated database named consol.db and loads the MobiLink system tables, database
schema, some data, synchronization scripts, and MobiLink user names into the database.

● Creates two remote databases, each named remote.db, in subdirectories named remote_1 and remote_2.
Loads information common to both databases and applies customizations. These customizations
include a global database identifier, a MobiLink user name, and subscriptions to two publications.

Build the Contact sample

1. At a command prompt, navigate to %SQLANYSAMP12%\MobiLink\Contact.

2. Run build.bat (Windows) or build.sh (Unix).

Running the Contact sample

Run the Contact sample

The Contact sample includes batch files that perform initial synchronizations and illustrate MobiLink
server and dbmlsync command lines. You can examine the contents of the following batch files, located
in %SQLANYSAMP12%\MobiLink\Contact, in a text editor:

● step1.bat
● step2.bat
● step3.bat

1. Start the MobiLink server.

a. At a command prompt, navigate to %SQLANYSAMP12%\MobiLink\Contact.

b. Run the following command:

step1

This command runs a batch file that starts the MobiLink server in a verbose mode. This mode is
useful during development or troubleshooting, but has a significant performance impact and so
would not be used in a routine production environment.

2. Synchronize both remote databases.

MobiLink Contact sample

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 63

a. At a command prompt, navigate to %SQLANYSAMP12%\MobiLink\Contact.

b. Run the following command:

step2

This is a batch file that synchronizes both remote databases.

3. Shut down the MobiLink server.

a. At a command prompt, navigate to %SQLANYSAMP12%\MobiLink\Contact.

b. Run the following command:

step3

This is a batch file that shuts down the MobiLink server.

To explore how synchronization works in the Contact sample, you can use Interactive SQL to modify the
data in the remote and consolidated databases, and use the batch files to synchronize.

Tables in the Contact databases
The table definitions for the Contact database are located in the following files, all under your samples
directory:

● MobiLink\Contact\build_consol.sql

● MobiLink\Contact\build_remote.sql

Both the consolidated and the remote databases contain the following three tables, although their
definition is slightly different in each place.

SalesRep
Each sales representative occupies one row in the SalesRep table. Each remote database belongs to a
single sales representative.

In each remote database, SalesRep has the following columns:

● rep_id A primary key column that contains an identifying number for the sales representative.

● name The name of the representative.

In the consolidated database only, there is also an ml_username column holding the MobiLink user name
for the representative.

Customer
This table holds one row for each customer. Each customer is a company with which a single sales
representative does business. There is a one-to-many relationship between the SalesRep and Customer
tables.

MobiLink technology

64 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

In each remote database, Customer has the following columns:

● cust_id A primary key column holding an identifying number for the customer.

● name The customer name. This is a company name.

● rep_id A foreign key column that references the SalesRep table. Identifies the sales representative
assigned to the customer.

In the consolidated database, there are two additional columns, last_modified and active:

● last_modified The last time the row was modified. This column is used for timestamp-based
synchronization.

● active A BIT column that indicates if the customer is currently active (1) or if the company no
longer deals with this customer (0). If the column is marked inactive (0) all rows corresponding to this
customer are deleted from remote databases.

Contact
This table holds one row for each contact. A contact is a person who works at a customer company. There
is a one-to-many relationship between the Customer and Contact tables.

In each remote database, Contact has the following columns:

● contact_id A primary key column holding an identifying number for the contact.

● name The name of the individual contact.

● cust_id The identifier of the customer for whom the contact works.

In the consolidated database, the table also has the following columns:

● last_modified The last time the row was modified. This column is used for timestamp-based
synchronization.

● active A BIT column that indicates if the contact is currently active (1) or if the company no longer
deals with this contact (0). If the column is marked inactive (0) the row corresponding to this contact
is deleted from remote databases.

Product
Each product sold by the company occupies one row in the Product table. The Product table is held in a
separate publication so that remote databases can synchronize the table separately.

In each remote database, Product has the following columns:

● id A primary key column that contains a number to identify the product.

● name The name of the item.

● size The size of the item.

MobiLink Contact sample

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 65

● quantity The number of items in stock. When a sales representative takes an order, this column is
updated.

● unit_price The price per unit of the product.

In the consolidated database, the Product table has the following additional columns:

● supplier The company that manufactures the product.

● last_modified The last time the row was modified. This column is used for timestamp-based
synchronization.

● active A BIT column that indicates if the product is currently active (1). If the column is marked
inactive (0), the row corresponding to this product is deleted from remote databases.

In addition to these tables, a set of tables is created at the consolidated database only. These include the
product_conflict table, which is a temporary table used during conflict resolution, and a set of tables for
monitoring MobiLink activities owned by a user named mlmaint. Scripts to create the MobiLink
monitoring tables are in the file %SQLANYSAMP12%\MobiLink\Contact\mlmaint.sql.

Users in the Contact sample

The Contact sample includes several different database user IDs and MobiLink user names.

Database user IDs
The two remote databases are assigned to the sales representatives Samuel Singer (rep_id 856) and
Pamela Savarino (rep_id 949).

When connecting to their remote database, both users use the default SQL Anywhere user ID dba and the
password SQL.

Each remote database also has a user ID sync_user with the password sync_user. This user ID is
employed only on the dbmlsync command line. The sync_user has REMOTE DBA authority, and can
perform any operation when connected from dbmlsync, but has no authority when connected from any
other application. So, using the sync_user ID and password should not be a problem.

At the consolidated database, there is a user named mlmaint, who owns the tables for monitoring
MobiLink synchronization statistics and errors. The mlmaint user has no right to connect. The
assignment of the tables to a separate user ID is done simply to separate the objects from the others in the
schema for easier administration in Sybase Central and other utilities.

MobiLink user names
MobiLink user names are distinct from database user IDs. Each remote device has a MobiLink user name
in addition to the user ID they use when connecting to a database. The MobiLink user name for Samuel
Singer is SSinger. The MobiLink user name for Pamela Savarino is PSavarino. The MobiLink user name
is stored or used in the following locations:

MobiLink technology

66 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● At the remote database, the MobiLink user name is added using a CREATE SYNCHRONIZATION
USER statement.

● At the consolidated database, the MobiLink user name and password are added using the mluser utility.

● During synchronization, the MobiLink password for the connecting user is supplied on the dbmlsync
command line listed in MobiLink\Contact\step2.bat.

● The MobiLink server supplies the MobiLink user name as a parameter to many of the scripts during
synchronization.

● The SalesRep table at the consolidated database has an ml_username column. The synchronization
scripts match the MobiLink user name parameter against the value in this column.

Synchronization of sales representatives in the Contact
sample

The synchronization scripts for the SalesRep table illustrates snapshot synchronization. Regardless of
whether a sales representative's information has changed, it is downloaded.

See “Snapshot synchronization” [MobiLink - Server Administration].

Business rules
The business rules for the SalesRep table are as follows:

● The table must not be modified at the remote database.

● A sales representative's MobiLink user name and rep_id value must not change.

● Each remote database contains a single row from the SalesRep table, corresponding to the remote
database owner's MobiLink user name.

Downloads
● download_cursor At each remote database, the SalesRep table contains a single row. There is

very little overhead for the download of a single row, so a simple snapshot download_cursor script is
used:

SELECT rep_id, name
FROM SalesRep
WHERE ? IS NOT NULL
AND ml_username = ?

The first parameter in the script is the last download timestamp, which is not used. The IS NOT
NULL expression is a dummy expression supplied to use the parameter. The second parameter is the
MobiLink user name.

Uploads
This table should not be updated at the remote database, so there are no upload scripts for the table.

MobiLink Contact sample

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 67

Synchronization of customers in the Contact sample
The synchronization scripts for the Customer table illustrate timestamp-based synchronization and
partitioning rows. Both of these techniques minimize the amount of data that is transferred during
synchronization while maintaining consistent table data.

See:

● “Implementing timestamp-based downloads” [MobiLink - Server Administration]
● “Partitioning rows among remote databases” [MobiLink - Server Administration]

Business rules
The business rules governing customers are as follows:

● Customer information can be modified at both the consolidated and remote databases.

● Periodically, customers may be reassigned among sales representatives. This process is commonly
called territory realignment.

● Each remote database contains only the customers they are assigned to.

Downloads
● download_cursor The following download_cursor script downloads only active customers for

whom information has changed since the last successful download. It also filters customers by sales
representative.

SELECT cust_id, Customer.name, Customer.rep_id
FROM Customer key join SalesRep
WHERE Customer.last_modified >= ?
AND SalesRep.ml_username = ?
AND Customer.active = 1

● download_delete_cursor The following download_delete_cursor script downloads only
customers for whom information has changed since the last successful download. It deletes all
customers marked as inactive or who are not assigned to the sales representative.

SELECT cust_id
FROM Customer key join SalesRep
WHERE Customer.last_modified >= ?
AND (SalesRep.ml_username != ? OR Customer.active = 0)

If rows are deleted from the Customer table at the consolidated database, they do not appear in this
result set and so are not deleted from remote databases. Instead, customers are marked as inactive.

When territories are realigned, this script deletes those customers no longer assigned to the sales
representative. It also deletes customers who are transferred to other sales representatives. Such
additional deletes are flagged with a SQLCODE of 100 but do not interfere with synchronization. A
more complex script could be developed to identify only those customers transferred away from the
current sales representative.

The MobiLink client performs cascading deletes at the remote database, so this script also deletes all
contacts who work for customers assigned to some other sales representative.

MobiLink technology

68 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Uploads
Customer information can be inserted, updated, or deleted at the remote database. The scripts
corresponding to these operations are as follows:

● upload_insert The following upload_insert script adds a row to the Customer table, marking the
customer as active:

INSERT INTO Customer(
 cust_id, name, rep_id, active)
VALUES (?, ?, ?, 1)

● upload_update The following upload_update script modifies the customer information at the
consolidated database. Conflict detection is not done on this table.

UPDATE Customer
SET name = ?, rep_id = ?
WHERE cust_id = ?

● upload_delete The following upload_delete script marks the customer as inactive at the
consolidated database. It does not delete a row.

UPDATE Customer
SET active = 0
WHERE cust_id = ?

Synchronization of contacts in the Contact sample
The Contact table contains the name of a person working at a customer company, a foreign key to the
customer, and a unique integer identifying the contact. It also contains a last_modified timestamp and a
marker to indicate whether the contact is active.

Business rules
The business rules for this table are as follows:

● Contact information can be modified at both the consolidated and remote databases.

● Each remote database contains only those contacts who work for customers they are assigned to.

● When customers are reassigned among sales representatives, contacts must also be reassigned.

Trigger
A trigger on the Customer table is used to ensure that the contacts get picked up when information about a
customer is changed. The trigger explicitly alters the last_modified column of each contact whenever the
corresponding customer is altered:

CREATE TRIGGER UpdateCustomerForContact
AFTER UPDATE OF rep_id ORDER 1
ON DBA.Customer
REFERENCING OLD AS old_cust NEW as new_cust
FOR EACH ROW
BEGIN

MobiLink Contact sample

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 69

 UPDATE Contact
 SET Contact.last_modified = new_cust.last_modified
 FROM Contact
 WHERE Contact.cust_id = new_cust.cust_id
END

By updating all contact records whenever a customer is modified, the trigger ties the customer and their
associated contacts together. Whenever a customer is modified, all associated contacts are modified too,
and the customer and associated contacts are downloaded together on the next synchronization.

Downloads
● download_cursor The download_cursor script for Contact is as follows:

SELECT contact_id, contact.name, contact.cust_id
FROM (contact JOIN customer) JOIN salesrep
ON contact.cust_id = customer.cust_id
 AND customer.rep_id = salesrep.rep_id
WHERE Contact.last_modified >= ?
 AND salesrep.ml_username = ?
 AND Contact.active = 1

This script retrieves all contacts that are active, that have been changed since the last time the sales
representative downloaded (either explicitly or by modification of the corresponding customer), and
that are assigned to the representative. A join with the Customer and SalesRep table is needed to
identify the contacts associated with this representative.

● download_delete_cursor The download_delete_cursor script for Contact is as follows:

SELECT contact_id
FROM (Contact JOIN Customer) JOIN SalesRep
ON Contact.cust_id = Customer.cust_id
 AND Customer.rep_id = SalesRep.rep_id
WHERE Contact.last_modified >= ?
 AND Contact.active = 0

The automatic use of cascading referential integrity by the MobiLink client deletes contacts when the
corresponding customer is deleted from the remote database. The download_delete_cursor script
therefore has to delete only those contacts marked as inactive.

Uploads
Contact information can be inserted, updated, or deleted at the remote database. The scripts corresponding
to these operations are as follows:

● upload_insert The following upload_insert script adds a row to the Contact table, marking the
contact as active:

INSERT INTO Contact (
 contact_id, name, cust_id, active)
VALUES (?, ?, ?, 1)

● upload_update The following upload_update script modifies the contact information at the
consolidated database:

UPDATE Contact
SET name = ?, cust_id = ?
WHERE contact_id = ?

MobiLink technology

70 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Conflict detection is not done on this table.

● upload_delete The following upload_delete script marks the contact as inactive at the
consolidated database. It does not delete a row.

UPDATE Contact
SET active = 0
WHERE contact_id = ?

Synchronization of products in the Contact sample
The scripts for the Product table illustrate conflict detection and resolution.

The Product table is kept in a separate publication from the other tables so that it can be downloaded
separately. For example, if the price changes and the sales representative is synchronizing over a slow
link, they can download the product changes without uploading their own customer and contact changes.

Business rules
The only change that can be made at the remote database is to change the quantity column, when an order
is taken.

Downloads
● download_cursor The following download_cursor script downloads all rows changed since the

last time the remote database synchronized:

SELECT id, name, size, quantity, unit_price
FROM product
WHERE last_modified >= ?
AND active = 1

● download_delete_cursor The following download_delete_cursor script removes all products no
longer sold by the company. These products are marked as inactive in the consolidated database.

SELECT id, name, size, quantity, unit_price
FROM product
WHERE last_modified >= ?
AND active = 0

Uploads
Only UPDATE operations are uploaded from the remote database. The major feature of these upload
scripts is a conflict detection and resolution procedure.

If two sales representatives take orders and then synchronize, each order is subtracted from the quantity
column of the Product table. For example, if Samuel Singer takes an order for 20 baseball hats (product
ID 400), he changes the quantity from 90 to 70. If Pamela Savarino takes an order for 10 baseball hats
before receiving this change, she changes the column in her database from 90 to 80.

When Samuel Singer synchronizes his changes, the quantity column in the consolidated database is
changed from 90 to 70. When Pamela Savarino synchronizes her changes, the correct action is to set the
value to 60. This setting is accomplished by detecting the conflict.

MobiLink Contact sample

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 71

The conflict detection scheme includes the following scripts:

● upload_update The following upload_update script is a straightforward UPDATE at the
consolidated database:

UPDATE product
SET name = ?, size = ?, quantity = ?, unit_price = ?
WHERE product.id = ?

● upload_fetch The following upload_fetch script fetches a single row from the Product table for
comparison with the old values of the uploaded row. If the two rows differ, a conflict is detected.

SELECT id, name, size, quantity, unit_price
FROM Product
WHERE id = ?

● upload_old_row_insert If a conflict is detected, the old values are placed into the
product_conflict table for use by the resolve_conflict script. The row is added with a value of O (for
Old) in the row_type column.

INSERT INTO DBA.product_conflict(
 id, name, size, quantity, unit_price, row_type)
VALUES(?, ?, ?, ?, ?, 'O')')

● upload_new_row_insert The following script adds the new values of the uploaded row into the
product_conflict table for use by the resolve_conflict script:

INSERT INTO DBA.product_conflict(
 id, name, size, quantity, unit_price, row_type)
VALUES(?, ?, ?, ?, ?, 'N')

Conflict resolution
● resolve_conflict The following script resolves the conflict by adding the difference between new

and old rows to the quantity value in the consolidated database:

UPDATE Product
SET p.quantity = p.quantity
 - old_row.quantity
 + new_row.quantity
FROM Product p,
 DBA.product_conflict old_row,
 DBA.product_conflict new_row
WHERE p.id = old_row.id
 AND p.id = new_row.id
 AND old_row.row_type = 'O'
 AND new_row.row_type = 'N'

Statistic and error monitoring in the Contact sample

The Contact sample contains some simple error reporting and monitoring scripts. The SQL statements to
create these scripts are in the file MobiLink\Contact\mlmaint.sql.

MobiLink technology

72 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The scripts insert rows into tables created to hold the values. For convenience, the tables are owned by a
distinct user, mlmaint.

MobiLink Contact sample

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 73

74 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

MobiLink tutorials
This section provides tutorials that show you how to set up and use MobiLink technology. These range
from introductory tutorials for new users to demonstrations of how to use advanced features.

Additional MobiLink tutorials are available online. See http://www.sybase.com/detail?id=1081144.

Note
The online tutorials are based on version 12.0.0 of SQL Anywhere. Some visuals and procedures may
differ from SQL Anywhere 12.0.1.

Tutorial: Introducing MobiLink
This tutorial guides you through the basic steps for writing synchronization scripts, interpreting MobiLink
logs, and monitoring synchronizations between a consolidated database and two remote databases using
the MobiLink Monitor. It provides instructions for setting up the databases and synchronizations using
Sybase Central.

Required software
● SQL Anywhere 12

Competencies and experience
You require:

● Basic knowledge of MobiLink event scripts

Overview
This tutorial shows you how to:

● Migrate a consolidated database schema to remote databases

● Create the basic scripts needed for synchronization and store them in the consolidated database using
Sybase Central

● Start the MobiLink server

● Monitor synchronization using log files and the MobiLink Monitor

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 75

http://www.sybase.com/detail?id=1081144

See also
● “Interactive SQL” [SQL Anywhere Server - Database Administration]
● “Sybase Central” [SQL Anywhere Server - Database Administration]
● “MobiLink synchronization” on page 1
● “Synchronization script writing” [MobiLink - Server Administration]
● “Synchronization techniques” [MobiLink - Server Administration]
● “Synchronization events” [MobiLink - Server Administration]
● “MobiLink Monitor” [MobiLink - Server Administration]
● “Conflict handling” [MobiLink - Server Administration]
● http://www.sybase.com/detail?id=1058600#319 (You need a Sybase.com login to view this page.)
● http://sqlanywhere-forum.sybase.com/

Lesson 1: Setting up a MobiLink consolidated database
In this lesson, you set up a SQL Anywhere consolidated database by creating it and defining an ODBC
data source.

Set up your consolidated database

1. Click Start » Programs » SQL Anywhere 12 » Administration Tools » Sybase Central.

2. Click Tools » SQL Anywhere 12 » Create Database.

3. Click Next.

4. Leave the default of Create A Database On This Computer, and click Next.

5. In the Save The Main Database File To The Following File field, type the file name and path for the
database. For example, c:\MLintro\MLconsolidated.db. Click Next.

6. Follow the remaining instructions in the Create Database Wizard and accept the default values. On
the Connect To The Database page, clear the Stop Database After Last Disconnect option.

7. Click Finish.

The MLconsolidated database is created.

8. In the Creating Database window, click Close.

9. Click Tools » SQL Anywhere 12 » Open ODBC Administrator.

10. Click the User DSN tab, and click Add.

11. In the Create New Data Source window, click SQL Anywhere 12, and click Finish.

12. Perform the following tasks in the ODBC Configuration For SQL Anywhere window:

a. Click the ODBC tab.

b. In the Data Source Name field, type mlintro_consdb.

MobiLink tutorials

76 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

http://www.sybase.com/detail?id=1058600#319
http://sqlanywhere-forum.sybase.com/

c. Click the Login tab.

d. In the Authentication dropdown list, leave the default of Database to connect using your user ID
and password.

e. In the User ID field, type DBA.

f. In the Password field, type sql.

g. In the Action dropdown list, leave the default of Connect To A Running Database On This
Computer.

h. In the Server Name field, type MLconsolidated.

i. Click OK.

13. Click OK to close the ODBC Data Source Administrator window.

14. Proceed to “Lesson 2: Creating and populating a table in the MobiLink consolidated database”
on page 77.

See also
● “MobiLink consolidated databases” [MobiLink - Server Administration]
● “Initialization utility (dbinit)” [SQL Anywhere Server - Database Administration]

Lesson 2: Creating and populating a table in the MobiLink
consolidated database

This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up a MobiLink
consolidated database” on page 76.

In this lesson, you create the Product table and insert sample data in the MobiLink consolidated database.
The Product table contains the following columns:

Column Description

name The name of the product.

quantity The number of items sold.

last_modified The last modification date of a row. You use this column for timestamp-based
downloads, a common technique used to filter rows for efficient synchronization.

Create and populate the Product table

1. Connect to the consolidated database in Interactive SQL.

You can start Interactive SQL from Sybase Central or at a command prompt.

● From Sybase Central, right-click the MLconsolidated - DBA database and click Open Interactive
SQL.

Tutorial: Introducing MobiLink

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 77

● At a command prompt, run the following command:

dbisql -c "DSN=mlintro_consdb"

2. Execute the following SQL statement in Interactive SQL to create the Product table:

CREATE TABLE Product (
 name VARCHAR(128) NOT NULL PRIMARY KEY,
 quantity INTEGER,
 last_modified TIMESTAMP DEFAULT TIMESTAMP
);

Interactive SQL creates the Product table in your consolidated database.

After creating the tables, you populate the Product table with sample data.

3. Execute the following SQL statements in Interactive SQL to populate the Product table with sample
data:

INSERT INTO Product(name, quantity)
 VALUES ('Screwmaster Drill', 10);
INSERT INTO Product(name, quantity)
 VALUES ('Drywall Screws 10lb', 30);
INSERT INTO Product(name, quantity)
 VALUES ('Putty Knife x25', 12);
COMMIT;

4. Verify that the Product table contains the data inserted from the previous step.

Execute the following SQL statement to verify the contents:

SELECT * FROM Product

The contents of the Product table should appear in Interactive SQL.

5. Proceed to “Lesson 3: Creating a MobiLink project and synchronization model” on page 78.

See also
● “Interactive SQL” [SQL Anywhere Server - Database Administration]
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]

Lesson 3: Creating a MobiLink project and synchronization
model

This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up a MobiLink
consolidated database” on page 76.

In this lesson, you use the Create Synchronization Model Wizard to create a new synchronization
model.

MobiLink tutorials

78 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Before you can create a model, you must use the Create Project Wizard to create a new MobiLink
project. You can then access the Create Synchronization Model Wizard from the Create Project
Wizard.

Create a new MobiLink project and synchronization model

1. Click Start » Programs » SQL Anywhere 12 » Administration Tools » Sybase Central.

2. Click Tools » MobiLink 12 » New Project.

The Create Project Wizard appears.

3. In the Name field, type mlintro_project.

4. In the Location field, type C:\MLintro, and click Next.

5. Select the Add A Consolidated Database To The Project option.

6. In the Database Display Name field, type mlintro_consdb.

7. Click Edit.

8. Perform the following tasks on the Connect To A Generic ODBC Database page:

a. In the User ID field, type DBA.

b. In the Password field, type sql.

c. In the ODBC Data Source Name field, click Browse and select mlintro_consdb.

d. Click OK, and click Save.

9. Select the Remember The Password option, and click Next.

10. Select Create A New Model, and click Next.

11. Select the Add A Remote Schema Name To The Project option.

12. In the What Do You Want To Name The New Remote Schema field, type My Application 1.0 and
click Finish.

13. Click Yes to install the MobiLink system tables, and click OK.

The Create Synchronization Model Wizard appears.

14. In the What Do You Want To Name The New Synchronization Model field, type sync_mlintro
and click Next.

15. Select the mlintro_consdb consolidated database from the list, and click Next.

16. Click No, Create A New Remote Database Schema, and click Next.

Tutorial: Introducing MobiLink

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 79

17. On the New Remote Database Schema page, ensure that only the Product table is selected from the
Which Consolidated Database Tables And Columns Do You Want To Have In Your Remote
Database list, and click Next.

18. Click Timestamp-based Download, and click Next.

Timestamp-based downloads minimize the amount of data that is transferred because only data that
has been updated since the last download is transmitted.

19. On the Timestamp Download Options page, click Use Shadow Tables To Hold Timestamp
Columns, and click Next.

Using shadow tables is often preferred because it does not require any changes to existing tables.

20. Perform the following tasks on the Download Deletes page:

a. Click Yes for the Do You Want Data Deleted On The Consolidated Database To Be Deleted
On The Remote Databases option.

b. Click Use Shadow Tables To Record Deletions.
MobiLink creates shadow tables on the consolidated database to implement deletions that can be
synchronized.

c. Click Next.

21. Click Yes, Download the Same Data to Each Remote, and click Next.

22. Click No Conflict Detection, and click Next.

23. Perform the following tasks on the Publication, Script Version And Description page:

a. In the What Do You Want To Name The Publication field, type sync_mlintro_publication.

b. In the What Do You Want To Name The Script Version field, type
sync_mlintro_scriptversion.
The publication is the object on the remote database that specifies what data is synchronized.
MobiLink server scripts define how uploaded data from remotes should be applied to the
consolidated database, and script versions group scripts. You can use different script versions for
different applications, allowing you to maintain a single MobiLink server while synchronizing
different applications.

c. Click Finish.

24. Proceed to “Lesson 4: Deploying the synchronization model” on page 81.

MobiLink tutorials

80 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “Synchronization models” on page 25
● “Consolidated database setup” [MobiLink - Server Administration]
● “MobiLink server system tables” [MobiLink - Server Administration]
● “MobiLink server system procedures” [MobiLink - Server Administration]
● “download_delete_cursor scripts” [MobiLink - Server Administration]
● “Conflict handling” [MobiLink - Server Administration]
● “Conflict resolution” [MobiLink - Server Administration]
● “Publications” [MobiLink - Client Administration]
● “Synchronization model tasks” on page 28
● “Modifying the download type” on page 30
● “Modifying conflict detection and resolution” on page 35
● “Modifying table and column mappings” on page 28

Lesson 4: Deploying the synchronization model
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up a MobiLink
consolidated database” on page 76.

In this lesson, you deploy the synchronization model using the Deploy Synchronization Model Wizard
to configure the consolidated database for synchronization, and create and deploy two remote databases.

Deploy the synchronization model to two remote devices

1. In the left pane of Sybase Central under MobiLink 12, expand mlintro_project, Synchronization
Models, sync_mlintro.

2. Click File » Deploy.

3. Use the default settings for the Specify The Deployment Details For One Or More Of The
Following option, and click Next.

4. Perform the following tasks on the Consolidated Database Deployment Destination page:

a. Select Save Changes To The Following SQL File and accept the default location for the file.
MobiLink generates a .sql file that makes changes to the consolidated database to set up
synchronization. You can examine the .sql file later and make your own changes. Then, you must
run the .sql file.

b. Immediately apply the changes to the consolidated database.
Select Connect To The Consolidated Database To Directly Apply The Changes.

c. Select the mlintro_consdb consolidated database from the list.

d. Click Next.

A prompt appears asking if you want to create the consolidated directory. Click Yes.

5. Click New SQL Anywhere Database, and click Next.

6. Perform the following tasks on the New SQL Anywhere Remote Database page:

Tutorial: Introducing MobiLink

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 81

a. Select the Make A Command File And A SQL File With Commands To Create The
Database option.
Selecting this option generates another .sql file with the commands to set up the remote database
with all the schema and synchronization information.

b. Accept the default location in the SQL File field.

c. Select the Create A Remote SQL Anywhere Database option.

d. Accept the default location in the SQL Anywhere Database File field.

e. Click Next.

A prompt appears asking if you want to create the remote directory. Click Yes.

7. Click Finish.

A message appears asking if you want to create the mlsrv directory. Click Yes.

8. Click Close on the Deploying window.

Your consolidated database is fully configured for synchronization with many remote clients. Your
remote database is created and deployed.

9. In the left pane of Sybase Central under MobiLink 12, expand mlintro_project, Synchronization
Models, sync_mlintro.

10. Click File » Deploy.

11. Click Specify The Deployment Details For One Or More Of The Following and ensure that only
the Remote Database And Synchronization Client and Initialize With Settings For Central
Administration Of Remote Databases options are selected. Click Next.

12. Click New SQL Anywhere Database, and click Next.

13. Perform the following tasks on the New SQL Anywhere Remote Database page:

a. Select the Make A Command File And A SQL File With Commands To Create The
Database option.
Selecting this option generates another .sql file with the commands to set up the remote database
with all schema and synchronization information.

b. Change the file location in the SQL File field to C:\MLintro\mlintro_project\sync_mlintro\remote
\sync_mlintro_remote2.sql.

c. Select the Create A Remote SQL Anywhere Database option.

d. Change the file location in the SQL Anywhere Database File field to C:\MLintro
\mlintro_project\sync_mlintro\remote\sync_mlintro_remote2.db.

e. Click Next.

14. Click Finish on the MobiLink User and Synchronization Profile page.

15. Click Close on the Deploying window.

MobiLink tutorials

82 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

You have successfully created and deployed your second remote database.

16. Proceed to “Lesson 5: Starting the MobiLink server” on page 83.

See also
● “Synchronization model deployment” on page 40
● “Creating a remote database” [MobiLink - Client Administration]

Lesson 5: Starting the MobiLink server
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up a MobiLink
consolidated database” on page 76.

In this lesson, you start the MobiLink server using the mlsrv12 -c option to connect to your consolidated
database. You use additional options to configure MobiLink server behavior.

Start the MobiLink server

1. At a command prompt, change to the c:\MLintro\ directory.

2. Connect to your consolidated database by running the following command:

mlsrv12 -c "DSN=mlintro_consdb" -o mlsrv.mls -v+ -dl -zf -zu+ -x tcpip

The MobiLink server messages window appears.

Below is a description of each MobiLink server option used in this tutorial. The options -o, -v, and -dl
provide debugging and troubleshooting information. Using these logging options is appropriate in a
development environment. For performance reasons, -v and -dl are typically not used in production
environments. For a complete list of MobiLink server options, see “MobiLink server options”
[MobiLink - Server Administration].

Option Description

-c Specifies the connection string to the consolidated database.

-o Specifies the message log file mlsrv.mls.

-v+ Specifies what information is logged. Using -v+ sets maximum verbose
logging.

-zf Causes the MobiLink server to check for script changes at the beginning of
each synchronization.

-dl Displays all log messages in the messages window.

-zu+ Adds new users automatically.

Tutorial: Introducing MobiLink

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 83

Option Description

-x Sets the communications protocol for the MobiLink server, indicating
which port to listen on and what network protocol to expect from Mobi-
Link clients. The default port for TCP/IP is 2439.

Note
The -zf option should be used for debugging and development purposes only. This tutorial requires
the -zf option so that you do not need to shut down the MobiLink server when adding new scripts to
the consolidated database in a later lesson. The -zu+ option automatically adds new MobiLink users to
the synchronization environment.

3. Proceed to “Lesson 6: Starting the MobiLink clients” on page 84.

Lesson 6: Starting the MobiLink clients
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up a MobiLink
consolidated database” on page 76.

In this lesson, you start the remote databases to prepare them for synchronization. This lesson assumes
that your remote databases, consolidated database, and MobiLink server reside on the same computer.

Use the dbeng12 command line utility to start your remote databases.

Start your MobiLink client databases

1. At a command prompt, change to the c:\MLintro\mlintro_project\sync_mlintro\remote directory.

2. Run the following command to start the sync_mlintro_remote database:

dbeng12 sync_mlintro_remote

3. Run the following command to start the sync_mlintro_remote2 database:

dbeng12 sync_mlintro_remote2

4. Proceed to “Lesson 7: Starting the MobiLink Monitor” on page 84.

Lesson 7: Starting the MobiLink Monitor
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up a MobiLink
consolidated database” on page 76.

In this lesson, you start and configure the MobiLink Monitor to see synchronizations as they occur.

The MobiLink Monitor can be used to collect statistical information about synchronizations. The
graphical chart shows tasks on the vertical axis against the progression of time on the horizontal axis. You
can quickly identify synchronizations that result in errors or satisfy certain conditions using the MobiLink

MobiLink tutorials

84 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Monitor. Since the MobiLink Monitor does not significantly degrade performance, it is recommended for
both development and production environments.

Configure the MobiLink Monitor to detect update conflicts

1. Click Start » Programs » SQL Anywhere 12 » Administration Tools » MobiLink Monitor.

The Connect to MobiLink Server window appears.

2. Connect the MobiLink Monitor to the MobiLink server.

In the User field, type monitor_user, and click OK.

This user is added automatically because you started the MobiLink server with the -zu+ option in a
previous lesson.

3. Proceed to “Lesson 8: Synchronizing” on page 85.

See also
● “MobiLink Monitor” [MobiLink - Server Administration]

Lesson 8: Synchronizing
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up a MobiLink
consolidated database” on page 76.

In this lesson, you synchronize the remote databases with the consolidated database using the dbmlsync
utility on a MobiLink client to connect to the MobiLink server.

Start the synchronization clients

1. At a command prompt, change to the c:\MLintro\mlintro_project\sync_mlintro\remote directory.

2. Run the following command to synchronize the sync_mlintro_remote database:

dbmlsync -c "SERVER=sync_mlintro_remote;UID=DBA;PWD=sql" -o rem1.dbs -v+

A window appears displaying all information relevant to the sync_mlintro_remote client
synchronization with the consolidated database. The information is saved to the rem1.dbs file, which
is accessible after you close the client synchronization window.

The following table contains a description for each dbmlsync utility option:

Option Description

-c Specifies the connection string to the remote database.

-o Specifies the message log file.

Tutorial: Introducing MobiLink

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 85

Option Description

-v+ The -v option specifies what information is logged. Using -v+ sets maximum ver-
bose logging.

3. Close the client synchronization window.

Click Shut Down.

4. Run the following command to synchronize the sync_mlintro_remote2 database:

dbmlsync -c "SERVER=sync_mlintro_remote2;UID=DBA;PWD=sql" -o rem2.dbs -v+

A window appears displaying all information relevant to the sync_mlintro_remote2 client
synchronization with the consolidated database. The information is saved to the rem2.dbs file, which
is accessible after you close the client synchronization window.

5. Close the client synchronization window.

Click Shut Down.

6. Pause chart scrolling.

Click Monitor » Pause Chart Scrolling.

7. In the MobiLink Monitor, use the bottom pane to scroll back to the last synchronization.

8. Look at the properties of the last synchronization.

Double-click the vertical colored bar to view the synchronization properties.

9. Proceed to “Lesson 9: Using the MobiLink Server Log File Viewer to check for errors and warnings”
on page 86.

See also
● “MobiLink SQL Anywhere client utility (dbmlsync)” [MobiLink - Client Administration]

Lesson 9: Using the MobiLink Server Log File Viewer to
check for errors and warnings

This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up a MobiLink
consolidated database” on page 76.

After the tables are synchronized, you can view the progress of the synchronizations using the message
log files you created with each command line, mlsrv.mls, rem1.dbs, and rem2.dbs respectively. The
default location of these files is the directory where the command was run.

MobiLink tutorials

86 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Detect errors in your MobiLink server log file and synchronization client log file

1. In Sybase Central, click Tools » MobiLink 12 » MobiLink Server Log File Viewer.

2. Open your log file in a text editor.

Locate c:\MLintro\mlsrv.mls, and click Open.

The MobiLink Server Log File Viewer window appears.

3. Click the Synchronizations tab to look for errors and warnings that occurred during synchronizations.

Clear the Show Information option and click Apply.

Only synchronizations that contain errors and warnings appear in the Synchronizations pane. The
individual errors and warnings appear in the Details pane.

4. Click the Messages tab to look for errors and warnings that were reported by the MobiLink server.

Clear the Show Information option, and click Apply.

Only synchronizations that contain errors and warnings appear in the Messages pane. For example,
you may see a warning that states the following:

[10093] The MobiLink server is currently running with -zf that will
reduce its performance

5. Click the Summaries tab to look for overall statistics listed in the log file.

6. Open a client log file, such as rem1.mls or rem2.mls, in a text editor.

7. Search the file for the string ROLLBACK. If the transaction was rolled back, there were errors that
prevented it from completing.

8. Scan down the left side of the file. An error has occurred if you see a line that begins with an E.. Your
synchronization has completed successfully if your log file does not contain errors.

9. Proceed to “Lesson 10: Creating a table for conflict detection and resolution” on page 88.

See also
● “Log MobiLink server actions” [MobiLink - Server Administration]

Example
The following example shows sample error messages that you could encounter when reviewing the
MobiLink server log:

E. 2010-04-12 14:49:14. Error code from MobiLink server: -10355
E. 2010-04-12 14:49:14. Server error: Message: The table 'Product' has no
upload_update script. Table Name: Product

This message indicates that an error has occurred before data could be uploaded. The message states that
the required upload_update script does not exist for the Product table in the consolidated database.

Tutorial: Introducing MobiLink

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 87

Lesson 10: Creating a table for conflict detection and
resolution

This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up a MobiLink
consolidated database” on page 76.

Conflicts can arise during the upload of rows to the consolidated database. If two users modify the same
row on different remote databases, a conflict is detected when the second row arrives at the MobiLink
server. You can detect and resolve conflicts using synchronization scripts.

Inventory example
Consider a scenario where two clients are selling up to ten items simultaneously. The first client sells
three items, so they update the inventory on their client database, sync_mlintro_remote, to indicate seven
remaining items. Their database then synchronizes with the consolidated database, mlintro_consdb. The
second client then sells four items, so they update the inventory on their remote database,
sync_mlintro_remote2, to indicate six remaining items. A conflict is detected when they attempt to
synchronize with mlintro_consdb because the inventory value has changed.

You must obtain the following row values to programmatically resolve this conflict:

● The current value in the consolidated database.

The value in the consolidated database is 7 after sync_mlintro_remote synchronizes.

● The new row value uploaded by the sync_mlintro_remote2 database.

● The old row value obtained by the sync_mlintro_remote2 database during the previous
synchronization.

You can use the following business logic to calculate the new inventory value and resolve the conflict:

current consolidated - (old remote - new remote)

For this inventory example, the following values are substituted into the business logic:

7 - (10-6) = 3

The (old remote - new remote) expression provides the number of items sold by second client rather than
the absolute inventory value.

Create the conflict resolution tables

You create additional tables in the consolidated database for conflict resolution purposes. These tables are
named Product_old and Product_new. Their purpose is to temporarily store problematic values in the
event of a conflict.

1. Connect to your consolidated database from Interactive SQL if you are not already connected.

You can start Interactive SQL from Sybase Central or at a command prompt.

● From Sybase Central, right-click the MLconsolidated - DBA database and click Open Interactive
SQL.

MobiLink tutorials

88 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● At a command prompt, run the following command:

dbisql -c "DSN=mlintro_consdb"

2. Execute the following SQL statements:

CREATE TABLE Product_old (
 name VARCHAR(128) NOT NULL PRIMARY KEY,
 quantity INTEGER,
 last_modified TIMESTAMP DEFAULT TIMESTAMP
);
CREATE TABLE Product_new (
 name VARCHAR(128) NOT NULL PRIMARY KEY,
 quantity INTEGER,
 last_modified TIMESTAMP DEFAULT TIMESTAMP
);

3. Proceed to “Lesson 11: Creating scripts for conflict detection and resolution” on page 89.

See also
● “Conflict detection” [MobiLink - Server Administration]
● “Conflict handling” [MobiLink - Server Administration]

Lesson 11: Creating scripts for conflict detection and
resolution

This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up a MobiLink
consolidated database” on page 76.

In this lesson, you add the following scripts to detect and resolve conflicts:

● upload_fetch You use this script to fetch rows from a table in the consolidated database for
conflict detection.

● upload_update You use this script to determine how data inserted into the remote database should
be applied to the consolidated database. You can also use an extended prototype of upload_update to
detect update conflicts. See “upload_update table event” [MobiLink - Server Administration].

● upload_old_row_insert You use this script to handle old row values obtained by the remote
database during its previous synchronization. See “upload_old_row_insert table event” [MobiLink -
Server Administration].

● upload_new_row_insert You use this script to handle new row values (the updated values on the
remote database). See “upload_new_row_insert table event” [MobiLink - Server Administration].

● upload_delete You use this script to handle rows that are deleted from the remote database. You
set the MobiLink server to ignore this event for the purpose of this tutorial.

● resolve_conflict The resolve conflict script applies business logic to resolve the conflict. See
“resolve_conflict table event” [MobiLink - Server Administration].

Tutorial: Introducing MobiLink

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 89

Install synchronization scripts for conflict detection and resolution

1. Install the conflict detection and resolution scripts.

Execute the following SQL statements:

/* upload_fetch */
CALL ml_add_table_script('sync_mlintro_scriptversion', 'Product',
 'upload_fetch',
 'SELECT name, quantity FROM Product WHERE name = {ml r.name}');
/* upload_update */
CALL ml_add_table_script('sync_mlintro_scriptversion', 'Product',
 'upload_update',
 'UPDATE Product
 SET quantity = {ml r.quantity}, last_modified = now()
 WHERE name = {ml r.name}');
/* upload_old_row_insert */
CALL ml_add_table_script('sync_mlintro_scriptversion', 'Product',
 'upload_old_row_insert',
 'INSERT INTO Product_old (name,quantity,last_modified)
 VALUES ({ml r.name}, {ml r.quantity}, now())');
/* upload_new_row_insert */
CALL ml_add_table_script('sync_mlintro_scriptversion', 'Product',
 'upload_new_row_insert',
 'INSERT INTO Product_new (name,quantity,last_modified)
 VALUES ({ml r.name}, {ml r.quantity}, now())');
/* upload_delete */
CALL ml_add_table_script('sync_mlintro_scriptversion', 'Product',
 'upload_delete', '--{ml_ignore}');
/* resolve_conflict */
CALL ml_add_table_script('sync_mlintro_scriptversion', 'Product',
 'resolve_conflict',
 'DECLARE @product_name VARCHAR(128);
 DECLARE @old_rem_val INTEGER;
 DECLARE @new_rem_val INTEGER;
 DECLARE @curr_cons_val INTEGER;
 DECLARE @resolved_value INTEGER;
 // obtain the product name
 SELECT name INTO @product_name FROM Product_old;
 // obtain the old remote value
 SELECT quantity INTO @old_rem_val FROM Product_old;
 //obtain the new remote value
 SELECT quantity INTO @new_rem_val FROM Product_new;
 // obtain the current value in cons
 SELECT quantity INTO @curr_cons_val FROM Product WHERE name =
@product_name;
 // determine the resolved value
 SET @resolved_value = @curr_cons_val- (@old_rem_val - @new_rem_val);
 // update cons with the resolved value
 UPDATE Product
 SET quantity = @resolved_value
 WHERE name = @product_name;

MobiLink tutorials

90 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 // clear the old and new row tables
 DELETE FROM Product_new;
 DELETE FROM Product_old');
COMMIT;

Note
In this tutorial, the MobiLink server runs with the -zf option specified, which allows the server to
detect any new scripts added to the consolidated database during a synchronization. Unless this option
is specified, you must stop the MobiLink server before adding new scripts to the consolidated
database; restart the server after adding the new scripts.

2. Proceed to “Lesson 12: Verifying the conflict scripts using the MobiLink Monitor” on page 91.

See also
● “Conflict detection” [MobiLink - Server Administration]
● “Conflict handling” [MobiLink - Server Administration]

Lesson 12: Verifying the conflict scripts using the
MobiLink Monitor

This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up a MobiLink
consolidated database” on page 76.

In this lesson, you generate a conflict by updating the same row on the client databases and use the
MobiLink Monitor, started in a previous lesson, to detect the conflict.

In this scenario, both clients start with a Screwmaster Drill inventory of ten items. The first client sells
three items, updates their remote database and then synchronizes with the consolidated database. The
second client sells four items, updates their remote database, and then synchronizes with the consolidated
database. The second client, expecting the consolidated database to contain a value of six, encounters a
conflict because of the first sale. When this occurs, the MobiLink server resolves the conflict.

Generate an update conflict and detect it with the MobiLink Monitor

1. Unpause chart scrolling.

Click Monitor » Pause Chart Scrolling.

2. Connect to the sync_mlintro_remote database from Interactive SQL if you are not already connected.

Run the following command:

dbisql -c "SERVER=sync_mlintro_remote;UID=DBA;PWD=sql"

3. Update the Screwmaster Drill quantity to seven.

Execute the following SQL statements:

Tutorial: Introducing MobiLink

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 91

UPDATE Product SET quantity = 7
 WHERE name ='Screwmaster Drill';
COMMIT;

4. Synchronize the sync_mlintro_remote database with the consolidated database.

Run the following command:

dbmlsync -c "SERVER=sync_mlintro_remote;UID=DBA;PWD=sql" -v+

The consolidated database updates the Screwmaster Drill quantity to seven.

