
MobiLink™
Server-Initiated Synchronization

Version 12.0.1

January 2012

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Version 12.0.1
January 2012

Copyright © 2012 iAnywhere Solutions, Inc. Portions copyright © 2012 Sybase, Inc. All rights reserved.

This documentation is provided AS IS, without warranty or liability of any kind (unless provided by a separate written agreement between
you and iAnywhere).

You may use, print, reproduce, and distribute this documentation (in whole or in part) subject to the following conditions: 1) you must
retain this and all other proprietary notices, on all copies of the documentation or portions thereof, 2) you may not modify the
documentation, 3) you may not do anything to indicate that you or anyone other than iAnywhere is the author or source of the
documentation.

iAnywhere®, Sybase®, and the marks listed at http://www.sybase.com/detail?id=1011207 are trademarks of Sybase, Inc. or its subsidiaries.
® indicates registration in the United States of America.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

http://www.sybase.com/detail?id=1011207

Contents

About this book ... v

Server-initiated synchronization .. 1

Server-initiated synchronization components .. 2
Server-initiated synchronization deployment considerations 3
Quick start to server-initiated synchronization .. 4

Server-initiated synchronization setup ... 5

Push requests .. 5
Notifiers .. 10
Listeners ... 12
Light weight pollers ... 18
Gateways and carriers .. 19

MobiLink server settings for server-initiated synchronization 25

Server-side settings configured using the ml_add_property system
procedure ... 25
Setting up Notifiers, gateways, and carriers using Sybase Central 26
Server-side settings configured using the Notifier configuration file 29
Notifier events .. 31
Common properties ... 41
Notifier properties .. 42
Gateway properties ... 43
Carrier properties .. 48

MobiLink Listener utility for Windows devices (dblsn) 49

Listening libraries for Windows devices ... 50
MobiLink Listener options for Windows devices ... 50
MobiLink Listener keywords for Windows devices .. 63
MobiLink Listener action commands for Windows devices 65

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 iii

MobiLink Listener action variables for Windows devices 69

Light weight polling API .. 73

MLLightPoller class ... 73
MLLPCreatePoller method .. 76
MLLPDestroyPoller method .. 77

Server-initiated synchronization system procedures 79

ml_delete_device system procedure ... 79
ml_delete_device_address system procedure ... 80
ml_delete_listening system procedure ... 80
ml_set_device system procedure .. 81
ml_set_device_address system procedure .. 82
ml_set_listening system procedure ... 83
ml_set_sis_sync_state system procedure .. 84

Server-initiated synchronization advanced topics 85

Message syntax ... 85
Sending a push notification using the sa_send_udp system procedure 86

Server-initiated synchronization tutorials ... 89

Tutorial: Configuring server-initiated synchronization using light weight
polling ... 89
Tutorial: Configuring server-initiated synchronization using gateways 100

Index ... 113

MobiLink™ - Server-Initiated Synchronization

iv Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

About this book
This book describes MobiLink server-initiated synchronization, a feature that allows the MobiLink server
to initiate synchronization or perform actions on remote devices.

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 v

vi Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Server-initiated synchronization
Note
You can use Sybase Central to administer remote databases, and then use server-initiated remote tasks
(SIRT) as an alternative to server-initiated synchronization. For more information, see “Central
administration of remote databases” [MobiLink - Server Administration] and “Server-initiated remote
tasks (SIRT)” [MobiLink - Server Administration].

MobiLink server-initiated synchronization allows you to initiate synchronization from a consolidated
database. You can send push notifications to remote databases, and cause remote databases to update the
consolidated database. This MobiLink component provides programmable options for detecting changes
in the consolidated database to initiate synchronization, selecting devices to send push notifications to,
and determining how devices react to those push notifications.

Example
A trucking organization issues mobile devices to their drivers. Each device runs a database that contains
routes and delivery locations. When a driver submits a notice of a traffic disruption, the report is sent to a
consolidated database. A server-side MobiLink component called a Notifier detects the report and sends a
push notification to other drivers whose routes are affected by the disruption. This push notification
causes the remote databases to synchronize so that the drivers can use an alternate route.

The server-initiated synchronization process
In the following illustration, the Notifier checks a consolidated database for changes. The Notifier sends a
push notification to a device, resulting in the remote database being synchronized with the consolidated
database.

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 1

During the server-initiated synchronization process, the following steps occur:

1. Using a query based on business logic, the Notifier checks a consolidated database for changes that
need to be synchronized with the remote database.

2. When a change is detected, the Notifier prepares a push notification to send to the device.

3. The Notifier sends the push notification. Push notifications can be sent through a Device Tracker,
UDP, SMTP, or SYNC gateway.

4. The Listener compares the subject, content, or sender against a message filter.

5. If the filter conditions are met, an action is initiated. For example, in a typical implementation, an
action could run the MobiLink client or launch an UltraLite application.

Server-initiated synchronization components
MobiLink server-initiated synchronization requires the following components:

● Push requests A push request is a row of values in a result set that tells a Notifier that you want
to send a push notification to a device. Push requests cause server-initiated synchronizations to occur.
Any database application can create push requests, including the Notifier. For example, a push request
could be created using a database trigger that is activated when a price changes. See “Push requests”
on page 5.

● A MobiLink Notifier A Notifier is a program integrated into the MobiLink server. It frequently
checks the consolidated database for push requests. You can control how often the Notifier checks for
push requests by specifying its properties. You must specify business logic to check for push requests,
and to determine which devices should be notified. A push notification is sent to a device when the
Notifier detects a push request. See “Notifiers” on page 10.

● A MobiLink Listener A Listener is a program that runs on a device. It receives push notifications
from the Notifier, then uses a message handler to filter messages and initiate an action. In a typical
application, actions are synchronization calls, but applications are capable of performing other actions.
You can configure the MobiLink Listener to act differently on push notifications from selected server
sources, or on push notifications that contain specific content.

On Windows devices, the MobiLink Listener is an executable program that you configure with
command line options. To receive push notifications, the device must be turned on and the MobiLink
Listener must be running. See “MobiLink Listener utility for Windows devices (dblsn)” on page 49.

● A light weight poller A light weight poller is a device application that polls for push notifications
at a specified time interval. Using a light weight poller is an alternative to setting up a gateway, and is
recommended because it does not require a persistent connection to the server, and can help extend
battery life.

Server-initiated synchronization

2 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The MobiLink Listener is a light weight poller that you can configure using MobiLink Listener
command line options. Alternatively, you can use the light weight polling API to create your own
light weight poller.

See:

○ “Setting up light weight polling options” on page 16
○ “Light weight polling API” on page 73

● A gateway (An alternative to a light weight poller) A gateway provides a Notifier interface for
sending push notifications to a device. Gateways are an alternative to light weight pollers. You can
send messages using a device tracking gateway, a SYNC gateway, a UDP gateway, or an SMTP
gateway. See “Gateways and carriers” on page 19.

Note
You can use Sybase Central to administer remote databases, and then use server-initiated remote tasks
(SIRT) as an alternative to server-initiated synchronization. For more information, see “Central
administration of remote databases” [MobiLink - Server Administration] and “Server-initiated remote
tasks (SIRT)” [MobiLink - Server Administration].

Server-initiated synchronization deployment
considerations

Consider the following issues before deploying server-initiated synchronization applications.

Device limitations when using UDP gateways
● The IP address on the device must be addressable directly from the MobiLink server.

● IP tracking for UDP notification does not work if the IP address on a Windows device is not
addressable directly from the MobiLink server.

Device tracking limitations
SQL Anywhere 9.0.0 or earlier MobiLink Listeners do not support device tracking. To use device
tracking with these MobiLink Listeners, you must set up device tracking manually.

Supported device platforms
The MobiLink Listener is supported on Windows and Windows Mobile.

See also
● “Support for device tracking” on page 21

Server-initiated synchronization deployment considerations

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 3

Quick start to server-initiated synchronization
Before completing this procedure, you must set up MobiLink for normal synchronization. See “MobiLink
- Getting Started”.

1. On the MobiLink server, prepare your consolidated database to store push requests. See “Push
request requirements” on page 5.

2. On the MobiLink server, configure Notifier events to create and manage push requests. See “Notifier
events and properties configuration” on page 11.

3. On the device, set up a light weight poller. See “Light weight pollers” on page 18.

If you do not want to use a light weight poller, set up a supported gateway on the MobiLink server.
When using an SMTP gateway, you also need to configure a carrier. See “Gateways and carriers”
on page 19.

4. On the device, set up a MobiLink Listener to filter messages and perform actions. See “Message
handlers” on page 13.

For instructions on how to set up server-initiated synchronization using Sybase Central, see “Setting up
server-initiated synchronization in a synchronization model” [MobiLink - Getting Started].

Other resources
● Sample applications are installed to the %SQLANYSAMP12%\MobiLink\ directory. All applications

related to server-initiated synchronization are located in directories with the SIS_ prefix.

Server-initiated synchronization

4 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Server-initiated synchronization setup
The following sections describe how to set up server-initiated synchronization:

● “Push requests”
● “Notifiers”
● “Listeners”
● “Light weight pollers”
● “Gateways and carriers”

Push requests
A push request is a row of values in a result set that a Notifier checks to determine if push notifications
need to be sent to a device. A Notifier places the push request inside a push notification then sends the
push notification. In a typical server-initiated synchronization set up, a push request contains message
content and target device information. Before a push notification can be sent, you need to configure a
Notifier event so that the Notifier can detect the push request.

Push request requirements

The requirements for push requests are dependent on the method the MobiLink server uses to
communicate with devices. All push requests require subject and content columns.

If you are using light weight pollers to poll for push notifications, you must create a poll key column to
identify them.

If you are using gateways to send push notifications, you must create gateway and address columns.

You do not need to create push request columns if they already exist on your system. After you have
satisfied the push request requirements, you are can work with them. See “Working with push requests”
on page 7.

Push request requirements when using light weight pollers (recommended)
Create the following columns when you are using light weight pollers to poll for push notifications:

Column Type Description

Poll key VARCHAR The key used to identify a light weight poller. Each light weight
poller sends a unique key to identify itself on the MobiLink server.

Subject VARCHAR The subject line of the message.

Content VARCHAR The content of the message.

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 5

Push request requirements when using gateways
Unless otherwise specified, create the following columns when using gateways to send push notifications:

Column Type Description

Request ID INTEGER Optional. The unique ID of a push request.

This column name is required for some Notifier events. See “Noti-
fier events” on page 31.

Gateway VARCHAR The name of the gateway to which the message is sent.

Subject VARCHAR The subject line of the message.

Content VARCHAR The content of the message.

Address VARCHAR The destination address of a device.

Resend interval VARCHAR Optional. The time interval between message resends.

The resend interval is useful when using a UDP gateway on an un-
reliable network. The Notifier assumes that all attributes associ-
ated with the push requests do not change; subsequent updates are
ignored after the first poll of the request. The Notifier automatical-
ly adjusts the next polling interval if a push notification must be
sent before the next polling time. You can stop a push request
from being sent using synchronization logic in the request_cursor
event. Delivery confirmation from the intended MobiLink Listener
may stop a subsequent resend. See “request_cursor event”
on page 34.

Time to live VARCHAR Optional. The time until the resend expires.

See also
● “Notifier events and properties configuration” on page 11
● “request_cursor event” on page 34

Example
The following example satisfies the push request requirements for using light weight polling by creating
the necessary columns in a SQL Anywhere consolidated database table:

CREATE TABLE PushRequest (
 req_id INTEGER DEFAULT AUTOINCREMENT PRIMARY KEY,
 poll_key VARCHAR(128),
 subject VARCHAR(128),
 content VARCHAR(128)
)

You only need to create this table, or something like it, if the push request columns are not available
elsewhere. These columns can exist across multiple tables, in existing tables, or in a view.

Server-initiated synchronization setup

6 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Working with push requests

Generating push requests
Before push requests can be generated, your consolidated database must contain the push request columns
required for server-initiated synchronization, and you must be able to obtain the values with a single
database query. Push requests are generated automatically when you provide a database query in the
request_cursor event that selects push request columns. For more information about push request
requirements, see “Push request requirements” on page 5.

Push request generation example for a light weight poller
Assume that a remote device is identified on your MobiLink server as unique_device_ID, and your
consolidated database contains a table named PushRequest, which was created using the following SQL
statement:

CREATE TABLE PushRequest (
 req_id INTEGER DEFAULT AUTOINCREMENT PRIMARY KEY,
 poll_key VARCHAR(128),
 subject VARCHAR(128),
 content VARCHAR(128)
)

In this example, you can execute the following SQL statement on the consolidated database to prepare a
push request:

INSERT INTO PushRequest (poll_key, subject, content) VALUES
('unique_device_ID', 'synchronize', 'ASAP');

Using the above script to insert values into the PushRequest table does not generate a push request by
itself. You must set up a database query in the request_cursor event on the MobiLink server so that the
inserted values can be selected and a push request can be generated.

In this example, you can define the following SQL statement for the request_cursor event script on your
MobiLink server:

SELECT poll_key, subject, content FROM PushRequest;

A push request is generated when the unique_device_ID device polls the server for push notifications and
the request_cursor event detects data in the PushRequest table. When sent to the device, the push
notification subject is defined as synchronize, and the content is defined as ASAP.

Push request limitations
The following table lists the push request limitations for each column:

Column Type Limitation

Request ID INTEGER This value must be a unique primary key.

Poll key VARCHAR Only required when using light weight pollers.

There are no limitations on the poll key.

Push requests

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 7

Column Type Limitation

Gateway VARCHAR Only required when using gateways.

This value must be set to the name of an enabled gateway. You specify
your own custom gateway name, or choose one of the following pre-
configured gateway names:

● Default-DeviceTracker
● Default-SMTP
● Default-SYNC
● Default-UDP

See “Gateways as an alternative to light weight pollers” on page 19.

Subject VARCHAR Avoid using non-alphanumeric characters when setting this value. Bra-
ces, chevrons, double quotations, parenthesis, single quotations, and
square brackets are reserved for internal use, and should not be used in
the subject column.

Content VARCHAR There are no limitations on the message content.

Address VARCHAR Only required when using gateways.

For UDP gateways, this value should be an IP address or hostname.
Port number suffixes are supported in the following formats:

● IP-address:port-number
● hostname:port-number

For SMTP gateways, this value should be an email address.

For SYNC and device tracking gateways, this value should be the re-
cipient name defined with the MobiLink Listener -t+ option. See “-t
dblsn option” on page 60.

Resend in-
terval

VARCHAR By default, this value is measured in minutes. You can specify S, M,
and H for units of seconds, minutes, and hours, respectively. You can
also combine units; for example, 1H 30M 10S informs the Notifier to
resend the messages every one hour, thirty minutes, and ten seconds.

If this value is null or not specified, the default is to send exactly once,
with no resend.

Server-initiated synchronization setup

8 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Column Type Limitation

Time to live VARCHAR By default, this value is measured in minutes. You can specify S, M,
and H for units of seconds, minutes, and hours, respectively. You can
also combine units; for example, 3H 30M 10S informs the Notifier to
stop resending messages three hours, thirty minutes, and ten seconds
after the initial send.

If this value is null or not specified, the default is to send exactly once,
with no resend.

Detecting push requests and sending push notifications
A Notifier detects a push request by frequently firing the request_cursor event. By default, a script is not
specified for this event; you must provide a request_cursor event script so that the Notifier can detect push
requests. In a typical application, a request_cursor event script is a SELECT statement. See
“request_cursor event” on page 34.

The following example uses the ml_add_property system procedure to create a request_cursor event script
for a custom Notifier named Simple. The SELECT statement informs the Notifier to detect push requests
from a table named PushRequest.

CALL ml_add_property('SIS', 'Notifier(Simple)', 'request_cursor',
 'SELECT poll_key, subject, content FROM PushRequest'
);

Note
You must select columns in the same order as they are specified in the push request. See “Push request
requirements” on page 5.

For more information about setting up Notifier events, see “MobiLink server settings for server-initiated
synchronization” on page 25.

Deleting push requests
The Notifier resends push notifications if the information about the notified device is never updated after
being sent and satisfied according to your business rules. Once push requests are satisfied, you need to
prevent the Notifier from detecting old push requests. You can delete the push requests using a
synchronization script if the push notifications were sent for synchronization purposes.

You can use the request_delete event to delete push requests by their request ID, however, your push
request must contain a request ID column, and you must enable delivery confirmation.

See:

● “Push request requirements” on page 5
● “request_delete event” on page 36
● “MobiLink server settings for server-initiated synchronization” on page 25

Push requests

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 9

See also
● “Tutorial: Configuring server-initiated synchronization using light weight polling” on page 89
● “Tutorial: Configuring server-initiated synchronization using gateways” on page 100

Notifiers
A Notifier is a program integrated into the MobiLink server that frequently checks the consolidated
database for push requests. Once push requests are detected, it sends push notifications to devices. A
Notifier also executes a series of events, allowing you to create scripts for monitoring data, managing
push requests, handling delivery confirmations, and handling errors.

Notifiers start when you first load the MobiLink server. You can have more than one Notifier running
within a single instance of the MobiLink server. For an example of how to use multiple Notifiers, see the
sample application located in the %SQLANYSAMP12%\MobiLink\SIS_MultipleNotifier.

If a Notifier loses the database connection, it attempts to recover the connection until it regains access.
After recovery, the Notifier continues to operate with the same configuration settings.

Notifiers in a MobiLink server farm
In MobiLink 11.0 and earlier, server-initiated synchronization in a MobiLink server farm could cause
redundant push notifications, leading to additional synchronizations and increased load on the
consolidated database in a MobiLink server farm. A Notifier can now run on every MobiLink server in
the farm; the Notifiers, together, ensure that there are no redundant push notifications to the same
MobiLink Listener. The mlsrv12 -lsc server option is used to pass information to other servers when they
want to connect to the local MobiLink server. See “-lsc mlsrv12 option” [MobiLink - Server
Administration].

This feature makes one Notifier the primary, and all other Notifiers secondary. The primary Notifier
controls push notifications, either directly or indirectly, via the secondaries. The secondary Notifiers also
route MobiLink Listener information to the primary Notifier, so it knows where the MobiLink Listeners
are and how to reach them.

If the MobiLink server running the primary Notifier fails, the server farm chooses a new primary Notifier,
and notifications continue.

MobiLink Listeners may connect to any MobiLink server in the farm without needing to know which is
the primary server.

To use this feature, the following mlsrv12 command line options are required on all MobiLink servers in
the farm:

● “-lsc mlsrv12 option” [MobiLink - Server Administration]
● “-notifier mlsrv12 option” [MobiLink - Server Administration]
● “-zs mlsrv12 option” [MobiLink - Server Administration]

Server-initiated synchronization setup

10 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Example
On host001:

mlsrv12 -notifier -zs ml001 -lsc tcpip(host=host001;port=2439) ...

On host007:

mlsrv12 -notifier -zs ml007 -lsc tcpip(host=host007;port=2439) ...

Notifier events and properties configuration
Notifier events allow you to embed scripts that manage the overall server-initiated synchronization
process. For more information about the Notifier event sequence and how they are fired, see “Notifier
events” on page 31.

For example, you can configure Notifier events to perform the following tasks:

● Determine what, how, and to whom information is sent in a push request using the request_cursor
event.

● Create push requests that respond to changes in the consolidated database using the begin_poll event.
(Advanced usage)

● Delete push requests using the request_delete event. (If required)

● Track Notifier polls and clean up table data using the end_poll event. (Advanced usage)

Notifier properties are similar to events. While events manage the notification process, properties manage
Notifier behavior. For example, Notifier properties determine how often the Notifier should poll the
consolidated database, and if the Notifier should be enabled on startup. Notifier properties and events are
configured as server-side settings.

See also
● “MobiLink server settings for server-initiated synchronization” on page 25

Notifier startup
When the MobiLink server loads, it starts all enabled Notifiers. To disable a Notifier, you must set the
enable Notifier property value to false. See “Notifier properties” on page 42.

To start your Notifiers, use one of the following methods:

● Configure your Notifiers and run mlsrv12 with the -notifier option specified.

● If your settings are stored in a Notifier configuration file, load the database at the command line by
running mlsrv12, and specify the file using the -notifier option. For example, if you want to use a file

Notifiers

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 11

called myfirst.Notifier, the following command configures the MobiLink server to use the properties
and events specified in the file:

mlsrv12 ... -notifier c:\myfirst.Notifier

If you are using QAnywhere, load the database at the command line by running mlsrv12 with the -m
option specified.

See also
● “-notifier mlsrv12 option” [MobiLink - Server Administration]
● “MobiLink server settings for server-initiated synchronization” on page 25
● “Notifier events and properties configuration” on page 11
● “-m mlsrv12 option” [MobiLink - Server Administration]

Listeners
A Listener is a program that runs on a device. It receives push notifications from a Notifier and initiates
actions. Listeners can upload device tracking information to the consolidated database when using a
gateway for server-initiated synchronization.

