
SQL Anywhere® Server
SQL Usage

Version 12.0.1

January 2012

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Version 12.0.1
January 2012

Copyright © 2012 iAnywhere Solutions, Inc. Portions copyright © 2012 Sybase, Inc. All rights reserved.

This documentation is provided AS IS, without warranty or liability of any kind (unless provided by a separate written agreement between
you and iAnywhere).

You may use, print, reproduce, and distribute this documentation (in whole or in part) subject to the following conditions: 1) you must
retain this and all other proprietary notices, on all copies of the documentation or portions thereof, 2) you may not modify the
documentation, 3) you may not do anything to indicate that you or anyone other than iAnywhere is the author or source of the
documentation.

iAnywhere®, Sybase®, and the marks listed at http://www.sybase.com/detail?id=1011207 are trademarks of Sybase, Inc. or its subsidiaries.
® indicates registration in the United States of America.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

http://www.sybase.com/detail?id=1011207

Contents

About this book ... vii

Tables, views, and indexes ... 1

Setting properties for database objects .. 1
Viewing lists of system objects (Sybase Central) .. 2
Viewing lists of system objects (SQL) ... 3
Tables ... 4
Temporary tables ... 9
Computed columns ... 11
Primary keys .. 15
Foreign keys ... 18
Indexes ... 23
Views ... 35
Materialized views ... 49

Stored procedures, triggers, batches, and user defined functions .. 71

Benefits of procedures, triggers, and user-defined functions 71
Procedures ... 72
User-defined functions .. 76
Triggers .. 80
Batches ... 91
The structure of procedures, triggers, and user-defined functions 94
Control statements .. 97
Result sets .. 100
Cursors in procedures, triggers, user-defined functions, and batches 106
Error and warning handling .. 109
EXECUTE IMMEDIATE used in procedures, triggers, user-defined
functions, and batches .. 117
Transactions and savepoints in procedures, triggers, and user-defined
functions ... 119
Tips for writing procedures, triggers, user-defined functions, and
batches ... 120

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 iii

Statements allowed in procedures, triggers, events, and batches 122
Hiding the contents of procedures, functions, triggers, events, and
views ... 123

Performance improvements, diagnostics, and monitoring 125

Performance monitoring and diagnostic tools ... 125
Tips for improving performance .. 185
Application profiling tutorials ... 226

Query and modify data .. 247

Queries ... 247
Full text search .. 324
Summarizing, grouping, and sorting query results 406
Joins: Retrieving data from several tables ... 428
Common table expressions .. 472
OLAP support .. 487
Use of subqueries .. 534
Data manipulation statements .. 556

SQL dialects and compatibility .. 573

SQL compliance testing using the SQL Flagger .. 573
SQL Anywhere features that differ from other SQL implementations 575
Watcom SQL .. 579
Transact-SQL compatibility .. 580
Adaptive Server Enterprise architectures ... 582
Transact-SQL-compatible databases .. 587
Compatible SQL statements ... 593
Transact-SQL procedure language .. 598
Automatic translation of stored procedures ... 600
Returning result sets from Transact-SQL procedures 601
Variables in Transact-SQL procedures ... 602
Error handling in Transact-SQL procedures ... 602

SQL Anywhere® Server - SQL Usage

iv Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Use of XML in the database .. 605

Storage of XML documents in relational databases 605
Exporting relational data as XML ... 606
Importing XML documents as relational data ... 607
Query results as XML .. 614
Use of Interactive SQL to view results .. 632
Use of SQL/XML to obtain query results as XML ... 633

Remote data and bulk operations .. 641

Data import and export ... 641
Remote data access .. 693
Server classes for remote data access ... 729

Data integrity .. 749

How your data can become invalid .. 749
Integrity constraints .. 749
How the contents of your database change ... 750
Tools for maintaining data integrity ... 750
SQL statements for implementing integrity constraints 751
Column defaults ... 752
Table and column constraints .. 759
Domains .. 764
Entity and referential integrity .. 767
Integrity rules in the system tables .. 776

Transactions and isolation levels .. 779

Transactions .. 779
Concurrency ... 781
Savepoints within transactions .. 782
Isolation levels and consistency .. 782
Transaction blocking and deadlock ... 797
How locking works .. 802
Guidelines for choosing isolation levels ... 817

SQL Anywhere® Server - SQL Usage

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 v

Isolation level tutorials .. 820
Primary key generation and concurrency ... 840
Data definition statements and concurrency .. 845
Summary .. 845

The SQL Anywhere debugger .. 847

Requirements for using the debugger ... 847
Tutorial: Getting started with the debugger .. 848
Breakpoints .. 852
Variables ... 855
Connection debugging .. 858

Index ... 859

SQL Anywhere® Server - SQL Usage

vi Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

About this book
This book describes how to add objects to a database; how to import, export, and modify data; how to
retrieve data; and how to build stored procedures and triggers.

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 vii

viii Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Tables, views, and indexes
This section provides procedures for adding database objects and setting database properties.

The SQL statements for creating, changing, and dropping database objects are called the data definition
language (DDL). The definitions of the database objects form the database schema. A schema is the
logical framework of the database.

See also
● “Stored procedures, triggers, batches, and user defined functions” on page 71
● “Data integrity” on page 749
● “SQL Anywhere database creation” [SQL Anywhere Server - Database Administration]
● “Sybase Central” [SQL Anywhere Server - Database Administration]
● “Interactive SQL” [SQL Anywhere Server - Database Administration]

Setting properties for database objects
You can view or set the properties of a database and of most database objects.

Prerequisites

DBA authority.

Context and remarks

Use the properties windows in Sybase Central to view and set properties. If you do not use Sybase
Central, specify the properties when you create the object with a CREATE statement. If the object already
exists, use an ALTER statement to modify the properties.

Set properties for database objects using Sybase Central

1. Connect to the database using the SQL Anywhere 12 plug-in.

2. Open the folder that the object is in.

3. Select the object.

4. In the right pane, click the appropriate tabs to edit the properties.

Results

The object properties appear in the right pane of Sybase Central and are editable.

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 1

Next

You can also view and edit properties on the object's properties window. To view the properties window,
right-click the object, and then click Properties. Some properties that were set when a database was
created are non-configurable.

See also
● “Connection, database, and database server properties” [SQL Anywhere Server - Database

Administration]

Viewing lists of system objects (Sybase Central)
Use Sybase Central to display information about system objects such as system tables, system views,
stored procedures, and domains. You perform this task when you want see the list of system objects in the
database, and their definitions, or when you want to use their definition to create other similar objects.

Prerequisites

DBA authority, or privileges to view system objects.

Context and remarks

Many.

Display system objects in a database using Sybase Central

1. Connect to the database using the SQL Anywhere 12 plug-in

2. Select the database and click File » Configure Owner Filter.

3. Select SYS, and dbo, and then click OK.

Results

The list of system objects displays in Sybase Central.

Next

None.

See also
● “SYSOBJECT system view” [SQL Anywhere Server - SQL Reference]
● “SYSTAB system view” [SQL Anywhere Server - SQL Reference]
● “SYSUSER system view” [SQL Anywhere Server - SQL Reference]

Tables, views, and indexes

2 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Viewing lists of system objects (SQL)
Use Sybase Central to display information about system objects such as system tables, system views,
stored procedures, and domains. You perform this task when you want see the list of system objects in the
database, and their definitions, or when you want to use their definition to create other similar objects.

Prerequisites

Privileges to view system objects.

Context and remarks

Many.

Browse system objects using SQL

1. In Interactive SQL, connect to a database.

2. Execute a SELECT statement, querying the SYSOBJECT system view for a list of objects.

Results

The list of system objects displays in Interactive SQL.

Next

None.

Example

The following SELECT statement queries the SYSOBJECT system view, and returns the list of all tables
and views owned by SYS and dbo. A join is made to the SYSTAB system view to return the object name,
and SYSUSER system view to return the owner name.

SELECT b.table_name "Object Name",
 c.user_name "Owner",
 b.object_id "ID",
 a.object_type "Type",
 a.status "Status"
 FROM (SYSOBJECT a JOIN SYSTAB b
 ON a.object_id = b.object_id)
 JOIN SYSUSER c
WHERE c.user_name = 'SYS'
 OR c.user_name = 'dbo'
ORDER BY c.user_name, b.table_name;

See also
● “SYSOBJECT system view” [SQL Anywhere Server - SQL Reference]
● “SYSTAB system view” [SQL Anywhere Server - SQL Reference]
● “SYSUSER system view” [SQL Anywhere Server - SQL Reference]

Viewing lists of system objects (SQL)

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 3

Tables
When a database is first created, the only tables in the database are the system tables. System tables hold
the database schema.

This section describes how to create, alter, and drop tables. You can execute the examples in Interactive
SQL, but the SQL statements are independent of the administration tool you use.

To make it easier for you to re-create the database schema when necessary, create SQL script files to
define the tables in your database. The SQL script files should contain the CREATE TABLE and ALTER
TABLE statements.

See also
● “Result sets in Interactive SQL” [SQL Anywhere Server - Database Administration]
● “References to tables owned by groups” [SQL Anywhere Server - Database Administration]
● “Database object names and prefixes” [SQL Anywhere Server - Database Administration]

Creating a table
You can use Sybase Central to create tables in your database.

Prerequisites

DBA authority.

Context and remarks

Many.

Create a table using Sybase Central

1. Connect to the database using the SQL Anywhere 12 plug-in

2. In the left pane, right-click Tables and click New » Table.

3. Follow the instructions in the Create Table Wizard.

4. In the right pane, click the Columns tab and create new columns for your table.

5. Click File » Save.

Results

The new table is saved in the database.

Next

Enter or load data into your table.

Tables, views, and indexes

4 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]

Table alteration

This section describes how to alter the structure or column definitions of a table. For example, you can
add columns, change various column attributes, or drop columns entirely.

You can perform table alteration tasks on the SQL tab in the right pane of Sybase Central. In Interactive
SQL, you can perform them using the ALTER TABLE statement.

Table alterations and view dependencies
Before altering a table, you may want to determine whether there are views dependent on a table, using
the sa_dependent_views system procedure.

If you are altering the schema of a table with dependent views, there may be additional steps to make, as
noted in the following sections.

● Dependent regular views When you alter the schema of a table, the definition for the table in the
database is updated. If there are dependent regular views, the database server automatically
recompiles them after you perform the table alteration. If the database server cannot recompile a
dependent regular view after making a schema change to a table, it is likely because the change you
made invalidated the view definition. In this case, you must correct the view definition.

● Dependent materialized views If there are dependent materialized views, you must disable them
before making the table alteration, and then re-enable them after making the table alteration. If you
cannot re-enable a dependent materialized view after making a schema change to a table, it is likely
because the change you made invalidated the materialized view definition. In this case, you must drop
the materialized view and then create it again with a valid definition, or make suitable alterations to
the underlying table before trying to re-enable the materialized view.

See also
● “Setting properties for database objects” on page 1
● “Table permissions” [SQL Anywhere Server - Database Administration]
● “User permission revocation” [SQL Anywhere Server - Database Administration]
● “Alter a regular view (Sybase Central)” on page 44
● “Creating a materialized view” on page 56
● “View dependencies” on page 37
● “sa_dependent_views system procedure” [SQL Anywhere Server - SQL Reference]

Altering a table

You can use Sybase Central to alter tables in your database, for example if you want to add or remove
columns.

Tables

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 5

Prerequisites

You must either be the owner of the table or have DBA authority.

Altering tables fails if there are any dependent materialized views; you must first disable dependent
materialized views. Use the sa_dependent_views system procedure to determine if there are dependent
materialized views.

Context and remarks

Many.

Alter a table using Sybase Central

1. Connect to the database using the SQL Anywhere 12 plug-in

2. Double-click Tables and double-click the table you want to alter.

3. In the right pane, click the Columns tab and alter the columns for the table as desired.

4. Click File » Save.

Results

The table definition is updated in the database.

Next

If you disabled materialized views in order to alter the table, you must re-enable and initialize each one.

See also
● “sa_dependent_views system procedure” [SQL Anywhere Server - SQL Reference]
● “Enabling or disabling a materialized view” on page 59
● “Data integrity” on page 749
● “View dependencies” on page 37

Dropping a table

You can use Sybase Central to drop a table from your database, for example, when you no longer need it.

Prerequisites

You must be the owner of the table or have DBA authority.

You cannot drop a table that is being used as an article in a publication. If you try to do this in Sybase
Central, an error appears. Also, if you are dropping a table that has dependent views, there may be
additional steps to make, as noted in the following sections.

Tables, views, and indexes

6 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Dropping tables fails if there are any dependent materialized views; you must first disable dependent
materialized views.

Use the sa_dependent_views system procedure to determine if there are dependent materialized views.

Context and remarks

Many.

Drop a table using Sybase Central

1. Connect to the database using the SQL Anywhere 12 plug-in

2. Double-click Tables.

3. Right-click the table and click Delete.

4. Click Yes.

Results

When you drop a table, its definition is removed from the database. If there are dependent regular views,
the database server attempts to recompile and re-enable them after you perform the table alteration. If it
cannot, it is likely because the table deletion invalidated the definition for the view. In this case, you must
correct the view definition.

If there were dependent materialized views, subsequent refreshing will fail because their definition is no
longer valid. In this case, you must drop the materialized view and then create it again with a valid
definition.

All indexes on the table are dropped.

Dropping a table causes a COMMIT statement to be executed. This makes all changes to the database
since the last COMMIT or ROLLBACK permanent.

Next

Dependent regular or materialized views must be dropped, or have their definitions modified to remove
references to the dropped table.

See also
● “sa_dependent_views system procedure” [SQL Anywhere Server - SQL Reference]
● “Enabling or disabling a materialized view” on page 59
● “View dependencies” on page 37
● “Alter a regular view (Sybase Central)” on page 44

Viewing data in tables or views (Sybase Central)
You can use Sybase Central to browse the data in tables and views.

Tables

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 7

Prerequisites

Privileges to view data in the table or view.

Context and remarks

Many.

View data in tables or views using Sybase Central

● In Sybase Central, select the table and click the Data tab in the right pane.

Results

The data for the table or view appears in the Data tab.

Next

For tables, you can edit the data in the Data tab.

If you are working in Interactive SQL, execute a statement similar to the following, where table-name
contains the data you want to view:

SELECT * FROM table-name;

Viewing data in tables or views (SQL)
You can use Interactive SQL to view the data in tables and views.

Prerequisites

Privileges to view data in the table or view.

Context and remarks

Many.

View data in tables or views using SQL

● Execute a statement similar to the following, where object-name is the table or view that contains the
data you want to view:

SELECT * FROM object-name;

Results

The data for the table or view appears in the Results pane.

Tables, views, and indexes

8 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Next

For tables, you can edit the data in the Results pane.

See also
● “Interactive SQL” [SQL Anywhere Server - Database Administration]

Temporary tables
Temporary tables are stored in the temporary file. Pages from the temporary file can be cached, just as
pages from any other dbspace can. Operations on temporary tables are never written to the transaction log.
There are two types of temporary tables: local temporary tables and global temporary tables.

● Local temporary tables A local temporary table exists only for the duration of a connection or, if
defined inside a compound statement, for the duration of the compound statement.

Two local temporary tables within the same scope cannot have the same name. If you create
temporary table with the same name as a base table, the base table only becomes visible within the
connection once the scope of the local temporary table ends. A connection cannot create a base table
with the same name as an existing temporary table.

● Global temporary tables A global temporary table remains in the database until explicitly
removed using a DROP TABLE statement. The term global is used to indicate that multiple
connections from the same or different applications can use the table at the same time. The
characteristics of global temporary tables are as follows:

○ The definition of the table is recorded in the catalog and persists until the table is explicitly
dropped.

○ Inserts, updates, and deletes on the table are not recorded in the transaction log.

○ Column statistics for the table are maintained in memory by the database server.

There are two types of global temporary tables: non-shared and shared. Normally, a global
temporary table is non-shared; that is, each connection sees only its own rows in the table. When a
connection ends, rows for that connection are deleted from the table.

When a global temporary table is shared, all the table's data is shared across all connections. To create
a shared global temporary table, you specify the SHARE BY ALL clause at table creation. In addition
to the general characteristics for global temporary tables, the following characteristics apply to shared
global temporary tables:

○ The content of the table persists until explicitly deleted or until the database is shut down.

○ On database startup, the table is empty.

○ Row locking behavior on the table is the same as for a base table.

Temporary tables

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 9

● Non-transactional temporary tables Temporary tables can be declared as non-transactional
using the NOT TRANSACTIONAL clause of the CREATE TABLE statement. The NOT
TRANSACTIONAL clause provides performance improvements in some circumstances because
operations on non-transactional temporary tables do not cause entries to be made in the rollback log.
For example, NOT TRANSACTIONAL may be useful if procedures that use the temporary table are
called repeatedly with no intervening COMMIT or ROLLBACK, or if the table contains many rows.
Changes to non-transactional temporary tables are not affected by COMMIT or ROLLBACK.

See also
● “Transactions and isolation levels” on page 779
● “How locking works” on page 802
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “DECLARE LOCAL TEMPORARY TABLE statement” [SQL Anywhere Server - SQL Reference]

Creating a global temporary table
Create a global temporary table using Sybase Central. Perform this task to create global temporary tables
when you want to work on data locally, without having to worry about row locking, and to reduce
unnecessary activity in the transaction and redo logs.

Prerequisites

DBA authority.

Context and remarks

Many.

Create a global temporary table using Sybase Central

1. Connect to the database using the SQL Anywhere 12 plug-in

2. Right-click Tables and click New » Global Temporary Table.

3. Follow the instructions in the Create Global Temporary Table Wizard.

4. In the right pane, click the Columns tab and configure the table.

5. Click File » Save.

Results

A global temporary table is created. The global temporary table definition is stored in the database until it
is specifically dropped, and is available for use by other connections.

Next

None.

Tables, views, and indexes

10 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “Temporary tables” on page 9
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “DECLARE LOCAL TEMPORARY TABLE statement” [SQL Anywhere Server - SQL Reference]

References to temporary tables within procedures
Sharing a temporary table between procedures can cause problems if the table definitions are inconsistent.
For example, suppose you have two procedures procA and procB, both of which define a temporary table,
temp_table, and call another procedure called sharedProc. Neither procA nor procB has been called yet,
so the temporary table does not yet exist.

Now, suppose that the procA definition for temp_table is slightly different than the definition in procB—
while both used the same column names and types, the column order is different.

When you call procA, it returns the expected result. However, when you call procB, it returns a different
result.

This is because when procA was called, it created temp_table, and then called sharedProc. When
sharedProc was called, the SELECT statement inside of it was parsed and validated, and then a parsed
representation of the statement is cached so that it can be used again when another SELECT statement is
executed. The cached version reflects the column ordering from the table definition in procA.

Calling procB causes the temp_table to be recreated, but with different column ordering. When procB
calls sharedProc, the database server uses the cached representation of the SELECT statement. So, the
results are different.

You can avoid this from happening by doing one of the following:

● ensure that temporary tables used in this way are defined consistently

● consider using a global temporary table instead

Computed columns
A computed column is a column whose value is an expression that can refer to the values of other
columns, called dependent columns, in the same row. Computed columns are especially useful in
situations where you want to index a complex expression that can include the values of one or more
dependent columns. The database server will use the computed column wherever it see an expression that
matches the computed column's COMPUTE expression; this includes the SELECT list and predicates.
However, if the query expression contains a special value, such as CURRENT TIMESTAMP, this
matching does not occur.

Do not use TIMESTAMP WITH TIME ZONE columns as computed columns. The value of the
time_zone_adjustment option varies between connections based on their location and the time of year,
resulting in incorrect results and unexpected behavior when the values are computed.

Computed columns

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 11

During query optimization, the SQL Anywhere optimizer automatically attempts to transform a predicate
involving a complex expression into one that simply refers to the computed column's definition. For
example, suppose that you want to query a table containing summary information about product
shipments:

CREATE TABLE Shipments(
 ShipmentID INTEGER NOT NULL PRIMARY KEY,
 ShipmentDate TIMESTAMP,
 ProductCode CHAR(20) NOT NULL,
 Quantity INTEGER NOT NULL,
 TotalPrice DECIMAL(10,2) NOT NULL
);

In particular, the query is to return those shipments whose average cost is between two and four dollars.
The query could be written as follows:

SELECT *
 FROM Shipments
 WHERE (TotalPrice / Quantity) BETWEEN 2.00 AND 4.00;

However, in the query above, the predicate in the WHERE clause is not sargable since it does not refer to
a single base column.

If the size of the Shipments table is relatively large, an indexed retrieval might be appropriate rather than
a sequential scan. To benefit from an indexed retrieval, create a computed column named AverageCost
for the Shipments table, and then create an index on the column, as follows:

ALTER TABLE Shipments
 ADD AverageCost DECIMAL(21,13)
 COMPUTE(TotalPrice / Quantity);
 CREATE INDEX IDX_average_cost
 ON Shipments(AverageCost ASC);

Choosing the type of the computed column is important; the SQL Anywhere optimizer replaces only
complex expressions by a computed column if the data type of the expression in the query precisely
matches the data type of the computed column. To determine what the type of any expression is, you can
use the EXPRTYPE built-in function that returns the expression's type in ready-to-use SQL terms:

SELECT EXPRTYPE(
 'SELECT (TotalPrice/Quantity) AS X FROM Shipments', 1)
 FROM DUMMY;

For the Shipments table, the above query returns decimal(21,13). During optimization, the SQL
Anywhere optimizer rewrites the query above as follows:

SELECT *
 FROM Shipments
 WHERE AverageCost
 BETWEEN 2.00 AND 4.00;

In this case, the predicate in the WHERE clause is now a sargable one, making it possible for the
optimizer to choose an indexed scan, using the new IDX_average_cost index, for the query's access plan.

See also
● “Special values” [SQL Anywhere Server - SQL Reference]
● “Query predicates” on page 248

Tables, views, and indexes

12 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Altering a computed column

Change or remove the expression used in a computed column.

Prerequisites

You must have DBA authority, or be the owner of the table, or have permissions to alter the table.

Context and remarks

Many.

Alter a computed column using SQL

1. Connect to the database.

2. Execute an ALTER TABLE statement similar to the following to change the expression used for a
computed column:

ALTER TABLE table-name
ALTER column-name
SET COMPUTE (new-expression);

3. To convert a column to a regular (non-computed) column, execute an ALTER TABLE statement
similar to the following:

ALTER TABLE
table-name
ALTER column-name
DROP COMPUTE;

Results

In the case of changing the computation for the column, the column is recalculated when this statement is
executed.

In the case of a computed column being changed to be a regular (non-computed) column, existing values
in the column are not changed when the statement is executed, and are not automatically updated
thereafter.

Next

None.

See also
● “ALTER TABLE statement” [SQL Anywhere Server - SQL Reference]
● “COMPUTE clause” [SQL Anywhere Server - SQL Reference]
● “Recalculation of computed columns” on page 14

Computed columns

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 13

Inserts into, and updates of, computed columns
Considerations regarding inserting into, and updating, computed columns include the following:

● Direct inserts and updates An INSERT or UPDATE statement can specify a value for a
computed column; however, the value is ignored. The server computes the value for computed
columns based on the COMPUTE specification, and uses the computed value in place of the value
specified in the INSERT or UPDATE statement.

● Column dependencies It is strongly recommended that you not use triggers to set the value of a
column referenced in the definition of a computed column (for example, to change a NULL value to a
not-NULL value), as this can result in the value of the computed column not reflecting its intended
computation.

● Listing column names You must always explicitly specify column names in INSERT statements
on tables with computed columns.

● Triggers If you define triggers on a computed column, any INSERT or UPDATE statement that
affects the column fires the triggers.

The LOAD TABLE statement permits the optional computation of computed columns. Suppressing
computation during a load operation may make performing complex unload/reload sequences faster. It
can also be useful when the value of a computed column must stay constant, even though the COMPUTE
expression refers a non-deterministic value, such as CURRENT TIMESTAMP.

Avoid changing the values of dependent columns in triggers as it may cause the value of the computed
column to be inconsistent with the column definition.

If a computed column x depends on a column y that is declared not-NULL, then an attempt to set y to
NULL will be rejected with an error before triggers fire.

Recalculation of computed columns
Values of computed columns are automatically maintained by the database server as rows are inserted and
updated. Most applications should never need to update or insert computed column values directly.

Computed columns are recalculated under the following circumstances:

● Any column is deleted, added, or renamed.

● The table is renamed.

● The table is changed by an ALTER TABLE statement that modifies any column's data type or
COMPUTE clause.

● A row is inserted.

● A row is updated.

Tables, views, and indexes

14 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Computed columns are not recalculated under the following circumstances:

● The computed column is queried.

● The computed column depends on the values of other rows (using a subquery or user-defined function),
and these rows are changed.

Primary keys
Each table in a relational database should have a primary key. A primary key is a column, or set of
columns, that uniquely identifies each row. No two rows in a table can have the same primary key value,
and no column in a primary key can contain the NULL value.

Only base tables and global temporary tables can have primary keys. With declared temporary tables, you
can create a unique index over a set of NOT NULL columns to mimic the semantics of a primary key.

It is recommended that you do not use approximate data types such as FLOAT and DOUBLE for primary
keys or for columns with unique constraints. Approximate numeric data types are subject to rounding
errors after arithmetic operations.

You can also specify whether to cluster the primary key index, using the CLUSTERED clause.

Column order in multi-column primary keys
Primary key column order is determined by the order of the columns as specified in the primary key
declaration of the CREATE TABLE (or ALTER TABLE) statement. You can also specify the sort order
(ascending or descending) for each individual column. These sort order specifications are used by the
database server when creating the primary key index.

The order of the columns in a primary key does not dictate the order of the columns in any referential
constraints. You can specify a different column order, and different sort orders, with any foreign key
declaration.

Examples
In the SQL Anywhere sample database, the Employees table stores personal information about
employees. It has a primary key column named EmployeeID, which holds a unique ID number assigned
to each employee. A single column holding an ID number is a common way to assign primary keys, and
has advantages over names and other identifiers that may not always be unique.

A more complex primary key can be seen in the SalesOrderItems table of the SQL Anywhere sample
database. The table holds information about individual items on orders from the company, and has the
following columns:

● ID An order number, identifying the order the item is part of.

● LineID A line number, identifying each item on any order.

● ProductID A product ID, identifying the product being ordered.

Primary keys

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 15

● Quantity A quantity, displaying how many items were ordered.

● ShipDate A ship date, displaying when the order was shipped.

A particular sales order item is identified by the order it is part of and by a line number on the order.
These two numbers are stored in the ID and LineID columns. Items can share a single ID value
(corresponding to an order for more than one item) or they can share a LineID number (all first items on
different orders have a LineID of 1). No two items share both values, and so the primary key is made up
of these two columns.

See also
● “Clustered indexes” on page 27

Creating and modifying a primary key (Sybase Central)

You can create or modify a primary key for a table using Sybase Central. Primary keys can improve
performance for any operation that involves querying data.

Prerequisites

You must have DBA authority, owner of the table, or have permissions to modify the table.

Context and remarks

You are adding a primary key to improve performance, or altering a primary key to reflect changes in the
underlying objects that the key references.

Configure a primary key using Sybase Central

1. Connect to the database using the SQL Anywhere 12 plug-in.

2. In the left pane, double-click Tables.

3. Right-click the table and click Set Primary Key.

4. Follow the instructions in the Set Primary Key Wizard.

Results

The table definition is modified to include updated primary key information.

Next

None.

Tables, views, and indexes

16 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “ALTER TABLE statement” [SQL Anywhere Server - SQL Reference]
● “Creating and modifying a primary key (Sybase Central)” on page 16
● “Primary keys enforce entity integrity” on page 768

Creating and modifying a primary key (SQL)
You can configure a primary key for a table to help improve query performance on the table.

Prerequisites

You must have DBA authority, owner of the table, or have permissions to modify the table.

Columns in the primary key cannot contain NULL values. You must specify NOT NULL on columns in
the primary key.

Context and remarks

Many.

Add a primary key using SQL

1. Connect to the database.

2. To add a primary key, execute an ALTER TABLE...ALTER column-name column-alteration
statement.

3. To delete a primary key, execute an ALTER TABLE...DROP PRIMARY KEY statement.

4. To modify a primary key, execute an ALTER TABLE...DROP PRIMARY KEY statement to drop the
existing primary key, and then execute an ALTER TABLE...ALTER column-name column-alteration
statement to set the new primary key for the table.

Results

A primary key definition is added to the table definition in the database.

Next

None.

Example

The following statement creates a table named Skills, and assigns the SkillID column as the primary key:

CREATE TABLE Skills (
 SkillID INTEGER NOT NULL,
 SkillName CHAR(20) NOT NULL,

Primary keys

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 17

 SkillType CHAR(20) NOT NULL,
 PRIMARY KEY(SkillID)
);

The primary key values must be unique for each row in the table, which in this case means that you
cannot have more than one row with a given SkillID. Each row in a table is uniquely identified by its
primary key.

If you want to change the primary key to use SkillID and SkillName columns together for the primary
key, you must first delete the primary key that you created, and then add the new primary key:

ALTER TABLE Skills DELETE PRIMARY KEY
ALTER TABLE Skills ADD PRIMARY KEY (SkillID, SkillName);

See also
● “ALTER TABLE statement” [SQL Anywhere Server - SQL Reference]
● “Creating and modifying a primary key (Sybase Central)” on page 16
● “Primary keys enforce entity integrity” on page 768

Foreign keys
A foreign key consists of a column or set of columns. It represents a reference to a row in the primary
table with the matching key value. Foreign keys can only be used with base tables; they cannot be used
with temporary tables, global temporary tables, views, or materialized views. A foreign key is sometimes
called a referential constraint as the base table containing the foreign key is called the referencing table
and the table containing the primary key is called the referenced table.

If the foreign key is nullable, then the relationship is optional as the foreign row may exist without a
corresponding match of a primary key value in the referenced table since neither primary keys nor
UNIQUE constraints columns can be NULL. If foreign key columns are declared NOT NULL, then the
relationship is mandatory and each row in the referencing table must contain a foreign key value that
exists as a primary key in the referenced table.

Foreign keys and orphaned rows
To achieve referential integrity, the database must not contain any unmatched, non-NULL foreign key
values. A foreign row that violates referential integrity is called an orphan because it fails to match any
primary key value in the referenced table. An orphan can be created by:

● Inserting or updating a row in the referencing table with a non-NULL value for the foreign key column
that does not match any primary key value in the referenced table.

● Updating or deleting a row in the primary table which results in at least one row in the referencing table
no longer containing a matching primary key value.

SQL Anywhere prevents referential integrity violations by preventing the creation of orphan rows.

Tables, views, and indexes

18 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Composite foreign keys
SQL Anywhere also supports multi-column primary and foreign keys, called composite keys. With a
composite foreign key, NULL values still signify the absence of a match, but how an orphan is identified
depends on how referential constraints are defined in the MATCH clause.

Foreign key indexes and sorting order
When you create a foreign key, an index for the key is automatically created. The foreign key column
order does not need to reflect the order of columns in the primary key, nor does the sorting order of the
primary key index have to match the sorting order of the foreign key index. The sorting—ascending or
descending—of each indexed column in the foreign key index can be customized to ensure that the
sorting order of the foreign key index matches the sorting order required by specific SQL queries in your
application, as specified in those statements' ORDER BY clauses. You can specify the sorting for each
column when setting the foreign key constraint.

Example 1
The SQL Anywhere sample database has one table holding employee information and one table holding
department information. The Departments table has the following columns:

● DepartmentID An ID number for the department. This is the primary key for the table.

● DepartmentName The name of the department.

● DepartmentHeadID The employee ID for the department manager.

To find the name of a particular employee's department, there is no need to put the name of the
employee's department into the Employees table. Instead, the Employees table contains a column,
DepartmentID, holding a value that matches one of the DepartmentID values in the Departments table.

The DepartmentID column in the Employees table is a foreign key to the Departments table. A foreign
key references a particular row in the table containing the corresponding primary key.

The Employees table (which contains the foreign key in the relationship) is therefore called the foreign
table or referencing table. The Departments table (which contains the referenced primary key) is called
the primary table or the referenced table.

Example 2
Execute the following statement to create a composite primary key.

CREATE TABLE pt(
 pk1 INT NOT NULL,
 pk2 INT NOT NULL,
 str VARCHAR(10),
 PRIMARY KEY (pk1, pk2));

The following statements create a foreign key that has a different column order than the primary key and a
different sortedness for the foreign key columns, which is used to create the foreign key index.

CREATE TABLE ft1(
 fpk INT PRIMARY KEY,
 ref1 INT,
 ref2 INT);

Foreign keys

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 19

ALTER TABLE ft1 ADD FOREIGN KEY (ref2 ASC, ref1 DESC)
 REFERENCES pt (pk2, pk1) MATCH SIMPLE;

Execute the following statements to create a foreign key that has the same column order as the primary
key, but that has a different sortedness for the foreign key index. The example also uses the MATCH
FULL clause to specify that orphaned rows result if both columns are NULL. The UNIQUE clause
enforces a one-to-one relationship between the pt table and the ft2 table for columns that are not NULL.

CREATE TABLE ft2(
 fpk INT PRIMARY KEY,
 ref1 INT,
 ref2 INT);
ALTER TABLE ft2 ADD FOREIGN KEY (ref1, ref2 DESC)
 REFERENCES pt (pk1, pk2) MATCH UNIQUE FULL;

See also
● “FOREIGN KEY clause, CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “Referential integrity” on page 768

Creating a foreign key (Sybase Central)
You can create a foreign key relationship between tables. A foreign key relationship acts as a constraint;
for new rows inserted in the child table, the database server checks to see if the value you are inserting
into the foreign key column matches a value in the primary table's primary key.

Prerequisites

You must have DBA authority or be the owner of the table.

Context and remarks

You do not have to create a foreign key when you create a foreign table; the foreign key is created
automatically.

To create a foreign key using Sybase Central

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with

2. In the left pane, double-click Tables.

3. Select the table for which you want to create or delete a foreign key.

4. In the right pane, click the Constraints tab.

5. Create a foreign key:

a. Click File » New » Foreign Key.

b. Follow the instructions in the Create Foreign Key Wizard.

Tables, views, and indexes

20 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Results

In Sybase Central, the foreign key of a table appears on the Constraints tab, which is located on the right
pane when a table is selected.

Next

When you create a foreign key using the wizard, you can set properties for the foreign key. To view
properties after the foreign key is created, select the foreign key on the Constraints tab and then click
File » Properties.

You can view the properties of a referencing foreign key by selecting the table on the Referencing
Constraints tab and then clicking File » Properties.

To view the list of tables that reference a given table, select the table in Tables, and then in the right pane,
click the Referencing Constraints tab.

See also
● “Creating a foreign key (Sybase Central)” on page 20
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TABLE statement” [SQL Anywhere Server - SQL Reference]

Creating a foreign key (SQL)
You can create and alter foreign keys in Interactive SQL using the CREATE TABLE and ALTER
TABLE statements. These statements let you set many table attributes, including column constraints and
checks.

Prerequisites

You must have DBA authority or be the owner of the table.

Context and remarks

Many.

Create a foreign key using SQL

1. Connect to the database as a user with DBA authority.

2. Execute an ALTER TABLE statement.

Results

The definition of the table is updated to include the foreign key definition.

Next

None.

Foreign keys

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 21

Example

In the following example, you create a table called Skills which contains a list of possible skills, and then
create a table called EmployeeSkills that has a foreign key relationship to the Skills table. Notice that
EmployeeSkills.SkillID has a foreign key relationship with the primary key column (Id) of the Skills
table.

CREATE TABLE Skills (
 Id INTEGER PRIMARY KEY,
 SkillName CHAR(40),
 Description CHAR(100)
);
CREATE TABLE EmployeeSkills (
 EmployeeID INTEGER NOT NULL,
 SkillID INTEGER NOT NULL,
 SkillLevel INTEGER NOT NULL,
 PRIMARY KEY(EmployeeID),
 FOREIGN KEY (SkillID) REFERENCES Skills (Id)
);

You can also add a foreign key to a table after it has been created, using the ALTER TABLE statement. In
the following example, you create tables similar to those created in the previous example, except you add
the foreign key after creating the table.

CREATE TABLE Skills2 (
 ID INTEGER PRIMARY KEY,
 SkillName CHAR(40),
 Description CHAR(100)
);
CREATE TABLE EmployeeSkills2 (
 EmployeeID INTEGER NOT NULL,
 SkillID INTEGER NOT NULL,
 SkillLevel INTEGER NOT NULL,
 PRIMARY KEY(EmployeeID),
);
ALTER TABLE EmployeeSkills2
 ADD FOREIGN KEY SkillFK (SkillID)
 REFERENCES Skills2 (ID);

You can specify properties for the foreign key as you create it. For example, the following statement
creates the same foreign key as in Example 2, but it defines the foreign key as NOT NULL along with
restrictions for when you update or delete.

ALTER TABLE Skills2
ADD NOT NULL FOREIGN KEY SkillFK (SkillID)
REFERENCES Skills2 (ID)
ON UPDATE RESTRICT
ON DELETE RESTRICT;

Foreign key column names are paired with primary key column names according to position in the two
lists in a one-to-one manner. If the primary table column names are not specified when defining the
foreign key, then the primary key columns are used. For example, suppose you create two tables as
follows:

CREATE TABLE Table1(a INT, b INT, c INT, PRIMARY KEY (a, b));
CREATE TABLE Table2(x INT, y INT, z INT, PRIMARY KEY (x, y));

Then, you create a foreign key fk1 as follows, specifying exactly how to pair the columns between the
two tables:

Tables, views, and indexes

22 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

ALTER TABLE Table2 ADD FOREIGN KEY fk1(x,y) REFERENCES Table1(a, b);

Using the following statement, you create a second foreign key, fk2, by specifying only the foreign table
columns. The database server automatically pairs these two columns to the first two columns in the
primary key on the primary table.

ALTER TABLE Table2 ADD FOREIGN KEY fk2(x, y) REFERENCES Table1;

Using the following statement, you create a foreign key without specifying columns for either the primary
or foreign table:

ALTER TABLE Table2 ADD FOREIGN KEY fk3 REFERENCES Table1;

Since you did not specify referencing columns, the database server looks for columns in the foreign table
(Table2) with the same name as columns in the primary table (Table1). If they exist, it ensures that the
data types match and then creates the foreign key using those columns. If columns do not exist, they are
created in Table2. In this example, Table2 does NOT have columns called a and b so they are created with
the same data types as Table1.a and Table1.b. These automatically-created columns cannot become part
of the primary key of the foreign table.

See also
● “Creating a foreign key (Sybase Central)” on page 20
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TABLE statement” [SQL Anywhere Server - SQL Reference]

Indexes
An index provides an ordering on the rows in a column or columns of a table. An index is like a
telephone book that initially sorts people by surname, and then sorts identical surnames by first names.
This ordering speeds up searches for phone numbers for a particular surname, but it does not provide help
in finding the phone number at a particular address. In the same way, a database index is useful only for
searches on a specific column or columns.

Indexes get more useful as the size of the table increases. The average time to find a phone number at a
given address increases with the size of the phone book, while it does not take much longer to find the
phone number of K. Kaminski in a large phone book than in a small phone book.

The optimizer automatically uses indexes to improve the performance of any database statement
whenever it is possible to do so. Also, the index is updated automatically when rows are deleted, updated,
or inserted. While you can explicitly refer to indexes using index hints when forming your query, there is
no need to.

There are some down sides to creating indexes. In particular, any indexes must be maintained along with
the table itself when the data in a column is modified, so that the performance of inserts, updates, and
deletes can be affected by indexes. For this reason, unnecessary indexes should be dropped. Use the Index
Consultant to identify unnecessary indexes.

Indexes

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 23

Deciding what indexes to create
Choosing an appropriate set of indexes for a database is an important part of optimizing performance.
Identifying an appropriate set can also be a demanding problem.

There is no simple formula to determine whether an index should be created. You must consider the trade-
off of the benefits of indexed retrieval versus the maintenance overhead of that index. The following
factors may help to determine whether you should create an index:

● Keys and unique columns SQL Anywhere automatically creates indexes on primary keys,
foreign keys, and unique columns. You should not create additional indexes on these columns. The
exception is composite keys, which can sometimes be enhanced with additional indexes.

● Frequency of search If a particular column is searched frequently, you can achieve performance
benefits by creating an index on that column. Creating an index on a column that is rarely searched
may not be worthwhile.

● Size of table Indexes on relatively large tables with many rows provide greater benefits than
indexes on relatively small tables. For example, a table with only 20 rows is unlikely to benefit from
an index, since a sequential scan would not take any longer than an index lookup.

● Number of updates An index is updated every time a row is inserted or deleted from the table and
every time an indexed column is updated. An index on a column slows the performance of inserts,
updates and deletes. A database that is frequently updated should have fewer indexes than one that is
read-only.

● Space considerations Indexes take up space within the database. If database size is a primary
concern, you should create indexes sparingly.

● Data distribution If an index lookup returns too many values, it is more costly than a sequential
scan. SQL Anywhere does not make use of the index when it recognizes this condition. For example,
SQL Anywhere would not make use of an index on a column with only two values, such as
Employees.Sex in the SQL Anywhere sample database. For this reason, you should not create an
index on a column that has only a few distinct values.

When creating indexes, the order in which you specify the columns becomes the order in which the
columns appear in the index. Duplicate references to column names in the index definition is not allowed.

Note
The Index Consultant is a tool that assists you in proper selection of indexes. It analyzes either a single
query or a set of operations, and recommends which indexes to add to your database. It also notifies you
of indexes that are unused.

Indexes on temporary tables
You can create indexes on both local and global temporary tables. You may want to consider indexing a
temporary table if you expect it will be large and accessed several times in sorted order or in a join.
Otherwise, any improvement in performance for queries is likely to be outweighed by the cost of creating
and dropping the index.

Tables, views, and indexes

24 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “Composite indexes” on page 25
● “Indexes” on page 23
● “Proper selection of indexes can make a large performance difference” on page 218
● “Obtaining Index Consultant recommendations for a query” on page 134
● “Use indexes effectively” on page 218
● “Obtaining Index Consultant recommendations for a query” on page 134
● “WITH (index-hint) clause, FROM clause” [SQL Anywhere Server - SQL Reference]

Composite indexes
An index can contain one, two, or more columns. An index on two or more columns is called a composite
index. For example, the following statement creates a two-column composite index:

CREATE INDEX name
ON Employees (Surname, GivenName);

A composite index is useful if the first column alone does not provide high selectivity. For example, a
composite index on Surname and GivenName is useful when many employees have the same surname. A
composite index on EmployeeID and Surname would not be useful because each employee has a unique
ID, so the column Surname does not provide any additional selectivity.

Additional columns in an index can allow you to narrow down your search, but having a two-column
index is not the same as having two separate indexes. A composite index is structured like a telephone
book, which first sorts people by their surnames, and then all the people with the same surname by their
given names. A telephone book is useful if you know the surname, even more useful if you know both the
given name and the surname, but worthless if you only know the given name and not the surname.

Column order
When you create composite indexes, you should think carefully about the order of the columns.
Composite indexes are useful for doing searches on all the columns in the index or on the first columns
only; they are not useful for doing searches on any of the later columns alone.

If you are likely to do many searches on one column only, that column should be the first column in the
composite index. If you are likely to do individual searches on both columns of a two-column index, you
may want to consider creating a second index that contains the second column only.

For example, suppose you create a composite index on two columns. One column contains employee's
given names, the other their surnames. You could create an index that contains their given name, then
their surname. Alternatively, you could index the surname, then the given name. Although these two
indexes organize the information in both columns, they have different functions.

CREATE INDEX IX_GivenName_Surname
 ON Employees (GivenName, Surname);
CREATE INDEX IX_Surname_GivenName
 ON Employees (Surname, GivenName);

Indexes

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 25

Suppose you then want to search for the given name John. The only useful index is the one containing the
given name in the first column of the index. The index organized by surname then given name is of no use
because someone with the given name John could appear anywhere in the index.

If you are more likely to look up people by given name only or surname only, then you should consider
creating both of these indexes.

Alternatively, you could make two indexes, each containing only one of the columns. Remember,
however, that SQL Anywhere only uses one index to access any one table while processing a single
query. Even if you know both names, it is likely that SQL Anywhere needs to read extra rows, looking for
those with the correct second name.

When you create an index using the CREATE INDEX statement, as in the example above, the columns
appear in the order shown in your statement.

Composite indexes and ORDER BY
By default, the columns of an index are sorted in ascending order, but they can optionally be sorted in
descending order by specifying DESC in the CREATE INDEX statement.

SQL Anywhere can choose to use an index to optimize an ORDER BY query as long as the ORDER BY
clause contains only columns included in that index. In addition, the columns in the index must be ordered
in exactly the same way, or in exactly the opposite way, as the ORDER BY clause. For single-column
indexes, the ordering is always such that it can be optimized, but composite indexes require slightly more
thought. The table below shows the possibilities for a two-column index.

Index columns Optimizable ORDER BY queries Not optimizable ORDER BY queries

ASC, ASC ASC, ASC or DESC, DESC ASC, DESC or DESC, ASC

ASC, DESC ASC, DESC or DESC, ASC ASC, ASC or DESC, DESC

DESC, ASC DESC, ASC or ASC, DESC ASC, ASC or DESC, DESC

DESC, DESC DESC, DESC or ASC, ASC ASC, DESC or DESC, ASC

An index with more than two columns follows the same general rule as above. For example, suppose you
have the following index:

CREATE INDEX idx_example
ON table1 (col1 ASC, col2 DESC, col3 ASC);

In this case, the following queries can be optimized:

SELECT col1, col2, col3 FROM table1
ORDER BY col1 ASC, col2 DESC, col3 ASC;
SELECT col1, col2, col3 FROM example
ORDER BY col1 DESC, col2 ASC, col3 DESC;

The index is not used to optimize a query with any other pattern of ASC and DESC in the ORDER BY
clause. For example, the following statement is not optimized:

Tables, views, and indexes

26 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SELECT col1, col2, col3 FROM table1
ORDER BY col1 ASC, col2 ASC, col3 ASC;

Clustered indexes
You can further improve a large index scan by declaring that the index is clustered. Using a clustered
index increases the chance that two rows from adjacent index entries will appear on the same page in the
database. This can lead to performance benefits by reducing the number of times a table page needs to be
read into the buffer pool.

The existence of an index with a clustering property causes the database server to attempt to store table
rows in approximately the same order as they appear in the clustered index. However, while the database
server attempts to preserve the key order, clustering is approximate and total clustering is not guaranteed.
So, the database server cannot sequentially scan the table and retrieve all the rows in a clustered index key
sequence. Ensuring that the rows of the table are returned in sorted order requires an access plan that
either accesses the rows through the index, or performs a physical sort.

The optimizer exploits an index with a clustering property by modifying the expected cost of indexed
retrieval to take into account the expected physical adjacency of table rows with matching or adjacent
index key values.

The amount of clustering for a given table may degrade over time, as more and more rows are inserted or
updated. The database server automatically keeps track of the amount of clustering for each clustered
index in the ISYSPHYSIDX system table. If the database server detects that the rows in a table have
become significantly unclustered, the optimizer will adjust its expected index retrieval costs.

If you decide to make one of the indexes on a table clustered, you need to consider the expected query
workload. Some experimentation is usually required. Generally, the database server can use a clustered
index to improve performance when the following conditions hold for a specified query:

● Many of the table pages required for answering the query are not already in memory. When the table
pages are already in memory, the server does not need to read these pages and such clustering is
irrelevant.

● The query can be answered by performing an index retrieval that is expected to return a non-trivial
number of rows. As an example, clustering is usually irrelevant for simple primary key searches.

● The database server actually needs to read table pages, as opposed to performing an index-only
retrieval.

Declaring clustered indexes
The clustering property of an index can be added or removed at any time using SQL statements. Any
primary key index, foreign key index, UNIQUE constraint index, or secondary index can be declared with

Indexes

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 27

the CLUSTERED property. However, you may declare at most one clustered index per table. You can do
this using any of the following statements:

● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “ALTER DATABASE statement” [SQL Anywhere Server - SQL Reference]
● “CREATE INDEX statement” [SQL Anywhere Server - SQL Reference]
● “DECLARE LOCAL TEMPORARY TABLE statement” [SQL Anywhere Server - SQL Reference]

Several statements work in conjunction with each other to allow you to maintain and restore the clustering
effect:

● The UNLOAD TABLE statement allows you to unload a table in the order of the clustered index key.

● The LOAD TABLE statement inserts rows into the table in the order of the clustered index key.

● The INSERT statement attempts to put new rows on the same table page as the one containing adjacent
rows, as per the clustered index key.

● The REORGANIZE TABLE statement restores the clustering of a table by rearranging the rows
according to the clustered index. If REORGANIZE TABLE is used with tables where clustering is not
specified, the tables are reordered using the primary key.

You can also create clustered indexes in Sybase Central using the Create Index Wizard, and clicking
Create A Clustered Index when prompted.

See also
● “UNLOAD statement” [SQL Anywhere Server - SQL Reference]
● “LOAD TABLE statement” [SQL Anywhere Server - SQL Reference]
● “INSERT statement” [SQL Anywhere Server - SQL Reference]
● “REORGANIZE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “Creating an index” on page 28

Creating an index
You can create indexes on base tables or temporary tables, but you cannot create an index on a view. In
addition to creating indexes on one or more columns in a table, you can create indexes on a built-in
function using a computed column. You can use the Index Consultant to guide you in a proper selection
of indexes for your database.

Prerequisites

You must have DBA authority or be the owner of the table.

Context and remarks

When creating indexes, the order in which you specify the columns becomes the order in which the
columns appear in the index. Duplicate references to column names in the index definition is not allowed.

Tables, views, and indexes

28 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Create an index using Sybase Central

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, double-click Tables and select the table for which you want to create an index.

3. In the right pane, click the Indexes tab.

4. In the left pane, right-click the table and click New » Index.

5. Follow the instructions in the Create Index Wizard.

Results

The new index appears on the Index tab for the table. It also appears in Indexes.

Next

None.

See also
● “CREATE INDEX statement” [SQL Anywhere Server - SQL Reference]
● “Performance monitoring and diagnostic tools” on page 125

Validating an index
You can validate an index to ensure that every row referenced in the index actually exists in the table. For
foreign key indexes, a validation check also ensures that the corresponding row exists in the primary
table.

Prerequisites

You must have DBA authority or be the owner of the table on which the index is created.

Perform validation only when no connections are making changes to the database.

Context and remarks

Many.

Validate an index using Sybase Central

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, double-click Indexes.

3. Right-click the index and click Validate.

4. Click OK.

Indexes

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 29

Results

A check is done to ensure that every row referenced in the index actually exists in the table. For foreign
key indexes, the check ensures that the corresponding row exists in the primary table.

Next

None.

See also
● “VALIDATE statement” [SQL Anywhere Server - SQL Reference]
● “Validation utility (dbvalid)” [SQL Anywhere Server - Database Administration]

Rebuilding an index

Sometimes it is necessary to rebuild an index because it has become fragmented due to extensive insertion
and deletion operations on the table.

Prerequisites

You must have DBA authority or be the owner of the table on which the index is created.

Context and remarks

When you rebuild an index, you rebuild the physical index. All logical indexes that use the physical index
benefit from the rebuild operation. You do not need to perform a rebuild on logical indexes.

Rebuild an index using Sybase Central

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, double-click Indexes.

3. Right-click the index and click Rebuild.

4. Click OK.

Results

The index is rebuilt with fragmentation removed.

Next

None.

Tables, views, and indexes

30 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “Advanced: Logical and physical indexes” on page 32
● “REORGANIZE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “ALTER INDEX statement” [SQL Anywhere Server - SQL Reference]
● “Reduce index fragmentation and skew” on page 206
● “Using the Application Profiling Wizard” on page 127
● “sa_index_density system procedure” [SQL Anywhere Server - SQL Reference]

Dropping an index
You can drop an index when it is no longer needed, or when you need to modify the definition of a
column that is part of a primary or foreign key.

Prerequisites

You must have DBA authority or be the owner of the table on which the index is created.

Context and remarks

Many.

Drop an index using Sybase Central

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, double-click Indexes.

3. Right-click the index and click Delete.

4. Click Yes.

Results

The index is dropped from the database.

Next

If you had to drop an index in order to delete or modify the definition of a column that is part of a primary
or foreign key, you need to add a new index.

See also
● “DROP INDEX statement” [SQL Anywhere Server - SQL Reference]

Advanced: Index information in the catalog
The ISYSIDX system table provides a list of all indexes in the database, including primary and foreign
key indexes. Additional information about the indexes is found in the ISYSPHYSIDX, ISYSIDXCOL,

Indexes

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 31

and ISYSFKEY system views. You can use Sybase Central or Interactive SQL to browse the views for
these tables to see the data they contain.

Following is a brief overview of how index information is stored in the system tables:

● ISYSIDX system table The central table for tracking indexes, each row in the ISYSIDX system
table defines a logical index (PKEY, FKEY, UNIQUE constraint, Secondary index) in the database.

● ISYSPHYSIDX system table Each row in the ISYSPHYSIDX system table defines a physical
index in the database.

● ISYSIDXCOL system table Just as each row in the SYSIDX system view describes one index in
the database, each row in the SYSIDXCOL system view describes one column of an index described
in the SYSIDX system view.

● ISYSFKEY system table Every foreign key in the database is defined by one row in the
ISYSFKEY system table and one row in the ISYSIDX system table.

See also
● “SYSIDX system view” [SQL Anywhere Server - SQL Reference]
● “SYSPHYSIDX system view” [SQL Anywhere Server - SQL Reference]
● “SYSIDXCOL system view” [SQL Anywhere Server - SQL Reference]
● “SYSFKEY system view” [SQL Anywhere Server - SQL Reference]
● “Advanced: Logical and physical indexes” on page 32

Advanced: Logical and physical indexes

SQL Anywhere uses physical and logical indexes. A physical index is the actual indexing structure as it is
stored on disk. A logical index is a reference to a physical index. When you create a primary key,
secondary key, foreign key, or unique constraint, the database server ensures referential integrity by
creating a logical index for the constraint. Then, the database server looks to see if a physical index
already exists that satisfies the constraint. If a qualifying physical index already exists, the database server
points the logical index to it. If one does not exist, the database server creates a new physical index and
then points the logical index to it.

For a physical index to satisfy the requirements of a logical index, the columns, column order and the
ordering (ascending, descending) of data for each column must be identical.

Information about all logical and physical indexes in the database is recorded in the ISYSIDX and
ISYSPHYSIDX system tables, respectively. When you create a logical index, an entry is made in the
ISYSIDX system table to hold the index definition. A reference to the physical index used to satisfy the
logical index is recorded in the ISYSIDX.phys_id column. The physical index is defined in the
ISYSPHYSIDX system table.

Using logical indexes means that the database server does not need to create and maintain duplicate
physical indexes, since more than one logical index can point to a single physical index.

Tables, views, and indexes

32 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

When you delete a logical index, its definition is removed from the ISYSIDX system table. If it was the
only logical index referencing a particular physical index, the physical index is also deleted, and its
corresponding entry in the ISYSPHYSIDX system table.

Physical indexes are not created for remote tables. For temporary tables, physical indexes are created, but
they are not recorded in ISYSPHYSIDX, and are discarded after use. Also, physical indexes for
temporary tables are not shared.

See also
● “SYSIDX system view” [SQL Anywhere Server - SQL Reference]
● “SYSPHYSIDX system view” [SQL Anywhere Server - SQL Reference]

Determination of which logical indexes share a physical index

When you drop an index, you are dropping a logical index; however, you are not always dropping the
physical index to which it refers. If another logical index refers to the same physical index, the physical
index is not deleted. This is important to know, especially if you expect disk space to be freed by
dropping the index, or if you are dropping the index with the intent to physically recreate it.

To determine whether an index for a table is sharing a physical index with any other indexes, select the
table in Sybase Central, and then click the Indexes tab. Note whether the Phys. ID value for the index is
also present for other indexes in the list. Matching Phys. ID values mean that those indexes share the
same physical index. If you want to recreate a physical index, you can use the ALTER
INDEX...REBUILD statement. Alternatively, you can drop all the indexes, and then recreate them.

Determining tables in which physical indexes are being shared
At any time, you can obtain a list of all tables in which physical indexes are being shared, by executing a
query similar to the following:

SELECT tab.table_name, idx.table_id, phys.phys_index_id, COUNT(*)
 FROM SYSIDX idx JOIN SYSTAB tab ON (idx.table_id = tab.table_id)
 JOIN SYSPHYSIDX phys ON (idx.phys_index_id = phys.phys_index_id
 AND idx.table_id = phys.table_id)
 GROUP BY tab.table_name, idx.table_id, phys.phys_index_id
 HAVING COUNT(*) > 1
ORDER BY tab.table_name;

Following is an example result set for the query:

table_name table_id phys_index_id COUNT()

ISYSCHECK 57 0 2

ISYSCOLSTAT 50 0 2

ISYSFKEY 6 0 2

ISYSSOURCE 58 0 2

Indexes

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 33

table_name table_id phys_index_id COUNT()

MAINLIST 94 0 3

MAINLIST 94 1 2

The number of rows for each table indicates the number of shared physical indexes for the tables. In this
example, all the tables have one shared physical index, except for the fictitious table, MAINLIST, which
has two. The phys_index_id values identifies the physical index being shared, and the value in the
COUNT column tells you how many logical indexes are sharing the physical index.

You can also use Sybase Central to see which indexes for a given table share a physical index. To do this,
choose the table in the left pane, click the Indexes tab in the right pane, and then look for multiple rows
with the same value in the Phys. ID column. Indexes with the same value in Phys. ID share the same
physical index.

See also
● “Rebuilding an index” on page 30
● “ALTER INDEX statement” [SQL Anywhere Server - SQL Reference]
● “SYSIDX system view” [SQL Anywhere Server - SQL Reference]

Advanced: Index selectivity and fan-out

Index selectivity refers to the ability of an index to locate a desired index entry without having to read
additional data.

If selectivity is low, additional information must be retrieved from the table page that the index
references. These retrievals are called full compares, and they have a negative effect on index
performance.

The FullCompare property function keeps track of the number of full compares that have occurred. You
can also monitor this statistic using the Sybase Central Performance Monitor or the Windows
Performance Monitor.

Note
The Windows Performance Monitor may not be available on Windows Mobile.

In addition, the number of full compares is provided in the graphical plan with statistics.

Indexes are organized in several levels, like a tree. The first page of an index, called the root page,
branches into one or more pages at the next level, and each of those pages branch again, until the lowest
level of the index is reached. These lowest level index pages are called leaf pages. To locate a specific
row, an index with n levels requires n reads for index pages and one read for the data page containing the
actual row. In general, fewer than n reads from disk are needed, since index pages that are used frequently
tend to be stored in cache.

Tables, views, and indexes

34 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The index fan-out is the number of index entries stored on a page. An index with a higher fan-out may
have fewer levels than an index with a lower fan-out. Therefore, higher index fan-out generally means
better index performance. Choosing the correct page size for your database can improve index fan-out.

You can see the number of levels in an index by using the sa_index_levels system procedure.

See also
● “Common statistics used in the plan” on page 316
● “Use an appropriate page size” on page 215
● “sa_index_levels system procedure” [SQL Anywhere Server - SQL Reference]

Advanced: Other ways SQL Anywhere uses indexes
SQL Anywhere uses indexes to achieve other performance benefits. Having an index allows SQL
Anywhere to enforce column uniqueness, to reduce the number of rows and pages that must be locked,
and to better estimate the selectivity of a predicate.

● Enforce column uniqueness Without an index, SQL Anywhere has to scan the entire table every
time that a value is inserted to ensure that it is unique. For this reason, SQL Anywhere automatically
builds an index on every column with a uniqueness constraint.

● Reduce locks Indexes reduce the number of rows and pages that must be locked during inserts,
updates, and deletes. This reduction is a result of the ordering that indexes impose on a table.

● Estimate selectivity Because an index is ordered, the optimizer can estimate the percentage of
values that satisfy a given query by scanning the upper levels of the index. This action is called a
partial index scan.

See also
● “How locking works” on page 802

Views
A view is a computed table that is defined by the result set of its view definition, which is expressed as a
SQL query. You can use views to show database users exactly the information you want to present, in a
format you can control. SQL Anywhere supports two types of views: regular views and materialized
views.

The definition for each view in the database is stored in the ISYSVIEW system table.

See also
● “SYSVIEW system view” [SQL Anywhere Server - SQL Reference]

Views

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 35

Documentation conventions for views
In the SQL Anywhere documentation, the term regular view is used to describe a view that is recomputed
each time you reference the view, and the result set is not stored on disk. This is the most commonly used
type of view. Most of the documentation refers to regular views.

The term materialized view is used to describe a view whose result set is precomputed and materialized
on disk similar to the contents of a base table.

The meaning of the term view (by itself) in the documentation is context-based. When used in a section
that is talking about common aspects of regular and materialized views, it refers to both regular and
materialized views. If the term is used in documentation for materialized views, it refers to materialized
views, and likewise for regular views.

Comparison of regular views, materialized views, and base
tables

The following table compares regular views, materialized views, and base tables:

Capability Regular views Materialized views Base tables

Allow access permissions Yes Yes Yes

Allow SELECT Yes Yes Yes

Allow UPDATE Some No Yes

Allow INSERT Some No Yes

Allow DELETE Some No Yes

Allow dependent views Yes Yes Yes

Allow indexes No Yes Yes

Allow integrity constraints No No Yes

Allow keys No No Yes

Benefits of using views
Views let you tailor access to data in the database. Tailoring access serves several purposes:

● Efficient resource use Regular views do not require additional storage space for data; they are
recomputed each time you invoke them. Materialized views require disk space, but do not need to be
recomputed each time they are invoked. Materialized views can improve response time in

Tables, views, and indexes

36 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

environments where the database is large, and the database server processes frequent, repetitive
requests to join the same tables.

● Improved security By allowing access to only the information that is relevant.

● Improved usability By presenting users and application developers with data in a more easily
understood form than in the base tables.

● Improved consistency By centralizing the definition of common queries in the database.

View dependencies
A view definition can refer to other objects including columns, tables, and other views. When a view
makes a reference to another object, the view is called a referencing object and the object to which it
refers is called a referenced object. Further, a referencing object is said to be dependent on the objects to
which it refers.

The set of referenced objects for a given view includes all the objects to which it refers either directly or
indirectly. For example, a view can indirectly refer to a table, by referring to another view that references
that table.

Consider the following set of tables and views:

CREATE TABLE t1 (c1 INT, c2 INT);
CREATE TABLE t2(c3 INT, c4 INT);
CREATE VIEW v1 AS SELECT * FROM t1;
CREATE VIEW v2 AS SELECT c3 FROM t2;
CREATE VIEW v3 AS SELECT c1, c3 FROM v1, v2;

The following view dependencies can be determined from the definitions above:

● View v1 is dependent on each individual column of t1, and on t1 itself.

● View v2 is dependent on t2.c3, and on t2 itself.

● View v3 is dependent on columns t1.c1 and t2.c3, tables t1 and t2, and views v1 and v2.

The database server keeps track of columns, tables, and views referenced by a given view. The database
server uses this dependency information to ensure that schema changes to referenced objects do not leave
a referencing view in an unusable state.

Dependencies and schema-altering changes

An attempt to alter the schema defined for a table or view requires that the database server consider if
there are dependent views impacted by the change. Examples of schema-altering operations include:

● Dropping a table, view, materialized view, or column

● Renaming a table, view, materialized view, or column

Views

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 37

● Adding, dropping, or altering columns

● Altering a column's data type, size, or nullability

● Disabling views or table view dependencies

Events that take place during schema-altering operations
When you attempt a schema-altering operation, the following events occur:

1. The database server generates a list of views that depend directly or indirectly upon the table or view
being altered. Views with a DISABLED status are ignored.

If any of the dependent views are materialized views, the request fails, an error is returned, and the
remaining events do not occur. You must explicitly disable dependent materialized views before you
can proceed with the schema-altering operation.

2. The database server obtains exclusive schema locks on the object being altered, and on all dependent
regular views.

3. The database server sets the status of all dependent regular views to INVALID.

4. The database server performs the schema-altering operation. If the operation fails, the locks are
released, the status of dependent regular views is reset to VALID, an error is returned, and the
following step does not occur.

5. The database server recompiles the dependent regular views, setting each view's status to VALID
when successful. If compilation fails for any regular view, the status of that view remains INVALID.
Subsequent requests for an INVALID regular view causes the database server to attempt to recompile
the view. If subsequent attempts fail, it is likely that an alteration is required on the INVALID view,
or on an object upon which it depends.

Regular views: dependencies and schema alterations
● A regular view can reference tables or views, including materialized views.

● When you change the schema of a table or view, the database automatically attempts to recompile all
referencing regular views.

● When you disable or drop a view or table, all dependent regular views are automatically disabled.

● You can use the DISABLE VIEW DEPENDENCIES clause of the ALTER TABLE statement to
disable dependent regular views.

Materialized views: dependencies and schema alterations
● A materialized view can only reference base tables.

● Schema changes to a base table are not permitted if it is referenced by any enabled materialized views.
You can add foreign keys to the table (for example, ALTER TABLE ADD FOREIGN KEY).

● Before you drop a table, you must disable or drop all dependent materialized views.

Tables, views, and indexes

38 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● The DISABLE VIEW DEPENDENCIES clause of the ALTER TABLE statement does not impact
materialized views. To disable a materialized view, you must use the ALTER MATERIALIZED
VIEW...DISABLE statement.

● Once you disable a materialized view, you must explicitly re-enable it, for example using the ALTER
MATERIALIZED VIEW...ENABLE statement.

See also
● “Enabling or disabling a materialized view” on page 59

Retrieve dependency information (SQL)

For any table or view in the database, you can retrieve a list of objects that are dependent on that object.
This is useful when you want to alter a table or view and need to know the other objects that will be
impacted.

Prerequisites

Execution of the task does not require any permissions and assumes that PUBLIC has access to the
catalog.

Context and remarks

The SYSDEPENDENCY system view stores dependency information. Each row in the
SYSDEPENDENCY system view describes a dependency between two database objects. A direct
dependency is when one object directly references another object in its definition. The database server
uses direct dependency information to determine indirect dependencies as well. For example, suppose
View A references View B, which in turn references Table C. In this case, View A is directly dependent
on View B, and indirectly dependent on Table C.

To retrieve dependency information using SQL

1. Connect to the database.

2. Execute a statement that calls the sa_dependent_views system procedure.

Results

A list of IDs for the dependent views is returned.

Next

None.

Views

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 39

Example

In this example, the sa_dependent_views system procedure is used in a SELECT statement to obtain the
list of names of views dependent on the SalesOrders table. The procedure returns the ViewSalesOrders
view.

SELECT t.table_name FROM SYSTAB t,
sa_dependent_views('SalesOrders') v
WHERE t.table_id = v.dep_view_id;

See also
● “SYSDEPENDENCY system view” [SQL Anywhere Server - SQL Reference]
● “sa_dependent_views system procedure” [SQL Anywhere Server - SQL Reference]

Regular views
When you browse data, a query operates on one or more database objects and produces a result set. Just
like a base table, a result set from a query has columns and rows. A view gives a name to a particular
query, and holds the definition in the database system tables.

When you create a regular view, the database server stores the view definition in the database; no data is
stored for the view. Instead, the view definition is executed only when it is referenced, and only for the
duration of time that the view is in use. This means that creating a view does not require storing duplicate
data in the database.

Suppose you need to list the number of employees in each department frequently. You can get this list
with the following statement:

SELECT DepartmentID, COUNT(*)
FROM Employees
GROUP BY DepartmentID;

Restrictions on SELECT statements for regular views
There are some restrictions on the SELECT statements you can use as regular views. In particular, you
cannot use an ORDER BY clause in the SELECT query. A characteristic of relational tables is that there
is no significance to the ordering of the rows or columns, and using an ORDER BY clause would impose
an order on the rows of the view. You can use the GROUP BY clause, subqueries, and joins in view
definitions.

To develop a view, tune the SELECT query by itself until it provides exactly the results you need in the
format you want. Once you have the SELECT statement just right, you can add a phrase in front of the
query to create the view:

CREATE VIEW view-name AS query;

Statements that update regular views
Updates can be performed on a view using the UPDATE, INSERT, or DELETE statements if the query
specification defining the view is updatable. Views are considered inherently non-updatable if their
definition includes any one of the following in their query specification:

Tables, views, and indexes

40 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● UNION, EXCEPT, or INTERSECT.

● DISTINCT clause.

● GROUP BY clause.

● WINDOW clause.

● FIRST, TOP, or LIMIT clause.

● aggregate functions.

● more than one table in the FROM clause, when ansi_update_constraints option is set to 'Strict' or
Cursor'.

● ORDER BY clause, when ansi_update_constraints option is set to 'Strict' or Cursor'.

● all SELECT list items are not base table columns.

The WITH CHECK OPTION clause
When creating a view, the WITH CHECK OPTION clause is useful for controlling what data is changed
when inserting into, or updating, a base table through a view. The following example illustrates this.

Execute the following statement to create the SalesEmployees view with a WITH CHECK OPTION
clause.

CREATE VIEW SalesEmployees AS
 SELECT EmployeeID, GivenName, Surname, DepartmentID
 FROM Employees
 WHERE DepartmentID = 200
 WITH CHECK OPTION;

Select to view the contents of this view, as follows:

SELECT * FROM SalesEmployees;

EmployeeID GivenName Surname DepartmentID

129 Philip Chin 200

195 Marc Dill 200

299 Rollin Overbey 200

467 James Klobucher 200

...

Next, attempt to update DepartmentID to 400 for Philip Chin:

UPDATE SalesEmployees
SET DepartmentID = 400
WHERE EmployeeID = 129;

Views

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 41

Since the WITH CHECK OPTION was specified, the database server evaluates whether the update
violates anything in the view definition (in this case, the expression in the WHERE clause). The statement
fails (DepartmentID must be 200), and the database server returns the error, "WITH CHECK OPTION
violated for insert/update on base table 'Employees'."

If you had not specified the WITH CHECK OPTION in the view definition, the update operation would
proceed, causing the Employees table to be modified with the new value, and subsequently causing Philip
Chin to disappear from the view.

If a view (for example, View2) is created that references the SalesEmployees view, any updates or inserts
on View2 are rejected that would cause the WITH CHECK OPTION criteria on SalesEmployees to fail,
even if View2 is defined without a WITH CHECK OPTION clause.

See also
● “SELECT statement” [SQL Anywhere Server - SQL Reference]
● “Summarizing, grouping, and sorting query results” on page 406
● “Materialized views” on page 49
● “ansi_update_constraints option” [SQL Anywhere Server - Database Administration]

Statuses for regular views

Regular views have a status associated with them. The status reflects the availability of the view for use
by the database server. You can view the status of all views by clicking Views in the left pane of Sybase
Central, and examining the values in the Status column in the right pane. Or, to see the status of a single
view, right-click the view in Sybase Central and click Properties to examine the Status value.

Following are descriptions of the possible statuses for regular views:

● VALID The view is valid and is guaranteed to be consistent with its definition. The database server
can make use of this view without any additional work. An enabled view has the status VALID.

In the SYSOBJECT system view, the value 1 indicates a status of VALID.

● INVALID An INVALID status occurs after a schema change to a referenced object where the
change results in an unsuccessful attempt to enable the view. For example, suppose a view, v1,
references a column, c1, in table t. If you alter t to remove c1, the status of v1 is set to INVALID
when the database server tries to recompile the view as part of the ALTER operation that drops the
column. In this case, v1 can recompile only after c1 is added back to t, or v1 is changed to no longer
refer to c1. Views can also become INVALID if a table or view that they reference is dropped.

An INVALID view is different from a DISABLED view in that each time an INVALID view is
referenced, for example by a query, the database server tries to recompile the view. If the compilation
succeeds, the query proceeds. The view's status remains INVALID until it is explicitly enabled. If the
compilation fails, an error is returned.

When the database server internally enables an INVALID view, it issues a performance warning.

In the SYSOBJECT system view, the value 2 indicates a status of INVALID.

Tables, views, and indexes

42 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● DISABLED Disabled views are not available for use by the database server for answering queries.
Any query that attempts to use a disabled view returns an error.

A regular view has this state if:

○ you explicitly disable the view, for example by executing an ALTER VIEW...DISABLE statement.

○ you disable a view (materialized or not) upon which the view depends.

○ you disable view dependencies for a table, for example by executing an ALTER
TABLE...DISABLE VIEW DEPENDENCIES statement.

In the SYSOBJECT system view, the value 4 indicates a status of DISABLED.

See also
● “SYSOBJECT system view” [SQL Anywhere Server - SQL Reference]
● “Disabling or enabling a regular view (SQL)” on page 47

Creating a regular view (Sybase Central)

Create a view that combines data from one or more sources. Views can improve performance and allow
you to control the data that users can query.

Prerequisites

DBA authority.

Context and remarks

Many.

Create a regular view using Sybase Central

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, right-click Views and click New » View.

3. Follow the instructions in the Create View Wizard.

4. In the right pane, click the SQL tab to edit the view definition. To save your changes, click File »
Save.

Results

The definition for the view you created is added to the database. Each time a query references the view,
the definition is used to populate the view with data and return results.

Views

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 43

Next

Query the view to examine the results and ensure the correct data is returned.

See also
● “CREATE VIEW statement” [SQL Anywhere Server - SQL Reference]

Alter a regular view (Sybase Central)

You edit a regular view by editing its definition in the database. For example, if you want the view to
contain data from an additional table, you would update the view definition to join the table data with the
existing data sources in the view definition.

Prerequisites

You must be a user with DBA authority or be the owner of the regular view.

Context and remarks

A view definition is out of date (won't compile because of a schema change in the underlying data), needs
columns added or removed, or requires changes related to its settings.

You cannot rename an existing view. Instead, you must create a new view with the new name, copy the
previous definition to it, and then drop the old view.

Alter a regular view using Sybase Central

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, double-click Views.

3. Select the view.

4. In the right pane, click the SQL tab and edit the view's definition.

Tip
If you want to edit multiple views, you can open separate windows for each view rather than editing
each view on the SQL tab in the right pane. You can open a separate window by selecting a view and
then clicking File » Edit In New Window.

5. Click File » Save.

Results

The definition of the view is updated in the database.

Tables, views, and indexes

44 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Next

Query the view to examine the results and ensure the correct data is returned.

If you alter a regular view and there are other views dependent on the view, there may be additional steps
to make after the alteration is complete. For example, after you alter a view, the database server
automatically recompiles it, enabling it for use by the database server. If there are dependent regular
views, the database server disables and re-enables them as well. If they cannot be enabled, they are given
the status INVALID and you must either make the definition of the regular view consistent with the
definitions of the dependent regular views, or vice versa. To determine whether a regular view has
dependent views, use the sa_dependent_views system procedure.

See also
● “View dependencies” on page 37
● “sa_dependent_views system procedure” [SQL Anywhere Server - SQL Reference]
● “ALTER VIEW statement” [SQL Anywhere Server - SQL Reference]

Dropping a regular view (Sybase Central)

Drop a view when it is no longer required. You must also drop a view (and recreate it) when you want to
change the name of a view.

Prerequisites

You must be a user with DBA authority or be the owner of the regular view.

You must drop any INSTEAD OF triggers that reference the view before the view can be dropped.

Context and remarks

Many.

Drop a regular view using Sybase Central

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, double-click Views.

3. Right-click the view and click Delete.

4. Click Yes.

Results

The definition for the regular view is deleted from the database.

Views

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 45

Next

If you drop a regular view that has dependent views, then the dependent views are made INVALID as part
of the drop operation. The dependent views are not usable until they are changed or the original dropped
view is recreated.

To determine whether a regular view has dependent views, use the sa_dependent_views system
procedure.

See also
● “sa_dependent_views system procedure” [SQL Anywhere Server - SQL Reference]
● “Alter a regular view (Sybase Central)” on page 44
● “DROP VIEW statement” [SQL Anywhere Server - SQL Reference]
● “View dependencies” on page 37

Disabling or enabling a regular view (Sybase Central)

You can control whether a regular view is available for use by the database server by enabling or
disabling it.

Prerequisites

You must be a user with DBA authority or be the owner of the view.

Before you enable a regular view, you must re-enable any disabled views that it references.

Context and remarks

Many.

Disable or enable a regular view using Sybase Central

1. Connect to the database.

2. In the left pane, double-click Views.

3. To disable a regular view, right-click the view and click Disable.

4. To enable a regular view, right-click the view and click Recompile And Enable.

Results

When you disable a regular view, the database server keeps the definition of the view in the database;
however, the view is not available for use in satisfying a query.

If a query explicitly references a disabled view, the query fails and an error is returned.

Tables, views, and indexes

46 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Next

Once you re-enable a view, you must re-enable all other views that are dependent on the view when it was
disabled. You can determine the list of dependent views before disabling a view using the
sa_dependent_views system procedure.

When you enable a regular view, the database server recompiles it using the definition stored for the view
in the database. If compilation is successful, the view status changes to VALID. An unsuccessful
recompile could indicate that the schema has changed in one or more of the referenced objects. If so, you
must change either the view definition or the referenced objects until they are consistent with each other,
and then enable the view.

Once a view is disabled, it must be explicitly re-enabled so that the database server can use it.

See also
● “sa_dependent_views system procedure” [SQL Anywhere Server - SQL Reference]
● “ALTER VIEW statement” [SQL Anywhere Server - SQL Reference]
● “SYSDEPENDENCY system view” [SQL Anywhere Server - SQL Reference]

Disabling or enabling a regular view (SQL)

You can control whether a regular view is available for use by the database server by enabling or
disabling it.

Prerequisites

You must be a user with DBA authority or be the owner of the view.

Before you enable a regular view, you must re-enable any disabled views that it references.

Context and remarks

Many.

Disable or enable a regular view using SQL

If you disable a view, other views that reference it, directly or indirectly, are automatically disabled. So,
once you re-enable a view, you must re-enable all other views that were dependent on the view when it
was disabled. You can determine the list of dependent views before disabling a view using the
sa_dependent_views system procedure.

1. Connect to the database.

2. To disable a regular view, execute an ALTER VIEW...DISABLE statement.

3. To enable a regular view, execute an ALTER VIEW...ENABLE statement.

Views

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 47

Results

When you disable a regular view, the database server keeps the definition of the view in the database;
however, the view is not available for use in satisfying a query.

If a query explicitly references a disabled view, the query fails and an error is returned.

Next

Once you re-enable a view, you must re-enable all other views that are dependent on the view when it was
disabled. You can determine the list of dependent views before disabling a view using the
sa_dependent_views system procedure.

When you enable a regular view, the database server recompiles it using the definition stored for the view
in the database. If compilation is successful, the view status changes to VALID. An unsuccessful
recompile could indicate that the schema has changed in one or more of the referenced objects. If so, you
must change either the view definition or the referenced objects until they are consistent with each other,
and then enable the view.

Once a view is disabled, it must be explicitly re-enabled so that the database server can use it.

Example

The following example disables a regular view called ViewSalesOrders owned by GROUPO.

ALTER VIEW GROUPO.ViewSalesOrders DISABLE;

The following example re-enables the regular view called ViewSalesOrders owned by GROUPO.

ALTER VIEW GROUPO.ViewSalesOrders ENABLE;

See also
● “sa_dependent_views system procedure” [SQL Anywhere Server - SQL Reference]
● “ALTER VIEW statement” [SQL Anywhere Server - SQL Reference]
● “SYSDEPENDENCY system view” [SQL Anywhere Server - SQL Reference]

Browsing data a regular view

You can browse data in a regular view . Regular views are stored in the database as definitions for the
view. The view is populated with data when it is queried so that the data in the view is current.

Prerequisites

The regular view must already be defined and be a valid view that is enabled.

You must have permissions to view the regular view and the data in its underlying tables.

Tables, views, and indexes

48 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Context and remarks

This task starts in Sybase Central, where you request the regular view that you want to view, and
completes in Interactive SQL, where the data for the regular view is displayed.

Browse a regular view using Sybase Central

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, click Views.

3. Select a view on which you have permission and then click File » View Data In Interactive SQL

Results

Interactive SQL opens with the view contents displayed on the Results tab of the Results pane.

Next

None.

See also
● “Regular views” on page 40
● “Disabling or enabling a regular view (Sybase Central)” on page 46
● “Queries” on page 247
● “Interactive SQL” [SQL Anywhere Server - Database Administration]
● “SELECT statement” [SQL Anywhere Server - SQL Reference]

Materialized views
A materialized view is a view whose result set has been precomputed from the base tables that it refers to
and stored on disk, similar to a base table. Conceptually, a materialized view is both a view (it has a query
specification stored in the catalog) and a table (it has persistent materialized rows). So, many operations
that you perform on tables can be performed on materialized views as well. For example, you can build
indexes on materialized views.

When you create a materialized view, its definition is stored in the database. The database server validates
the definition to make sure it compiles properly. All column and table references are fully qualified by the
database server to ensure that all users with access to the view see an identical definition. After
successfully creating a materialized view, you populate it with data, also known as initializing the view.

Materialized views are listed in the Views folder in Sybase Central.

See also
● “Use materialized views to improve query performance” on page 220

Materialized views

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 49

Performance improvements using materialized views

When used in the right conditions, materialized views can significantly improve performance by
precomputing expensive operations such as joins and storing the results in the form of a view that is
stored on disk. The optimizer considers materialized views when deciding on the most efficient way to
satisfy a query, even when the materialized view is not referenced in the query.

In designing your application, consider defining materialized views for frequently executed expensive
queries or expensive parts of your queries, such as those involving intensive aggregation and join
operations. Materialized views are designed to improve performance in environments where:

● the database is large

● frequent queries result in repetitive aggregation and join operations on large amounts of data

● changes to underlying data are relatively infrequent

● access to up-to-the-moment data is not a critical requirement

Consider the following requirements, settings, and restrictions before using a materialized view:

● Disk space requirements Since materialized views contain a duplicate of data from base tables,
you may need to allocate additional space on disk for the database to accommodate the materialized
views you create. Careful consideration needs to be given to the additional space requirements so that
the benefit derived is balanced against the cost of using materialized views.

● Maintenance costs and data freshness requirements The data in materialized views needs to
be refreshed when data in the underlying tables changes. The frequency at which a materialized view
needs to be refreshed needs to be determined by taking into account potentially conflicting factors,
such as:

○ Rate at which underlying data changes Frequent or large changes to data render manual
views stale. Consider using an immediate view if data freshness is important.

○ Cost of refreshing Depending on the complexity of the underlying query for each
materialized view, and the amount of data involved, the computation required for refreshing may
be very expensive, and frequent refreshing of materialized views may impose an unacceptable
workload on the database server. Additionally, materialized views are unavailable for use during
the refresh operation.

○ Data freshness requirements of applications If the database server uses a stale
materialized view, it presents stale data to applications. Stale data no longer represents the current
state of data in the underlying tables. The degree of staleness is governed by the frequency at
which the materialized view is refreshed. An application must be designed to determine the degree
of staleness it can tolerate to achieve improved performance.

○ Data consistency requirements When refreshing materialized views, you must determine
the consistency with which the materialized views should be refreshed.

Tables, views, and indexes

50 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● Use in optimization You should verify that the optimizer considers the materialized views when
executing a query. You can see the list of materialized views used for a particular query by looking at
the Advanced Details window of the query's graphical plan in Interactive SQL.

You can also use Application Profiling mode in Sybase Central to determine whether a materialized
view was considered during the enumeration phase of a query by looking at the access plans
enumerated by the optimizer. Tracing must be turned on, and must be configured to include the
OPTIMIZATION_LOGGING tracing type, to see the access plans enumerated by the optimizer.

● Data-altering operations Materialized views are read-only; no data-altering operations such as,
INSERT, LOAD, DELETE, and UPDATE, can be used on them.

● Keys, constraints, triggers, and articles While you can create indexes on materialized views,
you cannot create keys, constraints, triggers, or articles on them.

See also
● “Advanced: Settings controlling data staleness for materialized views” on page 70
● “Use materialized views to improve query performance” on page 220
● “Enabling or disabling optimizer use of a materialized view” on page 63
● “REFRESH MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “Advanced: Query execution plans” on page 293
● “Application profiling” on page 126
● “Whether to set refresh type to manual or immediate” on page 52

Materialized views and view dependencies
You can control whether a materialized view is available for use by the database server by enabling or
disabling it. A disabled materialized view is not considered by the optimizer during optimization. If a
query explicitly references a disabled materialized view, the query fails and an error is returned. When
you disable a materialized view, the database server drops the data for the view, but keeps the definition
in the database. When you re-enable a materialized view, it is in an uninitialized state and you must
refresh it to populate it with data.

Regular views that are dependent on a materialized view are automatically disabled by the database server
if the materialized view is disabled. As a result, once you re-enable a materialized view, you must re-
enable all dependent views. For this reason, you may want to determine the list of views dependent on the
materialized view before disabling it. You can do this using the sa_dependent_views system procedure.
This procedure examines the ISYSDEPENDENCY system table and returns the list of dependent views,
if any.

You can grant permissions on disabled objects. Permissions to disabled objects are stored in the database
and become effective when the object is enabled.

See also
● “Enabling or disabling a materialized view” on page 59
● “Dependencies and schema-altering changes” on page 37
● “Retrieve dependency information (SQL)” on page 39
● “sa_dependent_views system procedure” [SQL Anywhere Server - SQL Reference]

Materialized views

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 51

Whether to set refresh type to manual or immediate

There are two types of materialized views: manual and immediate, which implies the refresh type for the
materialized view.

● Manual views A manual materialized view, or manual view, is a materialized view with a refresh
type defined as MANUAL REFRESH. Data in manual views can become stale because manual views
are not refreshed until a refresh is explicitly requested, for example by using the REFRESH
MATERIALIZED VIEW statement or the sa_refresh_materialized_views system procedure. By
default, when you create a materialized view, it is a manual view.

A manual view is considered stale when any of the underlying tables change, even if the change does
not impact data in the materialized view. You can determine whether a manual view is considered
stale by examining the DataStatus value returned by the sa_materialized_view_info system procedure.
If S is returned, the manual view is stale.

● Immediate views An immediate materialized view, or immediate view, is a materialized view
with a refresh type defined as IMMEDIATE REFRESH. Data in an immediate view is automatically
refreshed when changes to the underlying tables affect data in the view. If changes to the underlying
tables do not impact data in the view, the view is not refreshed.

Also, when an immediate view is refreshed, only stale rows need to be changed. This is different from
refreshing a manual view, where all data is dropped and recreated for a refresh.

You can change a manual view to an immediate view, and vice versa. However, the process for changing
from a manual view to an immediate view has more steps.

Changing the refresh type for a materialized view can impact the status and properties of the view,
especially when you change a manual view to an immediate view.

See also
● “Staleness and manual materialized views” on page 52
● “Advanced: Changing refresh type for a materialized view” on page 65
● “Advanced: Status and properties for materialized views” on page 66
● “sa_materialized_view_info system procedure” [SQL Anywhere Server - SQL Reference]

Staleness and manual materialized views

Materialized views that are manually refreshed become stale when changes occur to their underlying base
tables. The optimizer will not consider a materialized view as a candidate for satisfying a query if the data
has exceeded the staleness threshold configured for the view. Refreshing a manual view means that the
database server re-executes the query definition for the view and replaces the view data with the new
result set of the query. Refreshing makes the view data consistent with the underlying data. You should
consider the acceptable degree of data staleness for the manual view and devise a refresh strategy. Your
strategy should allow for the time it takes to complete a refresh, since the view is not available for
querying during the refresh operation.

Tables, views, and indexes

52 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

You can also set up a strategy in which the view is refreshed using events. For example, you can create an
event to refresh at some regular interval.

Immediate materialized views do not need to be refreshed unless they are uninitialized (contain no data),
for example after being truncated.

You can configure a staleness threshold beyond which the optimizer should not use a materialized view
when processing queries, by using the materialized_view_optimization database option.

Upgrading databases with materialized views
It is recommended that you refresh materialized views after upgrading your database server, or after
rebuilding or upgrading your database to work with an upgraded database server.

See also
● “Advanced: Settings controlling data staleness for materialized views” on page 70
● “Refreshing a manual materialized view” on page 58

Materialized views restrictions

Restrictions when creating, initializing, refreshing, and view matching materialized views
● When creating a materialized view, the definition for the materialized view must define column names

explicitly; you cannot include a SELECT * construct as part of the column definition.

● Do not include columns defined as TIMESTAMP WITH TIME ZONE in the materialized view. The
value of the time_zone_adjustment option varies between connections based on their location and the
time of year, resulting in incorrect results and unexpected behavior.

● When creating a materialized view, the definition for the materialized view cannot contain:

○ references to other views, materialized or not
○ references to remote or temporary tables
○ variables such as CURRENT USER; all expressions must be deterministic
○ calls to stored procedures, user-defined functions, or external functions
○ Transact-SQL outer joins
○ FOR XML clauses

● The following database options must have the specified settings when a materialized view is created;
otherwise, an error is returned. These database option values are also required for the view to be used
by the optimizer:

○ ansinull=On
○ conversion_error=On
○ divide_by_zero_error=On
○ sort_collation=Internal
○ string_rtruncation=On

Materialized views

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 53

● The following database option settings are stored for each materialized view when it is created. The
current option values for the connection must match the stored values for a materialized view for the
view to be used in optimization:

○ date_format
○ date_order
○ default_timestamp_increment
○ first_day_of_week
○ nearest_century
○ precision
○ scale
○ time_format
○ timestamp_format
○ timestamp_with_time_zone_format
○ default_timestamp_increment
○ uuid_has_hyphens

● When a view is refreshed, the connection settings for all the options listed in the bullets above are
ignored. Instead, the database option settings (which must match the stored settings for the view) are
used.

ORDER BY clause in a materialized view definition has no effect
Materialized views are similar to base tables in that the rows are not stored in any particular order; the
database server orders the rows in the most efficient manner when computing the data. Therefore,
specifying an ORDER BY clause in a materialized view definition has no impact on the ordering of rows
when the view is materialized. Also, the ORDER BY clause in the view's definition is ignored by the
optimizer when performing view matching.

Restrictions when changing a materialized view from manual to immediate
The following restrictions are checked when changing a manual view to an immediate view. An error is
returned if the view violates any of the restrictions:

Note
You can use the sa_materialized_view_can_be_immediate system procedure to find out if a manual view
is eligible to become an immediate view.

● The view must be uninitialized.

● If the view does not contain outer joins, then the view must have a unique index on non nullable
columns. If the view contains outer joins, the view must have a unique index on non nullable columns,
or a unique index declared as WITH NULLS NOT DISTINCT on nullable columns.

● If the view definition is a grouped query, the unique index columns must correspond to SELECT LIST
items that are not aggregate functions.

Tables, views, and indexes

54 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● The view definition cannot contain:

○ GROUPING SETS clauses
○ CUBE clauses
○ ROLLUP clauses
○ DISTINCT clauses
○ row limit clauses
○ non-deterministic expressions
○ self and recursive joins
○ LATERAL, CROSS APPLY, or APPLY clauses

● The view definition must be a single select-project-join or grouped-select-project-join query block, and
the grouped-select-project-join query block cannot contain a HAVING clause.

● The grouped-select-project-join query block must contain COUNT (*) in the SELECT list, and is
allowed only the SUM and COUNT aggregate functions.

● An aggregate function in the SELECT list cannot be referenced in a complex expression. For example,
SUM(expression) + 1 is not allowed in the SELECT list.

● If the SELECT list contains the SUM(expression) aggregate function and expression is a nullable
expression, then the SELECT list must include a COUNT(expression) aggregate function.

● If the view definition contains outer joins (LEFT OUTER JOIN, RIGHT OUTER JOIN, FULL
OUTER JOIN) then the view definition must satisfy the following extra conditions:

1. If a table, T, is referenced in an ON condition of an OUTER JOIN as a preserved side, then T must
have a primary key and the primary key columns must be present in the SELECT list of the view.
For example, the immediate materialized view V defined as SELECT T1.pk, R1.X FROM
T1, T2 LEFT OUTER JOIN (R1 KEY JOIN R2) ON T1.Y = R.Y has the preserved
table, T1, referenced in the ON clause and its primary key column, T1.pk, is in the SELECT list of
the immediate materialized view, V.

2. For each NULL-supplying side of an outer join, there must be at least one base table such that one
of its non-nullable columns is present in the SELECT list of the immediate materialized view. For
example, for the immediate materialized view, V, defined as SELECT T1.pk, R1.X FROM
T1, T2 LEFT OUTER JOIN (R1 KEY JOIN R2) ON T1.Y = R1.Y, the NULL-
supplying side of the left outer join is the table expression (R1 KEY JOIN R2). The column
R1.X is in the SELECT list of the V and R1.X is a non nullable column of the table R1.

3. If the view is a grouped view and the previous condition does not hold, then for each NULL-
supplying side of an outer join, there must be at least one base table, T, such that one of its non-
nullable columns, T.C, is used in the aggregate function COUNT(T.C) in the SELECT list of
the immediate materialized view. For example, for the immediate materialized view, V, defined as
SELECT T1.pk, COUNT(R1.X) FROM T1, T2 LEFT OUTER JOIN (R1 KEY
JOIN R2) ON T1.Y = R1.Y GROUP BY T1.pk, the NULL-supplying side of the left
outer join is the table expression (R1 KEY JOIN R2). The aggregate function
COUNT(R1.X) is in the SELECT list of the V and R1.X is a non-nullable column of the table
R1.

Materialized views

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 55

4. The following conditions must be satisfied by the predicates of the views with outer joins:

○ The ON clause predicates for LEFT, RIGHT, and FULL OUTER JOINs must refer to both
preserved and NULL-supplying table expression. For example, T LEFT OUTER JOIN R ON
R.X = 1 does not satisfy this condition as the predicate R.X=1 references only the NULL-
supplying side R.

○ Any predicate must reject NULL-supplied rows produced by a nested outer join. In other words,
if a predicate refers to a table expression which is NULL-supplied by a nested outer join, then it
must reject all rows which have nulls generated by that outer join.

For example, the view V1 SELECT T1.pk, R1.X FROM T1, T2 LEFT OUTER JOIN
(R1 KEY JOIN R2) ON (T1.Y = R1.Y) WHERE R1.Z = 10 has the predicate
R1.Z=10 referencing the table R1 which can be NULL-supplied by the T2 LEFT OUTER
JOIN (R1 KEY JOIN R2), hence it must reject any NULL-supplied rows. This is true
because the predicate evaluates to UNKNOWN when the column R1.Z is NULL.

However, the view V2 SELECT T1.pk, R1.X FROM T1, T2 LEFT OUTER JOIN
(R1 KEY JOIN R2) ON (T1.Y = R1.Y) WHERE R1.Z IS NULL does not have this
property. The predicate R1.Z IS NULL references the NULL-supplying side R1 but it
evaluates to TRUE when the table R1 is NULL-supplied (that is, the R1.Z column is null). The
method of rejecting NULL-supplied rows is not as restrictive as a NULL-intolerant property.
For example, the predicate R.X IS NOT DISTINCT FROM T.X and rowid(T) IS
NOT NULL is not NULL-intolerant on the table T as it evaluates to TRUE when T.X is NULL.
However, the predicate rejects all the rows which are NULL-supplied on the base table T.

See also
● “sa_materialized_view_can_be_immediate system procedure” [SQL Anywhere Server - SQL

Reference]
● “Advanced: Status and properties for materialized views” on page 66
● “Creating an index” on page 28
● “Creating a materialized view” on page 56
● “TimeZoneAdjustment connection property” [SQL Anywhere Server - Database Administration]
● “CREATE MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “REFRESH MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “Outer joins” on page 441

Creating a materialized view

Create a materialized view to store data from queries that are frequently executed and that result in
repetitive aggregation and join operations on large amounts of data. Materialized views can improve
performance by precomputing expensive operations in the form of a view that is stored on disk.

Prerequisites

You must have DBA or RESOURCE authority.

Tables, views, and indexes

56 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Context and remarks

Many.

Create a materialized view using Sybase Central

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, right-click Views and click New » Materialized View.

3. Follow the instructions in the Create Materialized View Wizard.

Results

A non-initialized materialized view is created in the database. It does not have any data in it yet.

Next

You must initialize the materialized view to populate it with data before you can use it.

See also
● “Materialized views” on page 49
● “SQL Anywhere sample database” [SQL Anywhere 12 - Introduction]
● “Materialized views restrictions” on page 53
● “Dropping a materialized view” on page 61
● “Initializing a materialized view” on page 57
● “CREATE MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “REFRESH MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]

Initializing a materialized view
Initialize a materialized view to populate it with data and make it available for use by the database server.
To initialize a materialized view, you follow the same steps as refreshing a materialized view.

Prerequisites

You must have DBA authority or have INSERT permission on the materialized view. You must also have
SELECT permissions on the underlying objects that the materialized view references.

Context and remarks

You can also initialize all uninitialized materialized views in the database at once using the
sa_refresh_materialized_views system procedure.

Initialize a materialized view using Sybase Central

Before creating, initializing, or refreshing materialized views, ensure that all materialized view
restrictions have been met.

Materialized views

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 57

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, double-click Views.

3. Right-click a materialized view and click Refresh Data.

4. Select an isolation level and click OK.

Results

The materialized view is populated with data and becomes available for use by the database server. You
can now query the materialized view.

Next

Query the materialized view to ensure that it returns the expected data.

A failed initialization (refresh) attempt returns the materialized view to an uninitialized state. If this
occurs, review the definition for the materialized view to confirm that the underlying tables and columns
specified are valid and available objects in your database.

See also
● “Materialized views” on page 49
● “Dropping a materialized view” on page 61
● “Materialized views restrictions” on page 53
● “Enabling or disabling a materialized view” on page 59
● “CREATE MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “REFRESH MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “sa_refresh_materialized_views system procedure” [SQL Anywhere Server - SQL Reference]

Refreshing a manual materialized view
Materialized views that are not configured to refresh automatically must be refreshed manually to update
their data.

Prerequisites

You must have DBA authority or have INSERT permission on the materialized view. You must also have
SELECT permissions on the underlying objects that the materialized view references.

Context and remarks

Many.

Refresh a manual view using Sybase Central

1. Use the SQL Anywhere 12 plug-in to connect to the database.

Tables, views, and indexes

58 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

2. In the left pane, double-click Views.

3. Right-click a materialized view and click Refresh Data.

4. Select an isolation level and click OK.

Results

The data in the materialized view is refreshed to show the most recent data in the underlying objects.

Next

Query the materialized view to ensure that it returns the expected data.

A failed refresh attempt converts the materialized view to an uninitialized state. If this occurs, review the
definition for the materialized view to confirm that the underlying tables and columns specified are valid
and available objects in your database.

See also
● “Materialized views” on page 49
● “REFRESH MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “Dropping a materialized view” on page 61
● “Advanced: Changing refresh type for a materialized view” on page 65
● “Task automation using schedules and events” [SQL Anywhere Server - Database Administration]
● “materialized_view_optimization option” [SQL Anywhere Server - Database Administration]
● “sa_refresh_materialized_views system procedure” [SQL Anywhere Server - SQL Reference]

Enabling or disabling a materialized view
You can control whether a materialized view is available for querying by enabling and disabling it.

Prerequisites

You must have DBA authority or be the owner of the materialized view.

Context and remarks

Many.

Enable or disable a materialized view using Sybase Central

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, double-click Views.

3. To enable a materialized view:

a. Right-click the view and click Recompile And Enable.

Materialized views

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 59

b. (optional) Right-click the view and click Refresh Data to populate the view with data. This step
is optional because the first query after enabling would also cause the view to be populated with
data.

4. To disable a materialized view, right-click the view and click Disable.

Results

When you enable a materialized view, it becomes available for use by the database server and you can
query it.

When you disable a materialized view, the data and indexes are dropped. If the view was an immediate
view, it is changed to a manual view.

Querying a disabled materialized view fails and returns and error.

Next

After you re-enable a view, you must rebuild any indexes for it, and change it back to an immediate view
if it was an immediate view when it was disabled.

See also
● “Materialized views” on page 49
● “Advanced: Changing refresh type for a materialized view” on page 65
● “sa_dependent_views system procedure” [SQL Anywhere Server - SQL Reference]
● “View dependencies” on page 37
● “SYSDEPENDENCY system view” [SQL Anywhere Server - SQL Reference]
● “CREATE INDEX statement” [SQL Anywhere Server - SQL Reference]
● “ALTER MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “REFRESH MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]

Hiding a materialized view
You can hide a materialized view's definition from users. When you hide a materialized view, you
obfuscate the view definition stored in the database.

Prerequisites

You must have DBA authority, or be the owner of the materialized view

Context and remarks

When a materialized view is hidden, debugging using the debugger will not show the view definition, nor
will the definition be available through procedure profiling, and the view can still be unloaded and
reloaded into other databases.

Hiding a materialized view is irreversible and only possible using SQL.

Tables, views, and indexes

60 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Hide a materialized view using SQL

1. Connect to the database.

2. Execute an ALTER MATERIALIZED VIEW ... SET HIDDEN statement.

Results

The view is no longer visible when browsing the catalog. The view can still be directly referenced, and is
still eligible for use during query processing.

Next

None.

Example

The following statements create a materialized view, EmployeeConfid3, refreshes it, and then obfuscates
its view definition.

CREATE MATERIALIZED VIEW EmployeeConfid3 AS
 SELECT EmployeeID, Employees.DepartmentID, SocialSecurityNumber, Salary,
ManagerID,
 Departments.DepartmentName, Departments.DepartmentHeadID
 FROM Employees, Departments
 WHERE Employees.DepartmentID=Departments.DepartmentID;
REFRESH MATERIALIZED VIEW EmployeeConfid3;
ALTER MATERIALIZED VIEW EmployeeConfid3 SET HIDDEN;

Caution
When you are done running the following example, you should drop the materialized view you created.
Otherwise, you will not be able to make schema changes to its underlying tables Employees and
Departments, when trying out other examples.

See also
● “Materialized views” on page 49
● “Dropping a materialized view” on page 61
● “ALTER MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]

Dropping a materialized view
You can drop a materialized view from the database. Perform this task when you no longer need the
materialized view, or when you have made a schema change to an underlying referenced object such that
the materialized view definition is no longer valid.

Prerequisites

You must have DBA authority, or be the owner of the view.

Materialized views

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 61

Before you can drop a materialized view, you must drop or disable all dependent views. To determine
whether there are views dependent on a materialized view, use the sa_dependent_views system procedure.

Context and remarks

Many.

Drop a materialized view using Sybase Central

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, double-click Views.

3. Right-click the materialized view and click Delete.

4. Click Yes.

Results

The materialized view is dropped from the database.

Next

If you had regular views that were dependent on the materialized view, you will not be able to enable
them. You must change their definition or drop them.

See also
● “Materialized views” on page 49
● “View dependencies” on page 37
● “DROP MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “sa_dependent_views system procedure” [SQL Anywhere Server - SQL Reference]

Encrypting or decrypting a materialized view
Materialized views can be encrypted for additional security. For example, if a materialized view contains
data that was encrypted in the underlying table, you may want to encrypt the materialized view as well.

Prerequisites

You must be a user with DBA authority, or be the owner of the view.

Table encryption must already be enabled in the database to encrypt a materialized view.

Context and remarks

The encryption algorithm and key specified at database creation are used to encrypt the materialized view.
To see the encryption settings in effect for your database, including whether table encryption is enabled,
query the Encryption database property using the DB_PROPERTY function, as follows:

Tables, views, and indexes

62 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SELECT DB_PROPERTY('Encryption');

As with table encryption, encrypting a materialized view can impact performance since the database
server must decrypt data it retrieves from the view.

Encrypt or decrypt a materialized view using Sybase Central

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, double-click Views.

3. Right-click the materialized view and click Properties.

4. Click the Miscellaneous tab.

5. Select or clear the Materialized View Data Is Encrypted checkbox as appropriate.

6. Click OK.

Results

The materialized view data is encrypted.

Next

None.

See also
● “Enabling table encryption in the database” [SQL Anywhere Server - Database Administration]
● “ALTER MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “DB_PROPERTY function [System]” [SQL Anywhere Server - SQL Reference]

Enabling or disabling optimizer use of a materialized view
Even if a query doesn't reference a materialized view, the optimizer can decide to use the view to satisfy a
query if doing so improves performance. You can enable or disable the optimizer's use of a materialized
view for satisfying queries.

Prerequisites

You must have DBA authority or be the owner of the materialized view.

Context and remarks

Many.

Enable or disable a materialized view's use in optimization using Sybase Central

1. Use the SQL Anywhere 12 plug-in to connect to the database.

Materialized views

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 63

2. In the left pane, double-click Views.

3. Right-click the materialized view and click Properties.

4. Click the General tab and select or clear Used In Optimization, as appropriate.

5. Click OK.

Results

When a materialized view is enabled for use by the optimizer, the optimizer will consider it when
calculating the best plan for satisfying a query, even though the view is not explicitly referenced in the
query. If a materialized view is disabled for use by the optimizer, the optimizer will not consider the view.

Next

You may want to query the underlying objects of the view to see if the optimizer makes use of the view
by looking at the query execution plan. However, the availability of the view does not guarantee the
optimizer will use it. The optimizer's choice is based on performance.

See also
● “ALTER MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “Performance improvements using materialized views” on page 50

Advanced: Viewing materialized view information in the
catalog

You can view a list of all materialized views and their status, and also review the database options that
were in force when each materialized view was created.

Prerequisites

The materialized views cannot be hidden.

Context and remarks

Dependency information can also be found in the SYSDEPENDENCY system view.

Viewing materialized view information in the database using SQL

1. Connect to the database.

2. To view a list of all materialized views and their status, execute the following statement:

SELECT * FROM sa_materialized_view_info();

3. To review the database options in force for each materialized view when it was created, execute the
following statement:

Tables, views, and indexes

64 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SELECT b.object_id, b.table_name, a.option_id, c.option_name,
a.option_value
FROM SYSMVOPTION a, SYSTAB b, SYSMVOPTIONNAME c
WHERE a.view_object_id=b.object_id
AND b.table_type=2;

4. To request a list of regular views that are dependent on a given materialized view, execute the
following statement:

CALL sa_dependent_views('materialized-view-name');

Results

The requested materialized view information is returned.

Next

None.

See also
● “sa_materialized_view_info system procedure” [SQL Anywhere Server - SQL Reference]
● “Advanced: Status and properties for materialized views” on page 66
● “sa_dependent_views system procedure” [SQL Anywhere Server - SQL Reference]
● “SYSDEPENDENCY system view” [SQL Anywhere Server - SQL Reference]
● “SYSMVOPTION system view” [SQL Anywhere Server - SQL Reference]
● “SYSMVOPTIONNAME system view” [SQL Anywhere Server - SQL Reference]
● “SYSTAB system view” [SQL Anywhere Server - SQL Reference]

Advanced: Changing refresh type for a materialized view
When you create a materialized view its refresh type is manual. However, you can change it to immediate.
You can also change an immediate view back to manual again.

Prerequisites

You must be a user with DBA authority or be the owner of the view and all of the tables it references.

To change from manual to immediate, the view must be in an uninitialized state (contain no data). If the
view was just created and has not yet been refreshed, it is uninitialized. If the materialized view has data
in it, you must execute a TRUNCATE statement on it to return it to an uninitialized state before you can
change it to immediate. The materialized view must also have a unique index, and must conform to the
restrictions required for an immediate view.

An immediate view can be changed to manual at any time without any additional steps other than
changing its refresh type.

Context and remarks

Many.

Materialized views

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 65

Change the refresh type of a materialized view using Sybase Central

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, double-click Views.

3. Right-click the materialized view and click Properties.

4. To change a manual view to an immediate view, in the Refresh Type field, click Immediate.

5. To change an immediate view to a manual view, in the Refresh Type field, click Manual.

6. Click OK.

Results

The refresh type of the materialized view is changed. Immediate views are updated whenever there are
changes to the data in the underlying objects. Manual views are updated whenever you refresh them.

Next

After you change a view from manual to immediate, the view must be initialized (refreshed) to populate it
with data.

See also
● “Whether to set refresh type to manual or immediate” on page 52
● “Initializing a materialized view” on page 57
● “sa_materialized_view_can_be_immediate system procedure” [SQL Anywhere Server - SQL

Reference]
● “Restrictions when changing a materialized view from manual to immediate” on page 54
● “ALTER MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “TRUNCATE statement” [SQL Anywhere Server - SQL Reference]
● “Creating an index” on page 28

Advanced: Status and properties for materialized views

Materialized views are characterized by a combination of their status and properties. The status of a
materialized view reflects the availability of the view for use by the database server. The properties of a
materialized view reflect the state of the data within the view.

The best way to determine the status and properties of existing materialized views is to use the
sa_materialized_view_info system procedure.

You can also view information about materialized views by choosing the Views folder in Sybase Central
and examining the details provided for the individual views, or by querying the SYSTAB and SYSVIEW
system views.

Tables, views, and indexes

66 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “sa_materialized_view_info system procedure” [SQL Anywhere Server - SQL Reference]
● “SYSTAB system view” [SQL Anywhere Server - SQL Reference]
● “SYSVIEW system view” [SQL Anywhere Server - SQL Reference]

Materialized view statuses

There are two possible statuses for materialized views:

● Enabled The materialized view has been successfully compiled and is available for use by the
database server. An enabled materialized view may not have data in it. For example, if you truncate
the data from an enabled materialized view, it changes to enabled and uninitialized. A materialized
view can be initialized but empty if there is no data in the underlying tables that satisfies the definition
for the materialized view. This is not the same as a materialized view that has no data in it because it
is not initialized.

● Disabled The materialized view has been explicitly disabled, for example by using the ALTER
MATERIALIZED VIEW...DISABLE statement. When you disable a materialized view, the data and
indexes for the view are dropped. Also, when you disable an immediate view, it is changed to a
manual view.

To determine whether a view is enabled or disabled, use the sa_materialized_view_info system procedure
to return the Status property for the view.

See also
● “ALTER MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “sa_materialized_view_info system procedure” [SQL Anywhere Server - SQL Reference]
● “Enabling or disabling a materialized view” on page 59
● “Materialized view properties” on page 67

Materialized view properties

Materialized view properties are used by the optimizer when evaluating whether to use a view. The
following list describes the properties for a materialized view that are returned by the
sa_materialized_view_info system procedure:

● Status Indicates whether the view is enabled or disabled.

● DataStatus Reflects the state of the data in the view. For example, it tells you whether the view is
initialized and whether the view is stale. Manual views are stale if data in the underlying tables has
changed since the last time the materialized view was refreshed. Immediate views are never stale.

● ViewLastRefreshed Indicates the last time the view was refreshed.

● DateLastModified Indicates the most recent time the data in any underlying table was modified if
the view is stale.

Materialized views

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 67

● AvailForOptimization Reflects whether the view is available for use by the optimizer.

● RefreshType Indicates whether it is a manual view or an immediate view.

For the list of possible values for each property, use the sa_materialized_view_info system procedure.

While there is no property that tells you whether a manual view can be converted to an immediate view,
you can determine this by using the sa_materialized_view_can_be_immediate system procedure.

See also
● “sa_materialized_view_info system procedure” [SQL Anywhere Server - SQL Reference]
● “sa_materialized_view_can_be_immediate system procedure” [SQL Anywhere Server - SQL

Reference]
● “Materialized view statuses” on page 67

Status and property changes when altering, refreshing, and
truncating a materialized view

Operations you perform on a materialized view such as, altering, refreshing, and truncating, impact the
view's status and properties. The following diagram shows how these tasks impact the status and some of
the properties of a materialized view.

In the diagram, each gray square is a materialized view; immediate views are identified by the term
IMMEDIATE, and manual views by the term MANUAL. The term ALTER in the connectors between
grey boxes is short for ALTER MATERIALIZED VIEW. Although SQL statements are shown for
changing the materialized view status, you can also use Sybase Central to perform these operations.

Tables, views, and indexes

68 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● When you create a materialized view, it is an enabled manual view and it is uninitialized (contains no
data).

● When you refresh an uninitialized view, it becomes initialized (populated with data).

● Changing from a manual view to an immediate view requires several steps, and there are additional
restrictions for immediate views.

● When you disable a materialized view:

○ the data is dropped
○ the view reverts to uninitialized
○ the indexes are dropped
○ an immediate view reverts to manual

See also
● “ALTER MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “Whether to set refresh type to manual or immediate” on page 52
● “Advanced: Changing refresh type for a materialized view” on page 65
● “Restrictions when changing a materialized view from manual to immediate” on page 54
● “Materialized view properties” on page 67
● “Materialized view statuses” on page 67

Materialized views

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 69

Advanced: Settings controlling data staleness for
materialized views

Data in a materialized view becomes stale when the data changes in the tables referenced by the
materialized view. If you notice that the materialized view is not considered by the optimizer, it may be
due to staleness. You can adjust the staleness threshold for materialized views using the
materialized_view_optimization database option.

You can also adjust the interval specified for the event or trigger that is responsible for refreshing the
view.

If a query explicitly references a materialized view, the view is used to process the query regardless of
freshness of the data in the view. As well, the OPTION clause of a statements such as SELECT,
UPDATE, and INSERT can be used to override the setting of the materialized_view_optimization
database option, forcing the use of a materialized view.

When snapshot isolation is in use, the optimizer avoids using a materialized view if it was refreshed after
the start of the snapshot for a transaction.

See also
● “Determining which materialized views were considered by the optimizer” on page 223
● “Materialized views and view matching” on page 220
● “materialized_view_optimization option” [SQL Anywhere Server - Database Administration]

Tables, views, and indexes

70 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Stored procedures, triggers, batches, and
user defined functions

Procedures and triggers store procedural SQL statements in a database for use by all applications. They
can include control statements that allow repetition (LOOP statement) and conditional execution (IF
statement and CASE statement) of SQL statements. Batches are sets of SQL statements submitted to the
database server as a group. Many features available in procedures and triggers, such as control statements,
are also available in batches.

Procedures are invoked with a CALL statement, and use parameters to accept values and return values to
the calling environment. SELECT statements can also operate on procedure result sets by including the
procedure name in the FROM clause.

Procedures can return result sets to the caller, call other procedures, or fire triggers. For example, a user-
defined function is a type of stored procedure that returns a single value to the calling environment. User-
defined functions do not modify parameters passed to them, but rather, they broaden the scope of
functions available to queries and other SQL statements.

Triggers are associated with specific database tables. They fire automatically whenever someone inserts,
updates or deletes rows of the associated table. Triggers can call procedures and fire other triggers, but
they have no parameters and cannot be invoked by a CALL statement.

SQL Anywhere debugger
You can debug stored procedures and triggers using the SQL Anywhere debugger.

You can profile stored procedures to analyze performance characteristics in Sybase Central.

See also
● “Procedure profiling using system procedures” on page 163
● “The SQL Anywhere debugger” on page 847

Benefits of procedures, triggers, and user-defined
functions

Procedures and triggers enhance the security, efficiency, and standardization of databases.

Definitions for procedures and triggers appear in the database, separately from any one database
application. This separation provides several advantages.

Standardization
Procedures and triggers standardize actions performed by more than one application program. By coding
the action once and storing it in the database for future use, applications need only call the procedure or
fire the trigger to achieve the desired result repeatedly. And since changes occur in only one place, all

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 71

applications using the action automatically acquire the new functionality if the implementation of the
action changes.

Efficiency
Procedures and triggers used in a network database server environment can access data in the database
without requiring network communication. This means they execute faster and with less impact on
network performance than if they had been implemented in an application on one of the client machines.

When you create a procedure or trigger, it is automatically checked for correct syntax, and then stored in
the system tables. The first time any application calls or fires a procedure or trigger, it is compiled from
the system tables into the server's virtual memory and executed from there. Since one copy of the
procedure or trigger remains in memory after the first execution, repeated executions of the same
procedure or trigger happen instantly. As well, several applications can use a procedure or trigger
concurrently, or one application can use it recursively.

Security
Procedures and triggers provide security by allowing users limited access to data in tables that they cannot
directly examine or modify.

Triggers, for example, execute under the table permissions of the owner of the associated table, but any
user with permissions to insert, update or delete rows in the table can fire them. Similarly, procedures
(including user-defined functions) execute with permissions of the procedure owner, but any user granted
permissions can call them. This means that procedures and triggers can (and usually do) have different
permissions than the user ID that invoked them.

See also
● “Views and procedures for extra security” [SQL Anywhere Server - Database Administration]

Procedures

Creating procedures
In Sybase Central, the Create Procedure Wizard provides the option of using procedure templates.
Alternatively, you can use Interactive SQL to execute a CREATE PROCEDURE statement to create a
procedure.

Create a new procedure (Sybase Central)

You must have DBA or RESOURCE authority to create procedure.

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with DBA or Resource
authority.

2. In the left pane, double-click Procedures & Functions.

Stored procedures, triggers, batches, and user defined functions

72 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

3. Click File » New » Procedure.

4. Follow the instructions in the Create Procedure Wizard.

5. In the right pane, click the SQL tab to complete the procedure code.

The new procedure appears in Procedures & Functions.

Example
The following simple example creates the procedure NewDepartment, which performs an INSERT into
the Departments table of the SQL Anywhere sample database, creating a new department.

CREATE PROCEDURE NewDepartment(
 IN id INT,
 IN name CHAR(35),
 IN head_id INT)
BEGIN
 INSERT
 INTO Departments (DepartmentID,
 DepartmentName, DepartmentHeadID)
 VALUES (id, name, head_id);
END;

The body of a procedure is a compound statement. The compound statement starts with a BEGIN
statement and concludes with an END statement. For NewDepartment the compound statement is a single
INSERT bracketed by BEGIN and END statements.

Parameters to procedures can be marked as one of IN, OUT, or INOUT. By default, parameters are
INOUT parameters. All parameters to the NewDepartment procedure are IN parameters, as they are not
changed by the procedure. You should set parameters to IN if they are not used to return values to the
caller.

Temporary procedures
To create a temporary procedure, you must use the CREATE TEMPORARY PROCEDURE statement, an
extension of the CREATE PROCEDURE statement. Temporary procedures are not permanently stored in
the database. Instead, they are dropped at the end of a connection, or when specifically dropped,
whichever occurs first.

Remote procedures
To create a remote procedure, you must have at least one remote server. See:

● “Creating remote procedures (Sybase Central)” on page 720
● “Creating remote servers” on page 698

See also
● “SQL Anywhere database connections” [SQL Anywhere Server - Database Administration]
● “CREATE PROCEDURE statement” [SQL Anywhere Server - SQL Reference]
● “ALTER PROCEDURE statement” [SQL Anywhere Server - SQL Reference]
● “Compound statements” on page 98
● “Creating remote procedures (Sybase Central)” on page 720
● “CALL statement” [SQL Anywhere Server - SQL Reference]

Procedures

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 73

Altering procedures
You can modify an existing procedure using either Sybase Central or Interactive SQL. You must have
DBA authority or be the owner of the procedure.

In Interactive SQL, you can execute an ALTER PROCEDURE statement to modify an existing
procedure. You must include the entire new procedure in this statement (in the same syntax as in the
CREATE PROCEDURE statement that created the procedure).

Alter the code of a procedure (Sybase Central)

You must have DBA authority or be the owner of the procedure.

In Sybase Central, you cannot rename an existing procedure directly. Instead, you must create a new
procedure with the new name, copy the previous code to it, and then delete the old procedure.

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with DBA or Resource
authority.

2. In the left pane, double-click Procedures & Functions.

3. Select the procedure.

4. Use one of the following methods to edit the procedure:

● In the right pane, click the SQL tab.

● Right-click the procedure and click Edit In New Window.

Tip
You can open a separate window for each procedure and copy code between procedures.

● To add or edit a procedure comment, right-click the procedure and click Properties.

If you use the Database Documentation Wizard to document your SQL Anywhere database, you
will have the option to include these comments in the output.

See also
● “Documenting a database” [SQL Anywhere Server - Database Administration]
● “Setting properties for database objects” on page 1
● “Procedure permissions” [SQL Anywhere Server - Database Administration]
● “User permission revocation” [SQL Anywhere Server - Database Administration]
● “ALTER PROCEDURE statement” [SQL Anywhere Server - SQL Reference]
● “CREATE PROCEDURE statement” [SQL Anywhere Server - SQL Reference]
● “Creating procedures” on page 72
● “Using Sybase Central to translate stored procedures” on page 601

Stored procedures, triggers, batches, and user defined functions

74 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Calling procedures
CALL statements invoke procedures. Procedures can be called by an application program, or by other
procedures and triggers.

The following statement calls the NewDepartment procedure to insert an Eastern Sales department:

CALL NewDepartment(210, 'Eastern Sales', 902);

After this call, you may want to check the Departments table to see that the new department has been
added.

All users who have been granted EXECUTE permissions for the procedure can call the NewDepartment
procedure, even if they have no permissions on the Departments table.

Another way of calling a procedure that returns a result set is to call it in a query. You can execute queries
on result sets of procedures and apply WHERE clauses and other SELECT features to limit the result set.

SELECT t.ID, t.QuantityOrdered AS q
FROM ShowCustomerProducts(149) t;

See also
● “User IDs, authorities, and permissions” [SQL Anywhere Server - Database Administration]
● “CALL statement” [SQL Anywhere Server - SQL Reference]
● “GRANT statement” [SQL Anywhere Server - SQL Reference]
● “FROM clause” [SQL Anywhere Server - SQL Reference]

Copying procedures in Sybase Central
To copy procedures between databases in Sybase Central, select the procedure in the left pane and drag it
to Procedures & Functions of another connected database. A new procedure is then created, and the
original procedure's code is copied to it.

Only the procedure code is copied to the new procedure and the other procedure properties (permissions,
and so on) are not copied. A procedure can be copied to the same database, provided you give it a new
name.

Dropping procedures

Drop a procedure (Sybase Central)

Only the owner of the procedure or a user with DBA authority can drop the procedure from the database.

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with DBA authority or as the
owner of the procedure.

2. In the left pane, double-click Procedures & Functions.

Procedures

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 75

3. Select the procedure and click Edit » Delete.

4. Click Yes.

Drop a procedure (SQL)

Only the owner of the procedure or a user with DBA authority can drop the procedure from the database.

1. Connect to a database as a user with DBA authority or as the owner of the procedure.

2. Execute a DROP PROCEDURE statement.

Example
The following statement drops the procedure NewDepartment from the database:

DROP PROCEDURE NewDepartment;

See also
● “SQL Anywhere database connections” [SQL Anywhere Server - Database Administration]
● “DROP PROCEDURE statement” [SQL Anywhere Server - SQL Reference]

User-defined functions
User-defined functions are a class of procedures that return a single value to the calling environment. This
section introduces creating, using, and dropping user-defined functions.

Note
SQL Anywhere does not make any assumptions about whether user-defined functions are thread-safe.
This is the responsibility of the application developer.

Creating user-defined functions

You use the CREATE FUNCTION statement to create user-defined functions. You must have
RESOURCE authority to execute this statement.

The following simple example creates a function that concatenates two strings, together with a space, to
form a full name from a first name and a last name.

CREATE FUNCTION FullName(FirstName CHAR(30),
 LastName CHAR(30))
RETURNS CHAR(61)
BEGIN
 DECLARE name CHAR(61);
 SET name = FirstName || ' ' || LastName;
 RETURN (name);
END;

Stored procedures, triggers, batches, and user defined functions

76 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The CREATE FUNCTION syntax differs slightly from that of the CREATE PROCEDURE statement.
The following are distinctive differences:

● No IN, OUT, or INOUT keywords are required, as all parameters are IN parameters.

● The RETURNS clause is required to specify the data type being returned.

● The RETURN statement is required to specify the value being returned.

You can also create user-defined functions from Sybase Central.

Create a user-defined function (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with DBA or Resource
authority.

2. In the left pane, click Procedures & Functions.

3. Click File » New » Function.

4. Follow the instructions in the Create Function Wizard.

5. In the right pane, click the SQL tab to complete the procedure code.

The new function appears in Procedures & Functions.

See also
● “CREATE FUNCTION statement” [SQL Anywhere Server - SQL Reference]
● “CREATE FUNCTION statement [Web service]” [SQL Anywhere Server - SQL Reference]
● “CREATE FUNCTION statement [External call]” [SQL Anywhere Server - SQL Reference]

Calling user-defined functions
A user-defined function can be used, subject to permissions, in any place you would use a built-in non-
aggregate function.

Executing the following statement in Interactive SQL uses the FullName user-defined function to return a
full name from two columns containing a first and last name:

SELECT FullName(GivenName, Surname)
 AS "Full Name"
 FROM Employees;

Full Name

Fran Whitney

Matthew Cobb

User-defined functions

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 77

Full Name

Philip Chin

...

Executing the following statement in Interactive SQL uses the FullName user-defined function to return a
full name from a supplied first and last name:

SELECT FullName('Jane', 'Smith')
 AS "Full Name";

Full Name

Jane Smith

Any user who has been granted EXECUTE permissions for the function can use the FullName function.

Example
The following user-defined function illustrates local declarations of variables.

The Customers table includes Canadian and US customers. The user-defined function Nationality forms a
3-letter country code based on the Country column.

CREATE FUNCTION Nationality(CustomerID INT)
RETURNS CHAR(3)
BEGIN
 DECLARE nation_string CHAR(3);
 DECLARE nation country_t;
 SELECT DISTINCT Country INTO nation
 FROM Customers
 WHERE ID = CustomerID;
 IF nation = 'Canada' THEN
 SET nation_string = 'CDN';
 ELSE IF nation = 'USA' OR nation = ' ' THEN
 SET nation_string = 'USA';
 ELSE
 SET nation_string = 'OTH';
 END IF;
 END IF;
RETURN (nation_string);
END;

This example declares a variable nation_string to hold the nationality string, uses a SET statement to set a
value for the variable, and returns the value of the nation_string string to the calling environment.

The following query lists all Canadian customers in the Customers table:

SELECT *
FROM Customers
WHERE Nationality(ID) = 'CDN';

Declarations of cursors and exceptions are discussed in later sections.

Stored procedures, triggers, batches, and user defined functions

78 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Notes
While this function is useful for illustration, it may perform very poorly if used in a SELECT involving
many rows. For example, if you used the function in the SELECT list of a query on a table containing
100,000 rows, of which 10,000 are returned, the function will be called 10,000 times. If you use it in the
WHERE clause of the same query, it would be called 100,000 times.

See also
● “User-defined functions” on page 76
● “CREATE FUNCTION statement” [SQL Anywhere Server - SQL Reference]

Dropping user-defined functions

Once you create a user-defined function, it remains in the database until someone explicitly removes it.
Only the owner of the function or a user with DBA authority can drop a function from the database.

The following statement removes the function FullName from the database:

DROP FUNCTION FullName;

See also
● “DROP FUNCTION statement” [SQL Anywhere Server - SQL Reference]

Permissions to execute user-defined functions

Ownership of a user-defined function belongs to the user who created it, and that user can execute it
without permission. The owner of a user-defined function can grant permissions to other users with the
GRANT EXECUTE statement.

For example, the creator of the Nationality function could allow another user to use Nationality with the
statement:

GRANT EXECUTE ON Nationality TO BobS;

The following statement revokes permissions to use the function:

REVOKE EXECUTE ON Nationality FROM BobS;

See also
● “Procedure permissions” [SQL Anywhere Server - Database Administration]

Advanced information on user-defined functions
SQL Anywhere treats all user-defined functions as idempotent unless they are declared NOT
DETERMINISTIC. Idempotent functions return a consistent result for the same parameters and are free

User-defined functions

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 79

of side effects. Two successive calls to an idempotent function with the same parameters return the same
result, and have no unwanted side-effects on the query's semantics.

For more information about non-deterministic and deterministic functions, see “Function caching”
on page 292.

Triggers
A trigger is a special form of stored procedure that is executed automatically when a statement that
modifies data is executed. You use triggers whenever referential integrity and other declarative constraints
are insufficient.

You may want to enforce a more complex form of referential integrity involving more detailed checking,
or you may want to enforce checking on new data, but allow legacy data to violate constraints. Another
use for triggers is in logging the activity on database tables, independent of the applications using the
database.

Note
There are three special statements that triggers do not fire after: LOAD TABLE, TRUNCATE, and
WRITETEXT.

Permissions to execute triggers
Triggers execute with the permissions of the owner of the associated table or view, not the user ID whose
actions cause the trigger to fire. A trigger can modify rows in a table that a user could not modify directly.

You can prevent triggers from being fired by specifying the -gf server option, or by setting the
fire_triggers option. See:

● “-gf dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “fire_triggers option” [SQL Anywhere Server - Database Administration]

Trigger types
SQL Anywhere supports the following trigger types:

● BEFORE trigger A BEFORE trigger fires before a triggering action is performed. BEFORE
triggers can be defined for tables, but not views.

● AFTER trigger An AFTER trigger fires after the triggering action is complete. AFTER triggers
can be defined for tables, but not views.

● INSTEAD OF trigger An INSTEAD OF trigger is a conditional trigger that fires instead of the
triggering action. INSTEAD OF triggers can be defined for tables and views (except materialized
views).

Trigger events
Triggers can be defined on one or more of the following triggering events:

Stored procedures, triggers, batches, and user defined functions

80 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Action Description

INSERT Invokes the trigger whenever a new row is inserted into the table associated with the
trigger.

DELETE Invokes the trigger whenever a row of the associated table is deleted.

UPDATE Invokes the trigger whenever a row of the associated table is updated.

UPDATE OF
column-list

Invokes the trigger whenever a row of the associated table is updated such that a col-
umn in the column-list is modified.

You can write separate triggers for each event that you need to handle or, if you have some shared actions
and some actions that depend on the event, you can create a trigger for all events and use an IF statement
to distinguish the action taking place.

See also
● “Data integrity” on page 749
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “TRUNCATE statement” [SQL Anywhere Server - SQL Reference]
● “WRITETEXT statement [T-SQL]” [SQL Anywhere Server - SQL Reference]
● “LOAD TABLE statement” [SQL Anywhere Server - SQL Reference]
● “INSTEAD OF triggers” on page 89
● “CREATE TRIGGER statement” [SQL Anywhere Server - SQL Reference]
● “Trigger operation conditions” [SQL Anywhere Server - SQL Reference]
● “Atomic compound statements” on page 99

Trigger times
Triggers can be either row-level or statement-level:

● A row-level trigger executes once for each row that is changed. Row-level triggers execute BEFORE or
AFTER the row is changed.

Column values for the new and old images of the affected row are made available to the trigger via
variables.

● A statement-level trigger executes after the entire triggering statement is completed. Rows affected by
the triggering statement are made available to the trigger via temporary tables representing the new and
old images of the rows. SQL Anywhere does not support statement-level BEFORE triggers.

Flexibility in trigger execution time is useful for triggers that rely on referential integrity actions such as
cascaded updates or deletes being performed (or not) as they execute.

If an error occurs while a trigger is executing, the operation that fired the trigger fails. INSERT,
UPDATE, and DELETE are atomic operations. When they fail, all effects of the statement (including the
effects of triggers and any procedures called by triggers) revert to their preoperative state.

Triggers

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 81

Creating triggers

The body of a trigger consists of a compound statement: a set of semicolon-delimited SQL statements
bracketed by a BEGIN and an END statement.

Create a trigger for a given table (Sybase Central)

You must have DBA or RESOURCE authority to create a trigger and you must have ALTER permissions
on the table associated with the trigger.

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with DBA or Resource
authority.

2. In the left pane, click Triggers.

3. Click File » New » Trigger.

4. Follow the instructions in the Create Trigger Wizard.

5. To complete the code, in the right pane click the SQL tab.

Create a trigger for a given table (SQL)

You must have DBA or RESOURCE authority to create a trigger and you must have ALTER permissions
on the table associated with the trigger.

You cannot use COMMIT and ROLLBACK and some ROLLBACK TO SAVEPOINT statements within
a trigger.

1. Connect to a database as a user with DBA authority. You must also have ALTER permissions on the
table associated with the trigger.

2. Execute a CREATE TRIGGER statement.

Example 1: A row-level INSERT trigger
The following trigger is an example of a row-level INSERT trigger. It checks that the birth date entered
for a new employee is reasonable:

CREATE TRIGGER check_birth_date
 AFTER INSERT ON Employees
REFERENCING NEW AS new_employee
FOR EACH ROW
BEGIN
 DECLARE err_user_error EXCEPTION
 FOR SQLSTATE '99999';
 IF new_employee.BirthDate > 'June 6, 2001' THEN
 SIGNAL err_user_error;
 END IF;
END;

Stored procedures, triggers, batches, and user defined functions

82 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Note
You may already have a trigger with the name check_birth_date in your SQL Anywhere sample database.
If so, and you attempt to run the above SQL statement, an error is returned indicating that the trigger
definition conflicts with existing triggers.

This trigger fires after any row is inserted into the Employees table. It detects and disallows any new rows
that correspond to birth dates later than June 6, 2001.

The phrase REFERENCING NEW AS new_employee allows statements in the trigger code to refer to the
data in the new row using the alias new_employee.

Signaling an error causes the triggering statement, and any previous trigger effects, to be undone.

For an INSERT statement that adds many rows to the Employees table, the check_birth_date trigger fires
once for each new row. If the trigger fails for any of the rows, all effects of the INSERT statement roll
back.

You can specify that the trigger fires before the row is inserted, rather than after, by changing the second
line of the example to say

BEFORE INSERT ON Employees

The REFERENCING NEW clause refers to the inserted values of the row; it is independent of the timing
(BEFORE or AFTER) of the trigger.

Sometimes it is easier to enforce constraints using declarative referential integrity or CHECK constraints,
rather than triggers. For example, implementing the above example with a column check constraint proves
more efficient and concise:

CHECK (@col <= 'June 6, 2001')

Example 2: A row-level DELETE trigger example
The following CREATE TRIGGER statement defines a row-level DELETE trigger:

CREATE TRIGGER mytrigger
BEFORE DELETE ON Employees
REFERENCING OLD AS oldtable
FOR EACH ROW
BEGIN
 ...
END;

The REFERENCING OLD clause is independent of the timing (BEFORE or AFTER) of the trigger, and
enables the delete trigger code to refer to the values in the row being deleted using the alias oldtable.

Example 3: A statement-level UPDATE trigger example
The following CREATE TRIGGER statement is appropriate for statement-level UPDATE triggers:

CREATE TRIGGER mytrigger AFTER UPDATE ON Employees
REFERENCING NEW AS table_after_update
 OLD AS table_before_update
FOR EACH STATEMENT

Triggers

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 83

BEGIN
 ...
END;

The REFERENCING NEW and REFERENCING OLD clause allows the UPDATE trigger code to refer
to both the old and new values of the rows being updated. The table alias table_after_update refers to
columns in the new row and the table alias table_before_update refers to columns in the old row.

The REFERENCING NEW and REFERENCING OLD clause has a slightly different meaning for
statement-level and row-level triggers. For statement-level triggers the REFERENCING OLD or NEW
aliases are table aliases, while in row-level triggers they refer to the row being altered.

See also
● “SQL Anywhere database connections” [SQL Anywhere Server - Database Administration]
● “COMMIT statement” [SQL Anywhere Server - SQL Reference]
● “ROLLBACK TO SAVEPOINT statement” [SQL Anywhere Server - SQL Reference]
● “CREATE TRIGGER statement” [SQL Anywhere Server - SQL Reference]
● “Compound statements” on page 98

Trigger execution

Triggers execute automatically whenever an INSERT, UPDATE, or DELETE operation is performed on
the table named in the trigger. A row-level trigger fires once for each row affected, while a statement-
level trigger fires once for the entire statement.

When an INSERT, UPDATE, or DELETE fires a trigger, the order of operation is as follows, depending
on the trigger type (BEFORE or AFTER):

1. BEFORE triggers fire.

2. The operation itself is performed.

3. Referential actions are performed.

4. AFTER triggers fire.

Note
When creating a trigger using the CREATE TRIGGER statement, if a trigger-type is not specified, the
default is AFTER.

If any of the steps encounter an error not handled within a procedure or trigger, the preceding steps are
undone, the subsequent steps are not performed, and the operation that fired the trigger fails.

See also
● “CREATE TRIGGER statement” [SQL Anywhere Server - SQL Reference]

Stored procedures, triggers, batches, and user defined functions

84 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Altering triggers

Alter the code of a trigger (Sybase Central)

You must be the owner of the table on which the trigger is defined, or be DBA, or have ALTER
permissions on the table and have RESOURCE authority.

In Sybase Central, you cannot rename an existing trigger directly. Instead, you must create a new trigger
with the new name, copy the previous code to it, and then delete the old trigger.

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with DBA authority or as the
owner of the trigger.

2. In the left pane, double-click Triggers.

3. Select the trigger.

4. Use one of the following methods to alter the trigger:

● In the right pane, click the SQL tab.

● Right-click the trigger and click Edit In New Window.

Tip
You can open a separate window for each procedure and copy code between triggers.

● To add or edit a procedure comment, right-click the trigger and click Properties.

If you use the Database Documentation Wizard to document your SQL Anywhere database, you
will have the option to include these comments in the output.

Alter the code of a trigger (SQL)

You must be the owner of the table on which the trigger is defined, or be DBA, or have ALTER
permissions on the table and have RESOURCE authority.

1. Connect to the database as a user with DBA authority or as the owner of the trigger.

2. Execute an ALTER TRIGGER statement. Include the entire new trigger in this statement (in the same
syntax as in the CREATE TRIGGER statement that created the trigger).

See also
● “Setting properties for database objects” on page 1
● “SQL Anywhere database connections” [SQL Anywhere Server - Database Administration]
● “Documenting a database” [SQL Anywhere Server - Database Administration]
● “Using Sybase Central to translate stored procedures” on page 601
● “ALTER TRIGGER statement” [SQL Anywhere Server - SQL Reference]

Triggers

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 85

Dropping triggers

Delete a trigger (Sybase Central)

You must have ALTER permissions on the table associated with the trigger to drop the trigger.

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with DBA authority or as the
owner of the trigger.

2. In the left pane, double-click Triggers.

3. Select the trigger and click Edit » Delete.

4. Click Yes.

Delete a trigger (SQL)

You must have ALTER permissions on the table associated with the trigger to drop the trigger.

1. Connect to a database as a user with DBA authority or as the owner of the trigger.

2. Execute a DROP TRIGGER statement.

Example
The following statement removes the mytrigger trigger from the database:

DROP TRIGGER mytrigger;

See also
● “SQL Anywhere database connections” [SQL Anywhere Server - Database Administration]
● “DROP TRIGGER statement” [SQL Anywhere Server - SQL Reference]

Temporarily disabling trigger operations

You can set triggers so that their operations are disabled when users perform actions (that fire the trigger)
on column data. The trigger can still be fired, and its operations executed, using a procedure that contains
a predefined connection variable. Users can then INSERT, ALTER or DELETE columns without the
trigger operations being executed even though the trigger fires.

Disable the operations of a single trigger temporarily

Note
If you are using a row level trigger, use a WHEN clause to specify when you want the trigger to fire.

This example disables the operations of a trigger based on whether a connection variable exists.

Stored procedures, triggers, batches, and user defined functions

86 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

1. Create an after insert trigger that checks the state of a connection variable to determine if the trigger
logic is enabled. If the variable does not exist, the trigger's operations are enabled:

CREATE TRIGGER myTrig AFTER INSERT
REFERENCING NEW AS new-name
FOR EACH STATEMENT
BEGIN
 DECLARE @execute_trigger integer;
 IF varexists('enable_trigger_logic') = 1 THEN
 SET @execute_trigger = enable_trigger_logic;
 ELSE
 SET @execute_trigger = 1;
 END IF;
 IF @execute_trigger = 1 THEN
 ... -your-trigger-logic
 END IF;
END;

2. Add the following code to your statement to call the trigger you created in step 1. The statement uses a
connection variable to control when the trigger is disabled, and must surround the code you want to
disable.

...
 IF varexists('enable_trigger_logic') = 0 THEN
 CREATE VARIABLE enable_trigger_logic INT;
 END IF;
 SET enable_trigger_logic = 0;
 ... execute-your-code-that-you-do-not-want-triggers-to-run
 SET enable_trigger_logic = 1;
 ... now-your-trigger-logic-will-do-its-work

Example: temporarily disable operations for multiple triggers

This example uses the connection variable technique from Example 1 to control the operations of multiple
triggers. It creates two procedures that can be called to enable and disable multiple triggers. It also creates
a function that can be used to check whether trigger operations are enabled.

1. Create a procedure that can be called to disable trigger operations. Its behavior is based on the value
of a connection variable.

CREATE PROCEDURE sp_disable_triggers()
BEGIN
 IF VAREXISTS ('enable_trigger_logic') = 0 THEN
 CREATE VARIABLE enable_trigger_logic INT;
 END IF;
 SET enable_trigger_logic = 0;
END;

2. Create a procedure that can be called to enable trigger operations. Its behavior is based on the value of
a connection variable.

CREATE PROCEDURE sp_enable_triggers()
BEGIN
 IF VAREXISTS ('enable_trigger_logic') = 0 THEN
 CREATE VARIABLE enable_trigger_logic INT;
 END IF;
 SET enable_trigger_logic = 1;
END;

Triggers

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 87

3. Create a function that can be called to determine whether or not your trigger operations are enabled:

CREATE FUNCTION f_are_triggers_enabled()
RETURNS INT
BEGIN
 IF VAREXISTS ('enable_trigger_logic') = 1 THEN
 RETURN enable_trigger_logic;
 ELSE
 RETURN 1;
 END IF;
END;

4. Add an IF clause to the triggers whose operations you want to control:

IF f_are_triggers_enabled() = 1 THEN
 ... your-trigger-logic
END IF;

5. Call the procedure you created in Step 2 to enable trigger operations:

CALL sp_enable_triggers();
... execute-code-where-trigger-logic-runs

Call the procedure you created in Step 1 to disable trigger operations:

CALL sp_disable_triggers();
... execute-your-code-where-trigger-logic-is-disabled

See also
● “CREATE TRIGGER statement” [SQL Anywhere Server - SQL Reference]
● “-gf dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “fire_triggers connection property” [SQL Anywhere Server - Database Administration]
● “Triggers” on page 80

Permissions to execute triggers
You cannot grant permissions to execute a trigger, since users cannot execute triggers: SQL Anywhere
fires them in response to actions on the database. Nevertheless, a trigger does have permissions associated
with it as it executes, defining its right to perform certain actions.

Triggers execute using the permissions of the owner of the table on which they are defined, not the
permissions of the user who caused the trigger to fire, and not the permissions of the user who created the
trigger.

When a trigger refers to a table, it uses the group memberships of the table creator to locate tables with no
explicit owner name specified. For example, if a trigger on user_1.Table_A references Table_B and does
not specify the owner of Table_B, then either Table_B must have been created by user_1 or user_1 must
be a member of a group (directly or indirectly) that is the owner of Table_B. If neither condition is met,
the database server returns a message, when the trigger fires, indicating that the table cannot be found.