5. Close the client synchronization window.

Click Shut Down.

6. Connect to the sync_mlintro_remote2 database from Interactive SQL if you are not already
connected.

Run the following command:

dbisql -c "SERVER=sync_mlintro_remote2;UID=DBA;PWD=sql"

7. Update the Screwmaster Drill quantity to six.

UPDATE Product SET quantity = 6
 WHERE name ='Screwmaster Drill';
COMMIT;

8. Synchronize the sync_mlintro_remote2 database with the consolidated database.

Run the following command:

dbmlsync -c "SERVER=sync_mlintro_remote2;UID=DBA;PWD=sql" -v+

The consolidated database updates the Screwmaster Drill quantity to three.

9. Close the client synchronization window.

Click Shut Down.

10. Switch to the MobiLink Monitor and view the results of the synchronization.

11. Pause chart scrolling.

Click Monitor » Pause Chart Scrolling.

12. View statistical information about the synchronization using the MobiLink Monitor Overview pane
(the bottom pane), Chart pane, Utilization Graph pane, and Details Table.

a. Locate the synchronizations in the MobiLink Monitor Overview pane. The
sync_mlintro_remote2 synchronization that generated an update conflict appears in red.

MobiLink tutorials

92 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

b. To view the sync_mlintro_remote2 synchronization in the Chart pane, click and drag over the
synchronization object in the Overview pane.
The synchronization object is displayed with the pattern you chose for the conflict_detected
watch.

c. Use the zoom tool to view synchronization detail.
From the View menu, choose Zoom In.

d. Double-click the synchronization object or the corresponding row in the Details Table pane to
view synchronization properties, and click the Upload tab to see the number of conflicted
updates.

13. Proceed to “Lesson 13: Monitoring MobiLink resources with the SQL Anywhere Monitor”
on page 93.

See also
● “Conflict handling” [MobiLink - Server Administration]
● “MobiLink statistical properties” [MobiLink - Server Administration]

Lesson 13: Monitoring MobiLink resources with the SQL
Anywhere Monitor

This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up a MobiLink
consolidated database” on page 76.

Use this lesson to set up monitoring of a MobiLink server and a MobiLink server farm. This lesson uses
the Monitor Developer Edition.

Monitor MobiLink resources

1. Start the Monitor. The following steps assume that the Monitor is not currently running in the
background.

To start the Monitor Developer Edition (Windows) Click Start » Programs » SQL Anywhere
12 » Administration Tools » SQL Anywhere Monitor.

To start the Monitor Developer Edition (Linux) Run the samonitor.sh script from the bin32 or
bin64 directory in the Monitor installation directory:

samonitor.sh launch

The Monitor starts collecting metrics and a browser opens the default URL where you can log in to
the Monitor: http://localhost:4950.

Note
If you are accessing the Monitor over a network, browse to http://computer-name:4950, where
computer-name is the name of the computer where the Monitor is running.

2. Log in to the Monitor as the default administrator user.

Tutorial: Introducing MobiLink

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 93

In the User Name field, type admin, and in the Password field, type admin.

Note
You must be logged in to the Monitor as an administrator to perform the following steps. Read-only
and operator users do not have permission to perform all the tasks.

Check your Monitor user type

1. Log in to the Monitor.

2. Click Tools » User Settings and review the User Type setting.

See “Monitor users” [SQL Anywhere Server - Database Administration].

3. Add a MobiLink server resource to the Monitor:

a. Start the MobiLink Synchronization Server Sample. Click Start » Programs » SQL Anywhere
12 » MobiLink » Synchronization Server Sample.

b. Log in to the Monitor as an administrator.

c. In the left navigation menu click Tools » Administration.

d. Click Resources, and click Add.

e. Click MobiLink Server, and click Next.

f. In the Name field, type MobiLinkServerSample, and click Next.

g. In the Host field, type localhost, and click Next.

h. When you are prompted for the required authorization, in the User ID field, type a user name
such as monitor_user, and in the Password field, type a password, such as sql.
These credentials are used to create a user on the MobiLink server. The Monitor stores this user
ID and password and uses it to connect to the MobiLink server and monitor it.

i. Click Create.

j. The new resource, MobiLinkServerSample, is created and monitoring starts.

k. Click Close.

l. Click Close.

m. Click Overview » Resource List. Click MobiLinkServerSample to create and open a dashboard
for the resource.

4. Add a MobiLink server farm resource to monitor two MobiLink servers:

a. Add two MobiLink servers as resources to be monitored. For the first resource, use the
MobiLinkServerSample resource that you added in the previous step.
Add a second MobiLink server resource:

i. At a command prompt, run the following command to start a MobiLink server that listens on
port 8039:

MobiLink tutorials

94 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

"C:\Program Files\SQL Anywhere 12\Bin32\mlsrv12.exe" -vcrs -zu+ -
c "DSN=SQL Anywhere 12 CustDB;UID=ml_server;PWD=sql" -ot
ml_tcpip.txt -zs ml_tcpip -x tcpip{port=8039}

ii. Log in to the Monitor as an administrator.

iii. Click Tools » Administration.

iv. Click Resources, and click Add.

v. Click MobiLink Server, and click Next.

vi. In the Name field, type ml_tcpip, and click Next.

vii. In the Host field, type localhost.

In the Port field, type 8039, and click Next.

viii. When you are prompted for the required authorization, in the User ID field, type a user name
such as monitor_user, and in the Password field, type a password, such as sql.

These credentials are used to create a user on the MobiLink server. The Monitor stores this
user ID and password and uses it to connect to the MobiLink server and monitor it.

ix. Click Create.

The ml_tcpip resource is added to the Resource List in the Overview dashboard.

x. Click Close.

xi. Click Close.

b. Add the MobiLink server farm resource. For more information about MobiLink server farms, see
“Run the MobiLink server in a server farm” [MobiLink - Server Administration].

i. Open the Administration window.

Click Tools » Administration.

ii. Click Resources, and click Add.

iii. Click MobiLink Server Farm, and click Next.

iv. In the Name field, type MobiLink_Test_Farm, and click Next.

v. Click MobiLinkServerSample and ml_tcpip, and click Create.

vi. Click Close.

vii. Click Close.

c. Click Dashboards » Overview.
The MobiLink_Test_Farm resource appears in the Resource List.
Note that the MobiLink server resources remain in the Resource List.

d. Click the arrow to the left of the MobiLink_Test_Farm to see the list of MobiLink server
resources that are included in the farm.

e. Click MobiLink_Test_Farm to open the MobiLink_Test_Farm dashboard and view the
collected metrics.
The Alert List, Resource Widget, and Server Info widgets should appear.

Tutorial: Introducing MobiLink

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 95

5. To test an alert or learn about additional Monitor features, see “Tutorial: Monitoring resources with
the Monitor” [SQL Anywhere Server - Database Administration].

6. Proceed to “Cleaning up” on page 96.

Cleaning up
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up a MobiLink
consolidated database” on page 76.

Remove tutorial materials from your computer

1. Close all instances of the following applications:

● The MobiLink Monitor

● The SQL Anywhere Monitor for MobiLink

● Sybase Central

● Interactive SQL

2. Close any SQL Anywhere, MobiLink, and synchronization client windows.

3. Delete all tutorial-related data sources:

a. Start the ODBC Data Source Administrator.

b. Click Start » Programs » SQL Anywhere 12 » Administration Tools » ODBC Data Source
Administrator.

c. Select mlintro_consdb from the list of User Data Sources, and click Remove.

4. Delete to the directory containing your consolidated and remote databases.

Tutorial: Using MobiLink with a SQL Anywhere
consolidated database

This tutorial shows you how to mobilize a SQL Anywhere database by using MobiLink. It sets up
synchronization between a SQL Anywhere consolidated database and an UltraLite remote database. You
can also use a SQL Anywhere remote database.

The purpose of this tutorial is to mobilize data for a mobile phone company that operates in many regions.
In this scenario, each region:

● Is a remote synchronization environment.
● Has a local UltraLite database that is synchronized with the SQL Anywhere consolidated database at a

central location, using MobiLink.
● Can access product information at its location and manipulate data from the remote database when a

new customer activates an account or an existing customer activates a new mobile device.

MobiLink tutorials

96 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Required software
● SQL Anywhere 12

Overview
This tutorial shows you how to:

● Evaluate important considerations, such as synchronization directions for remote tables, when
designing a remote schema.

● Add unique primary keys to consolidated and remote databases.

● Set up synchronization between a consolidated database and a remote database using the Create
Synchronization Model Wizard.

● Customize synchronization settings using Sybase Central.

● Deploy a consolidated database and a remote database using the Deploy Synchronization Model
Wizard.

● Synchronize the remote client with the consolidated database.

See also
● “MobiLink synchronization” on page 1

Lesson 1: Designing the schemas
This tutorial assumes that the sample database is installed on the computer where SQL Anywhere is
running.

The sample database is used as the consolidated database. The following table provides a description of
each table in the SQL Anywhere consolidated database:

Table Description

Customers Customers whose information is kept on record.

SalesOrders Records of account activations.

Products Records of all products available for purchase.

CustomerProducts A listing of the products each customer owns.

Designing the remote schema
It is unnecessary and inefficient for each region to have a copy of the entire consolidated database. The
remote schema uses the same table names, but only contains information relevant to one particular region.
To achieve this configuration, the remote schema is designed as a subset of the consolidated database in
the following way:

Tutorial: Using MobiLink with a SQL Anywhere consolidated database

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 97

Consolidated table Remote table

Customers Filter by Region.

SalesOrders Filter by Customer ID for customers in the appropriate region.

Products Include all rows.

CustomerProducts Filter by Customer ID for customers in the appropriate region.

Each sales representative needs to keep information about the customers located in their region, as well as
the products offered to all customers. However, a sales representative does not need information about
customers in different regions, so this information is not synchronized to each regional office. This
behavior is achieved by filtering rows based on a region identifier.

Note
You can also take a subset of columns from a table if certain columns are not required on the remote
databases.

The next step is to choose the synchronization direction of each table. You should consider what
information a remote database needs to read and what information a remote database needs to create,
change, or remove. In this example, a region needs access to the list of products offered to customers, but
never enters a new product into the system. This creates the restriction that products must always enter the
system from the consolidated database at the central location. However, a sales representative needs to be
able to record new account activations on a regular basis. These factors lead to the following
synchronization directions for the tables:

Table Synchronization

Customers Upload to consolidated database only.

SalesOrders Upload to consolidated database only.

Products Download to remote database only.

CustomerProducts Upload to consolidated database only.

Proceed to “Lesson 2: Preparing the consolidated database” on page 98.

Lesson 2: Preparing the consolidated database
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Designing the schemas”
on page 97.

This lesson guides you through the following steps to set up your SQL Anywhere consolidated database:

1. Connect to the consolidated database.

MobiLink tutorials

98 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

2. Create the CustomerProducts tables and alter the Customers table to include regional information.

Prepare the consolidated database

1. Click Start » Programs » SQL Anywhere 12 » Administration Tools » Sybase Central.

2. Click Connections » Connect With SQL Anywhere 12.

3. Perform the following tasks in the Connect window:

a. In the Action dropdown list, choose Connect With An ODBC Data Source.

b. In the ODBC Data Source Name field, type SQL Anywhere 12 Demo.

c. Click Connect.

4. Connect to your consolidated database in Interactive SQL.

At a command prompt, run the following command:

dbisql -c "DSN=SQL Anywhere 12 Demo"

5. In Interactive SQL, execute the following statements to create and insert data in the CustomerProducts
table:

CREATE TABLE CustomerProducts
 (ID int default AUTOINCREMENT PRIMARY KEY,
 SalesOrderID int NOT NULL,
 CustomerID int NOT NULL,
 ProductID int);
INSERT INTO CustomerProducts (SalesOrderID,CustomerID,ProductID)
 SELECT SalesOrders.ID, SalesOrders.CustomerID,
SalesOrderItems.ProductID
 FROM SalesOrders, SalesOrderItems
 WHERE SalesOrders.ID = SalesOrderItems.ID;

6. In Interactive SQL, execute the following statements to add regional information for each customer to
the Customers table:

ALTER TABLE Customers
 ADD Region VARCHAR(255);
UPDATE Customers
 SET Region = (SELECT TOP 1 SalesOrders.Region
 FROM SalesOrders
 WHERE Customers.ID = SalesOrders.CustomerID
 ORDER BY Region);

Adding unique primary keys
In a synchronization system, the primary key of a table is the only way to uniquely identify a row in
different databases and the only way to detect conflicts. Every table that is being mobilized must have a
primary key. The primary key must never be updated. You must also guarantee that a primary key value
inserted at one database is not inserted at another database.

In a later lesson, the remote schema is created from the consolidated schema. This means that the remote
schema has the same primary keys as the consolidated schema.

Tutorial: Using MobiLink with a SQL Anywhere consolidated database

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 99

Columns were specifically chosen to ensure unique primary keys for all databases. For the Customers
table, the primary key consists of the ID column. Any value inserted into the remote Customers table must
have a unique customer ID number (the Region value is always the same). This practice ensures
uniqueness in each remote Customers table. The primary key in the consolidated Customers table
prevents conflicts if multiple salespeople upload data. Each upload from a region is unique from another
region because their Region values are different.

Proceed to “Lesson 3: Creating a synchronization model” on page 100.

See also
● “MobiLink consolidated databases” [MobiLink - Server Administration]
● “Unique primary keys” [MobiLink - Server Administration]

Lesson 3: Creating a synchronization model
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Designing the schemas”
on page 97.

In this lesson, you use the Create Synchronization Model Wizard to create a new synchronization
model.

Before you can create a model, you must use the Create Project Wizard to create a new MobiLink
project. You can then access the Create Synchronization Model Wizard from the Create Project
Wizard.

Create a new MobiLink project and synchronization model

1. Click Start » Programs » SQL Anywhere 12 » Administration Tools » Sybase Central.

2. Click Tools » MobiLink 12 » New Project.

The Create Project Wizard appears.

3. In the What Do You Want To Name The New Project field, type mlsqla_project.

4. In the Where Do You Want To Save The New Project field, type C:\mlsqla, and click Next.

5. Select the Add A Consolidated Database To The Project option.

6. In the Database Display Name field, type demo.

7. Click Edit.

8. Perform the following tasks in the Connect To A Generic ODBC Database page:

a. In the ODBC Data Source Name field, click Browse and choose SQL Anywhere 12 Demo.

b. Click OK, and click Save.

9. Select the Remember The Password option, and click Next.

MobiLink tutorials

100 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

10. Select Create A New Model, and click Next.

11. Select the Add A Remote Schema Name To The Project option.

12. In the What Do You Want To Name The New Remote Schema field, type
mlsqla_remote_schema.

13. Choose UltraLite from the Which Type Of Database Does This Remote Schema Name Apply To
options and click Finish.

14. Click Yes when you are prompted to install the MobiLink setup scripts.

15. Click OK.

The Create Synchronization Model Wizard appears.

16. In the What Do You Want To Name The New Synchronization Model field, type sync_mlsqla,
and click Next.

17. On the Primary Key Requirements page, select all three checkboxes (you guarantee unique primary
keys in a later lesson). Click Next.

18. Select the demo consolidated database from the list, and click Next.

19. Click No, Create A New Remote Database Schema, and click Next.

20. On the New Remote Database Schema page, in the Which Consolidated Database Tables And
Columns Do You Want To Have In Your Remote Database list, select the following tables:

● Customers
● CustomerProducts
● Products
● SalesOrders

21. Click Next.

22. Click Timestamp-based Download, and click Next.

Timestamp-based downloads minimize the amount of data that is transferred because only data that
has been updated since the last download is transmitted.

23. On the Timestamp Download Options page, click Use Shadow Tables To Hold Timestamp
Columns, and click Next.

Using shadow tables is often preferred because it does not require any changes to existing tables.

24. Perform the following tasks on the Download Deletes page:

a. Click Yes for the Do You Want Data Deleted On The Consolidated Database To Be Deleted
On The Remote Databases option.

b. Click Use Shadow Tables To Record Deletions.

Tutorial: Using MobiLink with a SQL Anywhere consolidated database

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 101

MobiLink creates shadow tables on the consolidated database to implement deletions that need to
be synchronized.

c. Click Next.

25. Click Yes, Download The Same Data To Each Remote.

26. Click Next.

27. Click No Conflict Detection, and click Next.

28. Perform the following tasks on the Publication, Script Version And Description page:

a. In the What Do You Want To Name The Publication field, type sync_mlsqla_publication.

b. In the What Do You Want To Name The Script Version field, type
sync_mlsqla_scriptversion.
The publication is the object on the remote database that specifies what data is synchronized.
MobiLink server scripts define how uploaded data from remotes should be applied to the
consolidated database, and how script versions group scripts. You can use different script
versions for different applications, allowing you to maintain a single MobiLink server while
synchronizing different applications.

c. Click Finish.

29. In Sybase Central, click View » Folders.

30. In the left pane under MobiLink 12, expand mlsqla_project, Synchronization Models,
sync_mlsqla.

31. Perform the following tasks in the right pane of Sybase Central:

a. Click the Events tab.

b. Update the download cursor for the Customers table to only download customer information from
the Eastern Region.
Replace the existing SQL script for the download_cursor event for the Customers table with the
following query:

SELECT "GROUPO"."Customers"."ID",
 "GROUPO"."Customers"."Surname",
 "GROUPO"."Customers"."GivenName",
 "GROUPO"."Customers"."Street",
 "GROUPO"."Customers"."City",
 "GROUPO"."Customers"."State",
 "GROUPO"."Customers"."Country",
 "GROUPO"."Customers"."PostalCode",
 "GROUPO"."Customers"."Phone",
 "GROUPO"."Customers"."CompanyName",
 "GROUPO"."Customers"."Region"
FROM "GROUPO"."Customers"
INNER JOIN "GROUPO"."Customers_mod" ON "GROUPO"."Customers"."ID" =
 "GROUPO"."Customers_mod"."ID"
WHERE Region = 'Eastern';

c. Update the CustomerProducts download cursor to only download customer products for
customers in the Eastern region.

MobiLink tutorials

102 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Replace the existing SQL script for the download_cursor event for the CustomerProducts table
with the following query:

SELECT "DBA"."CustomerProducts"."ID",
 "DBA"."CustomerProducts"."SalesOrderID",
 "DBA"."CustomerProducts"."CustomerID",
 "DBA"."CustomerProducts"."ProductID"
FROM "DBA"."CustomerProducts"
INNER JOIN "GROUPO"."Customers" ON "GROUPO"."Customers"."ID" =
 "DBA"."CustomerProducts"."CustomerID"
WHERE "GROUPO"."Customers"."Region" = 'Eastern';

d. Update the SalesOrders download cursor to only download sales order information for customers
in the Eastern region.
Replace the existing SQL script for the download_cursor event for the SalesOrders table with the
following query:

SELECT "GROUPO"."SalesOrders"."ID",
 "GROUPO"."SalesOrders"."CustomerID",
 "GROUPO"."SalesOrders"."OrderDate",
 "GROUPO"."SalesOrders"."FinancialCode",
 "GROUPO"."SalesOrders"."Region",
 "GROUPO"."SalesOrders"."SalesRepresentative"
FROM "GROUPO"."SalesOrders"
WHERE "GROUPO"."SalesOrders"."Region" = 'Eastern'
AND "GROUPO"."SalesOrders"."ID" IN
(SELECT "DBA"."CustomerProducts"."SalesOrderID"
FROM "DBA"."CustomerProducts");

32. Save the synchronization model.

Click File » Save.

The synchronization model is complete and ready for deployment.

33. Proceed to “Lesson 4: Deploying the synchronization model” on page 103.

See also
● “Synchronization models” on page 25
● “Consolidated database setup” [MobiLink - Server Administration]
● “MobiLink server system tables” [MobiLink - Server Administration]
● “MobiLink server system procedures” [MobiLink - Server Administration]
● “download_delete_cursor scripts” [MobiLink - Server Administration]
● “Publications” [MobiLink - Client Administration]
● “Synchronization model tasks” on page 28
● “Modifying the download type” on page 30
● “Modifying table and column mappings” on page 28

Lesson 4: Deploying the synchronization model
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Designing the schemas”
on page 97.

Tutorial: Using MobiLink with a SQL Anywhere consolidated database

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 103

The Deploy Synchronization Model Wizard allows you to deploy the consolidated database and remote
database. You can deploy each database individually or both of them together. The Deploy
Synchronization Model Wizard takes you through the steps of configuring options for deployment.

Deploy the synchronization model

1. In the left pane of Sybase Central under MobiLink 12, expand mlsqla_project, Synchronization
Models, sync_mlsqla.

2. Click File » Deploy.

The Deploy Synchronization Model Wizard appears.

3. Click Specify The Deployment Details For One Or More Of The Following and choose
Consolidated Database, Remote Database And Synchronization Client, and MobiLink Server.
Click Next.

4. Perform the following tasks on the Consolidated Database Deployment Destination page:

a. Select Save Changes To The Following SQL File and accept the default location for the file.
MobiLink generates a .sql file that makes changes to the consolidated database to set up
synchronization. You can examine the .sql file later and make your own changes. Then, you must
run the .sql file.

b. Immediately apply the changes to the consolidated database.
Select Connect To The Consolidated Database To Directly Apply The Changes.

c. Select the demo consolidated database from the list.

d. Click Next.

A prompt appears asking if you want to create the consolidated directory. Click Yes.

5. Click New UltraLite Database, and click Next.

6. Perform the following tasks on the New UltraLite Remote Database page:

a. Select the Make A Command File And A SQL File With Commands To Create The
Database option.
Selecting this option generates another .sql file with the commands to set up the remote database
with all schema and synchronization information.

b. Accept the default location in the SQL File field.

c. Select the Create A Remote UltraLite Database option.
You must generate a new remote database, and run the .sql file against it. This option allows you
to examine the .sql file later and make your own changes.

d. Accept the default location in the UltraLite Database File field.

e. Click Next.

A prompt appears asking if you want to create the remote directory. Click Yes.

MobiLink tutorials

104 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

7. Perform the following tasks on the MobiLink User And Synchronization Profile page:

a. In the What User Name Do You Want To Use For Connecting To The MobiLink Server
field, type mlsqla_remote.

b. In the What Password Do You Want To Use field, type mlsqla_pass.

c. Change the synchronization profile name to mlsqla_remote_syncprofile.

d. Click Next.

8. Click TCP/IP and type 2439 in the Port field. Click Next.

9. Type localhost in the Host field. Click Next.

Alternatively, you can type your computer name or IP address, the name or IP address of another
network server you want to use, or other client stream options.

10. Click Next on the Client Stream Parameters, MobiLink Server Stream Parameters, and
Verbosity For MobiLink Server pages to accept all of the default settings.

11. Type mlsqla_mlsrv in the What Name Do You Want To Give The MobiLink Server field. Click
Next.

A message appears asking if you want to create the mlsrv directory. Click Yes.

12. Click Finish.

13. Click Close.

Your consolidated database is configured for synchronization with many remote clients, and you have
successfully deployed one remote client. If you want to deploy other remote clients, you can run this
wizard again, making sure to create a new MobiLink user and opting out of deploying the
consolidated database and MobiLink server. Since the consolidated and remote databases have already
been deployed, all you need to do is deploy other remote synchronization clients.

14. Proceed to “Lesson 5: Starting the MobiLink server” on page 105.

See also
● “Synchronization model deployment” on page 40
● “Creating a remote database” [MobiLink - Client Administration]
● “MobiLink users” [MobiLink - Client Administration]

Lesson 5: Starting the MobiLink server
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Designing the schemas”
on page 97.

In this lesson, you start the MobiLink server using the mlsrv12 -c option to connect to your consolidated
database. You can use additional options to configure MobiLink server behavior.

Tutorial: Using MobiLink with a SQL Anywhere consolidated database

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 105

Start the MobiLink server

1. At a command prompt, change to the c:\mlsqla directory.

2. Connect to your consolidated database by running the following command:

mlsrv12 -c "DSN=SQL Anywhere 12 Demo" -o mlsrv.mls -v+ -dl -zf -zu+ -x
tcpip

The MobiLink server messages window appears.

Below is a description of each MobiLink server option used in this tutorial. The options -o, -v, and -dl
provide debugging and troubleshooting information. Using these logging options is appropriate in a
development environment. For performance reasons, -v and -dl are typically not used in production
environments. For a complete list of MobiLink server options, see “MobiLink server options”
[MobiLink - Server Administration].

Option Description

-c Precedes the connection string.

-o Specifies the message log file mlsrv.mls.

-v+ Specifies what information is logged. Using -v+ sets maximum verbose logging.

-dl Displays all log messages on screen.

-zf Causes the MobiLink server to check for script changes at the beginning of each synchro-
nization.

-zu+ Adds new users automatically.

-x Sets the communications protocol and parameters for MobiLink clients.

Note
The -zf and -zu+ options should be used for debugging and development purposes only. This tutorial
requires the -zf option so that you do not need to shut down the server when adding new scripts to the
consolidated database in a later lesson. The -zu+ option automatically adds new MobiLink users to the
synchronization environment.

3. Proceed to “Lesson 6: Synchronizing” on page 106.

Lesson 6: Synchronizing
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Designing the schemas”
on page 97.

In this lesson, you synchronize the MobiLink client with the MobiLink server using the ulsync utility to
initiate synchronization.

MobiLink tutorials

106 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Start the synchronization client

1. Run the following command to synchronize the sync_mlsqla_remote database:

ulsync -c "DBF=c:\mlsqla\mlsqla_project\sync_mlsqla\remote
\sync_mlsqla_remote.udb"
"Publications=sync_mlsqla_publication;MobiLinkUid=mlsqla_remote;MobiLinkPw
d=mlsqla_pass;ScriptVersion=sync_mlsqla_scriptversion;Stream=tcpip{port=24
39}"

● DBF indicates which database file you want to load and connect to when starting a database that
is not running.

● Publications is the publication on the remote device that is used to perform the
synchronization. (This publication was created by the Create Synchronization Model Wizard.)

● MobiLinkUid is the user name used to authenticate with the MobiLink server.

● MobiLinkPwd is the password used to authenticate with the MobiLink server.

● ScriptVersion is the script version on the remote device that is used to perform the
synchronization. (This publication was created by the Create Synchronization Model Wizard.)

● Stream sets options to configure the network protocol.

The progress of the synchronization appears in the MobiLink server messages window. When this
command runs successfully, the ulsync application populates the remote database with a subset of
information from the consolidated database.

If synchronization fails, check the connection information you passed to the ulsync application, and
the MobiLink user name and password. Failing that, check the publication name you used, and ensure
that the consolidated database and MobiLink server are running. You can also examine the contents of
the synchronization logs (server and client).

Note
If you are running the ulsync application on a different computer from your MobiLink server, you
must pass in arguments that specify the location of the MobiLink server.

After successfully synchronizing the remote client to the consolidated database through the MobiLink
server, the remote database should be populated with information relevant to one region. You can
verify that the database is populated in Sybase Central using the SQL Anywhere 12 plug-in.

2. Open Sybase Central.

3. Connect to the remote database:

a. In the left pane, right-click UltraLite 12, and click Connect.

b. Type DBA as the User ID and sql as the Password.

c. In the Database File field, type C:\mlsqla\mlsqla_project\sync_mlsqla\remote
\sync_mlsqla_remote.udb.

d. Click Connect.

4. In the left pane, expand UltraLite 12, sync_mlsqla_remote, Tables, Customers.

Tutorial: Using MobiLink with a SQL Anywhere consolidated database

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 107

5. Click the Data tab in the right pane.

In the Customers tables, all the records are for the customers pertaining to the Eastern region. This
particular region is not concerned with the customer information of other regions. For this reason, you
set the synchronization scripts to filter out rows by region, and you set this database's remote ID to the
value of a particular region identifier. This particular region's database takes up less space, and
requires less time to synchronize. Since the remote database size is kept to a minimum, frequently-
performed operations such as entering a new customer or processing a change in a mobile device run
faster and more efficiently.

6. Proceed to “Cleaning up” on page 108.

See also
● “UltraLite Synchronization utility (ulsync)” [UltraLite - Database Management and Reference]

Cleaning up
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Designing the schemas”
on page 97.

Remove tutorial materials from your computer

1. Close all instances of the following applications:

● Sybase Central

● Interactive SQL

2. Delete all tutorial-related data sources:

a. Click Start » Programs » SQL Anywhere 12 » Administration Tools » ODBC Data Source
Administrator.

b. Click mlsqla_db in the list of User Data Sources, and click Remove.

3. Delete the C:\mlsqla directory containing your consolidated and remote databases.

4. Run the following command to erase the sample database and create a new copy of the sample
database with its original objects and data:

newdemo "%SQLANYSAMP12%\demo.db"

When you are prompted, choose to erase any existing files.

MobiLink tutorials

108 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Tutorial: Using MobiLink with an Oracle Database
10g

This tutorial shows you to mobilize an Oracle Database 10g using MobiLink. It sets up synchronization
between an Oracle Database 10g and a SQL Anywhere remote database. You could also set up an
UltraLite remote database.

The purpose of this tutorial is to mobilize the data pertaining to a sales team. In this scenario, each
salesperson is a remote synchronization client. Each salesperson has a local SQL Anywhere database that
is synchronized to a corporate Oracle database at headquarters using MobiLink. Each salesperson
accesses corporate data with their laptop or mobile device, and manipulates data from the remote
database.

This tutorial assumes you performed a basic installation of Oracle Database 10g, which creates a starter
database named orcl. The orcl database has the Order Entry (OE) and Human Relations (HR) sample
schemas. Alternatively, you may manually install the sample schemas or use the Oracle Database
Configuration Assistant. For more information about installing both sample schemas, see http://
www.oracle.com/technology/obe/obe1013jdev/common/OBEConnection.htm.

This tutorial assumes that you can connect to Oracle as the SYS user with SYSDBA privileges. This is a
requirement when you grant permission for the GV_$TRANSACTION Oracle system view. The
password for the SYS user is set during installation of an Oracle database.

Required software
● SQL Anywhere 12

● Oracle Database 10g Release 2 or later

Overview
This tutorial shows you how to:

● Evaluate important considerations, such as synchronization directions for remote tables, when
designing a remote schema.

● Add unique primary keys to consolidated and remote databases.

● Create an ODBC data source that connects MobiLink to an Oracle Database 10g.

● Set up synchronization between a consolidated database and remote database using the Create
Synchronization Model Wizard.

● Customize a synchronization model using Sybase Central.

● Deploy a consolidated database and remote database using the Deploy Synchronization Model
Wizard.

● Synchronize the remote client with the consolidated database.

Tutorial: Using MobiLink with an Oracle Database 10g

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 109

http://www.oracle.com/technology/obe/obe1013jdev/common/OBEConnection.htm
http://www.oracle.com/technology/obe/obe1013jdev/common/OBEConnection.htm

See also
● “MobiLink synchronization” on page 1
● “MobiLink plug-in for Sybase Central” on page 20

Lesson 1: Designing the schemas
This tutorial assumes that you have installed the Order Entry (OE) and Human Relations (HR) sample
schemas. The OE schema is used as the consolidated database. It encapsulates information about
employees, orders, customers, and products. For this tutorial, you are primarily interested in the OE
schema. However, you must refer to the EMPLOYEES table in the HR schema to get information about
each individual salesperson. Here is a brief description of the relevant tables in the OE schema:

Table Description

CUSTOMERS Customers whose information is kept on record.

INVENTORIES How much of each product is stored in each warehouse.

ORDER_ITEMS A list of products included in each order.

ORDERS A record of a sale between a salesperson and a customer on a specific
date.

PRODUCT_DESCRIP-
TIONS

Descriptions of each product in different languages.

PRODUCT_INFORMA-
TION

A record of each product in the system.

Designing the remote schema
It is unnecessary and inefficient for each salesperson to have a copy of the entire consolidated database.
The remote schema is designed so that it only contains information relevant to one particular salesperson.
To achieve this, the remote schema is designed in the following way:

Consolidated table Remote table

CUSTOMERS Includes all rows.

INVENTORIES Not included on remote.

ORDER_ITEMS Filter by sales_rep_id.

ORDERS Includes all rows.

PRODUCT_DESCRIPTIONS Not included on remote.

PRODUCT_INFORMATION Includes all rows.

MobiLink tutorials

110 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Each salesperson needs to keep records of all customers and products, so that any product can be sold to
any customer. This tutorial assumes that a salesperson always speaks the same language as the customer,
so you do not need the PRODUCT_DESCRIPTIONS table. Each salesperson needs information about
orders, but not orders related to other salespeople. This is achieved by filtering rows based on salesperson
identifier.

The next step is to choose the synchronization direction of each table. You should consider what
information a remote database needs to read and what information a remote database needs to create,
change, or remove. In this example, a specific salesperson needs a list of products and customers, but
never enters a new product into the system. You are making the restriction that products and customers
always enter the system from the consolidated database at headquarters. However, a salesperson needs to
be able to record new orders on a regular basis. These factors lead to the following decisions about the
synchronization in each table:

Table Synchronization

CUSTOMERS Download to remote database only.

ORDER_ITEMS Download and upload.

ORDER Download and upload.

PRODUCT_INFORMATION Download to remote database only.

Proceed to “Lesson 2: Preparing the consolidated database” on page 111.

Lesson 2: Preparing the consolidated database
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Designing the schemas”
on page 110.

This tutorial assumes that you have installed the Order Entry (OE) sample database. Information about
installing the sample schema can be found in the Oracle documentation or at http://www.oracle.com/
technology/obe/obe1013jdev/common/OBEConnection.htm.

The OE database needs to be altered for use with MobiLink. Columns are dropped because they were
created as user-defined types. You could translate these user-defined types into types that SQL Anywhere
recognizes, but doing so is not relevant to this tutorial. Next, you must grant permission to the OE user to
create triggers because MobiLink needs to create triggers using OE's credentials.

Prepare the consolidated database

1. Connect as the SYS user with SYSDBA privileges using the Oracle SQL Plus application. At a
command prompt, run the following command:

sqlplus SYS/your password for sys as SYSDBA

2. To drop columns created as user-defined types, execute the following statements:

Tutorial: Using MobiLink with an Oracle Database 10g

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 111

http://www.oracle.com/technology/obe/obe1013jdev/common/OBEConnection.htm
http://www.oracle.com/technology/obe/obe1013jdev/common/OBEConnection.htm

ALTER TABLE OE.CUSTOMERS DROP COLUMN CUST_ADDRESS;
ALTER TABLE OE.CUSTOMERS DROP COLUMN PHONE_NUMBERS;
ALTER TABLE OE.CUSTOMERS DROP COLUMN CUST_GEO_LOCATION;
ALTER TABLE OE.PRODUCT_INFORMATION DROP COLUMN WARRANTY_PERIOD;

3. To unlock the OE user and set the password to sql, execute the following statement:

ALTER USER OE IDENTIFIED BY sql ACCOUNT UNLOCK;

4. To allow the OE user to create triggers, execute the following statement:

GRANT CREATE ANY TRIGGER TO OE;

5. To drop the orders_customer foreign key and create a new foreign key that references the customer_id
in the customers table, run the following commands:

ALTER TABLE OE.ORDERS DROP CONSTRAINT ORDERS_CUSTOMER_ID_FK;
ALTER TABLE OE.ORDERS ADD CONSTRAINT ORDERS_CUSTOMER_ID_FK
 FOREIGN KEY (CUSTOMER_ID) REFERENCES OE.CUSTOMERS (CUSTOMER_ID);

6. Proceed to “Lesson 3: Adding unique keys” on page 112.

See also
● “MobiLink consolidated databases” [MobiLink - Server Administration]
● “Oracle consolidated database” [MobiLink - Server Administration]
● “Unique primary keys” [MobiLink - Server Administration]

Lesson 3: Adding unique keys
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Designing the schemas”
on page 110.

In a synchronization system, the primary key of a table is the only way to uniquely identify a row in
different databases and the only way to detect conflicts. Every table that is being mobilized must have a
primary key. The primary key must never be updated. You must also guarantee that a primary key value
inserted at one database is not inserted in another database.

There are several ways of generating unique primary keys. For simplicity, the method of composite
primary keys is used in this tutorial. This method creates primary keys with multiple columns that are
unique across the consolidated and remote databases.

Add unique primary keys to the consolidated database

1. At a command prompt, run the following command:

sqlplus SYS/your password for sys as SYSDBA

2. Values added to the SALES_REP_ID must exist in the HR.EMPLOYEES table. The
ORDERS_SALES_REP_FK foreign key enforces this rule. Execute the following statement to drop
the foreign key:

ALTER TABLE OE.ORDERS
DROP CONSTRAINT ORDERS_SALES_REP_FK;

MobiLink tutorials

112 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

3. The SALES_REP_ID column cannot be added as a primary key because it contains null values. For
this tutorial, replace the null values with a value of 1. Execute the following statement:

UPDATE OE.ORDERS
SET SALES_REP_ID = 1
WHERE SALES_REP_ID IS NULL;

4. The ORDER_ID column is the current primary key of the ORDERS table. To drop the current
primary key, execute the following statement:

ALTER TABLE OE.ORDERS
DROP PRIMARY KEY CASCADE;

5. The composite primary key consists of the SALES_REP_ID column and the ORDER_ID column. To
add the composite primary key, execute the following statement:

ALTER TABLE OE.ORDERS
ADD CONSTRAINT salesrep_order_pk PRIMARY KEY (sales_rep_id, order_id);

After executing these statements, the MobiLink server connects to the consolidated database and sets up
synchronization for any number of remote databases.

In a later lesson, the remote schema is created from the consolidated schema. This means that the remote
schema has the same primary keys as the consolidated schema.

Columns were specifically chosen to ensure unique primary keys for all databases. For the ORDERS
table, the primary key consists of the SALES_REP_ID and ORDER_ID columns. Any value inserted into
the remote sales table must have an unique order number (the SALES_REP_ID value is always the same).
This practice ensures uniqueness in each remote ORDERS table. The primary key in the consolidated
ORDERS table prevents conflicts if multiple salespeople upload data. Each upload from a salesperson is
unique to another salesperson because their SALES_REP_ID values are different.

Proceed to “Lesson 4: Connecting with MobiLink” on page 113.

Lesson 4: Connecting with MobiLink
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Designing the schemas”
on page 110.

In this lesson, you create an ODBC data source that connects MobiLink to the consolidated database.

Connect MobiLink to the consolidated database

1. Create an ODBC data source.

You should use the iAnywhere Solutions 12 - Oracle ODBC driver that comes with SQL Anywhere
12. Use the following configuration settings:

Tutorial: Using MobiLink with an Oracle Database 10g

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 113

ODBC tab fields Values

Data Source Name oracle_cons

User ID OE

Password sql

TNS Service Name orcl

Procedure Returns Results selected

Array Size 60000

This tutorial assumes you performed a basic installation of Oracle Database 10g, which creates a
starter database named orcl. The Order Entry (OE) schema is automatically installed on orcl. If you
installed the OE schema on another database, use the name of the database as the TNS service name
value.

2. Click Test Connection to test the ODBC connection.

3. Proceed to “Lesson 5: Creating a MobiLink project” on page 114.

See also
● http://www.sybase.com/detail?id=1011880
● “iAnywhere Solutions 12 - Oracle ODBC driver” [MobiLink - Server Administration]

Lesson 5: Creating a MobiLink project
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Designing the schemas”
on page 110.

In this lesson, you connect to the consolidated database by creating a new MobiLink project.

Create a new MobiLink project

1. Click Start » Programs » SQL Anywhere 12 » Administration Tools » Sybase Central.

2. Click Tools » MobiLink 12 » New Project.

The Create Project Wizard appears.

3. In the Name field, type oracle_project.

4. In the Location field, type C:\mlora, and click Next.

5. Select the Add A Consolidated Database To The Project option.

6. In the Database Display Name field, type oracle_cons.

MobiLink tutorials

114 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

http://www.sybase.com/detail?id=1011880

7. Click Edit.

8. Perform the following tasks in the Connect To A Generic ODBC Database page:

a. In the User ID field, type OE.

b. In the Password field, type the password for the sql account.

c. In the ODBC Data Source Name field, click Browse, and choose oracle_cons.

d. Click OK, and click Save.

9. Select the Remember The Password option, and click Next.

10. Choose the Create A New Model option, and click Next.

11. Choose the Add A Remote Schema Name To The Project option.

12. Type oracle_remote_schema for the remote schema name, and click Finish.

13. Proceed to “Lesson 6: Creating and modifying a synchronization model” on page 115.

Lesson 6: Creating and modifying a synchronization model
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Designing the schemas”
on page 110.

In this lesson, you create a synchronization model for your consolidated database. The Create
Synchronization Model Wizard provides step by step instructions for setting up synchronization
between the consolidated database and remote database.

Create and modify a synchronization model

1. On the Welcome page, type sync_oracle in the What Do You Want To Name The New
Synchronization Model field, and click Next.

2. On the Primary Key Requirements page, select all three checkboxes. Click Next.

3. Select the oracle_cons consolidated database from the list, and click Next.

4. Click No, Create A New Remote Database Schema, and click Next.

5. On the New Remote Database Schema page, in the Which Consolidated Database Tables And
Columns Do You Want To Have In Your Remote Database list, choose the following tables:

● CUSTOMERS
● ORDERS
● ORDER_ITEMS
● PRODUCT_INFORMATION

6. Click Next.

7. Click Timestamp-based Download, and click Next.

Tutorial: Using MobiLink with an Oracle Database 10g

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 115

Timestamp-based downloads minimize the amount of data that is transferred because only data that
has been updated since the last download is transmitted.

8. On the Timestamp Download Options page, click Use Shadow Tables To Hold Timestamp
Columns, and click Next.

Using shadow tables is often preferred because it does not require any changes to existing tables.

9. Perform the following tasks on the Download Deletes page:

a. Click Yes on the Do You Want Data Deleted On The Consolidated Database To Be Deleted
On The Remote Databases option.

b. Click Use Shadow Tables To Record Deletions.
MobiLink creates shadow tables on the consolidated database to implement deletions that need to
be synchronized.

c. Click Next.

10. Click Yes, Download the Same Data to Each Remote, and click Next.

You specify how to download specific data to a remote database by using custom logic when editing
the synchronization model.

11. Click No Conflict Detection, and click Next.

Although this tutorial specifies no conflict detection, many applications require conflict detection.

12. Perform the following tasks on the Publication, Script Version and Description page:

a. In the What Do You Want To Name The Publication field, type sync_oracle_publication.

b. In the What Do You Want To Name The Script Version field, type
sync_oracle_scriptversion.
The publication is the object on the remote database that specifies what data is synchronized.
MobiLink server scripts define how uploaded data from remotes should be applied to the
consolidated database, and script versions group scripts. You can use different script versions for
different applications, allowing you to maintain a single MobiLink server while synchronizing
different applications.

c. Click Finish.

13. In Sybase Central, click View » Folders.

14. In the left pane of Sybase Central under MobiLink 12, expand oracle_project, Synchronization
Models, sync_oracle.

15. Set the direction that data is synchronized for each table in the synchronization model.

Click the Mappings tab in the right pane, and set the rows in the Dir column as follows:

● The ORDERS and ORDER_ITEMS tables should be set to Bi-directional (both upload and
download).

● The remaining tables should be set to Download To Remote Only.

MobiLink tutorials

116 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

16. If a window appears indicating that loading the consolidated schema for all owners may take a long
time, choose to load the database schema for the HR and OE users.

17. Filter the rows downloaded to the remote database by remote ID.

a. For the row containing the ORDERS table, change the Download Subset column to Custom.

b. Click the Download Subset tab at the bottom of the right pane.

c. Filter the rows by remote ID, which uniquely identifies the remote database, by adding a
restriction to the WHERE clause of the download_cursor script.
Type a search condition in the SQL Expression To Use In The Download Cursor's WHERE
Clause field. For example, the following SQL script can be used for the ORDERS table:

OE.ORDERS.SALES_REP_ID = {ml s.remote_id}

The download cursor script specifies what columns and rows are downloaded from each table to
the remote database. The search condition ensures that you only download information about one
sales representative, namely, the sales representative that has an identifier that equals the remote
ID for the database.

d. Change the Delete Subset column from Same to None.

18. Save the synchronization model.

Click File » Save.

The synchronization model is complete and ready for deployment.