See also
● “Device tracking gateways” on page 20
● “Message handlers” on page 13
● “MobiLink Listener utility for Windows devices (dblsn)” on page 49

Example
The following command starts the MobiLink Listener utility for Windows devices:

dblsn -v2 -m -ot dblsn.log
 -l "poll_connect='host=localhost';
 poll_notifier=notifier_name1;
 poll_key=sis_user1;
 poll_every=10;
 subject=sync;
 action='start dbmlsync.exe
 -c SERVER=rem1;UID=DBA;PWD=sql
 -ot dbmlsyncOut.txt -qc';"

This command loads a MobiLink Listener with verbosity set to level 2, enables message logging, and
specifies that the server is located at localhost. The dblsn.log file is truncated before output is written to
it. The MobiLink Listener polls for push notifications every 10 seconds. If the MobiLink Listener receives
a push notification where the subject is named sync, the MobiLink client application is launched.

For more information about MobiLink Listener command line options for Windows, see “MobiLink
Listener options for Windows devices” on page 50.

Server-initiated synchronization setup

12 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Message handlers
A message handler is a MobiLink Listener component that scans the message contents of a push
notification to initiate an action. It can also be used to specify light weight polling options, such as the
server location and the polling frequency.

Message handlers consist of the following components:

● Filter keywords After a push notification is preprocessed, you can use filter keywords to scan the
message contents. When a filter condition is met, an action is initiated. For example, you can specify
the subject keyword to filter a message that contains a specific subject, or you can specify the sender
keyword to filter messages received from a specific MobiLink server.

● An action An action is initiated after filter conditions are met on a message. In a typical
application, you specify an action to initiate synchronization, but you can also perform other
operations. To assist with error processing, you can specify an alternative action to handle instances
when the original action fails.

● Poll settings Poll settings allow you to configure how the MobiLink Listener polls the MobiLink
server for push notifications.

● Options Options allow you to control remote settings, such as delivery and action confirmation.

You can create a message handler with the dblsn -l option. Multiple message handlers can be specified.

See also
● “-l dblsn option” on page 55
● “MobiLink Listener keywords for Windows devices” on page 63
● “MobiLink Listener action commands for Windows devices” on page 65

Working with message handlers
When a push notification is received by a MobiLink Listener, it extracts a message, which is split up and
divided into several keywords. The message keyword contains the entire message in a raw format. The
message is then divided into subject, content, and sender keywords. These keywords are run through
your message filter to determine which actions to initiate. For more information about using these
keywords for filtering messages, see “Filtering a message” on page 13.

Filtering a message

A filter keyword is used to compare part of a push notification to a user-defined phrase. If the two phrases
are textually equivalent, then an action is initiated. For more information about preprocessing push
notifications for message filtering, see “Message syntax” on page 85.

Filter keywords can be specified by running the MobiLink Listener with the following syntax:

dblsn ... -l "filter-keyword-name='content to filter';action='...'"

Listeners

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 13

You can use the -l option multiple times to create multiple filters, but you must also specify an action for
every -l instance. Actions are only initiated when all filters are satisfied.

Each of the following keywords can only appear once in a message handler:

● content This and the subject keyword are recommended for filtering messages. Use this keyword
to filter messages based on their content. For example:

dblsn -l "content='your content filter here';action='...'"

● subject This and the content keyword are recommended for filtering messages. Use this keyword
to filter messages based on their subject. For example:

dblsn -l "subject='your subject filter here';action='...'"

● message Use this keyword to filter messages based on their raw data. Your filter value must
match the exact length of the message. This keyword is not recommended since it has a variable
structure. For more information about preprocessing push notifications for message filtering, see
“Message syntax” on page 85.

● message_start Use this keyword to filter messages based on part of their raw data, starting from
the beginning. For more information about preprocessing push notifications for message filtering, see
“Message syntax” on page 85.

When you specify this keyword, the MobiLink Listener creates the $message_start and $message_end
action variables.

● sender Use this keyword to filter messages based on their sender. This keyword is useful for
tracking push notifications sent by a particular Notifier. The value is dependent on the gateway being
used. For UDP gateways, it is the IP address of the host of the gateway. For SYNC gateways, it is
MobiLink. For SMTP gateways, it depends on your wireless carrier. See “Gateways and carriers”
on page 19.

See also
● “MobiLink Listener keywords for Windows devices” on page 63
● “Action variables” on page 15

Initiating actions

When a message matches the conditions of a filter, an action is initiated. For more information about
filtering push notifications, see “Filtering a message” on page 13.

Actions can be specified by running the MobiLink Listener with the following syntax:

dblsn ... -l "...;action='action-command command statement'"

The following action commands allow you to perform different tasks when a message is filtered:

● START Start an application, and allow it to run in the background.

Server-initiated synchronization setup

14 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● RUN Run an application and wait for it to complete before receiving more push notifications.

● POST Post a window message to a process that is already running. This command can only be used
on Windows devices.

● SOCKET Send a message to an application using a TCP/IP connection.

● DBLSN FULL SHUTDOWN Shut down the MobiLink Listener.

See also
● “MobiLink Listener action commands for Windows devices” on page 65
● “Action variables” on page 15

Action variables

Action variables allow you to reference parts of a push notification from a message filter or an action. See
“Initiating actions” on page 14 and “Filtering a message” on page 13.

How action variables are set
Most action variables are set automatically every time a push notification is received. The variable names
are similar to the names specified in the message syntax. For example, message sets the $message action
variable, while subject sets $subject, sender sets $sender, and content sets $content. See “Message
syntax” on page 85.

Using action variables
Action variables are used in the command line when you run the MobiLink Listener. How they are used is
dependent on the message handler, and the action you want to initiate. The following example
demonstrates the use of the RUN action command, which is used to initiate the MobiLink client
application:

dblsn ... -l "subject=publish;action='RUN dbmlsync.exe @dbmlsync.txt -n
$content'"

This message handler filters messages where the subject is textually equivalent to "publish". Once
filtered, dbmlsync is run with the -n option, passing the $content action variable as a parameter. Assuming
that content references the name of a synchronization publication, dbmlsync uses the publication to
synchronize the device database with the consolidated database.

The following example demonstrates the use of an action variable to filter a message:

dblsn ... -l "subject=$content;action='RUN script.bat"

When subject is textually equivalent to content, this message handler filters messages. Once filtered, the
device runs a custom batch script.

Listeners

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 15

See also
● “MobiLink Listener action commands for Windows devices” on page 65
● “MobiLink Listener action variables for Windows devices” on page 69
● “Filtering messages by remote ID” on page 17

Setting up light weight polling options

You can use message handlers to handle polling operations. The light weight polling options allow you to
specify the location of the server, the Notifier name, the polling frequency, and a poll key. Alternatively,
you can use the light weight polling API to specify these properties.

Light weight polling options can be specified by running the MobiLink Listener with the following
syntax:

dblsn ... -l
 "poll_connect=protocol-options;
 poll_notifier=Notifier-name;
 poll_key=identifier-string;
 poll_every=number-of-seconds;..."

A single message handler can only contain one of each of the following options:

● poll_connect Use this option to specify the protocol options required to connect to the server.
Alternatively, you can use the dblsn -x option to specify the default protocol options. The
poll_connect option overrides the default protocol options for the message handler.

● poll_notifier Use this option to specify the Notifier used by the MobiLink server to handle push
requests. This option is required since the MobiLink server can host multiple Notifiers.

● poll_key Use this option to identify the MobiLink Listener to the Notifier. The MobiLink server
uses this value to send push notifications intended for the device. In a typical application, this value
should be the remote ID of the device.

● poll_every Use this option to specify how often the MobiLink Listener should poll the Notifier. By
default, the MobiLink Listener automatically retrieves this value from the MobiLink server. This
value is measured in seconds.

See also
● “Push request requirements” on page 5
● “Notifier events and properties configuration” on page 11
● “Light weight pollers” on page 18
● “MobiLink Listener keywords for Windows devices” on page 63
● “Light weight polling API” on page 73

Server-initiated synchronization setup

16 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Advanced message handler features
Filtering messages by remote ID

You can filter messages by remote ID using the dblsn -r option, and the $remote_id action variable.

When synchronizing a SQL Anywhere remote database for the first time, a remote ID file containing the
ID of your database is created. The file name is the same as the database, but has the .rid extension, and is
stored in the same directory as the database. For UltraLite databases, there is no remote ID file; the remote
ID is extracted from the database directly.

When you start the MobiLink Listener, use the dblsn -r option to provide the name and location of the
remote ID file or the UltraLite database, then use the dblsn -l option to create your message handler.

You can type the remote ID directly into your message filter. However, remote IDs are GUID by default;
the remote ID is not easy to remember unless you provide a meaningful name.

Note
In the dblsn command line, you can specify multiple instances of the -r and -l options. The $remote_id
action variable used in a -l option is always specified in the -r option that precedes it. So, it is important to
specify the -r option before the -l option.

The following example demonstrates the use of multiple remote IDs. It assumes that your device has a
SQL Anywhere database called business.db, and an UltraLite database called personal.udb. In this
example, ulpersonal is the window class name of the UltraLite application.

dblsn ... -r "c:\app\db\business.rid"
 -l "subject=$remote_id;action='dbmlsync.exe -k -c dsn=business';"
 -r "c:\ulapp\personal.udb"
 -l "subject=$remote_id;action=post dbas_synchronize to ulpersonal;"

See also
● “Action variables” on page 15
● “Remote IDs” [MobiLink - Client Administration]
● “-r dblsn option” on page 59
● “MobiLink Listener action variables for Windows devices” on page 69

Connectivity-initiated synchronization

On Windows devices, you can initiate synchronization when connectivity changes.

When IP connectivity is gained or lost, the device sends a push notification to the MobiLink Listener with
the message _IP_CHANGED_. When the device finds a new optimum path to the MobiLink server, it
sends a push notification to the MobiLink Listener with the message _BEST_IP_CHANGED_. Using a
message handler, you can detect these changes in connectivity and initiate an action.

Identifying any change in connectivity
The _IP_CHANGED_ message indicates that a change in IP connectivity has occurred. A change usually
occurs when a device is within range of a Wi-Fi network, when the user makes a RAS connection, or

Listeners

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 17

when the user puts the device in a cradle. You can reference the _IP_CHANGED_ message by running
the MobiLink Listener with the following syntax:

dblsn ... -l "message=_IP_CHANGED_;action='...'"

The following example demonstrates how to use the _IP_CHANGED_ message. The message handler
filters the message, and sends it to the server. If the connection is lost, an error is generated.

dblsn -l "message=_IP_CHANGED_;
 action='
 SOCKET port=12345;
 sendText=IP changed: $adapters|$network_names;
 recvText=beeperAck;
 timeout=5';
 continue=yes;"

Identifying a change in the optimum path to a MobiLink server
The _BEST_IP_CHANGED_ message indicates that a change in the optimum path to the MobiLink
server has occurred. You can reference this message when you run the MobiLink Listener with the
following syntax:

dblsn ... -x MobiLink-protocol-options -l
"message=_BEST_IP_CHANGED_;action='...'"

When filtering the _BEST_IP_CHANGED_ message, the $best_ip action variable, which substitutes the
local IP address that represents the best IP connection, can help you initiate useful actions. If there is no
IP connection, $best_ip returns 0.0.0.0.

In the following example, the _BEST_IP_CHANGED_ message is used to initiate a synchronization
when the best IP connection changes. If the connection is lost, an error is generated.

dblsn -x http(host=mlserver.company.com)
 -v2 -m -i 3 -ot dblsn.log
 -l "message=_BEST_IP_CHANGED_;
 action='
 START dbmlsync.exe -ra -c SERVER=remote;UID=DBA;PWD=sql -n
test_pub'"

Note
When testing connectivity-initiated synchronization with your applications, run the MobiLink Listener on
a separate computer from your MobiLink server.

See also
● “MobiLink Listener utility for Windows devices (dblsn)” on page 49
● “MobiLink Listener action commands for Windows devices” on page 65
● “MobiLink Listener action variables for Windows devices” on page 69

Light weight pollers
A light weight poller is a device application that polls for push notifications at a specified time interval.
Using a light weight poller is an alternative to setting up a gateway, and is recommended because it does

Server-initiated synchronization setup

18 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

not require a persistent connection to the server like the SYNC gateway does, nor does it require a
continuous connection like the UDP gateway does.

When a device polls the server, it sends a poll key and a Notifier name. The MobiLink server checks the
Notifier name to determine which Notifier should check the cache for push requests. The poll key
identifies the device to the Notifier, which uses the poll key to detect push requests intended for the
device. Push notifications are sent after the push requests are detected.

Use MobiLink Listener command line options to configure a light weight poller. Alternatively, use the
light weight polling API to integrate a light weight poller into your device application.

Note
You can use Sybase Central to administer remote databases, and then use a server-initiated remote task
(SIRT) to implement a push notification. For more information, see “Central administration of remote
databases” [MobiLink - Server Administration] and “Server-initiated remote tasks (SIRT)” [MobiLink -
Server Administration].

See also
● “Light weight polling API” on page 73
● “Setting up light weight polling options” on page 16
● “MobiLink Listener keywords for Windows devices” on page 63

Gateways and carriers

Gateways as an alternative to light weight pollers

A gateway is a MobiLink object, stored in MobiLink system tables or a Notifier properties file, that
contains information about how to send messages for server-initiated synchronization. They are an
alternative to light weight pollers and require a constant network connection.

Gateway properties are configured on a MobiLink server. You can configure multiple gateways on a
single MobiLink server.

Supported gateways
The following gateways are supported on the MobiLink server:

● SYNC gateway The SYNC gateway is a TCP/IP-based gateway; push notifications are sent
through the same protocol as your MobiLink synchronizations.

The default SYNC gateway is named Default-SYNC. Typically, the default gateway settings do not
need to be changed.

● UDP gateway The UDP gateway sends push notifications through a UDP gateway.

Gateways and carriers

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 19

The default UDP gateway is named Default-UDP. Typically, the default gateway settings do not need
to be changed. MobiLink Listeners use UDP by default when listening for push notifications.

● SMTP gateway The SMTP gateway sends push notifications using an email-to-SMS carrier
service.

The default SMTP gateway is named Default-SMTP.

Device tracking gateway
In addition to the supported gateways, you can configure a device tracking gateway which automatically
chooses the most appropriate gateway to send push notifications. The default device tracking gateway is
Default-DeviceTracker. It is recommended that you use this gateway if you do not want to use a light
weight poller.

See also
● “MobiLink server settings for server-initiated synchronization” on page 25
● “SYNC gateway properties” on page 46
● “UDP gateway properties” on page 47
● “SMTP gateway properties” on page 45
● “Device tracking gateways” on page 20

Device tracking gateways

Device tracking allows a MobiLink server to track devices using the remote ID information of a push
request. A device tracking gateway uses automatically-tracked IP addresses, phone numbers, and public
wireless network provider IDs to deliver push notifications through SYNC, UDP, and SMTP gateways.
The gateway attempts to connect to the device using a SYNC gateway first. If delivery fails, a UDP
gateway is attempted, followed by an SMTP gateway. This feature is useful when you expect device
addresses to change.

A device tracking gateway can have a maximum of three subordinate gateways: one SYNC, one SMTP,
and one UDP. Push notifications are automatically routed to one of the subordinate gateways based on the
device tracking information sent by a MobiLink Listener. By enabling these subordinate gateways, device
address changes are automatically managed by the MobiLink server. When an address changes, the
MobiLink Listener synchronizes with the consolidated database to update the tracking information, which
is located in the ml_device_address system table.

Most 9.0.1 or later MobiLink Listeners support device tracking. If you are using a MobiLink Listener that
does not support device tracking, you can use a device tracking gateway by providing the tracking
information.

See also
● “Support for device tracking” on page 21
● “Gateways as an alternative to light weight pollers” on page 19
● “Carriers and carrier configuration” on page 23

Server-initiated synchronization setup

20 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Support for device tracking

Note
You only need to support device tracking if you are using MobiLink Listeners running on SQL Anywhere
9.0.0 or earlier. Device tracking is already supported on all other MobiLink Listeners for Windows
devices.

Several system procedures are available to manually set up device tracking for 9.0.0 MobiLink Listeners.
These procedures update the ml_device, ml_device_address, and ml_listening MobiLink system tables on
the consolidated database.

Prerequisites

There are no prerequisites for performing this task.

Context and remarks

With manual device tracking, you can address recipients by MobiLink user name without providing
network address information. However, the information cannot be automatically updated by MobiLink if
it changes; you must change it manually. This method is especially useful for SMTP gateways because
email addresses seldom change.

For UDP gateways, you can not rely on static entries if your IP address changes every time you reconnect.
You can resolve this problem by addressing the host name instead of IP address. However, this solution
slows updates to DNS server tables, and can misdirect push notifications. You can also set up system
procedures to update the system tables programmatically.

Manually set up device tracking for 9.0.0 MobiLink Listeners

1. For each device, add a device record to the ml_device system table. For example:

CALL ml_set_device(
 'myWindowsMobile',
 'MobiLink Listeners for myWindowsMobile - 9.0.1',
 '1',
 'not used',
 'y',
 'manually entered by administrator'
);

The first parameter, myWindowsMobile, is a unique user-defined device name. The second
parameter contains optional remarks about the MobiLink Listener version. The third parameter
specifies a MobiLink Listener version; use 0 for SQL Anywhere 9.0.0 MobiLink Listeners, or 2 for
post-9.0.0 MobiLink Listeners for Windows. The fourth parameter specifies optional device
information. The fifth parameter specifies whether device tracking should be ignored. The final
parameter contains optional remarks for this entry.

2. For each device, add an address record to the ml_device_address system table. For example:

CALL ml_set_device_address(
 'myWindowsMobile',

Gateways and carriers

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 21

 'ROGERS AT&T',
 '55511234567',
 'y',
 'y',
 'manually entered by administrator'
);

The first parameter, myWindowsMobile, is a user-defined unique device name. The second
parameter is a network provider ID, which must match the network_provider_id carrier property. The
third parameter is an IP address for UDP. The fourth parameter determines whether to activate this
entry for sending push notifications. The fifth parameter specifies whether device tracking should be
ignored. The final parameter contains optional remarks for this entry.

3. For each remote database, add a recipient record to the ml_listening system table for each device you
added. This maps the device to the MobiLink user name. For example:

CALL ml_set_listening(
 'myULDB',
 'myWindowsMobile',
 'y',
 'y',
 'manually entered by administrator'
);

The first parameter is a MobiLink user name. The second parameter is a user-defined unique device
name. The third parameter determines whether to activate this entry for device tracking addressing.
The fourth parameter specifies whether device tracking should be ignored. The final parameter
contains optional remarks for this entry.

Results

The specified devices are set up for device tracking.

Next

None.

See also
● “ml_set_device system procedure” on page 81
● “ml_set_listening system procedure” on page 83
● “ml_set_device_address system procedure” on page 82
● “Device tracking gateways” on page 20
● “Carrier properties” on page 48

Quick start to device tracking gateway configuration

Set up device tracking

1. Set up a SYNC, UDP, or SMTP gateway.

Server-initiated synchronization setup

22 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

When you start the MobiLink server, these gateways are already set up with the default settings. For
more information about configuring properties or creating your own gateways, see “MobiLink server
settings for server-initiated synchronization” on page 25.

Note
The SMTP gateway requires carrier configuration. See “Carriers and carrier configuration”
on page 23.

2. Create a new Notifier and set up your request_cursor event with the following conditions:

● The gateway name must be set to the name of a device tracking gateway you want to use. The
default gateway is named Default-DeviceTracker. This name is represented by the first column of
the result set.

● The address name must be set to the remote ID of the device. Use the dblsn -t+ option to register
the remote ID with the MobiLink server. This name is represented by the fourth column of the
result set.

For more information about setting up a request_cursor event, see “request_cursor event”
on page 34.

3. Add the MobiLink Listener name to the ml_user system table.

The default MobiLink Listener name is device_name-dblsn, where device_name is the name of your
device.

Run the MobiLink Listener to view the device name, which can be found in the MobiLink Listener
messages window. Alternatively, you can set the device name using the dblsn -e option, or set a
different MobiLink Listener name using the dblsn -u option. See “-e dblsn option” on page 54 and “-
u dblsn option” on page 61.

For more information about registering MobiLink users, see “MobiLink user creation and
registration” [MobiLink - Client Administration].

4. Start a MobiLink Listener with the required options. For more information about starting a MobiLink
Listener, see “MobiLink Listener utility for Windows devices (dblsn)” on page 49.

Carriers and carrier configuration
A carrier is a MobiLink object that is stored in MobiLink system tables or a Notifier properties file, that
contains information about a public carrier for use by server-initiated synchronization.

You must configure a wireless carrier to send push notifications through an SMTP gateway because the
Notifier needs to construct valid email addresses. You must also configure a wireless carrier when using a
device tracking gateway with a subordinate SMTP gateway enabled.

Carrier properties, such as the network provider ID and the SMS email prefix, are configured on a
MobiLink server. To accommodate multiple carrier services, configure multiple carriers on the MobiLink
server.

Gateways and carriers

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 23

Sender syntax
When a push notification is received by a MobiLink Listener and preprocessed for message filtering, it is
divided into several keywords. The sender keyword in a message is an email address, which is generated
by the device and varies depending on the wireless carrier. For more information about preprocessing
messages, see “Message syntax” on page 85.

The sender syntax is in the following format:

sender = sms_email_user_prefix phone-number@sms_email_domain

Note
There are no spaces between sms_email_user_prefix and phone-number.