Also, user_1 must have permissions to perform the operations specified in the trigger.

Stored procedures, triggers, batches, and user defined functions

88 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “User IDs, authorities, and permissions” [SQL Anywhere Server - Database Administration]

Advanced information on triggers
One aspect of triggers that can be difficult to understand is the order in which triggers fire if several
triggers are impacted by the same triggering action. Whether competing triggers are fired, and the order in
which they are fired, depends on two things: trigger type (BEFORE, INSTEAD OF, or AFTER), and
trigger scope (row-level or statement-level).

UPDATE statements can modify column values in more than one table. The sequence of trigger firing is
the same for each table, but the order that the tables are updated is not guaranteed.

For row-level triggers, BEFORE triggers fire before INSTEAD OF triggers, which fire before AFTER
triggers. All row-level triggers for a given row fire before any triggers fire for a subsequent row.

For statement-level triggers, INSTEAD OF triggers fire before AFTER triggers. Statement-level
BEFORE triggers are not supported.

If there are competing statement-level and row-level AFTER triggers, the statement-level AFTER triggers
fire after all row-level triggers have completed.

If there are competing statement-level and row-level INSTEAD OF triggers, the row-level triggers do not
fire.

The OLD and NEW temporary tables created for AFTER STATEMENT triggers have the same schema
as the underlying base table, with the same column names and data types. However these tables do not
have primary keys, foreign keys, or indexes. The order of the rows in the OLD and NEW temporary
tables is not guaranteed and may not match the order in which the base table rows were updated
originally.

INSTEAD OF triggers

INSTEAD OF triggers differ from BEFORE and AFTER triggers because when an INSTEAD OF trigger
fires, the triggering action is skipped and the specified action is performed instead.

The following is a list of capabilities and restrictions that are unique to INSTEAD OF triggers:

● There can only be one INSTEAD OF trigger for each trigger event on a given table.

● INSTEAD OF triggers can be defined for a table or a view. However, INSTEAD OF triggers cannot be
defined on materialized views since you cannot execute DML operations, such as INSERT, DELETE,
and UPDATE statements, on materialized views.

● You cannot specify the ORDER or WHEN clauses when defining an INSTEAD OF trigger.

● You cannot define an INSTEAD OF trigger for an UPDATE OF column-list trigger event.

Triggers

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 89

● Whether an INSTEAD OF trigger performs recursion depends on whether the target of the trigger is a
base table or a view. Recursion occurs for views, but not for base tables. That is, if an INSTEAD OF
trigger performs DML operations on the base table on which the trigger is defined, those operations do
not cause triggers to fire (including BEFORE or AFTER triggers). If the target is a view, all triggers
fire for the operations performed on the view.

● If a table has an INSTEAD OF trigger defined on it, you cannot execute an INSERT statement with an
ON EXISTING clause against the table. Attempting to do so returns a SQLE_INSTEAD_TRIGGER
error.

● You cannot execute an INSERT statement on a view that was defined with the WITH CHECK
OPTION (or is nested inside another view that was defined this way), and that has an INSTEAD OF
INSERT trigger defined against it. This is true for UPDATE and DELETE statements as well.
Attempting to do so returns a SQLE_CHECK_TRIGGER_CONFLICT error.

● If an INSTEAD OF trigger is fired as a result of a positioned update, positioned delete, PUT statement,
or wide insert operation, a SQLE_INSTEAD_TRIGGER_POSITIONED error is returned.

Updating non-updatable views using INSTEAD OF triggers
INSTEAD OF triggers allow you to execute INSERT, UPDATE, or DELETE statements on a view that is
not inherently updatable. The body of the trigger defines what it means to execute the corresponding
INSERT, UPDATE, or DELETE statement. For example, suppose you create the following view:

CREATE VIEW V1 (Surname, GivenName, State)
 AS SELECT DISTINCT Surname, GivenName, State
 FROM Contacts;

You cannot delete rows from V1 because the DISTINCT keyword makes V1 not inherently updatable. In
other words, the database server cannot unambiguously determine what it means to delete a row from V1.
However, you could define an INSTEAD OF DELETE trigger that implements a delete operation on V1.
For example, the following trigger deletes all rows from Contacts with a given Surname, GivenName, and
State when that row is deleted from V1:

CREATE TRIGGER V1_Delete
 INSTEAD OF DELETE ON V1
 REFERENCING OLD AS old_row
 FOR EACH ROW
BEGIN
 DELETE FROM Contacts
 WHERE Surname = old_row.Surname
 AND GivenName = old_row.GivenName
 AND State = old_row.State
END;

Once the V1_Delete trigger is defined, you can delete rows from V1. You can also define other
INSTEAD OF triggers to allow INSERT and UPDATE statements to be performed on V1.

If a view with an INSTEAD OF DELETE trigger is nested in another view, it is treated like a base table
for checking the updatability of a DELETE. This is true for INSERT and UPDATE operations as well.
Continuing from the previous example, create another view:

CREATE VIEW V2 (Surname, GivenName) AS
 SELECT Surname, GivenName from V1;

Stored procedures, triggers, batches, and user defined functions

90 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Without the V1_Delete trigger, you cannot delete rows from V2 because V1 is not inherently updatable,
so neither is V2. However, if you define an INSTEAD OF DELETE trigger on V1, you can delete rows
from V2. Each row deleted from V2 results in a row being deleted from V1, which causes the V1_Delete
trigger to fire.

Be careful when defining an INSTEAD OF trigger on a nested view, since the firing of the trigger can
have unintended consequences. To make the intended behavior explicit, define the INSTEAD OF triggers
on any view referencing the nested view.

The following trigger could be defined on V2 to cause the desired behavior for a DELETE statement:

CREATE TRIGGER V2_Delete
 INSTEAD OF DELETE ON V2
 REFERENCING OLD AS old_row
 FOR EACH ROW
BEGIN
 DELETE FROM Contacts
 WHERE Surname = old_row.Surname
 AND GivenName = old_row.GivenName
END;

The V2_Delete trigger ensures that the behavior of a delete operation on V2 remains the same, even if the
INSTEAD OF DELETE trigger on V1 is removed or changed.

See also
● “CREATE TRIGGER statement” [SQL Anywhere Server - SQL Reference]

Batches
A batch is a set of SQL statements submitted together and executed as a group, one after the other. The
control statements used in procedures (CASE, IF, LOOP, and so on) can also be used in batches. If the
batch consists of a compound statement enclosed in a BEGIN/END, then it can also contain host
variables, local declarations for variables, cursors, temporary tables and exceptions. Host variable
references are permitted within batches with the following restrictions:

● only one statement in the batch can refer to host variables

● the statement which uses host variables cannot be preceded by a statement which returns a result set

Use of BEGIN/END is recommended to clearly indicate when a batch is being used.

Statements within the batch may be delimited with semicolons, in which case the batch is conforming to
the Watcom SQL dialect. A multi-statement batch that does not use semicolons to delimit statements
conforms to the Transact-SQL dialect. The dialect of the batch determines which statements are permitted
within the batch, and also determines how errors within the batch are handled.

In many ways, batches are similar to stored procedures; however, there are some differences:

● batches do not have names

Batches

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 91

● batches do not accept parameters

● batches are not stored persistently in the database

● batches cannot be shared by different connections

A simple batch consists of a set of SQL statements with no delimiters followed by a separate line with just
the word go on it. The following example creates an Eastern Sales department and transfers all sales reps
from Massachusetts to that department. It is an example of a Transact-SQL batch.

INSERT
INTO Departments (DepartmentID, DepartmentName)
VALUES (220, 'Eastern Sales')
UPDATE Employees
SET DepartmentID = 220
WHERE DepartmentID = 200
AND State = 'MA'
COMMIT
go

The word go is recognized by Interactive SQL and causes it to send the previous statements as a single
batch to the server.

The following example, while similar in appearance, is handled quite differently by Interactive SQL. This
example does not use the Transact-SQL dialect. Each statement is delimited by a semicolon. Interactive
SQL sends each semicolon-delimited statement separately to the server. It is not treated as a batch.

INSERT
INTO Departments (DepartmentID, DepartmentName)
VALUES (220, 'Eastern Sales');
UPDATE Employees
SET DepartmentID = 220
WHERE DepartmentID = 200
AND State = 'MA';
COMMIT;

To have Interactive SQL treat it as a batch, it can be changed into a compound statement using
BEGIN ... END. The following is a revised version of the previous example. The three statements in
the compound statement are sent as a batch to the server.

BEGIN
 INSERT
 INTO Departments (DepartmentID, DepartmentName)
 VALUES (220, 'Eastern Sales');
 UPDATE Employees
 SET DepartmentID = 220
 WHERE DepartmentID = 200
 AND State = 'MA';
 COMMIT;
END

Stored procedures, triggers, batches, and user defined functions

92 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

In this particular example, it makes no difference to the end result whether a batch or individual
statements are executed by the server. There are situations, though, where it can make a difference.
Consider the following example.

DECLARE @CurrentID INTEGER;
SET @CurrentID = 207;
SELECT Surname FROM Employees
 WHERE EmployeeID=@CurrentID;

If you execute this example using Interactive SQL, the database server returns an error indicating that the
variable cannot be found. This happens because Interactive SQL sends three separate statements to the
server. They are not executed as a batch. As you have already seen, the remedy is to use a compound
statement to force Interactive SQL to send these statements as a batch to the server. The following
example accomplishes this.

BEGIN
 DECLARE @CurrentID INTEGER;
 SET @CurrentID = 207;
 SELECT Surname FROM Employees
 WHERE EmployeeID=@CurrentID;
END

Putting a BEGIN and END around a set of statements forces Interactive SQL to treat them as a batch.

The IF statement is another example of a compound statement. Interactive SQL sends the following
statements as a single batch to the server.

IF EXISTS(SELECT *
 FROM SYSTAB
 WHERE table_name='Employees')
THEN
 SELECT Surname AS LastName,
 GivenName AS FirstName
 FROM Employees;
 SELECT Surname, GivenName
 FROM Customers;
 SELECT Surname, GivenName
 FROM Contacts;
ELSE
 MESSAGE 'The Employees table does not exist'
 TO CLIENT;
END IF

This situation does not arise when using other techniques to prepare and execute SQL statements. For
example, an application that uses ODBC can prepare and execute a series of semicolon-separated
statements as a batch.

Care must be exercised when mixing Interactive SQL statements with SQL statements intended for the
server. The following is an example of how mixing Interactive SQL statements and SQL statements can
be an issue. In this example, since the Interactive SQL OUTPUT statement is embedded in the compound
statement, it is sent along with all the other statements to the server as a batch, and results in a syntax
error.

IF EXISTS(SELECT *
 FROM SYSTAB
 WHERE table_name='Employees')
THEN

Batches

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 93

 SELECT Surname AS LastName,
 GivenName AS FirstName
 FROM Employees;
 SELECT Surname, GivenName
 FROM Customers;
 SELECT Surname, GivenName
 FROM Contacts;
 OUTPUT TO 'c:\\temp\\query.txt';
ELSE
 MESSAGE 'The Employees table does not exist'
 TO CLIENT;
END IF

The correct placement of the OUTPUT statement is shown below.

IF EXISTS(SELECT *
 FROM SYSTAB
 WHERE table_name='Employees')
THEN
 SELECT Surname AS LastName,
 GivenName AS FirstName
 FROM Employees;
 SELECT Surname, GivenName
 FROM Customers;
 SELECT Surname, GivenName
 FROM Contacts;
ELSE
 MESSAGE 'The Employees table does not exist'
 TO CLIENT;
END IF;
OUTPUT TO 'c:\\temp\\query.txt';

See also
● “Transact-SQL batches” on page 600
● “Executing multiple SQL statements in Interactive SQL” [SQL Anywhere Server - Database

Administration]

The structure of procedures, triggers, and user-
defined functions

The body of a procedure or trigger consists of a compound statement. A compound statement consists of a
BEGIN and an END, enclosing a set of SQL statements. Semicolons delimit each statement.

See also
● “Compound statements” on page 98

Parameter declaration for procedures

Procedure parameters appear as a list in the CREATE PROCEDURE statement. Parameter names must
conform to the rules for other database identifiers such as column names. They must have valid data

Stored procedures, triggers, batches, and user defined functions

94 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

types, and can be prefixed with one of the keywords IN, OUT or INOUT. By default, parameters are
INOUT parameters. These keywords have the following meanings:

● IN The argument is an expression that provides a value to the procedure.

● OUT The argument is a variable that could be given a value by the procedure.

● INOUT The argument is a variable that provides a value to the procedure, and could be given a new
value by the procedure.

You can assign default values to procedure parameters in the CREATE PROCEDURE statement. The
default value must be a constant, which may be NULL. For example, the following procedure uses the
NULL default for an IN parameter to avoid executing a query that would have no meaning:

CREATE PROCEDURE CustomerProducts(
 IN customer_ID
 INTEGER DEFAULT NULL)
RESULT (product_ID INTEGER,
 quantity_ordered INTEGER)
BEGIN
 IF customer_ID IS NULL THEN
 RETURN;
 ELSE
 SELECT Products.ID,
 sum(SalesOrderItems.Quantity)
 FROM Products,
 SalesOrderItems,
 SalesOrders
 WHERE SalesOrders.CustomerID = customer_ID
 AND SalesOrders.ID = SalesOrderItems.ID
 AND SalesOrderItems.ProductID = Products.ID
 GROUP BY Products.ID;
 END IF;
END;

The following statement assigns the DEFAULT NULL, and the procedure RETURNs instead of
executing the query.

CALL CustomerProducts();

See also
● “SQL data types” [SQL Anywhere Server - SQL Reference]

Ways to pass parameters to procedures
You can take advantage of default values of stored procedure parameters with either of two forms of the
CALL statement.

If the optional parameters are at the end of the argument list in the CREATE PROCEDURE statement,
they may be omitted from the CALL statement. As an example, consider a procedure with three INOUT
parameters:

CREATE PROCEDURE SampleProcedure(
 INOUT var1 INT DEFAULT 1,

The structure of procedures, triggers, and user-defined functions

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 95

 INOUT var2 int DEFAULT 2,
 INOUT var3 int DEFAULT 3)
...

This example assumes that the calling environment has set up three variables to hold the values passed to
the procedure:

CREATE VARIABLE V1 INT;
CREATE VARIABLE V2 INT;
CREATE VARIABLE V3 INT;

The procedure SampleProcedure may be called supplying only the first parameter as follows, in which
case the default values are used for var2 and var3.

CALL SampleProcedure(V1);

The procedure can also be called by providing only the second parameter by using the DEFAULT value
for the first parameter, as follows:

CALL SampleProcedure(DEFAULT, V2);

A more flexible method of calling procedures with optional arguments is to pass the parameters by name.
The SampleProcedure procedure may be called as follows:

CALL SampleProcedure(var1 = V1, var3 = V3);

or as follows:

CALL SampleProcedure(var3 = V3, var1 = V1);

Passing parameters to functions

User-defined functions are not invoked with the CALL statement, but are used in the same manner that
built-in functions are. For example, the following statement uses the FullName function to retrieve the
names of employees:

List the names of all employees

● In Interactive SQL, type the following:

SELECT FullName(GivenName, Surname) AS Name
 FROM Employees;

The following results appear:

Name

Fran Whitney

Matthew Cobb

Stored procedures, triggers, batches, and user defined functions

96 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Name

Philip Chin

Julie Jordan

...

Notes
● Default parameters can be used in calling functions. However, parameters cannot be passed to functions

by name.

● Parameters are passed by value, not by reference. Even if the function changes the value of the
parameter, this change is not returned to the calling environment.

● Output parameters cannot be used in user-defined functions.

● User-defined functions cannot return result sets.

See also
● “Creating user-defined functions” on page 76

Control statements
There are several control statements for logical flow and decision making in the body of a procedure,
trigger, or user-defined function, or in a batch. Available control statements include:

Control statement Syntax

Compound statements BEGIN [ATOMIC]
 Statement-list
END

Conditional execution: IF IF condition THEN
 Statement-list
ELSEIF condition THEN
 Statement-list
ELSE
 Statement-list
END IF

Conditional execution: CASE CASE expression
WHEN value THEN
 Statement-list
WHEN value THEN
 Statement-list
ELSE
 Statement-list
END CASE

Control statements

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 97

Control statement Syntax

Repetition: WHILE, LOOP WHILE condition LOOP
 Statement-list
END LOOP

Repetition: FOR cursor loop FOR loop-name
 AS cursor-name CURSOR FOR
 select-statement
DO
 Statement-list
END FOR

Break: LEAVE LEAVE label

CALL CALL procname(arg, ...)

See also
● “BEGIN statement” [SQL Anywhere Server - SQL Reference]
● “IF statement” [SQL Anywhere Server - SQL Reference]
● “CASE statement” [SQL Anywhere Server - SQL Reference]
● “LOOP statement” [SQL Anywhere Server - SQL Reference]
● “FOR statement” [SQL Anywhere Server - SQL Reference]
● “LEAVE statement” [SQL Anywhere Server - SQL Reference]
● “CALL statement” [SQL Anywhere Server - SQL Reference]

Compound statements
A compound statement starts with the keyword BEGIN and concludes with the keyword END. The body
of a procedure or trigger is a compound statement. Compound statements can also be used in batches.
Compound statements can be nested, and combined with other control statements to define execution flow
in procedures and triggers or in batches.

A compound statement allows a set of SQL statements to be grouped together and treated as a unit.
Delimit SQL statements within a compound statement with semicolons.

Declarations in compound statements
Local declarations in a compound statement immediately follow the BEGIN keyword. These local
declarations exist only within the compound statement. Within a compound statement you can declare:

● Variables

● Cursors

● Temporary tables

● Exceptions (error identifiers)

Stored procedures, triggers, batches, and user defined functions

98 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Local declarations can be referenced by any statement in that compound statement, or in any compound
statement nested within it. Local declarations are not visible to other procedures called from the
compound statement.

Atomic compound statements
An atomic statement is a statement that is executed completely or not at all. For example, an UPDATE
statement that updates thousands of rows might encounter an error after updating many rows. If the
statement does not complete, all changed rows revert back to their original state. The UPDATE statement
is atomic.

All non-compound SQL statements are atomic. You can make a compound statement atomic by adding
the keyword ATOMIC after the BEGIN keyword.

BEGIN ATOMIC
 UPDATE Employees
 SET ManagerID = 501
 WHERE EmployeeID = 467;
 UPDATE Employees
 SET BirthDate = 'bad_data';
END

In this example, the two update statements are part of an atomic compound statement. They must either
succeed or fail as one. The first update statement would succeed. The second one causes a data conversion
error since the value being assigned to the BirthDate column cannot be converted to a date.

The atomic compound statement fails and the effect of both UPDATE statements is undone. Even if the
currently executing transaction is eventually committed, neither statement in the atomic compound
statement takes effect.

If an atomic compound statement succeeds, the changes made within the compound statement take effect
only if the currently executing transaction is committed. In the case when an atomic compound statement
succeeds but the transaction in which it occurs gets rolled back, the atomic compound statement also gets
rolled back. A savepoint is established at the start of the atomic compound statement. Any errors within
the statement result in a rollback to that savepoint.

When an atomic compound statement is executed in autocommit (unchained) mode, the commit mode
changes to manual (chained) until statement execution is complete. In manual mode, DML statements
executed within the atomic compound statement do not cause an immediate COMMIT or ROLLBACK. If
the atomic compound statement completes successfully, a COMMIT statement is executed; otherwise, a
ROLLBACK statement is executed.

You cannot use COMMIT and ROLLBACK and some ROLLBACK TO SAVEPOINT statements within
an atomic compound statement.

Control statements

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 99

See also
● “Controlling autocommit behavior” [SQL Anywhere Server - Programming]
● “Autocommit and manual commit mode” [SQL Anywhere Server - Programming]
● “Transactions and savepoints in procedures, triggers, and user-defined functions” on page 119
● “Exception handling and atomic compound statements” on page 115

Result sets
Procedures can return results in the form of a single row of data, or multiple rows. Results consisting of a
single row of data can be passed back as arguments to the procedure. Results consisting of multiple rows
of data are passed back as result sets. Procedures can also return a single value given in the RETURN
statement.

See also
● “Procedures” on page 72

Returning a value using the RETURN statement
The RETURN statement returns a single integer value to the calling environment, causing an immediate
exit from the procedure. The RETURN statement takes the form:

RETURN expression

The value of the supplied expression is returned to the calling environment. To save the return value in a
variable, use an extension of the CALL statement:

CREATE VARIABLE returnval INTEGER;
returnval = CALL myproc();

See also
● “RETURN statement” [SQL Anywhere Server - SQL Reference]

Ways to return results as procedure parameters
Procedures can return results to the calling environment in the parameters to the procedure. Within a
procedure, parameters and variables can be assigned values using:

● the SET statement

● a SELECT statement with an INTO clause

Using the SET statement
The following procedure returns a value in an OUT parameter assigned using a SET statement:

CREATE PROCEDURE greater(
 IN a INT,

Stored procedures, triggers, batches, and user defined functions

100 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 IN b INT,
 OUT c INT)
BEGIN
 IF a > b THEN
 SET c = a;
 ELSE
 SET c = b;
 END IF ;
END;

Using single-row SELECT statements
Single-row queries retrieve at most one row from the database. This type of query uses a SELECT
statement with an INTO clause. The INTO clause follows the SELECT list and precedes the FROM
clause. It contains a list of variables to receive the value for each SELECT list item. There must be the
same number of variables as there are SELECT list items.

When a SELECT statement executes, the database server retrieves the results of the SELECT statement
and places the results in the variables. If the query results contain more than one row, the database server
returns an error. For queries returning more than one row, you must use cursors.

If the query results in no rows being selected, the variables are not updated, and a warning is returned.

Example 1
This example returns the results of a single-row SELECT statement in the procedure parameters. To
return the number of orders placed by a given customer, execute the following statement:

CREATE PROCEDURE OrderCount(
 IN customer_ID INT,
 OUT Orders INT)
BEGIN
 SELECT COUNT(SalesOrders.ID)
 INTO Orders
 FROM Customers
 KEY LEFT OUTER JOIN SalesOrders
 WHERE Customers.ID = customer_ID;
END;

You can test this procedure in Interactive SQL using the following statements, which show the number of
orders placed by the customer with ID 102:

CREATE VARIABLE orders INT;
CALL OrderCount (102, orders);
SELECT orders;

Notes for Example 1

○ The customer_ID parameter is declared as an IN parameter. This parameter holds the customer ID
passed in to the procedure.

○ The Orders parameter is declared as an OUT parameter. It holds the value of the orders variable
returned to the calling environment.

○ No DECLARE statement is necessary for the Orders variable as it is declared in the procedure
argument list.

Result sets

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 101

○ The SELECT statement returns a single row and places it into the variable Orders.

Example 2
Create and run a procedure, and display its output (SQL)

1. Using Interactive SQL, connect to the SQL Anywhere sample database as a user with DBA authority.

2. In the SQL Statements pane, execute the following statement to create a procedure (AverageSalary)
that returns the average salary of employees as an OUT parameter:

CREATE PROCEDURE AverageSalary(OUT average_salary NUMERIC(20,3))
BEGIN
 SELECT AVG(Salary)
 INTO average_salary
 FROM Employees;
END;

3. Create a variable to hold the procedure output. In this case, the output variable is numeric, with three
decimal places, so create a variable as follows:

CREATE VARIABLE Average NUMERIC(20,3);

4. Call the procedure using the created variable to hold the result:

CALL AverageSalary(Average);

If the procedure was created and run properly, the Interactive SQL Messages tab does not display any
errors.

5. To inspect the value of the variable, execute the following statement:

SELECT Average;

Look at the value of the output variable Average. The Results tab in the Results pane displays the
value 49988.623 for this variable, the average employee salary.

See also
● “Information returned in result sets from procedures” on page 102
● “SQL Anywhere database connections” [SQL Anywhere Server - Database Administration]

Information returned in result sets from procedures
In addition to returning results to the calling environment in individual parameters, procedures can return
information in result sets. A result set is typically the result of a query.

The number of variables in the RESULT clause must match the number of the SELECT list items.
Automatic data type conversion is performed where possible if data types do not match.

The RESULT clause is part of the CREATE PROCEDURE statement, and does not have a statement
delimiter.

Stored procedures, triggers, batches, and user defined functions

102 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The names of the SELECT list items do not need to match those in the RESULT clause.

To modify procedure result sets on a view, the user must have the appropriate permissions on the
underlying table.

In the case that a stored procedure or user-defined function returns a result, it cannot also support output
parameters or return values.

Interactive SQL displays only the first result set by default. To allow a procedure to return more than one
row of results in Interactive SQL, set the Show Multiple Result Sets option on the Results tab of the
Options window.

Example 1
The following procedure returns a list of customers who have placed orders, together with the total value
of the orders placed.

Execute the following statement in Interactive SQL:

CREATE PROCEDURE ListCustomerValue()
RESULT ("Company" CHAR(36), "Value" INT)
BEGIN
 SELECT CompanyName,
 CAST(SUM(SalesOrderItems.Quantity *
 Products.UnitPrice)
 AS INTEGER) AS value
 FROM Customers
 INNER JOIN SalesOrders
 INNER JOIN SalesOrderItems
 INNER JOIN Products
 GROUP BY CompanyName
 ORDER BY value DESC;
END;

Executing CALL ListCustomerValue (); returns the following result set:

Company Value

The Hat Company 5016

The Igloo 3564

The Ultimate 3348

North Land Trading 3144

Molly's 2808

... ...

Example 2
The following procedure returns a result set containing the salary for each employee in a given
department. Execute the following statement in Interactive SQL:

Result sets

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 103

CREATE PROCEDURE SalaryList(IN department_id INT)
RESULT ("Employee ID" INT, Salary NUMERIC(20,3))
BEGIN
 SELECT EmployeeID, Salary
 FROM Employees
 WHERE Employees.DepartmentID = department_id;
END;

The names in the RESULT clause are matched to the results of the query and used as column headings in
the displayed results.

To list the salaries of employees in the R & D department (department ID 100), execute the following
statement:

CALL SalaryList(100);

The following result set appears in the Results pane:

Employee ID Salary

102 45700.000

105 62000.000

160 57490.000

243 72995.000

... ...

See also
● “Database object permissions” [SQL Anywhere Server - Database Administration]
● “Returning multiple result sets from procedures” on page 104

Returning multiple result sets from procedures
A procedure can return more than one result set to the calling environment.

By default, Interactive SQL does not show multiple result sets. To enable multiple result set functionality,
you can use the Options window in Interactive SQL, or you can execute a SQL statement to set the
isql_show_multiple_result_sets option. The setting takes effect immediately and remains in effect for
future sessions until disabled.

Enable multiple result set functionality (Interactive SQL)

1. Connect to the database as a user with DBA authority.

2. In Interactive SQL, click Tools » Options.

3. Click SQL Anywhere.

Stored procedures, triggers, batches, and user defined functions

104 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

4. In the Results tab, click Show All Result Sets.

5. Click OK.

Enable multiple result set functionality (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute the following statement:

SET OPTION isql_show_multiple_result_sets=On

After you enable this option, Interactive SQL shows multiple result sets.

If a RESULT clause is employed in a procedure definition, the result sets must be compatible: they must
have the same number of items in the SELECT lists, and the data types must all be of types that can be
automatically converted to the data types listed in the RESULT clause.

If the RESULT clause is omitted, a procedure can return result sets that vary in the number and type of
columns that are returned.

Example
The following procedure lists the names of all employees, customers, and contacts listed in the database:

CREATE PROCEDURE ListPeople()
RESULT (Surname CHAR(36), GivenName CHAR(36))
BEGIN
 SELECT Surname, GivenName
 FROM Employees;
 SELECT Surname, GivenName
 FROM Customers;
 SELECT Surname, GivenName
 FROM Contacts;
END;

To test this procedure and view multiple result sets in Interactive SQL, enter the following statement in
the SQL Statements pane:

SET OPTION isql_show_multiple_result_sets=On;
CALL ListPeople ();

See also
● “Variable result sets for procedures” on page 105

Variable result sets for procedures
The RESULT clause is optional in procedures. Omitting the result clause allows you to write procedures
that return different result sets, with different numbers or types of columns, depending on how they are
executed.

If you do not use the variable result sets feature, you should use a RESULT clause for performance
reasons.

Result sets

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 105

For example, the following procedure returns two columns if the input variable is Y, but only one column
otherwise:

CREATE PROCEDURE Names(IN formal char(1))
BEGIN
 IF formal = 'y' THEN
 SELECT Surname, GivenName
 FROM Employees
 ELSE
 SELECT GivenName
 FROM Employees
 END IF
END;

The use of variable result sets in procedures is subject to some limitations, depending on the interface
used by the client application.

● Embedded SQL To get the proper shape of the result set, you must DESCRIBE the procedure call
after the cursor for the result set is opened, but before any rows are returned.

When you create a procedure without a RESULT clause and the procedure returns a variable result
set, a DESCRIBE of a SELECT statement that references the procedure may fail. To prevent the
failure of the DESCRIBE, it is recommended that you include a WITH clause in the FROM clause of
the SELECT statement. Alternately, you could use the WITH VARIABLE RESULT clause in the
DESCRIBE statement. The WITH VARIABLE RESULT clause can be used to determine if the
procedure call should be described following each OPEN statement.

● ODBC Variable result set procedures can be used by ODBC applications. The SQL Anywhere
ODBC driver performs the proper description of the variable result sets.

● Open Client applications Open Client applications can use variable result set procedures. SQL
Anywhere performs the proper description of the variable result sets.

See also
● “DESCRIBE statement [ESQL]” [SQL Anywhere Server - SQL Reference]

Cursors in procedures, triggers, user-defined
functions, and batches

Cursors retrieve rows one at a time from a query or stored procedure with multiple rows in its result set. A
cursor is a handle or an identifier for the query or procedure, and for a current position within the result
set.

Cursor management
Managing a cursor is similar to managing a file in a programming language. The following steps manage
cursors:

Stored procedures, triggers, batches, and user defined functions

106 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

1. Declare a cursor for a particular SELECT statement or procedure using the DECLARE statement.

2. Open the cursor using the OPEN statement.

3. Use the FETCH statement to retrieve results one row at a time from the cursor.

4. A row not found warning signals the end of the result set.

5. Close the cursor using the CLOSE statement.

By default, cursors are automatically closed at the end of a transaction (on COMMIT or ROLLBACK
statements). Cursors opened using the WITH HOLD clause will stay open for subsequent transactions
until explicitly closed.

See also
● “Cursor positioning” [SQL Anywhere Server - Programming]

Cursors on SELECT statements
The following procedure uses a cursor on a SELECT statement. Based on the same query used in the
ListCustomerValue procedure, it illustrates several features of the stored procedure language.

CREATE PROCEDURE TopCustomerValue(
 OUT TopCompany CHAR(36),
 OUT TopValue INT)
BEGIN
 -- 1. Declare the "row not found" exception
 DECLARE err_notfound
 EXCEPTION FOR SQLSTATE '02000';
 -- 2. Declare variables to hold
 -- each company name and its value
 DECLARE ThisName CHAR(36);
 DECLARE ThisValue INT;
 -- 3. Declare the cursor ThisCompany
 -- for the query
 DECLARE ThisCompany CURSOR FOR
 SELECT CompanyName,
 CAST(sum(SalesOrderItems.Quantity *
 Products.UnitPrice) AS INTEGER)
 AS value
 FROM Customers
 INNER JOIN SalesOrders
 INNER JOIN SalesOrderItems
 INNER JOIN Products
 GROUP BY CompanyName;
 -- 4. Initialize the values of TopValue
 SET TopValue = 0;
 -- 5. Open the cursor
 OPEN ThisCompany;
 -- 6. Loop over the rows of the query
 CompanyLoop:
 LOOP
 FETCH NEXT ThisCompany
 INTO ThisName, ThisValue;
 IF SQLSTATE = err_notfound THEN
 LEAVE CompanyLoop;

Cursors in procedures, triggers, user-defined functions, and batches

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 107

 END IF;
 IF ThisValue > TopValue THEN
 SET TopCompany = ThisName;
 SET TopValue = ThisValue;
 END IF;
 END LOOP CompanyLoop;
 -- 7. Close the cursor
 CLOSE ThisCompany;
END;

Notes
The TopCustomerValue procedure has the following notable features:

● An exception is declared. This exception signals, later in the procedure, when a loop over the results of
a query completes.

● Two local variables ThisName and ThisValue are declared to hold the results from each row of the
query.

● The cursor ThisCompany is declared. The SELECT statement produces a list of company names and
the total value of the orders placed by that company.

● The value of TopValue is set to an initial value of 0, for later use in the loop.

● The ThisCompany cursor opens.

● The LOOP statement loops over each row of the query, placing each company name in turn into the
variables ThisName and ThisValue. If ThisValue is greater than the current top value, TopCompany
and TopValue are reset to ThisName and ThisValue.

● The cursor closes at the end of the procedure.

● You can also write this procedure without a loop by adding an ORDER BY value DESC clause to the
SELECT statement. Then, only the first row of the cursor needs to be fetched.

The LOOP construct in the TopCompanyValue procedure is a standard form, exiting after the last row is
processed. You can rewrite this procedure in a more compact form using a FOR loop. The FOR statement
combines several aspects of the above procedure into a single statement.

CREATE PROCEDURE TopCustomerValue2(
 OUT TopCompany CHAR(36),
 OUT TopValue INT)
BEGIN
 -- 1. Initialize the TopValue variable
 SET TopValue = 0;
 -- 2. Do the For Loop
 FOR CompanyFor AS ThisCompany
 CURSOR FOR
 SELECT CompanyName AS ThisName,
 CAST(sum(SalesOrderItems.Quantity *
 Products.UnitPrice) AS INTEGER)
 AS ThisValue
 FROM Customers
 INNER JOIN SalesOrders
 INNER JOIN SalesOrderItems
 INNER JOIN Products

Stored procedures, triggers, batches, and user defined functions

108 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 GROUP BY ThisName
 DO
 IF ThisValue > TopValue THEN
 SET TopCompany = ThisName;
 SET TopValue = ThisValue;
 END IF;
 END FOR;
END;

See also
● “Information returned in result sets from procedures” on page 102
● “Error and warning handling” on page 109
● “Row not found” [Error Messages]

Positioned updates inside procedures, triggers, user-
defined functions, batches

The following procedure uses an updatable cursor on a SELECT statement. It illustrates how to perform a
positioned update on a row using the stored procedure language.

CREATE PROCEDURE UpdateSalary(
 IN employeeIdent INT,
 IN salaryIncrease NUMERIC(10,3))
BEGIN
-- Procedure to increase (or decrease) an employee's salary
 DECLARE err_notfound
 EXCEPTION FOR SQLSTATE '02000';
 DECLARE oldSalary NUMERIC(20,3);
 DECLARE employeeCursor
 CURSOR FOR SELECT Salary from Employees
 WHERE EmployeeID = employeeIdent
 FOR UPDATE;
 OPEN employeeCursor;
 FETCH employeeCursor INTO oldSalary FOR UPDATE;
 IF SQLSTATE = err_notfound THEN
 MESSAGE 'No such employee' TO CLIENT;
 ELSE
 UPDATE Employees SET Salary = oldSalary + salaryIncrease
 WHERE CURRENT OF employeeCursor;
 END IF;
 CLOSE employeeCursor;
END;

The following statement calls the above stored procedure:

CALL UpdateSalary(105, 220.00);

Error and warning handling
After an application program executes a SQL statement, it can examine a status code. This status code (or
return code) indicates whether the statement executed successfully or failed and gives the reason for the

Error and warning handling

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 109

failure. You can use the same mechanism to indicate the success or failure of a CALL statement to a
procedure.

Error reporting uses either the SQLCODE or SQLSTATE status descriptions.

Whenever a SQL statement executes, a value appears in special procedure variables called SQLSTATE
and SQLCODE. The special value indicates whether there were any unusual conditions encountered when
the statement was executed. You can check the value of SQLSTATE or SQLCODE in an IF statement
following a SQL statement, and take actions depending on whether the statement succeeded or failed.

For example, the SQLSTATE variable can be used to indicate if a row is successfully fetched. The
TopCustomerValue procedure used the SQLSTATE test to detect that all rows of a SELECT statement
had been processed.

See also
● “Error Messages”

Default handling of errors
This section describes how SQL Anywhere handles errors that occur during a procedure execution, if you
have no error handling built in to the procedure.

For different behavior, you can use exception handlers.

Warnings are handled in a slightly different manner from errors.

There are two ways of handling errors without using explicit error handling:

● Default error handling The procedure or trigger fails and returns an error code to the calling
environment.

● ON EXCEPTION RESUME If the ON EXCEPTION RESUME clause appears in the CREATE
PROCEDURE statement, the procedure carries on executing after an error, resuming at the statement
following the one causing the error.

The precise behavior for procedures that use ON EXCEPTION RESUME is dictated by the
on_tsql_error option setting.

Default error handling
Generally, if a SQL statement in a procedure or trigger fails, the procedure or trigger stops executing and
control returns to the application program with an appropriate setting for the SQLSTATE and SQLCODE
values. This is true even if the error occurred in a procedure or trigger invoked directly or indirectly from
the first one. For triggers the operation causing the trigger is also undone and the error is returned to the
application.

The following demonstration procedures show what happens when an application calls the procedure
OuterProc, and OuterProc in turn calls the procedure InnerProc, which then encounters an error.

Stored procedures, triggers, batches, and user defined functions

110 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

CREATE PROCEDURE OuterProc()
BEGIN
 MESSAGE 'Hello from OuterProc.' TO CLIENT;
 CALL InnerProc();
 MESSAGE 'SQLSTATE set to ',
 SQLSTATE,' in OuterProc.' TO CLIENT
END;
CREATE PROCEDURE InnerProc()
 BEGIN
 DECLARE column_not_found
 EXCEPTION FOR SQLSTATE '52003';
 MESSAGE 'Hello from InnerProc.' TO CLIENT;
 SIGNAL column_not_found;
 MESSAGE 'SQLSTATE set to ',
 SQLSTATE, ' in InnerProc.' TO CLIENT;
END;
CALL OuterProc();

The Interactive SQL Messages tab displays the following:

Hello from OuterProc.
Hello from InnerProc.

The DECLARE statement in InnerProc declares a symbolic name for one of the predefined SQLSTATE
values associated with error conditions already known to the server.

The MESSAGE statement sends a message to the Interactive SQL Messages tab.

The SIGNAL statement generates an error condition from within the InnerProc procedure.

None of the statements following the SIGNAL statement in InnerProc execute: InnerProc immediately
passes control back to the calling environment, which in this case is the procedure OuterProc. None of the
statements following the CALL statement in OuterProc execute. The error condition returns to the calling
environment to be handled there. For example, Interactive SQL handles the error by displaying a message
window describing the error.

The TRACEBACK function provides a list of the statements that were executing when the error occurred.
You can use the TRACEBACK function from Interactive SQL by entering the following statement:

SELECT TRACEBACK();

See also
● “Exception handlers” on page 114
● “Default handling of warnings” on page 113
● “on_tsql_error option” [SQL Anywhere Server - Database Administration]

Error handling with ON EXCEPTION RESUME
If the ON EXCEPTION RESUME clause appears in the CREATE PROCEDURE statement, the
procedure checks the following statement when an error occurs. If the statement handles the error, then
the procedure continues executing, resuming at the statement after the one causing the error. It does not
return control to the calling environment when an error occurred.

Error and warning handling

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 111

The behavior for procedures that use ON EXCEPTION RESUME can be modified by the on_tsql_error
option setting.

Error-handling statements include the following:

● IF
● SELECT @variable =
● CASE
● LOOP
● LEAVE
● CONTINUE
● CALL
● EXECUTE
● SIGNAL
● RESIGNAL
● DECLARE
● SET VARIABLE

The following demonstration procedures show what happens when an application calls the procedure
OuterProc; and OuterProc in turn calls the procedure InnerProc, which then encounters an error. These
demonstration procedures are based on those used earlier in this section:

DROP PROCEDURE OuterProc;
DROP PROCEDURE InnerProc;
CREATE PROCEDURE OuterProc()
ON EXCEPTION RESUME
BEGIN
 DECLARE res CHAR(5);
 MESSAGE 'Hello from OuterProc.' TO CLIENT;
 CALL InnerProc();
 SET res=SQLSTATE;
 IF res='52003' THEN
 MESSAGE 'SQLSTATE set to ',
 res, ' in OuterProc.' TO CLIENT;
 END IF
END;
CREATE PROCEDURE InnerProc()
ON EXCEPTION RESUME
BEGIN
 DECLARE column_not_found
 EXCEPTION FOR SQLSTATE '52003';
 MESSAGE 'Hello from InnerProc.' TO CLIENT;
 SIGNAL column_not_found;
 MESSAGE 'SQLSTATE set to ',
 SQLSTATE, ' in InnerProc.' TO CLIENT;
END;
CALL OuterProc();

The Interactive SQL Messages tab then displays the following:

Hello from OuterProc.
Hello from InnerProc.
SQLSTATE set to 52003 in OuterProc.

The execution path taken is as follows:

Stored procedures, triggers, batches, and user defined functions

112 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

1. OuterProc executes and calls InnerProc.

2. In InnerProc, the SIGNAL statement signals an error.

3. The MESSAGE statement is not an error-handling statement, so control is passed back to OuterProc
and the message is not displayed.

4. In OuterProc, the statement following the error assigns the SQLSTATE value to the variable named
res. This is an error-handling statement, and so execution continues and the OuterProc message
appears.

See also
● “on_tsql_error option” [SQL Anywhere Server - Database Administration]

Default handling of warnings
Errors and warnings are handled differently. While the default action for errors is to set a value for the
SQLSTATE and SQLCODE variables, and return control to the calling environment in the event of an
error, the default action for warnings is to set the SQLSTATE and SQLCODE values and continue
execution of the procedure.

The following demonstration procedures illustrate default handling of warnings.

In this case, the SIGNAL statement generates a condition indicating that the row cannot be found. This is
a warning rather than an error.

DROP PROCEDURE OuterProc;
DROP PROCEDURE InnerProc;
CREATE PROCEDURE OuterProc()
BEGIN
 MESSAGE 'Hello from OuterProc.' TO CLIENT;
 CALL InnerProc();
 MESSAGE 'SQLSTATE set to ',
 SQLSTATE,' in OuterProc.' TO CLIENT;
END;
CREATE PROCEDURE InnerProc()
BEGIN
 DECLARE row_not_found
 EXCEPTION FOR SQLSTATE '02000';
 MESSAGE 'Hello from InnerProc.' TO CLIENT;
 SIGNAL row_not_found;
 MESSAGE 'SQLSTATE set to ',
 SQLSTATE, ' in InnerProc.' TO CLIENT;
END;
CALL OuterProc();

The Interactive SQL Messages tab then displays the following:

Hello from OuterProc.
Hello from InnerProc.
SQLSTATE set to 02000 in InnerProc.
SQLSTATE set to 00000 in OuterProc.

Error and warning handling

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 113

The procedures both continued executing after the warning was generated, with SQLSTATE set by the
warning (02000).

Execution of the second MESSAGE statement in InnerProc resets the warning. Successful execution of
any SQL statement resets SQLSTATE to 00000 and SQLCODE to 0. If a procedure needs to save the
error status, it must do an assignment of the value immediately after execution of the statement which
caused the error or warning.

See also
● “Default handling of errors” on page 110
● “Row not found” [Error Messages]

Exception handlers
It is often desirable to intercept certain types of errors and handle them within a procedure or trigger,
rather than pass the error back to the calling environment. This is done through the use of an exception
handler.

You define an exception handler with the EXCEPTION part of a compound statement.

Whenever an error occurs in the compound statement, the exception handler executes. Unlike errors,
warnings do not cause exception handling code to be executed. Exception handling code also executes if
an error appears in a nested compound statement or in a procedure or trigger invoked anywhere within the
compound statement.

An exception handler for the interrupt error SQL_INTERRUPT, SQLSTATE 57014 should only contain
non-interruptible statements such as ROLLBACK and ROLLBACK TO SAVEPOINT. If the exception
handler contains interruptible statements that are invoked when the connection is interrupted, the database
server stops the exception handler at the first interruptible statement and returns the interrupt error.

An exception handler can use the SQLSTATE or SQLCODE special values to determine why a statement
failed. Alternatively, the ERRORMSG function can be used without an argument to return the error
condition associated with a SQLSTATE. Only the first statement in each WHEN clause can specify this
information and the statement cannot be a compound statement.

The demonstration procedures used to illustrate exception handling are based on those used in “Default
handling of errors” on page 110.

In this example, additional code handles the error about the column that cannot be found in the InnerProc
procedure.

DROP PROCEDURE OuterProc;
DROP PROCEDURE InnerProc;
CREATE PROCEDURE OuterProc()
BEGIN
 MESSAGE 'Hello from OuterProc.' TO CLIENT;
 CALL InnerProc();
 MESSAGE 'SQLSTATE set to ',
 SQLSTATE,' in OuterProc.' TO CLIENT

Stored procedures, triggers, batches, and user defined functions

114 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

END;
CREATE PROCEDURE InnerProc()
BEGIN
 DECLARE column_not_found
 EXCEPTION FOR SQLSTATE '52003';
 MESSAGE 'Hello from InnerProc.' TO CLIENT;
 SIGNAL column_not_found;
 MESSAGE 'Line following SIGNAL.' TO CLIENT;
 EXCEPTION
 WHEN column_not_found THEN
 MESSAGE 'Column not found handling.' TO CLIENT;
 WHEN OTHERS THEN
 RESIGNAL ;
END;
CALL OuterProc();

The Interactive SQL Messages tab then displays the following:

Hello from OuterProc.
Hello from InnerProc.
Column not found handling.
SQLSTATE set to 00000 in OuterProc.

The EXCEPTION clause declares the exception handler. The lines following EXCEPTION do not
execute unless an error occurs. Each WHEN clause specifies an exception name (declared with a
DECLARE statement) and the statement or statements to be executed in the event of that exception. The
WHEN OTHERS THEN clause specifies the statement(s) to be executed when the exception that
occurred does not appear in the preceding WHEN clauses.

In the above example, the statement RESIGNAL passes the exception on to a higher-level exception
handler. RESIGNAL is the default action if WHEN OTHERS THEN is not specified in an exception
handler.

Additional notes
● The EXCEPTION handler executes, rather than the lines following the SIGNAL statement in

InnerProc.

● As the error encountered was an error about a column that cannot be found, the MESSAGE statement
included to handle the error executes, and SQLSTATE resets to zero (indicating no errors).

● After the exception handling code executes, control passes back to OuterProc, which proceeds as if no
error was encountered.

● You should not use ON EXCEPTION RESUME together with explicit exception handling. The
exception handling code is not executed if ON EXCEPTION RESUME is included.

● If the error handling code for the error is a RESIGNAL statement, control returns to the OuterProc
procedure with SQLSTATE still set at the value 52003. This is just as if there were no error handling
code in InnerProc. Since there is no error handling code in OuterProc, the procedure fails.

Exception handling and atomic compound statements
If an error occurs within an atomic compound statement and that statement has an exception handler that
handles the error, then the compound statement completes without an active exception and the changes

Error and warning handling

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 115

before the exception are not reversed. If the exception handler does not handle the error or causes another
error (including via RESIGNAL), then changes made within the atomic statement are undone.

See also
● “Compound statements” on page 98
● “Column '%1' not found” [Error Messages]
● “SQLCODE special value” [SQL Anywhere Server - SQL Reference]
● “SQLSTATE special value” [SQL Anywhere Server - SQL Reference]
● “ERRORMSG function [Miscellaneous]” [SQL Anywhere Server - SQL Reference]
● “RESIGNAL statement [SP]” [SQL Anywhere Server - SQL Reference]

Nested compound statements and exception handlers
The code following a statement that causes an error executes only if an ON EXCEPTION RESUME
clause appears in a procedure definition.

You can use nested compound statements to give you more control over which statements execute
following an error and which do not.

The following example illustrates how nested compound statements can be used to control flow.

DROP PROCEDURE OuterProc;
DROP PROCEDURE InnerProc;
CREATE PROCEDURE InnerProc()
BEGIN
 BEGIN
 DECLARE column_not_found
 EXCEPTION FOR SQLSTATE VALUE '52003';
 MESSAGE 'Hello from InnerProc' TO CLIENT;
 SIGNAL column_not_found;
 MESSAGE 'Line following SIGNAL' TO CLIENT
 EXCEPTION
 WHEN column_not_found THEN
 MESSAGE 'Column not found handling' TO
 CLIENT;
 WHEN OTHERS THEN
 RESIGNAL;
 END;
 MESSAGE 'Outer compound statement' TO CLIENT;
END;
CALL InnerProc();

The Interactive SQL Messages tab then displays the following:

Hello from InnerProc
Column not found handling
Outer compound statement

When the SIGNAL statement that causes the error is encountered, control passes to the exception handler
for the compound statement, and the Column not found handling message prints. Control then
passes back to the outer compound statement and the Outer compound statement message prints.

Stored procedures, triggers, batches, and user defined functions

116 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

If an error other than the column that cannot be found (SQLSTATE) is encountered in the inner
compound statement, the exception handler executes the RESIGNAL statement. The RESIGNAL
statement passes control directly back to the calling environment, and the remainder of the outer
compound statement is not executed.

EXECUTE IMMEDIATE used in procedures, triggers,
user-defined functions, and batches

The EXECUTE IMMEDIATE statement allows statements to be constructed using a combination of
literal strings (in quotes) and variables. For example, the following procedure includes an EXECUTE
IMMEDIATE statement that creates a table.

CREATE PROCEDURE CreateTableProcedure(
 IN tablename CHAR(128))
BEGIN
 EXECUTE IMMEDIATE 'CREATE TABLE '
 || tablename
 || '(column1 INT PRIMARY KEY)'
END;

The EXECUTE IMMEDIATE statement can be used with queries that return result sets. You use the
WITH RESULT SET ON clause with the EXECUTE IMMEDIATE statement to indicate that the
statement returns a result set—the default behavior is that the statement does not return a result set.
Specifying WITH RESULT SET ON or WITH RESULT SET OFF affects both what happens when the
procedure is created, as well as what happens when the procedure is executed.

Consider the following procedure:

CREATE OR REPLACE PROCEDURE test_result_clause()
BEGIN
 EXECUTE IMMEDIATE WITH RESULT SET OFF 'SELECT 1';
END;

While the procedure definition does not include a RESULT SET clause, the database server tries to
determine if the procedure generates one. Here, the EXECUTE IMMEDIATE statement specifies that a
result set is not generated. Consequently, the database server defines the procedure with no result set
columns, and no rows exist in the SYSPROCPARM system view for this procedure. A DESCRIBE on a
CALL to this procedure would return no result columns. If an embedded SQL application used that
information to decide whether to open a cursor or execute the statement, it would execute the statement
and then return an error.

As a second example, consider a modified version of the above procedure:

CREATE OR REPLACE PROCEDURE test_result_clause()
BEGIN
 EXECUTE IMMEDIATE WITH RESULT SET ON 'SELECT 1';
END;

Here, the WITH RESULT SET ON clause causes a row to exist for this procedure in the
SYSPROCPARM system view. The database server does not know what the result set will look like—
because the procedure is using EXECUTE IMMEDIATE—but it knows that one is expected, so the

EXECUTE IMMEDIATE used in procedures, triggers, user-defined functions, and batches

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 117

database server defines a dummy result set column in SYSPROCPARM to indicate this, with a name of
"expression" and a type of SMALLINT. Note that only one dummy result set column is created; the
server cannot determine the number and type of each result set column when an EXECUTE
IMMEDIATE statement is being used. Consequently, consider this slightly modified example:

CREATE OR REPLACE PROCEDURE test_result_clause()
BEGIN
 EXECUTE IMMEDIATE WITH RESULT SET ON 'SELECT 1, 2, 3';
END;

Here, while the SELECT returns a result set of three columns, the server still only places one row in the
SYSPROCPARM system view. Hence, this query

SELECT * FROM test_result_clause();

fails with SQLCODE -866, as the result set characteristics at run time do not match the placeholder result
in SYSPROCPARM.

To execute the query above, you can explicitly specify the names and types of the result set columns as
follows:

SELECT * FROM test_result_clause() WITH (x INTEGER, y INTEGER, z INTEGER);

At execution time, if WITH RESULT SET ON is specified, the database server handles an EXECUTE
IMMEDIATE statement that returns a result set. However, if WITH RESULT SET OFF is specified or
the clause is omitted, the database server still looks at the type of the first statement in the parsed string
argument. If that statement is a SELECT statement, it returns a result set. Hence, in the second example
above:

CREATE OR REPLACE PROCEDURE test_result_clause()
BEGIN
 EXECUTE IMMEDIATE WITH RESULT SET OFF 'SELECT 1';
END;

this procedure can be called successfully from Interactive SQL. However, if you change the procedure so
that it contains a batch, rather than a single SELECT statement:

CREATE OR REPLACE PROCEDURE test_result_clause()
BEGIN
 EXECUTE IMMEDIATE WITH RESULT SET OFF
 'begin declare v int; set v=1; select v; end';
END;

then a CALL of the test_result_clause procedure returns an error (SQLCODE -946, SQLSTATE 09W03).

This last example illustrates how you can construct a SELECT statement as an argument of an EXECUTE
IMMEDIATE statement within a procedure, and have that procedure return a result set.

CREATE PROCEDURE DynamicResult(
 IN Columns LONG VARCHAR,
 IN TableName CHAR(128),
 IN Restriction LONG VARCHAR DEFAULT NULL)
BEGIN
 DECLARE Command LONG VARCHAR;
 SET Command = 'SELECT ' || Columns || ' FROM ' || TableName;
 IF ISNULL(Restriction,'') <> '' THEN
 SET Command = Command || ' WHERE ' || Restriction;

Stored procedures, triggers, batches, and user defined functions

118 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 END IF;
 EXECUTE IMMEDIATE WITH RESULT SET ON Command;
END;

If the procedure above is called as follows:

CALL DynamicResult(
 'table_id,table_name',
 'SYSTAB',
 'table_id <= 10');

it yields the following result:

table_id table_name

1 ISYSTAB

2 ISYSTABCOL

3 ISYSIDX

... ...

The CALL above correctly returns a result set, even though the procedure utilizes EXECUTE
IMMEDIATE. Some server APIs, such as ODBC, utilize a PREPARE-DESCRIBE-EXECUTE-OR-
OPEN combined request that will either execute or open the statement depending on if it returns a result
set. Should the statement be opened, the API or application can subsequently issue a DESCRIBE
CURSOR to determine what the actual result set will look like, rather than rely on the content of the
SYSPROCPARM system view from when the procedure was created. Both DBISQL and DBISQLC use
this technique. In these cases, a CALL of the procedure above will execute without an error. However,
application interfaces that rely on the statement's DESCRIBE results will be unable to handle an arbitrary
statement.

In ATOMIC compound statements, you cannot use an EXECUTE IMMEDIATE statement that causes a
COMMIT, as COMMITs are not allowed in that context.

See also
● “EXECUTE IMMEDIATE statement [SP]” [SQL Anywhere Server - SQL Reference]
● “%1 returned a result set with a different schema than expected” [Error Messages]
● “Result set not permitted in '%1'” [Error Messages]

Transactions and savepoints in procedures,
triggers, and user-defined functions

SQL statements in a procedure or trigger are part of the current transaction. You can call several
procedures within one transaction or have several transactions in one procedure.

Transactions and savepoints in procedures, triggers, and user-defined functions

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 119

COMMIT and ROLLBACK are not allowed within any atomic statement. Note that triggers are fired due
to an INSERT, UPDATE, or DELETE which are atomic statements. COMMIT and ROLLBACK are not
allowed in a trigger or in any procedures called by a trigger.

Savepoints can be used within a procedure or trigger, but a ROLLBACK TO SAVEPOINT statement can
never refer to a savepoint before the atomic operation started. Also, all savepoints within an atomic
operation are released when the atomic operation completes.

See also
● “Transactions and isolation levels” on page 779
● “Atomic compound statements” on page 99
● “Savepoints within transactions” on page 782

Tips for writing procedures, triggers, user-defined
functions, and batches

This section provides some pointers for writing procedures, triggers, user-defined functions, batches.

Check if you need to change the SQL statement delimiter
You do not need to change the statement delimiter in Interactive SQL or Sybase Central when you write
procedures. However, if you create and test procedures and triggers from some other browsing tool, you
may need to change the statement delimiter from the semicolon to another character.

Each statement within the procedure ends with a semicolon. For some browsing applications to parse the
CREATE PROCEDURE statement itself, you need the statement delimiter to be something other than a
semicolon.

If you are using an application that requires changing the statement delimiter, a good choice is to use two
semicolons as the statement delimiter (;;) or a question mark (?) if the system does not permit a multi-
character delimiter.

Remember to delimit statements within your procedure
You should end each statement within the procedure with a semicolon. Although you can leave off
semicolons for the last statement in a statement list, it is good practice to use semicolons after each
statement.

The CREATE PROCEDURE statement itself contains both the RESULT specification and the compound
statement that forms its body. No semicolon is needed after the BEGIN or END keywords, or after the
RESULT clause.

Use fully-qualified names for tables in procedures
If a procedure has references to tables in it, you should always preface the table name with the name of
the owner (creator) of the table.

Stored procedures, triggers, batches, and user defined functions

120 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

When a procedure refers to a table, it uses the group memberships of the procedure creator to locate tables
with no explicit owner name specified. For example, if a procedure created by user_1 references Table_B
and does not specify the owner of Table_B, then either Table_B must have been created by user_1 or
user_1 must be a member of a group (directly or indirectly) that is the owner of Table_B. If neither
condition is met, a table not found message results when the procedure is called.

You can minimize the inconvenience of long fully qualified names by using a correlation name to provide
a convenient name to use for the table within a statement. For more information about correlation names,
see “FROM clause” [SQL Anywhere Server - SQL Reference].

Specifying dates and times in procedures
When dates and times are sent to the database from procedures, they are sent as strings. The date part of
the string is interpreted according to the current setting of the date_order database option. As different
connections may set this option to different values, some strings may be converted incorrectly to dates, or
the database may not be able to convert the string to a date.

You should use the unambiguous date format yyyy-mm-dd or yyyy/mm/dd when using date strings within
procedures. The server interprets these strings unambiguously as dates, regardless of the date_order
database option setting.

Verifying that procedure input arguments are passed correctly
One way to verify input arguments is to display the value of the parameter on the Interactive SQL
Messages tab using the MESSAGE statement. For example, the following procedure simply displays the
value of the input parameter var:

CREATE PROCEDURE message_test(IN var char(40))
BEGIN
 MESSAGE var TO CLIENT;
END;

You can also use the debugger to verify that procedure input arguments were passed correctly.

See also
● “command_delimiter option [Interactive SQL]” [SQL Anywhere Server - Database Administration]
● “Date and time data types” [SQL Anywhere Server - SQL Reference]
● “Lesson 2: Debugging a stored procedure” on page 849

Tips for writing procedures, triggers, user-defined functions, and batches

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 121

Statements allowed in procedures, triggers, events,
and batches

Most SQL statements are acceptable in batches, with the exception of the following:

● ALTER DATABASE (syntax 3 and 4)
● CONNECT
● CREATE DATABASE
● CREATE DECRYPTED FILE
● CREATE ENCRYPTED FILE
● DISCONNECT
● DROP CONNECTION
● DROP DATABASE
● FORWARD TO
● Interactive SQL statements such as INPUT or OUTPUT
● PREPARE TO COMMIT
● STOP SERVER

You can use COMMIT, ROLLBACK, and SAVEPOINT statements within procedures, triggers, events,
and batches with certain restrictions.

See also
● “SQL statements” [SQL Anywhere Server - SQL Reference]
● “Transactions and savepoints in procedures, triggers, and user-defined functions” on page 119

SELECT statements used in batches

You can include one or more SELECT statements in a batch. For example:

IF EXISTS(SELECT *
 FROM SYSTAB
 WHERE table_name='Employees')
THEN
 SELECT Surname AS LastName,
 GivenName AS FirstName
 FROM Employees;
 SELECT Surname, GivenName
 FROM Customers;
 SELECT Surname, GivenName
 FROM Contacts;
END IF;

The alias for the result set is necessary only in the first SELECT statement, as the server uses the first
SELECT statement in the batch to describe the result set.

A RESUME statement is necessary following each query to retrieve the next result set.

Stored procedures, triggers, batches, and user defined functions

122 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Hiding the contents of procedures, functions,
triggers, events, and views

You may want to distribute an application and a database without disclosing the logic contained within
procedures, functions, triggers, events, and views. As an added security measure, you can obscure the
contents of these objects using the SET HIDDEN clause of the ALTER PROCEDURE, ALTER
FUNCTION, ALTER TRIGGER, ALTER EVENT and ALTER VIEW statements.

The SET HIDDEN clause obfuscates the contents of the associated objects and makes them unreadable,
while still allowing the objects to be used. You can also unload and reload the objects into another
database.

The modification is irreversible, and deletes the original text of the object. Preserving the original source
for the object outside the database is required.

Note
Setting the preserve_source_format database option to On causes the database server to save the formated
source from CREATE and ALTER statements on procedures, views, triggers, and events, and put it in the
appropriate system view's source column. In this case both the object definition and the source definition
are hidden.

However, setting the preserve_source_format database option to On does not prevent the SET HIDDEN
clause from deleting the original source definition of the object.

Debugging using the debugger will not show the procedure definition, nor will procedure profiling
display the source.

Running one of the above statements on an object that is already hidden has no effect.

To hide the text for all objects of a particular type, you can use a loop similar to the following:

BEGIN
 FOR hide_lp as hide_cr cursor FOR
 SELECT proc_name, user_name
 FROM SYS.SYSPROCEDURE p, SYS.SYSUSER u
 WHERE p.creator = u.user_id
 AND p.creator NOT IN (0,1,3)
 DO
 MESSAGE 'altering ' || proc_name;
 EXECUTE IMMEDIATE 'ALTER PROCEDURE "' ||
 user_name || '"."' || proc_name
 || '" SET HIDDEN'
 END FOR
END;

Hiding the contents of procedures, functions, triggers, events, and views

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 123

See also
● “ALTER FUNCTION statement” [SQL Anywhere Server - SQL Reference]
● “ALTER PROCEDURE statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TRIGGER statement” [SQL Anywhere Server - SQL Reference]
● “ALTER VIEW statement” [SQL Anywhere Server - SQL Reference]
● “ALTER EVENT statement” [SQL Anywhere Server - SQL Reference]
● “preserve_source_format option” [SQL Anywhere Server - Database Administration]

Stored procedures, triggers, batches, and user defined functions

124 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Performance improvements, diagnostics, and
monitoring

This section describes how to improve performance, diagnose performance issues, and monitor
performance.

Performance monitoring and diagnostic tools
To improve database performance, you must determine if the existing database is performing at optimum
levels. This section provides information about using SQL Anywhere analysis tools to analyze and correct
database performance.

SQL Anywhere provides several diagnostic tools for the detection of production database performance
issues. Most of the tools rely on the diagnostic tracing infrastructure; a system of tables, files, and other
components that capture and store diagnostic data. You can use diagnostic tracing data to perform
diagnostic and monitoring tasks such as application profiling.

There are several methods for analyzing SQL Anywhere performance data including:

● The Application Profiling Wizard This wizard, available from Application profiling mode in
Sybase Central, provides a fully-automated method of checking performance. At the end of the
wizard, improvement recommendations are provided.

● The Database Tracing Wizard This wizard, available from Application Profiling mode in Sybase
Central, provides the ability to customize the type of performance data gathered. This allows you to
monitor the performance of specific users or activities.

● Request trace analysis This feature allows you to narrow diagnostic data gathering to requests
(statements) issued by specific users or connections.

● Index Consultant This feature analyzes the indexes in the database and provides
recommendations for improvement. You can access this tool through Application Profiling mode, or
as a standalone tool.

● Procedure profiling This feature allows you to determine how long it takes procedures, user-
defined functions, events, system triggers, and triggers to execute. Procedure profiling is available as a
feature in Sybase Central.

You can also use system procedures to implement procedure profiling.

● Execution plans This feature allows you to use an execution plan to access information in the
database related to a statement. You can view the execution plan in Interactive SQL or use SQL
functions. You can retrieve an execution plan in several different formats and the plan can be saved.

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 125

Note
In the documentation, the terms application profiling and diagnostic tracing are used interchangeably.
Diagnostic tracing is advanced application profiling.

Note
You can use Sybase Central to connect to a version 9 database server. However, the layout of windows in
Sybase Central reverts to the version 9 layout, which does not include Application Profiling mode. Refer
to your version 9 documentation for information about locating and using the Index Consultant in Sybase
Central.

See also
● “Application profiling” on page 126
● “Diagnostic tracing” on page 139
● “Performing request trace analysis” on page 158
● “Index Consultant” on page 134
● “Procedure profiling in Application Profiling mode” on page 128
● “Procedure profiling using system procedures” on page 163
● “Advanced: Query execution plans” on page 293

Application profiling
Application profiling generates data that you can use to understand how applications interact with the
database and to identify and eliminate performance problems. Two methods are available for generating
profiling information; an automated method, using the Application Profiling Wizard, or using the tools
and features found in Application Profiling mode of Sybase Central.

The Application Profiling Wizard is not supported on Windows Mobile; however, the Database
Tracing Wizard is. You cannot automatically create a tracing database from a Windows Mobile device,
and you cannot trace to the local database on a Windows Mobile device. You must trace from the
Windows Mobile device to a copy of the Windows Mobile database running on a database server on a
desktop computer.

● Automated application profiling Use the Application Profiling Wizard in Sybase Central to
identify common performance problems. The wizard allows you to define the types of activities to
profile and provides recommendations for improving database performance when it is complete. The
Index Consultant has also been integrated into the Application Profiling Wizard and uses the data to
recommend index improvements.

An automated approach is ideal for environments with few database connections, or where
sophisticated profiling is not required.

● Advanced application profiling using diagnostic tracing Use the Database Tracing Wizard
to customize the data returned during a tracing session and where it is stored. You can also use the
command line to return and store customized tracing data. You can control the activities profiled, and
target specific issues. For example, you can target specific statements executed by the database server,
query plans used, deadlocks, connections that block each other, and performance statistics.

Performance improvements, diagnostics, and monitoring

126 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

An advanced approach is recommended for environments in which the database has a high workload,
or where sophisticated profiling is required to diagnose a problem. By customizing the tracing session,
you can reduce the tracing scope to specific activities, and you can direct tracing data to a remotely
located database. Both of these actions reduce the workload on the database being profiled.

See also
● “Diagnostic tracing” on page 139

Using the Application Profiling Wizard

You can use the Application Profiling Wizard in Sybase Central to perform a diagnostic tracing session
for profiling applications. The wizard gathers data on how your applications are interacting with the
database and provides you access to the data and with indexing recommendations, if relevant.

Prerequisites

DBA or PROFILE authority.

Context and remarks

Note
The Application Profiling Wizard cannot be used to create a tracing session for a database running on
Windows Mobile. You must use the Database Tracing Wizard.

When you use the Application Profiling Wizard in Sybase Central, the wizard automatically creates a
tracing database with the same name you specify in the wizard for the analysis file.

For more information about the indexing recommendations returned from the Application Profiling
Wizard, see “Index Consultant recommendations” on page 136.

Use the Application Profiling Wizard

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. Click Mode » Application Profiling.

If the Application Profiling Wizard does not appear, click Application Profiling » Open
Application Profiling Wizard.

3. Follow the Application Profiling Wizard instructions. Do not click Finish as this ends profiling, and
closes the wizard.

The wizard:

● creates a local database to hold diagnostic tracing information

● starts the network server

● starts a tracing session

Performance monitoring and diagnostic tools

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 127

● prompts you to run the application you would like to profile

4. Return to the Application Profiling Wizard and click Finish.

Results

The wizard returns its results and allows you to review the data it gathered during the tracing session.

Next

None.

See also
● “Using the Application Profiling Wizard” on page 127
● “Tracing session data” on page 140
● “How to read procedure profiling results” on page 132
● “Creating a diagnostic tracing session (Sybase Central)” on page 153
● “PROFILE authority” [SQL Anywhere Server - Database Administration]

Procedure profiling in Application Profiling mode

This section explains how to use the Application Profiling mode in Sybase Central to perform procedure
profiling. It is the recommended method for accessing procedure profiling results. However, you can also
use SQL statements to perform procedure profiling.

Procedure profiling shows you how long it takes your procedures, user-defined functions, events, system
triggers, and triggers to execute. You can also view line-by-line execution times for these objects, once
they have run during profiling. Then, using the information provided in the procedure profiling results,
you can determine which objects should be fine-tuned to improve performance within your database.

Procedure profiling can also help you analyze specific database procedures (including stored procedures,
functions, events and triggers) found to be expensive via request logging. It can also help you discover
expensive hidden procedures, for example, triggers, events, and nested stored procedure calls. As well, it
can help pin-point potential problem areas within the body of a procedure.

Procedure profiling results are stored in memory by the database server. Profiling information is
cumulative, and accurate to 1 ms.

See also
● “Procedure profiling using system procedures” on page 163

Enabling procedure profiling

Enabling procedure profiling allows the database server to gather profiling information until you disable
profiling or until the database server is shut down.

Performance improvements, diagnostics, and monitoring

128 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Prerequisites

DBA or PROFILE authority.

Context and remarks

Note
All profiling information is deleted when the database server is shut down. To export profiling
information, use the sa_procedure_profile system procedure.

You cannot use SQL statements to query profiling information retained by the database server. Profiling
information is kept in in-memory database server data structures.

Enable procedure profiling (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, select the database.

3. Click Mode » Application Profiling.

If the Application Profiling Wizard does not appear, click Application Profiling » Open
Application Profiling Wizard.

4. Follow the Application Profiling Wizard instructions.

5. On the Profiling Options page, click Stored Procedure, Function, Trigger, Or Event Execution
Time.

6. Click Finish.

If you switch to another mode, a prompt appears asking whether you want to stop collecting procedure
profiling information. Click No to continue working in other modes while profiling continues.

Results

Procedure profiling is enabled and the database server collects procedure profiling information.

Next

None.

See also
● “Resetting procedure profiling” on page 130
● “Disabling procedure profiling” on page 131
● “sa_procedure_profile system procedure” [SQL Anywhere Server - SQL Reference]
● “Procedure profiling results” on page 132
● “PROFILE authority” [SQL Anywhere Server - Database Administration]

Performance monitoring and diagnostic tools

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 129

Resetting procedure profiling

Reset procedure profiling when you want to clear existing profiling information about procedures,
functions, events, and triggers.

Prerequisites

DBA or PROFILE authority.

Context and remarks

Note
Resetting does not stop procedure profiling if it is enabled, nor does it start procedure profiling if it is
disabled.

Reset procedure profiling (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, select the database.

3. Click Mode » Application Profiling. If the Application Profiling Wizard appears, click Cancel.

4. If procedure profiling is enabled: in the Application Profiling Details pane, click the database and
then click View Profiling Settings On Selected Databases.

If procedure profiling is not enabled, in the left pane, right-click the database and click Properties.

5. Click the Profiling Settings tab.

6. Click Reset Now.

7. Click OK.

Results

Procedure profiling is reset and existing profile information is cleared.

Next

None.

See also
● “Enabling procedure profiling” on page 128
● “Disabling procedure profiling” on page 131
● “Procedure profiling results” on page 132

Performance improvements, diagnostics, and monitoring

130 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Disabling procedure profiling

When you are finished capturing profiling information for procedures, triggers, and functions, you can
disable procedure profiling. When you disable procedure profiling, you also have the option to delete the
profiling information gathered so far. You may want to do this if you have already completed your
analysis work.

Prerequisites

DBA authority.

Context and remarks

If you do not choose to delete profiling data, it remains available for review in Application Profiling mode
in Sybase Central, even after procedure profiling is disabled.

Disable procedure profiling without deleting profiling information (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, select the database.

3. Click Mode » Application Profiling. If the Application Profiling Wizard appears, click Cancel.

4. In the Application Profiling Details pane, click Stop Collecting Profiling Information On Selected
Databases.

Disable procedure profiling and delete profiling information (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, select the database.

3. Click Mode » Application Profiling. If the Application Profiling Wizard appears, click Cancel.

4. In the Application Profiling Details pane, select the database and click View Profiling Settings On
Selected Databases.

5. Click the Profiling Settings tab.

6. Click Clear Now.

7. Click OK.

Results

Procedure profiling is disabled and profiling information is cleared if specified.

Next

None.

Performance monitoring and diagnostic tools

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 131

See also
● “Enabling procedure profiling” on page 128
● “Resetting procedure profiling” on page 130
● “Procedure profiling results” on page 132

Procedure profiling results

How to read procedure profiling results
The Profiling Results tab provides a summary of the profiling information for all the objects, grouped by
type, that have been executed within the database since you started procedure profiling. The information
displayed includes:

Column Description

Name The name of the object.

Owner The owner of the object.

Table or Table
Name

The table a trigger belongs to (this column only appears on the database Profile
tab).

Event The type of object, for example, a procedure.

Type The type of trigger for system triggers. This can be Update or Delete.

Execs. The number times each object has been called.

msec. The total execution time for each object.

These columns, and their content, may vary depending on the type of object.

When you double-click a specific object, such as a procedure, details specific to that object appears in the
Profiling Results tab. The information displayed includes:

Column Description

Execs The number of times the line of code in the object was executed.

Milliseconds The total amount of time that a line took to execute.

% The percent of total time that a line took to execute.

Line The line number within the object.

Source The code that was executed.

Performance improvements, diagnostics, and monitoring

132 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Lines with long execution times compared to other lines in the code should be analyzed to see whether
there is a more efficient way to achieve the same functionality. You must be connected to the database,
have profiling enabled, and have DBA authority to access procedure profiling information.

See also
● “Enabling procedure profiling” on page 128

Analyzing procedure profiling results

You can view profiling results for stored procedures, user-defined functions, triggers, system triggers, and
events in your database.

Prerequisites

DBA authority.

Context and remarks

Many.

Analyze procedure profiling results (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. Enable procedure profiling.

3. In the left pane, double-click one of the following: Triggers, System Triggers, Procedures &
Functions, or Events.

4. In the right pane, click the Profiling Results tab.

A list appears of all the objects of the selected type that have executed since you enabled procedure
profiling.

An expected object might be missing because it has not been executed. Or, it may have executed but
the results have not yet been refreshed. Press F5 to refresh the list.

If you find more objects listed than you expected, one object can call other objects, so there may be
more items listed than those that users explicitly called.

5. To view in-depth profiling results for a specific object, double-click the object on the Profiling
Results tab.

Results

The right pane details are replaced with in-depth profiling information for the object.

Performance monitoring and diagnostic tools

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 133

Next

None.

Index Consultant

You must have DBA or PROFILE authority to run the Index Consultant.

The selection of a proper set of indexes can improve database performance. The SQL Anywhere Index
Consultant helps you select indexes by providing recommendations on the best set of indexes for your
database.

You can run the Index Consultant against a single query by using Interactive SQL, or against the database
by using Application Profiling mode in Sybase Central. When analyzing a database, the Index Consultant
uses a tracing session to gather data and make recommendations. To see which indexes lead to improved
execution plans, the Index Consultant estimates query execution costs using those indexes. It also
evaluates multiple column indexes, single-column indexes, and investigates the impact of clustered or
unclustered indexes.

The Index Consultant analyzes a database or single query by generating candidate indexes and
determining their effect on performance. To explore the effect of different candidate indexes, the Index
Consultant repeatedly re-optimizes the queries under different sets of indexes. It does not execute the
queries.

See also
● “Indexes” on page 23
● “Indexes” on page 23
● “Application profiling” on page 126
● “PROFILE authority” [SQL Anywhere Server - Database Administration]
● “Application profiling” on page 126
● “Index Consultant recommendations” on page 136

Obtaining Index Consultant recommendations for a query

You can access Index Consultant recommendations for a query in Sybase Central.

Prerequisites

DBA or PROFILE authority.

Context and remarks

Many.

Performance improvements, diagnostics, and monitoring

134 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Obtain Index Consultant recommendations for a query

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. Right-click the database and click Open Interactive SQL.

3. In the SQL Statements pane, type the query.

4. Click Tools » Index Consultant and follow the instructions.

Results

The recommendations of the Index Consultant appear in the Summary pane of the Index Consultant
wizard.

Next

None.

Obtaining Index Consultant recommendations for a database

To obtain Index Consultant recommendations for an entire database, use the Application Profiling mode
in Sybase Central.

Prerequisites

DBA or PROFILE authority.

Context and remarks

The Index Consultant needs profiling data before it can make its recommendations. The following
procedure is a quick way to gather data and obtain the recommendations using data gathered by the
Application Profiling Wizard. However, if you already have application profiling data (for example, if
you profiled your database already using the Database Tracing Wizard), you can also run the Index
Consultant on the tracing database that you created.

Obtain Index Consultant recommendations for a database

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. Click Mode » Application Profiling.

3. Follow the Application Profiling Wizard instructions.

If the Application Profiling Wizard does not appear, click Application Profiling » Open
Application Profiling Wizard, and follow the wizard instructions until it completes.

4. In Sybase Central, click Application Profiling » Run Index Consultant On Tracing Database.

Performance monitoring and diagnostic tools

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 135

5. Follow the Index Consultant Wizard instructions.

Results

The recommendations of the Index Consultant are displayed.

Next

None.

Index Consultant recommendations

Before analyzing a tracing session, the Index Consultant asks you for the type of recommendations you
want:

● Recommend clustered indexes If this option is selected, the Index Consultant analyzes the
effect of clustered and unclustered indexes.

Properly selected clustered indexes can provide significant performance improvements over
unclustered indexes for some workloads, but you must reorganize the table (using the REORGANIZE
TABLE statement) for them to be effective. In addition, the analysis takes longer if the effects of
clustered indexes are considered.

● Keep existing secondary indexes The Index Consultant can perform its analysis by either
maintaining the existing set of secondary indexes in the database, or by ignoring the existing
secondary indexes. A secondary index is an index that is not a unique constraint or a primary or
foreign key. Indexes that are present to enforce referential integrity constraints are always considered
when selecting access plans.

The analysis includes the following steps:

● Generate candidate indexes For each tracing session, the Index Consultant generates a set of
candidate indexes. Creating a real index on a large table can be a time consuming operation, so the
Index Consultant creates its candidates as virtual indexes. A virtual index cannot be used to actually
execute queries, but the optimizer can use virtual indexes to estimate the cost of execution plans as if
such an index were available. Virtual indexes allow the Index Consultant to perform a "what-if"
analysis without the expense of creating and managing real indexes. Virtual indexes have a limit of
four columns.

● Testing the benefits and costs of candidate indexes The Index Consultant asks the optimizer
to estimate the cost of executing the queries in the tracing database, with and without different
combinations of candidate indexes.

● Generating recommendations The Index Consultant assembles the results of the query costs and
sorts the indexes by the total benefit they provide. It provides a SQL script, which you can run to
implement the recommendations or which you can save for your own review and analysis.

Performance improvements, diagnostics, and monitoring

136 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “Clustered indexes” on page 27

Index Consultant results

The Index Consultant provides a set of tabs with the results of a given analysis. You can save the results
of an analysis for later review.

Summary tab
The Summary tab provides an overview of the analysis, including the number of queries, the number of
recommended indexes, the number of pages required for the recommended indexes, and the benefit that
the recommended indexes are expected to yield. The benefit number is measured in internal units of cost.

Recommended Indexes tab
The Recommended Indexes tab contains data about each of the recommended indexes. The information
provided includes:

● Clustered Each table can have a single clustered index. A clustered index can sometimes provide
significantly more benefit than an unclustered index.

● Pages The estimated number of database pages required to hold the index if you choose to create
it.

● Relative Benefit A number from one to ten, indicating the estimated overall benefit of creating the
specified index. A higher number indicates a greater benefit.

The relative benefit is computed using an internal algorithm, separately from the Total Cost Benefit
column. There are several factors included in estimating the relative benefit that do not appear in the
total cost benefit. For example, it can happen that the presence of one index dramatically affects the
benefits associated with a second index. In this case, the relative benefit attempts to estimate the
separate impact of each index.

● Total Benefit The cost decrease associated with the index, summed over all operations in the
tracing session, measured in internal units of cost (the cost model).

● Update Cost Adding an index introduces cost, both in additional storage space and in extra work
required when data is modified. The Update Cost column is an estimate of the additional maintenance
cost associated with an index. It is measured in internal units of cost.

● Total Cost Benefit The total benefit minus the update cost associated with the index.

Requests tab
The Requests tab provides a breakdown of the impact of the recommendations for individual requests
within the tracing session. The information includes the estimated cost before and after applying the
recommended indexes, and the virtual indexes used by the query. A button allows you to view the best
execution plan found for the request.

Performance monitoring and diagnostic tools

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 137

Updates tab
The Updates tab provides a breakdown of the impact of the recommendations.

Unused Indexes tab
The Unused Indexes tab lists indexes that already exist in the database that were not used in the
execution of any requests in the tracing session. Only secondary indexes are listed: that is, neither indexes
on primary keys and foreign keys nor unique constraints are listed.

Log tab
The Log tab lists activities that have been completed for this analysis.

See also
● “Use an appropriate page size” on page 215
● “Implementation of Index Consultant results” on page 138
● “How the optimizer works” on page 286
● “Clustered indexes” on page 27
● “Indexes” on page 23
● “Indexes” on page 23
● “Application profiling” on page 126

Implementation of Index Consultant results

Although the Index Consultant provides a SQL script that you can run to implement its results, you may
want to assess the results before implementing them. For example, you may want to rename the proposed
index names generated during the analysis.

When assessing the results, consider the following:

● Do the proposed indexes match your expectations? If you know the data in your database
well, and you know the queries being run against the database, you may want to check the usefulness
of the proposed indexes against your own knowledge. Perhaps a proposed index only affects a single
query that is run rarely, or perhaps it is on a small table and makes relatively little overall impact.
Perhaps an index that the Index Consultant suggests should be dropped is used for some other task
that was not included in your tracing session.

● Are there strong correlations between the effects of proposed indexes? The index
recommendations attempt to evaluate the relative benefit of each index separately. However, two
indexes are of use only if both exist (a query can use both if they exist, and none if either is missing).
You can study the Requests tab and inspect the query plans to see how the proposed indexes are
being used.

● Are you able to reorganize a table when creating a clustered index? To take full advantage
of a clustered index, you should reorganize the table on which it is created using the REORGANIZE
TABLE statement. If the Index Consultant recommends many clustered indexes, you may need to
unload and reload your database to get the full benefit. Unloading and reloading tables can be a time-
consuming operation and can require large disk space resources. You may want to confirm that you
have the time and resources you need to implement the recommendations.

Performance improvements, diagnostics, and monitoring

138 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● Do the server and connection state during the analysis reflect a realistic state during
product operation? The results of the analysis depend on the state of the database server,
including which data is in the cache. They also depend on the state of the connection, including some
database option settings. As the analysis creates only virtual indexes, and does not execute requests,
the state of the database server is essentially static during the analysis (except for changes introduced
by other connections). If the state does not represent the typical operation of your database, you may
want to rerun the analysis under different conditions.

See also
● “Index Consultant recommendations” on page 136
● “SQL script files” on page 691
● “Indexes” on page 23
● “Indexes” on page 23
● “REORGANIZE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “Application profiling” on page 126

Diagnostic tracing

Diagnostic tracing is an advanced method of application profiling. The diagnostic tracing data produced
by the database server can include the time stamps and connection ids of statements handled by the
database server. For queries, diagnostic tracing data includes the isolation level, number of rows fetched,
cursor type, and query execution plan. For INSERT, UPDATE, and DELETE statements, the number of
rows affected is also included. You can also use diagnostic tracing to record information about locking
and deadlocks, and to capture numerous performance statistics.

You can use the data gathered during diagnostic tracing to perform in-depth application profiling
activities such as identifying and troubleshooting:

● specific performance problems

● statements that are unusually slow to execute

● improper option settings

● circumstances that cause the optimizer to pick a sub-optimal plan

● contention for resources (CPUs, memory, disk I/O)

● application logic problems

Tracing data is also used by tools, such as the Index Consultant, to make specific recommendations on
how to change your database or application to improve performance.

The tracing architecture is robust and scalable. It can record all the information that request logging
records as well as details to support tailored analysis.

Performance monitoring and diagnostic tools

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 139

See also
● “Application profiling” on page 126
● “Performing request trace analysis” on page 158

Tracing session data

Diagnostic tracing data is gathered during a tracing session. Three methods are available to capture
tracing session data:

● the Database Tracing Wizard in Sybase Central
● transparently, as part of the automated activities of the Application Profiling Wizard
● the ATTACH TRACING and DETACH TRACING statements

When a tracing session is in progress, SQL Anywhere generates diagnostic information for the specified
database. The amount of tracing data generated depends on the tracing settings.

The database being profiled is either referred to as the production database, the source database, or the
database being profiled. The database into which the tracing data is stored is referred to as the tracing
database. The production and tracing database can be the same database. However, to avoid increasing
the size of the production database, it is recommended that you store tracing data in a separate database.
The size of database files cannot be reduced after they have grown. Also, the production database
performs better if the overhead for storing and maintaining tracing data is performed in another database,
especially if the production database is large and heavily used.

The tables in the tracing database that hold the tracing data are referred to as the diagnostic tracing
tables. These tables are owned by dbo.

Note
The Application Profiling Wizard is not supported on Windows Mobile; however, the Database
Tracing Wizard is. As well, you must trace from the Windows Mobile device to a copy of the Windows
Mobile database running on a database server on a desktop computer. You cannot automatically create a
tracing database from a Windows Mobile device, and you cannot trace to the local database on a
Windows Mobile device.

Files created during a tracing session
The files created and used for a tracing session differ depending on whether you use the Application
Profiling Wizard, or the Database Tracing Wizard.

When you run the Application Profiling Wizard, the wizard silently captures a tracing session behind
the scenes, creating the tracing database to hold the diagnostic tables. This external database is created
using the name and location you specify in the wizard, and it has the extension .adb. The wizard also
creates an analysis log file in the same directory as the tracing database, using the same name but with the
extension .alg. This analysis log file contains the results of the analysis work done by the wizard, and can
be opened at any time in a text editor.

When you are finished with the data generated by the Application Profiling Wizard, you can delete the
tracing database and analysis log file associated with the session.

Performance improvements, diagnostics, and monitoring

140 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

When you create a tracing session using the Database Tracing Wizard, the wizard asks you to choose
whether to save tracing data internally, in the production database, or externally, in a separate database
(for example, tracingData.db). Creating an external tracing database is recommended.

Note
Tracing information is not unloaded as part of a database unload or reload operation. If you want to
transfer tracing information from one database to another, you must do so manually by copying the
contents of the sa_diagnostic_* tables; however, this is not recommended.

See also
● “Creating an external tracing database (Sybase Central)” on page 159
● “Diagnostic tracing configuration” on page 141
● “Diagnostic tracing tables” [SQL Anywhere Server - SQL Reference]

Diagnostic tracing configuration

You cannot change the preconfigured tracing settings of the Application Profiling Wizard in Sybase
Central. However, you can use the Database Tracing Wizard to configure almost all aspects of your
tracing activities. Use one of the following methods to configure diagnostic tracing settings:

● use the Database Tracing Wizard in Sybase Central. This method is recommended because it allows
you to see all the tracing settings that are in effect.

● use system procedures to change settings stored in the diagnostic tracing tables.

Tracing settings are stored in the sa_diagnostic_tracing_level system table.

The SendingTracingTo and ReceivingTracingFrom database properties identify the tracing and
production databases, respectively.

See also
● “Diagnostic tracing types” on page 145
● “sa_diagnostic_tracing_level table” [SQL Anywhere Server - SQL Reference]
● “sa_set_tracing_level system procedure” [SQL Anywhere Server - SQL Reference]
● “sa_save_trace_data system procedure” [SQL Anywhere Server - SQL Reference]
● “Accessing database property values” [SQL Anywhere Server - Database Administration]
● “Change the diagnostic tracing configuration settings” on page 151

Diagnostic tracing levels

The following is a list of diagnostic tracing levels specified in the Database Tracing Wizard.

Estimated impacts to performance reflect the assumption that tracing data is sent to a tracing database on
another database server (recommended).

Performance monitoring and diagnostic tools

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 141

● Level 0 This level keeps the tracing session running, but does not send any tracing data to the
tracing tables.

● Level 1 Performance counters and a sampling of executed statements (once every five seconds) are
gathered. For this level, the diagnostic tracing types include:

○ volatile_statistics, with sampling every 1 second

○ nonvolatile_statistics, with sampling every 60 seconds

This level has a negligible impact on performance.

● Level 2 This level gathers performance counters, a sampling of executed plans (once every five
seconds), and records all executed statements. For this level, the diagnostic tracing types include:

○ volatile_statistics, with sampling every 1 second

○ nonvolatile_statistics, with sampling every 60 seconds

○ statements

○ plans, sampling every 5 seconds

This level has a medium impact on performance—up to, but not more than, a 20% overhead.

● Level 3 This level records the same details as Level 2 but with more frequent plan samples (once
every 2 seconds) and detailed blocking and deadlock information. For this level, the diagnostic tracing
types include:

○ volatile_statistics, with sampling every 1 second

○ nonvolatile_statistics, with sampling every 60 seconds

○ statements

○ blocking

○ deadlock

○ statements_with_variables

○ plans, with sampling every 2 seconds

This level has the greatest impact on performance—greater than 20% overhead.

Customized diagnostic tracing levels

Diagnostic tracing settings are grouped into several levels, but you can also customize the settings further
within these levels. The types of information gathered at the various levels are referred to as diagnostic

Performance improvements, diagnostics, and monitoring

142 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

tracing types. Following are descriptions of the levels you can specify, and the diagnostic tracing types
they include.

Customizing diagnostic tracing settings allows you to reduce the amount of unwanted tracing data in the
diagnostic tracing session. For example, suppose that user AliceB has been complaining that her
application has been running slowly, yet the rest of the users are not experiencing the same problem. You
now want to know exactly what is going on with AliceB's queries. This means you should gather the list
of all queries and other statements that AliceB runs as part of her application, and any query plans for
long running queries. To do this, you could just set the diagnostic tracing level to 3 and generate tracing
data for a day or two. However, since this level can significantly impact performance for other users, you
should limit the tracing to just AliceB's activities. To do this, you set the diagnostic tracing level to 3, and
then customize the scope of the diagnostic tracing to be USER, and specify AliceB as the user name.
Allow the diagnostic tracing session to run for a couple of hours, and then examine the results.

The recommended method for customizing diagnostic tracing settings is using the Database Tracing
Wizard.

You can also use the sa_set_tracing_level system procedure; however, you cannot make as many
customizations using this approach.

It is recommended that you do not change diagnostic tracing settings while a tracing session is in progress
because it makes interpreting the data more difficult. However, it is possible to do so.

See also
● “Diagnostic tracing types” on page 145
● “Change the diagnostic tracing configuration settings” on page 151
● “sa_set_tracing_level system procedure” [SQL Anywhere Server - SQL Reference]
● “Changing diagnostic tracing settings during a tracing session” on page 152

Diagnostic tracing scopes

Following is the list of scopes for diagnostic tracing. Scope values can be used to limit tracing to who (or
what) is causing the activity in the database. For example, you can set the scope to trace requests coming
from a specified connection. Scope values are stored in the scope column of the
dbo.sa_diagnostic_tracing_level diagnostic table, and may have corresponding arguments, typically an
identifier such as an object name or user name, which are stored in the identifier column. The values in
the scope column reflect the settings specified in the Database Tracing Wizard.

Performance monitoring and diagnostic tools

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 143

Values in the
scope column

Description

DATABASE Records tracing data for any event occurring within the database, assuming the
event corresponds to the specified level and condition. Used for long-term back-
ground monitoring of the database, or for short-term diagnostics, when it is nec-
essary to determine the source of costly queries.

There is no identifier to specify when you specify DATABASE.

ORIGIN Records tracing data for the queries originating from either outside or inside the
database.

There are two possible identifiers you can specify when specifying the scope
ORIGIN: External or Internal. External specifies to log the statement text and as-
sociated details for queries that come from outside the database server, and that
correspond to the specified level and condition. Internal specifies to log the same
information for queries that come from within the database server, and that corre-
spond to the level and condition specified.

USER Records tracing data only for the queries issued by the specified user, and by con-
nections created by the specified user. This scope is used to diagnose problematic
queries originating from a particular user.

The identifier for this scope is the user ID of the user for whom the tracing is to
be performed.

CONNEC-
TION_NAME, or
CONNEC-
TION_NUMBER

Records tracing data only for the statements executed by the current connection.
These scopes are used when the user has multiple connections, one of which is
executing costly statements.

The identifier for this scope is the name of the connection, or the connection
number, respectively.

FUNCTION,
PROCEDURE,
EVENT, TRIG-
GER, or TABLE

Records tracing data for the statements that use the specified object. If the object
references other objects, all the data for those objects is recorded as well. For ex-
ample, if tracing is being done for a procedure that uses a function which, in turn,
triggers an event, statements for all three objects are logged, providing they corre-
spond to the specified level and condition provided for logging. Used when use of
a specific object is costly, or when the statements that reference the object take an
unusually long time to finish.

The TABLE scope is used for tables, materialized views, and non-materialized
views.

The identifier for this scope is the fully qualified name of the object.

Performance improvements, diagnostics, and monitoring

144 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “Diagnostic tracing types” on page 145
● “Diagnostic tracing conditions” on page 149

Diagnostic tracing types

The following table lists the tracing types you can choose for diagnostic tracing. Each diagnostic tracing
type requires a corresponding condition, as noted below, and is stored in the trace_type column of the
dbo.sa_diagnostic_tracing_level diagnostic table, and may have corresponding diagnostic tracing
conditions, which are stored in the trace_condition column.

The values in trace_type column reflect the settings specified in the Database Tracing Wizard.

Value in the trace_type column Description

VOLATILE_STATISTICS Collects a sample of frequently changing data-
base and server statistics.

Scopes and conditions: This diagnostic tracing
type requires the DATABASE scope, and uses
the SAMPLE_EVERY condition as the interval
at which to collect the data.

NONVOLATILE_STATISTICS Collects a sample of database and server statistics
that do not change frequently. Non-volatile statis-
tics cannot be collected more frequently then vol-
atile statistics. Volatile statistics must be collec-
ted in order for non-volatile statistics to be collec-
ted, and the time difference between the sampling
for non-volatile statistics should be a multiple of
the time difference specified for the volatile sta-
tistics.

Scopes and conditions: This diagnostic tracing
type requires the DATABASE scope, and uses
the SAMPLE_EVERY condition as the interval
at which to collect the data.

Performance monitoring and diagnostic tools

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 145

Value in the trace_type column Description

CONNECTION_STATISTICS Collects a sample of connection statistics. If the
scope is database, statistics for all connections to
the database are collected. If the scope is user,
statistics for all connections for the specified user
are collected. If the scope is CONNEC-
TION_NAME or CONNECTION_NUMBER,
only statistics for the specified connection are
collected. Volatile statistics have to be collected
in order for CONNECTION_STATISTICS to be
collected, and the time interval between sampling
should be a multiple of that specified for the
VOLATILE_STATISTICS.

Scopes and conditions: This diagnostic tracing
type can be used with the DATABASE, USER,
CONNECTION_NUMBER, and CONNEC-
TION_NAME scopes, and uses the SAM-
PLE_EVERY condition as the interval at which
to collect the data.

BLOCKING Collects information about blocks according to
the specified scope and condition. If the scope is
CONNECTION_NAME or CONNEC-
TION_NUMBER, then the block may be recor-
ded when the connection blocks another connec-
tion, or is blocked by another connection.

Scopes and conditions: This diagnostic tracing
type can be used with all the scopes, and can use
any one of the following conditions for collec-
tion: NONE, NULL, SAMPLE_EVERY.

PLANS Collects execution plans for queries, depending
on the condition and scope.

Scopes and conditions: This diagnostic tracing
type can be used with all the scopes, and can use
any one of the following conditions for collec-
tion: NONE, NULL, SAMPLE_EVERY, and
ABSOLUTE_COST.

Performance improvements, diagnostics, and monitoring

146 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Value in the trace_type column Description

PLANS_WITH_STATISTICS Collects plans with execution statistics. Plans are
recorded at cursor close time. If the RELA-
TIVE_COST_DIFFERENCE condition is speci-
fied, part of the statistics in the output might be
best-guess statistics.

Scopes and conditions: This diagnostic tracing
type can be used with all the scopes, and accepts
any one of the conditions for collection.

STATEMENTS Collects SQL statements for the specified scope
and condition. Internal variables are collected the
first time each procedure is executed. This diag-
nostic tracing type is automatically included if
the STATEMENTS_WITH_VARIABLES,
PLANS, PLANS_WITH_STATISTICS, OPTI-
MIZATION_LOGGING, or OPTIMIZA-
TION_LOGGING_WITH_PLANS diagnostic
tracing type is specified.

Scopes and conditions: This diagnostic tracing
type can be used with all the scopes, and can use
any one of the conditions for collection.

STATEMENTS_WITH_VARIABLES Collects SQL statements and the variables attach-
ed to the statements. For each variable, either in-
ternal or host, all the values that were assigned
are collected as well.

Scopes and conditions: This diagnostic tracing
type can be used with all the scopes, and can use
any one of the conditions for collection.

Performance monitoring and diagnostic tools

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 147

Value in the trace_type column Description

OPTIMIZATION_LOGGING Collects data about join strategies considered by
the optimizer for execution of each query. Infor-
mation about cost of execution of each strategy,
and the basic information necessary to recon-
struct the tree for the structure, is collected. Infor-
mation about rewrites applied to the query is also
collected. If a scope other than DATABASE,
CONNECTION_NAME, CONNEC-
TION_NUMBER, ORIGIN, or USER is used,
the first recorded statement text might be differ-
ent than the initial text of the query since some
rewrites can be applied before it can be deter-
mined that optimization logging should be ap-
plied to the current statement. This diagnostic
tracing type is automatically added whenever the
OPTIMIZATION_LOGGING_WITH_PLANS
tracing type is specified.

This diagnostic tracing type corresponds to all the
scopes, and does not take a condition.

OPTIMIZATION_LOGGING_WITH_PLANS Collects data about join strategies considered by
the optimizer. Information about the cost of exe-
cution for each strategy, and the complete XML
plan describing the join strategy tree structure, is
collected. Information about rewrites applied to
the query is also collected. If a scope other than
DATABASE, CONNECTION_NAME, CON-
NECTION_NUMBER, ORIGIN, or USER is
used, the first recorded statement text might be
different than the initial text of the query since
some rewrites can be applied before it can be de-
termined that optimization logging should be ap-
plied to the current statement. The OPTIMIZA-
TION_LOGGING tracing type is automatically
added whenever the OPTIMIZATION_LOG-
GING_WITH_PLANS tracing type is specified.

This diagnostic tracing type corresponds to all the
scopes, and does not take a condition.

See also
● “Diagnostic tracing scopes” on page 143
● “Diagnostic tracing conditions” on page 149

Performance improvements, diagnostics, and monitoring

148 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Diagnostic tracing conditions

The following table lists the diagnostic tracing conditions you can set. Conditions control the criteria that
must be met in order for a tracing entry to be made for a specific diagnostic tracing type. Most conditions
require a value, as noted below. Conditions are stored in the trace_condition column of the
dbo.sa_diagnostic_tracing_level diagnostic table, and may have a corresponding value, such as an amount
of time in milliseconds, stored in the value column. The values in the condition column reflect the settings
specified in the Database Tracing Wizard.

Value in the
trace_condition column

Description

NONE, or NULL Records all the tracing data that satisfies the level and scope requirements.
Using expensive diagnostic tracing levels (plans, for example) with this
condition for extended time periods is not recommended.

SAMPLE_EVERY Records tracing data that satisfies the level and scope requirements if more
than the specified time interval has elapsed since the last event was recor-
ded.

Values: This condition takes a positive integer, reflecting time in millisec-
onds.

ABSOLUTE_COST Records the statements with cost of execution greater than, or equal to, the
specified value.

Values: This condition takes a cost value, specified in milliseconds.

RELA-
TIVE_COST_DIFFER-
ENCE

Records the statements for which the difference between the expected time
for execution and the real time for execution is greater than or equal to the
specified value.

Values: This condition takes a cost value specified as a percentage. For ex-
ample, to log statements that are at least twice as slow as estimated, specify
a value of 200.

See also
● “Diagnostic tracing scopes” on page 143
● “Diagnostic tracing types” on page 145

Determining current diagnostic tracing settings (Sybase Central)

Use the Database Tracing Wizard in Sybase Central to view current diagnostic tracing settings.

Prerequisites

DBA or PROFILE authority.

Performance monitoring and diagnostic tools

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 149

Context and remarks

You can retrieve diagnostic tracing settings regardless of whether a tracing session is in progress.

Determine the current diagnostic tracing settings

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. Click Mode » Application Profiling. If the Application Profiling Wizard appears, click Cancel.

3. In the left pane, right-click the database and click Tracing and follow the instructions in the Database
Tracing Wizard.

Results

The settings currently specified for diagnostic tracing are displayed on the Edit Tracing Levels list.

Next

None.

See also
● “sa_diagnostic_tracing_level table” [SQL Anywhere Server - SQL Reference]
● “PROFILE authority” [SQL Anywhere Server - Database Administration]

Determining current diagnostic tracing settings (SQL)
You can retrieve the diagnostic tracing settings in effect by querying the sa_diagnostic_tracing_level
table.

Prerequisites

DBA or PROFILE authority.

Context and remarks

Many.

Determine the current diagnostic tracing settings

1. Connect to the database.

2. Query the sa_diagnostic_tracing_level table for rows in which the enabled column contains a 1.

Results

The database server returns the diagnostic tracing settings currently in use. A 1 in the enabled column
indicates that the setting is in effect.

Performance improvements, diagnostics, and monitoring

150 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Next

None.

Example

The following statement shows you how to query the sa_diagnostic_tracing_level diagnostic table to
retrieve the current diagnostic tracing settings:

SELECT * FROM sa_diagnostic_tracing_level WHERE enabled = 1;

The following table is an example result set from the query:

id scope identifier trace_type trace_condition value enabled

1 database (NULL) volatile_statistics sample_every 1,000 1

2 database (NULL) nonvolatile_statistics sample_every 60.000 1

3 database (NULL) connection_statistics (NULL) 60,000 1

4 database (NULL) blocking (NULL) (NULL) 1

5 database (NULL) deadlock (NULL) (NULL) 1

6 database (NULL) plans_with_statistics sample_every 2,000 1

See also
● “sa_diagnostic_tracing_level table” [SQL Anywhere Server - SQL Reference]
● “PROFILE authority” [SQL Anywhere Server - Database Administration]

Change the diagnostic tracing configuration settings

Diagnostic tracing settings are specific to a production database. You can use the Database Tracing
Wizard in Sybase Central to change diagnostic tracing settings when creating a tracing session.

Diagnostic tracing settings configured in the Database Tracing Wizard do not affect settings or behavior
for the Application Profiling Wizard. The settings for the Application Profiling Wizard are
preconfigured and cannot be changed.

You can also use the sa_set_tracing_level system procedure to change the diagnostic tracing level. This
does not start a tracing session and fails if a tracing session is already in progress. Also, it does not allow
you as much control over other settings such as scopes, conditions, values, and so on, as Sybase Central
does.

Example
The following statement uses the sa_set_tracing_level system procedure to set the diagnostic tracing level
to 1:

Performance monitoring and diagnostic tools

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 151

CALL sa_set_tracing_level(1);

Existing settings are overwritten with the default settings associated with diagnostic tracing level 1.

See also
● “sa_set_tracing_level system procedure” [SQL Anywhere Server - SQL Reference]
● “Diagnostic tracing levels” on page 141
● “Creating a diagnostic tracing session (Sybase Central)” on page 153

Changing diagnostic tracing settings during a tracing session

In Sybase Central, you can add new tracing levels or delete existing tracing levels while a tracing session
is in progress.

Prerequisites

DBA or PROFILE authority.

Context and remarks

Note
It is recommended that you do not change diagnostic tracing settings while a tracing session is in progress
because it makes interpreting the data more difficult. However, it is possible to do so.

Change diagnostic tracing settings during a tracing session

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, right-click the database and click Tracing » Change Tracing Levels.

3. Add new, or delete existing, tracing levels.

4. Click OK.

Results

The tracing settings are altered.

Next

None.

See also
● “Customized diagnostic tracing levels” on page 142

Performance improvements, diagnostics, and monitoring

152 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Creating a diagnostic tracing session (Sybase Central)

In Sybase Central, you can create a diagnostic tracing session to gather tracing data from your database.

Prerequisites

DBA or PROFILE authority.

To start a tracing session, TCP/IP must be running on the database server(s) on which the tracing database
and production database are running.

Context and remarks

When you start a diagnostic tracing session, you also configure the type of tracing you want to perform,
and specify where you want the tracing data to be stored. Your tracing session continues until you
explicitly request that it stops.

Create a diagnostic tracing session

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. Right-click the database and click Tracing.

3. Click Next.

4. On the Tracing Detail Level page, select the level of tracing.

5. On the Edit Tracing Levels page, customize the diagnostic tracing settings.

6. On the Create External Database page:

● Click Create A New Tracing Database.

● Select a location to save the database.

● Complete the User Name and Password fields.

● Click Start Database On The Current Server.

● Click Create Database.

7. On the Start Tracing page:

● Click Save Tracing Data In An External Database.

● Complete the User Name and Password fields. Specify the user name and password used to
connect to the production database.

● In the Other Connection Parameters field, type the database server and database name in the form
of a partial connection string. For example, Server=Server47;DBN=TracingDB

Note
Only DBN, DBF, Server, DBKEY, HOST, and LINKS (CommLinks) are supported in the
connection string for an external database.

Performance monitoring and diagnostic tools

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 153

● In the Do You Want To Limit The Volume Of Trace Data That Is Stored list, select an option.

8. Click Finish.

9. When you are done gathering diagnostic tracing data, right-click the database and click Tracing »
Stop Tracing With Save.

Results

The diagnostic tracing session has started and completed and the data is saved.

Next

None.

See also
● “Application profiling” on page 126
● “TCP/IP protocol” [SQL Anywhere Server - Database Administration]
● “ATTACH TRACING statement” [SQL Anywhere Server - SQL Reference]
● “DETACH TRACING statement” [SQL Anywhere Server - SQL Reference]
● “sa_set_tracing_level system procedure” [SQL Anywhere Server - SQL Reference]
● “PROFILE authority” [SQL Anywhere Server - Database Administration]

Creating a diagnostic tracing session (SQL)
You can start a tracing session by executing the ATTACH TRACING statement in Interactive SQL.

Prerequisites

DBA or PROFILE authority.

Context and remarks

Note
Starting a tracing session is also referred to as attaching tracing. Likewise, stopping a tracing session is
referred to as detaching tracing. The SQL statements for starting and stopping tracing are, respectively,
ATTACH TRACING and DETACH TRACING.

Create a diagnostic tracing session

1. Connect to the database.

2. Use the sa_set_tracing_level system procedure to set the tracing levels.

3. Start tracing by executing an ATTACH TRACING statement.

4. Stop tracing by executing a DETACH TRACING statement.

Performance improvements, diagnostics, and monitoring

154 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Results

The tracing session is created and completed.

Next

The diagnostic tracing data can be viewed in Application Profiling mode in Sybase Central.

Example

This example shows how to start diagnostic tracing on the current database, store the tracing data in a
separate database, and set a two hour limit on the amount of data to store. This example is all on one line:

ATTACH TRACING TO
'UID=DBA;PWD=sql;Server=server47;DBN=tracing;Host=myhost' LIMIT HISTORY 2
HOURS;

This example shows how to start diagnostic tracing on the current database, store the tracing data in the
local database, and set a two megabyte limit on the amount of data to store:

ATTACH TRACING TO LOCAL DATABASE LIMIT SIZE 2 MB;

This example shows how to stop diagnostic tracing and save the diagnostic data that was captured during
the tracing session:

DETACH TRACING WITH SAVE;

This example shows how to stop diagnostic tracing and not save the diagnostic data.

DETACH TRACING WITHOUT SAVE;

See also
● “Application profiling” on page 126
● “TCP/IP protocol” [SQL Anywhere Server - Database Administration]
● “ATTACH TRACING statement” [SQL Anywhere Server - SQL Reference]
● “DETACH TRACING statement” [SQL Anywhere Server - SQL Reference]
● “sa_set_tracing_level system procedure” [SQL Anywhere Server - SQL Reference]
● “PROFILE authority” [SQL Anywhere Server - Database Administration]

Analysis of diagnostic tracing information

Diagnostic tracing data provides a record of all activities that took place on the database server and that
correspond to the diagnostic tracing levels and the tracing session settings. When reviewing the data, you
must consider the settings that were in place. For example, the absence of a statement that you expected to
see in a tracing session might indicate that the statement never ran, but it might also indicate that the
statement was not expensive enough to fulfill a condition that only expensive statements be traced.

There are many reasons why you may want to examine in detail what activities the database server is
performing. These include troubleshooting performance problems, estimating resource usage to plan for
future workloads, and debugging application logic.

Performance monitoring and diagnostic tools

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 155

See also
● “Application profiling tutorials” on page 226

Troubleshooting performance problems

Use the application profiling feature to determine whether performance problems are caused by:

● long application processing times

● poor query plans

● contention for shared hardware resources such as CPU or disk I/O

● contention for database objects

● suboptimal database design

When troubleshooting poor database performance, the first task is to determine whether the application or
the database server is the primary cause. To determine how much processing time a client application is
consuming, use the Details tab in the application profiling tool and filter the results by a single
connection. If there are time differences between different requests from that connection, then the primary
delay is within the application client.

If the database server is affecting performance, you will need to identify the specific cause.

See also
● “Application profiling tutorials” on page 226

Detecting when hardware resources are a limiting factor

As larger and larger workloads are placed on a database, performance is typically limited by CPU cycles,
memory space, or disk I/O bandwidth. An inefficient application or database server could be the cause. If
you cannot detect any inefficiencies, you may need to add additional hardware resources.

Adding resources may not resolve scalability problems or improve computer performance. For example,
if a database server is fully using all of its allotted CPUs, it may indicate that you should assign more
CPU resources. However, doubling the number of CPUs available to the database server may not double
the amount of work the database server can perform.

Use the Statistics tab in the Application Profiling Details area to detect whether hardware resources are
a limiting factor for performance.

● Detecting whether CPU is a limiting factor To detect whether CPU as a limiting factor, check
the ProcessCPU statistic. If this statistic is not present on the graph, click the Add Statistics button
and click ProcessCPU. If the graph shows ProcessCPU increasing at a rate of nearly 1 point per
second per CPU assigned to the database server, then the CPU is a limiting factor. For example, for a

Performance improvements, diagnostics, and monitoring

156 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

database server running on two CPUs, if the Process CPU counter increased from 2220 to 2237 in ten
seconds, this indicates that CPU usage over that twelve second period was (2237-2220) / 10s * 100 %
= 170%, meaning that each CPU is running at 170% / 2 = 85% of its capacity.

● Detecting whether memory is a limiting factor To detect whether memory (buffer pool size) is
a limiting factor, check the CacheHits and CacheReads database statistics. If these statistics are not
present on the graph, click the Add Statistics button and click CacheHits And CacheReads. If
CacheHits is less than 10% of CacheReads, this indicates that the buffer pool is too small. If the ratio
is in the range of 10-70%, this may indicate that the buffer pool is too small—you should try
increasing the cache size for the database server. If the ratio is above 70%, the cache size is likely
adequate. Note that this strategy only applies while the database server is running at a steady-state—
that is, it is servicing a typical workload and has not just been started.

● Detecting whether I/O bandwidth is a limiting factor To detect whether I/O bandwidth is a
limiting factor, check the CurrIO database statistic. If this statistic is not present on the graph, click the
Add Statistics button and click CurrIO. Look for the largest sustained number for this statistic. For
example, look for a high plateau on the graph; the wider it is, the more significant the impact. If the
graph has sustained values equal to, or greater than 3 + the number of physical disks used by database
server, it may indicate that the disk system cannot keep up with the level of database server activity.

See also
● “Performance Monitor statistics” on page 173
● “Application profiling tutorials” on page 226
● “Troubleshooting performance problems” on page 156

Tools for debugging application logic

If you have errors in your application code or in stored procedures, triggers, functions, or events, it can be
useful to examine all statements executed by the database server that relate to the incorrect code. For
applications that dynamically generate SQL, you can examine the actual text seen by the database server
to detect errors in how the SQL text is built by the application. Such errors may cause queries to fail to be
executed, or may return different results than the query was intended to return. For example, during
development, your application may occasionally report that a SQL syntax error was encountered, but your
application may not be instrumented to report the SQL text of the query that failed. If you have a trace
taken when the application was run, you can search for statements that returned syntax (or other) errors,
and see the exact text that was generated by your application.

For internal database objects such as procedures and triggers, you can use the debugger in Sybase Central.
However, there may be times when it is more effective to cause the database server to trace all statements
executed by a given procedure, and then examine these statements using the application profiling tool. For
example, a given stored procedure may be returning an incorrect result once out of every 1000
invocations, but you may not understand under what conditions it fails. Rather than step through the
procedure code 1000 times in the debugger, you could turn on diagnostic tracing for that procedure and
run your application. Then, you could examine the set of statements that the database server executed,
locate the set of statements that correspond to the incorrect execution of the procedure, and determine
either why the procedure failed, or the conditions under which it behaves unexpectedly. If you know

Performance monitoring and diagnostic tools

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 157

under what conditions the procedure behaves unexpectedly, you can set a breakpoint in the procedure and
investigate further with the debugger.

See also
● “The SQL Anywhere debugger” on page 847

Performing request trace analysis

When you have a specific application or request that is problematic, you can perform a request trace
analysis to determine the problem. Request trace analysis configures the Database Tracing Wizard to
narrow diagnostic data gathering to only the user, connection, or request that is experiencing the problem.

Prerequisites

DBA or PROFILE authority.

Context and remarks

Using the various data viewing tools in Application Profiling mode, you can identify any potential
conflicts or bottlenecks.

Perform a request trace analysis (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. Click Mode » Application Profiling. If the Application Profiling Wizard appears, click Cancel.

3. Right-click the database and click Tracing or click Tracing » Configure And Start Tracing.

4. Follow the instructions in the Database Tracing Wizard.

5. When you are done gathering tracing data, right-click the database and click Tracing » Stop Tracing
With Save.

6. In the Application Profiling Details pane, click Open An Analysis File Or Connect To A Tracing
Database.

7. Click In A Tracing Database, and click Open.

8. Complete the User Name and Password fields and click OK.

9. In the Application Profiling Details pane, click the last entry in the Logging Session ID list.

10. Click Database Tracing Data tab at the bottom of the Application Profiling Details pane.

Results

You can select from several tabs that provide you with different views of the data gathered for your
analysis. For example, the Summary tab allows you to see all requests executed against the database

Performance improvements, diagnostics, and monitoring

158 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

during the tracing session, including how many times each request was executed, execution duration
times, the user who executed the request, and so on. If the list is long and you are looking for a specific
request, click the Filtering title bar on the Summary tab and enter a string in the SQL Statements
Containing field.

Next

To view more details about a specific request, right-click the request and click Show The Detailed SQL
Statements For The Selected Summary Statement. The Details tab opens. Right-click the row
containing the request, and additional choices for information are provided, including viewing additional
SQL statement, connection, and blocking details.

Creating an external tracing database (Sybase Central)

When you create a tracing session, you have the option of storing tracing data within the database being
profiled. This is suitable for development environments where you are testing applications, or if there are
few connections to the database.

Prerequisites

DBA or PROFILE authority.

Context and remarks

Note
If your database typically handles 10 or more connections at any given time, it is recommended that you
store tracing data in an external tracing database to reduce the impact on performance.

You can use the tracing database to store data for subsequent tracing sessions.

Create an external tracing database

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. Click Mode » Application Profiling. If the Application Profiling Wizard appears, click Cancel.

3. In the left pane, right-click the database and click Tracing.

4. On the Create External Database page in the Database Tracing Wizard, click Create a new
tracing database and follow the instructions.

Results

An external database to store analysis data is created and a tracing connection is established.

Next

None.

Performance monitoring and diagnostic tools

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 159

See also
● “Creating a diagnostic tracing session (Sybase Central)” on page 153
● “Unload utility (dbunload)” [SQL Anywhere Server - Database Administration]
● “PROFILE authority” [SQL Anywhere Server - Database Administration]

Creating an external tracing database (command line)
Use the Unload utility (dbunload) to manually create a tracing database without a tracing session.

Prerequisites

DBA or PROFILE authority.

Context and remarks

Many.

Create an external tracing database using the Unload utility (dbunload)

1. Connect to the database.

2. Run a dbunload command to unload the schema from the production database into the new tracing
database:

For example:

dbunload -c "UID=DBA;PWD=sql;Server=demo;DBN=demo" -an tracing.db -n -k -
kd

This example creates a new database with the name supplied by the -an option (tracing.db). The -n
option unloads the schema from the database being profiled (in this case, the SQL Anywhere sample
database, demo.db) into the new tracing database. The -k option populates the tracing database with
information that the application profiling tool uses to analyze the tracing data. The -kd option places
all the dbspaces in a single dbspace file.

3. If you want to store the tracing database on a separate computer, copy it to the new location.

Results

An external database to store analysis data is created and a tracing session is not created.

Next

None.

See also
● “Creating a diagnostic tracing session (Sybase Central)” on page 153
● “Unload utility (dbunload)” [SQL Anywhere Server - Database Administration]
● “PROFILE authority” [SQL Anywhere Server - Database Administration]

Performance improvements, diagnostics, and monitoring

160 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Use other diagnostic tools and techniques
In addition to application profiling and diagnostic tracing, a variety of other diagnostic tools and
techniques are available to help you analyze and monitor the current performance of your SQL Anywhere
database.

Request logging

Request logging logs individual requests received from, and responses sent to, an application. It is most
useful for determining what the database server is being asked to do by the application.

Request logging is also a good starting point for performance analysis of a specific application when it is
not obvious whether the database server or the client is at fault. You can use request logging to determine
the specific request to the database server that might be responsible for problems.

Note
All the functionality and data provided by the request logging feature is also available using diagnostic
tracing. Diagnostic tracing also offers additional features and data.

Logged information includes such things as timestamps, connection IDs, and request type. For queries, it
also includes the isolation level, number of rows fetched, and cursor type. For INSERT, UPDATE, and
DELETE statements, it also includes the number of rows affected and number of triggers fired.

Caution
The request log can contain sensitive information because it contains the full text of SQL statements that
contain passwords, such as the GRANT CONNECT, CREATE DATABASE, and CREATE EXTERNAL
LOGIN statements. If you are concerned about security, you should restrict access to the request log file.

You can use the -zr server option to turn on request logging when you start the database server. You can
redirect the output to a request log file for further analysis using the -zo server option. The -zn and -zs
option let you specify the number of request log files that are saved and the maximum size of request log
files.

For more information about these options, see:

● “-zr dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “-zo dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “-zn dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “-zs dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]

Note
These server options do not impact diagnostic tracing in Sybase Central. File-based request logging is
completely separate from the diagnostic tracing feature in Sybase Central, which makes use of dbo-owned
diagnostic tables in the database to store request log information.

The sa_get_request_times system procedure reads a request log and populates a global temporary table
(satmp_request_time) with statements from the log and their execution times. For INSERT/UPDATE/

Performance monitoring and diagnostic tools

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 161

DELETE statements, the time recorded is the time when the statements were executed. For queries, the
time recorded is the total elapsed time from PREPARE to DROP (describe/open/fetch/close). That means
you need to be aware of any open cursors.

Analyze satmp_request_time for statements that could be candidates for improvements. Statements that
are inexpensive, but frequently executed, may represent performance problems.

You can use sa_get_request_profile to call sa_get_request_times and summarize satmp_request_time into
another global temporary table called satmp_request_profile. This procedure also groups statements
together and provides the number of calls, execution times, and so on.

Caution
If the log is being analyzed using the tracetime.pl Perl script, the max_client_statements_cached option
should be set to 0 to disable client statement caching while the request log is captured.

See also
● “Diagnostic tracing” on page 139
● “sa_get_request_times system procedure” [SQL Anywhere Server - SQL Reference]
● “sa_get_request_profile system procedure” [SQL Anywhere Server - SQL Reference]
● “max_client_statements_cached option” [SQL Anywhere Server - Database Administration]
● “sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]

Examples
Output to the request log can be filtered to include only requests from a specific connection or from a
specific database, using the sa_server_option system procedure. This can help reduce the size of the log
when monitoring a database server with many active connections or multiple databases.

● Filter according to a connection Use the following syntax:

CALL sa_server_option('RequestFilterConn' , connection-id);

You can obtain connection-id by executing CALL sa_conn_info().

● Filter according to a database Use the following syntax:

CALL sa_server_option('RequestFilterDB' , database-id);

The database-id can be obtained by executing SELECT
CONNECTION_PROPERTY('DBNumber') when connected to that database. Filtering remains
in effect until explicitly reset, or until the database server is shut down.

● Reset filtering Use either of the following two statements to reset filtering either by connection or
by database:

CALL sa_server_option('RequestFilterConn' , -1);
CALL sa_server_option('RequestFilterDB' , -1);

● Output host variables to request logs To include host variable values in the request log:

○ use the -zr server option with a value of hostvars

Performance improvements, diagnostics, and monitoring

162 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

○ execute the following:

CALL sa_server_option('RequestLogging' , 'hostvars');

The request log analysis procedure, sa_get_request_times, recognizes host variables in the log and
adds them to the global temporary table satmp_request_hostvar.

Procedure profiling using system procedures

Procedure profiling provides valuable information about the usage of stored procedures, user-defined
functions, events, system triggers, and triggers by all connections. You can perform procedure profiling in
either Sybase Central, or Interactive SQL using system procedure calls. Sybase Central offers much
greater features and flexibility to help you perform procedure profiling. For this reason, it is
recommended that you perform procedure profiling using the procedure profiling features found in the
Application Profiling mode of Sybase Central.

See also
● “Procedure profiling in Application Profiling mode” on page 128

Enabling procedure profiling (SQL)

You can enable procedure profiling in Interactive SQL using the sa_server_option system procedure.

Prerequisites

DBA or PROFILE authority.

Context and remarks

Many.

Enable procedure profiling

1. Connect to the database.

2. Call the sa_server_option system procedure, setting the ProcedureProfiling option to ON.

For example, enter:

CALL sa_server_option('ProcedureProfiling' , 'ON');

Results

Procedure profiling is enabled.

Next

None.

Performance monitoring and diagnostic tools

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 163

See also
● “sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]

Filtering procedure profiling by user (SQL)

If necessary, you can see what procedures a specific user is using, without preventing other connections
from using the database. This is useful if the connection already exists, or if multiple users connect with
the same user ID.

Prerequisites

DBA or PROFILE authority.

Context and remarks

Many.

Filter procedure profiling by user

1. Connect to the database.

2. Call the sa_server_option system procedure as follows:

CALL sa_server_option('ProfileFilterUser' , 'userid');

Results

The value of userid is that of the user being monitored.

Next

None.

See also
● “sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]

Resetting procedure profiling (SQL)

When you reset profiling, the database clears the old information and immediately starts collecting new
information about procedures, functions, events, and triggers. You can reset procedure profiling from
Interactive SQL using the sa_server_option system procedure.

Prerequisites

DBA or PROFILE authority.

Ensure that procedure profiling is enabled.

Performance improvements, diagnostics, and monitoring

164 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Context and remarks

Many.

Reset procedure profiling

● Call the sa_server_option system procedure, setting the ProcedureProfiling option to RESET.

For example, enter:

CALL sa_server_option('ProcedureProfiling' , 'RESET');

Results

Procedure profiling is reset.

Next

None.

See also
● “sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]

Disabling procedure profiling (SQL)

You can disable procedure profiling and clear existing data from Interactive SQL using the
sa_server_option system procedure.

Prerequisites

DBA or PROFILE authority.

Context and remarks

Once you are finished with the profiling information, you can either disable profiling or you can clear
profiling. If you disable profiling, the database stops collecting profiling information and the information
that it has collected to that point remains on the Profile tab in Sybase Central. If you clear profiling, the
database turns profiling off and clears all the profiling data from the Profile tab in Sybase Central.

Disable profiling

● Call the sa_server_option system procedure, setting the ProcedureProfiling option to OFF.

For example, enter:

CALL sa_server_option('ProcedureProfiling' , 'OFF');

Disable profiling and clear existing data

● Call the sa_server_option system procedure, setting the ProcedureProfiling option to CLEAR.

Performance monitoring and diagnostic tools

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 165

For example, enter:

CALL sa_server_option('ProcedureProfiling' , 'CLEAR');

Results

Procedure profiling is disabled and the profiling data is cleared if the option CLEAR has been used.

Next

None.

See also
● “sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]

Retrieve profiling information using system procedures

You can use system procedures to view procedure profiling information for the following objects: stored
procedures, functions, events, system triggers, and triggers. Also, procedure profiling must already be
enabled.

The sa_procedure_profile system procedure shows in-depth profiling information, including execution
times for the lines within each object; each line in the result set represents an executable line of code in
the object.

The sa_procedure_profile_summary system procedure shows you the overall execution time for each
object, giving you a summary of all objects that ran; each line in the result set represents the execution
details for one object.

When reviewing the results from these system procedures, there may be more objects listed than those
specifically called. This is because one object can call another object. For example, a trigger might call a
stored procedure that, in turn, calls another stored procedure.

See also
● “Enabling procedure profiling (SQL)” on page 163
● “sa_procedure_profile_summary system procedure” [SQL Anywhere Server - SQL Reference]
● “sa_procedure_profile system procedure” [SQL Anywhere Server - SQL Reference]
● “sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]

Timing utilities

Some performance testing utilities, including fetchtst, instest, and trantest, are available in
%SQLANYSAMP12%\SQLAnywhere.

The fetchtst utility measures fetch rates for an arbitrary query. The instest utility determines the time
required for rows to be inserted into a table. The trantest utility measures the load that can be handled by a
given server configuration given a database design and a set of transactions.

Performance improvements, diagnostics, and monitoring

166 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

These tools give you more accurate timings than the graphical plan with statistics, and can provide an
indication of the best achievable performance (for example, throughput) for a given server and database
configuration.

Complete documentation for the tools can be found in the readme.txt file in the same folder as the utility.

Monitor database performance
SQL Anywhere provides a set of statistics you can use to monitor database performance. There are many
ways to access these statistics:

● SQL functions These functions allow your application to access SQL Anywhere database statistics
directly.

● Sybase Central Performance Monitor This graphical tool queries the database and graphs only
those statistics you have configured the Performance Monitor to graph.

● Windows Performance Monitor This is a monitoring tool provided by your Windows operating
system.

● Performance Statistics utility (dbstats) This utility provides monitoring of database server,
database, and connection statistics for database servers running on Unix.

● SQL Anywhere Console utility (dbconsole) The utility provides administration and monitoring
facilities for database server connections.

These methods are useful for monitoring in real time. However, you can also capture statistics as part of
diagnostic tracing and save them for analysis at a later time.

See also
● “SQL functions used to monitor statistics” on page 167
● “Sybase Central Performance Monitor features for monitoring statistics” on page 169
● “Monitor statistics using Windows Performance Monitor” on page 171
● “Performance Statistics utility (dbstats) (Unix)” [SQL Anywhere Server - Database Administration]
● “SQL Anywhere Console utility (dbconsole)” [SQL Anywhere Server - Database Administration]
● “Diagnostic tracing” on page 139
● “Performance Monitor statistics” on page 173
● “Database monitoring” [SQL Anywhere Server - Database Administration]

SQL functions used to monitor statistics
SQL Anywhere provides a set of system functions that can access information on a per-connection, per-
database, or server-wide basis. The kind of information available ranges from static information (such as
the database server name) to detailed performance-related statistics (such as disk and memory usage).

Functions that retrieve system information
The following functions retrieve system information:

Performance monitoring and diagnostic tools

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 167

● PROPERTY function This function provides the value of a given property on a server-wide basis.

● DB_PROPERTY and DB_EXTENDED_PROPERTY functions These functions provide the
value of a given property for a given database, or by default, for the current database.

● CONNECTION_PROPERTY and CONNECTION_EXTENDED_PROPERTY functions These
functions provide the value of a given property for a given connection, or by default, for the current
connection.

Supply as an argument only the name of the property you want to retrieve. The functions return the value
for the current server, connection, or database.

Improving query efficiency
For better performance, a client application monitoring database activity should use the
PROPERTY_NUMBER function to identify a named property, and then use the number to repeatedly
retrieve the statistic.

Property names obtained in this way are available for many different database statistics, from the number
of transaction log page write operations and the number of checkpoints performed, to the number of reads
of index leaf pages from the memory cache.

The following set of statements illustrates the process from Interactive SQL:

CREATE VARIABLE propnum INT;
CREATE VARIABLE propval INT;
SET propnum = PROPERTY_NUMBER('CacheRead');
SET propval = DB_PROPERTY(propnum);

Examples
The following statement sets a variable named server_name to the name of the current server:

SET server_name = PROPERTY('name');

The following query returns the user ID for the current connection:

SELECT CONNECTION_PROPERTY('UserID');

The following query returns the file name for the root file of the current database:

SELECT DB_PROPERTY('file');

See also
● “PROPERTY_NUMBER function [System]” [SQL Anywhere Server - SQL Reference]
● “PROPERTY function [System]” [SQL Anywhere Server - SQL Reference]
● “DB_PROPERTY function [System]” [SQL Anywhere Server - SQL Reference]
● “DB_EXTENDED_PROPERTY function [System]” [SQL Anywhere Server - SQL Reference]
● “CONNECTION_PROPERTY function [System]” [SQL Anywhere Server - SQL Reference]
● “CONNECTION_EXTENDED_PROPERTY function [String]” [SQL Anywhere Server - SQL

Reference]
● “System functions” [SQL Anywhere Server - SQL Reference]
● “Sybase Central Performance Monitor features for monitoring statistics” on page 169

Performance improvements, diagnostics, and monitoring

168 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Sybase Central Performance Monitor features for monitoring
statistics

The Sybase Central Performance Monitor is useful for tracking details about database server actions,
including disk and memory access. The Sybase Central Performance Monitor can graph statistics for any
SQL Anywhere database server to which you can connect.

Features of the Sybase Central Performance Monitor include:

● Real-time updates (at adjustable intervals)

● A color-coded and resizable legend

● Configurable appearance properties

The Sybase Central Performance Monitor queries the database to gather its statistics. This can affect some
statistics such as Cache Reads/sec. If you do not want your statistics to be affected by monitoring, you can
use the Windows Performance Monitor instead.

If you run multiple versions of SQL Anywhere simultaneously, you can also run multiple versions of the
Performance Monitor simultaneously.

See also
● “Monitor statistics using Windows Performance Monitor” on page 171
● “Performance Monitor statistics” on page 173

Opening the Sybase Central Performance Monitor

The Sybase Central Performance Monitor appears in the right pane of Sybase Central, when the
Performance Monitor tab is selected. The graph displays only those statistics that you configured it to
display.

Prerequisites

None.

Context and remarks

Many.

Open the Sybase Central Performance Monitor

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, select the server.

3. In the right pane, click the Performance Monitor tab.

Performance monitoring and diagnostic tools

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 169

Results

The Performance Monitor is opened in Sybase Central.

Next

None.

See also
● “Adding and removing statistics” on page 170
● “Monitor statistics using Windows Performance Monitor” on page 171
● “Adding and removing statistics” on page 170

Adding and removing statistics

You can use Sybase Central to add monitored statistics to the Performance Monitor or remove monitored
statistics from the Performance Monitor.

Prerequisites

There are no prerequisites for this task.

Context and remarks

Tip
You can also add a statistic to or remove one from the Sybase Central Performance Monitor on the
statistic's properties window.

Add statistics

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, select the server.

3. In the right pane, click the Statistics tab.

4. Right-click a statistic that is not currently being monitored and click Add To Performance Monitor.

Remove statistics

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, select the server.

3. In the right pane, click the Statistics tab.

4. Right-click a statistic that is currently being monitored and click Remove From Performance
Monitor.

Performance improvements, diagnostics, and monitoring

170 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Results

The specified statistics are either added to or removed from the Sybase Central Performance Monitor.

Next

None.

See also
● “Performance Monitor statistics” on page 173
● “Opening the Sybase Central Performance Monitor” on page 169
● “Monitor statistics using Windows Performance Monitor” on page 171

Monitor statistics using Windows Performance Monitor

As an alternative to using the Sybase Central Performance Monitor, you can use the Windows
Performance Monitor.

The Windows Performance Monitor offers more performance statistics than the Sybase Central
Performance Monitor, especially network communication statistics. It also uses a shared-memory scheme
instead of performing queries against the database server, so it does not affect the statistics themselves.

If you run multiple versions of SQL Anywhere simultaneously, it is also possible to run multiple versions
of the Performance Monitor simultaneously.

When starting the database server that controls the memory used by the Windows Performance Monitor,
you can specify the database server options, and the maximum number of connections or database that the
Performance Monitor can monitor. See:

● “-ks dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “-ksc dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “-ksd dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]

See also
● “Performance Monitor statistics” on page 173

Using the Windows Performance Monitor
Use the Windows Performance Monitor when you want to view counters related to your SQL Anywhere
database, server, or connection.

Prerequisites

A SQL Anywhere database server must be running.

Performance monitoring and diagnostic tools

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 171

Context and remarks

For instructions for other versions of Windows, consult your Windows operating system documentation
for information about how to start Windows Performance Monitor.

Use the Windows Performance Monitor (Windows XP)

1. Start the Performance Monitor:

a. From the Windows Control Panel, click Administrative Tools.

b. Click Performance.

2. On the toolbar, click the Plus sign tool (+).

3. In the Performance Object list, select one of the following:

● SQL Anywhere 12 Connection This monitors performance for a single connection. A
connection must currently exist to see this selection.

● SQL Anywhere 12 Database This monitors performance for a single database.

● SQL Anywhere 12 Server This monitors performance on a server-wide basis.

The Counters box displays a list of the statistics you can view.

If you clicked SQL Anywhere 12 Connection or SQL Anywhere 12 Database, the Instances box
displays a list of the connections or databases upon which you can view statistics.

4. In the Counter list, click a statistic to view.

5. If you clicked SQL Anywhere 12 Connection or SQL Anywhere 12 Database, choose a database
connection or database to monitor from the Instances box.

6. For information about the selected counter, click Explain.

7. To display the counter, click Add.

8. When you have selected all the counters you want to display, click Close.

Use the Windows Performance Monitor (Windows 7)

1. With a SQL Anywhere database server running, start the Performance Monitor:

● From the Windows Control Panel, click All Control Panel Items.

● Click Performance Information And Tools.

● Click Advanced Tools.

2. SQL Anywhere statistics appear in the list of counters for the computer.

● SQL Anywhere 12 Connection This monitors performance for a single connection. A
connection must currently exist to see this selection.

● SQL Anywhere 12 Database This monitors performance for a single database.

Performance improvements, diagnostics, and monitoring

172 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● SQL Anywhere 12 Server This monitors performance on a server-wide basis.

The Counters box displays a list of the statistics you can view.

If you clicked SQL Anywhere 12 Connection or SQL Anywhere 12 Database, the Instances box
displays a list of the connections or databases upon which you can view statistics.

3. In the Counter list, click a statistic to view.

4. If you clicked SQL Anywhere 12 Connection or SQL Anywhere 12 Database, choose a database
connection or database to monitor from the Instances box.

5. For information about the selected counter, click Show Description.

6. To display the counter, click Add.

7. When you have selected all the counters you want to display, click OK.

Results

The specified statistics are displayed in the Windows Performance Monitor.

Next

None.

Performance Monitor statistics
SQL Anywhere provides the following statistics:

● “Cache statistics”
● “Checkpoint and recovery statistics”
● “Communications statistics”
● “Disk I/O statistics”
● “Disk read statistics”
● “Disk write statistics”
● “Index statistics”
● “Memory pages statistics”
● “Request statistics”
● “User-defined statistics”
● “Miscellaneous statistics”

Rates are reported in 1 second intervals.

Cache statistics

These statistics describe the use of the cache.

Performance monitoring and diagnostic tools

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 173

Statistic Scope Description

Cache Hits/sec Connection and
database

Shows the rate at which database page lookups are satis-
fied by finding the page in the cache.

Cache Reads: Index
Interior/sec

Connection and
database

Shows the rate at which index internal-node pages are
read from the cache.

Cache Reads: Index
Leaf/sec

Connection and
database

Shows the rate at which index leaf pages are read from
the cache.

Cache Reads:
Table/sec

Connection and
database

Shows the rate at which table pages are read from the
cache.

Cache Reads: Total
Pages/sec

Connection and
database

Shows the rate at which database pages are looked up in
the cache.

Cache Reads: Work
Table

Connection and
database

Shows the rate at which work table pages are being read
from the cache.

Cache Replacements:
Total Pages/sec

Server Shows the rate at which database pages are being purged
from the cache to make room for another page that is nee-
ded.

Cache Size: Current Server Shows the current size of the database server cache, in
kilobytes.

Cache Size: Maxi-
mum

Server Shows the maximum allowed size of the database server
cache, in kilobytes.

Cache Size: Mini-
mum

Server Shows the minimum allowed size of the database server
cache, in kilobytes.

Cache Size: Peak Server Shows the peak size of the database server cache, in kilo-
bytes.

Checkpoint and recovery statistics

These statistics isolate the checkpoint and recovery actions performed when the database is in an idle
state.

Statistic Scope Description

Checkpoint Flushes/sec Database Shows the rate at which ranges of adjacent pages are written out
during a checkpoint.

Performance improvements, diagnostics, and monitoring

174 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Statistic Scope Description

Checkpoint Urgency Database Shows the checkpoint urgency, expressed as a percentage.

Checkpoints/sec Database Shows the rate at which checkpoints are performed.

ChkptLog: Bitmap size Database Shows the size of the checkpoint log bitmap.

ChkptLog: Commit to
disk/sec

Database Shows the rate at which checkpoint log commit_to_disk opera-
tions are being performed.

ChkptLog: Log size Database Shows the size of the checkpoint log in pages.

ChkptLog: Page im-
ages saved/sec

Database Shows the rate at which pages are being saved in the checkpoint
log before modification.

ChkptLog: Pages in use Database Shows the number of pages in the checkpoint log which are cur-
rently in use.

ChkptLog: Relocate
pages/sec

Database Shows the rate at which pages in the checkpoint log are being re-
located.

ChkptLog: Save pre-
image/sec

Database Shows the rate at which new database page preimages are being
added to the checkpoint log.

ChkptLog: Write pa-
ges/sec

Database Shows the rate at which pages are being written to the check-
point log.

ChkptLog: Writes/sec Database Shows the rate at which disk writes are being performed in the
checkpoint log. One write can include multiple pages.

ChkptLog: Writes to
bitmap/sec

Database Shows the rate at which disk writes are being performed in the
checkpoint log for bitmap pages.

Idle Actives/sec Database Shows the rate at which the database server's idle thread be-
comes active to do idle writes, idle checkpoints, and so on.

Idle Checkpoint Time Database Shows the total time spent doing idle checkpoints, in seconds.

Idle Checkpoints/sec Database Shows the rate at which checkpoints are completed by the data-
base server's idle thread. An idle checkpoint occurs whenever the
idle thread writes out the last dirty page in the cache.

Idle Writes/sec Database Shows the rate at which disk writes are issued by the database
server's idle thread.

Recovery I/O Estimate Database Shows the estimated number of I/O operations required to recov-
er the database.

Performance monitoring and diagnostic tools

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 175

Statistic Scope Description

Recovery Urgency Database Shows the recovery urgency expressed as a percentage.

See also
● “How the database server decides when to checkpoint” [SQL Anywhere Server - Database

Administration]
● “checkpoint_time option” [SQL Anywhere Server - Database Administration]
● “-gc dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “recovery_time option” [SQL Anywhere Server - Database Administration]
● “Checkpoint logs” [SQL Anywhere Server - Database Administration]

Communications statistics

These statistics describe client/server communication activity.

Statistic Scope Description

Comm: Bytes Re-
ceived/sec

Connection, data-
base, and server

Shows the rate at which network data (in bytes) are re-
ceived.

Comm: Bytes Re-
ceived Uncom-
pressed/sec

Connection, data-
base, and server

Shows the rate at which bytes would have been received
if compression was disabled.

Comm: Bytes
Sent/sec

Connection, data-
base, and server

Shows the rate at which bytes are transmitted over the
network.

Comm: Bytes Sent
Uncompressed/sec

Connection, data-
base, and server

Shows the rate at which bytes would have been sent if
compression was disabled.

Comm: Free Buffers Server Shows the number of free network buffers.

Comm: Multi-packets
Received/sec

Server Shows the rate at which multi-packet deliveries are re-
ceived.

Comm: Multi-packets
Sent/sec

Server Shows the rate at which multi-packet deliveries are trans-
mitted.

Comm: Packets Re-
ceived/sec

Connection, data-
base, and server

Shows the rate at which network packets are received.

Comm: Packets Re-
ceived Uncom-
pressed/sec

Connection, data-
base, and server

Shows the rate at which network packets would have
been received if compression was disabled.

Performance improvements, diagnostics, and monitoring

176 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Statistic Scope Description

Comm: Packets
Sent/sec

Connection, data-
base, and server

Shows the rate at which network packets are transmitted.

Comm: Packets Sent
Uncompressed/sec

Connection, data-
base, and server

Shows the rate at which network packets would have
been transmitted if compression was disabled.

Comm: Remoteput
Waits/sec

Server Shows the rate at which the communication link must
wait because it does not have buffers available to send
information. This statistic is collected for TCP/IP only.

Comm: Requests Re-
ceived

Connection, data-
base, and server

Shows the number of client/server communication re-
quests or round-trips. It is different from the Comm:
Packets Received statistic in that multi-packet requests
count as one request, and liveness packets are not inclu-
ded.

Comm: Send
Fails/sec

Server Shows the rate at which the underlying protocol(s) failed
to send a packet.

Comm: Total Buffers Server Shows the total number of network buffers.

Comm: Unique Client
Addresses

Server Shows the number of unique client network addresses
connected to the database server. This is usually the
number of client machines connected, and may be less
than the total number of connections.

Disk I/O statistics

These statistics combine disk reads and disk writes to give overall information about the amount of
activity devoted to disk I/O.

Statistic Scope Description

Disk: Active I/Os Database Shows the current number of file I/Os issued by the database
server which have not yet completed.

Disk: Maximum Active
I/Os

Database Shows the maximum value "Disk: Active I/Os" has reached.

Disk read statistics

These statistics describe the amount and type of activity devoted to reading information from disk.

Performance monitoring and diagnostic tools

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 177

Statistic Scope Description

Disk Reads: Total Pa-
ges/sec

Connection and data-
base

Shows the rate at which pages are read from a file.