19. Proceed to “Lesson 7: Deploying the synchronization model” on page 117.

See also
● “Consolidated database setup” [MobiLink - Server Administration]
● “MobiLink server system tables” [MobiLink - Server Administration]
● “MobiLink server system procedures” [MobiLink - Server Administration]
● “Synchronization script writing” [MobiLink - Server Administration]
● “download_delete_cursor scripts” [MobiLink - Server Administration]
● “Conflict handling” [MobiLink - Server Administration]
● “Conflict resolution” [MobiLink - Server Administration]
● “Publications” [MobiLink - Client Administration]
● “Synchronization events” [MobiLink - Server Administration]
● “Synchronization model tasks” on page 28
● “Synchronization techniques” [MobiLink - Server Administration]
● “Modifying the download type” on page 30
● “Modifying conflict detection and resolution” on page 35
● “Modifying table and column mappings” on page 28

Lesson 7: Deploying the synchronization model
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Designing the schemas”
on page 110.

Tutorial: Using MobiLink with an Oracle Database 10g

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 117

The Deploy Synchronization Model Wizard allows you to deploy the consolidated database and remote
database. You can deploy each database individually or both of them together. The Deploy
Synchronization Model Wizard takes you through the steps of configuring options for deployment.

Deploy the synchronization model

1. In the left pane of Sybase Central under MobiLink 12, expand oracle_project, Synchronization
Models, sync_oracle.

2. Click File » Deploy.

The Deploy Synchronization Model Wizard appears.

3. Click Specify The Deployment Details For One Or More Of The Following and select
Consolidated Database, Remote Database And Synchronization Client, and MobiLink Server.
Click Next.

4. Perform the following tasks on the Consolidated Database Deployment Destination page:

a. Click Save Changes To The Following SQL File and accept the default location for the file.
MobiLink generates a .sql file that makes changes to the consolidated database to set up for
synchronization. You can examine the .sql file later and make your own changes. Then, you must
run the .sql file.

b. Immediately apply the changes to the consolidated database.
Click Connect To The Consolidated Database To Directly Apply The Changes.

c. Choose the oracle_cons consolidated database from the list.

d. Click Next.

A prompt appears asking if you want to create the consolidated directory. Click Yes.

5. Click New SQL Anywhere Database, and click Next.

6. Perform the following tasks on the New SQL Anywhere Remote Database page:

a. Select the Make A Command File And A SQL File With Commands To Create The
Database option.
Selecting this option generates another .sql file with the commands to set up the remote database
with all schema and synchronization information.

b. Accept the default location in the SQL File field.

c. Click the Create A Remote SQL Anywhere Database option.
You must generate a new remote database, and run the .sql file against it. This option allows you
to examine the .sql file later and make your own changes.

d. Accept the default location in the SQL Anywhere Database File field.

e. Click Next.

A prompt appears asking if you want to create the remote directory. Click Yes.

MobiLink tutorials

118 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

7. Perform the following tasks on the MobiLink User And Synchronization Profile page:

a. In the What User Name Do You Want To Use For Connecting To The MobiLink server
field, type oracle_remote.

b. In the What Password Do You Want To Use field, type oracle_pass.

c. Click Next.

8. Select TCP/IP and type 2439 in the Port field. Click Next.

9. Type localhost in the Host field. Click Next.

Alternatively, you can type your computer name or IP address, the name or IP address of another
network server you want to use, or other client stream options.

10. Click Next on the Client Stream Parameters, MobiLink Server Stream Parameters and
Verbosity For MobiLink Server pages to accept all of the default settings.

11. Type oracle_mlsrv in the What Name Do You Want To Give The MobiLink Server field. Click
Next.

A message appears asking if you want to create the mlsrv directory. Click Yes.

12. Choose a verbosity setting for the remote synchronization client and use the default file name of the
remote database log file. Click Next.

13. Click Finish.

14. Click Close.

Your consolidated database is configured for synchronization with many remote clients, and you have
successfully deployed one remote client. If you want to deploy other remote clients, you can run this
wizard again, making sure to create a new MobiLink user and opt out of deploying the consolidated
database and MobiLink server. Since the consolidated database and MobiLink server have already
been deployed, all you need to do is deploy other remote synchronization clients.

15. Proceed to “Lesson 8: Starting the server and client” on page 119.

See also
● “Synchronization model deployment” on page 40
● “Creating a remote database” [MobiLink - Client Administration]
● “MobiLink users” [MobiLink - Client Administration]

Lesson 8: Starting the server and client
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Designing the schemas”
on page 110.

Tutorial: Using MobiLink with an Oracle Database 10g

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 119

In a previous lesson, you modified the download cursor script to download information related to one
salesperson. In this lesson, you specify the salesperson by setting the remote ID to the salesperson
identifier, and start the MobiLink consolidated and remote database.

By default, MobiLink uses the snapshot/READ COMMITTED isolation level for upload and download.
For the MobiLink server to make the most effective use of snapshot isolation, the Oracle account used by
the MobiLink server must have access to the GV_$TRANSACTION Oracle system view. If access is not
given, a warning is issued and rows may be missed on download.

Start the MobiLink server and client

1. Connect as the SYS user with SYSDBA privileges using the Oracle SQL Plus application. At a
command prompt, run the following command:

sqlplus SYS/your password for sys as SYSDBA

2. To grant access to the GV_$TRANSACTION Oracle system view, execute the following statement:

GRANT SELECT ON SYS.GV_$TRANSACTION TO OE;

3. To grant access to the V_$SESSION Oracle system view, execute the following statement:

GRANT SELECT ON SYS.V_$SESSION TO OE;

4. At a command prompt, navigate to the directory where you created the synchronization model. (This
is the root directory you chose in the first step of the Create Synchronization Model Wizard.)

If you used the suggested directory names, you should have the following directories located in the
root directory: sync_oracle\mlsrv.

5. Run the following command from the mlsrv directory:

sync_oracle_mlsrv.bat "DSN=oracle_cons;UID=OE;PWD=sql"

● sync_oracle_mlsrv.bat is the command file created to start the MobiLink server.

● DSN is the ODBC data source name.

● UID is the user name you use to connect to the consolidated database.

● PWD is the password you use to connect to the consolidated database.

When this command runs successfully, the message MobiLink server Started appears in the
MobiLink server messages window.

If the MobiLink server fails to start, check the connection information for the consolidated database.

6. At a command prompt, navigate to the directory where the Deploy Synchronization Model Wizard
created your remote database.

If you used the suggested directory names, you should have the following directories located in the
root directory: sync_oracle\remote.

7. Start your remote SQL Anywhere database by running the following command:

MobiLink tutorials

120 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

dbeng12 -n remote_eng sync_oracle_remote.db -n remote_db

● dbeng12 is the database server used to start the SQL Anywhere database.

● remote_eng is the database server name.

● sync_oracle_remote.db is the database file that is started on remote_eng.

● remote_db is the name of the database on remote_eng.

When this command runs successfully, a SQL Anywhere database server named remote_eng starts
and loads the database called remote_db.

8. Proceed to “Lesson 9: Setting the remote ID” on page 121.

See also
● “SQL Anywhere database server syntax” [SQL Anywhere Server - Database Administration]
● “Deployed model synchronization” on page 43
● “Running the MobiLink server” [MobiLink - Server Administration]
● “Remote IDs” [MobiLink - Client Administration]

Lesson 9: Setting the remote ID
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Designing the schemas”
on page 110.

In the remote schema, each remote database represents one salesperson. The synchronization scripts you
wrote included logic that instructed the MobiLink server to download a subset of data based on the remote
ID of the remote database. You must set the database's remote ID to the value of a valid salesperson
identifier.

You must complete this step before the first synchronization because when the remote device
synchronizes for the first time, it downloads all information related to the chosen salesperson.

Set the remote ID to a valid salesperson identifier

1. Choose a valid salesperson identifier:

a. Connect as the SYS user with SYSDBA privileges using the Oracle SQL Plus application. At a
command prompt, run the following command:

sqlplus SYS/your-password-for-sys as SYSDBA
b. To view a list of valid salesperson identifiers in the ORDERS table, execute the following

statement:

SELECT COUNT(SALES_REP_ID), SALES_REP_ID
FROM OE.ORDERS GROUP BY SALES_REP_ID;

In this example, the remote database represents a salesperson with a SALES_REP_ID of 154.

c. To exit Oracle SQL Plus, run the following command:

exit

Tutorial: Using MobiLink with an Oracle Database 10g

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 121

2. To set the database's remote ID to a value of 154, run the following command:

dbisql
-c "SERVER=remote_eng;DBN=remote_db;UID=DBA;PWD=sql"
"SET OPTION PUBLIC.ml_remote_id='154';"

● dbisql is the application used to execute SQL commands against a SQL Anywhere database.

● ENG specifies the database server name remote_eng.

● DBN specifies the database name remote_db.

● UID is the user name used to connect to your remote database.

● PWD is the password used to connect to your remote database.

● SET OPTION PUBLIC.ml_remote_id='154' is the SQL statement used to set the remote ID to
a value of 154.

3. Proceed to “Lesson 10: Synchronizing” on page 122.

Lesson 10: Synchronizing
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Designing the schemas”
on page 110.

In this lesson, you synchronize the remote client for the first time. This is done with the dbmlsync utility.
Dbmlsync connects to the remote database, authenticates itself with the MobiLink server, and performs all
the uploads and downloads necessary to synchronize the remote and consolidated databases based on a
publication in the remote database.

Synchronize the remote client

1. At a command prompt, run the following command:

dbmlsync
-c "SERVER=remote_eng;DBN=remote_db;UID=DBA;PWD=sql"
-n sync_oracle_publication
-u oracle_remote -mp oracle_pass

● dbmlsync is the synchronization application.

● SERVER specifies the name of the remote database server.

● DBN specifies the name of the remote database.

● UID specifies the user name used to connect to the remote database.

● PWD specifies the password used to connect to the remote database.

● sync_oracle_publication is the publication on the remote device that is used to perform the
synchronization. (This publication was created by the Create Synchronization Model Wizard.)

● oracle_remote is the user name used to authenticate with the MobiLink server.

● oracle_pass is the password used to authenticate with the MobiLink server.

MobiLink tutorials

122 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The progress of the synchronization appears in the SQL Anywhere MobiLink Client Messages
window. When this command runs successfully, the dbmlsync application populates the remote
database with a subset of information from the consolidated database.

If synchronization fails, check the connection information you pass to the dbmlsync application, and
the MobiLink user name and password. Failing that, check the publication name you used, and ensure
that the consolidated database and MobiLink server are running. You can also examine the contents of
the synchronization logs (server and client).

Note
If you are running the dbmlsync application on a different computer from your MobiLink server, you
must pass in arguments that specify the location of the MobiLink server.

2. Proceed to “Lesson 11: Viewing the data in the remote database” on page 123.

See also
● “The synchronization process” on page 13
● “dbmlsync syntax” [MobiLink - Client Administration]

Lesson 11: Viewing the data in the remote database
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Designing the schemas”
on page 110.

After successfully synchronizing the remote client to the consolidated database through the MobiLink
server, the remote data should be populated with information relevant to one salesperson. You can verify
that the database is populated in Sybase Central using the SQL Anywhere 12 plug-in.

View the data in the remote database

1. Start Sybase Central.

2. Connect to the remote database:

a. In the left pane, right-click SQL Anywhere 12, and click Connect.

b. In the Authentication dropdown list, click Database, and type DBA as the User ID and sql as
the Password.

c. In the Action dropdown list, click Connect To A Running Database On This Computer, and
type remote_eng as the Server Name and remote_db as the Database Name.

d. Click Connect.

3. Click the ORDERS table, and click the Data tab in the right pane.

In the ORDERS tables, all the records are for the salesperson with an identifier of 154. This particular
salesperson is not concerned with the sales information of other salespeople. For this reason, you set
the synchronization scripts to filter out rows by the remote ID, and you set this database's remote ID to
the value of a particular salesperson identifier. Now this particular salesperson's database takes up less

Tutorial: Using MobiLink with an Oracle Database 10g

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 123

space, and requires less time to synchronize. Since the remote database size is kept to a minimum,
frequently performed operations, such as entering a new sale or processing a refund on a previous
sale, runs faster and more efficiently.

4. Proceed to “Cleaning up” on page 124.

Cleaning up
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Designing the schemas”
on page 110.

Regenerate the Order Entry database and remove all tutorial materials from your computer.

Remove tutorial materials

1. Regenerate the Order Entry database.

Run oe_main.sql to remove the current OE schema and install a new OE schema. The oe_main.sql file
is found in $ORACLE_HOME/demo/schema/order_entry.

2. Delete the synchronization model.

a. Start Sybase Central.

b. In the right pane, double-click MobiLink 12.

c. The sync_oracle model appears in the right pane.

d. Right click sync_oracle, and click Delete.

e. In the Confirm Delete window, click Yes.

3. Erase the remote database.

Use the dberase utility. Run the following command:

dberase sync_oracle\remote\sync_oracle_remote.db

Tutorial: Using MobiLink with an Adaptive Server
Enterprise consolidated database

This tutorial shows you how to mobilize an Adaptive Server Enterprise database using MobiLink. It sets
up synchronization between an Adaptive Server Enterprise consolidated database and a SQL Anywhere
remote database. You could also use UltraLite clients.

The purpose of this tutorial is to mobilize data for a chain of bookstores. Each bookstore in this scenario
is a remote synchronization environment. Each bookstore has a local SQL Anywhere database that is
synchronized with the Adaptive Server Enterprise database at headquarters. Each bookstore can have
several computers that access and manipulate data from the remote database.

MobiLink tutorials

124 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

This tutorial assumes that the pubs2 sample schema is installed on an Adaptive Server Enterprise server.
The pubs2 sample schema is provided with Adaptive Server Enterprise 15.0 and it is an optional part of
the install. For this tutorial, it is used as the consolidated database. Information about this sample can be
found in the Adaptive Server Enterprise documentation or at http://infocenter.sybase.com/help/index.jsp?
topic=/com.sybase.help.ase_15.0.sqlug/html/sqlug/sqlug894.htm.

This tutorial uses the default sa account. When Adaptive Server Enterprise is installed, the sa account has
a null password. This tutorial assumes you have changed the null password to a valid password. For more
information about changing the null password in Adaptive Server Enterprise, see http://
infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.ase_15.0.sag1/html/sag1/sag1615.htm.

Required software
● SQL Anywhere 12

● Adaptive Server Enterprise 15.0

Overview
This tutorial shows you how to:

● Evaluate important considerations, such as synchronization directions for remote tables, when
designing a remote schema.

● Add unique primary keys to consolidated and remote databases.

● Create an ODBC data source that connects MobiLink to an Adaptive Server Enterprise database.

● Set up synchronization between a consolidated database and a remote database using the Create
Synchronization Model Wizard.

● Customize synchronization settings using Sybase Central.

● Deploy a consolidated database and remote database using the Deploy Synchronization Model
Wizard.

● Synchronize the remote client with the consolidated database.

See also
● “MobiLink synchronization” on page 1

Lesson 1: Designing the schemas
The pubs2 sample schema is used as the consolidated database schema. It contains information about
stores, titles, authors, publishers, and sales. The following table provides a description of each table in the
Adaptive Server Enterprise database:

Tutorial: Using MobiLink with an Adaptive Server Enterprise consolidated database

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 125

http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.ase_15.0.sag1/html/sag1/sag150.htm
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.ase_15.0.sag1/html/sag1/sag150.htm
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.ase_15.0.sag1/html/sag1/sag1615.htm
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.ase_15.0.sag1/html/sag1/sag1615.htm

Table Description

au_pix Pictures of the authors.

authors The authors of the various titles in the system.

discounts Records of various discounts at particular stores.

sales Each sale record is one sale made by a particular store.

salesdetail Information about the different titles that were included in a
particular sale.

stores Each store record is one store or branch office in the system.

titleauthor Information about which titles were written by which authors.

titles Records of all the different books in the system.

blurbs, publishers, and roysched Information that is not needed in this tutorial.

Designing the remote schema
It is unnecessary and inefficient for each store to have a copy of the entire consolidated database. The
remote schema uses the same table names, but only contains information relevant to one particular store.
To achieve this configuration, the remote schema is designed as a subset of the consolidated database in
the following way:

Consolidated table Remote table

au_pix Includes all rows.

authors Includes all rows.

discounts Filter by stor_id.

sales Filter by stor_id.

salesdetail Filter by stor_id.

stores Filter by stor_id.

titleauthor Includes all rows.

titles Includes all rows.

blurbs Not included on remote.

publishers Not included on remote.

MobiLink tutorials

126 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Consolidated table Remote table

roysched Not included on remote.

Each store needs to keep records of all titles and authors so customers can search the store inventory.
However, a bookstore does not need information about publishers or royalties, so this information is not
synchronized to each store. Each store needs information about sales and discounts, but not about sales
and discounts related to other stores. This behavior is achieved by filtering rows based on a store
identifier.

Note
You can also take a subset of columns from a table if certain columns are not required on the remote
databases.

The next step is to choose the synchronization direction of each table. You should consider what
information a remote database needs to read and what information a remote database needs to create,
change, or remove. In this example, a bookstore needs access to the list of authors and titles, but never
enters a new author into the system. This places a restriction that authors and titles must always enter the
system from the consolidated database at headquarters. However, a bookstore needs to be able to record
new sales on a regular basis. These factors lead to the following synchronization directions for the tables:

Table Synchronization

titleauthor Download to remote database only.

authors Download to remote database only.

au_pix Download to remote database only.

titles Download to remote database only.

stores Download to remote database only.

discounts Download to remote database only.

sales Download and upload.

salesdetail Download and upload.

Proceed to “Lesson 2: Preparing the consolidated database” on page 127.

Lesson 2: Preparing the consolidated database
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Designing the schemas”
on page 125.

Tutorial: Using MobiLink with an Adaptive Server Enterprise consolidated database

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 127

In this lesson, you increase the size of the consolidated database for MobiLink synchronization and create
unique primary keys.

MobiLink needs to add system tables and other objects to the pubs2 database for synchronization. When
you add these objects, the size of the pubs2 database must be increased.

Prepare the consolidated database

1. Connect to the pubs2 database as sa, using iSQL in Adaptive Server Enterprise. At a command
prompt, run the following command, all on one line:

isql
-U sa
-P your-password-for-sa-account
-D pubs2

If you are accessing Adaptive Server Enterprise remotely, use the -S option to specify the server
name.

2. To have proper permission for increasing the size of a database, you must access the master database.
Run the following command in iSQL:

use master
go
sp_dboption pubs2, "SELECT INTO", true
go

3. In Adaptive Server Enterprise, a database is stored on a disk or a portion of a disk. To increase the size
of the pubs2 database, execute the following statement (you must specify the disk where pubs2 is
stored):

ALTER DATABASE pubs2 ON disk-name = 33

4. Proceed to “Lesson 3: Adding unique keys” on page 128.

See also
● “Adaptive Server Enterprise consolidated database” [MobiLink - Server Administration]

Lesson 3: Adding unique keys
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Designing the schemas”
on page 125.

In a synchronization system, the primary key of a table is the only way to uniquely identify a row in
different databases and the only way to detect conflicts. Every table that is being mobilized must have a
primary key. The primary key must never be updated. You must also guarantee that a primary key value
inserted at one database is not inserted in another database.

There are several ways to generate unique primary keys. For simplicity, the method of composite primary
keys is used in this tutorial. This method creates primary keys with multiple columns that are unique
across the consolidated and remote databases.

MobiLink tutorials

128 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Add unique primary keys to the consolidated database

1. Connect to the pubs2 database as sa, using iSQL in Adaptive Server Enterprise. At a command
prompt, run the following command, all on one line:

isql
-U sa
-P your-password-for-sa-account
-D pubs2

If you are accessing Adaptive Server Enterprise remotely, use the -S option to specify the server
name.

2. The following rows are not unique based on the composite primary key created for the salesdetail
table. For simplicity, drop the rows by executing the following statements:

DELETE FROM salesdetail
WHERE stor_id = '5023'
AND ord_num = 'NF-123-ADS-642-9G3'
AND title_id = 'PC8888'
DELETE FROM salesdetail
WHERE stor_id = '5023'
AND ord_num = 'ZS-645-CAT-415-1B2'
AND title_id = 'BU2075'

3. The following indexes interfere with the creation of primary keys in a previous step. To drop the
indexes, execute the following statements:

DROP INDEX authors.auidind
DROP INDEX titleauthor.taind
DROP INDEX titles.titleidind
DROP INDEX sales.salesind

4. Add unique primary keys by executing the following statements:

ALTER TABLE au_pix ADD PRIMARY KEY (au_id)
ALTER TABLE authors ADD PRIMARY KEY (au_id)
ALTER TABLE titleauthor ADD PRIMARY KEY (au_id, title_id)
ALTER TABLE titles ADD PRIMARY KEY (title_id)
ALTER TABLE discounts ADD PRIMARY KEY (discounttype)
ALTER TABLE stores ADD PRIMARY KEY (stor_id)
ALTER TABLE sales ADD PRIMARY KEY (stor_id, ord_num)
ALTER TABLE salesdetail ADD PRIMARY KEY (stor_id, ord_num, title_id)

After executing these statements, the MobiLink server connects to the consolidated database and sets
up synchronization for any number of remote databases.

Note
It is possible to synchronize data with consolidated databases that do not have primary keys. However,
you must write you own synchronization events that act on shadow tables that are designed to identify
rows uniquely in other tables.

In a later lesson, the remote schema is created from the consolidated schema. This means that the
remote schema has the same primary keys as the consolidated schema.

Tutorial: Using MobiLink with an Adaptive Server Enterprise consolidated database

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 129

Columns were specifically chosen to ensure unique primary keys for all databases. For the sales table,
the primary key consists of the stor_id and ord_num columns. Any value inserted into the remote sales
table must have a unique order number (the stor_id value is always the same). This practice ensures
uniqueness in each remote sales table. The primary key in the consolidated sales table prevents
conflicts if multiple stores upload data. Each upload from one store is unique to another store because
their stor_id values are different.

For the salesdetail table, the primary key consists of the stor_id, ord_num, and title_id columns. There
may be multiple book titles in an order. For the remote sales tables, rows may have the same values
for stor_id and ord_num, but they must have different title_id values. This configuration ensures
uniqueness in each remote salesdetail table. Similar to the sales table, each upload to the consolidated
database from a store is unique to another store because their stor_id values are different.

5. Proceed to “Lesson 4: Connecting with MobiLink” on page 130.

See also
● “Unique primary keys” [MobiLink - Server Administration]

Lesson 4: Connecting with MobiLink
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Designing the schemas”
on page 125.

In this lesson, you create an ODBC data source that connects MobiLink to the consolidated database.

Connect MobiLink to the consolidated database

1. Create an ODBC data source.

You should use the ODBC driver provided by Adaptive Server Enterprise. For this tutorial, use the
following configuration settings:

General tab fields Value

Data Source Name ase_cons

Description

Server Name (ASE Host Name) localhost

Server Port 5000

Database Name pubs2

Logon ID sa

Use Cursors not selected

MobiLink tutorials

130 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Transaction tab field Value

Server Initiated Transactions not selected

2. Test the ODBC connection:

a. On the General tab, click Test Connection.
The Adaptive Server Enterprise logon screen appears.

b. Enter the password for the sa account.
The Logon Succeeded message appears.

After configuring your ODBC data source, you can use the MobiLink 12 plug-in to connect to the
consolidated database and create a synchronization model.

3. Proceed to “Lesson 5: Creating a MobiLink project” on page 131.

See also
● http://www.sybase.com/detail?id=1011880

Lesson 5: Creating a MobiLink project
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Designing the schemas”
on page 125.

Connect to the consolidated database by creating a new MobiLink project.

Create a new MobiLink project

1. Click Start » Programs » SQL Anywhere 12 » Administration Tools » Sybase Central.

2. Click Tools » MobiLink 12 » New Project.

The Create Project Wizard appears.

3. In the Name field, type ase_project.

4. In the Location field, type C:\mlase, and click Next.

5. Choose the Add A Consolidated Database To The Project option.

6. In the Database Display Name field, type ase_cons.

7. Click Edit.

8. Perform the following tasks in the Connect To A Generic ODBC Database page:

a. In the User ID field, type sa.

b. In the Password field, type the password for the sa account.

Tutorial: Using MobiLink with an Adaptive Server Enterprise consolidated database

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 131

http://www.sybase.com/detail?id=1011880

c. In the ODBC Data Source name field, click Browse, and choose ase_cons.

d. Click OK, and click Save.

9. Select the Remember The Password option, and click Next.

10. Choose the Create A New Model option, and click Next.

11. Select the Add A Remote Schema Name To The Project option.

12. Type ase_remote_schema for the remote schema name, and click Finish.

13. Proceed to “Lesson 6: Creating and modify a synchronization model” on page 132.

Lesson 6: Creating and modify a synchronization model
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Designing the schemas”
on page 125.

In this lesson, you create a synchronization model for your consolidated database. The Create
Synchronization Model Wizard provides step by step instructions for setting up synchronization
between the consolidated database and remote database.

Create and modify a synchronization model

1. On the Welcome page, type sync_ase in the What Do You Want To Name The New
Synchronization Model field, and click Next.

2. On the Primary Key Requirements page, select all three checkboxes. Click Next.

3. Choose the ase_cons consolidated database from the list, and click Next.

4. Click No, Create A New Remote Database Schema, and click Next.

5. On the New Remote Database Schema page, in the Which Consolidated Database Tables And
Columns Do You Want To Have In Your Remote Database list, choose the following tables:

● au_pix
● authors
● discounts
● sales
● salesdetail
● stores
● titleauthor
● titles

6. Click Next.

7. Click Timestamp-based Download, and click Next.

MobiLink tutorials

132 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Timestamp-based downloads minimize the amount of data that is transferred because only data that
has been updated since the last download is transmitted.

8. On the Timestamp Download Options page, click Use Shadow Tables To Hold Timestamp
Columns, and click Next.

Using shadow tables is often preferred because it does not require any changes to existing tables.

9. Perform the following tasks on the Download Deletes page:

a. Click Yes on the Do You Want Data Deleted On The Consolidated Database To Be Deleted
On The Remote Databases option.

b. Click Use Shadow Tables To Record Deletions.
MobiLink creates shadow tables on the consolidated database to implement deletions that need to
be synchronized.

c. Click Next.

10. Click Yes, Download the Same Data to Each Remote, and click Next.

You specify how to download specific data to a remote database by using custom logic when editing
the synchronization model.

11. Click No Conflict Detection, and click Next.

Although this tutorial specifies no conflict detection, many applications require conflict detection.

12. Perform the following tasks on the Publication, Script Version and Description page:

a. In the What Do You want To Name The Publication field, type sync_ase_publication.

b. In the What Do You Want To Name The Script Version field, type sync_ase_scriptversion.
The publication is the object on the remote database that specifies what data is synchronized.
MobiLink server scripts define how uploaded data from remotes should be applied to the
consolidated database, and script versions group scripts. You can use different script versions for
different applications, allowing you to maintain a single MobiLink server while synchronizing
different applications.

c. Click Finish.

13. Click View » Folders.

14. In the left pane of Sybase Central under MobiLink 12, expand ase_project, Synchronization
Models, sync_ase.

15. Set the direction that data is synchronized for each table in the synchronization model.

Click the Mappings tab in the right pane, and set the rows the Dir column as follows:

● The sales and salesdetail tables should be set to Bi-directional (both upload and download).
● The remaining tables should be set to Download To Remote Only.

16. Filter the rows downloaded to the remote database by remote ID.

Tutorial: Using MobiLink with an Adaptive Server Enterprise consolidated database

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 133

a. For the row containing the stores table, change the Download Subset to Custom.

b. Click the Download Subset tab at the bottom of the right pane.

c. Filter the rows by remote ID, which uniquely identifies the remote database, by adding a
restriction to the WHERE clause of the download_cursor script.
Type a search condition in the SQL Expression To Use In The Download Cursor's WHERE
Clause field. For example, the following SQL script can be used for the stores table:

"dbo"."stores"."stor_id" = {ml s.remote_id}

The download cursor script specifies what columns and rows are downloaded from each table to
the remote database. The search condition ensures that you only download information about one
store, namely, the store that has an identifier that equals the remote ID for the database.

17. Repeat the previous step for the rows containing the sales, salesdetail, and discounts tables.

Note
You must rename the table specified in the SQL script to the table name in the row that you are
editing.

Use the following WHERE clause script for the sales table:

"dbo"."sales"."stor_id" = {ml s.remote_id}

Use the following WHERE clause script for the salesdetail table:

"dbo"."salesdetail"."stor_id" = {ml s.remote_id}

Use the following WHERE clause script for the discounts table:

"dbo"."discounts"."stor_id" = {ml s.remote_id}

18. Save the synchronization model.

Click File » Save.

The synchronization model is complete and ready for deployment.

19. Proceed to “Lesson 7: Deploying the synchronization model” on page 135.

MobiLink tutorials

134 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “Consolidated database setup” [MobiLink - Server Administration]
● “MobiLink server system tables” [MobiLink - Server Administration]
● “MobiLink server system procedures” [MobiLink - Server Administration]
● “download_delete_cursor scripts” [MobiLink - Server Administration]
● “Conflict handling” [MobiLink - Server Administration]
● “Conflict resolution” [MobiLink - Server Administration]
● “Publications” [MobiLink - Client Administration]
● “Synchronization model tasks” on page 28
● “Modifying the download type” on page 30
● “Modifying conflict detection and resolution” on page 35
● “Modifying table and column mappings” on page 28

Lesson 7: Deploying the synchronization model
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Designing the schemas”
on page 125.

The Deploy Synchronization Model Wizard allows you to deploy the consolidated database and remote
database. You can deploy each of these databases individually or you can deploy both of them. The
Deploy Synchronization Model Wizard takes you through the steps of configuring options for
deployment.

Deploy the synchronization model

1. In the left pane of Sybase Central under MobiLink 12, expand ase_project, Synchronization
Models, sync_ase.

2. Click File » Deploy.

3. Click Specify The Deployment Details For One Or More Of The Following and select
Consolidated Database, Remote Database And Synchronization Client, and MobiLink Server.
Click Next.

4. Perform the following tasks on the Consolidated Database Deployment Destination page:

a. Choose Save Changes To The Following SQL File and accept the default location for the file.
MobiLink generates a .sql file that makes changes to the consolidated database to set up for
synchronization. You can examine the .sql file later and make your own changes. Then, you must
run the .sql file.

b. Immediately apply the changes to the consolidated database.
Choose Connect To The Consolidated Database To Directly Apply The Changes.

c. Choose the ase_cons consolidated database from the list.

d. Click Next.

A prompt appears asking if you want to create the consolidated directory. Click Yes.

Tutorial: Using MobiLink with an Adaptive Server Enterprise consolidated database

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 135

5. Click New SQL Anywhere Database, and click Next.

6. Perform the following tasks on the New SQL Anywhere Remote Database page:

a. Choose the Make A Command File And A SQL File With Commands To Create The
Database option.
Choosing this option generates another .sql file with the commands to set up the remote database
with all the required schema and synchronization information.

b. Accept the default location in the SQL File field.

c. Select the Create A Remote SQL Anywhere Database option.
You must generate a new remote database and run the .sql file against it if you do not select this
option. This option allows you to examine the .sql file later and make your own changes.

d. Accept the default location in the SQL Anywhere Database File field.

e. Click Next.

A prompt appears asking if you want to create the remote directory. Click Yes.

7. Perform the following tasks on the MobiLink User and Synchronization Profile page:

a. In the What User Name Do You Want To Use For Connecting To The MobiLink Server
field, type ase_remote.

b. In the What Password Do You Want To Use field, type ase_pass.

c. Click Next.

8. Choose TCP/IP and type 2439 in the Port field. Click Next.

9. Type localhost in the Host field. Click Next.

Alternatively, you can type your computer name or IP address, the name or IP address of another
network server you want to use, or other client stream options.

10. Click Next on the Client Stream Parameters, MobiLink Server Stream Parameters, and
Verbosity For MobiLink Server pages to accept all of the default settings.

11. Type ase_mlsrv in the What Name Do You Want To Give The MobiLink Server field. Click
Next.

A message appears asking if you want to create the mlsrv directory. Click Yes.

12. Choose a verbosity setting for the remote synchronization client and use the default file name of the
remote database log file. Click Next.

13. Click Finish.

14. Click Close.

Your consolidated database is fully configured for synchronization with many remote clients, and you
have successfully deployed one remote client. If you want to deploy other remote clients, you can run

MobiLink tutorials

136 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

this wizard again, making sure to create a new MobiLink user and opt out of deploying the
consolidated database and MobiLink server. Since they have already been deployed, all you need to
do is deploy other remote synchronization clients.

15. Proceed to “Lesson 8: Starting the server and client” on page 137.

See also
● “Synchronization model deployment” on page 40
● “Creating a remote database” [MobiLink - Client Administration]
● “MobiLink users” [MobiLink - Client Administration]

Lesson 8: Starting the server and client
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Designing the schemas”
on page 125.

In this lesson, you start the MobiLink server and remote database. In a previous lesson, you modified the
download cursor script to download information related to one store. In this lesson, you specify the store
by setting the remote ID to the store identifier.

Start the client and server

1. At a command prompt, navigate to the folder where you created the synchronization model. (This is
the root directory you chose in the first step of the Create Synchronization Model Wizard.)

If you used the suggested directory names, you should navigate to the following directory: sync_ase
\mlsrv.

2. To start the MobiLink server, run the following command:

sync_ase_mlsrv.bat "DSN=ase_cons;UID=sa;PWD=sa;"

● sync_ase_mlsrv.bat is the command file to start the MobiLink server.

● dsn is your ODBC data source name.

● uid is the user name you use to connect to the consolidated database (the default for Adaptive
Server Enterprise is sa).

● pwd is the password you use to connect as sa.

When this command runs successfully, the message MobiLink server Started appears in the
MobiLink server messages window.

If the MobiLink server fails to start, check the connection information for your consolidated database.

3. At a command prompt, navigate to the directory where the Deploy Synchronization Model Wizard
created your remote database.

If you used the suggested directory names, navigate to the following directory: sync_ase\remote.

4. To start your remote SQL Anywhere database, run the following command:

Tutorial: Using MobiLink with an Adaptive Server Enterprise consolidated database

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 137

dbeng12 -n remote_eng sync_ase_remote.db -n remote_db

● dbeng12 is the database server used to start the SQL Anywhere database.

● remote_eng is the database server name.

● sync_ase_remote.db is the database file that is started on remote_eng.

● remote_db is the name of the database on remote_eng.

When this command runs successfully, a SQL Anywhere database server named remote_eng starts
and loads the database called remote_db.

5. Proceed to “Lesson 9: Setting the remote ID” on page 138.

See also
● “SQL Anywhere database server syntax” [SQL Anywhere Server - Database Administration]
● “Deployed model synchronization” on page 43
● “Running the MobiLink server” [MobiLink - Server Administration]

Lesson 9: Setting the remote ID
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Designing the schemas”
on page 125.

In the remote schema, each remote database represents one store. The synchronization scripts you wrote
include logic that instructs the MobiLink server to download a subset of data based on the remote ID of
the remote database. You must set the database's remote ID to the value of a valid store identifier.

It is important to complete this step before the first synchronization because when the remote device
synchronizes for the first time, it downloads all information related to the store (in this case, Thoreau
Reading Discount Chain).

Set the remote ID to a valid store identifier

1. Choose a valid store identifier.

a. Connect to the pubs2 database as sa, using iSQL in Adaptive Server Enterprise. At a command
prompt, run the following command, all on one line:

isql
-U sa
-P your-password-for-sa-account
-D pubs2

If you are accessing Adaptive Server Enterprise remotely, use the -S option to specify the server
name.

b. To view a list of valid store identifiers in the stores table, execute the following statement:

SELECT * FROM stores

In this tutorial, the remote database represents the Thoreau Reading Discount Chain store, which
has a value of 5023 for its store identifier.

MobiLink tutorials

138 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

c. To exit iSQL, run the following command:

exit

2. To set the database's remote ID to 5023, run the following command, all on one line:

dbisql
 -c "SERVER=remote_eng;DBN=remote_db;UID=DBA;PWD=sql"
 "SET OPTION PUBLIC.ml_remote_id='5023'"

● dbisql is the application used to execute SQL commands against a SQL Anywhere database.

● eng specifies the database server name remote_eng.

● dbn specifies the database name remote_db.

● uid specifies the user name used to connect to your remote database.

● pwd specifies the password used to connect to your remote database.

● SET OPTION PUBLIC.ml_remote_id='5023' is the SQL command used to set the remote ID
to 5023.

3. Proceed to “Lesson 10: Synchronizing” on page 139.

See also
● “Remote IDs” [MobiLink - Client Administration]

Lesson 10: Synchronizing
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Designing the schemas”
on page 125.

In this lesson, you synchronize the remote client for the first time using the dbmlsync utility. Dbmlsync
connects to the remote database, authenticates itself with the MobiLink server, and then performs all the
uploads and downloads necessary to synchronize the remote and consolidated databases based on a
publication in the remote database.

Synchronize the remote client

1. At a command prompt, run the following command, all on one line:

dbmlsync -c "SERVER=remote_eng;DBN=remote_db;UID=DBA;PWD=sql;"
 -n sync_ase_publication
 -u ase_remote -mp ase_pass

● dbmlsync is the synchronization application.

● SERVER=remote_eng specifies the name of the remote database server.

● DBN=remote_db specifies the name of the remote database.

● UID specifies the user name used to connect to the remote database.

● PWD specifies the password used to connect to the remote database.

Tutorial: Using MobiLink with an Adaptive Server Enterprise consolidated database

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 139

● sync_ase_publication is the name of the publication on the remote device that is used to
perform the synchronization. (This publication was created using the Create Synchronization
Model Wizard.)

● ase_remote is the user name used to authenticate with the MobiLink server.

● ase_pass is the password used to authenticate with the MobiLink server.

The progress of the synchronization appears in the SQL Anywhere MobiLink Client Messages
window. When this command runs successfully, the dbmlsync application populates the remote
database with a subset of information from the consolidated database.

If synchronization fails, check the connection information you pass to the dbmlsync application, and
the MobiLink user name and password. If the problem persists, check the publication name you used,
and ensure the consolidated database and MobiLink server are running. You can also examine the
contents of the synchronization logs (server and client).

Note
If you are running the dbmlsync application on a different computer from your MobiLink server, you
must also pass in arguments that specify the location of the MobiLink server.

2. Proceed to “Lesson 11: Viewing the data in the remote database” on page 140.

See also
● “The synchronization process” on page 13
● “dbmlsync syntax” [MobiLink - Client Administration]

Lesson 11: Viewing the data in the remote database
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Designing the schemas”
on page 125.

After successfully synchronizing the remote client to the consolidated database through the MobiLink
server, the remote data should be populated with information relevant to one store. You can verify the
contents of the remote database in Sybase Central using the SQL Anywhere 12 plug-in.

View the data in the remote database

1. Start Sybase Central.

2. Connect to the remote database:

a. In the left pane, right-click SQL Anywhere 12, and choose Connect.

b. In the Authentication dropdown list, choose Database, and perform the following steps:

i. In the User ID field, type DBA.

ii. In the Password field, type sql.

c. From the Action dropdown list, choose Connect To A Running Database On This Computer.

MobiLink tutorials

140 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

d. In the Server Name field, type remote_eng and in the Database Name field, type remote_db.

e. Click Connect.

3. If the tables created from the consolidated database are not visible, perform the following steps:

a. Right-click remote_db, and Configure Owner Filter.

b. Choose dbo, and click OK.
The tables created from the consolidated database appear in the left pane. Ownership of these
tables by dbo is preserved in the remote database.

4. Choose any remote table, and click the Data tab in the right pane.

In the sales, salesdetail, and stores tables, all the records are for the store with an identifier of 5023.
This particular store is not concerned with the sales information of other stores. For this reason, you
set the synchronization scripts to filter out rows by the remote ID, and you set this database's remote
ID to the value of a particular store identifier. Now this particular store's database takes up less space,
and requires less time to synchronize. Since the remote database size is kept to a minimum, frequently
performed operations such as entering a new sale or processing a refund on a previous sale run faster
and more efficiently.

5. Proceed to “Cleaning up” on page 141.

Cleaning up
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Designing the schemas”
on page 125.

Regenerate the pubs2 database and remove all tutorial materials from your computer.

Remove tutorial materials

1. Regenerate the pubs2 database.

To run the script that installs the pubs2 database, run the following command:

isql
-U sa
-P your-password-for-sa-account
-i %SYBASE%\%SYBASE_ASE%\scripts\instpbs2

If you are accessing Adaptive Server Enterprise remotely, use the -S option to specify the server
name. You also have to copy the instpbs2 file locally onto your computer. The -i option needs to
updated so that the new location of the instpbs2 file is specified.

2. Delete the synchronization model.

a. Start Sybase Central.

b. Double-click MobiLink 12 in the right pane.
The sync_ase model appears.

Tutorial: Using MobiLink with an Adaptive Server Enterprise consolidated database

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 141

c. Right-click sync_ase and choose Delete.

3. Erase the remote database by using the dberase utility.

Run the following command:

dberase sync_ase\remote\sync_ase_remote.db

Tutorial: Using Java synchronization logic
This tutorial guides you through the basic steps for using Java synchronization logic. Using the CustDB
sample as a SQL Anywhere consolidated database, you specify simple class methods for MobiLink table-
level events. The process also involves running the MobiLink server (mlsrv12) with an option to set the
path of compiled Java classes.

Required software
● SQL Anywhere 12

● Java Software Development Kit

Competencies and experience
You require:

● Familiarity with Java

● Basic knowledge of MobiLink event scripts

Overview
This tutorial shows you how to:

● Compile a source file with MobiLink server API references

● Specify class methods for table-level events

● Run the MobiLink server (mlsrv12) with the -sl java option

● Test synchronization with a sample Windows client application

Goals
To gain competence and familiarity with:

● Java class methods for MobiLink table-level event scripts

MobiLink tutorials

142 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “Synchronization script writing” [MobiLink - Server Administration]
● “Setting up Java synchronization logic” [MobiLink - Server Administration]
● “Java synchronization example” [MobiLink - Server Administration]
● “Synchronization events” [MobiLink - Server Administration]
● “Synchronization techniques” [MobiLink - Server Administration]

Lesson 1: Compiling the CustdbScripts Java class with
MobiLink references

In this lesson, you compile a class associated with the CustDB sample database. You create a Java class
called CustdbScripts with logic to handle the ULCustomer upload_insert and download_cursor events.
You enter the CustdbScripts code in a text editor and save the file as CustdbScripts.java.

MobiLink database sample
SQL Anywhere ships with a SQL Anywhere sample database (CustDB) that is already set up for
synchronization, including the SQL scripts required for synchronization. The CustDB ULCustomer table
is a synchronized table that supports a variety of table-level events.

CustDB is designed to be a consolidated database for UltraLite and SQL Anywhere clients. The CustDB
database has an ODBC data source named SQL Anywhere 12 CustDB.

Create a CustdbScripts class
To execute Java synchronization logic, the MobiLink server must have access to the classes in
mlscript.jar. This JAR file contains a repository of MobiLink server API classes to use in your Java
methods.

When compiling Java source code for MobiLink, you must include mlscript.jar to make use of the
MobiLink server API. In this section, you use the javac utility's -classpath option to specify mlscript.jar
for the CustdbScripts class.

Create a CustdbScripts class

1. Create a directory for the Java class and assembly.

This tutorial assumes the path c:\mljava.

2. In a text editor, write the following code:

public class CustdbScripts {
 public static String UploadInsert() {
 return("INSERT INTO ULCustomer(cust_id,cust_name) VALUES ({ml
r.cust_id}, {ml r.cust_name})");
 }
 public String DownloadCursor(java.sql.Timestamp ts,String user) {
 return("SELECT cust_id, cust_name FROM ULCustomer WHERE
last_modified >= ' " + ts + " ' ");
 }
}

Tutorial: Using Java synchronization logic

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 143

Note
When creating your own custom scripts, make sure that the classes and associated methods are
defined as public.

3. Save the file as CustdbScripts.java in c:\mljava.

4. Compile the file.

Run the following command:

javac custdbscripts.java -classpath "C:\Program Files\SQL Anywhere 12\java
\mlscript.jar"

Replace C:\Program Files\SQL Anywhere 12 with the location of your SQL Anywhere installation.

The CustdbScripts.class file is generated.

5. Proceed to “Lesson 2: Creating a MobiLink project” on page 144.

See also
● “MobiLink server Java API reference” [MobiLink - Server Administration]
● “Methods” [MobiLink - Server Administration]

Lesson 2: Creating a MobiLink project
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Compiling the
CustdbScripts Java class with MobiLink references” on page 143.

In this lesson, you connect to the consolidated database by creating a new MobiLink project.