The sms_email_user_prefix and sms_email_domain values are carrier properties that should be configured
on the MobiLink server. The phone-number value is taken from the address column of the
ml_device_address system table.

To determine the sender syntax, run the MobiLink Listener on a device that uses a carrier service. Enable
message logging, and set verbosity to level 2 using the dblsn -m and -v options. Check the message log
after loading the MobiLink Listener.

See also
● “MobiLink server settings for server-initiated synchronization” on page 25
● “Carrier properties” on page 48

Server-initiated synchronization setup

24 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

MobiLink server settings for server-initiated
synchronization

Server-side settings consist of Notifier properties, gateway properties, carrier properties, and Notifier
events. To configure these settings, use one of the following methods:

● Sybase Central
● A Notifier configuration file
● The ml_add_property system procedure

The Sybase Central and ml_add_property system procedure methods add events and settings to the
ml_property system table.

Note
Changes made to server-side settings do not take effect while the MobiLink server is running. To apply
new settings, you must shut down and restart the MobiLink server.

If you have already configured server-side settings in the ml_property system table and want to use a
Notifier configuration file, the system table settings are always loaded first, followed by the file settings.
The Notifier configuration file overwrites existing server-side settings, but the changes are not
permanently applied to the consolidated database.

Server-side settings configured using the
ml_add_property system procedure

Use the ml_add_property system procedure to configure the server-side settings of a SQL Anywhere
consolidated database. You can set these properties and events using Interactive SQL.

Note
You must use the ANSI standard when naming your notifiers, gateways, and carriers.

Common properties syntax
CALL ml_add_property('SIS', '', 'Property', Value);

Notifier properties and events syntax
CALL ml_add_property('SIS', 'Notifier(NotifierName)', 'Event-or-Property',
Value);

Gateway properties syntax
CALL ml_add_property('SIS', 'DeviceTracker(DeviceTrackerName)', 'Property',
Value);

CALL ml_add_property('SIS', 'SMTP(SMTPName)', 'Property', Value);

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 25

CALL ml_add_property('SIS', 'UDP(UDPName)', 'Property', Value);
CALL ml_add_property('SIS', 'SYNC(SYNCName)', 'Property', Value);

Carrier properties syntax
CALL ml_add_property('SIS', 'Carrier(CarrierName)', 'Property', Value);

See also
● “ml_add_property system procedure” [MobiLink - Server Administration]

Setting up Notifiers, gateways, and carriers using
Sybase Central

Sybase Central provides a graphical user interface for modifying properties and events. You can use
Sybase Central to configure multiple Notifiers, gateways, and carriers.

Prerequisites

There are no prerequisites for performing this task.

Context and remarks

You must use the ANSI standard when naming your notifiers, gateways, and carriers.

By configuring your server-side settings through Sybase Central, you do not need to specify a Notifier
configuration file at the command line when using the mlsrv12 -notifier option.

Set up Notifiers, gateways, and carriers using Sybase Central

1. Use the MobiLink plug-in to create a MobiLink project for your consolidated database if you have not
already created one.

See “Creating a MobiLink project” [MobiLink - Getting Started].

2. Click View » Folders.

3. In the left pane of Sybase Central, expand MobiLink 12, your MobiLink project name, Consolidated
databases, your consolidated database name, and then select Notification.

In the right pane, all available Notifiers, gateways, and carriers appear.

4. Create new Notifiers, gateways, and carriers.

● To create a new Notifier, click the Notifiers tab in the right pane, then click File » New » Notifier.

● To create a new gateway, click the Gateways tab in the right pane, then click File » New »
Gateway.

● To create a new carrier, click the Carriers tab in the right pane, then click File » New » Carrier.

MobiLink server settings for server-initiated synchronization

26 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

5. Select a Notifier, gateway, or carrier to configure.

● To set up Notifier properties or events, click the Notifiers tab in the right pane and choose the
Notifier that you want to configure.

● To set up gateway properties, click the Gateways tab in the right pane and choose the gateway that
you want to configure.

● To set up carrier properties, click the Carriers tab in the right pane and choose the carrier that you
want to configure.

Click File » Properties.

A window appears where you can adjust all settings applicable to the chosen Notifier, gateway, or
carrier.

6. Click OK.

Results

The Notifier, gateway, or carrier is set up and ready to use.

Next

None.

Importing server-side settings from a Notifier configuration
file

Use a Notifier configuration file to import server-side setting into the ml_property_table.

Prerequisites

There are no prerequisites for performing this task.

Context and remarks

Many.

Import server-side settings from a Notifier configuration file

1. Use the MobiLink plug-in to create a MobiLink project for your consolidated database if you have not
already created one.

See “Creating a MobiLink project” [MobiLink - Getting Started].

2. Click View » Folders.

3. In the left pane of Sybase Central, expand MobiLink 12, your MobiLink project name, Consolidated
databases, your consolidated database name, and then select Notification.

Setting up Notifiers, gateways, and carriers using Sybase Central

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 27

4. Click File » Import Settings, and follow the instructions in the wizard.

Results

The settings are imported from the Notifier configuration file into the ml_property_table.

Next

None.

Exporting server-side settings to a Notifier configuration
file

You can export the server-side settings from the ml_property table into a Notifier configuration file. By
exporting the settings, you can create multiple versions of your server-side settings, and you can load a
different version using the mlsrv12 -notifier option.

Prerequisites

There are no prerequisites for performing this task.

Context and remarks

Many.

Export server-side settings to a Notifier configuration file

1. Use the MobiLink plug-in to create a MobiLink project for your consolidated database if you have not
already created one.

See “Creating a MobiLink project” [MobiLink - Getting Started].

2. Click View » Folders.

3. In the left pane of Sybase Central, expand MobiLink 12, your MobiLink project name, Consolidated
databases, your consolidated database name, and then select Notification.

4. Click File » Export Settings, and follow the instructions in the wizard.

Results

The specified settings are exported to a Notifier configuration file.

Next

None.

MobiLink server settings for server-initiated synchronization

28 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “Setting up server-initiated synchronization in a synchronization model” [MobiLink - Getting Started]

Server-side settings configured using the Notifier
configuration file

Server-side settings can be stored in a Notifier configuration file. You can use this file to configure
multiple Notifiers, gateways, and carriers.

Note
You must use the ANSI standard when naming your notifiers, gateways, and carriers.

Creating and configuring a Notifier configuration file
A Notifier configuration file can be created using a text editor, or it can be generated from property and
event settings exported from Sybase Central. See “Setting up Notifiers, gateways, and carriers using
Sybase Central” on page 26.

To view the layout of a typical Notifier configuration file, open the %SQLANYSAMP12%\MobiLink
\template.Notifier template file. The template file provides examples for configuring server-side
properties and events.

When you have configured the necessary settings, save the Notifier configuration file and load your
server-side properties and events into the MobiLink server.

Common properties syntax
Property = Value

Notifier events syntax
Notifier(NotifierName).Event = \
Replace this text with SQL script. \
Be sure to put a backslash (\) at \
the end of every line of code \
if your event requires multiple \
lines of text.

Notifier properties syntax
Notifier(NotifierName).Property = Value

Gateway properties syntax
For Device tracking gateways:
DeviceTracker(DeviceTrackerName).Property = Value
For SMTP gateways:
SMTP(SMTPName).Property = Value
For SYNC gateways:
SYNC(SYNCName).Property = Value
For UDP gateways:
UDP(UDPName).Property = Value

Server-side settings configured using the Notifier configuration file

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 29

Carrier properties syntax
Carrier(CarrierName).Property = Value

Loading a Notifier configuration file
To load a Notifier configuration file into the MobiLink server, run mlsrv12 from the command line with
the -notifier option specified. For example, to use the server-side settings defined in a CarDealer.Notifier
configuration file, run the following command:

mlsrv12 ... -notifier "c:\CarDealer.Notifier"

If a file is not specified, the config.Notifier file is loaded by default.

For more information about the mlsrv12 -notifier option, see “-notifier mlsrv12 option” [MobiLink -
Server Administration].

Note
If you want to use the default SYNC gateway, you cannot store server-side settings in a Notifier
configuration file. You must store them in the ml_property system table using an alternative method. See
“MobiLink server settings for server-initiated synchronization” on page 25.

Using escape sequences
The backslash (\) is the escape character. The following is a list of common escape sequences that you
can use in a Notifier configuration file:

Escape
sequence

Description

\b Backspace

\t Tab

\n Linefeed

\r Carriage return

\" Double quote (")

\' Single quote (')

\\ Backslash (\)

\e Escape

Unicode escape sequences are of the form \uXXXX while ASCII escape sequences are of the form \xXX,
where each X represents a hexadecimal digit.

When editing a property or event that requires multiple lines of text, add a single backslash character (\)
at the end of each line.

MobiLink server settings for server-initiated synchronization

30 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Notifier events
Events are fired whenever a Notifier polls a MobiLink Listener. When an event is fired, the SQL script
associated with the event is executed. You can incorporate SQL script into any of the Notifier events
listed in this section. Although scripting is optional, you must script the request_cursor polling event.

There are three classifications of Notifier events: polling events, connection events, and asynchronous
events. Polling events are fired every time a Notifier checks the consolidated database, and include all the
events that occur between a begin_poll event and an end_poll event. Connection events are fired during
the Notifier database connection. Asynchronous events can be fired at any time during the
synchronization process.

Unless otherwise specified, Notifier events can be configured using any of the recommended methods.
For more information about configuring Notifier events, see “MobiLink server settings for server-initiated
synchronization” on page 25.

When a MobiLink Listener polls the Notifier, these events are fired in the following order:

Fire begin_connection event
For each poll (
 Fire begin_poll event
 Fire shutdown_query event
 Fire request_cursor event
 For all requests expired before required confirmation (
 Fire error_handler event
)
 Fire request_delete event
 Fire end_poll event
)
Fire end_connection event

Events during polling
Polling events are a classification of Notifier events that are fired every time a Notifier checks the
consolidated database. These events include all the events that occur between a begin_poll event and an
end_poll event.

begin_poll event

This polling event accepts SQL script and is fired before the Notifier checks the consolidated database for
push requests. The value is null by default, so this event is not fired.

See also
● “Push requests” on page 5
● “Notifier events” on page 31
● “MobiLink server settings for server-initiated synchronization” on page 25

Notifier events

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 31

Example
This example creates a push request for a Notifier named Notifier A. It uses a SQL statement that inserts
rows into a table named PushRequest. Each row in this table represents a message to send to an address.
The WHERE clause determines which push requests are inserted into the PushRequest table.

To use the ml_add_property system procedure with a SQL Anywhere consolidated database, run the
following command:

ml_add_property(
 'SIS',
 'Notifier(Notifier A)',
 'begin_connection',
 'INSERT INTO PushRequest
 (gateway, mluser, subject, content)
 SELECT ''MyGateway'', DISTINCT mluser, ''sync'',
 stream_param
 FROM MLUserExtra, mluser_union, Dealer
 WHERE MLUserExtra.mluser = mluser_union.name
 AND (push_sync_status = ''waiting for request''
 OR datediff(hour, last_status_change, now()) > 12)
 AND (mluser_union.publication_name is NULL
 OR mluser_union.publication_name =''FullSync'')
 AND Dealer.last_modified > mluser_union.last_sync_time'
);

end_poll event

This polling event accepts SQL script and is fired after the Notifier checks the consolidated database for
push requests. The value is null by default, so this event is not fired.

You can use this event to perform table cleanup or to log the results of a poll.

See also
● “Notifier events” on page 31
● “MobiLink server settings for server-initiated synchronization” on page 25

error_handler event

Configure this event to indicate when a transmission fails or was not confirmed. For example, when a
transmission fails, you can use this event to insert a row in an audit table or to send a push notification.

The following table details the parameters that can be captured using the error_handler event:

MobiLink server settings for server-initiated synchronization

32 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Script
parameter

Type Description

request_op-
tion (out)

Inte-
ger

Controls what the Notifier does to the push request after the error handler re-
turns. The output can be one of the following values:

● 0: Perform default action based on the error code and log the error.
● 1: Do nothing.
● 2: Execute the request_delete event.
● 3: Attempt to deliver to a secondary gateway.

error_code
(in)

Inte-
ger

Use one of the following values for the error code:

● -1: The request timed out with confirmation of success.
● -8: An error occurred during delivery attempt.

request_id
(in)

Inte-
ger

Identifies the request.

gateway
(in)

Var-
char

Specifies the gateway associated with the push request.

address (in) Var-
char

Specifies the address associated with the push request.

subject (in) Var-
char

Specifies the subject associated with the push request.

content (in) Var-
char

Specifies the content associated with the push request.

Note
This event requires the use of a system procedure. You can not configure this event directly using Sybase
Central. See “MobiLink server settings for server-initiated synchronization” on page 25.

See also
● “Notifier events” on page 31
● “MobiLink server settings for server-initiated synchronization” on page 25

Example
In the following example, you create a table called CustomError and log errors to the table using a stored
procedure called CustomErrorHandler. The output parameter Notifier_opcode is always 0, which means
that default Notifier handling is used.

CREATE TABLE CustomError(
 error_code integer,
 request_id integer,
 gateway varchar(255),
 address varchar(255),

Notifier events

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 33

 subject varchar(255),
 content varchar(255),
 occurAt timestamp not null default timestamp
);
CREATE PROCEDURE CustomErrorHandler(
 out @Notifier_opcode integer,
 in @error_code integer,
 in @request_id integer,
 in @gateway varchar(255),
 in @address varchar(255),
 in @subject varchar(255),
 in @content varchar(255)
)
BEGIN
 INSERT INTO CustomError(
 error_code,
 request_id,
 gateway,
 address,
 subject,
 content)
 VALUES(
 @error_code,
 @request_id,
 @gateway,
 @address,
 @subject,
 @content
);
 SET @Notifier_opcode = 0;
END

To use this ml_add_property system procedure with a SQL Anywhere consolidated database, run the
following command:

call ml_add_property(
 'SIS',
 'Notifier(myNotifier)',
 'error_handler',
 'call CustomErrorHandler(?, ?, ?, ?, ?, ?, ?)');

Alternatively, you can fire this event by adding the following line to a Notifier configuration file:

Notifier(myNotifier).error_handler = call
CustomErrorHandler(?, ?, ?, ?, ?, ?, ?)

Run the file using the mlsrv12 -notifier option. For more information about how to configure a Notifier
configuration file, see “Server-side settings configured using the Notifier configuration file” on page 29.

request_cursor event

This polling event accepts SQL script and is fired to detect push requests. You must configure this event.

Fetching push requests when using a light weight poller (recommended)
When this event contains up to three columns in a result set, the Notifier acknowledges that there is no
persistent connection between the server and the device, and that a device must poll the Notifier before

MobiLink server settings for server-initiated synchronization

34 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

push notifications can be sent. The Notifier caches the result set before sending push notifications. The
MobiLink server identifies the device by the poll key, which is sent by the device every time the device
polls the Notifier.

The result set of this event must contain the following columns in the specified order:

● Poll key

● Subject (optional)

● Content (optional)

Fetching push requests when using a gateway
When this event contains more than three columns in a result set, the Notifier acknowledges that a
persistent connection exists between the server and the device, and then sends push notifications using a
gateway when push requests are detected.

The result set of this event must contain the following columns in the specified order:

● Request ID (optional)

● Gateway

● Subject

● Content

● Address

● Resend interval (optional)

● Time to live (optional)

See also
● “Push request requirements” on page 5
● “Notifier events” on page 31
● “MobiLink server settings for server-initiated synchronization” on page 25

Example
The following example uses the ml_add_property system procedure to create a request_cursor event script
for a custom Notifier named Simple. The SELECT statement tells the Notifier to detect push requests
from a table named PushRequest.

CALL ml_add_property('SIS', 'Notifier(Simple)', 'request_cursor',
 'SELECT poll_key,
 subject,
 content
 FROM PushRequest'
);

It is recommended that you include a WHERE clause in your script to filter out requests that have already
been sent. For example, you can add a push request column to track the moment you inserted a request,

Notifier events

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 35

and then use a WHERE clause in this event to filter out requests that were inserted before the last time the
user synchronized.

request_delete event

This polling event accepts SQL script and is fired to perform cleanup operations when the need for push
request deletion is detected. It accepts the request ID as a parameter and is executed per request ID. Your
request_cursor event must contain a request ID column to use the request_delete event. You can reference
the request ID using a named parameter or a question mark (?). This event is optional if you have already
assigned cleanup operations to another process or event, such as the end_poll event.

The Notifier can use the DELETE statement to remove the following forms of push requests:

● Implicitly dropped These push requests appeared previously but did not appear in the current set
of requests obtained from the request_cursor event.

● Confirmed These are push requests confirmed as delivered.

● Expired These push requests expired based on their resend attributes and the current time. Requests
without resend attributes are considered expired even if they appear in the next request.

You can use the request_delete event to prevent expired or implicitly dropped requests from being
deleted. For example, the CarDealer sample in the %SQLANYSAMP12%\MobiLink\SIS_CarDealer
directory uses the request_delete event to set the status field of the PushRequest table to 'processed'.

UPDATE PushRequest SET status='processed' WHERE req_id = ?

The begin_poll event in the sample uses the last synchronization time to check if remote devices are up-
to-date before eliminating processed push requests.

See also
● “Notifier events” on page 31
● “MobiLink server settings for server-initiated synchronization” on page 25

shutdown_query event

This polling event accepts SQL script and is fired after a begin_poll event. The return value specifies the
shutdown state of the Notifier. The value is null by default, so this event is not fired.

To shut down the Notifier, set up your SQL script to return ''yes''; otherwise, set it to return ''no''. If the
Notifier shuts down, the end_poll event is not fired.

When storing the shutdown state in a table, use the end_connection event to reset the state.

MobiLink server settings for server-initiated synchronization

36 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “end_connection event” on page 37
● “Notifier events” on page 31
● “MobiLink server settings for server-initiated synchronization” on page 25

Example
The following example uses the ml_add_property system procedure to create a shutdown_query event
script for a custom Notifier named Simple. The SELECT statement informs the Notifier to shut down if
the tooManyNotifierErrors method returns true.

CALL ml_add_property('SIS', 'Notifier(Simple)', 'shutdown_query',
 'SELECT
 IF tooManyNotifierErrors() THEN
 ''yes''
 ELSE
 ''no''
 ENDIF'
);

Connection events
Connection events are a classification of Notifier events that are fired during the Notifier database
connection.

begin_connection event

This event accepts SQL script and is fired after the Notifier connects to the consolidated database, but
before it checks for push requests. The value is null by default, so this event is not fired.

You can use this event to create temporary tables or variables. You should not use this event to change
isolation levels. To control isolation levels, use the isolation property.

If the Notifier loses the connection to the consolidated database, it re-runs this event immediately after
reconnecting.

See also
● “Notifier properties” on page 42
● “Notifier events” on page 31
● “MobiLink server settings for server-initiated synchronization” on page 25

end_connection event

This event accepts SQL script and is fired just before the Notifier disconnects from the consolidated
database. The value is null by default, so this event is not fired.

You can use this event to clean up temporary storage, such as SQL variables and temporary tables.

Notifier events

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 37

See also
● “Notifier events” on page 31
● “MobiLink server settings for server-initiated synchronization” on page 25

Asynchronous events
Asynchronous events are a classification of Notifier events that can be fired at any time during the
synchronization process.

confirmation_handler event

Configure this event to handle delivery confirmation information uploaded by MobiLink Listeners. If the
status parameter returns 0, then the push request identified by request_id was successfully received by the
MobiLink Listener identified by the remote_device parameters.

You can use the request_option parameter to initiate an action in response to the delivery confirmation. If
request_option is 0, the confirmation_handler event initiates the default action, where the request_delete
event is executed to delete the original push request. If the device sending the delivery confirmation does
not match the device identified by the request_id, the default action is to send the original push request
through a secondary gateway.

Note
Use the dblsn -x option to allow MobiLink Listeners to upload delivery confirmation information. Use the
dblsn -ni option if you want delivery confirmation but do not want IP tracking. See “MobiLink Listener
options for Windows devices” on page 50.

Note
This event requires the use of a system procedure. You can not configure this event directly using the
Sybase Central method. See “MobiLink server settings for server-initiated synchronization” on page 25.

The following parameters can be captured using the confirmation_handler event:

MobiLink server settings for server-initiated synchronization

38 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Script
parameter

Type Description

request_option
(out)

Inte-
ger

Controls what the Notifier does to the request after the handler returns. The
following values can be returned:

● 0: Perform default Notifier action based on the value of the status pa-
rameter. If status indicates that the responding device is the target one,
then the Notifier deletes the request; otherwise the Notifier attempts to
deliver on a secondary gateway.