Disk Reads: Active Database Shows the current number of file reads issued by the
database server which haven't yet completed.

Disk Reads: Index inte-
rior/sec

Connection and data-
base

Shows the rate at which index internal-node pages
are being read from disk.

Disk Reads: Index
leaf/sec

Connection and data-
base

Shows the rate at which index leaf pages are being
read from disk.

Disk Reads: Table/sec Connection and data-
base

Shows the rate at which table pages are being read
from disk.

Disk Reads: Maximum
Active

Database Shows the maximum value "Disk Reads: Active" has
reached.

Disk Reads: Work Ta-
ble

Connection and data-
base

Shows the rate at which work table pages are being
read from disk.

Disk write statistics

These statistics describe the amount and type of activity devoted to writing information to disk.

Statistic Scope Description

Disk Writes: Active Database Shows the current number of file writes issued by the data-
base server that aren't yet completed.

Disk Writes: Maxi-
mum Active

Database Shows the maximum value "Disk Writes: Active" has
reached.

Disk Writes: Commit
Files/sec

Database Shows the rate at which the database server forces a flush
of the disk cache. Windows platforms use unbuffered (di-
rect) I/O, so the disk cache doesn't need to be flushed.

Disk Writes: Data-
base Extends/sec

Database Shows the rate at which the database file is extended, in pa-
ges/sec.

Disk Writes: Temp
Extends/sec

Database Shows the rate at which temporary files are extended, in pa-
ges/sec.

Performance improvements, diagnostics, and monitoring

178 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Statistic Scope Description

Disk Writes:
Pages/sec

Connection and
database

Shows the rate at which modified pages are being written to
disk.

Disk Writes: Trans-
action Log/sec

Connection and
database

Shows the rate at which pages are written to the transaction
log.

Translog Group
Commits/sec

Connection and
database

Shows the rate at which a commit of the transaction log
was requested but the log had already been written (so the
commit was done for free).

Index statistics

These statistics describe the use of the index.

Statistic Scope Description

Index: Adds/sec Connection and data-
base

Shows the rate at which entries are added to indexes.

Index: Lookups/sec Connection and data-
base

Shows the rate at which entries are looked up in in-
dexes.

Index: Full Com-
pares/sec

Connection and data-
base

Shows the rate at which comparisons beyond the
hash value in an index must be performed.

Memory diagnostic statistics

These statistics describe how the database server is using memory.

Statistic Scope Description

Cache: Multi-Page Al-
locations

Server Shows the number of multi-page allocations.

Cache: Panics Server Shows the number of times the cache manager has
failed to find a page to allocate.

Cache: Scavenge Vis-
ited

Server Shows the number of pages visited while scavenging
for a page to allocate.

Cache: Scavenges Server Shows the number of times the cache manager has
scavenged for a page to allocate.

Performance monitoring and diagnostic tools

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 179

Statistic Scope Description

Cache Pages: Alloca-
ted Structures

Server Shows the number of cache pages that have been allo-
cated for database server data structures.

Cache Pages: File Server Shows the number of cache pages used to hold data
from database files.

Cache Pages: File
Dirty

Server Shows the number of cache pages that are dirty (need-
ing a write).

Cache Pages: Free Server Shows the number of cache pages not being used.

Cache Pages: Pinned Server Shows the number of pages currently unavailable for
reuse.

Cache Replacements:
Total Pages/sec

Server Shows the rate at which database pages are being
purged from the cache to make room for another page
that is needed.

Heaps: Carver Connection, data-
base, and server

Shows the number of heaps used for short-term purpo-
ses such as query optimization.

Heaps: Query Process-
ing

Connection, data-
base, and server

Shows the number of heaps used for query processing
(hash and sort operations).

Heaps: Relocatable Connection, data-
base, and server

Shows the number of relocatable heaps.

Heaps: Relocatable
Locked

Connection, data-
base, and server

Shows the number of relocatable heaps currently locked
in the cache.

Map physical memo-
ry/sec

Server Shows the rate at which database page address space
windows are being mapped to physical memory in the
cache using Address Windowing Extensions.

Mem Pages: Carver Connection, data-
base, and server

Shows the number of heap pages used for short-term
purposes such as query optimization.

Mem Pages: Pinned
Cursor

Connection, data-
base, and server

Shows the number of pages used to keep cursor heaps
pinned in memory.

Mem Pages: Query
Processing

Connection, data-
base, and server

Shows the number of cache pages used for query pro-
cessing (hash and sort operations).

Query Memory: Cur-
rent Active

Connection, data-
base, and server

Shows the current number of requests actively using
query memory.

Performance improvements, diagnostics, and monitoring

180 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Statistic Scope Description

Query Memory: Esti-
mated Active

Server Shows the database server's estimate of the steady state
average of the number of requests actively using query
memory.

Query Memory: Extra
Available

Server Shows the amount of memory available to grant beyond
the base memory-intensive grant.

Query Memory: Num-
ber of Grant Fails

Connection, data-
base, and server

Shows the total number of times any request waited for
query memory and failed to get it.

Query Memory: Num-
ber of Grant Requests

Connection, data-
base, and server

Shows the total number of times any request attempted
to acquire query memory.

Query Memory: Num-
ber of Grant Waits

Connection, data-
base, and server

Shows the total number of times any request waited for
memory.

Query Memory: Pages
Granted

Connection, data-
base, and server

Shows the number of pages currently granted to re-
quests.

Query Memory: Re-
quests Waiting

Connection, data-
base, and server

Shows the current number of requests waiting for query
memory.

Memory pages statistics

These statistics describe the amount and purpose of memory used by the database server.

Statistic Scope Description

Mem Pages: Lock Table Database Shows the number of pages used to store lock informa-
tion.

Mem Pages: Locked
Heap

Server Shows the number of heap pages locked in the cache.

Mem Pages: Main Heap Server Shows the number of pages used for global database
server data structures.

Mem Pages: Map Pages Database Shows the number of map pages used for accessing the
lock table, frequency table, and table layout.

Mem Pages: Procedure
Definitions

Database Shows the number of relocatable heap pages used for
procedures.

Performance monitoring and diagnostic tools

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 181

Statistic Scope Description

Mem Pages: Relocatable Database Shows the number of pages used for relocatable heaps
(cursors, statements, procedures, triggers, views, and so
on).

Mem Pages:
Relocations/sec

Database Shows the rate at which relocatable heap pages are read
from the temporary file.

Mem Pages: Rollback
Log

Connection
and database

Shows the number of pages in the rollback log.

Mem Pages: Trigger
Definitions

Database Shows the number of relocatable heap pages used for
triggers.

Mem Pages: View Defi-
nitions

Database Shows the number of relocatable heap pages used for
views.

Request statistics

These statistics describe the database server activity devoted to responding to requests from client
applications.

Statistic Scope Description

Cursors Connection, data-
base, and server

Shows the number of declared cursors currently maintained
by the database server.

Cursors Open Connection, data-
base, and server

Shows the number of open cursors currently maintained by
the database server.

Lock Count Connection and data-
base

Shows the number of locks.

Requests/sec Server Shows the rate at which the database server is entered to al-
low it to handle a new request or continue processing an
existing request.

Requests: Active Server Shows the number of database server threads that are cur-
rently handling a request.

Tasks: Exchange Server Shows the number of database server threads that are cur-
rently being used for parallel execution of a query.

Requests: Un-
scheduled

Server Shows the number of requests that are currently queued up
waiting for an available database server thread.

Performance improvements, diagnostics, and monitoring

182 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Statistic Scope Description

Snapshot Count Connection and data-
base

Shows the number of active snapshots.

Statement Cache
Hits

Connection, data-
base, and server

Shows the rate at which statement prepares cached by the
client are being re-used by the database server.

Statement Cache
Misses

Connection, data-
base, and server

Shows the rate at which statement prepares cached by the
client need to be prepared again by the database server.

Statement Pre-
pares

Connection and data-
base

Shows the rate at which statement prepares are being han-
dled by the database server.

Statements Connection, data-
base, and server

Shows the number of prepared statements currently main-
tained by the database server.

Transaction
Commits

Connection, data-
base, and server

Shows the rate at which Commit requests are handled.

Transaction
Rollbacks

Connection, data-
base, and server

Shows the rate at which Rollback requests are handled.

User-defined statistics

These statistics describe activity related to values that are tracked by your application.

Statistic Scope Description

User Defined Rate:
Counter1

Connection, database, and
server

Shows the rate of value of the user-defined
counter over time.

User Defined Rate:
Counter2

Connection, database, and
server

Shows the rate of value of the user-defined
counter over time.

User Defined Rate:
Counter3

Connection, database, and
server

Shows the rate of value of the user-defined
counter over time.

User Defined Rate:
Counter4

Connection, database, and
server

Shows the rate of value of the user-defined
counter over time.

User Defined Rate:
Counter5

Connection, database, and
server

Shows the rate of value of the user-defined
counter over time.

User Defined Raw:
Counter1

Connection, database, and
server

Shows the current value of the user-defined
counter.

Performance monitoring and diagnostic tools

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 183

Statistic Scope Description

User Defined Raw:
Counter2

Connection, database, and
server

Shows the current value of the user-defined
counter.

User Defined Raw:
Counter3

Connection, database, and
server

Shows the current value of the user-defined
counter.

User Defined Raw:
Counter4

Connection, database, and
server

Shows the current value of the user-defined
counter.

User Defined Raw:
Counter5

Connection, database, and
server

Shows the current value of the user-defined
counter.

See also
● “User-defined properties” [SQL Anywhere Server - Database Administration]

Miscellaneous statistics

Statistic Scope Description

Avail IO Server Shows the current number of available I/O control blocks.

Connection Count Database Shows the number of connections to this database.

Main Heap Bytes Server Shows the number of bytes used for global database server
data structures.

Query: Plan cache
pages

Connection and
database

Shows the number of pages used to cache execution plans.

Query: Low memo-
ry strategies

Connection and
database

Shows the number of times the database server changed its
execution plan during execution because of low memory
conditions.

Query: Rows mate-
rialized/sec

Connection and
database

Shows the rate at which rows are written to work tables
during query processing.

Requests: GET DA-
TA/sec

Connection and
database

Shows the rate at which a connection is issuing GET DA-
TA requests.

Temporary Table
Pages

Connection and
database

Shows the number of pages in the temporary file used for
temporary tables.

Performance improvements, diagnostics, and monitoring

184 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Statistic Scope Description

Version Store Pages Database Shows the number of pages of the temporary file currently
being used for the row version store when snapshot isola-
tion is enabled.

Tips for improving performance

Always use a transaction log
Using a transaction log can provide data protection, and can dramatically improve the performance of
SQL Anywhere.

When operating without a transaction log, SQL Anywhere performs a checkpoint at the end of every
transaction which consumes considerable resources.

When operating with a transaction log, SQL Anywhere only writes notes detailing the changes as they
occur. It can choose to write the new database pages all at once, at the most efficient time. Checkpoints
make sure information enters the database file, and that it is consistent and up to date.

You can further improve performance if you store the transaction log on a different physical device than
the one containing the primary database file. The extra drive head does not generally have to seek to get to
the end of the transaction log.

Build efficient SQL queries
To improve query processing performance, consider building more efficient queries using the following
tips. These tips reflect optimizations that the optimizer might choose during query processing to rewrite
the query more efficiently. By building these efficiencies into the query, the optimizer will likely have
less work to do.

Tip Before and after Explanation

Eliminate
unnecessa-
ry DIS-
TINCT
conditions

Before:

SELECT DISTINCT p.ID,
p.Quantity
FROM Products p;

After:

SELECT p.ID, p.Quantity
FROM Products p;

The DISTINCT keyword in the first state-
ment is unnecessary because the Products ta-
ble contains the primary key p.ID, which is
part of the result set.

Tips for improving performance

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 185

Tip Before and after Explanation

Eliminate
unnecessa-
ry DIS-
TINCT
conditions

Before:

SELECT DISTINCT *
FROM SalesOrders o JOIN
Customers c
 ON o.CustomerID = c.ID
WHERE c.State = 'NY';

After:

SELECT *
FROM SalesOrders o JOIN
Customers c
 ON o.CustomerID = c.ID
WHERE c.State = 'NY';

The first query contains the primary keys of
both tables, so each row in the result must be
distinct.

Un-nest
subqueries

Before:

SELECT s.*
FROM SalesOrderItems s
WHERE EXISTS (SELECT *
 FROM Products p
 WHERE s.ProductID = p.ID
 AND p.ID = 300
 AND p.Quantity > 20);

After:

SELECT s.*
FROM Products p JOIN
SalesOrderItems s
 ON p.ID = s.ProductID
WHERE p.ID = 300 AND
p.Quantity > 20;

Rewriting nested queries as joins often leads
to more efficient execution and more effec-
tive optimization. In general, subquery un-
nesting is always done for correlated subqu-
eries with, at most, one table in the FROM
clause, which are used in ANY, ALL, and
EXISTS predicates. A uncorrelated sub-
query, or a subquery with more than one ta-
ble in the FROM clause, is flattened if it can
be decided, based on the query semantics,
that the subquery returns at most one row.

In this example, the subquery can match at
most one row for each row in the outer
block. Because it can match at most one row,
it can be converted to an inner join.

Un-nest
subqueries

Before:

SELECT p.*
FROM Products p
WHERE EXISTS
 (SELECT *
 FROM SalesOrderItems s
 WHERE s.ProductID = p.ID
 AND s.ID = 2001);

After:

SELECT DISTINCT p.*
FROM Products p JOIN
SalesOrderItems s
 ON p.ID = s.ProductID
WHERE s.ID = 2001;

The Before query contains a conjunctive EX-
ISTS predicate in the subquery, which can
match more than one row. It can be conver-
ted to an inner join, with a DISTINCT in the
SELECT list.

Performance improvements, diagnostics, and monitoring

186 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Tip Before and after Explanation

Un-nest
subqueries

Before:

SELECT *
FROM Products p
WHERE p.ID =
 (SELECT s.ProductID
 FROM SalesOrderItems s
 WHERE s.ID = 2001
 AND s.LineID = 1);

After:

SELECT p.*
FROM Products p,
SalesOrderItems s
WHERE p.ID = s.ProductID
 AND s.ID = 2001
 AND s.LineID = 1;

Eliminate subqueries in comparisons when
the subquery matches at most one row for
each row in the outer block.

Consider
using an
IN predi-
cate when
querying
an indexed
column

Before:

SELECT *
FROM SalesOrders
WHERE SalesRepresentative =
902
 OR SalesRepresentative =
195;

After:

SELECT *
FROM SalesOrders
WHERE SalesRepresentative IN
(195, 902);

In the rewritten form, the IN-list predicate
can be treated as a sargable predicate and ex-
ploited for indexed retrieval. Also, the opti-
mizer can sort the IN-list to match the sort
sequence of the index, leading to more effi-
cient retrieval.

Note that the IN-list must contain only con-
stants, or values that are constant during one
execution of the query block, such as outer
references.

Tips for improving performance

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 187

Tip Before and after Explanation

Eliminate
unnecessa-
ry joins

Before:

SELECT s.ID, s.LineID, p.ID
FROM SalesOrderItems s KEY
JOIN Products p
FOR READ ONLY;

After:

SELECT s.ID, s.LineID,
s.ProductID
FROM SalesOrderItems s
WHERE s.ProductID IS NOT NULL
FOR READ ONLY;

Consider eliminating joins when:

● The join is a primary key to foreign key
join, and only primary key columns from
the primary table are referenced in the
query. In this case, the primary key table
is eliminated if it is not updatable.

● The join is a primary key to primary key
join between two instances of the same ta-
ble. In this case, one of the tables is elimi-
nated if it is not updatable.

● The join is an outer join and the null-sup-
plying table expression returns at most one
row for each row of the preserved side of
the outer join, and no expression produced
by the null-supplying table expression is
needed in the rest of the query beyond the
outer join.

In this case, the join is a primary key to for-
eign key join so the primary key table, Prod-
ucts, can be eliminated. That is, the second
query is semantically equivalent to the first
because any row from the SalesOrderItems
table that has a NULL foreign key to Prod-
ucts does not appear in the result.

Eliminate
unnecessa-
ry joins

Before:

SELECT s.ID, s.LineID
FROM SalesOrderItems s
 LEFT OUTER JOIN Products p
 ON p.ID = s.ProductID
WHERE s.Quantity > 5
FOR READ ONLY;

After:

SELECT s.ID, s.LineID
FROM SalesOrderItems s
WHERE s.Quantity > 5
FOR READ ONLY;

In the first query, the OUTER JOIN can be
eliminated because the null-supplying table
expression cannot produce more than one
row for any row of the preserved side and
none of the columns from Products is used
above the LEFT OUTER JOIN.

Performance improvements, diagnostics, and monitoring

188 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Tip Before and after Explanation

Eliminate
unnecessa-
ry case
translation

Before:

SELECT *
FROM Customers
WHERE UPPER(Surname) =
'SMITH';

After:

SELECT *
FROM Customers
WHERE Surname = 'SMITH';

On a case insensitive database, the first
query can be rewritten so that the optimizer
can consider using an index on Custom-
ers.Surname.

By default, the database server performs
case-insensitive string comparisons unless
explicit text conversion instructions are giv-
en(use of UPPER, UCASE, LOWER,
LCASE). Eliminating unnecessary case
translations allows the predicates to be
turned into sargable predicates, which can be
used for index retrieval of the corresponding
table.

Consider
inlining
functions

Before:

CREATE FUNCTION F1(arg1 INT,
arg2 INT)
RETURNS INT
BEGIN
 RETURN arg1 * arg2
END;
SELECT F1(e.EmployeeID,
2.5)
FROM Employees e;

After:

SELECT CAST(e.EmployeeID AS
INT) * CAST(2.5 AS INT)
FROM Employees e;

You can inline user-defined functions if they
take one of the following forms:

● contains a single RETURN statement

● declares a single variable, assigns the vari-
able, and returns a single value

● declares a single variable, selects into that
variable, and returns a single value

This tip is not applicable to temporary func-
tions, recursive functions, or functions with a
NOT DETERMINISTIC clause.

This tip is also not applicable if the function
is called with a subquery as an argument, or
when it is called from inside a temporary
procedure.

Tips for improving performance

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 189

Tip Before and after Explanation

Consider
inlining
simple
stored pro-
cedures

Before:

CREATE PROCEDURE Test1(arg1
INT)
 BEGIN
 SELECT * FROM Employees
WHERE EmployeeID=arg1
 END;
SELECT * FROM Test1(200);

After:

SELECT * FROM (
 SELECT * FROM Employees
 WHERE
EmployeeID=CAST(200 AS
INT))
 AS Test1;

You can inline a stored procedure that is de-
fined only as a single SELECT statement
when calling it in the FROM clause of a
query. When a procedure is inlined, it is re-
written as a derived table. This tip does not
apply to procedures that use default argu-
ments, that contain anything other than a sin-
gle SELECT statement in the body.

See also
● “User-defined functions” on page 76
● “CREATE FUNCTION statement” [SQL Anywhere Server - SQL Reference]
● “CAST function [Data type conversion]” [SQL Anywhere Server - SQL Reference]
● “SELECT statement” [SQL Anywhere Server - SQL Reference]
● “Procedures” on page 72
● “CREATE PROCEDURE statement” [SQL Anywhere Server - SQL Reference]
● “SELECT statement” [SQL Anywhere Server - SQL Reference]

Cache-related performance tips
Use the cache to improve performance

The cache is an area of memory used by the database server to store database pages for repeated fast
access. The more pages that are accessible in the cache, the fewer times the database server needs to read
data from disk, which is a slower operation. Cache size is therefore often a key factor in performance.

SQL Anywhere supports dynamic cache sizing, which tunes the cache size appropriately and
automatically by monitoring the system as a whole. However, you can also use the -c option on the
database server command line when the database is started to control the size of the database cache.

The database server messages window displays the size of the cache at startup, but you can also use the
following statement to obtain the current size of the cache:

SELECT PROPERTY('CurrentCacheSize');

Encrypted databases must have sufficient cache to minimize I/O operations because these operations are
more expensive on encrypted databases than on unencrypted databases since encryption and/or decryption
must be performed for each operation.

Performance improvements, diagnostics, and monitoring

190 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “Dynamic cache sizing” on page 194
● “-c dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “-ca dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “-ch dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “-cl dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]

Cache and the memory governor

The SQL Anywhere database server utilizes the cache (buffer pool) to temporarily store images of
database pages in memory. These pages are typically table pages and index pages, although there are
several other types of physical pages stored in a SQL Anywhere database. In addition to these pages, the
database server utilizes the cache for two other pools of memory. One of these pools is the virtual
memory used for database server data structures, such as those that represent connections, statements, and
cursors. The second pool consists of cache pages that are used as virtual storage for query memory.

Query execution requires memory to operate efficiently. SQL Anywhere uses a memory governor to
decide how much query memory each statement can use for query execution. The memory governor is
responsible for allocating a pool of query memory to statements to provide efficient execution of the
workload.

The memory governor grants individual statements a selected number of pages that the statement can use
for memory-intensive query processing. Memory in the query memory pool is still available for other
purposes (such as buffering table or index pages) until the query processor uses the pages. Memory-
intensive query processing that uses query memory includes all hash-based operators, such as hash
distinct, hash group by, and hash join, and sorting and window operators.

Use the following settings, operators, and statistics to understand, and control, how the memory governor
uses the cache:

● QueryMemMaxUseful graphical plan operator When a statement begins executing, the
memory governor uses the optimizer's estimates to determine how much memory would be useful to
the statement. This estimate appears in the graphical plan as QueryMemMaxUseful.

● QueryMemActiveMax server property The memory governor limits the number of memory-
intensive requests that can execute concurrently. This maximum value is selected based on the
performance characteristics of the computer running the database server, and the limit is shown with
the server property QueryMemActiveMax.

● QueryMemActiveEst Performance Monitor statistic The memory governor maintains a
running estimate of the number of concurrent memory intensive requests, and this estimate is
available as the database server property and Performance Monitor statistic QueryMemActiveEst.

● query_mem_timeout database option If a memory-intensive statement begins executing and
there are already the maximum number of concurrent memory-intensive requests executing, then
incoming statements wait for one of the existing requests to release its allocated memory. The
query_mem_timeout database option controls how long the incoming request waits for a memory
grant. With the default setting of -1, the request waits for a database server-defined period of time. If

Tips for improving performance

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 191

no memory grant is available after waiting, then the statement's access plan is executed with a small
amount of memory, which could cause it to perform slowly, possibly with a low-memory execution
strategy if one exists for memory-intensive physical operators in that plan.

● QueryMemGrantWaiting server property and Performance Monitor statistic The database
server property and Performance Monitor statistic QueryMemGrantWaiting shows the current number
of requests that are waiting for a memory request to be granted.

● QueryMemGrantWaited server property and Performance Monitor statistic The database
server property and Performance Monitor statistic QueryMemGrantWaited shows the total number of
times that a request had to wait before a memory request was granted.

● QueryMemNeedsGrant graphical plan operator In the graphical plan, QueryMemNeedsGrant
shows whether the memory governor considers the request to be a simple request (no memory grant
needed) or memory intensive (a memory grant is needed). If the memory governor classifies a request
as not needing a memory grant, then the request begins executing immediately. Otherwise, the request
asks to use a portion of the query memory pool.

● QueryMemLikelyGrant graphical plan operator In the graphical plan,
QueryMemLikelyGrant shows an estimate of how many pages are likely to be granted to the request
for execution.

See also
● “Graphical plan with statistics” on page 298
● “QueryMemActiveMax server property” [SQL Anywhere Server - Database Administration]
● “QueryMemPages server property” [SQL Anywhere Server - Database Administration]
● “QueryMemPercentOfCache server property” [SQL Anywhere Server - Database Administration]
● “query_mem_timeout option” [SQL Anywhere Server - Database Administration]
● “Database server configuration of the multiprogramming level” [SQL Anywhere Server - Database

Administration]
● “-ch dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]

Cache and the optimizer
Reserving extra memory, for example to hold the contents of a cursor, may be expensive. If the cache is
full, one or more pages may have to be written to disk to make room for new pages. Some pages may
need to be re-read to complete a subsequent operation. In this situation, SQL Anywhere associates a
higher cost with execution plans that require additional buffer cache overhead. This cost discourages the
optimizer from choosing plans that use work tables. However, the optimizer is careful to use memory
where it improves performance. For example, it caches the results of subqueries when they will be needed
repeatedly during query processing.

Limit cache memory use

The initial, minimum, and maximum cache sizes are all controllable from the database server command
line.

Performance improvements, diagnostics, and monitoring

192 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● Initial cache size You can specify the initial cache size for the database server by using the -c
database server option. If you do not specify the -c option, the database server calculates the initial
cache allocation.

● Maximum cache size You can control the maximum cache size by specifying the database server
-ch option. The default is based on a heuristic that depends on the physical memory in your computer.
On Windows Mobile, the default maximum cache size is the amount of available program memory
minus 4 MB. On other non-Unix computers, this is approximately the lower of the maximum non-
AWE cache size and 90% of the physical memory of the computer. On Unix, the default maximum
cache size is calculated as follows:

○ On 32-bit Unix platforms, it is the lesser of 90% of total physical memory or 1,834,880 KB.

○ On 64-bit Unix platforms, it is the lesser of 90% of total physical memory and 8,589,672,320 KB.

● Minimum cache size You can control the minimum cache size by specifying the database server -
cl server option. By default, the minimum cache size is the same as the initial cache size, except on
Windows Mobile. On Windows Mobile, the default minimum cache size is 600 KB.

If you specify the -c server option without -cl, then the minimum cache size is set to the initial cache
size specified by the -c server option.

If you do not set the -c or -cl server options, the minimum cache size is set to a very low hard-coded
constant value, so that the cache can shrink if necessary. On Windows this value is 2 MB, on Unix it
is 8 MB, and on Windows Mobile it is 600 KB.

Note
If you attempt to set your initial or minimum cache sizes to a value that is less than 1/8 of the maximum
cache size, the initial and minimum cache sizes are automatically increased relative to the maximum
cache size.

You can also disable dynamic cache sizing by using the -ca 0 server option.

The following database server properties return information about the database server cache:

● CurrentCacheSize Returns the current cache size, in kilobytes.

● MinCacheSize Returns the minimum allowed cache size, in kilobytes.

● MaxCacheSize Returns the maximum allowed cache size, in kilobytes.

● PeakCacheSize Returns the largest value the cache has reached in the current session, in
kilobytes.

Tips for improving performance

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 193

See also
● “Cache size” [SQL Anywhere Server - Database Administration]
● “Accessing database server property values” [SQL Anywhere Server - Database Administration]
● “-c dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “-ca dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “-ch dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “-cl dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]

Dynamic cache sizing

You can use SQL Anywhere to automatically resize the database cache while the database server is
running. With full dynamic cache sizing, the cache grows when more memory is made available to the
database server and shrinks when cache memory is required by other applications. The effectiveness of
dynamic cache sizing varies depending on the operating system and the amount of available physical
memory.

Typically, the cache requirements are assessed by dynamic cache sizing once per minute. However, when
a new database is started or when a file grows significantly, the assessment frequency may increase to
once every five seconds for thirty seconds. After the initial thirty second period, the assessment frequency
returns to once per minute. File growth is considered significant if it is one eighth greater than the last
growth that triggered an increase or one eighth greater than when the database started.

With dynamic cache sizing you do not need to explicitly configure the database cache.

Note
If you attempt to set your initial or minimum cache sizes to a value that is less than one eighth of the
maximum cache size, the initial and minimum cache sizes are automatically increased relative to the
maximum cache size.

When an Address Windowing Extensions (AWE) cache is used, dynamic cache sizing is disabled. Only
the 32-bit Windows database server can use an AWE cache.

Note
The use of AWE is deprecated. It is recommended that you use the 64-bit version of the SQL Anywhere
database server on a 64-bit Windows operating system if you require a large cache.

See also
● “-ca dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “-ch dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “-cl dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “-cw dbeng12/dbsrv12 server option (deprecated)” [SQL Anywhere Server - Database Administration]
● “Cache size” [SQL Anywhere Server - Database Administration]

Performance improvements, diagnostics, and monitoring

194 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Dynamic cache sizing on Windows

On Windows and Windows Mobile, the database server evaluates cache and operating statistics once per
minute and computes an optimum cache size. The database server computes a target cache size that uses
all physical memory currently not in use, except for approximately 5 MB that is to be left free for system
use. The target cache size is never smaller than the specified or implicit minimum cache size. The target
cache size never exceeds the specified or implicit maximum cache size, or the sum of the sizes of all open
database and temporary files plus the size of the main heap.

To avoid cache size oscillations, the database server increases the cache size incrementally. Rather than
immediately adjusting the cache size to the target value, each adjustment modifies the cache size by 75%
of the difference between the current and target cache size.

Windows can use Address Windowing Extensions (AWE) to support large cache sizes by specifying the -
cw command line option when starting the database server. AWE caches do not support dynamic cache
sizing. Windows Mobile does not support AWE caches.

Note
The use of AWE is deprecated. It is recommended that you use the 64-bit version of the SQL Anywhere
database server on a 64-bit Windows operating system if you require a large cache.

Dynamic cache sizing on Unix

On Unix, the database server uses swap space and memory to manage the cache size. The swap space is a
system-wide resource on most Unix operating systems. In this section, the sum of memory and swap
space is called the system resources. See your operating system documentation for details.

On startup, the database allocates the specified maximum cache size from the system resources. It loads
some of this into memory (the initial cache size) and keeps the remainder as swap space.

The total amount of system resources used by the database server is constant until the database server
shuts down, but the proportion loaded into memory changes. Each minute, the database server evaluates
cache and operating statistics. If the database server is busy and demanding of memory, it may move
cache pages from swap space into memory. If the other processes in the system require memory, the
database server may move cache pages out from memory to swap space.

Initial cache size
By default, the initial cache size is assigned using an heuristic based on the available system resources.
The initial cache size is always less than 1.1 times the total database size.

If the initial cache size is greater than three quarters of the available system resources, the database server
exits with an error indicating there is not enough memory.

You can change the initial cache size using the -c option.

Tips for improving performance

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 195

Maximum cache size
The maximum cache must be less than the available system resources on the computer. By default, the
maximum cache size is assigned using an heuristic based on the available system resources and the total
physical memory on the computer. The cache size never exceeds the specified or implicit maximum cache
size, or the sum of the sizes of all open database and temporary files plus the size of the main heap.

If you specify a maximum cache size greater than the available system resources, the database server exits
with an error indicating there is not enough memory. If you specify a maximum cache size greater than
the available memory, the database server warns of performance degradation, but does not exit.

The database server allocates all the maximum cache size from the system resources, and does not
relinquish it until the database server exits. Ensure that you choose a maximum cache size that gives good
SQL Anywhere performance while leaving space for other applications. The formula for the default
maximum cache size is an heuristic that attempts to achieve this balance. You only need to tune the value
if the default value is not appropriate on your system.

You can use the -ch server option to set the maximum cache size, and limit automatic cache growth.

Minimum cache size
If the -c option is specified, the minimum cache size is the same as the initial cache size. If no -c option is
specified, the minimum cache size on Unix is 8 MB.

You can use the -cl server option to adjust the minimum cache size.

Note
If you attempt to set your initial or minimum cache sizes to a value that is less than one eighth of the
maximum cache size, the initial and minimum cache sizes are automatically increased relative to the
maximum cache size.

See also
● “-c dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “-ch dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “-cl dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]

Statistics that monitor cache size

The following statistics are included in the Windows Performance Monitor and the database's property
functions.

● CurrentCacheSize The current cache size in kilobytes.

● MinCacheSize The minimum allowed cache size in kilobytes.

● MaxCacheSize The maximum allowed cache size in kilobytes.

● PeakCacheSize The peak cache size in kilobytes.

Performance improvements, diagnostics, and monitoring

196 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “CurrentCacheSize server property” [SQL Anywhere Server - Database Administration]
● “MinCacheSize server property” [SQL Anywhere Server - Database Administration]
● “MaxCacheSize server property” [SQL Anywhere Server - Database Administration]
● “PeakCacheSize server property” [SQL Anywhere Server - Database Administration]
● “Accessing database server property values” [SQL Anywhere Server - Database Administration]
● “Monitor database performance” on page 167

Cache warming

Cache warming is designed to help reduce the execution times of the initial queries executed against a
database. This is done by preloading the database server's cache with database pages that were referenced
the last time the database was started. Warming the cache can improve performance when the same query
or similar queries are executed against a database each time it is started.

You control the cache warming settings on the database server command line. There are two activities
that can take place when a database is started and cache warming is turned on: collection of database
pages and cache reloading (warming).

Collection of referenced database pages is controlled by the -cc database server option, and is turned on
by default. When database page collection is turned on, the database server keeps track of every database
page that is requested from database startup until one of the following occurs: the maximum number of
pages has been collected (the value is based on cache size and database size), the collection rate falls
below the minimum threshold value, or the database is shut down. Note that the database server controls
the maximum number of pages and the collection threshold. Once collection completes, the referenced
pages are recorded in the database so they can be used to warm the cache the next time the database is
started.

Cache warming (reloading) is turned on by default, and is controlled by the -cr database server option. To
warm the cache, the database server checks whether the database contains a previously recorded
collection of pages. If it does, the database server loads the corresponding pages into the cache. The
database can still process requests while the cache is loading pages, but warming may stop if a significant
amount of I/O activity is detected in the database. Cache warming stops in this case to avoid performance
degradation of queries that access pages that are not contained in the set of pages being reloaded into the
cache. You can specify the -cv option if you want messages about cache warming to appear in the
database server messages window.

See also
● “-cc dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “-cr dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “-cv dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]

Tips for improving performance

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 197

Check for concurrency issues
When the database server processes a transaction, it can lock one or more table rows. The locks maintain
the reliability of information stored in the database by preventing concurrent access by other transactions.
They also improve the accuracy of result queries by identifying information that is in the process of being
updated.

The database server places these locks automatically and needs no explicit instruction. It holds all the
locks acquired by a transaction until the transaction is completed. The transaction that has access to the
row is said to hold the lock. Depending on the type of lock, other transactions may have limited access to
the locked row, or none at all.

Performance can be compromised if a row or rows are frequently accessed by several users
simultaneously. If you suspect locking problems, consider using the sa_locks procedure to obtain
information on locks in the database.

If lock issues are identified, information on the connection processes involved can be found using the
AppInfo connection property.

See also
● “sa_locks system procedure” [SQL Anywhere Server - SQL Reference]
● “Accessing connection property values” [SQL Anywhere Server - Database Administration]

Choose the optimizer goal
The optimization_goal option controls whether SQL Anywhere optimizes SQL statements for response
time (First-row) or for total resource consumption (All-rows). In simpler terms, you can choose whether
to optimize query processing towards returning the first row quickly, or towards minimizing the cost of
returning the complete result set.

If the option is set to First-row, SQL Anywhere chooses an access plan that is intended to reduce the time
to fetch the first row of the query's result, possibly at the expense of total retrieval time. In particular, the
optimizer typically avoids, if possible, access plans that require the materialization of results to reduce the
time to return the first row. With this setting, for example, the optimizer favors access plans that utilize an
index to satisfy a query's ORDER BY clause, rather than plans that require an explicit sorting operation.

The optimization goal used by the optimizer for a particular statement is decided using these rules:

● If the main query block has a table in the FROM clause with the table hint set to FASTFIRSTROW,
then the statement is optimized using the First-row optimization goal.

● If the statement has an OPTION clause containing a setting for the optimization_goal option, then the
statement is optimized using this setting.

● Else, the optimizer uses the current setting of the option optimization_goal option.

Note that even if the optimization goal is First-row, the optimizer may be unable to find a plan that can
quickly return the first row. For example, statements requiring materialization due to the presence of

Performance improvements, diagnostics, and monitoring

198 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

DISTINCT, GROUP BY, or ORDER BY clauses, and for which a relevant index does not exist to
provide the necessary order, are optimized with the All-rows goal.

If the option is set to All-rows (the default), the SQL Anywhere query is optimized to choose an access
plan with the minimal estimated total retrieval time. Setting optimization_goal to All-rows may be
appropriate for applications that intend to process the entire result set, such as PowerBuilder DataWindow
applications.

See also
● “optimization_goal option” [SQL Anywhere Server - Database Administration]
● “FROM clause” [SQL Anywhere Server - SQL Reference]

You can also refer to the OPTION clause of SQL statements such as the following:

● “DELETE statement” [SQL Anywhere Server - SQL Reference]
● “INSERT statement” [SQL Anywhere Server - SQL Reference]
● “SELECT statement” [SQL Anywhere Server - SQL Reference]
● “MERGE statement” [SQL Anywhere Server - SQL Reference]
● “UPDATE statement” [SQL Anywhere Server - SQL Reference]
● “UNION statement” [SQL Anywhere Server - SQL Reference]

Collect statistics on small tables
SQL Anywhere uses statistical information to determine the most efficient strategy for executing each
statement. SQL Anywhere automatically gathers and updates these statistics, and stores them permanently
in the database. Statistics gathered while processing one statement are available when searching for
efficient ways to execute subsequent statements.

By default, SQL Anywhere creates statistics for all tables with five or more rows. If you need to create
statistics for a table with less than five rows, you can do so using the CREATE STATISTICS statement.
This statement creates statistics for all tables, regardless of how many rows are in a table. Once created,
the statistics are automatically maintained by SQL Anywhere.

See also
● “CREATE STATISTICS statement” [SQL Anywhere Server - SQL Reference]

Fragmentation-related performance tips
Reduce fragmentation

Fragmentation occurs naturally as you make changes to your database. Performance can suffer if your
files, tables, or indexes are excessively fragmented. Reducing fragmentation becomes more important as
your database increases in size. SQL Anywhere contains stored procedures that generate information
about the fragmentation of files, tables, and indexes.

If you are noticing a significant decrease in performance, consider:

Tips for improving performance

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 199

● rebuilding your database to reduce table and/or index fragmentation, especially if you have performed
extensive delete/update/insert activity on multiple tables

● putting the database on a disk partition by itself to reduce file fragmentation

● running one of the available Windows utilities periodically to reduce file fragmentation

● reorganizing your tables to reduce database fragmentation

● using the REORGANIZE TABLE statement to defragment rows in a table, or to compress indexes
which may have become sparse due to DELETEs. Reorganizing tables can reduce the total number of
pages used to store a table and its indexes, and it may reduce the number of levels in an index tree as
well.

Reduce file fragmentation

A fragmented database file can affect the performance of your database server. Reducing disk
fragmentation becomes more important as the size of your database increases.

The database server determines the number of file fragments in each dbspace when you start a database
on Windows. The database server displays the following information in the database server messages
window when the number of fragments is greater than one: Database file "mydatabase.db"
consists of nnn fragments.

You can also obtain the number of database file fragments using the DBFileFragments database property.

To eliminate file fragmentation problems, put the database on a disk partition by itself and then
periodically run one of the available Windows disk defragmentation utilities.

See also
● “Accessing database property values” [SQL Anywhere Server - Database Administration]
● “Performance warning: Database file %1 consists of %2 disk fragments” [SQL Anywhere Server -

Database Administration]
● “DBFileFragments database property” [SQL Anywhere Server - Database Administration]

Reduce table fragmentation

Table fragmentation occurs when rows are not stored contiguously, or when rows are split between
multiple pages. These rows require additional page access and this reduces the performance of the
database server.

The effect that fragmentation has on performance varies. A table might be highly fragmented, but if it fits
in memory, and the way it is accessed allows the pages to be cached, then the impact may be minimal.
However, a fragmented table may cause much more I/O to be done and can significantly reduce
performance if split rows are accessed frequently and the cost of extra I/Os is not reduced by caching.

Performance improvements, diagnostics, and monitoring

200 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

While reorganizing tables and rebuilding a database can reduce fragmentation, doing so too frequently or
not frequently enough, can also impact performance. Experiment using the tools and methods described in
the following section to determine an acceptable level of fragmentation for your tables.

If you reduce fragmentation and performance is still poor, another issue may be to blame, such as
inaccurate statistics.

Determine the degree of table fragmentation
Checking the table fragmentation just once is not helpful in determining whether to defragment to
improve performance. Instead, rebuild your database and check the table fragmentation to establish
baseline results. Then, continue to check the table fragmentation periodically over an extended length of
time, looking for correlation between the change in fragmentation to changes in performance measures.
This method helps you determine the rate at which tables become fragmented to the degree that
performance is impacted, and so determine the optimal frequency at which to defragment tables.

To obtain information about the degree of fragmentation of your database tables, use one of the following
methods:

● The sa_table_fragmentation system procedure.

● The Fragmentation tab in the SQL Anywhere plug-in. The Fragmentation tab provides a graphical
representation of the results from running sa_table_fragmentation system procedure on base tables.

See also
● “sa_table_fragmentation system procedure” [SQL Anywhere Server - SQL Reference]
● “sa_table_fragmentation system procedure” [SQL Anywhere Server - SQL Reference]
● “REORGANIZE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “Unload utility (dbunload)” [SQL Anywhere Server - Database Administration]
● “Performance monitoring and diagnostic tools” on page 125
● “The Fragmentation tab (SQL Anywhere plug-in)” on page 202

Example
To determine the degree of fragmentation, perform the following:

1. Connect to the database as a user with DBA authority.

2. Run the sa_table_fragmentation system procedure.

3. For example, execute the following statement to get information about all tables in the database:

CALL sa_table_fragmentation();

Methods to reduce table fragmentation
The following methods help control table fragmentation:

● Use PCTFREE SQL Anywhere reserves extra room on each page to allow rows to grow slightly.
When an update to a row causes it to grow beyond the original space allocated for it, the row is split
and the initial row location contains a pointer to another page where the entire row is stored. For

Tips for improving performance

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 201

example, filling empty rows with UPDATE statements or inserting new columns into a table can lead
to severe row splitting. As more rows are stored on separate pages, more time is required to access the
additional pages.

You can reduce the amount of fragmentation in your tables by specifying the percentage of space in a
table page that should be reserved for future updates. This PCTFREE specification can be set with
CREATE TABLE, ALTER TABLE, DECLARE LOCAL TEMPORARY TABLE, or LOAD
TABLE.

● Reorganize tables You can defragment specific tables using the REORGANIZE TABLE
statement or clicking Reorganize on the Fragmentation tab in Sybase Central.

● Rebuild the database Rebuilding the database defragments all tables, including system tables,
provided the rebuild is performed as a two-step process, that is, data is unloaded and stored to disk,
and then reloaded. Rebuilding in this manner also has the benefit of rearranging the table rows so they
appear in the order specified by the clustered index and primary keys. One-step rebuilds (for example,
using the -ar, -an, or -ac options), do not reduce table fragmentation.

See also
● “PCTFREE clause” [SQL Anywhere Server - SQL Reference]
● “REORGANIZE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “The Fragmentation tab (SQL Anywhere plug-in)” on page 202
● “Database rebuilds” on page 678
● “Unload utility (dbunload)” [SQL Anywhere Server - Database Administration]

The Fragmentation tab (SQL Anywhere plug-in)

You can use the Fragmentation tab to:

● View the fragmentation of base tables and indexes on those tables.

● Reorganize tables and indexes.

Zooming within a dbspace map
By default, when a dbspace map is opened in the bottom pane of the Fragmentation tab, the zoom level
is set to Fit To Window. You can zoom in by clicking the dbspace map and you can zoom out by
pressing Shift while clicking. When you click or press Shift while clicking within the dbspace map, the
clicked page is centered in the map after the zoom level change.

You can also use the toolbar buttons to zoom to the following levels:

Toolbar button Definition

1 : 1 1 page: 1 pixel

64KB: 1 1 64KB: 1 pixel (one database read)

Fit To Window Uses all available space in the window

Performance improvements, diagnostics, and monitoring

202 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Viewing an object's fragmentation details

You can view fragmentation information for an object from the Fragmentation tab in Sybase Central.

Prerequisites

DBA authority.

Context and remarks

Many.

View an object's fragmentation details (Sybase Central)

1. Click the Fragmentation tab:

a. Connect to the database.

b. In the left pane, select the database.

c. In the right pane, click the Fragmentation tab.

2. Select an object from the top pane. The fragmentation information appears in a dbspace map in the
bottom pane:

● When you select a base table, the table, its extension pages, and applicable index pages appear in
the dbspace map in the bottom pane.

● When you select an index, its index pages appear in the dbspace map in the bottom pane.

Tips for improving performance

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 203

3. Click Checkpoint & Refresh to perform a checkpoint and see the most recent fragmentation
information.

4. View the page indexes.

● In the dbspace map in the bottom pane, hover your cursor over a colored-vertical bar to see the first
and last page indexes at that position.

● In the dbspace map, press and hold the Ctrl key while hovering the mouse over a colored-vertical
bar to see all the page indexes at that position.

Results

Fragmentation details for the specified object appear in the dbspace map in the bottom pane.

Next

None.

Reorganizing base tables and indexes

Administrators can reorganize base tables and indexes from the Fragmentation tab in Sybase Central.

Performance improvements, diagnostics, and monitoring

204 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Prerequisites

DBA authority.

Context and remarks

Many.

Reorganize base tables and indexes (Sybase Central)

1. Click the Fragmentation tab.

2. Connect to the database.

3. In the left pane, select the database.

4. In the right pane, click the Fragmentation tab.

5. Select an object from the top pane. The fragmentation information appears in a dbspace map in the
bottom pane:

6. Choose one of the following methods to reorganize the object.

● Click Reorganize to execute a REORGANIZE TABLE statement on the selected object.

● Drag an object from the top pane into an Interactive SQL SQL Statements pane. A
REORGANIZE TABLE statement for the object appears in the SQL Statements pane. Execute the
statement.

This method is useful when you want to reorganize the objects at a later time or when you want to
continue using Sybase Central while reorganizing the objects.

● Select an object from the top pane, right-click, and click Copy to copy a REORGANIZE TABLE
statement for the object into the clipboard. Then, in Interactive SQL paste the statement into SQL
Statements pane and execute the statement.

This method is useful when you want to reorganize the objects at a later time or when you want to
continue using Sybase Central while reorganizing the objects.

Results

The specified table or index is reorganized.

Next

None.

See also
● “REORGANIZE TABLE statement” [SQL Anywhere Server - SQL Reference]

Tips for improving performance

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 205

Reduce index fragmentation and skew

Indexes are designed to speed up searches on particular columns, but they can become fragmented (less
dense) and skewed (unbalanced) if many delete operations are performed on the indexed table.

Index density reflects the average fullness of the index pages. Index skew reflects the typical deviation
from the average density. The amount of skew is important to the optimizer when making selectivity
estimates.

To determine whether your database contains indexes that contain unacceptable levels of fragmentation or
skew, use the Application Profiling Wizard.

You can also use the sa_index_fragmentation system procedure to review levels of index fragmentation
and skew. For example, the following statement calls the sa_index_density system procedure to examine
indexes on the Customers table.

CALL sa_index_density('Customers');

TableName TableId IndexName IndexID IndexType LeafPages Density Skew

Customers 718 CustomersKey 0 PKEY 1 0.127686 1.000000

Customers 718 IX_custom-
er_name

1 NUI 1 0.789795 1.000000

SQL Anywhere creates indexes on primary keys automatically. Note that these indexes have an IndexID
of 0 in the results for the sa_index_density system procedure.

When the number of leaf pages is low, you do not need to be concerned about density and skew values.
Density and skew values become important only when the number of leaf pages is high. When the number
of leaf pages is high, a low density value can indicate fragmentation, and a high skew value can indicate
that indexes are not well balanced. Both of these can be factors in poor performance. Executing a
REORGANIZE TABLE statement addresses both of these issues.

You can also use the Fragmentation tab in the SQL Anywhere plug-in to review levels of index
fragmentation on indexes associated with base tables.

See also
● “Using the Application Profiling Wizard” on page 127
● “REORGANIZE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “The Fragmentation tab (SQL Anywhere plug-in)” on page 202
● “The Fragmentation tab (SQL Anywhere plug-in)” on page 202
● “sa_index_density system procedure” [SQL Anywhere Server - SQL Reference]
● “Indexes” on page 23
● “The Fragmentation tab (SQL Anywhere plug-in)” on page 202

Performance improvements, diagnostics, and monitoring

206 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Declare constraints
Undeclared primary key-foreign key relationships exist between tables when there is an implied
relationship between the values of columns in different tables. It is true that not declaring the relationship
can save time on index maintenance, however, declaring the relationship can improve performance of
queries when joins take place because the cost model is able to do a better job of estimation.

See also
● “Table and column constraints” on page 759

Improve index performance
If your index is not performing as expected, you may want to consider the following actions:

● Reorganize composite indexes.
● Increase the page size.

These measures improve index selectivity and index fan-out.

See also
● “Advanced: Index selectivity and fan-out” on page 34

Minimize cascading referential actions
Cascading referential actions are costly because they cause updates to multiple tables for every transaction
and this affects performance. For example, if the foreign key from Employees to Departments was
defined with ON UPDATE CASCADE, then updating a department ID would automatically update the
Employees table. While cascading referential actions are convenient, sometimes it might be more efficient
to implement them in application logic instead.

See also
● “Data integrity” on page 749

Monitor query performance
SQL Anywhere includes several tools for testing the performance of queries. These tools are stored in
subdirectories under %SQLANYSAMP12%\SQLAnywhere, as noted below. Complete documentation
about each tool can be found in a readme.txt file that is located in the same folder as the tool.

For information about system procedures that measure query execution times, see “sa_get_request_profile
system procedure” [SQL Anywhere Server - SQL Reference] and “sa_get_request_times system
procedure” [SQL Anywhere Server - SQL Reference].

Tips for improving performance

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 207

Tool Function Location

fetchtst Determines the time required for a result set to be re-
trieved.

%SQLANYSAMP12%\SQLAny-
where\PerformanceFetch

odbcfet Determines the time required for a result set to be re-
trieved. This tool is similar to fetchtst, but with less func-
tionality.

%SQLANYSAMP12%\SQLAny-
where\PerformanceFetch

instest Determines the time required for rows to be inserted into
a table.

%SQLANYSAMP12%\SQLAny-
where\PerformanceInsert

trantest Measures the load that can be handled by a given data-
base server configuration given a database design and a
set of transactions.

%SQLANYSAMP12%\SQLAny-
where\PerformanceTransaction

See also
● “Tutorial: Diagnosing slow statements” on page 232
● “Troubleshooting performance problems” on page 156

Normalize your table structure
One or more database tables may contain multiple copies of the same information (for example, a column
that is repeated in several tables), and your table may need to be normalized.

Normalization reduces duplication in a relational database. For example, suppose your company
employees work at several different offices. To normalize the database, consider placing information
about the offices (such as its address and main telephone numbers) in a separate table, rather than
duplicating all this information for every employee.

If the amount of duplicate information is small, you may find it better to duplicate the information and
maintain its integrity using triggers or other constraints.

See also
● “SQL Anywhere database creation” [SQL Anywhere Server - Database Administration]

Optimize for mixed or OLAP workload
The optimization_workload option allows you to specify whether query processing should be optimized
towards databases where updates, deletes, or inserts are commonly executed concurrently with queries
(mixed workload) or whether the main form of update activity in the database is batch-style updates that
are rarely executed concurrently with query execution.

Performance improvements, diagnostics, and monitoring

208 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “optimization_workload option” [SQL Anywhere Server - Database Administration]

Place different files on different devices
Disk drives operate much more slowly than modern processors or RAM. Often, simply waiting for the
disk to read or write pages is the reason that a database server is slow.

You may improve database performance by putting different database files on different physical devices
or drives. For example, while one disk drive is busy swapping database pages to and from the cache,
another drive can be writing to the log file. To gain these benefits, the drives must be independent. A
single disk partitioned into smaller logical drives is unlikely to yield benefits.

SQL Anywhere uses four types of files: the database file, the transaction log file, the transaction log
mirror, and the temporary file. These files should exist on separate drives.

Placing the database file and the transaction log file on physically separate drives is recommended to
protect against media failure.

Placing the transaction log mirror file and the temporary file on physically separate drives can help SQL
Anywhere run faster. SQL Anywhere writes more efficiently to the transaction log and transaction log
mirror files when they exist on separate drives. When the database server needs to use the temporary file,
the overall database performance is heavily dependent on the speed of the drive containing the temporary
file. Because many operations that use the temporary file also require retrieving information from the
database, placing the temporary file on a separate drive allows the operations to take place
simultaneously.

A database can be held in up to 13 separate files (the main file and 12 dbspaces), which can be located on
separate drives. Place tables into separate dbspaces so that common join operations read information from
different dbspaces.

When you create all tables or indexes in a location other than the system dbspace, the system dbspace is
only used for the checkpoint log and system tables. This configuration is useful if you want to put the
checkpoint log on a separate drive from the rest of your database objects for performance reasons. To
create base tables in another dbspace, change all the CREATE TABLE statements to use the IN
DBSPACE clause to specify the alternative dbspace, or change the setting of the default_dbspace option
before creating any tables. Temporary tables can only be created in the TEMPORARY dbspace.

A similar strategy involves placing the temporary and database files on a RAID device or a stripe set.
Although such devices act as a logical drive, they dramatically improve performance by distributing files
over many physical drives and accessing the information using multiple heads.

You can specify the -fc option when starting the database server to implement a callback function when
the database server encounters a file system full condition.

Tips for improving performance

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 209

See also
● “Database file types” [SQL Anywhere Server - Database Administration]
● “Transaction Log utility (dblog)” [SQL Anywhere Server - Database Administration]
● “Changing the location of a transaction log” [SQL Anywhere Server - Database Administration]
● “Use work tables in query processing (use All-rows optimization goal)” on page 225
● “Backup and data recovery” [SQL Anywhere Server - Database Administration]
● “SATMP environment variable” [SQL Anywhere Server - Database Administration]
● “Media failure” [SQL Anywhere Server - Database Administration]
● “Additional dbspaces considerations” [SQL Anywhere Server - Database Administration]
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “default_dbspace option” [SQL Anywhere Server - Database Administration]
● “-fc dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]

Rebuild your database
Rebuilding your database is the process of unloading and reloading your entire database. It is also called
upgrading your database file format.

Rebuilding removes all the information, including data and schema, and puts it all back in a uniform
fashion. Like defragmenting your disk drive, performance is improved space is filled in. It also gives you
the opportunity to change certain settings.

See also
● “Database rebuilds” on page 678

Reduce primary key width
Wide primary keys are composed of two or more columns. The more columns contained in your primary
key, the more demand there is on the database server. Reducing the number of columns in your primary
keys can improve performance.

See also
● “Primary keys” on page 15
● “Use keys to improve query performance” on page 219

Reduce table widths
Tables where the combined columns (or the size of an individual row) exceeds the database page size and
must be split across two or more database pages are referred to as wide table. The more pages a row takes
up, the longer the database server takes to read each row. If you have wide tables, and find performance
slow consider further normalizing your tables to reduce the number of columns. If that is not possible, a
larger database page size may be helpful, especially if most tables are wide.

Performance improvements, diagnostics, and monitoring

210 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “SQL Anywhere database creation” [SQL Anywhere Server - Database Administration]

Reduce requests between client and server
In a situation where your network exhibits poor latency, or your application sends many cursor open and
close requests, you can use the LazyClose and PrefetchOnOpen network connection parameters to reduce
the number of requests between the client and server and thereby improve performance.

See also
● “LazyClose (LCLOSE) connection parameter” [SQL Anywhere Server - Database Administration]
● “PrefetchOnOpen connection parameter” [SQL Anywhere Server - Database Administration]

Reduce expensive user-defined functions
Reducing expensive user-defined functions in queries where they have to be executed many times can
improve performance.

See also
● “User-defined functions” on page 76

Replace expensive triggers
Evaluate the use of triggers to see if some of the triggers could be replaced by features available in the
database server. For instance, triggers to update columns with the latest update time and user information
can be replaced with the corresponding special values in the database server. As well, using the default
settings on existing triggers can also improve performance.

See also
● “Triggers” on page 80

Review the order of columns in tables
The order of the columns in a table affects performance. Columns in a row are accessed sequentially in
the order of their creation. For example, to access columns at the end of a row, the database server
traverses the columns that appear earlier in the row. You should order your columns so that narrow and/or
frequently accessed columns are placed before seldom accessed and/or wider columns in the table.

Wide columns are columns greater than 15 bytes in size, or LONG data types (for example, LONG
VARCHAR), or columns defined as XML. Primary key columns are always stored at the beginning of
row.

Tips for improving performance

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 211

See also
● “SQL Anywhere database creation” [SQL Anywhere Server - Database Administration]
● “Primary keys” on page 15

Use strategic sorting of query results
Reduce the amount of unnecessary sorting of data; unless you need the data returned in a predictable
order, do not specify an ORDER BY clause in SELECT statements. Sorting requires extra time and
resources to process the query.

See also
● “The ORDER BY clause: Sorting query results” on page 418
● “The GROUP BY clause: Organizing query results into groups” on page 411

Specify the correct cursor type
Specifying the correct cursor type can improve performance. For example, if a cursor is read-only, then
declaring it as read-only allows for faster optimization and execution, since there is less material to build,
such as check constraints, and so on. If the cursor is updatable, some query rewrites can be skipped. Also,
if a query is updatable, then depending on the execution plan chosen by the optimizer, the database server
must use a keyset driven approach. Keep in mind that keyset cursors are more expensive.

See also
● “Cursor types” [SQL Anywhere Server - Programming]

Supply explicit selectivity estimates sparingly
Occasionally, statistics may become inaccurate. This condition is most likely to arise when only a few
queries have been executed since a large amount of data was added, updated, or deleted. Inaccurate or
unavailable statistics can impede performance. If SQL Anywhere is taking too long to update the
statistics, try executing CREATE STATISTICS or DROP STATISTICS to refresh them.

SQL Anywhere also updates some statistics when executing LOAD TABLE statements, during query
execution, and when performing update DML statements.

In unusual circumstances, however, these measures may prove ineffective. If you know that a condition
has a success rate that differs from the optimizer's estimate, you can explicitly supply a user estimate in
the search condition.

Although user defined estimates can sometimes improve performance, avoid supplying explicit user-
defined estimates in statements that are to be used on an ongoing basis. Should the data change, the
explicit estimate may become inaccurate and may force the optimizer to select poor plans.

If you have used selectivity estimates that are inaccurate as a workaround to performance problems where
the software-selected access plan was poor, you can set user_estimates to Off to ignore the values.

Performance improvements, diagnostics, and monitoring

212 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “Explicit selectivity estimates” [SQL Anywhere Server - SQL Reference]

Turn off autocommit mode
If your application runs in autocommit mode, then SQL Anywhere treats each of your statements as a
separate transaction. In effect, it is equivalent to appending a COMMIT statement to the end of each of
your statements.

Instead of running in autocommit mode, consider grouping your SQL statements so each group performs
one logical task. If you disable autocommit, you must execute an explicit commit after each logical group
of SQL statements. Also, be aware that if logical transactions are large, blocking and deadlock can
happen.

If you are not using a transaction log file, the cost of using autocommit mode is high. Every statement
forces a checkpoint—an operation that can involve writing numerous pages of information to disk.

Each application interface has its own way of setting autocommit behavior. For the Open Client, ODBC,
and JDBC interfaces, Autocommit is the default behavior.

See also
● “Autocommit and manual commit mode” [SQL Anywhere Server - Programming]

Update column statistics
Column statistics are stored permanently in the database in the ISYSCOLSTAT system table. To
continually improve the optimizer's performance, the database server automatically updates column
statistics during the processing of any SELECT, INSERT, UPDATE, or DELETE statement, including
statements on a single row. It does so by monitoring the number of rows that satisfy any predicate that
references a table or column, comparing that number to the number of rows estimated, and then, if
necessary, updating existing statistics.

With more accurate column statistics available to it, the optimizer can compute better estimates and
improve the performance of subsequent queries.

You can set whether to update column statistics using database options. The update_statistics database
option controls whether to update column statistics during execution of queries, while the
collect_statistics_on_dml_updates database option controls whether to update the statistics during the
execution of data-altering DML statements such as LOAD, INSERT, DELETE, and UPDATE.

If you suspect that performance is suffering because your statistics inaccurately reflect the current column
values, you may want to execute the statements CREATE STATISTICS or DROP STATISTICS.
CREATE STATISTICS deletes old statistics and creates new ones, while DROP STATISTICS only
deletes old statistics.

When you execute the CREATE INDEX statement, statistics are automatically created for the index.

Tips for improving performance

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 213

When you execute the LOAD TABLE statement, statistics are automatically created for the table.

See also
● “SYSCOLSTAT system view” [SQL Anywhere Server - SQL Reference]
● “CREATE STATISTICS statement” [SQL Anywhere Server - SQL Reference]
● “ALTER STATISTICS statement” [SQL Anywhere Server - SQL Reference]
● “DROP STATISTICS statement” [SQL Anywhere Server - SQL Reference]
● “update_statistics option” [SQL Anywhere Server - Database Administration]
● “collect_statistics_on_dml_updates option” [SQL Anywhere Server - Database Administration]

How the statistics governor maintains statistics

In addition to the automatic adjustment of column statistics that is performed when a query is executed,
the statistics governor also monitors the health and usage of optimizer statistics. The statistics governor
automatically evaluates the health and usefulness of each statistic in the database and performs required
maintenance so that the statistics are self-monitored and self-healing. Statistics maintenance is performed
in the background and does not create a significant load on database server performance.

The statistics governor performs the following tasks:

● Records statistics usage and estimation errors from query feedback
● Fixes or remakes statistics that have low accuracy
● Stops automatic maintenance for statistics that cannot be maintained efficiently
● Creates potentially useful statistics
● Drops unused statistics

The update_statistics option controls whether the specified connection can send query feedback to the
statistics governor. If this option is set to Off, the statistics governor does not receive query feedback from
the specified connection. However, the statistics governor can still receive query feedback from other
connections and perform maintenance operations on statistics.

The statistics governor decides when to fix or create a statistics based on its health and usage. A statistic
can be fixed or created either by gathering statistics during query execution, or by a separate process
called the statistics cleaner. You can disable the statistics cleaner by using the StatisticsCleaner option for
the sa_server_option system procedure without disabling the statistics governor, but when the statistics
cleaner is turned off, statistics are only created or fixed when a query is run.

To reduce server workload, the statistics governor stops maintenance on statistics that are hard to fix or
never used. Statistics that have been fixed numerous times within a short period of time and still return
poor estimates are dropped and are not maintained for 30 days. Dropped statistics are recreated after 30
days, and regular maintenance is resumed. You can disable this feature using the DropBadStatistics option
for the sa_server_option system procedure. Statistics that have not been used in the last 90 days are also
dropped. To disable this feature, use the DropUnusedStatistics option for the sa_server_option system
procedure. You can resume maintenance on a statistic at any time by using the CREATE STATISTICS,
DROP STATISTICS, or ALTER STATISTICS statements.

Statistics are only monitored for tables that are loaded into memory, and these statistics are flushed every
30 minutes. During flushing, the health and usage of the statistics are checked, and the statistics governor

Performance improvements, diagnostics, and monitoring

214 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

performs maintenance on the statistics. The state information about a statistic (such as health, usage, and
information about when to update or drop a statistic) does not persist between sessions. The state
information is reset when the database server shuts down.

See also
● “CREATE STATISTICS statement” [SQL Anywhere Server - SQL Reference]
● “ALTER STATISTICS statement” [SQL Anywhere Server - SQL Reference]
● “DROP STATISTICS statement” [SQL Anywhere Server - SQL Reference]
● “update_statistics option” [SQL Anywhere Server - Database Administration]
● “sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]

Use an appropriate page size
The page size you choose can affect the performance of your database. There are advantages and
disadvantages to both large and small page sizes.

SQL Anywhere attempts to fill pages as much as possible. Empty space accumulates only when new
objects are too large to fit empty space on existing pages. So, adjusting the page size may not significantly
affect the overall size of your database.

It is strongly recommended that you test performance (and other behavior aspects) when choosing a page
size. Then, choose the smallest page size that gives satisfactory results. It is important to pick the correct
and reasonable page size if more than one database is started on the same server.

Smaller pages hold less information and may use space less efficiently, particularly if you insert rows that
are slightly more than half a page in size. However, small page sizes allow SQL Anywhere to run with
fewer resources because more pages can be stored in a cache of the same size. Small pages are useful if
your database runs on a small computer with limited memory. They can also help when your database is
used primarily for the retrieval of small pieces of information from random locations.

A larger page size helps SQL Anywhere read databases more efficiently. Large page sizes tend to benefit
large databases, and queries that perform sequential table scans. Often, the physical design of disks
permits them to retrieve fewer large blocks more efficiently than many small ones. Other benefits of large
page sizes include improving the fan-out of your indexes, thereby reducing the number of index levels,
and allowing tables to include more columns. Should you choose a larger page size, you may want to
increase the size of the cache because fewer large pages can fit into a cache of the same size. If your cache
cannot hold enough pages, performance suffers as the database server begins swapping frequently-used
pages to disk.

Larger page sizes have additional memory requirements. As well, extremely large page sizes (16 KB or
32 KB) are not recommended for most applications unless you can be sure that a large database server
cache is always available.

The database server's memory usage is proportional to the number of databases loaded, and the page size
of the databases. It is strongly recommended that you do performance testing (and testing in general)
when choosing a page size. Then choose the smallest page size (>= 4 KB) that gives satisfactory results. It
is important to pick the correct (and reasonable) page size if a large number of databases are going to be
started on the same server.

Tips for improving performance

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 215

You cannot change the page size of an existing database. Instead you must create a new database and use
the -p option of dbinit to specify the page size. For example, the following command creates a database
with 4 KB pages.

dbinit -p 4096 new.db

You can also use the CREATE DATABASE statement with a PAGE SIZE clause to create a database
with the new page size.

For each table, SQL Anywhere creates a bitmap that reflects the position of each table page in the entire
dbspace file. The database server uses the bitmap to read large blocks (64 KB) of table pages, instead of
single pages at a time. This efficiency, also known as group reads, reduces the total number of I/O
operations to disk, and improves performance. Users cannot control the database server's criteria for
bitmap creation or usage.

Page size and indexes
Page size also affects indexes. Each index lookup requires one page read for each of the levels of the
index plus one page read for the table page, and a single query can require several thousand index
lookups. Page size can significantly affect fan-out, in turn affecting the depth of index required for a table.
A large fan-out often means that fewer index levels are required, which can improve searches
considerably. For large databases that have tables with a significant numbers of rows, 8 KB pages may be
warranted for the best performance.

Scattered reads
If you are working with Windows, a minimum page size of 4 KB allows the database server to read a
large contiguous region of database pages on disk directly into the appropriate place in cache, bypassing
the 64 KB buffer entirely. This feature can significantly improve performance.

Note
Scattered reads are not used for files on remote computers, or for files specified using a UNC name such
as \\mycomputer\myshare\mydb.db.

See also
● “Maximum page size considerations” [SQL Anywhere Server - Database Administration]
● “CREATE DATABASE statement” [SQL Anywhere Server - SQL Reference]

Use appropriate data types
Data types store information about specific sets of data, including ranges of values, the operations that can
be performed on those values, and how the values are stored in memory. You can improve performance
by using the appropriate data type for your data. For instance, avoid assigning a data type of CHAR to
values that only contain numeric data. And whenever possible, choose efficient data types over the more
expensive numeric and string types.

See also
● “SQL data types” [SQL Anywhere Server - SQL Reference]

Performance improvements, diagnostics, and monitoring

216 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Use AUTOINCREMENT to create primary keys
Primary key values must be unique. Although there are a variety of ways to create unique values for
primary keys, the most efficient method is setting the default column value to be AUTOINCREMENT.
You can use this default for any column in which you want to maintain unique values. Using the
AUTOINCREMENT feature to generate primary key values is faster than other methods because the
value is generated by the database server.

See also
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TABLE statement” [SQL Anywhere Server - SQL Reference]

Use bulk operations methods
If you load large amounts of information into your database, you can benefit from the special tools
provided for these tasks.

If you are loading large files, it is more efficient to create indexes on the table after the data is loaded.

See also
● “Performance aspects of bulk operations” on page 641

Use delayed commits
When the rate of committed changes to a database is high, the rate of transaction log writes can be the
single largest factor in determining overall database performance. If you are trying to improve transaction
log performance, you can set the delayed_commits option to On. When set to On, the database server
replies to a COMMIT statement immediately instead of waiting until the transaction log entry for the
COMMIT has been written to disk. When set to Off, the application must wait until the COMMIT is
written to disk. Turning on the delayed_commits option results in fewer transaction log writes by
avoiding multiple re-writes of partially-filled log pages, and you can set the option per connection or for
all connections. When the delayed_commits option is turned on, there is a risk that committed operations
may be lost if the server goes down before the transaction log pages are flushed to disk.

See also
● “delayed_commits option” [SQL Anywhere Server - Database Administration]

Use in-memory mode
If your application can tolerate the loss of committed transactions after the most recent checkpoint, then
your application may benefit from using in-memory mode.

Tips for improving performance

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 217

This mode is useful in applications where increased performance is desirable, and you are running on a
system with a large amount of available memory, typically enough to hold all the database files within the
cache.

You can choose between two different in-memory modes. In never-write mode, committed transactions
are not written to the database file on disk. When you specify never-write mode, multiple concurrent
LOAD TABLE statements can be active on the same or different tables. All changes are lost if the
database is shut down or the connection is lost. In checkpoint-only mode, the database server does not use
a transaction log, and you cannot recover to the most recent committed transaction. However, because the
checkpoint log is enabled, the database can be recovered to the most recent checkpoint.

For more information about configuring in-memory mode and determining if it is appropriate for your
application, see “-im dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration].

Note
In-memory mode requires a separate license. See “Separately licensed components” [SQL Anywhere 12 -
Introduction].

Use indexes effectively
Often, SQL Anywhere can evaluate search conditions with the aid of indexes. Using indexes speeds
optimizer access to data and reduces the amount of information read and processed from base tables. For
example, if a query contains a search condition WHERE column-name=value, and an index exists on
the column, an index scan can be used to read only those rows of the table that satisfy the search
condition. Indexes also improve performance dramatically when joining tables.

When executing a query, SQL Anywhere chooses how to access each table. When the database server
cannot find a suitable index, it resorts to scanning the table sequentially—a process that can take a long
time.

For example, suppose you need to search a large database for employees, and you only know their first or
last name, but not both. If no index exists, SQL Anywhere scans the entire table. If, however, you created
two indexes (one that contains the last names first, and a second that contains the first names first), SQL
Anywhere scans the indexes first, and can generally return the information to you faster.

Proper selection of indexes can make a large performance difference
Although indexes let SQL Anywhere locate information very efficiently, exercise some caution when
adding them. Each index creates extra work every time you insert, delete, or update a row because SQL
Anywhere must also update all affected indexes.

Consider adding an index when it allows SQL Anywhere to access data more efficiently. In particular,
add an index when it eliminates unnecessarily accessing a large table sequentially. If, however, you need
better performance when you add rows to a table, and finding information quickly is not an issue, use as
few indexes as possible.

You may want to use the Index Consultant to guide you through the selection of an effective set of
indexes for your database.

Performance improvements, diagnostics, and monitoring

218 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Query optimization
Whenever possible, the optimizer attempts index-only retrieval to satisfy a query. With index-only
retrieval, the database server uses only the data in the indexes to satisfy the query, and does not need to
access rows in the table. The optimizer automatically chooses to use the indexes it determines will lead to
the best performance. However, you can also use index hints in your query to specify the indexes you
want the optimizer to use. If any of the specified indexes cannot be used, an error is returned. Note that
index hinting can result in poor performance and should only be attempted by experienced users. Use the
Index Consultant to determine whether additional indexes are recommended for your database.

Clustered indexes
Using clustered indexes helps store rows in a table in approximately the same order as they appear in the
index.

See also
● “Indexes” on page 23
● “Index Consultant” on page 134
● “Indexes” on page 23
● “Clustered indexes” on page 27
● “WITH (index-hint) clause, FROM clause” [SQL Anywhere Server - SQL Reference]
● “Query predicates” on page 248
● “FROM clause” [SQL Anywhere Server - SQL Reference]

Use keys to improve query performance
Primary keys and foreign keys, while used primarily for validation purposes, can also improve database
performance.

Example
The following example illustrates how primary keys can make queries execute more quickly.

SELECT *
FROM Employees
WHERE EmployeeID = 390;

The simplest way for the database server to execute this query would be to look at all 75 rows in the
Employees table and check the employee ID number in each row to see if it is 390. This does not take
very long since there are only 75 employees, but for tables with many thousands of entries a sequential
search can take a long time.

The referential integrity constraints embodied by each primary or foreign key are enforced by SQL
Anywhere through the help of an index, implicitly created with each primary or foreign key declaration.
The EmployeeID column is the primary key for the Employees table. The corresponding primary key
index permits the retrieval of employee number 390 quickly. This quick search takes almost the same
amount of time whether there are 100 rows or 1000000 rows in the Employees table.

Separate indexes are created automatically for primary and foreign keys. This arrangement allows SQL
Anywhere to perform many operations more efficiently.

Tips for improving performance

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 219

See also
● “Relationships between tables” [SQL Anywhere 12 - Introduction]

Use materialized views to improve query performance
Consider using materialized views for frequently executed, expensive queries, such as those involving
intensive aggregation and join operations. Materialized views provide a queryable structure in which to
store aggregated, joined data. Materialized views are designed to improve performance in environments
where the database is large, and where frequent queries result in repetitive aggregation and join operations
on large amounts of data. For example, materialized views are ideal for use with data warehousing
applications.

The optimizer maintains a list of materialized views to consider as candidates for partially or fully
satisfying a submitted query when optimizing. If the optimizer finds a candidate materialized view that
can satisfy all or part of the query, it includes the view in the recommendations it makes for the
enumeration phase of optimization, where the best plan is determined based on cost. The process used by
the optimizer to match materialized views to queries is called view matching. Before a materialized view
can be considered by the optimizer, the view must satisfy certain conditions. If the optimizer determines
that materialized view usage is allowed, then each candidate materialized view is examined. This means
that unless a materialized view is explicitly referenced by the query, there is no guarantee that the
optimizer uses it. You can, however, make sure that the conditions are met for the view to be considered.

See also
● “Materialized views” on page 49
● “Enabling or disabling optimizer use of a materialized view” on page 63

Materialized views and view matching

The optimizer uses a View Matching algorithm to determine whether materialized views can be used to
satisfy a query. The determination involves a query evaluation step, and a materialized view evaluation
step.

Query evaluation step
During query evaluation, the View Matching algorithm examines the query. If any of the following
conditions are true, materialized views are not used to process the query.

● All the tables referenced by the query are updatable.

The optimizer does not consider materialized views for a SELECT statement that is inherently
updatable, or is explicitly declared in an updatable cursor. This situation can occur when using
Interactive SQL, which utilizes updatable cursors by default for SELECT statements.

● The statement is a simple DML statement that uses optimizer bypass and is optimized heuristically.
However, you can force cost-based optimization of any SELECT statement using the FORCE
OPTIMIZATION option of the OPTION clause.

Performance improvements, diagnostics, and monitoring

220 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● For queries contained inside stored procedures and user-defined functions, the query's execution plan
has been cached. The database server may cache the execution plans for these queries so that they can
be reused. For this class of queries, the query execution plan is cached after execution. The next time
the query is executed, the plan is retrieved and all the phases up to the execution phase are skipped.

Materialized view evaluation step
The optimizer includes a materialized view in the set of materialized views to be examined by the View
Matching algorithm if the view definition:

● contains only one query block

● contains only one FROM clause

● does not contain any of the following constructs or specifications:

○ GROUPING SETS
○ CUBE
○ ROLLUP
○ subquery
○ derived table
○ UNION
○ EXCEPT
○ INTERSECT
○ materialized views
○ DISTINCT
○ TOP
○ FIRST
○ self-join
○ recursive join
○ FULL OUTER JOIN

● (optionally) contains a GROUP BY clause, and a HAVING clause, provided the HAVING clause does
not contain subselects or subqueries.

In addition to meeting the view definition criteria:

● the materialized view must be enabled for use by the database server

● the materialized view must be enabled for use in optimization

● the materialized view must be initialized (populated with data)

● values for some critical options used to create the materialized views must match the options for the
connection executing the query

● last refresh of the materialized view can not have exceeded the staleness threshold set for the
materialized_view_optimization database option

If the materialized view meets the above criteria, and it is found to satisfy all or part of the query, the
View Matching algorithm includes the materialized view in its recommendations for the enumeration

Tips for improving performance

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 221

phase of optimization, when the best plan is found based on cost. However, this does not mean that the
materialized view will ultimately be used in the final execution plan. For example, materialized views that
appear suitable for computing the result of a query may still not be used if another access plan, which
doesn't use the materialized view, is estimated to be less expensive.

See also
● “Enabling or disabling optimizer use of a materialized view” on page 63
● “sa_materialized_view_info system procedure” [SQL Anywhere Server - SQL Reference]
● “Plan caching” on page 290
● “SELECT statement” [SQL Anywhere Server - SQL Reference]
● “Advanced: Query execution plans” on page 293
● “Advanced: Query processing phases” on page 283
● “Application profiling” on page 126

Retrieving the list of materialized view candidates

From Interactive SQL, you can retrieve a list of materialized views that are candidates to be considered by
the optimizer.

Prerequisites

DBA authority, or execute permissions on DBO owned procedures.

Context and remarks

Many.

Retrieve the list of materialized view candidates

1. Execute the following statement:

SELECT * FROM sa_materialized_view_info() WHERE AvailForOptimization='Y';

The list returned is specific to the requesting connection, since the optimizer takes into account option
settings when generating the list. A materialized view is not considered a candidate if there is a
mismatch between the options specified for the connection and the options that were in place when the
materialized view was created.

2. To obtain a list of all materialized views that are not considered candidates for the connection because
of a mismatch in option settings, execute the following from the connection that will execute the
query:

SELECT * FROM sa_materialized_view_info() WHERE AvailForOptimization='O';

Results

The list of candidate materialized views is displayed.

Performance improvements, diagnostics, and monitoring

222 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Next

None.

See also
● “Materialized views restrictions” on page 53

Determining which materialized views were considered by the
optimizer

In Interactive SQL you can determine which materialized view the optimizer used to satisfy a query.

Prerequisites

None.

Context and remarks

Note
When snapshot isolation is in use, the optimizer does not consider materialized views that were refreshed
after the start of the snapshot for the current transaction.

Determine which materialized views were considered by the optimizer

1. Start Interactive SQL and connect to the SQL Anywhere database.

2. Click Tools » Plan Viewer (or press Shift+F5).

3. Type the query in the SQL pane.

4. Select a Statistics level, a Cursor type and an Update status.

5. Click Get Plan.

6. Look on the Details and Advanced Details panes to see which materialized views, if any, were used
to satisfy the query.

Results

The materialized views that were used to satisfy the query are displayed.

Next

None.

Tips for improving performance

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 223

See also
● “Advanced: Query execution plans” on page 293
● “Application profiling” on page 126
● “Customized diagnostic tracing levels” on page 142
● “Advanced: Query processing phases” on page 283

Use compression carefully
Compression of packets for connections

Enabling compression for one connection or all connections, and adjusting the minimum size limit at
which packets are compressed can offer significant improvements to performance under some
circumstances.

To determine if enabling compression is beneficial, conduct a performance analysis on your network and
using your application before using communication compression in a production environment.

Enabling compression increases the quantity of information stored in data packets, thereby reducing the
number of packets required to transmit a particular set of data. By reducing the number of packets, the
data can be transmitted more quickly.

Specifying the compression threshold allows you to choose the minimum size of data packets that you
want compressed. The optimal value for the compression threshold may be affected by a variety of
factors, including the type and speed of network you are using.

Database compression
The use of file-level or disk-level compression for database and log files is not recommended since the
compression layer may significantly increase the cost of IO operations.

See also
● “Communication compression settings” [SQL Anywhere Server - Database Administration]
● “Compress (COMP) connection parameter” [SQL Anywhere Server - Database Administration]
● “CompressionThreshold (COMPTH) connection parameter” [SQL Anywhere Server - Database

Administration]

Use the WITH EXPRESS CHECK option when validating
tables

If you find that validating large databases with a small cache takes a long time, you can use one of two
options to reduce the amount of time it takes. Using the WITH EXPRESS CHECK option with the
VALIDATE TABLE statement, or the -fx option with the Validation utility (dbvalid) can significantly
increase the speed at which your tables validate.

Performance improvements, diagnostics, and monitoring

224 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “VALIDATE statement” [SQL Anywhere Server - SQL Reference]
● “Validation utility (dbvalid)” [SQL Anywhere Server - Database Administration]

Use work tables in query processing (use All-rows
optimization goal)

Work tables are materialized temporary result sets that are created during the execution of a query. Work
tables are used when the cost is less than the alternative strategies. Generally, the time to fetch the first
few rows is higher when a work table is used, but the cost of retrieving all rows may be substantially
lower if a work table can be used. Because of this difference, SQL Anywhere chooses different strategies
based on the optimization_goal setting. The default is first-row. When it is set to first-row, SQL
Anywhere tries to avoid work tables. When it is set to All-rows, SQL Anywhere uses work tables when
they reduce the total execution cost of a query.

Work tables are used in the following cases:

● when a query has an ORDER BY, GROUP BY, or DISTINCT clause, and SQL Anywhere does not use
an index for sorting the rows. If a suitable index exists and the optimization_goal setting is First-row,
SQL Anywhere avoids using a work table. However, when optimization_goal is set to All-rows, it may
be more expensive to fetch all the rows of a query using an index than it is to build a work table and
sort the rows. SQL Anywhere chooses the less expensive strategy if the optimization goal is set to All-
rows. For GROUP BY and DISTINCT, the hash-based algorithms use work tables, but are generally
more efficient when fetching all the rows out of a query.

● when a hash join algorithm is chosen. In this case, work tables are used to store interim results (if the
input doesn't fit into memory) and a work table is used to store the results of the join.

● when a cursor is opened with sensitive values. In this case, a work table is created to hold the row
identifiers and primary keys of the base tables. This work table is filled in as rows are fetched from the
query in the forward direction. However, if you fetch the last row from the cursor, the entire table is
filled in.

● when a cursor is opened with insensitive semantics. In this case, a work table is populated with the
results of the query when the query is opened.

● when a multiple-row UPDATE is being performed and the column being updated appears in the
WHERE clause of the update or in an index being used for the update

● when a multiple-row UPDATE or DELETE has a subquery in the WHERE clause that references the
table being modified

● when performing an INSERT from a SELECT statement and the SELECT statement references the
insert table

● when performing a multiple row INSERT, UPDATE, or DELETE, and a corresponding trigger is
defined on the table that may fire during the operation

Tips for improving performance

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 225

In these cases, the records affected by the operation go into the work table. In certain circumstances, such
as keyset-driven cursors, a temporary index is built on the work table. The operation of extracting the
required records into a work table can take a significant amount of time before the query results appear.
Creating indexes that can be used to do the sorting in the first case, above, improves the time to retrieve
the first few rows. However, the total time to fetch all rows may be lower if work tables are used, since
these permit query algorithms based on hashing and merge sort. These algorithms use sequential I/O,
which is faster than the random I/O used with an index scan.

The optimizer analyzes each query to determine whether a work table would give the best performance.
No user action is required to take advantage of these optimizations.

Notes
The INSERT, UPDATE, and DELETE cases above are usually not a performance problem since they are
usually one-time operations. However, if problems occur, you may be able to rephrase the statement to
avoid the conflict and avoid building a work table. This is not always possible.

See also
● “optimization_goal option” [SQL Anywhere Server - Database Administration]

Application profiling tutorials
Use the application profiling tutorials to learn how to use the Application Profiling Wizard and the
Database Tracing Wizard to analyze common performance problems including deadlocks, slow
statements, index fragmentation, table fragmentation, and slow procedures.

Caution
The application profiling tutorials use the test database app_profiling.db which you create, not the sample
database (demo.db). Do not use the sample database to complete the tutorials.

Creating a test database for the application profiling
tutorials

Create the test database

Use the following procedure to create the test database app_profiling.db. This test database is used in all
of the application profiling tutorials.

1. Create the directory c:\AppProfilingTutorial.

2. Run the following command to create the test database app_profiling.db that contains data from the
sample database:

newdemo c:\AppProfilingTutorial\app_profiling.db

Performance improvements, diagnostics, and monitoring

226 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “Using the Application Profiling Wizard” on page 127
● “Diagnostic tracing” on page 139
● “Unload utility (dbunload)” [SQL Anywhere Server - Database Administration]

Tutorial: Diagnosing deadlocks
Use the lessons in this tutorial to learn how to use the Database Tracing Wizard to view deadlocks that
might occur in your database. You can use the Database Tracing Wizard to examine the conditions
under which the deadlocks are occurring, and the connections that are causing them.

Lesson 1: Setting up the database
Deadlocks occur when two or more transactions block one another. For example, Transaction A requires
access to Table B, but Table B is locked by Transaction B. Transaction B requires access to Table A, but
Table A is locked by Transaction A. A cyclical blocking conflict occurs.

A good indication that deadlocks are occurring is when SQLCODE -306 and -307 are returned. To
resolve a deadlock, SQL Anywhere automatically rolls back the last statement that created the deadlock.
Performance problems occur if statements are constantly rolled back.

Create a deadlock

1. This tutorial assumes you have created the test database, app_profiling.db.

2. Connect to app_profiling.db as follows:

a. In Sybase Central, in the SQL Anywhere 12 plug-in, click Connections » Connect With SQL
Anywhere 12.

b. In the Connect window, complete the following fields to connect to the test database,
app_profiling.db.

● Authentication Database

● User ID DBA

● Password sql

● Action Start A Database On This Computer

● Database File C:\AppProfilingTutorial\app_profiling.db

● Start Line dbeng12 -x tcpip

c. Click Connect.

3. In the left pane, click app_profiling - DBA, and then click File » Open Interactive SQL.

Interactive SQL starts and connects to the app_profiling.db database.

4. In Interactive SQL:

Application profiling tutorials

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 227

a. Execute the following SQL statements to create two tables you will use later to create the
deadlock:

CREATE TABLE "DBA"."deadlock1" (
 "id" UNSIGNED BIGINT NOT NULL DEFAULT AUTOINCREMENT,
 "val" CHAR(1));
CREATE TABLE "DBA"."deadlock2" (
 "id" UNSIGNED BIGINT NOT NULL DEFAULT AUTOINCREMENT,
 "val" CHAR(1));

b. Execute the following SQL statements to insert values into each table:

INSERT INTO "deadlock1"("val") VALUES('x');
INSERT INTO "deadlock2"("val") VALUES('x');

c. Execute the following SQL statements to create two procedures that you will use later to cause
the deadlock:

CREATE PROCEDURE "DBA"."proc_deadlock1"()
 BEGIN
 LOCK TABLE "DBA"."deadlock1" IN EXCLUSIVE MODE;
 WAITFOR DELAY '00:00:20:000';
 UPDATE deadlock2 SET val='y';
 END;
CREATE PROCEDURE "DBA"."proc_deadlock2"()
 BEGIN
 LOCK TABLE "DBA"."deadlock2" IN EXCLUSIVE MODE;
 WAITFOR DELAY '00:00:20:000';
 UPDATE deadlock1 SET val='y';
 END;

d. Execute the following SQL statements to commit the changes you made to the database:

COMMIT;

5. Close Interactive SQL.

6. Click this link to continue the tutorial: “Lesson 2: Creating a deadlock and capturing information
about it” on page 228.

See also
● “Creating a test database for the application profiling tutorials” on page 226
● “Starting and connecting to a database on this computer (dbeng12)” [SQL Anywhere Server -

Database Administration]
● “Deadlock detected” [Error Messages]
● “All threads are blocked” [Error Messages]

Lesson 2: Creating a deadlock and capturing information about it
The Database Tracing Wizard can be used to create a diagnostic tracing session. The tracing session
captures deadlock data.

Performance improvements, diagnostics, and monitoring

228 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Tip
In the application profiling tutorials, tracing information is stored in the test database (app_profiling.db),
which is the same database you are running the tutorials on. However, if you profile a database that
experiences heavy loads, you should consider storing tracing data in a separate database than your
production database to avoid impacting performance.

Capture deadlock data

1. In Sybase Central, click Mode » Application Profiling.

If the Application Profiling Wizard appears, click Cancel.

2. Start the Database Tracing Wizard as follows:

a. In the left pane, click app_profiling - DBA, and click File » Tracing.

b. On the Welcome page, click Next.

c. On the Tracing Detail Level page, click High Detail (Recommended For Short-Term,
Intensive Monitoring), and then click Next.

d. On the Edit Tracing Levels page, click Next.

e. On the Create External Database page, click Do Not Create A New Database. I Will Use An
Existing Tracing Database, and then click Next.

f. On the Start Tracing page, click Save Tracing Data In This Database.

g. To place no limits on the amount of stored tracing data, click No Limit, and then click Finish.

3. Create the deadlock as follows:

a. In the left pane, click app_profiling - DBA, and then click File » Open Interactive SQL.
Interactive SQL starts and connects to the app_profiling.db database.

b. Repeat the previous step to open a second Interactive SQL window.

c. In the first Interactive SQL window, execute the following SQL statement:

CALL "DBA"."proc_deadlock1"();
d. In the second Interactive SQL window, execute the following SQL statement within 20 seconds

of executing the SQL statement in the other Interactive SQL window:

CALL "DBA"."proc_deadlock2"();

After a few moments, an ISQL Error window appears indicating that a deadlock has been
detected.

e. The deadlock occurred because proc_deadlock1 requires access to the deadlock2 table, which is
locked by proc_deadlock2. At the same time, proc_deadlock2 requires access to the deadlock1
table, which is locked by proc_deadlock1.

f. Click OK.

4. SQL Anywhere stopped the deadlocked operations, so you can close the Interactive SQL windows.

Application profiling tutorials

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 229

5. In Sybase Central, stop the tracing session by clicking the app_profiling - DBA connection in the left
pane and clicking File » Tracing » Stop Tracing With Save.

6. Click this link to continue the tutorial: “Lesson 3: Reviewing blocked connection data” on page 230.

See also
● “Transaction blocking and deadlock” on page 797
● “Customized diagnostic tracing levels” on page 142
● “Deadlock” on page 799
● “Diagnostic tracing” on page 139

Lesson 3: Reviewing blocked connection data
The Application Profiling mode provides a graphical representation of the connections participating in
the deadlock. It also provides a Connection Blocks tab that provides additional information about the
blocked connections.

Review blocked connection data

1. Open the analysis file created during the tracing session as follows:

a. In Sybase Central, click Application Profiling » Open Analysis File Or Connect To A Tracing
Database.

b. Click In A Tracing Database.

c. Click Open.

d. In the User ID field, type DBA.

e. In the Password field, type sql.

f. In the Action dropdown list, click Connect To A Running Database On This Computer.

g. In the Database Name field, type app_profiling.

h. Click Connect.

2. View the graphical representation of the deadlock as follows:

a. In the Application Profiling Details pane click the Status tab and choose the most recent ID
from the Logging Session ID list.
If the Application Profiling Details pane does not appear, click View » Application Profiling
Details.

b. At the bottom of the Application Profiling Details pane, click the Deadlocks tab. The most
recent deadlock appears. Click the Deadlock list to view additional deadlocks.

c. The following image shows how the UPDATE statements created a deadlock condition.

Performance improvements, diagnostics, and monitoring

230 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Each connection involved in the deadlock is represented by a table with the following fields:

● Connection Name This field shows the user ID that opened the connection.

● SQL Statement This field shows the actual statement involved in the deadlock. In this case,
the deadlock was caused by the UPDATE statements found in the procedures you executed from
each instance of Interactive SQL.

● Owning Connection ID This field shows the ID of the connection that blocked the current
connection.

● Record ID This field shows the ID of the row that the current connection is blocked on.

● Rollback Operation Count This field shows the number of operations that must be rolled
back as a result of the deadlock. In this case, the procedures contained only the UPDATE
statements, so the count is 0.

3. To view additional deadlock information, such as how often they occur and how long they last, use
the Connection Blocks tab, as follows:

Application profiling tutorials

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 231

a. In the Application Profiling Details pane, click the Database Tracing Data tab.

b. Click the Connection Blocks tab, just above the Database Tracing Data tab.

c. The Connection Blocks tab appears, displaying the block time, unblock time, and duration of
each blocked connection.

4. You have completed the application profiling tutorial on deadlocks. Click Connections » Disconnect,
and then close Sybase Central.

See also
● “Transaction blocking and deadlock” on page 797
● “Customized diagnostic tracing levels” on page 142
● “Deadlock” on page 799
● “Diagnostic tracing” on page 139

Tutorial: Diagnosing slow statements
Use the lessons in this tutorial to learn how to use the Database Tracing Wizard to view execution times
for statements, and how to identify statements that appear to execute slowly (for example, long-running
queries).

A slow statement occurs when the database server takes a long time to process the statement. Long
processing times can be the result of several issues, such as an improperly designed database, poor use of
indexes, index and table fragmentation, or a small cache size. A statement may also execute slowly
because it is not well formed, or does not use more efficient shortcuts to achieve results.

This tutorial does not show you how to rewrite slow statements since each statement can have special
requirements. However, the tutorial does show you where to look for execution times, and how to
compare execution times when rewriting queries using alternate syntax.

See also
● “Queries” on page 247
● “Joins: Retrieving data from several tables” on page 428
● “Use of subqueries” on page 534
● “Customized diagnostic tracing levels” on page 142
● “Diagnostic tracing” on page 139
● “Monitor query performance” on page 207
● “Troubleshooting performance problems” on page 156

Lesson 1: Creating a diagnostic tracing session
The Database Tracing Wizard is used to create a diagnostic tracing session. The tracing session captures
processing statement data which includes duration times.

Performance improvements, diagnostics, and monitoring

232 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Create a diagnostic tracing session

1. This tutorial assumes you have created the test database, app_profiling.db, required for the application
profiling tutorials.

2. Connect to app_profiling.db as follows:

a. In Sybase Central, in the SQL Anywhere 12 plug-in, click Connections » Connect With SQL
Anywhere 12.

b. In the Connect window, complete the following fields to connect to the test database,
app_profiling.db:

● Authentication Database

● User ID DBA

● Password sql

● Action Start A Database On This Computer

● Database File C:\AppProfilingTutorial\app_profiling.db

● Start Line dbeng12 -x tcpip

c. Click Connect.

3. Start the Database Tracing Wizard as follows:

a. In Sybase Central, click Mode » Application Profiling. If the Application Profiling Wizard
appears, click Cancel.

b. Click File » Tracing.

c. On the Welcome page, click Next.

d. On the Tracing Detail Level page, click High Detail (Recommended For Short-Term,
Intensive Monitoring), and then click Next.

e. On the Edit Tracing Levels page, click Next.

f. On the Create External Database page, click Do Not Create A New Database, and then click
Next.

g. On the Start Tracing page, click Save Tracing Data In This Database.

h. To allow no limits on the amount of stored tracing data, click No Limit, and then click Finish.

4. In the left pane, click app_profiling - DBA, and then click File » Open Interactive SQL.

Interactive SQL starts and connects to the app_profiling.db database.

5. In Interactive SQL, execute the following SQL statement.

SELECT SalesOrderItems.ID, LineID, ProductID, SalesOrderItems.Quantity,
ShipDate
FROM SalesOrderItems, SalesOrders
WHERE SalesOrders.CustomerID = 105 AND
 SalesOrderItems.ID=SalesOrders.ID;

6. Exit Interactive SQL.

Application profiling tutorials

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 233

7. To stop the tracing session, in Sybase Central click app_profiling - DBA and click File » Tracing »
Stop Tracing With Save.

8. Click this link to continue the tutorial: “Lesson 2: Reviewing statements processed by the database
server” on page 234.

See also
● “Creating a test database for the application profiling tutorials” on page 226
● “Customized diagnostic tracing levels” on page 142
● “Diagnostic tracing” on page 139

Lesson 2: Reviewing statements processed by the database server
You can identify which statements the database server spends the most time processing by using the
Summary and Detail tabs, located on the Application Profiling pane in Sybase Central.

Review statements processed by the database server

1. Open the analysis file as follows:

a. In Sybase Central, click Mode » Application Profiling. If the Application Profiling Wizard
appears, click Cancel.

b. Click Application Profiling » Open Analysis File Or Connect To A Tracing Database.

c. Click In A Tracing Database, and then click Open.

d. In the User ID field, type DBA.

e. In the Password field, type sql.

f. In the Action dropdown list, click Connect To A Running Database On This Computer.

g. In the Database Name field, type app_profiling.

h. Click Connect.

i. If the Application Profiling Details pane does not appear at the bottom of the window, click
View » Application Profiling Details.

2. Examine the statement execution times of statements that were processed during the tracing session,
as follows:

a. On the Status tab in the Application Profiling Details pane, select the most recent ID (highest
number) from the Logging Session ID field, and then click the Database Tracing Data tab.
On the Summary tab, the SQL statements you executed during the session appear. You may see
additional statements as well. This is because statements you executed automatically caused other
statements to be executed (for example, a trigger).
The Summary tab groups similar statements together and summarizes the total number of
invocations and the total time spent processing them. SELECT, INSERT, UPDATE, and
DELETE statements are grouped together by what tables, columns, and expressions they
reference. Other statements are grouped together as a whole (for example, all CREATE TABLE

Performance improvements, diagnostics, and monitoring

234 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

statements appear as a single entry in the Summary tab). A statement may appear expensive in
the Summary tab because it is an expensive statement, or because it is frequently executed.
Find statements that are running slowly on your system by examining the Total Time and
Maximum Time columns. These provide information about the execution times for each
statement processed by the database server.

3. To view information about the connection that executed a statement, go to the Details tab, right-click
the statement and click View Connection Details For The Selected Statement.

4. To view the execution plan used for a SQL statement, go to the Details tab, right-click the statement
and click View More SQL Statement Details For The Selected Statement.

The SQL Statement Details window appears, displaying the full text of the statement along with
details about the context in which it was used. The text displayed for the statement may not match the
original SQL statement you executed. Instead, the SQL Statement Details window displays the
statement in its rewritten form, as it was processed by the database server. For example, queries over
views may appear very different, since the view definitions are often rewritten by the optimizer when
executing the query.

Click the Query Information tab at the bottom of the SQL Statement Details window to see the
execution plan.

Application profiling tutorials

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 235

5. You have completed the tutorial on diagnosing slow statements.

See also
● “Use of subqueries” on page 534
● “Performing request trace analysis” on page 158
● “Queries” on page 247
● “Joins: Retrieving data from several tables” on page 428
● “Use of subqueries” on page 534
● “Customized diagnostic tracing levels” on page 142
● “Diagnostic tracing” on page 139

Tutorial: Diagnosing index fragmentation
Use the lessons in this tutorial to learn how to use the Application Profiling Wizard to determine if your
database has unacceptable levels of index fragmentation.

When an index is created, table data is read and values for the index are recorded on index pages
following a logical order. As data changes in the table, new index values can be inserted between existing
values. To maintain the logical order of index values, the database server may need to create new index
pages to accommodate existing values that are moved. The new pages are not usually adjacent to the
pages on which the values were originally stored. This cumulative degradation in the order of index pages
is called index fragmentation.

Commonly executed queries taking longer to perform on tables where large blocks of rows are
continuously being inserted, updated, and deleted is a symptom of index fragmentation.

Lesson 1: Finding and fixing index fragmentation using the
Application Profiling Wizard

Use this procedure to find and fix index fragmentation. It is recommended that you periodically check for
fragmentation on your production database.

Find and fix index fragmentation

1. This tutorial assumes you have created the test database, app_profiling.db, required to complete the
application profiling tutorials.

2. Connect to app_profiling.db as follows:

a. In Sybase Central, in the SQL Anywhere 12 plug-in, click Connections » Connect With SQL
Anywhere 12.

b. In the Connect window, complete the following fields to connect to the test database,
app_profiling.db.

● User ID DBA

● Password sql

Performance improvements, diagnostics, and monitoring

236 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● Action Start A Database On This Computer

● Database File C:\AppProfilingTutorial\app_profiling.db

● Start Line dbeng12 -x tcpip

c. Click Connect.

3. Click Mode » Application Profiling.

If the Application Profiling Wizard does not appear, click Application Profiling » Open
Application Profiling Wizard.

4. On the Welcome page, click Next.

5. On the Profiling Options page, click Overall Database Performance Based On The Database
Schema, and then click Next.

6. On the Analysis File page, in the Save The Analysis To The Following File field, type C:
\AppProfilingTutorial\analysis.

7. Click Finish.

A list of recommendations appears in the Application Profiling Details pane.

8. If you see Fragmented Indexes, double-click it. A Recommendation window appears containing a
SQL statement you can run to resolve the index fragmentation.

9. You have completed the tutorial on using application profiling to identify and fix index fragmentation.

Note
You can also identify and fix index fragmentation using SQL.

See also
● “Lesson 2: Identifying and fixing index fragmentation using SQL” on page 237
● “ALTER INDEX statement” [SQL Anywhere Server - SQL Reference]
● “sa_index_density system procedure” [SQL Anywhere Server - SQL Reference]
● “REORGANIZE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “Rebuilding an index” on page 30
● “Reduce index fragmentation and skew” on page 206
● “Creating a test database for the application profiling tutorials” on page 226
● “Application profiling” on page 126
● “Customized diagnostic tracing levels” on page 142
● “Diagnostic tracing” on page 139

Lesson 2: Identifying and fixing index fragmentation using SQL
You can also identify and fix index fragmentation using SQL.

Application profiling tutorials

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 237

Check the index density of a table

1. In the left pane, click app_profiling - DBA, and then click File » Open Interactive SQL.

Interactive SQL starts and connects to the app_profiling.db database.

2. In Interactive SQL, execute the following SQL statement to test the index density on the Employees
table:

CALL sa_index_density('Employees');

Density values range between 0 and 1. Values closer to 1 indicate little index fragmentation. Values
less than 0.5 indicate a level of index fragmentation that may impact performance.

Note
The values for the indexes on the Employees will appear to show fragmentation issues because the
values in the Density column of the results are well under 0.5. However, these numbers are artificially
low due to the fact that the table is very small.

3. In Interactive SQL, execute the following ALTER INDEX...REBUILD statement to improve the
density of an index:

ALTER INDEX PRIMARY KEY ON Employees REBUILD;

See also
● “ALTER INDEX statement” [SQL Anywhere Server - SQL Reference]
● “sa_index_density system procedure” [SQL Anywhere Server - SQL Reference]
● “REORGANIZE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “Rebuilding an index” on page 30
● “Reduce index fragmentation and skew” on page 206
● “Application profiling” on page 126
● “Customized diagnostic tracing levels” on page 142
● “Diagnostic tracing” on page 139

Tutorial: Diagnosing table fragmentation
Use the lessons in this tutorial to learn how to use the Application Profiling Wizard to determine if your
database has unacceptable levels of table fragmentation.

Table data is stored on database pages. When data manipulation statements such as INSERT, UPDATE,
and DELETE are executed against a table, rows might not be stored contiguously, or might be split
between multiple pages. Even though CPU activity is high, table fragmentation can negatively impact the
performance of queries that require a scan of the table.

Performance improvements, diagnostics, and monitoring

238 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Lesson 1: Checking for table fragmentation using the Application
Profiling Wizard

Use this procedure to find and fix table fragmentation. It is recommended that you periodically check for
fragmentation on your production database.

Find and fix table fragmentation

1. This tutorial assumes you have created the test database, app_profiling.db, required to complete the
application profiling tutorials.

2. Connect to app_profiling.db as follows:

a. In Sybase Central, in the SQL Anywhere 12 plug-in, click Connections » Connect With SQL
Anywhere 12.

b. In the Connect window, complete the following fields to connect to the test database,
app_profiling.db.

● User ID DBA

● Password sql

● Action Start A Database On This Computer

● Database File C:\AppProfilingTutorial\app_profiling.db

● Start Line dbeng12 -x tcpip

c. Click Connect.

3. In Sybase Central, click Mode » Application Profiling.

If the Application Profiling Wizard does not appear, click Application Profiling » Open
Application Profiling Wizard.

4. On the Profiling Options page, click Overall Database Performance Based On The Database
Schema.

5. On the Analysis File page, save the analysis file in the appropriate directory. For example, C:
\AppProfilingTutorial. If you are prompted to replace the file because it already exists, click Yes.

6. Click Finish.

A list of recommendations appear in the Application Profiling Details pane.

7. If you see Fragmented Tables, double-click it. A Recommendation window appears containing a
SQL statement you can run to resolve the table fragmentation.

8. You have completed the tutorial on using application profiling to identify and fix table fragmentation.

Note
You can also identify and fix table fragmentation using SQL.

Application profiling tutorials

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 239

See also
● “sa_table_fragmentation system procedure” [SQL Anywhere Server - SQL Reference]
● “REORGANIZE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “Reduce table fragmentation” on page 200
● “Application profiling” on page 126
● “Creating a test database for the application profiling tutorials” on page 226
● “Customized diagnostic tracing levels” on page 142
● “Lesson 2: Identifying and fixing table fragmentation using SQL” on page 240
● “Diagnostic tracing” on page 139

Lesson 2: Identifying and fixing table fragmentation using SQL

You can also identify and fix table fragmentation using SQL.

Check for table fragmentation

1. In the left pane of Sybase Central, click app_profiling - DBA, and then click File » Open Interactive
SQL.

Interactive SQL starts and connects to the app_profiling.db database.

2. In Interactive SQL, execute the following SQL statement to test for table fragmentation on the
Employees table:

CALL sa_table_fragmentation('Employees');

If the value in the segs_per_row (the number of segments per row) column is greater than 1.1, then
table fragmentation is present. Higher degrees of fragmentation may negatively impact performance.

3. In Interactive SQL, execute the following REORGANIZE TABLE statement to reduce table
fragmentation:

REORGANIZE TABLE Employees;

4. You have completed the tutorial on diagnosing table fragmentation.

See also
● “sa_table_fragmentation system procedure” [SQL Anywhere Server - SQL Reference]
● “REORGANIZE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “Reduce table fragmentation” on page 200
● “Application profiling” on page 126
● “Customized diagnostic tracing levels” on page 142
● “Diagnostic tracing” on page 139

Performance improvements, diagnostics, and monitoring

240 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Tutorial: Baselining with procedure profiling
Use the lessons in this tutorial to learn how to use the Application Profiling Wizard to create a baseline
that you can use for comparison purposes when improving performance.

Procedure profiling provides execution time measurements for procedures, user-defined functions, events,
system triggers, and triggers. You can set your saved results as a baseline and make incremental changes
to a procedure and run it after each change you make. This allows you to compare the new results to the
baseline.

Lesson 1: Creating a baseline procedure
Create a baseline procedure

1. This tutorial assumes you have created the test database required for the application profiling tutorials.
If you have not, see “Creating a test database for the application profiling tutorials” on page 226.

2. Connect to app_profiling.db as follows:

a. In Sybase Central, in the SQL Anywhere 12 plug-in, click Connections » Connect With the
SQL Anywhere 12.

b. In the Connect window, complete the following fields to connect to the test database,
app_profiling.db.

● Authentication Database

● User ID DBA

● Password sql

● Action Start A Database On This Computer

● Database File C:\AppProfilingTutorial\app_profiling.db

● Start Line dbeng12 -x tcpip

c. Click Connect.

3. In the left pane, click app_profiling - DBA, and then click File » Open Interactive SQL.

Interactive SQL starts and connects to the app_profiling.db database.

4. In Interactive SQL, execute the following SQL statements:

a. Create a table:

CREATE TABLE table1 (
Count INT);

b. Create a baseline procedure:

CREATE PROCEDURE baseline()
 BEGIN
 INSERT table1
 SELECT COUNT (*)

Application profiling tutorials

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 241

 FROM rowgenerator r1, rowgenerator r2,
 rowgenerator r3
 WHERE r3.row_num < 5;
 END;

c. Commit the changes you made to the database:

COMMIT;

5. Close Interactive SQL.

6. Click this link to continue the tutorial: “Lesson 2: Running an updated procedure against the baseline
procedure” on page 242.

See also
● “Application profiling” on page 126
● “Procedure profiling results” on page 132
● “Procedure profiling in Application Profiling mode” on page 128
● “Customized diagnostic tracing levels” on page 142
● “Diagnostic tracing” on page 139

Lesson 2: Running an updated procedure against the baseline
procedure

Run an updated procedure against the baseline procedure

1. In Sybase Central, click Mode » Application Profiling.

If the Application Profiling Wizard does not appear, click Application Profiling » Open
Application Profiling Wizard.

2. On the Welcome page, click Next.

3. On the Profiling Options page, click Stored Procedure, Function, Trigger, Or Event Execution
Time.

4. Click Finish.

The database server begins procedure profiling.

5. In the left pane of Sybase Central, double-click Procedures & Functions.

6. Right-click the baseline procedure and click Execute From Interactive SQL. Procedure profiling is
enabled, so execution details for the procedure are captured.

7. Close Interactive SQL.

8. View the profiling results.

a. In the left pane of Sybase Central, select the baseline procedure.

Performance improvements, diagnostics, and monitoring

242 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

b. Click the Profiling Results tab in the right pane. If no results appear, click View » Refresh
Folder.
The execution times appear for each line in the baseline procedure.

9. Save the profiling results.

a. Right-click the database and click Properties.

b. Click the Profiling Settings tab.

c. Click Save The Profiling Information Currently In The Database To The Following
Profiling Log File, and then specify a location and file name for the profiling log file.

d. Click Apply. Do not close the properties window.
The procedure profiling information that was just gathered is saved to the specified profiling log
file (.plg).

10. Enable baselining against the profiling log file.

a. On the Profiling Settings tab of the App_Profiling - DBA Database Properties window, click
Use The Profiling Information In The Following Profiling Log File As A Baseline For
Comparison.

b. Browse to and select the profiling log file you created.

c. Click Apply.

d. Click OK to close the App_Profiling - DBA Database Properties window.

11. Make changes to the baseline procedure.

a. In Sybase Central, click Mode » Design.

b. In the left pane, browse to and select the baseline procedure in the Procedures & Functions.

c. On the SQL tab in the right pane, delete the existing INSERT statement.

d. Copy and paste the following SQL statement into the procedure:

INSERT table1
 SELECT COUNT (*) FROM rowgenerator r1, rowgenerator r2,
rowgenerator r3
 WHERE r3.row_num < 250;

e. Click File » Save.

12. In Procedures & Functions, right-click the baseline procedure and click Execute From Interactive
SQL.

13. Exit Interactive SQL when the procedure completes.

14. Click this link to continue the tutorial: “Lesson 3: Comparing the procedure profiling results”
on page 244.

Application profiling tutorials

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 243

See also
● “Application profiling” on page 126
● “Procedure profiling results” on page 132
● “Procedure profiling in Application Profiling mode” on page 128
● “Customized diagnostic tracing levels” on page 142
● “Diagnostic tracing” on page 139

Lesson 3: Comparing the procedure profiling results
Compare the procedure profiling results

1. In Sybase Central, click Mode » Application Profiling.

If the Application Profiling Wizard appears, click Cancel.

2. In the left pane of Sybase Central, in Procedures & Functions, click the baseline procedure.

3. In the right pane, click the Profiling Results tab.

4. Click View » Refresh Folder.

Two new columns, Execs. +/- and ms. +/-, appear.

Performance improvements, diagnostics, and monitoring

244 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The Execs. +/- and ms. +/- columns result from comparing statistics in the profiling log file to the
statistics captured during the most recent execution of the procedure. Specifically, they compare
number of executions and duration of execution, respectively, for each line of code in the procedure.

Application profiling tutorials

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 245

Typically, you are interested in the ms. +/- column, which indicates whether you improved the
execution time for lines of code in the procedure. Faster times are indicated by a minus sign and red
font. Slower times are indicated by no sign, and green font. In this tutorial, the value in the ms. +/-
column should be a + sign along with an execution time in green font. The INSERT statement in the
updated procedure has a slower time than the INSERT statement in the baseline procedure.

5. You have completed the tutorial on baselining with procedure profiling.

See also
● “Application profiling” on page 126
● “Procedure profiling results” on page 132
● “Procedure profiling in Application Profiling mode” on page 128
● “Customized diagnostic tracing levels” on page 142
● “Diagnostic tracing” on page 139

Performance improvements, diagnostics, and monitoring

246 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Query and modify data
This section describes how to query and modify data, including how to use joins. It includes several
chapters on queries, from simple to complex, and information about inserting, deleting, and updating data.
This chapter also includes an in-depth look at how to create analytical queries that return
multidimensional results.

Queries
A query requests data from the database and receives the results. This process is also known as data
retrieval. All SQL queries are expressed using the SELECT statement. You use the SELECT statement to
retrieve all, or a subset of, the rows in one or more tables, and to retrieve all, or a subset of, the columns in
one or more tables.

To learn more about SQL Anywhere query processing, including query optimization, selectivity
estimation, and cost estimation, see the white paper "Query Processing Based on SQL Anywhere 12.0.1
Architecture" at http://www.sybase.com/detail?id=1096047.

The SELECT statement and querying
The SELECT statement retrieves information from a database for use by the client application. SELECT
statements are also called queries. The information is delivered to the client application in the form of a
result set. The client can then process the result set. For example, Interactive SQL displays the result set in
the Results pane. Result sets consist of a set of rows, just like tables in the database.

SELECT statements contain clauses that define the scope of the results to return. In the following
SELECT syntax, each new line is a separate clause. Only the more common clauses are listed here.

SELECT select-list
[FROM table-expression]
[WHERE search-condition]
[GROUP BY column-name]
[HAVING search-condition]
[ORDER BY { expression | integer }]

The clauses in the SELECT statement are as follows:

● The SELECT clause specifies the columns you want to retrieve. It is the only required clause in the
SELECT statement.

● The FROM clause specifies the tables from which columns are pulled. It is required in all queries that
retrieve data from tables. SELECT statements without FROM clauses have a different meaning, and
this section does not discuss them.

Although most queries operate on tables, queries may also retrieve data from other objects that have
columns and rows, including views, other queries (derived tables) and stored procedure result sets.

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 247

http://www.sybase.com/detail?id=1096047

● The WHERE clause specifies the rows in the tables you want to see.

● The GROUP BY clause allows you to aggregate data.

● The HAVING clause specifies rows on which aggregate data is to be collected.

● The ORDER BY clause sorts the rows in the result set. (By default, rows are returned from relational
databases in an order that has no meaning.)

Most of the clauses are optional, but if they are included then they must appear in the correct order.

See also
● “SELECT statement” [SQL Anywhere Server - SQL Reference]
● “Summarizing, grouping, and sorting query results” on page 406
● “FROM clause” [SQL Anywhere Server - SQL Reference]

Query predicates

A predicate is a conditional expression that, combined with the logical operators AND and OR, makes up
the set of conditions in a WHERE, HAVING, or ON clause. In SQL, a predicate that evaluates to
UNKNOWN is interpreted as FALSE.

A predicate that can exploit an index to retrieve rows from a table is called sargable. This name comes
from the phrase search argument-able. Predicates that involve comparisons of a column with constants,
other columns, or expressions may be sargable.

The predicate in the following statement is sargable. SQL Anywhere can evaluate it efficiently using the
primary index of the Employees table.

SELECT *
FROM Employees
WHERE Employees.EmployeeID = 102;

In the best access plan, this appears as: Employees<Employees>.

In contrast, the following predicate is not sargable. Although the EmployeeID column is indexed in the
primary index, using this index does not expedite the computation because the result contains all, or all
except one, row.

SELECT *
FROM Employees
where Employees.EmployeeID <> 102;

In the best access plan, this appears as: Employees<seq>.

Similarly, no index can assist in a search for all employees whose given name ends in the letter k. Again,
the only means of computing this result is to examine each of the rows individually.

Query and modify data

248 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Functions
In general, a predicate that has a function on the column name is not sargable. For example, an index
would not be used on the following query:

SELECT *
FROM SalesOrders
WHERE YEAR (OrderDate) ='2000';

To avoid using a function, you can rewrite a query to make it sargable. For example, you can rephrase the
above query:

SELECT *
FROM SalesOrders
WHERE OrderDate > '1999-12-31'
AND OrderDate < '2001-01-01';

A query that uses a function becomes sargable if you store the function values in a computed column and
build an index on this column. A computed column is a column whose values are obtained from other
columns in the table. For example, if you have a column called OrderDate that holds the date of an order,
you can create a computed column called OrderYear that holds the values for the year extracted from the
OrderDate column.

ALTER TABLE SalesOrders
ADD OrderYear INTEGER
COMPUTE (YEAR(OrderDate));

You can then add an index on the column OrderYear in the ordinary way:

CREATE INDEX IDX_year
ON SalesOrders (OrderYear);

If you then execute the following statement, the database server recognizes that there is an indexed
column that holds that information and uses that index to answer the query.

SELECT * FROM SalesOrders
WHERE YEAR(OrderDate) = '2000';

The domain of the computed column must be equivalent to the domain of the COMPUTE expression in
order for the column substitution to be made. In the above example, if YEAR(OrderDate) had
returned a string instead of an integer, the optimizer would not have substituted the computed column for
the expression, and the index IDX_year could not have been used to retrieve the required rows.

Examples
In each of these examples, attributes x and y are each columns of a single table. Attribute z is contained in
a separate table. Assume that an index exists for each of these attributes.

Sargable Non-sargable

x = 10 x < > 10

x IS NULL

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 249

Sargable Non-sargable

x IS NOT NULL

x > 25 x = 4 OR y = 5

x = z x = y

x IN (4, 5, 6) x NOT IN (4, 5, 6)

x LIKE 'pat%' x LIKE '%tern'

x = 20 - 2 x + 2 = 20

X IS NOT DISTINCT FROM Y+1

X IS DISTINCT FROM Y+1

Sometimes it may not be obvious whether a predicate is sargable. In these cases, you may be able to
rewrite the predicate so it is sargable. For each example, you could rewrite the predicate x LIKE 'pat%'
using the fact that u is the next letter in the alphabet after t: x >= 'pat' and x < 'pau'. In this form, an index
on attribute x is helpful in locating values in the restricted range. Fortunately, SQL Anywhere makes this
particular transformation for you automatically.

A sargable predicate used for indexed retrieval on a table is a matching predicate. A WHERE clause can
have many matching predicates. The most suitable predicate depends on the access plan. The optimizer
re-evaluates its choice of matching predicates when considering alternate access plans.

See also
● “Computed columns” on page 11

SQL queries

Throughout the documentation, SELECT statements and other SQL statements appear with each clause
on a separate row, and with the SQL keywords in uppercase. This is done to make the statements easier to
read but is not a requirement. You can enter SQL keywords in any case, and you can have line breaks
anywhere in the statement.

Keywords and line breaks
For example, the following SELECT statement finds the first and last names of contacts living in
California from the Contacts table.

SELECT GivenName, Surname
FROM Contacts
WHERE State = 'CA';

It is equally valid, though not as readable, to enter the statement as follows:

Query and modify data

250 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SELECT GivenName,
Surname from Contacts
WHERE State
 = 'CA';

Case sensitivity of strings and identifiers
Identifiers such as table names, column names, and so on, are case insensitive in SQL Anywhere
databases.

Strings are case insensitive by default, so that 'CA', 'ca', 'cA', and 'Ca' are equivalent, but if you create a
database as case sensitive then the case of strings is significant. The SQL Anywhere sample database is
case insensitive.

Qualifying identifiers
You can qualify the names of database identifiers if there is ambiguity about which object is being
referred to. For example, the SQL Anywhere sample database contains several tables with a column
called City, so you may have to qualify references to City with the name of the table. In a larger database
you may also have to use the name of the owner of the table to identify the table.

SELECT Contacts.City
FROM Contacts
WHERE State = 'CA';

Since the examples in this section involve single-table queries, column names in syntax models and
examples are usually not qualified with the names of the tables or owners to which they belong.

These elements are left out for readability; it is never wrong to include qualifiers.

Row order in the result set
Row order in the result set is insignificant. There is no guarantee of the order in which rows are returned
from the database, and no meaning to the order. If you want to retrieve rows in a particular order, you
must specify the order in the query.

See also
● “SQL Anywhere database creation” [SQL Anywhere Server - Database Administration]
● “Initialization utility (dbinit)” [SQL Anywhere Server - Database Administration]
● “Case sensitivity” on page 590

The SELECT list: Specifying columns
The SELECT list comprises one or more objects from which to query data. The SELECT list commonly
consists of a series of column names separated by commas, or an asterisk operator that represents all
columns. More generally, the SELECT list can include one or more expressions, separated by commas.
There is no comma after the last column in the list, or if there is only one column in the list.

The general syntax for the SELECT list looks like this:

SELECT expression [, expression]...

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 251

If any table or column name in the list does not conform to the rules for valid identifiers, you must
enclose the identifier in double quotes.

The SELECT list expressions can include * (all columns), a list of column names, character strings,
column headings, and expressions including arithmetic operators. You can also include aggregate
functions.

See also
● “Summarizing, grouping, and sorting query results” on page 406
● “Expressions” [SQL Anywhere Server - SQL Reference]

Selection of all columns from a table

The asterisk (*) has a special meaning in SELECT statements. It represents all the column names in all
the tables specified in the FROM clause. You can use it to save entering time and errors when you want to
see all the columns in a table.

When you use SELECT *, the columns are returned in the order in which they were defined when the
table was created.

The syntax for selecting all the columns in a table is:

SELECT *
FROM table-expression;

SELECT * finds all the columns currently in a table, so that changes in the structure of a table such as
adding, removing, or renaming columns automatically modify the results of SELECT *. Listing the
columns individually gives you more precise control over the results.

Example
The following statement retrieves all columns in the Departments table. No WHERE clause is included;
therefore, this statement retrieves every row in the table:

SELECT *
FROM Departments;

The results look like this:

DepartmentID DepartmentName DepartmentHeadID

100 R & D 501

200 Sales 902

300 Finance 1293

400 Marketing 1576

Query and modify data

252 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

DepartmentID DepartmentName DepartmentHeadID

...

You get exactly the same results by listing all the column names in the table in order after the SELECT
keyword:

SELECT DepartmentID, DepartmentName, DepartmentHeadID
FROM Departments;

Like a column name, "*" can be qualified with a table name, as in the following query:

SELECT Departments.*
FROM Departments;

Selection of specific columns from a table

You can limit the columns that a SELECT statement retrieves by listing the column(s) immediately after
the SELECT keyword. This SELECT statement has the following syntax:

SELECT column-name [, column-name]...
FROM table-name

In the syntax, column-name and table-name should be replaced with the names of the columns and table
you are querying.

For example:

SELECT Surname, GivenName
FROM Employees;

Projections and restrictions
A projection is a subset of the columns in a table. A restriction (also called selection) is a subset of the
rows in a table, based on some conditions.

For example, the following SELECT statement retrieves the names and prices of all products in the SQL
Anywhere sample database that cost more than $15:

SELECT Name, UnitPrice
FROM Products
WHERE UnitPrice > 15;

This query uses both a projection (SELECT Name, UnitPrice) and a restriction (WHERE
UnitPrice > 15).

Rearranging the order of columns
The order in which you list column names determines the order in which the columns are displayed. The
two following examples show how to specify column order in a display. Both of them find and display the
department names and identification numbers from all five of the rows in the Departments table, but in a
different order.

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 253

SELECT DepartmentID, DepartmentName
FROM Departments;

DepartmentID DepartmentName

100 R & D

200 Sales

300 Finance

400 Marketing

... ...

SELECT DepartmentName, DepartmentID
FROM Departments;

DepartmentName DepartmentID

R & D 100

Sales 200

Finance 300

Marketing 400

... ...

Joins
A join links the rows in two or more tables by comparing the values in columns of each table. For
example, you might want to select the order item identification numbers and product names for all order
items that shipped more than a dozen pieces of merchandise:

SELECT SalesOrderItems.ID, Products.Name
FROM Products JOIN SalesOrderItems
WHERE SalesOrderItems.Quantity > 12;

The Products table and the SalesOrderItems table are joined together based on the foreign key relationship
between them.

See also
● “Joins: Retrieving data from several tables” on page 428

Renamed columns in query results

By default, the heading for each column of a result set is the name of the expression supplied in the
SELECT list. For expressions that are column values, the heading will be the column name. In embedded

Query and modify data

254 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SQL, one can use the DESCRIBE statement to determine the name of each expression returned by a
cursor. Other application interfaces also support querying the names of each result set column through
interface-specific mechanisms. The sa_describe_query system procedure offers an interface-independent
means to determine the names of the result set columns for an arbitrary SQL query.

You can override the name of any expression in a query's SELECT list by using an alias, as follows:

SELECT column-name [AS] alias

Providing an alias can produce more readable results. For example, you can change DepartmentName to
Department in a listing of departments as follows:

SELECT DepartmentName AS Department,
 DepartmentID AS "Identifying Number"
FROM Departments;

Department Identifying Number

R & D 100

Sales 200

Finance 300

Marketing 400

... ...

Usage
● Using spaces and keywords in an alias In the example above, the "Identifying Number" alias

for DepartmentID is enclosed in double quotes because it contains a blank. You also use double
quotes if you want to use keywords or special characters in aliases. For example, the following query
is invalid without the quotation marks:

SELECT DepartmentName AS Department,
 DepartmentID AS "integer"
FROM Departments;

● Name space occlusion Aliases can be used anywhere in the SELECT block in which they are
defined, including other SELECT list expressions that in turn define additional aliases. Cyclic alias
references are not permitted. If the alias specified for an expression is identical to the name of a
column or variable in the name space of the SELECT block, the alias definition occludes the column
or variable. For example:

SELECT DepartmentID AS DepartmentName
FROM Departments
WHERE DepartmentName = 'Marketing'

will return an error, "cannot convert 'Marketing' to a numeric". This is because the equality predicate
in the query's WHERE clause is attempting to compare the string literal "Marketing" to the integer
column DepartmentID, and the data types are incompatible.

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 255

Note
When referencing column names you can explicitly qualify the column name by its table name, for
example Departments.DepartmentID, to disambiguate a naming conflict with an alias.

● Transact-SQL compatibility Adaptive Server Enterprise supports both the SQL/2008 AS
keyword, and the use of an equals sign, to identify an alias for a SELECT list item.

See also
● “Queries that are compatible with Transact-SQL” on page 595
● “sa_describe_query system procedure” [SQL Anywhere Server - SQL Reference]
● “DESCRIBE statement [ESQL]” [SQL Anywhere Server - SQL Reference]

Character strings in query results

Most SELECT statements produce results that consist solely of data from the tables in the FROM clause.
However, strings of characters can also be displayed in query results by enclosing them in single
quotation marks and separating them from other elements in the SELECT list with commas. To enclose a
quotation mark in a string, you precede it with another quotation mark. For example:

SELECT 'The department''s name is' AS "Prefix",
 DepartmentName AS Department
FROM Departments;

Prefix Department

The department's name is R & D

The department's name is Sales

The department's name is Finance

The department's name is Marketing

The department's name is Shipping

Computed values in the SELECT list

The expressions in the SELECT list can be more complicated than just column names or strings. For
example, you can perform computations with data from numeric columns in a SELECT list.

Arithmetic operations
To illustrate the numeric operations you can perform in the SELECT list, you start with a listing of the
names, quantity in stock, and unit price of products in the SQL Anywhere sample database.

SELECT Name, Quantity, UnitPrice
FROM Products;

Query and modify data

256 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Name Quantity UnitPrice

Tee Shirt 28 9

Tee Shirt 54 14

Tee Shirt 75 14

Baseball Cap 112 9

...

Suppose the practice is to replenish the stock of a product when there are ten items left in stock. The
following query lists the number of each product that must be sold before re-ordering:

SELECT Name, Quantity - 10
 AS "Sell before reorder"
FROM Products;

Name Sell before reorder

Tee Shirt 18

Tee Shirt 44

Tee Shirt 65

Baseball Cap 102

... ...

You can also combine the values in columns. The following query lists the total value of each product in
stock:

SELECT Name, Quantity * UnitPrice AS "Inventory value"
FROM Products;

Name Inventory value

Tee Shirt 252.00

Tee Shirt 756.00

Tee Shirt 1050.00

Baseball Cap 1008.00

... ...

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 257

When there is more than one arithmetic operator in an expression, multiplication, division, and modulo
are calculated first, followed by subtraction and addition. When all arithmetic operators in an expression
have the same level of precedence, the order of execution is left to right. Expressions within parentheses
take precedence over all other operations.

For example, the following SELECT statement calculates the total value of each product in inventory, and
then subtracts five dollars from that value.

SELECT Name, Quantity * UnitPrice - 5
FROM Products;

To ensure correct results, use parentheses where possible. The following query has the same meaning and
gives the same results as the previous one, but the syntax is more precise:

SELECT Name, (Quantity * UnitPrice) - 5
FROM Products;

Arithmetic operations may overflow because the result of the operation can not be represented in the data
type. When an overflow occurs, an error is returned instead of a value.

String operations
You can concatenate strings using a string concatenation operator. You can use either || (defined by SQL/
2008) or + (supported by Adaptive Server Enterprise) as the concatenation operator. For example, the
following statement retrieves and concatenates GivenName and Surname values in the results:

SELECT EmployeeID, GivenName || ' ' || Surname AS Name
FROM Employees;

EmployeeID Name

102 Fran Whitney

105 Matthew Cobb

129 Philip Chin

148 Julie Jordan

... ...

Date and time operations
Although you can use operators on date and time columns, this typically involves the use of functions.

Additional notes on calculated columns
● Columns can be given an alias By default the column name is the expression listed in the

SELECT list, but for calculated columns the expression is cumbersome and not very informative.

Query and modify data

258 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● Other operators are available The multiplication operator can be used to combine columns. You
can use other operators, including the standard arithmetic operators, and logical operators and string
operators.

For example, the following query lists the full names of all customers:

SELECT ID, (GivenName || ' ' || Surname) AS "Full name"
FROM Customers;

The || operator concatenates strings. In this query, the alias for the column has spaces, and so must
be surrounded by double quotes. This rule applies not only to column aliases, but to table names and
other identifiers in the database.

● Functions can be used In addition to combining columns, you can use a wide range of built-in
functions to produce the results you want.

For example, the following query lists the product names in uppercase:

SELECT ID, UCASE(Name)
FROM Products;

ID UCASE(Products.name)

300 TEE SHIRT

301 TEE SHIRT

302 TEE SHIRT

400 BASEBALL CAP

... ...

See also
● “Operator precedence” [SQL Anywhere Server - SQL Reference]
● “SQL functions” [SQL Anywhere Server - SQL Reference]
● “Operators” [SQL Anywhere Server - SQL Reference]
● “Renamed columns in query results” on page 254

Elimination of duplicate query results

The optional DISTINCT keyword eliminates duplicate rows from the results of a SELECT statement. If
you do not specify DISTINCT, you get all rows, including duplicates. Optionally, you can specify ALL
before the SELECT list to get all rows. For compatibility with other implementations of SQL, SQL
Anywhere syntax allows the use of ALL to explicitly ask for all rows. ALL is the default.

For example, if you search for all the cities in the Contacts table without DISTINCT, you get 60 rows:

SELECT City
FROM Contacts;

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 259

You can eliminate the duplicate entries using DISTINCT. The following query returns only 16 rows:

SELECT DISTINCT City
FROM Contacts;

NULL values are not distinct
The DISTINCT keyword treats NULL values as duplicates of each other. In other words, when
DISTINCT is included in a SELECT statement, only one NULL is returned in the results, no matter how
many NULL values are encountered.

The FROM clause: Specifying tables

The FROM clause is required in every SELECT statement involving data from tables, views, or stored
procedures.

The FROM clause can include JOIN conditions linking two or more tables, and can include joins to other
queries (derived tables).

Qualifying table names
In the FROM clause, the full naming syntax for tables and views is always permitted, such as:

SELECT select-list
FROM owner.table-name;

Qualifying table, view, and procedure names is necessary only when the object is owned by a user ID that
is different from the user ID of the current connection, or if the user ID of the owner is not the name of a
group to which the user ID of the current connection belongs.

Using correlation names
You can give a table name a correlation name to improve readability, and to save entering the full table
name each place it is referenced. You assign the correlation name in the FROM clause by entering it after
the table name, like this:

SELECT d.DepartmentID, d.DepartmentName
FROM Departments d;

When a correlation name is used, all other references to the table, for example in a WHERE clause, must
use the correlation name, rather than the table name. Correlation names must conform to the rules for
valid identifiers.

Querying derived tables
A derived table is a table derived directly, or indirectly, from one or more tables by the evaluation of a
query expression. Derived tables are defined in the FROM clause of a SELECT statement.

Querying a derived table works the same as querying a view. That is, the values of a derived table are
determined at the time the derived table definition is evaluated. Derived tables differ from views,
however, in that the definition for a derived table is not stored in the database. Derived tables differ from

Query and modify data

260 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

base and temporary tables in that they are not materialized and they cannot be referred to from outside the
query in which they are defined.

The following query uses a derived table (my_derived_table) to hold the maximum salary in each
department. The data in the derived table is then joined to the Employees table to get the surnames of the
employee earning the salaries.

SELECT Surname,
 my_derived_table.maximum_salary AS Salary,
 my_derived_table.DepartmentID
FROM Employees e,
 (SELECT MAX(Salary) AS maximum_salary, DepartmentID
 FROM Employees
 GROUP BY DepartmentID) my_derived_table
 WHERE e.Salary = my_derived_table.maximum_salary
 AND e.DepartmentID = my_derived_table.DepartmentID
ORDER BY Salary DESC;

Surname Salary DepartmentID

Shea 138948.00 300

Scott 96300.00 100

Kelly 87500.00 200

Evans 68940.00 400

Martinez 55500.80 500

The following example creates a derived table (MyDerivedTable) that ranks the items in the Products
table, and then queries the derived table to return the three least expensive items:

SELECT TOP 3 *
 FROM (SELECT Description,
 Quantity,
 UnitPrice,
 RANK() OVER (ORDER BY UnitPrice ASC)
 AS Rank
 FROM Products) AS MyDerivedTable
ORDER BY Rank;

Querying objects other than tables
The most common elements in a FROM clause are table names. However, it is also possible to query
rows from other database objects that have a table-like structure—that is, a well-defined set of rows and
columns. For example, you can query views, or query stored procedures that return result sets.

For example, the following statement queries the result set of a stored procedure called
ShowCustomerProducts.

SELECT *
FROM ShowCustomerProducts(149);

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 261

See also
● “FROM clause” [SQL Anywhere Server - SQL Reference]
● “Joins: Retrieving data from several tables” on page 428

SELECT over a DML statement

SQL Anywhere supports the use of a DML statement (INSERT, UPDATE, DELETE, or MERGE) as a
table expression in a query's FROM clause.

When you include a dml-derived-table in a statement, it is ignored during the DESCRIBE. At OPEN time,
the UPDATE statement is executed first, and the results are stored in a temporary table. The temporary
table uses the column names of the table that is being modified by the statement. You can refer to the
modified values by using the correlation name from the REFERENCING clause. By specifying OLD or
FINAL, you do not need a set of unique column names for the updated table that is referenced in the
query. The dml-derived-table statement can only reference one updatable table; updates over multiple
tables return an error.

For example, the following query uses a SELECT over an UPDATE statement to perform the operations
listed below:

● Updates all products in the sample database with a 7% price increase
● Lists the affected products and their orders that were shipped between April 10, 2000 and May 21,

2000 whose order quantity was greater than 36

SELECT old_products.ID, old_products.name, old_products.UnitPrice AS
OldPrice,
 final_products.UnitPrice AS NewPrice, SOI.ID AS OrderID, SOI.Quantity
FROM
(UPDATE Products SET UnitPrice = UnitPrice * 1.07)
 REFERENCING (OLD AS old_products FINAL AS final_products)
 JOIN SalesOrderItems AS SOI ON SOI.ProductID = old_products.ID
WHERE SOI.ShipDate BETWEEN '2000-04-10' AND '2000-05-21'
 AND SOI.QUANTITY > 36
ORDER BY old_products.ID;

The following query uses both a MERGE statement and an UPDATE statement. The
modified_employees table represents a collection of employees whose state has been altered, while the
MERGE statement merges employee identifiers and names for those employees whose salary has been
increased by 3% with employees who are included in the modified_employees table. In this query, the
option settings that are specified in the OPTION clause apply to both the UPDATE and MERGE
statements.

CREATE TABLE modified_employees
(EmployeeID INTEGER PRIMARY KEY, Surname VARCHAR(40), GivenName
VARCHAR(40));

MERGE INTO modified_employees AS me
USING (SELECT modified_employees.EmployeeID,
 modified_employees.Surname,
 modified_employees.GivenName
 FROM (
 UPDATE Employees

Query and modify data

262 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 SET Salary = Salary * 1.03
 WHERE ManagerID = 501)
 REFERENCING (FINAL AS modified_employees)) AS dt_e
 ON dt_e.EmployeeID = me.EmployeeID
WHEN MATCHED THEN SKIP
WHEN NOT MATCHED THEN INSERT
OPTION(optimization_level=1, isolation_level=2);

Using multiple tables within a query
When you use multiple dml-derived-table arguments within a query, the order of execution of the
UPDATE statement is not guaranteed. The following statement updates both the Products and
SalesOrderItems tables in the sample database, and then produces a result based on a join that includes
these manipulations:

SELECT old_products.ID, old_products.name, old_products.UnitPrice AS
OldPrice,
 final_products.UnitPrice AS NewPrice,
 SalesOrders.ID AS OrderID, SalesOrders.CustomerID,
 old_order_items.Quantity,
 old_order_items.ShipDate AS OldShipDate,
 final_order_items.ShipDate AS RevisedShipDate
FROM
(UPDATE Products SET UnitPrice = UnitPrice * 1.07)
 REFERENCING (OLD AS old_products FINAL AS final_products)
 JOIN
(UPDATE SalesOrderItems
 SET ShipDate = DATEADD(DAY, 6, ShipDate)
 WHERE ShipDate BETWEEN '2000-04-10' AND '2000-05-21')
 REFERENCING (OLD AS old_order_items FINAL AS final_order_items)
 ON (old_order_items.ProductID = old_products.ID)
 JOIN SalesOrders ON (SalesOrders.ID = old_order_items.ID)
WHERE old_order_items.Quantity > 36
ORDER BY old_products.ID;

Using tables without materializing results
You can also embed an UPDATE statement without materializing its result by using the REFERENCING
(NONE) clause. Because the result of the UPDATE statement is empty in this case, you must write your
query to ensure that the query returns the intended result. You can ensure that a non-empty result is
returned by placing the dml-derived-table in the null-supplying side of an outer join. For example:

SELECT 'completed' AS finished, (SELECT COUNT(*) FROM Products) AS
product_total
FROM SYS.DUMMY LEFT OUTER JOIN
 (UPDATE Products SET UnitPrice = UnitPrice * 1.07)
 REFERENCING (NONE) ON 1=1;

You can also ensure that a non-empty result is returned by using the dml-derived-table as part of a query
expression using one of the set operators (UNION, EXCEPT, or INTERSECT). For example:

SELECT 'completed' AS finished, (SELECT COUNT(*) FROM Products) AS
product_total
FROM SYS.DUMMY
UNION ALL
SELECT 'dummy', 1 /* This query specification returns the empty set */
FROM (UPDATE Products SET UnitPrice = UnitPrice * 1.07)
 REFERENCING (NONE);

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 263

See also
● “FROM clause” [SQL Anywhere Server - SQL Reference]
● “Data manipulation statements” on page 556

The WHERE clause: Specifying rows
The WHERE clause in a SELECT statement specifies the search conditions for exactly which rows are
retrieved. Search conditions are also referred to as predicates. The general format is:

SELECT select-list
FROM table-list
WHERE search-condition

Search conditions in the WHERE clause include the following:

● Comparison operators (=, <, >, and so on) For example, you can list all employees earning more
than $50,000:

SELECT Surname
 FROM Employees
 WHERE Salary > 50000;

● Ranges (BETWEEN and NOT BETWEEN) For example, you can list all employees earning
between $40,000 and $60,000:

SELECT Surname
 FROM Employees
 WHERE Salary BETWEEN 40000 AND 60000;

● Lists (IN, NOT IN) For example, you can list all customers in Ontario, Quebec, or Manitoba:

SELECT CompanyName, State
 FROM Customers
 WHERE State IN('ON', 'PQ', 'MB');

● Character matches (LIKE and NOT LIKE) For example, you can list all customers whose phone
numbers start with 415. (The phone number is stored as a string in the database):

SELECT CompanyName, Phone
 FROM Customers
 WHERE Phone LIKE '415%';

● Unknown values (IS NULL and IS NOT NULL) For example, you can list all departments with
managers:

SELECT DepartmentName
 FROM Departments
 WHERE DepartmentHeadID IS NOT NULL;

● Combinations (AND, OR) For example, you can list all employees earning over $50,000 whose
first name begins with the letter A.

SELECT GivenName, Surname
 FROM Employees

Query and modify data

264 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 WHERE Salary > 50000
 AND GivenName like 'A%';

See also
● “Search conditions” [SQL Anywhere Server - SQL Reference]

Comparison operators in the WHERE clause

You can use comparison operators in the WHERE clause. The operators follow the syntax:

WHERE expression comparison-operator expression

Notes on comparisons
● Sort orders In comparing character data, < means earlier in the sort order and > means later in the

sort order. The sort order is determined by the collation chosen when the database is created. You can
find out the collation by running the dbinfo utility against the database:

dbinfo -c "uid=DBA;pwd=sql"

You can also find the collation from Sybase Central by going to the Extended Information tab of the
Database Properties window.

● Trailing blanks When you create a database, you indicate whether trailing blanks are ignored for
comparison purposes.

By default, databases are created with trailing blanks not ignored. For example, 'Dirk' is not the same
as 'Dirk '. You can create databases with blank padding, so that trailing blanks are ignored.

● Comparing dates In comparing dates, < means earlier and > means later.

● Case sensitivity When you create a database, you indicate whether string comparisons are case
sensitive or not.

By default, databases are created case insensitive. For example, 'Dirk' is the same as 'DIRK'. You can
create databases to be case sensitive.

Here are some SELECT statements using comparison operators:

SELECT *
 FROM Products
 WHERE Quantity < 20;
SELECT E.Surname, E.GivenName
 FROM Employees E
 WHERE Surname > 'McBadden';
SELECT ID, Phone
 FROM Contacts
 WHERE State != 'CA';

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 265

The NOT operator
The NOT operator negates an expression. Either of the following two queries find all Tee shirts and
baseball caps that cost $10 or less. However, note the difference in position between the negative logical
operator (NOT) and the negative comparison operator (!>).

SELECT ID, Name, Quantity
 FROM Products
 WHERE (name = 'Tee Shirt' OR name = 'BaseBall Cap')
 AND NOT UnitPrice > 10;
SELECT ID, Name, Quantity
 FROM Products
 WHERE (name = 'Tee Shirt' OR name = 'BaseBall Cap')
 AND UnitPrice !> 10;

See also
● “Comparison operators” [SQL Anywhere Server - SQL Reference]
● “Expressions” [SQL Anywhere Server - SQL Reference]

Ranges in the WHERE clause

The BETWEEN keyword specifies an inclusive range, in which the lower value and the upper value and
the values they bracket are searched for.