Create a new MobiLink project

1. Click Start » Programs » SQL Anywhere 12 » Administration Tools » Sybase Central.

2. Click Tools » MobiLink 12 » New Project.

3. In the Name field, type mljava_project.

4. In the Location field, type C:\mljava, and click Next.

5. Check the Add A Consolidated Database To The Project option.

6. In the Database Display Name field, type mljava_db.

7. Click Edit.

8. Perform the following tasks in the Connect To A Generic ODBC Database:

a. In the ODBC Data Source name field, click Browse, and select SQL Anywhere 12 CustDB.

b. Click OK, and click Save.

MobiLink tutorials

144 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

c. Click Finish.

9. Click OK.

10. Proceed to “Lesson 3: Subscribing a script to the upload_insert event” on page 145.

Lesson 3: Subscribing a script to the upload_insert event
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Compiling the
CustdbScripts Java class with MobiLink references” on page 143.

In this lesson, you use Sybase Central to specify a Java method as the script for the ULCustomer
upload_insert event. You connect to the CustDB database using Sybase Central, replace the upload_insert
SQL script with a Java script, and specify CustdbScripts.UploadInsert to handle the event.

Alternatively, you can use the ml_add_java_connection_script and ml_add_java_table_script stored
procedures. Using these stored procedures is more efficient, especially if you have a large number of
methods to handle synchronization events. See “ml_add_java_connection_script system procedure”
[MobiLink - Server Administration] and “ml_add_java_table_script system procedure” [MobiLink - Server
Administration].

Subscribe CustdbScripts.UploadInsert to the upload_insert event for the ULCustomer
table

1. In Sybase Central, click View » Folders.

2. In the left pane of Sybase Central under MobiLink 12, expand mljava_project, Consolidated
Databases, mljava_db, Synchronized Tables, ULCustomer.

3. In the right pane, select the custdb 12.0 upload_insert table script. Click Edit » Delete.

4. Create a new upload_insert table script.

a. Click File » New » Table Script.

b. In the For Which Version Do You Want To Create The Table Script list, click custdb 12.0.

c. In the Which Event Should Cause The Table Script To Be Executed list, click upload_insert,
and click Next.

d. Select Create A New Script Definition, and select Java.

e. Click Finish.

5. Enter the Java method name to load for the custdb 12.0 upload_insert table script.

In the right pane of Sybase Central, use the following Java script for the upload_insert event:

CustdbScripts.UploadInsert

6. Click File » Save to save the script.

7. Close Sybase Central.

Tutorial: Using Java synchronization logic

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 145

8. Proceed to “Lesson 4: Specifying class methods to handle events” on page 146.

Lesson 4: Specifying class methods to handle events
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Compiling the
CustdbScripts Java class with MobiLink references” on page 143.

The class, CustdbScripts.class, created in the previous lesson encapsulates the methods UploadInsert and
DownloadCursor. These methods contain implementations for the ULCustomer upload_insert and
download_cursor events, respectively.

In this lesson, you connect to the CustDB database with Interactive SQL and run
ml_add_java_table_script, specifying CustdbScripts.DownloadCursor to handle the download_cursor
event.

Specify CustdbScripts.DownloadCursor to handle the ULCustomer download_cursor
event

1. Connect to the sample database from Interactive SQL.

a. Click Start » Programs » SQL Anywhere 12 » Administration Tools » Interactive SQL, or
run the following command:

dbisql
b. Click ODBC Data Source Name and type SQL Anywhere 12 CustDB.

c. Click Connect.

2. Execute the following SQL statements in Interactive SQL:

CALL ml_add_java_table_script(
 'custdb 12.0',
 'ULCustomer',
 'download_cursor',
 'CustdbScripts.DownloadCursor');
COMMIT;

The following is a description of each parameter:

Parameter Description

custdb 12.0 The script version.

ULCustomer The synchronized table.

download_cursor The event name.

CustdbScripts.DownloadCursor The fully qualified Java method.

MobiLink tutorials

146 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Note
Your updated download_cursor script might not appear in Sybase Central. To view the most recent
changes to the MobiLink project in Sybase Central, click the View menu, and choose Refresh All.

3. Close Interactive SQL.

4. Proceed to “Lesson 5: Running the MobiLink server with -sl java” on page 147.

See also
● “Adding and deleting scripts” [MobiLink - Server Administration]
● “ml_add_java_connection_script system procedure” [MobiLink - Server Administration]
● “ml_add_java_table_script system procedure” [MobiLink - Server Administration]

Lesson 5: Running the MobiLink server with -sl java
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Compiling the
CustdbScripts Java class with MobiLink references” on page 143.

In this lesson, you run the MobiLink server with the -sl java -cp option to specify a set of directories to
search for class files and force the Java VM to load on server startup.

Start the MobiLink server (mlsrv12) and load Java assemblies

1. Start the MobiLink server with the -sl java option.

Run the following command:

mlsrv12 -c "DSN=SQL Anywhere 12 CustDB" -sl java (-cp c:\mljava)

A message indicating that the server is ready to handle requests appears. The Java method is executed
when the upload_insert event triggers during synchronization.

2. Proceed to “Lesson 6: Testing synchronization” on page 147.

See also
● “MobiLink server options” [MobiLink - Server Administration]
● “-sl java mlsrv12 option” [MobiLink - Server Administration]

Lesson 6: Testing synchronization
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Compiling the
CustdbScripts Java class with MobiLink references” on page 143.

UltraLite comes with a sample Windows client that automatically invokes the dbmlsync utility when a
user initiates synchronization. In this lesson, you run the application against the CustDB consolidated
database you started in the previous lesson. You enter a new customer name and order details. During a
subsequent synchronization, this information is uploaded to the CustDB consolidated database and the
upload_insert and download_cursor events for the ULCustomer table triggers.

Tutorial: Using Java synchronization logic

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 147

Start and synchronize the sample application

1. Start the sample application.

Click Start » Programs » SQL Anywhere 12 » UltraLite » Windows Sample Application.

2. Enter an employee ID and synchronize.

Enter a value of 50 for the employee ID, and click OK.

The application automatically synchronizes and a set of customers, products, and orders are
downloaded to the application from the CustDB consolidated database.

3. Click Order » New.

4. Enter Frank Javac for a customer name.

5. Choose a product, and enter the quantity and discount.

6. Click OK to add the new order.

You have now modified the data in your local UltraLite database. This data is not shared with the
consolidated database until you synchronize.

7. Click File » Synchronize.

A message indicating the insert was successfully uploaded to the consolidated database appears.

8. Use Interactive SQL to verify that the sample database downloaded new customer data from the
sample application.

a. Connect to the sample database with Interactive SQL.
Click Start » Programs » SQL Anywhere 12 » Administration Tools » Interactive SQL, or
run the following command:

dbisql
b. Click ODBC Data Source Name and type SQL Anywhere 12 CustDB.

c. Click Connect.

9. Execute the following SQL statement from Interactive SQL:

SELECT * FROM ULCustomer WHERE cust_name = 'Frank Javac';

The query results appear in the lower pane of Interactive SQL, which displays the customer ID, name,
and last modified fields. The last modified field indicates when the customer Frank Javac was last
updated. The field should indicate the date and time when you synchronized the sample application
with the consolidated database.

10. Proceed to “Cleaning up” on page 149.

MobiLink tutorials

148 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “CustDB sample for MobiLink” on page 48

Cleaning up
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Compiling the
CustdbScripts Java class with MobiLink references” on page 143.

Remove tutorial materials from your computer

1. Delete your Java source files.

For example, delete the c:\mljava directory.

Caution
Make sure you only have tutorial related materials in this directory.

2. Close Interactive SQL and the UltraLite Windows client application.

Click File » Exit from the menu of each application.

3. Close the SQL Anywhere, MobiLink, and synchronization client windows.

Right-click each task bar item, and click Close.

4. Reset the database for the Windows Sample Application.

Run the following command from the %SQLANYSAMP12%\UltraLite\CustDB directory:

makedbs

Tutorial: Using .NET synchronization logic
This tutorial guides you through the basic steps for using .NET synchronization logic. Using the CustDB
sample as a SQL Anywhere consolidated database, you specify simple class methods for MobiLink table-
level events. The process also involves running the MobiLink server (mlsrv12) with an option that sets the
path of .NET assemblies.

Required software
● SQL Anywhere 12

● Microsoft .NET Framework SDK

Competencies and experience
You require:

● Familiarity with .NET

Tutorial: Using .NET synchronization logic

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 149

● Basic knowledge of MobiLink event scripts

Overview
This tutorial shows you how to:

● Compile the CustdbScripts.dll private assembly with MobiLink references

● Specify class methods for table-level events

● Run the MobiLink server (mlsrv12) with the -sl dnet option

● Test synchronization with a sample Windows client application

Goals
To gain competence and familiarity with:

● .NET class methods for MobiLink table-level event scripts

See also
● “Synchronization script writing” [MobiLink - Server Administration]
● “Setting up .NET synchronization logic” [MobiLink - Server Administration]
● “Debugging .NET synchronization logic” [MobiLink - Server Administration]
● “.NET synchronization example” [MobiLink - Server Administration]
● “Synchronization events” [MobiLink - Server Administration]
● “Synchronization techniques” [MobiLink - Server Administration]

Lesson 1: Compiling the CustdbScripts.dll assembly with
MobiLink references

In this lesson, you compile a class associated with the CustDB sample database.

MobiLink database sample
SQL Anywhere ships with a SQL Anywhere sample database (CustDB) that is already set up for
synchronization, including the SQL scripts required for synchronization. The CustDB ULCustomer table,
for example, is a synchronized table that supports a variety of table-level events.

CustDB is designed to be a consolidated database server for both UltraLite and SQL Anywhere clients.
The CustDB database has an ODBC data source named SQL Anywhere 12 CustDB.

The CustdbScripts Assembly
.NET classes encapsulate synchronization logic in methods. In this section, you create a .NET class called
CustdbScripts with logic to handle the ULCustomer upload_insert and download_cursor events.

MobiLink server API
To execute .NET synchronization logic, the MobiLink server must have access to the classes in
iAnywhere.MobiLink.Script.dll. iAnywhere.MobiLink.Script.dll contains a repository of MobiLink server
API for .NET classes to use in your .NET methods.

MobiLink tutorials

150 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

For more information about the MobiLink server API for .NET, see “MobiLink server .NET API
reference” [MobiLink - Server Administration].

When compiling the CustdbScripts class, you must include this assembly to make use of the API. You can
compile your class using Visual Studio or at a command prompt.

● Create a new Class Library and enter the CustdbScripts code. Link iAnywhere.MobiLink.Script.dll, and
build the assembly for your class.

● Put the CustdbScripts code in a text file and save the file as CustdbScripts.cs (or CustdbScripts.vb for
Visual Basic). Using a command line compiler, reference iAnywhere.MobiLink.Script.dll and build the
assembly for your class.

Creating the CustdbScripts assembly using Visual Studio
You can use Visual Studio to create the CustdbScripts assembly.

Create the CustdbScripts assembly using Visual Studio

1. Start a new Visual C# or Visual Basic Windows Class Library project.

Use CustdbScripts for the project Name and enter an appropriate path. This tutorial assumes the path
c:\mldotnet.

2. In Visual Studio 2010, change the top dropbox from .NET Framework 4 to .NET Framework 3.5.

Note
To use the v4.0 assemblies, you must explicitly include the -clrVersion option when you load the
MobiLink server. For more information about the -clrVersion option, see “-sl dnet mlsrv12 option”
[MobiLink - Server Administration].

3. Ensure that the Class1.cs file is highlighted in the Solution Explorer.

4. Enter the CustdbScripts code.

For C#, replace the existing code with the following code:

namespace MLExample {
 class CustdbScripts {
 public static string UploadInsert() {
 return("INSERT INTO ULCustomer(cust_id,cust_name) values ({ml
r.cust_id}, {ml r.cust_name})");
 }
 public static string DownloadCursor(System.DateTime ts, string
user) {
 return("SELECT cust_id, cust_name FROM ULCustomer WHERE
last_modified >= '" + ts.ToString("yyyy-MM-dd hh:mm:ss.fff") +"'");
 }
 }
}

For Visual Basic, replace the existing code with the following code:

Tutorial: Using .NET synchronization logic

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 151

Namespace MLExample
 Class CustdbScripts
 Public Shared Function UploadInsert() As String
 Return("INSERT INTO ULCustomer(cust_id,cust_name) values ({ml
r.cust_id}, {ml r.cust_name})")
 End Function

 Public Shared Function DownloadCursor(ByVal ts As
System.DateTime, ByVal user As String) As String
 Return("SELECT cust_id, cust_name FROM ULCustomer " + "WHERE
last_modified >= '" + ts.ToString("yyyy-MM-dd hh:mm:ss.fff") +"'")
 End Function
 End Class
End Namespace

5. For Visual Basic, right-click the CustdbScripts project, and choose the table Properties » General.
Make sure that the text field Root Namespace is cleared of all text.

6. Build CustdbScripts.dll.

Click Build » Build CustdbScripts.

This file CustdbScripts.dll is created in C:\mldotnet\CustdbScripts\CustdbScripts\bin\Debug.

7. Proceed to “Lesson 2: Creating a MobiLink project” on page 153.

Creating the CustdbScripts assembly at a command prompt
You can use command lines, a text editor, and a Visual Studio compiler as an alternative to the Visual
Studio IDE to create the CustdbScripts assembly.

Create the CustdbScripts assembly at a command prompt

1. Create a directory for the .NET class and assembly.

This tutorial assumes the path c:\mldotnet.

2. Using a text editor, enter the CustdbScripts code.

For C#, type:

namespace MLExample {
 class CustdbScripts {
 public static string UploadInsert() {
 return("INSERT INTO ULCustomer(cust_id,cust_name) values ({ml
r.cust_id}, {ml r.cust_name})");
 }
 public static string DownloadCursor(System.DateTime ts, string
user) {
 return("SELECT cust_id, cust_name FROM ULCustomer WHERE
last_modified >= '" + ts.ToString("yyyy-MM-dd hh:mm:ss.fff") +"'");
 }
 }
}

For Visual Basic, type:

MobiLink tutorials

152 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Namespace MLExample
 Class CustdbScripts
 Public Shared Function UploadInsert() As String
 Return("INSERT INTO ULCustomer(cust_id,cust_name) values ({ml
r.cust_id}, {ml r.cust_name})")
 End Function

 Public Shared Function DownloadCursor(ByVal ts As
System.DateTime, ByVal user As String) As String
 Return("SELECT cust_id, cust_name FROM ULCustomer " + "WHERE
last_modified >= '" + ts.ToString("yyyy-MM-dd hh:mm:ss.fff") +"'")
 End Function
 End Class
End Namespace

3. Save the file as CustdbScripts.cs (CustdbScripts.vb for Visual Basic) in c:\mldotnet.

4. Compile the file.

For C#, run the following command:

csc /out:c:\mldotnet\custdbscripts.dll /target:library /reference:"C:
\Program Files\SQL Anywhere 12\Assembly
\v2\iAnywhere.MobiLink.Script.dlmldotnetmldotnet\CustdbScripts.cs

For Visual Basic, run the following command:

vbc /out:c:\mldotnet\custdbscripts.dll /target:library /reference:"C:
\Program Files\SQL Anywhere 12\Assembly\v2\iAnywhere.MobiLink.Script.dll"
c:\mldotnet\CustdbScripts.vb

The CustdbScripts.dll assembly is generated.

5. Proceed to “Lesson 2: Creating a MobiLink project” on page 153.

See also
● “MobiLink server .NET API reference” [MobiLink - Server Administration]
● “Methods” [MobiLink - Server Administration]

Lesson 2: Creating a MobiLink project
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Compiling the
CustdbScripts.dll assembly with MobiLink references” on page 150.

In this lesson, you connect to the consolidated database by creating a new MobiLink project.

Create a new MobiLink project

1. Click Start » Programs » SQL Anywhere 12 » Administration Tools » Sybase Central.

2. Click Tools » MobiLink 12 » New Project.

3. In the Name field, type mldotnet_project.

4. In the Location field, type C:\mldotnet, and click Next.

Tutorial: Using .NET synchronization logic

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 153

5. Choose the Add A Consolidated Database To The Project option.

6. In the Database Display Name field, type mldotnet_db.

7. Click Edit. The Connect To A Generic ODBC Database window appears.

8. In the ODBC Data Source name field, click Browse, and select SQL Anywhere 12 CustDB.

9. Click OK, and click Save.

10. Click Finish.

11. Click OK.

12. Proceed to “Lesson 3: Subscribing a script to the upload_insert event” on page 154.

Lesson 3: Subscribing a script to the upload_insert event
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Compiling the
CustdbScripts.dll assembly with MobiLink references” on page 150.

In this lesson, you use Sybase Central to specify a .NET method as the script for the ULCustomer
upload_insert event. You connect to the CustDB database using Sybase Central, replace the upload_insert
SQL script with a .NET script, and specify MLExample.CustdbScripts.UploadInsert to handle the event.

Alternatively, you can use the ml_add_dnet_connection_script and ml_add_dnet_table_script stored
procedures. Using these stored procedures is more efficient, especially if you have a large number
of .NET methods to handle synchronization events.

Subscribe CustdbScripts.uploadInsert to the upload_insert event for the ULCustomer
table

1. In Sybase Central, click View » Folders.

2. In the left pane of Sybase Central under MobiLink 12, expand mldotnet_project, Consolidated
Databases, mldotnet_db, Synchronized Tables, ULCustomer.

3. In the right pane, select the custdb 12.0 upload_insert table script. Click Edit » Delete.

4. Create a new upload_insert table script.

a. Click File » New » Table Script.

b. In the For Which Version Do You Want To Create The Table Script list, click custdb 12.0.

c. In the Which Event Should Cause The Table Script To Be Executed list, click upload_insert,
and click Next.

d. Select Create a new script definition and select .NET.

e. Click Finish.

5. Enter the .NET method name to load for the custdb 12.0 upload_insert table script.

MobiLink tutorials

154 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

In the right pane of Sybase Central, add the following .NET script for the upload_insert event:

MLExample.CustdbScripts.UploadInsert

6. Click File » Save to save the script.

7. Close Sybase Central.

8. Proceed to “Lesson 4: Specifying class methods for events” on page 155.

Lesson 4: Specifying class methods for events
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Compiling the
CustdbScripts.dll assembly with MobiLink references” on page 150.

The class, CustdbScripts.dll, created in a previous lesson, encapsulates the methods UploadInsert and
DownloadCursor. These methods contain implementation for the ULCustomer upload_insert and
download_cursor events, respectively.

In this lesson, you connect to the CustDB database with Interactive SQL and run
ml_add_dnet_table_script, specifying MLExample.CustdbScripts.DownloadCursor for the
download_cursor event.

Specify MLExample.CustdbScripts.DownloadCursor for the ULCustomer
download_cursor event

1. Connect to the sample database from Interactive SQL.

a. Click Start » Programs » SQL Anywhere 12 » Administration Tools » Interactive SQL, or
run the following command:

dbisql
b. Click ODBC Data Source Name and type SQL Anywhere 12 CustDB.

c. Click Connect.

2. Execute the following SQL statements in Interactive SQL to specify .NET methods to handle
ULCustomer table-level events:

CALL ml_add_dnet_table_script(
 'custdb 12.0',
 'ULCustomer',
 'download_cursor',
 'MLExample.CustdbScripts.DownloadCursor');
COMMIT;

The following is a description of each parameter:

Parameter Description

custdb 12.0 The script version.

Tutorial: Using .NET synchronization logic

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 155

Parameter Description

ULCustomer The synchronized table.

download_cursor The event name.

MLExample.CustdbScripts.DownloadCursor The fully qualified .NET method.

Note
Your updated download_cursor script might not appear in Sybase Central. To view the most recent
changes to the MobiLink project in Sybase Central, click View » Refresh All.

3. Close Interactive SQL.

4. Proceed to “Lesson 5: Running the MobiLink server with -sl dnet” on page 156.

See also
● “Adding and deleting scripts” [MobiLink - Server Administration]
● “ml_add_dnet_connection_script system procedure” [MobiLink - Server Administration]
● “ml_add_dnet_table_script system procedure” [MobiLink - Server Administration]

Lesson 5: Running the MobiLink server with -sl dnet
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Compiling the
CustdbScripts.dll assembly with MobiLink references” on page 150.

In this lesson, you run the MobiLink server with the -sl dnet option to specify the location of .NET
assemblies and force the CLR to load on server startup.

If you compiled using Visual Studio, the location of CustdbScripts.dll is c:\mldotnet\CustdbScripts
\CustdbScripts\bin\Debug. If you compiled at a command prompt, the location of CustdbScripts.dll is c:
\mldotnet.

Start the MobiLink server (mlsrv12) and load .NET assemblies

1. Start the MobiLink server with the -sl dnet option.

Run the following command if you used Visual Studio to compile your assembly:

mlsrv12 -c "DSN=SQL Anywhere 12 CustDB" -dl -o c:\mldotnet\cons1.txt -v+ -
sl dnet(-MLAutoLoadPath=c:\mldotnet\CustdbScripts\CustdbScripts\bin\Debug)

Run the following command if you compiled your assembly at a command prompt:

mlsrv12 -c "DSN=SQL Anywhere 12 CustDB" -dl -o c:\mldotnet\cons1.txt -v+ -
sl dnet(-MLAutoLoadPath=c:\mldotnet)

A message indicating that the server is ready to handle requests appears. The .NET method is
executed when the upload_insert event triggers during synchronization.

MobiLink tutorials

156 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

2. Proceed to “Lesson 6: Testing synchronization” on page 157.

See also
● “MobiLink server options” [MobiLink - Server Administration]
● “-sl dnet mlsrv12 option” [MobiLink - Server Administration]

Lesson 6: Testing synchronization
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Compiling the
CustdbScripts.dll assembly with MobiLink references” on page 150.

UltraLite comes with a sample Windows client that automatically invokes the dbmlsync utility when the
user initiates synchronization. In this lesson, you run the application against the CustDB consolidated
database you started in the previous lesson. You enter a new customer name and order details. During a
subsequent synchronization, this information is uploaded to the CustDB consolidated database and the
upload_insert and download_cursor events for the ULCustomer table triggers.

Start the sample application and test authentication

1. Start the sample application.

Click Start » Programs » SQL Anywhere 12 » UltraLite » Windows Sample Application.

2. Enter an employee ID and synchronize.

Enter a value of 50 for the employee ID, and click OK.

The application automatically synchronizes, and a set of customers, products, and orders is
downloaded to the application from the CustDB consolidated database.

3. Click Order » New.

4. Enter Frank DotNET for a customer name.

5. Choose a product, and enter the quantity and discount.

6. Click OK to add the new order.

You have now modified the data in your local UltraLite database. This data is not shared with the
consolidated database until you synchronize.

7. Click File » Synchronize.

A message indicating that the insert was successfully uploaded to the consolidated database appears.

You can use Interactive SQL to verify that the sample database downloaded new customer data from
the sample application.

8. Connect to the sample database from Interactive SQL:

Tutorial: Using .NET synchronization logic

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 157

a. Click Start » Programs » SQL Anywhere 12 » Administration Tools » Interactive SQL, or
run the following command:

dbisql
b. Click ODBC Data Source Name and type SQL Anywhere 12 CustDB.

c. Click Connect.

9. Execute the following SQL statement in Interactive SQL:

SELECT * FROM ULCustomer WHERE cust_name = 'Frank DotNET';

The query results appear in the lower pane of Interactive SQL, which displays the customer ID, name,
and last modified fields. The last modified field indicates when the Frank DotNET customer was last
updated. The field should indicate the date and time when you synchronized the sample application
with the consolidated database.

10. Proceed to “Cleaning up” on page 158.

See also
● “CustDB sample for MobiLink” on page 48

Cleaning up
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Compiling the
CustdbScripts.dll assembly with MobiLink references” on page 150.

Remove tutorial materials from your computer

1. Delete your .NET source files.

For example, delete the c:\mldotnet directory.

Caution
Make sure you only have tutorial related materials in this directory.

2. Close Interactive SQL and the UltraLite Windows client application.

Click File » Exit in each application.

3. Close the SQL Anywhere, MobiLink, and synchronization client windows.

Right-click each task bar item and click Close.

4. Reset the database for the Windows Sample Application.

Run the following command from the %SQLANYSAMP12%\UltraLite\CustDB directory:

makedbs

MobiLink tutorials

158 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Tutorial: Using Java or .NET for custom user
authentication

MobiLink synchronization scripts can be written in SQL, Java, or .NET. You can use Java or .NET to add
custom actions at any point of a synchronization.

In this tutorial, you add a Java or .NET method for the authenticate_user connection event. The
authenticate_user event allows you to specify a custom authentication scheme and override the MobiLink
built-in client authentication.

Required software
● SQL Anywhere 12

● Java Software Development Kit or the Microsoft .NET Framework

Competencies and experience
You require:

● Familiarity with Java or .NET

● Basic knowledge of MobiLink event scripts

Overview
This tutorial shows you how to:

● Compile a source file with MobiLink server API references

● Specify class methods for particular table-level events

● Run the MobiLink server (mlsrv12) with the -sl option

● Test synchronization with a sample Windows client application

Goals
To gain competence and familiarity with:

● MobiLink custom authentication

See also
● “User authentication mechanisms” [MobiLink - Client Administration]
● “Authentication to external servers” [MobiLink - Client Administration]
● “Synchronization script writing in .NET” [MobiLink - Server Administration]
● “Synchronization script writing in Java” [MobiLink - Server Administration]

Tutorial: Using Java or .NET for custom user authentication

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 159

Lesson 1: Creating a Java or .NET class for custom
authentication (server-side)

In this lesson, you compile a class containing Java or .NET logic for custom authentication.

Custom authentication using the MobiLink server Java API
The MobiLink server must have access to the classes in mlscript.jar to execute Java synchronization
logic. mlscript.jar contains a repository of MobiLink Java server API classes to utilize in your Java
methods. When you compile your Java class, you reference mlscript.jar.

Create a Java class for custom authentication

1. Create a class named MobiLinkAuth and write an authenticateUser method.

The MobiLinkAuth class includes the authenticateUser method used for the authenticate_user
synchronization event. The authenticate_user event provides parameters for the user and password.
You return the authentication result in the authentication_status inout parameter.

Note
You register the authenticateUser method for the authenticate_user synchronization event in “Lesson
2: Registering your Java or .NET scripts for the authenticate_user event” on page 162.

Use the following code for your server application:

import ianywhere.ml.script.*;
public class MobiLinkAuth {
 public void authenticateUser (
 ianywhere.ml.script.InOutInteger authentication_status,
 String user,
 String pwd,
 String newPwd) {
 if (user.substring(0,3).equals("128")) {
 // success: an auth status code of 1000
 authentication_status.setValue(1000);
 } else {
 // fail: an authentication_status code of 4000
 authentication_status.setValue(4000);
 }
 }
}

This code illustrates a simple case of custom user authentication. Authentication succeeds when the
client accesses the consolidated database using a user name that starts with 128.

2. Save your code.

This tutorial assumes c:\MLauth as the working directory for server-side components. Save the file as
MobiLinkAuth.java in this directory.

3. Compile your class file.

a. Navigate to the directory that contains your Java file.

MobiLink tutorials

160 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

b. Compile the MobiLinkAuth class and refer to the MobiLink server Java API library.
Run the following command, replacing C:\Program Files\SQL Anywhere 12\ with your SQL
Anywhere 12 directory:

javac MobiLinkAuth.java -classpath "C:\Program Files\SQL Anywhere
12\java\mlscript.jar"

The MobiLinkAuth.class file is generated.

4. Proceed to “Lesson 2: Registering your Java or .NET scripts for the authenticate_user event”
on page 162.

Custom authentication using the MobiLink server .NET API
The MobiLink server must have access to the classes in iAnywhere.MobiLink.Script.dll to execute .NET
synchronization logic. iAnywhere.MobiLink.Script.dll contains a repository of MobiLink .NET server API
classes to utilize in your .NET methods. When you compile your .NET class, you reference
iAnywhere.MobiLink.Script.dll.

Create a .NET class for custom authentication

1. Create a class named MobiLinkAuth and write an authenticateUser method.

The MobiLinkAuth class includes the authenticateUser method used for the authenticate_user
synchronization event. The authenticate_user event provides parameters for the user and password.
You return the authentication result in the authentication_status inout parameter.

Note
You register the authenticateUser method for the authenticate_user synchronization event in “Lesson
2: Registering your Java or .NET scripts for the authenticate_user event” on page 162.

Use the following code for your server application:

using iAnywhere.MobiLink.Script;
public class MobiLinkAuth {
 public void authenticateUser(
 ref int authentication_status,
 string user,
 string pwd,
 string newPwd) {
 if(user.Substring(0,3)=="128") {
 // success: an auth status code of 1000
 authentication_status = 1000;
 } else {
 // fail: and authentication_status code of 4000
 authentication_status = 4000;
 }
 }
}

This code illustrates a simple case of custom user authentication. Authentication succeeds when the
client accesses the consolidated database using a user name that starts with 128.

Tutorial: Using Java or .NET for custom user authentication

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 161

2. Save your code.

This tutorial assumes c:\MLauth as the working directory for server-side components. Save the file as
MobiLinkAuth.cs in this directory.

3. Compile your class file.

a. Navigate to the directory that contains your C# file.

b. Compile the MobiLinkAuth class and refer to the MobiLink server .NET API library.
Run the following command, replacing C:\Program Files\SQL Anywhere 12\ with your SQL
Anywhere 12 directory:

csc /out:MobiLinkAuth.dll /target:library /reference:"C:\Program Files
\SQL Anywhere 12\Assembly\v2\iAnywhere.MobiLink.Script.dll"
MobiLinkAuth.cs

The MobiLinkAuth.dll assembly is generated.

4. Proceed to “Lesson 2: Registering your Java or .NET scripts for the authenticate_user event”
on page 162.

See also
● “authenticate_user connection event” [MobiLink - Server Administration]
● “Java and .NET user authentication” [MobiLink - Client Administration]
● “Java synchronization example” [MobiLink - Server Administration]
● “.NET synchronization example” [MobiLink - Server Administration]

Lesson 2: Registering your Java or .NET scripts for the
authenticate_user event

This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating a Java or .NET
class for custom authentication (server-side)” on page 160.

SQL Anywhere ships with a SQL Anywhere sample database (CustDB) that is already set up for
synchronization. The CustDB ULCustomer table, for example, is a synchronized table supporting a
variety of table-level scripts. In this lesson, you register the MobiLinkAuth authenticateUser method for
the authenticate_user synchronization event. You add this script to CustDB, the MobiLink sample
database.

CustDB is designed to be a consolidated database server for both UltraLite and SQL Anywhere clients.
The CustDB database has an ODBC data source named SQL Anywhere 12 CustDB.

Register the authenticateUser method for the authenticate_user event

1. Connect to the sample database from Interactive SQL.

Run the following command:

dbisql -c "DSN=SQL Anywhere 12 CustDB"

MobiLink tutorials

162 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

2. Use the ml_add_java_connection_script or ml_add_dnet_connection_script stored procedure to
register the authenticateUser method for the authenticate_user event.

For Java, execute the following SQL statements:

CALL ml_add_java_connection_script(
 'custdb 12.0',
 'authenticate_user',
 'MobiLinkAuth.authenticateUser');
COMMIT;

For .NET, execute the following SQL statements:

CALL ml_add_dnet_connection_script(
 'custdb 12.0',
 'authenticate_user',
 'MobiLinkAuth.authenticateUser');
COMMIT;

3. Proceed to “Lesson 3: Starting the MobiLink server” on page 163.

See also
● “Adding and deleting scripts” [MobiLink - Server Administration]
● “Synchronization script writing in Java” [MobiLink - Server Administration]
● “Synchronization script writing in .NET” [MobiLink - Server Administration]
● “Java synchronization example” [MobiLink - Server Administration]
● “.NET synchronization example” [MobiLink - Server Administration]
● “Java class debugging” [MobiLink - Server Administration]
● “Debugging .NET synchronization logic” [MobiLink - Server Administration]
● “Synchronization script writing” [MobiLink - Server Administration]
● “Synchronization events” [MobiLink - Server Administration]
● “ml_add_java_connection_script system procedure” [MobiLink - Server Administration]
● “ml_add_dnet_connection_script system procedure” [MobiLink - Server Administration]

Lesson 3: Starting the MobiLink server
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating a Java or .NET
class for custom authentication (server-side)” on page 160.

In this lesson, you run the MobiLink server with the -sl option to specify a set of directories to search for
compiled files.

Start the MobiLink server (mlsrv12)

1. Connect to the CustDB sample database and load your Java class or .NET assembly on the mlsrv12
command line.

Replace c:\MLauth with the location of your source files.

For Java, run the following command:

Tutorial: Using Java or .NET for custom user authentication

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 163

mlsrv12 -c "DSN=SQL Anywhere 12 CustDB" -o serverOut.txt -v+ -sl java(-cp
c:\MLauth)

For .NET, run the following command:

mlsrv12 -c "DSN=SQL Anywhere 12 CustDB" -o serverOut.txt -v+ -sl dnet(-
MLAutoLoadPath=c:\MLauth)

The MobiLinkAuth method is executed when the authenticate_user synchronization event occurs.

2. Proceed to “Lesson 4: Testing the authentication” on page 164.

See also
● “MobiLink server options” [MobiLink - Server Administration]
● “-sl java mlsrv12 option” [MobiLink - Server Administration]
● “-sl dnet mlsrv12 option” [MobiLink - Server Administration]

Lesson 4: Testing the authentication
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating a Java or .NET
class for custom authentication (server-side)” on page 160.

UltraLite comes with a sample Windows client that automatically invokes the dbmlsync utility when the
user initiates synchronization. In this lesson, you run the application against the CustDB consolidated
database you started in the previous lesson.

Start the sample application and test authentication

1. Start the sample application.

Click Start » Programs » SQL Anywhere 12 » UltraLite » Windows Sample Application.

2. Enter an invalid employee ID and synchronize.

In this application, the employee ID is also the MobiLink user name. If the user name does not begin
with 128, your logic causes synchronization to fail. Enter a value of 50 for the employee ID and click
OK.

An error stating that the authenticate_user script returned 4000 appears in the MobiLink server
messages window.

A SQLCODE -103 synchronization error indicating an invalid user ID or password appears in the
UltraLite CustDB Demo window. See “Invalid user ID or password” [Error Messages].

3. Proceed to “Cleaning up” on page 165.

See also
● “CustDB sample for MobiLink” on page 48

MobiLink tutorials

164 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Cleaning up
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating a Java or .NET
class for custom authentication (server-side)” on page 160.

Remove tutorial materials from your computer

1. Delete your Java or .NET source files.

For example, delete the c:\mlauth directory.

Caution
Make sure you only have tutorial related materials in this directory.

2. Close Interactive SQL and the UltraLite Windows client application.

Click File » Exit in each application.

3. Close the SQL Anywhere, MobiLink, and synchronization client windows.

Right-click each task bar item and then click Close.

4. Reset the database for the Windows Sample Application.

Run the following command from the %SQLANYSAMP12%\UltraLite\CustDB directory:

makedbs

Tutorial: Using direct row handling
You can use direct row handling to communicate remote data to any central data source, application, or
web service other than a supported consolidated database.

In this tutorial you learn how to use the MobiLink server APIs for Java or .NET for simple direct row
handling. You also learn how to synchronize the client RemoteOrders table with the consolidated
database and add special direct row handling processing for the OrderComments table.

Required software
● SQL Anywhere 12

● Java Software Development Kit or the Microsoft .NET Framework

Competencies and experience
You require:

● Familiarity with Java or .NET

● Basic knowledge of MobiLink event scripts

Tutorial: Using direct row handling

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 165

Overview
This tutorial shows you how to:

● Use the MobiLink server APIs for Java or .NET

● Create methods for MobiLink direct row handling

See also
● “MobiLink synchronization” on page 1
● “Synchronization techniques” [MobiLink - Server Administration]
● “Direct row handling” [MobiLink - Server Administration]
● http://www.sybase.com/detail?id=1058600#319 (You need a Sybase.com login to view this page.)
● http://sqlanywhere-forum.sybase.com/

Lesson 1: Setting up a text file data source
In this lesson, you create a new text file to store order information.

Set up a text file data source

1. Create a new blank text file.

2. Add the following tab-delimited values representing the comment_id, order_id, and order_comment to
the file:

786 34 OK, ship promotional material.
787 35 Yes, the product is going out of production.
788 36 No, your commission can not be increased...

3. Save the file in your working directory.

This tutorial assumes c:\MLdirect as the working directory for server-side components. Save the file
as orderResponses.txt in this directory.

4. Proceed to “Lesson 2: Setting up your MobiLink consolidated database” on page 166.

Lesson 2: Setting up your MobiLink consolidated database
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up a text file data
source” on page 166.

Your MobiLink consolidated database is a central repository of data and includes MobiLink system tables
and stored procedures used to manage the synchronization process. With direct row handling, you
synchronize with a data source other than a consolidated database, but you still need a consolidated
database to maintain information used by the MobiLink server.

In this lesson, you create a database and define an ODBC data source.

MobiLink tutorials

166 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

http://www.sybase.com/detail?id=1058600#319
http://sqlanywhere-forum.sybase.com/

Note
If you already have a MobiLink consolidated database set up with MobiLink system objects and an
ODBC data source, you can skip this lesson.

Set up your MobiLink consolidated database

1. Click Start » Programs » SQL Anywhere 12 » Administration Tools » Sybase Central.

2. Click Tools » SQL Anywhere 12 » Create Database.

3. Click Next.

4. Accept the default value Create Database On This Computer and click Next.

5. In the Save The Main Database File To The Following File field, type the file name and path for the
database. For example, c:\MLdirect\MLconsolidated.db.

6. Follow the remaining instructions in the Create Database Wizard and accept the default values. On
the Connect To The Database page, clear the Stop The Database After Last Disconnect option.

7. Click Finish.

The MLconsolidated database appears in Sybase Central.

8. Click Close on the Creating Database window.

9. Use the SQL Anywhere 12 driver to define an ODBC data source for the MLconsolidated database.

In Sybase Central, click Tools » SQL Anywhere 12 » Open ODBC Administrator.

10. Click the User DSN tab and click Add.

11. In the Create New Data Source window, click SQL Anywhere 12 and click Finish.

12. Perform the following tasks in the ODBC Configuration For SQL Anywhere window:

a. Click the ODBC tab.

b. In the Data Source Name field, type mldirect_db.

c. Click the Login tab.

d. In the User ID field, type DBA.

e. In the Password field, type sql.

f. In the Server Name field, type MLconsolidated.

g. Click OK.

13. Close the ODBC Data Source Administrator.

Click OK on the ODBC Data Source Administrator window.

14. Proceed to “Lesson 3: Creating a table in your MobiLink consolidated database” on page 168.

Tutorial: Using direct row handling

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 167

See also
● “Initialization utility (dbinit)” [SQL Anywhere Server - Database Administration]
● “MobiLink consolidated databases” [MobiLink - Server Administration]

Lesson 3: Creating a table in your MobiLink consolidated
database

This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up a text file data
source” on page 166.

In this lesson, you create the RemoteOrders table in the MobiLink consolidated database. The table
contains the following columns:

Column Description

order_id A unique identifier for orders.

product_id A unique identifier for products.

quantity The number of items sold.

order_status The order status.

last_modified The last modification date of a row. You use this column for timestamp-based
downloads, a common technique used to filter rows for efficient synchronization.

Create the RemoteOrders table

1. Connect to your database from Interactive SQL.

You can start Interactive SQL from Sybase Central or at a command prompt.

● To start Interactive SQL from Sybase Central, right-click the MLconsolidated - DBA database and
click Open Interactive SQL.

● To start Interactive SQL at a command prompt, run the following command:

dbisql -c "DSN=mldirect_db"

2. Execute the following SQL statement in Interactive SQL to create the RemoteOrders table.

CREATE TABLE RemoteOrders (
 order_id INTEGER NOT NULL,
 product_id INTEGER NOT NULL,
 quantity INTEGER,
 order_status VARCHAR(10) DEFAULT 'new',
 last_modified TIMESTAMP DEFAULT CURRENT TIMESTAMP,
 PRIMARY KEY(order_id)
);

Interactive SQL creates the RemoteOrders table in your consolidated database.

MobiLink tutorials

168 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

3. Execute the following statement in Interactive SQL to create MobiLink system tables and stored
procedures.

Replace C:\Program Files\SQL Anywhere 12\ with the location of your SQL Anywhere 12
installation.

READ "C:\Program Files\SQL Anywhere 12\MobiLink\setup\syncsa.sql";

Interactive SQL applies syncsa.sql to your consolidated database. Running syncsa.sql creates a series
of system tables and stored procedures prefaced with ml_. The MobiLink server works with these
tables and stored procedures in the synchronization process.

4. Proceed to “Lesson 4: Adding synchronization scripts” on page 169.

See also
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]

Lesson 4: Adding synchronization scripts
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up a text file data
source” on page 166.

In this lesson, you add scripts to your consolidated database for SQL row handling and direct row
handling.

SQL row handling allows you to synchronize remote data with tables in your MobiLink consolidated
database. SQL-based scripts define:

● How data that is uploaded from a MobiLink client is to be applied to the consolidated database.

● What data should be downloaded from the consolidated database.

The following SQL-based upload and download events are created:

● upload_insert This event defines how new orders inserted in a client database should be applied to
the consolidated database.

● download_cursor This event defines the orders that should be downloaded to remote clients.

● download_delete_cursor This event is required when using synchronization scripts that are not
upload-only. Set the MobiLink server to ignore this event for the purpose of this tutorial.

You use direct row handling to add synchronization script information to your MobiLink consolidated
database using stored procedures. In this lesson, you register method names corresponding to the
handle_UploadData, handle_DownloadData, end_download, download_cursor, and
download_delete_cursor events. You create your own Java or .NET class in a later lesson.

Tutorial: Using direct row handling

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 169

Add scripts to your consolidated database for SQL row handling and direct row handling

1. Connect to your consolidated database from Interactive SQL, if you are not already connected, by
running the following command:

dbisql -c "DSN=mldirect_db"

2. Use the ml_add_table_script stored procedure to add SQL-based table scripts for the upload_insert,
download_cursor and download_delete_cursor events.

Execute the following SQL statements in Interactive SQL. The upload_insert script inserts the
uploaded order_id, product_id, quantity, and order_status into the MobiLink consolidated database.
The download_cursor script uses timestamp-based filtering to download updated rows to remote
clients.

CALL ml_add_table_script('default', 'RemoteOrders',
 'upload_insert',
 'INSERT INTO RemoteOrders(order_id, product_id, quantity,
order_status)
 VALUES({ml r.order_id}, {ml r.product_id}, {ml r.quantity}, {ml
r.order_status})');

CALL ml_add_table_script('default', 'RemoteOrders',
 'download_cursor',
 'SELECT order_id, product_id, quantity, order_status
 FROM RemoteOrders WHERE last_modified >= {ml
s.last_table_download}');
CALL ml_add_table_script('default', 'RemoteOrders',
 'download_delete_cursor', '--{ml_ignore}');
COMMIT;

3. Register a Java or .NET method for the end_download event.

You use this method to free memory resources when the MobiLink server runs the end_download
connection event.

For Java, execute the following statement in Interactive SQL:

CALL ml_add_java_connection_script('default',
 'end_download',
 'MobiLinkOrders.EndDownload');

For .NET, execute the following statement in Interactive SQL:

CALL ml_add_dnet_connection_script('default',
 'end_download',
 'MobiLinkOrders.EndDownload');

Interactive SQL registers the user-defined EndDownload method for the end_download event.

4. Register Java or .NET methods for the handle_UploadData and handle_DownloadData events.

For Java, execute the following statements in Interactive SQL:

CALL ml_add_java_connection_script('default',
 'handle_UploadData',

MobiLink tutorials

170 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 'MobiLinkOrders.GetUpload');

CALL ml_add_java_connection_script('default',
 'handle_DownloadData',
 'MobiLinkOrders.SetDownload');

For .NET, execute the following statements in Interactive SQL:

CALL ml_add_dnet_connection_script('default',
 'handle_UploadData',
 'MobiLinkOrders.GetUpload');

CALL ml_add_dnet_connection_script('default',
 'handle_DownloadData',
 'MobiLinkOrders.SetDownload');

Interactive SQL registers the user-defined GetUpload and SetDownload methods for the
handle_UploadData and handle_DownloadData events, respectively. You create these methods in an
upcoming lesson.