● 1: Do nothing.
● 2: Execute Notifier.request_delete.
● 3: Attempt to deliver to a secondary gateway.

status (in) Inte-
ger

The situation summary. The status can be used during development to iden-
tify problems such as incorrect filters and handler attributes. The following
values can be returned:

● 0: Received and confirmed.
● -2: Right respondent but the message was rejected.
● -3: Right respondent and the message was accepted but the action

failed.
● -4: Wrong respondent and the message was accepted.
● -5: Wrong respondent and the message was rejected.
● -6: Wrong respondent. The message was accepted and the action suc-

ceeded.
● -7: Wrong respondent. The message was accepted but the action failed.

request_id (in) Inte-
ger

The request ID. Your request_cursor event must contain a request ID col-
umn to use the confirmation_handler event.

remote_code
(in)

Inte-
ger

The summary reported by the MobiLink Listener. The following values can
be returned:

● 1: Message accepted.
● 2: Message rejected.
● 3: Message accepted and action succeeded.
● 4: Message accepted and action failed.

remote_device
(in)

Var-
char

The device name of the responding MobiLink Listener.

remote_mluser
(in)

Var-
char

The MobiLink user name of the responding MobiLink Listener.

remote_ac-
tion_return (in)

Var-
char

The return code of the remote action.

Notifier events

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 39

Script
parameter

Type Description

remote_action
(in)

Var-
char

Reserved for the action command.

gateway (in) Var-
char

The gateway associated with the request.

address (in) Var-
char

The address associated with the request.

subject (in) Var-
char

The subject associated with the request.

content (in) Var-
char

The content associated with the request.

See also
● “Notifier events” on page 31
● “MobiLink server settings for server-initiated synchronization” on page 25
● “Gateway properties” on page 43

Example
In the following example, you create a table called CustomConfirmation and then log confirmations to it
using a stored procedure named CustomConfirmationHandler. The output parameter request_option is
always set to 0, which means that default Notifier handling is used.

CREATE TABLE CustomConfirmation(
 error_code integer,
 request_id integer,
 remote_code integer,
 remote_device varchar(128),
 remote_mluser varchar(128),
 remote_action_return varchar(128),
 remote_action varchar(128),
 gateway varchar(255),
 address varchar(255),
 subject varchar(255),
 content varchar(255),
 occurAt timestamp not null default timestamp
);
CREATE PROCEDURE CustomConfirmationHandler(
 out @request_option integer,
 in @error_code integer,
 in @request_id integer,
 in @remote_code integer,
 in @remote_device varchar(128),
 in @remote_mluser varchar(128),
 in @remote_action_return varchar(128),
 in @remote_action varchar(128),
 in @gateway varchar(255),
 in @address varchar(255),

MobiLink server settings for server-initiated synchronization

40 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 in @subject varchar(255),
 in @content varchar(255)
)
BEGIN
 INSERT INTO CustomConfirmation(
 error_code,
 request_id,
 remote_code,
 remote_device,
 remote_mluser,
 remote_action_return,
 remote_action,
 gateway,
 address,
 subject,
 content)
 VALUES (
 @error_code,
 @request_id,
 @remote_code,
 @remote_device,
 @remote_mluser,
 @remote_action_return,
 @remote_action,
 @gateway,
 @address,
 @subject,
 @content
);
 SET @request_option = 0;
END

To use the ml_add_property system procedure with a SQL Anywhere consolidated database, run the
following command:

call ml_add_property(
 'SIS',
 'Notifier(myNotifier)',
 'confirmation_handler',
 'call CustomConfirmation(?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)');

Alternatively, you can call this event by adding the following line to a Notifier configuration file:

Notifier(myNotifier).confirmation_handler = call
CustomConfirmation(?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)

Run the file using the mlsrv12 -notifier option. For more information about how to configure a Notifier
configuration file, see “Server-side settings configured using the Notifier configuration file” on page 29.

Common properties
Common properties are shared between Notifiers, gateways, and carriers. All common properties are
optional. For more information about setting these properties, see “MobiLink server settings for server-
initiated synchronization” on page 25.

Common properties

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 41

Proper
ty

Value Description

verbo-
sity

{ 0 | 1 | 2 | 3 } Specifies the verbosity level for Notifiers, gateways, and carriers.
The following values can be used:

● 0: No trace.
● 1: Startup, shutdown, and property trace.
● 2: Display notifications.
● 3: Full-level trace.

The default value is 0.

Notifier properties
Notifier properties allow you to change the behavior of a Notifier. All Notifier properties are optional. For
more information about setting these properties, see “MobiLink server settings for server-initiated
synchronization” on page 25.

Property Value Description

connect_string connection_string Overrides the default connection behavior used to
connect to a database. The default value is iany-
where.ml.script.ServerContext, which uses the
connection string specified in the mlsrv12 com-
mand line.

It may be useful to connect to another database
when you want notification logic and data to be
separate from your synchronization data. Most de-
ployments do not set this property.

enable { yes | no } Specifies whether the Notifier should be enabled.
All enabled Notifiers start when you run the -noti-
fier mlsrv12 option.

gui { yes | no } Specifies whether the Notifier window should be
displayed while the Notifier is running. The de-
fault value is yes.

This Notifier window allows users to temporarily
change the polling interval, or to poll immediately.
It can also be used to shut down the Notifier with-
out shutting down the MobiLink server. Once
stopped, the Notifier can only be restarted by shut-
ting down and restarting the MobiLink server.

MobiLink server settings for server-initiated synchronization

42 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Property Value Description

isolation { 0 | 1 | 2 | 3 } Specifies the isolation level of the Notifier's data-
base connection. The following values can be
used:

● 0: Read uncommitted.
● 1: Read committed.
● 2: Repeatable read.
● 3: Serializable.

The default value is 1. Higher levels increase con-
tention, but could adversely affect performance.
Isolation level 0 allows reads of uncommitted data,
which could get rolled back.

poll_every number{ s | m | h } Specifies the amount of time to wait before confir-
mations timeout. The following is a list of accepta-
ble time units:

● s: Denotes seconds.
● m: Denotes minutes.
● h: Denotes hours.

The default value is 1m. Time units can be com-
bined in the HHh MMm SSs format. If a time unit
is not specified, time is measured in seconds.

shared_data-
base_connection

{ yes | no } Specifies whether Notifiers should share database
connections. The default value is no. Notifiers can
only share connections when their isolation levels
are the same.

Specify yes to conserve resources without incur-
ring performance penalties. Connection sharing is
not possible in some situations, such as when ap-
plications use non-unique SQL variable names
among Notifiers.

Gateway properties
By default, four preconfigured gateways are created when you start the MobiLink server. They are
installed when you run the MobiLink setup scripts for your consolidated database. The default gateways
are named as follows:

● Default-DeviceTracker gateway

Gateway properties

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 43

● Default-SYNC gateway

● Default-UDP gateway

● Default-SMTP gateway

You should not remove the default gateways or change their names. It is recommended that you create
additional gateways with different names.

You should not need to change the properties defined in DefaultSYNC and DefaultUDP, but you must
provide SMTP server information to the DefaultSYNC gateway. You should use the default gateways but,
if required, you can use an alternative configuration. This section provides procedures for customizing
gateway properties.

Device tracking gateway properties
Device tracking gateway properties allow you to change the behavior of a device tracking gateway. All
device tracking gateway properties are optional. For more information about setting these properties, see
“MobiLink server settings for server-initiated synchronization” on page 25.

Property Value Description

confirm_ac-
tion

{ yes | no } Specifies whether confirmation is sent on delivery
through this gateway. The default value is no.

confirm_de-
livery

{ yes | no } Specifies whether the MobiLink Listener should con-
firm with the consolidated database that the message
was received. The default value is yes. The MobiLink
Listener must be started with the -x MobiLink Listener
option specified.

description description_text Describes the gateway.

enable { yes | no } Specifies whether the device tracking gateway should
be used.

smtp_gate-
way

smtp_gateway_name Specifies the name of the SMTP subordinate gateway.
The default value is DefaultSMTP. A device tracking
gateway can only use one SMTP gateway. The gateway
must be enabled.

sync_gate-
way

sync_gateway_name Specifies the name of the SYNC subordinate gateway.
The default value is DefaultSYNC. A device tracking
gateway can only use one SYNC gateway. The gateway
must be enabled.

MobiLink server settings for server-initiated synchronization

44 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Property Value Description

udp_gate-
way

udp_gateway_name Specifies the name of the UDP subordinate gateway.
The default value is DefaultUDP. A device tracking
gateway can only use one UDP gateway. The gateway
must be enabled.

SMTP gateway properties
SMTP gateway properties allow you to change the behavior of an SMTP gateway. The server property is
required; all other SMTP gateway properties are optional. For more information about setting these
properties, see “MobiLink server settings for server-initiated synchronization” on page 25.

Property Value Description

confirm_ac-
tion

{ yes | no } Specifies whether confirmation is sent on delivery
through this gateway. The default value is no.

confirm_de-
livery

{ yes | no } Specifies whether this gateway confirms delivery. The
default value is no.

con-
firm_timeout

number{ s | m | h } Specifies the amount of time to wait before confirma-
tions timeout. The following is a list of acceptable
time units:

● s: Denotes seconds.
● m: Denotes minutes.
● h: Denotes hours.

The default value is 1m. Time units can be combined
in the HHh MMm SSs format. If a time unit is not
specified, time is measured in seconds.

description description_text Describes the gateway.

enable { yes | no } Specifies whether the SYNC gateway should be used.

Listen-
ers_are_900

{ yes | no } Specifies whether all MobiLink Listeners are SQL
Anywhere 9.0.0 clients. The default value is no. For
SQL Anywhere 9.0.1 clients or later, leave this value
at no.

password password Specifies the password for the SMTP service. This is
required by some services.

Gateway properties

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 45

Property Value Description

sender SMTP_address Specifies the sender address of SMTP push notifica-
tions. The default value is anonymous.

server IP_address_or_hostname Specifies the IP address or host name of the SMTP
server used to send messages to a MobiLink Listener.
The default value is mail.

user username Specifies the user name of the SMTP service. This is
required by some services.

SYNC gateway properties
SYNC gateway properties allow you to change the behavior of a SYNC gateway. All SYNC gateway
properties are optional. For more information about setting these properties, see “MobiLink server
settings for server-initiated synchronization” on page 25.

Property Value Description

confirm_ac-
tion

{ yes | no } Specifies whether confirmation is sent on delivery
through this gateway. The default value is no.

confirm_de-
livery

{ yes | no } Specifies whether this gateway confirms delivery. The
default value is no.

con-
firm_timeout

number{ s | m | h } Specifies the amount of time to wait before confirma-
tions timeout. The following is a list of acceptable
time units:

● s: Denotes seconds.
● m: Denotes minutes.
● h: Denotes hours.

The default value is 1m. Time units can be combined
in the HHh MMm SSs format. If a time unit is not
specified, time is measured in seconds.

description description_text Describes the gateway.

enable { yes | no } Specifies whether the SYNC gateway should be used.

Listen-
ers_are_900

{ yes | no } Specifies whether all MobiLink Listeners are SQL
Anywhere 9.0.0 clients. The default value is no. Leave
this value at no for SQL Anywhere 9.0.1 clients or lat-
er.

MobiLink server settings for server-initiated synchronization

46 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

UDP gateway properties
UDP gateway properties allow you to change the behavior of an UDP gateway, such as the IP address and
the port number. All UDP gateway properties are optional. For more information about setting these
properties, see “MobiLink server settings for server-initiated synchronization” on page 25.

Property Value Description

confirm_action { yes | no } Specifies whether confirmation is sent on delivery
through this gateway. The default value is no.

confirm_deliv-
ery

{ yes | no } Specifies whether this gateway confirms delivery. The
default value is yes.

confirm_time-
out

number{ s | m | h } Specifies the amount of time to wait before confirma-
tions timeout. The following is a list of acceptable time
units:

● s: Denotes seconds.
● m: Denotes minutes.
● h: Denotes hours.

The default value is 1m. Time units can be combined in
the HHh MMm SSs format. If a time unit is not speci-
fied, time is measured in seconds.

description description_text Describes the gateway.

enable { yes | no } Specifies whether the UDP gateway should be used.

Listen-
ers_are_900

{ yes | no } Specifies whether all MobiLink Listeners are SQL Any-
where 9.0.0 clients. The default value is no. For SQL
Anywhere 9.0.1 clients or later, leave this value at no.

Listener_port port_number Specifies the port that the remote devices uses to send
UDP packets. The default value is 5001.

sender IP_address_or_hostname Used for multi-homed hosts only. Specifies the IP ad-
dress or hostname of the sender. The default value is lo-
calhost.

sender_port port_number Specifies the port number used to send UDP packets. By
default, a free port number is randomly assigned by the
operating system.

Gateway properties

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 47

Carrier properties
Carrier properties allow you to change the behavior of a wireless carrier configuration, which provides
information on mapping automatically-tracked phone numbers and network providers to email addresses.
All carrier properties are optional, and are only required if you are using an SMTP gateway.

For more information about setting these properties, see “MobiLink server settings for server-initiated
synchronization” on page 25.

Property Value Description

enable { yes | no } Specifies whether the carrier should be used.

description description_text Describes the carrier.

net-
work_pro-
vider_id

id_text Specifies the network provider ID. To use SMS on Win-
dows Mobile Phone edition, set this property to _generic_.

sms_email
_domain

domain_name Specifies the domain name of the carrier.

sms_email
_user_pre-
fix

prefix_name Specifies the prefix used in email addresses.

MobiLink server settings for server-initiated synchronization

48 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

MobiLink Listener utility for Windows devices
(dblsn)

This section provides information about MobiLink Listener utility for Windows devices, including
information about Listening libraries, Listener options and keywords, Listener action commands and
variables, and Listener configuration.

Syntax
dblsn [options] -l message-handler [-l message-handler...]

message-handler :
[polling-option;...] [filter;...]action; [option;...]

polling-option :
 [;poll_connect = string]
 [;poll_notifier = string]
 [;poll_key = string]
 [;poll_every = number]

option :
 [;continue = yes]
 [;confirm_action = yes]
 [;confirm_delivery = no]
 [;maydial = no]

filter :
 [subject = string]
 [content = string]
 [message = string | message_start = string]
 [sender = string]

action :
 action = command[;altaction = command]

command :
 START program [program-arguments]
 | RUN program [program-arguments]
 | POST window-message TO { window-class-name | window-title }
 | tcpip-socket-action
 | DBLSN FULL SHUTDOWN

tcpip-socket-action :
 SOCKET port=app-port
 [;host=app-host]
 [;sendText=text1]
 [;recvText= text2 [;timeout=num-sec]]

window-message : string | message-id

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 49

See also
● “MobiLink Listener options for Windows devices” on page 50
● “MobiLink Listener keywords for Windows devices” on page 63
● “MobiLink Listener action commands for Windows devices” on page 65
● “MobiLink Listener action variables for Windows devices” on page 69

Listening libraries for Windows devices
The MobiLink Listener comes with a UDP listening library, lsn_udp12.dll, which is loaded by default.

When using an SMTP gateway, you must specify an SMTP listening library. You can specify a library
with the dblsn -d option, and specify library options with the dblsn -a option.

UDP (lsn_udp12.dll)
The following is a list of options supported by the UDP listening library:

Option Description

Port= port-number This option specifies the port number to listen to. The default port
is 5001.

Timeout= seconds This option specifies the maximum blocking time of a read opera-
tion on the UDP listening port. This value must be smaller than
the polling interval of the UDP listening thread. The default is 0.

ShowSenderPort This option reveals the sender port number in all occurrences of
the $sender action variable. By default, the port number is hidden.
When this option is specified, the port number is appended at the
end of the sender address with the :port-number syntax.

HideWSAErrorBox Suppresses the error window showing errors on socket operations.

CodePage= number Multibyte characters are translated into Unicode based on this
number. This option only applies to Windows Mobile devices.

See also
● “-d dblsn option” on page 54
● “-a dblsn option” on page 53

MobiLink Listener options for Windows devices
The following options can be used to configure the MobiLink Listener:

MobiLink Listener utility for Windows devices (dblsn)

50 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Option Description

@{ variable | filename } Applies MobiLink Listener options from the specified
environment variable or text file. See “@data dblsn op-
tion” on page 52.

-a value Specifies a single library option for a listening library.
See “-a dblsn option” on page 53.

-d filename Specifies a listening library. See “-d dblsn option”
on page 54.

-e device-name Specifies the device name. See “-e dblsn option”
on page 54.

-f string Specifies extra information about the device. See “-f
dblsn option” on page 54.

-gi seconds Specifies the IP tracker polling interval. See “-gi dblsn
option” on page 55.

-i seconds Specifies the polling interval for SMTP connections.
See “-i dblsn option” on page 55.

-l " keyword=value;... " Defines and creates a message handler. See “-l dblsn
option” on page 55.

-m Turns on message logging. See “-m dblsn option”
on page 56.

-ni Disables IP tracking. See “-ni dblsn option”
on page 56.

-ns Disables SMS listening. See “-ns dblsn option”
on page 57.

-nu Disables UDP listening. See “-nu dblsn option”
on page 57.

-o filename Logs output to a file. See “-o dblsn option”
on page 57.

-os bytes Specifies the maximum size of the log file. See “-os
dblsn option” on page 57.

-ot filename Truncates a file, then logs output to that file. See “-ot
dblsn option” on page 58.

MobiLink Listener options for Windows devices

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 51

Option Description

-p Allows the device to shut down automatically when
idle. See “-p dblsn option” on page 58.

-pc { + | - } Enables or disables persistent connections. See “-pc
dblsn option” on page 58.

-q Runs the MobiLink Listener in quiet mode. See “-q
dblsn option” on page 59.

-qi Prevents the dblsn icon and messages window from ap-
pearing. See “-qi dblsn option” on page 59.

-r filename Identifies a remote database involved in the responding
action of a message filter. See “-r dblsn option”
on page 59.

-sv script-version Specifies the script version used for authentication. See
“-sv dblsn option” on page 60.

-t {+ | - } name Registers or unregisters the remote ID for a remote da-
tabase. See “-t dblsn option” on page 60.

-u username Specifies a MobiLink user name. See “-u dblsn option”
on page 61.

-v { 0 | 1 | 2 | 3 } Specifies the verbosity level for the message log. See “-
v dblsn option” on page 61.

-w password Specifies a MobiLink password. See “-w dblsn option”
on page 62.

-x { http | https | tcpip } [(protocol-op-
tion=value;...)]

Specifies the network protocol, and the MobiLink serv-
er protocol options. See “-x dblsn option” on page 62.

-y newpassword Specifies a new MobiLink password. See “-y dblsn op-
tion” on page 62.

@data dblsn option
Applies MobiLink Listener options from the specified environment variable or text file.

Syntax
dblsn @{ variable | filename } ...

MobiLink Listener utility for Windows devices (dblsn)

52 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Remarks
By default, dblsn.txt is the argument file when the MobiLink Listener is run without parameters.

If a file and an environment variable with the same name exist, the environment variable is used.

Use the File Hiding utility to obfuscate passwords and other sensitive information in the text file.

See also
● “Configuration files” [SQL Anywhere Server - Database Administration]
● “File Hiding utility (dbfhide)” [SQL Anywhere Server - Database Administration]

Example
A sample text file is located at %SQLANYSAMP12%\MobiLink\SIS_SimpleListener\dblsn.txt.

The following example stores command line options in a dblsnoptions environment variable:

dblsn @dblsnoptions

The following example stores command line options in mydblsn.txt, a fully qualified text file:

dblsn @mydblsn.txt

-a dblsn option
Specifies a single library option for a listening library.

Syntax
dblsn -a value ...

Remarks
By default, the MobiLink Listener uses lsn_udp12.dll if a library is not specified. Use the -d option to
specify alternative or additional libraries.

Use the ? value to view all available library options.

Use the -a option multiple times to set additional library options.

See also
● “Listening libraries for Windows devices” on page 50
● “-d dblsn option” on page 54

Example
The following example specifies the port option and declares the ShowSenderPort option in the
lsn_udp12.dll listening library:

dblsn -d lsn_udp12.dll -a port=1234 -a ShowSenderPort

The following example specifies the port option for two different libraries:

MobiLink Listener options for Windows devices

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 53

dblsn -d lsn_udp12.dll -a port=1234 -d maac750.dll -a port=2345

The following example displays all available library options in the default library:

dblsn -a ?

-d dblsn option
Specifies a listening library.

Syntax
dblsn -d filename ...

Remarks
By default, the MobiLink Listener uses the lsn_udp12.dll listening library.

Use the -d option multiple times to enable multi-channel listening, which enables listening on multiple
media.

See also
● “Listening libraries for Windows devices” on page 50

Example
The following example specifies the maac750.dll listening library:

dblsn -d maac750.dll

-e dblsn option
Specifies the device name.

Syntax
dblsn -e device-name ...

Remarks
By default, the device name is automatically generated by the operating system.

When connecting to the MobiLink server, make sure that all device names are unique.

The device name can be found in the MobiLink Listener window.

-f dblsn option
Specifies extra information about the device.

MobiLink Listener utility for Windows devices (dblsn)

54 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Syntax
dblsn -f string ...

Remarks
By default, this information is the version number of the operating system running on the device.

-gi dblsn option
Specifies the IP tracker polling interval.

Syntax
dblsn -gi number ...

Remarks
By default, the IP tracker polls every 60 seconds.

-i dblsn option
Specifies the polling interval for SMTP connections.

Syntax
dblsn -i number ...

Remarks
The -i option specifies the frequency at which the MobiLink Listener checks for messages.

For SMTP connections, the default is 30 seconds. For UDP connections, the MobiLink Listener connects
immediately.

The -i option can be used once for every listening library that is specified with the -d option.