List all the products with prices between $10 and $15, inclusive

● Enter the following query:

SELECT Name, UnitPrice
 FROM Products
 WHERE UnitPrice BETWEEN 10 AND 15;

Name UnitPrice

Tee Shirt 14

Tee Shirt 14

Baseball Cap 10

Shorts 15

You can use NOT BETWEEN to find all the rows that are not inside the range.

List all the products less expensive than $10 or more expensive than $15

● Execute the following query:

SELECT Name, UnitPrice
 FROM Products
 WHERE UnitPrice NOT BETWEEN 10 AND 15;

Query and modify data

266 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Name UnitPrice

Tee Shirt 9

Baseball Cap 9

Visor 7

Visor 7

... ...

Lists in the WHERE clause

The IN keyword allows you to select values that match any one of a list of values. The expression can be
a constant or a column name, and the list can be a set of constants or, more commonly, a subquery.

For example, without IN, if you want a list of the names and states of all the customers who live in
Ontario, Manitoba, or Quebec, you can enter this query:

SELECT CompanyName, State
 FROM Customers
 WHERE State = 'ON' OR State = 'MB' OR State = 'PQ';

However, you get the same results if you use IN. The items following the IN keyword must be separated
by commas and enclosed in parentheses. Put single quotes around character, date, or time values. For
example:

SELECT CompanyName, State
 FROM Customers
 WHERE State IN('ON', 'MB', 'PQ');

Perhaps the most important use for the IN keyword is in nested queries, also called subqueries.

Pattern matching character strings in the WHERE clause

Pattern matching is a versatile way of identifying character data. In SQL, the LIKE keyword is used to
search for patterns. Pattern matching employs wildcard characters to match different combinations of
characters.

The LIKE keyword indicates that the following character string is a matching pattern. LIKE is used with
character data.

The syntax for LIKE is:

expression [NOT] LIKE match-expression

The expression to be matched is compared to a match-expression that can include these special symbols:

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 267

Symbols Meaning

% Matches any string of 0 or more characters

_ Matches any one character

[specifier] The specifier in the brackets may take the following forms:

● Range A range is of the form rangespec1-rangespec2, where rangespec1 indi-
cates the start of a range of characters, the hyphen indicates a range, and rangespec2
indicates the end of a range of characters.

● Set A set can include any discrete set of values, in any order. For example, [a2bR].

Note that the range [a-f], and the sets [abcdef] and [fcbdae] return the same set of values.

[^specifier] The caret symbol (^) preceding a specifier indicates non-inclusion. [^a-f] means not in
the range a-f; [^a2bR] means not a, 2, b, or R.

You can match the column data to constants, variables, or other columns that contain the wildcard
characters displayed in the table. When using constants, you should enclose the match strings and
character strings in single quotes.

Examples
All the following examples use LIKE with the Surname column in the Contacts table. Queries are of the
form:

SELECT Surname
 FROM Contacts
 WHERE Surname LIKE match-expression;

The first example would be entered as

SELECT Surname
 FROM Contacts
 WHERE Surname LIKE 'Mc%';

Match
expression

Description Returns

'Mc%' Search for every name that begins with the letters Mc McEvoy

'%er' Search for every name that ends with er Brier, Miller,
Weaver, Rayner

'%en%' Search for every name containing the letters en. Pettengill,
Lencki, Cohen

'_ish' Search for every four-letter name ending in ish. Fish

'Br[iy][ae]r' Search for Brier, Bryer, Briar, or Bryar. Brier

Query and modify data

268 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Match
expression

Description Returns

'[M-Z]owell' Search for all names ending with owell that begin with a
single letter in the range M to Z.

Powell

'M[^c]%' Search for all names beginning with M' that do not have c
as the second letter

Moore, Mulley,
Miller, Masalsky

Wildcards require LIKE
Wildcard characters used without LIKE are interpreted as string literals rather than as a pattern: they
represent exactly their own values. The following query attempts to find any phone numbers that consist
of the four characters 415% only. It does not find phone numbers that start with 415.

SELECT Phone
 FROM Contacts
 WHERE Phone = '415%';

Using LIKE with date and time values
You can use LIKE on DATE, TIME, TIMESTAMP, and TIMESTAMP WITH TIME ZONE fields.
However, the LIKE predicate only works on character data. When you use LIKE with date and time
values, the values are implicitly CAST to CHAR or VARCHAR using the corresponding option setting
for DATE, TIME, TIMESTAMP, and TIMESTAMP WITH TIME ZONE data types to format the value:

Date/time type CAST to VARCHAR using

DATE date_format

TIME time_format

TIMESTAMP timestamp_format

TIMESTAMP WITH TIME ZONE timestamp_with_time_zone_format

A consequence of using LIKE when searching for DATE, TIME or TIMESTAMP values is that, since
date and time values may contain a variety of date parts, and may be formatted in different ways based on
the above option settings, the LIKE pattern has to be written carefully to succeed.

For example, if you insert the value 9:20 and the current date into a TIMESTAMP column named
arrival_time, the following clause will evaluate to TRUE if the timestamp_format option formats the time
portion of the value using colons to separate hours and minutes:

WHERE arrival_time LIKE '%09:20%'

In contrast to LIKE, search conditions that contain a simple comparison between a string literal and a
DATE, TIME, TIMESTAMP, or TIMESTAMP WITH TIME ZONE value use the date/time data type as
the comparison domain. In this case, SQL Anywhere first converts the string literal to a TIMESTAMP
value and then uses the necessary portion(s) of that value to perform the comparison. SQL Anywhere

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 269

follows the ISO 8601 standard for converting TIME, DATE, and TIMESTAMP values, with additional
extensions.

For example, the clause below will evaluate to TRUE because the constant string value 9:20 is converted
to a TIMESTAMP using 9:20 as the time portion and the current date for the date portion:

WHERE arrival_time = '9:20'

Using NOT LIKE
With NOT LIKE, you can use the same wildcard characters that you can use with LIKE. To find all the
phone numbers in the Contacts table that do not have 415 as the area code, you can use either of these
queries:

SELECT Phone
 FROM Contacts
 WHERE Phone NOT LIKE '415%';
SELECT Phone
 FROM Contacts
 WHERE NOT Phone LIKE '415%';

Using underscores
Another special character that can be used with LIKE is the _ (underscore) character, which matches
exactly one character. For example, the pattern 'BR_U%' matches all names starting with BR and having
U as the fourth letter. In Braun the _ character matches the letter A and the % matches N.

See also
● “String literals” [SQL Anywhere Server - SQL Reference]
● “LIKE search condition” [SQL Anywhere Server - SQL Reference]

Character strings and quotation marks

When you enter or search for character and date data, you must enclose it in single quotes, as in the
following example.

SELECT GivenName, Surname
 FROM Contacts
 WHERE GivenName = 'John';

If the quoted_identifier database option is set to Off (it is On by default), you can also use double quotes
around character or date data.

Set the quoted_identifier option off for the current user ID

● Enter the following statement:

SET OPTION quoted_identifier = 'Off';

The quoted_identifier option is provided for compatibility with Adaptive Server Enterprise. By default,
the Adaptive Server Enterprise option is quoted_identifier Off and the SQL Anywhere option is
quoted_identifier On.

Query and modify data

270 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Quotation marks in strings
There are two ways to specify literal quotations within a character entry. The first method is to use two
consecutive quotation marks. For example, if you have begun a character entry with a single quotation
mark and want to include a single quotation mark as part of the entry, use two single quotation marks:

'I don''t understand.'

With double quotation marks (quoted_identifier Off), specify:

"He said, ""It is not really confusing."""

The second method, applicable only with quoted_identifier Off, is to enclose a quotation in the other kind
of quotation mark. In other words, surround an entry containing double quotation marks with single
quotation marks, or vice versa. Here are some examples:

'George said, "There must be a better way."'
"Isn't there a better way?"
'George asked, "Isn''t there a better way?"'

See also
● “quoted_identifier option” [SQL Anywhere Server - Database Administration]

Unknown values: NULL

A NULL in a column means that the user or application has made no entry in that column. That is, a data
value for the column is unknown or not available.

NULL does not mean the same as zero (numerical values) or blank (character values). Rather, NULL
values allow you to distinguish between a deliberate entry of zero for numeric columns or blank for
character columns and a non-entry, which is NULL for both numeric and character columns.

Entering NULL
NULL can be entered only where NULL values are permitted for the column. Whether a column can
accept NULL values is determined when the table is created. Assuming a column can accept NULL
values, NULL is inserted:

● Default If no data is entered, and the column has no other default setting.

● Explicit entry You can explicitly insert the word NULL without quotation marks. If the word
NULL is typed in a character column with quotation marks, it is treated as data, not as the NULL
value.

For example, the DepartmentHeadID column of the Departments table allows NULL values. You can
enter two rows for departments with no manager as follows:

INSERT INTO Departments (DepartmentID, DepartmentName)
 VALUES (201, 'Eastern Sales')
INSERT INTO Departments
 VALUES (202, 'Western Sales', NULL);

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 271

Returning NULL values
NULL values are returned to the client application for display, just as with other values. For example, the
following example illustrates how NULL values are displayed in Interactive SQL:

SELECT *
FROM Departments;

DepartmentID DepartmentName DepartmentHeadID

100 R & D 501

200 Sales 904

300 Finance 1293

400 Marketing 1576

500 Shipping 703

201 Eastern Sales (NULL)

202 Western Sales (NULL)

Testing a column for NULL

You can use the IS NULL search conditions to compare column values to NULL, and to select them or
perform a particular action based on the results of the comparison. Only columns that return a value of
TRUE are selected or result in the specified action; those that return FALSE or UNKNOWN do not.

The following example selects only rows for which UnitPrice is less than $15 or is NULL:

SELECT Quantity, UnitPrice
 FROM Products
 WHERE UnitPrice < 15
 OR UnitPrice IS NULL;

The result of comparing any value to NULL is UNKNOWN, since it is not possible to determine whether
NULL is equal (or not equal) to a given value or to another NULL.

There are some conditions that never return true, so that queries using these conditions do not return result
sets. For example, the following comparison can never be determined to be true, since NULL means
having an unknown value:

WHERE column1 > NULL

This logic also applies when you use two column names in a WHERE clause, that is, when you join two
tables. A clause containing the condition WHERE column1 = column2 does not return rows where
the columns contain NULL.

You can also find NULL or non-NULL with these patterns:

Query and modify data

272 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

WHERE column_name IS NULL
WHERE column_name IS NOT NULL

For example:

WHERE advance < $5000
OR advance IS NULL

See also
● “NULL special value” [SQL Anywhere Server - SQL Reference]

Properties of NULL

The following list expands on the properties of a NULL value.

● The difference between FALSE and UNKNOWN Although neither FALSE nor UNKNOWN
returns values, there is an important logical difference between FALSE and UNKNOWN; the opposite
of false ("not false") is true, whereas the opposite of UNKNOWN does not mean something is known.
For example, 1 = 2 evaluates to false, and 1 != 2 (1 does not equal 2) evaluates to true.

But if a NULL is included in a comparison, you cannot negate the expression to get the opposite set of
rows or the opposite truth value. An UNKNOWN value remains UNKNOWN.

● Substituting a value for NULL values You can use the ISNULL built-in function to substitute a
particular value for NULL values. The substitution is made only for display purposes; actual column
values are not affected. The syntax is:

ISNULL(expression, value)

For example, use the following statement to select all the rows from Departments, and display all the
NULL values in column DepartmentHeadID with the value -1.

SELECT DepartmentID,
 DepartmentName,
 ISNULL(DepartmentHeadID, -1) AS DepartmentHead
 FROM Departments;

● Expressions that evaluate to NULL An expression with an arithmetic or bitwise operator
evaluates to NULL if any of the operands are the NULL value. For example, 1 + column1
evaluates to NULL if column1 is NULL.

● Concatenating strings and NULL If you concatenate a string and NULL, the expression
evaluates to the string. For example, the following statement returns the string abcdef:

SELECT 'abc' || NULL || 'def';

See also
● “Arithmetic operators” [SQL Anywhere Server - SQL Reference]
● “Bitwise operators” [SQL Anywhere Server - SQL Reference]

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 273

Logical operators that provide connecting conditions

The logical operators AND, OR, and NOT are used to connect search conditions in WHERE clauses.
When more than one logical operator is used in a statement, AND operators are normally evaluated before
OR operators. You can change the order of execution with parentheses.

Using AND
The AND operator joins two or more conditions and returns results only when all the conditions are true.
For example, the following query finds only the rows in which the contact's last name is Purcell and the
contact's first name is Beth.

SELECT *
 FROM Contacts
 WHERE GivenName = 'Beth'
 AND Surname = 'Purcell';

Using OR
The OR operator connects two or more conditions and returns results when any of the conditions is true.
The following query searches for rows containing variants of Elizabeth in the GivenName column.

SELECT *
 FROM Contacts
 WHERE GivenName = 'Beth'
 OR GivenName = 'Liz';

Using NOT
The NOT operator negates the expression that follows it. The following query lists all the contacts who do
not live in California:

SELECT *
 FROM Contacts
 WHERE NOT State = 'CA';

Search conditions that compare dates

You can use operators other than equals to select a set of rows that satisfy the search condition. The
inequality operators (< and >) can be used to compare numbers, dates, and even character strings.

List all employees born before March 13, 1964

● In Interactive SQL, execute the following query:

SELECT Surname, BirthDate
 FROM Employees
 WHERE BirthDate < 'March 13, 1964'
 ORDER BY BirthDate DESC;

Query and modify data

274 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Surname BirthDate

Ahmed 1963-12-12

Dill 1963-07-19

Rebeiro 1963-04-12

Garcia 1963-01-23

Pastor 1962-07-14

... ...

Notes
● Automatic conversion to dates The SQL Anywhere database server knows that the BirthDate

column contains dates, and automatically converts the string 'March 13, 1964' to a date.

● Ways of specifying dates There are many ways of specifying dates. For example:

'March 13, 1964'
'1964/03/13'
'1964-03-13'

You can configure the interpretation of dates in queries by setting the date_order option database
option.

Dates in the format yyyy/mm/dd or yyyy-mm-dd are always recognized unambiguously as dates,
regardless of the date_order setting.

● Other comparison operators SQL Anywhere supports several comparison operators.

See also
● “date_order option” [SQL Anywhere Server - Database Administration]
● “Comparison operators” [SQL Anywhere Server - SQL Reference]

Row matching by sound

With the SOUNDEX function, you can match rows by sound. For example, suppose a phone message was
left for a name that sounded like "Ms. Brown". You could execute the following query to search for
employees that have names that sound like Brown.

List employees with a last name that sound like Brown

● In Interactive SQL, execute the following query:

SELECT Surname, GivenName
 FROM Employees
 WHERE SOUNDEX(Surname) = SOUNDEX('Brown');

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 275

Surname GivenName

Braun Jane

The algorithm used by SOUNDEX makes it useful mainly for English-language databases.

See also
● “SOUNDEX function [String]” [SQL Anywhere Server - SQL Reference]

The ORDER BY clause: Ordering results
Unless otherwise requested, the database server returns the rows of a table in an order that has no
meaning. Often it is useful to look at the rows in a table in a more meaningful sequence. For example, you
might like to see products in alphabetical order.

You order the rows in a result set by adding an ORDER BY clause to the end of the SELECT statement.
This SELECT statement has the following syntax:

SELECT column-name-1, column-name-2,...
FROM table-name
ORDER BY order-by-column-name

You must replace column-name-1, column-name-2, and table-name with the names of the columns and
table you are querying, and order-by-column-name with a column in the table. As before, you can use the
asterisk as a short form for all the columns in the table.

List the products in alphabetical order

● In Interactive SQL, execute the following query:

SELECT ID, Name, Description
 FROM Products
 ORDER BY Name;

ID Name Description

400 Baseball Cap Cotton Cap

401 Baseball Cap Wool cap

700 Shorts Cotton Shorts

600 Sweatshirt Hooded Sweatshirt

...

Query and modify data

276 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Notes
● The order of clauses is important The ORDER BY clause must follow the FROM clause and

the SELECT clause.

● You can specify either ascending or descending order The default order is ascending. You
can specify a descending order by adding the keyword DESC to the end of the clause, as in the
following query:

SELECT ID, Quantity
 FROM Products
 ORDER BY Quantity DESC;

ID Quantity

400 112

700 80

302 75

301 54

600 39

... ...

● You can order by several columns The following query sorts first by size (alphabetically), and
then by name:

SELECT ID, Name, Size
 FROM Products
 ORDER BY Size, Name;

ID Name Size

600 Sweatshirt Large

601 Sweatshirt Large

700 Shorts Medium

301 Tee Shirt Medium

...

● The ORDER BY column does not need to be in the SELECT list The following query sorts
products by unit price, even though the price is not included in the result set:

SELECT ID, Name, Size
 FROM Products
 ORDER BY UnitPrice;

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 277

ID Name Size

500 Visor One size fits all

501 Visor One size fits all

300 Tee Shirt Small

400 Baseball Cap One size fits all

...

● If you do not use an ORDER BY clause, and you execute a query more than once, you may
appear to get different results This is because SQL Anywhere may return the same result set in
a different order. In the absence of an ORDER BY clause, SQL Anywhere returns rows in whatever
order is most efficient. This means the appearance of result sets may vary depending on when you last
accessed the row and other factors. The only way to ensure that rows are returned in a particular order
is to use ORDER BY.

Indexes that improve ORDER BY performance

Sometimes there is more than one possible way for the SQL Anywhere database server to execute a query
with an ORDER BY clause. You can use indexes to enable the database server to search the tables more
efficiently.

Queries with WHERE and ORDER BY clauses
An example of a query that can be executed in more than one possible way is one that has both a WHERE
clause and an ORDER BY clause.

SELECT *
 FROM Customers
 WHERE ID > 300
 ORDER BY CompanyName;

In this example, SQL Anywhere must decide between two strategies:

1. Go through the entire Customers table in order by company name, checking each row to see if the
customer ID is greater than 300.

2. Use the key on the ID column to read only the companies with ID greater than 300. The results would
then need to be sorted by company name.

If there are very few ID values greater than 300, the second strategy is better because only a few rows are
scanned and quickly sorted. If most of the ID values are greater than 300, the first strategy is much better
because no sorting is necessary.

Query and modify data

278 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Solving the problem
Creating a two-column index on ID and CompanyName could solve the example above. SQL Anywhere
can use this index to select rows from the table in the correct order. However, keep in mind that indexes
take up space in the database file and involve some overhead to keep up to date. Do not create indexes
indiscriminately.

See also
● “Proper selection of indexes can make a large performance difference” on page 218

Aggregate functions in queries
Some queries examine aspects of the data in your table that reflect properties of groups of rows rather
than of individual rows. For example, you may want to find the average amount of money that a customer
pays for an order, or to see how many employees work for each department. For these types of tasks, you
use aggregate functions and the GROUP BY clause.

List the number of employees in the company

● In Interactive SQL, execute the following query:

SELECT COUNT(*)
 FROM Employees;

COUNT()

75

The result set consists of only one column, with title COUNT(*), and one row, which contains the
total number of employees.

List the number of employees in the company and the birth dates of the oldest and
youngest employee

● In Interactive SQL, execute the following query:

SELECT COUNT(*), MIN(BirthDate), MAX(BirthDate)
 FROM Employees;

COUNT() MIN(Employees.BirthDate) MAX(Employees.BirthDate)

75 1936-01-02 1973-01-18

The functions COUNT, MIN, and MAX are called aggregate functions. Aggregate functions summarize
information. Other aggregate functions include statistical functions such as AVG, STDDEV, and
VARIANCE. All but COUNT require a parameter.

Aggregate functions return a single value for a set of rows. If there is no GROUP BY clause, the
aggregate function is called a scalar aggregate and it returns a single value for all the rows that satisfy

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 279

other aspects of the query. If there is a GROUP BY clause, the aggregate is termed a vector aggregate
and it returns a value for each group.

SQL Anywhere supports additional aggregate functions for analytics, sometimes referred to as OLAP
functions. Several of these functions can be used as window functions: they include RANK,
PERCENT_RANK, CUME_DIST, ROW_NUMBER, and functions to support linear regression analysis.

See also
● “Aggregate functions” [SQL Anywhere Server - SQL Reference]
● “OLAP support” on page 487

Applying aggregate functions to grouped data

In addition to providing information about an entire table, aggregate functions can be used on groups of
rows. The GROUP BY clause arranges rows into groups, and aggregate functions return a single value for
each group of rows.

Example
List the sales representatives and the number of orders each has taken

● In Interactive SQL, execute the following query:

SELECT SalesRepresentative, COUNT(*)
 FROM SalesOrders
 GROUP BY SalesRepresentative
 ORDER BY SalesRepresentative;

SalesRepresentative COUNT()

129 57

195 50

299 114

467 56

... ...

A GROUP BY clause tells SQL Anywhere to partition the set of all the rows that would otherwise be
returned. All rows in each partition, or group, have the same values in the named column or columns.
There is only one group for each unique value or set of values. In this case, all the rows in each group
have the same SalesRepresentative value.

Aggregate functions such as COUNT are applied to the rows in each group. So, this result set displays the
total number of rows in each group. The results of the query consist of one row for each sales rep ID
number. Each row contains the sales rep ID, and the total number of sales orders for that sales
representative.

Query and modify data

280 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Whenever GROUP BY is used, the resulting table has one row for each column or set of columns named
in the GROUP BY clause.

Semantic differences with the empty set
The SQL language treats the empty set differently when using aggregate functions. Without a GROUP
BY clause, a query containing an aggregate function over zero input rows will return a single row as the
result. In the case of COUNT, its result will be the value zero, and with all other aggregate functions the
result will be NULL. However, if the query contains a GROUP BY clause, and the input to the query is
empty, then the query's result is empty and no rows are returned.

For example, the following query returns a single row with the value 0; there are no employees in
department 103.

SELECT COUNT() FROM Employees WHERE DepartmentID = 103;

However, this modified query returns no rows, due to the presence of the GROUP BY clause.

SELECT COUNT() FROM Employees WHERE DepartmentID = 103 GROUP BY State;

A common error with GROUP BY
A common error with GROUP BY is to try to get information that cannot properly be put in a group. For
example, the following query gives an error.

SELECT SalesRepresentative, Surname, COUNT(*)
 FROM SalesOrders KEY JOIN Employees
 GROUP BY SalesRepresentative;

The error message indicates that a reference to the Surname column must also appear in the GROUP BY
clause. This error occurs because SQL Anywhere cannot verify that each of the result rows for an
employee with a given ID have the same last name.

To fix this error, add the column to the GROUP BY clause.

SELECT SalesRepresentative, Surname, COUNT(*)
 FROM SalesOrders KEY JOIN Employees
 GROUP BY SalesRepresentative, Surname
 ORDER BY SalesRepresentative;

If this is not appropriate, you can instead use an aggregate function to select only one value:

SELECT SalesRepresentative, MAX(Surname), COUNT(*)
 FROM SalesOrders KEY JOIN Employees
 GROUP BY SalesRepresentative
 ORDER BY SalesRepresentative;

The MAX function chooses the maximum (last alphabetically) Surname from the detail rows for each
group. This statement is valid because there can be only one distinct maximum value. In this case, the
same Surname appears on every detail row within a group.

See also
● “The GROUP BY clause: Organizing query results into groups” on page 411

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 281

Restricting groups

You have already seen how to restrict rows in a result set using the WHERE clause. You restrict the rows
in groups using the HAVING clause.

List all sales representatives with more than 55 orders

● In Interactive SQL, execute the following query:

SELECT SalesRepresentative, COUNT(*) AS orders
FROM SalesOrders KEY JOIN Employees
GROUP BY SalesRepresentative
HAVING count(*) > 55
ORDER BY orders DESC;

SalesRepresentative orders

299 114

129 57

1142 57

467 56

See also
● “The HAVING clause: Selecting groups of data” on page 416

Combination of WHERE and HAVING clauses

Sometimes you can specify the same set of rows using either a WHERE clause or a HAVING clause. In
such cases, one method is not more or less efficient than the other. The optimizer always automatically
analyzes each statement you enter and selects an efficient means of executing it. It is best to use the
syntax that most clearly describes the intended result. In general, that means eliminating undesired rows
in earlier clauses.

Example
To list all sales reps with more than 55 orders and an ID of more than 1000, enter the following statement.

SELECT SalesRepresentative, COUNT(*)
FROM SalesOrders
WHERE SalesRepresentative > 1000
GROUP BY SalesRepresentative
HAVING count(*) > 55
ORDER BY SalesRepresentative;

The following statement produces the same results.

SELECT SalesRepresentative, COUNT(*)
FROM SalesOrders

Query and modify data

282 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

GROUP BY SalesRepresentative
HAVING count(*) > 55 AND SalesRepresentative > 1000
ORDER BY SalesRepresentative;

SQL Anywhere detects that both statements describe the same result set, and so executes each efficiently.

Advanced: Query processing phases
This section describes the phases that a statement goes through starting with the annotation phase and
ending with its execution. It also describes the assumptions that underlie the design of the optimizer, and
discusses selectivity estimation, cost estimation, and the steps of query processing.

To learn more about SQL Anywhere query processing, see the white paper "Query Processing Based on
SQL Anywhere 12.0.1 Architecture" at http://www.sybase.com/detail?id=1096047.

Statements that have no result sets, such as UPDATE or DELETE statements, go through the query
processing phases.

● Annotation phase When the database server receives a query, it uses a parser to parse the
statement and transform it into an algebraic representation of the query, also known as a parse tree. At
this stage the parse tree is used for semantic and syntactic checking (for example, validating that
objects referenced in the query exist in the catalog), permission checking, KEY JOINs and
NATURAL JOINs transformation using defined referential constraints, and non-materialized view
expansion. The output of this phase is a rewritten query, in the form of a parse tree, which contains
annotation to all the objects referenced in the original query.

● Semantic transformation phase During this phase, the query undergoes iterative semantic
transformations. While the query is still represented as an annotated parse tree, rewrite optimizations,
such as join elimination, DISTINCT elimination, and predicate normalization, are applied in this
phase. The semantic transformations in this phase are performed based on semantic transformation
rules that are applied heuristically to the parse tree representation.

Queries with plans already cached by the database server skip this phase of query processing. Simple
statements may also skip this phase of query processing. For example, many statements that use
heuristic plan selection in the optimizer bypass are not processed by the semantic transformation
phase. The complexity of the SQL statement determines if this phase is applied to a statement.

● Optimization phase The optimization phase uses a different internal representation of the query,
the query optimization structure, which is built from the parse tree.

Queries with plans already cached by the database server skip this phase of query processing. As well,
simple statements may also skip this phase of query processing.

This phase is broken into two sub-phases:

○ Pre-optimization phase The pre-optimization phase completes the optimization structure with
the information needed later in the enumeration phase. During this phase the query is analyzed to
find all relevant indexes and materialized views that may be used in the query access plan. For
example, in this phase, the View Matching algorithm determines all the materialized views that

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 283

http://www.sybase.com/detail?id=1096047

may be used to satisfy all, or part of the query. In addition, based on query predicate analysis, the
optimizer builds alternative join methods that may be used in the enumeration phase to join the
query's tables. During this phase, no decision is made regarding the best access plan for the query;
the goal of this phase is to prepare for the enumeration phase.

○ Enumeration phase During this phase, the optimizer enumerates possible access plans for the
query using the building blocks generated in the pre-optimization phase. The search space is very
large and the optimizer uses a proprietary enumeration algorithm to generate and prune the
generated access plans. For each plan, cost estimation is computed, which is used to compare the
current plan with the best plan found so far. Expensive plans are discarded during these
comparisons. Cost estimation takes into account resource utilization such as disk and CPU
operations, the estimated number of rows of the intermediate results, optimization goal, cache size,
and so on. The output of the enumeration phase is the best access plan for the query.

● Plan building phase The plan building phase takes the best access plan and builds the
corresponding final representation of the query execution plan used to execute the query. You can see
a graphical version of the plan in the Plan Viewer in Interactive SQL. The graphical plan has a tree
structure where each node is a physical operator implementing a specific relational algebraic
operation, for example, Hash Join and Ordered Group By are physical operators implementing a join
and a group by operation, respectively.

Queries with plans already cached by the database server skip this phase of query processing.

● Execution phase The result of the query is computed using the query execution plan built in the
plan building phase.

See also
● “Optimizations performed during query processing” on page 292
● “Eligibility to skip query processing phases” on page 284
● “Plan caching” on page 290
● “Graphical plans” on page 297
● “How the optimizer works” on page 286

Eligibility to skip query processing phases

Almost all statements pass through all query processing phases. However, there are two main exceptions:
queries that benefit from plan caching (queries whose plans are already cached by the database server),
and bypass queries.

● Plan caching For queries contained inside stored procedures and user-defined functions, the
database server may cache the execution plans so that they can be reused. For this class of queries, the
query execution plan is cached after execution. The next time the query is executed, the plan is
retrieved and all the phases up to the execution phase are skipped.

● Bypass queries Bypass queries are a subclass of simple queries that have certain characteristics
that the database server recognizes as making them eligible for bypassing the optimizer. Bypassing
optimization can reduce the time needed to build an execution plan.

Query and modify data

284 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

If a query is recognized as a bypass query, a heuristic rather than cost-based optimization is used—
that is, the semantic transformation and optimization phases may be skipped and the query execution
plan is built directly from the parse tree representation of the query.

Simple queries
A simple query is a SELECT, INSERT, DELETE, or UPDATE statement with a single query block and
the following characteristics:

● The query block does not contain subqueries or additional query blocks such as those for UNION,
INTERSECT, EXCEPT, and common table expressions.

● The query block references a single base table or materialized view.

● The query block may include the TOP N, FIRST, ORDER BY, or DISTINCT clauses.

● The query block may include aggregate functions without GROUP BY or HAVING clauses.

● The query block does not include window functions.

● The query block expressions do not include NUMBER, IDENTITY, or subqueries.

● The constraints defined on the base table are simple expressions.

A complex statement may be transformed into a simple statement after the semantic transformation phase.
When this occurs, the query can be processed by the optimizer bypass or have its plan cached by the SQL
Anywhere Server.

Forcing optimization, and forcing no optimization
You can force queries that qualify for plan caching, or for bypassing the optimizer, to be processed by the
SQL Anywhere optimizer. To do so, use the FORCE OPTIMIZATION clause with any SQL statement.

You can also try to force a statement to bypass the optimizer. To do so, use the FORCE NO
OPTIMIZATION clause of the statement. If the statement is too complex to bypass the optimizer -
possibly due to database option settings or characteristics of the schema or query - the query fails and an
error is returned.

The FORCE OPTIMIZATION and FORCE NO OPTIMIZATION clauses are permitted in the OPTION
clause of the following statements:

● “SELECT statement” [SQL Anywhere Server - SQL Reference]
● “UPDATE statement” [SQL Anywhere Server - SQL Reference]
● “INSERT statement” [SQL Anywhere Server - SQL Reference]
● “DELETE statement” [SQL Anywhere Server - SQL Reference]

See also
● “Plan caching” on page 290

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 285

Advanced: Query optimization
Optimization is essential in generating a suitable access plan for a query. Once a query is parsed, the
query optimizer (or simply, the optimizer) analyzes it and decides on an access plan that computes the
result using as few resources as possible. Optimization begins just before execution. If you are using
cursors in your application, optimization commences when the cursor is opened.

Unlike many other commercial database systems, SQL Anywhere usually optimizes each statement just
before executing it. Because SQL Anywhere performs just-in-time optimization of each statement, the
optimizer has access to the values of host and stored procedure variables, which allows for better
selectivity estimation analysis. In addition, just-in-time optimization allows the optimizer to adjust its
choices based on the statistics saved after previous query executions.

To operate efficiently, SQL Anywhere rewrites your queries into semantically equivalent, but
syntactically different, forms. SQL Anywhere performs many different rewrite operations. If you read the
access plans, you frequently find that they do not correspond to a literal interpretation of your original
statement. For example, to make your SQL statements more efficient, the optimizer tries as much as
possible to rewrite subqueries with joins.

To learn more about SQL Anywhere query processing, see the white paper "Query Processing Based on
SQL Anywhere 12.0.1 Architecture" at http://www.sybase.com/detail?id=1096047.

How the optimizer works

The role of the optimizer is to devise an efficient way to execute SQL statements. To do this, the
optimizer must determine an execution plan for a query. This includes decisions about the access order for
tables referenced in the query, the join operators and access methods used for each table, and whether
materialized views that are not referenced in the query can be used to compute parts of the query. The
optimizer attempts to pick the best plan for executing the query during the join enumeration phase, when
possible access plans for a query are generated and costed. The best access plan is the one that the
optimizer estimates will return the desired result set in the shortest period of time, with the least cost. The
optimizer determines the cost of each enumerated strategy by estimating the number of disk reads and
writes required.

In Interactive SQL, you can view the best access plan used to execute a query by clicking Tools » Plan
Viewer.

Minimizing the cost of returning the first row
The optimizer uses a generic disk access cost model to differentiate the relative performance differences
between random and sequential retrieval on the database file. It is possible to calibrate a database for a
particular hardware configuration using an ALTER DATABASE statement.

By default, query processing is optimized towards returning the complete result set. You can change the
default behavior using the optimization_goal option, to minimize the cost of returning the first row
quickly. Note that when the option is set to First-row, the optimizer favors an access plan that is intended
to reduce the time to fetch the first row of the query's result, likely at the expense of total retrieval time.

Query and modify data

286 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

http://www.sybase.com/detail?id=1096047

Using semantically equivalent syntax
Most statements can be expressed in many different ways using the SQL language. These expressions are
semantically equivalent in that they do the same task, but may differ substantially in syntax. With few
exceptions, the optimizer devises a suitable access plan based only on the semantics of each statement.

Syntactic differences, although they may appear to be substantial, usually have no effect. For example,
differences in the order of predicates, tables, and attributes in the query syntax have no effect on the
choice of access plan. Neither is the optimizer affected by whether a query contains a non-materialized
view.

Reducing the cost of optimizing queries
Ideally, the optimizer would identify the most efficient access plan possible, but this goal is often
impractical. Given a complicated query, a great number of possibilities may exist.

However efficient the optimizer, analyzing each option takes time and resources. The optimizer compares
the cost of further optimization with the cost of executing the best plan it has found so far. If a plan has
been devised that has a relatively low cost, the optimizer stops and allows execution of that plan to
proceed. Further optimization might consume more resources than would execution of an access plan
already found. You can control the amount of effort made by the optimizer by setting a high value for the
optimization_level option.

The optimizer works longer for expensive and complex queries, or when the optimization level is set high.
For very expensive queries, it may run long enough to cause a discernible delay.

See also
● “Graphical plans” on page 297
● “Advanced: Query execution plans” on page 293
● “ALTER DATABASE statement” [SQL Anywhere Server - SQL Reference]
● “optimization_level option” [SQL Anywhere Server - Database Administration]
● “optimization_goal option” [SQL Anywhere Server - Database Administration]

Optimizer estimates and statistics

The optimizer chooses a strategy for processing a statement based on column statistics stored in the
database and on heuristics (educated guesses). For each access plan considered by the optimizer, an
estimated result size (number of rows) must be computed. For example, for each join method or index
access based on the selectivity estimations of the predicates used in the query, an estimated result size is
calculated. The estimated result sizes are used to compute the estimated disk access and CPU cost for
each operator such as a join method, a group by method, or a sequential scan, used in the plan. Column
statistics are the primary data used by the optimizer to compute selectivity estimation of predicates.
Therefore, they are vital to estimating correctly the cost of an access plan.

If column statistics become stale, or are missing, performance can degrade since inaccurate statistics may
result in an inefficient execution plan. If you suspect that poor performance is due to inaccurate column
statistics, you should recreate them.

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 287

How the optimizer uses statistics
The most important component of the column statistics used by the optimizer are histograms. Histograms
store information about the distribution of values in a column. In SQL Anywhere, a histogram represents
the data distribution for a column by dividing the domain of the column into a set of consecutive value
ranges (also called buckets) and by remembering, for each value range (or bucket), the number of rows in
the table for which the column value falls in the bucket.

SQL Anywhere pays particular attention to single column values that are present in a large number of
rows in the table. Significant single value selectivities are maintained in singleton histogram buckets (for
example, buckets that encompass a single value in the column domain). SQL Anywhere tries to maintain
a minimum number of singleton buckets in each histogram, usually between 10 and 100 depending upon
the size of the table. Additionally, all single values with selectivities greater than 1% are kept as singleton
buckets. As a result, a histogram for a given column remembers the top N single value selectivities for the
column where the value of N is dependent upon the size of the table and the number of single value
selectivities that are greater than 1%.

Once the minimum number of value ranges has been met, low-selectivity frequencies are replaced by
large-selectivity frequencies as they come along. The histogram will only have more than the minimum
number of singleton value ranges after it has seen enough values with a selectivity of greater than 1%.

Unlike base tables, procedure calls executed in the FROM clause do not have column statistics. Therefore,
the optimizer uses defaults or guesses for all selectivity estimates on data coming from a procedure call.
The execution time of a procedure call, and the total number of rows in its result set, are estimated using
statistics collected from previous calls. These statistics are maintained in the stats column of the
ISYSPROCEDURE system table.

How the optimizer uses heuristics
For each table in a potential execution plan, the optimizer estimates the number of rows that will form
part of the results. The number of rows depends on the size of the table and the restrictions in the WHERE
clause or the ON clause of the query.

Given the histogram on a column, SQL Anywhere estimates the number of rows satisfying a given query
predicate on the column by adding up the number of rows in all value ranges that overlap the values
satisfying the specified predicate. For value ranges in the histograms that are partially contained in the
query result set, SQL Anywhere uses interpolation within the value range.

Often, the optimizer uses more sophisticated heuristics. For example, the optimizer only uses default
estimates when better statistics are unavailable. As well, the optimizer makes use of indexes and keys to
improve its guess of the number of rows. The following are a few single-column examples:

● Equating a column to a value: estimate one row when the column has a unique index or is the primary
key.

● A comparison of an indexed column to a constant: probe the index to estimate the percentage of rows
that satisfy the comparison.

● Equating a foreign key to a primary key (key join): use relative table sizes in determining an estimate.
For example, if a 5000 row table has a foreign key to a 1000 row table, the optimizer guesses that there
are five foreign key rows for each primary key row.

Query and modify data

288 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “Update column statistics” on page 213
● “Selectivity estimate sources” on page 289
● “ESTIMATE function [Miscellaneous]” [SQL Anywhere Server - SQL Reference]
● “ESTIMATE_SOURCE function [Miscellaneous]” [SQL Anywhere Server - SQL Reference]
● “SYSPROCEDURE system view” [SQL Anywhere Server - SQL Reference]
● “sa_get_histogram system procedure” [SQL Anywhere Server - SQL Reference]
● “Histogram utility (dbhist)” [SQL Anywhere Server - Database Administration]

Selectivity estimate sources

For any predicate, the optimizer can use any of the following source for selectivity estimates. The chosen
source is indicated in the graphical and long plan for the query.

● Statistics The optimizer can use stored column statistics to calculate selectivity estimates. If
constants are used in the predicate, the stored statistics are available only when the selectivity of a
constant is a significant enough number that it is stored in the statistics.

For example, the predicate EmployeeID > 100 can use column statistics as the selectivity
estimate source if the statistics for the EmployeeID column exists.

● Join The optimizer can use referential integrity constraints, unique constraints, or join histograms
to compute selectivity estimates. Join histograms are computed for a predicate of the form T.X=R.X
from the available statistics of the T.X and R.X columns.

● Column-column In the case of a join where there are no referential integrity constraints, unique
constraints, or join histograms available to use as selectivity sources, the optimizer can use, as a
selectivity source, the estimated number of rows in the joined result set divided by the number of rows
in the Cartesian product of the two tables.

● Column The optimizer can use the average of all values that have been stored in the column
statistics.

For example, the selectivity of the predicate DepartmentName = expression can be computed
using the average if expression is not a constant.

● Index The optimizer can probe indexes to compute selectivity estimates. In general, an index is
used for selectivity estimates if no other sources of selectivity estimates, for example column
statistics, can be used.

For example, for the predicate DepartmentName = 'Sales', the optimizer can use an index
defined on the column DepartmentName to estimate the number of rows having the value Sales.

● User The optimizer can use user-supplied selectivity estimates, provided the user_estimates
database option is not set to Disabled.

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 289

● Guess The optimizer can resort to best guessing to calculate selectivity estimates when there is no
relevant index to use, no statistics have been collected for the referenced columns, or the predicate is a
complex predicate. In this case, built-in guesses are defined for each type of predicate.

● Computed For example, a very complex predicate may have the selectivity estimate set to 100%
and the selectivity source set to Computed if the selectivity estimate was computed, for example, by
multiplying or adding the selectivities.

● Always If a predicate is always true, the selectivity source is 'Always'. For example, the predicate
1=1 is always true.

● Combined If the selectivity estimate is computed by combining more than one of the sources
above, the selectivity source is 'Combined'.

● Bounded When SQL Anywhere has placed an upper and/or lower bound on the selectivity
estimate, the selectivity source is 'Bounded'. For example, bounds are sets to ensure that an estimate is
not greater than 100%, or that the selectivity is not less than 0%.

See also
● “ESTIMATE function [Miscellaneous]” [SQL Anywhere Server - SQL Reference]
● “ESTIMATE_SOURCE function [Miscellaneous]” [SQL Anywhere Server - SQL Reference]
● “Selectivity information in the graphical plan” on page 303
● “Supply explicit selectivity estimates sparingly” on page 212
● “sa_get_histogram system procedure” [SQL Anywhere Server - SQL Reference]
● “INDEX_ESTIMATE function [Miscellaneous]” [SQL Anywhere Server - SQL Reference]
● “EXPERIENCE_ESTIMATE function [Miscellaneous]” [SQL Anywhere Server - SQL Reference]
● “Supply explicit selectivity estimates sparingly” on page 212
● “user_estimates option” [SQL Anywhere Server - Database Administration]

Plan caching

Normally, the optimizer selects an execution plan for a query every time the query is executed.
Optimizing at execution time allows the optimizer to choose a plan based on current system state, and the
values of current selectivity estimates and estimates based on the values of host variables. For queries that
are executed frequently, the cost of query optimization can outweigh the benefits of optimizing at
execution time. To reduce the cost of optimizing these statements repeatedly, the SQL Anywhere server
considers caching plans for:

● All statements performed inside stored procedures, user-defined functions, and triggers.

● SELECT, INSERT, UPDATE, or DELETE statements that qualify for bypass optimization.

For INSERT statements, only INSERT...VALUES statements qualify for caching; INSERT...ON
EXISTING statements do not qualify for caching.

For UPDATE and DELETE statements, the WHERE clause must be present and contain search
conditions that use the primary key to identify a row. No extra search conditions are allowed if plan
caching is desired. Also, for UPDATE statements, a SET clause that contains a variable assignment
disqualifies the statement from caching.

Query and modify data

290 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

After one of these statements has been executed several times by a connection, the optimizer builds a
reusable plan for the statement without knowing the host variable values. The reusable plan may have a
higher cost because host variable values cannot be used for selectivity estimation or semantic query
transformations. If the reusable plan has the same structure as the plans built in previous executions of the
statement, the database server adds the reusable plan to the plan cache. The execution plan is not cached
when the benefit of optimizing on each execution outweighs the savings from avoiding optimization.

If an execution plan uses a materialized view that was not referenced by the statement, and the
materialized_view_optimization option is set to something other than Stale, then the execution plan is not
cached and the statement is optimized again the next time the stored procedure, user-defined function, or
trigger is called.

The plan cache is a per-connection cache of the data structures used to execute an access plan. Reusing
the cached plan involves looking up the plan in the cache and resetting it to an initial state. Typically, this
is substantially faster than processing the statement through all of the query processing phases. Cached
plans may be stored to disk if they are used infrequently, and they do not increase the cache usage. The
optimizer periodically re-optimizes queries to verify that the cached plan is still efficient.

The maximum number of plans to cache is specified with the max_plans_cached option. The default is 20.
To disable plan caching, set this option to 0.

You can use the QueryCachedPlans statistic to show how many query execution plans are currently
cached. This property can be retrieved using the CONNECTION_PROPERTY function to show how
many query execution plans are cached for a given connection, or the DB_PROPERTY function can be
used to count the number of cached execution plans across all connections. This property can be used in
combination with QueryCachePages, QueryOptimized, QueryBypassed, and QueryReused to help
determine the best setting for the max_plans_cached option.

You can use the database or QueryCachePages connection property to determine the number of pages
used to cache execution plans. These pages occupy space in the temporary file, but are not necessarily
resident in memory.

See also
● “Eligibility to skip query processing phases” on page 284
● “Materialized views” on page 49
● “materialized_view_optimization option” [SQL Anywhere Server - Database Administration]
● “DB_PROPERTY function [System]” [SQL Anywhere Server - SQL Reference]
● “CONNECTION_PROPERTY function [System]” [SQL Anywhere Server - SQL Reference]
● “Advanced: Query processing phases” on page 283
● “Accessing connection property values” [SQL Anywhere Server - Database Administration]
● “max_plans_cached option” [SQL Anywhere Server - Database Administration]

Subquery and function caching

When SQL Anywhere processes a subquery, it caches the result. This caching is done on a request-by-
request basis; cached results are never shared by concurrent requests or connections. Should SQL
Anywhere need to re-evaluate the subquery for the same set of correlation values, it can simply retrieve

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 291

the result from the cache. In this way, SQL Anywhere avoids many repetitious and redundant
computations. When the request is completed (the query's cursor is closed), SQL Anywhere releases the
cached values.

As the processing of a query progresses, SQL Anywhere monitors the frequency with which cached
subquery values are reused. If the values of the correlated variable rarely repeat, then SQL Anywhere
needs to compute most values only once. In this situation, SQL Anywhere recognizes that it is more
efficient to recompute occasional duplicate values, than to cache numerous entries that occur only once.
So, the database server suspends the caching of this subquery for the remainder of the statement and
proceeds to re-evaluate the subquery for each and every row in the outer query block.

SQL Anywhere also does not cache if the size of the dependent column is more than 255 bytes. In such
cases, you may want to rewrite your query or add another column to your table to make such operations
more efficient.

Function caching
Some built-in and user-defined functions are cached in the same way that subquery results are cached.
This can result in a substantial improvement for expensive functions that are called during query
processing with the same parameters. However, it may mean that a function is called fewer times than
would otherwise be expected.

For a function to be cached, it must satisfy two conditions:

● It must always return the same result for a given set of parameters.

● It must have no side effects on the underlying data.

Functions that satisfy these conditions are called deterministic or idempotent functions. SQL Anywhere
treats all user-defined functions as deterministic (unless they specifically declared NOT
DETERMINISTIC at creation time). That is, the database server assumes that two successive calls to the
same function with the same parameters returns the same result, and does not have any unwanted side-
effects on the query semantics.

Built-in functions are treated as deterministic with a few exceptions. The RAND, NEWID, and
GET_IDENTITY functions are treated as non-deterministic, and their results are not cached.

See also
● “CREATE FUNCTION statement” [SQL Anywhere Server - SQL Reference]

Optimizations performed during query processing

In the Query Rewrite phase, SQL Anywhere performs semantic transformations in search of more
efficient and convenient representations of the query. Because the query may be rewritten into a
semantically equivalent query, the plan may look quite different from your original query. Common
manipulations include:

● eliminating unnecessary DISTINCT conditions

Query and modify data

292 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● un-nesting subqueries

● performing a predicate push-down in UNION or GROUPed views and derived tables

● optimizing of OR and IN-list predicates

● optimizing of LIKE predicates

● converting outer joins to inner joins

● eliminating outer joins and inner joins

● discovering exploitable conditions through predicate inference

● eliminating unnecessary case translation

● rewriting subqueries as EXISTS predicates

● inferring sargable IN predicates, which can be used for partial index scans from OR predicates that
cannot be transformed into AND predicates

Note
Some query rewrite optimizations cannot be performed on the main query block if the cursor is updatable.
Declare the cursor as read-only to take advantage of the optimizations.

Some of the rewrite optimizations performed during the Query Rewrite phase can be observed in the
results returned by the REWRITE function.

See also
● “Cursor types” [SQL Anywhere Server - Programming]
● “DECLARE CURSOR statement [ESQL] [SP]” [SQL Anywhere Server - SQL Reference]
● “REWRITE function [Miscellaneous]” [SQL Anywhere Server - SQL Reference]

Advanced: Query execution plans
An execution plan is the set of steps the database server uses to access information in the database related
to a statement. The execution plan for a statement can be saved and reviewed, regardless of whether it was
just optimized, whether it bypassed the optimizer, or whether its plan was cached from previous
executions. A query execution plan may not correspond exactly to the syntax used in the original
statement, and may use materialized views instead of the base tables explicitly specified in the query.
However, the operations described in the execution plan are semantically equivalent to the original query.

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 293

You can view the execution plan in Interactive SQL or by using SQL functions. You can choose to
retrieve the execution plan in several different formats:

● Short text plan
● Long text plan
● Graphical plan
● Graphical plan with root statistics
● Graphical plan with full statistics
● UltraLite (short, long, or graphical)

There are two types of text representations of a query execution plan: short and long. Use the SQL
functions to access the text plan. There is also a graphical version of the plan. You can also obtain plans
for SQL queries with a particular cursor type by using the GRAPHICAL_PLAN and EXPLANATION
functions.

To learn more about SQL Anywhere query processing, see the white paper "Query Processing Based on
SQL Anywhere 12.0.1 Architecture" at http://www.sybase.com/detail?id=1096047.

See also
● “GRAPHICAL_PLAN function [Miscellaneous]” [SQL Anywhere Server - SQL Reference]
● “EXPLANATION function [Miscellaneous]” [SQL Anywhere Server - SQL Reference]
● “Advanced: Query processing phases” on page 283
● “Viewing graphical plans” on page 305
● “Advanced: Query execution plans” on page 293
● “Graphical plans” on page 297

See also
● “Viewing short and long text plans” on page 297
● “Graphical plans” on page 297

Short text plan

The short text plan is useful when you want to compare plans quickly. It provides the least amount of
information of all the plan formats, but it provides it on a single line.

In the following example, the plan starts with Work[Sort because the ORDER BY clause causes the
entire result set to be sorted. The Customers table is accessed by its primary key index, CustomersKey.
An index scan is used to satisfy the search condition because the column Customers.ID is a primary key.
The abbreviation JNL indicates that the optimizer chose a merge join to process the join between
Customers and SalesOrders. Finally, the SalesOrders table is accessed using the foreign key index
FK_CustomerID_ID to find rows where CustomerID is less than 100 in the Customers table.

SELECT EXPLANATION ('SELECT GivenName, Surname, OrderDate
FROM Customers JOIN SalesOrders
WHERE CustomerID < 100
ORDER BY OrderDate');

Work[Sort[Customers<CustomersKey> JNL
SalesOrders<FK_CustomerID_ID>]]

Query and modify data

294 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

http://www.sybase.com/detail?id=1096047

Colons separate join strategies
The following statement contains two query blocks: the outer select block referencing the SalesOrders
and SalesOrderItems tables, and the subquery that selects from the Products table.

SELECT EXPLANATION ('SELECT *
FROM SalesOrders AS o
 KEY JOIN SalesOrderItems AS I
WHERE EXISTS
 (SELECT *
 FROM Products p
 WHERE p.ID = 300)');

o<seq> JNL i<FK_ID_ID> : p<ProductsKey>

Colons separate join strategies of the different query blocks. Short plans always list the join strategy for
the main block first. Join strategies for other query blocks follow. The order of join strategies for these
other query blocks may not correspond to the order of the query blocks in your statement, or to the order
in which they execute.

See also
● “Execution plan components” on page 306

Long text plan

The long text plan provides more information than the short text plan in a way that is easy to print and
view without scrolling. Long plans include information such as the cached plan for a statement, and when
used with application profiling, the plans include additional information about how a query was optimized
and the predicates used in a partial index scan.

Example 1
In this example, the long text plan is based on the following statement:

SELECT PLAN ('SELECT GivenName, Surname, OrderDate, Region, Country
FROM Customers JOIN SalesOrders ON (SalesOrders.CustomerID = Customers.ID)
WHERE CustomerID < 100 AND (Region LIKE ''Eastern''
 OR Country LIKE ''Canada'')
ORDER BY OrderDate');

The long text plan reads as follows:

(Plan [Total Cost Estimate: 6.46e-005, Costed Best Plans: 1, Costed Plans:
10, Optimization Time: 0.0011462,
Estimated Cache Pages: 348]
 (WorkTable
 (Sort
 (NestedLoopsJoin
 (IndexScan Customers CustomersKey[Customers.ID < 100 : 0.0001%
Index | Bounded])
 (IndexScan SalesOrders FK_CustomerID_ID[Customers.ID =
SalesOrders.CustomerID : 0.79365% Statistics]
 [(SalesOrders.CustomerID < 100 : 0.0001% Index | Bounded)
 AND ((((Customers.Country LIKE 'Canada' : 100% Computed)

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 295

 AND (Customers.Country = 'Canada' : 5% Guess))
 OR ((SalesOrders.Region LIKE 'Eastern' : 100% Computed)
 AND (SalesOrders.Region = 'Eastern' : 5% Guess))) : 100%
Guess)])
)
)
)
)

The word Plan indicates the start of a query block. The Total Cost Estimate is the optimizer estimated
time, in milliseconds, for the execution of the plan. The Costed Best Plans, Costed Plans, and
Optimization Time are statistics of the optimization process while the Estimated Cache Pages is the
estimated current cache size available for processing the statement.

The plan indicates that the results are sorted, and that a Nested Loops Join is used. On the same line as the
join operator, there is the join condition and its selectivity estimate (which is evaluated for all the rows
produced by the join operator). The IndexScan lines indicate that the Customers and SalesOrders tables
are accessed via indexes CustomersKey and FK_CustomerID_ID respectively.

Example 2
If the following statement is used inside a procedure, trigger, or function, and the plan for the statement
was cached and reused five times, the long text plan contains the string [R: 5] to indicate that the
statement is reusable and was used five times after it was cached. The parameter parm1 used in the
statement has an unknown value in this plan.

UPDATE Account SET Account.A = 10 WHERE Account.B =parm1
(Update [Total Cost Estimate: 1e-006, Costed Best Plans: 1, Costed Plans:
2, Carver pages: 0,
Estimated Cache Pages: 46768] [R: 5]
 (Keyset
 (TableScan (Account)) [Account.B = parm1 : 0.39216% Column]
)
)
)

If the same statement does not yet have its plan cached, the long text plan contains the value for the
parameter parm1 (for example, 10), indicating that the plan was optimized using this parameter's value.

(Update [Total Cost Estimate: 1e-006, Costed Best Plans: 1, Costed Plans:
2, Carver pages: 0,
Estimated Cache Pages: 46768]
 (Keyset
 (TableScan (Account)) [Account.B = parm1 [10] : 0.001%
Statistics]
)
)
)

See also
● “Execution plan components” on page 306

Query and modify data

296 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Viewing short and long text plans

View a short text plan (SQL)

1. Connect to a database as a user with DBA authority.

2. Execute the EXPLANATION function.

View a long text plan (SQL)

1. Connect to a database as a user with DBA authority.

2. Execute the PLAN function.

See also
● “EXPLANATION function [Miscellaneous]” [SQL Anywhere Server - SQL Reference]
● “PLAN function [Miscellaneous]” [SQL Anywhere Server - SQL Reference]

Graphical plans

The graphical plan feature in Interactive SQL displays the execution plan for a query in the Plan Viewer
window. The execution plan consists of a tree of relational algebra operators that, starting at the leaves of
the tree, consume the base inputs of the query (usually rows from a table) and process the rows from
bottom to top, so that the root of the tree yields the final result. Nodes in this tree correspond to specific
algebraic operators, though not all query evaluation performed by the server is represented by nodes. For
example, the effects of subquery and function caching are not directly displayed in a graphical plan.

Nodes displayed in the graphical plan are different shapes that indicate the type of operation performed:

● Hexagons represent operations that materialize data.

● Trapezoids represent index scans.

● Rectangles with square corners represent table scans.

● Rectangles with round corners represent operations not listed above.

You can use a graphical plan to diagnose performance issues with specific queries. For example, the
information in the plan can help you decide if a table requires an index to improve the performance of this
specific query. You can save the graphical plan for a query for future reference by clicking the Save
button in the Plan Viewer. SQL Anywhere graphical plans are saved with the extension .saplan.

Possible performance issues are identified by thick lines and red borders in the graphical plan. For
example:

● Thicker lines between nodes in a plan indicate a corresponding increase in the number of rows
processed. The presence of a thick line over a table scan may indicate that the creation of an index
might be required.

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 297

● Red borders around a node indicate that the operation was expensive in comparison with the other
operations in the execution plan.

Node shapes and other graphical components of the plan can be customized within Interactive SQL.

You can view either a graphical plan, a graphical plan with a summary, or a graphical plan with detailed
statistics. All three plans allow you to view the parts of the plan that are estimated to be the most
expensive. Generating a graphical plan with statistics is more expensive because it provides the actual
query execution statistics as monitored by the database server when the query is executed. Graphical plans
with statistics permits direct comparison between the estimates used by the query optimizer in
constructing the access plan with the actual statistics monitored during execution. Note, however, that the
optimizer is often unable to estimate precisely a query's cost, so expect differences between the estimated
and actual values.

See also
● “Viewing graphical plans” on page 305
● “Application profiling” on page 126
● “Advanced: Query execution plans” on page 293
● “Customized graphical plans” on page 305

Graphical plan with statistics

The graphical plan provides more information than the short or long text plans. The graphical plan with
statistics, though more expensive to generate, provides the query execution statistics the database server
monitors when the query is executed, and permits direct comparison between the estimates used by the
optimizer in constructing the access plan with the actual statistics monitored during execution. Significant
differences between actual and estimated statistics might indicate that the optimizer does not have enough
information to correctly estimate the query's cost, which may result an inefficient execution plan.

To generate a graphical plan with statistics, the database server must execute the statement. The
generation of a graphical plan for long-running statements might take a significant amount of time. If the
statement is an UPDATE, INSERT, or DELETE, only the read-only portion of the statement is executed;
table manipulations are not performed. However, if a statement contains user-defined functions, they are
executed as part of the query. If the user-defined functions have side effects (for example, modifying
rows, creating tables, sending messages to the console, and so on), these changes are made when getting
the graphical plan with statistics. Sometimes you can undo these side effects by issuing a ROLLBACK
statement after getting the graphical plan with statistics.

See also
● “ROLLBACK statement” [SQL Anywhere Server - SQL Reference]

Performance analysis using the graphical plan with statistics

You can use the graphical plan with statistics to identify database performance issues. For detailed field
descriptions of the graphical plan with statistics, see “Execution plan components” on page 306.

Query and modify data

298 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Identifying query execution issues
You can display database options and other global settings that affect query execution for the root
operator node.

Reviewing selectivity performance
The selectivity of a predicate (conditional expression) is the percentage of rows that satisfy the condition.
The estimated selectivity of predicates provides the information on which the optimizer bases its cost
estimates. Accurate selectivity estimates are critical for the proper operation of the optimizer. For
example, if the optimizer mistakenly estimates a predicate to be highly selective (for example, a
selectivity of 5%), but in reality, the predicate is much less selective (for example, 50%), then
performance might suffer. Although selectivity estimates might not be precise, a significantly large error
might indicate a problem.

If you determine that the selectivity information for a key part of your query is inaccurate, you can use
CREATE STATISTICS to generate a new set of statistics for the column(s). In rare cases, you may want
to supply explicit selectivity estimates, although this approach can introduce problems when you later
update the statistics.

Selectivity statistics are not displayed if the query is determined to be a bypass query.

Indicators of poor selectivity occur in the following places:

● RowsReturned, actual and estimated RowsReturned is the number of rows in the result set.
The RowsReturned statistic appears in the table for the root node at the top of the tree. If the
estimated row count is significantly different from the actual row count, the selectivity of predicates
attached to this node or to the subtree may be incorrect.

● Predicate selectivity, actual and estimated Look for the Predicate subheading to see predicate
selectivities.

If the predicate is over a base column for which there is no histogram, executing a CREATE
STATISTICS statement to create a histogram may correct the problem.

If selectivity error remains a problem, you may want to consider specifying a user estimate of
selectivity along with the predicate in the query text.

● Estimate source The source of selectivity estimates is also listed under the Predicate subheading
in the Statistics pane.

When the source of a predicate selectivity estimate is Guess, the optimizer has no information to use
to determine the filtering characteristics of that predicate, which may indicate a problem (such as a
missing histogram). If the estimate source is Index and the selectivity estimate is incorrect, your
problem may be that the index is unbalanced; you may benefit from defragmenting the index with the
REORGANIZE TABLE statement.

Reviewing cache performance
If the number of cache reads (CacheRead field) and cache hits (CacheHits field) are the same, then all
the objects processed for this SQL statement are resident in cache. When cache reads are greater than
cache hits, it indicates that the database server is reading table or index pages from disk as they are not

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 299

already resident in the server's cache. In some circumstances, such as hash joins, this is expected. In other
circumstances, such as nested loops joins, a poor cache-hit ratio might indicate there is insufficient cache
(buffer pool) to permit the query to execute efficiently. In this situation, you might benefit from increasing
the server's cache size.

Identifying ineffective indexes
It is often not obvious from query execution plans whether indexes help improve performance. Some of
the scan-based query operations used in SQL Anywhere provide excellent performance for many queries
without using indexes.

Identifying data fragmentation problems
The Runtime and FirstRowRunTime actual and estimated values are provided in the root node statistics.
Only RunTime appears in the Subtree Statistics section if it exists for that node.

The interpretation of RunTime depends on the statistics section in which it appears. In Node Statistics,
RunTime is the cumulative time the corresponding operator spent during execution for this node alone.
In Subtree Statistics, RunTime represents the total execution time spent for the entire operator subtree
immediately beneath this node. So, for most operators RunTime and FirstRowRunTime are independent
measures that should be separately analyzed.

FirstRowRunTime is the time required to produce the first row of the intermediate result of this node.

If a node's RunTime is greater than expected for a table scan or index scan, you may improve
performance by executing the REORGANIZE TABLE statement. You can use the
sa_table_fragmentation() and the sa_index_density() system procedures to determine whether the table or
index are fragmented.

See also
● “REORGANIZE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “CREATE STATISTICS statement” [SQL Anywhere Server - SQL Reference]
● “How the optimizer works” on page 286
● “Explicit selectivity estimates” [SQL Anywhere Server - SQL Reference]
● “Reduce table fragmentation” on page 200
● “Execution plan components” on page 306
● “Selectivity information in the graphical plan” on page 303
● “Use indexes effectively” on page 218
● “Index Consultant” on page 134
● “Use the cache to improve performance” on page 190

Query and modify data

300 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Detailed graphical plan node information

To view detailed node information in the graphical plan, in the left pane click the node in the graphical
diagram. Details about the node appear on the right in the Details and Advanced Details panes. In the
Details pane, statistics for the node may appear in three main sections:

● Node Statistics
● Subtree Statistics
● Optimizer Statistics

Node statistics are statistics related to the execution of the specific node. Plan nodes have a Details pane
that displays estimated, actual, and average statistics for the operator. Any node can be executed multiple
times. For example when a leaf node appears on the right side of a nested loops join node, you can fetch
rows from the leaf node operator multiple times. In this case, the Details pane of the leaf node (a
sequential, index, or RowID scan node) contains both per-invocation (average) and cumulative actual run-
time statistics.

When a node is not a leaf node it consumes intermediate results from other nodes and the Details pane
displays the estimated and actual cumulative statistics for this node's entire subtree in the Subtree
Statistics section. Optimizer statistic information representing the entire SQL request is present only for
root nodes. Optimizer statistic values are related specifically to the optimization of the statement, and
include values such as the optimization goal setting, the optimization level setting, the number of plans
considered, and so on.

Consider the following query, which orders the customers by their order date:

SELECT GROUPO.Customers.GivenName, GROUPO.Customers.Surname,
GROUPO.SalesOrders.OrderDate
FROM Customers KEY JOIN SalesOrders
WHERE CustomerID > 100
ORDER BY OrderDate

In the graphical plan for this query, the Hash Join (JH) node is elected and the information displayed in
the right pane pertains only to that node. The Predicates description indicates that Customers.ID =
SalesOrders.CustomerID : 0.79365% Statistics | Join is the predicate applied at the
Hash Join node. If you click the Customers node, the Scan Predicates indicates that Customers.ID >
100 : 100% Index; is the predicate applied at the Customers node.

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 301

Note
If you run the query in the example below, you may get a different plan in the Plan Viewer than the one
shown. Many factors such as database settings and recent queries can impact the optimizer's choice of
plan.

The information displayed in the Advanced Details pane is dependent on the specific operator. For root
nodes, the Advanced Details pane contains the settings that were in effect for the connection options
when the query was optimized. With other node types, the Advanced Details pane might contain
information about which indexes or materialized views were considered for the processing of the
particular node.

Query and modify data

302 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

To obtain context-sensitive help for each node in the graphical plan, right-click the node and click Help.

Note
If a query is recognized as a bypass query, some optimization steps are bypassed and neither the Query
Optimizer section nor the Predicate section appear in the graphical plan.

See also
● “How the optimizer works” on page 286
● “Graphical plans” on page 297
● “Viewing graphical plans” on page 305
● “Advanced: Query execution plans” on page 293
● “Execution plan components” on page 306

Selectivity information in the graphical plan

In the example shown below, the selected node represents a scan of the Departments table, and the
statistics pane shows the Predicate as the search condition, its selectivity estimation, and its real
selectivity.

In the Details pane, statistics about an individual node are divided into three sections: Node Statistics,
Subtree Statistics, and Optimizer Statistics.

Node statistics pertain to the execution of this specific node. If the node is not a leaf node in the plan, and
therefore consumes an intermediate result(s) from other nodes, the Details pane shows a Subtree
Statistics section that contains estimated and actual cumulative statistics for this node's entire subtree.
Optimizer statistics information is present only for root nodes, which represent the entire SQL request.

Selectivity information may not be displayed for bypass queries. For more information about bypass
queries, see “How the optimizer works” on page 286.

The access plan depends on the statistics available in the database, which, in turn, depends on what
queries have previously been executed. You may see different statistics and plans from those shown here.

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 303

This predicate description is

Departments.DepartmentName = 'Sales' : 20% Column; true 1/5 20%

This can be read as follows:

● Departments.DepartmentName = 'Sales' is the predicate.

● 20% is the optimizer's estimate of the selectivity. That is, the optimizer is basing its query access
selection on the estimate that 20% of the rows satisfy the predicate.

This is the same output as is provided by the ESTIMATE function.

● Column is the source of the estimate. This is the same output as is provided by the
ESTIMATE_SOURCE function.

● true 1/5 20% is the actual selectivity of the predicate during execution. The predicate was
evaluated five times, and was true once, so its real selectivity is 20%.

Query and modify data

304 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

If the actual selectivity is very different from the estimate, and if the predicate was evaluated a large
number of times, the incorrect estimates could cause a significant problem with query performance.
Collecting statistics on the predicate may improve performance by giving the optimizer better
information on which to base its choices.

Note
If you select the graphical plan, but not the graphical plan with statistics, the final two statistics are not
displayed.

See also
● “ESTIMATE function [Miscellaneous]” [SQL Anywhere Server - SQL Reference]
● “Selectivity estimate sources” on page 289

Viewing graphical plans

Use either Interactive SQL or the GRAPHICAL_PLAN function to view graphical plans. The
GRAPHICAL_PLAN function displays a graphical plan in XML format, as a string.

View a graphical plan (Interactive SQL)

1. Start Interactive SQL and connect to the SQL Anywhere database.

2. Click Tools » Plan Viewer (or press Shift+F5).

3. Type a statement in the SQL pane.

4. Select a Statistics level, a Cursor type and an Update status.

5. Click Get Plan.

View a graphical plan (SQL)

1. Connect to a database as a user with DBA authority.

2. Execute the GRAPHICAL_PLAN function.

See also
● “GRAPHICAL_PLAN function [Miscellaneous]” [SQL Anywhere Server - SQL Reference]
● “Plan Viewer and graphical plans in Interactive SQL” [SQL Anywhere Server - Database

Administration]
● “Execution plan components” on page 306
● “Advanced: Query execution plans” on page 293

Customized graphical plans

After executing the graphical plan you can customize the appearance of items in the plan. To change the
appearance of the graphical plan, right-click the plan in the Details pane (lower left pane) of the

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 305

Interactive SQL Plan Viewer, click Customize, and change the settings. Your changes are applied to
subsequent graphical plans that are displayed.

To print a graphical plan, right-clicking the plan and click Print.

Execution plan components

Following are the abbreviations that you see in execution plans.

Short text
plan

Long text plan Additional information

Costed Best
Plans

The optimizer generates and costs access plans for a given query.
During this process the current best plan maybe replaced by a new
best plan found to have a lower cost estimate. The last best plan is
the execution plan used to execute the statement. Costed Best Plans
indicates the number of times the optimizer found a better plan than
the current best plan. A low number indicates that the best plan was
determined early in the enumeration process. Since the optimizer
starts the enumeration process at least once for each query block in
the given statement, Costed Best Plans represents the cumulative
count.

Costed Plans Many plans generated by the optimizer are found to be too expen-
sive compared to the best plan found so far. Costed Plans represents
the number of partial or complete plans the optimizer considered
during the enumeration processes for a given statement.

** ** A complete index scan. The index scan reads all rows.

DELETE Delete The root node of a DELETE operation.

DistH HashDistinct HashDistinct takes a single input and returns all distinct rows.

DistO OrderedDistinct OrderedDistinct reads each row and compares it to the previous row.
If it is the same, it is ignored; otherwise, it is output.

DP DecodePostings DecodePostings decodes positional information for the terms in the
text index.

DT DerivedTable DerivedTable may appear in a plan due to query rewrite optimiza-
tions and a variety of other reasons, particularly when the query in-
volves one or more outer joins.

EAH HashExceptAll Indicates that a hash-based implementation of the set difference SQL
operator, EXCEPT, was used.

Query and modify data

306 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Short text
plan

Long text plan Additional information

EAM MergeExceptAll Indicates that a sort-based implementation of the set difference SQL
operator, EXCEPT, was used.

EH HashExcept Indicates that a hash-based implementation of the set difference SQL
operator, EXCEPT, was used.

EM MergeExcept Indicates that a sort-based implementation of the set difference SQL
operator, EXCEPT, was used.

Exchange Exchange Indicates that intra-query parallelism was used when processing a
SELECT statement.

Filter Filter Indicates the application of search conditions including any type of
predicate, comparisons involving subselects, and EXISTS and NOT
EXISTS subqueries (and other forms of quantified subqueries).

GrByH HashGroupBy HashGroupBy builds an in-memory hash table containing one row
per group. As input rows are read, the associated group is looked up
in the work table. The aggregate functions are updated, and the
group row is rewritten to the work table. If no group record is found,
a new group record is initialized and inserted into the work table.

GrByH-
Clust

HashGroupBy-
Clustered

Sometimes values in the grouping columns of the input table are
clustered, so that similar values appear close together. Clustered-
HashGroupBy exploits this clustering.

GrByHP ParallelHash-
GroupBy

A variant of HashGroupBy.

GrByHSets HashGroupBy-
Sets

A variant of HashGroupBy, HashGroupBySets is used when per-
forming GROUPING SETS queries.

GrByO OrderedGroup-
By

OrderedGroupBy reads an input that is ordered by the grouping col-
umns. As each row is read, it is compared to the previous row. If the
grouping columns match, then the current group is updated; other-
wise, the current group is output and a new group is started.

GrByOSets OrderedGroup-
BySets

A variant of OrderedGroupBy, OrderedGroupBySets is used when
performing GROUPING SETS queries.

GrByS SingleRow-
GroupBy

When no GROUP BY is specified, SingleRowGroupBy is used to
produce a single row aggregate. A single group row is kept in mem-
ory and updated for each input row.

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 307

Short text
plan

Long text plan Additional information

GrBySSets SortedGroupBy-
Sets

SortedGroupBySets is used when processing OLAP queries that
contain GROUPING SETS.

HF HashFilter Indicates that a hash filter (or bloom filter) was used.

HFP ParallelHashFil-
ter

Indicates that a hash filter (or bloom filter) was used.

HTS HashTableScan Indicates that a hash table scan was used.

IAH HashIntersec-
tAll

Indicates that a hash-based implementation of the set difference SQL
operator, INTERSECT, was used.

IAM MergeIntersec-
tAll

Indicates that a sort-based implementation of the set difference SQL
operator, INTERSECT, was used.

IH HashIntersect Indicates that a hash-based implementation of the set difference SQL
operator, INTERSECT, was used.

IM MergeIntersect Indicates that a sort-based implementation of the set difference SQL
operator, INTERSECT, was used.

IN InList InList is used when an IN-list predicate can be satisfied using an in-
dex.

table-
name<in-
dex-name>

IndexScan, Par-
allelIndexScan

In a graphical plan, an index scan appears as an index name in a tra-
pezoid.

INSENSI-
TIVE

Insensitive

INSERT Insert Root node of an INSERT operation.

IO IndexOnlyScan,
ParallelIndex-
OnlyScan

Indicates that the optimizer used an index that contained all the data
that was required to satisfy the query.

JH HashJoin HashJoin builds an in-memory hash table of the smaller of its two
inputs, and then reads the larger input and probes the in-memory
hash table to find matches, which are written to a work table. If the
smaller input does not fit into memory, HashJoin partitions both in-
puts into smaller work tables. These smaller work tables are pro-
cessed recursively until the smaller input fits into memory.

Query and modify data

308 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Short text
plan

Long text plan Additional information

JHS HashSemijoin HashSemijoin performs a semijoin between the left side and the
right side.

JHSP ParallelHashSe-
mijoin

A variant of HashJoin.

JHFO Full Outer
HashJoin

A variant of HashJoin.

JHA HashAntisemi-
join

HashAntisemijoin performs an anti-semijoin between the left side
and the right side.

JHAP ParallelHashAn-
tisemijoin

A variant of HashJoin.

JHO Left Outer
HashJoin

A variant of HashJoin.

JHP ParallelHash-
Join

A variant of HashJoin.

JHPO ParallelLeftOu-
terHashJoin

A variant of HashJoin.

JHR RecursiveHash-
Join

A variant of HashJoin.

JHRO RecursiveLef-
tOuterHashJoin

A variant of HashJoin.

JM MergeJoin MergeJoin reads two inputs that are both ordered by the join attrib-
utes. For each row of the left input, the algorithm reads all the
matching rows of the right input by accessing the rows in sorted or-
der.

JMFO Full Outer Mer-
geJoin

A variant of MergeJoin.

JMO Left Outer Mer-
geJoin

A variant of MergeJoin.

JNL NestedLoops-
Join

NestedLoopsJoin computes the join of its left and right sides by
completely reading the right side for each row of the left side.

JNLA NestedLoop-
sAntisemijoin

NestedLoopsAntisemijoin joins its inputs by scanning the right side
for each row of the left side.

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 309

Short text
plan

Long text plan Additional information

JNLFO Full Outer Nes-
tedLoopsJoin

A variant of NestedLoopsJoin.

JNLO Left Outer Nes-
tedLoopsJoin

A variant of NestedLoopsJoin.

JNLS NestedLoopsSe-
mijoin

NestedLoopsSemijoin joins its inputs by scanning the right side for
each row of the left side.

KEYSET Keyset Indicates a keyset-driven cursor.

LOAD Load Root node of a load operation.

MultiIdx MultipleIndexS-
can

MultipleIndexScan is used when more than one index can or must be
used to satisfy a query that contains a set of search conditions that
are combined with the logical operators AND or OR.

OpenString OpenString OpenString is used when the FROM clause of a SELECT statement
contains an OPENSTRING clause.

Optimization
Time

The total time spent by the optimizer during all enumeration pro-
cesses for a given statement.

PC ProcCall Procedure call (table function).

PreFilter PreFilter Filters apply search conditions including any type of predicate, com-
parisons involving subselects, and EXISTS and NOT EXISTS sub-
queries (and other forms of quantified subqueries).

R R A reverse index scan. The index scan reads rows from the index in
reverse order.

RL RowLimit RowLimit returns the first n rows of its input and ignores the re-
maining rows. Row limits are set by the TOP n or FIRST clause of
the SELECT statement.

ROWID RowIdScan In a graphical plan, a row ID scan appears as a table name in a rec-
tangle.

ROWS RowConstructor RowConstructor is a specialized operator that creates a virtual row
for use as the input to other algorithms.

RR RowReplicate RowReplicate is used during the execution of set operations such as
EXCEPT ALL and INTERSECT ALL.

Query and modify data

310 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Short text
plan

Long text plan Additional information

RT RecursiveTable Indicates that a recursive table was used as a result of a WITH
clause within a query, where the WITH clause was used for recur-
sive union queries

RU RecursiveUnion RecursiveUnion is employed during the execution of recursive union
queries.

SELECT Select Root node of a SELECT operation.

seq TableScan, Par-
allelTableScan

In a graphical plan, table scans appear as a table name in a rectangle.

Sort Sort Indexed or merge sort.

SrtN SortTopN SortTopN is used for queries that contain a TOP N clause and an
ORDER BY clause.

TermBreak TermBreak The full text search TermBreaker algorithm.

UA UnionAll UnionAll reads rows from each of its inputs and outputs them, re-
gardless of duplicates. This algorithm is used to implement UNION
and UNION ALL statements.

UPDATE Update The root node of an UPDATE operation.

Window Window Window is used when evaluating OLAP queries that employ win-
dow functions.

Work Work table An internal node that represents an intermediate result.

Optimizer Statistics field descriptions
Below are descriptions of the fields displayed in the Optimizer Statistics section of a graphical plan.
Optimizer Statistics provide information about the state of the database server and about the
optimization of the selected statement.

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 311

Field Description

Optimization Method The algorithm used to choose an execution strat-
egy. Values returned:

● Bypass costed
● Bypassed costed simple
● Bypass heuristic
● Bypassed then optimized
● Optimized
● Reused
● Reused (simple)

Costed Best Plans When the query optimizer enumerates different
query execution strategies, it tracks the number of
times it finds a strategy whose estimated cost is
less expensive than the best strategy found before
the current one. It is difficult to predict how often
this will occur for any particular query, but a low-
er number indicates significant pruning of the
search space by the optimizer's algorithms, and,
typically, faster optimization times. Since the op-
timizer starts the enumeration process at least
once for each query block in the given statement,
Costed Best Plans represents the cumulative
count.

If the values for Costed Best Plans, Costed
Plans, and Optimization time are 0, then the
statement was not optimized by the SQL Any-
where optimizer. Instead, the database server by-
passed the statement and generated the execution
plan without optimizing the statement, or the plan
for the statement was cached.

Costed Plans The number of different access plans considered
by the optimizer for this request whose costs
were partially or fully estimated. As with Costed
Best Plans, smaller values normally indicate fast-
er optimization times and larger values indicate
more complex SQL queries.

If the values for Costed Best Plans, Costed
Plans, and Optimization Time are 0, then the
statement was not optimized. Instead, the data-
base server bypassed the statement and generated
the execution plan without optimizing the state-
ment.

Query and modify data

312 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Field Description

Optimization Time The elapsed time spent optimizing the statement.

If the values for Costed Best Plans, Costed
Plans, and Optimization Time are 0, then the
statement was not optimized. Instead, the data-
base server bypassed the statement and generated
the execution plan without optimizing the state-
ment.

Estimated Cache Pages The estimated current cache size available for
processing the statement.

To reduce inefficient access plans, the optimizer
assumes that one-half of the current cache size is
available for processing the selected statement.

CurrentCacheSize The database server's cache size in kilobytes at
the time of optimization.

QueryMemMaxUseful The number of pages of query memory that are
useful for this request. If the number is zero, then
the statement's execution plan contains no memo-
ry-intensive operators and is not subject to con-
trol by the server's memory governor.

QueryMemNeedsGrant Indicates whether the memory governor must
grant memory to one or more memory-intensive
query execution operators that are present in this
request's execution strategy.

QueryMemLikelyGrant The estimated number of pages from the query
memory pool that would be granted to this state-
ment if it were executed immediately. This esti-
mate can vary depending on the number of mem-
ory-intensive operators in the plan, the database
server's multiprogramming level, and the number
of concurrently-executing memory-intensive re-
quests.

QueryMemPages The total amount of memory in the query memo-
ry pool that is available for memory-intensive
query execution algorithms for all connections,
expressed as a number of pages.

QueryMemActiveMax The maximum number of tasks that can actively
use query memory at any particular time.

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 313

Field Description

QueryMemActiveEst The database server's estimate of the steady state
average of the number of tasks actively using
query memory.

isolation_level The isolation level of the statement. The isolation
level of the statement may differ from other state-
ments in the same transaction, and may be further
overridden for specific base tables through the
use of hints in the FROM clause.

optimization_goal Indicates if query processing is optimized for re-
turning the first row quickly, or minimizing the
cost of returning the complete result set.

optimization_level Controls amount of effort made by the query op-
timizer to find an access plan.

optimization_workload The Mixed or OLAP value of the optimiza-
tion_workload setting.

max_query_tasks Maximum number of tasks that may be used by a
parallel execution plan for a single query.

user_estimates Controls whether to respect or ignore user esti-
mates that are specified in individual predicates
in the query text.

Node Statistics field descriptions
Below are descriptions of the fields displayed in the Node Statistics section of a graphical plan.

Field Description

CacheHits The total number of cache read requests by this operator which were satisfied by the
buffer pool that did not require a disk read operation.

CacheRead Total number of attempts made by this operator to read a page of the database file, typi-
cally for table and/or index pages.

CPUTime The CPU time incurred by the processing algorithm represented by this node.

DiskRead The cumulative number of pages that have been read from disk as a result of this node's
processing.

DiskRead-
Time

The cumulative elapsed time required to perform disk reads for database pages required
by this node for processing.

Query and modify data

314 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Field Description

DiskWrite The commutative number of pages that have been written to disk as a result of this
node's processing.

DiskWrite-
Time

The cumulative elapsed time required to perform disk writes for database pages as re-
quired by this node's processing algorithm.

FirstRow-
RunTime

The FirstRowRunTime value is the actual elapsed time required to produce the first
row of the intermediate result of this node.

Invocations The number of times the node was called to compute a result, and return that result to
the parent node. Most nodes are called only once. However, if the parent of a scan node
is a nested loops join, then the node might be executed multiple times, and could possi-
bly return a different set of rows after each invocation.

PercentTo-
talCost

The RunTime spent computing the result within this particular node, expressed as a
percentage of the total RunTime for the statement.

Query-
MemMax-
Useful

The estimated amount of query memory that is expected to be used for this particular
operator. If the actual amount of query memory used, which is reported as the Actual
statistic, differs significantly then it may indicate a potential problem with result set size
estimation by the query optimizer. A probable cause of this estimation error is inaccu-
rate or missing predicate selectivity estimates.

RowsRe-
turned

The number of rows returned to the parent node as a result of processing the request.
RowsReturned is often, but not necessarily, identical to the number of rows in the (pos-
sibly derived) object represented by that node. Consider a leaf node that represents a
base table scan. It is possible for the RowsReturned value to be smaller or larger than
the number of rows in the table. RowsReturned are smaller if the parent node fails to
request all the table's rows in computing the final result. RowsReturned may be greater
in a case such as a GROUP BY GROUPING SETS query, where the parent Group By
Hash Grouping Sets node requires multiple passes over the input to compute the differ-
ent groups.

A significant difference between the estimated rows returned and the actual number re-
turned could indicate that the optimizer might be operating with poor selectivity infor-
mation.

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 315

Field Description

RunTime This value is a measure of wall clock time, including waits for input/output, row locks,
table locks, internal server concurrency control mechanisms, and actual runtime pro-
cessing. The interpretation of RunTime depends on the statistics section in which it ap-
pears. In Node Statistics, RunTime is the cumulative time the node's corresponding op-
erator spent during execution for this node alone. Both estimated and actual values for
this statistic appear in the Node Statistics section.

If a node's RunTime is greater than expected for a table scan or index scan, then further
analysis may help pinpoint the problem. The query may be contending for shared re-
sources and may block as a result; you can monitor blocked connections using the
sa_locks() system procedure. As another example, the database page layout on the disk
may be suboptimal, or a table may suffer from internal page fragmentation. You may
improve performance by executing the REORGANIZE TABLE statement. You can use
the sa_table_fragmentation() and the sa_index_density() system procedures to deter-
mine whether the table or index are fragmented.

Common statistics used in the plan
The following statistics are actual, measured amounts.

Statistic Explanation

CacheHits Returns the number of database page lookups satisfied by finding the page in the
cache.

CacheRead Returns the number of database pages that have been looked up in the cache.

CacheReadTable Returns the number of table pages that have been read from the cache.

CacheReadIndLeaf Returns the number of index leaf pages that have been read from the cache.

CacheReadIndInt Returns the number of index internal-node pages that have been read from the
cache.

DiskRead Returns the number of pages that have been read from disk.

DiskReadTable Returns the number of table pages that have been read from disk.

DiskReadIndLeaf Returns the number of index leaf pages that have been read from disk.

DiskReadIndInt Returns the number of index internal-node pages that have been read from disk.

DiskWrite Returns the number of modified pages that have been written to disk.

IndAdd Returns the number of entries that have been added to indexes.

IndLookup Returns the number of entries that have been looked up in indexes.

Query and modify data

316 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Statistic Explanation

FullCompare Returns the number of comparisons that have been performed beyond the hash
value in an index.

Common estimates used in the plan

Statistic Explanation

EstRowCount Estimated number of rows that the node will return each time it is invoked.

AvgRowCount Average number of rows returned on each invocation. This is not an estimate, but
is calculated as RowsReturned / Invocations. If this value is significantly different
from EstRowCount, the selectivity estimates may be poor.

EstRunTime Estimated time required for execution (sum of EstDiskReadTime, EstDiskWrite-
Time, and EstCpuTime).

AvgRunTime Average time required for execution (measured).

EstDiskReads Estimated number of read operations from the disk.

AvgDiskReads Average number of read operations from the disk (measured).

EstDiskWrites Estimated number of write operations to the disk.

AvgDiskWrites Average number of write operations to the disk (measured).

EstDiskReadTime Estimated time required for reading rows from the disk.

EstDiskWriteTime Estimated time required for writing rows to the disk.

EstCpuTime Estimated processor time required for execution.

Items in the plan related to SELECT, INSERT, UPDATE, and DELETE

Item Explanation

Optimization Goal Determines whether query processing is opti-
mized towards returning the first row quickly, or
minimizing the cost of returning the complete re-
sult set.

Optimization workload Determines whether query processing is opti-
mized towards a workload that is a mix of up-
dates and reads or a workload that is predomi-
nantly read-based.

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 317

Item Explanation

ANSI update constraints Controls the range of updates that are permitted
(options are Off, Cursors, and Strict).

Optimization level Reserved.

Select list List of expressions selected by the query.

Materialized views List of materialized views considered by the opti-
mizer. Each entry in the list is a tuple in the fol-
lowing format: view-name [view-
matching-outcome] [table-list]
where view-matching-outcome reveals the usage
of a materialized view; if the value is COSTED,
the view was used during enumeration. The ta-
ble-list is a list of query tables that were poten-
tially replaced by this view.

Values for view-matching-outcome include:

● Base table mismatch
● Permissions mismatch
● Predicate mismatch
● Select list mismatch
● Costed
● Stale mismatch
● Snapshot stale mismatch
● Cannot be used by optimizer
● Cannot be used internally by optimizer
● Cannot build definition
● Cannot access
● Disabled
● Options mismatch
● Reached view matching threshold
● View used

Items in the plan related to locks

Item Explanation

Locked tables List of all locked tables and their isolation levels.

Query and modify data

318 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Items in the plan related to scans

Item Explanation

Table name Actual name of the table.

Correlation name Alias for the table.

Estimated rows Estimated number of rows in the table.

Estimated pages Estimated number of pages in the table.

Estimated row size Estimated row size for the table.

Page maps YES when a page map is used to read multiple pages.

Items in the plan related to index scans

Item Explanation

Selectivity Estimated number of rows that match the range
bounds.

Index name Name of the index.

Key type Can be one of PRIMARY KEY, FOREIGN KEY,
CONSTRAINT (unique constraint), or UNIQUE
(unique index). The key type does not appear if
the index is a non-unique secondary index.

Depth Height of the index.

Estimated leaf pages Estimated number of leaf pages.

Sequential Transitions Statistics for each physical index indicating how
clustered the index is.

Random Transitions Statistics for each physical index indicating how
clustered the index is.

Key Values The number of unique entries in the index.

Cardinality Cardinality of the index if it is different from the
estimated number of rows. This applies only to
SQL Anywhere databases version 6.0.0 and earli-
er.

Direction FORWARD or BACKWARD.

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 319

Item Explanation

Range bounds Range bounds are shown as a list (col_name=val-
ue) or col_name IN [low, high].

Primary Key Table The primary key table name for a foreign key in-
dex scan.

Primary Key Table Estimated Rows The number of rows in the primary key table for a
foreign key index scan.

Primary Key Column The primary key column names for a foreign key
index scan.

Items in the plan related to joins, filter, and prefilter

Item Explanation

Predicate Search condition that is evaluated in this node, along with selectivity estimates and meas-
urement.

Items in the plan related to hash filter

Item Explanation

Build values Estimated number of distinct values in the input.

Probe values Estimated number of distinct values in the input when checking the predicate.

Bits Number of bits selected to build the hash map.

Pages Number of pages required to store the hash map.

Items in the plan related to Union

Item Explanation

Union List Columns involved in a UNION statement.

Items in the plan related to GROUP BY

Item Explanation

Aggregates All the aggregate functions.

Query and modify data

320 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Item Explanation

Group-by list All the columns in the group by clause.

Items in the plan related to DISTINCT

Item Explanation

Distinct list All the columns in the distinct clause.

Items in the plan related to IN LIST

Item Explanation

In List All the expressions in the specified set.

Expression SQL Expressions to compare to the list.

Items in the plan related to SORT

Item Explanation

Order-by List of all expressions to sort by.

Items in the plan related to row limits

Item Explanation

Row limit count Maximum number of rows returned as specified by FIRST or TOP n.

See also
● “How the optimizer works” on page 286
● “Cache and the memory governor” on page 191
● “Selectivity information in the graphical plan” on page 303
● “isolation_level option” [SQL Anywhere Server - Database Administration]
● “optimization_goal option” [SQL Anywhere Server - Database Administration]
● “optimization_level option” [SQL Anywhere Server - Database Administration]
● “optimization_workload option” [SQL Anywhere Server - Database Administration]
● “max_query_tasks option” [SQL Anywhere Server - Database Administration]
● “user_estimates option” [SQL Anywhere Server - Database Administration]
● “ansi_update_constraints option” [SQL Anywhere Server - Database Administration]
● “Materialized views restrictions” on page 53

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 321

Advanced: Parallelism during query execution
SQL Anywhere supports two different kinds of parallelism for query execution: inter-query, and intra-
query. Inter-query parallelism involves executing different requests simultaneously on separate CPUs.
Each request (task) runs on a single thread and executes on a single processor.

Intra-query parallelism involves having more than one CPU handle a single request simultaneously, so
that portions of the query are computed in parallel on multi-processor hardware. Processing of these
portions is handled by the Exchange algorithm.

Intra-query parallelism can benefit a workload where the number of simultaneously-executing queries is
usually less than the number of available processors. The maximum degree of parallelism is controlled by
the setting of the max_query_tasks option.

The optimizer estimates the extra cost of parallelism (extra copying of rows, extra costs for co-ordination
of effort) and chooses parallel plans only if they are expected to improve performance.

Intra-query parallelism is not used for connections with the priority option set to background.

Intra-query parallelism is not used if the number of server threads that are currently handling a request
(ActiveReq server property) recently exceeded the number of CPU cores on the computer that the
database server is licensed to use. The exact period of time is decided by the server and is normally a few
seconds.

Parallel execution
Whether a query can take advantage of parallel execution depends on a variety of factors:

● the available resources in the system at the time of optimization (such as memory, amount of data in
cache, and so on)

● the number of logical processors on the computer

● the number of disk devices used for the storage of the database, and their speed relative to that of the
processor and the computer's I/O architecture.

● the specific algebraic operators required by the request. SQL Anywhere supports five algebraic
operators that can execute in parallel:

○ parallel sequential scan (table scan)
○ parallel index scan
○ parallel hash join, and parallel versions of hash semijoin and anti-semijoin
○ parallel nested loops joins, and parallel versions of nested loops semijoin and anti-semijoin
○ parallel hash filter
○ parallel hash group by

A query that uses unsupported operators can still execute in parallel, but the supported operators must
appear below the unsupported ones in the plan (as viewed in Interactive SQL). A query where most of the
unsupported operators can appear near the top is more likely to use parallelism. For example, a sort
operator cannot be parallelized but a query that uses an ORDER BY on the outermost block may be

Query and modify data

322 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

parallelized by positioning the sort at the top of the plan and all the parallel operators below it. In contrast,
a query that uses a TOP n and ORDER BY in a derived table is less likely to use parallelism since the sort
must appear somewhere other than the top of the plan.

By default, SQL Anywhere assumes that any dbspace resides on a disk subsystem with a single platter.
While there can be advantages to parallel query execution in such an environment, the optimizer I/O cost
model for a single device makes it difficult for the optimizer to choose a parallel table or index scan
unless the table data is fully resident in the cache. However, if you calibrate disk subsystem using the
ALTER DATABASE CALIBRATE PARALLEL READ statement, the optimizer can cost the benefits of
parallel execution with greater accuracy. The optimizer is likely to choose execution plans with
parallelism when the disk subsystem has multiple platters.

When intra-query parallelism is used for an access plan, the plan contains an Exchange operator whose
effect is to merge (union) the results of the parallel computation of each subtree. The number of subtrees
underneath the Exchange operator is the degree of parallelism. Each subtree, or access plan component, is
a database server task. The database server kernel schedules these tasks for execution in the same manner
as if they were individual SQL requests, based on the availability of execution threads (or fibers). This
architecture means that parallel computation of any access plan is largely self-tuning, in that work for a
parallel execution task is scheduled on a thread (fiber) as the server kernel allows, and execution of the
plan components is performed evenly.

See also
● “-gn dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “max_query_tasks option” [SQL Anywhere Server - Database Administration]
● “SQL Anywhere threading” [SQL Anywhere Server - Database Administration]
● “-gtc dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “Database server configuration of the multiprogramming level” [SQL Anywhere Server - Database

Administration]
● “Advanced: Query execution plans” on page 293
● “ALTER DATABASE statement” [SQL Anywhere Server - SQL Reference]
● http://www.sybase.com/detail?id=1096047
● “priority option” [SQL Anywhere Server - Database Administration]
● “Accessing database server property values” [SQL Anywhere Server - Database Administration]

Parallelism in queries

A query is more likely to use parallelism if the query processes a lot more rows than are returned. In this
case, the number of rows processed includes the size of all rows scanned plus the size of all intermediate
results. It does not include rows that are never scanned because an index is used to skip most of the table.
An ideal case is a single-row GROUP BY over a large table, which scans many rows and returns only
one. Multi-group queries are also candidates if the size of the groups is large. Any predicate or join
condition that drops a lot of rows is also a good candidate for parallel processing.

Following is a list of circumstances in which a query can not take advantage of parallelism, either at
optimization or execution time:

● the server computer does not have multiple processors

Queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 323

http://www.sybase.com/detail?id=1096047

● the server computer is not licensed to use multiple processors. You can check this by looking at the
NumLogicalProcessorsUsed server property. However, note that hyperthreaded processors are not
counted for intra-query parallelism so you must divide the value of NumLogicalProcessorsUsed by two
if the computer is hyperthreaded.

● the max_query_tasks option is set to 1

● the priority option is set to background

● the statement containing the query is not a SELECT statement

● the value of ActiveReq has been greater than, or equal to, the value of NumLogicalProcessorsUsed at
any time in the recent past (divide the number of processors by two if the computer is hyperthreaded)

● there are not enough available tasks.

See also
● “Advanced: Parallelism during query execution” on page 322
● “SQL Anywhere threading” [SQL Anywhere Server - Database Administration]
● “max_query_tasks option” [SQL Anywhere Server - Database Administration]
● “priority option” [SQL Anywhere Server - Database Administration]
● max_query_tasks, priority, NumLogicalProcessorsUsed, and ActiveReq properties: “Accessing

database server property values” [SQL Anywhere Server - Database Administration]
● “CREATE DATABASE statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TABLE statement” [SQL Anywhere Server - SQL Reference]

Full text search
What is full text search?

Full text search is a more advanced way to search a database. Full text search quickly finds all instances
of a term (word) in a table without having to scan rows and without having to know which column a term
is stored in. Full text search works by using text indexes. A text index stores positional information for all
terms found in the columns you create the text index on. Using a text index can be faster than using a
regular index to find rows containing a given value.

Full text search capability in SQL Anywhere differs from searching using predicates such as LIKE,
REGEXP, and SIMILAR TO, because the matching is term-based, not pattern-based.

String comparisons in full text search use all the normal collation settings for the database. For example,
if the database is configured to be case insensitive, then full text searches will be case insensitive.

Except where noted, full text search leverages all the international features supported by SQL Anywhere.

To perform a full text search on a database containing Chinese, Japanese, and Korean (CJK) data, see the
white paper "Performing Full Text Searches on Chinese, Japanese, and Korean Data in SQL Anywhere
11" at http://www.sybase.com/detail?id=1061814.

Query and modify data

324 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

http://www.sybase.com/detail?id=1061814

Two ways to perform a full text search
You can perform a full text query either by using a CONTAINS clause in the FROM clause of a SELECT
statement, or by using a CONTAINS search condition (predicate) in a WHERE clause. Both return the
same rows; however, use a CONTAINS clause in a FROM clause also returns scores for the matching
rows.

The following examples show how the CONTAINS clause and search condition are used in a query.
These examples use the example MarketingInformation.Description text index that is provided in the
sample database:

SELECT *
 FROM MarketingInformation CONTAINS (Description, 'cotton');

SELECT *
 FROM MarketingInformation
 WHERE CONTAINS (Description, 'cotton');

Considerations before using full text search
Here are some considerations to make when deciding whether to use full text indexes over regular
indexes:

● You cannot use aliases in a CONTAINS clause or a CONTAINS search condition.

● When using duplicate correlation names in a query, a CONTAINS (FROM CONTAINS()) is only
supported on the first instance of the correlation name. For example, the following syntax returns an
error because of the second CONTAINS predicate involving A:

SELECT *
FROM CONTAINS(A contains-query-string) JOIN B ON A.x = B.x,
 CONTAINS(A contains-query-string) JOIN C ON A.y = C.y;

When using external term breaker and prefilter libraries, there are several additional considerations:

● Querying and updating The external library must remain available for any operations that require
updating, querying, or altering the text indexes built using the libraries.

● Unloading and reloading The external library must be available during unloading and reloading
of data of data associated with the full text index.

● Database recovery The external library must be available to recover the database. This is because
the database can not recover if there are operations in the transaction log that involved the external
library since the last checkpoint.

See also
● “CONTAINS search condition” [SQL Anywhere Server - SQL Reference]
● “Advanced: External term breaker and prefilter libraries” on page 386
● “Text index concepts and reference” on page 364
● “International languages and character sets” [SQL Anywhere Server - Database Administration]
● “Collations” [SQL Anywhere Server - Database Administration]

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 325

Full text search tasks
Creating a text configuration object

When you create a text configuration object in Sybase Central, the Create Text Configuration Object
Wizard allows you to configure settings during creation.

Prerequisites

DBA authority.

Context and remarks

Many.

Create a text configuration object (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. Right-click Text Configuration Objects and click New » Text Configuration Object.

3. Follow the instructions in the Create Text Configuration Object Wizard.

4. Click the Text Configuration Objects pane.

Results

The new text configuration object appears

Next

None.

See also
● “What to specify when creating or altering text configuration objects” on page 349
● “Example text configuration objects” on page 356
● “Viewing a text configuration object in the database” on page 327
● “CREATE TEXT CONFIGURATION statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TEXT CONFIGURATION statement” [SQL Anywhere Server - SQL Reference]
● “Default text configuration objects” on page 356

Altering a text configuration object

In Sybase Central, administrators can alter text configuration object properties such as the term breaker
type, the stoplist and option settings.

Query and modify data

326 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Prerequisites

You must have DBA authority or be the owner of the text configuration object.

If you intend to change the date and time format options for the text configuration object, ensure you
connect to the database with the options set to the desired values.

Context and remarks

A text index is dependent on the text configuration object used to create it so you must be sure to truncate
or drop dependent text indexes. Also, if you intend to change the date or time format options that are
saved for the text configuration object, you must connect to the database with the options set to the
desired settings.

Alter a text configuration object (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, click Text Configuration Objects.

3. Right-click the text configuration object and click Properties.

4. Edit the text configuration object properties and click OK.

Results

The text configuration object is altered.

Next

None.

See also
● “What to specify when creating or altering text configuration objects” on page 349
● “Example text configuration objects” on page 356
● “Viewing a text configuration object in the database” on page 327
● “CREATE TEXT CONFIGURATION statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TEXT CONFIGURATION statement” [SQL Anywhere Server - SQL Reference]
● “Default text configuration objects” on page 356

Viewing a text configuration object in the database

Administrators or owners of the text configuration object can view its settings in Sybase Central.

Prerequisites

You must have DBA authority or be the owner of the text configuration object.

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 327

Context and remarks

Many.

View settings for a text configuration object (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, click Text Configuration Objects.

3. Double-click the text configuration object.

Results

The settings for the text configuration object are displayed.

Next

None.

See also
● “What to specify when creating or altering text configuration objects” on page 349
● “SYSTEXTCONFIG system view” [SQL Anywhere Server - SQL Reference]

Creating a text index

You can create text indexes on columns of any type. Columns that are not of type VARCHAR or
NVARCHAR are converted to strings during indexing.

Prerequisites

You must have DBA authority or be the owner of the table on which you are creating the text index.

Context and remarks

Text indexes consume disk space and need to be refreshed. Create them only on the columns that are
required to support your queries.

You cannot create a text index on a materialized view, a regular view, or a temporary table.

Do not create more than one text index referencing a column since this can return unexpected results.

Create a text index (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. Click the Text Indexes tab.

3. Click File » New » Text Index.

Query and modify data

328 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

4. Follow the instructions in the Create Index Wizard.

The new text index appears on the Text Indexes tab. It also appears in the Text Indexes folder.

5. If you created an immediate refresh text index, it is automatically populated with data. For other
refresh types, you must refresh the text index by right-clicking it and clicking Refresh Data.

Results

The text index is created.

Next

None.

See also
● “Text index refresh types” on page 364
● “Data type conversions” [SQL Anywhere Server - SQL Reference]
● “REFRESH TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]
● “CREATE TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]

Refreshing a text index

Administrators can refresh text indexes in Sybase Central to update the data in the text index. Refreshing
a text index causes it to reflect any data changes that have occurred in the underlying table.

Prerequisites

You must have DBA authority or be the owner of the table on which the text index is built.

You can only refresh text indexes that are defined as AUTO REFRESH and MANUAL REFRESH.

Context and remarks

Many.

Refresh a text index (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, click Text Indexes.

3. Right-click the text index and click Refresh Data.

4. Select an isolation level for the refresh and click OK.

Results

The text index is refreshed.

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 329

Next

None.

See also
● “REFRESH TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]
● “Text index refresh types” on page 364

Alter a text index

You can alter the following characteristics of a text index:

● Refresh type You can change the refresh type from AUTO REFRESH to MANUAL REFRESH,
and vice versa. Use the REFRESH clause of the ALTER TEXT INDEX statement to change the
refresh type.

You cannot change a text index to, or from, IMMEDIATE REFRESH; to make this change, you must
drop the text index and recreate it.

● Name You can rename the text index using the RENAME clause of the ALTER TEXT INDEX
statement.

● Content With the exception of the column list, settings that control what is indexed are stored in a
text configuration object. If you want to change what is indexed, you alter the text configuration
object that a text index refers to. You must truncate dependent text indexes before you can alter the
text configuration object, and refresh the text index after altering the text configuration object. For
immediate refresh text indexes, you must drop the text index and recreate it after you alter the text
configuration object.

You cannot alter a text index to refer to a different text configuration object. If you want a text index to
refer to another text configuration object, drop the text index and recreate it specifying the new text
configuration object.

See also
● “Text configuration object concepts and reference” on page 349
● “TRUNCATE TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]
● “REFRESH TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]
● “DROP TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]
● “CREATE TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]
● “sa_refresh_text_indexes system procedure” [SQL Anywhere Server - SQL Reference]
● “Text index concepts and reference” on page 364

Altering text indexes

You can change the name of a text index, or change its refresh type, in Sybase Central.

Query and modify data

330 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Prerequisites

You must have DBA authority or be the owner of the table on which the text index is built.

Context and remarks

You cannot alter a text index to refer to a different text configuration object. If you want a text index to
refer to another text configuration object, drop the text index and recreate it specifying the new text
configuration object.

Alter the refresh type for a text index (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, click Text Indexes.

3. Right-click the text index and click Properties.

4. Edit the text index properties and click OK.

Rename a text index (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, click Text Indexes.

3. Right-click the text index and click Properties.

4. Click the General tab and type a new name for the text index.

5. Click OK.

Results

The refresh type is altered and the text index is renamed.

Next

None.

See also
● “Text configuration object concepts and reference” on page 349
● “TRUNCATE TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]
● “REFRESH TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]
● “sa_refresh_text_indexes system procedure” [SQL Anywhere Server - SQL Reference]
● “Text index concepts and reference” on page 364

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 331

Viewing information about a text index in the database (Sybase
Central)

Administrators can view text index terms and settings in Sybase Central.

Prerequisites

You must have DBA authority or be the owner of the text index.

Context and remarks

Many.

View text indexes in the database

1. Connect to the database.

2. In the left pane, click Text Indexes.

3. To view the terms in the text index, double-click the text index in the left pane, and then click the
Vocabulary tab in the right pane.

4. To view the text index settings, such as the refresh type or the text configuration object that the index
refers to, right-click the text index and click Properties.

Results

The text index terms and settings are displayed.

Next

None.

See also
● “sa_text_index_stats system procedure” [SQL Anywhere Server - SQL Reference]
● “SYSMVOPTION system view” [SQL Anywhere Server - SQL Reference]
● “SYSMVOPTIONNAME system view” [SQL Anywhere Server - SQL Reference]
● “SYSTAB system view” [SQL Anywhere Server - SQL Reference]

Viewing information about a text index in the database (SQL)
Administrators can view text index terms and settings in Interactive SQL.

Prerequisites

You must have DBA authority or be the owner of the text index.

Query and modify data

332 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Context and remarks

Many.

View text indexes in the database (SQL)

1. Connect to the database.

2. Call the sa_text_index_stats system procedure, as follows:

CALL sa_text_index_stats();

Results

The text index is displayed.

Next

When a text index is created, the current database options are stored with the text index. To retrieve the
option settings used during text index creation, execute the following statement:

SELECT b.object_id, b.table_name, a.option_id, c.option_name, a.option_value
FROM SYSMVOPTION a, SYSTAB b, SYSMVOPTIONNAME c
WHERE a.view_object_id=b.object_id
AND b.table_type=5;

A table_type of 5 in the SYSTAB view is a text index.

See also
● “sa_text_index_stats system procedure” [SQL Anywhere Server - SQL Reference]
● “SYSMVOPTION system view” [SQL Anywhere Server - SQL Reference]
● “SYSMVOPTIONNAME system view” [SQL Anywhere Server - SQL Reference]
● “SYSTAB system view” [SQL Anywhere Server - SQL Reference]

Types of full text searches

Using full text search, you can search for terms, phrases (sequences of terms), or prefixes. You can also
combine multiple terms, phrases, or prefixes into boolean expressions, or require that expressions appear
near to each other with proximity searches.

You perform a full text search using a CONTAINS clause in either a WHERE clause or a FROM clause
of a SELECT statement. You can also perform a full text search as part of the IF search condition (for
example, SELECT IF CONTAINS...).

The following sections show you how to perform the different types of full text search available in SQL
Anywhere.

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 333

Term and phrase search

When performing a full text search for a list of terms, the order of terms is not important unless they are
within a phrase. If you put the terms within a phrase, the database server looks for those terms in exactly
the same order, and same relative positions, in which you specified them.

When performing a term or phrase search, if terms are dropped from the query because they exceed term
length settings or because they are in the stoplist, you can get back a different number of rows than you
expect. This is because removing the terms from the query is equivalent to changing your search criteria.
For example, if you search for the phrase '"grown cotton"' and grown is in the stoplist, you get
every indexed row containing cotton.

You can search for the terms that are considered keywords of the CONTAINS clause grammar, as long as
they are within phrases.

Term searching
In the sample database, a text index called MarketingTextIndex has been built on the Description column
of the MarketingInformation table. The following statement queries the
MarketingInformation.Description column and returns the rows where the value in the Description
column contains the term cotton.

SELECT ID, Description
 FROM MarketingInformation
 WHERE CONTAINS (Description, 'cotton');

ID Description

906 <html><head><meta http-equiv=Content-Type content="text/html;
charset=windows-1252"><title>Visor</title></head><body lang=EN-
US><p>Light-
weight 100% organically grown cotton construction. Shields
against sun and precipitation.cotton Metallic ions in the fibers
inhibit bacterial growth, and help neutralize odor.</p></
body></html>

908 <html><head><meta http-equiv=Content-Type content="text/html;
charset=windows-1252"><title>Sweatshirt</title></head><body
lang=EN-US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>Lightweight 100% organically grown cotton hooded
sweatshirt with taped neck seams. Comes pre-washed for softness
and to lessen shrinkage.</p></body></html>

Query and modify data

334 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

ID Description

909 <html><head><meta http-equiv=Content-Type content="text/html;
charset=windows-1252"><title>Sweatshirt</title></head><body
lang=EN-US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>Top-notch construction includes durable topstitched
seams for strength with low-bulk, resilient rib-knit collar,
cuffs and bottom. An 80% cotton/20% polyester blend makes it
easy to keep them clean.</p></body></html>

910 <html><head><meta http-equiv=Content-Type content="text/html;
charset=windows-1252"><title>Shorts</title></head><body lang=EN-
US><p>These
quick-drying cotton shorts provide all day comfort on or off the
trails. Now with a more comfortable and stretchy fabric and an
adjustable drawstring waist.</p></body></html>

The following example queries the MarketingInformation table and returns a single value for each row
indicating whether the value in the Description column contains the term cotton.

SELECT ID, IF CONTAINS (Description, 'cotton')
 THEN 1
 ELSE 0
 ENDIF AS Results
 FROM MarketingInformation;

ID Results

901 0

902 0

903 0

904 0

905 0

906 1

907 0

908 1

909 1

910 1

The next example queries the MarketingInformation table for items that have the term cotton the
Description column, and shows the score for each match.

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 335

SELECT ID, ct.score, Description
 FROM MarketingInformation CONTAINS (MarketingInformation.Description,
'cotton') as ct
 ORDER BY ct.score DESC;

ID score Description

908 0.9461597363521859 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Sweatshirt</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>Lightweight 100% organically grown
cotton hooded sweatshirt with taped neck seams.
Comes pre-washed for softness and to lessen
shrinkage.</p></body></html>

910 0.9244136988525732 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Shorts</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>These quick-drying cotton shorts pro-
vide all day comfort on or off the trails. Now
with a more comfortable and stretchy fabric and
an adjustable drawstring waist.</p></
body></html>

906 0.9134171046194403 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Visor</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>Lightweight 100% organically grown
cotton construction. Shields against sun and
precipitation. Metallic ions in the fibers in-
hibit bacterial growth, and help neutralize
odor.</p></body></html>

909 0.8856420222728282 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Sweatshirt</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>Top-notch construction includes dura-
ble topstitched seams for strength with low-
bulk, resilient rib-knit collar, cuffs and bot-
tom. An 80% cotton/20% polyester blend makes it
easy to keep them clean.</p></body></
html>

Query and modify data

336 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Phrase searching
When performing a full text search for a phrase, you enclose the phrase in double quotes. A column
matches if it contains the terms in the specified order and relative positions.

You cannot specify CONTAINS keywords, such as AND or FUZZY, as terms to search for unless you
place them inside a phrase (single term phrases are allowed). For example, the statement below is
acceptable even though NOT is a CONTAINS keyword.

SELECT * FROM table-name CONTAINS (Remarks, '"NOT"');

With the exception of asterisk, special characters are not interpreted as special characters when they are in
a phrase.

Phrases cannot be used as arguments for proximity searches.

The following statement queries MarketingInformation.Description for the phrase "grown cotton",
and shows the score for each match:

SELECT ID, ct.score, Description
 FROM MarketingInformation CONTAINS (MarketingInformation.Description,
'"grown cotton"') as ct
 ORDER BY ct.score DESC;

ID score Description

908 1.6619019465461564 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Sweatshirt</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>Lightweight 100% organically grown
cotton hooded sweatshirt with taped neck seams.
Comes pre-washed for softness and to lessen
shrinkage.</p></body></html>

906 1.6043904700786786 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Visor</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>Lightweight 100% organically grown
cotton construction. Shields against sun and
precipitation. Metallic ions in the fibers in-
hibit bacterial growth, and help neutralize
odor.</p></body></html>

See also
● “Scores for full text search results” on page 346
● “Prefix search” on page 338
● “CONTAINS search condition” [SQL Anywhere Server - SQL Reference]

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 337

Prefix search

The full text search feature allows you to search for the beginning portion of a term. This is called a
prefix search. To perform a prefix search, you specify the prefix you want to search for, followed by an
asterisk. This is called a prefix term.

Keywords for the CONTAINS clause cannot be used for prefix searching unless they are in a phrase.

You also can specify multiple prefix terms in a query string, including within phrases (for example,
'"shi* fab"').

The following example queries the MarketingInformation table for items that start with the prefix shi:

SELECT ID, ct.score, Description
 FROM MarketingInformation CONTAINS (MarketingInformation.Description,
'shi*') AS ct
 ORDER BY ct.score DESC;

ID score Description

906 2.295363835537917 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Visor</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>Lightweight 100% organically grown
cotton construction. Shields against sun and
precipitation. Metallic ions in the fibers in-
hibit bacterial growth, and help neutralize
odor.</p></body></html>

901 1.6883275743936228 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Tee Shirt</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>We've improved the design of this per-
ennial favorite. A sleek and technical shirt
built for the trail, track, or sidewalk. UPF
rating of 50+.</p></body></html>

903 1.6336529491832605 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Tee Shirt</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>A sporty, casual shirt made of recy-
cled water bottles. It will serve you equally
well on trails or around town. The fabric has a
wicking finish to pull perspiration away from
your skin.</p></body></html>

Query and modify data

338 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

ID score Description

902 1.6181703448678983 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Tee Shirt</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>This simple, sleek, and lightweight
technical shirt is designed for high-intensity
workouts in hot and humid weather. The recycled
polyester fabric is gentle on the earth and soft
against your skin.</p></body></html>

ID 906 has the highest score because the term shield occurs less frequently than shirt in the text index.

Prefix searches on GENERIC text indexes
On GENERIC text indexes, the behavior for prefix searches is as follows:

● If a prefix term is longer than the MAXIMUM TERM LENGTH, it is dropped from the query string
since there can be no terms in the text index that exceed the MAXIMUM TERM LENGTH. So, on a
text index with MAXIMUM TERM LENGTH 3, searching for 'red appl*' is equivalent to
searching for 'red'.

● If a prefix term is shorter than MINIMUM TERM LENGTH, and is not part of a phrase search, the
prefix search proceeds normally. So, on a GENERIC text index where MINIMUM TERM LENGTH is
5, searching for 'macintosh a*' returns indexed rows that contain macintosh and any terms of
length 5 or greater that start with a.

● If a prefix term is shorter than MINIMUM TERM LENGTH, but is part of a phrase search, the prefix
term is dropped from the query. So, on a GENERIC text index where MINIMUM TERM LENGTH is
5, searching for '"macintosh appl* turnover"' is equivalent to searching for macintosh
followed by any term followed by turnover. A row containing "macintosh turnover" will not be
found; there must be a term between macintosh and turnover.

Prefix searches on NGRAM text indexes
On NGRAM text indexes, prefix searching can return unexpected results since an NGRAM text index
contains only n-grams, and contains no information about the beginning of terms. Query terms are also
broken into n-grams, and searching is performed using the n-grams not the query terms. Because of this,
the following behaviors should be noted:

● If a prefix term is shorter than the n-gram length (MAXIMUM TERM LENGTH), the query returns all
indexed rows that contain n-grams starting with the prefix term. For example, on a 3-gram text index,
searching for 'ea*' returns all indexed rows containing n-grams starting with ea. So, if the terms
weather and fear were indexed, the rows would be considered matches since their n-grams include eat
and ear, respectively.

● If a prefix term is longer than n-gram length, and is not part of a phrase, and not an argument in a
proximity search, the prefix term is converted to an n-grammed phrase and the asterisk is dropped. For

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 339

example, on a 3-gram text index, searching for 'purple blac*' is equivalent to searching for
'"pur urp rpl ple" AND "bla lac"'.

● For phrases, the following behavior also takes place:

○ If the prefix term is the only term in the phrase, it is converted to an n-grammed phrase and the
asterisk is dropped. For example, on a 3-gram text index, searching for '"purpl*"' is equivalent
to searching for '"pur urp rpl"'.

○ If the prefix term is in the last position of the phrase, the asterisk is dropped and the terms are
converted to a phrase of n-grams. For example, on a 3-gram text index, searching for '"purple
blac*"' is equivalent to searching for '"pur urp rpl ple bla lac"'.

○ If the prefix term is not in the last position of the phrase, the phrase is broken up into phrases that are
ANDed together. For example, on a 3-gram text index, searching for '"purp* blac*"' is
equivalent to searching for '"pur urp" AND "bla lac"'.

● If a prefix term is an argument in a proximity search, the proximity search is converted to an AND. For
example, on a 3-gram text index, searching for 'red NEAR[1] appl*' is equivalent to searching
for 'red AND "app ppl"'.

See also
● “Allowed syntax for asterisk (*)” [SQL Anywhere Server - SQL Reference]
● “Text index concepts and reference” on page 364
● “CONTAINS search condition” [SQL Anywhere Server - SQL Reference]

Proximity search

The full text search feature allows you to search for terms that are near each other in a single column. This
is called a proximity search. To perform a proximity search, you specify two terms with either the
keyword NEAR between them, or the tilde (~).

You can use an integer argument with the NEAR keyword to specify the maximum distance. For
example, term1 NEAR[5] term2 finds instances of term1 that are within five terms of term2. The order of
terms is not significant; 'term1 NEAR term2' is equivalent to 'term2 NEAR term1'.

If you do not specify a distance, the database server uses 10 as the default distance.

You can also specify a tilde (~) instead of the NEAR keyword. For example, 'term1 ~ term2'.
However, you cannot specify a distance when using the tilde form; the default of ten terms is applied.

You cannot specify a phrase as an argument in proximity searches.

In a proximity search using an NGRAM text index, if you specify a prefix term as an argument, the
proximity search is converted to an AND expression. For example, on a 3-gram text index, searching for
'red NEAR[1] appl*' is equivalent to searching for 'red AND "app ppl"'. Since this is no
longer a proximity search, the search is no longer restricted to a single column in the case where multiple
columns are specified in the CONTAINS clause.

Query and modify data

340 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Examples
Suppose you want to search MarketingInformation.Description for the term fabric within 10 terms of the
term skin. You can execute the following statement.

SELECT ID, "contains".score, Description
 FROM MarketingInformation CONTAINS (Description, 'fabric ~ skin');

ID score Description

902 1.5572371866083279 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Tee Shirt</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>This simple, sleek, and lightweight
technical shirt is designed for high-intensity
workouts in hot and humid weather. The recycled
polyester fabric is gentle on the earth and soft
against your skin.</p></body></html>

Since the default distance is 10 terms, you did not need to specify a distance. By extending the distance by
one term, however, another row is returned:

SELECT ID, "contains".score, Description
 FROM MarketingInformation CONTAINS (Description, 'fabric NEAR[11]
skin');

ID score Description

903 1.5787803210404958 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Tee Shirt</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>A sporty, casual shirt made of recy-
cled water bottles. It will serve you equally
well on trails or around town. The fabric has a
wicking finish to pull perspiration away from
your skin.</p></body></html>

902 2.163125855043747 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Tee Shirt</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>This simple, sleek, and lightweight
technical shirt is designed for high-intensity
workouts in hot and humid weather. The recycled
polyester fabric is gentle on the earth and soft
against your skin.</p></body></html>

The score for ID 903 is higher because the terms are closer together.

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 341

Boolean search

You can specify multiple terms separated by Boolean operators when performing full text searches. SQL
Anywhere supports the following Boolean operators when performing a full text search: AND, OR, and
AND NOT.

Using the AND operator in full text searches
The AND operator matches a row if it contains both of the terms specified on either side of the AND. You
can also use an ampersand (&) for the AND operator. If terms are specified without an operator between
them, AND is implied.

The order in which the terms are listed is not important.

For example, each of the following statements finds rows in MarketingInformation.Description that
contain the term fabric and a term that begins with ski:

SELECT *
 FROM MarketingInformation
 WHERE CONTAINS (MarketingInformation.Description, 'ski* AND fabric');
SELECT *
 FROM MarketingInformation
 WHERE CONTAINS (MarketingInformation.Description, 'fabric & ski*');
SELECT *
 FROM MarketingInformation
 WHERE CONTAINS (MarketingInformation.Description, 'ski* fabric');

Using the OR operator in full text searches
The OR operator matches a row if it contains at least one of the specified search terms on either side of
the OR. You can also use a vertical bar (|) for the OR operator; the two are equivalent.

The order in which the terms are listed is not important.

For example, either statement below returns rows in the MarketingInformation.Description that contain
either the term fabric or a term that starts with ski:

SELECT *
 FROM MarketingInformation
 WHERE CONTAINS (MarketingInformation.Description, 'ski* OR fabric');
SELECT *
 FROM MarketingInformation
 WHERE CONTAINS (MarketingInformation.Description, 'fabric | ski*');

Using the AND NOT operator in full text searches
The AND NOT operator finds results that match the left argument and do not match the right argument.
You can also use a hyphen (-) for the AND NOT operator; the two are equivalent.

For example, the following statements are equivalent and return rows that contain the term fabric, but do
not contain any terms that begin with ski.

SELECT *
 FROM MarketingInformation
 WHERE CONTAINS (MarketingInformation.Description, 'fabric AND NOT
ski*');

Query and modify data

342 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SELECT *
 FROM MarketingInformation
 WHERE CONTAINS (MarketingInformation.Description, 'fabric -ski*');
SELECT *
 FROM MarketingInformation
 WHERE CONTAINS (MarketingInformation.Description, 'fabric & -ski*');

Combining different boolean operators
The boolean operators can be combined in a query string. For example, the following statements are
equivalent and search the MarketingInformation.Description column for items that contain fabric and
skin, but not cotton:

SELECT *
 FROM MarketingInformation
 WHERE CONTAINS (MarketingInformation.Description, 'skin fabric -
cotton');
SELECT *
 FROM MarketingInformation
 WHERE CONTAINS (MarketingInformation.Description, 'fabric -cotton AND
skin');

The following statements are equivalent and search the MarketingInformation.Description column for
items that contain fabric or both cotton and skin:

SELECT *
 FROM MarketingInformation
 WHERE CONTAINS (MarketingInformation.Description, 'fabric | cotton AND
skin');
SELECT *
 FROM MarketingInformation
 WHERE CONTAINS (MarketingInformation.Description, 'cotton skin OR
fabric');

Grouping terms and phrases
Terms and expressions can be grouped with parentheses. For example, the following statement searches
the MarketingInformation.Description column for items that contain cotton or fabric, and that have terms
that start with ski.

SELECT ID, Description FROM MarketingInformation
 WHERE CONTAINS(MarketingInformation.Description, '(cotton OR fabric)
AND shi*');

ID Description

902 <html><head><meta http-equiv=Content-Type content="text/html;
charset=windows-1252"><title>Tee Shirt</title></head><body
lang=EN-US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>This simple, sleek, and lightweight technical shirt is
designed for high-intensity workouts in hot and humid weather.
The recycled polyester fabric is gentle on the earth and soft
against your skin.</p></body></html>

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 343

ID Description

903 <html><head><meta http-equiv=Content-Type content="text/html;
charset=windows-1252"><title>Tee Shirt</title></head><body
lang=EN-US><p>A
sporty, casual shirt made of recycled water bottles. It will
serve you equally well on trails or around town. The fabric has
a wicking finish to pull perspiration away from your skin.</
span></p></body></html>

906 <html><head><meta http-equiv=Content-Type content="text/html;
charset=windows-1252"><title>Visor</title></head><body lang=EN-
US><p>Light-
weight 100% organically grown cotton construction. Shields
against sun and precipitation. Metallic ions in the fibers in-
hibit bacterial growth, and help neutralize odor.</p></
body></html>

Searching across multiple columns
You can perform a full text search across multiple columns in a single query, as long as the columns are
part of the same text index.

SELECT *
 FROM t
 WHERE CONTAINS (t.c1, t.c2, 'term1|term2');
SELECT *
 FROM t
 WHERE CONTAINS(t.c1, 'term1')
 OR CONTAINS(t.c2, 'term2');

The first query matches if t1.c1 contains term1, or if t1.c2 contains term2.

The second query matches if either t1.c1 or t1.c2 contains either term1 or term2. Using the contains in this
manner also returns scores for the matches.

See also
● “CONTAINS search condition” [SQL Anywhere Server - SQL Reference]
● “Scores for full text search results” on page 346

Fuzzy search

Fuzzy searching can be used to search for misspellings or variations of a word. To do so, use the FUZZY
operator followed by a string in double quotes to find an approximate match for the string. For example,
CONTAINS (Products.Description, 'FUZZY "cotton"') returns cotton and
misspellings such as coton or cotten.

Query and modify data

344 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Note
You can only perform fuzzy searches on text indexes built using the NGRAM term breaker. For more
information about the NGRAM term breaker and how it applies to fuzzy searches, see “What to specify
when creating or altering text configuration objects” on page 349.

Using the FUZZY operator is equivalent to breaking the string manually into substrings of length n and
separating them with OR operators. For example, suppose you have a text index configured with the
NGRAM term breaker and a MAXIMUM TERM LENGTH of 3. Specifying 'FUZZY "500 main
street"' is equivalent to specifying '500 OR mai OR ain OR str OR tre OR ree OR
eet'.

The FUZZY operator is useful in a full text search that returns a score. This is because many approximate
matches may be returned, but usually only the matches with the highest scores are meaningful.

View search

To use a full text search on a view or derived table, you must build a text index on the columns in the base
table that you want to perform a full text search on. The following statements create a view on the
MarketingInformation table in the sample database, which already has a text index name, and then
perform a full text search on that view.

To create a view on the MarketingInformation base table, execute the following statement:

CREATE VIEW MarketingInfoView AS
SELECT MI.ProductID AS ProdID,
 MI."Description" AS "Desc"
FROM GROUPO.MarketingInformation AS MI
WHERE MI."ID" > 3

Using the following statement, you can query the view using the text index on the underlying table.

SELECT *
FROM MarketingInfoView
WHERE CONTAINS ("Desc", 'Cap OR Tee*')

You can also execute the following statement to query a derived table using the text index on the
underlying table.

SELECT *
FROM (
 SELECT MI.ProductID, MI."Description"
 FROM MarketingInformation AS MI
 WHERE MI."ID" > 4) AS dt (P_ID, "Desc")
WHERE CONTAINS ("Desc", 'Base*')

Note
The columns on which you want to run the full text search must be included in the SELECT list of the
view or derived table.

Searching a view using a text index on the underlying base table is restricted as follows:

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 345

● The view cannot contain a TOP, FIRST, DISTINCT, GROUP BY, ORDER BY, UNION,
INTERSECT, EXCEPT clause, or window function.

● The view cannot contain aggregate functions.

● A CONTAINS query can refer to a base table inside a view, but not to a base table inside a view that is
inside another view.

See also
● “CONTAINS search condition” [SQL Anywhere Server - SQL Reference]

Scores for full text search results
When you include a CONTAINS clause in the FROM clause of a query, each match has a score
associated with it. The score indicates how close the match is, and you can use score information to sort
the data.

Scoring is based on two main criteria:

● Number of times a term appears in the indexed row The more times a term appears in an
indexed row, the higher its score.

● Number of times a term appears in the text index The more times a term appears in a text
index, the lower its score. In Sybase Central, you can view how many times a term appears in the text
index by viewing the Vocabulary tab for the text index. Click the term column to sort the terms
alphabetically. The freq column tells you how many times the term appears in the text index.

Then, depending on the type of full text search, other criteria impact scoring. For example, in proximity
searches, the proximity of search terms impacts scoring.

How to use scores
By default, the result set of a CONTAINS clause has the correlation name contains that has a single
column in it called score. You can refer to "contains".score in the SELECT list, ORDER BY
clause, or other parts of the query. However, because contains is a SQL reserved word, you must
remember to put it in double quotes. Alternatively, you can specify another correlation name such (for
example, CONTAINS (expression) AS ct). In the documentation examples for full text search,
the score column is referred to as ct.score.

The following statement searches MarketingInformation.Description for terms starting with stretch or
terms starting with comfort:

SELECT ID, ct.score, Description
 FROM MarketingInformation CONTAINS (MarketingInformation.Description,
'stretch* | comfort*') AS ct
 ORDER BY ct.score DESC;

Query and modify data

346 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

ID score Description

910 5.570408968026068 <html><head><meta http-
equiv=Content-Type con-
tent="text/html; char-
set=windows-1252"><ti-
tle>Shorts</title></
head><body lang=EN-
US><p><span style='font-
size:10.0pt;font-fami-
ly:Arial'>These quick-drying
cotton shorts provide all
day comfort on or off the
trails. Now with a more com-
fortable and stretchy fabric
and an adjustable drawstring
waist.</p></body></
html>

907 3.658418186470189 <html><head><meta http-
equiv=Content-Type con-
tent="text/html; char-
set=windows-1252"><title>Vi-
sor</title></head><body
lang=EN-US><p><span
style='font-size:
10.0pt;font-family:Arial'>A
polycarbonate visor with an
abrasion-resistant coating
on the outside. Great for
jogging in the spring, sum-
mer, and early fall. The
elastic headband has plenty
of stretch to give you a
snug yet comfortable fit ev-
ery time you wear it.</
span></p></body></html>

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 347

ID score Description

905 1.6750365447462499 <html><head><meta http-
equiv=Content-Type con-
tent="text/html; char-
set=windows-1252"><ti-
tle>Baseball Cap</title></
head><body lang=EN-
US><p><span style='font-
size:10.0pt;font-fami-
ly:Arial'>A lightweight wool
cap with mesh side vents for
breathable comfort during
aerobic activities. Mois-
ture-absorbing headband lin-
er.</p></body></html>

Item 910 has the highest score because it contains two instances of the prefix term comfort, whereas the
others only have one instance. As well, item 910 has an instance of the prefix term stretch.

Example 2: Searching multiple columns
The following example shows you how to perform a full text search across multiple columns and score
the results:

1. Create an immediate text index on the Products table as follows:

CREATE TEXT INDEX scoringExampleMult
 ON Products (Description, Name);

2. Perform a full text search on the Description and Name columns for the terms cap or visor, as
follows. The result of the CONTAINS clause is assigned the correlation name ct, and is referenced in
the SELECT list so that it is included in the results. Also, the ct.score column is referenced in the
ORDER BY clause to sort the results in descending order by score.

SELECT Products.Description, Products.Name, ct.score
 FROM Products CONTAINS (Products.Description, Products.Name, 'cap
OR visor') ct
 ORDER BY ct.score DESC;

Description Name score

Cloth Visor Visor 3.5635154905713042

Plastic Visor Visor 3.4507856451176244

Wool cap Baseball Cap 3.2340501745357333

Cotton Cap Baseball Cap 3.090467108972918

Query and modify data

348 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The scores for a multi-column search are calculated as if the column values were concatenated
together and indexed as a single value. Note, however, that phrases and NEAR operators never match
across column boundaries, and that a search term that appears in more than one column increases the
score more than it would in a single concatenated value.

3. For other examples in the documentation to work properly, you must delete the text index you created
on the Products table. To do so, execute the following statement:

DROP TEXT INDEX scoringExampleMult ON Products;

Text configuration object concepts and reference
A text configuration object controls what terms go into a text index when it is built or refreshed, and how
a full text query is interpreted. The settings for each text configuration object are stored as a row in the
ISYSTEXTCONFIG system table.

When the database server creates or refreshes a text index, it uses the settings for the text configuration
object specified when the text index was created. If you did not specify a text configuration object when
creating the text index, the database server chooses one of the default text configuration objects, based on
the type of data in the columns being indexed. SQL Anywhere provides two default text configuration
objects.

To view settings for existing text configuration objects, query the SYSTEXTCONFIG system view.

See also
● “Example text configuration objects” on page 356
● “SYSTEXTCONFIG system view” [SQL Anywhere Server - SQL Reference]

What to specify when creating or altering text configuration objects

SQL Anywhere provides two default text configuration objects, default_char for use with CHAR data,
and default_nchar for use with NCHAR and CHAR data. Note that while default_nchar can be used with
any data, character set conversion will be performed.

You can test how a text configuration object affects term breaking using the sa_char_terms and
sa_nchar_terms system procedures.

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 349

See also
● “sa_nchar_terms system procedure” [SQL Anywhere Server - SQL Reference]
● “sa_char_terms system procedure” [SQL Anywhere Server - SQL Reference]
● “Example text configuration objects” on page 356
● “Default text configuration objects” on page 356
● “Creating a text configuration object” on page 326
● “Altering a text configuration object” on page 326
● “Fuzzy search” on page 344
● “Text index concepts and reference” on page 364
● “CONTAINS search condition” [SQL Anywhere Server - SQL Reference]
● “CREATE TEXT CONFIGURATION statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TEXT CONFIGURATION statement” [SQL Anywhere Server - SQL Reference]
● “DROP TEXT CONFIGURATION statement” [SQL Anywhere Server - SQL Reference]
● “SYSTEXTIDX system view” [SQL Anywhere Server - SQL Reference]

TERM BREAKER clause - Specify the term breaker algorithm

The TERM BREAKER setting specifies the algorithm to use for breaking strings into terms. The choices
are GENERIC for storing terms, or NGRAM for storing n-grams. For GENERIC, you can use the built-in
term breaker algorithm, or an external term breaker.

The following table explains the impact that the value of TERM BREAKER has on text indexing and on
how query strings are handled:

Query and modify data

350 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Text indexes Query strings

● GENERIC text index Performance of GE-
NERIC text indexes can be faster than NGRAM
text indexes. However, you cannot perform fuzzy
searches on GENERIC text indexes.

When building a GENERIC text index using the
built-in algorithm, groups of alphanumeric charac-
ters appearing between non-alphanumeric charac-
ters are processed as terms by the database server,
and have positions assigned to them.

When building a GENERIC text index using a
term breaker external library, terms and their posi-
tions are defined by the external library.

Once the terms have been identified by the term
breaker, any term that exceeds the term length re-
strictions or that is found in the stoplist, is counted
but not inserted in the text index.

● NGRAM text index An n-gram is a group of
characters of length n where n is the value of
MAXIMUM TERM LENGTH.

When building an NGRAM text index, the data-
base server treats as a term any group of alphanu-
meric characters between non-alphanumeric char-
acters. Once the terms are defined, the database
server breaks the terms into n-grams. In doing so,
terms shorter than n, and n-grams that are in the
stoplist, are discarded.

For example, for an NGRAM text index with
MAXIMUM TERM LENGTH 3, the string 'my
red table' is represented in the text index as the
following n-grams: red tab abl ble.

For n-grams, the positional information of the n-
grams is stored, not the positional information for
the original terms.

When parsing a CONTAINS query, the data-
base server extracts keywords and special
characters from the query string and then ap-
plies the term breaker algorithm to the re-
maining terms. For example, if the query
string is 'ab_cd* AND b*', the * and the
keyword AND are extracted, and the charac-
ter strings ab_cd and b are given to the term
breaker algorithm to parse separately.

● GENERIC text index When querying
a GENERIC text index, terms in the query
string are processed in the same manner as
if they were being indexed. Matching is
performed by comparing query terms to
terms in the text index.

● NGRAM text index When querying an
NGRAM text index, terms in the query
string are processed in the same manner as
if they were being indexed. Matching is
performed by comparing n-grams from
the query terms to n-grams from the in-
dexed terms.

If not defined, the default for TERM BREAKER is taken from the setting in the default text configuration
object. If a term breaker is not defined in the default text configuration object, the internal term breaker is
used.

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 351

See also
● “Prefix search” on page 338
● “Default text configuration objects” on page 356
● “CONTAINS search condition” [SQL Anywhere Server - SQL Reference]
● “TERM BREAKER clause, ALTER TEXT CONFIGURATION statement” [SQL Anywhere Server -

SQL Reference]

MINIMUM TERM LENGTH clause - Set the minimum term length

The MINIMUM TERM LENGTH setting specifies the minimum length, in characters, for terms inserted
in the index or searched for in a full text query. MINIMUM TERM LENGTH is not relevant for NGRAM
text indexes.

MINIMUM TERM LENGTH has special implications on prefix searching.

The value of MINIMUM TERM LENGTH must be greater than 0. If you set it higher than MAXIMUM
TERM LENGTH, then MAXIMUM TERM LENGTH is automatically adjusted to be equal to
MINIMUM TERM LENGTH.

If not defined, the default for MINIMUM TERM LENGTH is taken from the setting in the default text
configuration object, which is typically 1.

The following table explains the impact that the value of MINIMUM TERM LENGTH has on text
indexing and on how query strings are handled:

Text indexes Query strings

GENERIC text index For GENERIC text in-
dexes, the text index will not contain words short-
er than MINIMUM TERM LENGTH.

NGRAM text index For NGRAM text indexes,
this setting is ignored.

GENERIC text index When querying a GE-
NERIC text index, query terms shorter than MIN-
IMUM TERM LENGTH are ignored because
they cannot exist in the text index.

NGRAM text index The MINIMUM TERM
LENGTH setting has no impact on full text quer-
ies on NGRAM text indexes.

See also
● “MINIMUM TERM LENGTH clause, ALTER TEXT CONFIGURATION statement” [SQL

Anywhere Server - SQL Reference]
● “Prefix search” on page 338
● “Default text configuration objects” on page 356

MAXIMUM TERM LENGTH clause - Set the maximum term length

The MAXIMUM TERM LENGTH setting is used differently depending on the term breaker algorithm.

Query and modify data

352 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The value of MAXIMUM TERM LENGTH must be less than or equal to 60. If you set it lower than the
MINIMUM TERM LENGTH, then MINIMUM TERM LENGTH is automatically adjusted to be equal to
MAXIMUM TERM LENGTH.

If not defined, the default for MAXIMUM TERM LENGTH is taken from the setting in the default text
configuration object, which is typically 20.

The following table explains the impact that the value of MAXIMUM TERM LENGTH has on text
indexing and on how query strings are handled:

Text indexes Query strings

GENERIC text indexes For GENERIC
text indexes, MAXIMUM TERM LENGTH
specifies the maximum length, in characters,
for terms inserted in the text index.

NGRAM text index For NGRAM text in-
dexes, MAXIMUM TERM LENGTH deter-
mines the length of the n-grams that terms are
broken into. An appropriate choice of length
for n-grams depends on the language. Typical
values are 4 or 5 characters for English, and 2
or 3 characters for Chinese.

GENERIC text indexes For GENERIC text in-
dexes, query terms longer than MAXIMUM TERM
LENGTH are ignored because they cannot exist in the
text index.

NGRAM text index For NGRAM text indexes,
query terms are broken into n-grams of length n,
where n is the same as MAXIMUM TERM LENGTH.
Then, the database server uses the n-grams to search
the text index. Terms shorter than MAXIMUM TERM
LENGTH are ignored because they will not match the
n-grams in the text index. Therefore, proximity
searches do not work unless arguments are prefixes of
length n.

See also
● “MAXIMUM TERM LENGTH clause, ALTER TEXT CONFIGURATION statement” [SQL

Anywhere Server - SQL Reference]
● “Default text configuration objects” on page 356

STOPLIST clause - Configure the stoplist

A stoplist specifies the terms to ignore when creating the text index.

If not defined, the default for this setting is taken from the setting in the default text configuration object,
which typically has an empty stoplist.

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 353

STOPLIST impact to text index STOPLIST impact to query terms

GENERIC text indexes For GE-
NERIC text indexes, terms that are in
the stoplist are not inserted into the text
index.

NGRAM text index For NGRAM
text indexes, the text index will not
contain the n-grams formed from the
terms in the stoplist.

GENERIC text indexes For GENERIC text indexes,
query terms that are in the stoplist are ignored because they
cannot exist in the text index.

NGRAM text index Terms in the stoplist are broken into
n-grams and the n-grams are used for the term filtering.
Likewise, query terms are broken into n-grams and any that
match n-grams in the stoplist are dropped because they can-
not exist in the text index.

The settings in the text configuration object are applied to the stoplist when it is parsed. That is, the
specified term breaker and the min/max length settings are applied.

Stoplists in NGRAM text indexes can cause unexpected results because the stoplist is stored in n-gram
form, and not the stoplist terms you specified. For example, in an NGRAM text index where MAXIMUM
TERM LENGTH is 3, if you specify STOPLIST 'there', the following n-grams are stored as the
stoplist: the her ere. This impacts the ability to query for any terms that contain the n-grams the, her, and
ere.

Note
The same restrictions with regards to specifying string literals also apply to stoplists. For example,
apostrophes must be escaped, and so on.

The Samples directory contains sample code that loads stoplists for several languages. These sample
stoplists are recommended for use only on GENERIC text indexes. For the location of the Samples
directory, see “Samples directory” [SQL Anywhere Server - Database Administration].

See also
● “Default text configuration objects” on page 356
● “STOPLIST clause, ALTER TEXT CONFIGURATION statement” [SQL Anywhere Server - SQL

Reference]
● “String literals” [SQL Anywhere Server - SQL Reference]

PREFILTER clause - Specify the external prefilter algorithm

Prefiltering is the process of extracting text data from a file types such as Word, PDF, HTML, and XML.
In the context of text indexing, prefiltering allows you to extract only the data you want indexed, and
avoid indexing unnecessary content such HTML tags. For certain types of documents (for example,
Microsoft Word documents), prefiltering is required to make full text indexes useful.

SQL Anywhere does not provide a built-in prefilter feature. However, you can create an external prefilter
library to perform prefiltering according to your requirements, and then alter your text configuration
object to point to it.