5. Register download_cursor and download_delete_cursor events.

Execute the following statements in Interactive SQL:

CALL ml_add_table_script('default', 'OrderComments',
 'download_cursor', '--{ml_ignore}');
CALL ml_add_table_script('default', 'OrderComments',
 'download_delete_cursor', '--{ml_ignore}');

The download_cursor and download_delete_cursor events must be registered for the OrderComments
table when using scripts because the synchronization is bi-directional and not upload-only. See
“Required scripts” [MobiLink - Server Administration].

6. Commit your changes.

Execute the following statement in Interactive SQL:

COMMIT;

7. Close Interactive SQL.

8. Proceed to “Lesson 5: Creating a Java or .NET class for MobiLink direct row handling” on page 172.

Tutorial: Using direct row handling

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 171

See also
● “Overview of MobiLink events” [MobiLink - Server Administration]
● “Adding and deleting scripts” [MobiLink - Server Administration]
● “Scripts to upload rows” [MobiLink - Server Administration]
● “Scripts to download rows” [MobiLink - Server Administration]
● “upload_insert table event” [MobiLink - Server Administration]
● “upload_update table event” [MobiLink - Server Administration]
● “upload_delete table event” [MobiLink - Server Administration]
● “download_cursor table event” [MobiLink - Server Administration]
● “download_delete_cursor table event” [MobiLink - Server Administration]
● “Direct row handling” [MobiLink - Server Administration]
● “Handling direct uploads” [MobiLink - Server Administration]
● “Handling direct downloads” [MobiLink - Server Administration]
● “Implementing timestamp-based downloads” [MobiLink - Server Administration]
● “Partitioning rows among remote databases” [MobiLink - Server Administration]

Lesson 5: Creating a Java or .NET class for MobiLink
direct row handling

This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up a text file data
source” on page 166.

In this lesson, you use direct row handling to process rows in the OrderComments table in your client
database. You add the following methods for direct row handling:

● GetUpload Use this method for the handle_UploadData event. GetUpload writes uploaded
comments to a file called orderComments.txt.

● SetDownload Use this method for the handle_DownloadData event. SetDownload uses the
orderResponses.txt file to download responses to remote clients.

● EndDownload Use this method for the end_download event. EndDownload frees memory
resources.

The following procedure shows you how to create a Java or .NET class that includes your methods for
processing. For a complete listing, see “Complete MobiLinkOrders code listing (Java)” on page 179 or
“Complete MobiLinkOrders code listing (.NET)” on page 181.

Create a Java or .NET class for direct row handling

1. Create a class named MobiLinkOrders in Java or .NET.

For Java, use the following code:

import ianywhere.ml.script.*;
import java.io.*;
import java.sql.*;

public class MobiLinkOrders {

MobiLink tutorials

172 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

For .NET, use the following code:

using iAnywhere.MobiLink.Script;
using System.IO;
using System.Data;
using System.Text;
public class MobiLinkOrders {

2. Declare a class-level DBConnectionContext instance.

For Java, use the following code:

 // Class level DBConnectionContext
 DBConnectionContext _cc;

For .NET, use the following code:

 // Class level DBConnectionContext
 private DBConnectionContext _cc = null;

The MobiLink server passes a DBConnectionContext instance to your class constructor.
DBConnectionContext encapsulates information about the current connection with the MobiLink
consolidated database.

3. Declare objects used for file input and output.

For Java, declare a java.io.FileWriter and java.io.BufferedReader as follows:

 // Java objects for file i/o
 FileWriter my_writer;
 BufferedReader my_reader;

For .NET, declare a StreamWriter and StreamReader as follows:

 // Instances for file I/O
 private static StreamWriter my_writer = null;
 private static StreamReader my_reader = null;

4. Create your class constructor.

Your class constructor sets your class-level DBConnectionContext instance.

For Java, use the following code:

public MobiLinkOrders(DBConnectionContext cc)
 throws IOException, FileNotFoundException
 {
 // Declare a class-level DBConnectionContext
 _cc = cc;

For .NET, use the following code:

 public MobiLinkOrders(DBConnectionContext cc) {
 _cc = cc;
 }

5. Write the GetUpload method

Tutorial: Using direct row handling

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 173

The GetUpload method obtains an UploadedTableData class instance representing the
OrderComments table. The OrderComments table contains special comments made by remote sales
employees. You create this table in a later lesson.

The UploadedTableData getInserts method returns a result set for new order comments. The
writeOrderComment method writes out each row in the result set to a text file.

For Java, use the following code:

public void writeOrderComment(int _commentID, int _orderID, String
_comments)
 throws IOException
 {
 if (my_writer == null)
 // A FileWriter for writing order comments
 my_writer = new FileWriter("C:\\MLdirect\
\orderComments.txt",true);

 // Write out the order comments to remoteOrderComments.txt
 my_writer.write(_commentID + "\t" + _orderID + "\t" + _comments);
 my_writer.write("\n");
 my_writer.flush();
 }

 // Method for the handle_UploadData synchronization event
 public void GetUpload(UploadData ut)
 throws SQLException, IOException
 {
 // Get an UploadedTableData for OrderComments
 UploadedTableData orderCommentsTbl =
ut.getUploadedTableByName("OrderComments");

 // Get inserts uploaded by the MobiLink client
 ResultSet insertResultSet = orderCommentsTbl.getInserts();

 while (insertResultSet.next())
 {
 // Get order comments
 int _commentID = insertResultSet.getInt("comment_id");
 int _orderID = insertResultSet.getInt("order_id");
 String _specialComments =
insertResultSet.getString("order_comment");
 if (_specialComments != null) {
 writeOrderComment(_commentID,_orderID,_specialComments);
 }
 }
 insertResultSet.close();
 }

For .NET, use the following code:

 public void WriteOrderComment(int comment_id,
 int order_id,
 string comments)
 {
 if (my_writer == null) {
 my_writer = new StreamWriter("c:\\MLdirect\
\orderComments.txt");
 }
 my_writer.WriteLine("{0}\t{1}\t{2}", comment_id, order_id,
comments);

MobiLink tutorials

174 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 my_writer.Flush();
 }
 // Method for the handle_UploadData synchronization event.
 public void GetUpload(UploadData ut) {
 // Get UploadedTableData for remote table called OrderComments
 UploadedTableData order_comments_table_data =
 ut.GetUploadedTableByName("OrderComments");
 // Get inserts uploaded by the MobiLink client
 IDataReader new_comment_reader =
 order_comments_table_data.GetInserts();
 while (new_comment_reader.Read()) {
 // Columns are
 // 0 - "order_comment"
 // 1 - "comment_id"
 // 2 - "order_id"
 // You can look up these values using the DataTable returned
 // by: order_comments_table_data.GetSchemaTable() if the send
 // column names option is turned on at the remote.
 // In this example, you just use the known column order to
 // determine the column indexes
 // Only process this insert if the order_comment is not null
 if (!new_comment_reader.IsDBNull(2)) {
 int comment_id = new_comment_reader.GetInt32(0);
 int order_id = new_comment_reader.GetInt32(1);
 string comments = new_comment_reader.GetString(2);
 WriteOrderComment(comment_id, order_id, comments);
 }
 }
 // Always close the reader when you are done with it!
 new_comment_reader.Close();
 }

6. Write the SetDownload method:

a. Obtain a class instance representing the OrderComments table.
Use the DBConnectionContext getDownloadData method to obtain a DownloadData instance.
Use the DownloadData getDownloadTableByName method to return a DownloadTableData
instance for the OrderComments table.
For Java, use the following code:

 public void SetDownload()
 throws SQLException, IOException
 {
 DownloadData download_d = _cc.getDownloadData();

 DownloadTableData download_td =
download_d.getDownloadTableByName("OrderComments");

For .NET, use the following code:

 private const string read_file_path =
 "c:\\MLdirect\\orderResponses.txt";
 // Method for the handle_DownloadData synchronization event
 public void SetDownload() {
 if ((my_reader == null) && !File.Exists(read_file_path)) {
 System.Console.Out.Write("There is no file to read.");

Tutorial: Using direct row handling

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 175

 return;
 }
 DownloadTableData comments_for_download =

_cc.GetDownloadData().GetDownloadTableByName("OrderComments");

Note
You create the OrderComments table on the remote database in “Lesson 7: Setting up your
MobiLink client database” on page 184.

b. Obtain a prepared statement or IDbCommand that allows you to add, insert, or update operations
to the download.
For Java, use the DownloadTableData getUpsertPreparedStatement method to return a
java.sql.PreparedStatement instance as follows:

PreparedStatement update_ps =
download_td.getUpsertPreparedStatement();

For .NET, use the DownloadTableData GetUpsertCommand method as follows:

 // Add upserts to the set of operation that are going to be
 // applied at the remote database
 IDbCommand comments_upsert =
 comments_for_download.GetUpsertCommand();

c. Set the download data for each row.
This code traverses through the orderResponses.txt and adds data to the MobiLink download.
For Java, use the following code:

try {
 // A BufferedReader for reading in responses
 if (my_reader == null)
 my_reader = new BufferedReader(new FileReader("C:\\MLdirect\
\orderResponses.txt"));

 // Get the next line from orderResponses
 String commentLine;
 commentLine = my_reader.readLine();

 // Send comment responses down to clients
 while (commentLine != null) {
 // Get the next line from orderResponses.txt
 String[] response_details = commentLine.split("\t");

 if (response_details.length != 3) {
 System.err.println("Error reading from
orderResponses.txt");
 System.err.println("Error setting direct row handling
download");
 return;
 }
 int comment_id = Integer.parseInt(response_details[0]);
 int order_id = Integer.parseInt(response_details[1]);
 String updated_comment = response_details[2];

 // Set an order comment response in the MobiLink download
 update_ps.setInt(1, comment_id);
 update_ps.setInt(2, order_id);
 update_ps.setString(3, updated_comment);

MobiLink tutorials

176 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 update_ps.executeUpdate();

 // Get next line
 commentLine = my_reader.readLine();
 }
 }

For .NET, use the following code:

 if (my_reader == null) {
 my_reader = new StreamReader(read_file_path);
 }
 string comment_line;
 while ((comment_line = my_reader.ReadLine()) != null) {
 // Three values are on each line separated by '\t'
 string[] response_details = comment_line.Split('\t');
 if (response_details.Length != 3) {
 throw (new SynchronizationException(
 "Error reading from orderResponses.txt"));
 }
 int comment_id = System.Int32.Parse(response_details[0]);
 int order_id = System.Int32.Parse(response_details[1]);
 string comments = response_details[2];
 // Parameters of the correct number and type have
 // already been added so you just need to set the
 // values of the IDataParameter
 ((IDataParameter)(comments_upsert.Parameters[0])).Value =
 comment_id;
 ((IDataParameter)(comments_upsert.Parameters[1])).Value =
 order_id;
 ((IDataParameter)(comments_upsert.Parameters[2])).Value =
 comments;
 // Add the upsert operation
 comments_upsert.ExecuteNonQuery();
 }
 }

d. Close the prepared statement used for adding insert or update operations to the download.
For Java, use the following code:

finally {
 update_ps.close();
 }
}

For .NET, you do not need to close the IDbCommand. The object is destroyed automatically at
the end of the download.

7. Write the EndDownload method.

This method handles the end_download connection event and gives you an opportunity to free
resources.

For Java, use the following code:

 public void EndDownload()
 throws IOException
 {
 // Close i/o resources
 if (my_reader != null) {

Tutorial: Using direct row handling

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 177

 my_reader.close();
 my_reader = null;
 }
 if (my_writer != null) {
 my_writer.close();
 my_writer = null;
 }
 }

For .NET, use the following code:

 public void EndDownload()
 {
 if (my_writer != null) {
 my_writer.Close();
 my_writer = null;
 }
 if (my_reader != null) {
 my_reader.Close();
 my_reader = null;
 }
 }
}

8. Save your code.

For Java, save your code as MobiLinkOrders.java in your working directory. c:\MLdirect.

For .NET, save your code as MobiLinkOrders.cs in your working directory. c:\MLdirect.

9. To verify the code, see “Complete MobiLinkOrders code listing (Java)” on page 179 or “Complete
MobiLinkOrders code listing (.NET)” on page 181.

10. Compile your class file.

a. Navigate to the directory containing your Java or .NET source files.

b. Compile MobiLinkOrders and refer to the MobiLink server API library for Java or .NET.
For Java, you need to reference mlscript.jar, located in %SQLANY12%\java.
For Java, run the following command, replacing C:\Program Files\SQL Anywhere 12\ with your
SQL Anywhere 12 directory:

javac -classpath "C:\Program Files\SQL Anywhere 12\java\mlscript.jar"
MobiLinkOrders.java

For .NET, run the following command, replacing C:\Program Files\SQL Anywhere 12\ with your
SQL Anywhere 12 directory:

csc /out:MobiLinkServerCode.dll /target:library /reference:"C:
\Program Files\SQL Anywhere 12\Assembly
\v2\iAnywhere.MobiLink.Script.dll" MobiLinkOrders.cs

Note
This example does not ensure that primary key values are unique. See “Unique primary keys”
[MobiLink - Server Administration].

11. Proceed to “Lesson 6: Starting the MobiLink server” on page 183.

MobiLink tutorials

178 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “Direct row handling” [MobiLink - Server Administration]
● “Synchronization script writing in Java” [MobiLink - Server Administration]
● “Synchronization script writing in .NET” [MobiLink - Server Administration]

Complete MobiLinkOrders code listing (Java)
The following is the complete MobiLinkOrders listing for Java direct row handling. For a step by step
explanation, see “Lesson 5: Creating a Java or .NET class for MobiLink direct row handling”
on page 172.

import ianywhere.ml.script.*;
 import java.io.*;
 import java.sql.*;

 public class MobiLinkOrders {

 // Class level DBConnectionContext
 DBConnectionContext _cc;

 // Java objects for file i/o
 FileWriter my_writer;
 BufferedReader my_reader;
 public MobiLinkOrders(DBConnectionContext cc)
 throws IOException, FileNotFoundException
 {
 // Declare a class-level DBConnectionContext
 _cc = cc;
 }

 public void writeOrderComment(int _commentID, int _orderID, String
_comments)
 throws IOException
 {
 if (my_writer == null)
 // A FileWriter for writing order comments
 my_writer = new FileWriter("C:\\MLdirect\
\orderResponses.txt",true);

 // Write out the order comments to remoteOrderComments.txt
 my_writer.write(_commentID + "\t" + _orderID + "\t" + _comments);
 my_writer.write("\n");
 my_writer.flush();
 }

 // Method for the handle_UploadData synchronization event
 public void GetUpload(UploadData ut)
 throws SQLException, IOException
 {
 // Get an UploadedTableData for OrderComments
 UploadedTableData orderCommentsTbl =
ut.getUploadedTableByName("OrderComments");

 // Get inserts uploaded by the MobiLink client
 ResultSet insertResultSet = orderCommentsTbl.getInserts();

 while (insertResultSet.next())
 {

Tutorial: Using direct row handling

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 179

 // Get order comments
 int _commentID = insertResultSet.getInt("comment_id");
 int _orderID = insertResultSet.getInt("order_id");
 String _specialComments =
insertResultSet.getString("order_comment");
 if (_specialComments != null) {
 writeOrderComment(_commentID,_orderID,_specialComments);
 }
 }
 insertResultSet.close();
 }

 public void SetDownload()
 throws SQLException, IOException
 {
 DownloadData download_d = _cc.getDownloadData();

 DownloadTableData download_td =
download_d.getDownloadTableByName("OrderComments");

 PreparedStatement update_ps =
download_td.getUpsertPreparedStatement();
 try {
 // A BufferedReader for reading in responses
 if (my_reader == null)
 my_reader = new BufferedReader(new FileReader("C:\\MLdirect\
\orderResponses.txt"));

 // Get the next line from orderResponses
 String commentLine;
 commentLine = my_reader.readLine();

 // Send comment responses down to clients
 while (commentLine != null) {
 // Get the next line from orderResponses.txt
 String[] response_details = commentLine.split("\t");

 if (response_details.length != 3) {
 System.err.println("Error reading from orderResponses.txt");
 System.err.println("Error setting direct row handling download");
 return;
 }
 int comment_id = Integer.parseInt(response_details[0]);
 int order_id = Integer.parseInt(response_details[1]);
 String updated_comment = response_details[2];

 // Set an order comment response in the MobiLink download
 update_ps.setInt(1, comment_id);
 update_ps.setInt(2, order_id);
 update_ps.setString(3, updated_comment);
 update_ps.executeUpdate();

 // Get next line
 commentLine = my_reader.readLine();
 }
 } finally {
 update_ps.close();
 }
 }

 public void EndDownload()
 throws IOException
 {
 // Close i/o resources

MobiLink tutorials

180 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 if (my_reader != null) {
 my_reader.close();
 my_reader = null;
 }
 if (my_writer != null) {
 my_writer.close();
 my_writer = null;
 }
 }
}

Complete MobiLinkOrders code listing (.NET)
The following is the complete MobiLinkOrders listing for .NET direct row handling. For a step by step
explanation, see “Lesson 5: Creating a Java or .NET class for MobiLink direct row handling”
on page 172.

using iAnywhere.MobiLink.Script;
 using System.IO;
 using System.Data;
 using System.Text;

 public class MobiLinkOrders {
 // Class level DBConnectionContext
 private DBConnectionContext _cc = null;
 // Instances for file I/O
 private static StreamWriter my_writer = null;
 private static StreamReader my_reader = null;

 public MobiLinkOrders(DBConnectionContext cc) {
 _cc = cc;
 }
 public void WriteOrderComment(int comment_id,
 int order_id,
 string comments)
 {
 if (my_writer == null) {
 my_writer = new StreamWriter("c:\\MLdirect\\orderComments.txt");
 }
 my_writer.WriteLine("{0}\t{1}\t{2}", comment_id, order_id, comments);
 my_writer.Flush();
 }
 // Method for the handle_UploadData synchronization event.
 public void GetUpload(UploadData ut)
 {
 // Get UploadedTableData for remote table called OrderComments
 UploadedTableData order_comments_table_data =
 ut.GetUploadedTableByName("OrderComments");
 // Get inserts uploaded by the MobiLink client
 IDataReader new_comment_reader =
 order_comments_table_data.GetInserts();
 while (new_comment_reader.Read()) {
 // Columns are
 // 0 - "order_comment"
 // 1 - "comment_id"

Tutorial: Using direct row handling

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 181

 // 2 - "order_id"
 // You can look up these values using the DataTable returned by:
 // order_comments_table_data.GetSchemaTable() if the send
 // column names option is turned on at the remote.
 // In this example, you just use the known column order to
 // determine the column indexes
 // Only process this insert if the order_comment is not null
 if (!new_comment_reader.IsDBNull(2)) {
 int comment_id = new_comment_reader.GetInt32(0);
 int order_id = new_comment_reader.GetInt32(1);
 string comments = new_comment_reader.GetString(2);
 WriteOrderComment(comment_id, order_id, comments);
 }
 }
 // Always close the reader when you are done with it!
 new_comment_reader.Close();
 }
 private const string read_file_path =
 "c:\\MLdirect\\orderResponses.txt";
 // Method for the handle_DownloadData synchronization event
 public void SetDownload() {
 if ((my_reader == null) && !File.Exists(read_file_path)) {
 System.Console.Out.Write("There is no file to read.");
 return;
 }
 DownloadTableData comments_for_download =
 _cc.GetDownloadData().GetDownloadTableByName("OrderComments");
 // Add upserts to the set of operation that are going to be
 // applied at the remote database
 IDbCommand comments_upsert =
 comments_for_download.GetUpsertCommand();
 if (my_reader == null) {
 my_reader = new StreamReader(read_file_path);
 }
 string comment_line;
 while ((comment_line = my_reader.ReadLine()) != null) {
 // Three values are on each line separated by '\t'
 string[] response_details = comment_line.Split('\t');
 if (response_details.Length != 3) {
 throw (new SynchronizationException(
 "Error reading from orderResponses.txt"));
 }
 int comment_id = System.Int32.Parse(response_details[0]);
 int order_id = System.Int32.Parse(response_details[1]);
 string comments = response_details[2];
 // Parameters of the correct number and type have
 // already been added so you just need to set the
 // values of the IDataParameter
 ((IDataParameter)(comments_upsert.Parameters[0])).Value =
 comment_id;
 ((IDataParameter)(comments_upsert.Parameters[1])).Value =
 order_id;
 ((IDataParameter)(comments_upsert.Parameters[2])).Value =
 comments;
 // Add the upsert operation
 comments_upsert.ExecuteNonQuery();
 }
 }

MobiLink tutorials

182 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 public void EndDownload()
 {
 if (my_writer != null) {
 my_writer.Close();
 my_writer = null;
 }
 if (my_reader != null) {
 my_reader.Close();
 my_reader = null;
 }
 }
}

Lesson 6: Starting the MobiLink server
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up a text file data
source” on page 166.

In this lesson, you start the MobiLink server. Start the MobiLink server (mlsrv12) using the -c option to
connect to your consolidated database. Use the -sl java or -sl dnet option to load your Java or .NET class,
respectively.

Start the MobiLink server (mlsrv12)

1. Connect to your consolidated database and load the class on the mlsrv12 command line.

Replace c:\MLdirect with the location of your source files.

For Java, run the following command:

mlsrv12 -c "DSN=mldirect_db" -o serverOut.txt -v+ -dl -zu+ -x tcpip -sl
java (-cp c:\MLdirect)

For .NET, run the following command:

mlsrv12 -c "DSN=mldirect_db" -o serverOut.txt -v+ -dl -zu+ -x tcpip -sl
dnet (-MLAutoLoadPath=c:\MLdirect)

The MobiLink server messages window appears.

Below is a description of each MobiLink server option used in this tutorial. The options -o, -v, and -dl
provide debugging and troubleshooting information. Using these logging options is appropriate in a
development environment. For performance reasons, -v and -dl are typically not used in production.

Option Description

-c Precedes the connection string.

-o Specifies the message log file serverOut.txt.

-v+ The -v option specifies what information is logged. Using -v+ sets maximum verbose
logging.

Tutorial: Using direct row handling

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 183

Option Description

-dl Displays all log messages on screen.

-zu+ Adds new users automatically.

-x Sets the communications protocol and parameters for MobiLink clients.

-sl java Specifies a set of directories to search for class files, and forces the Java VM to load on
server startup.

-sl dnet Specifies the location of .NET assemblies and forces the CLR to load on server startup.

2. Proceed to “Lesson 7: Setting up your MobiLink client database” on page 184.

See also
● “MobiLink server options” [MobiLink - Server Administration]
● “-sl java mlsrv12 option” [MobiLink - Server Administration]
● “-sl dnet mlsrv12 option” [MobiLink - Server Administration]

Lesson 7: Setting up your MobiLink client database
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up a text file data
source” on page 166.

In this lesson, you use a SQL Anywhere database for your consolidated database and your MobiLink
client. For tutorial purposes, your MobiLink client, consolidated database, and MobiLink server all reside
on the same computer.

To set up the MobiLink client database, create the RemoteOrders and OrderComments tables. The
RemoteOrders table corresponds to the RemoteOrders table on the consolidated database. The MobiLink
server uses SQL-based scripts to synchronize remote orders. The OrderComments table is only used on
client databases. The MobiLink server processes the OrderComments tables using special events.

After creating the tables, you create a synchronization user, publication, and subscription on the client
database. Publications identify the tables and columns on your remote database that you want
synchronized. These tables and columns are called articles. A synchronization subscription subscribes a
MobiLink user to a publication.

Set up your MobiLink client database

1. Create your MobiLink client database using the dbinit command line utility.

Run the following command:

dbinit -i -k remote1

The -i and -k options omit jConnect support and Watcom SQL compatibility views, respectively.

MobiLink tutorials

184 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

2. Start your MobiLink client database using the dbeng12 command line utility.

Run the following command:

dbeng12 remote1

3. Run the following command to connect to your MobiLink client database from Interactive SQL:

dbisql -c "SERVER=remote1;UID=DBA;PWD=sql"

4. Create the RemoteOrders table by executing the following SQL statement in Interactive SQL:

CREATE TABLE RemoteOrders (
 order_id INTEGER NOT NULL,
 product_id INTEGER NOT NULL,
 quantity INTEGER,
 order_status VARCHAR(10) DEFAULT 'new',
 PRIMARY KEY(order_id)
);

5. Create the OrderComments table by executing the following statement in Interactive SQL:

CREATE TABLE OrderComments (
 comment_id INTEGER NOT NULL,
 order_id INTEGER NOT NULL,
 order_comment VARCHAR(255),
 PRIMARY KEY(comment_id),
 FOREIGN KEY(order_id) REFERENCES RemoteOrders(order_id)
);

6. Execute the following statements in Interactive SQL to create your MobiLink synchronization user,
publication, and subscription:

CREATE SYNCHRONIZATION USER ml_sales1;
CREATE PUBLICATION order_publ (TABLE RemoteOrders, TABLE OrderComments);
CREATE SYNCHRONIZATION SUBSCRIPTION TO order_publ FOR ml_sales1
 TYPE TCPIP ADDRESS 'host=localhost';

Note
You specify how to connect to the MobiLink server using the TYPE and ADDRESS clauses in the
CREATE SYNCHRONIZATION SUBSCRIPTION statement.

You can use publications to determine what data is synchronized. In this case, you specify the entire
RemoteOrders and OrderComments tables.

7. Proceed to “Lesson 8: Synchronizing” on page 186.

Tutorial: Using direct row handling

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 185

See also
● “Initialization utility (dbinit)” [SQL Anywhere Server - Database Administration]
● “MobiLink clients” [MobiLink - Client Administration]
● “CREATE SYNCHRONIZATION USER statement [MobiLink]” [SQL Anywhere Server - SQL

Reference]
● “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” [SQL Anywhere Server -

SQL Reference]

Lesson 8: Synchronizing
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up a text file data
source” on page 166.

The dbmlsync utility initiates MobiLink synchronization for SQL Anywhere remote databases. Before
starting dbmlsync, add order data and comments to your remote database.

Set up your client-side remote data and synchronize

1. Connect to the MobiLink client database from Interactive SQL, if you are not already connected, by
running the following command:

dbisql -c "SERVER=remote1;UID=DBA;PWD=sql"

2. Execute the following statement to add an order to the RemoteOrders table in the client database:

INSERT INTO RemoteOrders (order_id, product_id, quantity, order_status)
 VALUES (1,12312,10,'new');

3. Add a comment to the OrderComments table in the client database by executing the following
statement in Interactive SQL:

INSERT INTO OrderComments (comment_id, order_id, order_comment)
 VALUES (1,1,'send promotional material with the order');

4. Execute the following statement in Interactive SQL to commit your changes:

COMMIT;

5. Run the following command:

dbmlsync -c "SERVER=remote1;UID=DBA;PWD=sql" -e scn=on -o rem1.txt -v+

The following table contains a description for each dbmlsync option used in this lesson:

Option Description

-c Specifies the connection string.

MobiLink tutorials

186 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Option Description

-e scn Sets SendColumnNames to on. This behavior is required by direct row handling if
you want to reference columns by name.

-o Specifies the message log file rem1.txt.

-v+ The -v option specifies what information is logged. Using -v+ sets maximum ver-
bose logging.

Once you have started the MobiLink synchronization client, an output screen appears indicating that
the synchronization succeeded. The SQL-based synchronization transfers rows in the client's
RemoteOrders table to the RemoteOrders table in the consolidated database.

Java or .NET processing inserted your comment in orderComments.txt.

6. Close any SQL Anywhere MobiLink client windows.

7. Insert a response in orderResponses.txt to download to the remote database. This action takes place on
the server side.

Add the following text to orderResponses.txt. You must separate entries using the tab character. At
the end of the line, press Enter.

1 1 Promotional material shipped

8. Run synchronization using the dbmlsync client utility.

This action takes place on the client-side.

Run the following command:

dbmlsync -c "SERVER=remote1;UID=DBA;PWD=sql" -o rem1.txt -v+ -e scn=on

The MobiLink client utility appears.

Note
Rows downloaded using direct row handling are not printed by the mlsrv12 -v+ option, but are printed
in the remote log by the remote -v+ option.

9. In Interactive SQL, select from the OrderComments table to verify that the row was downloaded.

Execute the following SQL statement:

SELECT OrderComments;

10. Proceed to “Cleaning up” on page 188.

See also
● “SQL Anywhere clients” [MobiLink - Client Administration]
● “MobiLink SQL Anywhere client utility (dbmlsync)” [MobiLink - Client Administration]

Tutorial: Using direct row handling

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 187

Cleaning up
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up a text file data
source” on page 166.

Remove tutorial materials

1. Close all instances of Interactive SQL.

2. Close the SQL Anywhere, MobiLink, and synchronization client windows.

3. Delete all tutorial-related ODBC data sources:

a. Start the ODBC Administrator.
Run the following command:

odbcad32
b. Remove the mldirect_db data source.

4. Delete the consolidated and remote databases:

a. Navigate to the directory containing your consolidated and remote databases.

b. Delete MLconsolidated.db, MLconsolidated.log, remote1.db, and remote1.log.

Tutorial: Synchronizing with Microsoft Excel
You can use direct row handling to communicate remote data to any central data source, application, or
web service.

This tutorial guides you through the basic steps for using direct row handling to synchronize data in a
Microsoft Excel spreadsheet with MobiLink clients. It shows you how to implement MobiLink direct row
handling using a Java implementation as an example so that you can use a data source other than a
supported consolidated database.

Required software
● SQL Anywhere 12

● Java Software Development Kit

● Microsoft Office Excel 2007 or later

Competencies and experience
You require:

● Familiarity with Java

● Familiarity with Microsoft Excel

MobiLink tutorials

188 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● Basic knowledge of MobiLink event scripts

Overview
This tutorial shows you how to:

● Use the MobiLink server API for Java

● Create methods for MobiLink direct row handling

● Access data from a Microsoft Excel worksheet using Java

See also
● “MobiLink synchronization” on page 1
● “Synchronization techniques” [MobiLink - Server Administration]
● “Direct row handling” [MobiLink - Server Administration]
● http://www.sybase.com/detail?id=1058600#319 (You need a Sybase.com login to view this page.)
● http://sqlanywhere-forum.sybase.com/

Lesson 1: Setting up an Excel worksheet
In this lesson, you create an Excel worksheet and use the Microsoft Excel Driver to define an ODBC data
source. The Excel worksheet stores product information.

Set up an Excel data source

1. Open Microsoft Excel and create a new workbook.

2. In the default worksheet, add the following contents under the respective A, B, C column headers:

comment_id order_id order_comment

2 1 Promotional material shipped

3 1 More information about material required

3. Change the default worksheet name Sheet1 to order_sheet.

a. Double-click the Sheet1 tab.

b. Type order_sheet.

4. Save the Excel workbook.

This tutorial assumes c:\MLobjexcel as the working directory for server-side components. Save the
workbook as order_central.xlsx in this working directory.

5. Use the Microsoft Excel Driver to create an ODBC data source:

a. Click Start » Programs » SQL Anywhere 12 » Administration Tools » ODBC Data Source
Administrator.

Tutorial: Synchronizing with Microsoft Excel

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 189

http://www.sybase.com/detail?id=1058600#319
http://sqlanywhere-forum.sybase.com/

b. Click the User DSN tab.

c. Click Add.

d. Click Microsoft Excel Driver (*.xls, *.xlsx, *.xlsm, *.xlsb).

e. Click Finish.

f. In the Data Source Name field, type excel_datasource.

g. Click Select Workbook and browse to c:\MLobjexcel\order_central.xlsx, the file containing your
worksheet.

h. Clear the Read Only option.

i. Click OK on all open ODBC Data Source Administrator windows.

6. Proceed to “Lesson 2: Setting up your MobiLink consolidated database” on page 190.

Lesson 2: Setting up your MobiLink consolidated database
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up an Excel
worksheet” on page 189.

Your MobiLink consolidated database is a central repository of data and includes MobiLink system tables
and stored procedures used to manage the synchronization process. With direct row handling, you
synchronize with a data source other than a consolidated database, but you still need a consolidated
database to maintain information used by the MobiLink server.

In this lesson, you create a database and define an ODBC data source.

Note
If you already have a MobiLink consolidated database set up with MobiLink system objects and a DSN,
you can skip this lesson.

Set up your consolidated database

1. Click Start » Programs » SQL Anywhere 12 » Administration Tools » Sybase Central.

2. Click Tools » SQL Anywhere 12 » Create Database.

3. Click Next.

4. Leave the default of Create Database On This Computer, and then click Next.

5. In the Save The Main Database File To The Following File field, type the file name and path for the
database. For example, c:\MLobjexcel\MLconsolidated.db.

6. Follow the remaining instructions in the Create Database Wizard and accept the default values. On
the Connect To The Database page, clear the Stop The Database After Last Disconnect option.

7. Click Finish.

MobiLink tutorials

190 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The MLconsolidated database appears in Sybase Central.

8. Click Close on the Creating Database window.

9. In Sybase Central, click Tools » SQL Anywhere 12 » Open ODBC Administrator.

10. Click the User DSN tab, and then click Add.

11. In the Create New Data Source window, click SQL Anywhere 12, and then click Finish.

12. Perform the following tasks in the ODBC Configuration For SQL Anywhere window:

a. Click the ODBC tab.

b. In the Data Source Name field, type mlexcel_db.

c. Click the Login tab.

d. In the User ID field, type DBA.

e. In the Password field, type sql.

f. From the Action dropdown list, click Connect To A Running Database On This Computer.

g. In the Server Name field, type MLconsolidated.

h. Click OK.

13. Close ODBC data source administrator.

Click OK on the ODBC Data Source Administrator window.

14. Proceed to “Lesson 3: Creating a table in your MobiLink consolidated database” on page 191.

See also
● “Initialization utility (dbinit)” [SQL Anywhere Server - Database Administration]
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “MobiLink consolidated databases” [MobiLink - Server Administration]

Lesson 3: Creating a table in your MobiLink consolidated
database

This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up an Excel
worksheet” on page 189.

In this lesson, you create the RemoteOrders table in the MobiLink consolidated database. The table
contains the following columns:

Column Description

order_id A unique identifier for orders.

Tutorial: Synchronizing with Microsoft Excel

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 191

Column Description

product_id A unique identifier for products.

quantity The number of items sold.

order_status The order status.

last_modified The last modification date of a row. You use this column for timestamp-based
downloads, a common technique used to filter rows for efficient synchronization.

Create the RemoteOrders table

1. Connect to your database from Interactive SQL.

You can start Interactive SQL from Sybase Central or at a command prompt.

● To start Interactive SQL from Sybase Central, right-click the MLconsolidated - DBA database and
click Open Interactive SQL.

● To start Interactive SQL at a command prompt, run the following command:

dbisql -c "DSN=mlexcel_db"

2. Execute the following SQL statements in Interactive SQL to create the RemoteOrders table.

CREATE TABLE RemoteOrders (
 order_id INTEGER NOT NULL,
 product_id INTEGER NOT NULL,
 quantity INTEGER,
 order_status VARCHAR(10) DEFAULT 'new',
 last_modified TIMESTAMP DEFAULT CURRENT TIMESTAMP,
 PRIMARY KEY(order_id)
);

Interactive SQL creates the RemoteOrders table in your consolidated database.

3. Execute the following SQL statement in Interactive SQL to create MobiLink system tables and stored
procedures.

Replace C:\Program Files\SQL Anywhere 12\ with the location of your SQL Anywhere 12
installation.

READ "C:\Program Files\SQL Anywhere 12\MobiLink\setup\syncsa.sql";

Interactive SQL applies syncsa.sql to your consolidated database. Running syncsa.sql creates a series
of system tables and stored procedures prefaced with ml_. The MobiLink server works with these
tables and stored procedures in the synchronization process.

4. Proceed to “Lesson 4: Adding synchronization scripts” on page 193.

MobiLink tutorials

192 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Lesson 4: Adding synchronization scripts
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up an Excel
worksheet” on page 189.

In this lesson you add scripts to your consolidated database for SQL row handling and direct row
handling.

SQL row handling allows you to synchronize remote data with tables in your MobiLink consolidated
database. SQL-based scripts define:

● How data that is uploaded from a MobiLink client is to be applied to the consolidated database.

● What data should be downloaded from the consolidated database.

In this lesson, you write synchronization scripts for the following SQL-based upload and download
events:

● upload_insert This event defines how new orders inserted in a client database should be applied to
the consolidated database.

● download_cursor This event defines the orders that should be downloaded to remote clients.

● download_delete_cursor This event is required when using synchronization scripts that are not
upload-only. You set the MobiLink server to ignore this event for the purpose of this tutorial.

You use direct row handling to add special processing to a SQL-based synchronization system. In this
procedure you register method names corresponding to the handle_UploadData, handle_DownloadData,
download_cursor, and download_delete_cursor events. You create your own Java class in a later lesson.

Add scripts to your consolidated database for SQL row handling and direct row handling

1. Connect to your consolidated database from Interactive SQL if you are not already connected.

Run the following command:

dbisql -c "DSN=mlexcel_db"

2. Use the ml_add_table_script stored procedure to add SQL-based table scripts for the upload_insert,
download_cursor and download_delete_cursor events.

Execute the following SQL statements in Interactive SQL. The upload_insert script inserts the
uploaded order_id, product_id, quantity, and order_status into the MobiLink consolidated database.
The download_cursor script uses timestamp-based filtering to download updated rows to remote
clients.

CALL ml_add_table_script('default', 'RemoteOrders',
 'upload_insert',
 'INSERT INTO RemoteOrders(order_id, product_id, quantity,
order_status)
 VALUES({ml r.order_id}, {ml r.product_id}, {ml r.quantity}, {ml
r.order_status})');

Tutorial: Synchronizing with Microsoft Excel

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 193

CALL ml_add_table_script('default', 'RemoteOrders',
 'download_cursor',
 'SELECT order_id, product_id, quantity, order_status
 FROM RemoteOrders WHERE last_modified >= {ml s.last_table_download}');
CALL ml_add_table_script('default', 'RemoteOrders',
 'download_delete_cursor', '--{ml_ignore}');
COMMIT

3. Register Java methods for the handle_UploadData and handle_DownloadData events.

Execute the following SQL statements in Interactive SQL:

CALL ml_add_java_connection_script('default',
 'handle_UploadData',
 'MobiLinkOrders.GetUpload');

CALL ml_add_java_connection_script('default',
 'handle_DownloadData',
 'MobiLinkOrders.SetDownload');

Interactive SQL registers the GetUpload and SetDownload methods for the handle_UploadData and
handle_DownloadData events, respectively. You create these methods in an upcoming lesson.

4. Register the download_cursor and download_delete_cursor events.

Run the following SQL script in Interactive SQL:

CALL ml_add_table_script('default', 'OrderComments',
 'download_cursor', '--{ml_ignore}');
CALL ml_add_table_script('default', 'OrderComments',
 'download_delete_cursor', '--{ml_ignore}');

The download_cursor and download_delete_cursor events must be registered for the OrderComments
table when using scripts because the synchronization is bi-directional and not upload-only. See
“Required scripts” [MobiLink - Server Administration].

5. Commit your changes.

Execute the following SQL statement in Interactive SQL:

COMMIT;

6. Proceed to “Lesson 5: Creating a Java class for MobiLink direct row handling” on page 195.

MobiLink tutorials

194 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “Overview of MobiLink events” [MobiLink - Server Administration]
● “Adding and deleting scripts” [MobiLink - Server Administration]
● “Scripts to upload rows” [MobiLink - Server Administration]
● “Scripts to download rows” [MobiLink - Server Administration]
● “upload_insert table event” [MobiLink - Server Administration]
● “upload_update table event” [MobiLink - Server Administration]
● “upload_delete table event” [MobiLink - Server Administration]
● “download_cursor table event” [MobiLink - Server Administration]
● “download_delete_cursor table event” [MobiLink - Server Administration]
● “Direct row handling” [MobiLink - Server Administration]
● “Handling direct uploads” [MobiLink - Server Administration]
● “Handling direct downloads” [MobiLink - Server Administration]
● “Implementing timestamp-based downloads” [MobiLink - Server Administration]
● “Partitioning rows among remote databases” [MobiLink - Server Administration]

Lesson 5: Creating a Java class for MobiLink direct row
handling

This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up an Excel
worksheet” on page 189.

In this lesson, you use direct row handling to process rows in the OrderComments table in your client
database. You add the following methods for direct row handling:

● GetUpload You use this method for the handle_UploadData event. GetUpload writes uploaded
comments to the excel worksheet order_central.xlsx.

● SetDownload You use this method for the handle_DownloadData event. SetDownload retrieves
the data stored in the excel worksheet order_central.xlsx and sends it to remote clients.

The following procedure shows you how to create a Java class including your methods for processing. For
a complete listing, see “Complete MobiLinkOrders code listing (Java)” on page 199.

Create a Java class for download-only direct row handling

1. Start writing a new class named MobiLinkOrders.

Write the following code:

import ianywhere.ml.script.*;
import java.io.*;
import java.sql.*;
public class MobiLinkOrders {

2. Declare a class-level DBConnectionContext instance.

Append the following code:

Tutorial: Synchronizing with Microsoft Excel

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 195

 // Class level DBConnectionContext
 DBConnectionContext _cc;

The MobiLink server passes a DBConnectionContext instance to your class constructor.
DBConnectionContext encapsulates information about the current connection with the MobiLink
consolidated database.

3. Create your class constructor.

Your class constructor sets your class-level DBConnectionContext instance.

Append the following code:

 public MobiLinkOrders(DBConnectionContext cc)
 throws IOException, FileNotFoundException {
 // Declare a class-level DBConnectionContext
 _cc = cc;
 }

4. Write the GetUpload method.

The GetUpload method obtains an UploadedTableData class instance representing the
OrderComments table. The OrderComments table contains special comments made by remote sales
employees. You create this table in a later lesson.

The UploadedTableData getInserts method returns a result set for new order comments.

Append the following code:

 // Method for the handle_UploadData synchronization event
 public void GetUpload(UploadData ut)
 throws SQLException, IOException {
 // Get an UploadedTableData for OrderComments
 UploadedTableData orderCommentsTbl =
ut.getUploadedTableByName("OrderComments");
 // Get inserts uploaded by the MobiLink client
 ResultSet insertResultSet = orderCommentsTbl.getInserts();

 try {
 // Connect to the excel worksheet through ODBC
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 Connection con =
DriverManager.getConnection("jdbc:odbc:excel_datasource");
 while(insertResultSet.next()) {
 // Get order comments
 int _commentID = insertResultSet.getInt("comment_id");
 int _orderID = insertResultSet.getInt("order_id");
 String _specialComments =
insertResultSet.getString("order_comment");
 // Execute an insert statement to add the order comment
to the worksheet
 PreparedStatement st = con.prepareStatement("INSERT INTO
[order_sheet$]"
 + "(order_id, comment_id, order_comment) VALUES
(?,?,?)");
 st.setString(1, Integer.toString(_orderID));

MobiLink tutorials

196 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 st.setString(2, Integer.toString(_commentID));
 st.setString(3, _specialComments);
 st.executeUpdate();
 st.close();
 }
 con.close();
 } catch(Exception ex) {
 System.err.print("Exception: ");
 System.err.println(ex.getMessage());
 } finally {
 insertResultSet.close();
 }
 }

5. Write the SetDownload method:

a. Obtain a class instance representing the OrderComments table.
Use the DBConnectionContext getDownloadData method to obtain a DownloadData instance.
Use the DownloadData getDownloadTableByName method to return a DownloadTableData
instance for the OrderComments table.
Append the following code:

 public void SetDownload() throws SQLException, IOException {
 DownloadData download_d = _cc.getDownloadData();
 DownloadTableData download_td =
download_d.getDownloadTableByName("OrderComments");

Note
You create this table on the remote database in “Lesson 7: Setting up your MobiLink client
database” on page 201.

b. Obtain a prepared statement or IDbCommand that allows you to add insert or update operations to
the download.
Use the DownloadTableData getUpsertPreparedStatement method to return a
java.sql.PreparedStatement instance.
Append the following code:

 // Prepared statement to compile upserts (inserts or updates).
 PreparedStatement download_upserts =
download_td.getUpsertPreparedStatement();

c. Set the download data for each row.
The following code traverses through the order_central.xlsx worksheet and adds data to the
MobiLink download.
Append the following code:

 try {
 // Connect to the excel worksheet through ODBC
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 Connection con =
DriverManager.getConnection("jdbc:odbc:excel_datasource");
 // Retrieve all the rows in the worksheet
 Statement st = con.createStatement();
 ResultSet Excel_rs = st.executeQuery("select * from

Tutorial: Synchronizing with Microsoft Excel

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 197

[order_sheet$]");
 while (Excel_rs.next()) {
 // Retrieve the row data
 int Excel_comment_id = Excel_rs.getInt(1);
 int Excel_order_id = Excel_rs.getInt(2);
 String Excel_comment = Excel_rs.getString(3);
 // Add the Excel data to the MobiLink download.
 download_upserts.setInt(1, Excel_comment_id);
 download_upserts.setInt(2, Excel_order_id);
 download_upserts.setString(3, Excel_comment);
 download_upserts.executeUpdate();
 }
 // Close the excel result set, statement, and connection.
 Excel_rs.close();
 st.close();
 con.close();
 } catch (Exception ex) {
 System.err.print("Exception: ");
 System.err.println(ex.getMessage());
 }

d. Close the prepared statement used for adding insert or update operations to the download, and end
the method and the class.
Append the following code:

 finally {
 download_upserts.close();
 }
 }
}

6. Save your Java code as MobiLinkOrders.java in your working directory c:\MLobjexcel.

To verify the code in MobiLinkOrders.java, see “Complete MobiLinkOrders code listing (Java)”
on page 199.