See also
● “-d dblsn option” on page 54

Example
The following example specifies the polling intervals for two different libraries:

dblsn -d lsn_udp12.dll -i 60 -d maac750.dll -i 45

-l dblsn option
Defines and creates a message handler.

MobiLink Listener options for Windows devices

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 55

Syntax
dblsn -l "keyword=value;..." ...

Remarks
For a list of acceptable keywords, see “MobiLink Listener keywords for Windows devices” on page 63.

Use the -l option multiple times to define additional message handlers for push notifications. Message
handlers are processed in the order they are specified.

See also
● “Message handlers” on page 13

-m dblsn option
Turns on message logging.

Syntax
dblsn -m ...

Remarks
By default, message logging is turned off.

-ni dblsn option
Disables IP tracking.

Syntax
dblsn -ni ...

Remarks
By default, IP tracking is enabled.

This option does not stop delivery confirmation.

The -ni option disables UDP address tracking when used in conjunction with the -x option. This feature is
useful if you want device tracking to exclude UDP address updates.

See also
● “-x dblsn option” on page 62

MobiLink Listener utility for Windows devices (dblsn)

56 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

-ns dblsn option
Disables SMS listening.

Syntax
dblsn -ns ...

Remarks
By default, SMS listening is enabled for Windows Mobile 2003 and later.

-nu dblsn option
Disables UDP listening.

Syntax
dblsn -nu ...

Remarks
By default, UDP listening is enabled.

-o dblsn option
Logs output to a file.

Syntax
dblsn -o filename ...

Remarks
By default, output is logged to the MobiLink Listener window.

See also
● “-ot dblsn option” on page 58

-os dblsn option
Specifies the maximum size of the log file.

Syntax
dblsn -os bytes ...

MobiLink Listener options for Windows devices

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 57

Remarks
By default, there is no maximum size limit. The minimum size limit is 10000.

-ot dblsn option

Truncates a file, then logs output to that file.

Syntax
dblsn -ot filename ...

Remarks
The file contents are deleted before output is logged.

See also
● “-o dblsn option” on page 57

-p dblsn option

Allows the device to shut down automatically when idle.

Syntax
dblsn -p ...

Remarks
By default, the MobiLink Listener prevents the device from shutting down.

This option applies to Windows Mobile devices only.

-pc dblsn option

Syntax
Enables or disables persistent connections.

dblsn -pc { + | - } ...

Remarks
By default, persistent connections are enabled. The - flag disables persistent connections; the + flag
enables them.

Disabling persistent connections prevents the MobiLink Listener from receiving push notifications, but
allows short-lived persistent connections for device tracking and confirmation.

MobiLink Listener utility for Windows devices (dblsn)

58 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

If a persistent connection is broken, the MobiLink Listener continuously attempts to reconnect.

Example
The following example disables persistent connections:

dblsn -pc-

-q dblsn option
Runs the MobiLink Listener in quiet mode.

Syntax
dblsn -q ...

Remarks
The -q option minimizes the MobiLink Listener window. By default, the MobiLink Listener window is
displayed.

-qi dblsn option
Prevents the dblsn icon and messages window from appearing.

Syntax
dblsn -qi ...

Remarks
This option leaves no visual indication that dblsn is running, other than possible startup error windows.
You can use the -o log files to diagnose errors.

See also
● “-o dblsn option” on page 57

-r dblsn option
Identifies a remote database involved in the responding action of a message filter.

Syntax
dblsn -r filename ...

MobiLink Listener options for Windows devices

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 59

Remarks
The filename must contain the full path of an RID file. This file is automatically created by dbmlsync
after the first synchronization. It uses the same location and name as the database file. For UltraLite
databases, filename should be the same as the database name.

When applying the -r option, the $remote_id action variable can be used in message handlers to reference
the remote ID in the RID file. By default, Remote IDs are GUIDs.

Use the -r option multiple times to identify multiple databases.

See also
● “Working with message handlers” on page 13
● “MobiLink Listener action commands for Windows devices” on page 65

-sv dblsn option
Specifies the script version used for authentication.

Syntax
dblsn -sv script-version ...

Remarks
By default, the MobiLink Listener uses the ml_global server script version if it is defined.

-t dblsn option
Registers or unregisters the remote ID for a remote database.

Syntax
dblsn -t { + | - } name ...

Remarks
The + flag registers a remote ID; the - flag unregisters ID.

Registering allows the MobiLink Listener to address push notifications by referencing that remote ID.

When device tracking information is uploaded successfully, registered IDs are retained in the ml_listening
system table on the server. You only need to register the ID once.

Use the -t option multiple times to register or unregister multiple IDs. Registering multiple IDs is useful
for addressing push notifications to multiple remote databases.

See also
● “MobiLink Listener action commands for Windows devices” on page 65

MobiLink Listener utility for Windows devices (dblsn)

60 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

-u dblsn option
Specifies a MobiLink user name for the MobiLink Listener.

Syntax
dblsn -u username ...

Remarks
By default, the user name is device-name-dblsn, where device-name is the name of your device. You can
specify a device name using the -e option.

The MobiLink Listener uses the user name to connect to the MobiLink server for device tracking,
confirmations, and persistent connections.

The user name must be a unique MobiLink user name registered with the MobiLink server. The name
must exist in the ml_user system table on the consolidated database.

See also
● “-e dblsn option” on page 54
● “-w dblsn option” on page 62
● “MobiLink user creation and registration” [MobiLink - Client Administration]

-v dblsn option
Specifies the verbosity level for the message log.

Syntax
dblsn -v { 0 | 1 | 2 | 3 } ...

Remarks
By default, the verbosity level is set to 0.

The following table summarizes the possible verbosity level values.

Verbosity
level

Description

0 Verbosity is turned off.

1 Displays listening library messages, basic action tracing steps, and command line options.

2 Displays level 1 verbosity messages, and detailed action tracing steps.

3 Displays level 2 verbosity messages, polling states, and listening states.

You must use the -m option to output push notifications to the message log.

MobiLink Listener options for Windows devices

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 61

See also
● “-m dblsn option” on page 56
● “Log database server messages to a file” [SQL Anywhere Server - Database Administration]

-w dblsn option
Specifies a MobiLink password.

Syntax
dblsn -w password ...

Remarks
Passwords must be registered with the MobiLink server under the associated MobiLink user name.

The MobiLink Listener uses the password to connect to the MobiLink server for device tracking,
confirmations, and persistent connections.

See also
● “-u dblsn option” on page 61

-x dblsn option
Specifies the network protocol, and the MobiLink server protocol options.

Syntax
dblsn -x { http | https | tcpip } [(protocol-option=value;...)] ...

Remarks
A connection to the MobiLink server is required so the MobiLink Listener can send device tracking
information and delivery confirmation to the consolidated database. Use the host protocol option to
specify the location of the MobiLink server. See “host” [MobiLink - Client Administration].

The -x option allows the device to update the consolidated database if the server address changes.

See also
● “MobiLink client network protocol options” [MobiLink - Client Administration]

-y dblsn option
Specifies a new MobiLink password.

MobiLink Listener utility for Windows devices (dblsn)

62 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Syntax
dblsn -y newpassword ...

Remarks
The -y option is not applicable if your authentication system does not allow remote devices to change
their passwords.

MobiLink Listener keywords for Windows devices
The following keywords can be used to configure message handlers created with the dblsn -l option. For
more information about using MobiLink Listener keywords, see “-l dblsn option” on page 55.

Filter keywords
Use the following keywords to filter messages in a push notification:

Keyword syntax Description

subject= subject-string Filters a message if the subject is textually equivalent
to subject-string.

content= content-string Filters a message if the content is textually equivalent
to content-string.

message= message-string Filters a message if the entire message is textually
equivalent to message-string.

message_start= message-string Filters a message if it begins with message-string.

sender= sender-string Filters a message if it is sent by sender-string.

Action keywords
Use the following keywords to initiate an action when a filter condition is met:

Keyword syntax Description

action= command Specifies an action command. See “MobiLink Listen-
er action commands for Windows devices”
on page 65.

altaction= command Specifies an alternative action command that is initi-
ated when the action command fails. See “MobiLink
Listener action commands for Windows devices”
on page 65.

MobiLink Listener keywords for Windows devices

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 63

Polling options
Use the following options to configure a light weight poller:

Keyword syntax Description

poll_connect={ http | https | tcpip } [(proto-
col-option=value;...)]

Specifies the light weight network protocol options
required to connect to the server. The default value is
inherited from the dblsn -x option. See “-x dblsn op-
tion” on page 62.

poll_notifier= Notifier-string Specifies the name of the Notifier that handles push
requests. Required.

poll_key= key-string Specifies the name of the MobiLink Listener to iden-
tify itself to the Notifier. This value must be unique.
Required.

poll_every= seconds-number Specifies how often the MobiLink Listener should
poll the server. The interval is measured in seconds.
The default value is auto-retrieved from the MobiLink
server.

Options
The following can be used to configure message handler behavior:

Keyword syntax Description

continue=[yes | no] Specifies whether the MobiLink Listener should con-
tinue listening after finding the first match. The de-
fault value is no. A yes value is useful when specify-
ing multiple filters, where one message initiates mul-
tiple actions.

confirm_action=[yes | no] Specifies whether the filter should confirm the action.
The default value is yes.

MobiLink Listener utility for Windows devices (dblsn)

64 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Keyword syntax Description

confirm_delivery=[yes | no] Specifies whether the filter should confirm qualified
message delivery. The default value is yes, so deliv-
ery confirmation is sent after the first filter accepts the
message.

Delivery can only be confirmed if the message re-
quires confirmation, and if the filter accepts the mes-
sage. A message requires confirmation if the specified
gateway has its confirm_delivery keyword value set
to yes. A no value can be used when multiple filters
accept the same message to give you finer control
over which filter should confirm the delivery. For in-
formation about handling delivery confirmation on
the server, see “confirmation_handler event”
on page 38.

maydial=[yes | no] Specifies whether the action has permission to dial the
modem. The default value is yes. A no value causes
the MobiLink Listener to release the modem before
the action.

See also
● “Message handlers” on page 13
● “MobiLink Listener action commands for Windows devices” on page 65

MobiLink Listener action commands for Windows
devices

An action is specified when you configure a new message handler. When a filter condition is met, an
action is initiated. If the action fails, an alternative action is initiated. Actions are defined using the action
keyword; alternative actions are defined using the altaction keyword.

Following is a list of action commands:

Command Description

START program arglist Initiates a program while the MobiLink Listener
runs in the background. See “START action com-
mand” on page 66.

RUN program arglist Pauses the MobiLink Listener to run a program. See
“RUN action command” on page 66.

MobiLink Listener action commands for Windows devices

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 65

Command Description

POST windowmessage | id to windowclass |
windowtitle

Posts a window message to a window class. See
“POST action command” on page 67.

SOCKET port=windowname[;host=hostname]
[;sendText=text][;recvText=text[;timeout=sec-
onds]]

Sends a message to an application using a TCP/IP
connection. See “SOCKET action command”
on page 68.

DBLSN FULL SHUTDOWN Forces the MobiLink Listener to shutdown. See
“DBLSN FULL SHUTDOWN action command”
on page 68.

You can only specify one action per action or altaction keyword. If you want an action to perform
multiple tasks, create a batch file that contains multiple commands and run the file using the RUN action
command.

See also
● “Initiating actions” on page 14
● “MobiLink Listener keywords for Windows devices” on page 63

START action command

Initiates a program while the MobiLink Listener runs in the background.

Syntax
action='START program arglist'

Remarks
When you start a program, the MobiLink Listener continues listening for more push notifications.

The MobiLink Listener does not wait for the program to finish, so it can only determine if an action
command has failed, or if it cannot start the specified program.

Example
The following example starts dbmlsync with some command line options, parts of which are obtained
from messages using the $content action variable:

dblsn -l "action='start dbmlsync.exe @dbmlsync.txt -n
 $content -wc dbmlsync_$content -e sch=INFINITE';"

RUN action command

Pauses the MobiLink Listener to run a program.

MobiLink Listener utility for Windows devices (dblsn)

66 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Syntax
action='RUN program arglist'

Remarks
The MobiLink Listener waits for the program to finish, then resumes listening.

When running a program, the MobiLink Listener determines if the program has failed, if the MobiLink
Listener cannot start the program or if the program returns a non-zero return code.

Example
The following example runs dbmlsync with some command line options, parts of which are obtained from
the message using the $content action variable:

dblsn -l "action='run dbmlsync.exe @dbmlsync.txt -n $content';"

POST action command

Posts a window message to a window class.

Syntax
action='POST windowmessage | id to windowclass | windowtitle'

Remarks
The POST command can be used to signal applications that use window messages.

You can identify the window message by message contents, or by the window message ID, if one exists.

You can identify the window class by its class name or the window title. If you identify by name, you can
use the -wc dbmlsync option to specify the window class name. If you identify the window class by the
window title, you can only reference it by the top level window.

If your window message or window class name contains non-alphanumeric characters, such as spaces or
punctuation marks, encapsulate the text in single quotes ('). The escape character is also a single quote,
so if your window message or window class name contains single quotes, reference the quote using two
single quotes ('').

The following are valid for POST:

● Post by decimal id For example, post 999 to <wc|wt>

● Post by hex id For example, post 0x3E7 to <wc|wt>

● Post by registered message name For example, post myRegisteredMsgName to
<wc|wt>

MobiLink Listener action commands for Windows devices

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 67

Example
To demonstrate the use of windows and messages containing single quotes, the following example posts
mike's_message window message to the mike's_class window class:

dblsn -l "action='post mike''s_message to mike''s_class';"

The following example posts a window message, dbas_synchronize, to a dbmlsync instance registered
with the dbmlsync_FullSync class name:

dblsn -l "action='post dbas_synchronize to dbmlsync_FullSync';"

See also
● “-wc dbmlsync option” [MobiLink - Client Administration]

SOCKET action command
Sends a message to an application using a TCP/IP connection.

Syntax
action='SOCKET port=windowname[;host=hostname][;sendText=text]
[;recvText=text[;timeout=seconds]]'

Remarks
The SOCKET command is used for passing dynamic information to a running application, and for
integrating messages into Java and Visual Basic applications. Both languages do not support custom
window messaging, and eMbedded Visual Basic does not support command line parameters.

To connect to a socket, you must specify the port and the host. Use sendText to input your message.

Use recvText to display a message when confirming that sendText is successfully received by the
application. When using recvText, you can specify a timeout limit. The action fails if the MobiLink
Listener can not connect, send acknowledgements, or receive acknowledgements during the timeout limit.

Example
The following example forwards the string in $sender=$message to a local application that is listening on
port 12345. The MobiLink Listener expects the application to send "beeperAck" as an acknowledgement
within 5 seconds.

dblsn -l "action='socket port=12345;
 sendText=$sender=$message;
 recvText=beeperAck;
 timeout=5'"

DBLSN FULL SHUTDOWN action command
Forces the MobiLink Listener to shutdown.

MobiLink Listener utility for Windows devices (dblsn)

68 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Syntax
action='DBLSN FULL SHUTDOWN'

Remarks
After shutdown, the MobiLink Listener stops handling push notifications and stops synchronizing device
tracking information. You must restart the MobiLink Listener to continue with server-initiated
synchronization.

MobiLink Listener action variables for Windows
devices

The following action variables can be used in an action or a filter. The value is substituted into the action
variable before initiating the message handler.

Action variables start with a dollar sign ($). The escape character is also a dollar sign, so use two dollar
signs ($$) to specify a single dollar sign as plain text.

Variable Description

$subject The subject of a message.

$content The content of a message.

$message An entire message, including subject, content, and sender.

$message_start The beginning portion of a message, as specified by the message_start filter
keyword. This variable is only available if you have specified the mes-
sage_start filter keyword. See “MobiLink Listener keywords for Windows
devices” on page 63.

$message_end The portion of a message, excluded from the message_start filter keyword.
This variable is only available if you have specified the message_start filter
keyword. See “MobiLink Listener keywords for Windows devices”
on page 63.

$ml_connect The MobiLink network protocol options as specified by the dblsn -x option.
The default is an empty string. See “-x dblsn option” on page 62.

$ml_user The MobiLink user name as specified by the dblsn -u option. The default
name is device-name-dblsn.

$ml_password The MobiLink password as specified by dblsn -w option, or the new Mobi-
Link password if -y is used.

$priority The meaning of this variable is carrier library-dependent.

MobiLink Listener action variables for Windows devices

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 69

Variable Description

$request_id The request ID that was specified in a push request. See “Push requests”
on page 5.

$remote_id The remote ID. This variable can only be used when the dblsn -r option is
specified. See “Filtering messages by remote ID” on page 17.

$sender The sender of a message.

$type The meaning of this variable is carrier library-dependent.

$year The meaning of this variable is carrier library-dependent.

$month The meaning of this variable is carrier library-dependent. Values can be
from 1-12.

$day The meaning of this variable is carrier library-dependent. Values can be
from 1-31.

$hour The meaning of this variable is carrier library-dependent. Values can be
from 0-23.

$minute The meaning of this variable is carrier library-dependent. Values can be
from 0-59.

$second The meaning of this variable is carrier library-dependent. Values can be
from 0-59.

$best_adapter_mac The MAC address of the best NIC for reaching the MobiLink server that is
specified by the dblsn -x option. If the best route does not go through a NIC,
the value is an empty string.

$best_adapter_name The adapter name of the best NIC for reaching the MobiLink server that is
specified by the dblsn -x option. If the best route does not go through a NIC,
the value is an empty string.

$best_ip The IP address of the best IP interface for reaching the MobiLink server that
is specified by the dblsn -x option. If that server is unreachable, the value is
0.0.0.0.

$best_network_name The RAS or dial-up profile name of the best profile for reaching the Mobi-
Link server that is specified by the dblsn -x option. If the best route does not
go through a RAS/dial-up connection, the value is an empty string.

$adapters A list of active network adapter names, each separated by a vertical bar (|).

MobiLink Listener utility for Windows devices (dblsn)

70 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Variable Description

$network_names A list of connected RAS entry names, each separated by a vertical bar (|).
RAS entry names are sometimes referred to as dial-up entry names or Dial-
Up Network (DUN).

$poll_connect The MobiLink network protocol options as specified by the poll_connect
polling keyword. The default is an empty string. See “MobiLink Listener
keywords for Windows devices” on page 63.

$poll_notifier The name of the Notifier as specified by the poll_notifier polling keyword.
See “MobiLink Listener keywords for Windows devices” on page 63.

$poll_key The poll key as specified by the poll_key polling keyword. See “MobiLink
Listener keywords for Windows devices” on page 63.

$poll_every The polling frequency as specified by the poll_every polling keyword. See
“MobiLink Listener keywords for Windows devices” on page 63.

See also
● “-l dblsn option” on page 55
● “MobiLink Listener keywords for Windows devices” on page 63
● “MobiLink Listener action commands for Windows devices” on page 65

Example
The following examples uses the $message_end action variable to determine which publication to
synchronize:

dblsn -l "message_start=start-of-message;action='run dbmlsync.exe -c ... -n
$message_end'"

MobiLink Listener action variables for Windows devices

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 71

72 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Light weight polling API
The light weight polling API is a programming interface that you can integrate into your device
application. It contains the methods needed to poll a server.

Required files
All directories are relative to %SQLANY12%. The following is a list of files required to compile the light
weight polling API:

File name or location Description

Bin32\mllplib12.dll Light weight polling API runtime dynamic library.

SDK\Lib\x86\mllplib12.lib and SDK
\Lib\x64\mllplib12.lib

Light weight polling API runtime import library.

SDK\Include\mllplib.h Light weight polling API header file.

A SIS_CarDealer_LP_API sample application written in C is supplied in %SQLANYSAMP12%\MobiLink
\SIS_CarDealer_LP_API.

API members

Method Description

“MLLightPoller class” Represents a light weight poller object.

“MLLPCreatePoller method” Creates an instance of an MLLightPoller.

“MLLPDestroyPoller method” Destroys an instance of an MLLightPoller.

MLLightPoller class
Represents a light weight poller object.

Syntax
public class MLLightPoller

Members

Name Description

“Poll method” Polls the server, prompting a Notifier to check a cache for push requests.

“SetConnectInfo method” Sets up a MobiLink client stream type, and network protocol options.

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 73

Name Description

“auth_status enumeration” Specifies possible authentication status codes.

“return_code enumeration” Specifies possible return codes.

Example
MLLightPoller * poller = MLLCreatePoller();

Poll method

Polls the server, prompting a Notifier to check a cache for push requests.

Syntax
public virtual return_code MLLightPoller::Poll(
 const char * notifier,
 const char * key,
 char * subject = 0,
 size_t * subjectSize = 0,
 char * content = 0,
 size_t * contentSize = 0
)

Parameters
● notifier The name of the Notifier.

● key The name of the poll key identifying the MobiLink Listener.

● subject The buffer to receive a message subject. (null-terminated)

● subjectSize IN: The size of the subject buffer.

OUT: The size of the received subject, including a null-terminator, where zero indicates a null subject.

● content The buffer to receive message content. (null-terminated)

● contentSize IN: The size of the content buffer.

OUT: The size of the received content, including a null-terminator, where zero indicates null content.

Returns
One of the codes listed in the return_code enumeration. See “return_code enumeration” on page 76.

Remarks
The MobiLink Listener connects to the Notifier, then disconnects after the Notifier checks its cache for a
push notification targeted for the given poll key.