Query and modify data

354 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The following table explains the impact that the value of PREFILTER EXTERNAL NAME has on text
indexing and on how query strings are handled:

Text indexes Query strings

GENERIC and NGRAM text indexes An ex-
ternal prefilter takes an input value (a document)
and filters it according to the rules specified by the
prefilter library. The resulting text is then passed
to the term breaker before building or updating the
text index.

GENERIC and NGRAM text indexes Query
strings are not passed through a prefilter, so the
setting of the PREFILTER EXTERNAL NAME
clause has no impact on query strings.

The ExternalLibrariesFullText directory in your SQL Anywhere install contains prefilter and term
breaker sample code for you to explore. This directory is found under your Samples directory. For the
location of your Samples directory, see “Samples directory” [SQL Anywhere Server - Database
Administration].

See also
● “External prefilter libraries” on page 388
● “PREFILTER EXTERNAL NAME clause, ALTER TEXT CONFIGURATION statement” [SQL

Anywhere Server - SQL Reference]

Date, time, and timestamp format settings

When a text configuration object is created, the values for date_format, time_format, timestamp_format,
and timestamp_with_time_zone_format options for the current connection are stored with the text
configuration object. These option values control how DATE, TIME, and TIMESTAMP columns are
formatted for the text indexes built using the text configuration object. You cannot explicitly set these
option values for the text configuration object; the settings reflect those in effect for the connection that
created the text configuration object. However, you can change them.

See also
● “Altering a text configuration object” on page 326
● “ALTER TEXT CONFIGURATION statement” [SQL Anywhere Server - SQL Reference]

Database options that impact text configuration objects

When a text configuration object is created, the current settings for the date_format, time_format, and
timestamp_format database options are stored with the text configuration object. This is because these
settings affect string conversions when creating and refreshing the text indexes that depend on the text
configuration object.

Storing the settings with the text configuration object allows you change the settings for these database
options without causing a change to the format of data stored in the dependent text indexes.

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 355

If you want to change the format of the strings representing the dates and times in a text index, you must
do the following:

1. Drop the text index, the text configuration object and all its dependent text indexes.

2. Drop the default text configuration object that you used to create the text configuration object and all
its dependent text indexes.

3. Change the database options to the format you want.

4. Create a text configuration object.

5. Create a text index using the new text configuration object.

Note
The conversion_error option must be set to ON when creating or refreshing a text index.

See also
● “What to specify when creating or altering text configuration objects” on page 349
● “date_format option” [SQL Anywhere Server - Database Administration]
● “time_format option” [SQL Anywhere Server - Database Administration]
● “timestamp_format option” [SQL Anywhere Server - Database Administration]
● “conversion_error option” [SQL Anywhere Server - Database Administration]

Example text configuration objects

For a list of all text configuration objects in the database and the settings they contain, query the
SYSTEXTCONFIG system view (for example, SELECT * FROM SYSTEXTCONFIG).

You can test how a text configuration object would break a string into terms using the sa_char_terms and
sa_nchar_terms system procedures.

Default text configuration objects
SQL Anywhere provides two default text configuration objects, default_nchar and default_char for use
with NCHAR and non-NCHAR data, respectively. These configurations are created the first time you
attempt to create a text configuration object or text index.

The settings for default_char and default_nchar at the time of installation are shown in the table below.
These settings were chosen because they were best suited for most character-based languages. It is
strongly recommended that you do not change the settings in the default text configuration objects.

Setting Installed value

TERM BREAKER 0 (GENERIC)

MINIMUM TERM LENGTH 1

Query and modify data

356 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Setting Installed value

MAXIMUM TERM LENGTH 20

STOPLIST (empty)

If you delete a default text configuration object, it is automatically recreated the next time you create a
text index or text configuration object.

When a default text configuration object is created by the database server, the database options that affect
how date and time values are converted to strings are saved to the text configuration object from the
current connection.

See also
● “SYSTEXTCONFIG system view” [SQL Anywhere Server - SQL Reference]
● “sa_char_terms system procedure” [SQL Anywhere Server - SQL Reference]
● “sa_nchar_terms system procedure” [SQL Anywhere Server - SQL Reference]
● “Database options that impact text configuration objects” on page 355
● “What to specify when creating or altering text configuration objects” on page 349

Example text configuration objects
The following table shows the settings for different text configuration objects and how the settings impact
what is indexed and how a full text query string is interpreted. All the examples use the string 'I'm not
sure I understand'.

Configuration settings Terms that are indexed Query interpretation

TERM BREAKER GENERIC

MINIMUM TERM LENGTH
1

MAXIMUM TERM
LENGTH 20

STOPLIST ''

I m not sure I
understand

("I m" AND NOT sure) AND I
AND understand'

Note that the 'not' in the original string
gets interpreted as an operator, not the
word 'not'.

TERM BREAKER GENERIC

MINIMUM TERM LENGTH
2

MAXIMUM TERM
LENGTH 20

STOPLIST 'not and'

sure understand 'understand'.

Note that 'sure' gets dropped because 'not'
is interpreted as an operator (AND NOT)
between phrase "i am" and "sure". Since
the phrase "i am" contains terms that are
too short and are dropped, the right side
of the AND NOT condition ('sure') is al-
so dropped. This leaves only 'under-
stand'.

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 357

Configuration settings Terms that are indexed Query interpretation

TERM BREAKER NGRAM

MAXIMUM TERM
LENGTH 3

STOPLIST 'not and'

sur ure und nde
der ers rst sta
tan

'und AND nde AND der AND
ers AND rst AND sta AND
tan'.

For a fuzzy search:

'und OR nde OR der OR ers
OR rst OR sta OR tan'

TERM BREAKER GENERIC

MINIMUM TERM LENGTH
1

MAXIMUM TERM
LENGTH 20

STOPLIST 'not and'

I m sure I under-
stand

'("I m" AND NOT sure) AND I
AND understand'.

TERM BREAKER NGRAM

MAXIMUM TERM
LENGTH 20

STOPLIST 'not and'

Nothing is indexed be-
cause no term is equal to
or longer than 20 charac-
ters.

This illustrates how dif-
ferently MAXIMUM
TERM LENGTH impacts
GENERIC and NGRAM
text indexes; on NGRAM
text indexes, MAXI-
MUM TERM LENGTH
sets the length of the n-
grams inserted into the
text index.

The search returns an empty result set
because no n-grams of 20 characters can
be formed from the query string.

Examples of how CONTAINS strings are interpreted
The following table provides examples of how the settings of the text configuration object strings are
interpreted.

The parenthetical numbers in the Interpreted string column reflect the position information stored for each
term. The numbers are for illustration purposes in the documentation. The actual stored terms do not
include the parenthetical numbers.

Configuration settings String Interpreted String

TERM BREAKER GENERIC 'w*' '"w*(1)"'

Query and modify data

358 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Configuration settings String Interpreted String

MINIMUM TERM LENGTH 3

MAXIMUM TERM LENGTH 20
'we*' '"we*(1)"'

'wea*' '"wea*(1)"'

'we* -the' '"we*(1)"
-"the(1)"'

'we* the' "we*(1)" &
"the(1)"'

'for* | wonderl*' '"for*(1)" |
"wonderl*(1)"'

'wonderlandwonderlandwon-
derland*'

''

'"tr* weather"' '"weather(1)"'

'"tr* the weather"' '"the(1)
weather(2)"'

'"wonderlandwonderland-
wonderland* wonderland"'

'"wonder-
land(1)"'

'"wonderlandwonderland-
wonderland* weather"'

'"weather(1)"'

'"the_wonderlandwonder-
landwonderland* weather"'

'"the(1)
weather(3)"'

'the_wonderlandwonder-
landwonderland* weather'

'"the(1)" &
"weather(1)"'

'"light_a* the end" &
tunnel'

'"light(1)
the(3) end(4)"
& "tunnel(1)"'

light_b* the end" & tun-
nel'

'"light(1)
the(3) end(4)"
& "tunnel(1)"'

'"light_at_b* end"' '"light(1)
end(4)"'

'and_te*' '"and(1)
te*(2)"'

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 359

Configuration settings String Interpreted String

'a_long_and_t* & journey' '"long(2)
and(3) t*(4)"
& "jour-
ney(1)"'

'weather -is' '"weather(1)"'

TERM BREAKER NGRAM

MAXIMUM TERM LENGTH 3

'w*' '"w*(1)"'

'we*' '"we*(1)"'

'wea* '"wea(1)"'

'we* -the' '"we*(1)"
-"the(1)"'

'we* the' '"we*(1)" &
"the(1)"'

'for | la*' '"for(1)" |
"la*(1)"'

'weath*' '"wea(1)
eat(2)
ath(3)"'

'"ful weat*"' '"ful(1)
wea(2)
eat(3)"'

'"wo* la*"' '"wo*(1)" &
"la*(2)"'

'"la* won* "' '"la*(1)" &
"won(2)"'

'"won* weat*"' '"won(1)" &
"wea(2)
eat(3)"'

'"won* weat"' '"won(1)" &
"wea(2)
eat(3)"'

'"wo* weat*"' '"wo*(1)" &
"wea(2)
eat(3)"'

Query and modify data

360 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Configuration settings String Interpreted String

'"weat* wo* "' '"wea(1)
eat(2)" &
"wo*(3)"'

'"wo* weat"' '"wo*(1)" &
"wea(2)
eat(3)"'

'"weat wo* "' '"wea(1)
eat(2)
wo*(3)"'

'w* NEAR[1] f*' '"w*(1)" &
"f*(1)"'

'weat* NEAR[1] f*' "wea(1)
eat(2)" &
"f*(1)"'

'f* NEAR[1] weat*' '"f*(1)" &
"wea(1)
eat(2)"'

'weat NEAR[1] f*' '"wea(1)
eat(2)" &
"f*(1)"'

'f* NEAR[1] weat' '"f*(1)" &
"wea(1)
eat(2)"'

'for NEAR[1] weat*' '"for(1)" &
"wea(1)
eat(2)"'

'weat* NEAR[1] for' '"wea(1)
eat(2)" &
"for(1)"'

'and_tedi*' '"and(1)
ted(2)
edi(3)"'

'and_t*' '"and(1)
t*(2)"'

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 361

Configuration settings String Interpreted String

'"and_tedi*"' '"and(1)
ted(2)
edi(3)"'

'"and-t*"' '"and(1)
t*(2)"'

'"ligh* at_the_end of_the
tun* nel"'

'"lig(1)
igh(2)" &
("the(4)
end(5) the(7)
tun(8)" &
"nel(9)")'

'"ligh*
at_the_end_of_the_tun*
nel"'

'"lig(1)
igh(2)" &
("the(4)
end(5) the(7)
tun(8)" &
"nel(9)")'

'"at_the_end of_the tun*
ligh* nel"'

'"the(2)
end(3) the(5)
tun(6)" &
("lig(7)
igh(8)" &
"nel(9)")'

'l* NEAR[1] and_t*' "l*(1)" &
"and(1)
t*(2)"'

'long NEAR[1] and_t*' '"lon(1)
ong(2)" &
"and(1)
t*(2)"'

'end NEAR[3] tunne*' '"end(1)" &
"tun(1) unn(2)
nne(3)"'

TERM BREAKER NGRAM

MAXIMUM TERM LENGTH 3

SKIPPED TOKENS IN TABLE AND
IN QUERIES

'"cat in a hat"' '"cat(1)
hat(4)"'

'"cat in_a hat"' '"cat(1)
hat(4)"'

Query and modify data

362 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Configuration settings String Interpreted String

'"cat_in_a_hat"' '"cat(1)
hat(4)"'

'"cat_in a_hat"' '"cat(1)
hat(4)"'

'cat in a hat' '"cat(1)" &
"hat(1)"'

'cat in_a hat' '"cat(1)" &
"hat(1)"'

'"ice hat"' '"ice(1)
hat(2)"'

'ice NEAR[1] hat' '"ice(1)"
NEAR[1]
"hat(1)"'

'ear NEAR[2] hat' '"ear(1)"
NEAR[2]
"hat(1)"'

'"ear a hat"' '"ear(1)
hat(3)"'

'"cat hat"' '"cat(1)
hat(2)"'

'cat NEAR[1] hat' '"cat(1)"
NEAR[1]
"hat(1)"'

'ear NEAR[1] hat' '"ear(1)"
NEAR[1]
"hat(1)"'

'"ear hat"' '"ear(1)
hat(2)"'

'"wear a a hat"' '"wea(1)
ear(2)
hat(5)"'

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 363

Configuration settings String Interpreted String

'weather -is' '"wea(1)
eat(2) ath(3)
the(4)
her(5)"'

Text index concepts and reference

When you perform a full text search, you are searching a text index (not table rows). So, before you can
perform a full text search, you must create a text index on the columns you want to search. A text index
stores positional information for terms in the indexed columns. Queries that use text indexes can be faster
than those that must scan all the values in the table.

When you create a text index, you can specify which text configuration object to use when creating and
refreshing the text index. A text configuration object contains settings that affect how an index is built. If
you do not specify a text configuration object, the database server uses a default configuration object.

You can also specify a refresh type for the text index. The refresh type defines how often the text index
is refreshed. A more recently refreshed text index returns more accurate results. However, refreshing
takes time and can impede performance. For example, frequent updates to an indexed table can impact
performance if the text index is configured to refresh each time the underlying data changes.

You can use the VALIDATE TEXT INDEX statement to verify that the positional information for the
terms in the text index is intact. If the positional information is not intact, an error is generated.

To view settings for existing text indexes, use the sa_text_index_stats system procedure.

See also
● “VALIDATE statement” [SQL Anywhere Server - SQL Reference]
● “Text index refresh types” on page 364
● “Text configuration object concepts and reference” on page 349
● “sa_text_index_stats system procedure” [SQL Anywhere Server - SQL Reference]

Text index refresh types

When you create a text index, you must also choose a refresh type. There are three refresh types
supported for text indexes: immediate, automatic, and manual. You define the refresh type for a text index
at creation time. With the exception of immediate text indexes, you can change the refresh type after
creating the text index.

● IMMEDIATE REFRESH IMMEDIATE REFRESH text indexes are refreshed when data in the
underlying table changes, and are recommended only when the data must always be up-to-date, when
the indexed columns are relatively short, or when the data changes are infrequent.

Query and modify data

364 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The default refresh type for text indexes is IMMEDIATE REFRESH.

If you have an AUTO REFRESH or MANUAL REFRESH text index, you cannot alter it to be an
IMMEDIATE REFRESH text index. Instead, you must drop and recreate it as an IMMEDIATE
REFRESH text index.

IMMEDIATE REFRESH text indexes support all isolation levels. They are populated at creation
time, and an exclusive lock is held on the table during this initial refresh.

● AUTO REFRESH AUTO REFRESH text indexes are refreshed automatically at a time interval that
you specify, and are recommended when some data staleness is acceptable. A query on a stale index
returns matching rows that have not been changed since the last refresh. So, rows that have been
inserted, deleted, or updated since the last refresh are not returned by a query.

AUTO REFRESH text indexes may also be refreshed more often than the interval specified when one
or more of the following conditions are true:

○ the time since the last refresh is larger than the refresh interval.

○ the total length of all pending rows (pending_length as returned by the sa_text_index_stats system
procedure) exceeds 20% of the total index size (doc_length as returned by sa_text_index_stats).

○ the deleted length exceeds 50% of the total index size (doc_length). In this case, a full rebuild is
always performed instead of an incremental update.

AUTO REFRESH text indexes are refreshed using isolation level 0.

An AUTO REFRESH text index contains no data at creation time, and is not available for use until
after the first refresh, which takes place usually within the first minute after the text index is created.
You can also refresh an AUTO REFRESH text index manually using the REFRESH TEXT INDEX
statement.

AUTO REFRESH text indexes are not refreshed during a reload unless the -g option is specified for
dbunload.

● MANUAL REFRESH MANUAL REFRESH text indexes are refreshed only when you refresh
them, and are recommended if data in the underlying table is rarely changed, or if a greater degree of
data staleness is acceptable, or if you want to refresh after an event or a condition is met. A query on a
stale index returns matching rows that have not been changed since the last refresh. So, rows that have
been inserted, deleted, or updated since the last refresh are not returned by a query.

You can define your own strategy for refreshing MANUAL REFRESH text indexes. In the following
example, all MANUAL REFRESH text indexes are refreshed using a refresh interval that is passed as
an argument, and rules that are similar to those used for AUTO REFRESH text indexes.

CREATE PROCEDURE refresh_manual_text_indexes(
 refresh_interval UNSIGNED INT)
BEGIN
 FOR lp1 AS c1 CURSOR FOR
 SELECT ts.*
 FROM SYS.SYSTEXTIDX ti JOIN sa_text_index_stats() ts
 ON (ts.index_id = ti.index_id)

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 365

 WHERE ti.refresh_type = 1 -- manual refresh indexes only
 DO
 BEGIN
 IF last_refresh IS null
 OR cast(pending_length as float) / (
 IF doc_length=0 THEN NULL ELSE doc_length ENDIF) > 0.2
 OR DATEDIFF(MINUTE, CURRENT TIMESTAMP, last_refresh)
 > refresh_interval THEN
 EXECUTE IMMEDIATE 'REFRESH TEXT INDEX ' || text-index-name || ' ON "'
 || table-owner || '"."' || table-name || '"';
 END IF;
 END;
 END FOR;
END;

At any time, you can use the sa_text_index_stats system procedure to decide if a refresh is needed,
and whether the refresh should be a complete rebuild or an incremental update.

A MANUAL REFRESH text index contains no data at creation time, and is not available for use until
you refresh it. To refresh a MANUAL REFRESH text index, use the REFRESH TEXT INDEX
statement.

MANUAL REFRESH text indexes are not refreshed during a reload unless the -g option is specified
for dbunload.

See also
● “Unload utility (dbunload)” [SQL Anywhere Server - Database Administration]
● “Creating a text index” on page 328
● “What to specify when creating or altering text configuration objects” on page 349
● “sa_text_index_stats system procedure” [SQL Anywhere Server - SQL Reference]
● “CREATE TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]
● “REFRESH TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]
● “isolation_level option” [SQL Anywhere Server - Database Administration]
● “sa_text_index_stats system procedure” [SQL Anywhere Server - SQL Reference]

Tutorial: Performing a full text search on a GENERIC text
index

Use the following procedure to perform a full text search on a text index that uses a GENERIC term
breaker.

Perform a full text search on a GENERIC text index

1. Start Interactive SQL and connect to the sample database using the SQL Anywhere 12 Demo data
source.

2. Create the text configuration object.

Query and modify data

366 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The following example creates a text configuration object called myTxtConfig. You must include the
FROM clause to specify the text configuration object to use as a template.

CREATE TEXT CONFIGURATION myTxtConfig FROM default_char;

3. Customize the text configuration object.

Add a stoplist containing the words because, about, therefore, and only. Then, set the maximum term
length to 30. You must do this in separate ALTER TEXT CONFIGURATION statements, as follows:

ALTER TEXT CONFIGURATION myTxtConfig
 STOPLIST 'because about therefore only';
ALTER TEXT CONFIGURATION myTxtConfig
 MAXIMUM TERM LENGTH 30;

4. Start Sybase Central and connect to the sample database using the SQL Anywhere 12 Demo data
source.

5. Create a copy of the MarketingInformation table.

a. Expand the Tables folder.

b. Right-click MarketingInformation and click Copy.

c. Right-click the Tables folder and click Paste.

d. In the Name field, type MarketingInformation1.

e. Click OK.

6. In Interactive SQL, execute the following statement to populate the new table with data:

INSERT INTO MarketingInformation1
 SELECT * FROM MarketingInformation;

7. On the Description column of the MarketingInformation1 table in the sample database, create a text
index that references the myTxtConfig text configuration object. Set the refresh interval to 24 hours.

CREATE TEXT INDEX myTxtIndex ON MarketingInformation1 (Description)
 CONFIGURATION myTxtConfig
 AUTO REFRESH EVERY 24 HOURS;

8. Execute the following statement to refresh the text index:

REFRESH TEXT INDEX myTxtIndex ON MarketingInformation1;

9. Execute the following statements to test the text index.

a. This statement searches the text index for the terms cotton or cap. The results are sorted by score
in descending order. Cap has a higher score than cotton because cap occurs less frequently in the
text index.

SELECT ID, Description, ct.*
 FROM MarketingInformation1
 CONTAINS (Description, 'cotton | cap') ct
 ORDER BY score DESC;

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 367

ID Description Score

905 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Baseball Cap</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>A light-
weight wool cap with mesh side vents for
breathable comfort during aerobic activi-
ties. Moisture-absorbing headband liner.</
span></p></body></html>

2.2742084275032632

904 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Baseball Cap</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>This fash-
ionable hat is ideal for glacier travel,
sea-kayaking, and hiking. With concealed
draw cord for windy days.</p></
body></html>

1.6980426550094467

908 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Sweatshirt</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>Lightweight
100% organically grown cotton hooded sweat-
shirt with taped neck seams. Comes pre-
washed for softness and to lessen shrink-
age. </p></body></html>

0.9461597363521859

910 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Shorts</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>These quick-
drying cotton shorts provide all day com-
fort on or off the trails. Now with a more
comfortable and stretchy fabric and an ad-
justable drawstring waist.</p></
body></html>

0.9244136988525732

Query and modify data

368 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

ID Description Score

906 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Visor</title></head><body
lang=EN-US><p><span style='font-size:
10.0pt;font-family:Arial'>Lightweight 100%
organically grown cotton construction.
Shields against sun and precipitation. Met-
allic ions in the fibers inhibit bacterial
growth, and help neutralize odor.</
span></p></body></html>

0.9134171046194403

909 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Sweatshirt</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>Top-notch
construction includes durable topstitched
seams for strength with low-bulk, resilient
rib-knit collar, cuffs and bottom. An 80%
cotton/20% polyester blend makes it easy to
keep them clean.</p></body></html>

0.8856420222728282

b. The following statement searches the text index for the term cotton. Rows that also contain the
word visor are discarded. The results are not scored because the clause CONTAINS uses a
predicate.

SELECT ID, Description
 FROM MarketingInformation1
 WHERE CONTAINS(Description, 'cotton -visor');

ID Description

908 <html><head><meta http-equiv=Content-Type content="text/
html; charset=windows-1252"><title>Sweatshirt</title></
head><body lang=EN-US><p><span style='font-size:
10.0pt;font-family:Arial'>Lightweight 100% organically
grown cotton hooded sweatshirt with taped neck seams. Comes
pre-washed for softness and to lessen shrinkage.</
span></p></body></html>

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 369

ID Description

909 <html><head><meta http-equiv=Content-Type content="text/
html; charset=windows-1252"><title>Sweatshirt</title></
head><body lang=EN-US><p><span style='font-size:
10.0pt;font-family:Arial'>Top-notch construction includes
durable topstitched seams for strength with low-bulk, re-
silient rib-knit collar, cuffs and bottom. An 80% cot-
ton/20% polyester blend makes it easy to keep them clean.</
span></p></body></html>

910 <html><head><meta http-equiv=Content-Type content="text/
html; charset=windows-1252"><title>Shorts</title></
head><body lang=EN-US><p><span style='font-size:
10.0pt;font-family:Arial'>These quick-drying cotton shorts
provide all day comfort on or off the trails. Now with a
more comfortable and stretchy fabric and an adjustable
drawstring waist.</p></body></html>

c. The following statement tests each row for the term cotton. If the row contains the term, a 1
appears in the Results column; otherwise, a 0 is returned.

SELECT ID, Description, IF CONTAINS (Description, 'cotton')
 THEN 1
 ELSE 0
 ENDIF AS Results
 FROM MarketingInformation1;

ID Description Results

901 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><title>Tee
Shirt</title></head><body lang=EN-US><p>We've im-
proved the design of this perennial favorite. A
sleek and technical shirt built for the trail,
track, or sidewalk. UPF rating of 50+.</p></
body></html>

0

902 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><title>Tee
Shirt</title></head><body lang=EN-US><p>This sim-
ple, sleek, and lightweight technical shirt is de-
signed for high-intensity workouts in hot and humid
weather. The recycled polyester fabric is gentle on
the earth and soft against your skin.</p></
body></html>

0

Query and modify data

370 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

ID Description Results

903 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><title>Tee
Shirt</title></head><body lang=EN-US><p>A sporty,
casual shirt made of recycled water bottles. It will
serve you equally well on trails or around town. The
fabric has a wicking finish to pull perspiration
away from your skin.</p></body></html>

0

904 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><title>Base-
ball Cap</title></head><body lang=EN-US><p>This
fashionable hat is ideal for glacier travel, sea-
kayaking, and hiking. With concealed draw cord for
windy days.</p></body></html>

0

905 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><title>Base-
ball Cap</title></head><body lang=EN-US><p>A light-
weight wool cap with mesh side vents for breathable
comfort during aerobic activities. Moisture-absorb-
ing headband liner.</p></body></html>

0

906 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><title>Vi-
sor</title></head><body lang=EN-US><p>Light-
weight 100% organically grown cotton construction.
Shields against sun and precipitation. Metallic ions
in the fibers inhibit bacterial growth, and help
neutralize odor.</p></body></html>

1

907 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><title>Vi-
sor</title></head><body lang=EN-US><p>A poly-
carbonate visor with an abrasion-resistant coating
on the outside. Great for jogging in the spring,
summer, and early fall. The elastic headband has
plenty of stretch to give you a snug yet comfortable
fit every time you wear it.</p></body></html>

0

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 371

ID Description Results

908 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><title>Sweat-
shirt</title></head><body lang=EN-US><p>Light-
weight 100% organically grown cotton hooded sweat-
shirt with taped neck seams. Comes pre-washed for
softness and to lessen shrinkage.</p></
body></html>

1

909 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><title>Sweat-
shirt</title></head><body lang=EN-US><p>Top-notch
construction includes durable topstitched seams for
strength with low-bulk, resilient rib-knit collar,
cuffs and bottom. An 80% cotton/20% polyester blend
makes it easy to keep them clean.</p></
body></html>

1

910 <html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Shorts</title></head><body lang=EN-US><p>These
quick-drying cotton shorts provide all day comfort
on or off the trails. Now with a more comfortable
and stretchy fabric and an adjustable drawstring
waist.</p></body></html>

1

10. Disconnect from Interactive SQL and Sybase Central.

11. (optional) Restore the sample database (demo.db) to its original state.

See also
● “Recreate the sample database (demo.db)” [SQL Anywhere 12 - Introduction]
● “Text configuration object concepts and reference” on page 349
● “CREATE TEXT CONFIGURATION statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TEXT CONFIGURATION statement” [SQL Anywhere Server - SQL Reference]
● “Text index concepts and reference” on page 364
● “CREATE TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]
● “Tutorial: Performing a fuzzy full text search” on page 373
● “ALTER TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]

Query and modify data

372 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Tutorial: Performing a fuzzy full text search

Use the following procedure to perform a fuzzy full text search on a text index that uses an NGRAM term
breaker.

Perform a fuzzy full text search on an NGRAM term index

1. Start Interactive SQL and connect to the sample database using the SQL Anywhere 12 Demo data
source.

2. Execute the following statement to create a text configuration object called myFuzzyTextConfig.

CREATE TEXT CONFIGURATION myFuzzyTextConfig FROM default_char;

3. Execute the following statement to change the term breaker to NGRAM and set the maximum term
length to 3. Fuzzy searches are performed using n-grams. Separate ALTER TEXT
CONFIGURATION statements are used to implement these changes:

ALTER TEXT CONFIGURATION myFuzzyTextConfig
 TERM BREAKER NGRAM;
ALTER TEXT CONFIGURATION myFuzzyTextConfig
 MAXIMUM TERM LENGTH 3;

4. Start Sybase Central and connect to the sample database using the SQL Anywhere 12 Demo data
source.

5. Create a copy of the MarketingInformation table.

a. In Sybase Central, expand the Tables folder.

b. Right-click MarketingInformation and click Copy.

c. Right-click the Tables folder and click Paste.

d. In the Name field, type MarketingInformation2. Click OK.

6. In Interactive SQL, execute the following statement to add data to the MarketingInformation2 table:

INSERT INTO MarketingInformation2
 SELECT * FROM MarketingInformation;

7. Execute the following statement to create a text index on the MarketingInformation2.Description
column that references the myFuzzyTextConfig text configuration object:

CREATE TEXT INDEX myFuzzyTextIdx ON MarketingInformation2 (Description)
 CONFIGURATION myFuzzyTextConfig;

8. Execute the following statement to check for terms similar to coten:

SELECT MarketingInformation2.Description, ct.*
 FROM MarketingInformation2 CONTAINS
(MarketingInformation2.Description, 'FUZZY "coten"') ct
 ORDER BY ct.score DESC;

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 373

Description Score

<html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Sweatshirt</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>Lightweight 100% organically grown cot-
ton hooded sweatshirt with taped neck seams. Comes
pre-washed for softness and to lessen shrinkage.</
span></p></body></html>

0.9461597363521859

<html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Shorts</title></head><body lang=EN-US><p>These
quick-drying cotton shorts provide all day comfort
on or off the trails. Now with a more comfortable
and stretchy fabric and an adjustable drawstring
waist.</p></body></html>

0.9244136988525732

<html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><title>Vi-
sor</title></head><body lang=EN-US><p>Light-
weight 100% organically grown cotton construction.
Shields against sun and precipitation. Metallic
ions in the fibers inhibit bacterial growth, and
help neutralize odor.</p></body></html>

0.9134171046194403

<html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Sweatshirt</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>Top-notch construction includes durable
topstitched seams for strength with low-bulk, re-
silient rib-knit collar, cuffs and bottom. An 80%
cotton/20% polyester blend makes it easy to keep
them clean.</p></body></html>

0.8856420222728282

<html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Baseball Cap</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>This fashionable hat is ideal for gla-
cier travel, sea-kayaking, and hiking. With con-
cealed draw cord for windy days.</p></
body></html>

0

Query and modify data

374 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Description Score

<html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Baseball Cap</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>A lightweight wool cap with mesh side
vents for breathable comfort during aerobic activ-
ities. Moisture-absorbing headband liner.</
span></p></body></html>

0

<html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><title>Tee
Shirt</title></head><body lang=EN-US><p>We've
improved the design of this perennial favorite. A
sleek and technical shirt built for the trail,
track, or sidewalk. UPF rating of 50+.</
span></p></body></html>

0

<html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><title>Tee
Shirt</title></head><body lang=EN-US><p>A spor-
ty, casual shirt made of recycled water bottles.
It will serve you equally well on trails or around
town. The fabric has a wicking finish to pull per-
spiration away from your skin.</p></body></
html>

0

<html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><title>Tee
Shirt</title></head><body lang=EN-US><p>This
simple, sleek, and lightweight technical shirt is
designed for high-intensity workouts in hot and
humid weather. The recycled polyester fabric is
gentle on the earth and soft against your skin.</
span></p></body></html>

0

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 375

Description Score

<html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><title>Vi-
sor</title></head><body lang=EN-US><p>A poly-
carbonate visor with an abrasion-resistant coating
on the outside. Great for jogging in the spring,
summer, and early fall. The elastic headband has
plenty of stretch to give you a snug yet comforta-
ble fit every time you wear it.</p></
body></html>

0

Note
The last six rows have terms that contain matching n-grams. However, no scores are assigned to them
because all rows in the table contain these terms.

9. Disconnect from Interactive SQL and Sybase Central.

10. (optional) Restore the sample database (demo.db) to its original state.

See also
● “Text configuration object concepts and reference” on page 349
● “Recreate the sample database (demo.db)” [SQL Anywhere 12 - Introduction]
● “CREATE TEXT CONFIGURATION statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TEXT CONFIGURATION statement” [SQL Anywhere Server - SQL Reference]
● “Text index concepts and reference” on page 364
● “CREATE TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]
● “Scores for full text search results” on page 346
● “Tutorial: Performing a full text search on a GENERIC text index” on page 366

Tutorial: Performing a full text search on an NGRAM text
index

Use the following procedure to perform a full text search on a text index that uses an NGRAM term
breaker. This procedure can also be used to create a full text search of Chinese, Japanese, or Korean data.

In databases with multibyte character sets, some punctuation and space characters such as full width
commas and full width spaces may be treated as alphanumeric characters.

Perform a full text search on an NGRAM text index

1. Start Interactive SQL and connect to the sample database using the SQL Anywhere 12 Demo data
source.

Query and modify data

376 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

2. Execute the following statement to create an NCHAR text configuration object named
myNcharNGRAMTextConfig:

CREATE TEXT CONFIGURATION myNcharNGRAMTextConfig FROM default_nchar;

3. Execute the following statements to change the TERM BREAKER algorithm to NGRAM, and to set
MAXIMUM TERM LENGTH (N) to 2.

ALTER TEXT CONFIGURATION myNcharNGRAMTextConfig
 TERM BREAKER NGRAM;
ALTER TEXT CONFIGURATION myNcharNGRAMTextConfig
 MAXIMUM TERM LENGTH 2;

For Chinese, Japanese, and Korean data, the recommended value for N is 2 or 3. For searches limited
to one or two characters, set the N value to 1. Setting the N value to 1 can cause slower execution of
long queries.

4. Start Sybase Central and connect to the sample database using the SQL Anywhere 12 Demo data
source.

5. Create a copy of the MarketingInformation table.

a. Expand the Tables folder.

b. Right-click MarketingInformation and click Copy.

c. Right-click the Tables folder and click Paste.

d. In the Name field, type MarketingInformationNgram.

e. Click OK.

6. In Interactive SQL, execute the following statement to add data to the MarketingInformationNgram
table:

INSERT INTO MarketingInformationNgram
 SELECT *
 FROM MarketingInformation;
COMMIT;

7. Execute the following statement to create an IMMEDIATE REFRESH text index on the
MarketingInformationNgram.Description column using the myNcharNGRAMTextConfig text
configuration object:

CREATE TEXT INDEX ncharNGRAMTextIndex
 ON MarketingInformationNgram(Description)
 CONFIGURATION myNcharNGRAMTextConfig;

8. Execute the following statements to test the text index.

a. The following statement searches the 2-GRAM text index for terms containing sw. The results are
sorted by score in descending order.

SELECT M.Description, ct.*
 FROM MarketingInformationNgram AS M
CONTAINS(M.Description, 'sw') ct
 ORDER BY ct.score DESC;

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 377

Description Score

<html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Sweatshirt</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>Lightweight 100% organically grown
cotton hooded Sweatshirt with taped neck seams.
Comes pre-washed for softness and to lessen
shrinkage.</p></body></html>

2.262071918398649

<html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Sweatshirt</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>Top-notch construction includes dura-
ble topstitched seams for strength with low-
bulk, resilient rib-knit collar, cuffs and bot-
tom. An 80% cotton/20% polyester blend makes it
easy to keep them clean.</p></body></
html>

1.5556043490424176

b. The following statement searches for terms containing ams. The results are sorted by score in
descending order.

SELECT M.Description, ct.*
 FROM MarketingInformationNgram AS M
CONTAINS(M.Description, 'ams') ct
 ORDER BY ct.score DESC;

With the 2-GRAM text index, the previous statement is semantically equivalent to:

SELECT M.Description, ct.*
 FROM MarketingInformationNgram AS M
CONTAINS(M.Description, '"am ms"') ct
 ORDER BY ct.score DESC;

Description Score

<html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Sweatshirt</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>Lightweight 100% organically grown
cotton hooded sweatshirt with taped neck seams.
Comes pre-washed for softness and to lessen
shrinkage.</p></body></html>

1.6619019465461564

Query and modify data

378 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Description Score

<html><head><meta http-equiv=Content-Type con-
tent="text/html; charset=windows-1252"><ti-
tle>Sweatshirt</title></head><body lang=EN-
US><p><span style='font-size:10.0pt;font-fami-
ly:Arial'>Top-notch construction includes dura-
ble topstitched seams for strength with low-
bulk, resilient rib-knit collar, cuffs and bot-
tom. An 80% cotton/20% polyester blend makes it
easy to keep them clean.</p></body></
html>

1.5556043490424176

c. The following statement searches for terms with v followed by any alphanumeric character.
Because ve occurs more frequently in the indexed data, rows that contain the 2-gram ve are
assigned a lower score than rows containing vi. The results are sorted by score in descending
order.

SELECT M.ID, M.Description, ct.*
 FROM MarketingInformationNgram AS M
CONTAINS(M.Description, 'v*') ct
 ORDER BY ct.score DESC;

ID Description Score

901 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Tee Shirt</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>We've im-
proved the design of this perennial
favvorite. A sleek and technical shirt
built for the trail, track, or sidewalk.
UPF rating of 50+.</p></body></html>

3.3416789108071976

907 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Visor</title></head><body
lang=EN-US><p><span style='font-size:
10.0pt;font-family:Arial'>A polycarbonate
visor with an abrasion-resistant coating on
the outside. Great for jogging in the
spring, summer, and early fall. The elastic
headband has plenty of stretch to give you
a snug yet comfortable fit every time you
wear it.</p></body></html>

2.1123084896159376

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 379

ID Description Score

905 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Baseball Cap</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>A light-
weight wool cap with mesh side vents for
breathable comfort during aerobic ac-
tivities. Moisture-absorbing headband lin-
er.</p></body></html>

1.6750365447462499

910 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Shorts</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>These quick-
drying cotton shorts provide all day com-
fort on or off the trails. Now with a more
comfortable and stretchy fabric and an ad-
justable drawstring waist.</p></
body></html>

0.9244136988525732

906 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Visor</title></head><body
lang=EN-US><p><span style='font-size:
10.0pt;font-family:Arial'>Lightweight 100%
organically grown cotton construction.
Shields against sun and precipitation. Met-
allic ions in the fibers inhibit bacterial
growth, and help neutralize odor.</
span></p></body></html>

0.9134171046194403

904 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Baseball Cap</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>This fash-
ionable hat is ideal for glacier travel,
sea-kayaking, and hiking. With concealed
draw cord for windy days.</p></
body></html>

0.7313071661212746

Query and modify data

380 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

ID Description Score

903 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Tee Shirt</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>A sporty,
casual shirt made of recycled water bot-
tles. It will serve you equally well on
trails or around town. The fabric has a
wicking finish to pull perspiration away
from your skin.</p></body></html>

0.6799436746197272

d. The following statements search each row for any terms containing v. After the second statement,
the variable contains the string av OR ev OR iv OR ov OR rv OR ve OR vi OR vo.
The results are sorted by score in descending order. When an n-gram appears in all indexed rows,
it is assigned a score of zero.
This is the only method that allows a single character to be located if it appears before a
whitespace or a non-alphanumeric character.

CREATE VARIABLE query NVARCHAR (100);
SELECT LIST (term, ' OR ')
INTO query
 FROM sa_text_index_vocab_nchar('ncharNGRAMTextIndex',
'MarketingInformationNgram', 'dba')
 WHERE term LIKE '%v%';
SELECT M.ID, M.Description, ct.*
 FROM MarketingInformationNgram AS M
 CONTAINS(M.Description, query) ct
 ORDER BY ct.score DESC;

ID Description Score

901 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Tee Shirt</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>We've
improved the design of this perennial
favorite. A sleek and technical shirt built
for the trail, track, or sidewalk. UPF rat-
ing of 50+.</p></body></html>

6.654350268810443

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 381

ID Description Score

907 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Visor</title></head><body
lang=EN-US><p><span style='font-size:
10.0pt;font-family:Arial'>A polycarbonate
visor with an abrasion-resistant coating on
the outside. Great for jogging in the
spring, summer, and early fall. The elastic
headband has plenty of stretch to give you
a snug yet comfortable fit every time you
wear it.</p></body></html>

4.265623837817126

903 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Tee Shirt</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>A sporty,
casual shirt made of recycled water bot-
tles. It will serve you equally well on
trails or around town. The fabric has a
wicking finish to pull perspiration away
from your skin.</p></body></html>

2.9386676702799504

910 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Shorts</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>These quick-
drying cotton shorts provide all day com-
fort on or off the trails. Now with a more
comfortable and stretchy fabric and an ad-
justable drawstring waist.</p></
body></html>

2.5481193655722336

904 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Baseball Cap</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>This fash-
ionable hat is ideal for glacier travel,
sea-kayaking, and hiking. With concealed
draw cord for windy days.</p></
body></html>

2.4293498211307214

Query and modify data

382 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

ID Description Score

905 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Baseball Cap</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>A light-
weight wool cap with mesh side vents for
breathable comfort during aerobic
activities. Moisture-absorbing headband
liner.</p></body></html>

1.6750365447462499

906 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Visor</title></head><body
lang=EN-US><p><span style='font-size:
10.0pt;font-family:Arial'>Lightweight 100%
organically grown cotton construction.
Shields against sun and precipitation. Met-
allic ions in the fibers inhibit bacterial
growth, and help neutralize odor.</
span></p></body></html>

0.9134171046194403

902 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Tee Shirt</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>This simple,
sleek, and lightweight technical shirt is
designed for high-intensity workouts in hot
and humid weather. The recycled polyester
fabric is gentle on the earth and soft
against your skin.</p></body></html>

0

908 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Sweatshirt</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>Lightweight
100% organically grown cotton hooded sweat-
shirt with taped neck seams. Comes pre-
washed for softness and to lessen shrink-
age.</p></body></html>

0

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 383

ID Description Score

909 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Sweatshirt</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>Top-notch
construction includes durable topstitched
seams for strength with low-bulk, resilient
rib-knit collar, cuffs and bottom. An 80%
cotton/20% polyester blend makes it easy to
keep them clean.</p></body></html>

0

e. The following statement searches the Description column for rows that contain ea, ka, and ki.

SELECT M.ID, M.Description, ct.*
 FROM MarketingInformationNgram AS M
CONTAINS(M.Description, 'ea ka ki') ct
 ORDER BY ct.score DESC;

ID Description Score

904 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Baseball Cap</
title></head><body lang=EN-US><p><span
style='font-size:10.0pt;font-fami-
ly:Arial'>This fashionable hat is ideal for
glacier travel, sea-kayaking, and hiking.
With concealed draw cord for windy days.</
span></p></body></html>

3.4151032739119733

f. The following statement searches the Description column for rows that contain ve and vi, but not
gg.

SELECT M.ID, M.Description, ct.*
 FROM MarketingInformationNgram AS M
CONTAINS(M.Description, 've & vi -gg') ct
 ORDER BY ct.score DESC;

Query and modify data

384 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

ID Description Score

905 <html><head><meta http-equiv=Content-Type
content="text/html; charset=win-
dows-1252"><title>Baseball Cap</title></
head><body lang=EN-US><p><span style='font-
size:10.0pt;font-family:Arial'>A light-
weight wool cap with mesh side vents for
breathable comfort during aerobic ac-
tivities. Moisture-absorbing headband lin-
er.</p></body></html>

1.6750365447462499

9. Disconnect from Interactive SQL and Sybase Central.

10. (optional) Restore the sample database (demo.db) to its original state.

See also
● “Recreate the sample database (demo.db)” [SQL Anywhere 12 - Introduction]
● “Tutorial: Performing a fuzzy full text search” on page 373

Advanced: Term dropping in full text search
Text indexes are built according to the settings defined for the text configuration object used to create the
text index. A term does not appear in a text index if one or more of the following conditions are true:

● the term is included in the stoplist

● the term is shorter than the minimum term length (GENERIC only)

● the term is longer than the maximum term length

The same rules apply to query strings. The dropped term can match zero or more terms at the end or
beginning of the phrase. For example, suppose the term 'the' is in the stoplist:

● If the term appears on either side of an AND, OR, or NEAR, then both the operator and the term are
removed. For example, searching for 'the AND apple', 'the OR apple', or 'the NEAR
apple' are equivalent to searching for 'apple'.

● If the term appears on the right side of an AND NOT, both the AND NOT and the term are dropped.
For example, searching for 'apple AND NOT the' is equivalent to searching for 'apple'.

If the term appears on the left side of an AND NOT, the entire expression is dropped and no rows are
returned. For example, 'orange and the AND NOT apple' = 'orange'

● If the term appears in a phrase, the phrase is allowed to match with any term at the dropped term's
position. For example, searching for 'feed the dog' matches 'feed the dog', 'feed my
dog', 'feed any dog', and so on.

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 385

If none of the terms you are searching for are in the text index, no rows are returned. For example,
suppose both 'the' and 'a' are in the stoplist. Searching for 'a OR the' returns no rows.

See also
● “Text configuration object concepts and reference” on page 349

Advanced: External term breaker and prefilter libraries
Why use an external term breaker or prefilter library

Full text search in SQL Anywhere is performed using a text index. Each value in a column on which a
text index has been built is referred to as a document. When a text index is created, each document is
processed by a built-in term breaker specified in the text configuration of the text index to determine the
terms (also referred to as tokens) contained in the document, and the positions of the terms in the
document. The built-in term breaker is also used to perform term breaking on the documents (text
components) of a query string. For example, the query string 'rain or shine' consists of two documents,
'rain' and 'shine', connected by the OR operator. The built-in term breaker algorithm specified in the text
configuration is also used to break the stoplist into terms, and to break the input of the sa_char_terms
system procedure into terms.

Depending on the needs of your application, you may find some behaviors of the built-in GENERIC term
breaker to be undesirable or limiting and NGRAM term breaker not suitable for the needs of the
application. For example, the built-in GENERIC term breaker does not offer language-specific term
breaking. Here are some other reasons you may want to implement custom term breaking:

● No language-specific term breaking Linguistic rules with respect to what constitutes a term
differs from one language to another. Consequently, term breaking rules are different from one
language to another. The built-in term breakers do not offer language-specific term breaking rules.

● Handling of words with apostrophes The word "they'll" is treated as "they ll" by the built-in
GENERIC term breaker. However, you could design a custom GENERIC term breaker that treats the
apostrophe as part of the word.

● No support for term replacement You cannot specify replacements for a term. For example,
when indexing the word "they'll", you might want to store it as two terms: they and will. Likewise,
you may want to use term replacement to perform a case insensitive search on a case sensitive
database.

SQL Anywhere also allows you to use external prefilter libraries to perform prefiltering on data before it
is indexed. Prefiltering allows you to extract only the textual content you want indexed from a document.
For example, suppose you want to create a text index on a column containing XML values. A prefilter
allows you to filter out the XML tags so that they are not indexed with the content.

SQL Anywhere provides an API you can use to access custom and 3rd party prefilter and term breaker
libraries when creating and updating full text indexes. This means you can use external libraries to take
document formats like XML, PDF, and Word and remove unwanted terms and content before indexing
their content.

Query and modify data

386 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Some sample prefilter and term breaker libraries are included in your Samples directory to help you
design your own, or you can use the API to access 3rd party libraries. If Microsoft Office is installed on
the system running the database server then IFilters for Office documents such as Word and Excel are
available. If the server has Acrobat Reader installed, then a PDF IFilter is likely available.

Note
External NGRAM term breakers are not supported.

Full text pipeline workflow

The following diagram shows how data is converted from a document to a stream of terms to index within
SQL Anywhere. The workflow for creating a text index, updating it, and querying it, is referred to as the
pipeline. The mandatory parts of the pipeline are depicted in light gray. Arrows show the flow of data
through the pipeline. Function calls are propagated in the opposite direction.

High level view of how the pipeline works
1. The processing of each document is initiated by the database server calling the begin_document

method on the end of the pipeline, which is either the term breaker or the character set converter.
Each component in the pipeline calls begin_document on its own producer before returning from its
begin_document method invocation.

2. The database server calls get_words on the end of the pipeline after the begin_document completes
successfully.

● While executing get_words, the term breaker calls get_next_piece on its producer to get data to
process. If a prefilter exists in the pipeline, the data is filtered by it during the get_next_piece call.

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 387

● The term breaker breaks the data it receives from its producer into terms according to its term
breaking rules.

3. The database server applies the minimum and maximum term length settings, as well as the stoplist
restrictions to the terms returned from get_words call.

4. The database server continues to call get_words until no more terms are returned. At that point, the
database server calls end_document. This call is propagated through the pipeline in the same manner
as the begin_document call.

Note
Character set converters are transparently added to the pipeline by the database server where necessary.

Prefilter and term breaker code samples
The ExternalLibrariesFullText directory in your SQL Anywhere install contains prefilter and term
breaker sample code for you to explore. This directory is found under your Samples directory. For the
location of your Samples directory, see “Samples directory” [SQL Anywhere Server - Database
Administration].

See also
● “External prefilter library workflow” on page 389
● “External term breaker library workflow” on page 392

External prefilter libraries
How to configure SQL Anywhere to use an external prefilter

SQL Anywhere does not provide a built-in prefilter algorithm. To have data pass through an external
prefilter library, you specify the library and its entry point function using the ALTER TEXT
CONFIGURATION statement, similar to the following:

ALTER TEXT CONFIGURATION my_text_config
 PREFILTER EXTERNAL NAME 'my_prefilter@myprefilterLibrary.dll'

This example tells the database server to use the my_prefilter entry point function in the
myprefilterLibrary.dll library to obtain a prefilter instance to use when building or updating a text index
using the my_text_config text configuration object.

See also
● “ALTER TEXT CONFIGURATION statement” [SQL Anywhere Server - SQL Reference]
● “a_text_source interface” on page 395

How to design an external prefilter library
The prefilter library must be implemented in C/C++, and must:

● include the prefilter interface definition header file, extpfapiv1.h.

Query and modify data

388 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● implement the a_text_source interface.

● provide an entry point function that initializes and returns an instance of a_text_source (prefilter) and
the label of the character set supported by the prefilter.

Calling sequence for the prefilter
The following calling sequence is executed by the consumer of the prefilter for each document being
processed:

begin_document(a_text_source*)
get_next_piece(a_text_source*, buffer**, len*)
get_next_piece(a_text_source*, buffer**, len*)
...
end_document(a_text_source*)

Note
end_document can be called multiple times without an intervening begin_document call. For example, if
one of the documents to be indexed is empty, the database server may call end_document for that
document without calling begin_document.

The get_next_piece function should filter out the unnecessary data such as formatting information and
images from the incoming byte stream and return the next chunk of filtered data in a self-allocated buffer.

External prefilter library workflow
The following flow chart shows the logic flow when the get_next_piece function is called:

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 389

See also
● “a_text_source interface” on page 395
● “Full text pipeline workflow” on page 387
● “Prefilter and term breaker code samples” on page 388

Query and modify data

390 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

External term breaker libraries
How to configure SQL Anywhere to use an external term breaker

By default, when you create a text configuration object, a built-in term breaker is used for data associated
with that text configuration object. To have data instead pass through an external term breaker library, you
specify the library and its entry point function using the ALTER TEXT CONFIGURATION statement,
similar to the following:

ALTER TEXT CONFIGURATION my_text_config
 TERM BREAKER GENERIC EXTERNAL NAME 'my_termbreaker@termbreaker'

This example tells the database server to use the my_termbreaker entry point function in the termbreaker
library to obtain a term breaker instance to use when building, updating, or querying a text index
associated with the my_text_config text configuration object, when parsing the text configuration object's
stoplist, and when processing input to the sa_char_terms system procedure.

See also
● “ALTER TEXT CONFIGURATION statement” [SQL Anywhere Server - SQL Reference]
● “a_word_source interface” on page 399

How to design an external term breaker library
The external term breaker library must be implemented in C/C++, and must:

● include of the term breaker interface definition header file, exttbapiv1.h.

● implement the a_word_source interface.

● provide an entry point function that initializes and returns an instance of a_word_source (term breaker)
and the label of the character set supported by the term breaker.

Calling sequence for the term breaker
The following calling sequence is executed by the consumer of the term breaker for each document being
processed:

begin_document(a_word_source*, asql_uint32);
get_words(a_word_source*, a_term**, uint32 *num_words)
get_words(a_word_source*, a_term**, uint32 *num_words)
...
end_document(a_word_source*)

The get_words function must call get_next_piece on its producer to get data to break into terms until the
array of a_term structures is filled, or there is no more data to process.

Note
end_document can be called multiple times without an intervening begin_document call. For example, if
one of the documents to be indexed is empty, the database server may call end_document for that
document without calling begin_document.

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 391

External term breaker library workflow
The following flow chart shows the logic flow when the get_words function is called:

See also
● “a_word_source interface” on page 399
● “a_text_source interface” on page 395
● “a_term structure” on page 402
● “Full text pipeline workflow” on page 387
● “Prefilter and term breaker code samples” on page 388

Query and modify data

392 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Advanced: API for external full text libraries
The following steps need to be completed to create and use a prefilter or term breaker external library
with text indexes:

● Implement the SQL Anywhere C/C++ interfaces.

● Create a dynamically loadable library by compiling and linking the code written in the above step.

● Create the text configuration object in the database and then modify it to specify the entry point
function in the external library for prefilter and/or term breaker.

The entry point functions are used to obtain the prefilter and term breaker objects to be used while
inserting/deleting text index entries when underlying documents (column values) are modified. In the
case of an external term breaker library, the entry point function is also used to parse queries over the
text indexes that use the term breaker.

a_server_context structure

Several callbacks are supported by the database server and are exposed to the full text external libraries
through the a_server_context structure to perform the following tasks:

● Error reporting

● Interrupt processing

● Message logging

Syntax
typedef struct a_server_context {
 void (SQL_CALLBACK *set_error)(
 a_server_context *This
 , a_sql_uint32 error_code
 , const char* error_string
 , short str_len);
 void (SQL_CALLBACK *log_message)(
 a_server_context *This
 , const char* message
 , short msg_len);
 a_sql_uint32 (SQL_CALLBACK *get_is_cancelled)(
 a_server_context *This);
 void *_context;
} a_server_context;

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 393

Members

Member
name

Type Description

set_error void This method allows external prefilters and term breakers to set an
error in the database server by providing an error code and error
string. The database server rolls back the current operation and re-
turns the error code and string to the user in the following form:

"Error from external library: -<error_code>:
<error_string>"

error_code must be a positive integer greater than 17000.

error_string must be a null-terminated string.

str_len is the length of error_string, in bytes.

log_message void This method allows external prefilters and term breakers to log
messages to the database server log.

message must be a null-terminated string.

msg_len is the length of message, in bytes.

get_is_can-
celled

a_sql_uint32 External prefilters and term breakers must periodically call this
method to check if the current operation has been interrupted. This
method returns 1 if the current operation was interrupted, and 0 if
it was not interrupted. In the case of returning 1, the caller should
stop further processing and return immediately.

_context void For internal use. A pointer to the database server context.

Remarks
The a_server_context structure is defined by a header file named exttxtcmn.h, in the SDK\Include
subdirectory of your SQL Anywhere installation directory.

The external library should not be using any operating system synchronization primitives when calling the
methods exposed by a_server_context structure.

a_init_pre_filter structure

Structure used for negotiating the input and output requirements for instances of an external prefilter entry
point function. This structure is passed in as a parameter to the prefilter entry point function.

Syntax
typedef struct a_init_pre_filter {
 a_text_source *in_text_source; /* IN */

Query and modify data

394 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 a_text_source *out_text_source; /* OUT */
 const char *desired_charset; /* IN */
 char *actual_charset; /* OUT */
 short is_binary; /* IN */
} a_init_pre_filter;

Members

Name Type Description

in_text_source a_text_source
*

The pointer to the producer of the external prefilter
(a_text_source object) to be created. Specified by the caller
of the prefilter entry point function.

out_text_source a_text_source
*

The pointer to the external prefilter (a_text_source object)
specified by the prefilter entry point function.

desired_charset const char * The character set the caller of the entry point function ex-
pects the output of the prefilter to be in. If is_binary flag is 0,
this is also the character set the input to the prefilter will be
in, unless negotiated otherwise.

actual_charset char * The character set (specified by the external library as part of
negotiation) the external prefilter library will produce its
output in. If is_binary is 0, this is also the actual character
set of the input to the prefilter. Note that it is preferable that
the library accept and produce the data in desired_charset, if
possible.

is_binary short Whether the input data is in binary (1) or in desired_charset
(0). If the data is in binary, the database server does not in-
troduce character set conversion before the prefilter on the
pipeline.

Remarks
The a_init_pre_filter structure is defined by a header file named extpfapiv1.h, in the SDK\Include
subdirectory of your SQL Anywhere installation directory.

See also
● “a_text_source interface” on page 395
● “a_word_source interface” on page 399
● “Prefilter entry point function” on page 404

a_text_source interface

The interface that an external prefilter library must implement to perform document prefiltering for full
text index population or updating.

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 395

Syntax
typedef struct a_text_source {
 a_sql_uint32 (SQL_CALLBACK *begin_document)(a_text_source *This);
 a_sql_uint32 (SQL_CALLBACK *get_next_piece)(
 a_text_source *This
 , unsigned char ** buffer
 , a_sql_uint32* len);
 a_sql_uint32 (SQL_CALLBACK *end_document)(a_text_source *This);
 a_sql_uint64 (SQL_CALLBACK *get_document_size)(a_text_source *This);
 a_sql_uint32 (SQL_CALLBACK *fini_all)(a_text_source *This);
 a_server_context *_context;
 // Only one of the following two members can have a valid pointer in a
given implementation.
 // These members point to the current module's producer
 a_text_source *_my_text_producer;
 a_word_source *_my_word_source;
 // Following members have been reserved for
 // future use ONLY
 a_text_source *_my_text_consumer;
 a_word_source *_my_word_consumer;
} a_text_source;

Members

Member Type Description

begin_document a_sql_uint32 Performs the necessary setup steps for processing a docu-
ment. This method returns 0 on success, and 1 if an error
occurred or if no more documents are available.

get_next_piece a_sql_uint32 Returns a fragment of the filtered input byte stream along
with the length of the fragment. This method will be
called multiple times for a given document, and should re-
turn subsequent chunks of the document at each call until
all the input data for a document is consumed, or an error
occurs.

buffer is the OUT parameter to be populated by the prefil-
ter to point to the produced data. Memory is managed by
the prefilter.

len is the OUT parameter indicating the length of the pro-
duced data.

end_document a_sql_uint32 Marks completion of filtering for the given document, and
performs document-specific cleanup, if necessary.

get_docu-
ment_size

a_sql_uint64 Returns the total length of the document (in bytes) as pro-
duced by the prefilter. The a_text_source object must
keep a current count of the total number of bytes produced
by it so far for the current document.

Query and modify data

396 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Member Type Description

fini_all a_sql_uint32 Called by the database server after the processing of all
the documents is done and the pipeline is about to be
closed. fini_all performs the final cleanup steps.

_context a_server_con-
text *

Use this member to hold the database server context that
is provided to the entry point function within the a_in-
it_pre_filter structure. The prefilter module uses this con-
text to establish direct communication with the database
server.

_my_text_produc-
er

a_text_source
*

Use this member to store the pointer to the a_text_source
producer of the prefilter that is provided to the entry point
function within the a_init_pre_filter structure. This point-
er may be replaced by the database server after the entry
point function has been executed if character set conver-
sion is required. Therefore, only this pointer to the text
producer can be used by the prefilter.

_my_word_pro-
ducer

a_word_source
*

Reserved for future use and should be initialized to
NULL.

_my_text_con-
sumer

a_text_source
*

Reserved for future use and should be initialized to
NULL.

_my_word_con-
sumer

a_word_source
*

Reserved for future use and should be initialized to
NULL.

Remarks
The a_text_source interface is stream-based-data. The data is pulled from the producer in sequence; each
byte is only seen once.

The a_text_source interface is defined by a header file named extpfapiv1.h, in the SDK\Include
subdirectory of your SQL Anywhere installation directory.

The external library should not be holding any operating system synchronization primitives across
function calls.

See also
● “a_server_context structure” on page 393
● “a_init_pre_filter structure” on page 394
● “Prefilter entry point function” on page 404

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 397

a_init_term_breaker structure

Structure used for negotiating the input and output requirements for instances of an external term breaker.
This structure is passed as a parameter to the term breaker entry point function.

Syntax
typedef struct a_init_term_breaker {
 a_text_source *in_text_source; /* IN */
 a_word_source *out_word_source; /* OUT */
 const char *desired_charset; /* IN */
 char *actual_charset; /* OUT */
 const a_term_breaker_for term_breaker_for; /* IN */
} a_init_term_breaker;

Members

Member Type Description

in_text_source a_text_source
*

The pointer to the producer of the external term breaker
(a_text_source object) to be created.

out_word_source a_word_source
*

The pointer to the external term breaker (a_word_source
object) specified by the entry point function.

desired_charset const char * The character set the caller of the entry point function ex-
pects the output of the term breaker to be in. If is_binary
flag is 0, this is also the character set the input to the term
breaker will be in, unless negotiated otherwise.

actual_charset char * The character set (specified by the external library as part of
negotiation) the external term breaker library will produce
its output in. If is_binary is 0, this is also the actual charac-
ter set of the input to the term breaker. Note that it is pref-
erable that the library accept and produce the data in de-
sired_charset, if possible.

term_breaker_for a_term_break-
er_for

The purpose for initializing the term breaker:

● TERM_BREAKER_FOR_LOAD Used for create, in-
sert, update, and delete operations on the text index. In-
put may be prefiltered if a prefilter is specified.

● TERM_BREAKER_FOR_QUERY Used for parsing
of query elements, stoplist, and input to the
sa_char_term system procedure. In the case of
TERM_BREAKER_FOR_QUERY, no prefiltering
takes place, even if an external prefilter library is speci-
fied for the text index.

Query and modify data

398 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Remarks
The a_init_term_breaker structure is defined by a header file named exttbapiv1.h, in the SDK\Include
subdirectory of your SQL Anywhere installation directory.

See also
● “sa_char_terms system procedure” [SQL Anywhere Server - SQL Reference]
● “a_term_breaker_for enumeration” on page 399
● “Term breaker entry point function” on page 405
● “a_text_source interface” on page 395
● “a_word_source interface” on page 399

a_term_breaker_for enumeration

Used to specify whether the pipeline is built for use during update or querying of the text index.

Parameters
● TERM_BREAKER_FOR_LOAD Used for create, insert, update, and delete operations on the text

index.

● TERM_BREAKER_FOR_QUERY Used for parsing of query elements, stoplist, and input to the
sa_char_term system procedure. In the case of TERM_BREAKER_FOR_QUERY, no prefiltering
takes place, even if an external prefilter library is specified for the text index.

Remarks
The database server sets the value for a_init_term_breaker::term_breaker_for when it initializes the
external term breaker.

typedef enum a_term_breaker_for {
 TERM_BREAKER_FOR_LOAD = 0,
 TERM_BREAKER_FOR_QUERY
} a_term_breaker

The a_term_breaker_for enumeration is defined by a header file named exttbapiv1.h, in the SDK\Include
subdirectory of your SQL Anywhere installation directory.

See also
● “a_init_term_breaker structure” on page 398
● “sa_char_terms system procedure” [SQL Anywhere Server - SQL Reference]

a_word_source interface

The interface that an external term breaker library must implement to perform term breaking for text
index operations.

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 399

Syntax
typedef struct a_word_source {
 a_sql_uint32 (SQL_CALLBACK *begin_document)(
 a_word_source *This
 , a_sql_uint32 has_prefix);
 a_sql_uint32 (SQL_CALLBACK *get_words)(
 a_word_source *This
 , a_term** words
 ,a_sql_uint32 *num_words);
 a_sql_uint32 (SQL_CALLBACK *end_document)(
 a_word_source *This);
 a_sql_uint32 (SQL_CALLBACK *fini_all)(
 a_word_source *This);
 a_server_context *_context;
 // Only one of the following pointers can be valid
 // in any implementation.
 // For example: if the producer for this module is
 // a a_text_source, then only my_text_producer will
 // be a valid pointer whereas my_word_producer
 // should be assigned a NULL
 a_text_source *_my_text_producer;
 a_word_source *_my_word_producer;
 // Following members have been reserved for
 // future use ONLY
 a_text_source *_my_text_consumer;
 a_word_source *_my_word_consumer;
} a_word_source;

Members

Member Type Description

begin_document a_sql_uint32 Performs the necessary setup steps for processing a docu-
ment. The parameter has_prefix is set to 1, not true, or
TRUE if the document being tokenized is a prefix query
term. If has_prefix is set to TRUE, the term breaker must
return at least one term (possibly empty).

has_prefix can only be 1, not true, or TRUE, if the purpose
of pipeline initialization is TERM_BREAK-
ER_FOR_QUERY.

The result of prefix tokenization is treated as a phrase with
the last term of the phrase being the actual prefix string.

Query and modify data

400 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Member Type Description

get_words a_sql_uint32 Returns a pointer to an array of a_term structures. This
method is called in a loop for a given document until all
the contents of the document has been broken into terms.

The database server expects that two immediately consecu-
tive terms in a document have positions differing by 1. If
the term breaker is performing its own stoplist processing,
it is possible that the difference between two consecutive
terms returned is more than 1; this is expected and accepta-
ble. However, in other cases where numbers are not con-
secutive with positions differing by 1, the arbitrary posi-
tions can affect how full text queries are executed and can
cause unexpected results for subsequent full text queries.

end_document a_sql_uint32 Marks completion of processing of the document by the
pipeline, and performs document-specific cleanup.

fini_all a_sql_uint32 Called by the database server after processing of all the
documents is done and the pipeline is about to be closed.
fini_all performs the final cleanup steps.

_context a_server_con-
text *

The database server context that is provided to the entry
point function within the a_init_term_breaker structure.
The term breaker module uses this context to establish di-
rect communication with the database server.

_my_text_pro-
ducer

a_text_source
*

Pointer to the a_text_source producer of the term breaker
that is provided to the entry point function within the a_in-
it_term_breaker structure. This pointer may be replaced by
the database server after the entry point function has been
executed if character set conversion is required. Therefore,
only this pointer to the text producer can be used by the
term breaker.

_my_word_pro-
ducer

a_word_source
*

Reserved for future use and should be initialized to NULL.

_my_text_con-
sumer

a_text_source
*

Reserved for future use and should be initialized to NULL.

_my_word_con-
sumer

a_word_source
*

Reserved for future use and should be initialized to NULL.

Remarks
The a_word_source interface is defined by a header file named exttbapiv1.h, in the SDK\Include
subdirectory of your SQL Anywhere installation directory.

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 401

The external library should not be holding any operating system synchronization primitives across
function calls.

See also
● “a_server_context structure” on page 393
● “a_term structure” on page 402
● “a_init_term_breaker structure” on page 398
● “a_text_source interface” on page 395
● “Term breaker entry point function” on page 405

a_term structure

The a_term structure stores a term, its length, and its position.

Syntax
typedef struct a_term {
 unsigned char * term;
 a_sql_uint32 len;
 a_sql_uint32 ch_len;
 a_sql_uint64 pos;
} a_term;

Members

Member Type Description

term unsigned char
*

The term to be indexed.

len a_sql_uint32 Length of the term, in bytes.

ch_len a_sql_uint32 Length of the term, in characters.

pos a_sql_uint64 Position of the term within the document.

The database server expects that two immediately consecutive terms
in a document have positions differing by 1. If the term breaker is
performing its own stoplist processing, it is possible that the differ-
ence between two consecutive terms returned is more than 1; this is
expected and acceptable. However, in other cases where numbers
are not consecutive with positions differing by 1, the arbitrary posi-
tions can affect how full text queries are executed and can cause un-
expected results for subsequent full text queries.

Remarks
Each a_term structure represents a term annotated with its byte length, character length, and its position in
the document.

Query and modify data

402 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

A pointer to an array of a_term elements is returned in the OUT parameter by the get_words method
implemented as part of the a_word_source interface.

The a_term structure is defined by a header file named exttbapiv1.h, in the SDK\Include subdirectory of
your SQL Anywhere installation directory.

extpf_use_new_api entry point function (prefilters)
Notifies the database server about the interface version implemented in the external prefilter library.
Currently, only version 1 interfaces are supported.

This function is required for an external prefilter library.

Syntax
extern "C" a_sql_uint32 (extpf_use_new_api)();

Returns
The function returns an unsigned 32-bit integer. The returned value must be the interface version number,
EXTPF_V1_API defined in extpfapiv1.h.

Remarks
A typical implementation of this function is as follows:

extern "C" a_sql_uint32 (extpf_use_new_api)(void)
{
 return EXTPF_V1_API;
}

exttb_use_new_api entry point function (term breakers)
Provides information about the interface version implemented in the external term breaker library.
Currently, only version 1 interfaces are supported.

This function is required for an external term breaker library.

Syntax
extern "C" a_sql_uint32 (exttb_use_new_api)();

Returns
The function returns an unsigned 32-bit integer. The returned value must be the interface version number,
EXTTB_V1_API defined in exttbapiv1.h.

Remarks
A typical implementation of this function is as follows:

extern "C" a_sql_uint32 (exttb_use_new_api)(void)
{
 return EXTTB_V1_API;
}

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 403

extfn_post_load_library global entry point function
If this function is implemented and exposed in the external library, it is executed by the database server
after the external library has been loaded and the version check has been performed, and before any other
function defined in the external library is called.

This function is required only if there is a library-specific requirement to do library-wide setup before any
function within the library is called.

Syntax
extern "C" void (extfn_post_load_library)();

Remarks
Both external term breaker and prefilter libraries can implement this function.

extfn_pre_unload_library global entry point function
If this function is implemented and exposed in the external library, it is executed by the database server
immediately before unloading the external library.

This function is required only if there is a library-specific requirement to do library-wide cleanup before
the library is unloaded.

Syntax
extern "C" void (extfn_pre_unload_library)();

Remarks
Both external term breaker and prefilter libraries can implement this function.

Prefilter entry point function

Entry point function that initializes an instance of an external prefilter and negotiates the character set of
the data.

Syntax
extern "C" a_sql_uint32 (SQL_CALLBACK *entry-point-function)(a_init_pre_filter *data);

Returns
1 on error and 0 on successful execution

Parameters
● entry-point-function The name of the entry point function for the prefilter.

● data A pointer to an a_init_pre_filter structure.

Query and modify data

404 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Remarks
This function must be implemented in the external prefilter library, and needs to be re-entrant as it can be
executed on multiple threads simultaneously.

The caller of the function (database server) provides a pointer to an a_text_source object that will serve as
the producer for the prefilter. The caller also provides the character set of the input.

This function provides a pointer to the external prefilter (a_text_source structure). It also negotiates the
character set of the input (if it is not binary) and output data by changing the actual_charset field, if
necessary.

Note that if desired_charset and actual_charset are not the same, the database server performs character
set conversion on the input data, unless data->is_binary field is 1. This means that if is_binary
is 0, input data is in the character set specified by actual_charset.

Note that requiring character set conversion can cause a degradation in performance.

This entry point function is specified by the user by calling ALTER TEXT
CONFIGURATION...PREFILTER EXTERNAL NAME.

See also
● “a_init_pre_filter structure” on page 394
● “a_init_pre_filter structure” on page 394
● “a_text_source interface” on page 395
● “PREFILTER EXTERNAL NAME clause, ALTER TEXT CONFIGURATION statement” [SQL

Anywhere Server - SQL Reference]

Term breaker entry point function

Entry point function that initializes an instance of an external term breaker and negotiates the character set
of the data.

Syntax
extern "C" a_sql_uint32 (SQL_CALLBACK *entry-point-function)(a_init_term_breaker *data);

Returns
1 on error and 0 on successful execution

Parameters
● entry-point-function The name of the entry point function for the term breaker.

● data A pointer to an a_init_term_breaker structure.

Remarks
This function must be implemented in the external term breaker library, and needs to be re-entrant as it
can be executed on multiple threads simultaneously.

Full text search

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 405

The caller of the function provides a pointer to an a_text_source object that will serve as the producer for
the term breaker. The caller should also provide the character set of the input.

This function provides to the caller a pointer to an external term breaker (a_word_source structure) and
the supported character set.

If desired_charset and actual_charset are not the same, the database server converts the term breaker input
to the character set specified by actual_charset.

Note that character set conversion can cause a degradation in performance.

See also
● “a_word_source interface” on page 399
● “a_text_source interface” on page 395
● “a_init_term_breaker structure” on page 398

Summarizing, grouping, and sorting query results
Aggregate functions that summarize query results

Aggregate functions display summaries of the values in specified columns. You can also use the GROUP
BY clause, HAVING clause, and ORDER BY clause to group and sort the results of queries using
aggregate functions, and the UNION operator to combine the results of queries.

When an ORDER BY clause contains constants, they are interpreted by the optimizer and then replaced
by an equivalent ORDER BY clause. For example, the optimizer interprets ORDER BY 'a' as ORDER
BY expression.

A query block containing more than one aggregate function with valid ORDER BY clauses can be
executed if the ORDER BY clauses can be logically combined into a single ORDER BY clause. For
example, the following clauses:

ORDER BY expression1, 'a', expression2
ORDER BY expression1, 'b', expression2, 'c', expression3

are subsumed by the clause:

ORDER BY expression1, expression2, expression3

You can apply aggregate functions to all the rows in a table, to a subset of the table specified by a
WHERE clause, or to one or more groups of rows in the table. From each set of rows to which an
aggregate function is applied, SQL Anywhere generates a single value.

The following are some of the supported aggregate functions:

● AVG(expression) The mean of the supplied expression over the returned rows.

● COUNT(expression) The number of rows in the supplied group where the expression is not
NULL.

Query and modify data

406 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● COUNT(*) The number of rows in each group.

● LIST(string-expr) A string containing a comma-separated list composed of all the values for
string-expr in each group of rows.

● MAX(expression) The maximum value of the expression, over the returned rows.

● MIN(expression) The minimum value of the expression, over the returned rows.

● STDDEV(expression) The standard deviation of the expression, over the returned rows.

● SUM(expression) The sum of the expression, over the returned rows.

● VARIANCE(expression) The variance of the expression, over the returned rows.

You can use the optional keyword DISTINCT with AVG, SUM, LIST, and COUNT to eliminate
duplicate values before the aggregate function is applied.

The expression to which the syntax statement refers is usually a column name. It can also be a more
general expression.

For example, with this statement you can find what the average price of all products would be if one
dollar were added to each price:

SELECT AVG (UnitPrice + 1)
FROM Products;

See also
● “Aggregate functions” [SQL Anywhere Server - SQL Reference]

Example
The following query calculates the total payroll from the annual salaries in the Employees table:

SELECT SUM(Salary)
FROM Employees;

To use aggregate functions, you must give the function name followed by an expression on whose values
it will operate. The expression, which is the Salary column in this example, is the function's argument and
must be specified inside parentheses.

Where you can use aggregate functions

The aggregate functions can be used in a SELECT list, as in the previous examples, or in the HAVING
clause of a select statement that includes a GROUP BY clause.

You cannot use aggregate functions in a WHERE clause or in a JOIN condition. However, a SELECT
statement with aggregate functions in its SELECT list often includes a WHERE clause that restricts the
rows to which the aggregate is applied.

Summarizing, grouping, and sorting query results

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 407

If a SELECT statement includes a WHERE clause, but not a GROUP BY clause, an aggregate function
produces a single value for the subset of rows that the WHERE clause specifies.

Whenever an aggregate function is used in a SELECT statement that does not include a GROUP BY
clause, it produces a single value. This is true whether it is operating on all the rows in a table or on a
subset of rows defined by a where clause.

You can use more than one aggregate function in the same SELECT list, and produce more than one
scalar aggregate in a single SELECT statement.

Aggregate functions and outer references
SQL Anywhere follows SQL/2008 standards for clarifying the use of aggregate functions when they
appear in a subquery. These changes affect the behavior of statements written for previous versions of the
software: previously correct queries may now produce error messages, and result sets may change.

When an aggregate function appears in a subquery, and the column referenced by the aggregate function
is an outer reference, the entire aggregate function itself is now treated as an outer reference. This means
that the aggregate function is now computed in the outer block, not in the subquery, and becomes a
constant within the subquery.

The following restrictions apply to the use of outer reference aggregate functions in subqueries:

● The outer reference aggregate function can only appear in subqueries that are in the SELECT list or
HAVING clause, and these clauses must be in the immediate outer block.

● Outer reference aggregate functions can only contain one outer column reference.

● Local column references and outer column references cannot be mixed in the same aggregate function.

Some problems related to the new standards can be circumvented by rewriting the aggregate function so
that it only includes local references. For example, the subquery (SELECT MAX(S.y + R.y) FROM
S) contains both a local column reference (S.y) and an outer column reference (R.y), which is now
illegal. It can be rewritten as (SELECT MAX(S.y) + R.y FROM S). In the rewrite, the aggregate
function has only a local column reference. The same sort of rewrite can be used when an outer reference
aggregate function appears in clauses other than SELECT or HAVING.

Example
The following query produced valid results in earlier versions of SQL Anywhere:

SELECT Name,
 (SELECT SUM(p.Quantity)
 FROM SalesOrderItems)
 FROM Products p;

Name SUM(p.Quantity)

Tee shirt 30,716

Tee shirt 59,238

Query and modify data

408 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

In later versions, the same query produces the error message SQL Anywhere Error -149:
Function or column reference to 'Name' must also appear in a GROUP BY.
The reason that the statement is no longer valid is that the outer reference aggregate function
sum(p.Quantity) is now computed in the outer block. In later versions, the query is semantically
equivalent to the following (except that Z does not appear as part of the result set):

SELECT Name,
 SUM(p.Quantity) AS Z,
 (SELECT Z
 FROM SalesOrderItems)
 FROM Products p;

Since the outer block now computes an aggregate function, the outer block is treated as a grouped query
and column name must appear in a GROUP BY clause to appear in the SELECT list.

See also
● “The HAVING clause: Selecting groups of data” on page 416

Aggregate functions and data types

Some aggregate functions have meaning only for certain kinds of data. For example, you can use SUM
and AVG with numeric columns only.

However, you can use MIN to find the lowest value—the one closest to the beginning of the alphabet—in
a character column:

SELECT MIN(Surname)
 FROM Contacts;

COUNT(*)

COUNT(*) returns the number of rows in the specified table without eliminating duplicates. It counts
each row separately, including rows that contain NULL. This function does not require an expression as
an argument because, by definition, it does not use information about any particular column.

The following statement finds the total number of employees in the Employees table:

SELECT COUNT(*)
 FROM Employees;

Like other aggregate functions, you can combine COUNT(*) with other aggregate functions in the
SELECT list, with WHERE clauses, and so on. For example:

SELECT COUNT(*), AVG(UnitPrice)
 FROM Products
 WHERE UnitPrice > 10;

Summarizing, grouping, and sorting query results

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 409

COUNT() AVG(Products.UnitPrice)

5 18.2

Aggregate functions with DISTINCT

The DISTINCT keyword is optional with SUM, AVG, and COUNT. When you use DISTINCT, duplicate
values are eliminated before calculating the sum, average, or count. For example, to find the number of
different cities in which there are contacts, execute the following statement:

SELECT COUNT(DISTINCT City)
 FROM Contacts;

COUNT(DISTINCT Contacts.City)

16

You can use more than one aggregate function with DISTINCT in a query. Each DISTINCT is evaluated
independently. For example:

SELECT COUNT(DISTINCT GivenName) "first names",
 COUNT(DISTINCT Surname) "last names"
 FROM Contacts;

first names last names

48 60

Aggregate functions and NULL

Any NULLS in the column on which the aggregate function is operating are ignored for the function
except COUNT(*), which includes them. If all the values in a column are NULL, COUNT(column_name)
returns 0.

If no rows meet the conditions specified in the WHERE clause, COUNT returns a value of 0. The other
functions all return NULL. Here are examples:

SELECT COUNT(DISTINCT Name)
 FROM Products
 WHERE UnitPrice > 50;

COUNT(DISTINCT Name)

0

SELECT AVG(UnitPrice)
 FROM Products
 WHERE UnitPrice > 50;

Query and modify data

410 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

AVG(Products.UnitPrice)

(NULL)

The GROUP BY clause: Organizing query results into
groups

The GROUP BY clause divides the output of a table into groups. You can group rows by one or more
column names, or by the results of computed columns.

Order of clauses
If a WHERE clause and a GROUP BY clause are present, the WHERE clause must appear before the
GROUP BY clause. A GROUP BY clause, if present, must always appear before a HAVING clause. If a
HAVING clause is specified but a GROUP BY clause is not, a GROUP BY () clause is assumed.

HAVING clauses and WHERE clauses can both be used in a single query. Conditions in the HAVING
clause logically restrict the rows of the result only after the groups have been constructed. Criteria in the
WHERE clause are logically evaluated before the groups are constructed, and so save time.

Understanding which queries are valid and which are not can be difficult when the query involves a
GROUP BY clause. This section describes a way to think about queries with GROUP BY so that you may
understand the results and the validity of queries better.

How queries with GROUP BY are executed
This section uses the ROLLUP sub-clause of the GROUP BY clause in the explanation and example.

Consider a single-table query of the following form:

SELECT select-list
 FROM table
 WHERE where-search-condition
 GROUP BY [group-by-expression | ROLLUP (group-by-expression)]
 HAVING having-search-condition

This query is executed in the following manner:

1. Apply the WHERE clause This generates an intermediate result that contains only some of the
rows of the table.

Summarizing, grouping, and sorting query results

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 411

2. Partition the result into groups This action generates an intermediate result with one row for
each group as dictated by the GROUP BY clause. Each generated row contains the group-by-
expression for each group, and the computed aggregate functions in the select-list and having-search-
condition.

3. Apply any ROLLUP operation Subtotal rows computed as part of a ROLLUP operation are
added to the result set.

4. Apply the HAVING clause Any rows from this second intermediate result that do not meet the
criteria of the HAVING clause are removed at this point.

5. Project out the results to display This action takes from step 3 only those columns that need to
be displayed in the result set of the query—that is, it takes only those columns corresponding to the
expressions from the select-list.

This process makes requirements on queries with a GROUP BY clause:

Query and modify data

412 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● The WHERE clause is evaluated first. Therefore, any aggregate functions are evaluated only over those
rows that satisfy the WHERE clause.

● The final result set is built from the second intermediate result, which holds the partitioned rows. The
second intermediate result holds rows corresponding to the group-by-expression. Therefore, if an
expression that is not an aggregate function appears in the select-list, then it must also appear in the
group-by-expression. No function evaluation can be performed during the projection step.

● An expression can be included in the group-by-expression but not in the select-list. It is projected out in
the result.

See also
● “ROLLUP and CUBE as a shortcut to GROUPING SETS” on page 492

GROUP BY with multiple columns

You can list more than one expression in the GROUP BY clause—that is, you can group a table by any
combination of expressions.

The following query lists the average price of products, grouped first by name and then by size:

SELECT Name, Size, AVG(UnitPrice)
 FROM Products
 GROUP BY Name, Size;

Name Size AVG(Products.UnitPrice)

Baseball Cap One size fits all 9.5

Sweatshirt Large 24

Tee Shirt Large 14

Tee Shirt One size fits all 14

...

WHERE clause and GROUP BY

You can use a WHERE clause in a statement with GROUP BY. The WHERE clause is evaluated before
the GROUP BY clause. Rows that do not satisfy the conditions in the WHERE clause are eliminated
before any grouping is done. Here is an example:

SELECT Name, AVG(UnitPrice)
 FROM Products
 WHERE ID > 400
 GROUP BY Name;

Summarizing, grouping, and sorting query results

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 413

Only the rows with ID values of more than 400 are included in the groups that are used to produce the
query results.

Example
The following query illustrates the use of WHERE, GROUP BY, and HAVING clauses in one query:

SELECT Name, SUM(Quantity)
 FROM Products
 WHERE Name LIKE '%shirt%'
 GROUP BY Name
 HAVING SUM(Quantity) > 100;

Name SUM(Products.Quantity)

Tee Shirt 157

In this example:

● The WHERE clause includes only rows that have a name including the word shirt (Tee Shirt,
Sweatshirt).

● The GROUP BY clause collects the rows with a common name.

● The SUM aggregate calculates the total quantity of products available for each group.

● The HAVING clause excludes from the final results the groups whose inventory totals do not exceed
100.

GROUP BY with aggregate functions

A GROUP BY clause almost always appears in statements that include aggregate functions, in which case
the aggregate produces a value for each group. These values are called vector aggregates. (A scalar
aggregate is a single value produced by an aggregate function without a GROUP BY clause.)

Example
The following query lists the average price of each kind of product:

SELECT Name, AVG(UnitPrice) AS Price
 FROM Products
 GROUP BY Name;

Name Price

Tee Shirt 12.333333333

Baseball Cap 9.5

Visor 7

Query and modify data

414 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Name Price

Sweatshirt 24

... ...

The vector aggregates produced by SELECT statements with aggregates and a GROUP BY appear as
columns in each row of the results. By contrast, the scalar aggregates produced by queries with aggregates
and no GROUP BY also appear as columns, but with only one row. For example:

SELECT AVG(UnitPrice)
 FROM Products;

AVG(Products.UnitPrice)

13.3

GROUP BY and the SQL/2008 standard

The SQL/2008 standard is considerably more restrictive in its syntax than what is supported by SQL
Anywhere. In the SQL/2008 standard, GROUP BY requires the following:

● Each group-by-term specified in a GROUP BY clause must be a column reference: that is, a reference
to a column from a table referenced in the query FROM clause. These expressions are termed grouping
columns.

● An expression in a SELECT list, HAVING clause, or ORDER BY clause that is not an aggregate
function must be a grouping column, or only reference grouping columns. However, if optional SQL/
2008 language feature T301, "Functional dependencies" is supported, then such a reference can refer to
columns from the query FROM clause that are functionally determined by grouping columns.

In a GROUP BY clause in SQL Anywhere, group-by-term can be an arbitrary expression involving
column references, literal constants, variables or host variables, and scalar and user-defined functions. For
example, this query partitions the Employee table into three groups based on the Salary column,
producing one row per group:

SELECT COUNT() FROM Employees
 GROUP BY (
 IF SALARY < 25000
 THEN 'low range'
 ELSE IF Salary < 50000
 THEN 'mid range'
 ELSE 'high range'
 ENDIF
 ENDIF);

To include the partitioning value in the query result, you must add a group-by-term to the query SELECT
list. To be syntactically valid, SQL Anywhere ensures that the syntax of the SELECT list item and group-
by-term are identical. However, syntactically large SQL constructions may fail this analysis; moreover,
expressions involving subqueries never compare equal.

Summarizing, grouping, and sorting query results

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 415

In the example below, SQL Anywhere detects that the two IF expressions are identical, and computes the
result without error:

SELECT (IF SALARY < 25000 THEN 'low range' ELSE IF Salary < 50000 THEN 'mid
range' ELSE 'high range' ENDIF ENDIF), COUNT()
FROM Employees
GROUP BY (IF SALARY < 25000 THEN 'low range' ELSE IF Salary < 50000 THEN
'mid range' ELSE 'high range' ENDIF ENDIF);

However, this query contains a subquery in the GROUP BY clause that returns an error:

SELECT (Select State from Employees e WHERE e.EmployeeID = e2.EmployeeID),
 COUNT()
 FROM Employees e2
 GROUP BY (Select State from Employees e WHERE EmployeeID = e2.EmployeeID)

A more concise approach is to alias the SELECT list expression, and refer to the alias in the GROUP BY
clause. Using an alias permits the SELECT list and the GROUP BY clause to contain correlated
subqueries. SELECT list aliases used in this fashion are a vendor extension:

SELECT (
 IF SALARY < 25000
 THEN 'low range'
 ELSE IF Salary < 50000
 THEN 'mid range'
 ELSE 'high range'
 ENDIF
 ENDIF) AS Salary_Range,
 COUNT() FROM Employees GROUP BY Salary_Range;

While SQL Anywhere does not support all facets of SQL/2008 language feature T301 (Functional
dependencies), SQL Anywhere does offer some support for derived values based on GROUP BY terms.
SQL Anywhere supports SELECT list expressions that refer to GROUP BY terms, literal constants, and
(host) variables, with or without scalar functions that may modify those values. As an example, the
following query lists the number of employees by city/state combination:

SELECT City || ' ' || State, SUBSTRING(City,1,3), COUNT()
FROM Employees
GROUP BY City, State

See also
● “GROUP BY clause” [SQL Anywhere Server - SQL Reference]
● “Aggregate functions and outer references” on page 408

The HAVING clause: Selecting groups of data
The HAVING clause restricts the rows returned by a query. It sets conditions for the GROUP BY clause
similar to the way in which WHERE sets conditions for the SELECT clause.

The HAVING clause search conditions are identical to WHERE search conditions except that WHERE
search conditions cannot include aggregates. For example, the following usage is allowed:

HAVING AVG(UnitPrice) > 20

Query and modify data

416 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The following usage is not allowed:

WHERE AVG(UnitPrice) > 20

Using HAVING with aggregate functions
The following statement is an example of simple use of the HAVING clause with an aggregate function.

To list those products available in more than one size or color, you need a query to group the rows in the
Products table by name, but eliminate the groups that include only one distinct product:

SELECT Name
 FROM Products
 GROUP BY Name
 HAVING COUNT(*) > 1;

Name

Tee Shirt

Baseball Cap

Visor

Sweatshirt

Using HAVING without aggregate functions
The HAVING clause can also be used without aggregates.

The following query groups the products, and then restricts the result set to only those groups for which
the name starts with B.

SELECT Name
 FROM Products
 GROUP BY Name
 HAVING Name LIKE 'B%';

Name

Baseball Cap

More than one condition in HAVING
More than one search condition can be included in the HAVING clause. They are combined with the
AND, OR, or NOT operators, as in the following example.

To list those products available in more than one size or color, for which one version costs more than $10,
you need a query to group the rows in the Products table by name, but eliminate the groups that include
only one distinct product, and eliminate those groups for which the maximum unit price is under $10.

SELECT Name
 FROM Products
 GROUP BY Name

Summarizing, grouping, and sorting query results

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 417

 HAVING COUNT(*) > 1
 AND MAX(UnitPrice) > 10;

Name

Tee Shirt

Sweatshirt

See also
● “Where you can use aggregate functions” on page 407

The ORDER BY clause: Sorting query results
The ORDER BY clause allows sorting of query results by one or more columns. Each sort can be
ascending (ASC) or descending (DESC). If neither is specified, ASC is assumed.

A simple example
The following query returns results ordered by name:

SELECT ID, Name
 FROM Products
 ORDER BY Name;

ID Name

400 Baseball Cap

401 Baseball Cap

700 Shorts

600 Sweatshirt

... ...

Sorting by more than one column
If you name more than one column in the ORDER BY clause, the sorts are nested.

The following statement sorts the shirts in the Products table first by name in ascending order, then by
quantity (descending) within each name:

SELECT ID, Name, Quantity
 FROM Products
 WHERE Name like '%shirt%'
 ORDER BY Name, Quantity DESC;

Query and modify data

418 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

ID Name Quantity

600 Sweatshirt 39

601 Sweatshirt 32

302 Tee Shirt 75

301 Tee Shirt 54

...

Using the column position
You can use the position number of a column in a SELECT list instead of the column name. Column
names and SELECT list numbers can be mixed. Both of the following statements produce the same
results as the preceding one.

SELECT ID, Name, Quantity
 FROM Products
 WHERE Name like '%shirt%'
 ORDER BY 2, 3 DESC;
SELECT ID, Name, Quantity
 FROM Products
 WHERE Name like '%shirt%'
 ORDER BY 2, Quantity DESC

Most versions of SQL require that ORDER BY items appear in the SELECT list, but SQL Anywhere has
no such restriction. The following query orders the results by Quantity, although that column does not
appear in the SELECT list:

SELECT ID, Name
 FROM Products
 WHERE Name like '%shirt%'
 ORDER BY 2, Quantity DESC;

ORDER BY and NULL
With ORDER BY, NULL sorts before all other values in ascending sort order.

ORDER BY and case sensitivity
The effects of an ORDER BY clause on mixed-case data depend on the database collation and case
sensitivity specified when the database is created.

Row limitation clauses in SELECT, UPDATE, and DELETE query
blocks

The FIRST, TOP, and LIMIT clauses allow you to return, update, or delete a subset of the rows that
satisfy the WHERE clause. The FIRST, TOP, and LIMIT clauses can be used within any SELECT query
block that includes an ORDER BY clause. The FIRST and TOP clauses can also be used in DELETE and
UPDATE query blocks.

Summarizing, grouping, and sorting query results

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 419

The FIRST, TOP, and LIMIT clauses are row limitation clauses and they have the following syntax:

row-limitation-option-1 :
FIRST | TOP { ALL | limit-expression } [START AT startat-expression]

row-limitation-option-2 :
LIMIT { [offset-expression,] limit-expression | limit-expression OFFSET offset-expression }

limit-expression : simple-expression

startat-expression : simple-expression

offset-expression : simple-expression

simple-expression :
integer
| variable
| (simple-expression)
| (simple-expression { + | - | * } simple-expression)

Only one row limitation clause can be specified for a SELECT clause. When specifying these clauses, an
ORDER BY clause is required to order the rows in a meaningful manner.

● row-limitation-option-1 This type of clause can be used with SELECT, UPDATE, or DELETE
query blocks. The TOP and START AT arguments can be simple arithmetic expressions over host
variables, integer constants, or integer variables. The TOP argument must evaluate to a value greater
than or equal to 0. The START AT argument must evaluate to a value greater than 0. If startat-
expression is not specified the default is 1.

The expression limit-expression + startat-expression -1' must evaluate to a value
less than 9223372036854775807 = 2^64-1. If the argument of TOP is ALL, all rows starting at
startat-expression are returned.

The TOP limit-expression START AT startat-expression clause is equivalent to
LIMIT (startat-expression-1), limit-expression or LIMIT limit-
expression OFFSET (startat-expression-1).

● row-limitation-option-2 This type of clause can be used only in SELECT query blocks. The
LIMIT and OFFSET arguments can be simple arithmetic expressions over host variables, integer
constants, or integer variables. The LIMIT argument must evaluate to a value greater than or equal to
0. The OFFSET argument must evaluate to a value greater than or equal to 0. If offset-expression is
not specified, the default is 0. The expression limit-expression + offset-expression
must evaluate to a value less than 9223372036854775807 = 2^64-1.

The row limitation clause LIMIT offset-expression, limit-expression is equivalent to
LIMIT limit-expression OFFSET offset-expression. Both of these constructs are
equivalent to TOP limit-expression START AT (offset-expression + 1).

The LIMIT keyword is disabled by default. Use the reserved_keywords option to enable the LIMIT
keyword.

Query and modify data

420 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Examples
The following query returns information about the employee that appears first when employees are sorted
by last name:

SELECT FIRST *
FROM Employees
ORDER BY Surname;

The following queries return the first five employees when their names are sorted by last name:

SELECT TOP 5 *
FROM Employees
ORDER BY Surname;
SELECT *
FROM Employees
ORDER BY Surname
LIMIT 5;

When you use TOP, you can also use START AT to provide an offset. The following statements list the
fifth and sixth employees sorted in descending order by last name:

SELECT TOP 2 START AT 5 *
FROM Employees
ORDER BY Surname DESC;
SELECT *
FROM Employees
ORDER BY Surname DESC
LIMIT 2 OFFSET 4;
SELECT *
FROM Employees
ORDER BY Surname DESC
LIMIT 4,2;

FIRST and TOP should be used only with an ORDER BY clause to ensure consistent results. Using
FIRST or TOP without an ORDER BY causes a syntax warning, and can yield unpredictable results.

CREATE OR REPLACE VARIABLE atop INT = 10;

The following queries return the first five employees when their names are sorted by last name:

SELECT TOP (atop -5) *
FROM Employees
ORDER BY Surname;
SELECT *
FROM Employees
ORDER BY Surname
LIMIT (atop-5);

The following statements list the fifth and sixth employees sorted in descending order by last name:

SELECT TOP (atop - 8) START AT (atop -2 -3) *
FROM Employees
ORDER BY Surname DESC;
SELECT *
FROM Employees

Summarizing, grouping, and sorting query results

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 421

ORDER BY Surname DESC
LIMIT (atop - 8) OFFSET (atop -2 -3 -1);

See also
● “SELECT statement” [SQL Anywhere Server - SQL Reference]
● “UPDATE statement” [SQL Anywhere Server - SQL Reference]
● “DELETE statement” [SQL Anywhere Server - SQL Reference]
● “reserved_keywords option” [SQL Anywhere Server - Database Administration]

ORDER BY and GROUP BY

You can use an ORDER BY clause to order the results of a GROUP BY in a particular way.

Example
The following query finds the average price of each product and orders the results by average price:

SELECT Name, AVG(UnitPrice)
 FROM Products
 GROUP BY Name
 ORDER BY AVG(UnitPrice);

Name AVG(Products.UnitPrice)

Visor 7

Baseball Cap 9.5

Tee Shirt 12.333333333

Shorts 15

... ...

Set operations on query results using UNION, INTERSECT,
and EXCEPT

The operators described in this section perform set operations on the results of two or more queries. While
many of the operations can also be performed using operations in the WHERE clause or HAVING clause,
there are some operations that are very difficult to perform in any way other than using these set-based
operators. For example:

● When data is not normalized, you may want to assemble seemingly disparate information into a single
result set, even though the tables are unrelated.

● NULL is treated differently by set operators than in the WHERE clause or HAVING clause. In the
WHERE clause or HAVING clause, two null-containing rows with identical non-null entries are not

Query and modify data

422 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

seen as identical, as the two NULL values are not defined to be identical. The set operators see two
such rows as the same.

See also
● “Set operators and NULL” on page 425
● “EXCEPT statement” [SQL Anywhere Server - SQL Reference]
● “INTERSECT statement” [SQL Anywhere Server - SQL Reference]
● “UNION statement” [SQL Anywhere Server - SQL Reference]

The UNION clause: Combining result sets
The UNION operator combines the results of two or more queries into a single result set.

By default, the UNION operator removes duplicate rows from the result set. If you use the ALL option,
duplicates are not removed. The columns in the final result set have the same names as the columns in the
first result set. Any number of union operators may be used.

By default, a statement containing multiple UNION operators is evaluated from left to right. Parentheses
may be used to specify the order of evaluation.

For example, the following two expressions are not equivalent, due to the way that duplicate rows are
removed from result sets:

x UNION ALL (y UNION z)
(x UNION ALL y) UNION z

In the first expression, duplicates are eliminated in the UNION between y and z. In the UNION between
that set and x, duplicates are not eliminated. In the second expression, duplicates are included in the union
between x and y, but are then eliminated in the subsequent union with z.

EXCEPT and INTERSECT

The EXCEPT clause lists the differences between two result sets. The following general construction lists
all those rows that appear in the result set of query-1, but not in the result set of query-2.

query-1
EXCEPT
query-2

The INTERSECT clause lists the rows that appear in each of two result sets. The following general
construction lists all those rows that appear in the result set of both query-1 and query-2.

query-1
INTERSECT
query-2

Like the UNION clause, both EXCEPT and INTERSECT take the ALL modifier, which prevents the
elimination of duplicate rows from the result set.

Summarizing, grouping, and sorting query results

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 423

See also
● “EXCEPT statement” [SQL Anywhere Server - SQL Reference]
● “INTERSECT statement” [SQL Anywhere Server - SQL Reference]

Rules for set operations

The following rules apply to UNION, EXCEPT, and INTERSECT statements:

● Precedence The UNION and EXCEPT operators have equal precedence and are both evaluated
from left to right. The INTERSECT operator has a higher precedence than the UNION and EXCEPT
operators and is also evaluated from left to right when more than one INTERSECT operator is used.

● Same number of items in the SELECT lists All SELECT lists in the queries must have the
same number of expressions (such as column names, arithmetic expressions, and aggregate functions).
The following statement is invalid because the first SELECT list is longer than the second:

SELECT store_id, city, state
 FROM stores
UNION
 SELECT store_id, city
 FROM stores_east;

● Data types must match Corresponding expressions in the SELECT lists must be of the same data
type, or an implicit data conversion must be possible between the two data types, or an explicit
conversion should be supplied.

For example, a UNION, INTERSECT, or EXCEPT is not possible between a column of the CHAR
data type and one of the INT data type, unless an explicit conversion is supplied. However, a set
operation is possible between a column of the MONEY data type and one of the INT data type.

● Column ordering You must place corresponding expressions in the individual queries of a set
operation in the same order, because the set operators compare the expressions one to one in the order
given in the individual queries in the SELECT clauses.

● Multiple set operations You can string several set operations together, as in the following
example:

SELECT City AS Cities
 FROM Contacts
 UNION
 SELECT City
 FROM Customers
 UNION
 SELECT City
 FROM Employees;

For UNION statements, the order of queries is not important. For INTERSECT, the order is important
when there are two or more queries. For EXCEPT, the order is always important.

● Column headings The column names in the table resulting from a UNION are taken from the first
individual query in the statement. If you want to define a new column heading for the result set, you
can do so in the SELECT list of the first query, as in the following example:

Query and modify data

424 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SELECT City AS Cities
 FROM Contacts
 UNION
 SELECT City
 FROM Customers;

In the following query, the column heading remains as City, as it is defined in the first query of the
UNION clause.

SELECT City
 FROM Contacts
 UNION
 SELECT City AS Cities
 FROM Customers;

Alternatively, you can use the WITH clause to define the column names. For example:

WITH V(Cities)
AS (SELECT City
 FROM Contacts
 UNION
 SELECT City
 FROM Customers)
SELECT * FROM V;

● Ordering the results You can use the WITH clause of the SELECT statement to order the column
names in the SELECT list. For example:

WITH V(CityName)
AS (SELECT City AS Cities
 FROM Contacts
 UNION
 SELECT City
 FROM Customers)
SELECT * FROM V
 ORDER BY CityName;

Alternatively, you can use a single ORDER BY clause at the end of the list of queries, but you must
use integers rather than column names, as in the following example:

SELECT City AS Cities
 FROM Contacts
 UNION
 SELECT City
 FROM Customers
 ORDER BY 1;

Set operators and NULL

NULL is treated differently by the set operators UNION, EXCEPT, and INTERSECT than it is in search
conditions. This difference is one of the main reasons to use set operators.

When comparing rows, set operators treat NULL values as equal to each other. In contrast, when NULL is
compared to NULL in a search condition the result is unknown (not true).

One result of this difference is that the number of rows in the result set for query-1 EXCEPT ALL
query-2 is always the difference in the number of rows in the result sets of the individual queries.

Summarizing, grouping, and sorting query results

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 425

For example, consider two tables T1 and T2, each with the following columns:

col1 INT,
col2 CHAR(1)

The tables and data are set up as follows:

CREATE TABLE T1 (col1 INT, col2 CHAR(1));
CREATE TABLE T2 (col1 INT, col2 CHAR(1));
INSERT INTO T1 (col1, col2) VALUES(1, 'a');
INSERT INTO T1 (col1, col2) VALUES(2, 'b');
INSERT INTO T1 (col1) VALUES(3);
INSERT INTO T1 (col1) VALUES(3);
INSERT INTO T1 (col1) VALUES(4);
INSERT INTO T1 (col1) VALUES(4);
INSERT INTO T2 (col1, col2) VALUES(1, 'a');
INSERT INTO T2 (col1, col2) VALUES(2, 'x');
INSERT INTO T2 (col1) VALUES(3);

The data in the tables is as follows:

● Table T1.

col1 col2

1 a

2 b

3 (NULL)

3 (NULL)

4 (NULL)

4 (NULL)

● Table T2

col1 col2

1 a

2 x

3 (NULL)

One query that asks for rows in T1 that also appear in T2 is as follows:

SELECT T1.col1, T1.col2
 FROM T1 JOIN T2
 ON T1.col1 = T2.col1
 AND T1.col2 = T2.col2;

Query and modify data

426 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

T1.col1 T1.col2

1 a

The row (3, NULL) does not appear in the result set, as the comparison between NULL and NULL is not
true. In contrast, approaching the problem using the INTERSECT operator includes a row with NULL:

SELECT col1, col2
 FROM T1
 INTERSECT
 SELECT col1, col2
 FROM T2;

col1 col2

1 a

3 (NULL)

The following query uses search conditions to list rows in T1 that do not appear in T2:

SELECT col1, col2
 FROM T1
 WHERE col1 NOT IN (
 SELECT col1
 FROM T2
 WHERE T1.col2 = T2.col2)
 OR col2 NOT IN (
 SELECT col2
 FROM T2
 WHERE T1.col1 = T2.col1);

col1 col2

2 b

3 (NULL)

4 (NULL)

3 (NULL)

4 (NULL)

The NULL-containing rows from T1 are not excluded by the comparison. In contrast, approaching the
problem using EXCEPT ALL excludes NULL-containing rows that appear in both tables. In this case, the
(3, NULL) row in T2 is identified as the same as the (3, NULL) row in T1.

SELECT col1, col2
 FROM T1
 EXCEPT ALL
 SELECT col1, col2
 FROM T2;

Summarizing, grouping, and sorting query results

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 427

col1 col2

2 b

3 (NULL)

4 (NULL)

4 (NULL)

The EXCEPT operator is more restrictive still. It eliminates both (3, NULL) rows from T1 and excludes
one of the (4, NULL) rows as a duplicate.

SELECT col1, col2
 FROM T1
 EXCEPT
 SELECT col1, col2
 FROM T2;

col1 col2

2 b

4 (NULL)

Joins: Retrieving data from several tables
When you create a database, you normalize the data by placing information specific to different objects in
different tables, rather than in one large table with many redundant entries. Therefore, to retrieve related
data from more than one table, you perform a join operation using the SQL JOIN operator. A join
operation recreates a larger table using the information from two or more tables (or views). Using
different joins, you can construct a variety of these virtual tables, each suited to a particular task.

Displaying a list of tables

You can view all the tables, as well as their columns, of the database you are connected to from
Interactive SQL.

Prerequisites

You must be connected to the database.

Context and remarks

Many.

Query and modify data

428 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Display a list of tables

1. In Interactive SQL, press F7 to display a list of tables in the database you are connected to.

2. Select a table and click Show Columns to see the columns for that table.

3. Press Esc to return to the table list; press Esc again to return to the SQL Statements pane. Press Enter
to copy the selected table or column name into the SQL Statements pane at the current cursor
position.

4. Press Esc to leave the list.

5. For more information about the tables in the SQL Anywhere sample database, see “Tutorial:
Connecting to the sample database” [SQL Anywhere Server - Database Administration].

Results

A list of all the tables of the database you are connected to is displayed. You have the option of viewing
the columns for each table.

Next

None.

Joins: Retrieving data from several tables

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 429

Sample database schema
In the following diagram, the SQL Anywhere sample database is shown with the names of the foreign
keys that relate the tables. These foreign key role names are required for some advanced joins.

For more information about role names, see “Key joins when there are multiple foreign key relationships”
on page 461.

Query and modify data

430 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Joins: Retrieving data from several tables

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 431

How joins work
A join is an operation that combines the rows in tables by comparing the values in specified columns.
This section is an overview of SQL Anywhere join syntax.

A relational database stores information about different types of objects in different tables. For example,
information particular to employees appears in one table, and information that pertains to departments in
another. The Employees table contains information such as employee names and addresses. The
Departments table contains information about one department, such as the name of the department and
who the department head is.

Most questions can only be answered using a combination of information from different tables. For
example, to answer the question "Who manages the Sales department?", you use the Departments table to
identify the correct employee, and then look up the employee name in the Employees table.

Joins are a means of answering such questions by forming a new virtual table that includes information
from multiple tables. For example, you could create a list of the department heads by combining the
information contained in the Employees table and the Departments table. You specify which tables
contain the information you need using the FROM clause.

To make the join useful, you must combine the correct columns of each table. To list department heads,
each row of the combined table should contain the name of a department and the name of the employee
who manages it. You control how columns are matched in the composite table by either specifying a
particular type of join operation or using the ON clause.

See also
● “FROM clause” [SQL Anywhere Server - SQL Reference]

Join conditions

Tables can be joined using join conditions. A join condition is simply a search condition. It chooses a
subset of rows from the joined tables based on the relationship between values in the columns. For
example, the following query retrieves data from the Products and SalesOrderItems tables.

SELECT *
FROM Products JOIN SalesOrderItems
 ON Products.ID = SalesOrderItems.ProductID;

The join condition in this query is

Products.ID = SalesOrderItems.ProductID

This join condition means that rows can be combined in the result set only if they have the same product
ID in both tables.

Join conditions can be explicit or generated. An explicit join condition is a join condition that is put in an
ON clause or a WHERE clause. The following query uses an ON clause. It produces a cross product of
the two tables (all combinations of rows), but with rows excluded if the ID numbers do not match. The
result is a list of customers with details of their orders.

Query and modify data

432 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SELECT *
FROM Customers
JOIN SalesOrders
ON SalesOrders.CustomerID = Customers.ID;

A generated join condition is a join condition that is automatically created when you specify KEY JOIN
or NATURAL JOIN. For key joins, the generated join condition is based on the foreign key relationships
between the tables. For natural joins, the generated join condition is based on columns that have the same
name.

Tip
Both key join syntax and natural join syntax are shortcuts: you get identical results from using the
keyword JOIN without KEY or NATURAL, and then explicitly stating the same join condition in an ON
clause.

When you use an ON clause with a key join or natural join, the join condition that is used is the
conjunction of the explicitly specified join condition with the generated join condition. This means that
the join conditions are combined with the keyword AND.

Joined tables

SQL Anywhere supports the following classes of joined tables.

● CROSS JOIN This type of join of two tables produces all possible combinations of rows from the
two tables. The size of the result set is the number of rows in the first table multiplied by the number
of rows in the second table. A cross join is also called a cross product or Cartesian product. You
cannot use an ON clause with a cross join.

● KEY JOIN This type of join condition uses the foreign key relationships between the tables. Key
join is the default when the JOIN keyword is used without specifying a join type (such as INNER,
OUTER, and so on) and there is no ON clause.

● NATURAL JOIN This join is automatically generated based on columns having the same name.

● Join using an ON clause This type of join results from explicit specification of the join condition
in an ON clause. When used with a key join or natural join, the join condition contains both the
generated join condition and the explicit join condition. When used with the keyword JOIN without
the keywords KEY or NATURAL, there is no generated join condition.

Inner and outer joins
Key joins, natural joins and joins with an ON clause may be qualified by specifying INNER, LEFT
OUTER, RIGHT OUTER, or FULL OUTER. The default is INNER. When using the keywords LEFT,
RIGHT or FULL, the keyword OUTER is optional.

In an inner join, each row in the result satisfies the join condition.

In a left or right outer join, all rows are preserved for one of the tables, and for the other table nulls are
returned for rows that do not satisfy the join condition. For example, in a right outer join the right side is
preserved and the left side is null-supplying.

Joins: Retrieving data from several tables

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 433

In a full outer join, all rows are preserved for both of the tables, and nulls are supplied for rows that do not
satisfy the join condition.

See also
● “Explicit join conditions (the ON clause)” on page 436

Joins between two tables

To understand how a simple inner join is computed, consider the following query. It answers the question:
which product sizes have been ordered in the same quantity as the quantity in stock?

SELECT DISTINCT Name, Size,
 SalesOrderItems.Quantity
FROM Products JOIN SalesOrderItems
ON Products.ID = SalesOrderItems.ProductID
 AND Products.Quantity = SalesOrderItems.Quantity;

Name Size Quantity

Baseball Cap One size fits all 12

Visor One size fits all 36

You can interpret the query as follows. Note that this is a conceptual explanation of the processing of this
query, used to illustrate the semantics of a query involving a join. It does not represent how SQL
Anywhere actually computes the result set.

● Create a cross product of the Products table and SalesOrderItems table. A cross product contains every
combination of rows from the two tables.

● Exclude all rows where the product IDs are not identical (because of the join condition Products.ID
= SalesOrderItems.ProductID).

● Exclude all rows where the quantity is not identical (because of the join condition
Products.Quantity = SalesOrderItems.Quantity).

● Create a result table with three columns: Products.Name, Products.Size, and SalesOrderItems.Quantity.

● Exclude all duplicate rows (because of the DISTINCT keyword).

See also
● “Outer joins” on page 441

Joins between more than two tables

With SQL Anywhere, there is no fixed limit on the number of tables you can join.

Query and modify data

434 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

When joining more than two tables, parentheses are optional. If you do not use parentheses, SQL
Anywhere evaluates the statement from left to right. Therefore, A JOIN B JOIN C is equivalent to
(A JOIN B) JOIN C. Also, the following two SELECT statements are equivalent:

SELECT *
FROM A JOIN B JOIN C JOIN D;
SELECT *
FROM ((A JOIN B) JOIN C) JOIN D;

Whenever more than two tables are joined, the join involves table expressions. In the example A JOIN
B JOIN C, the table expression A JOIN B is joined to C. This means, conceptually, that A and B are
joined, and then the result is joined to C.

The order of joins is important if the table expression contains outer joins. For example, A JOIN B
LEFT OUTER JOIN C is interpreted as (A JOIN B) LEFT OUTER JOIN C. This means that the
table expression A JOIN B is joined to C. The table expression A JOIN B is preserved and table C is
null-supplying.

See also
● “Outer joins” on page 441
● “Key joins of table expressions” on page 464
● “Natural joins of table expressions” on page 458

Join compatible data types

When you join two tables, the columns you compare must have the same or compatible data types.

See also
● “Comparisons between data types” [SQL Anywhere Server - SQL Reference]

Joins in delete, update, and insert statements

You can use joins in DELETE, UPDATE, INSERT, and SELECT statements. You can update some
cursors that contain joins if the ansi_update_constraints option is set to Off. This is the default for
databases created before SQL Anywhere 7. For databases created with version 7 or later, the default is
Cursors.

See also
● “ansi_update_constraints option” [SQL Anywhere Server - Database Administration]

Joins: Retrieving data from several tables

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 435

Non-ANSI joins

SQL Anywhere supports ISO/ANSI standards for joins. It also supports the following non-standard joins:

● “Transact-SQL outer joins (*= or =*)”
● “Duplicate correlation names in joins (star joins)”
● “Key joins”

You can use the REWRITE function to see the ANSI equivalent of a non-ANSI join.

See also
● “REWRITE function [Miscellaneous]” [SQL Anywhere Server - SQL Reference]

Explicit join conditions (the ON clause)

Instead of, or along with, a key or natural join, you can specify a join using an explicit join condition. You
specify a join condition by inserting an ON clause immediately after the join. The join condition always
refers to the join immediately preceding it. The ON clause applies a restriction to the rows in a join, in
much the same way that the WHERE clause applies restrictions to the rows of a query.

The ON clause allows you to construct more useful joins than the CROSS JOIN. For example, you can
apply the ON clause to a join of the SalesOrders and Employees table to retrieve only those rows for
which the SalesRepresentative in the SalesOrders table is the same as the one in the Employees table in
every row of the result. Then each row contains information about an order and the sales representative
responsible for it.

For example, in the following query, the first ON clause is used to join SalesOrders to Customers. The
second ON clause is used to join the table expression (SalesOrders JOIN Customers) to the base table
SalesOrderItems.

SELECT *
FROM SalesOrders JOIN Customers
 ON SalesOrders.CustomerID = Customers.ID
 JOIN SalesOrderItems
 ON SalesOrderItems.ID = SalesOrders.ID;

Table references in ON clauses

The tables that are referenced in an ON clause must be part of the join that the ON clause modifies. For
example, the following is invalid:

FROM (A KEY JOIN B) JOIN (C JOIN D ON A.x = C.x)

The problem is that the join condition A.x = C.x references table A, which is not part of the join it
modifies (in this case, C JOIN D).

Query and modify data

436 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

However, as of the ANSI/ISO standard SQL99 and SQL Anywhere 7.0, there is an exception to this rule:
if you use commas between table expressions, an ON condition of a join can reference a table that
precedes it syntactically in the FROM clause. Therefore, the following is valid:

FROM (A KEY JOIN B) , (C JOIN D ON A.x = C.x)

See also
● “Key joins” on page 460
● “Commas” on page 440

Example
The following example joins the SalesOrders table with the Employees table. Each row in the result
reflects rows in the SalesOrders table where the value of the SalesRepresentative column matched the
value of the EmployeeID column of the Employees table.

SELECT Employees.Surname, SalesOrders.ID, SalesOrders.OrderDate
FROM SalesOrders
JOIN Employees
ON SalesOrders.SalesRepresentative = Employees.EmployeeID;

Surname ID OrderDate

Chin 2008 4/2/2001

Chin 2020 3/4/2001

Chin 2032 7/5/2001

Chin 2044 7/15/2000

Chin 2056 4/15/2001

...

Following are some notes about this example:

● The results of this query contain only 648 rows (one for each row in the SalesOrders table). Of the
48,600 rows in the cross product, only 648 of them have the employee number equal in the two tables.

● The ordering of the results has no meaning. You could add an ORDER BY clause to impose a
particular order on the query.

● The ON clause includes columns that are not included in the final result set.

Generated joins and the ON clause

Key joins are the default if the keyword JOIN is used and no join type is specified—unless you use an ON
clause. If you use an ON clause with an unspecified JOIN, key join is not the default and no generated
join condition is applied.

Joins: Retrieving data from several tables

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 437

For example, the following is a key join, because key join is the default when the keyword JOIN is used
and there is no ON clause:

SELECT *
FROM A JOIN B;

The following is a join between table A and table B with the join condition A.x = B.y. It is not a key
join.

SELECT *
FROM A JOIN B ON A.x = B.y;

If you specify a KEY JOIN or NATURAL JOIN and use an ON clause, the final join condition is the
conjunction of the generated join condition and the explicit join condition(s). For example, the following
statement has two join conditions: one generated because of the key join, and one explicitly stated in the
ON clause.

SELECT *
FROM A KEY JOIN B ON A.x = B.y;

If the join condition generated by the key join is A.w = B.z, then the following statement is equivalent:

SELECT *
FROM A JOIN B
 ON A.x = B.y
 AND A.w = B.z;

See also
● “Key joins” on page 460

Types of explicit join conditions

Most join conditions are based on equality, and so are called equijoins. For example:

SELECT *
FROM Departments JOIN Employees
 ON Departments.DepartmentID = Employees.DepartmentID;

However, you do not have to use equality (=) in a join condition. You can use any search condition, such
as conditions containing LIKE, SOUNDEX, BETWEEN, > (greater than), and != (not equal to).

Example
The following example answers the question: For which products has someone ordered more than the
quantity in stock?

SELECT DISTINCT Products.Name
FROM Products JOIN SalesOrderItems
ON Products.ID = SalesOrderItems.ProductID
 AND SalesOrderItems.Quantity > Products.Quantity;

See also
● “Search conditions” [SQL Anywhere Server - SQL Reference]

Query and modify data

438 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

WHERE clauses in join conditions

Except when using outer joins, you can specify join conditions in the WHERE clause instead of the ON
clause. However, you should be aware that there may be semantic differences between the two if the
query contains outer joins.

The ON clause is part of the FROM clause, and so is processed before the WHERE clause. This does not
make a difference to results except for outer joins, where using the WHERE clause can convert the join to
an inner join.

When deciding whether to put join conditions in an ON clause or WHERE clause, keep the following
rules in mind:

● When you specify an outer join, putting a join condition in the WHERE clause may convert the outer
join to an inner join.

● Conditions in an ON clause can only refer to tables that are in the table expressions joined by the
associated JOIN. However, conditions in a WHERE clause can refer to any tables, even if they are not
part of the join.

● You cannot use an ON clause with the keywords CROSS JOIN, but you can always use a WHERE
clause.

● When join conditions are in an ON clause, key join is not the default. However, key join can be the
default if join conditions are put in a WHERE clause.

In the examples in this documentation, join conditions are put in an ON clause. In examples using outer
joins, this is necessary. In other cases it is done to make it obvious that they are join conditions and not
general search conditions.

See also
● “Outer joins and join conditions” on page 442
● “Key joins” on page 460

Cross joins

A cross join of two tables produces all possible combinations of rows from the two tables. A cross join is
also called a cross product or Cartesian product.

Each row of the first table appears once with each row of the second table. So, the number of rows in the
result set is the product of the number of rows in the first table and the number of rows in the second
table, minus any rows that are omitted because of restrictions in a WHERE clause.

You cannot use an ON clause with cross joins. However, you can put restrictions in a WHERE clause.

Joins: Retrieving data from several tables

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 439

Inner and outer modifiers do not apply to cross joins
Except in the presence of additional restrictions in the WHERE clause, all rows of both tables always
appear in the result set of cross joins. So, the keywords INNER, LEFT OUTER and RIGHT OUTER are
not applicable to cross joins.

For example, the following statement joins two tables.

SELECT *
FROM A CROSS JOIN B;

The result set from this query includes all columns in A and all columns in B. There is one row in the
result set for each combination of a row in A and a row in B. If A has n rows and B has m rows, the query
returns n x m rows.

Commas

A comma works like a join operator, but is not one. A comma creates a cross product exactly as the
keyword CROSS JOIN does. However, join keywords create table expressions, and commas create lists
of table expressions.

In the following simple inner join of two tables, a comma and the keywords CROSS JOIN are equivalent:

SELECT *
FROM A CROSS JOIN B CROSS JOIN C
WHERE A.x = B.y;

and

SELECT *
FROM A, B, C
WHERE A.x = B.y;

Generally, you can use a comma instead of the keywords CROSS JOIN. The comma syntax is equivalent
to cross join syntax, except for generated join conditions in table expressions using commas.

In the syntax of star joins, commas have a special use.

See also
● “Key joins of table expressions” on page 464
● “Duplicate correlation names in joins (star joins)” on page 449

Inner and outer joins

The keywords INNER, LEFT OUTER, RIGHT OUTER, and FULL OUTER may be used to modify key
joins, natural joins, and joins with an ON clause. The default is INNER. These modifiers do not apply to
cross joins.

Query and modify data

440 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Inner joins

By default, joins are inner joins. This means that rows are included in the result set only if they satisfy
the join condition.

Example
For example, each row of the result set of the following query contains the information from one
Customers row and one SalesOrders row, satisfying the key join condition. If a particular customer has
placed no orders, the condition is not satisfied and the result set does not contain the row corresponding to
that customer.

SELECT GivenName, Surname, OrderDate
FROM Customers KEY INNER JOIN SalesOrders
ORDER BY OrderDate;

GivenName Surname OrderDate

Hardy Mums 2000-01-02

Aram Najarian 2000-01-03

Tommie Wooten 2000-01-03

Alfredo Margolis 2000-01-06

...

Because inner joins and key joins are the defaults, you obtain the same results as above using the FROM
clause as follows:

SELECT GivenName, Surname, OrderDate
FROM Customers JOIN SalesOrders
ORDER BY OrderDate;

Outer joins

Typically, you create joins that return rows only if they satisfy join conditions; these are called inner
joins, and are the default join used when querying. However, sometimes you may want to preserve all the
rows in one table. To do this, you use an outer join.

A left or right outer join of two tables preserves all the rows in one table, and supplies nulls for the other
table when it does not meet the join condition. A left outer join preserves every row in the left table, and
a right outer join preserves every row in the right table. In a full outer join, all rows from both tables are
preserved and both tables are null-supplying.

The table expressions on either side of a left or right outer join are referred to as preserved and null-
supplying. In a left outer join, the left table expression is preserved and the right table expression is null-
supplying. In a full outer join both left and right table expressions are preserved and both are null-
supplying.

Joins: Retrieving data from several tables

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 441

Example
The following statement includes all customers. If a particular customer has not placed an order, each
column in the result that corresponds to order information contains the NULL value.

SELECT Surname, OrderDate, City
FROM Customers LEFT OUTER JOIN SalesOrders
 ON Customers.ID = SalesOrders.CustomerID
WHERE Customers.State = 'NY'
ORDER BY OrderDate;

Surname OrderDate City

Thompson (NULL) Bancroft

Reiser 2000-01-22 Rockwood

Clarke 2000-01-27 Rockwood

Mentary 2000-01-30 Rockland

...

You can interpret the outer join in this statement as follows. Note that this is a conceptual explanation,
and does not represent how SQL Anywhere actually computes the result set.

● Return one row for every sales order placed by a customer. More than one row is returned when the
customer placed two or more sales orders, because a row is returned for each sales order. This is the
same result as an inner join. The ON condition is used to match customer and sales order rows. The
WHERE clause is not used for this step.

● Include one row for every customer who has not placed any sales orders. This ensures that every row in
the Customers table is included. For all these rows, the columns from SalesOrders are filled with nulls.
These rows are added because the keyword OUTER is used, and would not have appeared in an inner
join. Neither the ON condition nor the WHERE clause is used for this step.

● Exclude every row where the customer does not live in New York, using the WHERE clause.

See also
● “Transact-SQL outer joins (*= or =*)” on page 445
● “Key joins” on page 460

Outer joins and join conditions

A common mistake with outer joins is the placement of the join condition. If you place restrictions on the
null-supplying table in a WHERE clause, the join is usually equivalent to an inner join.

The reason for this is that most search conditions cannot evaluate to TRUE when any of their inputs are
NULL. The WHERE clause restriction on the null-supplying table compares values to NULL, resulting in

Query and modify data

442 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

the elimination of the row from the result set. The rows in the preserved table are not preserved and so the
join is an inner join.

The exception to this is comparisons that can evaluate to true when any of their inputs are NULL. These
include IS NULL, IS UNKNOWN, IS FALSE, IS NOT TRUE, and expressions involving ISNULL or
COALESCE.

Example
For example, the following statement computes a left outer join.

SELECT *
FROM Customers KEY LEFT OUTER JOIN SalesOrders
 ON SalesOrders.OrderDate < '2000-01-03';

In contrast, the following statement creates an inner join.

SELECT Surname, OrderDate
FROM Customers KEY LEFT OUTER JOIN SalesOrders
 WHERE SalesOrders.OrderDate < '2000-01-03';

The first of these two statements can be thought of as follows: First, left-outer join the Customers table to
the SalesOrders table. The result set includes every row in the Customers table. For those customers who
have no orders before January 3 2000, fill the sales order fields with nulls.

In the second statement, first left-outer join Customers and SalesOrders. The result set includes every row
in the Customers table. For those customers who have no orders, fill the sales order fields with nulls.
Next, apply the WHERE condition by selecting only those rows in which the customer has placed an
order since January 3 2000. For those customers who have not placed orders, these values are NULL.
Comparing any value to NULL evaluates to UNKNOWN. So, these rows are eliminated and the statement
reduces to an inner join.

See also
● “Search conditions” [SQL Anywhere Server - SQL Reference]

Complex outer joins

The order of joins is important when a query includes table expressions using outer joins. For example, A
JOIN B LEFT OUTER JOIN C is interpreted as (A JOIN B) LEFT OUTER JOIN C. This
means that the table expression (A JOIN B) is joined to C. The table expression (A JOIN B) is
preserved and table C is null-supplying.

Consider the following statement, in which A, B and C are tables:

SELECT *
FROM A LEFT OUTER JOIN B RIGHT OUTER JOIN C;

To understand this statement, first remember that SQL Anywhere evaluates statements from left to right,
adding parentheses. This results in

SELECT *
FROM (A LEFT OUTER JOIN B) RIGHT OUTER JOIN C;

Joins: Retrieving data from several tables

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 443

Next, you may want to convert the right outer join to a left outer join so that both joins are the same type.
To do this, simply reverse the position of the tables in the right outer join, resulting in:

SELECT *
FROM C LEFT OUTER JOIN (A LEFT OUTER JOIN B);

A is the preserved table and B is the null-supplying table for the nested outer join. C is the preserved table
for the first outer join.

You can interpret this join as follows:

● Join A to B, preserving all rows in A.

● Next, join C to the results of the join of A and B, preserving all rows in C.

The join does not have an ON clause, and so is by default a key join.

In addition, the join condition for an outer join must only include tables that have previously been
referenced in the FROM clause. This restriction is according to the ANSI/ISO standard, and is enforced to
avoid ambiguity. For example, the following two statements are syntactically incorrect, because C is
referenced in the join condition before the table itself is referenced.

SELECT *
FROM (A LEFT OUTER JOIN B ON B.x = C.x) JOIN C;

and

SELECT *
FROM A LEFT OUTER JOIN B ON A.x = C.x, C;

See also
● “Key joins of table expressions that do not contain commas” on page 464

Outer joins of views and derived tables

Outer joins can also be specified for views and derived tables.

The statement

SELECT *
FROM V LEFT OUTER JOIN A ON (V.x = A.x);

can be interpreted as follows:

● Compute the view V.

● Join all the rows from the computed view V with A by preserving all the rows from V, using the join
condition V.x = A.x.

Query and modify data

444 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Example
The following example defines a view called V that returns the employee IDs and department names of
women who make over $60000.

CREATE VIEW V AS
SELECT Employees.EmployeeID, DepartmentName
 FROM Employees JOIN Departments
 ON Employees.DepartmentID = Departments.DepartmentID
 WHERE Sex = 'F' and Salary > 60000;

Next, use this view to add a list of the departments where the women work and the regions where they
have sold. The view V is preserved and SalesOrders is null-supplying.

SELECT DISTINCT V.EmployeeID, Region, V.DepartmentName
 FROM V LEFT OUTER JOIN SalesOrders
 ON V.EmployeeID = SalesOrders.SalesRepresentative;

EmployeeID Region DepartmentName

243 (NULL) R & D

316 (NULL) R & D

529 (NULL) R & D

902 Eastern Sales

...

Transact-SQL outer joins (*= or =*)

Note
Support for the Transact-SQL outer join operators *= and =* is deprecated and will be removed in a
future release.

In accordance with ANSI/ISO SQL standards, SQL Anywhere supports the LEFT OUTER, RIGHT
OUTER, and FULL OUTER keywords. For compatibility with Adaptive Server Enterprise before version
12, SQL Anywhere also supports the Transact-SQL counterparts of these keywords, *= and =*, providing
the tsql_outer_joins database option is set to On.

There are some limitations and potential problems with the Transact-SQL semantics. For a detailed
discussion of Transact-SQL outer joins, see the white paper "Semantics and Compatibility of Transact-
SQL Outer Joins" at http://www.sybase.com/detail?id=1017447.

In the Transact-SQL dialect, you create outer joins by supplying a comma-separated list of tables in the
FROM clause, and using the special operators *= or =* in the WHERE clause. In Adaptive Server
Enterprise before version 12, the join condition must appear in the WHERE clause (ON was not
supported).

Joins: Retrieving data from several tables

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 445

http://www.sybase.com/detail?id=1017447

Caution
When you are creating outer joins, do not mix *= syntax with ON clause syntax. This restriction also
applies to views that are referenced in the query.

See also
● “tsql_outer_joins option” [SQL Anywhere Server - Database Administration]

Example
The following left outer join lists all customers and finds their order dates (if any):

SELECT GivenName, Surname, OrderDate
FROM Customers, SalesOrders
WHERE Customers.ID *= SalesOrders.CustomerID
ORDER BY OrderDate;

This statement is equivalent to the following statement, in which ANSI/ISO syntax is used:

SELECT GivenName, Surname, OrderDate
FROM Customers LEFT OUTER JOIN SalesOrders
ON Customers.ID = SalesOrders.CustomerID
ORDER BY OrderDate;

Transact-SQL outer join limitations

Note
Support for Transact-SQL outer join operators *= and =* is deprecated and will be removed in a future
release.

There are several restrictions for Transact-SQL outer joins:

● If you specify an outer join and a qualification on a column from the null-supplying table of the outer
join, the results may not be what you expect. The qualification in the query does not exclude rows from
the result set, but rather affects the values that appear in the rows of the result set. For rows that do not
meet the qualification, a NULL value appears in the null-supplying table.

● You cannot mix ANSI/ISO SQL syntax and Transact-SQL outer join syntax in a single query. If a view
is defined using one dialect for an outer join, you must use the same dialect for any outer-join queries
on that view.

● A null-supplying table cannot participate in both a Transact-SQL outer join and a regular join or two
outer joins. For example, the following WHERE clause is not allowed, because table S violates this
limitation.

WHERE R.x *= S.x
AND S.y = T.y

When you cannot rewrite your query to avoid using a table in both an outer join and a regular join
clause, you must divide your statement into two separate queries, or use only ANSI/ISO SQL syntax.

Query and modify data

446 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● You cannot use a subquery that contains a join condition involving the null-supplying table of an outer
join. For example, the following WHERE clause is not allowed:

WHERE R.x *= S.y
AND EXISTS (SELECT *
 FROM T
 WHERE T.x = S.x)

Views and Transact-SQL outer joins

If you define a view with an outer join, and then query the view with a qualification on a column from the
null-supplying table of the outer join, the results may not be what you expect. The query returns all rows
from the null-supplying table. Rows that do not meet the qualification show a NULL value in the
appropriate columns of those rows.

The following rules determine what types of updates you can make to columns through views that contain
outer joins:

● INSERT and DELETE statements are not allowed on outer join views.

● UPDATE statements are allowed on outer join views. If the view is defined WITH CHECK option, the
update fails if any of the affected columns appears in the WHERE clause in an expression that includes
columns from more than one table.

How NULL affects Transact-SQL joins

NULL values in tables or views being joined never match each other in a Transact-SQL outer join. The
result of comparing a NULL value with any other NULL value is FALSE.

Specialized joins
This section describes how to create some specialized joins such as self-joins, star joins, and joins using
derived tables.

Self-joins

In a self-join, a table is joined to itself by referring to the same table using a different correlation name.

Example 1
The following self-join produces a list of pairs of employees. Each employee name appears in
combination with every employee name.

SELECT a.GivenName, a.Surname,
 b.GivenName, b.Surname
FROM Employees AS a CROSS JOIN Employees AS b;

Joins: Retrieving data from several tables

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 447

GivenName Surname GivenName Surname

Fran Whitney Fran Whitney

Fran Whitney Matthew Cobb

Fran Whitney Philip Chin

Fran Whitney Julie Jordan

...

Since the Employees table has 75 rows, this join contains 75 x 75 = 5625 rows. It includes, as well, rows
that list each employee with themselves. For example, it contains the row

GivenName Surname GivenName Surname

Fran Whitney Fran Whitney

If you want to exclude rows that contain the same name twice, add the join condition that the employee
IDs should not be equal to each other.

SELECT a.GivenName, a.Surname,
 b.GivenName, b.Surname
FROM Employees AS a CROSS JOIN Employees AS b
WHERE a.EmployeeID != b.EmployeeID;

Without these duplicate rows, the join contains 75 x 74 = 5550 rows.

This new join contains rows that pair each employee with every other employee, but because each pair of
names can appear in two possible orders, each pair appears twice. For example, the result of the above
join contains the following two rows.

GivenName Surname GivenName Surname

Matthew Cobb Fran Whitney

Fran Whitney Matthew Cobb

If the order of the names is not important, you can produce a list of the (75 x 74)/2 = 2775 unique pairs.

SELECT a.GivenName, a.Surname,
 b.GivenName, b.Surname
FROM Employees AS a CROSS JOIN Employees AS b
WHERE a.EmployeeID < b.EmployeeID;

This statement eliminates duplicate lines by selecting only those rows in which the EmployeeID of
employee a is less than that of employee b.

Query and modify data

448 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Example 2
The following self-join uses the correlation names report and manager to distinguish two instances of the
Employees table, and creates a list of employees and their managers.

SELECT report.GivenName, report.Surname,
 manager.GivenName, manager.Surname
FROM Employees AS report JOIN Employees AS manager
 ON (report.ManagerID = manager.EmployeeID)
ORDER BY report.Surname, report.GivenName;

This statement produces the result shown partially below. The employee names appear in the two left
columns, and the names of their managers are on the right.

GivenName Surname GivenName Surname

Alex Ahmed Scott Evans

Joseph Barker Jose Martinez

Irene Barletta Scott Evans

Jeannette Bertrand Jose Martinez

...

Example 3
The following self-join produces a list of all managers who have two levels of reports, and the number of
second-level reports they have.

SELECT higher.managerID, count(*) second_level_reports
FROM employees lower JOIN employees higher
 ON (lower.managerID = higher.employeeID)
GROUP BY higher.managerID
ORDER BY higher.managerID DESC;

The result of the above query contains the following rows:

ManagerID second_level_reports

1293 30

902 23

501 22

Duplicate correlation names in joins (star joins)

The reason for using duplicate table names is to create a star join. In a star join, one table or view is
joined to several others.

Joins: Retrieving data from several tables

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 449

To create a star join, you use the same table name, view name, or correlation name more than once in the
FROM clause. This is an extension to the ANSI/ISO SQL standard. The ability to use duplicate names
does not add any additional functionality, but it makes it easier to formulate certain queries.

The duplicate names must be in different joins for the syntax to make sense. When a table name or view
name is used twice in the same join, the second instance is ignored. For example, FROM A,A and FROM
A CROSS JOIN A are both interpreted as FROM A.

The following example, in which A, B and C are tables, is valid in SQL Anywhere. In this example, the
same instance of table A is joined both to B and C. Note that a comma is required to separate the joins in a
star join. The use of a comma in star joins is specific to the syntax of star joins.

SELECT *
FROM A LEFT OUTER JOIN B ON A.x = B.x,
 A LEFT OUTER JOIN C ON A.y = C.y;

The next example is equivalent.

SELECT *
FROM A LEFT OUTER JOIN B ON A.x = B.x,
 C RIGHT OUTER JOIN A ON A.y = C.y;

Both of these are equivalent to the following standard ANSI/ISO syntax. (The parentheses are optional.)

SELECT *
FROM (A LEFT OUTER JOIN B ON A.x = B.x)
LEFT OUTER JOIN C ON A.y = C.y;

In the next example, table A is joined to three tables: B, C and D.

SELECT *
FROM A JOIN B ON A.x = B.x,
 A JOIN C ON A.y = C.y,
 A JOIN D ON A.w = D.w;

This is equivalent to the following standard ANSI/ISO syntax. (The parentheses are optional.)

SELECT *
FROM ((A JOIN B ON A.x = B.x)
JOIN C ON A.y = C.y)
JOIN D ON A.w = D.w;

With complex joins, it can help to draw a diagram. The previous example can be described by the
following diagram, which illustrates that tables B, C and D are joined via table A.

Note
You can use duplicate table names only if the extended_join_syntax option is On (the default).

-

Query and modify data

450 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Example 1
Create a list of the names of the customers who placed orders with Rollin Overbey. Notice that one of the
tables in the FROM clause, Employees, does not contribute any columns to the results. Nor do any of the
columns that are joined—such as Customers.ID or Employees.EmployeeID—appear in the results.
Nonetheless, this join is possible only using the Employees table in the FROM clause.

SELECT Customers.GivenName, Customers.Surname,
 SalesOrders.OrderDate
FROM SalesOrders KEY JOIN Customers,
 SalesOrders KEY JOIN Employees
WHERE Employees.GivenName = 'Rollin'
 AND Employees.Surname = 'Overbey'
ORDER BY SalesOrders.OrderDate;

GivenName Surname OrderDate

Tommie Wooten 2000-01-03

Michael Agliori 2000-01-08

Salton Pepper 2000-01-17

Tommie Wooten 2000-01-23

...

Following is the equivalent statement in standard ANSI/ISO syntax:

SELECT Customers.GivenName, Customers.Surname,
 SalesOrders.OrderDate
FROM SalesOrders JOIN Customers
 ON SalesOrders.CustomerID =
 Customers.ID
JOIN Employees
 ON SalesOrders.SalesRepresentative =
 Employees.EmployeeID
WHERE Employees.GivenName = 'Rollin'
 AND Employees.Surname = 'Overbey'
ORDER BY SalesOrders.OrderDate;

Example 2
This example answers the question: How much of each product has each customer ordered, and who is the
manager of the salesperson who took the order?

To answer the question, start by listing the information you need to retrieve. In this case, it is product,
quantity, customer name, and manager name. Next, list the tables that hold this information. They are
Products, SalesOrderItems, Customers, and Employees. When you look at the structure of the SQL
Anywhere sample database, you see that these tables are all related through the SalesOrders table. You
can create a star join on the SalesOrders table to retrieve the information from the other tables.

In addition, you need to create a self-join to get the name of the manager, because the Employees table
contains ID numbers for managers and the names of all employees, but not a column listing only manager
names.

Joins: Retrieving data from several tables

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 451

The following statement creates a star join around the SalesOrders table. The joins are all outer joins so
that the result set will include all customers. Some customers have not placed orders, so the other values
for these customers are NULL. The columns in the result set are Customers, Products, Quantity ordered,
and the name of the manager of the salesperson.

SELECT Customers.GivenName, Products.Name,
 SUM(SalesOrderItems.Quantity), m.GivenName
FROM SalesOrders
 KEY RIGHT OUTER JOIN Customers,
 SalesOrders
 KEY LEFT OUTER JOIN SalesOrderItems
 KEY LEFT OUTER JOIN Products,
 SalesOrders
 KEY LEFT OUTER JOIN Employees AS e
 LEFT OUTER JOIN Employees AS m
 ON (e.ManagerID = m.EmployeeID)
WHERE Customers.State = 'CA'
GROUP BY Customers.GivenName, Products.Name, m.GivenName
ORDER BY SUM(SalesOrderItems.Quantity) DESC,
 Customers.GivenName;

GivenName Name SUM(SalesOrderItems.Quantity) GivenName

Sheng Baseball Cap 240 Moira

Laura Tee Shirt 192 Moira

Moe Tee Shirt 192 Moira

Leilani Sweatshirt 132 Moira

...

Following is a diagram of the tables in this star join. The arrows indicate the directionality (left or right)
of the outer joins. As you can see, the complete list of customers is maintained throughout all the joins.

The following standard ANSI/ISO syntax is equivalent to the star join in Example 2.

Query and modify data

452 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SELECT Customers.GivenName, Products.Name,
 SUM(SalesOrderItems.Quantity), m.GivenName
FROM SalesOrders LEFT OUTER JOIN SalesOrderItems
 ON SalesOrders.ID = SalesOrderItems.ID
 LEFT OUTER JOIN Products
 ON SalesOrderItems.ProductID = Products.ID
 LEFT OUTER JOIN Employees as e
 ON SalesOrders.SalesRepresentative = e.EmployeeID
 LEFT OUTER JOIN Employees as m
 ON e.ManagerID = m.EmployeeID
 RIGHT OUTER JOIN Customers
 ON SalesOrders.CustomerID = Customers.ID
WHERE Customers.State = 'CA'
GROUP BY Customers.GivenName, Products.Name, m.GivenName
ORDER BY SUM(SalesOrderItems.Quantity) DESC,
 Customers.GivenName;

See also
● “Sample database schema” on page 430
● “extended_join_syntax option” [SQL Anywhere Server - Database Administration]
● “Self-joins” on page 447

Joins that use derived tables

Derived tables allow you to nest queries within a FROM clause. With derived tables, you can perform
grouping of groups, or you can construct a join with a group, without having to create a separate view or
table and join to it.

In the following example, the inner SELECT statement (enclosed in parentheses) creates a derived table,
grouped by customer ID values. The outer SELECT statement assigns this table the correlation name
sales_order_counts and joins it to the Customers table using a join condition.

SELECT Surname, GivenName, number_of_orders
FROM Customers JOIN
 (SELECT CustomerID, COUNT(*)
 FROM SalesOrders
 GROUP BY CustomerID)
 AS sales_order_counts (CustomerID, number_of_orders)
 ON (Customers.ID = sales_order_counts.CustomerID)
WHERE number_of_orders > 3;

The result is a table of the names of those customers who have placed more than three orders, including
the number of orders each has placed.