7. Compile your class file.

a. Navigate to the directory containing your Java source files.

b. Compile MobiLinkOrders that refer to the MobiLink server API library for Java.
You need to reference mlscript.jar, located in %SQLANY12%\Java.
Run the following command, replacing C:\Program Files\SQL Anywhere 12\ with your SQL
Anywhere 12 directory:

javac -classpath "C:\Program Files\SQL Anywhere 12\java\mlscript.jar"
MobiLinkOrders.java

8. Proceed to “Lesson 6: Starting the MobiLink server” on page 200.

See also
● “Direct row handling” [MobiLink - Server Administration]
● “Synchronization script writing in Java” [MobiLink - Server Administration]

MobiLink tutorials

198 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Complete MobiLinkOrders code listing (Java)
The following listing shows the complete Java MobiLinkOrders class code used for this tutorial. For a
step by step explanation, see “Lesson 5: Creating a Java class for MobiLink direct row handling”
on page 195.

import ianywhere.ml.script.*;
 import java.io.*;
 import java.sql.*;

 public class MobiLinkOrders {

 // Class level DBConnectionContext
 DBConnectionContext _cc;

 public MobiLinkOrders(DBConnectionContext cc)
 throws IOException, FileNotFoundException {
 // Declare a class-level DBConnectionContext
 _cc = cc;
 }
 // Method for the handle_UploadData synchronization event
 public void GetUpload(UploadData ut)
 throws SQLException, IOException {
 // Get an UploadedTableData for OrderComments
 UploadedTableData orderCommentsTbl =
ut.getUploadedTableByName("OrderComments");
 // Get inserts uploaded by the MobiLink client
 ResultSet insertResultSet = orderCommentsTbl.getInserts();

 try {
 // Connect to the excel worksheet through ODBC
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 Connection con =
DriverManager.getConnection("jdbc:odbc:excel_datasource");
 while(insertResultSet.next()) {
 // Get order comments
 int _commentID = insertResultSet.getInt("comment_id");
 int _orderID = insertResultSet.getInt("order_id");
 String _specialComments =
insertResultSet.getString("order_comment");
 // Execute an insert statement to add the order comment to
the worksheet
 PreparedStatement st = con.prepareStatement("INSERT INTO
[order_sheet$]"
 + "(order_id, comment_id, order_comment) VALUES
(?,?,?)");
 st.setString(1, Integer.toString(_orderID));
 st.setString(2, Integer.toString(_commentID));
 st.setString(3, _specialComments);
 st.executeUpdate();
 st.close();
 }
 con.close();
 } catch(Exception ex) {
 System.err.print("Exception: ");
 System.err.println(ex.getMessage());
 } finally {
 insertResultSet.close();
 }

Tutorial: Synchronizing with Microsoft Excel

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 199

 }

 public void SetDownload() throws SQLException, IOException {
 DownloadData download_d = _cc.getDownloadData();
 DownloadTableData download_td =
download_d.getDownloadTableByName("OrderComments");

 // Prepared statement to compile upserts (inserts or updates).
 PreparedStatement download_upserts =
download_td.getUpsertPreparedStatement();

 try {
 // Connect to the excel worksheet through ODBC
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 Connection con =
DriverManager.getConnection("jdbc:odbc:excel_datasource");
 // Retrieve all the rows in the worksheet
 Statement st = con.createStatement();
 ResultSet Excel_rs = st.executeQuery("select * from [order_sheet
$]");
 while (Excel_rs.next()) {
 // Retrieve the row data
 int Excel_comment_id = Excel_rs.getInt(1);
 int Excel_order_id = Excel_rs.getInt(2);
 String Excel_comment = Excel_rs.getString(3);
 // Add the Excel data to the MobiLink download.
 download_upserts.setInt(1, Excel_comment_id);
 download_upserts.setInt(2, Excel_order_id);
 download_upserts.setString(3, Excel_comment);
 download_upserts.executeUpdate();
 }
 // Close the excel result set, statement, and connection.
 Excel_rs.close();
 st.close();
 con.close();
 } catch (Exception ex) {
 System.err.print("Exception: ");
 System.err.println(ex.getMessage());
 } finally {
 download_upserts.close();
 }
 }
}

Lesson 6: Starting the MobiLink server
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up an Excel
worksheet” on page 189.

In this lesson, you start the MobiLink server. You start the MobiLink server (mlsrv12) using the -c option
to connect to your consolidated database, and the -sl java option to load your Java class.

Start the MobiLink server for direct row handling

1. Connect to your consolidated database and load the class on the mlsrv12 command line.

MobiLink tutorials

200 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Run the following command. Replace c:\MLobjexcel with the location of your Java source files.

mlsrv12 -c "DSN=mlexcel_db" -o serverOut.txt -v+ -dl -zu+ -x tcpip -sl
java (-cp c:\MLobjexcel)

The MobiLink server messages window appears.

Below is a description of each MobiLink server option used in this tutorial. The options -o, -v, and -dl
provide debugging and troubleshooting information. Using these logging options is appropriate in a
development environment. For performance reasons, -v and -dl are typically not used in production.

Option Description

-c Precedes the connection string.

-o Specifies the message log file serverOut.txt.

-v+ The -v option specifies what information is logged. Using -v+ sets maximum verbose
logging.

-dl Displays all log messages on screen.

-zu+ Adds new users automatically.

-x Sets the communications protocol and parameters for MobiLink clients.

-sl java Specifies a set of directories to search for class files, and forces the Java VM to load on
server startup.

2. Proceed to “Lesson 7: Setting up your MobiLink client database” on page 201.

See also
● “MobiLink server options” [MobiLink - Server Administration]
● “-sl java mlsrv12 option” [MobiLink - Server Administration]

Lesson 7: Setting up your MobiLink client database
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up an Excel
worksheet” on page 189.

In this lesson, you use a SQL Anywhere database for your consolidated database and your MobiLink
client. For tutorial purposes, your MobiLink client, consolidated database, and MobiLink server all reside
on the same computer.

To set up the MobiLink client database, you create the RemoteOrders and OrderComments tables. The
RemoteOrders table corresponds to the RemoteOrders table on the consolidated database. The MobiLink
server uses SQL-based scripts to synchronize remote orders. The OrderComments table is only used on
client databases. The MobiLink server processes the OrderComments tables using special events.

Tutorial: Synchronizing with Microsoft Excel

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 201

Set up your MobiLink client database

1. Create your MobiLink client database using the dbinit command line utility.

Run the following command:

dbinit -i -k remote1

The -i and -k options omit jConnect support and Watcom SQL compatibility views, respectively.

2. Start your MobiLink client database using the dbeng12 command line utility.

Run the following command:

dbeng12 remote1

3. Connect to your MobiLink client database using Interactive SQL.

Run the following command:

dbisql -c "SERVER=remote1;UID=DBA;PWD=sql"

4. Create the RemoteOrders table.

Execute the following SQL statement in Interactive SQL:

CREATE TABLE RemoteOrders (
 order_id INTEGER NOT NULL,
 product_id INTEGER NOT NULL,
 quantity INTEGER,
 order_status VARCHAR(10) DEFAULT 'new',
 PRIMARY KEY(order_id)
);

5. Create the OrderComments table.

Execute the following SQL statement in Interactive SQL:

CREATE TABLE OrderComments (
 comment_id INTEGER NOT NULL,
 order_id INTEGER NOT NULL,
 order_comment VARCHAR(255),
 PRIMARY KEY(comment_id),
 FOREIGN KEY(order_id) REFERENCES RemoteOrders(order_id)
);

6. Create your MobiLink synchronization user, publication, and subscription.

Execute the following SQL statement in Interactive SQL:

CREATE SYNCHRONIZATION USER ml_sales1;
CREATE PUBLICATION order_publ (TABLE RemoteOrders, TABLE OrderComments);
CREATE SYNCHRONIZATION SUBSCRIPTION TO order_publ FOR ml_sales1
 TYPE TCPIP ADDRESS 'host=localhost';

MobiLink tutorials

202 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Note
You specify how to connect to the MobiLink server using the TYPE and ADDRESS clauses in the
CREATE SYNCHRONIZATION SUBSCRIPTION statement.

You can use publications to determine what data is synchronized. In this case you specify the entire
RemoteOrders and OrderComments tables.

7. Proceed to “Lesson 8: Synchronizing” on page 203.

See also
● “Initialization utility (dbinit)” [SQL Anywhere Server - Database Administration]
● “MobiLink clients” [MobiLink - Client Administration]
● “CREATE SYNCHRONIZATION USER statement [MobiLink]” [SQL Anywhere Server - SQL

Reference]
● “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” [SQL Anywhere Server -

SQL Reference]

Lesson 8: Synchronizing
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up an Excel
worksheet” on page 189.

The dbmlsync utility initiates MobiLink synchronization for SQL Anywhere remote databases. Before
starting dbmlsync, add order data and comments to your remote database.

Set up your client-side remote data and synchronize

1. Connect to the MobiLink client database from Interactive SQL if you are not already connected.

Run the following command:

dbisql -c "SERVER=remote1;UID=DBA;PWD=sql"

2. Add an order to the RemoteOrders table in the client database.

Execute the following SQL statement in Interactive SQL:

INSERT INTO RemoteOrders (order_id, product_id, quantity, order_status)
 VALUES (1,12312,10,'new');

3. Add a comment to the OrderComments table in the client database.

Execute the following SQL statement in Interactive SQL:

INSERT INTO OrderComments (comment_id, order_id, order_comment)
 VALUES (1,1,'send promotional material with the order');

4. Commit your changes.

Tutorial: Synchronizing with Microsoft Excel

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 203

Execute the following SQL statement in Interactive SQL:

COMMIT;

5. Run the following command at a command prompt:

dbmlsync -c "SERVER=remote1;UID=DBA;PWD=sql" -e scn=on -o rem1.txt -v+

The following table contains a description for each dbmlsync option used:

Option Description

-c Specifies the connection string.

-e scn Sets SendColumnNames to on. This is required by direct row handling if you
want to reference columns by name.

-o Specifies the message log file rem1.txt.

-v+ The -v option specifies what information is logged. Using -v+ sets maximum ver-
bose logging.

Once you have started the MobiLink synchronization client, an output screen appears indicating that
the synchronization succeeded. SQL-based synchronization transferred rows in the client
RemoteOrders table to the RemoteOrders table in the consolidated database.

Java processing inserted your comment in the order_central.xlsx worksheet. The information stored in
the order_central.xlsx worksheet is downloaded to the client.

6. In Interactive SQL, select from the OrderComments table to verify that the row was downloaded.

Execute the following SQL statement in Interactive SQL:

SELECT OrderComments;

Note
Rows downloaded using direct row handling are not printed by the mlsrv12 -v+ option, but are printed
in the remote log by the remote -v+ option.

7. Proceed to “Cleaning up” on page 204.

See also
● “SQL Anywhere clients” [MobiLink - Client Administration]
● “MobiLink SQL Anywhere client utility (dbmlsync)” [MobiLink - Client Administration]

Cleaning up
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up an Excel
worksheet” on page 189.

MobiLink tutorials

204 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Remove tutorial materials from your computer

1. Close all instances of the following applications:

● Interactive SQL

● Microsoft Excel

2. Delete the Excel workbook order_central.xlsx.

3. Close the SQL Anywhere, MobiLink, and synchronization client windows.

4. Delete all tutorial-related ODBC data sources.

a. Start the ODBC Administrator.
Run the following command:

odbcad32
b. Remove the excel_datasource and mlexcel_db data sources.

5. Delete the consolidated and remote databases.

a. Navigate to the directory containing your consolidated and remote databases.

b. Delete MLconsolidated.db, MLconsolidated.log, remote1.db, and remote1.log.

Tutorial: Synchronizing with XML
This tutorial shows you how to synchronize data in an XML file to remote clients.

You can use direct row handling to communicate remote data to any central data source, application, or
web service.

In this tutorial, you implement MobiLink direct row handling so that you can use a data source other than
a supported consolidated data source. This tutorial uses a Java implementation as an example.

Required software
● SQL Anywhere 12

● Java Software Development Kit

● XML DOM library

Competencies and experience
You require:

● Familiarity with Java

● Familiarity with XML

Tutorial: Synchronizing with XML

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 205

● Familiarity with XML DOM

● Basic knowledge of MobiLink event scripts

Overview
This tutorial shows you how to:

● Use the MobiLink server Java API for Java

● Create methods for MobiLink direct row handling

See also
● “MobiLink synchronization” on page 1
● “Synchronization techniques” [MobiLink - Server Administration]
● “Direct row handling” [MobiLink - Server Administration]
● http://www.sybase.com/detail?id=1058600#319 (You need a Sybase.com login to view this page.)
● http://sqlanywhere-forum.sybase.com/

Lesson 1: Setting up an XML data source
In this lesson, you create an XML file to store order information.

Set up an XML data source

1. Create an XML file with the following contents:

<?xml version="1.0" encoding="UTF-8"?>
<orders></orders>

2. Save the XML file.

This tutorial assumes c:\MLobjxml as the working directory for server-side components. Save the
XML file as order_comments.xml in this directory.

3. Proceed to “Lesson 2: Setting up your MobiLink consolidated database” on page 206.

Lesson 2: Setting up your MobiLink consolidated database
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up an XML data
source” on page 206.

Your MobiLink consolidated database is a central repository of data and includes MobiLink system tables
and stored procedures used to manage the synchronization process. With direct row handling, you
synchronize with a data source other than a consolidated database, but you still need a consolidated
database to maintain information used by the MobiLink server.

In this lesson, you perform the following tasks:

● Create a database and define an ODBC data source.

MobiLink tutorials

206 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

http://www.sybase.com/detail?id=1058600#319
http://sqlanywhere-forum.sybase.com/

● Add data tables to synchronize to remote clients.

● Install MobiLink system tables and stored procedures.

Note
If you already have a MobiLink consolidated database set up with MobiLink system objects and a DSN,
you can skip this lesson.

Set up your MobiLink consolidated database

1. Start Sybase Central.

Click Start » Programs » SQL Anywhere 12 » Administration Tools » Sybase Central.

2. Click Tools » SQL Anywhere 12 » Create Database.

3. Click Next.

4. Leave the default of Create Database On This Computer and click Next.

5. In the Save The Main Database File To The Following File field, type the file name and path for the
database. For example, c:\MLobjxml\MLconsolidated.db. Click Next.

6. Follow the remaining instructions in the Create Database Wizard and accept the default values. On
the Connect To The Database page, clear the Stop The Database After Last Disconnect option.

7. Click Finish.

The MLconsolidated database appears in Sybase Central.

8. Click Close on the Creating Database window.

9. Click Tools » SQL Anywhere 12 » Open ODBC Administrator.

10. Click the User DSN tab and click Add.

11. In the Create New Data Source window, click SQL Anywhere 12 and click Finish.

12. Perform the following tasks in the ODBC Configuration For SQL Anywhere window:

a. Click the ODBC tab.

b. In the Data Source Name field, type mlxml_db.

c. Click the Login tab.

d. In the User ID field, type DBA.

e. In the Password field, type sql.

f. In the Server Name field, type MLconsolidated.

g. Click OK.

13. Close ODBC data source administrator.

Tutorial: Synchronizing with XML

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 207

Click OK on the ODBC Data Source Administrator window.

14. Proceed to “Lesson 3: Creating a table in your MobiLink consolidated database” on page 208.

See also
● “Initialization utility (dbinit)” [SQL Anywhere Server - Database Administration]
● “MobiLink consolidated databases” [MobiLink - Server Administration]

Lesson 3: Creating a table in your MobiLink consolidated
database

This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up an XML data
source” on page 206.

In this lesson, you create a RemoteOrders table in the MobiLink consolidated database. The table contains
the following columns:

Column Description

order_id A unique identifier for orders.

product_id A unique identifier for products.

quantity The number of items sold.

order_status The order status.

last_modified The last modification date of a row. You use this column for timestamp-based
downloads, a common technique used to filter rows for efficient synchronization.

Create the RemoteOrders table

1. Connect to your database using Interactive SQL.

You can start Interactive SQL from Sybase Central or at a command prompt.

● To start Interactive SQL from Sybase Central, right-click the MLconsolidated - DBA database and
click Open Interactive SQL.

● To start Interactive SQL at a command prompt, run the following command:

dbisql -c "DSN=mlxml_db"

2. Execute the following SQL statement in Interactive SQL to create the RemoteOrders table:

CREATE TABLE RemoteOrders (
 order_id INTEGER NOT NULL,
 product_id INTEGER NOT NULL,
 quantity INTEGER,
 order_status VARCHAR(10) DEFAULT 'new',

MobiLink tutorials

208 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 last_modified TIMESTAMP DEFAULT CURRENT TIMESTAMP,
 PRIMARY KEY(order_id)
);

Interactive SQL creates the RemoteOrders table in your consolidated database.

3. Execute the following statement in Interactive SQL to create MobiLink system tables and stored
procedures.

Replace C:\Program Files\SQL Anywhere 12\ with the location of your SQL Anywhere 12
installation.

READ "C:\Program Files\SQL Anywhere 12\MobiLink\setup\syncsa.sql";

Interactive SQL applies syncsa.sql to your consolidated database. Running syncsa.sql creates a series
of system tables and stored procedures prefaced with ml_. The MobiLink server works with these
tables and stored procedures in the synchronization process.

4. Proceed to “Lesson 4: Adding synchronization scripts” on page 209.

See also
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]

Lesson 4: Adding synchronization scripts
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up an XML data
source” on page 206.

In this lesson, you add scripts to your consolidated database for SQL row handling and direct row
handling.

SQL row handling allows you to synchronize remote data with tables in your MobiLink consolidated
database. SQL-based scripts define:

● How data that is uploaded from a MobiLink client is to be applied to the consolidated database.

● What data should be downloaded from the consolidated database.

In this lesson, you write synchronization scripts for the following SQL-based upload and download
events:

● upload_insert This event defines how new orders inserted in a client database should be applied to
the consolidated database.

● download_cursor This event defines the orders that should be downloaded to remote clients.

● download_delete_cursor This event is required when using synchronization scripts that are not
upload-only. You set the MobiLink server to ignore this event for the purpose of this tutorial.

You use direct row handling to add special processing to a SQL-based synchronization system. In this
lesson, you register method names corresponding to the handle_UploadData, download_cursor, and

Tutorial: Synchronizing with XML

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 209

download_delete_cursor events. You create your own Java class in “Lesson 5: Creating a Java class for
MobiLink direct row handling” on page 211.

Add scripts to your consolidated database for SQL row handling and direct row handling

1. Connect to your consolidated database in Interactive SQL if you are not already connected.

Run the following command:

dbisql -c "DSN=mlxml_db"

2. Use the ml_add_table_script stored procedure to add SQL-based table scripts for the upload_insert,
download_cursor and download_delete_cursor events.

Execute the following SQL statement in Interactive SQL. The upload_insert script inserts the
uploaded order_id, product_id, quantity, and order_status into the MobiLink consolidated database.
The download_cursor script uses timestamp-based filtering to download updated rows to remote
clients.

CALL ml_add_table_script('default', 'RemoteOrders',
 'upload_insert',
 'INSERT INTO RemoteOrders(order_id, product_id, quantity,
order_status)
 VALUES({ml r.order_id}, {ml r.product_id}, {ml r.quantity}, {ml
r.order_status})');

CALL ml_add_table_script('default', 'RemoteOrders',
 'download_cursor',
 'SELECT order_id, product_id, quantity, order_status
 FROM RemoteOrders WHERE last_modified >= {ml s.last_table_download}');
CALL ml_add_table_script('default', 'RemoteOrders',
 'download_delete_cursor', '--{ml_ignore}');
COMMIT;

3. Register the Java method for the handle_UploadData event.

Execute the following SQL statement in Interactive SQL:

CALL ml_add_java_connection_script('default',
 'handle_UploadData', 'MobiLinkOrders.GetUpload');

Interactive SQL registers the GetUpload method for the handle_UploadData event. You create the
GetUpload method, which retrieves inserted data from the OrderComments table in the MobiLink
client database, in an upcoming lesson.

4. Register the download_cursor and download_delete_cursor events.

Execute the following SQL statements in Interactive SQL:

CALL ml_add_table_script('default', 'OrderComments',
 'download_cursor', '--{ml_ignore}');
CALL ml_add_table_script('default', 'OrderComments',
 'download_delete_cursor', '--{ml_ignore}');

MobiLink tutorials

210 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The download_cursor and download_delete_cursor events must be registered for the OrderComments
table when using scripts because the synchronization is bi-directional and not upload-only. See
“Required scripts” [MobiLink - Server Administration].

5. Commit your changes.

Execute the following SQL statement in Interactive SQL:

COMMIT;

6. Close Interactive SQL.

7. Proceed to “Lesson 5: Creating a Java class for MobiLink direct row handling” on page 211.

See also
● “Overview of MobiLink events” [MobiLink - Server Administration]
● “Adding and deleting scripts” [MobiLink - Server Administration]
● “Scripts to upload rows” [MobiLink - Server Administration]
● “Scripts to download rows” [MobiLink - Server Administration]
● “upload_insert table event” [MobiLink - Server Administration]
● “upload_update table event” [MobiLink - Server Administration]
● “upload_delete table event” [MobiLink - Server Administration]
● “download_cursor table event” [MobiLink - Server Administration]
● “download_delete_cursor table event” [MobiLink - Server Administration]
● “Direct row handling” [MobiLink - Server Administration]
● “Handling direct uploads” [MobiLink - Server Administration]
● “Handling direct downloads” [MobiLink - Server Administration]
● “Implementing timestamp-based downloads” [MobiLink - Server Administration]
● “Partitioning rows among remote databases” [MobiLink - Server Administration]

Lesson 5: Creating a Java class for MobiLink direct row
handling

This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up an XML data
source” on page 206.

In this lesson, you use direct row handling to process rows in the OrderComments table in your client
database. You add the GetUpload methods for direct row handling for the handle_UploadData event.
GetUpload writes uploaded comments to the XML file.

The following procedure shows you how to create a Java class including your methods for processing. For
a complete listing, see “MobiLinkOrders Java code listing” on page 216.

Create a Java class for download-only direct row handling

1. Create a class named MobiLinkOrders.

Write the following code:

Tutorial: Synchronizing with XML

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 211

import ianywhere.ml.script.*;
import java.io.*;
import java.sql.*;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;
import org.xml.sax.SAXException;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
// For write operation
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.TransformerConfigurationException;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;
public class MobiLinkOrders {

2. Declare a class-level DBConnectionContext instance and Document instance. Document is a class that
represents an XML document as an object.

Write the following code:

 // Class level DBConnectionContext
 DBConnectionContext _cc;
 Document _doc;

The MobiLink server passes a DBConnectionContext instance to your class constructor.
DBConnectionContext encapsulates information about the current connection with the MobiLink
consolidated database.

3. Create your class constructor.

Your class constructor sets your class-level DBConnectionContext instance.

Write the following code:

 public MobiLinkOrders(DBConnectionContext cc) throws IOException,
FileNotFoundException {
 // Declare a class-level DBConnectionContext
 _cc = cc;
 }

4. Write the GetUpload method.

The GetUpload method obtains an UploadedTableData class instance representing the
OrderComments table. The OrderComments table contains special comments made by remote sales
employees. You create this table in a later lesson.

The UploadedTableData getInserts method returns a result set for new order comments.

a. Write the method declaration.

MobiLink tutorials

212 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Write the following code:

 // Method for the handle_UploadData synchronization event
 public void GetUpload(UploadData ut) throws SQLException,
IOException {

b. Write code that retrieves any uploaded inserts from the MobiLink client.
Write the following code:

 // Get an UploadedTableData for the remote table
 UploadedTableData remoteOrdersTable =
ut.getUploadedTableByName("OrderComments");
 // Get inserts uploaded by the MobiLink client
 // as a java.sql.ResultSet
 ResultSet insertResultSet = remoteOrdersTable.getInserts();

c. Write code that reads the existing XML file, order_comments.xml.
Write the following code:

 try {
 readDom("order_comments.xml");

d. Write code that adds all uploaded inserts to the XML file.
Write the following code:

 // Write out each insert in the XML file
 while(insertResultSet.next()) {
 buildXML(insertResultSet);
 }

e. Write code that outputs to the XML file.
Write the following code:

 writeXML();
 }

f. Write code that closes the ResultSet.
Write the following code:

 finally {
 // Close the result set of uploaded inserts
 insertResultSet.close();
}
 }

5. Write the buildXML method.

Write the following code:

 private void buildXML(ResultSet rs) throws SQLException {
 int order_id = rs.getInt(1);
 int comment_id = rs.getInt(2);
 String order_comment = rs.getString(3);
 // Create the comment object to be added to the XML file
 Element comment = _doc.createElement("comment");
 comment.setAttribute("id", Integer.toString(comment_id));
 comment.appendChild(_doc.createTextNode(order_comment));

Tutorial: Synchronizing with XML

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 213

 // Get the root element (orders)
 Element root = _doc.getDocumentElement();

 // Get each individual order
 NodeList rootChildren = root.getChildNodes();

 for(int i = 0; i < rootChildren.getLength(); i++) {
 // If the order exists, add the comment to the order
 Node n = rootChildren.item(i);
 if(n.getNodeType() == Node.ELEMENT_NODE) {
 Element e = (Element) n;
 int idIntVal = Integer.parseInt(e.getAttribute("id"));

 if(idIntVal == order_id) {
 e.appendChild(comment);
 // The comment has been added to the file, so exit
 // the function.
 return;
 }
 }
 }
 // If the order did not exist already, create it
 Element order = _doc.createElement("order");
 order.setAttribute("id", Integer.toString(order_id));
 // Add the comment to the new order
 order.appendChild(comment);
 root.appendChild(order);
 }

6. Write the writeXML method.

Write the following code:

 private void writeXML() {
 try {
 // Use a Transformer for output
 TransformerFactory tFactory =
TransformerFactory.newInstance();
 Transformer transformer = tFactory.newTransformer();

 // The XML source is _doc
 DOMSource source = new DOMSource(_doc);
 // Write the xml data to order_comments.xml
 StreamResult result = new StreamResult(new
File("order_comments.xml"));
 transformer.transform(source, result);
 } catch (TransformerConfigurationException tce) {
 // Error generated by the parser
 System.out.println ("\n** Transformer Factory error");
 System.out.println(" " + tce.getMessage());
 // Use the contained exception, if any
 Throwable x = tce;
 if (tce.getException() != null) x = tce.getException();
 x.printStackTrace();
 } catch (TransformerException te) {
 // Error generated by the parser
 System.out.println ("\n** Transformation error");
 System.out.println(" " + te.getMessage());

MobiLink tutorials

214 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 // Use the contained exception, if any
 Throwable x = te;
 if (te.getException() != null) x = te.getException();
 x.printStackTrace();
 }
 }

7. Write the readDOM method.

Write the following code:

 private void readDom(String filename) {
 DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();
 try {
 //parse the Document data into _doc
 DocumentBuilder builder = factory.newDocumentBuilder();
 _doc = builder.parse(new File(filename));

 } catch (SAXException sxe) {
 // Error generated during parsing)
 Exception x = sxe;
 if (sxe.getException() != null) x = sxe.getException();
 x.printStackTrace();
 } catch (ParserConfigurationException pce) {
 // Parser with specified options can't be built
 pce.printStackTrace();
 } catch (IOException ioe) {
 // I/O error
 ioe.printStackTrace();
 }
 }
}

8. Save your Java code as MobiLinkOrders.java in your working directory, c:\MLobjxml.

To verify the code in MobiLinkOrders.java, see “MobiLinkOrders Java code listing” on page 216.

9. Compile your class file.

a. Navigate to the directory containing your Java source files.

b. Compile MobiLinkOrders that refer to the MobiLink server API library for Java.
You need to reference mlscript.jar located in %SQLANY12%\Java and make sure that you have
the XML DOM library installed correctly.
Run the following command, replacing C:\Program Files\SQL Anywhere 12\ with your SQL
Anywhere 12 directory:

javac -classpath "C:\Program Files\SQL Anywhere 12\java\mlscript.jar"
MobiLinkOrders.java

10. Proceed to “Lesson 6: Starting the MobiLink server” on page 218.

See also
● “Direct row handling” [MobiLink - Server Administration]
● “Synchronization script writing in Java” [MobiLink - Server Administration]

Tutorial: Synchronizing with XML

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 215

MobiLinkOrders Java code listing
The following listing shows the complete Java MobiLinkOrders class code used for this tutorial. For a
step by step explanation, see “Lesson 5: Creating a Java class for MobiLink direct row handling”
on page 211.

import ianywhere.ml.script.*;
 import java.io.*;
 import java.sql.*;

 import javax.xml.parsers.DocumentBuilder;
 import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;
import org.xml.sax.SAXException;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
// For write operation
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.TransformerConfigurationException;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;
public class MobiLinkOrders {
 // Class level DBConnectionContext
 DBConnectionContext _cc;
 Document _doc;

 public MobiLinkOrders(DBConnectionContext cc) throws IOException,
FileNotFoundException {
 // Declare a class-level DBConnectionContext
 _cc = cc;
 }
 // Method for the handle_UploadData synchronization event
 public void GetUpload(UploadData ut) throws SQLException, IOException {
 // Get an UploadedTableData for the remote table
 UploadedTableData remoteOrdersTable =
ut.getUploadedTableByName("OrderComments");
 // Get inserts uploaded by the MobiLink client
 // as a java.sql.ResultSet
 ResultSet insertResultSet = remoteOrdersTable.getInserts();

 try {
 readDom("order_comments.xml");

 // Write out each insert in the XML file
 while(insertResultSet.next()) {
 buildXML(insertResultSet);
 }
 writeXML();
 } finally {
 // Close the result set of uploaded inserts
 insertResultSet.close();

MobiLink tutorials

216 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 }
 }

 private void buildXML(ResultSet rs) throws SQLException {
 int order_id = rs.getInt(1);
 int comment_id = rs.getInt(2);
 String order_comment = rs.getString(3);
 // Create the comment object to be added to the XML file
 Element comment = _doc.createElement("comment");
 comment.setAttribute("id", Integer.toString(comment_id));
 comment.appendChild(_doc.createTextNode(order_comment));
 // Get the root element (orders)
 Element root = _doc.getDocumentElement();

 // Get each individual order
 NodeList rootChildren = root.getChildNodes();

 for(int i = 0; i < rootChildren.getLength(); i++) {
 // If the order exists, add the comment to the order
 Node n = rootChildren.item(i);
 if(n.getNodeType() == Node.ELEMENT_NODE) {
 Element e = (Element) n;
 int idIntVal = Integer.parseInt(e.getAttribute("id"));

 if(idIntVal == order_id) {
 e.appendChild(comment);
 // The comment has been added to the file, so exit
 // the function
 return;
 }
 }
 }
 // If the order did not exist already, create it
 Element order = _doc.createElement("order");
 order.setAttribute("id", Integer.toString(order_id));
 // Add the comment to the new order
 order.appendChild(comment);
 root.appendChild(order);
 }
 private void writeXML() {
 try {
 // Use a Transformer for output
 TransformerFactory tFactory = TransformerFactory.newInstance();
 Transformer transformer = tFactory.newTransformer();

 // The XML source is _doc
 DOMSource source = new DOMSource(_doc);
 // Write the xml data to order_comments.xml
 StreamResult result = new StreamResult(new
File("order_comments.xml"));
 transformer.transform(source, result);
 } catch (TransformerConfigurationException tce) {
 // Error generated by the parser
 System.out.println ("\n** Transformer Factory error");
 System.out.println(" " + tce.getMessage());
 // Use the contained exception, if any
 Throwable x = tce;
 if (tce.getException() != null) x = tce.getException();

Tutorial: Synchronizing with XML

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 217

 x.printStackTrace();
 } catch (TransformerException te) {
 // Error generated by the parser
 System.out.println ("\n** Transformation error");
 System.out.println(" " + te.getMessage());
 // Use the contained exception, if any
 Throwable x = te;
 if (te.getException() != null) x = te.getException();
 x.printStackTrace();
 }
 }
 private void readDom(String filename) {
 DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();
 try {
 //parse the Document data into _doc
 DocumentBuilder builder = factory.newDocumentBuilder();
 _doc = builder.parse(new File(filename));

 } catch (SAXException sxe) {
 // Error generated during parsing)
 Exception x = sxe;
 if (sxe.getException() != null) x = sxe.getException();
 x.printStackTrace();
 } catch (ParserConfigurationException pce) {
 // Parser with specified options can't be built
 pce.printStackTrace();
 } catch (IOException ioe) {
 // I/O error
 ioe.printStackTrace();
 }
 }
}

Lesson 6: Starting the MobiLink server
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up an XML data
source” on page 206.

In this lesson, you start the MobiLink server. You start the MobiLink server (mlsrv12) using the -c option
to connect to your consolidated database, and the -sl java option to load your Java class.

Start the MobiLink server (mlsrv12)

1. Connect to your consolidated database and load the class on the mlsrv12 command line.

Replace c:\MLobjxml with the location of your source files.

Run the following command:

mlsrv12 -c "DSN=mlxml_db" -o serverOut.txt -v+ -dl -zu+ -x tcpip -sl
java (-cp c:\MLobjxml)

The MobiLink server messages window appears.

MobiLink tutorials

218 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Below is a description of each MobiLink server option used in this tutorial. The options -o, -v, and -dl
provide debugging and troubleshooting information. Using these logging options is appropriate in a
development environment. For performance reasons, -v and -dl are typically not used in production.

Option Description

-c Precedes the connection string.

-o Specifies the message log file serverOut.txt.

-v+ The -v option specifies what information is logged. Using -v+ sets maximum verbose
logging.

-dl Displays all log messages on screen.

-zu+ Adds new users automatically.

-x Sets the communications protocol and parameters for MobiLink clients.

-sl java Specifies a set of directories to search for class files, and forces the Java VM to load on
server startup.

2. Proceed to “Lesson 7: Setting up your MobiLink client database” on page 219.

See also
● “MobiLink server options” [MobiLink - Server Administration]
● “-sl java mlsrv12 option” [MobiLink - Server Administration]

Lesson 7: Setting up your MobiLink client database
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up an XML data
source” on page 206.

In this lesson, you use a SQL Anywhere database for your consolidated database and your MobiLink
client. For tutorial purposes your MobiLink client, consolidated database, and MobiLink server all reside
on the same computer.

To set up the MobiLink client database, you create the RemoteOrders and OrderComments tables. The
RemoteOrders table corresponds to the RemoteOrders table on the consolidated database. The MobiLink
server uses SQL-based scripts to synchronize remote orders. The OrderComments table is only used on
client databases. The MobiLink server processes the OrderComments tables using special events.

Set up your MobiLink client database

1. Create your MobiLink client database using the dbinit command line utility.

Run the following command:

dbinit -i -k remote1

Tutorial: Synchronizing with XML

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 219

The -i and -k options omit jConnect support and Watcom SQL compatibility views, respectively.

2. Start your MobiLink client database using the dbeng12 command line utility.

Run the following command:

dbeng12 remote1

3. Connect to your MobiLink client database using Interactive SQL.

Run the following command:

dbisql -c "SERVER=remote1;UID=DBA;PWD=sql"

4. Create the RemoteOrders table.

Execute the following SQL statement in Interactive SQL:

CREATE TABLE RemoteOrders (
 order_id INTEGER NOT NULL,
 product_id INTEGER NOT NULL,
 quantity INTEGER,
 order_status VARCHAR(10) DEFAULT 'new',
 PRIMARY KEY(order_id)
);

5. Create the OrderComments table.

Execute the following SQL statement in Interactive SQL:

CREATE TABLE OrderComments (
 comment_id INTEGER NOT NULL,
 order_id INTEGER NOT NULL,
 order_comment VARCHAR(255),
 PRIMARY KEY(comment_id),
 FOREIGN KEY(order_id) REFERENCES RemoteOrders(order_id)
);

6. Create your MobiLink synchronization user, publication, and subscription.

Execute the following SQL statement in Interactive SQL:

CREATE SYNCHRONIZATION USER ml_sales1;
CREATE PUBLICATION order_publ (TABLE RemoteOrders, TABLE OrderComments);
CREATE SYNCHRONIZATION SUBSCRIPTION TO order_publ FOR ml_sales1
 TYPE TCPIP ADDRESS 'host=localhost';

Note
You specify how to connect to the MobiLink server using the TYPE and ADDRESS clauses in the
CREATE SYNCHRONIZATION SUBSCRIPTION statement.

You can use publications to determine what data is synchronized. In this case you specify the entire
RemoteOrders and OrderComments tables.

7. Proceed to “Lesson 8: Synchronizing” on page 221.

MobiLink tutorials

220 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “Initialization utility (dbinit)” [SQL Anywhere Server - Database Administration]
● “MobiLink clients” [MobiLink - Client Administration]
● “CREATE SYNCHRONIZATION USER statement [MobiLink]” [SQL Anywhere Server - SQL

Reference]
● “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” [SQL Anywhere Server -

SQL Reference]

Lesson 8: Synchronizing
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up an XML data
source” on page 206.

The dbmlsync utility initiates MobiLink synchronization for SQL Anywhere remote databases. Before
starting dbmlsync, add order data and comments to your remote database.

Set up your client-side remote data and synchronize

1. Connect to the MobiLink client database from Interactive SQL if you are not already connected.

Run the following command:

dbisql -c "SERVER=remote1;UID=DBA;PWD=sql"

2. Add an order to the RemoteOrders table in the client database.

Execute the following SQL statement in Interactive SQL:

INSERT INTO RemoteOrders (order_id, product_id, quantity, order_status)
 VALUES (1,12312,10,'new');

3. Add a comment to the OrderComments table in the client database.

Execute the following SQL statement in Interactive SQL:

INSERT INTO OrderComments (comment_id, order_id, order_comment)
 VALUES (1,1,'send promotional material with the order');

4. Commit your changes.

Execute the following SQL statement in Interactive SQL:

COMMIT;

5. Run the following command at a command prompt:

dbmlsync -c "SERVER=remote1;UID=DBA;PWD=sql" -e scn=on -o rem1.txt -v+

The following table contains a description for each dbmlsync option used in this lesson:

Tutorial: Synchronizing with XML

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 221

Option Description

-c Specifies the connection string.

-e scn Sets SendColumnNames to on. This is required by direct row handling if you
want to reference columns by name.

-o Specifies the message log file rem1.txt.

-v+ The -v option specifies what information is logged. Using -v+ sets maximum ver-
bose logging.

Once you have started the MobiLink synchronization client, an output screen appears indicating that
the synchronization succeeded. SQL-based synchronization transferred rows in the client
RemoteOrders table to the RemoteOrders table in the consolidated database.

Java processing inserted your comment in the XML file.

6. Proceed to “Cleaning up” on page 222.

See also
● “SQL Anywhere clients” [MobiLink - Client Administration]
● “MobiLink SQL Anywhere client utility (dbmlsync)” [MobiLink - Client Administration]

Cleaning up
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up an XML data
source” on page 206.

Remove tutorial materials from your computer

1. Close all instances of Interactive SQL.

2. Close the SQL Anywhere, MobiLink, and synchronization client windows.

3. Delete all tutorial-related ODBC data sources.

a. Start the ODBC Administrator.
Run the following command:

odbcad32
b. Remove the mlxml_db data source.

4. Delete the consolidated and remote databases.

a. Navigate to the directory containing your consolidated and remote databases.

b. Delete MLconsolidated.db, MLconsolidated.log, remote1.db, and remote1.log.

MobiLink tutorials

222 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Tutorial: Using central administration of remote
databases

This tutorial leads you through the process of setting up central administration of remote databases and
demonstrates how several common operations can be performed.

You may follow this tutorial to either set up central administration from scratch or to add central
administration to an existing synchronization system. Throughout the procedure, the tutorial points out
where you should do different things if you are adding central administration to an existing
synchronization system.

Several introductory and tutorial videos on central administration of remote databases are available
online. For more information, see http://www.sybase.com/detail?id=1081142.

Note
The video tutorials are based on version 12.0.0 of SQL Anywhere. Some visuals and procedures may
differ from SQL Anywhere 12.0.1.

Required software
This tutorial assumes you have a complete install of SQL Anywhere, including MobiLink and Sybase
Central on your local computer where you are running the tutorial.

For information about deploying the MobiLink Agent, see “SQL Anywhere MobiLink client deployment”
[MobiLink - Server Administration] and “Deploying UltraLite MobiLink clients” [MobiLink - Server
Administration].

Tutorial: Using central administration of remote databases

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 223

http://www.sybase.com/detail?id=1081142

Overview
This tutorial shows you how to:

● “Lesson 1: Creating a consolidated database”
● “Lesson 2: Creating a MobiLink project”
● “Lesson 3: Starting the MobiLink server”
● “Lesson 4: Defining a remote schema name”
● “Lesson 5: Defining a MobiLink user”
● “Lesson 6: Defining an Agent”
● “Lesson 7: Configuring the Agent on the remote device”
● “Lesson 8: Creating a synchronization model”
● “Lesson 9: Deploying the synchronization model”
● “Lesson 10: Creating a remote task”
● “Lesson 11: Deploying a remote task”
● “Lesson 12: Checking the status of a remote task”
● “Lesson 13: Creating a remote database on a remote device”
● “Lesson 14: Scheduling synchronization”
● “Lesson 15: Modifying scheduled synchronizations”
● “Lesson 16: Forcing immediate synchronization”
● “Lesson 17: Changing the remote schema”
● “Lesson 18: Querying the remote database”
● “Lesson 19: Uploading files using SIRT”

See also
● “Central administration of remote databases” [MobiLink - Server Administration]

Lesson 1: Creating a consolidated database
In this lesson, you set up a consolidated database. If you have an existing synchronization system, proceed
to “Lesson 2: Creating a MobiLink project” on page 225.

Create a consolidated database

1. Run the following commands to create directories to be used in this tutorial. The consolidated
directory contains all the database and other files that would normally reside on your central server.

md c:\cadmin_demo
md c:\cadmin_demo\consolidated

2. Create a SQL Anywhere consolidated database and an ODBC data source to connect to it.

cd c:\cadmin_demo\consolidated
dbinit consol.db
start dbeng12 consol.db
dbdsn -w cadmin_tutorial_consol consol -y -c
"UID=DBA;PWD=sql;DBF=consol.db;SERVER=consol"
cd ..

3. Proceed to “Lesson 2: Creating a MobiLink project” on page 225.

MobiLink tutorials

224 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Lesson 2: Creating a MobiLink project
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating a consolidated
database” on page 224.

To perform central administration, you must create a MobiLink project. The project acts as a container for
the various objects you define for central administration.

Create a MobiLink project

1. To start Sybase Central, click Start » Programs » SQL Anywhere 12 » Administration Tools »
Sybase Central.

2. In the Folders view in the left pane, right-click MobiLink 12 and click New » Project.

The Create Project Wizard appears.

3. On the Welcome page, change the project name to Central Admin Tutorial and accept the default
location for the Project file. Click Next.

4. On the Specify a Consolidated Database page, choose Add a Consolidated Database To The
Project. Type Tutorial for the Database Display Name.

5. If you have an existing synchronization system, enter the connection string for your consolidated
database in the Connection String field. Otherwise, enter the following values for the Connection
String:

UID=DBA;PWD=sql;DSN=cadmin_tutorial_consol

6. Choose Remember The Password and click Finish to complete the wizard.

7. If this is the first time the consolidated database has been used by MobiLink, a message appears
asking if you want to install the MobiLink system setup. Installing the MobiLink system setup adds
MobiLink system tables and procedures. Click Yes, and click OK.