Light weight polling API

74 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SetConnectInfo method
Sets up a MobiLink client stream type, and network protocol options.

Syntax
public virtual return_code MLLightPoller::SetConnectInfo(
 const char * streamName,
 const char * streamParams
);

Parameters
● streamName The network protocol to use. Acceptable values are: tcpip, http, https, or tls.

● streamParams A protocol options string, formatted in a semicolon delimited list. For a complete
list of options, see “MobiLink client network protocol options” [MobiLink - Client Administration].

Returns
One of the codes listed in the return_code enumeration. See “return_code enumeration” on page 76.

Example
poller_ret = poller->SetConnectInfo("http", "host=localhost;port=80;")

auth_status enumeration
Specifies possible authentication status codes.

Syntax
public typedef enum MLLightPoller::auth_status;

Members

Member name Description

AUTH_EXPIRED Authentication has expired.

AUTH_IN_USE The user name is already authenticated.

AUTH_INVALID Authentication is invalid.

AUTH_UNKNOWN Authentication is unknown.

AUTH_VALID Authentication is valid.

AUTH_VALID_BUT_EX-
PIRES_SOON

Authentication is valid but expires soon.

MLLightPoller class

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 75

return_code enumeration
Specifies possible return codes.

Syntax
public typedef enum MLLightPoller::return_code;

Members

Name Description

AUTH_FAILED Failed to authenticate the connection to the MobiLink server.

BAD_STREAM_NAME Unrecognizable stream name.

BAD_STREAM_PAR-
AM

Failed parsing a stream parameter.

COMMUNICA-
TION_ERROR

Failed due to a communication error.

CONNECT_FAILED Failed to connect to the MobiLink server.

CONTENT_OVER-
FLOW

The content buffer is too small.

KEY_NOT_FOUND There is no push notification for the specified key from the specified Noti-
fier.

NYI For internal use only.

OK Method ran successfully.

SUBJECT_OVERFLOW The subject buffer is too small.

MLLPCreatePoller method
Creates an instance of an MLLightPoller.

Syntax
extern MLLightPoller * MLLPCreatePoller()

Returns
A new MLLightPoller object.

Light weight polling API

76 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “MLLPDestroyPoller method” on page 77

Example
poller = MLLPCreatePoller();

MLLPDestroyPoller method
Destroys an instance of an MLLightPoller.

Syntax
extern void MLLPDestroyPoller(
 MLLightPoller * poller
)

Parameters
● poller The MLLightPoller to destroy.

Remarks
This method accepts null MLLightPoller objects.

See also
● “MLLPCreatePoller method” on page 76

Example
MLLPDestroyPoller(poller);

MLLPDestroyPoller method

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 77

78 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Server-initiated synchronization system
procedures

Server-initiated synchronization system procedures add and delete rows in MobiLink system tables.

Note
These system procedures are used for device tracking. If you use remote devices that support automatic
device tracking, you do not need to use these system procedures. If you use remote devices that do not
support automatic device tracking, you can configure manual device tracking using these system
procedures.

See also
● “Device tracking gateways” on page 20
● “Support for device tracking” on page 21
● “MobiLink server system tables” [MobiLink - Server Administration]
● “MobiLink server system procedures” [MobiLink - Server Administration]

ml_delete_device system procedure
Use this system procedure to delete all information about a remote device when you are manually setting
up device tracking.

Parameters

Item Parameter Description

1 device VARCHAR(255). Device name.

Remarks
This function is useful only if you are manually setting up device tracking.

See also
● “Support for device tracking” on page 21

Example
Delete a device record and all associated records that reference this device record:

CALL ml_delete_device('myOldDevice');

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 79

ml_delete_device_address system procedure
Use this system procedure to delete a device address when you are manually setting up device tracking.

Parameters

Item Parameter Description

1 device VARCHAR(255)

2 medium VARCHAR(255)

Remarks
This system procedure is useful only if you are manually setting up device tracking.

See also
● “Support for device tracking” on page 21

Example
Delete an address record:

CALL ml_delete_device_address('myWindowsMobile', 'ROGERS AT&T');

ml_delete_listening system procedure
Use this system procedure to delete mappings between a MobiLink user and remote devices when you are
manually setting up device tracking.

Parameters

Item Parameter Description

1 ml_user VARCHAR(128)

Remarks
This system procedure is useful only if you are manually setting up device tracking.

See also
● “Support for device tracking” on page 21

Example
Delete a recipient record:

CALL ml_delete_listening('myULDB');

Server-initiated synchronization system procedures

80 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

ml_set_device system procedure
Use this system procedure to add or alter information about remote devices when you are manually setting
up device tracking. It adds or updates a row in the ml_device table.

Parameters

Item Parameter Description

1 device VARCHAR(255). User-defined unique device name.

2 listener_version VARCHAR(128). Optional remarks on MobiLink Listener
version.

3 listener_protocol INTEGER. Use 0 for version 9.0.0 or 2 for post-9.0.0 Mo-
biLink Listeners for Windows devices.

4 info VARCHAR(255). Optional device information.

5 ignore_tracking CHAR(1). Set to y to ignore tracking and stop it from over-
writing manually entered data.

6 source VARCHAR(255). Optional remarks on the source of this
record.

Remarks
The system procedures ml_set_device, ml_set_device_address, and ml_set_listening are used to override
automatic device tracking by changing information in the MobiLink system tables ml_device,
ml_device_address, and ml_listening.

This system procedure is useful only if you are manually setting up device tracking.

See also
● “Support for device tracking” on page 21
● “ml_set_device_address system procedure” on page 82
● “ml_set_listening system procedure” on page 83

Example
For each device, add a device record:

CALL ml_set_device(
 'myWindowsMobile',
 'MobiLink Listeners for myWindowsMobile - 9.0.1',
 '1',
 'not used',
 'y',
 'manually entered by administrator'
);

ml_set_device system procedure

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 81

ml_set_device_address system procedure
Use this system procedure to add or alter information about remote device addresses when you are
manually setting up device tracking. It adds or updates a row in the ml_device_address table.

Parameters

Item Parameter Description

1 device VARCHAR(255). Existing device name.

2 medium VARCHAR(255). Network provider ID (must match a
carrier's network_provider_id property).

3 address VARCHAR(255). Phone number of an SMS-capable de-
vice.

4 active CHAR(1). Set to y to activate this record to be used for
sending push notifications.

5 ignore_tracking CHAR(1). Set to y to ignore tracking and stop it from over-
writing manually entered data.

6 source VARCHAR(255). Optional remarks on the source of this
record.

Remarks
The system procedures ml_set_device, ml_set_device_address, and ml_set_listening are used to override
automatic device tracking by changing information in the MobiLink system tables ml_device,
ml_device_address, and ml_listening.

This system procedure is useful only if you are manually setting up device tracking.

See also
● “Support for device tracking” on page 21
● “ml_set_device system procedure” on page 81
● “ml_set_listening system procedure” on page 83

Example
For each device, add an address record for a device:

CALL ml_set_device_address(
 'myWindowsMobile',
 'ROGERS AT&T',
 '3211234567',
 'y',
 'y',
 'manually entered by administrator'
);

Server-initiated synchronization system procedures

82 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

ml_set_listening system procedure
Use this system procedure to add or alter mappings between MobiLink users and remote devices when
you are manually setting up device tracking. It adds or updates a row in the ml_listening table.

Parameters

Item Parameter Description

1 ml_user VARCHAR(128). MobiLink user name.

2 device VARCHAR(255). Existing device name.

3 listening CHAR(1). Set to y to activate this record to be used for De-
viceTracker addressing.

4 ignore_tracking CHAR(1). Set to y to ignore tracking and stop it from over-
writing manually entered data.

5 source VARCHAR(255). Optional remarks on the source of this
record.

Remarks
The system procedures ml_set_device, ml_set_device_address, and ml_set_listening are used to override
automatic device tracking by changing information in the MobiLink system tables ml_device,
ml_device_address, and ml_listening.

This system procedure is useful only if you are manually setting up device tracking.

See also
● “Support for device tracking” on page 21
● “ml_set_device system procedure” on page 81
● “ml_set_device_address system procedure” on page 82

Example
For each remote database, add a recipient record for a device. This maps the device to the MobiLink user
name.

CALL ml_set_listening(
 'myULDB',
 'myWindowsMobile',
 'y',
 'y',
 'manually entered by administrator'
);

ml_set_listening system procedure

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 83

ml_set_sis_sync_state system procedure
Use this system procedure to record the MobiLink synchronization state into the ml_sis_sync_state
system table.

Parameters

Item Parameter Description

1 remote_id VARCHAR(128)

2 subscription_id VARCHAR(255)

3 publica-
tion_name

VARCHAR(128)

4 user_name VARCHAR(128)

5 last_upload TIMESTAMP

6 last_download TIMESTAMP

Remarks
Call the ml_set_sis_sync_state system procedure in the publication_nonblocking_download_ack event to
allow users to create a request_cursor event that references the ml_sis_sync_state table.

See also
● “publication_nonblocking_download_ack connection event” [MobiLink - Server Administration]

Example
Specify a publication_nonblocking_download_ack event script with the following script to record the
synchronization state:

CALL ml_set_sis_sync_state(
 {ml s.remote_id},
 NULL,
 {ml s.publication_name},
 {ml s.username},
 NULL,
 {ml s.last_publication_download}
);

Server-initiated synchronization system procedures

84 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Server-initiated synchronization advanced
topics

The following sections provide information on advanced topics related to server-initiated synchronization.

Message syntax
The following message syntax applies to light weight polling (default), UDP gateways, and SYNC
gateways:

message = [subject]content

Messages sent using the SMTP gateway have one of the following syntax structures:

● message = sender[subject]content

● message = sender(subject)content

● message = sender{subject}content

● message = sender<subject>content

● message = sender'subject'content

● message = sender"subject"content

The proper message syntax and sender email address syntax are dependent on your wireless carrier. To
determine the message syntax, run the MobiLink Listener with message logging enabled, and with the
verbosity level set to 2 using the dblsn -m and -v options. The message log contains the proper syntax
when you initially run the MobiLink Listener.

When using a device tracking gateway, the message syntax depends on the subordinate gateway used to
send the message. If you are using an SMTP subordinate gateway, the syntax is dependent on your public
wireless carrier.

Remarks
Braces, chevrons, double quotations, parenthesis, single quotations, and square brackets are reserved for
internal use, and should not be used within subject. For more information about message limitations and
restrictions, see “Working with push requests” on page 7.

See also
● “MobiLink Listener keywords for Windows devices” on page 63
● “Gateways and carriers” on page 19
● “-m dblsn option” on page 56
● “-v dblsn option” on page 61

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 85

Sending a push notification using the sa_send_udp
system procedure

A SQL Anywhere consolidated database can use the sa_send_udp system procedure to send push
notifications to a device through a UDP gateway. This method is an alternative to sending push
notifications with Notifiers.

Prerequisites

● A MobiLink Listener is set up on a device and listening for push notifications

● Internet Explorer is installed on the device

● The following command was run on the device:

dblsn -l "message=RunBrowser;action='START iexplore.exe http://
www.ianywhere.com';"

● A SQL Anywhere consolidated database is running on the MobiLink server

Context and remarks

By appending a 1 to the end of your original message, and then using that message in the msg argument
of a sa_send_udp system procedure, you send the original message to a MobiLink Listener.

Send a push notification using the sa_send_udp system procedure

1. Run Interactive SQL and connect to your consolidated database using a command like the one below,
replacing consdb_source_name with the ODBC name of your consolidated database.

dbisql -c "dsn=consdb_source_name"

2. Execute the following command to send the push notification:

CALL sa_send_udp('device_ip_address', 5001, 'RunBrowser1')

The first argument ensures that the push notification is sent to the correct device. Replace
device_ip_address with the IP address of the device. If you are running the MobiLink Listener on the
same computer as the MobiLink server, use localhost.

The second argument is the port number. By default, MobiLink Listeners use port 5001 to listen for
UDP.

The third argument is the message to send with a 1 appended at the end. By appending a 1, which is a
reserved server-initiated synchronization protocol, the RunBrowser message is sent to the device
using a UDP gateway.

Results

When the system call is executed, the RunBrowser message is sent to the device, causing the device to
run Internet Explorer and load the iAnywhere home page.

Server-initiated synchronization advanced topics

86 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Next

None.

See also
● “sa_send_udp system procedure” [SQL Anywhere Server - SQL Reference]

Sending a push notification using the sa_send_udp system procedure

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 87

88 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Server-initiated synchronization tutorials
Use the following tutorials to gain a better understanding of how to use server-initiated synchronization.

Tutorial: Configuring server-initiated
synchronization using light weight polling

This tutorial demonstrates how to configure a SQL Anywhere consolidated and remote database for
server-initiated synchronization. It is based on the sample code located in %SQLANYSAMP12%
\MobiLink\SIS_CarDealer_LP_DBLSN.

Sample implementations of server-initiated synchronization are located in %SQLANYSAMP12%
\MobiLink. All server-initiated synchronization sample directory names begin with the SIS_ prefix.

Note
You can use Sybase Central to administer remote databases, and then use server-initiated remote tasks
(SIRT) as an alternative to server-initiated synchronization using light weight polling. For more
information, see “Server-initiated remote tasks (SIRT)” [MobiLink - Server Administration] and “Tutorial:
Using central administration of remote databases” [MobiLink - Getting Started].

Required software
● SQL Anywhere 12

Competencies and experience
● Basic knowledge of MobiLink event scripts.

Goals
● Set up a SQL Anywhere consolidated database for server-initiated synchronization.

● Configure server-side properties.

● Issue push requests to prompt a server-initiated synchronization.

Suggested background reading
● “Server-initiated synchronization” on page 1

Lesson 1: Setting up the consolidated database
In this lesson, you create a consolidated database named SIS_CarDealer_LP_DBLSN_CONDB with the
scripts required for synchronization using the dbinit utility. You then use the SQL Anywhere 12 driver to
define an ODBC data source for the SIS_CarDealer_LP_DBLSN_CONDB database.

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 89

Set up the SQL Anywhere consolidated database

1. Create a new working directory to store the consolidated database.

This tutorial assumes c:\MLsis as the working directory.

2. Create the SQL Anywhere consolidated database using the dbinit utility.

Run the following command:

dbinit SIS_CarDealer_LP_DBLSN_CONDB

3. Start the consolidated database.

Run the following command:

dbeng12 SIS_CarDealer_LP_DBLSN_CONDB

4. Click Start » Programs » SQL Anywhere 12 » Administration Tools » ODBC Data Source
Administrator.

5. Click the User DSN tab, and then click Add.

6. In the Create New Data Source window, click SQL Anywhere 12 and click Finish.

7. Perform the following tasks in the ODBC Configuration For SQL Anywhere window:

a. Click the ODBC tab.

b. In the Data Source Name field, type SIS_CarDealer_LP_DBLSN_CONDB.

c. Click the Login tab.

d. In the User ID field, type DBA.

e. In the Password field, type sql.

f. From the Action dropdown list, choose Connect To A Running Database On This Computer.

g. In the Server Name field, type SIS_CarDealer_LP_DBLSN_CONDB.

h. Click OK.

8. Close the ODBC data source administrator.

Click OK on the ODBC Data Source Administrator window.

9. Proceed to “Lesson 2: Generating a database schema” on page 91.

See also
● “ODBC data sources” [SQL Anywhere Server - Database Administration]

Server-initiated synchronization tutorials

90 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Lesson 2: Generating a database schema
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up the
consolidated database” on page 89.

In this lesson, you generate a database schema, which includes a Dealer table, a non_sync_request table, a
download_cursor synchronization script. This database schema satisfies the requirements for generating
push requests.

Set up the database schema

1. Click Start » Programs » SQL Anywhere 12 » Administration Tools » Sybase Central.

2. Perform the following tasks to connect to the consolidated database:

a. Click Connections » Connect with SQL Anywhere 12.

b. From the Action dropdown list, choose Connect with an ODBC Data Source.

c. Click ODBC Data Source Name, and click Browse.

d. Select SIS_CarDealer_LP_DBLSN_CONDB and then click OK.

e. Click Connect.

3. Connect to your database using Interactive SQL.

You can start Interactive SQL from Sybase Central or at a command prompt.

● To start Interactive SQL from Sybase Central, right-click the
SIS_CarDealer_LP_DBLSN_CONDB - DBA database and click Open Interactive SQL.

● To start Interactive SQL at a command prompt, run the following command:

dbisql -c "dsn=SIS_CarDealer_LP_DBLSN_CONDB"

4. Execute the following SQL statements to create and set up the Dealer and non_sync_request tables:

CREATE TABLE Dealer (
 name VARCHAR(10) NOT NULL PRIMARY KEY,
 rating VARCHAR(5),
 last_modified TIMESTAMP DEFAULT TIMESTAMP
)
CREATE TABLE non_sync_request(
 poll_key VARCHAR(128)
)

5. Insert data into the Dealer table using the following statements:

INSERT INTO Dealer(name, rating) VALUES ('Audi', 'a');
INSERT INTO Dealer(name, rating) VALUES ('Buick', 'b');
INSERT INTO Dealer(name, rating) VALUES ('Chrysler', 'c');
INSERT INTO Dealer(name, rating) VALUES ('Dodge', 'd');
INSERT INTO Dealer(name, rating) VALUES ('Eagle', 'e');
INSERT INTO Dealer(name, rating) VALUES ('Ford', 'f');
INSERT INTO Dealer(name, rating) VALUES ('Geo', 'g');
INSERT INTO Dealer(name, rating) VALUES ('Honda', 'h');

Tutorial: Configuring server-initiated synchronization using light weight polling

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 91

INSERT INTO Dealer(name, rating) VALUES ('Isuzu', 'I');
COMMIT;

6. Execute the following SQL statement to create the MobiLink system tables and stored procedures.
Replace C:\Program Files\SQL Anywhere 12\ with the location of your SQL Anywhere 12
installation.

READ "C:\Program Files\SQL Anywhere 12\MobiLink\setup\syncsa.sql"

7. Run the following SQL script to specify a download_cursor synchronization script and record the
synchronization state to the ml_sis_sync_state system table:

CALL ml_add_table_script(
 'CarDealer',
 'Dealer',
 'download_cursor',
 'SELECT * FROM Dealer WHERE last_modified >= ?'
);
CALL ml_add_connection_script(
 'CarDealer',
 'publication_nonblocking_download_ack',
 'CALL ml_set_sis_sync_state(
 {ml s.remote_id},
 NULL,
 {ml s.publication_name},
 {ml s.username},
 NULL,
 {ml s.last_publication_download}
)'
);
CALL ml_add_table_script(
 'CarDealer', 'Dealer', 'download_delete_cursor', '--{ml_ignore}'
);
COMMIT;

This script sets the ml_sis_sync_state to record download-only synchronization. Recording the
synchronization state allows you to reference the ml_sis_sync_state system table from the
request_cursor event. You specify the request_cursor event in the next lesson.

8. Close Interactive SQL.

9. Proceed to “Lesson 3: Creating a MobiLink project” on page 93.

See also
● “SQL Anywhere database server syntax” [SQL Anywhere Server - Database Administration]
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “Synchronization script writing” [MobiLink - Server Administration]
● “download_cursor table event” [MobiLink - Server Administration]
● “publication_nonblocking_download_ack connection event” [MobiLink - Server Administration]

Server-initiated synchronization tutorials

92 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Lesson 3: Creating a MobiLink project
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up the
consolidated database” on page 89.

In this lesson, you connect to the consolidated database by creating a new MobiLink project.

Create a new MobiLink project

1. Click Start » Programs » SQL Anywhere 12 » Administration Tools » Sybase Central.

2. Click Tools » MobiLink 12 » New Project.

3. In the Name field, type SIS_CarDealer_LP_DBLSN_CONDB_project.

4. In the Location field, type C:\MLsis, and then click Next.

5. Check the Add A Consolidated Database To The Project option.

6. In the Database Display Name field, type SIS_CarDealer_LP_DBLSN_CONDB.

7. Click Edit. The Connect To A Generic ODBC Database window appears.

8. In the User ID field, type DBA.

9. In the Password field, type sql.

10. In the ODBC Data Source name field, click Browse, and then select
SIS_CarDealer_LP_DBLSN_CONDB.

11. Click OK, and then click Save.

12. Check the Remember The Password option, and then click Finish.

13. Click OK.

14. Proceed to “Lesson 4: Configuring the Notifier” on page 93.

Lesson 4: Configuring the Notifier
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up the
consolidated database” on page 89.

In this lesson, you configure a Notifier event to define how the Notifier creates push requests, and sends
push notifications to devices.

The request_cursor event script detects push requests. Each push request determines what information is
sent, and which device should receive the information.

Tutorial: Configuring server-initiated synchronization using light weight polling

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 93

Create and configure a new Notifier

1. In the left pane of Sybase Central under MobiLink 12, expand
SIS_CarDealer_LP_DBLSN_CONDB_project, Consolidated Databases and then
SIS_CarDealer_LP_DBLSN_CONDB - DBA.