See also
● “Key joins of views and derived tables” on page 468
● “Natural joins of views and derived tables” on page 459
● “Outer joins of views and derived tables” on page 444

Joins: Retrieving data from several tables

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 453

Joins resulting from apply expressions

An apply expression is an easy way to specify joins where the right side is dependent upon the left. For
example, use an apply expression to evaluate a procedure or derived table once for each row in a table
expression. Apply expressions are placed in the FROM clause of a SELECT statement, and do not permit
the use of an ON clause.

An APPLY combines rows from multiple sources, similar to a JOIN except that you cannot specify an
ON condition for APPLY. The main difference between an APPLY and a JOIN is that the right side of an
APPLY can change depending on the current row from the left side. For each row on the left side, the
right side is recalculated and the resulting rows are joined with the row on the left. In the case where a
row on the left side returns more than one row on the right, the left side is duplicated in the results as
many times as there are rows returned from the right.

There are two types of APPLY you can specify: CROSS APPLY and OUTER APPLY. CROSS APPLY
returns only rows on the left side that produce results on the right side. OUTER APPLY returns all rows
that a CROSS APPLY returns, plus all rows on the left side for which the right side does not return rows
(by supplying NULLs for the right side).

The syntax of an apply expression is as follows:

table-expression { CROSS | OUTER } APPLY table-expression

Example
The following example creates a procedure, EmployeesWithHighSalary, which takes as input a
department ID, and returns the names of all employees in that department with salaries greater than
$80,000.

CREATE PROCEDURE EmployeesWithHighSalary(IN dept INTEGER)
 RESULT (Name LONG VARCHAR)
 BEGIN
 SELECT E.GivenName || ' ' || E.Surname
 FROM Employees E
 WHERE E.DepartmentID = dept AND E.Salary > 80000;
 END;

The following query uses OUTER APPLY to join the Departments table to the results of the
EmployeesWithHighSalary procedure, and return the names of all employees with salary greater than
$80,000 in each department. The query returns rows with NULL on the right side, indicating that there
were no employees with salaries over $80,000 in the respective departments.

SELECT D.DepartmentName, HS.Name
 FROM Departments D
 OUTER APPLY EmployeesWithHighSalary(D.DepartmentID) AS HS;

DepartmentName Name

R & D Kim Lull

R & D David Scott

Query and modify data

454 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

DepartmentName Name

R & D John Sheffield

Sales Moira Kelly

Finance Mary Anne Shea

Marketing NULL

Shipping NULL

The next query uses a CROSS APPLY to join the Departments table to the results of the
EmployeesWithHighSalary procedure. Note that rows with NULL on the right side are not included.

SELECT D.DepartmentName, HS.Name
 FROM Departments D
 CROSS APPLY EmployeesWithHighSalary(D.DepartmentID) AS HS;

DepartmentName Name

R & D Kim Lull

R & D David Scott

R & D John Sheffield

Sales Moira Kelly

Finance Mary Anne Shea

The next query returns the same results as the previous query, but uses a derived table as the right side of
the CROSS APPLY.

SELECT D.DepartmentName, HS.Name
 FROM Departments D
 CROSS APPLY (
 SELECT E.GivenName || ' ' || E.Surname
 FROM Employees E
 WHERE E.DepartmentID = D.DepartmentID AND E.Salary > 80000
) HS(Name);

See also
● “FROM clause” [SQL Anywhere Server - SQL Reference]
● “Key joins” on page 460
● “Cross joins” on page 439
● “Inner and outer joins” on page 440

Joins: Retrieving data from several tables

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 455

Natural joins

When you specify a natural join, SQL Anywhere generates a join condition based on columns with the
same name. For this to work in a natural join of base tables, there must be at least one pair of columns
with the same name, with one column from each table. If there is no common column name, an error is
issued.

If table A and table B have one column name in common, and that column is called x, then

SELECT *
FROM A NATURAL JOIN B;

is equivalent to the following:

SELECT *
FROM A JOIN B
 ON A.x = B.x;

If table A and table B have two column names in common, and they are called a and b, then A NATURAL
JOIN B is equivalent to the following:

A JOIN B
 ON A.a = B.a
 AND A.b = B.b;

Example 1
For example, you can join the Employees and Departments tables using a natural join because they have a
column name in common, the DepartmentID column.

SELECT GivenName, Surname, DepartmentName
FROM Employees NATURAL JOIN Departments
ORDER BY DepartmentName, Surname, GivenName;

GivenName Surname DepartmentName

Janet Bigelow Finance

Kristen Coe Finance

James Coleman Finance

Jo Ann Davidson Finance

...

The following statement is equivalent. It explicitly specifies the join condition that was generated in the
previous example.

SELECT GivenName, Surname, DepartmentName
FROM Employees JOIN Departments
 ON (Employees.DepartmentID = Departments.DepartmentID)
ORDER BY DepartmentName, Surname, GivenName;

Query and modify data

456 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Example 2
In Interactive SQL, execute the following query:

SELECT Surname, DepartmentName
FROM Employees NATURAL JOIN Departments;

Surname DepartmentName

Whitney R & D

Cobb R & D

Breault R & D

Shishov R & D

Driscoll R & D

... ...

SQL Anywhere looks at the two tables and determines that the only column name they have in common is
DepartmentID. The following ON CLAUSE is internally generated and used to perform the join:

FROM Employees JOIN Departments
 ON Employees.DepartmentID = Departments.DepartmentID

NATURAL JOIN is just a shortcut for entering the ON clause; the two queries are identical.

Errors using NATURAL JOIN

The NATURAL JOIN operator can cause problems by equating columns you may not intend to be
equated. For example, the following query generates unwanted results:

SELECT *
FROM SalesOrders NATURAL JOIN Customers;

The result of this query has no rows. SQL Anywhere internally generates the following ON clause:

FROM SalesOrders JOIN Customers
 ON SalesOrders.ID = Customers.ID

The ID column in the SalesOrders table is an ID number for the order. The ID column in the Customers
table is an ID number for the customer. None of them match. Of course, even if a match were found, it
would be a meaningless one.

Natural joins with an ON clause

When you specify a NATURAL JOIN and put a join condition in an ON clause, the result is the
conjunction of the two join conditions.

Joins: Retrieving data from several tables

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 457

For example, the following two queries are equivalent. In the first query, SQL Anywhere generates the
join condition Employees.DepartmentID = Departments.DepartmentID. The query also
contains an explicit join condition.

SELECT GivenName, Surname, DepartmentName
FROM Employees NATURAL JOIN Departments
 ON Employees.ManagerID = Departments.DepartmentHeadID;

The next query is equivalent. In it, the natural join condition that was generated in the previous query is
specified in the ON clause.

SELECT GivenName, Surname, DepartmentName
FROM Employees JOIN Departments
 ON Employees.ManagerID = Departments.DepartmentHeadID
 AND Employees.DepartmentID = Departments.DepartmentID;

Natural joins of table expressions

When there is a multiple-table expression on at least one side of a natural join, SQL Anywhere generates
a join condition by comparing the set of columns for each side of the join operator, and looking for
columns that have the same name.

For example, in the statement

SELECT *
FROM (A JOIN B) NATURAL JOIN (C JOIN D);

there are two table expressions. The column names in the table expression A JOIN B are compared to
the column names in the table expression C JOIN D, and a join condition is generated for each
unambiguous pair of matching column names. An unambiguous pair of matching columns means that
the column name occurs in both table expressions, but does not occur twice in the same table expression.

If there is a pair of ambiguous column names, an error is issued. However, a column name may occur
twice in the same table expression, as long as it doesn't also match the name of a column in the other table
expression.

Natural joins of lists
When a list of table expressions is on at least one side of a natural join, a separate join condition is
generated for each table expression in the list.

Consider the following tables:

● table A consists of columns called a, b and c

● table B consists of columns called a and d

● table C consists of columns called d and c

In this case, the join (A,B) NATURAL JOIN C causes SQL Anywhere to generate two join
conditions:

Query and modify data

458 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

ON A.c = C.c
 AND B.d = C.d

If there is no common column name for A-C or B-C, an error is issued.

If table C consists of columns a, d, and c, then the join (A,B) NATURAL JOIN C is invalid. The
reason is that column a appears in all three tables, and so the join is ambiguous.

Example
The following example answers the question: for each sale, provide information about what was sold and
who sold it.

SELECT *
FROM (Employees KEY JOIN SalesOrders)
 NATURAL JOIN (SalesOrderItems KEY JOIN Products);

This is equivalent to

SELECT *
FROM (Employees KEY JOIN SalesOrders)
 JOIN (SalesOrderItems KEY JOIN Products)
 ON SalesOrders.ID = SalesOrderItems.ID;

Natural joins of views and derived tables

An extension to the ANSI/ISO SQL standard is that you can specify views or derived tables on either side
of a natural join. In the following statement,

SELECT *
FROM View1 NATURAL JOIN View2;

the columns in View1 are compared to the columns in View2. If, for example, a column called
EmployeeID is found to occur in both views, and there are no other columns that have identical names,
then the generated join condition is (View1.EmployeeID = View2.EmployeeID).

Example
The following example illustrates that a view used in a natural join can include expressions, and not just
columns, and they are treated the same way in the natural join. First, create the view V with a column
called x, as follows:

CREATE VIEW V(x) AS
SELECT R.y + 1
FROM R;

Next, create a natural join of the view to a derived table. The derived table has a correlation name T with
a column called x.

SELECT *
FROM V NATURAL JOIN (SELECT P.y FROM P) as T(x);

This join is equivalent to the following:

Joins: Retrieving data from several tables

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 459

SELECT *
FROM V JOIN (SELECT P.y FROM P) as T(x) ON (V.x = T.x);

Key joins
Many common joins are between two tables related by a foreign key. The most common join restricts
foreign key values to be equal to primary key values. The KEY JOIN operator joins two tables based on a
foreign key relationship. In other words, SQL Anywhere generates an ON clause that equates the primary
key column from one table with the foreign key column of the other. To use a key join, there must be a
foreign key relationship between the tables, or an error is issued.

A key join can be considered a shortcut for the ON clause; the two queries are identical. However, you
can also use the ON clause with a KEY JOIN. Key join is the default when you specify JOIN but do not
specify CROSS, NATURAL, KEY, or use an ON clause. If you look at the diagram of the SQL
Anywhere sample database, lines between tables represent foreign keys. You can use the KEY JOIN
operator anywhere two tables are joined by a line in the diagram.

When key join is the default
Key join is the default in SQL Anywhere when all the following apply:

● the keyword JOIN is used.

● the keywords CROSS, NATURAL or KEY are not specified.

● there is no ON clause.

See also
● “Tutorial: Connecting to the sample database” [SQL Anywhere Server - Database Administration]

Example
For example, the following query joins the tables Products and SalesOrderItems based on the foreign key
relationship in the database.

SELECT *
FROM Products KEY JOIN SalesOrderItems;

The next query is equivalent. It leaves out the word KEY, but by default a JOIN without an ON clause is a
KEY JOIN.

SELECT *
FROM Products JOIN SalesOrderItems;

The next query is also equivalent because the join condition specified in the ON clause is the same as the
join condition that SQL Anywhere generates for these tables based on their foreign key relationship in the
SQL Anywhere sample database.

SELECT *
FROM Products JOIN SalesOrderItems
ON SalesOrderItems.ProductID = Products.ID;

Query and modify data

460 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Key joins with an ON clause

When you specify a KEY JOIN and put a join condition in an ON clause, the result is the conjunction of
the two join conditions. For example:

SELECT *
FROM A KEY JOIN B
ON A.x = B.y;

If the join condition generated by the key join of A and B is A.w = B.z, then this query is equivalent to

SELECT *
FROM A JOIN B
ON A.x = B.y AND A.w = B.z;

Key joins when there are multiple foreign key relationships

When SQL Anywhere attempts to generate a join condition based on a foreign key relationship, it
sometimes finds more than one relationship. In these cases, SQL Anywhere determines which foreign key
relationship to use by matching the role name of the foreign key to the correlation name of the primary
key table that the foreign key references.

The following sections describe how SQL Anywhere generates join conditions for key joins.

Correlation name and role name
A correlation name is the name of a table or view that is used in the FROM clause of the query—either
its original name, or an alias that is defined in the FROM clause.

A role name is the name of the foreign key. It must be unique for a given foreign (child) table.

If you do not specify a role name for a foreign key, the name is assigned as follows:

● If there is no foreign key with the same name as the primary table name, the primary table name is
assigned as the role name.

● If the primary table name is already being used by another foreign key, the role name is the primary
table name concatenated with a zero-padded three-digit number unique to the foreign table.

If you don't know the role name of a foreign key, you can find it in Sybase Central by expanding the
database container in the left pane. Select the table in left pane, and then click the Constraints tab in the
right pane. A list of foreign keys for that table appears in the right pane.

Generating join conditions
SQL Anywhere looks for a foreign key that has the same role name as the correlation name of the primary
key table:

● If there is exactly one foreign key with the same name as a table in the join, SQL Anywhere uses it to
generate the join condition.

Joins: Retrieving data from several tables

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 461

● If there is more than one foreign key with the same name as a table, the join is ambiguous and an error
is issued.

● If there is no foreign key with the same name as the table, SQL Anywhere looks for any foreign key
relationship, even if the names don't match. If there is more than one foreign key relationship, the join
is ambiguous and an error is issued.

See also
● “Rules describing the operation of key joins” on page 470
● “Sample database schema” on page 430

Example 1
In the SQL Anywhere sample database, two foreign key relationships are defined between the tables
Employees and Departments: the foreign key FK_DepartmentID_DepartmentID in the Employees table
references the Departments table; and the foreign key FK_DepartmentHeadID_EmployeeID in the
Departments table references the Employees table.

The following query is ambiguous because there are two foreign key relationships and neither has the
same role name as the primary key table name. Therefore, attempting this query results in the syntax error
SQLE_AMBIGUOUS_JOIN (-147).

SELECT Employees.Surname, Departments.DepartmentName
FROM Employees KEY JOIN Departments;

Example 2
This query modifies the query in Example 1 by specifying the correlation name
FK_DepartmentID_DepartmentID for the Departments table. Now, the foreign key

Query and modify data

462 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

FK_DepartmentID_DepartmentID has the same name as the table it references, and so it is used to define
the join condition. The result includes all the employee last names and the departments where they work.

SELECT Employees.Surname,
 FK_DepartmentID_DepartmentID.DepartmentName
FROM Employees KEY JOIN Departments
 AS FK_DepartmentID_DepartmentID;

The following query is equivalent. It is not necessary to create an alias for the Departments table in this
example. The same join condition that was generated above is specified in the ON clause in this query:

SELECT Employees.Surname, Departments.DepartmentName
FROM Employees JOIN Departments
 ON Departments.DepartmentID = Employees.DepartmentID;

Example 3
If the intent was to list all the employees that are the head of a department, then the foreign key
FK_DepartmentHeadID_EmployeeID should be used and Example 1 should be rewritten as follows. This
query imposes the use of the foreign key FK_DepartmentHeadID_EmployeeID by specifying the
correlation name FK_DepartmentHeadID_EmployeeID for the primary key table Employees.

SELECT FK_DepartmentHeadID_EmployeeID.Surname, Departments.DepartmentName
FROM Employees AS FK_DepartmentHeadID_EmployeeID
 KEY JOIN Departments;

The following query is equivalent. The join condition that was generated above is specified in the ON
clause in this query:

SELECT Employees.Surname, Departments.DepartmentName
FROM Employees JOIN Departments
 ON Departments.DepartmentHeadID = Employees.EmployeeID;

Example 4
A correlation name is not needed if the foreign key role name is identical to the primary key table name.
For example, you can define the foreign key Departments for the Employees table:

ALTER TABLE Employees
 ADD FOREIGN KEY Departments (DepartmentID)
 REFERENCES Departments (DepartmentID);

Now, this foreign key relationship is the default join condition when a KEY JOIN is specified between
the two tables. If the foreign key Departments is defined, then the following query is equivalent to
Example 3.

SELECT Employees.Surname, Departments.DepartmentName
FROM Employees KEY JOIN Departments;

Note
If you try this example in Interactive SQL, you should reverse the change to the SQL Anywhere sample
database with the following statement:

ALTER TABLE Employees DROP FOREIGN KEY Departments;

Joins: Retrieving data from several tables

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 463

Key joins of table expressions

SQL Anywhere generates join conditions for the key join of table expressions by examining the foreign
key relationship of each pair of tables in the statement.

The following example joins four pairs of tables.

SELECT *
FROM (A NATURAL JOIN B) KEY JOIN (C NATURAL JOIN D);

The table-pairs are A-C, A-D, B-C and B-D. SQL Anywhere considers the relationship within each pair
and then creates a generated join condition for the table expression as a whole. How SQL Anywhere does
this depends on whether the table expressions use commas or not. Therefore, the generated join conditions
in the following two examples are different. A JOIN B is a table expression that does not contain
commas, and (A,B) is a table expression list.

SELECT *
FROM (A JOIN B) KEY JOIN C;

is semantically different from

SELECT *
FROM (A,B) KEY JOIN C;

The two types of join behavior are explained in the following sections:

● “Key joins of table expressions that do not contain commas”
● “Key joins of table expression lists”
● “Key joins when there are multiple foreign key relationships” on page 461

Key joins of table expressions that do not contain commas

When both of the two table expressions being joined do not contain commas, SQL Anywhere examines
the foreign key relationships in the pairs of tables in the statement, and generates a single join condition.

For example, the following join has two table-pairs, A-C and B-C.

(A NATURAL JOIN B) KEY JOIN C

SQL Anywhere generates a single join condition for joining C with (A NATURAL JOIN B) by looking
at the foreign key relationships within the table-pairs A-C and B-C. It generates one join condition for the
two pairs according to the rules for determining key joins when there are multiple foreign key
relationships:

● First, it looks at both A-C and B-C for a single foreign key that has the same role name as the
correlation name of one of the primary key tables it references. If there is exactly one foreign key
meeting this criterion, it uses it. If there is more than one foreign key with the same role name as the
correlation name of a table, the join is considered to be ambiguous and an error is issued.

Query and modify data

464 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● If there is no foreign key with the same name as the correlation name of a table, SQL Anywhere looks
for any foreign key relationship between the tables. If there is one, it uses it. If there is more than one,
the join is considered to be ambiguous and an error is issued.

● If there is no foreign key relationship, an error is issued.

Example
The following query finds all the employees who are sales representatives, and their departments.

SELECT Employees.Surname,
 FK_DepartmentID_DepartmentID.DepartmentName
FROM (Employees KEY JOIN Departments
 AS FK_DepartmentID_DepartmentID)
 KEY JOIN SalesOrders;

You can interpret this query as follows.

● SQL Anywhere considers the table expression (Employees KEY JOIN Departments as
FK_DepartmentID_DepartmentID) and generates the join condition
Employees.DepartmentID = FK_DepartmentID_DepartmentID.DepartmentID
based on the foreign key FK_DepartmentID_DepartmentID.

● SQL Anywhere then considers the table-pairs Employees/SalesOrders and Departments/SalesOrders.
Note that only one foreign key can exist between the tables SalesOrders and Employees and between
SalesOrders and Departments, or the join is ambiguous. As it happens, there is exactly one foreign key
relationship between the tables SalesOrders and Employees (FK_SalesRepresentative_EmployeeID),
and no foreign key relationship between SalesOrders and Departments. So, the generated join condition
is SalesOrders.EmployeeID = Employees.SalesRepresentative.

The following query is therefore equivalent to the previous query:

SELECT Employees.Surname, Departments.DepartmentName
FROM (Employees JOIN Departments
 ON (Employees.DepartmentID = Departments.DepartmentID))
JOIN SalesOrders
 ON (Employees.EmployeeID = SalesOrders.SalesRepresentative);

Key joins of table expression lists

To generate a join condition for the key join of two table expression lists, SQL Anywhere examines the
pairs of tables in the statement, and generates a join condition for each pair. The final join condition is the
conjunction of the join conditions for each pair. There must be a foreign key relationship between each
pair.

The following example joins two table-pairs, A-C and B-C.

SELECT *
FROM (A,B) KEY JOIN C;

SQL Anywhere generates a join condition for joining C with (A,B) by generating a join condition for
each of the two pairs A-C and B-C. It does so according to the rules for key joins when there are multiple
foreign key relationships:

Joins: Retrieving data from several tables

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 465

● For each pair, SQL Anywhere looks for a foreign key that has the same role name as the correlation
name of the primary key table. If there is exactly one foreign key meeting this criterion, it uses it. If
there is more than one, the join is considered to be ambiguous and an error is issued.

● For each pair, if there is no foreign key with the same name as the correlation name of the table, SQL
Anywhere looks for any foreign key relationship between the tables. If there is one, it uses it. If there is
more than one, the join is considered to be ambiguous and an error is issued.

● For each pair, if there is no foreign key relationship, an error is issued.

● If SQL Anywhere is able to determine exactly one join condition for each pair, it combines the join
conditions using AND.

Example
The following query returns the names of all salespeople who have sold at least one order to a specific
region.

SELECT DISTINCT Employees.Surname,
 FK_DepartmentID_DepartmentID.DepartmentName,
 SalesOrders.Region
FROM (SalesOrders, Departments
 AS FK_DepartmentID_DepartmentID)
 KEY JOIN Employees;

Surname DepartmentName Region

Chin Sales Eastern

Chin Sales Western

Chin Sales Central

...

This query deals with two pairs of tables: SalesOrders and Employees; and Departments AS
FK_DepartmentID_DepartmentID and Employees.

For the pair SalesOrders and Employees, there is no foreign key with the same role name as one of the
tables. However, there is a foreign key (FK_SalesRepresentative_EmployeeID) relating the two tables. It
is the only foreign key relating the two tables, and so it is used, resulting in the generated join condition
(Employees.EmployeeID = SalesOrders.SalesRepresentative).

For the pair Departments AS FK_DepartmentID_DepartmentID and Employees, there is one foreign key
that has the same role name as the primary key table. It is FK_DepartmentID_DepartmentID, and it
matches the correlation name given to the Departments table in the query. There are no other foreign keys
with the same name as the correlation name of the primary key table, so
FK_DepartmentID_DepartmentID is used to form the join condition for the table-pair. The join condition
that is generated is (Employees.DepartmentID =
FK_DepartmentID_DepartmentID.DepartmentID). Note that there is another foreign key
relating the two tables, but as it has a different name from either of the tables, it is not a factor.

Query and modify data

466 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The final join condition adds together the join condition generated for each table-pair. Therefore, the
following query is equivalent:

SELECT DISTINCT Employees.Surname,
 Departments.DepartmentName,
 SalesOrders.Region
FROM (SalesOrders, Departments)
 JOIN Employees
 ON Employees.EmployeeID = SalesOrders.SalesRepresentative
 AND Employees.DepartmentID = Departments.DepartmentID;

See also
● “Key joins when there are multiple foreign key relationships” on page 461

Key joins of lists and table expressions that do not contain commas

When table expression lists are joined via key join with table expressions that do not contain commas,
SQL Anywhere generates a join condition for each table in the table expression list.

For example, the following statement is the key join of a table expression list with a table expression that
does not contain commas. This example generates a join condition for table A with table expression C
NATURAL JOIN D, and for table B with table expression C NATURAL JOIN D.

SELECT *
FROM (A,B) KEY JOIN (C NATURAL JOIN D);

(A,B) is a list of table expressions and C NATURAL JOIN D is a table expression. SQL Anywhere
must therefore generate two join conditions: it generates one join condition for the pairs A-C and A-D,
and a second join condition for the pairs B-C and B-D. It does so according to the rules for key joins
when there are multiple foreign key relationships:

● For each set of table-pairs, SQL Anywhere looks for a foreign key that has the same role name as the
correlation name of one of the primary key tables. If there is exactly one foreign key meeting this
criterion, it uses it. If there is more than one, the join is ambiguous and an error is issued.

● For each set of table-pairs, if there is no foreign key with the same name as the correlation name of a
table, SQL Anywhere looks for any foreign key relationship between the tables. If there is exactly one
relationship, it uses it. If there is more than one, the join is ambiguous and an error is issued.

● For each set of pairs, if there is no foreign key relationship, an error is issued.

● If SQL Anywhere is able to determine exactly one join condition for each set of pairs, it combines the
join conditions with the keyword AND.

Example 1
Consider the following join of five tables:

((A,B) JOIN (C NATURAL JOIN D) ON A.x = D.y) KEY JOIN E

In this case, SQL Anywhere generates a join condition for the key join to E by generating a condition
either between (A,B) and E or between C NATURAL JOIN D and E.

Joins: Retrieving data from several tables

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 467

If SQL Anywhere generates a join condition between (A,B) and E, it needs to create two join
conditions, one for A-E and one for B-E. It must find a valid foreign key relationship within each table-
pair.

If SQL Anywhere creates a join condition between C NATURAL JOIN D and E, it creates only one join
condition, and so must find only one foreign key relationship in the pairs C-E and D-E.

Example 2
The following is an example of a key join of a table expression and a list of table expressions. The
example provides the name and department of employees who are sales representatives and also
managers.

SELECT DISTINCT Employees.Surname,
 FK_DepartmentID_DepartmentID.DepartmentName
FROM (SalesOrders, Departments
 AS FK_DepartmentID_DepartmentID)
 KEY JOIN (Employees JOIN Departments AS d
 ON Employees.EmployeeID = d.DepartmentHeadID);

SQL Anywhere generates two join conditions:

● There is exactly one foreign key relationship between the table-pairs SalesOrders/Employees and
SalesOrders/d: SalesOrders.SalesRepresentative = Employees.EmployeeID.

● There is exactly one foreign key relationship between the table-pairs
FK_DepartmentID_DepartmentID/Employees and FK_DepartmentID_DepartmentID/d:
FK_DepartmentID_DepartmentID.DepartmentID = Employees.DepartmentID.

This example is equivalent to the following. In the following version, it is not necessary to create the
correlation name Departments AS FK_DepartmentID_DepartmentID, because that was only
needed to clarify which of two foreign keys should be used to join Employees and Departments.

SELECT DISTINCT Employees.Surname,
 Departments.DepartmentName
FROM (SalesOrders, Departments)
 JOIN (Employees JOIN Departments AS d
 ON Employees.EmployeeID = d.DepartmentHeadID)
 ON SalesOrders.SalesRepresentative = Employees.EmployeeID
 AND Departments.DepartmentID = Employees.DepartmentID;

See also
● “Key joins of table expression lists” on page 465

Key joins of views and derived tables

When you include a view or derived table in a key join, SQL Anywhere follows the same basic procedure
as with tables, but with these differences:

● For each key join, SQL Anywhere considers the pairs of tables in the FROM clause of the query and
the view, and generates one join condition for the set of all pairs, regardless of whether the FROM
clause in the view contains commas or join keywords.

Query and modify data

468 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● SQL Anywhere joins the tables based on the foreign key that has the same role name as the correlation
name of the view or derived table.

● When you include a view or derived table in a key join, the view or derived table definition cannot
contain UNION, INTERSECT, EXCEPT, ORDER BY, DISTINCT, GROUP BY, aggregate functions,
window functions, TOP, FIRST, START AT, or FOR XML. If it contains any of these items, an error
is returned. In addition, the derived table cannot be defined as a recursive table expression.

A derived table works identically to a view. The only difference is that instead of referencing a
predefined view, the definition for the table is included in the statement.

Example 1
For example, in the following statement, View1 is a view.

SELECT *
FROM View1 KEY JOIN B;

The definition of View1 can be any of the following and result in the same join condition to B. (The result
set will differ, but the join conditions will be identical.)

SELECT *
FROM C CROSS JOIN D;

or

SELECT *
FROM C,D;

or

SELECT *
FROM C JOIN D ON (C.x = D.y);

In each case, to generate a join condition for the key join of View1 and B, SQL Anywhere considers the
table-pairs C-B and D-B, and generates a single join condition. It generates the join condition based on
the rules for multiple foreign key relationships, except that it looks for a foreign key with the same name
as the correlation name of the view (rather than a table referenced in the view).

Using any of the view definitions above, you can interpret the processing of View1 KEY JOIN B as
follows:

SQL Anywhere generates a single join condition by considering the table-pairs C-B and D-B. It generates
the join condition according to the rules for determining key joins when there are multiple foreign key
relationships:

● First, it looks at both C-B and D-B for a single foreign key that has the same role name as the
correlation name of the view. If there is exactly one foreign key meeting this criterion, it uses it. If there
is more than one foreign key with the same role name as the correlation name of the view, the join is
considered to be ambiguous and an error is issued.

● If there is no foreign key with the same name as the correlation name of the view, SQL Anywhere
looks for any foreign key relationship between the tables. If there is one, it uses it. If there is more than
one, the join is considered to be ambiguous and an error is issued.

Joins: Retrieving data from several tables

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 469

● If there is no foreign key relationship, an error is issued.

Assume this generated join condition is B.y = D.z. You can now expand the original join. For
example, the following two statements are equivalent:

SELECT *
FROM View1 KEY JOIN B;
SELECT *
FROM View1 JOIN B ON B.y = View1.z;

Example 2
The following view contains all the employee information about the manager of each department.

CREATE VIEW V AS
SELECT Departments.DepartmentName, Employees.*
FROM Employees JOIN Departments
 ON Employees.EmployeeID = Departments.DepartmentHeadID;

The following query joins the view to a table expression.

SELECT *
FROM V KEY JOIN (SalesOrders,
 Departments FK_DepartmentID_DepartmentID);

The following query is equivalent to the previous query:

SELECT *
FROM V JOIN (SalesOrders,
 Departments FK_DepartmentID_DepartmentID)
ON (V.EmployeeID = SalesOrders.SalesRepresentative
AND V.DepartmentID =
 FK_DepartmentID_DepartmentID.DepartmentID);

See also
● “Recursive common table expressions” on page 478
● “Key joins when there are multiple foreign key relationships” on page 461
● “Key joins of table expressions” on page 464

Rules describing the operation of key joins

The following rules summarize the information provided above.

Rule 1: Key join of two tables
This rule applies to A KEY JOIN B, where A and B are base or temporary tables.

1. Find all foreign keys from A referencing B.

If there exists a foreign key whose role name is the correlation name of table B, then mark it as a
preferred foreign key.

2. Find all foreign keys from B referencing A.

Query and modify data

470 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

If there exists a foreign key whose role name is the correlation name of table A, then mark it as a
preferred foreign key.

3. If there is more than one preferred key, the join is ambiguous. The syntax error
SQLE_AMBIGUOUS_JOIN (-147) is issued.

4. If there is a single preferred key, then this foreign key is chosen to define the generated join condition
for this KEY JOIN expression.

5. If there is no preferred key, then other foreign keys between A and B are used:

● If there is more than one foreign key between A and B, then the join is ambiguous. The syntax
error SQLE_AMBIGUOUS_JOIN (-147) is issued.

● If there is a single foreign key, then this foreign key is chosen to define the generated join
condition for this KEY JOIN expression.

● If there is no foreign key, then the join is invalid and an error is generated.

Rule 2: Key join of table expressions that do not contain commas
This rule applies to A KEY JOIN B, where A and B are table expressions that do not contain commas.

1. For each pair of tables; one from expression A and one from expression B, list all foreign keys, and
mark all preferred foreign keys between the tables. The rule for determining a preferred foreign key is
given in Rule 1, above.

2. If there is more than one preferred key, then the join is ambiguous. The syntax error
SQLE_AMBIGUOUS_JOIN (-147) is issued.

3. If there is a single preferred key, then this foreign key is chosen to define the generated join condition
for this KEY JOIN expression.

4. If there is no preferred key, then other foreign keys between pairs of tables are used:

● If there is more than one foreign key, then the join is ambiguous. The syntax error
SQLE_AMBIGUOUS_JOIN (-147) is issued.

● If there is a single foreign key, then this foreign key is chosen to define the generated join
condition for this KEY JOIN expression.

● If there is no foreign key, then the join is invalid and an error is generated.

Rule 3: Key join of table expression lists
This rule applies to (A1, A2, ...) KEY JOIN (B1, B2, ...) where A1, B1, and so on are
table expressions that do not contain commas.

1. For each pair of table expressions Ai and Bj, find a unique generated join condition for the table
expression (Ai KEY JOIN Bj) by applying Rule 1 or 2. If any KEY JOIN for a pair of table
expressions is ambiguous by Rule 1 or 2, a syntax error is generated.

Joins: Retrieving data from several tables

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 471

2. The generated join condition for this KEY JOIN expression is the conjunction of the join conditions
found in step 1.

Rule 4: Key join of lists and table expressions that do not contain commas
This rule applies to (A1, A2, ...) KEY JOIN (B1, B2, ...) where A1, B1, and so on are
table expressions that may contain commas.

1. For each pair of table expressions Ai and Bj, find a unique generated join condition for the table
expression (Ai KEY JOIN Bj) by applying Rule 1, 2, or 3. If any KEY JOIN for a pair of table
expressions is ambiguous by Rule 1, 2, or 3, then a syntax error is generated.

2. The generated join condition for this KEY JOIN expression is the conjunction of the join conditions
found in step 1.

See also
● “There is more than one way to join '%1' to '%2'” [Error Messages]

Common table expressions
Common table expressions are defined using the WITH clause, which precedes the SELECT keyword in a
SELECT statement. The content of the clause defines one or more temporary views that are known only
within the scope of a single SELECT statement and that may be referenced elsewhere in the statement.
The syntax of this clause mimics that of the CREATE VIEW statement.

Common table expressions are useful and may be necessary if a query involves multiple aggregate
functions or defines a view within a stored procedure that references program variables. Common table
expressions also provide a convenient means to temporarily store sets of values.

Example
For example, consider the problem of determining which department has the most employees. The
Employees table in the SQL Anywhere sample database lists all the employees in a fictional company and
specifies in which department each works. The following query lists the department ID codes and the total
number of employees in each department.

SELECT DepartmentID, COUNT(*) AS n
FROM Employees
GROUP BY DepartmentID;

This query can be used to extract the department with the most employees as follows:

SELECT DepartmentID, n
FROM (SELECT DepartmentID, COUNT(*) AS n
 FROM Employees GROUP BY DepartmentID) AS a
WHERE a.n =
 (SELECT MAX(n)
 FROM (SELECT DepartmentID, COUNT(*) AS n
 FROM Employees GROUP BY DepartmentID) AS b);

Query and modify data

472 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

While this statement provides the correct result, it has some disadvantages. The first disadvantage is that
the repeated subquery makes this statement less efficient. The second is that this statement provides no
clear link between the subqueries.

One way around these problems is to create a view, then use it to re-express the query. This approach
avoids the problems mentioned above.

CREATE VIEW CountEmployees(DepartmentID, n) AS
 SELECT DepartmentID, COUNT(*) AS n
 FROM Employees GROUP BY DepartmentID;
SELECT DepartmentID, n
 FROM CountEmployees
 WHERE n = (SELECT MAX(n)
 FROM CountEmployees);

The disadvantage of this approach is that some overhead is required, as the database server must update
the system tables when creating the view. If the view will be used frequently, this approach is reasonable.
However, when the view is used only once within a particular SELECT statement, the preferred method is
to instead use a common table expression as follows.

WITH CountEmployees(DepartmentID, n) AS
 (SELECT DepartmentID, COUNT(*) AS n
 FROM Employees GROUP BY DepartmentID)
SELECT DepartmentID, n
FROM CountEmployees
WHERE n = (SELECT MAX(n)
 FROM CountEmployees);

Changing the query to search for the department with the fewest employees demonstrates that such
queries may return multiple rows.

WITH CountEmployees(DepartmentID, n) AS
 (SELECT DepartmentID, COUNT(*) AS n
 FROM Employees GROUP BY DepartmentID)
SELECT DepartmentID, n
FROM CountEmployees
WHERE n = (SELECT MIN(n)
 FROM CountEmployees);

In the SQL Anywhere sample database, two departments share the minimum number of employees, which
is 9.

See also
● “Multiple correlation names” on page 473
● “Multiple table expressions” on page 474
● “Where common table expressions are permitted” on page 474

Multiple correlation names

Similar to using tables, you can give different correlation names to multiple instances of a common table
expression. This permits you to join a common table expression to itself. For example, the query below

Common table expressions

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 473

produces pairs of departments that have the same number of employees, although there are only two
departments with the same number of employees in the SQL Anywhere sample database.

WITH CountEmployees(DepartmentID, n) AS
 (SELECT DepartmentID, COUNT(*) AS n
 FROM Employees GROUP BY DepartmentID)
SELECT a.DepartmentID, a.n, b.DepartmentID, b.n
FROM CountEmployees AS a JOIN CountEmployees AS b
ON a.n = b.n AND a.DepartmentID < b.DepartmentID;

See also
● “Common table expressions” on page 472
● “Multiple table expressions” on page 474
● “Where common table expressions are permitted” on page 474

Multiple table expressions
A single WITH clause may define more than one common table expression. These definitions must be
separated by commas. The following example lists the department that has the smallest payroll and the
department that has the largest number of employees.

WITH
 CountEmployees(DepartmentID, n) AS
 (SELECT DepartmentID, COUNT(*) AS n
 FROM Employees GROUP BY DepartmentID),
 DepartmentPayroll(DepartmentID, amount) AS
 (SELECT DepartmentID, SUM(Salary) AS amount
 FROM Employees GROUP BY DepartmentID)
SELECT count.DepartmentID, count.n, pay.amount
FROM CountEmployees AS count JOIN DepartmentPayroll AS pay
ON count.DepartmentID = pay.DepartmentID
WHERE count.n = (SELECT MAX(n) FROM CountEmployees)
 OR pay.amount = (SELECT MIN(amount) FROM DepartmentPayroll);

See also
● “Common table expressions” on page 472
● “Multiple correlation names” on page 473
● “Where common table expressions are permitted” on page 474

Where common table expressions are permitted
Common table expression definitions are permitted in only three places, although they may be referenced
throughout the body of a query or in any subqueries.

● Top-level SELECT statement Common table expressions are permitted within top-level SELECT
statements, but not within subqueries.

WITH DepartmentPayroll(DepartmentID, amount) AS
 (SELECT DepartmentID, SUM(Salary) AS amount
 FROM Employees GROUP BY DepartmentID)
SELECT DepartmentID, amount
FROM DepartmentPayroll

Query and modify data

474 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

WHERE amount = (SELECT MAX(amount)
 FROM DepartmentPayroll);

● The top-level SELECT statement in a view definition Common table expressions are permitted
within the top-level SELECT statement that defines a view, but not within subqueries.

CREATE VIEW LargestDept (DepartmentID, Size, pay) AS
 WITH
 CountEmployees(DepartmentID, n) AS
 (SELECT DepartmentID, COUNT(*) AS n
 FROM Employees GROUP BY DepartmentID),
 DepartmentPayroll(DepartmentID, amount) AS
 (SELECT DepartmentID, SUM(Salary) AS amount
 FROM Employees GROUP BY DepartmentID)
 SELECT count.DepartmentID, count.n, pay.amount
 FROM CountEmployees count JOIN DepartmentPayroll pay
 ON count.DepartmentID = pay.DepartmentID
 WHERE count.n = (SELECT MAX(n) FROM CountEmployees)
 OR pay.amount = (SELECT MAX(amount) FROM DepartmentPayroll);

● A top-level SELECT statement in an INSERT statement Common table expressions are
permitted within a top-level SELECT statement in an INSERT statement, but not within subqueries
within the INSERT statement.

CREATE TABLE LargestPayrolls (DepartmentID INTEGER, Payroll NUMERIC,
CurrentDate DATE);
INSERT INTO LargestPayrolls(DepartmentID, Payroll, CurrentDate)
 WITH DepartmentPayroll(DepartmentID, amount) AS
 (SELECT DepartmentID, SUM(Salary) AS amount
 FROM Employees
 GROUP BY DepartmentID)
 SELECT DepartmentID, amount, CURRENT TIMESTAMP
 FROM DepartmentPayroll
 WHERE amount = (SELECT MAX(amount)
 FROM DepartmentPayroll);

See also
● “Common table expressions” on page 472
● “Multiple correlation names” on page 473
● “Multiple table expressions” on page 474

Typical applications of common table expressions
In general, common table expressions are useful whenever a table expression must appear multiple times
within a single query. The following typical situations are suited to common table expressions.

● Queries that involve multiple aggregate functions.

● Views within a procedure that must contain a reference to a program variable.

● Queries that use temporary views to store a set of values.

This list is not exhaustive; you may encounter many other situations in which common table expressions
are useful.

Common table expressions

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 475

Multiple aggregate functions

Common table expressions are useful whenever multiple levels of aggregation must appear within a single
query. This is the case in the example used in the previous section. The task was to retrieve the
department ID of the department that has the most employees. To do so, the count aggregate function is
used to calculate the number of employees in each department and the MAX function is used to select the
largest department.

A similar situation arises when writing a query to determine which department has the largest payroll. The
SUM aggregate function is used to calculate each department's payroll and the MAX function is used to
determine which is largest. The presence of both functions in the query is a clue that a common table
expression may be helpful.

WITH DepartmentPayroll(DepartmentID, amount) AS
 (SELECT DepartmentID, SUM(Salary) AS amount
 FROM Employees GROUP BY DepartmentID)
SELECT DepartmentID, amount
FROM DepartmentPayroll
WHERE amount = (SELECT MAX(amount)
 FROM DepartmentPayroll)

See also
● “Window aggregate functions” on page 505

Views that reference program variables

Sometimes, it can be convenient to create a view that contains a reference to a program variable. For
example, you may define a variable within a procedure that identifies a particular customer. You want to
query the customer's purchase history, and as you will be accessing similar information multiple times or
perhaps using multiple aggregate functions, you want to create a view that contains information about that
specific customer.

You cannot create a view that references a program variable because there is no way to limit the scope of
a view to that of your procedure. Once created, a view can be used in other contexts. You can, however,
use common table expressions within the queries in your procedure. As the scope of a common table
expression is limited to the statement, the variable reference creates no ambiguity and is permitted.

The following statement selects the gross sales of the various sales representatives in the SQL Anywhere
sample database.

SELECT GivenName || ' ' || Surname AS sales_rep_name,
 SalesRepresentative AS sales_rep_id,
 SUM(p.UnitPrice * i.Quantity) AS total_sales
FROM Employees LEFT OUTER JOIN SalesOrders AS o
 INNER JOIN SalesOrderItems AS I
 INNER JOIN Products AS p
WHERE OrderDate BETWEEN '2000-01-01' AND '2001-12-31'
GROUP BY SalesRepresentative, GivenName, Surname;

The above query is the basis of the common table expression that appears in the following procedure. The
ID number of the sales representative and the year in question are incoming parameters. As the following

Query and modify data

476 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

procedure demonstrates, the procedure parameters and any declared local variables can be referenced
within the WITH clause.

CREATE PROCEDURE sales_rep_total (
 IN rep INTEGER,
 IN yyyy INTEGER)
BEGIN
 DECLARE StartDate DATE;
 DECLARE EndDate DATE;
 SET StartDate = YMD(yyyy, 1, 1);
 SET EndDate = YMD(yyyy, 12, 31);
 WITH total_sales_by_rep (sales_rep_name,
 sales_rep_id,
 month,
 order_year,
 total_sales) AS
 (SELECT GivenName || ' ' || Surname AS sales_rep_name,
 SalesRepresentative AS sales_rep_id,
 month(OrderDate),
 year(OrderDate),
 SUM(p.UnitPrice * i.Quantity) AS total_sales
 FROM Employees LEFT OUTER JOIN SalesOrders o
 INNER JOIN SalesOrderItems I
 INNER JOIN Products p
 WHERE OrderDate BETWEEN StartDate AND EndDate
 AND SalesRepresentative = rep
 GROUP BY year(OrderDate), month(OrderDate),
 GivenName, Surname, SalesRepresentative)
 SELECT sales_rep_name,
 monthname(YMD(yyyy, month, 1)) AS month_name,
 order_year,
 total_sales
 FROM total_sales_by_rep
 WHERE total_sales =
 (SELECT MAX(total_sales) FROM total_sales_by_rep)
 ORDER BY order_year ASC, month ASC;
END;

The following statement calls the previous procedure.

CALL sales_rep_total(129, 2000);

Views that store values

It can be useful to store a particular set of values within a SELECT statement or within a procedure. For
example, suppose a company prefers to analyze the results of its sales staff by thirds of a year, instead of
by quarter. Since there is no built-in date part for thirds, as there is for quarters, it is necessary to store the
dates within the procedure.

WITH thirds (q_name, q_start, q_end) AS
(SELECT 'T1', '2000-01-01', '2000-04-30' UNION
 SELECT 'T2', '2000-05-01', '2000-08-31' UNION
 SELECT 'T3', '2000-09-01', '2000-12-31')
SELECT q_name,
 SalesRepresentative,
 count(*) AS num_orders,
 SUM(p.UnitPrice * i.Quantity) AS total_sales
FROM thirds LEFT OUTER JOIN SalesOrders AS o
 ON OrderDate BETWEEN q_start and q_end

Common table expressions

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 477

 KEY JOIN SalesOrderItems AS I
 KEY JOIN Products AS p
 GROUP BY q_name, SalesRepresentative
 ORDER BY q_name, SalesRepresentative;

This method should be used with care, as the values may need periodic maintenance. For example, the
above statement must be modified if it is to be used for any other year.

You can also apply this method within procedures. The following example declares a procedure that takes
the year in question as an argument.

CREATE PROCEDURE sales_by_third (IN y INTEGER)
BEGIN
 WITH thirds (q_name, q_start, q_end) AS
 (SELECT 'T1', YMD(y, 01, 01), YMD(y, 04, 30) UNION
 SELECT 'T2', YMD(y, 05, 01), YMD(y, 08, 31) UNION
 SELECT 'T3', YMD(y, 09, 01), YMD(y, 12, 31))
 SELECT q_name,
 SalesRepresentative,
 count(*) AS num_orders,
 SUM(p.UnitPrice * i.Quantity) AS total_sales
 FROM thirds LEFT OUTER JOIN SalesOrders AS o
 ON OrderDate BETWEEN q_start and q_end
 KEY JOIN SalesOrderItems AS I
 KEY JOIN Products AS p
 GROUP BY q_name, SalesRepresentative
 ORDER BY q_name, SalesRepresentative;
END;

The following statement calls the previous procedure.

CALL sales_by_third (2000);

Recursive common table expressions

Common table expressions are recursive when they are executed repeatedly, with each execution
returning additional rows until the complete result set is retrieved. You can make a common table
expression recursive by inserting the RECURSIVE keyword immediately following WITH in the WITH
clause. A single WITH clause may contain multiple recursive expressions that can be both recursive and
non-recursive.

Recursion provides an easier way of traversing tables that represent tree or tree-like data structures.
Without using recursive expressions, the only way to traverse such a structure in a single statement is to
join the table to itself once for each possible level.

Restrictions on recursive common table expressions

● References to other recursive common table expressions cannot appear within the definition of
recursive common table expressions as recursive common table expressions cannot be mutually
recursive. However, non-recursive common table expressions can contain references to recursive table
expressions, and recursive common table expressions can contain references to non-recursive common
table expressions.

Query and modify data

478 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● The only set operator supported between the initial subquery and the recursive subquery is UNION
ALL.

● Within the definition of a recursive subquery, a self-reference to the recursive common table expression
can appear only within the FROM clause of the recursive subquery and cannot appear on the null-
supplying side of an outer join.

● The recursive subquery cannot contain a DISTINCT, GROUP BY, or ORDER BY clause.

● The recursive subquery cannot use an aggregate function.

● To prevent runaway recursive queries, an error is generated if the number of levels of recursion exceeds
the current setting of the max_recursive_iterations option. The default value of this option is 100.

Example
Given a table that represents the reporting relationships within a company, you can write a query that
returns all the employees that report to one particular person.

Depending on how you write the query, you may want to limit the number of levels of recursion. For
example, limiting the number of levels allows you to return only the top levels of management, but may
exclude some employees if the chains of command are longer than you anticipated. Providing no
restriction on the number of levels ensures no employees are excluded, but can introduce infinite
recursion should the execution require any cycles, such as an employee directly or indirectly reporting to
her or himself. This situation could arise within a company's management hierarchy if an employee within
the company also sits on the board of directors.

The following query demonstrates how to list the employees by management level. Level 0 represents
employees with no managers. Level 1 represents employees who report directly to one of the level 0
managers, level 2 represents employees who report directly to a level 1 manager, and so on.

WITH RECURSIVE
 manager (EmployeeID, ManagerID,
 GivenName, Surname, mgmt_level) AS
((SELECT EmployeeID, ManagerID, -- initial subquery
 GivenName, Surname, 0
 FROM Employees AS e
 WHERE ManagerID = EmployeeID)
 UNION ALL
 (SELECT e.EmployeeID, e.ManagerID, -- recursive subquery
 e.GivenName, e.Surname, m.mgmt_level + 1
 FROM Employees AS e JOIN manager AS m
 ON e.ManagerID = m.EmployeeID
 AND e.ManagerID <> e.EmployeeID
 AND m.mgmt_level < 20))
SELECT * FROM manager
ORDER BY mgmt_level, Surname, GivenName;

The condition within the recursive query that restricts the management level to less than 20 (m.mgmt
leve < 20) is called a stop condition, and is an important precaution. It prevents infinite recursion if
the table data contains a cycle.

The max_recursive_iterations option can also be used to catch runaway recursive queries. The default
value of this option is 100 and recursive queries that exceed this number of iterations end, but cause an

Common table expressions

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 479

error. Although this option may seem to diminish the importance of a stop condition, this is not usually
the case. The number of rows selected during each iteration may grow exponentially, seriously impacting
performance before the maximum is reached. Stop conditions within recursive queries provide a means of
setting appropriate limits in each situation.

Recursive common table expressions contain an initial subquery, or seed, and a recursive subquery
that, during each iteration, appends additional rows to the result set. The two parts can be connected only
with the operator UNION ALL. The initial subquery is an ordinary non-recursive query and is processed
first. The recursive portion contains a reference to the rows added during the previous iteration. Recursion
stops automatically whenever an iteration generates no new rows. There is no way to reference rows
selected before the previous iteration.

The SELECT list of the recursive subquery must match that of the initial subquery in number and data
type. If automatic translation of data types cannot be performed, explicitly cast the results of one subquery
so that they match those in the other subquery.

See also
● “Multiple recursive common table expressions” on page 481
● “max_recursive_iterations option” [SQL Anywhere Server - Database Administration]

Data type declarations in recursive common table expressions

The data types of the columns in the temporary view are defined by those of the initial subquery. The data
types of the columns from the recursive subquery must match. The database server automatically attempts
to convert the values returned by the recursive subquery to match those of the initial query. If this is not
possible, or if information may be lost in the conversion, an error is generated.

In general, explicit casts are often required when the initial subquery returns a literal value or NULL.
Explicit casts may also be required when the initial subquery selects values from different columns than
the recursive subquery.

Casts may be required if the columns of the initial subquery do not have the same domains as those of the
recursive subquery. Casts must always be applied to NULL values in the initial subquery.

For example, the parts explosion problem works correctly because the initial subquery returns rows from
the bookcase table, and inherits the data types of the selected columns.

However, if this query is rewritten as follows, explicit casts are required.

WITH RECURSIVE parts (component, subcomponent, quantity) AS
(SELECT NULL, 'bookcase', 1 -- ERROR! Wrong domains!
 UNION ALL
 SELECT b.component, b.subcomponent,
 p.quantity * b.quantity
 FROM parts p JOIN bookcase b
 ON p.subcomponent = b.component)
SELECT * FROM parts
ORDER BY component, subcomponent;

Without casting, errors result for the following reasons:

Query and modify data

480 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● The correct data type for component names is VARCHAR, but the first column is NULL.

● The digit 1 is assumed to be a SMALL INT, but the data type of the quantity column is INT.

No cast is required for the second column because this column of the initial query is already a string.

Casting the data types in the initial subquery allows the query to behave as intended:

WITH RECURSIVE parts (component, subcomponent, quantity) AS
(SELECT CAST(NULL AS VARCHAR), -- CASTs must be used
 'bookcase', -- to declare the
 CAST(1 AS INT) -- correct datatypes
 UNION ALL
 SELECT b.component, b.subcomponent,
 p.quantity * b.quantity
 FROM parts p JOIN bookcase b
 ON p.subcomponent = b.component)
SELECT * FROM parts
ORDER BY component, subcomponent;

See also
● “Parts explosion problem” on page 482

Multiple recursive common table expressions
A recursive query may include multiple recursive queries, as long as they are disjoint. It may also include
a mix of recursive and non-recursive common table expressions. The RECURSIVE keyword must be
present if at least one of the common table expressions is recursive.

For example, the following query—which returns the same result as the previous query—uses a second,
non-recursive common table expression to select the length of the shortest route. The definition of the
second common table expression is separated from the definition of the first by a comma.

WITH RECURSIVE
 trip (route, destination, previous, distance, segments) AS
 (SELECT CAST(origin || ', ' || destination AS VARCHAR(256)),
 destination, origin, distance, 1
 FROM travel
 WHERE origin = 'Kitchener'
 UNION ALL
 SELECT route || ', ' || v.destination,
 v.destination,
 v.origin,
 t.distance + v.distance,
 segments + 1
 FROM trip t JOIN travel v ON t.destination = v.origin
 WHERE v.destination <> 'Kitchener'
 AND v.destination <> t.previous
 AND v.origin <> 'Pembroke'
 AND segments
 < (SELECT count(*)/2 FROM travel)),
 shortest (distance) AS -- Additional,
 (SELECT MIN(distance) -- non-recursive
 FROM trip -- common table
 WHERE destination = 'Pembroke') -- expression
SELECT route, distance, segments FROM trip
WHERE destination = 'Pembroke' AND

Common table expressions

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 481

 distance < 1.5 * (SELECT distance FROM shortest)
ORDER BY distance, segments, route;

Like non-recursive common table expressions, recursive expressions, when used within stored
procedures, may contain references to local variables or procedure parameters. For example, the
best_routes procedure, defined below, identifies the shortest routes between the two named cities.

CREATE PROCEDURE best_routes (
 IN initial VARCHAR(10),
 IN final VARCHAR(10)
)
BEGIN
 WITH RECURSIVE
 trip (route, destination, previous, distance, segments) AS
 (SELECT CAST(origin || ', ' || destination AS VARCHAR(256)),
 destination, origin, distance, 1
 FROM travel
 WHERE origin = initial
 UNION ALL
 SELECT route || ', ' || v.destination,
 v.destination, -- current endpoint
 v.origin, -- previous endpoint
 t.distance + v.distance, -- total distance
 segments + 1 -- total number of segments
 FROM trip t JOIN travel v ON t.destination = v.origin
 WHERE v.destination <> initial -- Don't return to start
 AND v.destination <> t.previous -- Prevent backtracking
 AND v.origin <> final -- Stop at the end
 AND segments -- TERMINATE RECURSION!
 < (SELECT count(*)/2 FROM travel))
 SELECT route, distance, segments FROM trip
 WHERE destination = final AND
 distance < 1.4 * (SELECT MIN(distance)
 FROM trip
 WHERE destination = final)
 ORDER BY distance, segments, route;
END;

The following statement calls the previous procedure.

CALL best_routes ('Pembroke', 'Kitchener');

Parts explosion problem
The parts explosion problem is a classic application of recursion. In this problem, the components
necessary to assemble a particular object are represented by a graph. The goal is to represent this graph
using a database table, then to calculate the total number of the necessary elemental parts.

For example, the following graph represents the components of a simple bookshelf. The bookshelf is
made up of three shelves, a back, and four feet that are held on by four screws. Each shelf is a board held
on with four screws. The back is another board held on by eight screws.

Query and modify data

482 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The information in the table below represents the edges of the bookshelf graph. The first column names a
component, the second column names one of the subcomponents of that component, and the third column
specifies how many of the subcomponents are required.

component subcomponent quantity

bookcase back 1

bookcase side 2

bookcase shelf 3

bookcase foot 4

bookcase screw 4

back backboard 1

back screw 8

side plank 1

shelf plank 1

shelf screw 4

Execute the following statements to create the bookcase table and insert component and subcomponent
data.

CREATE TABLE bookcase (
 component VARCHAR(9),

Common table expressions

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 483

 subcomponent VARCHAR(9),
 quantity INTEGER,
 PRIMARY KEY (component, subcomponent)
);
INSERT INTO bookcase
 SELECT 'bookcase', 'back', 1 UNION
 SELECT 'bookcase', 'side', 2 UNION
 SELECT 'bookcase', 'shelf', 3 UNION
 SELECT 'bookcase', 'foot', 4 UNION
 SELECT 'bookcase', 'screw', 4 UNION
 SELECT 'back', 'backboard', 1 UNION
 SELECT 'back', 'screw', 8 UNION
 SELECT 'side', 'plank', 1 UNION
 SELECT 'shelf', 'plank', 1 UNION
 SELECT 'shelf', 'screw', 4;

Execute the following statement to generate a list of components and subcomponents and the quantity
required to assemble the bookcase.

SELECT * FROM bookcase
ORDER BY component, subcomponent;

Execute the following statement to generate a list of subcomponents and the quantity required to assemble
the bookcase.

WITH RECURSIVE parts (component, subcomponent, quantity) AS
(SELECT component, subcomponent, quantity
 FROM bookcase WHERE component = 'bookcase'
 UNION ALL
 SELECT b.component, b.subcomponent, p.quantity * b.quantity
 FROM parts p JOIN bookcase b ON p.subcomponent = b.component)
SELECT subcomponent, SUM(quantity) AS quantity
FROM parts
WHERE subcomponent NOT IN (SELECT component FROM bookcase)
GROUP BY subcomponent
ORDER BY subcomponent;

The results of this query are shown below.

subcomponent quantity

backboard 1

foot 4

plank 5

screw 24

Alternatively, you can rewrite this query to perform an additional level of recursion, and avoid the need
for the subquery in the main SELECT statement. The results of the following query are identical to those
of the previous query.

WITH RECURSIVE parts (component, subcomponent, quantity) AS
(SELECT component, subcomponent, quantity
 FROM bookcase WHERE component = 'bookcase'
 UNION ALL
 SELECT p.subcomponent, b.subcomponent,

Query and modify data

484 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 IF b.quantity IS NULL
 THEN p.quantity
 ELSE p.quantity * b.quantity
 ENDIF
 FROM parts p LEFT OUTER JOIN bookcase b
 ON p.subcomponent = b.component
 WHERE p.subcomponent IS NOT NULL
)
SELECT component, SUM(quantity) AS quantity
FROM parts
WHERE subcomponent IS NULL
GROUP BY component
ORDER BY component;

Least distance problem
You can use recursive common table expressions to find desirable paths on a directed graph. Each row in
a database table represents a directed edge. Each row specifies an origin, a destination, and a cost of
traveling from the origin to the destination. Depending on the problem, the cost may represent distance,
travel time, or some other measure. Recursion permits you to explore possible routes through this graph.
From the set of possible routes, you can then select the ones that interest you.

For example, consider the problem of finding a desirable way to drive between the cities of Kitchener and
Pembroke. There are quite a few possible routes, each of which takes you through a different set of
intermediate cities. The goal is to find the shortest routes, and to compare them to reasonable alternatives.

First, define a table to represent the edges of this graph and insert one row for each edge. Since all the
edges of this graph are bi-directional, the edges that represent the reverse directions must be inserted also.
This is done by selecting the initial set of rows, but interchanging the origin and destination. For example,
one row must represent the trip from Kitchener to Toronto, and another row the trip from Toronto back to
Kitchener.

Common table expressions

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 485

CREATE TABLE travel (
 origin VARCHAR(10),
 destination VARCHAR(10),
 distance INT,
 PRIMARY KEY (origin, destination)
);
INSERT INTO travel
 SELECT 'Kitchener', 'Toronto', 105 UNION
 SELECT 'Kitchener', 'Barrie', 155 UNION
 SELECT 'North Bay', 'Pembroke', 220 UNION
 SELECT 'Pembroke', 'Ottawa', 150 UNION
 SELECT 'Barrie', 'Toronto', 90 UNION
 SELECT 'Toronto', 'Belleville', 190 UNION
 SELECT 'Belleville', 'Ottawa', 230 UNION
 SELECT 'Belleville', 'Pembroke', 230 UNION
 SELECT 'Barrie', 'Huntsville', 125 UNION
 SELECT 'Huntsville', 'North Bay', 130 UNION
 SELECT 'Huntsville', 'Pembroke', 245;
INSERT INTO travel -- Insert the return trips
 SELECT destination, origin, distance
 FROM travel;

The next task is to write the recursive common table expression. Since the trip starts in Kitchener, the
initial subquery begins by selecting all the possible paths out of Kitchener, along with the distance of
each.

The recursive subquery extends the paths. For each path, it adds segments that continue along from the
destinations of the previous segments, and adds the length of the new segments to maintain a running total
cost of each route. For efficiency, routes end if they meet either of the following conditions:

● The path returns to the starting location.

● The path returns to the previous location.

● The path reaches the final destination.

In the current example, no path should return to Kitchener and all paths should end if they reach
Pembroke.

When using recursive queries to explore cyclic graphs, it is important to verify that they finish properly.
In this case, the above conditions are insufficient, as a route may include an arbitrarily large number of
trips back and forth between two intermediate cities. The recursive query below guarantees an end by
limiting the maximum number of segments in any given route to seven.

Since the point of the example query is to select a practical route, the main query selects only those routes
that are less than 50 percent longer than the shortest route.

WITH RECURSIVE
 trip (route, destination, previous, distance, segments) AS
(SELECT CAST(origin || ', ' || destination AS VARCHAR(256)),
 destination, origin, distance, 1
 FROM travel
 WHERE origin = 'Kitchener'
 UNION ALL
 SELECT route || ', ' || v.destination,
 v.destination, -- current endpoint
 v.origin, -- previous endpoint

Query and modify data

486 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 t.distance + v.distance, -- total distance
 segments + 1 -- total number of segments
 FROM trip t JOIN travel v ON t.destination = v.origin
 WHERE v.destination <> 'Kitchener' -- Don't return to start
 AND v.destination <> t.previous -- Prevent backtracking
 AND v.origin <> 'Pembroke' -- Stop at the end
 AND segments -- TERMINATE RECURSION!
 < (SELECT count(*)/2 FROM travel))
SELECT route, distance, segments FROM trip
WHERE destination = 'Pembroke' AND
 distance < 1.5 * (SELECT MIN(distance)
 FROM trip
 WHERE destination = 'Pembroke')
ORDER BY distance, segments, route;

When run with against the above data set, this statement yields the following results.

route distance segments

Kitchener, Barrie, Huntsville, Pembroke 525 3

Kitchener, Toronto, Belleville, Pembroke 525 3

Kitchener, Toronto, Barrie, Huntsville, Pembroke 565 4

Kitchener, Barrie, Huntsville, North Bay, Pembroke 630 4

Kitchener, Barrie, Toronto, Belleville, Pembroke 665 4

Kitchener, Toronto, Barrie, Huntsville, North Bay, Pembroke 670 5

Kitchener, Toronto, Belleville, Ottawa, Pembroke 675 4

OLAP support
On-Line Analytical Processing (OLAP) offers the ability to perform complex data analysis within a single
SQL statement, increasing the value of the results, while improving performance by decreasing the
amount of querying on the database. OLAP functionality is made possible through the use of extensions
to SQL statements and window functions. These SQL extensions and functions provide the ability, in a
concise way, to perform multidimensional data analysis, data mining, time series analysis, trend analysis,
cost allocations, goal seeking, and exception alerting, often with a single SQL statement.

● Extensions to the SELECT statement Extensions to the SELECT statement allow you to group
input rows, analyze the groups, and include the findings in the final result set. These extensions
include extensions to the GROUP BY clause (GROUPING SETS, CUBE, and ROLLUP subclauses),
and the WINDOW clause.

The extensions to the GROUP BY clause allow you to partition the input rows in multiple ways,
yielding a result set that concatenates the different groups together. You can also create a sparse,
multi-dimensional result set for data mining analysis (also known as a data cube). Finally, the
extensions provide sub-total and grand-total rows to make analysis more convenient.

OLAP support

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 487

The WINDOW clause is used in conjunction with window functions to provide additional analysis
opportunities on groups of input rows.

● Window aggregate functions Most of the aggregate functions support the concept of a
configurable sliding window that moves down through the input rows as they are processed.
Additional calculations can be performed on data in the window as it moves, allowing further analysis
in a manner that is more efficient than using semantically equivalent self-join queries, or correlated
subqueries.

For example, window aggregate functions, coupled with the CUBE, ROLLUP, and GROUPING
SETS extensions to the GROUP BY clause, provide an efficient mechanism to compute percentiles,
moving averages, and cumulative sums in a single SQL statement that would otherwise require self-
joins, correlated subqueries, temporary tables, or some combination of all three.

You can use window aggregate functions to obtain such information as the quarterly moving average
of the Dow Jones Industrial Average, or all employees and their cumulative salaries for each
department. You can also use them to compute variance, standard deviation, correlation, and
regression measures.

● Window ranking functions Window ranking functions allow you to form single-statement SQL
queries to obtain information such as the top 10 products shipped this year by total sales, or the top
5% of salespersons who sold orders to at least 15 different companies.

See also
● “GROUP BY clause extensions” on page 489
● “Window functions” on page 498
● “Window ranking functions” on page 524
● “Window aggregate functions” on page 505

OLAP performance improvements
To improve OLAP performance, set the optimization_workload database option to OLAP to instruct the
optimizer to consider using the Clustered Group By Hash operator in the possibilities it investigates. You
can also tune indexes for OLAP workloads using the FOR OLAP WORKLOAD option when defining the
index. Using this option causes the database server to perform certain optimizations which include
maintaining a statistic used by the Clustered Group By Hash operator regarding the maximum page
distance between two rows within the same key.

See also
● “optimization_workload option” [SQL Anywhere Server - Database Administration]
● “CREATE INDEX statement” [SQL Anywhere Server - SQL Reference]
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TABLE statement” [SQL Anywhere Server - SQL Reference]

Query and modify data

488 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

GROUP BY clause extensions

The standard GROUP BY clause of a SELECT statement allows you to group rows in the result set
according the grouping expressions you supply. For example, if you specify GROUP BY columnA,
columnB, the rows are grouped by combinations of unique values from columnA and columnB. In the
standard GROUP BY clause, the groups reflect the evaluation of the combination of all specified GROUP
BY expressions.

However, you may want to specify different groupings or subgroupings of the result set. For example, you
may want to your results to show your data grouped by unique values of columnA and columnB, and then
regrouped again by unique values of columnC. You can achieve this result using the GROUPING SETS
extension to the GROUP BY clause.

GROUP BY GROUPING SETS
The GROUPING SETS clause is an extension to the GROUP BY clause of a SELECT statement. The
GROUPING SETS clause allows you to group your results multiple ways, without having to use multiple
SELECT statements to do so. This means you can reduce response time and improve performance.

For example, the following two queries statements are semantically equivalent. However, the second
query defines the grouping criteria more efficiently using a GROUP BY GROUPING SETS clause.

Multiple groupings using multiple SELECT statements:

SELECT NULL, NULL, NULL, COUNT(*) AS Cnt
FROM Customers
WHERE State IN ('MB' , 'KS')
 UNION ALL
SELECT City, State, NULL, COUNT(*) AS Cnt
FROM Customers
WHERE State IN ('MB' , 'KS')
GROUP BY City, State
 UNION ALL
SELECT NULL, NULL, CompanyName, COUNT(*) AS Cnt
FROM Customers
WHERE State IN ('MB' , 'KS')
GROUP BY CompanyName;

Multiple groupings using GROUPING SETS:

SELECT City, State, CompanyName, COUNT(*) AS Cnt
FROM Customers
WHERE State IN ('MB' , 'KS')
GROUP BY GROUPING SETS((City, State), (CompanyName) , ());

Both methods produce the same results, shown below:

City State CompanyName Cnt

1 (NULL) (NULL) (NULL) 8

OLAP support

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 489

City State CompanyName Cnt

2 (NULL) (NULL) Cooper Inc. 1

3 (NULL) (NULL) Westend Dealers 1

4 (NULL) (NULL) Toto's Active Wear 1

5 (NULL) (NULL) North Land Trading 1

6 (NULL) (NULL) The Ultimate 1

7 (NULL) (NULL) Molly's 1

8 (NULL) (NULL) Overland Army Navy 1

9 (NULL) (NULL) Out of Town Sports 1

10 'Pembroke' 'MB' (NULL) 4

11 'Petersburg' 'KS' (NULL) 1

12 'Drayton' 'KS' (NULL) 3

Rows 2-9 are the rows generated by grouping over CompanyName, rows 10-12 are rows generated by
grouping over the combination of City and State, and row 1 is the grand total represented by the empty
grouping set, specified using a pair of matched parentheses (). The empty grouping set represents a single
partition of all the rows in the input to the GROUP BY.

Notice how NULL values are used as placeholders for any expression that is not used in a grouping set,
because the result sets must be combinable. For example, rows 2-9 result from the second grouping set in
the query (CompanyName). Since that grouping set did not include City or State as expressions, for rows
2-9 the values for City and State contain the placeholder NULL, while the values in CompanyName
contain the distinct values found in CompanyName.

Because NULLs are used as placeholders, it is easy to confuse placeholder NULLs with actual NULLs
found in the data. To help distinguish placeholder NULLs from NULL data, use the GROUPING
function.

See also
● “Detection of NULLs using the GROUPING function” on page 497

Example
The following example shows how you can tailor the results that are returned from a query using
GROUPING SETS, and an ORDER BY clause to better organize the results. The query returns the total
number of orders by Quarter in each Year, and a total for each Year. Ordering by Year and then Quarter
makes the results easier to understand:

Query and modify data

490 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SELECT Year(OrderDate) AS Year,
 Quarter(OrderDate) AS Quarter,
 COUNT (*) AS Orders
FROM SalesOrders
GROUP BY GROUPING SETS ((Year, Quarter), (Year))
ORDER BY Year, Quarter;

This query returns the following results:

Year Quarter Orders

1 2000 (NULL) 380

2 2000 1 87

3 2000 2 77

4 2000 3 91

5 2000 4 125

6 2001 (NULL) 268

7 2001 1 139

8 2001 2 119

9 2001 3 10

Rows 1 and 6 are subtotals of orders for Year 2000 and Year 2001, respectively. Rows 2-5 and rows 7-9
are the detail rows for the subtotal rows. That is, they show the total orders per quarter, per year.

There is no grand total for all quarters in all years in the result set. To do that, the query must include the
empty grouping specification '()' in the GROUPING SETS specification.

Specifying an empty grouping specification
If you use an empty GROUPING SETS specification '()' in the GROUP BY clause, this results in a grand
total row for all things that are being totaled in the results. With a grand total row, all values for all
grouping expressions contain placeholder NULLs. You can use the GROUPING function to distinguish
placeholder NULLs from actual NULLs resulting from the evaluation of values in the underlying data for
the row.

Specifying duplicate grouping sets
You can specify duplicate grouping specifications in a GROUPING SETS clause. In this case, the result
of the SELECT statement contains identical rows.

The following query includes duplicate groupings:

SELECT City, COUNT(*) AS Cnt
FROM Customers
WHERE State IN ('MB' , 'KS')
GROUP BY GROUPING SETS((City), (City));

OLAP support

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 491

This query returns the following results. Note that as a result of the duplicate groupings, rows 1-3 are
identical to rows 4-6:

City Cnt

1 'Drayton' 3

2 'Petersburg' 1

3 'Pembroke' 4

4 'Drayton' 3

5 'Petersburg' 1

6 'Pembroke' 4

Practicing good form
Grouping syntax is interpreted differently for a GROUP BY GROUPING SETS clause than it is for a
simple GROUP BY clause. For example, GROUP BY (X, Y) returns results grouped by distinct
combinations of X and Y values. However, GROUP BY GROUPING SETS (X, Y) specifies two
individual grouping sets, and the result of the two groupings are UNIONed together. That is, results are
grouped by (X), and then unioned to the same results grouped by (Y).

For good form, and to avoid any ambiguity for complex expressions, use parentheses around each
individual grouping set in the specification whenever there is a possibility for error. For example, while
both of the following statements are correct and semantically equivalent, the second one reflects the
recommended form:

SELECT * FROM t GROUP BY GROUPING SETS (X, Y);
SELECT * FROM t GROUP BY GROUPING SETS((X), (Y));

See also
● “Detection of NULLs using the GROUPING function” on page 497

ROLLUP and CUBE as a shortcut to GROUPING SETS
Using GROUPING SETS is useful when you want to concatenate several different data partitions into a
single result set. However, if you have many groupings to specify, and want subtotals included, you may
want to use the ROLLUP and CUBE extensions.

The ROLLUP and CUBE clauses can be considered shortcuts for predefined GROUPING SETS
specifications.

ROLLUP is equivalent to specifying a series of grouping set specifications starting with the empty
grouping set '()' and successively followed by grouping sets where one additional expression is
concatenated to the previous one. For example, if you have three grouping expressions, a, b, and c, and

Query and modify data

492 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

you specify ROLLUP, it is as though you specified a GROUPING SETS clause with the sets: (), (a), (a,
b), and (a, b, c). This construction is sometimes referred to as hierarchical groupings.

CUBE offers even more groupings. Specifying CUBE is equivalent to specifying all possible
GROUPING SETS. For example, if you have the same three grouping expressions, a, b, and c, and you
specify CUBE, it is as though you specified a GROUPING SETS clause with the sets: (), (a), (a, b), (a, c),
(b), (b, c), (c), and (a, b, c).

When specifying ROLLUP or CUBE, use the GROUPING function to distinguish placeholder NULLs in
your results, caused by the subtotal rows that are implicit in a result set formed by ROLLUP or CUBE.

See also
● “Detection of NULLs using the GROUPING function” on page 497

The ROLLUP clause

A common requirement of many applications is to compute subtotals of the grouping attributes from left-
to-right, in sequence. This pattern is referred to as a hierarchy because the introduction of additional
subtotal calculations produces additional rows with finer granularity of detail. You can specify a hierarchy
of grouping attributes using the ROLLUP keyword to specify a ROLLUP clause.

A query using a ROLLUP clause produces a hierarchical series of grouping sets, as follows. If the
ROLLUP clause contains n GROUP BY expressions of the form (X1,X2, ... , Xn) then the ROLLUP
clause generates n + 1 grouping sets as:

{(), (X1), (X1,X2), (X1,X2,X3), ... , (X1,X2,X3, ... , Xn)}

Example
The following query summarizes the sales orders by year and quarter, and returns the result set shown in
the table below:

SELECT QUARTER(OrderDate) AS Quarter,
 YEAR(OrderDate) AS Year,
 COUNT(*) AS Orders,
 GROUPING(Quarter) AS GQ,
 GROUPING(Year) AS GY
FROM SalesOrders
GROUP BY ROLLUP(Year, Quarter)
ORDER BY Year, Quarter;

This query returns the following results:

Quarter Year Orders GQ GY

1 (NULL) (NULL) 648 1 1

2 (NULL) 2000 380 1 0

3 1 2000 87 0 0

OLAP support

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 493

Quarter Year Orders GQ GY

4 2 2000 77 0 0

5 3 2000 91 0 0

6 4 2000 125 0 0

7 (NULL) 2001 268 1 0

8 1 2001 139 0 0

9 2 2001 119 0 0

10 3 2001 10 0 0

The first row in a result set shows the grand total (648) of all orders, for all quarters, for both years.

Row 2 shows total orders (380) for year 2000, while rows 3-6 show the order subtotals, by quarter, for the
same year. Likewise, row 7 shows total Orders (268) for year 2001, while rows 8-10 show the subtotals,
by quarter, for the same year.

Note how the values returned by GROUPING function can be used to differentiate subtotal rows from the
row that contains the grand total. For rows 2 and 7, the presence of NULL in the quarter column, and the
value of 1 in the GQ column (Grouping by Quarter), indicate that the row is a totaling of orders in all
quarters (per year).

Likewise, in row 1, the presence of NULL in the Quarter and Year columns, plus the presence of a 1 in
the GQ and GY columns, indicate that the row is a totaling of orders for all quarters and for all years.

Support for Transact-SQL WITH ROLLUP syntax
Alternatively, you can also use the Transact-SQL compatible syntax, WITH ROLLUP, to achieve the
same results as GROUP BY ROLLUP. However, the syntax is slightly different and you can only supply
a simple GROUP BY expression list in the syntax.

The following query produces an identical result to that of the previous GROUP BY ROLLUP example:

SELECT QUARTER(OrderDate) AS Quarter,
 YEAR(OrderDate) AS Year,
 COUNT(*) AS Orders,
 GROUPING(Quarter) AS GQ,
 GROUPING(Year) AS GY
FROM SalesOrders
GROUP BY Year, Quarter WITH ROLLUP
ORDER BY Year, Quarter;

See also
● “GROUP BY clause” [SQL Anywhere Server - SQL Reference]

Query and modify data

494 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The CUBE clause

As an alternative to the hierarchical grouping pattern provided by the ROLLUP clause, you can also
create a data cube, that is, an n-dimensional summarization of the input using every possible combination
of GROUP BY expressions, using the CUBE clause. The CUBE clause results in a product set of all
possible combinations of elements from each set of values. This can be very useful for complex data
analysis.

If there are n GROUPING expressions of the form (X1,X2, ...,Xn) in a CUBE clause, then CUBE
generates 2n grouping sets as:

{(), (X1), (X1,X2), (X1,X2,X3), ... , (X1,X2,X3, ...,Xn),(X2), (X2,X3), (X2,X3,X4), ... , (X2,X3,X4, ... , Xn), ... , (Xn)}.

Example
The following query summarizes sales orders by year, by quarter, and quarter within year, and yields the
result set shown in the table below:

SELECT QUARTER(OrderDate) AS Quarter,
 YEAR(OrderDate) AS Year,
 COUNT(*) AS Orders,
 GROUPING(Quarter) AS GQ,
 GROUPING(Year) AS GY
FROM SalesOrders
GROUP BY CUBE (Year, Quarter)
ORDER BY Year, Quarter;

This query returns the following results:

Quarter Year Orders GQ GY

1 (NULL) (NULL) 648 1 1

2 1 (NULL) 226 0 1

3 2 (NULL) 196 0 1

4 3 (NULL) 101 0 1

5 4 (NULL) 125 0 1

6 (NULL) 2000 380 1 0

7 1 2000 87 0 0

8 2 2000 77 0 0

9 3 2000 91 0 0

10 4 2000 125 0 0

OLAP support

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 495

Quarter Year Orders GQ GY

11 (NULL) 2001 268 1 0

12 1 2001 139 0 0

13 2 2001 119 0 0

14 3 2000 10 0 0

The first row in the result set shows the grand total (648) of all orders, for all quarters, for years 2000 and
2001 combined.

Rows 2-5 summarize sales orders by calendar quarter in any year.

Rows 6 and 11 show total Orders for years 2000, and 2001, respectively.

Rows 7-10 and rows 12-14 show the quarterly totals for years 2000, and 2001, respectively.

Note how the values returned by the GROUPING function can be used to differentiate subtotal rows from
the row that contains the grand total. For rows 6 and 11, the presence of NULL in the Quarter column,
and the value of 1 in the GQ column (Grouping by Quarter), indicate that the row is a totaling of Orders in
all quarters for the year.

Note
The result set generated through the use of CUBE can be very large because CUBE generates an
exponential number of grouping sets. For this reason, a GROUP BY clause containing more than 64
GROUP BY expressions is not supported. If a statement exceeds this limit, it fails with SQLCODE -944
(SQLSTATE 42WA1).

Support for Transact-SQL WITH CUBE syntax
Alternatively, you can also use the Transact-SQL compatible syntax, WITH CUBE, to achieve the same
results as GROUP BY CUBE. However, the syntax is slightly different and you can only supply a simple
GROUP BY expression list in the syntax.

The following query produces an identical result to that of the previous GROUP BY CUBE example:

SELECT QUARTER(OrderDate) AS Quarter,
 YEAR(OrderDate) AS Year,
 COUNT(*) AS Orders,
 GROUPING(Quarter) AS GQ,
 GROUPING(Year) AS GY
FROM SalesOrders
GROUP BY Year, Quarter WITH CUBE
ORDER BY Year, Quarter;

See also
● “Too many expressions in GROUP BY list for ROLLUP, CUBE, or GROUPING SETS operation”

[Error Messages]
● “GROUP BY clause” [SQL Anywhere Server - SQL Reference]

Query and modify data

496 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Detection of NULLs using the GROUPING function

The total and subtotal rows created by ROLLUP and CUBE contain placeholder NULLs in any column
specified in the SELECT list that was not used for the grouping. This means that when you are examining
your results, you cannot distinguish whether a NULL in a subtotal row is a placeholder NULL, or a
NULL resulting from the evaluation of the underlying data for the row. As a result, it is also difficult to
distinguish between a detail row, a subtotal row, and a grand total row.

The GROUPING function allows you to distinguish placeholder NULLs from NULLs caused by
underlying data. If you specify a GROUPING function with one group-by-expression from the grouping
set specification, the function returns a 1 if it is a placeholder NULL, and 0 if it reflects a value (perhaps
NULL) present in the underlying data for that row.

For example, the following query returns the result set shown in the table below:

SELECT Employees.EmployeeID AS Employee,
 YEAR(OrderDate) AS Year,
 COUNT(SalesOrders.ID) AS Orders,
 GROUPING(Employee) AS GE,
 GROUPING(Year) AS GY
FROM Employees LEFT OUTER JOIN SalesOrders
 ON Employees.EmployeeID = SalesOrders.SalesRepresentative
WHERE Employees.Sex IN ('F')
 AND Employees.State IN ('TX' , 'NY')
GROUP BY GROUPING SETS ((Year, Employee), (Year), ())
ORDER BY Year, Employee;

This query returns the following results:

Employees Year Orders GE GY

1 (NULL) (NULL) 54 1 1

2 (NULL) (NULL) 0 1 0

3 102 (NULL) 0 0 0

4 390 (NULL) 0 0 0

5 1062 (NULL) 0 0 0

6 1090 (NULL) 0 0 0

7 1507 (NULL) 0 0 0

8 (NULL) 2000 34 1 0

9 667 2000 34 0 0

10 (NULL) 2001 20 1 0

OLAP support

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 497

Employees Year Orders GE GY

11 667 2001 20 0 0

In this example, row 1 represents the grand total of orders (54) because the empty grouping set '()' was
specified. Notice that GE and GY both contain a 1 to indicate that the NULLs in the Employees and Year
columns are placeholder NULLs for Employees and Year columns, respectively.

Row 2 is a subtotal row. The 1 in the GE column indicates that the NULL in the Employees column is a
placeholder NULL. The 0 in the GY column indicates that the NULL in the Year column is the result of
evaluating the underlying data, and not a placeholder NULL; in this case, this row represents those
employees who have no orders.

Rows 3-7 show the total number of orders, per employee, where the Year was NULL. That is, these are
the female employees that live in Texas and New York who have no orders. These are the detail rows for
row 2. That is, row 2 is a totaling of rows 3-7.

Row 8 is a subtotal row showing the number of orders for all employees combined, in the year 2000. Row
9 is the single detail row for row 8.

Row 10 is a subtotal row showing the number of orders for all employees combined, in the year 2001.
Row 11 is the single detail row for row 10.

See also
● “GROUPING function [Aggregate]” [SQL Anywhere Server - SQL Reference]

Window functions
OLAP functionality includes the concept of a sliding window that moves down through the input rows as
they are processed. Additional calculations can be performed on the data in the window as it moves,
allowing further analysis in a manner that is more efficient than using semantically equivalent self-join
queries, or correlated subqueries.

You configure the bounds of the window based on the information you are trying to extract from the data.
A window can be one, many, or all the rows in the input data, which has been partitioned according to the
grouping specifications provided in the window definition. The window moves down through the input
data, incorporating the rows needed to perform the requested calculations.

The following diagram illustrates the movement of the window as input rows are processed. The data
partitions reflect the grouping of input rows specified in the window definition. If no grouping is
specified, all input rows are considered one partition. The length of the window (that is, the number of
rows it includes), and the offset of the window compared to the current row, reflect the bounds specified
in the window definition.

Query and modify data

498 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Window definitions

You can use SQL windowing extensions to configure the bounds of a window, and the partitioning and
ordering of the input rows. Logically, as part of the semantics of computing the result of a query
specification, partitions are created after the groups defined by the GROUP BY clause are created, but
before the evaluation of the final SELECT list and the query's ORDER BY clause. The order of
evaluation of the clauses within a SQL statement is:

1. FROM

2. WHERE

3. GROUP BY

4. HAVING

5. WINDOW

6. DISTINCT

7. ORDER BY

When forming your query, the impact of the order of evaluation should be considered. For example, you
cannot have a predicate on an expression referencing a window function in the same SELECT query
block. However, by putting the query block in a derived table, you can specify a predicate on the derived

OLAP support

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 499

table. The following query fails with a message indicating that the failure was the result of a predicate
being specified on a window function:

SELECT DepartmentID, Surname, StartDate, Salary,
 SUM(Salary) OVER (PARTITION BY DepartmentID
 ORDER BY StartDate
 RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS
"Sum_Salary"
 FROM Employees
 WHERE State IN ('CA', 'UT', 'NY', 'AZ')
 AND DepartmentID IN ('100', '200')
 GROUP BY DepartmentID, Surname, StartDate, Salary
 HAVING Salary > 0 AND "Sum_Salary" > 200
 ORDER BY DepartmentID, StartDate;

Use a derived table (DT) and specify a predicate on it to achieve the results you want:

SELECT * FROM (SELECT DepartmentID, Surname, StartDate, Salary,
 SUM(Salary) OVER (PARTITION BY DepartmentID
 ORDER BY StartDate
 RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
AS "Sum_Salary"
 FROM Employees
 WHERE State IN ('CA', 'UT', 'NY', 'AZ')
 AND DepartmentID IN ('100', '200')
 GROUP BY DepartmentID, Surname, StartDate, Salary
 HAVING Salary > 0
 ORDER BY DepartmentID, StartDate) AS DT
 WHERE DT.Sum_Salary > 200;

Because window partitioning follows a GROUP BY operator, the result of any aggregate function, such
as SUM, AVG, or VARIANCE, is available to the computation done for a partition. So, windows provide
another opportunity to perform grouping and ordering operations in addition to a query's GROUP BY and
ORDER BY clauses.

Defining a window specification
When you define the window over which a window function operates, you specify one or more of the
following:

● Partitioning (PARTITION BY clause) The PARTITION BY clause defines how the input rows
are grouped. If omitted, the entire input is treated as a single partition. A partition can be one, several,
or all input rows, depending on what you specify. Data from two partitions is never mixed. That is,
when a window reaches the boundary between two partitions, it completes processing the data in one
partition, before beginning on the data in the next partition. This means that the window size may vary
at the beginning and end of a partition, depending on how the bounds are defined for the window.

● Ordering (ORDER BY clause) The ORDER BY clause defines how the input rows are ordered,
before being processed by the window function. The ORDER BY clause is required only if you are
specifying the bounds using a RANGE clause, or if a ranking function references the window.
Otherwise, the ORDER BY clause is optional. If omitted, the database server processes the input rows
in the most efficient manner.

● Bounds (RANGE and ROWS clauses) The current row provides the reference point for
determining the start and end rows of a window. You can use the RANGE and ROWS clauses of the

Query and modify data

500 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

window definition to set these bounds. RANGE defines the window as a range of data values offset
from the value in the current row. So, if you specify RANGE, you must also specify an ORDER BY
clause since range calculations require that the data be ordered.

ROWS defines the window as the number of rows offset from the current row.

Since RANGE defines a set of rows as a range of data values, the rows included in a RANGE window
can include rows beyond the current row. This is different from how ROWS is handled. The following
diagram illustrates the difference between the ROWS and RANGE clauses:

Within the ROWS and RANGE clauses, you can (optionally) specify the start and end rows of the
window, relative to the current row. To do this, you use the PRECEDING, BETWEEN, and
FOLLOWING clauses. These clauses take expressions, and the keywords UNBOUNDED and
CURRENT ROW. If no bounds are defined for a window, the default window bounds are set as
follows:

○ If the window specification contains an ORDER BY clause, it is equivalent to specifying RANGE
BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW.

○ If the window specification does not contain an ORDER BY clause, it is equivalent to specifying
ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

The following table contains some example window bounds and description of the rows they contain:

Specification Meaning

ROWS BETWEEN
UNBOUNDED PRE-
CEDING AND CUR-
RENT ROW

Start at the beginning of the partition, and end with the current row. Use
this when computing cumulative results, such as cumulative sums.

OLAP support

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 501

Specification Meaning

ROWS BETWEEN
UNBOUNDED PRE-
CEDING AND UN-
BOUNDED FOLLOW-
ING

Use all rows in the partition. Use this when you want the value of an ag-
gregate function to be identical for each row of a partition.

ROWS BETWEEN x
PRECEDING AND y
FOLLOWING

Create a fixed-size moving window of rows starting at a distance of x
from current row and ending at a distance of y from current row (inclu-
sive). Use this example when you want to calculate a moving average, or
when you want to compute differences in values between adjacent rows.

With a moving window of more than one row, NULLs occur when com-
puting the first and last row in the partition. This occurs because when
the current row is either the very first or very last row of the partition,
there are no preceding or following (respectively) rows to use in the
computation. Therefore, NULL values are used instead.

ROWS BETWEEN
CURRENT ROW AND
CURRENT ROW

A window of one row; the current row.

RANGE BETWEEN 5
PRECEDING AND 5
FOLLOWING

Create a window that is based on values in the rows. For example, sup-
pose that for the current row, the column specified in the ORDER BY
clause contains the value 10. If you specify the window size to be
RANGE BETWEEN 5 PRECEDING AND 5 FOLLOWING, you are
specifying the size of the window to be as large as required to ensure
that the first row contains a 5 in the column, and the last row in the win-
dow contains a 15 in the column. As the window moves down the parti-
tion, the size of the window may grow or shrink according to the size
required to fulfill the range specification.

Make your window specification as explicit as possible. Otherwise, the defaults may not return the
results you expect.

Use the RANGE clause to avoid problems caused by gaps in the input to a window function when the
set of values is not continuous. When a window bounds are set using a RANGE clause, the database
server automatically handles adjacent rows and rows with duplicate values.

RANGE uses unsigned integer values. Truncation of the range expression can occur depending on the
domain of the ORDER BY expression and the domain of the value specified in the RANGE clause.

Do not specify window bounds when using a ranking or a row-numbering function.

Query and modify data

502 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Window definition: Inlining using the OVER clause and WINDOW
clause

There are three ways to define a window:

● inline (within the OVER clause of a window function)

● in a WINDOW clause

● partially inline and partially in a WINDOW clause

However, some approaches have restrictions, as noted in the following sections.

Inline definition (within the OVER clause of a window function)
A window definition can be placed in the OVER clause of a window function. This is referred to as
defining the window inline.

For example, the following statement queries the sample database for all products shipped in July and
August 2001, and the cumulative shipped quantity by shipping date. The window is defined inline.

SELECT p.ID, p.Description, s.Quantity, s.ShipDate,
 SUM(s.Quantity) OVER (PARTITION BY s.ProductID
 ORDER BY s.ShipDate
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS Cumulative_qty
FROM SalesOrderItems s JOIN Products p
 ON (s.ProductID = p.ID)
WHERE s.ShipDate BETWEEN '2001-07-01' AND '2001-08-31'
ORDER BY p.ID;

This query returns the following results:

ID Description Quantity ShipDate Cumulative_qty

1 301 V-neck 24 2001-07-16 24

2 302 Crew Neck 60 2001-07-02 60

3 302 Crew Neck 36 2001-07-13 96

4 400 Cotton Cap 48 2001-07-05 48

5 400 Cotton Cap 24 2001-07-19 72

6 401 Wool Cap 48 2001-07-09 48

7 500 Cloth Visor 12 2001-07-22 12

8 501 Plastic Visor 60 2001-07-07 60

9 501 Plastic Visor 12 2001-07-12 72

OLAP support

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 503

ID Description Quantity ShipDate Cumulative_qty

10 501 Plastic Visor 12 2001-07-22 84

11 601 Zipped Sweatshirt 60 2001-07-19 60

12 700 Cotton Shorts 24 2001-07-26 24

In this example, the computation of the SUM window function occurs after the join of the two tables and
the application of the query's WHERE clause. The query is processed as follows:

1. Partition (group) the input rows based on the value ProductID.

2. Within each partition, sort the rows based on the value of ShipDate.

3. For each row in the partition, evaluate the SUM function over the values in Quantity, using a sliding
window consisting of the first (sorted) row of each partition, up to and including the current row.

WINDOW clause definition
An alternative construction for the above query is to use a WINDOW clause to specify the window
separately from the functions that use it, and then reference the window from within the OVER clause of
each function.

In this example, the WINDOW clause creates a window called Cumulative, partitioning data by
ProductID, and ordering it by ShipDate. The SUM function references the window in its OVER clause,
and defines its size using a ROWS clause.

SELECT p.ID, p.Description, s.Quantity, s.ShipDate,
 SUM(s.Quantity) OVER (Cumulative
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS cumulative_qty
FROM SalesOrderItems s
JOIN Products p ON (s.ProductID = p.ID)
WHERE s.ShipDate BETWEEN '2001-07-01' AND '2001-08-31'
WINDOW Cumulative AS (PARTITION BY s.ProductID ORDER BY s.ShipDate)
ORDER BY p.ID;

When using the WINDOW clause syntax, the following restrictions apply:

● If a PARTITION BY clause is specified, it must be placed within the WINDOW clause.

● If a ROWS or RANGE clause is specified, it must be placed in the OVER clause of the referencing
function.

● If an ORDER BY clause is specified for the window, it can be placed in either the WINDOW clause or
the referencing function's OVER clause, but not both.

● The WINDOW clause must precede the SELECT statement's ORDER BY clause.

Combination inline and WINDOW clause definition
You can inline part of a window definition and then define the rest in the WINDOW clause. For example:

Query and modify data

504 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

AVG() OVER (windowA
 ORDER BY expression)...
...
WINDOW windowA AS (PARTITION BY expression)

When splitting the window definition in this manner, the following restrictions apply:

● You cannot use a PARTITION BY clause in the window function syntax.

● You can use an ORDER BY clause in either the window function syntax or in the WINDOW clause,
but not in both.

● You cannot include a RANGE or ROWS clause in the WINDOW clause.

See also
● “WINDOW clause” [SQL Anywhere Server - SQL Reference]
● “Window aggregate functions” on page 505
● “Window ranking functions” on page 524
● “Window definitions” on page 499

Window functions
Functions that allow you to perform analytic operations over a set of input rows are referred to as window
functions. For example, all ranking functions, and most aggregate functions, are window functions. You
can use them to perform additional analysis on your data. This is achieved by partitioning and sorting the
input rows before being processed, and then processing the rows in a configurable-sized window that
moves through the input.

There are three types of window functions: window aggregate functions, window ranking functions, and
row numbering functions.

Window aggregate functions

Window aggregate functions return a value for a specified set of rows in the input. For example, you can
use window functions to calculate a moving average of the sales figures for a company over a specified
time period.

Window aggregate functions are organized into the following three categories:

OLAP support

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 505

● Basic aggregate functions Following is the list of supported basic aggregate functions:

○ “SUM function [Aggregate]” [SQL Anywhere Server - SQL Reference]
○ “AVG function [Aggregate]” [SQL Anywhere Server - SQL Reference]
○ “MAX function [Aggregate]” [SQL Anywhere Server - SQL Reference]
○ “MIN function [Aggregate]” [SQL Anywhere Server - SQL Reference]
○ “MEDIAN function [Aggregate]” [SQL Anywhere Server - SQL Reference]
○ “FIRST_VALUE function [Aggregate]” [SQL Anywhere Server - SQL Reference]
○ “LAST_VALUE function [Aggregate]” [SQL Anywhere Server - SQL Reference]
○ “COUNT function [Aggregate]” [SQL Anywhere Server - SQL Reference]

● Standard deviation and variance functions Following is the list of supported standard
deviation and variance functions:

○ “STDDEV function [Aggregate]” [SQL Anywhere Server - SQL Reference]
○ “STDDEV_POP function [Aggregate]” [SQL Anywhere Server - SQL Reference]
○ “STDDEV_SAMP function [Aggregate]” [SQL Anywhere Server - SQL Reference]
○ “VAR_POP function [Aggregate]” [SQL Anywhere Server - SQL Reference]
○ “VAR_SAMP function [Aggregate]” [SQL Anywhere Server - SQL Reference]
○ “VARIANCE function [Aggregate]” [SQL Anywhere Server - SQL Reference]

● Correlation and linear regression functions Following is the list of supported correlation and
linear regression functions:

○ “COVAR_POP function [Aggregate]” [SQL Anywhere Server - SQL Reference]
○ “COVAR_SAMP function [Aggregate]” [SQL Anywhere Server - SQL Reference]
○ “REGR_AVGX function [Aggregate]” [SQL Anywhere Server - SQL Reference]
○ “REGR_AVGY function [Aggregate]” [SQL Anywhere Server - SQL Reference]
○ “REGR_COUNT function [Aggregate]” [SQL Anywhere Server - SQL Reference]
○ “REGR_INTERCEPT function [Aggregate]” [SQL Anywhere Server - SQL Reference]
○ “REGR_R2 function [Aggregate]” [SQL Anywhere Server - SQL Reference]
○ “REGR_SLOPE function [Aggregate]” [SQL Anywhere Server - SQL Reference]
○ “REGR_SXX function [Aggregate]” [SQL Anywhere Server - SQL Reference]
○ “REGR_SXY function [Aggregate]” [SQL Anywhere Server - SQL Reference]
○ “REGR_SYY function [Aggregate]” [SQL Anywhere Server - SQL Reference]

See also
● “Basic aggregate functions” on page 506
● “Correlation and linear regression functions” on page 522
● “Standard deviation and variance functions” on page 518

Basic aggregate functions

Complex data analysis often requires multiple levels of aggregation. Window partitioning and ordering, in
addition to, or instead of, a GROUP BY clause, offers you considerable flexibility in the composition of
complex SQL queries. For example, by combining a window construct with a simple aggregate function,
you can compute values such as moving average, moving sum, moving minimum or maximum, and
cumulative sum.

Query and modify data

506 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Following are the supported basic aggregate functions:

● SUM function Returns the total of the specified expression for each group of rows.

● AVG function Returns the average of a numeric expression or of a set unique values for a set of
rows.

● MAX function Returns the maximum expression value found in each group of rows.

● MIN function Returns the minimum expression value found in each group of rows.

● MEDIAN function Returns the median of a numeric expression for a set of rows.

● FIRST_VALUE function Returns values from the first row of a window. This function requires a
window specification.

● LAST_VALUE function Returns values from the last row of a window. This function requires a
window specification.

● COUNT function Returns the number of rows that qualify for the specified expression.

See also
● “SUM function [Aggregate]” [SQL Anywhere Server - SQL Reference]
● “AVG function [Aggregate]” [SQL Anywhere Server - SQL Reference]
● “MAX function [Aggregate]” [SQL Anywhere Server - SQL Reference]
● “MIN function [Aggregate]” [SQL Anywhere Server - SQL Reference]
● “MEDIAN function [Aggregate]” [SQL Anywhere Server - SQL Reference]
● “FIRST_VALUE function [Aggregate]” [SQL Anywhere Server - SQL Reference]
● “LAST_VALUE function [Aggregate]” [SQL Anywhere Server - SQL Reference]
● “COUNT function [Aggregate]” [SQL Anywhere Server - SQL Reference]
● “Window functions” on page 498

SUM function example
The following example shows the SUM function used as a window function. The query returns a result
set that partitions the data by DepartmentID, and then provides a cumulative summary (Sum_Salary) of
employees' salaries, starting with the employee who has been at the company the longest. The result set
includes only those employees who reside in California, Utah, New York, or Arizona. The column
Sum_Salary provides the cumulative total of employees' salaries.

SELECT DepartmentID, Surname, StartDate, Salary,
SUM(Salary) OVER (PARTITION BY DepartmentID
 ORDER BY StartDate
 RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
AS "Sum_Salary"
FROM Employees
WHERE State IN ('CA', 'UT', 'NY', 'AZ')
 AND DepartmentID IN ('100', '200')
ORDER BY DepartmentID, StartDate;

The table that follows represents the result set from the query. The result set is partitioned by
DepartmentID.

OLAP support

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 507

DepartmentID Surname StartDate Salary Sum_Salary

1 100 Whitney 1984-08-28 45700.00 45700.00

2 100 Cobb 1985-01-01 62000.00 107700.00

3 100 Shishov 1986-06-07 72995.00 180695.00

4 100 Driscoll 1986-07-01 48023.69 228718.69

5 100 Guevara 1986-10-14 42998.00 271716.69

6 100 Wang 1988-09-29 68400.00 340116.69

7 100 Soo 1990-07-31 39075.00 379191.69

8 100 Diaz 1990-08-19 54900.00 434091.69

9 200 Overbey 1987-02-19 39300.00 39300.00

10 200 Martel 1989-10-16 55700.00 95000.00

11 200 Savarino 1989-11-07 72300.00 167300.00

12 200 Clark 1990-07-21 45000.00 212300.00

13 200 Goggin 1990-08-05 37900.00 250200.00

For DepartmentID 100, the cumulative total of salaries from employees in California, Utah, New York,
and Arizona is $434,091.69 and the cumulative total for employees in department 200 is $250,200.00.

Computing deltas between adjacent rows
Using two windows—one window over the current row, the other over the previous row—you can
compute deltas, or changes, between adjacent rows. For example, the following query computes the delta
(Delta) between the salary for one employee and the previous employee in the results:

SELECT EmployeeID AS EmployeeNumber,
 Surname AS LastName,
 SUM(Salary) OVER (ORDER BY BirthDate
 ROWS BETWEEN CURRENT ROW AND CURRENT ROW)
 AS CurrentRow,
 SUM(Salary) OVER (ORDER BY BirthDate
 ROWS BETWEEN 1 PRECEDING AND 1 PRECEDING)
 AS PreviousRow,
 (CurrentRow - PreviousRow) AS Delta
FROM Employees
WHERE State IN ('NY');

EmployeeNumber LastName CurrentRow PreviousRow Delta

1 913 Martel 55700.000 (NULL) (NULL)

Query and modify data

508 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

EmployeeNumber LastName CurrentRow PreviousRow Delta

2 1062 Blaikie 54900.000 55700.000 -800.000

3 249 Guevara 42998.000 54900.000 -11902.000

4 390 Davidson 57090.000 42998.000 14092.000

5 102 Whitney 45700.000 57090.000 -11390.000

6 1507 Wetherby 35745.000 45700.000 -9955.000

7 1751 Ahmed 34992.000 35745.000 -753.000

8 1157 Soo 39075.000 34992.000 4083.000

Note that SUM is performed only on the current row for the CurrentRow window because the window
size was set to ROWS BETWEEN CURRENT ROW AND CURRENT ROW. Likewise, SUM is performed
only over the previous row for the PreviousRow window, because the window size was set to ROWS
BETWEEN 1 PRECEDING AND 1 PRECEDING. The value of PreviousRow is NULL in the first row
since it has no predecessor, so the Delta value is also NULL.

Complex analytics
Consider the following query, which lists the top salespeople (defined by total sales) for each product in
the database:

SELECT s.ProductID AS Products, o.SalesRepresentative,
 SUM(s.Quantity) AS total_quantity,
 SUM(s.Quantity * p.UnitPrice) AS total_sales
 FROM SalesOrders o KEY JOIN SalesOrderItems s
 KEY JOIN Products p
 GROUP BY s.ProductID, o.SalesRepresentative
 HAVING total_sales = (
 SELECT First SUM(s2.Quantity * p2.UnitPrice)
 AS sum_sales
 FROM SalesOrders o2 KEY JOIN
 SalesOrderItems s2 KEY JOIN Products p2
 WHERE s2.ProductID = s.ProductID
 GROUP BY o2.SalesRepresentative
 ORDER BY sum_sales DESC)
 ORDER BY s.ProductID;

OLAP support

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 509

This query returns the result:

Products SalesRepresentative total_quantity total_sales

1 300 299 660 5940.00

2 301 299 516 7224.00

3 302 299 336 4704.00

4 400 299 458 4122.00

Query and modify data

510 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Products SalesRepresentative total_quantity total_sales

5 401 902 360 3600.00

6 500 949 360 2520.00

7 501 690 360 2520.00

8 501 949 360 2520.00

9 600 299 612 14688.00

10 601 299 636 15264.00

11 700 299 1008 15120.00

The original query is formed using a correlated subquery that determines the highest sales for any
particular product, as ProductID is the subquery's correlated outer reference. Using a nested query,
however, is often an expensive option, as in this case. This is because the subquery involves not only a
GROUP BY clause, but also an ORDER BY clause within the GROUP BY clause. This makes it
impossible for the query optimizer to rewrite this nested query as a join while retaining the same
semantics. So, during query execution the subquery is evaluated for each derived row computed in the
outer block.

OLAP support

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 511

Note the expensive Filter predicate in the graphical plan: the optimizer estimates that 99% of the query's
execution cost is because of this plan operator. The plan for the subquery clearly illustrates why the filter
operator in the main block is so expensive: the subquery involves two nested loops joins, a hashed
GROUP BY operation, and a sort.

Rewriting using a ranking function
A rewrite of the same query, using a ranking function, computes the identical result much more
efficiently:

SELECT v.ProductID, v.SalesRepresentative,
 v.total_quantity, v.total_sales
 FROM (SELECT o.SalesRepresentative, s.ProductID,
 SUM(s.Quantity) AS total_quantity,
 SUM(s.Quantity * p.UnitPrice) AS total_sales,

Query and modify data

512 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 RANK() OVER (PARTITION BY s.ProductID
 ORDER BY SUM(s.Quantity * p.UnitPrice) DESC)
 AS sales_ranking
 FROM SalesOrders o KEY JOIN SalesOrderItems s KEY JOIN Products p
 GROUP BY o.SalesRepresentative, s.ProductID)
 AS v
 WHERE sales_ranking = 1
 ORDER BY v.ProductID;

This rewritten query results in a simpler plan:

Recall that a window operator is computed after the processing of a GROUP BY clause and before the
evaluation of the SELECT list items and the query's ORDER BY clause. As seen in the graphical plan,

OLAP support

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 513

after the join of the three tables, the joined rows are grouped by the combination of the
SalesRepresentative and ProductID attributes. So, the SUM aggregate functions of total_quantity and
total_sales can be computed for each combination of SalesRepresentative and ProductID.

Following the evaluation of the GROUP BY clause, the RANK function is then computed to rank the
rows in the intermediate result in descending sequence by total_sales, using a window. Note that the
WINDOW specification involves a PARTITION BY clause. By doing so, the result of the GROUP BY
clause is repartitioned (or regrouped)—this time by ProductID. So, the RANK function ranks the rows for
each product—in descending order of total sales—but for all sales representatives that have sold that
product. With this ranking, determining the top salespeople simply requires restricting the derived table's
result to reject those rows where the rank is not 1. For ties (rows 7 and 8 in the result set), RANK returns
the same value. So, both salespeople 690 and 949 appear in the final result.

See also
● “SUM function [Aggregate]” [SQL Anywhere Server - SQL Reference]

AVG function example
In this example, AVG is used as a window function to compute the moving average of all product sales,
by month, in the year 2000. Note that the WINDOW specification uses a RANGE clause, which causes
the window bounds to be computed based on the month value, and not by the number of adjacent rows as
with the ROWS clause. Using ROWS would yield different results if, for example, there were no sales of
some or all the products in a particular month.

SELECT *
 FROM (SELECT s.ProductID,
 Month(o.OrderDate) AS julian_month,
 SUM(s.Quantity) AS sales,
 AVG(SUM(s.Quantity))
 OVER (PARTITION BY s.ProductID
 ORDER BY Month(o.OrderDate) ASC
 RANGE BETWEEN 1 PRECEDING AND 1 FOLLOWING)
 AS average_sales
 FROM SalesOrderItems s KEY JOIN SalesOrders o
 WHERE Year(o.OrderDate) = 2000
 GROUP BY s.ProductID, Month(o.OrderDate))
 AS DT
 ORDER BY 1,2;

See also
● “AVG function [Aggregate]” [SQL Anywhere Server - SQL Reference]

MAX function example
Eliminating correlated subqueries

In some situations, you may need the ability to compare a particular column value with a maximum or
minimum value. Often you form these queries as nested queries involving a correlated attribute (also
known as an outer reference). As an example, consider the following query, which lists all orders,
including product information, where the product quantity-on-hand cannot cover the maximum single
order for that product:

Query and modify data

514 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SELECT o.ID, o.OrderDate, p.*
FROM SalesOrders o, SalesOrderItems s, Products p
WHERE o.ID = s.ID AND s.ProductID = p.ID
 AND p.Quantity < (SELECT MAX(s2.Quantity)
 FROM SalesOrderItems s2
 WHERE s2.ProductID = p.ID)
ORDER BY p.ID, o.ID;

The graphical plan for this query is displayed in the Plan Viewer as shown below. Note how the query
optimizer has transformed this nested query to a join of the Products and SalesOrders tables with a
derived table, denoted by the correlation name DT, which contains a window function.

OLAP support

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 515

Rather than relying on the optimizer to transform the correlated subquery into a join with a derived table
—which can only be done for straightforward cases due to the complexity of the semantic analysis—you
can form such queries using a window function:

SELECT order_quantity.ID, o.OrderDate, p.*
 FROM (SELECT s.ID, s.ProductID,
 MAX(s.Quantity) OVER (
 PARTITION BY s.ProductID
 ORDER BY s.ProductID)
 AS max_quantity
 FROM SalesOrderItems s)
 AS order_quantity, Products p, SalesOrders o
 WHERE p.ID = ProductID
 AND o.ID = order_quantity.ID
 AND p.Quantity < max_quantity
 ORDER BY p.ID, o.ID;

See also
● “MIN function [Aggregate]” [SQL Anywhere Server - SQL Reference]
● “MAX function [Aggregate]” [SQL Anywhere Server - SQL Reference]

FIRST_VALUE function and LAST_VALUE function examples

The FIRST_VALUE and LAST_VALUE functions return values from the first and last rows of a
window. This allows a query to access values from multiple rows at once, without the need for a self-join.

These two functions are different from the other window aggregate functions because they must be used
with a window. Also, unlike the other window aggregate functions, these functions allow the IGNORE
NULLS clause. If IGNORE NULLS is specified, the first or last non-NULL value of the desired
expression is returned. Otherwise, the first or last value is returned.

Example 1: First entry in a group
The FIRST_VALUE function can be used to retrieve the first entry in an ordered group of values. The
following query returns, for each order, the product identifier of the order's first item; that is, the
ProductID of the item with the smallest LineID for each order.

Notice that the query uses the DISTINCT keyword to remove duplicates; without it, duplicate rows are
returned for each item in each order.

SELECT DISTINCT ID,
FIRST_VALUE(ProductID) OVER (PARTITION BY ID ORDER BY LineID)
FROM SalesOrderItems
ORDER BY ID;

Example 2: Percentage of highest sales
A common use of the FIRST_VALUE function is to compare a value in each row with the maximum or
minimum value within the current group. The following query computes the total sales for each sales
representative, and then compares that representative's total sales with the maximum total sales for the
same product. The result is expressed as a percentage of the maximum total sales.

SELECT s.ProductID AS prod_id, o.SalesRepresentative AS sales_rep,
 SUM(s.Quantity * p.UnitPrice) AS total_sales,

Query and modify data

516 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 100 * total_sales / (FIRST_VALUE(SUM(s.Quantity * p.UnitPrice))
 OVER Sales_Window) AS total_sales_percentage
 FROM SalesOrders o KEY JOIN SalesOrderItems s KEY JOIN Products p
 GROUP BY o.SalesRepresentative, s.ProductID
 WINDOW Sales_Window AS (PARTITION BY s.ProductID
 ORDER BY SUM(s.Quantity * p.UnitPrice) DESC)
 ORDER BY s.ProductID;

Example 3: Populating NULL values making data more dense
The FIRST_VALUE and LAST_VALUE functions are useful when you have made your data more dense
and you need to populate values instead of having NULLs. For example, suppose the sales representative
with the highest total sales each day wins the distinction of Representative of the Day. The following
query lists the winning sales representatives for the first week of April, 2001:

SELECT v.OrderDate, v.SalesRepresentative AS rep_of_the_day
FROM (SELECT o.SalesRepresentative, o.OrderDate,
 RANK() OVER (PARTITION BY o.OrderDate
 ORDER BY SUM(s.Quantity *
 p.UnitPrice) DESC) AS sales_ranking
 FROM SalesOrders o KEY JOIN SalesOrderItems s KEY JOIN Products p
 GROUP BY o.SalesRepresentative, o.OrderDate) AS v
WHERE v.sales_ranking = 1
AND v.OrderDate BETWEEN '2001-04-01' AND '2001-04-07'
ORDER BY v.OrderDate;

The query returns the following results:

OrderDate rep_of_the_day

2001-04-01 949

2001-04-02 856

2001-04-05 902

2001-04-06 467

2001-04-07 299

However, note that no results are returned for days in which no sales were made. The following query
makes the data more dense, creating records for days in which no sales were made. Additionally, it uses
the LAST_VALUE function to populate the NULL values for rep_of_the_day (on non-winning days)
with the ID of the last winning representative, until a new winner occurs in the results.

SELECT d.dense_order_date,
 LAST_VALUE(v.SalesRepresentative IGNORE NULLS)
 OVER (ORDER BY d.dense_order_date)
 AS rep_of_the_day
FROM (SELECT o.SalesRepresentative, o.OrderDate,
 RANK() OVER (PARTITION BY o.OrderDate
 ORDER BY SUM(s.Quantity *
 p.UnitPrice) DESC) AS sales_ranking
 FROM SalesOrders o KEY JOIN SalesOrderItems s KEY JOIN Products p
 GROUP BY o.SalesRepresentative, o.OrderDate) AS v
RIGHT OUTER JOIN (SELECT DATEADD(day, row_num, '2001-04-01')
 AS dense_order_date

OLAP support

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 517

 FROM sa_rowgenerator(0, 6)) AS d
ON v.OrderDate = d.dense_order_date AND sales_ranking = 1
ORDER BY d.dense_order_date;

The query returns the following results:

dense_order_date rep_of_the_day

2001-04-01 949

2001-04-02 856

2001-04-03 856

2001-04-04 856

2001-04-05 902

2001-04-06 467

2001-04-07 299

The derived table v from the previous query is joined to a derived table d, which contains all the dates
under consideration. This yields a row for each desired day, but this outer join contains NULL in the
SalesRepresentative column for dates on which no sales were made. Using the LAST_VALUE function
solves this problem by defining rep_of_the_day for a given row to be the last non-NULL value of
SalesRepresentative leading up to the corresponding day.

See also
● “FIRST_VALUE function [Aggregate]” [SQL Anywhere Server - SQL Reference]
● “LAST_VALUE function [Aggregate]” [SQL Anywhere Server - SQL Reference]
● “Window functions” on page 498

Standard deviation and variance functions

Two versions of variance and standard deviation functions are supported: a sampling version, and a
population version. Choosing between the two versions depends on the statistical context in which the
function is to be used.

All the variance and standard deviation functions are true aggregate functions in that they can compute
values for a partition of rows as determined by the query's GROUP BY clause. As with other basic
aggregate functions such as MAX or MIN, their computation also ignores NULL values in the input.

For improved performance, the database server calculates the mean, and the deviation from mean, in one
step. This means that only one pass over the data is required.

Also, regardless of the domain of the expression being analyzed, all variance and standard deviation
computation is done using IEEE double-precision floating-point arithmetic. If the input to any variance or

Query and modify data

518 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

standard deviation function is the empty set, then each function returns NULL as its result. If
VAR_SAMP is computed for a single row, then it returns NULL, while VAR_POP returns the value 0.

Following are the supported standard deviation and variance functions:

● STDDEV function
● STDDEV_POP function
● STDDEV_SAMP function
● VARIANCE function
● VAR_POP function
● VAR_SAMP function

STDDEV function
This function is an alias for the STDDEV_SAMP function.

STDDEV_POP function
This function computes the standard deviation of a population consisting of a numeric expression, as a
DOUBLE.

Example 1
The following query returns a result set that shows the employees whose salary is one standard deviation
greater than the average salary of their department. Standard deviation is a measure of how much the data
varies from the mean.

SELECT *
FROM (SELECT
 Surname AS Employee,
 DepartmentID AS Department,
 CAST(Salary as DECIMAL(10, 2))
 AS Salary,
 CAST(AVG(Salary)
 OVER (PARTITION BY DepartmentID) AS DECIMAL (10, 2))
 AS Average,
 CAST(STDDEV_POP(Salary)
 OVER (PARTITION BY DepartmentID) AS DECIMAL (10, 2))
 AS StandardDeviation
 FROM Employees
 GROUP BY Department, Employee, Salary)
 AS DerivedTable
WHERE Salary > Average + StandardDeviation
ORDER BY Department, Salary, Employee;

The table that follows represents the result set from the query. Every department has at least one
employee whose salary significantly deviates from the mean.

Employee Department Salary Average StandardDeviation

1 Lull 100 87900.00 58736.28 16829.60

2 Scheffield 100 87900.00 58736.28 16829.60

3 Scott 100 96300.00 58736.28 16829.60

OLAP support

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 519

Employee Department Salary Average StandardDeviation

4 Sterling 200 64900.00 48390.95 13869.60

5 Savarino 200 72300.00 48390.95 13869.60

6 Kelly 200 87500.00 48390.95 13869.60

7 Shea 300 138948.00 59500.00 30752.40

8 Blaikie 400 54900.00 43640.67 11194.02

9 Morris 400 61300.00 43640.67 11194.02

10 Evans 400 68940.00 43640.67 11194.02

11 Martinez 500 55500.00 33752.20 9084.50

Employee Scott earns $96,300.00, while the departmental average is $58,736.28. The standard deviation
for that department is $16,829.00, which means that salaries less than $75,565.88 (58736.28 +
16829.60 = 75565.88) fall within one standard deviation of the mean. At $96,300.00, employee
Scott is well above that figure.

This example assumes that Surname and Salary are unique for each employee, which isn't necessarily
true. To ensure uniqueness, you could add EmployeeID to the GROUP BY clause.

Example 2
The following statement lists the average and variance in the number of items per order in different time
periods:

SELECT YEAR(ShipDate) AS Year,
 QUARTER(ShipDate) AS Quarter,
 AVG(Quantity) AS Average,
 STDDEV_POP(Quantity) AS Variance
FROM SalesOrderItems
GROUP BY Year, Quarter
ORDER BY Year, Quarter;

This query returns the following result:

Year Quarter Average Variance

2000 1 25.775148 14.2794...

2000 2 27.050847 15.0270...

...

Query and modify data

520 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

STDDEV_SAMP function
This function computes the standard deviation of a sample consisting of a numeric expression, as a
DOUBLE. For example, the following statement returns the average and variance in the number of items
per order in different quarters:

SELECT YEAR(ShipDate) AS Year,
 QUARTER(ShipDate) AS Quarter,
 AVG(Quantity) AS Average,
 STDDEV_SAMP(Quantity) AS Variance
FROM SalesOrderItems
GROUP BY Year, Quarter
ORDER BY Year, Quarter;

This query returns the following result:

Year Quarter Average Variance

2000 1 25.775148 14.3218...

2000 2 27.050847 15.0696...

...

VARIANCE function
This function is an alias for the VAR_SAMP function.

VAR_POP function
This function computes the statistical variance of a population consisting of a numeric expression, as a
DOUBLE. For example, the following statement lists the average and variance in the number of items per
order in different time periods:

SELECT YEAR(ShipDate) AS Year,
 QUARTER(ShipDate) AS Quarter,
 AVG(Quantity) AS Average,
 VAR_POP(quantity) AS Variance
FROM SalesOrderItems
GROUP BY Year, Quarter
ORDER BY Year, Quarter;

This query returns the following result:

Year Quarter Average Variance

2000 1 25.775148 203.9021...

2000 2 27.050847 225.8109...

...

If VAR_POP is computed for a single row, then it returns the value 0.

OLAP support

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 521

VAR_SAMP function
This function computes the statistical variance of a sample consisting of a numeric expression, as a
DOUBLE.

For example, the following statement lists the average and variance in the number of items per order in
different time periods:

SELECT YEAR(ShipDate) AS Year,
 QUARTER(ShipDate) AS Quarter,
 AVG(Quantity) AS Average,
 VAR_SAMP(Quantity) AS Variance
FROM SalesOrderItems
GROUP BY Year, Quarter
ORDER BY Year, Quarter;

This query returns the following result:

Year Quarter Average Variance

2000 1 25.775148 205.1158...

2000 2 27.050847 227.0939...

...

If VAR_SAMP is computed for a single row, then it returns NULL.

See also
● “STDDEV_SAMP function [Aggregate]” [SQL Anywhere Server - SQL Reference]
● “STDDEV_POP function [Aggregate]” [SQL Anywhere Server - SQL Reference]
● “VAR_SAMP function [Aggregate]” [SQL Anywhere Server - SQL Reference]
● “VAR_POP function [Aggregate]” [SQL Anywhere Server - SQL Reference]
● “VAR_SAMP function [Aggregate]” [SQL Anywhere Server - SQL Reference]
● “Mathematical formulas for the aggregate functions” on page 532

Correlation and linear regression functions

A variety of statistical functions is supported, the results of which can be used to assist in analyzing the
quality of a linear regression.

The first argument of each function is the dependent expression (designated by Y), and the second
argument is the independent expression (designated by X).

● COVAR_SAMP function The COVAR_SAMP function returns the sample covariance of a set of
(Y, X) pairs.

● COVAR_POP function The COVAR_POP function returns the population covariance of a set of
(Y, X) pairs.

Query and modify data

522 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● CORR function The CORR function returns the correlation coefficient of a set of (Y, X) pairs.

● REGR_AVGX function The REGR_AVGX function returns the mean of the x-values from all the
non-NULL pairs of (Y, X) values.

● REGR_AVGY function The REGR_AVGY function returns the mean of the y-values from all the
non-NULL pairs of (Y, X) values.

● REGR_SLOPE function The REGR_SLOPE function computes the slope of the linear regression
line fitted to non-NULL pairs.

● REGR_INTERCEPT function The REGR_INTERCEPT function computes the y-intercept of the
linear regression line that best fits the dependent and independent variables.

● REGR_R2 function The REGR_R2 function computes the coefficient of determination (also
referred to as R-squared or the goodness of fit statistic) for the regression line.

● REGR_COUNT function The REGR_COUNT function returns the number of non-NULL pairs of
(Y, X) values in the input. Only if both X and Y in a given pair are non-NULL is that observation be
used in any linear regression computation.

● REGR_SXX function The function returns the sum of squares of x-values of the (Y, X) pairs.

The equation for this function is equivalent to the numerator of the sample or population variance
formulas. Note, as with the other linear regression functions, that REGR_SXX ignores any pair of (Y,
X) values in the input where either X or Y is NULL.

● REGR_SYY function The function returns the sum of squares of y-values of the (Y, X) pairs.

● REGR_SXY function The function returns the difference of two sum of products over the set of
(Y, X) pairs.

See also
● “COVAR_SAMP function [Aggregate]” [SQL Anywhere Server - SQL Reference]
● “COVAR_POP function [Aggregate]” [SQL Anywhere Server - SQL Reference]
● “CORR function [Aggregate]” [SQL Anywhere Server - SQL Reference]
● “REGR_AVGX function [Aggregate]” [SQL Anywhere Server - SQL Reference]
● “REGR_AVGY function [Aggregate]” [SQL Anywhere Server - SQL Reference]
● “REGR_SLOPE function [Aggregate]” [SQL Anywhere Server - SQL Reference]
● “REGR_R2 function [Aggregate]” [SQL Anywhere Server - SQL Reference]
● “REGR_COUNT function [Aggregate]” [SQL Anywhere Server - SQL Reference]
● “REGR_SXX function [Aggregate]” [SQL Anywhere Server - SQL Reference]
● “REGR_SYY function [Aggregate]” [SQL Anywhere Server - SQL Reference]
● “REGR_SXY function [Aggregate]” [SQL Anywhere Server - SQL Reference]

OLAP support

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 523

Window ranking functions

Window ranking functions return the rank of a row relative to the other rows in a partition. The supported
ranking functions are:

● CUME_DIST
● DENSE_RANK
● PERCENT_RANK
● RANK

Ranking functions are not considered aggregate functions because they do not compute a result from
multiple input rows in the same manner as, for example, the SUM aggregate function. Rather, each of
these functions computes the rank, or relative ordering, of a row within a partition based on the value of a
particular expression. Each set of rows within a partition is ranked independently; if the OVER clause
does not contain a PARTITION BY clause, the entire input is treated as a single partition. So, you cannot
specify a ROWS or RANGE clause for a window used by a ranking function. It is possible to form a
query containing multiple ranking functions, each of which partition or sort the input rows differently.

All ranking functions require an ORDER BY clause to specify the sort order of the input rows upon
which the ranking functions depend. If the ORDER BY clause includes multiple expressions, the second
and subsequent expressions are used to break ties if the first expression has the same value in adjacent
rows. NULL values are sorted before any other value (in ascending sequence).

RANK function

You use the RANK function to return the rank of the value in the current row as compared to the value in
other rows. The rank of a value reflects the order in which it would appear if the list of values was sorted.

When using the RANK function, the rank is calculated for the expression specified in the window's
ORDER BY clause. If the ORDER BY clause includes multiple expressions, the second and subsequent
expressions are used to break ties if the first expression has the same value in adjacent rows. NULL
values are sorted before any other value (in ascending sequence).

Example 1
The following query determines the three most expensive products in the database. A descending sort
sequence is specified for the window so that the most expensive products have the lowest rank, that is,
rankings start at 1.

SELECT Top 3 *
 FROM (SELECT Description, Quantity, UnitPrice,
 RANK() OVER (ORDER BY UnitPrice DESC) AS Rank
 FROM Products) AS DT
ORDER BY Rank;

This query returns the following result:

Query and modify data

524 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Description Quantity UnitPrice Rank

1 Zipped Sweatshirt 32 24.00 1

2 Hooded Sweatshirt 39 24.00 1

3 Cotton Shorts 80 15.00 3

Note that rows 1 and 2 have the same value for Unit Price, and therefore also have the same rank. This is
called a tie.

With the RANK function, the rank value jumps after a tie. For example, the rank value for row 3 has
jumped to three instead of 2. This is different from the DENSE_RANK function, where no jumping
occurs after a tie.

Example 2
The following SQL query finds the male and female employees from Utah and ranks them in descending
order according to salary.

SELECT Surname, Salary, Sex,
 RANK() OVER (ORDER BY Salary DESC) "Rank"
 FROM Employees
WHERE State IN ('UT');

The table that follows represents the result set from the query:

Surname Salary Sex Rank

1 Shishov 72995.00 F 1

2 Wang 68400.00 M 2

3 Cobb 62000.00 M 3

4 Morris 61300.00 M 4

5 Diaz 54900.00 M 5

6 Driscoll 48023.69 M 6

7 Hildebrand 45829.00 F 7

8 Goggin 37900.00 M 8

9 Rebeiro 34576.00 M 9

10 Bigelow 31200.00 F 10

11 Lynch 24903.00 M 11

OLAP support

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 525

Example 3
You can partition your data to provide different results. Using the query from Example 2, you can change
the data by partitioning it by gender. The following example ranks employees in descending order by
salary and partitions by gender.

SELECT Surname, Salary, Sex,
 RANK () OVER (PARTITION BY Sex
 ORDER BY Salary DESC) "Rank"
 FROM Employees
WHERE State IN ('UT');

The table that follows represents the result set from the query:

Surname Salary Sex Rank

1 Wang 68400.00 M 1

2 Cobb 62000.00 M 2

3 Morris 61300.00 M 3

4 Diaz 54900.00 M 4

5 Driscoll 48023.69 M 5

6 Goggin 37900.00 M 6

7 Rebeiro 34576.00 M 7

8 Lynch 24903.00 M 8

9 Shishov 72995.00 F 1

10 Hildebrand 45829.00 F 2

11 Bigelow 31200.00 F 3

See also
● “DENSE_RANK function” on page 526
● “RANK function [Ranking]” [SQL Anywhere Server - SQL Reference]

DENSE_RANK function

Similar to the RANK function, you use the DENSE_RANK function to return the rank of the value in the
current row as compared to the value in other rows. The rank of a value reflects the order in which it
would appear if the list of values were sorted. Rank is calculated for the expression specified in the
window's ORDER BY clause.

Query and modify data

526 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The DENSE_RANK function returns a series of ranks that are monotonically increasing with no gaps, or
jumps in rank value. The term dense is used because there are no jumps in rank value (unlike the RANK
function).

As the window moves down the input rows, the rank is calculated for the expression specified in the
window's ORDER BY clause. If the ORDER BY clause includes multiple expressions, the second and
subsequent expressions are used to break ties if the first expression has the same value in adjacent rows.
NULL values are sorted before any other value (in ascending sequence).

Example 1
The following query determines the three most expensive products in the database. A descending sort
sequence is specified for the window so that the most expensive products have the lowest rank (rankings
start at 1).

SELECT Top 3 *
 FROM (SELECT Description, Quantity, UnitPrice,
 DENSE_RANK() OVER (ORDER BY UnitPrice DESC) AS Rank
 FROM Products) AS DT
 ORDER BY Rank;

This query returns the following result:

Description Quantity UnitPrice Rank

1 Hooded Sweatshirt 39 24.00 1

2 Zipped Sweatshirt 32 24.00 1

3 Cotton Shorts 80 15.00 2

Note that rows 1 and 2 have the same value for Unit Price, and therefore also have the same rank. This is
called a tie.

With the DENSE_RANK function, there is no jump in the rank value after a tie. For example, the rank
value for row 3 is 2. This is different from the RANK function, where a jump in rank values occurs after a
tie.

Example 2
Because windows are evaluated after a query's GROUP BY clause, you can specify complex requests that
determine rankings based on the value of an aggregate function.

The following query produces the top three salespeople in each region by their total sales within that
region, along with the total sales for each region:

SELECT *
 FROM (SELECT o.SalesRepresentative, o.Region,
 SUM(s.Quantity * p.UnitPrice) AS total_sales,
 DENSE_RANK() OVER (PARTITION BY o.Region,
 GROUPING(o.SalesRepresentative)
 ORDER BY total_sales DESC) AS sales_rank
 FROM Products p, SalesOrderItems s, SalesOrders o
 WHERE p.ID = s.ProductID AND s.ID = o.ID

OLAP support

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 527

 GROUP BY GROUPING SETS((o.SalesRepresentative, o.Region),
 o.Region)) AS DT
 WHERE sales_rank <= 3
 ORDER BY Region, sales_rank;

This query returns the following result:

SalesRepresentative Region total_sales sales_rank

1 299 Canada 9312.00 1

2 (NULL) Canada 24768.00 1

3 1596 Canada 3564.00 2

4 856 Canada 2724.00 3

5 299 Central 32592.00 1

6 (NULL) Central 134568.00 1

7 856 Central 14652.00 2

8 467 Central 14352.00 3

9 299 Eastern 21678.00 1

10 (NULL) Eastern 142038.00 1

11 902 Eastern 15096.00 2

12 690 Eastern 14808.00 3

13 1142 South 6912.00 1

14 (NULL) South 45262.00 1

15 667 South 6480.00 2

16 949 South 5782.00 3

17 299 Western 5640.00 1

18 (NULL) Western 37632.00 1

19 1596 Western 5076.00 2

20 667 Western 4068.00 3

This query combines multiple groupings through the use of GROUPING SETS. So, the WINDOW
PARTITION clause for the window uses the GROUPING function to distinguish between detail rows that

Query and modify data

528 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

represent particular salespeople and the subtotal rows that list the total sales for an entire region. The
subtotal rows by region, which have the value NULL for the sales rep attribute, each have the ranking
value of 1 because the result's ranking order is restarted with each partition of the input; this ensures that
the detail rows are ranked correctly starting at 1.

Finally, note in this example that the DENSE_RANK function ranks the input over the aggregation of the
total sales. An aliased SELECT list item is used as a shorthand in the WINDOW ORDER clause.

See also
● “RANK function” on page 524
● “DENSE_RANK function [Ranking]” [SQL Anywhere Server - SQL Reference]

CUME_DIST function

The cumulative distribution function, CUME_DIST, is sometimes defined as the inverse of percentile.
CUME_DIST computes the normalized position of a specific value relative to the set of values in the
window. The range of the function is between 0 and 1.

As the window moves down the input rows, the cumulative distribution is calculated for the expression
specified in the window's ORDER BY clause. If the ORDER BY clause includes multiple expressions,
the second and subsequent expressions are used to break ties if the first expression has the same value in
adjacent rows. NULL values are sorted before any other value (in ascending sequence).

The following example returns a result set that provides a cumulative distribution of the salaries of
employees who live in California.

SELECT DepartmentID, Surname, Salary,
 CUME_DIST() OVER (PARTITION BY DepartmentID
 ORDER BY Salary DESC) "Rank"
 FROM Employees
 WHERE State IN ('CA');

This query returns the following result:

DepartmentID Surname Salary Rank

200 Savarino 72300.00 0.333333333333333

200 Clark 45000.00 0.666666666666667

200 Overbey 39300.00 1

See also
● “CUME_DIST function [Ranking]” [SQL Anywhere Server - SQL Reference]

OLAP support

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 529

PERCENT_RANK function

Similar to the PERCENT function, the PERCENT_RANK function returns the rank for the value in the
column specified in the window's ORDER BY clause, but expressed as a fraction between 0 an 1,
calculated as (RANK - 1)/(- 1).

As the window moves down the input rows, the rank is calculated for the expression specified in the
window's ORDER BY clause. If the ORDER BY clause includes multiple expressions, the second and
subsequent expressions are used to break ties if the first expression has the same value in adjacent rows.
NULL values are sorted before any other value (in ascending sequence).

Example 1
The following example returns a result set that shows the ranking of New York employees' salaries by
gender. The results are ranked in descending order using a decimal percentage, and are partitioned by
gender.

SELECT DepartmentID, Surname, Salary, Sex,
 PERCENT_RANK() OVER (PARTITION BY Sex
 ORDER BY Salary DESC) AS PctRank
 FROM Employees
 WHERE State IN ('NY');

This query returns the following results:

DepartmentID Surname Salary Sex PctRank

1 200 Martel 55700.000 M 0.0

2 100 Guevara 42998.000 M 0.333333333

3 100 Soo 39075.000 M 0.666666667

4 400 Ahmed 34992.000 M 1.0

5 300 Davidson 57090.000 F 0.0

6 400 Blaikie 54900.000 F 0.333333333

7 100 Whitney 45700.000 F 0.666666667

8 400 Wetherby 35745.000 F 1.0

Since the input is partitioned by gender (Sex), PERCENT_RANK is evaluated separately for males and
females.

Example 2
The following example returns a list of female employees in Utah and Arizona and ranks them in
descending order according to salary. Here, the PERCENT_RANK function is used to provide a
cumulative total in descending order.

Query and modify data

530 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SELECT Surname, Salary,
 PERCENT_RANK () OVER (ORDER BY Salary DESC) "Rank"
 FROM Employees
WHERE State IN ('UT', 'AZ') AND Sex IN ('F');

This query returns the following results:

Surname Salary Rank

1 Shishov 72995.00 0

2 Jordan 51432.00 0.25

3 Hildebrand 45829.00 0.5

4 Bigelow 31200.00 0.75

5 Bertrand 29800.00 1

Using PERCENT_RANK to find top and bottom percentiles
You can use PERCENT_RANK to find the top or bottom percentiles in the data set. In the following
example, the query returns male employees whose salary is in the top five percent of the data set.

SELECT *
FROM (SELECT Surname, Salary,
 PERCENT_RANK () OVER (ORDER BY Salary DESC) "Rank"
 FROM Employees
 WHERE Sex IN ('M'))
 AS DerivedTable (Surname, Salary, Percent)
WHERE Percent < 0.05;

This query returns the following results:

Surname Salary Percent

1 Scott 96300.00 0

2 Sheffield 87900.00 0.025

3 Lull 87900.00 0.025

See also
● “PERCENT_RANK function [Ranking]” [SQL Anywhere Server - SQL Reference]

Row numbering functions

Row numbering functions uniquely number the rows in a partition. Two row numbering functions are
supported: NUMBER and ROW_NUMBER. It is recommended that you use the ROW_NUMBER
function because it is an ANSI standard-compliant function that provides much of the same functionality

OLAP support

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 531

as the NUMBER(*) function. While both functions perform similar tasks, there are several limitations to
the NUMBER function that do not exist for the ROW_NUMBER function.

See also
● “NUMBER function [Miscellaneous]” [SQL Anywhere Server - SQL Reference]
● “ROW_NUMBER function” on page 532

ROW_NUMBER function

The ROW_NUMBER function uniquely numbers the rows in its result. It is not a ranking function;
however, you can use it in any situation in which you can use a ranking function, and it behaves similarly
to a ranking function.

For example, you can use ROW_NUMBER in a derived table so that additional restrictions, even joins,
can be made over the ROW_NUMBER values:

SELECT *
FROM (SELECT Description, Quantity,
 ROW_NUMBER() OVER (ORDER BY ID ASC) AS RowNum
FROM Products) AS DT
WHERE RowNum <= 3
ORDER BY RowNum;

This query returns the following results:

Description Quantity RowNum

Tank Top 28 1

V-neck 54 2

Crew Neck 75 3

As with the ranking functions, ROW_NUMBER requires an ORDER BY clause.

As well, ROW_NUMBER can return non-deterministic results when the window's ORDER BY clause is
over non-unique expressions; row order is unpredictable for ties.

ROW_NUMBER is designed to work over the entire partition, so a ROWS or RANGE clause cannot be
specified with a ROW_NUMBER function.

Mathematical formulas for the aggregate functions

For information purposes, the following two tables provide the equivalent mathematical formulas for the
window aggregate functions.

Query and modify data

532 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Simple aggregate functions

Statistical aggregate functions

OLAP support

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 533

Use of subqueries
With a relational database, you can store related data in more than one table. In addition to being able to
extract data from related tables using a join, you can also extract it using a subquery. A subquery is a
SELECT statement nested within the SELECT, WHERE, or HAVING clause of a parent SQL statement.

Subqueries make some queries easier to write than joins, and there are queries that cannot be written
without using subqueries.

Subqueries can be categorized in different ways:

● whether they can return one or more rows (single-row vs. multiple-row subqueries)

● whether they are correlated or uncorrelated

● whether they are nested within another subquery

Single-row and multiple-row subqueries
Subqueries that can return only one or zero rows to the outer statement are called single-row subqueries.
Single-row subqueries are subqueries used with a comparison operator in a WHERE, or HAVING clause.

Subqueries that can return more than one row (but only one column) to the outer statement are called
multiple-row subqueries. Multiple-row subqueries are subqueries used with an IN, ANY, or ALL clause.

Example 1: Single-row subquery
You store information particular to products in one table, Products, and information that pertains to sales
orders in another table, SalesOrdersItems. The Products table contains the information about the various
products. The SalesOrdersItems table contains information about customers' orders. If a company reorders
products when there are fewer than 50 of them in stock, then it is possible to answer the question "Which
products are nearly out of stock?" with this query:

SELECT ID, Name, Description, Quantity
FROM Products
WHERE Quantity < 50;

However, a more helpful result would take into consideration how frequently a product is ordered, since
having few of a product that is frequently purchased is more of a concern than having few product that is
rarely ordered.

You can use a subquery to determine the average number of items that a customer orders, and then use
that average in the main query to find products that are nearly out of stock. The following query finds the
names and descriptions of the products which number less than twice the average number of items of each
type that a customer orders.

SELECT Name, Description
FROM Products WHERE Quantity < 2 * (
 SELECT AVG(Quantity)

Query and modify data

534 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 FROM SalesOrderItems
);

In the WHERE clause, subqueries help select the rows from the tables listed in the FROM clause that
appear in the query results. In the HAVING clause, they help select the row groups, as specified by the
main query's GROUP BY clause, that appear in the query results.

Example 2: Single-row subquery
The following example of a single-row subquery calculates the average price of the products in the
Products table. The average is then passed to the WHERE clause of the outer query. The outer query
returns the ID, Name, and UnitPrice of all products that are less expensive than the average:

SELECT ID, Name, UnitPrice
FROM Products
WHERE UnitPrice <
 (SELECT AVG(UnitPrice) FROM Products)
ORDER BY UnitPrice DESC;

ID Name UnitPrice

401 Baseball Cap 10.00

300 Tee Shirt 9.00

400 Baseball Cap 9.00

500 Visor 7.00

501 Visor 7.00

Example 3: Simple multiple-row subquery using IN
Suppose you want to identify items that are low in stock, while also identifying orders for those items.
You could execute a SELECT statement containing a subquery in the WHERE clause, similar to the
following:

SELECT *
FROM SalesOrderItems
WHERE ProductID IN
 (SELECT ID
 FROM Products
 WHERE Quantity < 20)
ORDER BY ShipDate DESC;

In this example, the subquery makes a list of all values in the ID column in the Products table, satisfying
the WHERE clause search condition. The subquery then returns a set of rows, but only a single column.
The IN keyword treats each value as a member of a set and tests whether each row in the main query is a
member of the set.

Example 4: Multiple-row subqueries comparing use of IN, ANY, and ALL
Two tables in the SQL Anywhere sample database contain financial results data. The FinancialCodes
table is a table holding the different codes for financial data and their meaning. To list the revenue items
from the FinancialData table, execute the following query:

Use of subqueries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 535

SELECT *
FROM FinancialData
WHERE Code IN
 (SELECT Code
 FROM FinancialCodes
 WHERE type = 'revenue');

Year Quarter Code Amount

1999 Q1 r1 1023

1999 Q2 r1 2033

1999 Q3 r1 2998

1999 Q4 r1 3014

2000 Q1 r1 3114

...

The ANY and ALL keywords can be used in a similar manner. For example, the following query returns
the same results as the previous query, but uses the ANY keyword:

SELECT *
FROM FinancialData
WHERE FinancialData.Code = ANY
 (SELECT FinancialCodes.Code
 FROM FinancialCodes
 WHERE type = 'revenue');

While the =ANY condition is identical to the IN condition, ANY can also be used with inequalities such as
< or > to give more flexible use of subqueries.

The ALL keyword is similar to the word ANY. For example, the following query lists financial data that
is not revenue:

SELECT *
FROM FinancialData
WHERE FinancialData.Code <> ALL
 (SELECT FinancialCodes.Code
 FROM FinancialCodes
 WHERE type = 'revenue');

This is equivalent to the following statement using NOT IN:

SELECT *
FROM FinancialData
WHERE FinancialData.Code NOT IN
 (SELECT FinancialCodes.Code
 FROM FinancialCodes
 WHERE type = 'revenue');

Query and modify data

536 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Correlated and uncorrelated subqueries

A subquery can contain a reference to an object defined in a parent statement. This is called an outer
reference. A subquery that contains an outer reference is called a correlated subquery. Correlated
subqueries cannot be evaluated independently of the outer query because the subquery uses the values of
the parent statement. That is, the subquery is performed for each row in the parent statement. So, results
of the subquery are dependent upon the active row being evaluated in the parent statement.