8. Proceed to “Lesson 3: Starting the MobiLink server” on page 225.

Lesson 3: Starting the MobiLink server
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating a consolidated
database” on page 224.

The MobiLink server is needed both to synchronize data from your remote database and to synchronize
tasks and task results between the consolidated database and the agent database on each remote device.
Use the procedure in this lesson to start the MobiLink server.

If you have an existing synchronization system you can skip this lesson since you already have the server
running. However, you should check your server command line and ensure that the -ftr and -ftru options
are specified. These options are required to download files to your remote devices and to upload files
from your remote devices.

Tutorial: Using central administration of remote databases

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 225

Start the MobiLink server

1. At a command prompt, run the following commands:

md c:\cadmin_demo\consolidated\upload
md c:\cadmin_demo\consolidated\download
cd c:\cadmin_demo\consolidated
start mlsrv12.exe -c "DSN=cadmin_tutorial_consol;UID=DBA;PWD=sql" -ftr
download -ftru upload -x tcpip(port=2439) -v+ -ot mlsrv.txt
cd ..

This command starts the MobiLink server and creates the upload and download directories that
contain files to be uploaded from or downloaded to remote devices. Following is a summary of the
options used:

● -c Specifies the connection parameters MobiLink uses to connect to the consolidated database.

● -ftr Specifies the directory where MobiLink looks for files to download.

● -ftru Specifies the directory where MobiLink puts files that are uploaded.

● -x Specifies communication parameters that define how synchronization clients may connect to
the MobiLink server.

● -v+ Specifies maximum verbosity. This setting is helpful for debugging but can slow
performance in a production environment.

● -ot Specifies the file where MobiLink output messages are logged.

2. Proceed to “Lesson 4: Defining a remote schema name” on page 226.

Lesson 4: Defining a remote schema name
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating a consolidated
database” on page 224.

The next step is to define a remote schema name. A remote schema name identifies a group of remote
application databases that all share the same schema. Typically these would be databases being used by
the same version of a particular application.

Define a remote schema name

1. Return to the Folders view in Sybase Central. Under Central Admin Tutorial, right-click Remote
Schema Names and click New » Remote Schema Name.

The Create Remote Schema Name Wizard appears.

2. Type Tutorial Application v1.0 for the schema name.

3. Select SQL Anywhere as the database type and click Finish.

4. Proceed to “Lesson 5: Defining a MobiLink user” on page 227.

MobiLink tutorials

226 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Lesson 5: Defining a MobiLink user
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating a consolidated
database” on page 224.

When an Agent synchronizes its agent database, it must authenticate itself to the MobiLink server. It
authenticates itself by using a MobiLink user and optionally a password. Normally you would use the
same MobiLink user and password to synchronize your remote databases that the Agent uses to
synchronize the agent database.

In this lesson, you define a MobiLink user for the Agent to use. You can skip this lesson if you have an
existing synchronization system, and you want the MobiLink Agent to use one of your existing MobiLink
users to synchronize.

Define a MobiLink user

1. In Sybase Central, click View » Folders.

2. Under MobiLink 12 expand Central Admin Tutorial, Consolidated Databases, Tutorial.

3. Right-click Users and click New » User.

The Create User Wizard appears.

4. On the Welcome page, type JOHN for the name of the new user and click Next.

5. On the Specify A Password page, check This User Will Require A Password To Connect and type
sql in both the Password and Confirm Password fields. Click Finish.

If you do not want to authenticate Agents that try to synchronize, skip this step and add the -zu+
option to the MobiLink server command line. When -zu+ is specified, each MobiLink user is
registered when it first attempts to synchronize. See “-zu mlsrv12 option” [MobiLink - Server
Administration].

6. Proceed to “Lesson 6: Defining an Agent” on page 227.

Lesson 6: Defining an Agent
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating a consolidated
database” on page 224.

Next you define an Agent. This Agent represents an instance of the MobiLink Agent running on a remote
device. You must create a separate Agent for each remote device you are managing.

Define an Agent

1. In Sybase Central, click View » Folders.

2. Under MobiLink 12 expand Central Admin Tutorial, Consolidated Databases, Tutorial.

Tutorial: Using central administration of remote databases

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 227

3. Right-click Agents and click New » Agent.

The Create MobiLink Agent Wizard appears.

4. On the Welcome page, choose Set Up a Single Agent and click Next.

5. On the Agent ID page, type AID_JOHN for the Agent ID. The Agent ID can be any value you like,
but each Agent must have a unique ID. By convention, Agent IDs begin with the prefix AID_ and
usually the second part of the agent ID is the MobiLink user name used by the Agent. Optionally, you
could enter a description for the Agent in the Description field. Click Next.

6. The Remote Database page lets you define a remote database to be managed by this Agent. This does
not actually create the database; you do that later. For Remote Schema Name, select Tutorial
Application v1.0, which is the name you defined in the previous lesson, from the dropdown list.

7. If you have an existing synchronization system, fill in the Connection String field with a connection
string that the MobiLink Agent can use to connect to the remote database that is already on your
device.

If this is a new synchronization system, enter the following connection string in the Database
Connection String field:

start=dbeng12;SERVER=tutorial_v1;DBF={db_location}
\tutorial_v1.db;UID=DBA;PWD=sql

This string value uses the macro {db_location}. This macro is replaced by the directory on the remote
device where application databases are stored. Click Next.

8. On the Agent Configuration page, type 30 and choose Seconds for the Synchronization Interval.
The synchronization interval controls how frequently the Agent synchronizes its agent database.
Synchronizing the agent database is how an Agent receives new tasks to perform and uploads the
results of tasks it has already performed.

9. On the Agent Configuration page, type 10 and choose Seconds for the Administration Polling
Interval. The administration polling interval determines how frequently the Agent checks for requests
from the server for it to synchronize or perform other actions.

Note
The short values chosen for the synchronization interval and administration polling interval provide a
very responsive Agent, which is important for a demonstration or for troubleshooting. However, using
short values globally in a production system results in increased load on your server and reduced
performance.

10. Click Finish.

11. Proceed to “Lesson 7: Configuring the Agent on the remote device” on page 229.

MobiLink tutorials

228 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Lesson 7: Configuring the Agent on the remote device
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating a consolidated
database” on page 224.

In this lesson, you run the MobiLink Agent. The MobiLink Agent must be running on each remote device
that is centrally administered. For this tutorial, the Agent runs on the same computer where the MobiLink
server is running.

Configure the agent on the remote device

1. Create a directory that contains the files that would normally be on the remote device.

md c:\cadmin_demo\remote
cd c:\cadmin_demo\remote

2. Run the MobiLink Agent in configuration mode as follows:

mlagent -cr -db . -x tcpip{host=localhost;port=2439} -a AID_JOHN -u JOHN
-p sql

This step creates an agent database and stores some configuration information in it. Once the specified
options are stored in the database, the Agent shuts down. Following is a summary of the options you
used:

● -cr Specifies that the Agent should run in configuration mode and that it should discard any
settings stored during previous runs in configuration mode.

● -db Specifies where the Agent should create application databases. This becomes the value of
the {db_location} macro.

● -x Specifies how the Agent should connect to the MobiLink server to synchronize its agent
database (to receive new tasks and upload results of tasks it has run). If you are adding central
administration to an existing synchronization system, you need to change the value specified for
this option to an appropriate string for connecting to your MobiLink server.

● -a Specifies the Agent ID for this Agent. You specified the same Agent ID that you previously
created in the consolidated database using Sybase Central.

● -u Specifies the MobiLink user the Agent uses when synchronizing the agent database. This
value is used by the MobiLink server primarily to authenticate the Agent.

● -p Specifies the password that goes with the MobiLink user specified with the -u option.

3. Run the MobiLink Agent on the remote device. For this tutorial, you explicitly start the Agent running
as follows:

start mlagent -v9 -ot agent.txt

Following is a summary of the options used to run the Agent in this lesson:

● -v9 Uses maximum verbosity. Using this logging option is appropriate in a development
environment. For performance reasons, -v9 is typically not used in a production environment.

● -ot Specifies the file where the Agent logs its output.

Tutorial: Using central administration of remote databases

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 229

4. You should now have the MobiLink Agent running and it should be synchronizing successfully. To
check, return to Sybase Central. In the Folders view, under MobiLink 12 expand Central Admin
Tutorial, Consolidated Databases, Tutorial, Agents. Select AID_JOHN and look at the Events tab
in the right pane. You should see an entry that indicates the Agent's first synchronization.

Note

Production considerations for Agent configuration Keep the following considerations in
mind when using central administration in a production environment:

○ You may need to change the values specified for the -u and -p options to an appropriate MobiLink
user and password combination for your synchronization system.

○ You might want to use the -on option to limit the size of the log file produced by the Agent.

○ A remote device can only be remotely administered while the MobiLink Agent is running on it.
You would likely want to take steps to ensure that the Agent is always running. Some strategies for
this might include running the Agent as a service or adding the agent to the Run startup group in the
registry.

5. Proceed to “Lesson 8: Creating a synchronization model” on page 230.

Lesson 8: Creating a synchronization model
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating a consolidated
database” on page 224.

In this lesson, you create a synchronization model. If you are adding central administration to existing
synchronization system, proceed to “Lesson 9: Deploying the synchronization model” on page 231.

Create a synchronization model

1. Define the tables for the remote database in the consolidated database. In the Folders view of Sybase
Central under MobiLink 12, expand Central Admin Tutorial, Consolidated Databases. Right-click
Tutorial and click Open Interactive SQL.

2. In the SQL Statements pane type the following:

CREATE TABLE customer(
 cust_id INTEGER PRIMARY KEY,
 f_name VARCHAR(100),
 l_name VARCHAR(100)
)

3. Press F5 to execute the SQL. Close Interactive SQL. You do not need to save your SQL statements.

4. In the Folders view of Sybase Central, right-click Central Admin Tutorial and click New »
Synchronization Model.

5. On the Welcome page, type tutorial1 for the name of the new synchronization model.

MobiLink tutorials

230 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

6. On the Primary Key Requirements page check all three checkboxes to confirm that your schema
meets the requirements for synchronization. Click Next.

7. On the Consolidated Database Schema page, choose the Tutorial database and click Next.

8. On the Remote Database Schema page, select No, Create A New Remote Database Schema and
click Next.

9. On the New Remote Database Schema page, ensure the customer table is selected and click Next.

10. On the Download Type page, choose Snapshot Download and click Next.

11. On the Download Deletes page, answer No to the question Do You Want Data Deleted On The
Consolidated Database To Be Deleted On The Remote Databases and click Next.

12. On the Download Subset page, check Yes, Download The Same Data To Each Remote and click
Next.

13. On the Upload Conflict Detection page, select No Conflict Detection and click Next.

14. Accept the defaults on the Publication, Script Version And Description page and click Finish.

You have now created a synchronization model that contains a single table called customer that can
be synchronized between the remote and the consolidated databases. The next step is to deploy that
model to create synchronization objects in the consolidated database and to generate SQL for creating
a remote database.

15. Proceed to “Lesson 9: Deploying the synchronization model” on page 231.

Lesson 9: Deploying the synchronization model
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating a consolidated
database” on page 224.

In this lesson, you deploy the synchronization model you created in the previous lesson.

Deploy the synchronization model

1. In the Folders view of Sybase Central under MobiLink 12, expand Central Admin Tutorial »
Synchronization Models. Right-click tutorial1 and click Deploy.

The Deploy Synchronization Model Wizard appears.

2. On the Welcome page, select Specify The Deployment Details For One Or More Of The
Following and check the Consolidated Database, Remote Database And Synchronization Client
and Initialize With Settings For Central Administration Of Remote Databases options and click
Next.

Tutorial: Using central administration of remote databases

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 231

3. On the Consolidated Database Deployment Destination page, clear Save Changes To The
Following SQL File and check Connect To The Consolidated Database To Directly Apply The
Changes. Choose the Tutorial database and click Next.

4. On the Remote Database Deployment page, choose New SQL Anywhere Database and click Next.

5. On the New SQL Anywhere Remote Database page, check Make A Command File And A SQL
File With Commands To Create The Database and type c:\cadmin_demo\remote_db
\tutorial_v1.sql in the SQL File field. Clear Create A Remote SQL Anywhere database. Click
Next to continue and Yes to confirm that you want the new directory and file to be created.

6. On the MobiLink User And Synchronization Profile page, accept the defaults.

The {ml_username} and {ml_password} macro values are used in the generated SQL files and are
replaced with the MobiLink user and password being used by the MobiLink Agent when the SQL is
executed on the remote device. A synchronization profile is automatically created with the name
tutorial1_{ml_username}, where the {ml_username} macro is replaced with the name of the
MobiLink user, which in this case is JOHN.

7. Clear Register This User In The Consolidated Database For MobiLink Authentication. and click
Next.

8. On the Synchronization Stream Parameters page, choose TCP/IP and enter 2439 for the Port.
These are the stream parameters that you used when you started the MobiLink server earlier. Click
Next until you get to the Advanced Options For SQL Anywhere Remote Synchronization Client
page and then click Finish and then Yes to create the directory.

When you navigate away from the synchronization model, you are asked if you want to save your
changes. Click Yes.

9. Proceed to “Lesson 10: Creating a remote task” on page 232.

You have now completed creating and deploying a synchronization model. When you deployed the
model, scripts were added to the consolidated database to allow a remote database to synchronize. You
also generated a SQL file in the cadmin_demo\remote_db directory, which can be used to create a remote
database. You may like to look at those files now.

Lesson 10: Creating a remote task
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating a consolidated
database” on page 224.

Most actions in central administration involve a remote task. A remote task is a collection of commands
that is created by an administrator. It can be assigned to one or more Agents. Once assigned to an Agent,
the remote task is downloaded to the Agent the next time the Agent synchronizes its agent database. The
Agent then executes the task at an appropriate time and uploads information about the execution.

In this lesson, you create a remote task to display the message "Hello World" on the remote device.

MobiLink tutorials

232 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Create a remote task

1. Create a new remote task. In the Folders view of Sybase Central under MobiLink 12, expand
Central Admin Tutorial, right-click Remote Tasks and click New » Remote Task.

The Create Remote Task Wizard appears.

2. On the Welcome page, type Hello World in the Name field. Click Next.

3. On the Trigger Mechanisms page, check When It Is Received By An Agent and click Finish to
complete the wizard.

4. Click the newly created Hello World task in the Folders view. In the right pane you see the
Commands tab which allows you to add commands to your task.

5. On the Commands tab, choose Prompt from the Command Type dropdown list. In the Message
field, type Hello World.

6. To add a second command to the task, either press Tab twice until a new command appears, or click
the Add Command button. Set the command type for the second command to Prompt and type
Hello Again in the Message field.

The Hello World task you just created is a design-time task. It is stored in the project on your local
computer. Before you can assign the task to an Agent, you must copy it into the consolidated database
by deploying it.

7. Proceed to “Lesson 11: Deploying a remote task” on page 233.

Lesson 11: Deploying a remote task
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating a consolidated
database” on page 224.

In the previous lesson you created a remote task. You must now deploy the remote task so that it can be
assigned to an Agent.

Deploy a remote task

1. In the Folders view of Sybase Central under MobiLink 12, expand Central Admin Tutorial,
Remote Tasks and then right-click the Hello World task and click Deploy.

The Deploy Remote Task Wizard is displayed.

2. Accept the defaults on the Task Name And Destination page and click Next.

This gives the deployed task the same name as the design-time task, which is what you would
normally want to do unless you are deploying the same design-time task for a second time. In that
case, you would have to change the name for the deployed task.

Tutorial: Using central administration of remote databases

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 233

3. The Recipients page lets you assign the deployed task to existing Agents. You can also do this later as
a separate step. From the Recipients dropdown, select Specific Agents. In the Agent list, select
AID_JOHN and click Next.

4. On the Delivery Options page, check The Next Time The Agent Synchronizes and click Next.

5. On the Reporting Results And Status page, check Send Results And Status Immediately for both
questions. This ensures that you receive timely notification when your task executes. For routine tasks
and repetitive tasks you may choose to receive feedback less quickly (especially on success), as this
reduces the number of synchronizations of the agent database and the load on the MobiLink server.

6. Click Finish.

The next time the Agent AID_JOHN synchronizes its agent database, it receives the new task and
executes it. Click OK on the message boxes with the text Hello World and Hello Again.

If you look at the Folders view, you can see that there are now two copies of the Hello World task in
the list. The deployed copy can be seen in the Folders view under Remote Tasks » Deployed Tasks.
This is the copy in the consolidated database. The deployed copy of the task can no longer be
changed. The design-time copy of the task is still visible under Remote Tasks. This task can be
changed and can be deployed again with a new name.

You can assign a deployed task to additional Agents at any time by right-clicking it and choosing Add
Recipients.

7. Proceed to “Lesson 12: Checking the status of a remote task” on page 234.

Lesson 12: Checking the status of a remote task
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating a consolidated
database” on page 224.

Next you can check the status of your remote task in Sybase Central.

Check the status of a remote task

1. In the Folders view of Sybase Central under MobiLink 12, expand Central Admin Tutorial,
Remote Tasks, Deployed Tasks. Click the deployed version of the Hello World task and select the
Results tab in the right pane. Press F5 to refresh the tab since task results are not automatically
refreshed. On the Results tab there is a line for each command in the task, with a Result Code that
indicates if the command succeeded or failed. A Result Code of 0 indicates success.

2. To see the results of a task execution displayed in different ways, select the Recipients tab for the
deployed task, or look at the Events or Tasks tab of the Agent that executed the task.

3. Proceed to “Lesson 13: Creating a remote database on a remote device” on page 235.

MobiLink tutorials

234 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Lesson 13: Creating a remote database on a remote device
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating a consolidated
database” on page 224.

In this lesson, you use a remote task to create a new remote database on the remote device. If you are
adding central administration to an existing synchronization system, proceed to “Lesson 14: Scheduling
synchronization” on page 236.

Create a remote database on a remote device

1. Create a new remote task. In the Folders view of Sybase Central under MobiLink 12, expand
Central Admin Tutorial. Right-click Remote Tasks and click New » Remote Task.

The Create Remote Task Wizard appears.

2. On the Welcome page, type Create DB in the Name field. Unlike the task you created before, this
task creates or acts on a remote database, so check This Task Requires Or Creates A Remote
Database and select the remote schema name Tutorial Application v1.0. This identifies the remote
database that the database actions in this task act on. Click Next.

3. On the Trigger Mechanisms page, check When It Is Received By An Agent then click Finish to
complete the wizard.

4. Click the newly created Create DB task in the Folders view.

5. Add commands to the remote task from the Commands pane on the right.

a. The first command creates a new, empty database on the remote device. Set the command type to
Create Database.

b. Set the filename to {db_location}\tutorial_v1.db. This file name corresponds to the file name in
the connection string you specified when you configured the Agent.

c. Press Tab until a new command appears.

d. The second command creates the schema in the new database. Set the command type to Execute
SQL. Click Import.

e. From the Open window, choose the file c:\cadmin_demo\remote_db\tutorial_v1.sql and click
Open. This imports the SQL for initializing a remote database that was generated when you
deployed the synchronization model into the command.

6. The remote task is now complete. Deploy the task and assign it to the agent AID_JOHN:

a. Right-click the Create DB task in the Folders view and click Deploy.
The Deploy Remote Task Wizard appears.

b. Accept the defaults on the Task Name And Destination page and click Next.

c. From the Recipients dropdown, select Specific Agents. In the Agent list, select AID_JOHN and
click Next.

d. On the Delivery Options page, check The Next Time The Agent Synchronizes and click Next.

Tutorial: Using central administration of remote databases

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 235

e. On the Reporting Results And Status page, select Send Results And Status Immediately for
both questions.

f. Click Finish.

7. Check to see if the task was successful:

a. In the Folders view of Sybase Central under MobiLink 12, expand Central Admin Tutorial,
Consolidated Databases, Tutorial, Agents, and right-click AID_JOHN.

b. Select the Events tab and look for the Create DB task. You may need to press F5 to refresh the
results.

8. Proceed to “Lesson 14: Scheduling synchronization” on page 236.

Lesson 14: Scheduling synchronization
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating a consolidated
database” on page 224.

The next step is to configure the MobiLink Agent to synchronize its remote database at regular intervals.
You do this by creating a remote task that executes based on a schedule and synchronizes the database
each time it executes. This task is different from the other tasks you have created because the other tasks
are executed only once. This tasks remains on the remote device and executes at regular intervals until
you stop it.

Schedule synchronization

1. Create a new remote task. In the Folders view of Sybase Central under MobiLink 12, expand
Central Admin Tutorial. Right-click Remote Tasks and click New » Remote Task.

The Create Remote Task Wizard appears.

2. On the Welcome page, type Sync in the Name field. Check This Task Requires Or Creates A
Remote Database and select the remote schema name Tutorial Application v1.0. This identifies the
remote database that the database actions in this task acts on. Click Next.

3. On the Trigger Mechanisms page, select Based On A Schedule and click Next.

4. Accept the defaults on the Start Time And Date page. This allows the task to start running
immediately. Click Next.

5. On the Repetition page, check Repeat Every and set the interval to one minute. Click Finish to
complete the wizard.

6. Click the newly-created Sync task in the Folders view.

7. Add a single command to the task to cause a synchronization.

a. On the Commands tab, set the Command Type for the first command to Synchronize.

b. For Synchronization Profile, type tutorial1_JOHN. This is the synchronization profile that was
created when you deployed the synchronization model.

MobiLink tutorials

236 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

8. The synchronization task is now complete. Right-click Sync and click Deploy. Click Next.

9. From the Recipients dropdown, click Specific Agents and assign the task to agent AID_JOHN.
Click Next and then click Next again.

10. On the Reporting Results And Status page, set If Task Succeeds to Send Only Status Later and
set If Task Fails to Send Results And Status Immediately.

Since this task repeats frequently, it is a good idea to limit the feedback requested to improve
performance.

11. Click Finish. Once the Agent receives this new task, it begins to synchronize its remote database once
each minute.

12. Proceed to “Lesson 15: Modifying scheduled synchronizations” on page 237.

Lesson 15: Modifying scheduled synchronizations
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating a consolidated
database” on page 224.

In the last lesson you created a remote task to synchronize the remote database once per minute. In this
lesson, you change the synchronization interval to once per hour.

Once a remote task is deployed, the deployed version cannot be modified. Instead, you create a new
remote task with the desired modifications, and then you cancel the existing task and deploy the new task
to replace it.

Modify a scheduled synchronization

1. First, create a new remote task with the desired repeat interval using the existing deployed task as a
template.

a. In the Folders view of Sybase Central under MobiLink 12, expand Central Admin Tutorial,
Remote Tasks, Deployed Tasks. Right-click Sync and choose Copy to copy the task to the
clipboard.

b. Right-click Remote Tasks and choose Paste. A window appears asking for you to rename the
remote task. Type Sync every hour and click OK.

c. Right-click the new Sync every hour task and choose Properties. On the Repetition page of the
properties window, change the Repeat Every value from 1 minutes to 1 hours and click OK.

2. Next, cancel the existing remote task that causes synchronization each minute.

a. In the Folders view, click the deployed version of the Sync task and click the Recipients tab in
the right pane.

b. Right-click the entry in the table for agent AID_JOHN and click Cancel.

3. Lastly, deploy the new Sync every hour task and assign it to agent AID_JOHN.

a. Right-click Sync every hour and click Deploy. Click Next.

Tutorial: Using central administration of remote databases

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 237

b. From the Recipients dropdown list, click Specific Agents and assign the task to agent
AID_JOHN. Click Next and then click Next again.

c. On the Reporting Results and Status page, set If Task Succeeds to Send Only Status Later
and set If Task Fails to Send Results And Status Immediately.

d. Click Finish. Once the Agent receives this new task, it begins to synchronize its remote database
once an hour instead of once a minute.

4. Proceed to “Lesson 16: Forcing immediate synchronization” on page 238.

Lesson 16: Forcing immediate synchronization
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating a consolidated
database” on page 224.

In the last lesson, you set up the remote database to synchronize once per hour. This lesson shows you
how to use a server-initiated remote task (SIRT) to force a synchronization before the hour is up. This
technique is useful whenever you want to centrally control when a certain task executes.

Force immediate synchronization using SIRT

1. In the Folders view of Sybase Central under MobiLink 12, expand Central Admin Tutorial,
Remote Tasks, Deployed Tasks. Right-click Sync every hour and click Initiate For All Recipients.

All recipients of the task are instructed to execute the task immediately, the next time they poll the
server. The frequency with which Agents poll the server is controlled by the Administration Polling
Interval property of the Agent.

2. Proceed to “Lesson 17: Changing the remote schema” on page 238.

Lesson 17: Changing the remote schema
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating a consolidated
database” on page 224.

In this lesson, you change the schema of the remote database. For the purposes of this tutorial, a schema
change occurs whenever you change the remote schema name of the database. You are never forced to
change the remote schema name, it is always left up to your discretion.

You should try to ensure that any remote task that you can execute against one remote database can be
executed against any other remote database with the same remote schema name. You should change a
database's remote schema name whenever you change the database in a way that would make a task fail
or succeed. The only commands within a task that are affected by the state of the remote database are the
Synchronize and Execute SQL commands.

Synchronize commands depend on the presence of synchronization profiles in the remote database, so
you should always change remote schema names when you add or remove a synchronization profile.

MobiLink tutorials

238 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Execute SQL commands depend on the state of many database objects that you would normally consider
to be part of the schema. Some examples of changes that would affect Execute SQL commands, and
hence require a remote schema name change, are adding or removing tables from the database, altering
the definition of tables in the database, and adding or removing stored procedures.

In this tutorial, you alter the schema of the remote database by adding a new table to it.

Change a remote schema

1. Return to the Folders view in Sybase Central. Under MobiLink 12, expand Central Admin
Tutorial, right-click Remote Schema Names and click New » Remote Schema Name.

The Create Remote Schema Name Wizard appears.

2. Type Tutorial Application v2.0 for the schema name.

3. Choose SQL Anywhere as the database type and click Finish.

4. Create a new remote task. In the Folders view of Sybase Central under Central Admin Tutorial,
right-click Remote Tasks and click New » Remote Task. The Create Remote Task Wizard
appears.

5. On the Welcome page, type Schema Upgrade in the Name field.

6. Check This Task Requires Or Creates A Remote Database and set the Remote Schema Name to
Tutorial Application v1.0.

7. Check This Task Upgrades The Schema Of The Managed Remote Database and set New Remote
Schema Name to Tutorial Application v2.0. Click Finish.

8. On the Commands tab, choose Execute SQL from the Command Type dropdown list. In the SQL
field, type the following:

CREATE TABLE product (
 prod_id integer primary key,
 name varchar(100)
);

The schema change task is now complete.

Before you deploy the new schema change task, you must consider any tasks already assigned to the
remote device. After the Schema Upgrade task completes, the remote schema name for the database
is Tutorial Application v2.0. Any tasks on the remote device that are associated with the old remote
schema name, Tutorial Application v1.0 can no longer run and are discarded by the Agent. To
maintain the functionality provided by these tasks, you must create new versions of the tasks and
associate them with the new remote schema name.

9. In the Folders view, under Central Admin Tutorial » Consolidated Databases » Tutorial »
Agents, click AID_JOHN. Select the Tasks tab in the right pane. Only active tasks are still being
executed by the Agent. These are the only tasks that you may need to create new versions of. In this
case, the only active task is the Sync every hour task.

Tutorial: Using central administration of remote databases

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 239

You can determine if this task is associated with the old remote schema name by checking the
Remote Schema Name column on the Tasks tab. This task shows that the Remote Schema Name of
the Sync every hour task is Tutorial Application v1.0, so it is associated with the old remote schema
name. To continue synchronization after the schema change, you need to create a new version of this
task and assign it to the Agent.

10. Right-click the Sync every hour task and click Go To Task.

11. Right-click the deployed task Sync every hour and choose Copy.

12. Right-click Remote Tasks and click Paste. When you are asked for a name for the copied task, type
Sync every hour v2 and click OK.

13. Consider whether commands in the task require any changes to continue working with the new
schema. In this case, the answer is no. There is only one command and it only depends on the
tutorial1_JOHN synchronization profile, which you have not modified with this schema change.

14. Mark the task as being associated with the new remote schema name. Right-click the Sync every
hour v2 task and choose Properties. On the General page of the properties window, choose Tutorial
Application v2.0 for the Remote Schema Name and click OK.

15. To deploy the new task, right-click the Sync every hour v2 task and click Deploy. Click Next.

16. For Recipients, click Specific Agents and then select agent AID_JOHN. Click Next and then click
Finish.

17. Right-click the Schema Upgrade task and click Deploy. Click Next.

18. From the Recipients dropdown list, click Specific Agents and assign the task to agent AID_JOHN.
Click Next and then click Finish.

You should see the Schema Upgrade task execute successfully. After that, the Sync every hour v2
task should start executing each hour and the Sync every hour task should stop executing.

19. Proceed to “Lesson 18: Querying the remote database” on page 240.

Lesson 18: Querying the remote database
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating a consolidated
database” on page 224.

In this lesson, you query the remote database and return results to the server. This is very useful when
troubleshooting because you can find out exactly what state the remote database is in.

The tables you have added to the database in this tutorial do not contain any data, so instead you query the
database system tables. Even though you are querying a system table in this example, everything you do
works exactly the same way as if you queried a user table.

MobiLink tutorials

240 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Suppose that you wanted to confirm that the schema change you performed in the last lesson did what you
expected, that the product table was created with the correct columns. You could confirm that by querying
the systable and systabcol system tables.

Query the remote database

1. In the Folders view of Sybase Central under MobiLink 12, expand Central Admin Tutorial, right-
click Remote Tasks and click New » Remote Task.

The Create Remote Task Wizard appears.

2. On the Welcome page, type Table Query in the Name field.

3. Check This Task Requires Or Creates A Remote Database and set the Remote Schema Name to
Tutorial Application v2.0 and click Next.

4. On the Trigger Mechanisms page, check When It Is Received By An Agent and click Finish.

5. Add an Execute SQL command to the task with the following SQL:

SELECT * FROM systable WHERE table_name = 'product'
go
SELECT * FROM systabcol ORDER BY table_id

6. Right-click the new Table Query task and click Deploy. Click Next.

7. For Recipients, choose Specific Agents, select agent AID_JOHN and click Next and then click Next
again.

8. On the Reporting Results And Status page, set both If Task Succeeds and If Task Fails to Send
Results And Status Immediately. Click Finish and wait until the task executes.

9. Click the deployed copy of the Table Query task in the Folders view and then click the Results tab.
If you don't see any results on the tab press, F5 to refresh it.

10. Right-click the line in the table for the Execute SQL statement and choose Details.

The Command Result window appears.

11. Click the Results tab on the window. This tab shows results of any queries executed. Press F5 to
refresh the results as necessary. The Result dropdown at the top of the pane allows you to switch
between results for the two queries. Click Close.

12. Proceed to “Lesson 19: Uploading files using SIRT” on page 241.

Lesson 19: Uploading files using SIRT
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating a consolidated
database” on page 224.

Tutorial: Using central administration of remote databases

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 241

In this lesson, you upload files from the remote device using a server-initiated remote task (SIRT).
Uploading files from the remote device is useful for troubleshooting because an administrator can
examine the files for problems.

When you started the MobiLink Agent on the remote device, you directed it to log messages to the file
agent.txt. You are now going to retrieve and examine that file from the remote device.

Upload files

1. In the Folders view of Sybase Central under MobiLink 12, expand Central Admin Tutorial, right-
click Remote Tasks and click New » Remote Task.

The Create Remote Task Wizard appears.

2. On the Welcome page, type Upload Agent Log in the Name field.

3. Clear This Task Requires Or Creates A Remote Database if it is selected and click Finish.

4. Click the new task in the Folders view and add a command to the task. Set the Command Type to
Upload File.

5. Set the Server File Name to {agent_id}\agent.txt and the Remote File Name to {agent_log}. You can
use the ellipsis (three dots) button in the command editor to easily enter the macro values.

The {agent_log} macro is replaced by the name of the log file being kept by the MobiLink Agent on
the remote device.

In the Server File Name field you specified the directory where the file is located using the
{agent_id} macro. This is very important. If you do not use a macro when specifying the server file
name, then every Agent that executes the task places their upload file in the same place, with each
new Agent overwriting the file written by the previous agent. Using a macro ensures that each Agent
uploads its log file to a different location on the server, allowing you to view all the log files.

6. Right-click the new Upload Agent Log task and click Deploy. Click Next.

7. For Recipients, click Specific Agents and then select agent AID_JOHN. Click Next.

8. On the Delivery Options page, click The Next Time The Agent Synchronizes and click Next.

9. On the Reporting Results And Status page, set both If Task Succeeds and If Task Fails to Send
Results And Status Immediately. Click Finish.

10. The task needs to be initiated by the administrator in Sybase Central. To initiate the task, go to
AID_JOHN under Agents. In the pane, select the Tasks tab, right-click the Upload Agent Log task
and click Initiate. Wait for the task to execute.

The uploaded file is placed in the MobiLink upload directory that was specified it with the -ftru option
on the MobiLink command line. You specified c:\cadmin_demo\consolidated\upload for the upload
directory. Take a look at that directory using a command prompt or the Windows Explorer. You
should find the AID_JOHN subdirectory. In that subdirectory is the agent.txt file that you uploaded.

MobiLink tutorials

242 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Cleaning up
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating a consolidated
database” on page 224.

Remove tutorial materials from your computer

1. Close any Interactive SQL, Sybase Central, MobiLink, and synchronization client windows by right-
clicking each task bar item and choosing Close.

2. Delete all tutorial-related data sources:

a. Start the ODBC Data Source Administrator.

b. Click Start » Programs » SQL Anywhere 12 » Administration Tools » ODBC Data Source
Administrator.

c. Select cadmin_tutorial_consol from the list of User Data Sources, and click Remove.

Tutorial: Changing a schema using the script
version clause

This tutorial describes how to perform a schema change on a remote database involved in synchronization
where the dbmlsync ScriptVersion extended option is not being used. In this tutorial, you set up a
synchronization system that synchronizes a single table, and then make a schema change to add a column
to the synchronizing table and continue synchronizing.

Required software
This tutorial assumes you have a complete install of SQL Anywhere, including MobiLink on your local
computer where you are running the tutorial.

Overview
This tutorial shows you how to:

● “Lesson 1: Creating and configuring the consolidated database”

● “Lesson 2: Creating and configuring the remote database”

● “Lesson 3: Synchronizing the remote database”

● “Lesson 4: Inserting data in the remote database”

● “Lesson 5: Performing a schema change on the consolidated database”

● “Lesson 6: Performing a schema change on the remote database”

● “Lesson 7: Inserting data in the remote database”

● “Lesson 8: Synchronizing”

Tutorial: Changing a schema using the script version clause

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 243

See also
● “Schema changes in remote MobiLink clients” [MobiLink - Client Administration]

Lesson 1: Creating and configuring the consolidated
database

In this lesson, you set up a consolidated database for synchronization.

Create and configure a consolidated database

1. Run the following commands to create a consolidated database and start it running.

md c:\cons
cd c:\cons
dbinit consol.db
dbeng12 consol.db

2. Run the following command to define an ODBC data source for the consolidated database.

dbdsn -w dsn_consol -y -c "UID=DBA;PWD=sql;DBF=consol.db;SERVER=consol"

3. To use a database as a consolidated database, you must run a setup script that adds system tables,
views, and stored procedures that are used by MobiLink. The following command sets up consol.db as
a consolidated database.

dbisql -c "DSN=dsn_consol" %SQLANY12%\MobiLink\setup\syncsa.sql

4. Open Interactive SQL and connect to consol.db using the dsn_consol ODBC data source.

dbisql -c "DSN=dsn_consol"

5. Execute the following SQL statements. They create the customer table on the consolidated database
and create the required synchronization scripts.

CREATE TABLE customer (
 id unsigned integer primary key,
 name varchar(256),
 phone varchar(12)
);
CALL ml_add_column('my_ver1', 'customer', 'id', null);
CALL ml_add_column('my_ver1', 'customer', 'name', null);
CALL ml_add_column('my_ver1', 'customer', 'phone', null);
CALL ml_add_table_script('my_ver1', 'customer', 'upload_insert',
 'INSERT INTO customer (id, name, phone) '
 || 'VALUES ({ml r.id}, {ml r.name}, {ml r.phone})');
CALL ml_add_table_script('my_ver1', 'customer', 'download_cursor',
 'SELECT id, name, phone from customer');
CALL ml_add_table_script('my_ver1', 'customer',
'download_delete_cursor', '--{ml_ignore}');
COMMIT;

MobiLink tutorials

244 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

After you have executed the SQL, leave Interactive SQL running and connected to the database as you
will be executing more SQL against the database as you work through the tutorial.

6. Start the MobiLink server by running the following command.

start mlsrv12 -c "DSN=dsn_consol" -v+ -ot mlsrv.txt -zu+

7. Proceed to “Lesson 2: Creating and configuring the remote database” on page 245.

Lesson 2: Creating and configuring the remote database
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating and configuring
the consolidated database” on page 244.

In this lesson, you set up a remote database for synchronization.

Create and configure a remote database

1. Run the following commands to create a remote database and start it running.

cd..
md c:\remote
cd c:\remote
dbinit remote.db
dbeng12 remote.db

2. Open another instance of Interactive SQL and connect to remote.db.

dbisql -c "SERVER=remote;DBF=remote.db;UID=DBA;PWD=sql"

3. Execute the following SQL statement in Interactive SQL to create the table to be synchronized.

CREATE TABLE customer (
 id UNSIGNED INTEGER PRIMARY KEY,
 name VARCHAR(256),
 phone VARCHAR(12)
);

4. Still using the Interactive SQL instance connected to the remote database, create a publication,
MobiLink user, and subscription. The script version is associated with the subscription using the
SCRIPT VERSION clause. This is very important since the schema upgrade procedure shown in this
tutorial only works for subscriptions that have the script version set using the SCRIPT VERSION
clause.

CREATE PUBLICATION p1 (
 TABLE customer
);
CREATE SYNCHRONIZATION USER u1;
CREATE SYNCHRONIZATION SUBSCRIPTION my_sub
TO p1
FOR u1
SCRIPT VERSION 'my_ver1';

Tutorial: Changing a schema using the script version clause

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 245

After you have executed the SQL, leave Interactive SQL running and connected to the database as you
will be running more SQL against the database as you work through the tutorial.

5. Proceed to “Lesson 3: Synchronizing the remote database” on page 246.

Lesson 3: Synchronizing the remote database
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating and configuring
the consolidated database” on page 244.

You should now have a working synchronization system set up. In this lesson, you test it by inserting
some data and synchronizing.

Synchronize the remote database

1. Using the instance of Interactive SQL that is connected to the consolidated database, execute the
following SQL statement to insert a row in the customer table.

INSERT INTO customer VALUES(100, 'John Jones', '519-555-1234');
COMMIT;

2. Using the instance of Interactive SQL that is connected to the remote database, execute the following
SQL statement to insert a row in the customer table.

INSERT INTO customer VALUES(1, 'Willie Lowman', '705-411-6372');
COMMIT;

3. Synchronize by running the following command.

dbmlsync -v+ -ot sync1.txt -c UID=DBA;PWD=sql;SERVER=remote -s my_sub -k

You can confirm that the synchronization succeeded by comparing the contents of the customer table
in the remote and consolidated databases. You might also want to look at the dbmlsync log, sync1.txt
and check for errors.

4. Proceed to “Lesson 4: Inserting data in the remote database” on page 246.

Lesson 4: Inserting data in the remote database
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating and configuring
the consolidated database” on page 244.

In this lesson, you insert data into the remote database to demonstrate that a schema change can proceed
even if there are operations in the remote database that need to be uploaded.

Insert data in the remote database

1. Using the instance of Interactive SQL that is connected to the remote database, execute the following
SQL statement to insert a row in the customer table.

MobiLink tutorials

246 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

INSERT INTO customer VALUES(2, 'Sue Slow', '602-411-5467');
COMMIT;

2. Proceed to “Lesson 5: Performing a schema change on the consolidated database” on page 247.

Lesson 5: Performing a schema change on the
consolidated database

This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating and configuring
the consolidated database” on page 244.

In this lesson, you perform a schema change on the consolidated database.

Perform a schema change on the consolidated database

1. Add a new column to the customer table to store the customer's cell phone number. First, add the new
column to the consolidated database by executing the following SQL statement in the instance of
Interactive SQL that is connected to the consolidated database.

ALTER TABLE customer ADD cell_phone VARCHAR(12) DEFAULT NULL;

2. Create a new script version called my_ver2 to handle synchronizations from remote databases with
the new schema. Remote databases with the old schema continue to use the old script version,
my_ver1. Execute the following SQL statements on the consolidated database.

CALL ml_add_column('my_ver2', 'customer', 'id', null);
CALL ml_add_column('my_ver2', 'customer', 'name', null);
CALL ml_add_column('my_ver2', 'customer', 'phone', null);
CALL ml_add_column('my_ver2', 'customer', 'cell_phone', null);
CALL ml_add_table_script('my_ver2', 'customer', 'upload_insert',
 'INSERT INTO customer (id, name, phone, cell_phone) '
 || 'VALUES ({ml r.id}, {ml r.name}, {ml r.phone}, {ml
r.cell_phone})');
CALL ml_add_table_script('my_ver2', 'customer', 'download_cursor',
 'SELECT id, name, phone, cell_phone from customer');
CALL ml_add_table_script('my_ver2', 'customer',
'download_delete_cursor', '--{ml_ignore}');
COMMIT;

3. Proceed to “Lesson 6: Performing a schema change on the remote database” on page 247.

Lesson 6: Performing a schema change on the remote
database

This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating and configuring
the consolidated database” on page 244.

In this lesson, you modify the remote database to add the new column to the customer table and to change
the script version used to synchronize.

Tutorial: Changing a schema using the script version clause

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 247

Perform a schema change on the remote database

1. Start a synchronization schema change. This is required for most schema changes that affect
synchronizing tables. This statement changes the script version that is used to synchronize the
subscription, and locks the affected table so the schema change can proceed safely.

Execute the following SQL statement on the remote database using the instance of Interactive SQL
that is connected to the remote database.

START SYNCHRONIZATION SCHEMA CHANGE
FOR TABLES customer
SET SCRIPT VERSION = 'my_ver2';

2. Add the new column to the customer table by executing the following SQL statement.

ALTER TABLE customer ADD cell_phone VARCHAR(12) DEFAULT NULL;

3. Close the schema change, which unlocks the tables.

STOP SYNCHRONIZATION SCHEMA CHANGE;

4. Proceed to “Lesson 7: Inserting data in the remote database” on page 248.

Lesson 7: Inserting data in the remote database
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating and configuring
the consolidated database” on page 244.

In this lesson, you insert some more data into the remote and consolidated databases using the new
schema.

Insert data in the remote database

1. Using Interactive SQL, execute the following SQL statements on the remote database.

INSERT INTO customer VALUES(3, 'Mo Hamid', '613-411-9999',
'613-502-1212');
COMMIT;

2. Using Interactive SQL, execute the following SQL statements on the consolidated database.

INSERT INTO customer VALUES(101, 'Theo Tug', '212-911-7677',
'212-311-3900');
COMMIT;

3. Proceed to “Lesson 8: Synchronizing” on page 248.

Lesson 8: Synchronizing
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating and configuring
the consolidated database” on page 244.

In this lesson, you synchronize again with the schema changes.

MobiLink tutorials

248 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Synchronize

● Synchronize again by running the following command:

dbmlsync -v+ -ot sync2.txt -c UID=DBA;PWD=sql;SERVER=remote -s my_sub -k

The row for Sue Slow that was inserted before the schema change is uploaded using the script version
my_ver1. The row for Mo Hamid that was inserted after the schema change is uploaded using the
script version my_ver2. Rows are downloaded using the download cursor for my_ver2.

The schema change is now complete and you can continue synchronizing normally.

Tutorial: Changing a schema using the
ScriptVersion extended option

This tutorial demonstrates how to perform a schema change when you are using the ScriptVersion
extended option.

Note
It is recommended that you avoid using the ScriptVersion extended option if possible. Instead, associate
your script version with your subscription using the SCRIPT VERSION clause of the CREATE
SYNCHRONIZATION SUBSCRIPTION statement or the SET SCRIPT VERSION clause of the ALTER
SYNCHRONIZATION SUBSCRIPTION statement. These implementations give you more flexibility to
perform schema upgrades.

Required software
This tutorial assumes you have a complete install of SQL Anywhere, including MobiLink on your local
computer where you are running the tutorial.