2. Right-click Notification, and then click New » Notifier.

3. In the What Do You Want To Name The New notifier field, type CarDealerNotifier.

4. Click Finish.

5. In the right pane, select CarDealerNotifier, and then click File » Properties.

6. Click the Events tab and click request_cursor from the Events list.

7. Type the following SQL statement in the provided text field:

SELECT ml_sis_sync_state.remote_id + '.sync' FROM ml_sis_sync_state
WHERE
(
 EXISTS (SELECT 1 FROM Dealer
 WHERE last_modified >= ml_sis_sync_state.last_download)
 AND EXISTS (SELECT poll_key FROM non_sync_request)
)

8. Click OK to save the Notifier event.

9. Proceed to “Lesson 5: Starting the MobiLink server” on page 94.

See also
● “request_cursor event” on page 34
● “ml_set_sis_sync_state system procedure” on page 84

Lesson 5: Starting the MobiLink server
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up the
consolidated database” on page 89.

In this lesson, you start the MobiLink server with the Notifier so that push notifications can be sent to
devices.

Run the MobiLink server (mlsrv12)

1. Connect to your consolidated database.

Run the following command:

mlsrv12 -notifier -c "dsn=SIS_CarDealer_LP_DBLSN_CONDB" -o serverOut.txt -
v+ -dl -zu+ -x tcpip

Server-initiated synchronization tutorials

94 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The MobiLink server messages window appears. The Notifier indicates that it is ready to receive push
notification requests from devices.

The following table describes the mlsrv12 options used in this lesson. The options -o and -v provide
debugging and troubleshooting information. Using these logging options is appropriate in a
development environment. For performance reasons, -v is typically not used in production.

Option Description

-notifier Starts all enabled Notifiers for server-initiated synchronization.

See “-notifier mlsrv12 option” [MobiLink - Server Administration].

-c Specifies a connection string.

See “-c mlsrv12 option” [MobiLink - Server Administration].

-o Specifies the message log file serverOut.txt.

See “-o mlsrv12 option” [MobiLink - Server Administration].

-v+ Specifies what information is logged. Using -v+ sets maximum verbose logging.

See “-v mlsrv12 option” [MobiLink - Server Administration].

-zu+ Adds new users automatically.

See “-zu mlsrv12 option” [MobiLink - Server Administration].

-x Sets the communications protocol and protocol options for MobiLink clients.

See “-x mlsrv12 option” [MobiLink - Server Administration].

2. Proceed to “Lesson 6: Setting up a remote database” on page 95.

See also
● “MobiLink server” [MobiLink - Server Administration]
● “MobiLink server options” [MobiLink - Server Administration]

Lesson 6: Setting up a remote database
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up the
consolidated database” on page 89.

In this lesson, you create a SQL Anywhere remote database, create a synchronization publication, a user,
and a subscription.

Tutorial: Configuring server-initiated synchronization using light weight polling

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 95

Set up your MobiLink client database

1. Create your MobiLink client database using the dbinit command line utility.

Run the following command:

dbinit SIS_CarDealer_LP_DBLSN_REM

2. Start your MobiLink client database using the dbeng12 command line utility.

Run the following command:

dbeng12 SIS_CarDealer_LP_DBLSN_REM

3. Connect to your MobiLink client database using Interactive SQL.

Run the following command:

dbisql -c "SERVER=SIS_CarDealer_LP_DBLSN_REM;UID=DBA;PWD=sql"

4. Create the Dealer table.

Execute the following SQL statements in Interactive SQL:

CREATE TABLE Dealer (
 name VARCHAR(10) NOT NULL PRIMARY KEY,
 rating VARCHAR(5),
 last_modified TIMESTAMP DEFAULT TIMESTAMP
)
COMMIT;

5. Create your MobiLink synchronization user, publication, and subscription.

Execute the following SQL statements in Interactive SQL:

CREATE PUBLICATION CarDealer(TABLE DEALER WHERE 0=1)
CREATE SYNCHRONIZATION USER test_mluser OPTION ScriptVersion='CarDealer'
CREATE SYNCHRONIZATION SUBSCRIPTION TO CarDealer FOR test_mluser
SET OPTION public.ml_remote_id = remote_id;
COMMIT;

6. Proceed to “Lesson 7: Configuring the MobiLink Listener” on page 97.

See also
● “MobiLink clients” [MobiLink - Client Administration]
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “Publications” [MobiLink - Client Administration]
● “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “CREATE SYNCHRONIZATION USER statement [MobiLink]” [SQL Anywhere Server - SQL

Reference]
● “CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” [SQL Anywhere Server -

SQL Reference]
● “Script versions” [MobiLink - Server Administration]

Server-initiated synchronization tutorials

96 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Lesson 7: Configuring the MobiLink Listener
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up the
consolidated database” on page 89.

In this lesson, you configure the MobiLink Listener by storing the MobiLink Listener options in a text
file, and then running dblsn with the file name specified at the command line.

Configure the MobiLink Listener

1. Run the following command to synchronize with the MobiLink server and create the
SIS_CarDealer_LP_DBLSN_REM.rid file:

dbmlsync -c "SERVER=SIS_CarDealer_LP_DBLSN_REM;UID=DBA;PWD=sql" -e sa=on -
o rem1.txt -v+

The MobiLink Listener can use the $remote_id action variable to define a poll key, which the
MobiLink server uses to identify the device. This variable is retrieved from the remote ID file,
SIS_CarDealer_LP_DBLSN_REM.rid, which is created during the initial synchronization with the
MobiLink server. You must synchronize with the MobiLink server to make use of the remote ID file.

2. Click Shut Down on the SQL Anywhere MobiLink client window.

3. Create a new text file with the following contents:

Verbosity level
-v2
Show notification messages in console and log
-m
Truncate, then write output to dblsn.txt
-ot dblsn.txt
Remote ID file (defining the scope of $remote_id)
-r SIS_CarDealer_LP_DBLSN_REM.rid
Message handlers
Watch for a notification without action
-l "poll_connect='tcpip(host=localhost)';
 poll_notifier=CarDealerNotifier;
 poll_key=$remote_id.no_action;"
Signal dbmlsync to launch, sync and then shutdown
-l "poll_connect='tcpip(host=localhost)';
 poll_notifier=CarDealerNotifier;
 poll_key=$remote_id.sync;
 action='run dbmlsync.exe -c
SERVER=SIS_CarDealer_LP_DBLSN_REM;UID=DBA;PWD=sql -e sa=on -o rem1.txt -v
+';"
Shutdown the MobiLink Listener
-l "poll_connect='tcpip(host=localhost)';
 poll_notifier=CarDealerNotifier;
 poll_key=$remote_id.shutdown;
 action='DBLSN FULL SHUTDOWN';"

Tutorial: Configuring server-initiated synchronization using light weight polling

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 97

4. This tutorial assumes c:\MLsis as the working directory for server-side components. Save the text file
as mydblsn.txt in this directory.

5. Start the MobiLink Listener.

At a command prompt, navigate to the directory of your MobiLink Listener command file.

Start the MobiLink Listener by entering:

dblsn @mydblsn.txt

The MobiLink Listener for Windows window appears, indicating the MobiLink Listener is sleeping.

6. Proceed to “Lesson 8: Issuing push requests” on page 98.

See also
● “Listeners” on page 12
● “MobiLink Listener utility for Windows devices (dblsn)” on page 49
● “@data dblsn option” on page 52
● “Action variables” on page 15

Lesson 8: Issuing push requests
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up the
consolidated database” on page 89.

In this lesson, you make a change to the Dealer table in the consolidated database so that the information
can be downloaded into the remote database when the MobiLink Listener polls for push notifications.
You then prompt a server-initiated synchronization by inserting a poll key value into the consolidated
database. The Notifier runs the request_cursor event, detects the poll key in the non_sync_request table,
then sends a push notification to the MobiLink Listener. When the MobiLink Listener receives the push
notification, it synchronizes with the MobiLink database and updates the remote database.

Make a change in the consolidated database and prompt server-initiated synchronization

1. Connect to your consolidated database in Interactive SQL if you are not already connected.

Run the following command:

dbisql -c "dsn=SIS_CarDealer_LP_DBLSN_CONDB"

2. Execute the following SQL statements:

UPDATE Dealer
 SET RATING = 'B' WHERE name = 'Geo';
COMMIT;

3. Issue push requests by populating the non_sync_request table directly. The poll key column
determines which device should receive push notifications.

Type the following script:

Server-initiated synchronization tutorials

98 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

INSERT INTO non_sync_request(poll_key) VALUES ('%remote_id%.no_action');
COMMIT;

4. Wait a few seconds for the synchronization to occur.

The MobiLink Listener should poll the consolidated database, download the push notification, then
update the Dealer table on the remote database.

5. Stop server-initiated synchronization with a device by deleting the poll key value from the
non_sync_request table.

Type the following script:

DELETE FROM non_sync_request WHERE poll_key = '%remote_id%.no_action';
COMMIT;

6. Proceed to “Cleaning up” on page 99.

See also
● “Generating push requests” on page 7
● “INSERT statement” [SQL Anywhere Server - SQL Reference]
● “UPDATE statement” [SQL Anywhere Server - SQL Reference]
● “DELETE statement” [SQL Anywhere Server - SQL Reference]

Cleaning up
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up the
consolidated database” on page 89.

Remove tutorial materials from your computer.

Remove tutorial materials from your computer

1. Close Interactive SQL.

2. Close the SQL Anywhere, MobiLink, and synchronization client windows.

3. Delete all tutorial-related ODBC data sources.

a. Start the ODBC Data Source Administrator.
At a command prompt, type the following command:

odbcad32
b. Remove the SIS_CarDealer_LP_DBLSN_CONDB data source.

4. Navigate to the directory containing your consolidated and remote databases, c:\MLsis\, and delete all
the files.

Tutorial: Configuring server-initiated synchronization using light weight polling

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 99

Tutorial: Configuring server-initiated
synchronization using gateways

This tutorial demonstrates how to configure a SQL Anywhere consolidated and remote database for
server-initiated synchronization. It is based on the sample code located in %SQLANYSAMP12%
\MobiLink\SIS_CarDealer.

Several sample implementations of server-initiated synchronization are located in %SQLANYSAMP12%
\MobiLink. All server-initiated synchronization sample directory names begin with the SIS_ prefix.

Required software
● SQL Anywhere 12

Competencies and experience
● Basic knowledge of MobiLink event scripts.

Goals
● Set up a SQL Anywhere consolidated database for server-initiated synchronization.

● Configure server-side properties.

● Issue push requests to prompt a server-initiated synchronization.

Suggested background reading
● “Server-initiated synchronization” on page 1

Lesson 1: Setting up the consolidated database
In this lesson, you create a consolidated database named MLconsolidated with the scripts required for
synchronization using the dbinit utility. You then use the SQL Anywhere 12 driver to define an ODBC
data source for the database.

Set up the SQL Anywhere consolidated database

1. Create a new working directory to store the consolidated database.

This tutorial assumes c:\MLsis as the working directory.

2. Create the SQL Anywhere consolidated database using the dbinit utility.

3. Run the following command:

dbinit MLconsolidated

4. Start the consolidated database using the dbeng12 utility.

Run the following command:

Server-initiated synchronization tutorials

100 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

dbeng12 MLconsolidated

5. Click Start » Programs » SQL Anywhere 12 » Administration Tools » ODBC Data Source
Administrator.

6. Click the User DSN tab, and then click Add.

7. In the Create New Data Source window, click SQL Anywhere 12, and then click Finish.

8. Perform the following tasks in the ODBC Configuration For SQL Anywhere window:

a. Click the ODBC tab.

b. In the Data Source Name field, type sis_cons.

c. Click the Login tab.

d. In the User ID field, type DBA.

e. In the Password field, type sql.

f. From the Action dropdown list, choose Connect To A Running Database On This Computer.

g. In the Server Name field, type MLconsolidated.

h. Click OK.

9. Close the ODBC data source administrator.

Click OK on the ODBC Data Source Administrator window.

10. Proceed to “Lesson 2: Generating a database schema” on page 101.

See also
● “ODBC data sources” [SQL Anywhere Server - Database Administration]

Lesson 2: Generating a database schema
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up the
consolidated database” on page 100.

In this lesson, you generate the database schema, which includes a Dealer table and a download_cursor
synchronization script. A table and stored procedure is used to generate server-initiated synchronization
push requests.

Set up the database schema

1. Click Start » Programs » SQL Anywhere 12 » Administration Tools » Sybase Central.

2. Perform the following tasks to connect to the consolidated database:

a. Click Connections » Connect with SQL Anywhere 12.

b. From the Action dropdown list, click Connect with an ODBC Data Source.

c. Click ODBC Data Source Name, and click Browse.

Tutorial: Configuring server-initiated synchronization using gateways

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 101

d. Select sis_cons, and then click OK.

e. Click Connect.

3. Connect to your database using Interactive SQL.

You can start Interactive SQL from Sybase Central or at a command prompt.

● To start Interactive SQL from Sybase Central, right-click the MLconsolidated - DBA database and
click Open Interactive SQL.

● To start Interactive SQL at a command prompt, run the following command:

dbisql -c "dsn=sis_cons"

4. Run the following SQL statement to create and set up the Dealer table:

CREATE TABLE Dealer (
 name VARCHAR(10) NOT NULL PRIMARY KEY,
 rating VARCHAR(5),
 last_modified TIMESTAMP DEFAULT TIMESTAMP
)

5. Insert data into the Dealer table using the following statements:

INSERT INTO Dealer(name, rating) VALUES ('Audi', 'a');
INSERT INTO Dealer(name, rating) VALUES ('Buick', 'b');
INSERT INTO Dealer(name, rating) VALUES ('Chrysler', 'c');
INSERT INTO Dealer(name, rating) VALUES ('Dodge', 'd');
INSERT INTO Dealer(name, rating) VALUES ('Eagle', 'e');
INSERT INTO Dealer(name, rating) VALUES ('Ford', 'f');
INSERT INTO Dealer(name, rating) VALUES ('Geo', 'g');
INSERT INTO Dealer(name, rating) VALUES ('Honda', 'h');
INSERT INTO Dealer(name, rating) VALUES ('Isuzu', 'I');
COMMIT;

6. Run the following SQL script to create the MobiLink system tables and stored procedures. Replace C:
\Program Files\SQL Anywhere 12\ with the location of your SQL Anywhere 12 installation.

READ "C:\Program Files\SQL Anywhere 12\MobiLink\setup\syncsa.sql"

7. Run the following SQL script to specify a download_cursor synchronization script and record the
synchronization:

CALL ml_add_table_script(
 'sis_ver1',
 'Dealer',
 'download_cursor',
 'SELECT * FROM Dealer WHERE last_modified >= ?'
);
CALL ml_add_table_script(
 'sis_ver1', 'Dealer', 'download_delete_cursor', '--{ml_ignore}'
);
COMMIT

8. Proceed to “Lesson 3: Creating a table to store push request” on page 103.

Server-initiated synchronization tutorials

102 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “SQL Anywhere database server syntax” [SQL Anywhere Server - Database Administration]
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “Synchronization script writing” [MobiLink - Server Administration]
● “download_cursor table event” [MobiLink - Server Administration]

Lesson 3: Creating a table to store push request
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up the
consolidated database” on page 100.

In this lesson, you create a push request table for storing push requests. The Notifier sends a message to a
device when it detects a push request.

Create a simple table for storing push requests

1. Connect to your database using Interactive SQL.

You can start Interactive SQL from Sybase Central or at a command prompt.

● To start Interactive SQL from Sybase Central, right-click the MLconsolidated - DBA database and
click Open Interactive SQL.

● To start Interactive SQL at a command prompt, run the following command:

dbisql -c "dsn=sis_cons"

2. Run the following SQL statements in Interactive SQL:

CREATE TABLE PushRequest (
 req_id INTEGER DEFAULT AUTOINCREMENT PRIMARY KEY,
 mluser VARCHAR(128),
 subject VARCHAR(128),
 content VARCHAR(128),
 resend_interval VARCHAR(30) DEFAULT '20s',
 time_to_live VARCHAR(30) DEFAULT '1m',
 status VARCHAR(128) DEFAULT 'created'
)
COMMIT;

3. Close Interactive SQL.

4. Proceed to “Lesson 4: Creating a MobiLink project” on page 104.

See also
● “Push requests” on page 5
● “Server-initiated synchronization” on page 1
● “Server-initiated synchronization components” on page 2

Tutorial: Configuring server-initiated synchronization using gateways

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 103

Lesson 4: Creating a MobiLink project
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up the
consolidated database” on page 100.

In this lesson, you connect to the consolidated database by creating a new MobiLink project.

Create a new MobiLink project

1. Click Start » Programs » SQL Anywhere 12 » Administration Tools » Sybase Central.

2. Click Tools » MobiLink 12 » New Project.

3. In the Name field, type sis_cons_project.

4. In the Location field, type C:\MLsis, and then click Next.

5. Check the Add A Consolidated Database To The Project option.

6. In the Database Display Name field, type sis_cons.

7. Click Edit. The Connect To A Generic ODBC Database window appears.

8. In the User ID field, type DBA.

9. In the Password field, type sql.

10. In the ODBC Data Source name field, click Browse and select sis_cons.

11. Click OK, then click Save.

12. Check the Remember The Password option, and then click Finish.

13. Click OK.

14. Proceed to “Lesson 5: Configuring the Notifier” on page 104.

Lesson 5: Configuring the Notifier
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up the
consolidated database” on page 100.

In this lesson, you configure three Notifier events to define how the Notifier creates push requests,
transmits the requests to MobiLink Listeners, and deletes expired requests.

The Notifier detects changes in the consolidated database and creates push requests using the begin_poll
event. In this case, the begin_poll script populates the PushRequest table if changes occur in the Dealer
table and when a remote database is not up-to-date.

The request_cursor script fetches push requests. Each push request determines what information is sent in
the message, and which remote databases receive the information.

Server-initiated synchronization tutorials

104 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The request_delete Notifier event specifies cleanup operations. Using this script, the Notifier can
automatically remove implicitly dropped and expired requests.

Create and configure a new Notifier

1. In the left pane of Sybase Central under MobiLink 12, expand sis_cons_project, Consolidated
Databases and then sis_cons.

2. Right-click Notification, and then click New » Notifier.

3. In the What Do You Want To Name The New notifier field, type CarDealerNotifier.

4. Click Finish.

5. Enter the begin_poll event script.

a. In the right pane, select CarDealerNotifier, and then click File » Properties.

b. Click the Events tab.

c. Choose begin_poll from the Events list.

d. Type the following SQL statements in the provided text field:

--
-- Insert the last consolidated database
-- modification date into @last_modified
--
DECLARE @last_modified timestamp;
SELECT MAX(last_modified) INTO @last_modified FROM Dealer;
--
-- Delete processed requests if the mluser is up-to-date
--
DELETE FROM PushRequest
 FROM PushRequest AS p, ml_user AS u, ml_subscription AS s
 WHERE p.status = 'processed'
 AND u.name = p.mluser
 AND u.user_id = s.user_id
 AND @last_modified <= GREATER(s.last_upload_time,
s.last_download_time);
--
-- Insert new requests when a device is not up-to-date
--
INSERT INTO PushRequest(mluser, subject, content)
SELECT u.name, 'sync', 'ignored'
 FROM ml_user as u, ml_subscription as s
 WHERE u.name IN (SELECT name FROM ml_listening WHERE listening =
'y')
 AND u.user_id = s.user_id
 AND @last_modified > greater(s.last_upload_time,
s.last_download_time)
 AND u.name NOT LIKE '%-dblsn'
 AND NOT EXISTS(SELECT * FROM PushRequest
 WHERE PushRequest.mluser = u.name
 AND PushRequest.subject = 'sync')

In the first major section of the begin_poll script, processed requests from the PushRequest table
are eliminated if a device is up to date:

Tutorial: Configuring server-initiated synchronization using gateways

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 105

@last_modified <= GREATER(s.last_upload_time, s.last_download_time)

@last_modified is the maximum modification date in the consolidated database Dealer table. The
expression greater(s.last_upload_time, s.last_download_time) represents the last synchronization
time for a remote database.
You can also delete push requests directly using the request_delete event. However, the
begin_poll event, in this case, ensures that expired or implicitly dropped requests are not
eliminated before a remote database synchronizes.
The next section of code checks for changes in the last_modified column of the Dealer table and
issues push requests for all active MobiLink Listeners (listed in the ml_listening table) that are
not up to date:

@last_modified > GREATER(s.last_upload_time, s.last_download_time)

When populating the PushRequest table, the begin_poll script sets the subject to 'sync'.

6. Enter the request_cursor script.

a. Click request_cursor from the Events list.

b. Type the following SQL statement in the provided text field:

SELECT
 p.req_id,
 'Default-DeviceTracker',
 p.subject,
 p.content,
 p.mluser,
 p.resend_interval,
 p.time_to_live
 FROM PushRequest AS p

The PushRequest table supplies rows to the request_cursor script.
The order and values in the request_cursor result set is significant. The second parameter, for
example, defines the default gateway Default-DeviceTracker. A device tracking gateway keeps
track of how to reach users and automatically selects UDP or SMTP to connect to remote devices.

7. Enter the request_delete script.

a. Click request_delete from the Events list.

b. Type the following SQL statement in the provided text field:

UPDATE PushRequest SET status='processed' WHERE req_id = ?

Instead of deleting the row, this request_delete script updates the status of a row in the
PushRequest table to 'processed'.