For example, the subquery in the statement below returns a value dependent upon the active row in the
Products table:

SELECT Name, Description
FROM Products
WHERE Quantity < 2 * (
 SELECT AVG(Quantity)
 FROM SalesOrderItems
 WHERE Products.ID=SalesOrderItems.ProductID);

In this example, the Products.ID column in this subquery is the outer reference. The query extracts the
names and descriptions of the products whose in-stock quantities are less than double the average ordered
quantity of that product—specifically, the product being tested by the WHERE clause in the main query.
The subquery does this by scanning the SalesOrderItems table. But the Products.ID column in the
WHERE clause of the subquery refers to a column in the table named in the FROM clause of the main
query—not the subquery. As the database server moves through each row of the Products table, it uses the
ID value of the current row when it evaluates the WHERE clause of the subquery.

A query executes without error when a column referenced in a subquery does not exist in the table
referenced by the subquery's FROM clause, but exists in a table referenced by the outer query's FROM
clause. SQL Anywhere implicitly qualifies the column in the subquery with the table name in the outer
query.

A subquery that does not contain references to objects in a parent statement is called an uncorrelated
subquery. In the example below, the subquery calculates exactly one value: the average quantity from the
SalesOrderItems table. In evaluating the query, the database server computes this value once, and
compares each value in the Quantity field of the Products table to it to determine whether to select the
corresponding row.

SELECT Name, Description
FROM Products
WHERE Quantity < 2 * (
 SELECT AVG(Quantity)
 FROM SalesOrderItems);

Nested subqueries

A nested subquery is a subquery nested within another subquery. There is no limit to the level of
subquery nesting you can define, however, queries with three or more levels take considerably longer to
run than do smaller queries.

Use of subqueries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 537

The following example uses nested subqueries to determine the order IDs and line IDs of those orders
shipped on the same day when any item in the fees department was ordered.

SELECT ID, LineID
FROM SalesOrderItems
WHERE ShipDate = ANY (
 SELECT OrderDate
 FROM SalesOrders
 WHERE FinancialCode IN (
 SELECT Code
 FROM FinancialCodes
 WHERE (Description = 'Fees')));

ID LineID

2001 1

2001 2

2001 3

2002 1

... ...

In this example, the innermost subquery produces a column of financial codes whose descriptions are
"Fees":

SELECT Code
FROM FinancialCodes
WHERE (Description = 'Fees');

The next subquery finds the order dates of the items whose codes match one of the codes selected in the
innermost subquery:

SELECT OrderDate
FROM SalesOrders
WHERE FinancialCode
IN (subquery-expression);

Finally, the outermost query finds the order IDs and line IDs of the orders shipped on one of the dates
found in the subquery.

SELECT ID, LineID
FROM SalesOrderItems
WHERE ShipDate = ANY (subquery-expression);

Use of subqueries instead of joins

Suppose you need a chronological list of orders and the company that placed them, but would like the
company name instead of their Customers ID. You can get this result using a join.

Query and modify data

538 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Using a join
To list the order ID, date, and company name for each order since the beginning of 2001, execute the
following query:

SELECT SalesOrders.ID,
 SalesOrders.OrderDate,
 Customers.CompanyName
FROM SalesOrders
 KEY JOIN Customers
WHERE OrderDate > '2001/01/01'
ORDER BY OrderDate;

Using a subquery
The following statement obtains the same results using a subquery instead of a join:

SELECT SalesOrders.ID,
 SalesOrders.OrderDate,
 (SELECT CompanyName FROM Customers
 WHERE Customers.ID = SalesOrders.CustomerID)
FROM SalesOrders
WHERE OrderDate > '2001/01/01'
ORDER BY OrderDate;

The subquery refers to the CustomerID column in the SalesOrders table even though the SalesOrders
table is not part of the subquery. Instead, the SalesOrders.CustomerID column refers to the SalesOrders
table in the main body of the statement.

A subquery can be used instead of a join whenever only one column is required from the other table.
(Recall that subqueries can only return one column.) In this example, you only needed the CompanyName
column, so the join could be changed into a subquery.

Using an outer join
To list all customers in Washington state, together with their most recent order ID, execute the following
query:

SELECT CompanyName, State,
 (SELECT MAX(ID)
 FROM SalesOrders
 WHERE SalesOrders.CustomerID = Customers.ID)
FROM Customers
WHERE State = 'WA';

CompanyName State MAX(SalesOrders.ID)

Custom Designs WA 2547

It's a Hit! WA (NULL)

The It's a Hit! company placed no orders, and the subquery returns NULL for this customer. Companies
who have not placed an order are not listed when inner joins are used.

You could also specify an outer join explicitly. In this case, a GROUP BY clause is also required.

SELECT CompanyName, State,
 MAX(SalesOrders.ID)

Use of subqueries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 539

FROM Customers
 KEY LEFT OUTER JOIN SalesOrders
WHERE State = 'WA'
GROUP BY CompanyName, State;

Subqueries in the WHERE clause
Subqueries in the WHERE clause work as part of the row selection process. You use a subquery in the
WHERE clause when the criteria you use to select rows depend on the results of another table.

Example
Find the products whose in-stock quantities are less than double the average ordered quantity.

SELECT Name, Description
FROM Products WHERE Quantity < 2 * (
 SELECT AVG(Quantity)
 FROM SalesOrderItems);

This is a two-step query: first, find the average number of items requested per order; and then find which
products in stock number less than double that quantity.

The query in two steps
The Quantity column of the SalesOrderItems table stores the number of items requested per item type,
customer, and order. The subquery is

SELECT AVG(Quantity)
FROM SalesOrderItems;

It returns the average quantity of items in the SalesOrderItems table, which is 25.851413.

The next query returns the names and descriptions of the items whose in-stock quantities are less than
twice the previously-extracted value.

SELECT Name, Description
FROM Products
WHERE Quantity < 2*25.851413;

Using a subquery combines the two steps into a single operation.

Purpose of a subquery in the WHERE clause
A subquery in the WHERE clause is part of a search condition.

See also
● “Queries” on page 247

Query and modify data

540 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Subqueries in the HAVING clause
Although you usually use subqueries as search conditions in the WHERE clause, sometimes you can also
use them in the HAVING clause of a query. When a subquery appears in the HAVING clause, like any
expression in the HAVING clause, it is used as part of the row group selection.

Here is a request that lends itself naturally to a query with a subquery in the HAVING clause: "Which
products' average in-stock quantity is more than double the average number of each item ordered per
customer?"

Example
SELECT Name, AVG(Quantity)
FROM Products
GROUP BY Name
HAVING AVG(Quantity) > 2* (
 SELECT AVG(Quantity)
 FROM SalesOrderItems
);

name AVG(Products.Quantity)

Baseball Cap 62.000000

Shorts 80.000000

Tee Shirt 52.333333

The query executes as follows:

● The subquery calculates the average quantity of items in the SalesOrderItems table.

● The main query then goes through the Products table, calculating the average quantity per product,
grouping by product name.

● The HAVING clause then checks if each average quantity is more than double the quantity found by
the subquery. If so, the main query returns that row group; otherwise, it doesn't.

● The SELECT clause produces one summary row for each group, displaying the name of each product
and its in-stock average quantity.

You can also use outer references in a HAVING clause, as shown in the following example, a slight
variation on the one above.

Example
This example finds the product ID numbers and line ID numbers of those products whose average ordered
quantities is more than half the in-stock quantities of those products.

SELECT ProductID, LineID
FROM SalesOrderItems
GROUP BY ProductID, LineID

Use of subqueries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 541

HAVING 2* AVG(Quantity) > (
 SELECT Quantity
 FROM Products
 WHERE Products.ID = SalesOrderItems.ProductID);

ProductID LineID

601 3

601 2

601 1

600 2

... ...

In this example, the subquery must produce the in-stock quantity of the product corresponding to the row
group being tested by the HAVING clause. The subquery selects records for that particular product, using
the outer reference SalesOrderItems.ProductID.

A subquery with a comparison returns a single value
This query uses the comparison >, suggesting that the subquery must return exactly one value. In this
case, it does. Since the ID field of the Products table is a primary key, there is only one record in the
Products table corresponding to any particular product ID.

Subquery testing

Since a subquery is just an expression that appears in the WHERE or HAVING clauses, the search
conditions on subqueries may look familiar.

They include:

● Subquery comparison test Compares the value of an expression to a single value produced by
the subquery for each record in the table(s) in the main query. Comparison tests use the operators (=,
<>, <. <=, >, >=) provided with the subquery.

● Quantified comparison test Compares the value of an expression to each of the set of values
produced by a subquery.

● Subquery set membership test Checks if the value of an expression matches one of the set of
values produced by a subquery.

● Existence test Checks if the subquery produces any rows.

See also
● “Queries” on page 247

Query and modify data

542 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Subquery comparison test

The subquery comparison test (=, <>, <. <=, >, >=) is a modified version of the simple comparison test.
The only difference between the two is that in the former, the expression following the operator is a
subquery. This test is used to compare a value from a row in the main query to a single value produced by
the subquery.

Example
This query contains an example of a subquery comparison test:

SELECT Name, Description, Quantity
FROM Products
WHERE Quantity < 2 * (
 SELECT AVG(Quantity)
 FROM SalesOrderItems);

name Description Quantity

Tee Shirt Tank Top 28

Baseball Cap Wool cap 12

Visor Cloth Visor 36

Visor Plastic Visor 28

...

The following subquery retrieves a single value—the average quantity of items of each type per
customer's order—from the SalesOrderItems table.

SELECT AVG(Quantity)
FROM SalesOrderItems;

Then the main query compares the quantity of each in-stock item to that value.

A subquery in a comparison test returns one value
A subquery in a comparison test must return exactly one value. Consider this query, whose subquery
extracts two columns from the SalesOrderItems table:

SELECT Name, Description, Quantity
FROM Products
WHERE Quantity < 2 * (
 SELECT AVG(Quantity), MAX(Quantity)
 FROM SalesOrderItems);

It returns an error.

See also
● “Subquery allowed only one SELECT list item” [Error Messages]

Use of subqueries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 543

Subqueries and the IN test

You can use the subquery set membership test to compare a value from the main query to more than one
value in the subquery.

The subquery set membership test compares a single data value for each row in the main query to the
single column of data values produced by the subquery. If the data value from the main query matches
one of the data values in the column, the subquery returns TRUE.

Example
Select the names of the employees who head the Shipping or Finance departments:

SELECT GivenName, Surname
FROM Employees
WHERE EmployeeID IN (
 SELECT DepartmentHeadID
 FROM Departments
 WHERE (DepartmentName='Finance' OR
 DepartmentName = 'Shipping'));

GivenName Surname

Mary Anne Shea

Jose Martinez

The subquery in this example extracts from the Departments table the ID numbers that correspond to the
heads of the Shipping and Finance departments. The main query then returns the names of the employees
whose ID numbers match one of the two found by the subquery.

SELECT DepartmentHeadID
FROM Departments
WHERE (DepartmentName='Finance' OR
 DepartmentName = 'Shipping');

Set membership test is equivalent to =ANY test
The subquery set membership test is equivalent to the =ANY test. The following query is equivalent to
the query from the above example.

SELECT GivenName, Surname
FROM Employees
WHERE EmployeeID = ANY (
 SELECT DepartmentHeadID
 FROM Departments
 WHERE (DepartmentName='Finance' OR
 DepartmentName = 'Shipping'));

Negation of the set membership test
You can also use the subquery set membership test to extract those rows whose column values are not
equal to any of those produced by a subquery. To negate a set membership test, insert the word NOT in
front of the keyword IN.

Query and modify data

544 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Example
The subquery in this query returns the first and last names of the employees that are not heads of the
Finance or Shipping departments.

SELECT GivenName, Surname
FROM Employees
WHERE EmployeeID NOT IN (
 SELECT DepartmentHeadID
 FROM Departments
 WHERE (DepartmentName='Finance' OR
 DepartmentName = 'Shipping'));

Subqueries and the ANY test

The ANY test, used in conjunction with one of the SQL comparison operators (=, >, <, >=, <=, !=, <>, !
>, !<), compares a single value to the column of data values produced by the subquery. To perform the
test, SQL uses the specified comparison operator to compare the test value to each data value in the
column. If any of the comparisons yields a TRUE result, the ANY test returns TRUE.

A subquery used with ANY must return a single column.

Example
Find the order and customer IDs of those orders placed after the first product of the order #2005 was
shipped.

SELECT ID, CustomerID
FROM SalesOrders
WHERE OrderDate > ANY (
 SELECT ShipDate
 FROM SalesOrderItems
 WHERE ID=2005);

ID CustomerID

2006 105

2007 106

2008 107

2009 108

... ...

In executing this query, the main query tests the order dates for each order against the shipping dates of
every product of the order #2005. If an order date is greater than the shipping date for one shipment of
order #2005, then that ID and customer ID from the SalesOrders table are part of the result set. The ANY
test is analogous to the OR operator: the above query can be read, "Was this sales order placed after the
first product of the order #2005 was shipped, or after the second product of order #2005 was shipped,
or..."

Use of subqueries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 545

Understanding the ANY operator
The ANY operator can be a bit confusing. It is tempting to read the query as "Return those orders placed
after any products of order #2005 were shipped." But this means the query will return the order IDs and
customer IDs for the orders placed after all products of order #2005 were shipped—which is not what the
query does.

Instead, try reading the query like this: "Return the order and customer IDs for those orders placed after at
least one product of order #2005 was shipped." Using the keyword SOME may provide a more intuitive
way to phrase the query. The following query is equivalent to the previous query.

SELECT ID, CustomerID
FROM SalesOrders
WHERE OrderDate > SOME (
 SELECT ShipDate
 FROM SalesOrderItems
 WHERE ID=2005);

The keyword SOME is equivalent to the keyword ANY.

Notes about the ANY operator
There are two additional important characteristics of the ANY test:

● Empty subquery result set If the subquery produces an empty result set, the ANY test returns
FALSE. This makes sense, since if there are no results, then it is not true that at least one result
satisfies the comparison test.

● NULL values in subquery result set Assume that there is at least one NULL value in the
subquery result set. If the comparison test is FALSE for all non-NULL data values in the result set,
the ANY search returns UNKNOWN. This is because in this situation, you cannot conclusively state
whether there is a value for the subquery for which the comparison test holds. There may or may not
be a value, depending on the correct values for the NULL data in the result set.

See also
● “ANY and SOME search conditions” [SQL Anywhere Server - SQL Reference]

Subqueries and the ALL test

The ALL test is used with one of the SQL comparison operators (=, >, <, >=, <=, !=, <>, !>, !<) to
compare a single value to the data values produced by the subquery. To perform the test, SQL uses the
specified comparison operator to compare the test value to each data value in the result set. If all the
comparisons yield TRUE results, the ALL test returns TRUE.

Example
This example finds the order and customer IDs of orders placed after all products of order #2001 were
shipped.

SELECT ID, CustomerID
FROM SalesOrders
WHERE OrderDate > ALL (

Query and modify data

546 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 SELECT ShipDate
 FROM SalesOrderItems
 WHERE ID=2001);

ID CustomerID

2002 102

2003 103

2004 104

2005 101

... ...

In executing this query, the main query tests the order dates for each order against the shipping dates of
every product of order #2001. If an order date is greater than the shipping date for every shipment of order
#2001, then the ID and customer ID from the SalesOrders table are part of the result set. The ALL test is
analogous to the AND operator: the above query can be read, "Was this sales order placed before the first
product of order #2001 was shipped, and before the second product of order #2001 was shipped, and..."

Notes about the ALL operator
There are three additional important characteristics of the ALL test:

● Empty subquery result set If the subquery produces an empty result set, the ALL test returns
TRUE. This makes sense, since if there are no results, then it is true that the comparison test holds for
every value in the result set.

● NULL values in subquery result set If the comparison test is false for any values in the result
set, the ALL search returns FALSE. It returns TRUE if all values are true. Otherwise, it returns
UNKNOWN—for example, this can occur if there is a NULL value in the subquery result set but the
search condition is TRUE for all non-NULL values.

● Negating the ALL test The following expressions are not equivalent.

NOT a = ALL (subquery)
a <> ALL (subquery)

See also
● “Subquery that follows ANY, ALL, or SOME” on page 551

Subqueries and the EXISTS test

Subqueries used in the subquery comparison test and set membership test both return data values from the
subquery table. Sometimes, however, you may be more concerned with whether the subquery returns any
results, rather than which results. The existence test (EXISTS) checks whether a subquery produces any
rows of query results. If the subquery produces one or more rows of results, the EXISTS test returns
TRUE. Otherwise, it returns FALSE.

Use of subqueries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 547

Example
Here is an example of a request expressed using a subquery: "Which customers placed orders after July
13, 2001?"

SELECT GivenName, Surname
FROM Customers
WHERE EXISTS (
 SELECT *
 FROM SalesOrders
 WHERE (OrderDate > '2001-07-13') AND
 (Customers.ID = SalesOrders.CustomerID));

GivenName Surname

Almen de Joie

Grover Pendelton

Ling Ling Andrews

Bubba Murphy

Explanation of the existence test
Here, for each row in the Customers table, the subquery checks if that customer ID corresponds to one
that has placed an order after July 13, 2001. If it does, the query extracts the first and last names of that
customer from the main table.

The EXISTS test does not use the results of the subquery; it just checks if the subquery produces any
rows. So the existence test applied to the following two subqueries return the same results. These are
subqueries and cannot be processed on their own, because they refer to the Customers table which is part
of the main query, but not part of the subquery.

SELECT *
FROM Customers, SalesOrders
WHERE (OrderDate > '2001-07-13') AND
 (Customers.ID = SalesOrders.CustomerID)
SELECT OrderDate
FROM Customers, SalesOrders
WHERE (OrderDate > '2001-07-13') AND
 (Customers.ID = SalesOrders.CustomerID);

It does not matter which columns from the SalesOrders table appear in the SELECT statement, though by
convention, the "SELECT *" notation is used.

Negating the existence test
You can reverse the logic of the EXISTS test using the NOT EXISTS form. In this case, the test returns
TRUE if the subquery produces no rows, and FALSE otherwise.

Correlated subqueries
You may have noticed that the subquery contains a reference to the ID column from the Customers table.
A reference to columns or expressions in the main table(s) is called an outer reference and the subquery

Query and modify data

548 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

is said to be correlated. Conceptually, SQL processes the above query by going through the Customers
table, and performing the subquery for each customer. If the order date in the SalesOrders table is after
July 13, 2001, and the customer ID in the Customers and SalesOrders tables match, then the first and last
names from the Customers table appear. Since the subquery references the main query, the subquery in
this section, unlike those from previous sections, returns an error if you attempt to run it by itself.

See also
● “Correlated and uncorrelated subqueries” on page 537

Optimizer automatic conversion of subqueries to joins

The query optimizer automatically rewrites as joins many of the queries that make use of subqueries. The
conversion is performed without any user action. This section describes which subqueries can be
converted to joins so you can understand the performance of queries in your database.

The criteria that must be satisfied in order for a multi-level query to be able to be rewritten with joins
differ for the various types of operators, and the structures of the query and of the subquery. Recall that
when a subquery appears in the query's WHERE clause, it is of the form

SELECT select-list
FROM table
WHERE
[NOT] expression comparison-operator (subquery-expression)
| [NOT] expression comparison-operator { ANY | SOME } (subquery-expression)
| [NOT] expression comparison-operator ALL (subquery-expression)
| [NOT] expression IN (subquery-expression)
| [NOT] EXISTS (subquery-expression)
GROUP BY group-by-expression
HAVING search-condition

For example, consider the request, "When did Mrs. Clarke and Suresh place their orders, and by which
sales representatives?" It can be answered with the following query:

SELECT OrderDate, SalesRepresentative
FROM SalesOrders
WHERE CustomerID IN (
 SELECT ID
 FROM Customers
 WHERE Surname = 'Clarke' OR GivenName = 'Suresh');

OrderDate SalesRepresentative

2001-01-05 1596

2000-01-27 667

2000-11-11 467

2001-02-04 195

Use of subqueries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 549

OrderDate SalesRepresentative

... ...

The subquery yields a list of customer IDs that correspond to the two customers whose names are listed in
the WHERE clause, and the main query finds the order dates and sales representatives corresponding to
those two people's orders.

The same question can be answered using joins. Here is an alternative form of the query, using a two-
table join:

SELECT OrderDate, SalesRepresentative
FROM SalesOrders, Customers
WHERE CustomerID=Customers.ID AND
 (Surname = 'Clarke' OR GivenName = 'Suresh');

This form of the query joins the SalesOrders table to the Customers table to find the orders for each
customer, and then returns only those records for Suresh and Clarke.

Case where a subquery works, but a join does not
There are cases where a subquery works but a join does not. For example:

SELECT Name, Description, Quantity
FROM Products
WHERE Quantity < 2 * (
 SELECT AVG(Quantity)
 FROM SalesOrderItems);

name Description Quantity

Tee Shirt Tank Top 28

Baseball Cap Wool cap 12

Visor Cloth Visor 36

...

In this case, the inner query is a summary query and the outer query is not, so there is no way to combine
the two queries by a simple join.

See also
● “Joins: Retrieving data from several tables” on page 428

Subquery that follows a comparison operator

A subquery that follows a comparison operator (=, >, <, >=, <=, !=, <>, !>, !<) is called a comparison.
The optimizer converts these subqueries to joins if the subquery:

Query and modify data

550 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● returns exactly one value for each row of the main query.

● does not contain a GROUP BY clause

● does not contain the keyword DISTINCT

● is not a UNION query

● is not an aggregate query

Example
Suppose the request "When were Suresh's products ordered, and by which sales representative?" were
phrased as the subquery

SELECT OrderDate, SalesRepresentative
FROM SalesOrders
WHERE CustomerID = (
 SELECT ID
 FROM Customers
 WHERE GivenName = 'Suresh');

This query satisfies the criteria, and therefore, it would be converted to a query using a join:

SELECT OrderDate, SalesRepresentative
FROM SalesOrders, Customers
WHERE CustomerID=Customers.ID AND
 (Surname = 'Clarke' OR GivenName = 'Suresh');

However, the request, "Find the products whose in-stock quantities are less than double the average
ordered quantity" cannot be converted to a join, as the subquery contains the AVG aggregate function:

SELECT Name, Description
FROM Products
WHERE Quantity < 2 * (
 SELECT AVG(Quantity)
 FROM SalesOrderItems);

Subquery that follows ANY, ALL, or SOME

A subquery that follows the keywords ALL, ANY, or SOME is called a quantified comparison. The
optimizer converts these subqueries to joins if:

● The main query does not contain a GROUP BY clause, and is not an aggregate query, or the subquery
returns exactly one value.

● The subquery does not contain a GROUP BY clause.

● The subquery does not contain the keyword DISTINCT.

● The subquery is not a UNION query.

● The subquery is not an aggregate query.

Use of subqueries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 551

● The conjunct 'expression comparison-operator { ANY | SOME } (subquery-expression)' must not be
negated.

● The conjunct 'expression comparison-operator ALL (subquery-expression)' must be negated.

The first four of these conditions are relatively straightforward.

Example
The request "When did Ms. Clarke and Suresh place their orders, and by which sales representatives?"
can be handled in subquery form:

SELECT OrderDate, SalesRepresentative
FROM SalesOrders
WHERE CustomerID = ANY (
 SELECT ID
 FROM Customers
 WHERE Surname = 'Clarke' OR GivenName = 'Suresh');

Alternately, it can be phrased in join form

SELECT OrderDate, SalesRepresentative
FROM SalesOrders, Customers
WHERE CustomerID=Customers.ID AND
 (Surname = 'Clarke' OR GivenName = 'Suresh');

However, the request, "When did Ms. Clarke, Suresh, and any employee who is also a customer, place
their orders?" would be phrased as a union query, and cannot be converted to a join:

SELECT OrderDate, SalesRepresentative
FROM SalesOrders
WHERE CustomerID = ANY (
 SELECT ID
 FROM Customers
 WHERE Surname = 'Clarke' OR GivenName = 'Suresh'
 UNION
 SELECT EmployeeID
 FROM Employees);

Similarly, the request "Find the order IDs and customer IDs of those orders not shipped after the first
shipping dates of all the products" would be phrased as the aggregate query, and therefore cannot be
converted to a join:

SELECT ID, CustomerID
FROM SalesOrders
WHERE NOT OrderDate > ALL (
 SELECT FIRST (ShipDate)
 FROM SalesOrderItems
 ORDER BY ShipDate);

Negating subqueries with the ANY and ALL operators
The fifth criterion is a little more puzzling. Queries taking the following form are converted to joins:

SELECT select-list
FROM table
WHERE NOT expression comparison-operator ALL (subquery-expression)

Query and modify data

552 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SELECT select-list
FROM table
WHERE expression comparison-operator ANY (subquery-expression)

However, the following queries are not converted to joins:

SELECT select-list
FROM table
WHERE expression comparison-operator ALL (subquery-expression)

SELECT select-list
FROM table
WHERE NOT expression comparison-operator ANY (subquery-expression)

The first two queries are equivalent, as are the last two. Recall that the ANY operator is analogous to the
OR operator, but with a variable number of arguments; and that the ALL operator is similarly analogous
to the AND operator. For example, the following two expressions are equivalent:

NOT ((X > A) AND (X > B))
(X <= A) OR (X <= B)

The following two expressions are also equivalent:

WHERE NOT OrderDate > ALL (
 SELECT FIRST (ShipDate)
 FROM SalesOrderItems
 ORDER BY ShipDate)

WHERE OrderDate <= ANY (
 SELECT FIRST (ShipDate)
 FROM SalesOrderItems
 ORDER BY ShipDate)

Negating the ANY and ALL expressions
In general, the following expressions are equivalent:

NOT column-name operator ANY (subquery-expression)

column-name inverse-operator ALL (subquery-expression)

These expressions are generally equivalent as well:

NOT column-name operator ALL (subquery-expression)

column-name inverse-operator ANY (subquery-expression)

where inverse-operator is obtained by negating operator, as shown in the table below:

operator inverse-operator

= <>

< =>

Use of subqueries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 553

operator inverse-operator

> =<

=< >

=> <

<> =

Subquery that follows IN

The optimizer converts a subquery that follows an IN keyword only if:

● The main query does not contain a GROUP BY clause, and is not an aggregate query, or the subquery
returns exactly one value.

● The subquery does not contain a GROUP BY clause.

● The subquery does not contain the keyword DISTINCT.

● The subquery is not a UNION query.

● The subquery is not an aggregate query.

● The conjunct 'expression IN (subquery-expression)' must not be negated.

Example
So, the request "Find the names of the employees who are also department heads", expressed by the
following query, would be converted to a joined query, as it satisfies the conditions.

SELECT GivenName, Surname
FROM Employees
WHERE EmployeeID IN (
 SELECT DepartmentHeadID
 FROM Departments
 WHERE (DepartmentName ='Finance' OR
 DepartmentName = 'Shipping'));

However, the request, "Find the names of the employees who are either department heads or customers"
would not be converted to a join if it were expressed by the UNION query.

A UNION query following the IN operator cannot be converted
SELECT GivenName, Surname
FROM Employees
WHERE EmployeeID IN (
 SELECT DepartmentHeadID
 FROM Departments
 WHERE (DepartmentName='Finance' OR
 DepartmentName = 'Shipping')
 UNION

Query and modify data

554 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 SELECT CustomerID
 FROM SalesOrders);

Similarly, the request "Find the names of employees who are not department heads" is formulated as the
negated subquery shown below, and would not be converted

SELECT GivenName, Surname
FROM Employees
 WHERE NOT EmployeeID IN (
 SELECT DepartmentHeadID
 FROM Departments
 WHERE (DepartmentName='Finance' OR
 DepartmentName = 'Shipping'));

The conditions necessary for an IN or ANY subquery to be converted to a join are identical. This is
because the two expressions are logically equivalent.

Query with IN operator converted to a query with an ANY operator
Sometimes SQL Anywhere converts a query with the IN operator to one with an ANY operator, and
decides whether to convert the subquery to a join. For example, the following two expressions are
equivalent:

WHERE column-name IN(subquery-expression)

WHERE column-name = ANY(subquery-expression)

Likewise, the following two queries are equivalent:

SELECT GivenName, Surname
FROM Employees
WHERE EmployeeID IN (
 SELECT DepartmentHeadID
 FROM Departments
 WHERE (DepartmentName='Finance' OR
 DepartmentName = 'Shipping'));

SELECT GivenName, Surname
FROM Employees
WHERE EmployeeID = ANY (
 SELECT DepartmentHeadID
 FROM Departments
 WHERE (DepartmentName='Finance' OR
 DepartmentName = 'Shipping'));

Subquery that follows EXISTS
The optimizer converts a subquery that follows the EXISTS keyword only if:

● The main query does not contain a GROUP BY clause, and is not an aggregate query, or the subquery
returns exactly one value.

● The conjunct 'EXISTS (subquery)' is not negated.

● The subquery is correlated; that is, it contains an outer reference.

Use of subqueries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 555

Example
The request, "Which customers placed orders after July 13, 2001?", which can be formulated by a query
whose non-negated subquery contains the outer reference Customers.ID = SalesOrders.CustomerID,
can be represented with the following join:

SELECT GivenName, Surname
FROM Customers
WHERE EXISTS (
 SELECT *
 FROM SalesOrders
 WHERE (OrderDate > '2001-07-13') AND
 (Customers.ID = SalesOrders.CustomerID));

The EXISTS keyword tells the database server to check for empty result sets. When using inner joins, the
database server automatically displays only the rows where there is data from all the tables in the FROM
clause. So, this query returns the same rows as does the one with the subquery:

SELECT DISTINCT GivenName, Surname
FROM Customers, SalesOrders
WHERE (SalesOrders.OrderDate > '2001-07-13') AND
 (Customers.ID = SalesOrders.CustomerID);

Data manipulation statements
The statements you use to add, change, or delete data are called data manipulation statements, which are a
subset of the data manipulation language (DML) statements part of ANSI SQL. The main DML
statements are:

● INSERT statement Adds new rows to a table or view.

● UPDATE statement The UPDATE statement changes rows in a set of tables or views.

● DELETE statement The DELETE statement removes rows from a set of tables or views.

● MERGE statement The MERGE statement adds, changes, and removes specific rows from a table
or view.

In addition to the statements above, the LOAD TABLE and TRUNCATE TABLE statements are
especially useful for bulk loading and deleting of data.

See also
● “INSERT statement” [SQL Anywhere Server - SQL Reference]
● “UPDATE statement” [SQL Anywhere Server - SQL Reference]
● “DELETE statement” [SQL Anywhere Server - SQL Reference]
● “MERGE statement” [SQL Anywhere Server - SQL Reference]

Query and modify data

556 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Permissions for data manipulation
You can only execute data manipulation statements if you have the proper permissions on the database
tables you want to modify. The database administrator and the owners of database objects use the
GRANT and REVOKE statements to decide who has access to which data manipulation functions.

Permissions can be granted to individual users, groups, or the PUBLIC group.

See also
● “User IDs, authorities, and permissions” [SQL Anywhere Server - Database Administration]

Transactions and data manipulation
When you modify data, the rollback log stores a copy of the old and new state of each row affected by
each data manipulation statement. This means that if you begin a transaction, realize you have made a
mistake, and roll the transaction back, you restore the database to its previous condition.

See also
● “Transactions and isolation levels” on page 779

Permanent data changes
The COMMIT statement makes all changes permanent.

You should use the COMMIT statement after groups of statements that make sense together. For
example, if you want to transfer money from one customer's account to another, you should add money to
one customer's account, then delete it from the other's, and then commit, since in this case it does not
make sense to leave your database with less or more money than it started with.

You can instruct Interactive SQL to commit your changes automatically by setting the auto_commit
option to On. This is an Interactive SQL option. When auto_commit is set to On, Interactive SQL issues a
COMMIT statement after every insert, update, and delete statement you make. This can slow down
performance considerably. Therefore, it is a good idea to leave the auto_commit option set to Off.

Use COMMIT with care
When trying the examples in this tutorial, be careful not to commit changes until you are sure that you
want to change the database permanently.

See also
● “Interactive SQL options” [SQL Anywhere Server - Database Administration]
● “COMMIT statement” [SQL Anywhere Server - SQL Reference]

Data manipulation statements

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 557

Cancellation of changes
Any uncommitted change you make can be canceled. SQL allows you to undo all the changes you made
since your last commit with the ROLLBACK statement. This statement undoes all changes you have
made to the database since the last time you made changes permanent.

See also
● “ROLLBACK statement” [SQL Anywhere Server - SQL Reference]

Transactions and data recovery
SQL Anywhere protects the integrity of your database in the event of a system failure or power outage.
You have several different options for restoring your database server. For example, the log file that SQL
Anywhere stores on a separate drive can be used to restore your data. When using a log file for recovery,
SQL Anywhere does not need to update your database as frequently, and the performance of your
database server is improved.

Transaction processing allows the database server to identify situations in which your data is in a
consistent state. Transaction processing ensures that if, for any reason, a transaction is not successfully
completed, then the entire transaction is undone, or rolled back. The database is left entirely unaffected by
failed transactions.

The transaction processing in SQL Anywhere ensures that the contents of a transaction are processed
securely, even in the event of a system failure in the middle of a transaction.

See also
● “Backup and data recovery” [SQL Anywhere Server - Database Administration]

Referential integrity
SQL Anywhere automatically checks for some common errors in your data when inserting, updating, and
deleting data. This kind of validity checking is called enforcing referential integrity as it checks the
integrity of data within and between tables in the database.

See also
● “Entity and referential integrity” on page 767

Addition of data using INSERT
You add rows to the database using the INSERT statement. The INSERT statement has two forms: you
can use the VALUES keyword or a SELECT statement:

Query and modify data

558 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

INSERT using values
The VALUES keyword specifies values for some or all the columns in a new row. A simplified version of
the syntax for the INSERT statement using the VALUES keyword is:

INSERT [INTO] table-name [(column-name, ...)]
VALUES (expression, ...)

You can omit the list of column names if you provide a value for each column in the table, in the order in
which they appear when you execute a query using SELECT *.

INSERT from SELECT
You can use SELECT within an INSERT statement to pull values from one or more tables. If the table
you are inserting data into has a large number of columns, you can also use WITH AUTO NAME to
simplify the syntax. Using WITH AUTO NAME, you only need to specify the column names in the
SELECT statement, rather than in both the INSERT and the SELECT statements. The names in the
SELECT statement must be column references or aliased expressions.

A simplified version of the syntax for the INSERT statement using a select statement is:

INSERT [INTO] table-name
[WITH AUTO NAME] select-statement

See also
● “INSERT statement” [SQL Anywhere Server - SQL Reference]

Inserting values into all columns of a row

You can insert values into all the columns of a row using the INSERT statement in Interactive SQL.

Prerequisites

Type the values in the same order as the column names in the original CREATE TABLE statement, that
is, first the ID number, then the name, then the department head ID.

Surround the values by parentheses.

Enclose all character data in single quotes.

Use a separate insert statement for each row you add.

Context and remarks

Many.

Insert values into all columns of a row

● Execute an INSERT statement that includes values for each column. For example, the following
INSERT statement adds a new row to the Departments table, giving a value for every column in the
row:

Data manipulation statements

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 559

INSERT INTO Departments
VALUES (702, 'Eastern Sales', 902);

Results

The specified values are inserted into each column of a new row.

Next

None.

See also
● “INSERT statement” [SQL Anywhere Server - SQL Reference]

Insert values into specific columns

Inserted values for specified and unspecified columns
Values are inserted in a row according to what is specified in the INSERT statement. If no value is
specified for a column, the inserted value depends on column settings such as whether to allow NULLs,
whether to use a DEFAULT, and so on. Sometimes the insert operation fails and an error is returned. The
following table shows the possible outcomes depending on the value being inserted (if any) and the
column settings:

Value
being
inserted

Nullable Not
nullable

Nullable,
with
DEFAULT

Not nullable,
with
DEFAULT

Not nullable, with
DEFAULT
AUTOINCREMENT or
DEFAULT [UTC]
TIMESTAMP

<none> NULL SQL error DEFAULT
value

DEFAULT
value

DEFAULT value

NULL NULL SQL error NULL SQL error DEFAULT value

specified
value

specified
value

specified
value

specified val-
ue

specified value specified value

By default, columns allow NULL values unless you explicitly state NOT NULL in the column definition
when creating a table. You can alter this default using the allow_nulls_by_default option. You can also
alter whether a specific column allows NULLs using the ALTER TABLE statement.

Restricting column data using constraints
You can create constraints for a column or domain. Constraints govern the kind of data you can or cannot
add.

Query and modify data

560 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Explicitly inserting NULL
You can explicitly insert NULL into a column by entering NULL. Do not enclose this in quotes, or it will
be taken as a string. For example, the following statement explicitly inserts NULL into the
DepartmentHeadID column:

INSERT INTO Departments
VALUES (703, 'Western Sales', NULL);

Using defaults to supply values
You can define a column so that, even though the column receives no value, a default value automatically
appears whenever a row is inserted. You do this by supplying a default for the column.

See also
● “ALTER TABLE statement” [SQL Anywhere Server - SQL Reference]
● “allow_nulls_by_default option” [SQL Anywhere Server - Database Administration]
● “Table and column constraints” on page 759
● “Column defaults” on page 752

Inserting values into specific columns

You can add data to some columns in a row by specifying only those columns and their values.

Prerequisites

While the column order you specify does not need to match the order of columns in the table, it must
match the order in which you specify the values you are inserting.

Context and remarks

Define all other columns not included in the column list to allow NULL or have defaults. If you skip a
column that has a default value, the default appears in that column.

Insert values in specific columns

● Execute an INSERT INTO statement to add data to specific columns.

Adding data in only two columns, for example, DepartmentID and DepartmentName, requires a
statement like this:

INSERT INTO Departments (DepartmentID, DepartmentName)
VALUES (703, 'Western Sales');

DepartmentHeadID does not have a default value but accepts NULL. therefore a NULL is
automatically assigned to that column.

Results

The data is inserted into the specified columns.

Data manipulation statements

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 561

Next

None.

Addition of new rows with SELECT

To pull values into a table from one or more other tables, you can use a SELECT clause in the INSERT
statement. The select clause can insert values into some or all of the columns in a row.

Inserting values for only some columns can be useful when you want to take some values from an
existing table. Then, you can use the UPDATE statement to add the values for the other columns.

Before inserting values for some, but not all, of the columns in a table, make sure that either a default
exists, or that you specify NULL for the columns into which you are not inserting values. Otherwise, an
error appears.

When you insert rows from one table into another, the two tables must have compatible structures—that
is, the matching columns must be either the same data types or data types between which SQL Anywhere
automatically converts.

Example
If the columns are in the same order in both tables, you do not need to specify column names in either
table. For example, suppose you have a table named NewProducts that has the same schema as the
Products table and contains some rows of product information that you want to add to the Products table.
You could execute the following statement:

INSERT Products
SELECT *
FROM NewProducts;

Inserting data into some columns
You can use the SELECT statement to add data to some, but not all, columns in a row just as you do with
the VALUES clause. Simply specify the columns to which you want to add data in the INSERT clause.

Inserting data from the same table
You can insert data into a table based on other data in the same table. Essentially, this means copying all
or part of a row.

For example, you can insert new products, based on existing products, into the Products table. The
following statement adds new Extra Large Tee Shirts (of Tank Top, V-neck, and Crew Neck varieties)
into the Products table. The identification number is 30 greater than the existing sized shirt:

INSERT INTO Products
SELECT ID + 30, Name, Description,
 'Extra large', Color, 50, UnitPrice, NULL
FROM Products
WHERE Name = 'Tee Shirt';

Query and modify data

562 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Insertion of documents and images

To store documents or images in your database, you can write an application that reads the contents of the
file into a variable, and supplies that variable as a value for an INSERT statement.

You can also use the xp_read_file system procedure to insert file contents into a table. This procedure is
useful if you want to insert file contents from Interactive SQL, or some other environment that does not
provide a full programming language. DBA authority is required to use this procedure.

Example
In this example, you create a table, and insert an image into a column of the table. You can perform these
steps from Interactive SQL.

1. Create a table to hold images.

CREATE TABLE Pictures
(C1 INT DEFAULT AUTOINCREMENT PRIMARY KEY,
 Filename VARCHAR(254),
 Picture LONG BINARY);

2. Insert the contents of portrait.gif, in the current working directory of the database server, into the
table.

INSERT INTO Pictures (Filename, Picture)
VALUES ('portrait.gif',
 xp_read_file('portrait.gif'));

See also
● “xp_read_file system procedure” [SQL Anywhere Server - SQL Reference]
● “Using openxml with xp_read_file” on page 611
● “How to use prepared statements” [SQL Anywhere Server - Programming]
● “BLOB considerations” [SQL Anywhere Server - Database Administration]
● “SET statement” [SQL Anywhere Server - SQL Reference]
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “INSERT statement” [SQL Anywhere Server - SQL Reference]

Advanced: Disk allocation for inserted rows

SQL Anywhere stores rows contiguously, if possible
Every new row that is smaller than the page size of the database file is always stored on a single page. If
no present page has enough free space for the new row, SQL Anywhere writes the row to a new page. For
example, if the new row requires 600 bytes of space but only 500 bytes are available on a partially-filled
page, then SQL Anywhere places the row on a new page.

To make table pages more contiguous on the disk, SQL Anywhere allocates table pages in blocks of eight
pages. For example, when it needs to allocate a page it allocates eight pages, inserts the page in the block,
and then fills up with the block with the next seven pages. In addition, it uses a free page bitmap to find
contiguous blocks of pages within the dbspace, and performs sequential scans by reading groups of 64
KB, using the bitmap to find relevant pages. This leads to more efficient sequential scans.

Data manipulation statements

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 563

SQL Anywhere may store rows in any order
SQL Anywhere locates space on pages and inserts rows in the order it receives them in. It assigns each
row to a page, but the locations it chooses in the table may not correspond to the order they were inserted
in. For example, the database server may have to start a new page to store a long row contiguously.
Should the next row be shorter, it may fit in an empty location on a previous page.

The rows of all tables are unordered. If the order that you receive or process the rows is important, use an
ORDER BY clause in your SELECT statement to apply an ordering to the result. Applications that rely
on the order of rows in a table can fail without warning.

If you frequently require the rows of a table to be in a particular order, consider creating an index on those
columns specified in the query's ORDER BY clause.

Space is not reserved for NULL columns
By default, whenever SQL Anywhere inserts a row, it reserves only the space necessary to store the row
with the values it contains at the time of creation. It reserves no space to store values that are NULL or to
accommodate fields, such as text strings, which may enlarge.

You can force SQL Anywhere to reserve space by using the PCTFREE option when creating the table.

Once inserted, rows identifiers are immutable
Once assigned a home position on a page, a row never moves from that page. If an update changes any of
the values in the row so that it no longer fits in its assigned page, then the row splits and the extra
information is inserted on another page.

This characteristic deserves special attention, especially since SQL Anywhere allows no extra space when
you insert the row. For example, suppose you insert a large number of empty rows into a table, then fill in
the values, one column at a time, using UPDATE statements. The result would be that almost every value
in a single row is stored on a separate page. To retrieve all the values from one row, the database server
may need to read several disk pages. This simple operation would become extremely and unnecessarily
slow.

You should consider filling new rows with data at the time of insertion. Once inserted, they then have
enough room for the data you expect them to hold.

A database file never shrinks
As you insert and delete rows from the database, SQL Anywhere automatically reuses the space they
occupy. So, SQL Anywhere may insert a row into space formerly occupied by another row.

SQL Anywhere keeps a record of the amount of empty space on each page. When you ask it to insert a
new row, it first searches its record of space on existing pages. If it finds enough space on an existing
page, it places the new row on that page, reorganizing the contents of the page if necessary. If not, it starts
a new page.

Over time, if you delete several rows and do not insert new rows small enough to use the empty space, the
information in the database may become sparse. You can reload the table, or use the REORGANIZE
TABLE statement to defragment the table.

Query and modify data

564 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “REORGANIZE TABLE statement” [SQL Anywhere Server - SQL Reference]

Data changes using UPDATE
The UPDATE statement specifies the row or rows you want changed, and the expressions to be used as
the new values for specific columns in those rows.

You can use the UPDATE statement to change single rows, groups of rows, or all the rows in a table.
Unlike the other data manipulation statements (INSERT, MERGE, and DELETE), the UPDATE
statement can also modify rows in more than one table at the same time. In all cases, the execution of the
UPDATE statement is atomic; either all of the rows are modified without error, or none of them are. For
example, if one of the values being modified is the wrong data type, or if the new value causes a CHECK
constraint violation, the UPDATE fails and the entire operation is rolled back.

UPDATE syntax
A simplified version of the UPDATE statement syntax is:

UPDATE table-name
SET column_name = expression
WHERE search-condition

If the company Newton Ent. (in the Customers table of the SQL Anywhere sample database) is taken over
by Einstein, Inc., you can update the name of the company using a statement such as the following:

UPDATE Customers
SET CompanyName = 'Einstein, Inc.'
WHERE CompanyName = 'Newton Ent.';

You can use any expression in the WHERE clause. If you are not sure how the company name was
spelled, you could try updating any company called Newton, with a statement such as the following:

UPDATE Customers
SET CompanyName = 'Einstein, Inc.'
WHERE CompanyName LIKE 'Newton%';

The search condition need not refer to the column being updated. The company ID for Newton
Entertainments is 109. As the ID value is the primary key for the table, you could be sure of updating the
correct row using the following statement:

UPDATE Customers
SET CompanyName = 'Einstein, Inc.'
WHERE ID = 109;

Tip
You can also modify rows from the result set in Interactive SQL.

Data manipulation statements

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 565

SET clause
The SET clause specifies which columns are to be updated, and what their new values are. The WHERE
clause determines the row or rows to be updated. If you do not have a WHERE clause, the specified
columns of all rows are updated with the values given in the SET clause.

The expressions specified in a SET clause can be a constant literal, a host or SQL variable, a subquery, a
special value such as CURRENT TIMESTAMP, an expression value pulled from another table, or any
combination of these. You can also specify DEFAULT in a SET clause to denote the default value for that
base table column. If the data type of the expression differs from the data type of the column to be
modified, the database server automatically converts the expression to the column's type, if possible. If
the conversion is not possible, a data exception results and the UPDATE statement fails.

You can use the SET clause to set the value of a variable, in addition to modifying column values. This
example assigns a value to the variable @var in addition to updating table T:

UPDATE T
SET @var = expression1, col1 = expression2
WHERE...;

This is roughly equivalent to the serial execution of a SELECT statement, followed by an UPDATE:

SELECT @var = expression1
FROM T
WHERE... ;
UPDATE T SET col1 = expression2
WHERE...;

The advantage of variable assignment within an UPDATE statement is that the variable's value can be set
within the execution of the statement while write locks are held, which prevents the assignment of
unexpected values due to concurrent update activity from other connections.

WHERE clause
The WHERE clause specifies which rows are to be updated by applying search-condition to the table or
Cartesian product of table expressions specified in the UPDATE statement. For example, the following
statement replaces the One Size Fits All Tee Shirt with an Extra Large Tee Shirt

UPDATE Products
SET Size = 'Extra Large'
WHERE Name = 'Tee Shirt'
 AND Size = 'One Size Fits All';

Complex UPDATE statements
More complex forms of the UPDATE statement permit updates over joins and other types of table
expressions.

As an example, Syntax 1 of the UPDATE statement is:

UPDATE [row-limitation] table-name
SET set-item[, ...]
FROM table-expression [, ...]]
[WHERE search-condition]
[ORDER BY expression [ASC | DESC] , ...]
[OPTION(query-hint, ...)]

Query and modify data

566 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The semantics of this form of the UPDATE statement are to first compute a result set consisting of all
combinations of rows from each table-expression, subsequently apply the search-condition in the
WHERE clause, and then order the resulting rows using the ORDER BY clause. This computation results
in the set of rows that will be modified. Each table-expression can consist of joins of base tables, views,
and derived tables. The syntax permits the update of one or more tables with values from columns in other
tables. The query optimizer may reorder the operations to create a more efficient execution strategy for
the UPDATE statement.

If a base table row appears in a set of rows to be modified more than once, then the row is updated
multiple times if the row's new values differ with each manipulation attempt. If a BEFORE ROW
UPDATE trigger exists, the BEFORE ROW UPDATE trigger is fired for each individual row
manipulation, subject to the trigger's UPDATE OF column-list clause. AFTER ROW UPDATE triggers
are also fired with each row manipulation, but only if the row's values are actually changed, subject to the
trigger's UPDATE OF column-list clause.

Triggers are fired for each updated table based on the type of the trigger and the value of the ORDER
clause with each trigger definition. If an UPDATE statement modifies more than one table, however, the
order in which the tables are updated is not guaranteed.

The following example creates a BEFORE ROW UPDATE trigger and an AFTER STATEMENT
UPDATE trigger on the Products table, each of which prints a message in the database server messages
window:

CREATE OR REPLACE TRIGGER trigger0
BEFORE UPDATE
ON Products
REFERENCING OLD AS old_product NEW AS new_product
FOR EACH ROW
BEGIN
 PRINT ('BEFORE row: PK value: ' || old_product.ID || ' New Price: ' ||
new_product.UnitPrice);
END;
CREATE OR REPLACE TRIGGER trigger1
AFTER UPDATE
ON Products
REFERENCING NEW AS new_product
FOR EACH STATEMENT
BEGIN
 DECLARE @pk INTEGER;
 DECLARE @newUnitPrice DECIMAL(12,2);
 DECLARE @err_notfound EXCEPTION FOR SQLSTATE VALUE '02000';
 DECLARE new_curs CURSOR FOR
 SELECT ID, UnitPrice FROM new_product;
 OPEN new_curs;
 LoopGetRow:
 LOOP
 FETCH NEXT new_curs INTO @pk, @newUnitPrice;
 IF SQLSTATE = @err_notfound THEN
 LEAVE LoopGetRow
 END IF;
 PRINT ('AFTER stmt: PK value: ' || @pk || ' Unit price: ' ||
@newUnitPrice);
 END LOOP LoopGetRow;
 CLOSE new_curs
END;

Data manipulation statements

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 567

Suppose you then execute an UPDATE statement over a join of the Products table with the
SalesOrderItems table, to discount by 5% those products that have shipped since April 1, 2001 and that
have at least one large order:

UPDATE Products p JOIN SalesOrderItems s ON (p.ID = s.ProductID)
SET p.UnitPrice = p.UnitPrice * 0.95
WHERE s.ShipDate > '2001-04-01' AND s.Quantity >= 72;

The database server messages window displays the following messages:

BEFORE row: PK value: 700 New Price: 14.25
BEFORE row: PK value: 302 New Price: 13.30
BEFORE row: PK value: 700 New Price: 13.54
AFTER stmt: PK value: 700 Unit price: 14.25
AFTER stmt: PK value: 302 Unit price: 13.30
AFTER stmt: PK value: 700 Unit price: 13.54

The messages indicate that Product 700 was updated twice, as Product 700 was included in two different
orders that matched the search condition in the UPDATE statement. The duplicate updates are visible to
both the BEFORE ROW trigger and the AFTER STATEMENT trigger. With each row manipulation, the
old and new values for each trigger invocation are changed accordingly. With AFTER STATEMENT
triggers, the order of the rows in the temporary tables formed by the REFERENCING clause may not
match the order of the rows were modified and the precise order of those rows is not guaranteed.

Because of the duplicate updates, Product 700's UnitPrice was discounted twice, lowering it from $15.00
initially to $13.54 (yielding a 9.75% discount), rather than only $14.25. To avoid this unintended
consequence, you could instead formulate the UPDATE statement to use an EXISTS subquery, rather
than a join, to guarantee that each Product row is modified at most once. The rewritten UPDATE
statement uses both an EXISTS subquery and the alternate UPDATE statement syntax that permits a
FROM clause:

UPDATE Products AS p
SET p.UnitPrice = p.UnitPrice * 0.95
FROM Products AS p
WHERE EXISTS(
 SELECT *
 FROM SalesOrderItems s
 WHERE p.ID = s.ProductID
 AND s.ShipDate > '2001-04-01'
 AND s.Quantity >= 72);

UPDATE and constraint violations
If an UPDATE statement violates a referential integrity constraint during execution, the statement's
behavior is controlled by the setting of the wait_for_commit option. If the wait_for_commit option is set
to Off, and a referential constraint violation occurs, the effects of the UPDATE statement are immediately
automatically rolled back and an error message appears. If the wait_for_commit option is set to On, any
referential integrity constraint violation caused by the UPDATE statement is temporarily ignored, to be
checked when the connection performs a COMMIT.

If the base table or tables being modified have primary keys, UNIQUE constraints, or unique indexes,
then row-by-row execution of the UPDATE statement may lead to a uniqueness constraint violation. For
example, you may issue an UPDATE statement that increments all of the primary key column values for a
table T:

Query and modify data

568 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

UPDATE T SET PKcol = PKcol + 1;

When a uniqueness violation occurs during the execution of an UPDATE statement, the database server
automatically:

1. copies the old and new values of the modified row to a temporary table with the same schema as the
base table being modified.

2. deletes the original row from the base table. No DELETE triggers are fired as a consequence of this
delete operation.

During the execution of the UPDATE statement, which rows are updated successfully and which rows are
temporarily deleted depends on the order of evaluation and cannot be guaranteed. The behavior of SQL
requests from other connections executing at weaker isolation levels (isolation levels 0, 1, or 2) may be
affected by these temporarily deleted rows. Any BEFORE or AFTER ROW triggers of the modified table
are passed each row's old and new values as per the trigger's REFERENCING clause, but if the ROW
trigger issues a separate SQL statement against the modified table, rows that are held in the temporary
table will be missing.

After the UPDATE statement has completed modifying each row, the rows held in the temporary table are
then inserted back into the base table. If a uniqueness violation still occurs, then the entire UPDATE
statement is rolled back. Only when all of the rows held in the temporary table have been successfully re-
inserted into the base table are any AFTER STATEMENT triggers fired.

The database server does not use a hold table to store rows temporarily if the base table being modified is
the target of a referential integrity constraint action, including ON DELETE CASCADE, ON DELETE
SET NULL, ON DELETE DEFAULT, ON UPDATE CASCADE, ON UPDATE SET NULL, and ON
UPDATE DEFAULT.

See also
● “UPDATE statement” [SQL Anywhere Server - SQL Reference]
● “Result sets in Interactive SQL” [SQL Anywhere Server - Database Administration]
● “ansi_update_constraints option” [SQL Anywhere Server - Database Administration]
● “Integrity checks on DELETE or UPDATE” on page 774
● “Locks during updates” on page 814

Data changes using INSERT
You can use the ON EXISTING clause of the INSERT statement to update existing rows in a table (based
on primary key lookup) with new values. This clause can only be used on tables that have a primary key.
Attempting to use this clause on tables without primary keys or on proxy tables generates a syntax error.

Specifying the ON EXISTING clause causes the server to do a primary key lookup for each input row. If
the corresponding row does not exist, it inserts the new row. For rows already existing in the table, you
can choose to:

● generate an error for duplicate key values. This is the default behavior if the ON EXISTING clause is
not specified.

Data manipulation statements

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 569

● silently ignore the input row, without generating any errors.

● update the existing row with the values in the input row.

See also
● “INSERT statement” [SQL Anywhere Server - SQL Reference]

Deletion of data using DELETE
Simple DELETE statements have the following form:

DELETE [FROM] table-name
WHERE column-name = expression

You can also use a more complex form, as follows

DELETE [FROM] table-name
FROM table-list
WHERE search-condition

WHERE clause
Use the WHERE clause to specify which rows to remove. If no WHERE clause appears, the DELETE
statement removes all rows in the table.

FROM clause
The FROM clause in the second position of a DELETE statement is a special feature allowing you to
select data from a table or tables and delete corresponding data from the first-named table. The rows you
select in the FROM clause specify the conditions for the delete.

See also
● “DELETE statement” [SQL Anywhere Server - SQL Reference]
● “Result sets in Interactive SQL” [SQL Anywhere Server - Database Administration]

Example
This example uses the SQL Anywhere sample database. To execute the statements in the example, you
should set the option wait_for_commit to On. The following statement does this for the current
connection only:

SET TEMPORARY OPTION wait_for_commit = 'On';

This allows you to delete rows even if they contain primary keys referenced by a foreign key, but does not
permit a COMMIT unless the corresponding foreign key is deleted also.

The following view displays products and the value of the product that has been sold:

CREATE VIEW ProductPopularity as
SELECT Products.ID,
 SUM(Products.UnitPrice * SalesOrderItems.Quantity)

Query and modify data

570 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 AS "Value Sold"
FROM Products JOIN SalesOrderItems
ON Products.ID = SalesOrderItems.ProductID
GROUP BY Products.ID;

Using this view, you can delete those products which have sold less than $20,000 from the Products table.

DELETE
FROM Products
FROM Products NATURAL JOIN ProductPopularity
WHERE "Value Sold" < 20000;

Cancel these changes to the database by executing a ROLLBACK statement:

ROLLBACK;

Tip
You can also delete rows from database tables from the Interactive SQL result set.

See also
● “Result sets in Interactive SQL” [SQL Anywhere Server - Database Administration]

Deletion of all rows from a table

You can use the TRUNCATE TABLE statement as a fast method of deleting all the rows in a table. It is
faster than a DELETE statement with no conditions, because the DELETE logs each change, while
TRUNCATE does not record individual rows deleted.

The table definition for a table emptied with the TRUNCATE TABLE statement remains in the database,
along with its indexes and other associated objects, unless you execute a DROP TABLE statement.

You cannot use TRUNCATE TABLE if another table has rows that reference it through a referential
integrity constraint. Delete the rows from the foreign table, or truncate the foreign table and then truncate
the primary table.

Truncating base tables or performing bulk loading operations causes data in indexes (regular or text) and
dependent materialized views to become stale. You should first truncate the data in the indexes and
dependent materialized views, execute the INPUT statement, and then rebuild or refresh the indexes and
materialized views.

TRUNCATE TABLE syntax
The syntax of TRUNCATE TABLE is:

TRUNCATE TABLE table-name

For example, to remove all the data in the SalesOrders table, enter the following:

TRUNCATE TABLE SalesOrders;

A TRUNCATE TABLE statement does not fire triggers defined on the table.

Data manipulation statements

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 571

Cancel these changes to the database by executing a ROLLBACK statement:

ROLLBACK;

See also
● “TRUNCATE statement” [SQL Anywhere Server - SQL Reference]
● “TRUNCATE TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]

Query and modify data

572 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SQL dialects and compatibility
This section describes Transact-SQL compatibility and those features of SQL Anywhere that are not
commonly found in other SQL implementations.

SQL Anywhere complies with the SQL-92-based United States Federal Information Processing Standard
Publication (FIPS PUB) 127. With minor exceptions, SQL Anywhere is compliant with the ISO/ANSI
SQL/2008 core specification as documented in the 9 parts of ISO/IEC JTC 1/SC 32 9075-2008.
Information about compliance is provided in the reference documentation for each feature of SQL
Anywhere.

SQL compliance testing using the SQL Flagger
In SQL Anywhere, the database server and the SQL preprocessor (sqlpp) can identify SQL statements that
are vendor extensions, are not compliant with specific ISO/ANSI SQL standards, or are not supported by
UltraLite. This functionality is called the SQL Flagger, first introduced as optional SQL language feature
F812 of the ISO/ANSI 9075-1999 SQL standard, referred to as SQL/1999 in this document. The SQL
Flagger helps an application developer to identify SQL language constructs that violate a specified subset
of the SQL language. The SQL Flagger can also be used to ensure compliance with core features of a
SQL standard, or compliance with a combination of core and optional features. The SQL Flagger can also
be used when prototyping an UltraLite application with SQL Anywhere, to ensure that the SQL being
used is supported by UltraLite.

As spatial data support is standardized as Part 3 of the SQL/MM standard (ISO/IEC 13249-3), spatial
functions, operations, and syntax are not supported by the SQL Flagger and are flagged as vendor
extensions.

The SQL Flagger is intended to provide static, compile-time checking of compliance, although both
syntactic and semantic elements of a SQL statement are candidates for analysis by the SQL Flagger. An
example test of syntactic compliance is the lack of the optional INTO keyword in an INSERT statement
(for example, INSERT Products VALUES(...)), which is a SQL Anywhere grammar extension
to the SQL language. The use of an INSERT statement without the INTO keyword is flagged as a vendor
extension because the ANSI SQL/2008 standard mandates the use of the INTO keyword. Note, however,
that the INTO keyword is optional for UltraLite applications.

Key joins are also flagged as a vendor extension. A key join is used by default when the JOIN keyword is
used without an ON clause. A key join uses existing foreign key relationships to join the tables. Key joins
are not supported by UltraLite. For example, the following query specifies an implicit join condition
between the Products and SalesOrderItems tables. This query is flagged by the SQL Flagger as a vendor
extension.

SELECT * FROM Products JOIN SalesOrderItems;

SQL Flagger functionality is not dependent on the execution of a SQL statement; all flagging logic is
done only as a static, compile-time process.

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 573

See also
● “SQLFLAGGER function [Miscellaneous]” [SQL Anywhere Server - SQL Reference]
● “Compliance with spatial standards” [SQL Anywhere Server - Spatial Data Support]
● “The SQL preprocessor” [SQL Anywhere Server - Programming]
● “INSERT statement” [SQL Anywhere Server - SQL Reference]
● “Key joins” on page 460

Invocation of the SQL Flagger
SQL Anywhere offers several ways to invoke the SQL Flagger to check a SQL statement, or a batch of
SQL statements:

● SQLFLAGGER function The SQLFLAGGER function analyzes a single SQL statement, or batch,
passed as a string argument, for compliance with a given SQL standard. The statement or batch is
parsed, but not executed.

● sa_ansi_standard_packages system procedure The sa_ansi_standard_packages system
procedure analyzes a statement, or batch, for the use of optional SQL language features, or packages,
from the ANSI SQL/2008, SQL/2003 or SQL/1999 international standards. The statement or batch is
parsed, but not executed.

● sql_flagger_error_level and sql_flagger_warning_level options The sql_flagger_error_level
and sql_flagger_warning_level options invoke the SQL Flagger for any statement prepared or
executed for the connection. If the statement does not comply with the option setting, which is a
specific ANSI standard or UltraLite, the statement either terminates with an error (SQLSTATE
0AW03), or returns a warning (SQLSTATE 01W07), depending upon the option setting. If the
statement complies, statement execution proceeds normally.

● SQL preprocessor (sqlpp) The SQL preprocessor (sqlpp) has the ability to flag static SQL
statements in an embedded SQL application at compile time. This feature can be especially useful
when developing an UltraLite application, to verify SQL statements for UltraLite compatibility.

See also
● “Batches” on page 91
● “SQLFLAGGER function [Miscellaneous]” [SQL Anywhere Server - SQL Reference]
● “sql_flagger_error_level option” [SQL Anywhere Server - Database Administration]
● “sql_flagger_warning_level option” [SQL Anywhere Server - Database Administration]
● “sa_ansi_standard_packages system procedure” [SQL Anywhere Server - SQL Reference]
● “The SQL preprocessor” [SQL Anywhere Server - Programming]
● “The SQL preprocessor” [SQL Anywhere Server - Programming]

Standards and compatibility
The flagging functionality used in the database server and in the SQL preprocessor follows the SQL
Flagger functionality defined in Part 1 (Framework) of the ANSI/ISO SQL/2008 International Standard.

SQL dialects and compatibility

574 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The SQL Flagger supports the following ANSI SQL standards when determining the compliance of SQL
language constructions:

● SQL/1992 Entry level, Intermediate level, and Full level
● SQL/1999 Core, and SQL/1999 optional packages
● SQL/2003 Core, and SQL/2003 optional packages
● SQL/2008 Core, and SQL/2008 optional packages

Note
SQL Flagger support for SQL/1992 (all levels) is deprecated.

In addition, the SQL Flagger can identify statements that are not compliant with UltraLite SQL. For
example, UltraLite has only limited abilities to CREATE and ALTER schema objects.

All SQL statements can be analyzed by the SQL Flagger. However, most statements that create or alter
schema objects, including statements that create tables, indexes, materialized views, publications,
subscriptions, and proxy tables, are vendor extensions to the ANSI SQL standards, and are flagged as
non-conforming.

The SET OPTION statement, including its optional components, is never flagged for non-compliance
with any SQL standard, or for compatibility with UltraLite.

See also
● “UltraLite SQL elements” [UltraLite - Database Management and Reference]
● “SET OPTION statement” [SQL Anywhere Server - SQL Reference]

SQL Anywhere features that differ from other SQL
implementations

SQL Anywhere offers rich SQL functionality, including: per-row, per-statement, and INSTEAD OF
triggers; SQL stored procedures and user-defined functions; RECURSIVE UNION queries; common
table expressions; table functions; LATERAL derived tables; integrated full-text search; window
aggregate functions; regular-expression searching; XML support; materialized views; snapshot isolation;
and referential integrity. This section describes some specific features supported by SQL Anywhere that
differ from other SQL database implementations.

Dates
SQL Anywhere has date, time and timestamp types that include a year, month and day, hour, minutes,
seconds, and fraction of a second. For insertions or updates to date fields, or comparisons with date fields,
a free format date is supported.

In addition, the following operations are allowed on dates:

● date + integer Add the specified number of days to a date.

● date - integer Subtract the specified number of days from a date.

SQL Anywhere features that differ from other SQL implementations

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 575

● date - date Compute the number of days between two dates.

● date + time Make a timestamp out of a date and time.

SQL Anywhere does not support an INTERVAL data type, which is SQL language feature F052 of the
SQL/2008 standard. However, SQL Anywhere provides many functions, such as DATEADD, for
manipulating dates and times.

Entity and referential integrity
SQL Anywhere supports both entity and referential integrity via the PRIMARY KEY and FOREIGN
KEY clauses of the CREATE TABLE and ALTER TABLE statements.

PRIMARY KEY [CLUSTERED] (column-name [ASC | DESC], ...)
[NOT NULL] FOREIGN KEY [role-name]
 [(column-name [ASC | DESC], ...)]
 REFERENCES table-name [(column-name, ...)]
 [MATCH [UNIQUE | SIMPLE | FULL]]
 [ON UPDATE [CASCADE | RESTRICT | SET DEFAULT | SET NULL]]
 [ON DELETE [CASCADE | RESTRICT | SET DEFAULT | SET NULL]]
 [CHECK ON COMMIT] [CLUSTERED]

The PRIMARY KEY clause declares the primary key for the table. SQL Anywhere then enforces the
uniqueness of the primary key by creating a unique index over the primary key column(s). Two SQL
Anywhere extensions permit the customization of this index:

● CLUSTERED The CLUSTERED keyword signifies that the primary key index is a clustered index,
and therefore adjacent index entries in the index point to physically-adjacent rows in the table.

● ASC | DESC The sortedness—ascending or descending—of each indexed column in the primary
key index can be customized. This customization can be used to ensure that the sortedness of the
primary key index matches the sortedness required by specific SQL queries, as specified in those
statements' ORDER BY clauses.

The FOREIGN KEY clause defines a relationship between two tables. This relationship is represented by
a column (or columns) in this table that must contain values in the primary key of another table. SQL
Anywhere automatically constructs an index for each FOREIGN KEY defined to enforce the referential
constraint. The semantics of the constraint, and physical characteristics of this index, can be customized
as follows:

● CLUSTERED The CLUSTERED keyword signifies that the foreign key index is a clustered index,
and therefore adjacent index entries in the index point to physically-adjacent rows in the foreign table.

● ASC | DESC The sortedness—ascending or descending—of each indexed column in the foreign
key index can be customized. The sortedness of the foreign key index may differ from that of the
primary key index. Sortedness customization can be used to ensure that the sortedness of the foreign
key index matches the sortedness required by specific SQL queries in your application, as specified in
those statements' ORDER BY clauses.

● MATCH clause SQL Anywhere supports the MATCH clause, which is SQL language feature F741
of the SQL/2008 standard. In addition, SQL Anywhere supports MATCH UNIQUE, which enforces a

SQL dialects and compatibility

576 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

one-to-one relationship between the primary and foreign tables without the need for an additional
UNIQUE index.

Unique indexes
SQL Anywhere supports the creation of unique indexes, sometimes called unique secondary indexes, over
nullable columns. By default, each index key must be unique or contain a NULL in at least one column.
For example, two index entries ('a', NULL) and ('a', NULL) are each considered unique index values.
SQL Anywhere also supports unique secondary indexes where NULL values are treated as special values
in each domain. This is accomplished using the WITH NULLS NOT DISTINCT clause. With such an
index, the two pairs of values ('a', NULL) and ('a', NULL) are considered duplicates.

Joins
SQL Anywhere supports INNER, LEFT OUTER, RIGHT OUTER, and FULL OUTER joins. In addition
to explicit join predicates, SQL Anywhere supports NATURAL joins and a vendor extension known as
KEY joins, which specifies an implicit join predicate based on the tables' foreign key relationships.

CHAR, NCHAR, and BINARY data types
SQL Anywhere internals do not distinguish between fixed- and varying-length string types (CHAR,
NCHAR, or BINARY). SQL Anywhere does not truncate trailing blanks from string types when such
values are inserted to the database. SQL Anywhere does distinguish between the NULL value and the
empty string. By default, SQL Anywhere databases utilize a case-insensitive collation to support case-
insensitive string comparisons. In SQL Anywhere, fixed-length string types are never blank-padded;
rather, blank-padding semantics are simulated during the execution of each string comparison. These
semantics may differ subtly from string comparisons with other SQL implementations.

UPDATE statements
SQL Anywhere partially supports optional SQL language feature T111 that permits an UPDATE
statement to refer to a view that contains a join. In addition, the UPDATE and UPDATE WHERE
CURRENT OF statements permit more than one table to be referenced in the statement's SET clause, and
the FROM clause of an UPDATE statement can be comprised of an arbitrary table expression containing
joins and derived tables.

SQL Anywhere also allows the UPDATE, INSERT, MERGE, and DELETE statements to be embedded
within another SQL statement as a derived table. One of the benefits of this support is that you can
construct a query that returns the set of rows that has been modified by an UPDATE statement in a
straightforward way.

Table functions
SQL Anywhere lets you refer to the result set of a stored procedure as a table in a statement's FROM
clause, a feature commonly referred to as table functions. Table functions are SQL language feature T326
of the SQL/2008 standard. In the standard, table functions are specified using the TABLE keyword. In
SQL Anywhere, use of the TABLE keyword is unnecessary; a stored procedure can be referenced directly
in the FROM clause, optionally with a correlation name and a specification of schema of the result set
returned by the procedure.

SQL Anywhere features that differ from other SQL implementations

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 577

The following example joins the result of the stored procedure ShowCustomerProducts with the base
table Products. Accompanying the stored procedure reference is an explicit declaration of the schema of
the procedure's result, using the WITH clause:

SELECT sp.ident, sp.quantity, Products.name
FROM ShowCustomerProducts(149)
 WITH (ident INT, description CHAR(20), quantity INT) sp
 JOIN Products ON sp.ident = Products.ID

Materialized views
SQL Anywhere supports materialized views, which are precomputed result sets that can be referenced
directly or indirectly from within a SQL query. In SQL Anywhere, both immediately-maintained and
manually-maintained views can be created using the CREATE MATERIALIZED VIEW statement. Other
database products may use different terms to describe this functionality.

Cursors
SQL Anywhere supports optional SQL language feature F431 of the SQL/2008 standard. In SQL
Anywhere, all cursors are bi-directionally scrollable unless they are explicitly declared FORWARD
ONLY, and applications can scroll through a cursor using either relative or absolute positioning with the
FETCH statement or its equivalent with other application programming interfaces, such as ODBC.

SQL Anywhere supports value-sensitive and row-membership sensitive cursors. Commonly-supported
cursor types, including INSENSITIVE, KEYSET-DRIVEN, and SENSITIVE cursors, are supported.
When using embedded SQL, cursor positions can be moved arbitrarily on the FETCH statement. Cursors
can be moved forward or backward relative to the current position or a given number of records from the
beginning or end of the cursor.

By default, cursors in embedded SQL and SQL procedures, user-defined functions, and triggers are
updatable. They can be made explicitly updatable by using the FOR UPDATE clause. However,
specifying the FOR UPDATE clause alone does not acquire any locks on the rows in the cursor's result
set. To ensure that rows in the result set cannot be modified by other transactions, you can specify either:

● FOR UPDATE BY LOCK This clause causes the database server to acquire intent row locks on
fetched rows of the result set. These are long-term locks that are held until the transaction is
committed or rolled back.

● FOR UPDATE BY { VALUES | TIMESTAMP } The SQL Anywhere database server uses a keyset-
driven cursor to enable the application to be informed when rows have been modified or deleted as the
result set is scrolled.

Alias references
SQL Anywhere permits aliased expressions in the SELECT list of a query to be referenced in other parts
of the query. Most other SQL implementations and the SQL/2008 standard do not allow this behavior. For
example, you can specify the SQL query:

SELECT column-or-expression AS alias-name
FROM table-reference
WHERE alias-name = expression

Aliases can be used anywhere in the SELECT block, including other SELECT list expressions that in turn
define additional aliases. Cyclic alias references are not permitted. If the alias specified for an expression

SQL dialects and compatibility

578 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

is identical to the name of a column or variable in the name space of the SELECT block, the alias
definition occludes the column or variable. Column names, however, can be explicitly qualified by table
name in such cases.

Snapshot isolation
SQL Anywhere supports snapshot isolation, which is also known as Multi-Version Concurrency Control,
or MVCC. In other SQL implementations that support snapshot isolation, writer-writer conflicts - that is,
concurrent updates by two or more transactions to the same row - are made apparent only at the time of
COMMIT. In such cases, usually the first COMMIT wins, and the other transactions involved in the
conflict must abort.

In SQL Anywhere, write operations to rows cause write row locks to be acquired so that snapshot
transactions can co-exist with transactions executing at ANSI isolation levels. Consequently, a writer-
writer conflict in SQL Anywhere will result in blocking, though the precise behavior can be controlled
through the BLOCKING and BLOCKING_TIMEOUT connection options.

See also
● “Date and time functions” [SQL Anywhere Server - SQL Reference]
● “CREATE INDEX statement” [SQL Anywhere Server - SQL Reference]
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “Character data types” [SQL Anywhere Server - SQL Reference]
● “Key joins” on page 460
● “FROM clause” [SQL Anywhere Server - SQL Reference]
● “Materialized views” on page 49
● “SQL Anywhere cursors” [SQL Anywhere Server - Programming]
● “DECLARE CURSOR statement [ESQL] [SP]” [SQL Anywhere Server - SQL Reference]
● “Snapshot isolation” on page 785

Watcom SQL
The dialect of SQL supported by SQL Anywhere is referred to as Watcom SQL. The original version of
SQL Anywhere was called Watcom SQL when it was introduced in 1992. The term Watcom SQL is still
used to identify the dialect of SQL supported by SQL Anywhere.

SQL Anywhere also supports a large subset of Transact-SQL, the dialect of SQL supported by Sybase
Adaptive Server Enterprise.

See also
● “Transact-SQL compatibility” on page 580

Watcom SQL

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 579

Transact-SQL compatibility
SQL Anywhere supports a large subset of Transact-SQL, the dialect of SQL supported by Sybase
Adaptive Server Enterprise. This section describes compatibility of SQL between SQL Anywhere and
Adaptive Server Enterprise.

Goals
The goals of Transact-SQL support in SQL Anywhere are as follows:

● Application portability Many applications, stored procedures, and batch files can be written for
use with both Adaptive Server Enterprise and SQL Anywhere databases.

● Data portability SQL Anywhere and Adaptive Server Enterprise databases can exchange and
replicate data between each other with minimum effort.

The aim is to write applications to work with both Adaptive Server Enterprise and SQL Anywhere.
Existing Adaptive Server Enterprise applications generally require some changes to run on a SQL
Anywhere database.

How Transact-SQL is supported
Transact-SQL support in SQL Anywhere takes the following form:

● Many SQL statements are compatible between SQL Anywhere and Adaptive Server Enterprise.

● For some statements, particularly in the procedure language used in procedures, triggers, and batches, a
separate Transact-SQL statement is supported together with the syntax supported in previous versions
of SQL Anywhere. For these statements, SQL Anywhere supports two dialects of SQL. Those dialects
are called Transact-SQL—the dialect of Adaptive Server Enterprise, and Watcom SQL—the dialect of
SQL Anywhere.

● A procedure, trigger, or batch is executed in either the Transact-SQL or Watcom SQL dialect. You
must use control statements from one dialect only throughout the batch or procedure. For example,
each dialect has different flow control statements.

The following diagram illustrates how the two dialects overlap.

SQL dialects and compatibility

580 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Similarities and differences
SQL Anywhere supports a high percentage of Transact-SQL language elements, functions, and statements
for working with existing data. For example, SQL Anywhere supports all numeric, aggregate, and date
and time functions, and all but one string function. As another example, SQL Anywhere supports
extended DELETE and UPDATE statements using joins.

Further, SQL Anywhere supports a high percentage of the Transact-SQL stored procedure language
(CREATE PROCEDURE and CREATE TRIGGER syntax, control statements, and so on) and many, but
not all, aspects of Transact-SQL data definition language statements.

There are design differences in the architectural and configuration facilities supported by each product.
Device management, user management, and maintenance tasks such as backups tend to be system-
specific. Even here, SQL Anywhere provides Transact-SQL system tables as views, where the tables that
are not meaningful in SQL Anywhere have no rows. Also, SQL Anywhere provides a set of system
procedures for some common administrative tasks.

This section looks first at some system-level issues where differences are most noticeable, before
discussing data manipulation and data definition language aspects of the dialects where compatibility is
high.

Transact-SQL only
Some SQL statements supported by SQL Anywhere are part of one dialect, but not the other. You cannot
mix the two dialects within a procedure, trigger, or batch. For example, SQL Anywhere supports the
following statements, but as part of the Transact-SQL dialect only:

● Transact-SQL control statements IF and WHILE

● Transact-SQL EXECUTE statement

● Transact-SQL CREATE PROCEDURE and CREATE TRIGGER statements

Transact-SQL compatibility

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 581

● Transact-SQL BEGIN TRANSACTION statement

● SQL statements not separated by semicolons are part of a Transact-SQL procedure or batch

SQL Anywhere only
Adaptive Server Enterprise does not support the following statements:

● LOOP and FOR control statements

● SQL Anywhere versions of IF and WHILE

● CALL statement

● SIGNAL statement

● SQL Anywhere versions of the CREATE PROCEDURE, CREATE FUNCTION, and CREATE
TRIGGER statements

● SQL statements separated by semicolons

Notes
The two dialects cannot be mixed within a procedure, trigger, or batch. This means that:

● You can include Transact-SQL-only statements together with statements that are part of both dialects in
a batch, procedure, or trigger.

● You can include statements not supported by Adaptive Server Enterprise together with statements that
are supported by both servers in a batch, procedure, or trigger.

● You cannot include Transact-SQL-only statements together with SQL Anywhere-only statements in a
batch, procedure, or trigger.

Adaptive Server Enterprise architectures
Adaptive Server Enterprise and SQL Anywhere are complementary products, with architectures designed
to suit their distinct purposes.

This section describes architectural differences between Adaptive Server Enterprise and SQL Anywhere.
It also describes the Adaptive Server Enterprise-like tools that SQL Anywhere includes for compatible
database management.

Servers and databases
The relationship between servers and databases is different in Adaptive Server Enterprise and SQL
Anywhere.

SQL dialects and compatibility

582 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

In Adaptive Server Enterprise, each database exists inside a server, and each server can contain several
databases. Users can have login rights to the server, and can connect to the server. They can then use each
database on that server for which they have permissions. System-wide system tables, held in a master
database, contain information common to all databases on the server.

No master database in SQL Anywhere
In SQL Anywhere, there is no level corresponding to the Adaptive Server Enterprise master database.
Instead, each database is an independent entity, containing all of its system tables. Users can have
connection rights to a database, not to the server. When a user connects, they connect to an individual
database. There is no system-wide set of system tables maintained at a master database level. Each SQL
Anywhere database server can dynamically load and unload multiple databases, and users can maintain
independent connections on each.

SQL Anywhere provides tools in its Transact-SQL support and in its Open Server support to allow some
tasks to be performed in a manner similar to Adaptive Server Enterprise. For example, SQL Anywhere
provides an implementation of the Adaptive Server Enterprise sp_addlogin system procedure that
performs the nearest equivalent action: adding a user to a database.

File manipulation statements
SQL Anywhere does not support the Transact-SQL statements DUMP DATABASE and LOAD
DATABASE for backing up and restoring. Instead, SQL Anywhere has its own BACKUP DATABASE
and RESTORE DATABASE statements with different syntax.

See also
● “SQL Anywhere as an Open Server” [SQL Anywhere Server - Database Administration]

Device management

SQL Anywhere and Adaptive Server Enterprise use different models for managing devices and disk
space, reflecting the different uses for the two products. While Adaptive Server Enterprise sets out a
comprehensive resource management scheme using a variety of Transact-SQL statements, SQL
Anywhere manages its own resources automatically, and its databases are regular operating system files.

SQL Anywhere does not support Transact-SQL DISK statements, such as DISK INIT, DISK MIRROR,
DISK REFIT, DISK REINIT, DISK REMIRROR, and DISK UNMIRROR.

See also
● “Database file types” [SQL Anywhere Server - Database Administration]

Defaults and rules

SQL Anywhere does not support the Transact-SQL CREATE DEFAULT statement or CREATE RULE
statement. The CREATE DOMAIN statement allows you to incorporate a default and a rule (called a

Adaptive Server Enterprise architectures

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 583

CHECK condition) into the definition of a domain, and so provides similar functionality to the Transact-
SQL CREATE DEFAULT and CREATE RULE statements.

In SQL Anywhere, a domain can have a default value and a CHECK condition associated with it, which
are applied to all columns defined on that data type. You create the domain using the CREATE DOMAIN
statement.

You can define default values and rules, or CHECK conditions, for individual columns using the
CREATE TABLE statement or the ALTER TABLE statement.

In Adaptive Server Enterprise, the CREATE DEFAULT statement creates a named default. This default
can be used as a default value for columns by binding the default to a particular column or as a default
value for all columns of a domain by binding the default to the data type using the sp_bindefault system
procedure. The CREATE RULE statement creates a named rule that can be used to define the domain for
columns by binding the rule to a particular column or as a rule for all columns of a domain by binding the
rule to the data type. A rule is bound to a data type or column using the sp_bindrule system procedure.

See also
● “CREATE DOMAIN statement” [SQL Anywhere Server - SQL Reference]
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TABLE statement” [SQL Anywhere Server - SQL Reference]
● “Search conditions” [SQL Anywhere Server - SQL Reference]

System tables

In addition to its own system tables, SQL Anywhere provides a set of system views that mimic relevant
parts of the Adaptive Server Enterprise system tables.

The SQL Anywhere system tables rest entirely within each database, while the Adaptive Server
Enterprise system tables rest partly inside each database and partly in the master database. The SQL
Anywhere architecture does not include a master database.

In Adaptive Server Enterprise, the database owner (user dbo) owns the system tables. In SQL Anywhere,
the system owner (user SYS) owns the system tables. The user dbo owns the Adaptive Server Enterprise-
compatible system views provided by SQL Anywhere.

See also
● “Views for Transact-SQL compatibility” [SQL Anywhere Server - SQL Reference]

Administrative roles

Adaptive Server Enterprise has a more elaborate set of administrative roles than SQL Anywhere. In
Adaptive Server Enterprise there is a set of distinct roles, although more than one login account on an
Adaptive Server Enterprise can be granted any role, and one account can possess more than one role.

SQL dialects and compatibility

584 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Adaptive Server Enterprise roles
In Adaptive Server Enterprise distinct roles include:

● System Administrator Responsible for general administrative tasks unrelated to specific
applications; can access any database object.

● System Security Officer Responsible for security-sensitive tasks in Adaptive Server Enterprise,
but has no special permissions on database objects.

● Database Owner Has full permissions on objects inside the database he or she owns, can add
users to a database and grant other users the permission to create objects and execute statements
within the database.

● Data definition statements Permissions can be granted to users for specific data definition
statements, such as CREATE TABLE or CREATE VIEW, enabling the user to create database
objects.

● Object owner Each database object has an owner who may grant permissions to other users to
access the object. The owner of an object automatically has all permissions on the object.

In SQL Anywhere, the following database-wide permissions have administrative roles:

● The Database Administrator (DBA authority) has, like the Adaptive Server Enterprise database owner,
full permissions on all objects inside the database (other than objects owned by SYS) and can grant
other users the permission to create objects and execute statements within the database. The default
database administrator is user DBA.

● The RESOURCE authority allows a user to create any kind of object within a database. This is instead
of the Adaptive Server Enterprise scheme of granting permissions on individual CREATE statements.

● SQL Anywhere has object owners in the same way that Adaptive Server Enterprise does. The owner of
an object automatically has all permissions on the object, including the right to grant permissions.

For seamless access to data held in both Adaptive Server Enterprise and SQL Anywhere, you should
create user IDs with appropriate permissions in the database (RESOURCE in SQL Anywhere, or
permission on individual CREATE statements in Adaptive Server Enterprise) and create objects from that
user ID. If you use the same user ID in each environment, object names and qualifiers can be identical in
the two databases, ensuring compatible access.

See also
● “User IDs, authorities, and permissions” [SQL Anywhere Server - Database Administration]
● “DBA authority” [SQL Anywhere Server - Database Administration]
● “RESOURCE authority” [SQL Anywhere Server - Database Administration]

Users and groups
There are some differences between the Adaptive Server Enterprise and SQL Anywhere models of users
and groups.

Adaptive Server Enterprise architectures

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 585

In Adaptive Server Enterprise, users connect to a server. Each user requires a login ID and password to
the server and a user ID for each database they want to access on that server. Each user of a database can
only be a member of one group.

In SQL Anywhere, users connect directly to a database and do not require a separate login ID to the
database server. Instead, each user receives a user ID and password on a database so they can use that
database. Users can be members of many groups, and group hierarchies are allowed.

Both servers support groups, so you can grant permissions to many users at one time. However, there are
differences in the specifics of groups in the two servers. For example, Adaptive Server Enterprise allows
each user to be a member of only one group, while SQL Anywhere has no such restriction. You should
compare the documentation on users and groups in the two products for specific information.

Both Adaptive Server Enterprise and SQL Anywhere have a public group, for defining default
permissions. Every user automatically becomes a member of the public group.

SQL Anywhere supports the following Adaptive Server Enterprise system procedures for managing users
and groups.

System procedure Description

sp_addlogin In Adaptive Server Enterprise, this adds a user to the server. In SQL Anywhere,
this adds a user to a database.

sp_adduser In Adaptive Server Enterprise and SQL Anywhere, this adds a user to a database.
While this is a distinct task from sp_addlogin in Adaptive Server Enterprise, in
SQL Anywhere, they are the same.

sp_addgroup Adds a group to a database.

sp_changegroup Adds a user to a group, or moves a user from one group to another.

sp_droplogin In Adaptive Server Enterprise, removes a user from the server. In SQL Any-
where, removes a user from the database.

sp_dropuser Removes a user from the database.

sp_dropgroup Removes a group from the database.

In Adaptive Server Enterprise, login IDs are server-wide. In SQL Anywhere, users belong to individual
databases.

Database object permissions
The Adaptive Server Enterprise and SQL Anywhere GRANT and REVOKE statements for granting
permissions on individual database objects are very similar. Both allow SELECT, INSERT, DELETE,
UPDATE, and REFERENCES permissions on database tables and views, and UPDATE permissions on
selected columns of database tables. Both allow EXECUTE permissions to be granted on stored
procedures.

SQL dialects and compatibility

586 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

For example, the following statement is valid in both Adaptive Server Enterprise and SQL Anywhere:

GRANT INSERT, DELETE
ON Employees
TO MARY, SALES;

This statement grants permission to use the INSERT and DELETE statements on the Employees table to
user MARY and to the SALES group.

Both SQL Anywhere and Adaptive Server Enterprise support the WITH GRANT OPTION clause,
allowing the recipient of permissions to grant them in turn, although SQL Anywhere does not permit
WITH GRANT OPTION to be used on a GRANT EXECUTE statement. In SQL Anywhere, you can
only specify WITH GRANT OPTION for users. Members of groups do not inherit the WITH GRANT
OPTION if it is granted to a group.

Database-wide permissions
Adaptive Server Enterprise and SQL Anywhere use different models for database-wide user permissions.
SQL Anywhere employs DBA permissions to allow a user full authority within a database. The System
Administrator in Adaptive Server Enterprise enjoys this permission for all databases on a server.
However, DBA authority on a SQL Anywhere database is different from the permissions of an Adaptive
Server Enterprise Database Owner, who must use the Adaptive Server Enterprise SETUSER statement to
gain permissions on objects owned by other users.

SQL Anywhere employs RESOURCE permissions to allow a user the right to create objects in a database.
A closely corresponding Adaptive Server Enterprise permission is GRANT ALL, used by a Database
Owner.

See also
● “Adaptive Server Enterprise system and catalog procedures” [SQL Anywhere Server - SQL Reference]
● “Users and groups” on page 585

Transact-SQL-compatible databases
You can eliminate some differences in behavior between SQL Anywhere and Adaptive Server Enterprise
by selecting appropriate options when creating a database or, if you are working on an existing database,
when rebuilding the database. You can control other differences by connection level options using the
SET TEMPORARY OPTION statement in SQL Anywhere or the SET statement in Adaptive Server
Enterprise.

Creating a Transact-SQL-compatible database
This section describes choices you must make when creating or rebuilding a database.

Transact-SQL-compatible databases

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 587

Creating a Transact-SQL-compatible database using Sybase Central, the command line, or
SQL

Here are the steps you need to take to create a Transact-SQL-compatible database. The remainder of the
section describes which options you need to set.

Create a Transact-SQL-compatible database (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. Click Tools » SQL Anywhere 12 » Create Database.

3. Follow the instructions in the wizard.

4. Click Emulate Adaptive Server Enterprise. Click Next.

5. Follow the remaining instructions in the wizard.

Create a Transact-SQL compatible database (command line)

● Run the following dbinit command:

dbinit -b -c -k db-name.db

Create a Transact-SQL compatible database (SQL)

1. Connect to any SQL Anywhere database.

2. Enter the following statement, for example, in Interactive SQL:

CREATE DATABASE 'db-name.db'
ASE COMPATIBLE
CASE RESPECT
BLANK PADDING ON;

In this statement, ASE COMPATIBLE means compatible with Adaptive Server Enterprise. It prevents
the SYS.SYSCOLUMNS and SYS.SYSINDEXES views from being created.

Make the database case sensitive
By default, string comparisons in Adaptive Server Enterprise databases are case sensitive, while those in
SQL Anywhere are case insensitive.

When building an Adaptive Server Enterprise-compatible database using SQL Anywhere, choose the case
sensitive option.

● If you are using Sybase Central, this option is in the Create Database Wizard.

● If you are using the dbinit utility, specify the -c option.

Ignore trailing blanks in comparisons
When building an Adaptive Server Enterprise-compatible database using SQL Anywhere, choose the
option to ignore trailing blanks in comparisons.

SQL dialects and compatibility

588 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● If you are using Sybase Central, this option is in the Create Database Wizard.

● If you are using the dbinit utility, specify the -b option.

When you choose this option, Adaptive Server Enterprise and SQL Anywhere considers the following
two strings equal:

'ignore the trailing blanks '
'ignore the trailing blanks'

If you do not choose this option, SQL Anywhere considers the two strings above different.

A side effect of choosing this option is that strings are padded with blanks when fetched by a client
application.

Remove historical system views
Older versions of SQL Anywhere employed two system views whose names conflict with the Adaptive
Server Enterprise system views provided for compatibility. These views include SYSCOLUMNS and
SYSINDEXES. If you are using Open Client or JDBC interfaces, create your database excluding these
views. You can do this with the dbinit -k option.

If you do not use this option when creating your database, executing the statement SELECT * FROM
SYSCOLUMNS; results in the error, Table name 'SYSCOLUMNS' is ambiguous.

See also
● “Initialization utility (dbinit)” [SQL Anywhere Server - Database Administration]

Options for Transact-SQL compatibility
You set SQL Anywhere database options using the SET OPTION statement. Several database option
settings are relevant to Transact-SQL behavior.

Set the allow_nulls_by_default option
By default, Adaptive Server Enterprise disallows NULLs on new columns unless you explicitly define the
column to allow NULLs. SQL Anywhere permits NULL in new columns by default, which is compatible
with the SQL/2008 ISO standard.

To make Adaptive Server Enterprise behave in a SQL/2008-compatible manner, use the sp_dboption
system procedure to set the allow_nulls_by_default option to true.

To make SQL Anywhere behave in a Transact-SQL-compatible manner, set the allow_nulls_by_default
option to Off. You can do this using the SET OPTION statement as follows:

SET OPTION PUBLIC.allow_nulls_by_default = 'Off';

Set the quoted_identifier option
By default, Adaptive Server Enterprise treats identifiers and strings differently than SQL Anywhere,
which matches the SQL/2008 ISO standard.

Transact-SQL-compatible databases

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 589

The quoted_identifier option is available in both Adaptive Server Enterprise and SQL Anywhere. Ensure
the option is set to the same value in both databases, for identifiers and strings to be treated in a
compatible manner.

For SQL/2008 behavior, set the quoted_identifier option to On in both Adaptive Server Enterprise and
SQL Anywhere.

For Transact-SQL behavior, set the quoted_identifier option to Off in both Adaptive Server Enterprise
and SQL Anywhere. If you choose this, you can no longer use identifiers that are the same as keywords,
enclosed in double quotes. As an alternative to setting quoted_identifier to Off, ensure that all strings used
in SQL statements in your application are enclosed in single quotes, not double quotes.

Set the string_rtruncation option
Both Adaptive Server Enterprise and SQL Anywhere support the string_rtruncation option, which affects
error message reporting when an INSERT or UPDATE string is truncated. Ensure that each database has
the option set to the same value.

See also
● “Compatibility options” [SQL Anywhere Server - Database Administration]
● “quoted_identifier option” [SQL Anywhere Server - Database Administration]
● “string_rtruncation option” [SQL Anywhere Server - Database Administration]

Case sensitivity

Case sensitivity in databases refers to:

● Data The case sensitivity of the data is reflected in indexes and so on.

● Identifiers Identifiers include table names, column names, and so on.

● Passwords Passwords are always case sensitive in SQL Anywhere databases.

Case sensitivity of data
You decide the case-sensitivity of SQL Anywhere data in comparisons when you create the database. By
default, SQL Anywhere databases are case-insensitive in comparisons, although data is always held in the
case in which you enter it.

Adaptive Server Enterprise's sensitivity to case depends on the sort order installed on the Adaptive Server
Enterprise system. Case sensitivity can be changed for single-byte character sets by reconfiguring the
Adaptive Server Enterprise sort order.

Case sensitivity of identifiers
SQL Anywhere does not support case sensitive identifiers. In Adaptive Server Enterprise, the case
sensitivity of identifiers follows the case sensitivity of the data. The default user ID for SQL Anywhere
databases is DBA.

SQL dialects and compatibility

590 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

In Adaptive Server Enterprise, domain names are case sensitive. In SQL Anywhere, they are case
insensitive, with the exception of Java data types.

Case sensitivity of passwords
In SQL Anywhere, passwords are always case sensitive. The default password for the DBA user ID is sql
in lowercase letters.

In Adaptive Server Enterprise, the case sensitivity of user IDs and passwords follows the case sensitivity
of the server.

Compatible object names

Each database object must have a unique name within a certain name space. Outside this name space,
duplicate names are allowed. Some database objects occupy different name spaces in Adaptive Server
Enterprise and SQL Anywhere.

Adaptive Server Enterprise has a more restrictive name space on trigger names than SQL Anywhere.
Trigger names must be unique in the database. For compatible SQL, you should stay within the Adaptive
Server Enterprise restriction and make your trigger names unique in the database.

The special Transact-SQL TIMESTAMP column and data
type

SQL Anywhere supports the Transact-SQL special TIMESTAMP column. The TIMESTAMP column,
together with the TSEQUAL system function, checks whether a row has been updated.

Two meanings of timestamp
SQL Anywhere has a TIMESTAMP data type, which holds accurate date and time information. It is
distinct from the special Transact-SQL TIMESTAMP column and data type.

Creating a Transact-SQL TIMESTAMP column in SQL Anywhere
To create a Transact-SQL TIMESTAMP column, create a column that has the (SQL Anywhere) data type
TIMESTAMP and a default setting of timestamp. The column can have any name, although the name
timestamp is common.

For example, the following CREATE TABLE statement includes a Transact-SQL TIMESTAMP column:

CREATE TABLE tablename (
 column_1 INTEGER,
 column_2 TIMESTAMP DEFAULT TIMESTAMP
);

The following ALTER TABLE statement adds a Transact-SQL TIMESTAMP column to the SalesOrders
table:

Transact-SQL-compatible databases

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 591

ALTER TABLE SalesOrders
ADD timestamp TIMESTAMP DEFAULT TIMESTAMP;

In Adaptive Server Enterprise a column with the name timestamp and no data type specified
automatically receives a TIMESTAMP data type. In SQL Anywhere you must explicitly assign the data
type.

The data type of a TIMESTAMP column
Adaptive Server Enterprise treats a TIMESTAMP column as a domain that is VARBINARY(8), allowing
NULL, while SQL Anywhere treats a TIMESTAMP column as the TIMESTAMP data type, which
consists of the date and time, with fractions of a second held to six decimal places.

When fetching from the table for later updates, the variable into which the TIMESTAMP value is fetched
should correspond to the column description.

In Interactive SQL, you may need to set the timestamp_format option to see the differences in values for
the rows. The following statement sets the timestamp_format option to display all six digits in the
fractions of a second:

SET OPTION timestamp_format='YYYY-MM-DD HH:NN:SS.SSSSSS';

If all six digits are not shown, some TIMESTAMP column values may appear to be equal: they are not.

Using TSEQUAL for updates
With the TSEQUAL system function you can tell whether a TIMESTAMP column has been updated or
not.

An application may SELECT a TIMESTAMP column into a variable. When an UPDATE of one of the
selected rows is submitted, it can use the TSEQUAL function to check whether the row has been
modified. The TSEQUAL function compares the TIMESTAMP value in the table with the TIMESTAMP
value obtained in the SELECT. Identical timestamps means there are no changes. If the timestamps differ,
the row has been changed since the SELECT was performed. For example:

CREATE VARIABLE old_ts_value TIMESTAMP;
SELECT timestamp into old_ts_value
FROM publishers
WHERE pub_id = '0736';
UPDATE publishers
SET city = 'Springfield'
WHERE pub_id = '0736'
AND TSEQUAL(timestamp, old_ts_value);

The special IDENTITY column
The IDENTITY column stores sequential numbers, such as invoice numbers or employee numbers, which
are automatically generated. The value of the IDENTITY column uniquely identifies each row in a table.

In Adaptive Server Enterprise, each table in a database can have one IDENTITY column. The data type
must be numeric with scale zero, and the IDENTITY column should not allow nulls.

SQL dialects and compatibility

592 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

In SQL Anywhere, the IDENTITY column is a column default setting. You can explicitly insert values
that are not part of the sequence into the column with an INSERT statement. Adaptive Server Enterprise
does not allow INSERTs into identity columns unless the identity_insert option is on. In SQL Anywhere,
you need to set the NOT NULL property and ensure that only one column is an IDENTITY column. SQL
Anywhere allows any numeric data type to be an IDENTITY column. The use of integer data types is
recommended for better performance.

In SQL Anywhere, the IDENTITY column and the AUTOINCREMENT default setting for a column are
identical.

To create an IDENTITY column, use the following CREATE TABLE syntax, where n is large enough to
hold the value of the maximum number of rows that may be inserted into the table:

CREATE TABLE table-name (
 ...
 column-name numeric(n,0) IDENTITY NOT NULL,
 ...
)

Retrieval of IDENTITY column values with @@identity

The first time you insert a row into the table, an IDENTITY column has a value of 1 assigned to it. On
each subsequent insert, the value of the column increases by one. The value most recently inserted into an
identity column is available in the @@identity global variable.

See also
● “@@identity global variable” [SQL Anywhere Server - SQL Reference]

Compatible SQL statements
This section describes general guidelines for writing SQL for use on more than one database management
system, and discusses compatibility issues between Adaptive Server Enterprise and SQL Anywhere at the
SQL statement level.

General guidelines for writing portable SQL
When writing SQL for use on more than one database management system, make your SQL statements as
explicit as possible. Even if more than one server supports a given SQL statement, it may be a mistake to
assume that default behavior is the same on each system.

In SQL Anywhere, the database server and the SQL preprocessor (sqlpp) can identify SQL statements that
are vendor extensions, are not compliant with specific ISO/ANSI SQL standards, or are not supported by
UltraLite. This functionality is called the SQL Flagger.

General guidelines applicable to writing compatible SQL include:

Compatible SQL statements

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 593

● Include all the available options, rather than using default behavior.

● Use parentheses to make the order of execution within statements explicit, rather than assuming
identical default order of precedence for operators.

● Use the Transact-SQL convention of an @ sign preceding variable names for Adaptive Server
Enterprise portability.

● Declare variables and cursors in procedures, triggers, and batches immediately following a BEGIN
statement. SQL Anywhere requires this, although Adaptive Server Enterprise allows declarations to be
made anywhere in a procedure, trigger, or batch.

● Avoid using reserved words from either Adaptive Server Enterprise or SQL Anywhere as identifiers in
your databases.

● Assume large namespaces. For example, ensure that each index should have a unique name.

See also
● “SQL compliance testing using the SQL Flagger” on page 573

Tables that are compatible with Transact-SQL

SQL Anywhere supports domains which allow constraint and default definitions to be encapsulated in the
data type definition. It also supports explicit defaults and CHECK conditions in the CREATE TABLE
statement. It does not, however, support named defaults.

NULL
SQL Anywhere and Adaptive Server Enterprise differ in some respects in their treatment of NULL. In
Adaptive Server Enterprise, NULL is sometimes treated as if it were a value.

For example, a unique index in Adaptive Server Enterprise cannot contain rows that hold NULL values
and are otherwise identical. In SQL Anywhere, a unique index can contain such rows.

By default, columns in Adaptive Server Enterprise default to NOT NULL, whereas in SQL Anywhere the
default setting is NULL. You can control this setting using the allow_nulls_by_default option. Specify
explicitly NULL or NOT NULL to make your data definition statements transferable.

Temporary tables
You can create a temporary table by placing a pound sign (#) in front of the table name in a CREATE
TABLE statement. These temporary tables are SQL Anywhere declared temporary tables, and are
available only in the current connection.

Physical placement of a table is performed differently in Adaptive Server Enterprise and in SQL
Anywhere. SQL Anywhere supports the ON segment-name clause, but segment-name refers to a SQL
Anywhere dbspace.

SQL dialects and compatibility

594 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “SQL compliance testing using the SQL Flagger” on page 573
● “Options for Transact-SQL compatibility” on page 589
● “DECLARE LOCAL TEMPORARY TABLE statement” [SQL Anywhere Server - SQL Reference]
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]

Queries that are compatible with Transact-SQL
There are two criteria for writing a query that runs on both SQL Anywhere and Adaptive Server
Enterprise databases:

● The data types, expressions, and search conditions in the query must be compatible.

● The syntax of the statement itself must be compatible.

This section assumes compatible data types, expressions, and search conditions. The examples assume the
quoted_identifier option is set to OFF, which is the default Adaptive Server Enterprise setting, but not the
default SQL Anywhere setting.

SQL Anywhere's implementation of the Transact-SQL dialect supports much of the query expression
syntax from the Watcom SQL dialect, even though some of these SQL constructions are not supported by
Adaptive Server Enterprise. In a Transact-SQL query, SQL Anywhere supports the following SQL
constructions:

● the back quote character `, the double quote character ", and square parentheses [] to denote identifiers
● UNION, EXCEPT, and INTERSECT query expressions
● derived tables
● table functions
● CONTAINS table expressions for full text search
● REGEXP, SIMILAR, IS DISTINCT FROM, and CONTAINS predicates
● user-defined SQL or external functions
● LEFT, RIGHT and FULL outer joins
● GROUP BY ROLLUP, CUBE, and GROUPING SETS
● TOP N START AT M
● window aggregate functions and other analytic functions including statistical analysis and linear

regression functions

To summarize, SQL Anywhere's Transact-SQL dialect supports the following:

Syntax
query-expression:
{ query-expression EXCEPT [ALL] query-expression
| query-expression INTERSECT [ALL] query-expression
| query-expression UNION [ALL] query-expression
| query-specification }
[ORDER BY { expression | integer }
 [ASC | DESC], ...]
[FOR READ ONLY | for-update-clause]
[FOR XML xml-mode]

Compatible SQL statements

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 595

query-specification:
SELECT [ALL | DISTINCT] [cursor-range] select-list
[INTO #temporary-table-name]
[FROM table-expression, ...]
[WHERE search-condition]
[GROUP BY group-by-term, ...]
[HAVING search-condition]
[WINDOW window-specification, ...]

Parameters
select-list:
 table-name.*
| *
| expression
| alias-name = expression
| expression as identifier
| expression as string

table-expression: See “FROM clause” [SQL Anywhere Server - SQL Reference].

group-by-term: See “GROUP BY clause” [SQL Anywhere Server - SQL Reference].

for-update-clause: See “FOR UPDATE or FOR READ ONLY clause, SELECT statement” [SQL
Anywhere Server - SQL Reference].

xml-mode: See “SELECT statement” [SQL Anywhere Server - SQL Reference].

alias-name:
identifier | 'string' | "string" | `string`

cursor-range:
{ FIRST | TOPconstant-or-variable } [START AT constant-or-variable]

Transact-SQL-table-reference:
[owner .]table-name [[AS] correlation-name]
[(INDEX index_name [PREFETCH size][LRU | MRU])]

Notes

● In addition to the Watcom SQL syntax for the FROM clause, SQL Anywhere supports Transact-SQL
syntax for specific Adaptive Server Enterprise table hints. For a table reference, Transact-SQL-table-
reference supports the INDEX hint keyword, along with the PREFETCH, MRU and LRU caching
hints. PREFETCH, MRU and LRU are ignored in SQL Anywhere.

● SQL Anywhere does not support the Transact-SQL extension to the GROUP BY clause allowing
references to columns that are not included in the GROUP BY clause.

SQL Anywhere also does not support the Transact-SQL GROUP BY ALL construction.

● SQL Anywhere supports a subset of Transact-SQL outer join constructions using the comparison
operators *= and =*.

SQL dialects and compatibility

596 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● SQL Anywhere's Transact-SQL dialect does not support common table expressions except when
embedded within a derived table. Consequently SQL Anywhere's Transact-SQL dialect does not
support recursive UNION queries. Use the Watcom SQL dialect if you require this functionality.

● The performance parameters part of the table specification is parsed, but has no effect.

● The HOLDLOCK keyword is supported by SQL Anywhere. With HOLDLOCK, a shared lock on a
specified table or view is more restrictive because the shared lock is not released when the data page is
no longer needed. The query is performed at isolation level 3 on a table on which the HOLDLOCK is
specified.

● The HOLDLOCK option applies only to the table or view for which it is specified, and only for the
duration of the transaction defined by the statement in which it is used. Setting the isolation level to 3
applies a holdlock for each select within a transaction. You cannot specify both a HOLDLOCK and
NOHOLDLOCK option in a query.

● The NOHOLDLOCK keyword is recognized by SQL Anywhere, but has no effect.

● Transact-SQL uses the SELECT statement to assign values to local variables:

SELECT @localvar = 42;

The corresponding statement in SQL Anywhere is the SET statement:

SET @localvar = 42;

● Adaptive Server Enterprise does not support the following:

○ SELECT ... INTO host-variable-list
○ SELECT ... INTO variable-list
○ EXCEPT [ALL] or INTERSECT [ALL]
○ START AT clause
○ SQL Anywhere-defined table hints
○ table functions
○ FULL OUTER JOIN
○ FOR UPDATE BY { LOCK | TIMESTAMP }
○ window aggregate functions and linear regression functions

● SQL Anywhere does not support the following keywords and clauses of the Adaptive Server Enterprise
Transact-SQL SELECT statement syntax:

○ SHARED keyword
○ PARTITION keyword
○ COMPUTE clause
○ FOR BROWSE clause
○ GROUP BY ALL clause
○ PLAN clause
○ ISOLATION clause

Compatible SQL statements

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 597

See also
● “SQL compliance testing using the SQL Flagger” on page 573
● “SELECT statement” [SQL Anywhere Server - SQL Reference]
● “OLAP support” on page 487
● “GROUP BY and the SQL/2008 standard” on page 415
● “FROM clause” [SQL Anywhere Server - SQL Reference]
● “Transact-SQL outer joins (*= or =*)” on page 445

Compatibility of joins
In SQL Anywhere's implementation of Transact-SQL, you can specify join syntax from the SQL/2008
standard using the keywords JOIN, LEFT OUTER JOIN, and RIGHT OUTER JOIN, and FULL OUTER
JOIN, along with legacy Transact-SQL outer join syntax that uses the specialty comparison operators *=
and =* in the statement's WHERE clause.

Note
Support for Transact-SQL outer join operators *= and =* is deprecated and will be removed in a future
release.

See also
● “Joins: Retrieving data from several tables” on page 428
● “FROM clause” [SQL Anywhere Server - SQL Reference]
● “Transact-SQL outer joins (*= or =*)” on page 445
● “SQL compliance testing using the SQL Flagger” on page 573

Transact-SQL procedure language
The stored procedure language is the part of SQL used in stored procedures, triggers, and batches.

SQL Anywhere supports a large part of the Transact-SQL stored procedure language in addition to the
Watcom SQL dialect based on SQL/2008.

Transact-SQL stored procedures
The native SQL Anywhere dialect, Watcom-SQL, is based on the ISO/ANSI SQL/2008 standard.
Consequently, the Watcom-SQL stored procedure dialect differs from the Transact-SQL dialect in many
ways. Many of the concepts and features are similar, but the syntax is different. SQL Anywhere support
for Transact-SQL takes advantage of the similar concepts by providing automatic translation between
dialects. However, a procedure must be written exclusively in one of the two dialects, not in a mixture of
the two.

SQL dialects and compatibility

598 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SQL Anywhere support for Transact-SQL stored procedures
There are a variety of aspects to SQL Anywhere support for Transact-SQL stored procedures, including:

● Passing parameters
● Returning result sets
● Returning status information
● Providing default values for parameters
● Control statements
● Error handling
● User-defined functions

Transact-SQL triggers

Trigger compatibility requires compatibility of trigger features and syntax. This section provides an
overview of the feature compatibility of Transact-SQL and SQL Anywhere triggers.

Adaptive Server Enterprise supports statement-level AFTER triggers; that is, triggers that execute after
the triggering statement has completed. The Watcom-SQL dialect supported by SQL Anywhere supports
row-level BEFORE, AFTER, and INSTEAD OF triggers, and statement-level AFTER and INSTEAD OF
triggers.

Row-level triggers are not part of the Transact-SQL compatibility features.

Description of unsupported or different Transact-SQL triggers
Features of Transact-SQL triggers that are either unsupported or different in SQL Anywhere include:

● Triggers firing other triggers Suppose a trigger performs an action that would, if performed
directly by a user, fire another trigger. SQL Anywhere and Adaptive Server Enterprise respond
slightly differently to this situation. By default in Adaptive Server Enterprise, triggers fire other
triggers up to a configurable nesting level, which has the default value of 16. You can control the
nesting level with the Adaptive Server Enterprise nested triggers option. In SQL Anywhere, triggers
fire other triggers without limit unless there is insufficient memory.

● Triggers firing themselves Suppose a trigger performs an action that would, if performed
directly by a user, fire the same trigger. SQL Anywhere and Adaptive Server Enterprise respond
slightly differently to this situation. By default, in SQL Anywhere, non-Transact-SQL triggers fire
themselves recursively, whereas Transact-SQL dialect triggers do not fire themselves recursively.
However, for Transact-SQL dialect triggers, you can use the self_recursion option of the SET
statement [T-SQL] to allow a trigger to call itself recursively.

By default in Adaptive Server Enterprise, a trigger does not call itself recursively, but you can use the
self_recursion option to allow recursion to occur.

● ROLLBACK statement in triggers not supported Adaptive Server Enterprise permits the
ROLLBACK TRANSACTION statement within triggers, to roll back the entire transaction of which
the trigger is a part. SQL Anywhere does not permit ROLLBACK (or ROLLBACK

Transact-SQL procedure language

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 599

TRANSACTION) statements in triggers because a triggering action and its trigger together form an
atomic statement.

SQL Anywhere does provide the Adaptive Server Enterprise-compatible ROLLBACK TRIGGER
statement to undo actions within triggers.

● ORDER clause not supported Transact-SQL triggers do not permit an ORDER nn clause; the
value of trigger_order is automatically set to 1. This can cause an error to be returned creating a T-
SQL trigger if there is already a statement level trigger. This is because the SYSTRIGGER system
table has a unique index on table_id, event, trigger_time, trigger_order. For a particular event (insert,
update, delete) statement-level triggers are always AFTER and trigger_order cannot be set, so there
can be only one per table, assuming any other triggers do not set an order other than 1.

See also
● “Triggers” on page 80
● “Stored procedures, triggers, batches, and user defined functions” on page 71
● “SET statement [T-SQL]” [SQL Anywhere Server - SQL Reference]
● “ROLLBACK TRIGGER statement” [SQL Anywhere Server - SQL Reference]

Transact-SQL batches

In Transact-SQL, a batch is a set of SQL statements submitted together and executed as a group, one after
the other. Batches can be stored in SQL script files. Interactive SQL can be used to execute batches
interactively.

The control statements used in procedures can also be used in batches. SQL Anywhere supports the use of
control statements in batches and the Transact-SQL-like use of non-delimited groups of statements
terminated with a GO statement to signify the end of a batch.

For batches stored in SQL script files, Interactive SQL supports the use of parameters in these files.

See also
● “PARAMETERS statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

Automatic translation of stored procedures
In addition to supporting Transact-SQL alternative syntax, SQL Anywhere provides aids for translating
statements between the Watcom SQL and Transact-SQL dialects. SQL language built-in functions
returning information about SQL statements and enabling automatic translation of SQL statements
include:

● SQLDialect(statement) Returns Watcom-SQL or Transact-SQL.

● Watcom SQL(statement) Returns the Watcom-SQL syntax for the statement.

SQL dialects and compatibility

600 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● TransactSQL(statement) Returns the Transact-SQL syntax for the statement.

These are functions, and so can be accessed using a select statement from Interactive SQL. For example,
the following statement returns the value Watcom-SQL:

SELECT SQLDialect('SELECT * FROM Employees');

Using Sybase Central to translate stored procedures
Sybase Central has facilities for creating, viewing, and altering procedures and triggers. You can also
export the text to a file for editing outside Sybase Central.

Translate a stored procedure (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with DBA authority or as the
owner of the procedure.

2. Click the Procedures & Functions folder and select one of the stored procedures in the list.

3. In the right pane, click the SQL tab and then click in the text window.

4. Click File and click one of the Translate To options.

The procedure appears in the right pane in the selected dialect. If the selected dialect is not the one in
which the procedure is stored, the server translates it to that dialect. Any untranslated lines appear as
comments.

5. Rewrite any untranslated lines.

6. Click File » Save.

Returning result sets from Transact-SQL
procedures

SQL Anywhere uses a RESULT clause to specify returned result sets. In Transact-SQL procedures, the
column names or alias names of the first query are returned to the calling environment.

Example of a Transact-SQL procedure
The following Transact-SQL procedure illustrates how Transact-SQL stored procedures returns result
sets:

CREATE PROCEDURE ShowDepartment (@deptname VARCHAR(30))
AS
 SELECT Employees.Surname, Employees.GivenName
 FROM Departments, Employees
 WHERE Departments.DepartmentName = @deptname
 AND Departments.DepartmentID = Employees.DepartmentID;

Returning result sets from Transact-SQL procedures

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 601

Example of a Watcom SQL procedure
The following is the corresponding SQL Anywhere procedure:

CREATE PROCEDURE ShowDepartment(in deptname VARCHAR(30))
RESULT (LastName CHAR(20), FirstName CHAR(20))
BEGIN
 SELECT Employees.Surname, Employees.GivenName
 FROM Departments, Employees
 WHERE Departments.DepartmentName = deptname
 AND Departments.DepartmentID = Employees.DepartmentID
END;

See also
● “Result sets” on page 100

Variables in Transact-SQL procedures
SQL Anywhere uses the SET statement to assign values to variables in a procedure. In Transact-SQL,
values are assigned using either the SELECT statement with an empty table-list, or the SET statement.
The following simple procedure illustrates how the Transact-SQL syntax works:

CREATE PROCEDURE multiply
 @mult1 int,
 @mult2 int,
 @result int output
AS
SELECT @result = @mult1 * @mult2;

This procedure can be called as follows:

CREATE VARIABLE @product int
go
EXECUTE multiply 5, 6, @product OUTPUT
go

The variable @product has a value of 30 after the procedure executes.

See also
● “Queries that are compatible with Transact-SQL” on page 595
● “SET statement” [SQL Anywhere Server - SQL Reference]

Error handling in Transact-SQL procedures
Default procedure error handling is different in the Watcom SQL and Transact-SQL dialects. By default,
Watcom SQL dialect procedures exit when they encounter an error, returning SQLSTATE and
SQLCODE values to the calling environment.

Explicit error handling can be built into Watcom SQL stored procedures using the EXCEPTION
statement, or you can instruct the procedure to continue execution at the next statement when it
encounters an error, using the ON EXCEPTION RESUME statement.

SQL dialects and compatibility

602 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

When a Transact-SQL dialect procedure encounters an error, execution continues at the following
statement. The global variable @@error holds the error status of the most recently executed statement.
You can check this variable following a statement to force return from a procedure. For example, the
following statement causes an exit if an error occurs.

IF @@error != 0 RETURN

When the procedure completes execution, a return value indicates the success or failure of the procedure.
This return status is an integer, and can be accessed as follows:

DECLARE @Status INT
EXECUTE @Status = proc_sample
IF @Status = 0
 PRINT 'procedure succeeded'
ELSE
 PRINT 'procedure failed'

The following table describes the built-in procedure return values and their meanings:

Value Definition SQL Anywhere SQLSTATE

0 Procedure executed without
error

-1 Missing object 42W33, 52W02, 52003, 52W07, 42W05

-2 Data type error 53018

-3 Process was chosen as
deadlock victim

40001, 40W06

-4 Permission error 42501

-5 Syntax error 42W04

-6 Miscellaneous user error

-7 Resource error, such as out
of space

08W26

-10 Fatal internal inconsistency 40W01

-11 Fatal internal inconsistency 40000

-13 Database is corrupt WI004

-14 Hardware error 08W17, 40W03, 40W04

When a SQL Anywhere SQLSTATE is not applicable, the default value -6 is returned.

The RETURN statement can be used to return other integers, with their own user-defined meanings.

Error handling in Transact-SQL procedures

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 603

Procedures that use the RAISERROR statement
You can use the RAISERROR statement to generate user-defined errors. The RAISERROR statement
functions similar to the SIGNAL statement.

By itself, the RAISERROR statement does not cause an exit from the procedure, but it can be combined
with a RETURN statement or a test of the @@error global variable to control execution following a user-
defined error.

If you set the on_tsql_error database option to Continue, the RAISERROR statement no longer signals an
execution-ending error. Instead, the procedure completes and stores the RAISERROR status code and
message, and returns the most recent RAISERROR. If the procedure causing the RAISERROR was called
from another procedure, the RAISERROR returns after the outermost calling procedure terminates. If you
set the on_tsql_error option to the default (Conditional), the continue_after_raiserror option controls the
behavior following the execution of a RAISERROR statement. If you set the on_tsql_error option to Stop
or Continue, the on_tsql_error setting takes precedence over the continue_after_raiserror setting.

You lose intermediate RAISERROR statuses and codes after the procedure terminates. If, at return time,
an error occurs along with the RAISERROR, then the error information is returned and you lose the
RAISERROR information. The application can query intermediate RAISERROR statuses by examining
@@error global variable at different execution points.

See also
● “RAISERROR statement” [SQL Anywhere Server - SQL Reference]

Transact-SQL-like error handling in the Watcom SQL
dialect

You can make a Watcom SQL dialect procedure handle errors in a Transact-SQL-like manner by
supplying the ON EXCEPTION RESUME clause to the CREATE PROCEDURE statement:

CREATE PROCEDURE sample_proc()
ON EXCEPTION RESUME
BEGIN
 ...
END

The presence of an ON EXCEPTION RESUME clause prevents explicit exception handling code from
being executed, so avoid this clause with explicit error handling.

See also
● “CREATE PROCEDURE statement” [SQL Anywhere Server - SQL Reference]

SQL dialects and compatibility

604 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Use of XML in the database
Extensible Markup Language (XML) represents structured data in text format. XML was designed
specifically to meet the challenges of large-scale electronic publishing.

XML is a simple markup language, like HTML, but is also flexible, like SGML. XML is hierarchical, and
its main purpose is to describe the structure of data for both humans and computer software to author and
read.

Rather than providing a static set of elements which describe various forms of data, XML lets you define
elements. As a result, many types of structured data can be described with XML. XML documents can
optionally use a document type definition (DTD) or XML schema to define the structure, elements, and
attributes that are used in an XML file.

There are several ways you can use XML with SQL Anywhere:

● Storing XML documents in the database
● Exporting relational data as XML
● Importing XML into the database
● Querying relational data as XML

For more details about XML, see http://www.w3.org/XML/.

Storage of XML documents in relational databases
SQL Anywhere supports two data types that can be used to store XML documents in your database: the
XML data type and the LONG VARCHAR data type. Both of these data types store the XML document
as a string in the database.

The XML data type uses the character set encoding of the database server. The XML encoding attribute
should match the encoding used by the database server. The XML encoding attribute does not specify
how the automatic character set conversion is completed.

You can cast between the XML data type and any other data type that can be cast to or from a string. Note
that there is no checking that the string is well-formed when it is cast to XML.

When you generate elements from relational data, any characters that are invalid in XML are escaped
unless the data is of type XML. For example, suppose you want to generate a <product> element with the
following content so that the element content contains less than and greater than signs:

<hat>bowler</hat>

If you write a query that specifies that the element content is of type XML, then the greater than and less
than signs are not quoted, as follows:

SELECT XMLFOREST(CAST('<hat>bowler</hat>' AS XML) AS product);

You get the following result:

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 605

http://www.w3.org/XML/

<product><hat>bowler</hat></product>

However, if the query does not specify that the element content is of type XML, for example:

SELECT XMLFOREST('<hat>bowler</hat>' AS product);

In this case, the less than and greater than signs are replaced with entity references as follows:

<product><hat>bowler</hat></product>

Note that attributes are always quoted, regardless of the data type.

See also
● “Encoding illegal XML names” on page 617
● “XML data type” [SQL Anywhere Server - SQL Reference]

Exporting relational data as XML
SQL Anywhere provides two ways to export your relational data as XML: the Interactive SQL OUTPUT
statement and the ADO.NET DataSet object.

The FOR XML clause and SQL/XML functions allow you to generate a result set as XML from the
relational data in your database. You can then export the generated XML to a file using the UNLOAD
statement or the xp_write_file system procedure.

Exporting relational data as XML from Interactive SQL
The Interactive SQL OUTPUT statement supports an XML format that outputs query results to a
generated XML file.

This generated XML file is encoded in UTF-8 and contains an embedded DTD. In the XML file, binary
values are encoded in character data (CDATA) blocks with the binary data rendered as 2-hex-digit strings.

The INPUT statement does not accept XML as a file format. However, you can import XML using the
openxml procedure or the ADO.NET DataSet object.

See also
● “OUTPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “Importing XML documents as relational data” on page 607

Exporting relational data as XML using the DataSet object
The ADO.NET DataSet object allows you to save the contents of the DataSet in an XML document. Once
you have filled the DataSet (for example, with the results of a query on your database) you can save either

Use of XML in the database

606 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

the schema or both the schema and data from the DataSet in an XML file. The WriteXml method saves
both the schema and data in an XML file, while the WriteXmlSchema method saves only the schema in
an XML file. You can fill a DataSet object using the SQL Anywhere ADO.NET data provider.

For information about exporting relational data as XML using a DataSet, see “Manipulate data using the
SACommand object” [SQL Anywhere Server - Programming].

Importing XML documents as relational data
SQL Anywhere supports two different ways to import XML into your database:

● using the openxml procedure to generate a result set from an XML document

● using the ADO.NET DataSet object to read the data and/or schema from an XML document into a
DataSet

Importing XML using openxml
The openxml procedure is used in the FROM clause of a query to generate a result set from an XML
document. openxml uses a subset of the XPath query language to select nodes from an XML document.

Using XPath expressions
When you use openxml, the XML document is parsed and the result is modeled as a tree. The tree is made
up of nodes. XPath expressions are used to select nodes in the tree. The following list describes some
commonly-used XPath expressions:

● / indicates the root node of the XML document

● // indicates all descendants of the root, including the root node

● . (single period) indicates the current node of the XML document

● .// indicates all descendants of the current node, including the current node

● .. indicates the parent node of the current node

● ./@attributename indicates the attribute of the current node having the name attributename

● ./childname indicates the children of the current node that are elements having the name
childname

Consider the following XML document:

<inventory>
 <product ID="301" size="Medium">Tee Shirt
 <quantity>54</quantity>
 </product>

Importing XML documents as relational data

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 607

 <product ID="302" size="One Size fits all">Tee Shirt
 <quantity>75</quantity>
 </product>
 <product ID="400" size="One Size fits all">Baseball Cap
 <quantity>112</quantity>
 </product>
</inventory>

The <inventory> element is the root node. You can refer to it using the following XPath expression:

/inventory

Suppose that the current node is a <quantity> element. You can refer to this node using the following
XPath expression:

.

To find all the <product> elements that are children of the <inventory> element, use the following XPath
expression:

/inventory/product

If the current node is a <product> element and you want to refer to the size attribute, use the following
XPath expression:

./@size

For information about the XPath query language, see http://www.w3.org/TR/xpath.

Generating a result set using openxml
Each match for the first xpath-query argument to openxml generates one row in the result set. The WITH
clause specifies the schema of the result set and how the value is found for each column in the result set.
For example, consider the following query:

SELECT * FROM openxml(
'<inventory>
 <product>Tee Shirt
 <quantity>54</quantity>
 <color>Orange</color>
 </product>
 <product>Baseball Cap
 <quantity>112</quantity>
 <color>Black</color>
 </product>
</inventory>',
'/inventory/product')
WITH (Name CHAR (25) './text()',
 Quantity CHAR(3) 'quantity',
 Color CHAR(20) 'color');

The first xpath-query argument is /inventory/product, and there are two <product> elements in the XML,
so two rows are generated by this query.

The WITH clause specifies that there are three columns: Name, Quantity, and Color. The values for these
columns are taken from the <product>, <quantity> and <color> elements. The query above generates the
following result:

Use of XML in the database

608 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

http://www.w3.org/TR/xpath

Name Quantity Color

Tee Shirt 54 Orange

Baseball Cap 112 Black

Using openxml to generate an edge table
The openxml procedure can be used to generate an edge table, a table that contains a row for every
element in the XML document. You may want to generate an edge table so that you can query the data in
the result set using SQL.

The following SQL statements create a table that contains a single XML document. The XML generated
by the query has a root element called <root>, which is generated using the XMLELEMENT function,
and elements are generated for each specified column in the Employees, SalesOrders, and Customers
tables using FOR XML AUTO with the ELEMENTS modifier.

CREATE TABLE IF NOT EXISTS xmldata (xmldoc XML);
INSERT INTO xmldata WITH AUTO NAME
 SELECT XMLELEMENT(NAME root,
 (SELECT EmployeeID, Employees.GivenName, Employees.Surname,
 Customers.ID, Customers.GivenName, Customers.Surname,
Customers.Phone, CompanyName,
 SalesOrders.ID, OrderDate, Region
 FROM Employees
 KEY JOIN SalesOrders
 KEY JOIN Customers
 ORDER BY EmployeeID, Customers.ID, SalesOrders.ID
 FOR XML AUTO, ELEMENTS)) AS xmldoc;
SELECT xmldoc FROM xmldata;

The generated XML looks as follows (the result has been formatted to make it easier to read—the result
returned by the query is one continuous string):

<root>
 <Employees>
 <EmployeeID>129</EmployeeID>
 <GivenName>Philip</GivenName>
 <Surname>Chin</Surname>

 <Customers>
 <ID>101</ID>
 <GivenName>Michaels</GivenName>
 <Surname>Devlin</Surname>
 <Phone>2015558966</Phone>
 <CompanyName>The Power Group</CompanyName>
 <SalesOrders>
 <ID>2560</ID>
 <OrderDate>2001-03-16</OrderDate>
 <Region>Eastern</Region>
 </SalesOrders>
 </Customers>

 <Customers>
 <ID>103</ID>
 <GivenName>Erin</GivenName>
 <Surname>Niedringhaus</Surname>
 <Phone>2155556513</Phone>

Importing XML documents as relational data

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 609

 <CompanyName>Darling Associates</CompanyName>
 <SalesOrders>
 <ID>2451</ID>
 <OrderDate>2000-12-15</OrderDate>
 <Region>Eastern</Region>
 </SalesOrders>
 </Customers>

 <Customers>
 <ID>104</ID>
 <GivenName>Meghan</GivenName>
 <Surname>Mason</Surname>
 <Phone>6155555463</Phone>
 <CompanyName>P.S.C.</CompanyName>
 <SalesOrders>
 <ID>2331</ID>
 <OrderDate>2000-09-17</OrderDate>
 <Region>South</Region>
 </SalesOrders>

 <SalesOrders>
 <ID>2342</ID>
 <OrderDate>2000-09-28</OrderDate>
 <Region>South</Region>
 </SalesOrders>
 </Customers>
 ...
 </Employees>
 ...
 <Employees>
 ...
 </Employees>
</root>

The following query uses the descendant-or-self (//*) XPath expression to match every element in the
above XML document, and for each element the id metaproperty is used to obtain an ID for the node, and
the parent (../) XPath expression is used with the ID metaproperty to get the parent node. The localname
metaproperty is used to obtain the name of each element. Metaproperty names are case sensitive, so ID or
LOCALNAME cannot be used as metaproperty names.

CREATE OR REPLACE VARIABLE x XML;
SELECT xmldoc INTO x FROM xmldata;
SELECT *
FROM openxml(x, '//*')
WITH (ID INT '@mp:id',
 parent INT '../@mp:id',
 name CHAR(25) '@mp:localname',
 text LONG VARCHAR 'text()')
ORDER BY ID;

The result set generated by this query shows the ID of each node, the ID of the parent node, and the name
and content for each element in the XML document.

ID parent name text

5 (NULL) root (NULL)

Use of XML in the database

610 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

ID parent name text

16 5 Employees (NULL)

28 16 EmployeeID 129

55 16 GivenName Phillip

82 16 Surname Chin

...

Using openxml with xp_read_file
So far, XML that was generated with a procedure like XMLELEMENT has been used. You can also read
XML from a file and parse it using the xp_read_file procedure. Suppose the file c:\temp\inventory.xml
was written using the query below.

SELECT xp_write_file('c:\\temp\\inventory.xml',
'<inventory>
 <product>Tee Shirt
 <quantity>54</quantity>
 <color>Orange</color>
 </product>
 <product>Baseball Cap
 <quantity>112</quantity>
 <color>Black</color>
 </product>
</inventory>'
);

You can use the following statement to read and parse the XML in the file:

SELECT *
FROM openxml(xp_read_file('c:\\temp\\inventory.xml'),
 '//*')
WITH (ID INT '@mp:id',
 parent INT '../@mp:id',
 name CHAR(128) '@mp:localname',
 text LONG VARCHAR 'text()')
ORDER BY ID;

Querying XML in a column
If you have a table with a column that contains XML, you can use openxml to query all the XML values
in the column at once. This can be done using a lateral derived table.

The following statements create a table with two columns, ManagerID and Reports. The Reports column
contains XML data generated from the Employees table.

CREATE TABLE IF NOT EXISTS xmltest (ManagerID INT, Reports XML);
INSERT INTO xmltest
 SELECT ManagerID, XMLELEMENT(NAME reports,
 XMLAGG(XMLELEMENT(NAME e, EmployeeID)))
 FROM Employees
 GROUP BY ManagerID;

Importing XML documents as relational data

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 611

Execute the following query to view the data in the test table:

SELECT *
FROM xmltest
ORDER BY ManagerID;

This query produces the following result:

ManagerID Reports

501 <reports>
 <e>102</e>
 <e>105</e>
 <e>160</e>
 <e>243</e>
 ...
</reports>

703 <reports>
 <e>191</e>
 <e>750</e>
 <e>868</e>
 <e>921</e>
 ...
</reports>

902 <reports>
 <e>129</e>
 <e>195</e>
 <e>299</e>
 <e>467</e>
 ...
</reports>

1293 <reports>
 <e>148</e>
 <e>390</e>
 <e>586</e>
 <e>757</e>
 ...
</reports>

... ...

The following query uses a lateral derived table to generate a result set with two columns: one that lists
the ID for each manager, and one that lists the ID for each employee that reports to that manager:

SELECT ManagerID, EmployeeID
FROM xmltest, LATERAL(openxml(xmltest.Reports, '//e')
WITH (EmployeeID INT '.')) DerivedTable
ORDER BY ManagerID, EmployeeID;

This query generates the following result:

ManagerID EmployeeID

501 102

Use of XML in the database

612 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

ManagerID EmployeeID

501 105

501 160

501 243

... ...

See also
● “XMLELEMENT function [String]” [SQL Anywhere Server - SQL Reference]
● “Using FOR XML AUTO” on page 620
● “openxml system procedure” [SQL Anywhere Server - SQL Reference]
● “FROM clause” [SQL Anywhere Server - SQL Reference]

Importing XML using the DataSet object
The ADO.NET DataSet object allows you to read the data and/or schema from an XML document into a
DataSet.

● The ReadXml method populates a DataSet from an XML document that contains both a schema and
data.

● The ReadXmlSchema method reads only the schema from an XML document. Once the DataSet is
filled with data from the XML document, you can update the tables in your database with the changes
from the DataSet.

DataSet objects can also be manipulated using the SQL Anywhere ADO.NET data provider.

See also
● “Access data and schema information using the SADataAdapter object” [SQL Anywhere Server -

Programming]

Definition of default XML namespaces
You define a default namespace in an element of an XML document with an attribute of the form
xmlns="URI". In the following example, a document has a default namespace bound to the URI
http://www.iAnywhere.com/EmployeeDemo:

<x xmlns="http://www.iAnywhere.com/EmployeeDemo"/>

If the element does not have a prefix in its name, a default namespace applies to the element and to any
descendant of that element where it is defined. A colon separates a prefix from the rest of the element
name. For example, <x/> does not have a prefix, while <p:x/> has the prefix p. You define a namespace

Importing XML documents as relational data

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 613

that is bound to a prefix with an attribute of the form xmlns:prefix="URI". In the following
example, a document binds the prefix p to the same URI as the previous example:

<x xmlns:p="http://www.iAnywhere.com/EmployeeDemo"/>

Default namespaces are never applied to attributes. Unless an attribute has a prefix, an attribute is always
bound to the NULL namespace URI. In the following example, the root and child elements have the
iAnywhere1 namespace while the x attribute has the NULL namespace URI and the y attribute has the
iAnywhere2 namespace:

<root xmlns="iAnywhere1" xmlns:p="iAnywhere2">
<child x='1' p:y='2' />
</root>

The namespaces defined in the root element of the document are applied in the query when you pass an
XML document as the namespace-declaration argument of an openxml query. All parts of the document
after the root element are ignored. In the following example, p1 is bound to iAnywhere1 in the document
and bound to p2 in the namespace-declaration argument, and the query is able to use the prefix p2:

SELECT *
FROM openxml('<p1:x xmlns:p1="iAnywhere1">123</p1:x>', '/p2:x', 1, '<root
xmlns:p2="iAnywhere1"/>')
WITH (c1 int '.');

When matching an element, you must correctly specify the URI that a prefix is bound to. In the example
above, the x name in the xpath query matches the x element in the document because they both have the
iAnywhere1 namespace.

When matching an element, you must correctly specify the URI that a prefix is bound to. In the example
above, the x name in the xpath query matches the x element in the document because they both have the
iAnywhere1 namespace. The prefix of the xpath element x refers to the namespace iAnywhere1 defined
within the namespace-declaration that matches the namespace defined for the x element within the xml-
data.

Do not use a default namespace in the namespace-declaration of the openxml system procedure. Use a
wildcard query of the form /*:x, which matches an x element bound to any URI including the NULL
namespace, or bind the URI you want to a specific prefix and use that in the query,

See also
● “openxml system procedure” [SQL Anywhere Server - SQL Reference]

Query results as XML
SQL Anywhere supports two different ways to obtain query results from your relational data as XML:

● FOR XML clause The FOR XML clause can be used in a SELECT statement to generate an XML
document.

● SQL/XML SQL Anywhere supports functions based on the draft SQL/XML standard that generate
XML documents from relational data.

Use of XML in the database

614 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The FOR XML clause and the SQL/XML functions supported by SQL Anywhere give you two
alternatives for generating XML from your relational data. You can usually use one or the other to
generate the same XML.

For example, this query uses FOR XML AUTO to generate XML:

SELECT ID, Name
FROM Products
WHERE Color='black'
FOR XML AUTO;

The following query uses the XMLELEMENT function to generate XML:

SELECT XMLELEMENT(NAME product,
 XMLATTRIBUTES(ID, Name))
FROM Products
WHERE Color='black';

Both queries generate the following XML (the result set has been formatted to make it easier to read):

<product ID="302" Name="Tee Shirt"/>
<product ID="400" Name="Baseball Cap"/>
<product ID="501" Name="Visor"/>
<product ID="700" Name="Shorts"/>

Tip
If you are generating deeply-nested documents, a FOR XML EXPLICIT query will likely be more
efficient than a SQL/XML query because EXPLICIT mode queries normally use a UNION to generate
nesting, while SQL/XML uses subqueries to generate the required nesting.

See also
● “Use of the FOR XML clause to retrieve query results as XML” on page 615
● “Use of SQL/XML to obtain query results as XML” on page 633
● “SELECT statement” [SQL Anywhere Server - SQL Reference]

Use of the FOR XML clause to retrieve query results as
XML

SQL Anywhere allows you to execute a SQL query against your database and return the results as an
XML document by using the FOR XML clause in your SELECT statement. The XML document is of
type XML.

The FOR XML clause can be used in any SELECT statement, including subqueries, queries with a
GROUP BY clause or aggregate functions, and view definitions.

SQL Anywhere does not generate a schema for XML documents generated by the FOR XML clause.

Within the FOR XML clause, you specify one of three XML modes that control the format of the XML
that is generated:

Query results as XML

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 615

● RAW represents each row that matches the query as an XML <row> element, and each column as
an attribute.

● AUTO returns query results as nested XML elements. Each table referenced in the SELECT list is
represented as an element in the XML. The order of nesting for the elements is based on the order of
the columns in the SELECT list.

● EXPLICIT allows you to write queries that contain information about the expected nesting so you
can control the form of the resulting XML.

The following sections describe the behavior of all three modes of the FOR XML clause regarding binary
data, NULL values, and invalid XML names. The section also includes examples of how you can use the
FOR XML clause.

See also
● “XML data type” [SQL Anywhere Server - SQL Reference]
● “FOR XML examples” on page 618
● “Using FOR XML RAW” on page 618
● “Using FOR XML AUTO” on page 620
● “Using FOR XML EXPLICIT” on page 623

FOR XML and binary data

When you use the FOR XML clause in a SELECT statement, regardless of the mode used, any BINARY,
LONG BINARY, IMAGE, or VARBINARY columns are output as attributes or elements that are
automatically represented in base64-encoded format.

If you are using openxml to generate a result set from XML, openxml assumes that the types BINARY,
LONG BINARY, IMAGE, and VARBINARY, are base64-encoded and decodes them automatically.

See also
● “openxml system procedure” [SQL Anywhere Server - SQL Reference]

FOR XML and NULL values
By default, elements and attributes that contain NULL values are omitted from the result. This behavior is
controlled by the for_xml_null_treatment option.

Consider an entry in the Customers table that contains a NULL company name.

INSERT INTO Customers(ID, Surname, GivenName, Street, City, Phone)
VALUES (100,'Robert','Michael', '100 Anywhere
Lane','Smallville','519-555-3344');

If you execute the following query with the for_xml_null_treatment option set to Omit (the default), then
no attribute is generated for a NULL column value.

Use of XML in the database

616 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SELECT ID, GivenName, Surname, CompanyName
FROM Customers
WHERE GivenName LIKE 'Michael%'
ORDER BY ID
FOR XML RAW;

In this case, no CompanyName attribute is generated for Michael Robert.

<row ID="100" GivenName="Michael" Surname="Robert"/>
<row ID="101" GivenName="Michaels" Surname="Devlin" CompanyName="The Power
Group"/>
<row ID="110" GivenName="Michael" Surname="Agliori" CompanyName="The Pep
Squad"/>

If the for_xml_null_treatment option is set to Empty, then an empty attribute is included in the result:

<row ID="100" GivenName="Michael" Surname="Robert" CompanyName=""/>
<row ID="101" GivenName="Michaels" Surname="Devlin" CompanyName="The Power
Group"/>
<row ID="110" GivenName="Michael" Surname="Agliori" CompanyName="The Pep
Squad"/>

In this case, an empty CompanyName attribute is generated for Michael Robert.

See also
● “for_xml_null_treatment option” [SQL Anywhere Server - Database Administration]

Encoding illegal XML names

SQL Anywhere uses the following rules for encoding names that are not legal XML names (for example,
column names that include spaces):

XML has rules for names that differ from rules for SQL names. For example, spaces are not allowed in
XML names. When a SQL name, such as a column name, is converted to an XML name, characters that
are not valid characters for XML names are encoded or escaped.

For each encoded character, the encoding is based on the character's Unicode code point value, expressed
as a hexadecimal number.

● For most characters, the code point value can be represented with 16 bits or four hex digits, using the
encoding _xHHHH_. These characters correspond to Unicode characters whose UTF-16 value is one
16-bit word.

● For characters whose code point value requires more than 16 bits, eight hex digits are used in the
encoding _xHHHHHHHH_. These characters correspond to Unicode characters whose UTF-16 value
is two 16-bit words. However, the Unicode code point value, which is typically 5 or 6 hex digits, is
used for the encoding, not the UTF-16 value.