Overview
This tutorial shows you how to:

● “Lesson 1: Creating and configuring the consolidated database”

● “Lesson 2: Creating and configuring the remote database”

● “Lesson 3: Synchronizing the remote database”

● “Lesson 4: Performing a schema change on the consolidated database”

● “Lesson 5: Performing a schema change on the remote database”

Tutorial: Changing a schema using the ScriptVersion extended option

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 249

Lesson 1: Creating and configuring the consolidated
database

In this lesson, you set up a consolidated database for synchronization.

Create and configure a consolidated database

1. Run the following commands to create and start a consolidated database.

md c:\cons
cd c:\cons
dbinit consol.db
dbeng12 consol.db

2. Run the following command to define an ODBC data source for the consolidated database:

dbdsn -w dsn_consol -y -c "UID=DBA;PWD=sql;DBF=consol.db;SERVER=consol"

3. To use a database as a consolidated database, you must run a setup script that adds system tables,
views, and stored procedures that are used by MobiLink. The following command sets up consol.db as
a consolidated database.

dbisql -c "DSN=dsn_consol" %SQLANY12%\MobiLink\setup\syncsa.sql

4. Open Interactive SQL and connect to consol.db using the dsn_consol DSN.

dbisql -c "DSN=dsn_consol"

5. Execute the following SQL statements in Interactive SQL. They create the customer table on the
consolidated database and create the required synchronization scripts.

CREATE TABLE customer (
 id unsigned integer primary key,
 name varchar(256),
 phone varchar(12)
);
CALL ml_add_column('my_ver1', 'customer', 'id', null);
CALL ml_add_column('my_ver1', 'customer', 'name', null);
CALL ml_add_column('my_ver1', 'customer', 'phone', null);
CALL ml_add_table_script('my_ver1', 'customer', 'upload_insert',
 'INSERT INTO customer (id, name, phone) '
 || 'VALUES ({ml r.id}, {ml r.name}, {ml r.phone})');
CALL ml_add_table_script('my_ver1', 'customer', 'download_cursor',
 'SELECT id, name, phone from customer');
CALL ml_add_table_script('my_ver1', 'customer',
'download_delete_cursor', '--{ml_ignore}');
COMMIT;

After you have executed the SQL statements, leave Interactive SQL running and connected to the
database as you will be executing more SQL against the database as you work through the tutorial.

6. Start the MobiLink server by running the following command:

start mlsrv12 -c "DSN=dsn_consol" -v+ -ot mlsrv.txt -zu+

MobiLink tutorials

250 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

7. Proceed to “Lesson 2: Creating and configuring the remote database” on page 251.

Lesson 2: Creating and configuring the remote database
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating and configuring
the consolidated database” on page 250.

In this lesson, you set up a remote database for synchronization.

Create and configure a remote database

1. Run the following commands to create and start a remote database.

cd..
md c:\remote
cd c:\remote
dbinit remote.db
dbeng12 remote.db

2. Open another instance of Interactive SQL and connect to remote.db.

dbisql -c "SERVER=remote;DBF=remote.db;UID=DBA;PWD=sql"

3. Execute the following SQL statement in Interactive SQL to create the table to be synchronized.

CREATE TABLE customer (
 id unsigned integer primary key,
 name varchar(256),
 phone varchar(12)
);

4. Create a publication, MobiLink user, and subscription.

CREATE PUBLICATION p1 (
 TABLE customer
);
CREATE SYNCHRONIZATION USER u1;
CREATE SYNCHRONIZATION SUBSCRIPTION my_sub
TO p1
FOR u1
OPTION ScriptVersion='my_ver1';

After you have executed the SQL statements, leave Interactive SQL running and connected to the
database as you will be running more SQL statements on the database as you work through the
tutorial.

5. Proceed to “Lesson 3: Synchronizing the remote database” on page 251.

Lesson 3: Synchronizing the remote database
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating and configuring
the consolidated database” on page 250.

Tutorial: Changing a schema using the ScriptVersion extended option

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 251

You should now have a working synchronization system set up. In this lesson, you test it by inserting
some data and synchronizing.

Synchronize the remote database

1. Using the instance of Interactive SQL that is connected to the consolidated database, execute the
following SQL statements to insert a row in the customer table.

INSERT INTO customer VALUES(100, 'John Jones', '519-555-1234');
COMMIT;

2. Using the instance of Interactive SQL that is connected to the remote database, execute the following
SQL statements to insert a row in the customer table.

INSERT INTO customer VALUES(1, 'Willie Lowman', '705-411-6372');
COMMIT;

3. Synchronize by running the following command.

dbmlsync -v+ -ot sync1.txt -c UID=DBA;PWD=sql;SERVER=remote -s my_sub -k

You can confirm that the synchronization succeeded by comparing the contents of the customer table
in the remote and consolidated databases. You might also want to look at the dbmlsync log, sync1.txt
and check for errors.

4. Proceed to “Lesson 4: Performing a schema change on the consolidated database” on page 252.

Lesson 4: Performing a schema change on the
consolidated database

This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating and configuring
the consolidated database” on page 250.

In this lesson, you add a new column to the customer table to store the customer's cell phone number.

Perform a schema change on the consolidated database

1. Using the instance of Interactive SQL that is connected to the consolidated database, execute the
following SQL statement to insert a row in the customer table.

ALTER TABLE customer ADD cell_phone VARCHAR(12) DEFAULT NULL;

2. Create a new script version called my_ver2 to handle synchronizations from remote databases with the
new schema. Remote databases with the old schema continue to use the old script version, my_ver1.

Execute the following SQL statements on the consolidated database:

CALL ml_add_column('my_ver2', 'customer', 'id', null);
CALL ml_add_column('my_ver2', 'customer', 'name', null);
CALL ml_add_column('my_ver2', 'customer', 'phone', null);
CALL ml_add_column('my_ver2', 'customer', 'cell_phone', null);
CALL ml_add_table_script('my_ver2', 'customer', 'upload_insert',

MobiLink tutorials

252 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 'INSERT INTO customer (id, name, phone, cell_phone) '
 || 'VALUES ({ml r.id}, {ml r.name}, {ml r.phone}, {ml
r.cell_phone})');
CALL ml_add_table_script('my_ver2', 'customer', 'download_cursor',
 'SELECT id, name, phone, cell_phone from customer');
CALL ml_add_table_script('my_ver2', 'customer',
'download_delete_cursor', '--{ml_ignore}');
COMMIT;

3. Proceed to “Lesson 5: Performing a schema change on the remote database” on page 253.

Lesson 5: Performing a schema change on the remote
database

This lesson assumes you have completed all preceding lessons. See “Lesson 1: Creating and configuring
the consolidated database” on page 250.

In this lesson, you modify the remote database to add the new column to the customer table and to change
the script version used to synchronize. Before you do this, you must ensure that there are no operations for
the customer table that need to be uploaded. The best way to do this is to perform the schema change in
the sp_hook_dbmlsync_schema_upgrade hook. When you use this hook, dbmlsync ensures that the
schema change is performed safely by locking the synchronizing tables at the start of synchronization and
holding the locks until the schema change is complete.

Caution
If you change the schema when there are operations to be uploaded, the remote database is always unable
to synchronize after the schema change.

Perform a schema change on the remote database

1. Create an sp_hook_dbmlsync_schema_upgrade hook by executing the following SQL statement on
the remote database. The hook adds a new column to the customer table and changes the value of the
ScriptVersion extended option stored with the subscription. The hook is deleted by dbmlsync after it
has executed.

CREATE PROCEDURE sp_hook_dbmlsync_schema_upgrade()
BEGIN
 ALTER TABLE customer
 ADD cell_phone varchar(12) default null;
 ALTER SYNCHRONIZATION SUBSCRIPTION my_sub
 ALTER OPTION ScriptVersion='my_ver2';
 UPDATE #hook_dict
 SET value = 'always'
 WHERE name = 'drop hook';
END;

2. Synchronize to upload any operations that need to be uploaded and to perform the schema change by
executing the sp_hook_dbmlsync_schema_change hook. Run the following command.

Tutorial: Changing a schema using the ScriptVersion extended option

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 253

dbmlsync -v+ -ot sync2.txt -c UID=DBA;PWD=sql;SERVER=remote -s my_sub -k

After this synchronization, it is a very good idea to look at the dbmlsync log sync2.txt to ensure that
there are no errors to indicate that the schema change was not completed.

The schema change is now complete and you can continue synchronizing normally.

Tutorial: Simulating multiple MobiLink clients using
the MobiLink Replay utility

This tutorial demonstrates how to use the mlreplay utility to simulate multiple MobiLink clients on a
single computer.

Required software
● SQL Anywhere 12

Competencies and experience
You require:

● Basic knowledge of MobiLink event scripts

Overview
This tutorial shows you how to:

● Set up a MobiLink consolidated database

● Start the MobiLink server to record and replay synchronizations

● Use the mlreplay utility to simulate MobiLink clients

See also
● “MobiLink Replay utility (mlreplay)” [MobiLink - Server Administration]

Lesson 1: Setting up your MobiLink consolidated database
In this lesson, you set up your MobiLink consolidated database.

Set up your MobiLink consolidated database

1. Create a new working directory to store all the sample files created in this tutorial.

This tutorial assumes the path c:\mlreplay.

2. At a command prompt, change the working directory to c:\mlreplay.

This tutorial assumes all commands are run from this directory.

MobiLink tutorials

254 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

3. Run the following command to create a SQL Anywhere consolidated database named cons.db:

dbinit cons.db

4. Run the following command to start the consolidated database:

dbeng12 cons.db

5. Click Start » Programs » SQL Anywhere 12 » Administration Tools » ODBC Data Source
Administrator.

6. Click the User DSN tab, and click Add.

7. In the Create New Data Source window, click SQL Anywhere 12 and click Finish.

8. Perform the following tasks in the ODBC Configuration For SQL Anywhere window:

a. Click the ODBC tab.

b. In the Data Source Name field, type cons.

c. Click the Login tab.

d. In the User ID field, type DBA.

e. In the Password field, type sql.

f. From the Action dropdown list, choose Connect To A Running Database On This Computer.

g. In the Server Name field, type cons.

h. In the Database Name field, type cons.

i. Click OK.

9. Close ODBC data source administrator.

Click OK on the ODBC Data Source Administrator window.

10. Connect to your consolidated database in Interactive SQL.

Run the following command:

dbisql -c "DSN=cons"

11. Execute the following statement in Interactive SQL to create MobiLink system tables and stored
procedures using the syncsa.sql setup script. Replace C:\Program Files\SQL Anywhere 12\ with the
location of your SQL Anywhere 12 installation.

READ "C:\Program Files\SQL Anywhere 12\MobiLink\setup\syncsa.sql";

Interactive SQL applies syncsa.sql to your consolidated database.

Running syncsa.sql creates a series of system tables and stored procedures prefixed with ml_. The
MobiLink server works with these tables and stored procedures in the synchronization process.

12. Execute the following SQL statement in Interactive SQL to create the T1 table:

Tutorial: Simulating multiple MobiLink clients using the MobiLink Replay utility

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 255

CREATE TABLE T1 (
 pk1 INTEGER,
 pk2 INTEGER,
 c1 VARCHAR(30000),
 PRIMARY KEY(pk1, pk2)
);

Interactive SQL creates the T1 table in your consolidated database.

13. Close Interactive SQL.

14. Proceed to “Lesson 2: Creating a MobiLink project” on page 256.

Lesson 2: Creating a MobiLink project
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up your MobiLink
consolidated database” on page 254.

In this lesson, you connect to the consolidated database by creating a new MobiLink project.

Create a new MobiLink project

1. Click Start » Programs » SQL Anywhere 12 » Administration Tools » Sybase Central.

2. Click Tools » MobiLink 12 » New Project.

3. In the Name field, type mlreplay_project.

4. In the Location field, type C:\mlreplay, and click Next.

5. Check the Add A Consolidated Database To The Project option.

6. In the Database Display Name field, type cons.

7. Click Edit. The Connect To A Generic ODBC Database window appears.

8. In the User ID field, type DBA.

9. In the Password field, type sql.

10. In the ODBC Data Source name field, click Browse, and select cons.

11. Click OK, and click Save.

12. Check the Remember The Password option, and click Finish.

13. Click OK.

14. Proceed to “Lesson 3: Adding synchronization scripts” on page 257.

MobiLink tutorials

256 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Lesson 3: Adding synchronization scripts
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up your MobiLink
consolidated database” on page 254.

You can view, write, and modify synchronization scripts using Sybase Central. In this lesson, you write
the following synchronization scripts:

● upload_insert This event defines how new client-side data should be applied to the consolidated
database.

● download_cursor This event defines the data that should be downloaded to remote clients.

● download_delete_cursor This event is required when using synchronization scripts that are not
upload-only. You set the MobiLink server to ignore this event for the purpose of this tutorial.

Each script belongs to a designated script version. You must add a script version to the consolidated
database before you add scripts.

Add synchronization scripts

1. Click View » Folders.

2. In the left pane of Sybase Central under MobiLink 12, expand mlreplay_project, Consolidated
Databases, cons - DBA.

3. Right-click Versions and choose New » Version.

4. In the What Do You Want To Name The New Script Version field, type MLReplayDemo.

5. Click Finish.

6. In the left pane of Sybase Central under MobiLink 12, expand mlreplay_project, Consolidated
Databases, cons - DBA.

7. Right-click Synchronized Tables and click New » Synchronized Table.

8. Click the Choose A Table In The Consolidated Database With The Same Name As The Remote
Table option.

9. In the Which User Owns The Table You Want To Synchronize list, click DBA.

10. In the Which Table Do You Want To Synchronize list, click T1.

11. Click Finish.

The T1 table is registered as a synchronization table and you can add scripts to that table.

12. In the left pane of Sybase Central under MobiLink 12, expand mlreplay_project, Consolidated
Databases, cons - DBA, Synchronized Tables.

13. Right-click T1 and click New » Table Script.

Tutorial: Simulating multiple MobiLink clients using the MobiLink Replay utility

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 257

14. In the For Which Version Do You Want To Create The Table Script list, click MLReplayDemo.

15. In the Which Event Should Cause The Table Script To Be Executed list, click upload_insert and
click Next.

16. Click Finish.

17. In the right pane of Sybase Central, use the following SQL script for the upload_insert event:

INSERT INTO T1 VALUES(cast({ml s.remote_id} as INTEGER), {ml r.2}, {ml r.
3});

The upload_insert event determines how data inserted into the remote database should be applied to
the consolidated database. See “upload_insert table event” [MobiLink - Server Administration].

18. Click File » Save.

19. Repeat steps 13 to 16, specifying the download_cursor event instead of the upload_insert event in
step 15.

20. In the right pane of Sybase Central, use the following SQL script for the download_cursor event:

SELECT pk1, pk2, c1 FROM T1;

The download_cursor script defines a cursor to select consolidated database rows that are downloaded
and inserted or updated in the remote database. For more information about download_cursor, see
“download_cursor table event” [MobiLink - Server Administration].

21. Click File » Save.

22. Repeat steps 13 to 16, specifying the download_delete_cursor event instead of the upload_insert
event in step 15.

23. In the right pane of Sybase Central, use the following SQL script for the download_delete_cursor
event:

--{ml_ignore}

24. Click File » Save.

25. Proceed to “Lesson 4: Starting the MobiLink server to record” on page 259.

MobiLink tutorials

258 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “Overview of MobiLink events” [MobiLink - Server Administration]
● “Adding and deleting scripts” [MobiLink - Server Administration]
● “Scripts to upload rows” [MobiLink - Server Administration]
● “Scripts to download rows” [MobiLink - Server Administration]
● “upload_insert table event” [MobiLink - Server Administration]
● “upload_update table event” [MobiLink - Server Administration]
● “upload_delete table event” [MobiLink - Server Administration]
● “download_cursor table event” [MobiLink - Server Administration]
● “download_delete_cursor table event” [MobiLink - Server Administration]
● “Direct row handling” [MobiLink - Server Administration]
● “Handling direct uploads” [MobiLink - Server Administration]
● “Handling direct downloads” [MobiLink - Server Administration]
● “Implementing timestamp-based downloads” [MobiLink - Server Administration]
● “Partitioning rows among remote databases” [MobiLink - Server Administration]

Lesson 4: Starting the MobiLink server to record
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up your MobiLink
consolidated database” on page 254.

In this lesson, you start the MobiLink server (mlsrv12) using the -c option to connect to your consolidated
database.

Start the MobiLink server for recording

1. Run the following command to connect to your consolidated database:

mlsrv12 -c "DSN=cons" -zu+ -zs mlreplay_svr -x tcpip -ot mlsrv.mls -v+ -
rp .

The MobiLink server messages window appears.

Below is a description of each MobiLink server option used. The -ot and -v options provide
debugging and troubleshooting information. These logging options are appropriate in a development
environment. Typically, for performance reasons, -v is not used in production.

Option Description

-c Precedes the connection string.

-ot Specifies the message log file mlsrv.mls.

-v+ Specifies what information is logged. Using -v+ sets maximum verbose logging.

-rp Specifies the directory where synchronizations are recorded for playback.

-x Sets the protocol used to listen for synchronization requests.

Tutorial: Simulating multiple MobiLink clients using the MobiLink Replay utility

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 259

Option Description

-zs Sets a MobiLink server name.

-zu+ Adds new users automatically.

2. Proceed to “Lesson 5: Setting up your MobiLink client database” on page 260.

See also
● “MobiLink server options” [MobiLink - Server Administration]

Lesson 5: Setting up your MobiLink client database
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up your MobiLink
consolidated database” on page 254.

MobiLink is designed for synchronization involving a consolidated database server and a large number of
mobile databases. In this lesson, you create a remote database. You must perform the following tasks:

● Create a T1 table, which you synchronize with the consolidated database.

● Create a synchronization publication, user, and subscription.

In this lesson, you use a SQL Anywhere database for your consolidated database and your MobiLink
client. For tutorial purposes, your MobiLink client, consolidated database, and MobiLink server all reside
on the same computer.

To set up the MobiLink client database, you create a T1 table for the remote database. The T1 table
corresponds to the T1 table on the consolidated database. The MobiLink server uses SQL-based scripts to
synchronize product quantities.

You create a synchronization user, publication, and subscription on the client database after creating the
tables. Publications identify the tables and columns on your remote database that you want synchronized.
These tables and columns are called articles. A synchronization subscription subscribes a MobiLink user
to a publication.

Set up your MobiLink client databases

1. Create your MobiLink client databases using the dbinit command line utility.

Run the following command to create the remote database:

dbinit remote.db

2. Start your MobiLink client database using the dbeng12 command line utility.

Run the following command to start the remote database:

dbeng12 remote

MobiLink tutorials

260 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

3. Connect to the remote database using Interactive SQL.

Run the following command:

dbisql -c "SERVER=remote;UID=DBA;PWD=sql"

4. Create the T1 table for the remote database.

Execute the following SQL statements in Interactive SQL:

CREATE TABLE T1 (
 pk1 INTEGER,
 pk2 INTEGER,
 c1 VARCHAR(30000),
 PRIMARY KEY(pk1,pk2)
);
SET OPTION PUBLIC.ml_remote_id = '0';

5. Create your MobiLink synchronization user, publication, and subscription for the remote database.

Execute the following SQL statement in Interactive SQL:

CREATE PUBLICATION P1 (TABLE T1);
CREATE SYNCHRONIZATION USER U1;
CREATE SYNCHRONIZATION SUBSCRIPTION TO P1 FOR U1 TYPE 'TCPIP' ADDRESS
'host=localhost;port=2439';

6. Keep Interactive SQL open for the next lesson.

7. Proceed to “Lesson 6: Recording synchronization” on page 261.

See also
● “Initialization utility (dbinit)” [SQL Anywhere Server - Database Administration]
● “MobiLink clients” [MobiLink - Client Administration]
● “CREATE SYNCHRONIZATION USER statement [MobiLink]” [SQL Anywhere Server - SQL

Reference]
● “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” [SQL Anywhere Server -

SQL Reference]

Lesson 6: Recording synchronization
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up your MobiLink
consolidated database” on page 254.

In this lesson, you run the dbmlsync utility to initiate MobiLink synchronization for SQL Anywhere
remote databases.

Synchronize with the consolidated database

1. Perform the first recorded synchronization so that the schema is cached on the MobiLink server.

Tutorial: Simulating multiple MobiLink clients using the MobiLink Replay utility

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 261

Run the following command to synchronize the remote database:

dbmlsync -c "SERVER=remote;UID=DBA;PWD=sql" -ot remote1.mls -e
"sv=MLReplayDemo;scn=on" -v+

The following table contains a description for each dbmlsync option used:

Option Description

-c Specifies the connection string.

-ot Specifies the file to log messages in.

-e Specifies the script version to synchronize with and that column names should be
sent in the upload for use by mlreplay.

-v+ Specifies what information is logged. Using -v+ sets maximum verbose logging.

An output screen appears indicating that the synchronization succeeded. SQL-based synchronization
transferred rows in the client T1 table to the T1 table in the consolidated database.

2. Prepare the remote database for data insertion so that a second synchronization occurs.

Run the following command to connect to the remote database with Interactive SQL if you are not
already connected:

dbisql -c "SERVER=remote;UID=DBA;PWD=sql"

3. Load data into the remote database to be uploaded to the MobiLink server by during the replay
session.

Execute the following SQL statement in Interactive SQL:

INSERT INTO T1 (pk1,pk2,c1) values (0,1,'data1');
INSERT INTO T1 (pk1,pk2,c1) values (0,2,'data2');
INSERT INTO T1 (pk1,pk2,c1) values (0,3,'data3');
INSERT INTO T1 (pk1,pk2,c1) values (0,4,'data4');
INSERT INTO T1 (pk1,pk2,c1) values (0,5,'data5');
INSERT INTO T1 (pk1,pk2,c1) values (0,6,'data6');
INSERT INTO T1 (pk1,pk2,c1) values (0,7,'data7');
INSERT INTO T1 (pk1,pk2,c1) values (0,8,'data8');
INSERT INTO T1 (pk1,pk2,c1) values (0,9,'data9');
INSERT INTO T1 (pk1,pk2,c1) values (0,10,'data10');
COMMIT;

4. Perform the second recorded synchronization. This is the protocol that gets replayed.

Run the following command to synchronize the remote database:

dbmlsync -c "SERVER=remote;UID=DBA;PWD=sql" -ot remote2.mls -e
"sv=MLReplayDemo;scn=on" -v+

5. Proceed to “Lesson 7: Restarting the MobiLink server to replay” on page 263.

MobiLink tutorials

262 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “SQL Anywhere clients” [MobiLink - Client Administration]
● “MobiLink SQL Anywhere client utility (dbmlsync)” [MobiLink - Client Administration]

Lesson 7: Restarting the MobiLink server to replay
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up your MobiLink
consolidated database” on page 254.

In this lesson, you stop the MobiLink server to stop recording and then restart the server without the -rp
option to prepare the server for replay.

Stop and restart the MobiLink server for replay

1. Run the following command to stop the MobiLink server, mlreplay_svr:

mlstop -w -t 1m mlreplay_svr

The MobiLink server stops along with synchronization recording.

The following table contains a description for each option used:

Option Description

-w Waits for the server to shut down before returning to the command prompt.

-t Specifies that the server should shut down after one minute, or after the current
synchronizations have completed, whichever is sooner.

2. Run the following command to connect to your consolidated database:

mlsrv12 -c "DSN=cons" -zu+ -zs mlreplay_svr -x tcpip -ot
server_replay.mls -v+

The MobiLink server messages window appears.

Below is a description of each MobiLink server option used. The -ot and -v options provide
debugging and troubleshooting information. These logging options are appropriate in a development
environment. Typically, for performance reasons, -v is not used in production.

Option Description

-c Specifies the connection string.

-ot Specifies the message log file server_replay.mls.

-v+ Specifies what information is logged. Using -v+ sets maximum verbose log-
ging.

Tutorial: Simulating multiple MobiLink clients using the MobiLink Replay utility

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 263

Option Description

-x Sets the protocol used to listen for synchronization requests.

-zs Sets a MobiLink server name.

-zu+ Adds new users automatically.

3. Proceed to “Lesson 8: Replaying synchronization” on page 264.

See also
● “MobiLink server options” [MobiLink - Server Administration]

Lesson 8: Replaying synchronization
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up your MobiLink
consolidated database” on page 254.

In this lesson, you perform a synchronization so that the schema is cached on the MobiLink server. You
create the simulated client information file to replay the MobiLink protocol information on the simulated
clients. The simulated client information file is only necessary when replaying the recorded protocol
concurrently across multiple simulated clients.

Replay synchronization across multiple clients

1. Run the following command to synchronize the remote database:

dbmlsync -c "SERVER=remote;UID=DBA;PWD=sql" -ot remote3.mls -e
"sv=MLReplayDemo;scn=on" -v+

The following table contains a description for each dbmlsync option used:

Option Description

-c Specifies the connection string.

-ot Specifies the file to log messages to.

-e Specifies the script version to synchronize with and that column names should be
sent in the upload for use by mlreplay.

-v+ Specifies what information is logged. Using -v+ sets maximum verbose logging.

An output screen appears indicating that the synchronization succeeded. SQL-based synchronization
transferred rows in the client T1 table to the T1 table in the consolidated database.

2. Create a simulated client information file for use with the mlreplay utility.

Create a new text file and write the following comma-separated list as displayed:

MobiLink tutorials

264 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

mlreplay1,,1,
mlreplay2,,2,
mlreplay3,,3,
mlreplay4,,4,
mlreplay5,,5,
mlreplay6,,6,
mlreplay7,,7,
mlreplay8,,8,
mlreplay9,,9,
mlreplay10,,10,

3. Save the file as mlreplay.csv in your working directory.

The client information file can be used to simulate ten remote clients.

4. Replay the recorded synchronization with simulated clients.

Run the following command:

mlreplay -ap -x tcpip -ot mlreplay.mls -sci mlreplay.csv
recorded_protocol_mlreplay_svr_2.mlr

The following table contains a description for each option used:

Option Description

-ap Adjusts the progress of synchronizations being replayed in a replay session so
that the mlreplay utility does not cause progress offset mismatch warnings on the
MobiLink server.

-x Sets the protocol used to listen for synchronization requests.

-ot Specifies the file to log messages.

-sci Specifies the location of the client information file.

The mlreplay utility stores information from the start of the connection to the end of the connection in
a recorded protocol file named recorded_protocol_mlreplay_svr_2.mlr.

5. Open the log file with a text editor to review the outcome of the MobiLink replay.

6. Proceed to “Cleaning up” on page 265.

See also
● “MobiLink Replay utility (mlreplay)” [MobiLink - Server Administration]

Cleaning up
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up your MobiLink
consolidated database” on page 254.

Tutorial: Simulating multiple MobiLink clients using the MobiLink Replay utility

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 265

Remove tutorial materials from your computer

1. Close any Interactive SQL, SQL Anywhere, MobiLink, and synchronization client windows by right-
clicking each task bar item and choosing Close.

2. Delete all tutorial-related data sources:

a. Start the ODBC Data Source Administrator.

b. Click Start » Programs » SQL Anywhere 12 » Administration Tools » ODBC Data Source
Administrator.

c. Select cons from the list of User Data Sources, and click Remove.

3. Delete to the directory containing your consolidated and remote databases.

MobiLink tutorials

266 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Index
Symbols
.NET

MobiLink server API benefits, 11
MobiLink tutorial, 149

.NET synchronization logic
about, 11

A
applications

occasionally connected, 7
smart client, 7

authenticate_user
Sybase Central, 38

authenticating to external servers
synchronization model, 38

B
batch files

synchronization model deployment, 43

C
cascading deletes

MobiLink synchronization, 18
checking system setup

MobiLink, 24
CodeXchange

MobiLink samples, 7
COMMIT statement

MobiLink warning, 16
communications faults

MobiLink synchronization recovery, 16
concurrency

MobiLink upload processing, 17
conflict detection and resolution

modifying in a synchronization model, 35
conflict resolution

Contact sample, 71
CustDB sample, 60

consolidated databases
adding, 23
changing, 24

Contact MobiLink sample
building, 63

Contact table, 69
Customer table, 68
monitoring statistics, 72
Product table, 71
running, 63
SalesRep table, 67
tables, 64
users, 66

create a MobiLink project
Sybase Central task, 22

create a synchronization model
Sybase Central task, 25

create synchronization model wizard
usage, 26

custase.sql
location, 49

CustDB
MobiLink sample application, 48
MobiLink sample tables, 53
MobiLink ULProduct table, 60
MobiLink users, 56
restoring, 62
SQL Anywhere CustDB consolidated database, 49

CustDB application
DB2, 50
synchronization scripts, 49

CustDB MobiLink sample
ULCustomer table, 59
ULOrder table, 57

custdb.sqc
location, 52

custmss.sql
location, 49

custora.sql
location, 49

D
data movement technologies

MobiLink synchronization, 1
databases

synchronizing with MobiLink, 1
DB2

CustDB application, 50
deadlocks

MobiLink upload processing, 17
deletes

modifying in a synchronization model, 31

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 267

deploy synchronization model wizard
usage, 40

deploying
synchronization model batch files, 43

direct row handling
tutorial, 165
tutorial with Microsoft Excel, 188
tutorial with XML, 205

distributed databases
MobiLink synchronization, 1

download subsets
modifying in a synchronization model, 32

download types
modifying in a synchronization model, 30

downloads
MobiLink definition, 13
MobiLink transactions, 16

E
events

MobiLink introduction, 14
events tab

synchronization model, 37
Excel

MobiLink tutorial, 188
external servers

authenticating to in a synchronization model, 38

F
failures

MobiLink synchronization recovery, 16
fault tolerant

about, 16
faults

MobiLink synchronization recovery, 16

G
getting started

MobiLink, 5

H
how synchronization failure is handled

MobiLink, 16
how the upload is processed

about, 17

I
IBM DB2

CustDB application, 50
IMAP authentication

synchronization model, 38

J
Java

MobiLink server API benefits, 11
MobiLink tutorial, 142
synchronization logic, 11

Java synchronization logic
about, 11

L
LDAP authentication

synchronization model, 38
log files

MobiLink, 86

M
makedbs.cmd

location, 49
mapping

tables and columns, 28
Microsoft Excel

MobiLink tutorial, 188
mlreplay utility

tutorial, 254
MobiLink

.NET tutorial, 149
about, 1
architecture, 1
ASE tutorial, 124
central administration tutorial, 223
checking system setup, 24
CustDB application, 48
features, 2
Java tutorial, 142
mlreplay tutorial, 254
MobiLink with SQL Anywhere tutorial, 96
options for writing synchronization logic, 11
Oracle tutorial, 109
process overview, 13
quick start, 5
samples, 7
synchronization basics, 1

Index

268 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

MobiLink 12 plug-in for Sybase Central
about, 20

MobiLink applications
designing, 7
development methods, 10

MobiLink Contact sample
about, 62

MobiLink direct row handling
tutorial, 165

MobiLink direct row handling with Microsoft Excel
tutorial, 188

MobiLink direct row handling with XML
tutorial, 205

MobiLink download
defined, 13

MobiLink events
introducing, 14

MobiLink features
about, 2

MobiLink project
about, 20

MobiLink projects
creating, 22

MobiLink scripts
about, 14

MobiLink server
getting started, 5

MobiLink server API for .NET
benefits, 12

MobiLink server API for Java
benefits, 12

MobiLink server APIs
benefits, 12

MobiLink synchronization
.NET tutorial, 149
custdb sample database, 48
Java tutorial, 142

MobiLink synchronization logic
.NET tutorial, 149
Java tutorial, 142

MobiLink synchronization process
about, 5

MobiLink system setup
checking, 24

MobiLink upload
defined, 13
processing, 17

models

MobiLink synchronization, 25
models in MobiLink

limitations, 46

O
occasionally connected applications

MobiLink, 7
online applications

MobiLink, 7
options for writing synchronization logic

about, 11
Oracle

MobiLink tutorial, 109

P
performance

MobiLink upload processing, 18
plug-ins

MobiLink, 20
POP3 authentication

synchronization model, 38
projects

adding consolidated databases, 23
creating, 22

protocols
MobiLink synchronization, 1

Q
quick start

MobiLink, 5

R
redeploying

synchronization models, 42
referential integrity

MobiLink synchronization, 18
referential integrity and synchronization

MobiLink clients, 18
remote schema change tutorial

SCRIPT VERSION clause, 243
ScriptVersion extended option, 249

remote schemas
synchronization models, 27

rollback
MobiLink warning, 16

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 269

S
sample applications

MobiLink CustDB application, 48
sample database

MobiLink CustDB application, 48
samples

Contact MobiLink sample, 62
MobiLink, 7
MobiLink CustDB application, 48

schema changes
synchronization model redeployment, 42

schemas
synchronization model redeployment, 42

SCRIPT VERSION clause
remote schema change tutorial, 243

scripts
MobiLink introduction, 14
modifying in a synchronization model, 37

ScriptVersion extended option
remote schema change tutorial, 249

security
MobiLink overview, 20

server-initiated synchronization
setting up in a synchronization model, 38

setting up
MobiLink synchronization, 5
MobiLink with the create synchronization model
wizard, 26
server-initiated synchronization, 38

smart client applications
MobiLink, 7

SQL synchronization logic
alternatives, 11

SQLE_ROW_DELETED_TO_MAINTAIN_REFER
ENTIAL_INTEGRITY

UltraLite synchronization, 18
subsets

modifying in a synchronization model, 32
synchronization

about MobiLink, 1
architecture of the MobiLink system, 1
MobiLink ASE tutorial, 124
MobiLink Oracle tutorial, 109
MobiLink performance, 18
MobiLink process overview, 13
MobiLink transactions, 16
MobiLink with a SQL Anywhere tutorial, 96

options for writing synchronization logic, 11
quick start, 5
timestamps in MobiLink, 16

synchronization basics
about, 1

synchronization logic
options for writing, 11

synchronization models
about, 25
creating, 26
deploying, 40
introduction, 25
limitations, 46
remote databases, 27
tasks, 28

synchronization process
about, 13

synchronization scripts
.NET tutorial, 149
Java tutorial, 142

synchronization system
components, 1

synchronization techniques
custdb sample application, 48
MobiLink Contact sample, 62

synchronization upload
MobiLink processing, 17

synchronized tables
adding mappings, 28

synchronizing
deployed synchronization models, 43

system setup
MobiLink checking, 24

T
table mappings

about, 28
transactions

during MobiLink synchronization, 16
MobiLink commit and rollback, 16

troubleshooting
MobiLink synchronization failure, 16

tutorials
central administration of remote databases, 223
Java or .NET for custom user authentication, 159
MobiLink .NET synchronization logic, 149
MobiLink direct row handling, 165

Index

270 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

MobiLink direct row handling with Microsoft
Excel, 188
MobiLink direct row handling with XML, 205
MobiLink Java synchronization logic, 142
MobiLink with ASE, 124
MobiLink with Oracle, 109
MobiLink with SQL Anywhere, 96
monitoring MobiLink scripts and conflict
resolution, 75
schema change using script version clause, 243
schema change using ScriptVersion extended
option, 249
simulating multiple MobiLink clients, 254

U
update schema wizard

about, 39
updating schemas

redeploying a synchronization model, 42
update schema wizard, 39

upload_delete
Contact sample, 71
CustDB sample, 60

uploads
MobiLink definition, 13
MobiLink processing, 17
MobiLink transactions, 16

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 271

272 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

	MobiLink - Getting Started
	Contents
	About this book
	MobiLink technology
	MobiLink synchronization
	Parts of a MobiLink application
	MobiLink features
	Quick start to MobiLink
	MobiLink application design
	MobiLink application development options
	Options for writing server-side synchronization logic
	The synchronization process
	MobiLink events
	Transactions in the synchronization process
	How synchronization failure is handled
	How the upload is processed
	Referential integrity and synchronization

	Security

	MobiLink plug-in for Sybase Central
	Creating a MobiLink project
	Adding a consolidated database
	MobiLink system setup
	Checking MobiLink system setup

	Synchronization models
	Setting up a MobiLink application with the Create Synchronization Model Wizard
	Remote schemas

	Synchronization model tasks
	Modifying table and column mappings
	Modifying the download type
	Modifying how deletes are recorded
	Modifying the download subset
	Modifying the download delete subset
	Modifying conflict detection and resolution
	Modifying scripts in a synchronization model
	Authenticating to an external server
	Setting up server-initiated synchronization in a synchronization model

	Updating schemas
	Synchronization model deployment
	Synchronization model redeployment
	Deployed model synchronization

	Limitations of synchronization models

	CustDB sample for MobiLink
	CustDB setup
	Setting up the CustDB consolidated database
	Setting up an UltraLite remote database

	Tables in the CustDB databases
	Users in the CustDB sample
	Synchronization logic source code
	Synchronization of orders in the CustDB sample
	Synchronization of customers in the CustDB sample
	Synchronization of products in the CustDB sample
	Maintenance of the customer and order primary key pools
	ULCustomerIDPool
	ULOrderIDPool

	Restoring the CustDB database

	MobiLink Contact sample
	Contact sample setup
	Running the Contact sample

	Tables in the Contact databases
	Users in the Contact sample
	Synchronization of sales representatives in the Contact sample
	Synchronization of customers in the Contact sample
	Synchronization of contacts in the Contact sample
	Synchronization of products in the Contact sample
	Statistic and error monitoring in the Contact sample

	MobiLink tutorials
	Tutorial: Introducing MobiLink
	Lesson 1: Setting up a MobiLink consolidated database
	Lesson 2: Creating and populating a table in the MobiLink consolidated database
	Lesson 3: Creating a MobiLink project and synchronization model
	Lesson 4: Deploying the synchronization model
	Lesson 5: Starting the MobiLink server
	Lesson 6: Starting the MobiLink clients
	Lesson 7: Starting the MobiLink Monitor
	Lesson 8: Synchronizing
	Lesson 9: Using the MobiLink Server Log File Viewer to check for errors and warnings
	Lesson 10: Creating a table for conflict detection and resolution
	Lesson 11: Creating scripts for conflict detection and resolution
	Lesson 12: Verifying the conflict scripts using the MobiLink Monitor
	Lesson 13: Monitoring MobiLink resources with the SQL Anywhere Monitor
	Cleaning up

	Tutorial: Using MobiLink with a SQL Anywhere consolidated database
	Lesson 1: Designing the schemas
	Lesson 2: Preparing the consolidated database
	Lesson 3: Creating a synchronization model
	Lesson 4: Deploying the synchronization model
	Lesson 5: Starting the MobiLink server
	Lesson 6: Synchronizing
	Cleaning up

	Tutorial: Using MobiLink with an Oracle Database 10g
	Lesson 1: Designing the schemas
	Lesson 2: Preparing the consolidated database
	Lesson 3: Adding unique keys
	Lesson 4: Connecting with MobiLink
	Lesson 5: Creating a MobiLink project
	Lesson 6: Creating and modifying a synchronization model
	Lesson 7: Deploying the synchronization model
	Lesson 8: Starting the server and client
	Lesson 9: Setting the remote ID
	Lesson 10: Synchronizing
	Lesson 11: Viewing the data in the remote database
	Cleaning up

	Tutorial: Using MobiLink with an Adaptive Server Enterprise consolidated database
	Lesson 1: Designing the schemas
	Lesson 2: Preparing the consolidated database
	Lesson 3: Adding unique keys
	Lesson 4: Connecting with MobiLink
	Lesson 5: Creating a MobiLink project
	Lesson 6: Creating and modify a synchronization model
	Lesson 7: Deploying the synchronization model
	Lesson 8: Starting the server and client
	Lesson 9: Setting the remote ID
	Lesson 10: Synchronizing
	Lesson 11: Viewing the data in the remote database
	Cleaning up

	Tutorial: Using Java synchronization logic
	Lesson 1: Compiling the CustdbScripts Java class with MobiLink references
	Lesson 2: Creating a MobiLink project
	Lesson 3: Subscribing a script to the upload_insert event
	Lesson 4: Specifying class methods to handle events
	Lesson 5: Running the MobiLink server with -sl java
	Lesson 6: Testing synchronization
	Cleaning up

	Tutorial: Using .NET synchronization logic
	Lesson 1: Compiling the CustdbScripts.dll assembly with MobiLink references
	Lesson 2: Creating a MobiLink project
	Lesson 3: Subscribing a script to the upload_insert event
	Lesson 4: Specifying class methods for events
	Lesson 5: Running the MobiLink server with -sl dnet
	Lesson 6: Testing synchronization
	Cleaning up

	Tutorial: Using Java or .NET for custom user authentication
	Lesson 1: Creating a Java or .NET class for custom authentication (server-side)
	Lesson 2: Registering your Java or .NET scripts for the authenticate_user event
	Lesson 3: Starting the MobiLink server
	Lesson 4: Testing the authentication
	Cleaning up

	Tutorial: Using direct row handling
	Lesson 1: Setting up a text file data source
	Lesson 2: Setting up your MobiLink consolidated database
	Lesson 3: Creating a table in your MobiLink consolidated database
	Lesson 4: Adding synchronization scripts
	Lesson 5: Creating a Java or .NET class for MobiLink direct row handling
	Complete MobiLinkOrders code listing (Java)
	Complete MobiLinkOrders code listing (.NET)

	Lesson 6: Starting the MobiLink server
	Lesson 7: Setting up your MobiLink client database
	Lesson 8: Synchronizing
	Cleaning up

	Tutorial: Synchronizing with Microsoft Excel
	Lesson 1: Setting up an Excel worksheet
	Lesson 2: Setting up your MobiLink consolidated database
	Lesson 3: Creating a table in your MobiLink consolidated database
	Lesson 4: Adding synchronization scripts
	Lesson 5: Creating a Java class for MobiLink direct row handling
	Complete MobiLinkOrders code listing (Java)

	Lesson 6: Starting the MobiLink server
	Lesson 7: Setting up your MobiLink client database
	Lesson 8: Synchronizing
	Cleaning up

	Tutorial: Synchronizing with XML
	Lesson 1: Setting up an XML data source
	Lesson 2: Setting up your MobiLink consolidated database
	Lesson 3: Creating a table in your MobiLink consolidated database
	Lesson 4: Adding synchronization scripts
	Lesson 5: Creating a Java class for MobiLink direct row handling
	MobiLinkOrders Java code listing

	Lesson 6: Starting the MobiLink server
	Lesson 7: Setting up your MobiLink client database
	Lesson 8: Synchronizing
	Cleaning up

	Tutorial: Using central administration of remote databases
	Lesson 1: Creating a consolidated database
	Lesson 2: Creating a MobiLink project
	Lesson 3: Starting the MobiLink server
	Lesson 4: Defining a remote schema name
	Lesson 5: Defining a MobiLink user
	Lesson 6: Defining an Agent
	Lesson 7: Configuring the Agent on the remote device
	Lesson 8: Creating a synchronization model
	Lesson 9: Deploying the synchronization model
	Lesson 10: Creating a remote task
	Lesson 11: Deploying a remote task
	Lesson 12: Checking the status of a remote task
	Lesson 13: Creating a remote database on a remote device
	Lesson 14: Scheduling synchronization
	Lesson 15: Modifying scheduled synchronizations
	Lesson 16: Forcing immediate synchronization
	Lesson 17: Changing the remote schema
	Lesson 18: Querying the remote database
	Lesson 19: Uploading files using SIRT
	Cleaning up

	Tutorial: Changing a schema using the script version clause
	Lesson 1: Creating and configuring the consolidated database
	Lesson 2: Creating and configuring the remote database
	Lesson 3: Synchronizing the remote database
	Lesson 4: Inserting data in the remote database
	Lesson 5: Performing a schema change on the consolidated database
	Lesson 6: Performing a schema change on the remote database
	Lesson 7: Inserting data in the remote database
	Lesson 8: Synchronizing

	Tutorial: Changing a schema using the ScriptVersion extended option
	Lesson 1: Creating and configuring the consolidated database
	Lesson 2: Creating and configuring the remote database
	Lesson 3: Synchronizing the remote database
	Lesson 4: Performing a schema change on the consolidated database
	Lesson 5: Performing a schema change on the remote database

	Tutorial: Simulating multiple MobiLink clients using the MobiLink Replay utility
	Lesson 1: Setting up your MobiLink consolidated database
	Lesson 2: Creating a MobiLink project
	Lesson 3: Adding synchronization scripts
	Lesson 4: Starting the MobiLink server to record
	Lesson 5: Setting up your MobiLink client database
	Lesson 6: Recording synchronization
	Lesson 7: Restarting the MobiLink server to replay
	Lesson 8: Replaying synchronization
	Cleaning up

	Index