8. Click OK to save the Notifier events.

9. Proceed to “Lesson 6: Configuring gateways and carriers” on page 107.

Server-initiated synchronization tutorials

106 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “request_delete event” on page 36
● “begin_poll event” on page 31
● “Device tracking gateways” on page 20
● “request_cursor event” on page 34
● “request_delete event” on page 36

Lesson 6: Configuring gateways and carriers
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up the
consolidated database” on page 100.

Gateways are the mechanisms for sending messages. You can define either a supported gateway or a
device tracking gateway. The MobiLink server keeps track of how to reach clients when you specify a
device tracking gateway, and automatically chooses the most appropriate gateway.

You use a default device tracking gateway for the purpose of this tutorial, so configuration is not
necessary.

Proceed to “Lesson 7: Starting the MobiLink server” on page 107.

See also
● “Gateways as an alternative to light weight pollers” on page 19
● “Gateways and carriers” on page 19
● “Device tracking gateway properties” on page 44

Lesson 7: Starting the MobiLink server
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up the
consolidated database” on page 100.

In this lesson, you start the MobiLink server with the Notifier so that push notifications can be sent to
devices.

Run the MobiLink server (mlsrv12)

1. Connect to your consolidated database.

Run the following command:

mlsrv12 -notifier -c "dsn=sis_cons" -o serverOut.txt -v+ -dl -zu+ -x tcpip

The MobiLink server messages window appears. The Notifier indicates that it is ready to receive push
notification requests from devices.

The following table describes the mlsrv12 options used in this lesson. The options -o and -v provide
debugging and troubleshooting information. Using these logging options is appropriate in a
development environment. For performance reasons, -v is typically not used in production.

Tutorial: Configuring server-initiated synchronization using gateways

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 107

Option Description

-notifier Starts all enabled Notifiers for server-initiated synchronization.

See “-notifier mlsrv12 option” [MobiLink - Server Administration].

-c Specifies a connection string.

See “-c mlsrv12 option” [MobiLink - Server Administration].

-o Specifies the message log file serverOut.txt.

See “-o mlsrv12 option” [MobiLink - Server Administration].

-v+ Specifies what information is logged. Using -v+ sets maximum verbose logging.

See “-v mlsrv12 option” [MobiLink - Server Administration].

-zu+ Adds new users automatically.

See “-zu mlsrv12 option” [MobiLink - Server Administration].

-x Sets the communications protocol and protocol options for MobiLink clients.

See “-x mlsrv12 option” [MobiLink - Server Administration].

2. Proceed to “Lesson 8: Setting up a remote database” on page 108.

See also
For more information about the topics in this lesson, see:

● “MobiLink server” [MobiLink - Server Administration]
● “MobiLink server options” [MobiLink - Server Administration]

Lesson 8: Setting up a remote database
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up the
consolidated database” on page 100.

In this lesson, you create a SQL Anywhere remote database, create a synchronization publication, a user,
and a subscription.

Set up your MobiLink client database

1. Create your MobiLink client database using the dbinit command line utility.

Run the following command:

dbinit remote1

Server-initiated synchronization tutorials

108 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

2. Start your MobiLink client database using the dbeng12 command line utility.

Run the following command:

dbeng12 remote1

3. Connect to your MobiLink client database using Interactive SQL.

Run the following command:

dbisql -c "SERVER=remote1;UID=DBA;PWD=sql"

4. Create the Dealer table.

Execute the following SQL statements in Interactive SQL:

CREATE TABLE Dealer (
 name VARCHAR(10) NOT NULL PRIMARY KEY,
 rating VARCHAR(5),
 last_modified TIMESTAMP DEFAULT TIMESTAMP
)
COMMIT;

5. Create your MobiLink synchronization user, publication, and subscription.

Execute the following SQL statements in Interactive SQL:

CREATE PUBLICATION car_dealer_pub (table Dealer);
CREATE SYNCHRONIZATION USER sis_user1;
CREATE SYNCHRONIZATION SUBSCRIPTION
 TO car_dealer_pub
 FOR sis_user1
 OPTION scriptversion='sis_ver1';
COMMIT;

6. Proceed to “Lesson 9: Configuring the MobiLink Listener” on page 109.

See also
● “MobiLink clients” [MobiLink - Client Administration]
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “Publications” [MobiLink - Client Administration]
● “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “CREATE SYNCHRONIZATION USER statement [MobiLink]” [SQL Anywhere Server - SQL

Reference]
● “CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” [SQL Anywhere Server -

SQL Reference]
● “Script versions” [MobiLink - Server Administration]

Lesson 9: Configuring the MobiLink Listener
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up the
consolidated database” on page 100.

Tutorial: Configuring server-initiated synchronization using gateways

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 109

In this lesson, you configure the MobiLink Listener by storing the MobiLink Listener options in a text
file, and then running dblsn with the file name specified at the command line.

Configure the MobiLink Listener

1. Create a new text file with the following contents:

#----------------------------------
Verbosity level
-v2
Show notification messages in console and log
-m
Polling interval, in seconds
-i 3
Truncate, then write output to dblsn.txt
-ot dblsn.txt
MobiLink address and connect parameter for dblsn
-x "host=localhost"
Enable device tracking and specify the MobiLink user name.
-t+ sis_user1
Message handlers
Synchronize using dbmlsync
-l "subject=sync;
action='start dbmlsync.exe
 -c SERVER=remote1;UID=DBA;PWD=sql
 -o dbmlsyncOut.txt';"

2. This tutorial assumes c:\MLsis as the working directory for server-side components. Save the text file
as mydblsn.txt in this directory.

3. Start the MobiLink Listener.

At a command prompt, navigate to the directory of your MobiLink Listener command file.

Start the MobiLink Listener by entering:

dblsn @mydblsn.txt

The MobiLink Listener for Windows window appears, indicating the MobiLink Listener is sleeping.

When tracking information is uploaded to the consolidated database, a new entry appears in the
MobiLink server messages window. This information relays the successful initial communication
between the MobiLink Listener and the MobiLink server.

4. Proceed to “Lesson 10: Issuing push requests” on page 111.

See also
● “Listeners” on page 12
● “MobiLink Listener utility for Windows devices (dblsn)” on page 49
● “@data dblsn option” on page 52

Server-initiated synchronization tutorials

110 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Lesson 10: Issuing push requests
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up the
consolidated database” on page 100.

For server-initiated synchronization, you can issue push requests by populating the PushRequest table
directly, or making a change in the Dealer table. In the latter case, the Notifier begin_poll script detects
the change in the Dealer table and populate the PushRequest table.

In either case, the PushRequest table supplies rows to the Notifier request_cursor script, which determines
how remote devices receive messages.

Insert a push request directly into the PushRequest table prompting server-initiated
synchronization

1. Connect to your consolidated database in Interactive SQL if you are not already connected.

Run the following command:

dbisql -c "dsn=sis_cons"

2. Execute the following SQL statements:

INSERT INTO PushRequest(mluser, subject, content)
 VALUES ('sis_user1', 'sync', 'not used');
COMMIT;

3. Wait a few seconds for the synchronization to occur.

When populated, the PushRequest table supplies rows to the Notifier's request_cursor script. The
request_cursor script determines what information is sent in the message, and which remote devices
receive the information.

4. Execute the following SQL statements to make a change in the consolidated database Dealer
prompting server-initiated synchronization:

UPDATE Dealer
 SET RATING = 'B' WHERE name = 'Geo';
COMMIT;

5. Wait a few seconds for the synchronization to occur.

In this case, the Notifier begin_poll script detects changes in the dealer table and populates the
PushRequest table appropriately. As before, once the PushRequest table is populated, the Notifier
request_cursor script determines what information is sent in the message, and which remote devices
receive the information.

6. Proceed to “Cleaning up” on page 112.

See also
● “Generating push requests” on page 7
● “INSERT statement” [SQL Anywhere Server - SQL Reference]
● “UPDATE statement” [SQL Anywhere Server - SQL Reference]

Tutorial: Configuring server-initiated synchronization using gateways

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 111

Cleaning up
This lesson assumes you have completed all preceding lessons. See “Lesson 1: Setting up the
consolidated database” on page 100.

Remove tutorial materials from your computer.

Remove tutorial materials from your computer

1. Close Interactive SQL.

2. Close the SQL Anywhere, MobiLink, and synchronization client windows.

3. Delete all tutorial-related ODBC data sources.

a. Start the ODBC Data Source Administrator.
At a command prompt, type the following command:

odbcad32
b. Remove the sis_cons data source.

4. Navigate to the directory containing your consolidated and remote databases, c:\MLsis\, and delete all
the files.

Server-initiated synchronization tutorials

112 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Index
Symbols
-a option

MobiLink Listener utility (dblsn), 53
-d option

MobiLink Listener utility (dblsn), 54
-e option

MobiLink Listener utility (dblsn), 54
-f option

MobiLink Listener utility (dblsn), 54
-gi option

MobiLink Listener utility (dblsn), 55
-i option

MobiLink Listener utility (dblsn), 55
-l option

MobiLink Listener utility (dblsn), 55
-m option

MobiLink Listener utility (dblsn), 56
-ni option

MobiLink Listener utility (dblsn), 56
-notifier option

starting a notifier, 11
-ns option

MobiLink Listener utility (dblsn), 57
-nu option

MobiLink Listener utility (dblsn), 57
-o option

MobiLink Listener utility (dblsn), 57
-os option

MobiLink Listener utility (dblsn), 57
-ot option

MobiLink Listener utility (dblsn), 58
-p option

MobiLink Listener utility (dblsn), 58
-pc option

MobiLink Listener utility (dblsn), 58
-q option

MobiLink Listener utility (dblsn), 59
-qi option

MobiLink Listener utility (dblsn), 59
-r option

MobiLink Listener utility (dblsn), 59
-sv option

MobiLink Listener utility (dblsn), 60
-t option

MobiLink Listener utility (dblsn), 60
-u option

MobiLink Listener utility (dblsn), 61
-v option

MobiLink Listener utility (dblsn), 61
-w option

MobiLink Listener utility (dblsn), 62
-x option

MobiLink Listener utility (dblsn), 62
-y option

MobiLink Listener utility (dblsn), 62
@data option

MobiLink Listener utility (dblsn), 52
_BEST_IP_CHANGED_

about, 17
generic

MobiLink server-initiated synchronization
network_provider_id, 48

_IP_CHANGED_
about, 17

A
action keywords

summary, 63
action variables

about, 15
actions

about, 14
altactions

about, 14
architectures

server-initiated synchronization, 1
auth_status enumeration

MLLightPoller class [light weight polling API], 75

B
begin_connection event

Notifier event, 37
begin_poll event

Notifier event, 31

C
C development

light weight polling API, 73
carrier properties

summary, 48
carriers

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 113

about, 23
command line utilities

MobiLink Listener (dblsn) syntax, 49
common properties

summary, 41
configuring server-initiated synchronization

ml_add_property system procedure, 25
Notifier configuration file, 29
Sybase Central, 26

confirmation handling
server-initiated synchronization, 38

confirmation_handler event
Notifier event, 38

connectivity-initiated synchronization
about, 17

content
MobiLink Listener utility (dblsn), 14

D
dblsn full shutdown action command

MobiLink Listener utility (dblsn), 68
dblsn utility

action commands summary, 65
action variables summary, 69
keywords summary, 63
options, 50
syntax, 49

delivery confirmation
handling, 38

deploying
MobiLink Listener, 3

deployment considerations
server-initiated synchronization, 3

device tracking
limitations, 3
setting up, 22
SQL Anywhere 9.0.0, 21

device tracking gateway
about gateways, 19

device tracking gateway properties
summary, 44

device tracking gateways
about, 20

E
end_connection event

Notifier event, 37

end_poll event
Notifier event, 32

error handling
server-initiated synchronization, 32

error_handler event
Notifier event, 32

F
filter keywords

summary, 63
filter-action pairs

dblsn, 55
filtering by remote ID

server-initiated synchronization, 17
filtering messages

about, 13

G
Gateway properties

about, 43
gateways

about, 19
tutorial, 100

gateways and carriers
about, 19

L
libraries

MobiLink listening libraries, 50
light weight pollers

about, 18
Light weight polling

API, 73
limitations, 3
MobiLink Listener polling options, 16
tutorial, 89

light weight polling API
description, 73
MLLightPoller class, 73
MLLPCreatePoller method, 76
MLLPDestroyPoller method, 77

limitations
server-initiated synchronization, 3

Listeners
about, 12
limitations, 3
setting up message handlers, 13

Index

114 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

listening libraries
server-initiated synchronization, 50

lsn_udp12.dll
server-initiated synchronization, 50

M
message

MobiLink Listener utility (dblsn), 14
message handlers

about, 13
dblsn syntax, 55

message syntax
summary, 85

message_start
MobiLink Listener utility (dblsn), 14

ml_add_property system procedure
configuring server-initiated synchronization, 25

ml_delete_device system procedure
syntax, 79

ml_delete_device_address system procedure
syntax, 80

ml_delete_listening system procedure
syntax, 80

ml_set_device system procedure
syntax, 81

ml_set_device_address system procedure
syntax, 82

ml_set_listening system procedure
syntax, 83

ml_set_sis_sync_state system procedure
syntax, 84

MLLightPoller class [light weight polling API]
auth_status enumeration, 75
description, 73
Poll method, 74
return_code enumeration, 76
SetConnectInfo method, 75

MLLPCreatePoller method [light weight polling API]
description, 76

MLLPDestroyPoller method [light weight polling
API]

description, 77
MobiLink

server-initiated synchronization, 1
MobiLink Listener utility (dblsn)

action commands summary, 65
action variables summary, 69

keywords summary, 63
options, 50
syntax, 49

MobiLink server farm
Notifiers, 10

MobiLink server-side settings
setting for server-initiated synchronization, 25

MobiLink synchronization
server-initiated synchronization, 1

multi-channel listening
server-initiated synchronization, 54

N
Notifier configuration file

about, 29
configuring server-initiated synchronization, 29

Notifier events
about, 31
begin_connection event, 37
begin_poll event, 31
confirmation_handler event, 38
end_connection event, 37
end_poll event, 32
error_handler event, 32
request_cursor event, 34
request_delete event, 36
shutdown_query event, 36

Notifier properties
summary, 42

Notifiers
-notifier mlsrv12 option, 11
about, 10
MobiLink server farm, 10
setting up, 11

notifying a MobiLink Listener with sa_send_udp
about, 86

O
options

summary, 64

P
persistent connections

server-initiated synchronization, 58
Poll method

MLLightPoller class [light weight polling API], 74
polling options

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 115

summary, 64
post action command

MobiLink Listener utility (dblsn), 67
posting

window messages to window classes in MobiLink,
67

push request tables
about, 5

push requests
about, 5
creating a push request table, 5
deleting, 36
detecting, 34
generating, 7

Q
quick start

server-initiated synchronization, 4

R
remote IDs

filtering, 17
request_cursor event

Notifier event, 34
request_delete event

Notifier event, 36
return_code enumeration

MLLightPoller class [light weight polling API], 76
run action command

MobiLink Listener utility (dblsn), 66

S
sa_send_udp system procedure

notifying a MobiLink Listener, 86
sample applications

server-initiated synchronization using gateways,
100
server-initiated synchronization using light weight
polling, 89

samples
server-initiated synchronization, 89

sender
MobiLink Listener utility (dblsn), 14

server-initiated synchronization
about, 1
architecture, 1
components, 2

listening libraries, 50
quick start, 4
samples, 89
setting MobiLink server-side settings, 25
supported platforms, 3
system procedures, 79
tutorials, 89

SetConnectInfo method
MLLightPoller class [light weight polling API], 75

setting up server-initiated synchronization
about, 5

shutdown_query event
Notifier event, 36

SMTP gateway
about gateways, 19

SMTP gateway properties
summary, 45

socket action command
MobiLink Listener utility (dblsn), 68

SQL Anywhere 9.0.0
device tracking for, 21

start action command
MobiLink Listener utility (dblsn), 66

subject
MobiLink Listener utility (dblsn), 14

supported platforms
server-initiated synchronization, 3

SYNC gateway
about gateways, 19

SYNC gateway properties
summary, 46

synchronization
server-initiated, 1

syntax
MobiLink Listener utility (dblsn), 49
MobiLink server-initiated synchronization system
procedures, 79

system procedures
ml_delete_device, 79
ml_delete_device_address, 80
ml_delete_listening, 80
ml_set_device, 81
ml_set_device_address, 82
ml_set_listening, 83
ml_set_sis_sync_state, 84
MobiLink server-initiated synchronization, 79

Index

116 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

T
tutorials

server-initiated synchronization, 89
server-initiated synchronization using gateways,
100
server-initiated synchronization using light weight
polling, 89

U
UDP gateway

MobiLink listening libraries for server-initiated
synchronization, 50
using gateways as an alternative to light weight
pollers , 19

UDP gateway properties
MobiLink about, 47

utilities
MobiLink Listener (dblsn) syntax, 49

W
window classes

posting window messages to, 67
window messages

posting in server-initiated synchronization, 67

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 117

118 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

	MobiLink - Server-Initiated Synchronization
	Contents
	About this book
	Server-initiated synchronization
	Server-initiated synchronization components
	Server-initiated synchronization deployment considerations
	Quick start to server-initiated synchronization

	Server-initiated synchronization setup
	Push requests
	Push request requirements
	Working with push requests

	Notifiers
	Notifiers in a MobiLink server farm
	Notifier events and properties configuration
	Notifier startup

	Listeners
	Message handlers
	Working with message handlers
	Filtering a message
	Initiating actions
	Action variables
	Setting up light weight polling options

	Advanced message handler features
	Filtering messages by remote ID
	Connectivity-initiated synchronization

	Light weight pollers
	Gateways and carriers
	Gateways as an alternative to light weight pollers
	Device tracking gateways
	Support for device tracking
	Quick start to device tracking gateway configuration

	Carriers and carrier configuration

	MobiLink server settings for server-initiated synchronization
	Server-side settings configured using the ml_add_property system procedure
	Setting up Notifiers, gateways, and carriers using Sybase Central
	Importing server-side settings from a Notifier configuration file
	Exporting server-side settings to a Notifier configuration file

	Server-side settings configured using the Notifier configuration file
	Notifier events
	Events during polling
	begin_poll event
	end_poll event
	error_handler event
	request_cursor event
	request_delete event
	shutdown_query event

	Connection events
	begin_connection event
	end_connection event

	Asynchronous events
	confirmation_handler event

	Common properties
	Notifier properties
	Gateway properties
	Device tracking gateway properties
	SMTP gateway properties
	SYNC gateway properties
	UDP gateway properties

	Carrier properties

	MobiLink Listener utility for Windows devices (dblsn)
	Listening libraries for Windows devices
	MobiLink Listener options for Windows devices
	@data dblsn option
	-a dblsn option
	-d dblsn option
	-e dblsn option
	-f dblsn option
	-gi dblsn option
	-i dblsn option
	-l dblsn option
	-m dblsn option
	-ni dblsn option
	-ns dblsn option
	-nu dblsn option
	-o dblsn option
	-os dblsn option
	-ot dblsn option
	-p dblsn option
	-pc dblsn option
	-q dblsn option
	-qi dblsn option
	-r dblsn option
	-sv dblsn option
	-t dblsn option
	-u dblsn option
	-v dblsn option
	-w dblsn option
	-x dblsn option
	-y dblsn option

	MobiLink Listener keywords for Windows devices
	MobiLink Listener action commands for Windows devices
	START action command
	RUN action command
	POST action command
	SOCKET action command
	DBLSN FULL SHUTDOWN action command

	MobiLink Listener action variables for Windows devices

	Light weight polling API
	MLLightPoller class
	Poll method
	SetConnectInfo method
	auth_status enumeration
	return_code enumeration

	MLLPCreatePoller method
	MLLPDestroyPoller method

	Server-initiated synchronization system procedures
	ml_delete_device system procedure
	ml_delete_device_address system procedure
	ml_delete_listening system procedure
	ml_set_device system procedure
	ml_set_device_address system procedure
	ml_set_listening system procedure
	ml_set_sis_sync_state system procedure

	Server-initiated synchronization advanced topics
	Message syntax
	Sending a push notification using the sa_send_udp system procedure

	Server-initiated synchronization tutorials
	Tutorial: Configuring server-initiated synchronization using light weight polling
	Lesson 1: Setting up the consolidated database
	Lesson 2: Generating a database schema
	Lesson 3: Creating a MobiLink project
	Lesson 4: Configuring the Notifier
	Lesson 5: Starting the MobiLink server
	Lesson 6: Setting up a remote database
	Lesson 7: Configuring the MobiLink Listener
	Lesson 8: Issuing push requests
	Cleaning up

	Tutorial: Configuring server-initiated synchronization using gateways
	Lesson 1: Setting up the consolidated database
	Lesson 2: Generating a database schema
	Lesson 3: Creating a table to store push request
	Lesson 4: Creating a MobiLink project
	Lesson 5: Configuring the Notifier
	Lesson 6: Configuring gateways and carriers
	Lesson 7: Starting the MobiLink server
	Lesson 8: Setting up a remote database
	Lesson 9: Configuring the MobiLink Listener
	Lesson 10: Issuing push requests
	Cleaning up

	Index