For example, the following query contains a column name with a space:

SELECT EmployeeID AS "Employee ID"
FROM Employees
FOR XML RAW;

Query results as XML

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 617

and returns the following result:

<row Employee_x0020_ID="102"/>
<row Employee_x0020_ID="105"/>
<row Employee_x0020_ID="129"/>
<row Employee_x0020_ID="148"/>
...

● Underscores (_) are escaped if they are followed by the character x. For example, the name Linu_x is
encoded as Linu_x005F_x.

● Colons (:) are not escaped so that namespace declarations and qualified element and attribute names
can be generated using a FOR XML query.

Tip
When executing queries that contain a FOR XML clause in Interactive SQL, you may want to increase the
column length by setting the truncation_length option.

See also
● “SELECT statement” [SQL Anywhere Server - SQL Reference]
● “truncation_length option [Interactive SQL]” [SQL Anywhere Server - Database Administration]

FOR XML examples
The following examples show how the FOR XML clause can be used in a SELECT statement.

● The following example shows how the FOR XML clause can be used in a subquery:

SELECT XMLELEMENT(NAME root,
 (SELECT * FROM Employees FOR XML RAW));

● The following example shows how the FOR XML clause can be used in a query with a GROUP BY
clause and aggregate function:

SELECT Name, AVG(UnitPrice) AS Price
FROM Products
GROUP BY Name
FOR XML RAW;

● The following example shows how the FOR XML clause can be used in a view definition:

CREATE VIEW EmployeesDepartments
AS SELECT Surname, GivenName, DepartmentName
FROM Employees JOIN Departments
ON Employees.DepartmentID = Departments.DepartmentID
FOR XML AUTO;

Using FOR XML RAW
When you specify FOR XML RAW in a query, each row is represented as a <row> element, and each
column is an attribute of the <row> element.

Use of XML in the database

618 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Syntax
FOR XML RAW[, ELEMENTS]

Parameters
ELEMENTS tells FOR XML RAW to generate an XML element, instead of an attribute, for each
column in the result. If there are NULL values, the element is omitted from the generated XML
document. The following query generates <EmployeeID> and <DepartmentName> elements:

SELECT Employees.EmployeeID, Departments.DepartmentName
FROM Employees JOIN Departments
 ON Employees.DepartmentID=Departments.DepartmentID
FOR XML RAW, ELEMENTS;

This query gives the following result:

<row>
 <EmployeeID>102</EmployeeID>
 <DepartmentName>R & D</DepartmentName>
</row>
<row>
 <EmployeeID>105</EmployeeID>
 <DepartmentName>R & D</DepartmentName>
</row>
<row>
 <EmployeeID>160</EmployeeID>
 <DepartmentName>R & D</DepartmentName>
</row>
<row>
 <EmployeeID>243</EmployeeID>
 <DepartmentName>R & D</DepartmentName>
</row>
...

Usage
Data in BINARY, LONG BINARY, IMAGE, and VARBINARY columns is automatically returned in
base64-encoded format when you execute a query that contains FOR XML RAW.

By default, NULL values are omitted from the result. This behavior is controlled by the
for_xml_null_treatment option.

FOR XML RAW does not return a well-formed XML document because the document does not have a
single root node. If a <root> element is required, one way to insert one is to use the XMLELEMENT
function. For example:

SELECT XMLELEMENT(NAME root,
 (SELECT EmployeeID AS id, GivenName AS name
 FROM Employees FOR XML RAW));

The attribute or element names used in the XML document can be changed by specifying aliases. The
following query renames the ID attribute to product_ID:

SELECT ID AS product_ID
FROM Products
WHERE Color='black'
FOR XML RAW;

This query gives the following result:

Query results as XML

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 619

<row product_ID="302"/>
<row product_ID="400"/>
<row product_ID="501"/>
<row product_ID="700"/>

The order of the results depend on the plan chosen by the optimizer, unless you request otherwise. If you
want the results to appear in a particular order, you must include an ORDER BY clause in the query, for
example:

SELECT Employees.EmployeeID, Departments.DepartmentName
FROM Employees JOIN Departments
 ON Employees.DepartmentID=Departments.DepartmentID
ORDER BY EmployeeID
FOR XML RAW;

Example
Suppose you want to retrieve information about which department an employee belongs to, as follows:

SELECT Employees.EmployeeID, Departments.DepartmentName
FROM Employees JOIN Departments
 ON Employees.DepartmentID=Departments.DepartmentID
FOR XML RAW;

The following XML document is returned:

<row EmployeeID="102" DepartmentName="R & D"/>
<row EmployeeID="105" DepartmentName="R & D"/>
<row EmployeeID="160" DepartmentName="R & D"/>
<row EmployeeID="243" DepartmentName="R & D"/>
...

See also
● “FOR XML and NULL values” on page 616
● “XMLELEMENT function [String]” [SQL Anywhere Server - SQL Reference]

Using FOR XML AUTO
AUTO mode generates nested elements within the XML document.

When the ELEMENTS clause is omitted, each table referenced in the SELECT list is represented as an
element in the generated XML. The order of nesting is based on the order in which columns are
referenced in the SELECT list. An attribute is created for each column in the SELECT list.

When the ELEMENTS clause is present, each table and column referenced in the SELECT list is
represented as an element in the generated XML. The order of nesting is based on the order in which
columns are referenced in the SELECT list. An element is created for each column in the SELECT list.

Syntax
FOR XML AUTO[, ELEMENTS]

Use of XML in the database

620 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Parameters
ELEMENTS tells FOR XML AUTO to generate an XML element, instead of an attribute, for each
column in the result. For example:

SELECT Employees.EmployeeID, Departments.DepartmentName
FROM Employees JOIN Departments
 ON Employees.DepartmentID=Departments.DepartmentID
ORDER BY EmployeeID
FOR XML AUTO, ELEMENTS;

In this case, each column in the result set is returned as a separate element, rather than as attributes of the
<Employees> or <Departments> elements. If there are NULL values, the element is omitted from the
generated XML document.

<Employees>
 <EmployeeID>102</EmployeeID>
 <Departments>
 <DepartmentName>R & D</DepartmentName>
 </Departments>
</Employees>
<Employees>
 <EmployeeID>105</EmployeeID>
 <Departments>
 <DepartmentName>R & D</DepartmentName>
 </Departments>
</Employees>
<Employees>
 <EmployeeID>129</EmployeeID>
 <Departments>
 <DepartmentName>Sales</DepartmentName>
 </Departments>
</Employees>
...

Usage
When you execute a query using FOR XML AUTO, data in BINARY, LONG BINARY, IMAGE, and
VARBINARY columns is automatically returned in base64-encoded format. By default, NULL values are
omitted from the result. You can return NULL values as empty attributes by setting the
for_xml_null_treatment option to EMPTY.

Unless otherwise requested, the database server returns the rows of a table in an order that has no
meaning. If you want the results to appear in a particular order, or for a parent element to have multiple
children, you must include an ORDER BY clause in the query so that all children are adjacent. If you do
not specify an ORDER BY clause, the nesting of the results depends on the plan chosen by the optimizer
and you may not get the nesting you want.

FOR XML AUTO does not return a well-formed XML document because the document does not have a
single root node. If a <root> element is required, one way to insert one is to use the XMLELEMENT
function. For example:

SELECT XMLELEMENT(NAME root,
 (SELECT EmployeeID AS id, GivenName AS name
 FROM Employees FOR XML AUTO));

You can change the attribute or element names used in the XML document by specifying aliases. The
following query renames the ID attribute to product_ID:

Query results as XML

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 621

SELECT ID AS product_ID
FROM Products
WHERE Color='Black'
FOR XML AUTO;

The following XML is generated:

<Products product_ID="302"/>
<Products product_ID="400"/>
<Products product_ID="501"/>
<Products product_ID="700"/>

You can also rename the table with an alias. The following query renames the table to product_info:

SELECT ID AS product_ID
FROM Products AS product_info
WHERE Color='Black'
FOR XML AUTO;

The following XML is generated:

<product_info product_ID="302"/>
<product_info product_ID="400"/>
<product_info product_ID="501"/>
<product_info product_ID="700"/>

Example
The following query generates XML that contains both <employee> and <department> elements, and the
<employee> element (the table listed first in the SELECT list) is the parent of the <department> element.

SELECT EmployeeID, DepartmentName
FROM Employees AS employee
JOIN Departments AS department
 ON employee.DepartmentID=department.DepartmentID
ORDER BY EmployeeID
FOR XML AUTO;

The following XML is generated by the above query:

<employee EmployeeID="102">
 <department DepartmentName="R & D"/>
</employee>
<employee EmployeeID="105">
 <department DepartmentName="R & D"/>
</employee>
<employee EmployeeID="129">
 <department DepartmentName="Sales;"/>
</employee>
<employee EmployeeID="148">
 <department DepartmentName="Finance;"/>
</employee>
...

If you change the order of the columns in the SELECT list as follows:

SELECT DepartmentName, EmployeeID
FROM Employees AS employee JOIN Departments AS department
 ON employee.DepartmentID=department.DepartmentID
ORDER BY 1, 2
FOR XML AUTO;

Use of XML in the database

622 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The result is nested as follows:

<department DepartmentName="Finance">
 <employee EmployeeID="148"/>
 <employee EmployeeID="390"/>
 <employee EmployeeID="586"/>
 ...
</department>
<department DepartmentName="Marketing">
 <employee EmployeeID="184"/>
 <employee EmployeeID="207"/>
 <employee EmployeeID="318"/>
 ...
</department>
...

Again, the XML generated for the query contains both <employee> and <department> elements, but in
this case the <department> element is the parent of the <employee> element.

See also
● “for_xml_null_treatment option” [SQL Anywhere Server - Database Administration]
● “XMLELEMENT function [String]” [SQL Anywhere Server - SQL Reference]

Using FOR XML EXPLICIT

FOR XML EXPLICIT allows you to control the structure of the XML document returned by the query.
The query must be written in a particular way so that information about the nesting you want is specified
within the query result. The optional directives supported by FOR XML EXPLICIT allow you to
configure the treatment of individual columns. For example, you can control whether a column appears as
element or attribute content, or whether a column is used only to order the result, rather than appearing in
the generated XML.

Parameters
In EXPLICIT mode, the first two columns in the SELECT statement must be named Tag and Parent,
respectively. Tag and Parent are metadata columns, and their values are used to determine the parent-child
relationship, or nesting, of the elements in the XML document that is returned by the query.

● Tag column This is the first column specified in the SELECT list. The Tag column stores the tag
number of the current element. Permitted values for tag numbers are 1 to 255.

● Parent column This column stores the tag number for the parent of the current element. If the
value in this column is NULL, the row is placed at the top level of the XML hierarchy.

For example, consider a query that returns the following result set when FOR XML EXPLICIT is not
specified.

Tag Parent GivenName!1 ID!2

1 NULL 'Beth' NULL

Query results as XML

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 623

Tag Parent GivenName!1 ID!2

2 NULL NULL '102'

In this example, the values in the Tag column are the tag numbers for each element in the result set. The
Parent column for both rows contains the value NULL. This means that both elements are generated at the
top level of the hierarchy, giving the following result when the query includes the FOR XML EXPLICIT
clause:

<GivenName>Beth</GivenName>
<ID>102</ID>

However, if the second row had the value 1 in the Parent column, the result would look as follows:

<GivenName>Beth
 <ID>102</ID>
</GivenName>

Adding data columns to the query
In addition to the Tag and Parent columns, the query must also contain one or more data columns. The
names of these data columns control how the columns are interpreted during tagging. Each column name
is split into fields separated by an exclamation mark (!). The following fields can be specified for data
columns:

ElementName!TagNumber!AttributeName!Directive

ElementName the name of the element. For a given row, the name of the element generated for the
row is taken from the ElementName field of the first column with a matching tag number. If there are
multiple columns with the same TagNumber, the ElementName is ignored for subsequent columns with
the same TagNumber. In the example above, the first row generates an element called <GivenName>.

TagNumber the tag number of the element. For a row with a given tag value, all columns with the
same value in their TagNumber field will contribute content to the element that corresponds to that row.

AttributeName specifies that the column value is an attribute of the ElementName element. For
example, if a data column had the name productID!1!Color, then Color would appear as an attribute of the
<productID> element.

Directive this optional field allows you to control the format of the XML document further. You can
specify any one of the following values for Directive:

○ hide indicates that this column is ignored when generating the result. This directive can be used to
include columns that are only used to order the table. The attribute name is ignored and does not
appear in the result.

○ element indicates that the column value is inserted as a nested element with the name
AttributeName, rather than as an attribute.

○ xml indicates that the column value is inserted with no quoting. If the AttributeName is specified,
the value is inserted as an element with that name. Otherwise, it is inserted with no wrapping element.

Use of XML in the database

624 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

If this directive is not used, then markup characters are escaped unless the column is of type XML.
For example, the value <a/> would be inserted as <a/>.

○ cdata indicates that the column value is to be inserted as a CDATA section. The AttributeName is
ignored.

Usage
Data in BINARY, LONG BINARY, IMAGE, and VARBINARY columns is automatically returned in
base64-encoded format when you execute a query that contains FOR XML EXPLICIT. By default, any
NULL values in the result set are omitted. You can change this behavior by changing the setting of the
for_xml_null_treatment option.

See also
● “for_xml_null_treatment option” [SQL Anywhere Server - Database Administration]
● “FOR XML and NULL values” on page 616
● “Using the cdata directive” on page 631
● “Using the xml directive” on page 630
● “Using the element directive” on page 628
● “Using the hide directive” on page 629
● “Writing an EXPLICIT mode query” on page 625
● “Adding data columns to the query” on page 624
● “Parameters” on page 623

Writing an EXPLICIT mode query
Suppose you want to write a query using FOR XML EXPLICIT that generates the following XML
document:

<employee employeeID='129'>
 <customer customerID='107' region='Eastern'/>
 <customer customerID='119' region='Western'/>
 <customer customerID='131' region='Eastern'/>
</employee>
<employee employeeID='195'>
 <customer customerID='109' region='Eastern'/>
 <customer customerID='121' region='Central'/>
</employee>

You do this by writing a SELECT statement that returns the following result set in the exact order
specified, and then appending FOR XML EXPLICIT to the query.

Tag Parent employee!1!employeeID customer!2!customerID customer!2!region

1 NULL 129 NULL NULL

2 1 129 107 Eastern

2 1 129 119 Western

2 1 129 131 Central

Query results as XML

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 625

Tag Parent employee!1!employeeID customer!2!customerID customer!2!region

1 NULL 195 NULL NULL

2 1 195 109 Eastern

2 1 195 121 Central

When you write your query, only some of the columns for a given row become part of the generated XML
document. A column is included in the XML document only if the value in the TagNumber field (the
second field in the column name) matches the value in the Tag column.

In the example, the third column is used for the two rows that have the value 1 in their Tag column. In the
fourth and fifth columns, the values are used for the rows that have the value 2 in their Tag column. The
element names are taken from the first field in the column name. In this case, <employee> and
<customer> elements are created.

The attribute names come from the third field in the column name, so an employeeID attribute is created
for <employee> elements, while customerID and region attributes are generated for <customer>
elements.

The following steps explain how to construct the FOR XML EXPLICIT query that generates an XML
document similar to the one found at the beginning of this section using the SQL Anywhere sample
database.

Write a FOR XML EXPLICIT query

1. Write a SELECT statement to generate the top-level elements.

In this example, the first SELECT statement in the query generates the <employee> elements. The
first two values in the query must be the Tag and Parent column values. The <employee> element is at
the top of the hierarchy, so it is assigned a Tag value of 1, and a Parent value of NULL.

Note
If you are writing an EXPLICIT mode query that uses a UNION, then only the column names
specified in the first SELECT statement are used. Column names that are to be used as element or
attribute names must be specified in the first SELECT statement because column names specified in
subsequent SELECT statements are ignored.

To generate the <employee> elements for the table above, your first SELECT statement is as follows:

SELECT
 1 AS tag,
 NULL AS parent,
 EmployeeID AS [employee!1!employeeID],
 NULL AS [customer!2!customerID],
 NULL AS [customer!2!region]
FROM Employees;

2. Write a SELECT statement to generate the child elements.

Use of XML in the database

626 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The second query generates the <customer> elements. Because this is an EXPLICIT mode query, the
first two values specified in all the SELECT statements must be the Tag and Parent values. The
<customer> element is given the tag number 2, and because it is a child of the <employee> element, it
has a Parent value of 1. The first SELECT statement has already specified that EmployeeID,
CustomerID, and Region are attributes.

SELECT
 2,
 1,
 EmployeeID,
 CustomerID,
 Region
FROM Employees KEY JOIN SalesOrders

3. Add a UNION DISTINCT to the query to combine the two SELECT statements together:

SELECT
 1 AS tag,
 NULL AS parent,
 EmployeeID AS [employee!1!employeeID],
 NULL AS [customer!2!customerID],
 NULL AS [customer!2!region]
FROM Employees
UNION DISTINCT
SELECT
 2,
 1,
 EmployeeID,
 CustomerID,
 Region
FROM Employees KEY JOIN SalesOrders

4. Add an ORDER BY clause to specify the order of the rows in the result. The order of the rows is the
order that is used in the resulting document.

SELECT
 1 AS tag,
 NULL AS parent,
 EmployeeID AS [employee!1!employeeID],
 NULL AS [customer!2!customerID],
 NULL AS [customer!2!region]
FROM Employees
UNION DISTINCT
SELECT
 2,
 1,
 EmployeeID,
 CustomerID,
 Region
FROM Employees KEY JOIN SalesOrders
ORDER BY 3, 1
FOR XML EXPLICIT;

FOR XML EXPLICIT examples
The following example query retrieves information about the orders placed by employees. In this
example, there are three types of elements: <employee>, <order>, and <department>. The <employee>
element has ID and name attributes, the <order> element has a date attribute, and the <department>
element has a name attribute.

Query results as XML

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 627

SELECT
 1 tag,
 NULL parent,
 EmployeeID [employee!1!id],
 GivenName [employee!1!name],
 NULL [order!2!date],
 NULL [department!3!name]
FROM Employees
UNION DISTINCT
SELECT
 2,
 1,
 EmployeeID,
 NULL,
 OrderDate,
 NULL
FROM Employees KEY JOIN SalesOrders
UNION DISTINCT
SELECT
 3,
 1,
 EmployeeID,
 NULL,
 NULL,
 DepartmentName
FROM Employees e JOIN Departments d
 ON e.DepartmentID=d.DepartmentID
ORDER BY 3, 1
FOR XML EXPLICIT;

You get the following result from this query:

<employee id="102" name="Fran">
 <department name="R & D"/>
</employee>
<employee id="105" name="Matthew">
 <department name="R & D"/>
</employee>
<employee id="129" name="Philip">
 <order date="2000-07-24"/>
 <order date="2000-07-13"/>
 <order date="2000-06-24"/>
 <order date="2000-06-08"/>
 ...
 <department name="Sales"/>
</employee>
<employee id="148" name="Julie">
 <department name="Finance"/>
</employee>
...

Using the element directive
If you want to generate sub-elements rather than attributes, you can add the element directive to the query,
as follows:

SELECT
 1 tag,
 NULL parent,
 EmployeeID [employee!1!id!element],
 GivenName [employee!1!name!element],
 NULL [order!2!date!element],
 NULL [department!3!name!element]

Use of XML in the database

628 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

FROM Employees
UNION DISTINCT
SELECT
 2,
 1,
 EmployeeID,
 NULL,
 OrderDate,
 NULL
FROM Employees KEY JOIN SalesOrders
UNION DISTINCT
SELECT
 3,
 1,
 EmployeeID,
 NULL,
 NULL,
 DepartmentName
FROM Employees e JOIN Departments d
 ON e.DepartmentID=d.DepartmentID
ORDER BY 3, 1
FOR XML EXPLICIT;

You get the following result from this query:

<employee>
 <id>102</id>
 <name>Fran</name>
 <department>
 <name>R & D</name>
 </department>
</employee>
<employee>
 <id>105</id>
 <name>Matthew</name>
 <department>
 <name>R & D</name>
 </department>
</employee>
<employee>
 <id>129</id>
 <name>Philip</name>
 <order>
 <date>2000-07-24</date>
 </order>
 <order>
 <date>2000-07-13</date>
 </order>
 <order>
 <date>2000-06-24</date>
 </order>
 ...
 <department>
 <name>Sales</name>
 </department>
</employee>
...

Using the hide directive
In the following query, the employee ID is used to order the result, but the employee ID does not appear
in the result because the hide directive is specified:

Query results as XML

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 629

SELECT
 1 tag,
 NULL parent,
 EmployeeID [employee!1!id!hide],
 GivenName [employee!1!name],
 NULL [order!2!date],
 NULL [department!3!name]
FROM Employees
UNION DISTINCT
SELECT
 2,
 1,
 EmployeeID,
 NULL,
 OrderDate,
 NULL
FROM Employees KEY JOIN SalesOrders
UNION DISTINCT
SELECT
 3,
 1,
 EmployeeID,
 NULL,
 NULL,
 DepartmentName
FROM Employees e JOIN Departments d
 ON e.DepartmentID=d.DepartmentID
ORDER BY 3, 1
FOR XML EXPLICIT;

This query returns the following result:

<employee name="Fran">
 <department name="R & D"/>
</employee>
<employee name="Matthew">
 <department name="R & D"/>
</employee>
<employee name="Philip">
 <order date="2000-04-21"/>
 <order date="2001-07-23"/>
 <order date="2000-12-30"/>
 <order date="2000-12-20"/>
 ...
 <department name="Sales"/>
</employee>
<employee name="Julie">
 <department name="Finance"/>
</employee>
...

Using the xml directive
By default, when the result of a FOR XML EXPLICIT query contains characters that are not valid XML
characters, the invalid characters are escaped unless the column is of type XML. For information, see
“Encoding illegal XML names” on page 617.

For example, the following query generates XML that contains an ampersand (&):

SELECT
 1 AS tag,
 NULL AS parent,

Use of XML in the database

630 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 ID AS [customer!1!id!element],
 CompanyName AS [customer!1!company!element]
FROM Customers
WHERE ID = '115'
FOR XML EXPLICIT;

In the result generated by this query, the ampersand is escaped because the column is not of type XML:

<customer><id>115</id>
<company>Sterling & Co.</company>
</customer>

The xml directive indicates that the column value is inserted into the generated XML with no escapes. If
you execute the same query as above with the xml directive:

SELECT
 1 AS tag,
 NULL AS parent,
 ID AS [customer!1!id!element],
 CompanyName AS [customer!1!company!xml]
FROM Customers
WHERE ID = '115'
FOR XML EXPLICIT;

The ampersand is not escaped in the result:

<customer>
 <id>115</id>
 <company>Sterling & Co.</company>
</customer>

Note that this XML is not well-formed because it contains an ampersand, which is a special character in
XML. When XML is generated by a query, it is your responsibility to ensure that the XML is well-formed
and valid: SQL Anywhere does not check whether the XML being generated is well-formed or valid.

When you specify the xml directive, the AttributeName field is used to generate elements rather than
attributes.

Using the cdata directive
The following query uses the cdata directive to return the customer name in a CDATA section:

SELECT
 1 AS tag,
 NULL AS parent,
 ID AS [product!1!id],
 Description AS [product!1!!cdata]
FROM Products
FOR XML EXPLICIT;

The result produced by this query lists the description for each product in a CDATA section. Data
contained in the CDATA section is not quoted:

<product id="300">
 <![CDATA[Tank Top]]>
</product>
<product id="301">
 <![CDATA[V-neck]]>
</product>

Query results as XML

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 631

<product id="302">
 <![CDATA[Crew Neck]]>
</product>
<product id="400">
 <![CDATA[Cotton Cap]]>
</product>
...

Use of Interactive SQL to view results
The result of a FOR XML query is returned as a string. In many cases, the string result can be quite long.
Interactive SQL includes the ability to display the structure of a well-formed XML document using the
View in Window option.

The result of a FOR XML query can be cast into a well-formed XML document with the inclusion of an
<?xml?> tag and an arbitrary enclosing pair of tags (for example, <root>...</root>). The following query
illustrates how to do this.

SELECT XMLCONCAT(CAST('<?xml version="1.0"?>' AS XML),
 XMLELEMENT(NAME root, (
 SELECT
 1 AS tag,
 NULL AS parent,
 EmployeeID AS [employee!1!employeeID],
 NULL AS [customer!2!customerID],
 NULL AS [customer!2!region],
 NULL AS [custname!3!given_name!element],
 NULL AS [custname!3!surname!element]
 FROM Employees
 UNION DISTINCT
 SELECT
 2,
 1,
 EmployeeID,
 CustomerID,
 Region,
 NULL,
 NULL
 FROM Employees KEY JOIN SalesOrders
 UNION DISTINCT
 SELECT
 3,
 2,
 EmployeeID,
 CustomerID,
 NULL,
 Customers.GivenName,
 Customers.SurName
 FROM SalesOrders
 JOIN Customers
 ON SalesOrders.CustomerID = Customers.ID
 JOIN Employees
 ON SalesOrders.SalesRepresentative = Employees.EmployeeID
 ORDER BY 3, 4, 1
 FOR XML EXPLICIT
))
);

Use of XML in the database

632 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The Interactive SQL column Truncation length value must be set large enough to fetch the entire
column. This can be done using the Tools » Options menu or by executing an Interactive SQL statement
like the following.

SET OPTION truncation_length = 80000;

To view the XML document result, double-click the column contents in the Results pane and select the
XML Outline tab.

See also
● “Viewing HTML and XML data in Interactive SQL” [SQL Anywhere Server - Database

Administration]

Use of SQL/XML to obtain query results as XML
SQL/XML is a draft standard that describes a functional integration of XML into the SQL language: it
describes the ways that SQL can be used in conjunction with XML. The supported functions allow you to
write queries that construct XML documents from relational data.

Invalid names and SQL/XML
In SQL/XML, expressions that are not legal XML names, for example expressions that include spaces, are
escaped in the same manner as the FOR XML clause. Element content of type XML is not quoted.

For information about using the XML data type, see “Storage of XML documents in relational databases”
on page 605.

See also
● “Encoding illegal XML names” on page 617

Use of the XMLAGG function
The XMLAGG function is used to produce a forest of XML elements from a collection of XML elements.
XMLAGG is an aggregate function, and produces a single aggregated XML result for all the rows in the
query.

In the following query, XMLAGG is used to generate a <name> element for each row, and the <name>
elements are ordered by employee name. The ORDER BY clause is specified to order the XML elements:

SELECT XMLELEMENT(NAME Departments,
 XMLATTRIBUTES (DepartmentID),
 XMLAGG(XMLELEMENT(NAME name,
 Surname)
 ORDER BY Surname)
) AS department_list
FROM Employees
GROUP BY DepartmentID
ORDER BY DepartmentID;

This query produces the following result:

Use of SQL/XML to obtain query results as XML

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 633

department_list

<Departments DepartmentID="100">
 <name>Breault</name>
 <name>Cobb</name>
 <name>Diaz</name>
 <name>Driscoll</name>
 ...
</Departments>

<Departments DepartmentID="200">
 <name>Chao</name>
 <name>Chin</name>
 <name>Clark</name>
 <name>Dill</name>
 ...
</Departments>

<Departments DepartmentID="300">
 <name>Bigelow</name>
 <name>Coe</name>
 <name>Coleman</name>
 <name>Davidson</name>
 ...
</Departments>

...

See also
● “XMLAGG function [Aggregate]” [SQL Anywhere Server - SQL Reference]

Use of the XMLCONCAT function
The XMLCONCAT function creates a forest of XML elements by concatenating all the XML values
passed in. For example, the following query concatenates the <given_name> and <surname> elements for
each employee in the Employees table:

SELECT XMLCONCAT(XMLELEMENT(NAME given_name, GivenName),
 XMLELEMENT(NAME surname, Surname)
) AS "Employee_Name"
FROM Employees;

This query returns the following result:

Employee_Name

<given_name>Fran</given_name>
<surname>Whitney</surname>

<given_name>Matthew</given_name>
<surname>Cobb</surname>

Use of XML in the database

634 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Employee_Name

<given_name>Philip</given_name>
<surname>Chin</surname>

<given_name>Julie</given_name>
<surname>Jordan</surname>

...

See also
● “XMLCONCAT function [String]” [SQL Anywhere Server - SQL Reference]

Use of the XMLELEMENT function
The XMLELEMENT function constructs an XML element from relational data. You can specify the
content of the generated element and if you want, you can also specify attributes and attribute content for
the element.

Generating nested elements
The following query generates nested XML, producing a <product_info> element for each product, with
elements that provide the name, quantity, and description of each product:

SELECT ID,
XMLELEMENT(NAME product_info,
 XMLELEMENT(NAME item_name, Products.name),
 XMLELEMENT(NAME quantity_left, Products.Quantity),
 XMLELEMENT(NAME description, Products.Size || ' ' ||
 Products.Color || ' ' || Products.name)
) AS results
FROM Products
WHERE Quantity > 30;

This query produces the following result:

ID results

301 <product_info>
 <item_name>Tee Shirt
 </item_name>
 <quantity_left>54
 </quantity_left>
 <description>Medium Orange
 Tee Shirt</description>
</product_info>

Use of SQL/XML to obtain query results as XML

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 635

ID results

302 <product_info>
 <item_name>Tee Shirt
 </item_name>
 <quantity_left>75
 </quantity_left>
 <description>One Size fits
 all Black Tee Shirt
 </description>
</product_info>

400 <product_info>
 <item_name>Baseball Cap
 </item_name>
 <quantity_left>112
 </quantity_left>
 <description>One Size fits
 all Black Baseball Cap
 </description>
</product_info>

... ...

Specifying element content
The XMLELEMENT function allows you to specify the content of an element. The following statement
produces an XML element with the content hat.

SELECT ID, XMLELEMENT(NAME product_type, 'hat')
FROM Products
WHERE Name IN ('Baseball Cap', 'Visor');

Generating elements with attributes
You can add attributes to the elements by including the XMLATTRIBUTES argument in your query.
This argument specifies the attribute name and content. The following statement produces an attribute for
the name, Color, and UnitPrice of each item.

SELECT ID, XMLELEMENT(NAME item_description,
 XMLATTRIBUTES(Name,
 Color,
 UnitPrice)
) AS item_description_element
FROM Products
WHERE ID > 400;

Attributes can be named by specifying the AS clause:

SELECT ID, XMLELEMENT(NAME item_description,
 XMLATTRIBUTES (Color AS color,
 UnitPrice AS price),
 Products.Name
) AS products
FROM Products
WHERE ID > 400;

Example
The following example uses XMLELEMENT with an HTTP web service.

Use of XML in the database

636 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

CREATE OR REPLACE PROCEDURE "DBA"."http_header_example_with_table_proc"()
RESULT (res LONG VARCHAR)
BEGIN
 DECLARE var LONG VARCHAR;
 DECLARE varval LONG VARCHAR;
 DECLARE I INT;
 DECLARE res LONG VARCHAR;
 DECLARE htmltable XML;
 SET var = NULL;
loop_h:
 LOOP
 SET var = NEXT_HTTP_HEADER(var);
 IF var IS NULL THEN LEAVE loop_h END IF;
 SET varval = http_header(var);
 -- ... do some action for <var,varval> pair...
 SET htmltable = htmltable ||
 XMLELEMENT(name "tr",
 XMLATTRIBUTES('left' AS "align", 'top' AS "valign"),
 XMLELEMENT(name "td", var),
 XMLELEMENT(name "td", varval)) ;
 END LOOP;
 SET res = XMLELEMENT(NAME "table",
 XMLATTRIBUTES('' AS "BORDER", '10' as "CELLPADDING", '0' AS
"CELLSPACING"),
 XMLELEMENT(NAME "th",
 XMLATTRIBUTES('left' AS "align", 'top' AS "valign"),
 'Header Name'),

 XMLELEMENT(NAME "th",
 XMLATTRIBUTES('left' AS "align", 'top' AS "valign"),
 'Header Value'),

 htmltable);
 SELECT res;
END;

See also
● “XMLELEMENT function [String]” [SQL Anywhere Server - SQL Reference]

Use of the XMLFOREST function
XMLFOREST constructs a forest of XML elements. An element is produced for each XMLFOREST
argument.

The following query produces an <item_description> element, with <name>, <color>, and <price>
elements:

SELECT ID, XMLELEMENT(NAME item_description,
 XMLFOREST(Name as name,
 Color as color,
 UnitPrice AS price)
) AS product_info
FROM Products
WHERE ID > 400;

The following result is generated by this query:

Use of SQL/XML to obtain query results as XML

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 637

ID product_info

401 <item_description>
 <name>Baseball Cap</name>
 <color>White</color>
 <price>10.00</price>
</item_description>

500 <item_description>
 <name>Visor</name>
 <color>White</color>
 <price>7.00</price>
</item_description>

501 <item_description>
 <name>Visor</name>
 <color>Black</color>
 <price>7.00</price>
</item_description>

... ...

See also
● “XMLFOREST function [String]” [SQL Anywhere Server - SQL Reference]

Use of the XMLGEN function
The XMLGEN function is used to generate an XML value based on an XQuery constructor.

The XML generated by the following query provides information about customer orders in the SQL
Anywhere sample database. It uses the following variable references:

● {$ID} Generates content for the <ID> element using values from the ID column in the SalesOrders
table.

● {$OrderDate} Generates content for the <date> element using values from the OrderDate column
in the SalesOrders table.

● {$Customers} Generates content for the <customer> element from the CompanyName column in
the Customers table.

SELECT XMLGEN ('<order>
 <ID>{$ID}</ID>
 <date>{$OrderDate}</date>
 <customer>{$Customers}</customer>
 </order>',
 SalesOrders.ID,
 SalesOrders.OrderDate,
 Customers.CompanyName AS Customers
) AS order_info
FROM SalesOrders JOIN Customers
ON Customers.ID = SalesOrders.CustomerID
ORDER BY SalesOrders.CustomerID;

Use of XML in the database

638 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

This query generates the following result:

order_info

<order>
 <ID>2001</ID>
 <date>2000-03-16</date>
 <customer>The Power Group</customer>
</order>

<order>
 <ID>2005</ID>
 <date>2001-03-26</date>
 <customer>The Power Group</customer>
</order>

<order>
 <ID>2125</ID>
 <date>2001-06-24</date>
 <customer>The Power Group</customer>
</order>

<order>
 <ID>2206</ID>
 <date>2000-04-16</date>
 <customer>The Power Group</customer>
</order>

...

Generating attributes
If you want the order ID number to appear as an attribute of the <order> element, you would write query
as follows (note that the variable reference is contained in double quotes because it specifies an attribute
value):

SELECT XMLGEN ('<order ID="{$ID}">
 <date>{$OrderDate}</date>
 <customer>{$Customers}</customer>
 </order>',
 SalesOrders.ID,
 SalesOrders.OrderDate,
 Customers.CompanyName AS Customers
) AS order_info
FROM SalesOrders JOIN Customers
ON Customers.ID = SalesOrders.CustomerID
ORDER BY SalesOrders.OrderDate;

This query generates the following result:

order_info

<order ID="2131">
 <date>2000-01-02</date>
 <customer>BoSox Club</customer>
</order>

Use of SQL/XML to obtain query results as XML

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 639

order_info

<order ID="2065">
 <date>2000-01-03</date>
 <customer>Bloomfield's</customer>
</order>

<order ID="2126">
 <date>2000-01-03</date>
 <customer>Leisure Time</customer>
</order>

<order ID="2127">
 <date>2000-01-06</date>
 <customer>Creative Customs Inc.</customer>
</order>

...

In both result sets, the customer name Bloomfield's is quoted as Bloomfield's because the
apostrophe is a special character in XML and the column the <customer> element was generated from
was not of type XML.

For more information about quoting of illegal characters in XMLGEN, see “Invalid names and SQL/
XML” on page 633.

Specifying header information for XML documents
The FOR XML clause and the SQL/XML functions supported by SQL Anywhere do not include version
declaration information in the XML documents they generate. You can use the XMLGEN function to
generate header information.

SELECT XMLGEN('<?xml version="1.0"
 encoding="ISO-8859-1" ?>
 <r>{$x}</r>',
 (SELECT GivenName, Surname
 FROM Customers FOR XML RAW) AS x);

This produces the following result:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<r>
 <row GivenName="Michaels" Surname="Devlin"/>
 <row GivenName="Beth" Surname="Reiser"/>
 <row GivenName="Erin" Surname="Niedringhaus"/>
 <row GivenName="Meghan" Surname="Mason"/>
 ...
</r>

See also
● “XMLGEN function [String]” [SQL Anywhere Server - SQL Reference]

Use of XML in the database

640 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Remote data and bulk operations
This section describes how to load and unload your database, and how to access remote data.

Data import and export
The term bulk operations is used to describe the process of importing and exporting data. Bulk
operations are not part of typical end-user applications and must be executed by a user with DBA
authority. Bulk operations may affect concurrency and transaction logs and should be performed when
users are not connected to the database.

The following are typical situations in which data is imported or exported:

● Importing an initial set of data into a new database

● Building new copies of a database, perhaps with a modified structure

● Exporting data from your database for use with other applications, such as spreadsheets

● Creating extractions of a database for replication or synchronization

● Repairing a corrupt database

● Rebuilding a database to improve its performance

● Obtaining a newer version of database software and completing software upgrades

Performance aspects of bulk operations
The performance of bulk operations depends on several factors, including whether the operation is
internal or external to the database server.

Internal bulk operations
Internal bulk operations, also referred to as server-side bulk operations, are import and export operations
performed by the database server using the LOAD TABLE, and UNLOAD statements.

When performing internal bulk operations, you can load from, and unload to, ASCII text files, or
Adaptive Server Enterprise BCP files. These files can exist on the same computer as the database server,
or on a client computer. The specified path to the file being written or read is relative to the database
server. Internal bulk operations are the fastest method of importing and exporting data into the database.

External bulk operations
External bulk operations, also referred to as client-side bulk operations, are import and export operations
performed by a client such as Interactive SQL, using INPUT and OUTPUT statements. When the client

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 641

issues an INPUT statement, an INSERT statement is recorded in the transaction log for each row that is
read when processing the file specified in the INPUT statement. As a result, client-side loading is
considerably slower than server-side loading. As well, INSERT triggers fire during an INPUT.

The OUTPUT statement allows you to write the result set of a SELECT statement to many different file
formats.

For external bulk operations, the specified path to the file being read or written is relative to the computer
on which the client application is running.

See also
● “LOAD TABLE statement” [SQL Anywhere Server - SQL Reference]
● “UNLOAD statement” [SQL Anywhere Server - SQL Reference]
● “INPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “OUTPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “Performance tips for importing data” on page 643
● “-b dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]

Data recovery issues for bulk operations
You can run the database server in bulk operations mode (the -b server option). When you use this option,
the database server does not perform certain important functions. Specifically:

Function Implication

Maintain a transaction log There is no record of the changes. Each COMMIT causes a checkpoint.

Lock any records There are no serious implications.

Alternatively, you may also need to ensure that data from bulk loading is still available in the event of
recovery. You can do so by keeping the original data sources intact, and in their original location. You
can also use some of the logging options available for the LOAD TABLE statement that allow bulk-
loaded data to be recorded in the transaction log.

Caution
You should back up the database before and after using bulk operations mode because your database is
not protected against media failure in this mode.

See also
● “-b dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “LOAD TABLE statement” [SQL Anywhere Server - SQL Reference]

Remote data and bulk operations

642 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Data import
Importing data is an administrative task that involves reading data into your database as a bulk operation.
Use SQL Anywhere to:

● import entire tables or portions of tables from text files

● import data from a variable

● import several tables consecutively by automating the import procedure with a script

● insert or add data into tables

● replace data in tables

● create a table before the import or during the import

● load data from a file on a client computer

● transfer files between SQL Anywhere and Adaptive Server Enterprise using the BCP format clause

If you are trying to create an entirely new database, consider loading the data using LOAD TABLE for
the best performance.

See also
● “LOAD TABLE statement” [SQL Anywhere Server - SQL Reference]
● “UNLOAD statement” [SQL Anywhere Server - SQL Reference]
● “INPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “OUTPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “Performance tips for importing data” on page 643
● “Performance aspects of bulk operations” on page 641
● “-b dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “Table structures for import” on page 659
● “Access to data on client computers” on page 675
● “Database rebuilds” on page 678

Performance tips for importing data

Importing large volumes of data can be time consuming. To save time you can:

● Place data files on a separate physical disk drive from the database. This could avoid excessive disk
head movement during the load.

● Extend the size of the database. The ALTER DBSPACE statement allows a database to be extended in
large amounts before the space is required, rather than in smaller amounts when the space is needed. It
also improves performance when loading large amounts of data, and keeps the database more
contiguous within the file system.

Data import and export

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 643

● Use temporary tables to load data. Local or global temporary tables are useful when you need to load a
set of data repeatedly, or when you need to merge tables with different structures.

● Start the database server without the -b option (bulk operations mode) when using the LOAD TABLE
statement.

● Run Interactive SQL or the client application on the same computer as the database server if you are
using the INPUT or OUTPUT statement. Loading data over the network adds extra communication
overhead. You may want to load new data at a time when the database server is not busy.

See also
● “LOAD TABLE statement” [SQL Anywhere Server - SQL Reference]
● “INPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “OUTPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “-b dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “ALTER DBSPACE statement” [SQL Anywhere Server - SQL Reference]

Import data with the Import Wizard (Interactive SQL)

Use the Interactive SQL Import Wizard to select a source, format, and destination table for the data. You
can import data from text files, fix format files, and shapefiles. You can import data into an existing table
or a new table.

Prerequisites

DBA authority.

Context and remarks

You can also use the Import Wizard to import data between:

● databases of different types, such as between a SQL Anywhere database and an UltraLite database.

● databases of different versions (as long as you have an ODBC driver for each database), such as
between a SQL Anywhere 12 database and a SQL Anywhere 11 database.

Use the Interactive SQL Import Wizard when you:

● want to create a table at the same time you import the data

● prefer using a point-and click interface to import data in a format other than text

Import data

1. In Interactive SQL, click Data » Import.

2. Follow the instructions in the Import Wizard.

Remote data and bulk operations

644 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Import data from a file into the SQL Anywhere sample database

1. Create and save a text file named import.txt with the following values (on a single line):

100,500,'Chan','Julia',100,'300 Royal Drive',
'Springfield','OR','USA','97015','6175553985',
'A','017239033',55700,'1984-09-29',,'1968-05-05',
1,1,0,'F'

2. In Interactive SQL, click Data » Import.

3. Click In A Text File and click Next.

4. In the File Name field, type import.txt and click Next.

5. Click In An Existing Table.

6. Click Employees and click Next.

7. In the Field Separator list, click Comma(,). Click Next.

8. Click Import.

9. Click Close.

The SQL statements created by the wizard are stored in the History list when the import finishes.

You can view the generated SQL INPUT statement; in the SQL menu, click Previous SQL.

The INPUT statement generated by the Import Wizard appears in the SQL Statements pane:

-- Generated by the Import Wizard
input into "GROUPO"."Employees" from 'c:\\data\\import.txt'
 format text escapes on escape character '\\'
 delimited by ',' encoding 'Cp1252'

Import data from the SQL Anywhere sample database into an UltraLite database

1. Connect to an UltraLite database, such as, C:\Documents and Settings\All Users\Documents\SQL
Anywhere 12\Samples\UltraLite\CustDB\custdb.udb.

2. In Interactive SQL, click Data » Import.

3. Click In A Database. Click Next.

4. In the Database Type list, click SQL Anywhere.

5. In the Action dropdown list, click Connect With An ODBC Data Source.

6. Click ODBC Data Source Name, and then type in the box below, SQL Anywhere 12 Demo.

7. Click Next.

8. In the Table Name list, click Customers. Click Next.

Data import and export

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 645

9. Click In A New Table.

10. In the Table Name field, type SQLAnyCustomers.

11. Click Import.

12. Click Close.

13. To view the generated SQL statement, click SQL » Previous SQL.

The INPUT statement generated by the Import Wizard appears in the SQL Statements pane.

-- Generated by the Import Wizard
INPUT USING 'DSN=SQL Anywhere 12 Demo;CON='''''
FROM "GROUPO.Customers" INTO "dba"."SQLAnyCustomers"
CREATE TABLE ON

Results

The data is imported into the specified database.

Next

None.

Import data with the INPUT statement

Use the INPUT statement to import data in different file formats into existing or new tables. If you have
the ODBC drivers for the databases, use the USING clause to import data from different types of
databases, and from different versions of SQL Anywhere databases.

With the INPUT statement, you can import data from TEXT and FIXED formats. To import data from
another file format, use the USING clause with an ODBC data source.

You can use the default input format, or you can specify the file format for each INPUT statement.
Because the INPUT statement is an Interactive SQL statement, you cannot use it in any compound
statement (such as an IF statement) or in a stored procedure.

Use the INPUT statement to import data when you want to import data from a file, or from another
database.

Considerations for materialized views
For immediate views, an error is returned when you attempt to bulk load data into an underlying table.
You must truncate the data in the view first, and then perform the bulk load operation.

For manual views, you can bulk load data into an underlying table. However, the data in the view remains
stale until the next refresh.

Consider truncating data in dependent materialized views before attempting a bulk load operation such as
INPUT on a table. After you have loaded the data, refresh the view.

Remote data and bulk operations

646 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Considerations for text indexes
For immediate text indexes, updating the text index after performing a bulk load operation such as INPUT
on the underlying table can take a while even though the update is automatic. For manual text indexes,
even a refresh can take a while.

Consider dropping dependent text indexes before performing a bulk load operation such as INPUT on a
table. After you have loaded the data, recreate the text index.

Impact on the database
Changes are recorded in the transaction log when you use the INPUT statement. In the event of a media
failure, there is a detailed record of the changes. However, there are performance impacts associated with
importing large amounts of data with this method since all rows are written to the transaction log.

In comparison, the LOAD TABLE statement does not save each row to the transaction log and so it can
be faster than the INPUT statement. However, the INPUT statement supports more databases and file
formats.

See also
● “INPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “TRUNCATE statement” [SQL Anywhere Server - SQL Reference]
● “REFRESH MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “CREATE TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]
● “DROP TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]

Importing data with the INPUT statement

You can import data into a database from a text file or from a CSV file using Interactive SQL.

Prerequisites

None.

Context and remarks

Because the INPUT statement is an Interactive SQL statement, you cannot use it in any compound
statement (such as an IF statement) or in a stored procedure.

Import data (INPUT statement)

1. Create and save a text file named new_employees.txt with the following values (on a single line):

101,500,'Chan','Julia',100,'300 Royal Drive',
'Springfield','OR','USA','97015','6175553985',
'A','017239033',55700,'1984-09-29',,'1968-05-05',
1,1,0,'F'

2. Open Interactive SQL and connect to the SQL Anywhere 12 sample database.

3. Enter an INPUT statement in the SQL Statements pane.

Data import and export

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 647

INPUT INTO Employees
FROM c:\new_employees.txt
FORMAT TEXT;
SELECT * FROM Employees;

In this statement, the name of the destination table in the SQL Anywhere 12 sample database is
Employees, and new_employees.txt is the name of the source file.

4. Execute the statement.

If the import is successful, the Messages tab displays the amount of time it to took to import the data.
If the import is unsuccessful, a message appears indicating why the import was unsuccessful.

Input data from an Excel CSV file using the INPUT statement

1. In Excel, save the data from your Excel file into a comma delimited (CSV) file. For example name the
file c:\test\finance_comma_delimited.csv

2. In Interactive SQL, connect to a SQL Anywhere database such as the demo12 database.

3. Create a table named imported_sales and add the required columns. You cannot use the CREATE
TABLE clause to create a table when inputting from a csv file.

4. Execute an INPUT statement using the SKIP clause to skip over the column names that Excel places
in the first line in the CSV file.

INPUT INTO "imported_sales" FROM 'c:\\test\\finances.csv' SKIP 1

Results

The data is imported into the specified database.

Next

None.

Import data with the LOAD TABLE statement

Use the LOAD TABLE statement to import data residing on a database server or a client computer into an
existing table in text/ASCII format.

You can also use the LOAD TABLE statement to import data from a column from another table, or from
a value expression (for example, from the results of a function or system procedure).

The LOAD TABLE statement adds rows into a table; it doesn't replace them.

Loading data using the LOAD TABLE statement (without the WITH ROW LOGGING and WITH
CONTENT LOGGING options) is considerably faster than using the INPUT statement.

Triggers do not fire for data loaded using the LOAD TABLE statement.

Remote data and bulk operations

648 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Considerations for materialized views
For immediate views, an error is returned when you attempt to bulk load data into an underlying table.
You must truncate the data in the view first, and then perform the bulk load operation.

For manual views, you can bulk load data into an underlying table; however, the data in the view becomes
stale until the next refresh.

Consider truncating data in dependent materialized views before attempting a bulk load operation such as
LOAD TABLE on a table. After you have loaded the data, refresh the view.

Considerations for text indexes
For immediate text indexes, updating the text index after performing a bulk load operation such as LOAD
TABLE on the underlying table can take a while even though the update is automatic. For manual text
indexes, even a refresh can take a while.

Consider dropping dependent text indexes before performing a bulk load operation such as LOAD
TABLE on a table. After you have loaded the data, recreate the text index.

Considerations for database recovery and synchronization
By default, when data is loaded from a file (for example, LOAD TABLE table-name FROM
filename;), only the LOAD TABLE statement is recorded in the transaction log, not the actual rows of
data that are being loaded. This presents a problem when trying to recover the database using the
transaction log if the original load file has been changed, moved, or deleted. It also means that databases
involved in synchronization or replication do not get the new data.

To address the recovery and synchronization considerations, two logging options are available for the
LOAD TABLE statement: WITH ROW LOGGING, which creates INSERT statements in the transaction
log for every row that is loaded, and WITH CONTENT LOGGING, which groups the loaded rows into
chunks and records the chunks in the transaction log. These options allow a load operation to be repeated,
even when the source of the loaded data is no longer available.

Considerations for database mirroring
If your database is involved in mirroring, use the LOAD TABLE statement carefully. For example, if you
are loading data from a file, consider whether the file will be available for loading on the mirror server, or
whether data in the source you are loading from will change by the time the mirror database processes the
load. If either of these risks exists, consider specifying either WITH ROW LOGGING or WITH
CONTENT LOGGING as the logging level in the LOAD TABLE statement. That way, the data loaded
into the mirror database is identical to what was loaded in the mirrored database.

Data import and export

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 649

See also
● “CREATE TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]
● “DROP TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]
● “Access to data on client computers” on page 675
● “Database mirroring” [SQL Anywhere Server - Database Administration]
● “INPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “LOAD TABLE statement” [SQL Anywhere Server - SQL Reference]
● “TRUNCATE statement” [SQL Anywhere Server - SQL Reference]
● “REFRESH MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]

Import data with the INSERT statement

Use the INSERT statement to add rows to the database. Because the import data for your destination table
is included in the INSERT statement, it is considered interactive input. You can also use the INSERT
statement with remote data access to import data from another database rather than a file.

Use the INSERT statement to import data when you:

● want to import small amounts of data into a single table

● are flexible with your file formats

● want to import remote data from an external database rather than from a file

The INSERT statement provides an ON EXISTING clause to specify the action to take if a row you are
inserting is already found in the destination table. However, if you anticipate many rows qualifying for the
ON EXISTING condition, consider using the MERGE statement instead. The MERGE statement
provides more control over the actions you can take for matching rows. It also provides a more
sophisticated syntax for defining what constitutes a match.

Considerations for materialized views
For immediate views, an error is returned when you attempt to bulk load data into an underlying table.
You must truncate the data in the view first, and then perform the bulk load operation.

For manual views, you can bulk load data into an underlying table; however, the data in the view becomes
stale until the next refresh.

Consider truncating data in dependent materialized views before attempting a bulk load operation such as
INSERT on a table. After you have loaded the data, refresh the view.

Considerations for text indexes
For immediate text indexes, updating the text index after performing a bulk load operation such as
INSERT on the underlying table can take a while even though the update is automatic. For manual text
indexes, even a refresh can take a while.

Consider dropping dependent text indexes before performing a bulk load operation such as INSERT on a
table. After you have loaded the data, recreate the text index.

Remote data and bulk operations

650 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Impact on the database
Changes are recorded in the transaction log when you use the INSERT statement. This means that if there
is a media failure involving the database file, you can recover information about the changes you made
from the transaction log.

See also
● “The transaction log” [SQL Anywhere Server - Database Administration]
● “MERGE statement” [SQL Anywhere Server - SQL Reference]
● “INSERT statement” [SQL Anywhere Server - SQL Reference]
● “TRUNCATE statement” [SQL Anywhere Server - SQL Reference]
● “DROP TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]
● “CREATE TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]
● “LOAD TABLE statement” [SQL Anywhere Server - SQL Reference]
● “REFRESH MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “INPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

Import data with the MERGE statement

Use the MERGE statement to perform an update operation and update large amounts of table data. When
you merge data, you can specify what actions to take when rows from the source data match or do not
match the rows in the target data.

Defining the merge behavior
The following is an abbreviated version of the MERGE statement syntax.

MERGE INTO target-object
USING source-object
ON merge-search-condition
{ WHEN MATCHED | WHEN NOT MATCHED } [...]

When the database performs a merge operation, it compares rows in source-object to rows in target-object
to find rows that either match or do not match according to the definition contained in the ON clause.
Rows in source-object are considered a match if there exists at least one row in target-table such that
merge-search-condition evaluates to true.

source-object can be a base table, view, materialized view, derived table, or the results of a procedure.
target-object can be any of these objects except for materialized views and procedures.

The ANSI SQL/2008 standard does not allow rows in target-object to be updated by more than one row
in source-object during a merge operation.

Once a row in source-object is considered matching or non-matching, it is evaluated against the respective
matching or non-matching WHEN clauses (WHEN MATCHED or WHEN NOT MATCHED). A WHEN
MATCHED clause defines an action to perform on the row in target-object (for example, WHEN
MATCHED ... UPDATE specifies to update the row in target-object). A WHEN NOT MATCHED
clause defines an action to perform on the target-object using non-matching rows of the source-object.

Data import and export

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 651

You can specify unlimited WHEN clauses; they are processed in the order in which you specify them.
You can also use the AND clause within a WHEN clause to specify actions against a subset of rows. For
example, the following WHEN clauses define different actions to perform depending on the value of the
Quantity column for matching rows:

WHEN MATCHED AND myTargetTable.Quantity<=500 THEN SKIP
WHEN MATCHED AND myTargetTable.Quantity>500 THEN UPDATE SET
myTargetTable.Quantity=500

Branches in a merge operation
The grouping of matched and non-matched rows by action is referred to as branching, and each group is
referred to as a branch. A branch is equivalent to a single WHEN MATCHED or WHEN NOT
MATCHED clause. For example, one branch might contain the set of non-matching rows from source-
object that must be inserted. Execution of the branch actions begins only after all branching activities are
complete (all rows in source-object have been evaluated). The database server begins executing the
branch actions according to the order in which the WHEN clauses were specified.

Once a non-matching row from source-object or a pair of matching rows from source-object and target-
object is placed in a branch, it is not evaluated against the succeeding branches. This makes the order in
which you specify WHEN clauses significant.

A row in source-object that is considered a match or non-match, but does not belong to any branch (that
is, it does not satisfy any WHEN clause) is ignored. This can occur when the WHEN clauses contain
AND clauses, and the row does not satisfy any of the AND clause conditions. In this case, the row is
ignored since no action is defined for it.

In the transaction log, actions that modify data are recorded as individual INSERT, UPDATE, and
DELETE statements.

Triggers defined on the target table
Triggers fire normally as each INSERT, UPDATE, and DELETE statement is executed during the merge
operation. For example, when processing a branch that has an UPDATE action defined for it, the database
server:

1. fires all BEFORE UPDATE triggers

2. executes the UPDATE statement on the candidate set of rows while firing any row-level UPDATE
triggers

3. fires the AFTER UPDATE triggers

Triggers on target-table can cause conflicts during a merge operation if it impacts rows that will be
updated in another branch. For example, suppose an action is performed on row A, causing a trigger to
fire that deletes row B. However, row B has an action defined for it that has not yet been performed.
When an action cannot be performed on a row, the merge operation fails, all changes are rolled back, and
an error is returned.

A trigger defined with more than one trigger action is treated as if it has been specified once for each of
the trigger actions with the same body (that is, it is equivalent to defining separate triggers, each with a
single trigger action).

Remote data and bulk operations

652 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Considerations for immediate materialized views
Database server performance might be affected if the MERGE statement updates a large number of rows.
To update numerous rows, consider truncating data in dependent immediate materialized views before
executing the MERGE statement on a table. After executing the MERGE statement, execute a REFRESH
MATERIALIZED VIEW statement.

Considerations for text indexes
Database server performance might be affected if the MERGE statement updates a large number of rows.
Consider dropping dependent text indexes before executing the MERGE statement on a table. After
executing the MERGE statement, recreate the text index.

See also
● “MERGE statement” [SQL Anywhere Server - SQL Reference]
● “REFRESH MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “TRUNCATE statement” [SQL Anywhere Server - SQL Reference]
● “DROP TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]
● “CREATE TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]

Example 1
Suppose you own a small business selling jackets and sweaters. Prices on material for the jackets have
gone up by 5% and you want to adjust your prices to match. Using the following CREATE TABLE
statement, you create a small table called myProducts to hold current pricing information for the jackets
and sweaters you sell. The subsequent INSERT statements populate myProducts with data.

CREATE TABLE myProducts (
 product_id NUMERIC(10),
 product_name CHAR(20),
 product_size CHAR(20),
 product_price NUMERIC(14,2));
INSERT INTO myProducts VALUES (1, 'Jacket', 'Small', 29.99);
INSERT INTO myProducts VALUES (2, 'Jacket', 'Medium', 29.99);
INSERT INTO myProducts VALUES (3, 'Jacket', 'Large', 39.99);
INSERT INTO myProducts VALUES (4, 'Sweater', 'Small', 18.99);
INSERT INTO myProducts VALUES (5, 'Sweater', 'Medium', 18.99);
INSERT INTO myProducts VALUES (6, 'Sweater', 'Large', 19.99);
SELECT * FROM myProducts;

product_id product_name product_size product_price

1 Jacket Small 29.99

2 Jacket Medium 29.99

3 Jacket Large 39.99

4 Sweater Small 18.99

5 Sweater Medium 18.99

6 Sweater Large 19.99

Data import and export

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 653

Now, use the following statement to create another table called myPrices to hold information about the
price changes for jackets. A SELECT statement is added at the end so that you can see the contents of the
myPrices table before the merge operation is performed.

CREATE TABLE myPrices (
 product_id NUMERIC(10),
 product_name CHAR(20),
 product_size CHAR(20),
 product_price NUMERIC(14,2),
 new_price NUMERIC(14,2));
INSERT INTO myPrices (product_id) VALUES (1);
INSERT INTO myPrices (product_id) VALUES (2);
INSERT INTO myPrices (product_id) VALUES (3);
INSERT INTO myPrices (product_id) VALUES (4);
INSERT INTO myPrices (product_id) VALUES (5);
INSERT INTO myPrices (product_id) VALUES (6);
COMMIT;
SELECT * FROM myPrices;

product_id product_name product_size product_price new_price

1 (NULL) (NULL) (NULL) (NULL)

2 (NULL) (NULL) (NULL) (NULL)

3 (NULL) (NULL) (NULL) (NULL)

4 (NULL) (NULL) (NULL) (NULL)

5 (NULL) (NULL) (NULL) (NULL)

6 (NULL) (NULL) (NULL) (NULL)

Use the following MERGE statement to merge data from the myProducts table into the myPrices table.
Notice that the source-object is a derived table that has been filtered to contain only those rows where
product_name is Jacket. Notice also that the ON clause specifies that rows in the target-object and
source-object match if the values in their product_id columns match.

MERGE INTO myPrices p
USING (SELECT
 product_id,
 product_name,
 product_size,
 product_price
 FROM myProducts
 WHERE product_name='Jacket') pp
ON (p.product_id = pp.product_id)
WHEN MATCHED THEN
 UPDATE SET
 p.product_id=pp.product_id,
 p.product_name=pp.product_name,
 p.product_size=pp.product_size,
 p.product_price=pp.product_price,
 p.new_price=pp.product_price * 1.05;
SELECT * FROM myPrices;

Remote data and bulk operations

654 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

product_id product_name product_size product_price new_price

1 Jacket Small 29.99 31.49

2 Jacket Medium 29.99 31.49

3 Jacket Large 39.99 41.99

4 (NULL) (NULL) (NULL) (NULL)

5 (NULL) (NULL) (NULL) (NULL)

6 (NULL) (NULL) (NULL) (NULL)

The column values for product_id 4, 5, and 6 remain NULL because those products did not match any of
the rows in the myProducts table whose products were (product_name='Jacket').

Example 2
The following example merges rows from the mySourceTable and myTargetTable tables, using the
primary key values of myTargetTable to match rows. The row is considered a match if a row in
mySourceTable has the same value as the primary key column of myTargetTable.

MERGE INTO myTargetTable
 USING mySourceTable ON PRIMARY KEY
 WHEN NOT MATCHED THEN INSERT
 WHEN MATCHED THEN UPDATE;

The WHEN NOT MATCHED THEN INSERT clause specifies that rows found in mySourceTable that
are not found in myTargetTable must be added to myTargetTable. The WHEN MATCHED THEN
UPDATE clause specifies that the matching rows of myTargetTable are updated to the values in
mySourceTable.

The following syntax is equivalent to the syntax above. It assumes that myTargetTable has the columns
(I1, I2, .. In) and that the primary key is defined on columns (I1, I2). The mySourceTable has the columns
(U1, U2, .. Un).

MERGE INTO myTargetTable (I1, I2, .. ., In)
 USING mySourceTable ON myTargetTable.I1 = mySourceTable.U1
 AND myTargetTable.I2 = mySourceTable.U2
 WHEN NOT MATCHED
 THEN INSERT (I1, I2, .. In)
 VALUES (mySourceTable.U1, mySourceTable.U2, ..., mySourceTable.Un)
 WHEN MATCHED
 THEN UPDATE SET
 myTargetTable.I1 = mySourceTable.U1,
 myTargetTable.I2 = mySourceTable.U2,
 ...
 myTargetTable.In = mySourceTable.Un;

Using the RAISERROR action
One of the actions you can specify for a match or non-match action is RAISERROR. RAISERROR
allows you to fail the merge operation if the condition of a WHEN clause is met.

Data import and export

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 655

When you specify RAISERROR, the database server returns SQLSTATE 23510 and SQLCODE -1254,
by default. Optionally, you can customize the SQLCODE that is returned by specifying the error_number
parameter after the RAISERROR keyword.

Specifying a custom SQLCODE can be beneficial when, later, you are trying to determine the specific
circumstances that caused the error to be raised.

The custom SQLCODE must be a positive integer greater than 17000, and can be specified either as a
number or a variable.

The following statements provide a simple demonstration of how customizing a custom SQLCODE
affects what is returned:

Create the table targetTable as follows:

CREATE TABLE targetTable(c1 int);
INSERT INTO targetTable VALUES(1);
COMMIT;

The following statement returns an error with SQLSTATE = '23510' and SQLCODE = -1254:

MERGE INTO targetTable
 USING (SELECT 1 c1) AS sourceData
 ON targetTable.c1 = sourceData.c1
 WHEN MATCHED THEN RAISERROR;
SELECT sqlstate, sqlcode;

The following statement returns an error with SQLSTATE = '23510' and SQLCODE = -17001:

MERGE INTO targetTable
 USING (SELECT 1 c1) AS sourceData
 ON targetTable.c1 = sourceData.c1
 WHEN MATCHED THEN RAISERROR 17001
 WHEN NOT MATCHED THEN RAISERROR 17002;
SELECT sqlstate, sqlcode;

The following statement returns an error with SQLSTATE = '23510' and SQLCODE = -17002:

MERGE INTO targetTable
 USING (SELECT 2 c1) AS sourceData
 ON targetTable.c1 = sourceData.c1
 WHEN MATCHED THEN RAISERROR 17001
 WHEN NOT MATCHED THEN RAISERROR 17002;
SELECT sqlstate, sqlcode;

Import data with proxy tables

A proxy table is a local table containing metadata used to access a table on a remote database server as if
it were a local table. These let you import data directly.

Use proxy tables to import data when you:

● have access to remote data

● want to import data directly from another database

Remote data and bulk operations

656 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Impact on the database
Changes are recorded in the transaction log when you import using proxy tables. This means that if there
is a media failure involving the database file, you can recover information about the changes you made
from the transaction log.

How to use proxy tables
Create a proxy table, and then use an INSERT statement with a SELECT clause to insert data from the
remote database into a permanent table in your database.

See also
● “Remote data access” on page 693
● “INSERT statement” [SQL Anywhere Server - SQL Reference]

Conversion errors during import

When you load data from external sources, there may be errors in the data. For example, there may be
invalid dates and numbers. Use the conversion_error database option to ignore conversion errors and
convert invalid values to NULL values.

See also
● “conversion_error option” [SQL Anywhere Server - Database Administration]
● “SET OPTION statement” [SQL Anywhere Server - SQL Reference]

Importing tables

You can use Interactive SQL to import data from a text file, another table in any database, or a shape file,
into a table in your database.

Prerequisites

None.

Context and remarks

Many.

Import a table (Interactive SQL Import Wizard)

1. Ensure that the table you want to place the data in exists.

2. In Interactive SQL, in the Data menu click Import.

3. Click In A Text File and click Next.

4. In the File Name field, click Browse to add the file.

Data import and export

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 657

5. Click In An Existing Table.

6. Click Next.

7. For ASCII files, specify the way the ASCII file is read and click Next.

8. Click Import.

9. Click Close.

Import a table (SQL)

1. Use the CREATE TABLE statement to create the destination table. For example:

CREATE TABLE GROUPO.Departments (
DepartmentID integer NOT NULL,
DepartmentName char(40) NOT NULL,
DepartmentHeadID integer NULL,
CONSTRAINT DepartmentsKey PRIMARY KEY (DepartmentID));

2. Execute a LOAD TABLE statement. For example:

LOAD TABLE Departments
FROM 'departments.csv';

3. To keep trailing blanks in your values, use the STRIP OFF clause in your LOAD TABLE statement.
The default setting (STRIP ON) strips trailing blanks from values before inserting them.

The LOAD TABLE statement adds the contents of the file to the existing rows of the table; it does not
replace the existing rows in the table. You can use the TRUNCATE TABLE statement to remove all
the rows from a table.

Neither the TRUNCATE TABLE statement nor the LOAD TABLE statement fires triggers or
perform referential integrity actions, such as cascaded deletes.

Results

The data is imported into the specified table.

Next

None.

See also
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “LOAD TABLE statement” [SQL Anywhere Server - SQL Reference]

Remote data and bulk operations

658 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Table structures for import

The structure of the source data does not need to match the structure of the destination table itself. For
example, the column data types may be different or in a different order, or there may be extra values in
the import data that do not match columns in the destination table.

Rearranging the table or data
If you know that the structure of the data you want to import does not match the structure of the
destination table, you can:

● provide a list of column names to be loaded in the LOAD TABLE statement

● rearrange the import data to fit the table with a variation of the INSERT statement and a global
temporary table

● use the INPUT statement to specify a specific set or order of columns

Allowing columns to contain NULL values
If the file you are importing contains data for a subset of the columns in a table, or if the columns are in a
different order, you can also use the LOAD TABLE statement DEFAULTS option to fill in the blanks
and merge non-matching table structures.

● If DEFAULTS is OFF, any column not present in the column list is assigned NULL. If DEFAULTS is
OFF and a non-nullable column is omitted from the column list, the database server attempts to convert
the empty string to the column's type.

● If DEFAULTS is ON and the column has a default value, that value is used.

For example, you can define a default value for the City column in the Customers table and then load new
rows into the Customers table from a fictitious file called new_customers.txt using a LOAD TABLE
statement like this:

ALTER TABLE Customers
ALTER City DEFAULT 'Waterloo';
LOAD TABLE Customers (Surname, GivenName, Street, State, Phone)
FROM 'new_customers.txt'
DEFAULTS ON;

Since a value is not provided for the City column, the default value is supplied. If DEFAULTS OFF had
been specified, the City column would have been assigned the empty string.

Merge different table structures

Use a variation of the INSERT statement and a global temporary table to rearrange the import data to fit
the table.

Prerequisites

DBA authority.

Data import and export

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 659

Context and remarks

Many.

Load data with a different structure using a global temporary table

1. In the SQL Statements pane, create a global temporary table with a structure matching that of the
input file.

You can use the CREATE TABLE statement to create the global temporary table.

2. Use the LOAD TABLE statement to load your data into the global temporary table.

When you close the database connection, the data in the global temporary table disappears. However,
the table definition remains. You can use it the next time you connect to the database.

3. Use the INSERT statement with a SELECT clause to extract and summarize data from the temporary
table and copy the data into one or more permanent database tables.

Results

The data is loaded into a permanent database table.

Next

None.

See also
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “LOAD TABLE statement” [SQL Anywhere Server - SQL Reference]

Importing binary files

You can import binary files, such as JPEG, bitmap, or Microsoft Word files, into your database using the
xp_read_file system procedure.

See also
● “Insertion of documents and images” on page 563

Data export
Exporting data is an administrative task that involves writing data out of your database. Exporting data is
a useful if you need to share large portions of your database, or extract portions of your database
according to particular criteria. Use SQL Anywhere to:

● export individual tables, query results, or table schema

Remote data and bulk operations

660 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● create scripts that automate exporting so that you can export several tables consecutively

● export to many different file formats

● export data to a file on a client computer

● export files between SQL Anywhere and Adaptive Server Enterprise using the BCP FORMAT clause

Before exporting data, determine what resources you have and the type of information you want to export
from your database.

For performance reasons, if you want to export an entire database, unload the database instead of
exporting the data.

Export limitations
When exporting data from a SQL Anywhere database to an Excel database with the Microsoft Excel
ODBC driver, the following data type changes can occur:

● When you export data that is stored as CHAR, LONG VARCHAR, NCHAR, NVARCHAR or LONG
NVARCHAR data type, the data is stored as VARCHAR (the closest type supported by the Excel
driver).

Note that the Microsoft Excel ODBC driver supports text column widths up to 255 characters.

● Data stored as MONEY and SMALLMONEY data types is exported to the CURRENCY data type.
Otherwise numerical data is exported as numbers.

See also
● “UNLOAD statement” [SQL Anywhere Server - SQL Reference]
● “OUTPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “Performance aspects of bulk operations” on page 641
● “Using the OUTPUT statement to output NULLs” on page 671
● “Access to data on client computers” on page 675
● “Database rebuilds” on page 678

Export data with the Export Wizard

Use the Export Wizard to export query results in a specific format to a file or database.

Prerequisites

DBA authority.

Context and remarks

Many.

Data import and export

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 661

Export result sets data using Interactive SQL

1. Execute a query.

2. In Interactive SQL, click Data » Export.

3. Follow the instructions in the Export Wizard.

Results

The query results are exported to the specified file or database.

Next

None.

Example

1. Execute the following query while connected to the SQL Anywhere sample database.

SELECT * FROM Employees
WHERE State = 'GA';

2. The result set includes a list of all employees who live in Georgia.

3. Click Data » Export.

4. Click In A Database.

5. In the Database Type list, click UltraLite.

6. In the User Id field, type dba.

7. In the Password field, type sql.

8. In the Database File field, type C:\Documents and Settings\All Users\Documents\SQL Anywhere
12\Samples\UltraLite\CustDB\custdb.udb.

9. Click Next.

10. Click Create a new table.

11. In the Table Name field, type NewTable.

12. Click Export.

13. Click Close.

14. Click SQL » Previous SQL.

The OUTPUT USING statement created and used by the Export Wizard appears in the SQL
Statements pane:

Remote data and bulk operations

662 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

-- Generated by the Export Wizard
OUTPUT USING 'driver=UltraLite 12;UID=dba;PWD=sql;
DBF=C:\Documents and Settings\All Users\Documents\SQL Anywhere 12\Samples
\UltraLite\CustDB\custdb.udb'
INTO "dba"."NewTable"
CREATE TABLE ON

Export data with the OUTPUT statement

Use the OUTPUT statement to export query results, tables, or views from your database.

The OUTPUT statement is useful when compatibility is an issue because it can write out the result set of a
SELECT statement in several different file formats. You can use the default output format, or you can
specify the file format on each OUTPUT statement. Interactive SQL can execute a SQL script file
containing multiple OUTPUT statements.

The default Interactive SQL output format is specified on the Import/Export tab of the Interactive SQL
Options window (accessed by clicking Tools » Options in Interactive SQL).

Use the Interactive SQL OUTPUT statement when you want to:

● export all or part of a table or view in a format other than text

● automate the export process using a SQL script file

Impact on the database
If you have a choice between using the OUTPUT statement, UNLOAD statement, or UNLOAD TABLE
statement, choose the UNLOAD TABLE statement for performance reasons.

There are performance impacts associated with exporting large amounts of data with the OUTPUT
statement. Use the OUTPUT statement on the same computer as the server if possible to avoid sending
large amounts of data across the network.

See also
● “OUTPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

Exporting data to Excel and CSV files

In Interactive SQL you can export data from your database to an Excel or CSV file using the OUTPUT
statement.

Prerequisites

None.

Context and remarks

Many.

Data import and export

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 663

Export data to an Excel file using the OUTPUT statement (Interactive SQL)

1. In Interactive SQL, connect to a SQL Anywhere database.

2. Execute an OUTPUT statement using the READONLY clause. For example:

SELECT * FROM SalesOrders;
OUTPUT USING 'Driver=Microsoft Excel Driver (*.xls);
DBQ=c:\\test\\sales.xls;
READONLY=0' INTO "newSalesData";

A new Excel file, named sales.xls, is created. It will contain a worksheet called newSalesData.

Note that the Microsoft Excel driver is a 32-bit driver so the 32-bit version of Interactive SQL is
required for this example.

Export data to a CSV file

1. In Interactive SQL, connect to the SQL Anywhere database.

2. Execute an OUTPUT statement with the clauses FORMAT TEXT, QUOTE '"', and WITH COLUMN
NAMES to create a comma-delimited format with the column names in the first line of the file. String
values will be enclosed with quotation marks.

SELECT * FROM SalesOrders;
OUTPUT TO 'c:\\test\\sales.csv'
 FORMAT TEXT
 QUOTE '"'
 WITH COLUMN NAMES;

Results

The data is exported to the specified Excel or CSV file.

Next

None.

Example

The following example exports the data from the Employees table in the SQL Anywhere sample database
to a .txt file named Employees.txt.

SELECT * FROM Employees;
OUTPUT TO Employees.txt
 FORMAT TEXT;

The following example exports data from the Employees table in the SQL Anywhere sample database to a
new table in a SQL Anywhere database named mydatabase.db

SELECT * FROM Employees;
OUTPUT USING 'driver=SQL Anywhere 12;UID=dba;PWD=sql;DBF=C:\Tobedeleted
\mydatabase.db;CON='''''
 INTO "dba"."newcustomers"
 CREATE TABLE ON;

Remote data and bulk operations

664 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “OUTPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

Export data with the UNLOAD TABLE statement

The UNLOAD TABLE statement lets you export data efficiently in text formats only. The UNLOAD
TABLE statement exports one row per line, with values separated by a comma delimiter. To make
reloading faster, the data is exported in order by primary key values.

Use the UNLOAD TABLE statement when you:

● want to export entire tables in text format

● are concerned about database performance

● export data to a file on a client computer

Impact on the database
The UNLOAD TABLE statement places an exclusive lock on the whole table while you are unloading it.

If you have a choice between using the OUTPUT statement, UNLOAD statement, or UNLOAD TABLE
statement, choose the UNLOAD TABLE statement for performance reasons.

Example
Using the SQL Anywhere sample database, you can unload the Employees table to a text file named
employee_data.csv by executing the following statement:

UNLOAD TABLE Employees TO 'employee_data.csv';

Because it is the database server that unloads the table, employee_data.csv specifies a file on the database
server computer.

See also
● “Access to data on client computers” on page 675
● “UNLOAD statement” [SQL Anywhere Server - SQL Reference]
● “OUTPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

Export data with the UNLOAD statement

The UNLOAD statement is similar to the OUTPUT statement in that they both export query results to a
file. However, the UNLOAD statement exports data more efficiently in a text format. The UNLOAD
statement exports with one row per line, with values separated by a comma delimiter.

Use the UNLOAD statement to unload data when you want to:

● export query results if performance is an issue

Data import and export

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 665

● store output in text format

● embed an export statement in an application

● export data to a file on a client computer

Impact on the database
If you have a choice between using the OUTPUT statement, UNLOAD statement, or UNLOAD TABLE
statement, choose the UNLOAD TABLE statement for performance reasons.

To use the UNLOAD statement, the user must have the permissions required to execute the SELECT that
is specified within the UNLOAD statement.

For more information about controlling who can use the UNLOAD statement, see “-gl dbeng12/dbsrv12
server option” [SQL Anywhere Server - Database Administration].

The UNLOAD statement is executed at the current isolation level.

Example
Using the SQL Anywhere sample database, you can unload a subset of the Employees table to a text file
named employee_data.csv by executing the following statement:

UNLOAD
SELECT * FROM Employees
WHERE State = 'GA'
TO 'employee_data.csv'
QUOTE '"';

Because it is the database server that unloads the result set, employee_data.csv specifies a file on the
database server computer.

See also
● “Access to data on client computers” on page 675
● “UNLOAD statement” [SQL Anywhere Server - SQL Reference]
● “OUTPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]

Export data with the Unload utility (dbunload)

Use the Unload utility (dbunload) to export one, many, or all the database tables. You can export table
data, and table schemas. To rearrange your database tables, you can also use dbunload to create the
necessary SQL script files and modify them as needed. These files can be used to create identical tables in
different databases. You can unload tables with structure only, data only, or with both structure and data.
You can also unload directly into an existing database using the -ac option.

Use dbunload when you:

● need to rebuild or extract your database

● want to export data in text format

Remote data and bulk operations

666 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● need to process large amounts of data quickly

● have flexible file format requirements

Note
The Unload utility (dbunload) is functionally equivalent to the Sybase Central Unload Database Wizard.
You can use either one interchangeably to produce the same results.

See also
● “Unload utility (dbunload)” [SQL Anywhere Server - Database Administration]

Export data with the Unload Database Wizard

Use the Unload Database Wizard to unload an existing database into a new database.

When using the Unload Database Wizard to unload your database, you can choose to unload all the
objects in a database, or a subset of tables from the database. Only tables for users selected in the
Configure Owner Filter window appear in the Unload Database Wizard. If you want to view tables
belonging to a particular database user, right-click the database you are unloading, click Configure
Owner Filter, and then select the user in the resulting window.

You can also use the Unload Database Wizard to unload an entire database in text comma-delimited
format and to create the necessary SQL script files to completely recreate your database. This is useful for
creating SQL Remote extractions or building new copies of your database with the same or a slightly
modified structure. The Unload Database Wizard is useful for exporting SQL Anywhere files intended
for reuse within SQL Anywhere.

The Unload Database Wizard also gives you the option to reload into an existing database or a new
database, rather than into a reload file.

Note
The Unload utility (dbunload) is functionally equivalent to the Unload Database Wizard. You can use
either one interchangeably to produce the same results.

See also
● “Unload utility (dbunload)” [SQL Anywhere Server - Database Administration]

Unloading a database file or running database
You can unload a stopped or running database in Sybase Central using the Unload Database Wizard.

Prerequisites

There are no prerequisites for this task.

Data import and export

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 667

Context and remarks

If the database you want to unload is already running, and you start the Unload Database Wizard, the
SQL Anywhere 12 plug-in automatically stops the database before you can unload it.

Note
When you unload only tables, the user IDs that own the tables are not unloaded. You must create the user
IDs that own the tables in the new database before reloading the tables.

Unload a database file or a running database (Sybase Central)

1. Click Tools » SQL Anywhere 12 » Unload Database.

2. Follow the instructions in the Unload Database Wizard.

Results

The specified database is unloaded.

Next

None.

Exporting data with the Unload Data window

You can unload tables in Sybase Central using the Unload Data window.

Prerequisites

DBA authority.

Context and remarks

You can use the Unload Data window in Sybase Central to unload one or more tables in a database. This
functionality is also available with either the Unload Database Wizard or the Unload utility (dbunload),
but this window allows you to unload tables in one step, instead of completing the entire Unload
Database Wizard.

Unload tables using the Unload Data window

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with DBA authority.

2. Double-click Tables.

3. Right-click the table you want to export data from, and click Unload Data.

4. Complete the Unload Data window. Click OK.

Remote data and bulk operations

668 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Results

The data is saved to the specified file.

Next

None.

Exporting query results

You can export query results in Interactive SQL using the Data menu, or either of the OUTPUT or
UNLOAD statements.

Prerequisites

None.

Context and remarks

You can combine the APPEND and VERBOSE clauses to append both results and messages to an
existing file.

For example, type OUTPUT TO 'filename' APPEND VERBOSE.

The OUTPUT statement with its clauses APPEND and VERBOSE are equivalent to the >#, >>#, >&, and
>>& operators of earlier versions of Interactive SQL. You can still use these operators to redirect data, but
the new Interactive SQL statements allow for more precise output and easier to read code.

Export query results (Interactive SQL Data menu)

Use the BCP FORMAT clause to import and export files between SQL Anywhere and Adaptive Server
Enterprise.

1. Enter your query in the SQL Statements pane of Interactive SQL.

2. Click SQL » Execute.

3. Click Data » Export.

4. Specify a location for the results and click Next.

5. For text, HTML, and XML files, type a file name in the File Name field and click Export.

For an ODBC database:

a. Select a database and click Next.

b. Select a location to save the data and click Export.

6. Click Close.

Data import and export

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 669

Export query results (Interactive SQL OUTPUT statement)

Use the BCP FORMAT clause to import and export files between SQL Anywhere and Adaptive Server
Enterprise.

1. Enter your query in the SQL Statements pane of Interactive SQL.

2. At the end of the query, type OUTPUT TO 'filename'.

For example, to export the entire Employees table to the file employees.txt, enter the following query:

SELECT *
FROM Employees;
OUTPUT TO 'employees.txt';

3. To export query results and append the results to another file, use the APPEND clause.

SELECT * FROM Employees;
OUTPUT TO 'employees.txt'
APPEND;

To export query results and include messages, use the VERBOSE clause.

SELECT * FROM Employees;
OUTPUT TO 'employees.txt'
VERBOSE;

4. Click SQL » Execute.

If the export is successful, the Messages tab displays the amount of time it to took to export the query
result set, the file name and path of the exported data, and the number of rows written. If the export is
unsuccessful, a message appears indicating that the export was unsuccessful.

Export query results (UNLOAD statement)

Use the BCP FORMAT clause to import and export files between SQL Anywhere and Adaptive Server
Enterprise.

1. In the SQL Statements pane, enter the UNLOAD statement.

For example:

UNLOAD
SELECT *
FROM Employees
TO 'employee_data.csv';

2. Click SQL » Execute.

If the export is successful, the Messages tab displays the amount of time it to took to export the query
result set, the file name and path of the exported data, and the number of rows written. If the export is
unsuccessful, a message appears indicating that the export was unsuccessful.

Remote data and bulk operations

670 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Results

The query results are exported to the specified location.

Next

None.

See also
● “OUTPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “Adaptive Server Enterprise compatibility” on page 693

Using the OUTPUT statement to output NULLs

To have greater compatibility with other software products when extracting data that includes NULL
values, you can specify how NULL values appear when using the OUTPUT statement from Interactive
SQL.

Prerequisites

You must be the owner of the database or have DBA authority.

Context and remarks

There are two ways to specify how NULL values appear when using the OUTPUT statement from
Interactive SQL. Both options allow you to output a specific value in place of a NULL value.

● the output_nulls option lets you specify the output value used by the OUTPUT statement

● the IFNULL function lets you apply the output value to a particular instance or query

Specify a NULL value output (Interactive SQL)

● Execute a SET OPTION statement that changes the value of the output_nulls option. The following
example changes the value that appears for NULL values to (unknown):

SET OPTION output_nulls = '(unknown)';

Change the value that appears in place of a NULL value on the Results pane (Interactive
SQL)

1. Click Tools » Options.

2. Click SQL Anywhere.

3. Click the Results tab.

4. In the Display Null Values As field, type Value.

Data import and export

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 671

5. Click OK.

Results

The value that appears in the place of the NULL value is changed to be more compatible with other
software.

Next

None.

See also
● “SET OPTION statement” [SQL Anywhere Server - SQL Reference]

Exporting databases (Sybase Central)

You can unload data from a database to a reload file, a new database, or an existing database using the
Unload Database Wizard in Sybase Central.

Prerequisites

DBA authority.

Context and remarks

If the database you want to unload is already running, and you start the Unload Database Wizard, the
SQL Anywhere 12 plug-in automatically stops the database before you can unload it.

Unload all or part of a database

1. Click Tools » SQL Anywhere 12 » Unload Database.

2. Follow the instructions in the Unload Database Wizard.

Results

The data is unloaded to the specified location.

Next

None.

See also
● “Unload utility (dbunload)” [SQL Anywhere Server - Database Administration]

Remote data and bulk operations

672 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Exporting databases (command line)
You can unload data from a database to a reload file, a new database, or an existing database using the
Unload utility (dbunload) on the command line.

Prerequisites

DBA authority.

Context and remarks

Many.

Unload all or part of a database

● Run the Unload utility (dbunload), and use the -c option to specify the connection parameters.

To unload the entire database to the directory c:\DataFiles on the server computer:

dbunload -c "DBN=demo;UID=DBA;PWD=sql" c:\DataFiles

The statements required to recreate the schema and reload the tables are written to reload.sql in the
local current directory.

To export data only, use -d.

For example:

dbunload -c "DBN=demo;UID=DBA;PWD=sql" -d c:\DataFiles

The statements required to reload the tables are written to reload.sql in the local current directory.

To export schema only, use -n.

For example:

dbunload -c "DBN=demo;UID=DBA;PWD=sql" -n

The statements required to recreate the schema are written to reload.sql in the local current directory.

Results

The data is unloaded to the specified location.

Next

None.

See also
● “Exporting databases (Sybase Central)” on page 672

Data import and export

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 673

Exporting tables (SQL)

You can export a table by executing an UNLOAD TABLE statement from Interactive SQL.

Prerequisites

The permissions required to execute an UNLOAD statement depend on the database server -gl option, and
also on whether or not the data is being written to a file on a client computer.

Context and remarks

The following procedures can also be used to export views.

You can also export a table by selecting all the data in a table and exporting the query results.

Export a table (SQL)

● Execute an UNLOAD TABLE statement. For example:

UNLOAD TABLE Departments
TO 'departments.csv';

This statement unloads the Departments table from the SQL Anywhere sample database into the file
departments.csv in the database server's current working directory. If you are running against a
network database server, the statement unloads the data into a file on the server computer, not the
client computer. Also, the file name passes to the server as a string. Using escape backslash characters
in the file name prevents misinterpretation if a directory or file name begins with an n (\n is a newline
character) or any other special characters.

Each row of the table is output on a single line of the output file, and no column names are exported.
The columns are delimited by a comma. The delimiter character can be changed using the
DELIMITED BY clause. The fields are not fixed-width fields. Only the characters in each entry are
exported, not the full width of the column.

Results

The data is exported into the specified file.

Next

None.

See also
● “Exporting query results” on page 669
● “Unload utility (dbunload)” [SQL Anywhere Server - Database Administration]
● “UNLOAD statement” [SQL Anywhere Server - SQL Reference]

Exporting tables (command line)
You can export a table by running the Unload utility (dbunload) on the command line.

Remote data and bulk operations

674 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Prerequisites

The database server -gl option controls the permissions required to unload data from the database.

Context and remarks

You can unload more than one table by separating the table names with a comma (,) delimiter.

Export a table (command line)

● Run the following command:

dbunload -c "DBN=demo;UID=DBA;PWD=sql"
-t Employees c:\DataFiles

In this command, -c specifies the database connection parameters and -t specifies the name of the
table or tables you want to export. This dbunload command unloads the data from the SQL Anywhere
sample database (assumed to be running on the default database server with the default database
name) into a set of files in the c:\DataFiles directory on the server computer. A SQL script file to
rebuild the tables from the data files is created with the default name reload.sql in the local current
directory.

Results

The data is exported to the specified location.

Next

None.

See also
● “-gl dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]

Access to data on client computers
SQL Anywhere allows you to load data from, and unload data to, a file on a client computer using SQL
statements and functions, without having to copy files to the database server computer. To do this, the
database server initiates the transfer using a Command Sequence communication protocol (CmdSeq) file
handler. The CmdSeq file handler is invoked after the database server receives a request from the client
application requiring a transfer of data to or from the client computer, and before sending the response.
The file handler supports simultaneous and interleaved transfer of multiple files from the client at any
given time. For example, the database server can initiate the transfer of multiple files simultaneously if the
statement executed by the client application requires it.

Using a CmdSeq file handler to achieve transfer of client data means that applications do not require any
new specialized code and can start benefitting immediately from the feature using the SQL components
listed below:

Data import and export

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 675

● READ_CLIENT_FILE function The READ_CLIENT_FILE function reads data from the specified
file on the client computer, and returns a LONG BINARY value representing the contents of the file.
This function can be used anywhere in SQL code that a BLOB can be used. The data returned by the
READ_CLIENT_FILE function is not materialized in memory when possible, unless the statement
explicitly causes materialization to take place. For example, the LOAD TABLE statement streams the
data from the client file without materializing it. Assigning the value returned by the
READ_CLIENT_FILE function to a connection variable causes the database server to retrieve and
materialize the client file contents.

● WRITE_CLIENT_FILE function The WRITE_CLIENT_FILE function writes data to the specified
file on the client computer.

● READCLIENTFILE authority READCLIENTFILE authority allows you to read from a file on a
client computer.

● WRITECLIENTFILE authority WRITECLIENTFILE authority allows you to write to a file on a
client computer.

● LOAD TABLE ... USING CLIENT FILE clause The USING CLIENT FILE clause allows you to
load a table using data in a file located on the client computer. For example, LOAD TABLE ...
USING CLIENT FILE 'my-file.txt'; loads a file called my-file.txt from the client
computer.

● LOAD TABLE ... USING VALUE clause The USING VALUE clause allows you to specify a
BLOB expression as a value. The BLOB expression can make use of the READ_CLIENT_FILE
function to load a BLOB from a file on a client computer. For example, LOAD TABLE ... USING
VALUE READ_CLIENT_FILE('my-file'), where my-file is a file on the client computer.

● UNLOAD TABLE ... INTO CLIENT FILE clause The INTO CLIENT FILE clause allows you to
specify a file on the client computer to unload data into.

● UNLOAD TABLE ... INTO VARIABLE clause The INTO VARIABLE clause allows you to
specify a variable to unload data into.

● read_client_file and write_client_file secure features The read_client_file and
write_client_file secure features control the use of statements that can cause a client file to be read
from, or written to.

Note that in order to allow reading from or writing to a client file from a procedure, function or other
indirect statements, a callback function must be registered. The callback function is called to confirm that
the application allows the client transfer that it did not directly request.

Remote data and bulk operations

676 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “Secured features” [SQL Anywhere Server - Database Administration]
● “-sf dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “UNLOAD statement” [SQL Anywhere Server - SQL Reference]
● “LOAD TABLE statement” [SQL Anywhere Server - SQL Reference]
● “READCLIENTFILE authority” [SQL Anywhere Server - Database Administration]
● “READ_CLIENT_FILE function [String]” [SQL Anywhere Server - SQL Reference]
● “WRITECLIENTFILE authority” [SQL Anywhere Server - Database Administration]
● “WRITE_CLIENT_FILE function [String]” [SQL Anywhere Server - SQL Reference]
● “SQLSetConnectAttr extended connection attributes” [SQL Anywhere Server - Programming]

(ODBC)
● “db_register_a_callback function” [SQL Anywhere Server - Programming] (ESQL)
● “JDBC callbacks” [SQL Anywhere Server - Programming] (JDBC)

Client-side data security
SQL Anywhere provides means to ensure that the transfer of client files does not permit the unauthorized
transfer of data residing on the client computer, which is often in a different location than the database
server computer.

To do this, the database server tracks the origin of each executed statement, and determines if the
statement was received directly from the client application. When initiating the transfer of a new file from
the client, the database server includes information about the origin of the statement. The CmdSeq file
handler then allows the transfer of files for statements sent directly by the client application. If the
statement was not sent directly by the client application, the application must register a verification
callback. If no callback is registered, the transfer is denied and the statement fails with an error.

Also, the transfer of client data is not allowed until after the connection has been successfully established.
This restriction prevents unauthorized access using connection strings or login procedures.

To protect against attempts to gain access to a system by users posing as an authorized user, consider
encrypting the data that is being transferred.

SQL Anywhere also provides the following security mechanisms to control access at various levels:

● Server level security The read_client_file and write_client_file secured features allow you to
disable all client-side transfers on a server-wide basis.

● Application and DBA level security The allow_read_client_file and allow_write_client_file
database options provide access control at the database, user, or connection level. For example, an
application could set this database option to OFF after connecting to prevent itself from being used for
any client-side transfers.

● User level security READCLIENTFILE and WRITECLIENTFILE authority provides user level
access control for reading data from, and writing data to, a client computer, respectively.

Data import and export

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 677

See also
● “-sf dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “READCLIENTFILE authority” [SQL Anywhere Server - Database Administration]
● “WRITECLIENTFILE authority” [SQL Anywhere Server - Database Administration]
● “allow_read_client_file option” [SQL Anywhere Server - Database Administration]

Recovery when loading client-side data

If you need to recover a LOAD TABLE statement from your transaction log, files on the client computer
that you used to load data are likely no longer available to SQL Anywhere, or have changed, so the
original data is no longer available. To prevent this situation from occurring, make sure that logging is not
turned off. Then, specify either the WITH ROW LOGGING or WITH CONTENT LOGGING clauses
when loading the data. These clauses cause the data you are loading to be recorded in the transaction log,
so that the transaction log can be replayed later in the event of a recovery.

The WITH ROW LOGGING causes each inserted row to be recorded as an INSERT statement in the
transaction log. The WITH CONTENT LOGGING causes the inserted data to be recorded in the
transaction log in chunks for the database server to process during recovery. Both methods are suitable for
ensuring that the client-side data is available for loading during recovery. However, you cannot use WITH
CONTENT LOGGING when loading data into a database that is involved in synchronization.

When you specify any of the following LOAD TABLE statements, but do not specify a logging level,
WITH CONTENT LOGGING is the default behavior:

● LOAD TABLE...USING CLIENT FILE client-filename-expression

● LOAD TABLE...USING VALUE value-expression

● LOAD TABLE...USING COLUMN column-expression

Database rebuilds
Rebuilding a database is a specific type of import and export involving unloading and reloading your
entire database. The rebuild (unload/load) and extract tools are used to rebuild databases, to create new
databases from part of an existing one, and to eliminate unused free pages.

You can rebuild your database from Sybase Central or by using dbunload.

Note
It is good practice to make backups of your database before rebuilding, especially if you choose to replace
the original database with the rebuilt database.

With importing and exporting, the destination of the data is either into your database or out of your
database. Importing reads data into your database. Exporting writes data out of your database. Often the
information is either coming from or going to another non-SQL Anywhere database.

Remote data and bulk operations

678 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

If you specify the encryption options -ek, -ep, or -et, the LOAD TABLE statements in the reload.sql file
must include the encryption key. Hard-coding the key compromises security, so a parameter in the
reload.sql file specifies the encryption key. When you execute the reload.sql file with Interactive SQL,
you must specify the encryption key as a parameter. If you do not specify the key in the READ statement,
Interactive SQL prompts for the key.

Loading and unloading takes data and schema out of a SQL Anywhere database and then places the data
and schema back into a SQL Anywhere database. The unloading procedure produces data files and a
reload.sql file which contains table definitions required to recreate the tables exactly. Running the
reload.sql script recreates the tables and loads the data back into them.

Rebuilding a database can be a time-consuming operation, and can require a large amount of disk space.
As well, the database is unavailable for use while being unloaded and reloaded. For these reasons,
rebuilding a database is not advised in a production environment unless you have a definite goal in mind.

From one SQL Anywhere database to another
Rebuilding generally copies data out of a SQL Anywhere database and then reloads that data back into a
SQL Anywhere database. Unloading and reloading are related since you usually perform both tasks,
rather than just one or the other.

Rebuilding versus exporting
Rebuilding is different from exporting in that rebuilding exports and imports table definitions and schema
in addition to the data. The unload portion of the rebuild process produces text format data files and a
reload.sql file that contains table and other definitions. You can run the reload.sql script to recreate the
tables and load the data into them.

Consider extracting a database (creating a new database from an old database) if you are using SQL
Remote or MobiLink.

Rebuilding replicating databases
The procedure for rebuilding a database depends on whether the database is involved in replication or not.
If the database is involved in replication, you must preserve the transaction log offsets across the
operation, as the Message Agent requires this information. If the database is not involved in replication,
the process is simpler.

See also
● “Minimize downtime when rebuilding a database” on page 686
● “Rebuilding databases involved in synchronization or replication” on page 682
● “Rebuilding databases not involved in synchronization or replication” on page 681
● “Changing a database from one collation to another” [SQL Anywhere Server - Database

Administration]
● “Refreshing a manual materialized view” on page 58
● “Interactive SQL utility (dbisql)” [SQL Anywhere Server - Database Administration]
● “Internal versus external unloads and reloads” [SQL Anywhere Server - Database Administration]
● “Database extraction” on page 686
● “Backup and data recovery” [SQL Anywhere Server - Database Administration]

Data import and export

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 679

Reasons to rebuild databases

There are several reasons to consider rebuilding your database. You might rebuild your database if you
want to do any of the following:

● Upgrade your database file format Some new features are made available by applying the
Upgrade utility, but others require a database file format upgrade, which is performed by unloading
and reloading the database.

New versions of the SQL Anywhere database server can be used without upgrading your database. If
you want to use features of the new version that require access to new system tables or database
options, you must use the Upgrade utility to upgrade your database. The Upgrade utility does not
unload or reload any data.

If you want to use the new version of SQL Anywhere that relies on changes in the database file
format, you must unload and reload your database. You should back up your database before
rebuilding the database.

Note
If you are upgrading from version 9 or earlier, you must rebuild the database file. If you are upgrading
from version 10.0.0 or later, you can use the Upgrade utility or rebuild your database.

● Reclaim disk space Databases do not shrink if you delete data. Instead, any empty pages are
simply marked as free so they can be used again. They are not removed from the database unless you
rebuild it. Rebuilding a database can reclaim disk space if you have deleted a large amount of data
from your database and do not anticipate adding more.

● Improve database performance Rebuilding databases can improve performance. Since the
database can be unloaded and reloaded in order by primary keys, access to related information can be
faster as related rows may appear on the same or adjacent pages.

Note
If you detect that performance is poor because a table is highly fragmented, you can reorganize the table.

See also
● “Upgrading to SQL Anywhere 12” [SQL Anywhere 12 - Changes and Upgrading]
● “Upgrading SQL Anywhere software and databases in a database mirroring system” [SQL Anywhere

12 - Changes and Upgrading]
● “REORGANIZE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “Upgrade utility (dbupgrad)” [SQL Anywhere Server - Database Administration]
● “Unload utility (dbunload)” [SQL Anywhere Server - Database Administration]

Using the Unload utility to rebuild databases

You can use the Unload utility (dbunload) to unload an entire database into a text comma-delimited
format and create the necessary SQL script files to completely recreate your database. For example, you

Remote data and bulk operations

680 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

can use these files to create SQL Remote extractions or build new copies of your database with the same
or a slightly modified structure.

Use the Unload utility (dbunload) when you:

● want to rebuild your database or extract data from your database

● want to export in text format

● need to process large amounts of data quickly

● have flexible file format requirements

Note
The Unload utility (dbunload) and the Unload Database Wizard are functionally equivalent. You can
use them interchangeably to produce the same results. You can also unload a database using the
Interactive SQL OUTPUT statement or the SQL UNLOAD statement.

See also
● “Rebuilding databases not involved in synchronization or replication” on page 681
● “Rebuilding databases involved in synchronization or replication” on page 682

Rebuilding databases not involved in synchronization or replication

Using the Unload utility (dbunload), you can unload database an rebuild it to a new database, reload it to
an existing database, or replace an existing database.

Prerequisites

The following procedure should be used only if your database is not involved in synchronization or
replication.

Context and remarks

The -an and -ar options only apply to connections to a personal server, or connections to a network server
over shared memory. The -ar and -an options should also execute more quickly than the Unload
Database Wizard in Sybase Central, but -ac is slower than the Unload Database Wizard.

You can use other dbunload options to specify a running or non-running database and database
parameters.

Rebuild a database not involved in synchronization or replication

1. Run the Unload utility (dbunload), specifying one of the following options:

Data import and export

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 681

To do
this...

Use
this
optio
n...

Example

Rebuild
to a new
database

-an dbunload -c
"DBF=demo.db;UID=DBA;PWD=sql"
 -an DemoBackup.db

Reload
to an ex-
isting da-
tabase

-ac dbunload -c
"DBF=demo.db;UID=DBA;PWD=sql"
 -ac "UID=DBA;PWD=sql;DBF=mynewdemo.db"

Replace
an exist-
ing data-
base

-ar dbunload -c
"DBF=demo.db;UID=DBA;PWD=sql"
 -ar

If you use one of these options, no interim copy of the data is created on disk, so you do not need to
specify an unload directory on the command line. This provides greater security for your data.

2. Shut down the database and archive the transaction log before using the reloaded database.

Results

The database is unloaded and reloaded to the specified location.

Next

None.

See also
● “Unload utility (dbunload)” [SQL Anywhere Server - Database Administration]

Rebuilding databases involved in synchronization or replication

There are two ways of rebuilding a database involved in synchronization or replication. The first method
uses the dbunload -ar option to make the unload and reload occur in a way that does not interfere with
synchronization or replication. The second method is a manual method of doing the same task.

Prerequisites

DBA authority.

All subscriptions must be synchronized before rebuilding a database participating in MobiLink
synchronization.

Remote data and bulk operations

682 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Context and remarks

This section applies to SQL Anywhere MobiLink clients (clients using dbmlsync) and SQL Remote.

If a database is participating in synchronization or replication, particular care needs to be taken if you
want to rebuild the database. Synchronization and replication are based on the offsets in the transaction
log. When you rebuild a database, the offsets in the old transaction log are different than the offsets in the
new log, making the old log unavailable. For this reason, good backup practices are especially important
when participating in synchronization or replication.

Note
You can use other dbunload options to specify a running or non-running database and database
parameters.

Rebuild a database involved in synchronization or replication (dbunload)

1. Shut down the database.

2. Perform a full off-line backup by copying the database and transaction log files to a secure location.

3. Run the following dbunload command to rebuild the database:

dbunload -c connection-string -ar directory

The connection-string is a connection with DBA authority, and directory is the directory used in your
replication environment for old transaction logs. There can be no other connections to the database.

The -ar option only applies to connections to a personal server, or connections to a network server
over shared memory.

4. Shut down the new database and then perform the validity checks that you would usually perform
after restoring a database.

5. Start the database using any production options you need. You can now allow user access to the
reloaded database.

Rebuild a database involved in synchronization or replication, with manual intervention

1. Shut down the database.

2. Perform a full off-line backup by copying the database and transaction log files to a secure location.

3. Run the dbtran utility to display the starting offset and ending offset of the database's current
transaction log file.

Note the ending offset for use in Step 8.

4. Rename the current transaction log file so that it is not modified during the unload process, and place
this file in the dbremote off-line logs directory.

5. Rebuild the database.

Data import and export

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 683

6. Shut down the new database.

7. Erase the current transaction log file for the new database.

8. Use dblog on the new database with the ending offset noted in Step 3 as the -z parameter, and also set
the relative offset to zero.

dblog -x 0 -z 0000698242 -ir -is database-name.db

9. When you run the Message Agent, provide it with the location of the original off-line directory on its
command line.

10. Start the database. You can now allow user access to the reloaded database.

Results

The database is reloaded and started.

Next

None.

See also
● “Unload utility (dbunload)” [SQL Anywhere Server - Database Administration]
● “Validating a database” [SQL Anywhere Server - Database Administration]
● “Database rebuilds” on page 678

Using the UNLOAD TABLE statement to rebuild databases

The UNLOAD TABLE statement lets you export data efficiently in a specific character encoding.
Consider using the UNLOAD TABLE statement to rebuild databases when you want to export data in
text format.

Impact on the database
The UNLOAD TABLE statement places an exclusive lock on the entire table.

See also
● “UNLOAD statement” [SQL Anywhere Server - SQL Reference]

Export table data or table schema

The Unload utility has options that allow you to unload only table data or the table schema.

Prerequisites

You must be the owner of the table or have DBA authority.

Remote data and bulk operations

684 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Context and remarks

The statements required to recreate the schema and reload the specified tables are written to reload.sql in
the local current directory.

You can unload more than one table by separating the table names with a comma delimiter.

Export table data (command line)

● Run the dbunload command, specifying: connection parameters using the -c option, table(s) you want
to export data for using the -t option, and whether you want to unload only data by specifying the -d
option.

For example, to export the data from the Employees table, run the following command:

dbunload -c "DBN=demo;UID=DBA;PWD=sql" -d -t Employees C:\MyDirectory

Export table schema (command line)

● Run the dbunload command, specifying: connection parameters using the -c option, the table(s) you
want to export data for using the -t option, and whether you want to unload only the schema by
specifying the -n option.

For example, to export the schema for the Employees table, run the following command:

dbunload -c "DBN=demo;UID=DBA;PWD=sql" -n -t Employees C:\MyDirectory

Results

The table data, or table schema, are exported to the specified directory.

Next

None.

Reload a database

Reloading involves creating an empty database file and using the reload.sql file to create the schema and
insert all the data unloaded from another SQL Anywhere database into the newly created tables. You can
reload databases from the command line.

Reload a database (command line)

1. Run the dbinit utility to create a new empty database file.

For example, the following command creates a file named mynewdemo.db.

dbinit mynewdemo.db

2. Execute the reload.sql script.

Data import and export

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 685

For example, the following command loads and runs the reload.sql script in the current directory.

dbisql -c "DBF=mynewdemo.db;UID=DBA;PWD=sql" reload.sql

Minimize downtime when rebuilding a database

It is recommended that you make backup copies of your database files before rebuilding a database.

Minimize the downtime during a rebuild

Verify that no other scheduled backups can rename the production database log. If the log is renamed, the
transactions from the renamed logs must be applied to the rebuilt database in the correct order.

1. Using dbbackup -r, create a backup of the database and log, and rename the log.

2. Rebuild the backed up database on another computer.

3. Perform another dbbackup -r on the production server to rename the transaction log.

4. Run dbtran on the transaction log and apply the transactions to the rebuilt server.

5. Shut down the production server and copy the database and log.

6. Copy the rebuilt database onto the production server.

7. Run dbtran on the log from Step 5.

8. Start the server on the rebuilt database, but do not allow users to connect.

9. Apply the transactions from Step 8.

10. Allow users to connect.

See also
● “Backup utility (dbbackup)” [SQL Anywhere Server - Database Administration]
● “Log Translation utility (dbtran)” [SQL Anywhere Server - Database Administration]

Database extraction

Database extraction is used by SQL Remote. Extracting creates a remote SQL Anywhere database from a
consolidated SQL Anywhere database.

You can use the Sybase Central Extract Database Wizard or the Extraction utility to extract databases.
The Extraction utility (dbxtract) is the recommended way of creating remote databases from a
consolidated database for use in SQL Remote replication.

Remote data and bulk operations

686 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “Extraction utility (dbxtract)” [SQL Remote]
● “Remote database extraction” [SQL Remote]
● “Deploying remote databases” [MobiLink - Client Administration]

Database migration to SQL Anywhere

Use the sa_migrate system procedures or the Migrate Database Wizard, to import tables from the
following sources:

● SQL Anywhere
● UltraLite
● Sybase Adaptive Server Enterprise
● IBM DB2
● Microsoft SQL Server
● Microsoft Access
● Oracle
● MySQL
● Advantage Database Server
● generic ODBC driver that connects to a remote server

Before you can migrate data using the Migrate Database Wizard, or the sa_migrate set of system
procedures, you must first create a target database. The target database is the database into which data is
migrated.

See also
● “SQL Anywhere database creation” [SQL Anywhere Server - Database Administration]

Use the Migrate Database Wizard

You can create a remote server to connect to the remote database, and an external login (if required) to
connect the current user to the remote database using the Migrate Database Wizard.

Import remote tables (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with DBA authority.

2. Click Tools » SQL Anywhere 12 » Migrate Database.

3. Click Next.

4. Select the target database, and click Next.

5. Select the remote server you want to use to connect to the remote database, and then click Next.

Data import and export

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 687

If you have not created a remote server, click Create Remote Server Now and follow the instructions
in the Create Remote Server Wizard.

You can also create an external login for the remote server. By default, SQL Anywhere uses the user
ID and password of the current user when it connects to a remote server on behalf of that user.
However, if the remote server does not have a user defined with the same user ID and password as the
current user, you must create an external login. The external login assigns an alternate login name and
password for the current user so that user can connect to the remote server.

6. Select the tables that you want to migrate, and then click Next.

You cannot migrate system tables, so no system tables appear in this list.

7. Select the user that will own the tables on the target database, and then click Next.

If you have not created a user, click Create User Now and follow the instructions in the Create User
Wizard.

8. Select whether you want to migrate the data and/or the foreign keys from the remote tables and
whether you want to keep the proxy tables that are created for the migration process, and then click
Next.

9. Click Finish.

See also
● “The CREATE SERVER statement” on page 696
● “New user creation” [SQL Anywhere Server - Database Administration]

Use the sa_migrate system procedures

Use the sa_migrate system procedures to migrate remote data. Use the extended method if you want to
remove tables or foreign key mappings.

Migrating all tables using the sa_migrate system procedures
Supplying NULL for both the table-name and owner-name parameters migrates all the tables in the
database, including system tables.

Migrate all tables for a remote user

Tables that have the same name, but different owners, in the remote database all belong to one owner in
the target database. For these reasons, you should migrate tables associated with one owner at a time.

If you do not want all the migrated tables to be owned by the same user on the target database, you must
run the sa_migrate procedure for each owner on the target database, specifying the local-table-owner and
owner-name arguments.

1. Create a target database.

Remote data and bulk operations

688 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

2. From Interactive SQL, connect to the target database.

3. Create a remote server to connect to the remote database.

4. Create an external login to connect to the remote database. This is only required when the user has
different passwords on the target and remote databases, or when you want to log in using a different
user ID on the remote database than the one you are using on the target database.

5. Create a local user who will own the migrated tables in the target database.

6. In the SQL Statements pane, run the sa_migrate system procedure. For example:

CALL sa_migrate('local_user1', 'rmt_server1', NULL, 'remote_user1',
NULL, 1, 1, 1);

This procedure calls several procedures in turn and migrates all the remote tables belonging to the user
remote_user1 using the specified criteria.

Migrating individual tables using the sa_migrate system procedures
Do not supply NULL for both the table-name and owner-name parameters. Doing so migrates all the
tables in the database, including system tables. As well, tables that have the same name but different
owners in the remote database all belong to one owner in the target database. It is recommended that you
migrate tables associated with one owner at a time.

Import remote tables (with modifications)

1. Create a target database.

2. From Interactive SQL, connect to the target database.

3. Create a remote server to connect to the remote database.

4. Create an external login to connect to the remote database. This is only required when the user has
different passwords on the target and remote databases, or when you want to log in using a different
user ID on the remote database than the one you are using on the target database.

5. Create a local user who will own the migrated tables in the target database.

6. Run the sa_migrate_create_remote_table_list system procedure. For example:

CALL sa_migrate_create_remote_table_list('rmt_server1',
 NULL, 'remote_user1', 'mydb');

You must specify a database name for Adaptive Server Enterprise and Microsoft SQL Server
databases.

This populates the dbo.migrate_remote_table_list table with a list of remote tables to migrate. You can
delete rows from this table for remote tables that you do not want to migrate.

7. Run the sa_migrate_create_tables system procedure. For example:

CALL sa_migrate_create_tables('local_user1');

Data import and export

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 689

This procedure takes the list of remote tables from dbo.migrate_remote_table_list and creates a proxy
table and a base table for each remote table listed. This procedure also creates all primary key indexes
for the migrated tables.

8. If you want to migrate the data from the remote tables into the base tables on the target database, run
the sa_migrate_data system procedure. For example:

Execute the following statement:

CALL sa_migrate_data('local_user1');

This procedure migrates the data from each remote table into the base table created by the
sa_migrate_create_tables procedure.

If you do not want to migrate the foreign keys from the remote database, you can skip to step 10.

9. Run the sa_migrate_create_remote_fks_list system procedure. For example:

CALL sa_migrate_create_remote_fks_list('rmt_server1');

This procedure populates the table dbo.migrate_remote_fks_list with the list of foreign keys
associated with each of the remote tables listed in dbo.migrate_remote_table_list.

You can remove any foreign key mappings you do not want to recreate on the local base tables.

10. Run the sa_migrate_create_fks system procedure. For example:

CALL sa_migrate_create_fks('local_user1');

This procedure creates the foreign key mappings defined in dbo.migrate_remote_fks_list on the base
tables.

11. If you want to drop the proxy tables that were created for migration purposes, run the
sa_migrate_drop_proxy_tables system procedure. For example:

CALL sa_migrate_drop_proxy_tables('local_user1');

This procedure drops all proxy tables created for migration purposes and completes the migration
process.

See also
● “SQL Anywhere database creation” [SQL Anywhere Server - Database Administration]
● “The CREATE SERVER statement” on page 696
● “Creating external logins” on page 711
● “New user creation” [SQL Anywhere Server - Database Administration]
● “sa_migrate system procedure” [SQL Anywhere Server - SQL Reference]
● “sa_migrate_drop_proxy_tables system procedure” [SQL Anywhere Server - SQL Reference]
● “sa_migrate_create_fks system procedure” [SQL Anywhere Server - SQL Reference]
● “sa_migrate_create_remote_fks_list system procedure” [SQL Anywhere Server - SQL Reference]
● “sa_migrate_data system procedure” [SQL Anywhere Server - SQL Reference]
● “sa_migrate_create_tables system procedure” [SQL Anywhere Server - SQL Reference]
● “sa_migrate_create_remote_table_list system procedure” [SQL Anywhere Server - SQL Reference]

Remote data and bulk operations

690 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SQL script files

SQL script files are text files that contain SQL statements, and are useful if you want to execute the same
SQL statements repeatedly. Script files can be built manually, or they can be built automatically by
database utilities. The Unload utility (dbunload), for example, creates a script file consisting of the SQL
statements necessary to recreate a database.

Creating SQL script files
You can use any text editor that you like to create SQL script files but Interactive SQL is recommended
for creating SQL script files. You can include comment lines along with the SQL statements to be
executed.

See also
● “Comments” [SQL Anywhere Server - SQL Reference]

Run SQL script files in Interactive SQL

You can execute SQL script files in any of the following ways:

● You can run a SQL script file without loading it into the SQL Statements pane.

Run a SQL script file immediately

1. In Interactive SQL, click File » Run Script.

2. Locate the file, and click Open.

The contents of the specified file are run immediately. A Status window appears to show the
execution progress.

The Run Script menu item is the equivalent of a READ statement. See below for an example of the
READ statement.

● You can also run a SQL script file without loading it into the SQL Statements pane with the
Interactive SQL READ statement.

Run a SQL script file using the Interactive SQL READ statement

● In the SQL Statements pane, type the following statement:

READ 'c:\\filename.sql';

In this statement, c:\filename.sql is the path, name, and extension of the file. Single quotation marks
(as shown) are required only if the path contains spaces.

● You can supply a SQL script file as a command line argument for Interactive SQL.

Data import and export

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 691

Run a SQL script file in batch mode (command line)

● Run the dbisql utility and supply a SQL script file as a command line argument.

For example, the following command runs the SQL script file myscript.sql against the SQL
Anywhere sample database.

dbisql -c "DSN=SQL Anywhere 12 Demo" myscript.sql

● You can load a SQL script file into the SQL Statements pane and execute it directly from there.

Load a SQL script from a file into the SQL Statements pane

1. Click File » Open.

2. Locate the file, and click Open.

The statements are displayed in the SQL Statements pane where you read, edit, or execute them.

On Windows platforms you can make Interactive SQL the default editor for .sql script files. This lets
you double-click the file so that its contents appears in the SQL Statements pane of Interactive SQL.

● You can also load a SQL script file into the SQL Statements pane from your favorites.

See also
● “READ statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “Working with files in Interactive SQL” [SQL Anywhere Server - Database Administration]
● “Saving SQL script files and connections in a favorites list” [SQL Anywhere Server - Database

Administration]

Writing database output to a file

In Interactive SQL, the result set data (if any) for a statement remains on the Results tab in the Results
pane only until the next statement is executed. To keep a record of your data, you can save the output of
each statement to a separate file. If statement1 and statement2 are two SELECT statements, then you can
output the results of executing them to file1 and file2, respectively, as follows:

statement1; OUTPUT TO file1;
statement2; OUTPUT TO file2;

For example, the following statements save the result of a query to a file named Employees.txt:

SELECT * FROM Employees;
OUTPUT TO 'C:\\My Documents\\Employees.txt';

See also
● “OUTPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “Export data with the UNLOAD statement” on page 665

Remote data and bulk operations

692 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Adaptive Server Enterprise compatibility
You can import and export files between SQL Anywhere and Adaptive Server Enterprise using the BCP
FORMAT clause. If you are exporting BLOB data from SQL Anywhere for use in Adaptive Server
Enterprise, use the BCP format clause with the UNLOAD TABLE statement.

When using the BCP out command to export files from Adaptive Server Enterprise so that you can import
the data into SQL Anywhere, the data must be in text/ASCII format, and it must be comma delimited.
You can use the -c option for the BCP out command to export the data in text/ASCII format. The -t option
lets you change the delimiter, which is a tab by default. If you do not change the delimiter, then you must
specify DELIMITED BY '\x09' in the LOAD TABLE statement when you import the data into your
SQL Anywhere database.

See also
● “LOAD TABLE statement” [SQL Anywhere Server - SQL Reference]
● “UNLOAD statement” [SQL Anywhere Server - SQL Reference]

Remote data access
SQL Anywhere remote data access gives you access to data in other data sources. You can use this feature
to migrate data into a SQL Anywhere database. You can also use this feature to query data across
databases.

With remote data access you can:

● Use SQL Anywhere to move data from one location to another using insert-select.

● Access data in relational databases such as Sybase, Oracle, and IBM DB2.

● Access desktop data such as Excel spreadsheets, Microsoft Access databases, FoxPro, and text files.

● Access any other data source that supports an ODBC interface.

● Perform joins between local and remote data, although performance is much slower than if all the data
is in a single SQL Anywhere database.

● Perform joins between tables in separate SQL Anywhere databases. Performance limitations here are
the same as with other remote data sources.

● Use SQL Anywhere features on data sources that would normally not have that ability. For instance,
you could use a Java function against data stored in Oracle, or perform a subquery on spreadsheets.
SQL Anywhere compensates for features not supported by a remote data source by operating on the
data after it is retrieved.

● Access remote servers directly using passthrough mode.

● Execute remote procedure calls to other servers.

Remote data access

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 693

SQL Anywhere allows access to the following external data sources:

● SQL Anywhere
● Adaptive Server Enterprise
● Advantage Database Server
● IBM DB2
● Microsoft Access
● Microsoft SQL Server
● MySQL
● Oracle
● Sybase IQ
● UltraLite
● Other ODBC data sources

Note
You cannot create a remote server for an UltraLite database running on Mac OS X.

For platform availability, see http://www.sybase.com/detail?id=1002288.

Remote table mappings
SQL Anywhere presents tables to a client application as if all the data in the tables were stored in the
database to which the application is connected. Internally, when a query involving remote tables is
executed, the storage location is determined, and the remote location is accessed so that data can be
retrieved.

To manage remote table mappings and remote server definitions, you can use Sybase Central or you can
use a tool such as Interactive SQL to execute the SQL statements.

Caution
Some remote servers, such as Microsoft Access, Microsoft SQL Server, and Sybase Adaptive Server
Enterprise do not preserve cursors across COMMITs and ROLLBACKs. With these remote servers, you
cannot use the Data tab in the SQL Anywhere 12 plug-in to view or modify the contents of a proxy table.
However, you can still use Interactive SQL to view and edit the data in these proxy tables as long as
autocommit is turned off (this is the default behavior in Interactive SQL). Other RDBMSs, including
Oracle, IBM DB2, and SQL Anywhere do not have this limitation.

Creating proxy tables that map to remote data

To have remote tables appear as local tables to the client, you create local proxy tables that map to the
remote data.

Prerequisites

DBA authority.

Remote data and bulk operations

694 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

http://www.sybase.com/detail?id=1002288

Context and remarks

Many.

Create a proxy table that maps to remote data

1. Define the server where the remote data is located. This specifies the type of server and location of the
remote server.

2. Map the local user login information to the remote server user login information if the logins on the
two servers are different.

3. Create the proxy table definition. This specifies the mapping of a local proxy table to the remote table.
This includes the server where the remote table is located, the database name, owner name, table
name, and column names of the remote table.

Results

The proxy table is created and is mapped to the remote table.

Next

None.

See also
● “Creating proxy tables (Sybase Central)” on page 714
● “Proxy tables” on page 712
● “Remote servers” on page 696
● “External logins” on page 710

Server classes
A server class specifies the access method used to interact with the server. A server class is assigned to
each remote server. Different types of remote servers require different access methods. The server class
provides SQL Anywhere detailed server capability information. SQL Anywhere adjusts its interaction
with the remote server based on those capabilities.

The ODBC-based server classes are:

● saodbc for SQL Anywhere.

● ulodbc for UltraLite.

Note
You cannot create a remote server for an UltraLite database running on Mac OS X.

● adsodbc for Advantage Database Server.

Remote data access

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 695

● aseodbc for Sybase SQL Server and Adaptive Server Enterprise (version 10 and later).

● db2odbc for IBM DB2.

● iqodbc for Sybase IQ.

● msaccessodbc for Microsoft Access.

● mssodbc for Microsoft SQL Server.

● mysqlodbc for MySQL.

● odbc for all other ODBC data sources.

● oraodbc for Oracle servers (version 8.0 and later).

Note
When using remote data access, if you use an ODBC driver that does not support Unicode, then character
set conversion is not performed on data coming from that ODBC driver.

See also
● “Server classes for remote data access” on page 729

Remote servers

Before you can map remote objects to a local proxy table, you must define the remote server where the
remote object is located. When you define a remote server, an entry is added to the ISYSSERVER system
table for the remote server.

The CREATE SERVER statement

Use the CREATE SERVER statement to set up remote server definitions.

For ODBC connections, each remote server corresponds to an ODBC data source. For some systems,
including SQL Anywhere, each data source describes a database, so a separate remote server definition is
needed for each database.

You must have RESOURCE authority to create a remote server.

On Unix platforms, you need to reference the ODBC driver manager as well.

See also
● “Creating remote servers” on page 698
● “CREATE SERVER statement” [SQL Anywhere Server - SQL Reference]

Remote data and bulk operations

696 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Example 1
The following statement creates an entry in the ISYSSERVER system table for the Adaptive Server
Enterprise server called RemoteASE:

CREATE SERVER RemoteASE
CLASS 'ASEJDBC'
USING 'rimu:6666';

● RemoteASE is the name of the remote server.

● ASEJDBC is a keyword indicating that the remote server is Adaptive Server Enterprise and the
connection to it is JDBC-based.

● rimu:6666 is the computer name and the TCP/IP port number where the remote server is located.

Example 2
The following statement creates an entry in the ISYSSERVER system table for the ODBC-based SQL
Anywhere server named RemoteSA:

CREATE SERVER RemoteSA
CLASS 'SAODBC'
USING 'test4';

● RemoteSA is the name by which the remote server is known within this database.

● SAODBC is a keyword indicating that the server is SQL Anywhere and the connection to it uses
ODBC.

● test4 is the ODBC data source name (DSN).

Example 3
On Unix platforms, the following statement creates an entry in the ISYSSERVER system table for the
ODBC-based SQL Anywhere server named RemoteSA:

CREATE SERVER RemoteSA
CLASS 'SAODBC'
USING 'driver=SQL Anywhere 12;dsn=my_sa_dsn';

● RemoteSA is the name by which the remote server is known within this database.

● SAODBC is a keyword indicating that the server is SQL Anywhere and the connection to it uses
ODBC.

● USING is the reference to the ODBC driver manager.

Example 4
On Unix platforms the following statement creates an entry in the ISYSSERVER system table for the
ODBC-based Adaptive Server Enterprise server named RemoteASE:

CREATE SERVER RemoteASE
CLASS 'ASEODBC'
USING '/opt/sybase/ase_odbc_1500/DataAccess/ODBC/lib/
libsybdrvodb.so;dsn=my_ase_dsn';

Remote data access

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 697

● RemoteASE is the name by which the remote server is known within this database.

● ASEODBC is a keyword indicating that the server is Adaptive Server Enterprise and the connection
to it uses ODBC.

● USING is the reference to the ODBC driver manager.

Creating remote servers

Administrators can use Sybase Central to create remote server definitions.

Prerequisites

DBA authority.

Context and remarks

Many.

Create a remote server

1. Use the SQL Anywhere 12 plug-in to connect to the host database as a user with DBA authority.

2. In the left pane, double-click Remote Servers.

3. Click File » New » Remote Server.

4. In the What Do You Want To Name The New Remote Server field, type a name for the remote
server, and then click Next.

5. Select a remote server type, and then click Next.

6. Select a connection type, and in the What Is The Connection Information field type the connection
information:

● For ODBC, supply a data source name or specify the ODBC Driver = parameter.

● For JDBC, supply a URL in the form computer-name:port-number.

The data access method (JDBC or ODBC) is the method used by SQL Anywhere to access the remote
database. This is not related to the method used by Sybase Central to connect to your database.

7. Click Next.

8. Specify whether you want the remote server to be read-only and then click Next.

9. Click Create An External Login For The Current User and complete the required fields.

By default, SQL Anywhere uses the user ID and password of the current user when it connects to a
remote server on behalf of that user. However, if the remote server does not have a user defined with

Remote data and bulk operations

698 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

the same user ID and password as the current user, you must create an external login. The external
login assigns an alternate login name and password for the current user so that user can connect to the
remote server.

10. Click Test Connection to test the remote server connection.

11. Click Finish.

Results

A remote server is created with the specified definitions.

Next

None.

See also
● “CREATE EXTERNLOGIN statement” [SQL Anywhere Server - SQL Reference]

Deleting remote servers

Administrators can delete remote servers in Sybase Central.

Prerequisites

DBA authority.

All remote tables defined on the server must already be dropped for this action to succeed.

Context and remarks

Many.

Delete a remote server

1. Use the SQL Anywhere 12 plug-in to connect to the host database.

2. In the left pane, double-click Remote Servers.

3. Select the remote server, and then click Edit » Delete.

Results

The remote server is deleted.

Next

None.

Remote data access

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 699

See also
● “DROP SERVER statement” [SQL Anywhere Server - SQL Reference]

Altering remote servers (Sybase Central)

You can alter the properties of a remote server in Sybase Central.

Prerequisites

DBA authority.

Context and remarks

Changes to the remote server do not take effect until the next connection to the remote server.

Alter the properties of a remote server

1. Use the SQL Anywhere 12 plug-in to connect to the host database.

2. In the left pane, double-click Remote Servers.

3. Select the remote server, and then click File » Properties.

4. Alter the remote server settings, and then click OK.

Results

The remote server properties are altered.

Next

None.

See also
● “ALTER SERVER statement” [SQL Anywhere Server - SQL Reference]

Altering remote servers (SQL)
Administrators can alter the properties of a remote server in Interactive SQL.

Prerequisites

DBA authority.

Context and remarks

The ALTER SERVER statement can also be used to enable or disable a server's known capabilities.

Remote data and bulk operations

700 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Alter the properties of a remote server

Changes to the remote server do not take effect until the next connection to the remote server.

1. Connect to the host database.

2. Execute an ALTER SERVER statement.

Results

The remote server properties are altered.

Next

None.

Example

The following statement changes the server class of the server named RemoteASE to aseodbc. In this
example, the Data Source Name for the server is RemoteASE.

ALTER SERVER RemoteASE
CLASS 'aseodbc';

See also
● “ALTER SERVER statement” [SQL Anywhere Server - SQL Reference]

Listing the tables on a remote server

You can view a limited or comprehensive list of all the tables on a remote server using a system
procedure.

Prerequisites

None.

Context and remarks

Many.

List the tables on a remote server

● Call the sp_remote_tables system procedure to return a list of the tables on a remote server.

If you specify table_name or table_owner, the list of tables is limited to only those that match.

Results

A list of all the tables, or a limited list of tables, is returned.

Remote data access

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 701

Next

None.

Example

For example, to get a list of all the Microsoft Excel worksheets available from a remote server named
excel, execute the following statement:

CALL sp_remote_tables excel;

Or to get a list of all the tables in the production database in an Adaptive Server Enterprise server named
asetest, owned by fred, execute the following statement:

CALL sp_remote_tables asetest, null, fred, production;

See also
● “sp_remote_tables system procedure” [SQL Anywhere Server - SQL Reference]

Remote server capabilities

The sp_servercaps system procedure displays information about a remote server's capabilities. SQL
Anywhere uses this capability information to determine how much of a SQL statement can be passed to a
remote server.

You can also view capability information for remote servers by querying the SYSCAPABILITY and
SYSCAPABILITYNAME system views. These system views are empty until after SQL Anywhere first
connects to a remote server.

When using the sp_servercaps system procedure, the server-name specified must be the same server-
name used in the CREATE SERVER statement.

Execute the stored procedure sp_servercaps as follows:

CALL sp_servercaps server-name;

See also
● “sp_servercaps system procedure” [SQL Anywhere Server - SQL Reference]
● “SYSCAPABILITY system view” [SQL Anywhere Server - SQL Reference]
● “SYSCAPABILITYNAME system view” [SQL Anywhere Server - SQL Reference]
● “CREATE SERVER statement” [SQL Anywhere Server - SQL Reference]

Directory access servers
A directory access server is a remote server that gives you access to the local file structure of the
computer running the database server. Once you are connected to the directory access server, you use

Remote data and bulk operations

702 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

proxy tables to access any subdirectories on the computer. Database users must have an external login to
use the directory access server.

You cannot alter a directory access server after it is created. If you need to change a directory access
server, you must drop it and recreate it with different settings. You must first drop any proxy tables that
reference the directory access server and then recreate them after recreating the directory access server.

The following describes the format of the proxy table.

● permissions VARCHAR(10) A Posix-style permission string such as "drwxrwxrwx".

● size BIGINT The size of the file in bytes.

● access_date_time TIMESTAMP The date and time the file was last accessed (for example,
2010-02-08 11:00:24.000).

● modified_date_time TIMESTAMP The date and time the file was last modified (for example,
2009-07-28 10:50:11.000).

● create_date_time TIMESTAMP The date and time the file was created (for example, 2008-12-18
10:32:26.000).

● owner VARCHAR(20) The user ID of the file's creator (for example, "root" on Linux). For
Windows, this value is always "0".

● file_name VARCHAR(260) The name of the file, including a relative path (for example, bin
\perl.exe).

● contents LONG BINARY The contents of the file when this column is explicitly referenced in the
result set.

Queries on directory access proxy tables

To improve performance, avoid selecting the contents column when using queries that result in a table
scan. Whenever possible, use the file name to retrieve the contents of a directory access proxy table.
Using the file name as a predicate improves performance since the directory access server only reads the
specified file. If the file name is unknown, first run a query to retrieve the list of files, and then issue a
query for each file in the list to retrieve its contents.

Example 1
The following query may run slowly (depending on the number and size of the files in the directory)
because the directory access server must read the contents of all files in the directory to find the one(s)
that match the predicate:

SELECT contents FROM DirAccessProxyTable WHERE filename LIKE 'something%';

Example 2
The following query returns the contents of the single file without causing a directory scan:

Remote data access

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 703

SELECT contents FROM DirAccessProxyTable WHERE filename = 'something';

Example 3
The following query may also run slowly (depending on the number and size of the files in the directory)
because the directory access server must do a table scan due to the presence of the disjunct (OR):

SELECT contents FROM DirAccessProxyTable WHERE filename = 'something' OR
SIZE = 10;

Example 4
As an alternative to putting the filename as a literal constant in the query, you can put the file name value
into a variable and use the variable in the query:

DECLARE @filename LONG VARCHAR;
SET @filename = 'something';
SELECT contents FROM DirAccessProxyTable WHERE filename = @filename;

Delimiter consistency

When querying directory access proxy tables, you must be consistent in your use of path name delimiters.
It is best to use your platform's native delimiter: on Windows use \ and on Unix use /. Although the server
also recognizes / as a delimiter on Windows, remote data access always returns file names using a
consistent delimiter; therefore a query with inconsistent delimiters does not return any rows.

Example
The following query does not return any rows:

SELECT contents FROM DirAccessProxyTable WHERE filename = 'some/dir\thing';

Creating directory access servers (Sybase Central)

Administrators can create directory access servers using the Create Directory Access Server Wizard in
Sybase Central.

Prerequisites

DBA authority.

RESOURCE authority.

Context and remarks

When you create a directory access server you can control the number of subdirectories that can be
accessed and whether the directory access server can be used to modify existing files.

Create and configure a directory access server

1. Create a remote server for the directory (requires DBA authority).

Remote data and bulk operations

704 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

2. Create external logins for the database users who can use the directory access server (requires DBA
authority).

3. Create proxy tables to access the directories on the computer (requires RESOURCE authority).

1. Use the SQL Anywhere 12 plug-in to connect to the host database as a user with DBA authority.

2. In the left pane, double-click Directory Access Servers.

3. Click File » New » Directory Access Server.

4. Follow the instructions in the Create Directory Access Server Wizard.

Results

A directory access server is created and configured.

Next

None.

See also
● “CREATE SERVER statement” [SQL Anywhere Server - SQL Reference]
● “CREATE EXTERNLOGIN statement” [SQL Anywhere Server - SQL Reference]
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “CREATE EXISTING TABLE statement” [SQL Anywhere Server - SQL Reference]

Creating directory access servers (SQL)
Administrators can create directory access servers using the CREATE SERVER statement in Interactive
SQL.

Prerequisites

DBA authority.

RESOURCE authority.

Context and remarks

Many.

Create and configure a directory access server

1. Create a remote server for the directory (requires DBA authority).

2. Create external logins for the database users who can use the directory access server (requires DBA
authority).

3. Create proxy tables to access the directories on the computer (requires RESOURCE authority).

Remote data access

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 705

1. Connect to the host database as a user with DBA authority.

2. Create a remote server using the CREATE SERVER statement.

For example:

CREATE SERVER my_dir_tree
CLASS 'directory'
USING 'root=c:\Program Files';

3. Create an external login using the CREATE EXTERNLOGIN statement.

For example:

CREATE EXTERNLOGIN DBA TO my_dir_tree;

4. Create a proxy table for the directory using the CREATE EXISTING TABLE statement.

For example:

CREATE EXISTING TABLE my_program_files AT 'my_dir_tree;;;.';

In this example, my_program_files is the name of the directory, and my_dir_tree is the name of the
directory access server.

Results

The directory access server is created and configured.

Next

None.

Example

Executing the statements below creates the following:

● A new directory access server named directoryserver3 that can be used to access up to three levels of
subdirectories.

● An external login to the directory access server for the DBA user.

● A proxy table named diskdir3.

CREATE SERVER directoryserver3
CLASS 'DIRECTORY'
USING 'ROOT=c:\mydir;SUBDIRS=3';
CREATE EXTERNLOGIN DBA TO directoryserver3;
CREATE EXISTING TABLE diskdir3 AT 'directoryserver3;;;.';

Using the sp_remote_tables system procedure, you can see all the subdirectories located in c:\mydir on
the computer running the database server:

CALL sp_remote_tables('directoryserver3');

Remote data and bulk operations

706 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Using the following SELECT statement, you can view the contents of the file c:\mydir\myfile.txt:

SELECT contents
FROM diskdir3
WHERE file_name = 'myfile.txt';

Alternatively, you can select data from the directories as follows:

-- Get the list of directories in this disk directory tree.
SELECT permissions, file_name, size
FROM diskdir3
WHERE PERMISSIONS LIKE 'd%';
-- Get the list of files.
SELECT permissions, file_name, size
FROM diskdir3
WHERE PERMISSIONS NOT LIKE 'd%';

Example

Assume you are a DBA and have a database that is sometimes started on computer A, with the database
server named server1, and at other times is started on computer B, with the server named server2.
Suppose you want to set up a directory access server that points to the local drive d:\users on computer B
as well as the network server drive w:\users on computer A. Additionally, you want to set up a proxy
table, located at users/userM, from which all users can get the listing of their own directories. By using
variables in the USING clause of a CREATE SERVER statement and in the AT clause of a CREATE
EXISTING TABLE statement, you can fulfill your needs by creating a single directory access server and
a single proxy table, as follows:

● Create a directory access server Create the directory access server using variables for the root
of the directory access server and the subdirectory level.

CREATE SERVER dir CLASS 'directory' USING 'root={@directory}\
\users;subdirs={@subdirs}';

Create explicit external logins for each user who is allowed to use the directory access server.

CREATE EXTERNLOGIN DBA TO dir;
CREATE USER user1 IDENTIFIED BY sql;
 CREATE EXTERNLOGIN user1 TO dir;
CREATE USER user2 IDENTIFIED BY sql;
 CREATE EXTERNLOGIN user2 TO dir;
CREATE USER userM IDENTIFIED BY sql;
 CREATE EXTERNLOGIN userM TO dir;

● Create a proxy table Use one of the user accounts to create a proxy table that points to
@directory\users\@curuser on the directory access server.

CREATE VARIABLE @directory LONG VARCHAR;
 SET @directory = 'd:';
CREATE VARIABLE @subdirs VARCHAR(10);
 SET @subdirs = '7';
CREATE VARIABLE @curuser VARCHAR(128);
 SET @curuser = 'user1';
CREATE VARIABLE @server VARCHAR(128);
 SET @server = 'dir';
CREATE EXISTING TABLE dbo.userdir AT '{@server};;;{@curuser}';

The variables are no longer needed, so drop them by executing the following statements:

Remote data access

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 707

DROP VARIABLE @curuser;
DROP VARIABLE @subdirs;
DROP VARIABLE @directory;

Drop the external login mapping for DBA.

DROP EXTERNLOGIN DBA TO dir;

● Create a procedure Create a procedure that allows all users to view the contents of their
individual user directory.

CREATE PROCEDURE dbo.listmydir()
BEGIN
 DECLARE @directory LONG VARCHAR;
 DECLARE @subdirs VARCHAR(10);
 DECLARE @server VARCHAR(128);
 DECLARE @curuser VARCHAR(128);
-- For this example, the 'dir' remote data access server is always used.
 SET @server = 'dir'
-- The root directory is based on the SQL Anywhere server the user is
connected to.
 SET @directory = IF property('name') = 'server1' THEN 'w:' ELSE 'd:'
ENDIF;
-- The subdirectory limit is based on the connected user.
 SET @curuser = user_name();
-- All users get a subdirectory limit of 7, except user2, who gets a
limit of 1.
 SET @subdirs = CONVERT (VARCHAR(10), IF @curuser = 'user2' THEN 1
ELSE 7 ENDIF);
-- With all the variables set above, the proxy table dbo.userdir now
points to @directory\@curuser
-- and has a subdirectory limit of @subdirs.
 SELECT * FROM dbo.userdir;
END;

See also
● “CREATE SERVER statement” [SQL Anywhere Server - SQL Reference]
● “CREATE EXTERNLOGIN statement” [SQL Anywhere Server - SQL Reference]
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “CREATE EXISTING TABLE statement” [SQL Anywhere Server - SQL Reference]

Dropping directory access servers (Sybase Central)

Administrators can use Sybase Central to delete directory access servers.

Prerequisites

DBA authority.

Context and remarks

You cannot alter an existing directory access server: you must drop the existing directory access server
using a DROP SERVER statement, and then create a new one.

Remote data and bulk operations

708 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Drop a directory access server

1. Use the SQL Anywhere 12 plug-in to connect to the host database.

2. In the left pane, double-click Directory Access Servers.

3. Select the directory access server, and then click Edit » Delete.

Results

The directory access server is deleted.

Next

Drop any proxy tables associated with the directory access server.

See also
● “Dropping proxy tables (Sybase Central)” on page 710

Dropping directory access servers (SQL)
Administrators can use Interactive SQL to delete directory access servers.

Prerequisites

DBA authority.

Context and remarks

You cannot alter an existing directory access server: you must drop the existing directory access server
using a DROP SERVER statement, and then create a new one.

Drop a directory access server

1. Connect to the host database.

2. Execute a DROP SERVER statement.

For example:

DROP SERVER my_directory_server;

Results

The directory access server is deleted.

Next

Drop any proxy tables associated with the directory access server.

Remote data access

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 709

See also
● “Dropping proxy tables (Sybase Central)” on page 710

Dropping proxy tables (Sybase Central)
Administrators can use Sybase Central to delete proxy tables that are associated with directory access
servers that have been deleted.

Prerequisites

DBA authority.

Context and remarks

Many.

Drop a proxy table

1. Use the SQL Anywhere 12 plug-in to connect to the host database.

2. In the left pane, double-click Directory Access Servers.

3. In the right pane, click the Proxy Tables tab.

4. Select the proxy table, and then click Edit » Delete.

5. Click Yes.

Results

The proxy table is deleted.

Next

None.

See also
● “DROP SERVER statement” [SQL Anywhere Server - SQL Reference]
● “DROP TABLE statement” [SQL Anywhere Server - SQL Reference]

External logins
By default, SQL Anywhere uses the names and passwords of its clients whenever it connects to a remote
server on behalf of those clients. However, this default can be overridden by creating external logins.
External logins are alternate login names and passwords to be used when communicating with a remote
server.

Remote data and bulk operations

710 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “Windows integrated logins” [SQL Anywhere Server - Database Administration]

Creating external logins

Use Sybase Central to create an external login that is used to communicate with a remote server.

Prerequisites

DBA authority.

Context and remarks

Many.

Create an external login

1. Use the SQL Anywhere 12 plug-in to connect to the host database.

2. In the left pane, double-click Remote Servers.

3. Select the remote server, and in the right pane click the External Logins tab.

4. In the File menu, click New » External Login.

5. Follow the instructions in the Create External Login Wizard.

Results

The external login is created.

Next

None.

See also
● “CREATE EXTERNLOGIN statement” [SQL Anywhere Server - SQL Reference]

Dropping external logins

You can use Sybase Central to delete external logins that are no longer required.

Prerequisites

You must have DBA authority or be the owner of the external login.

Remote data access

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 711

Context and remarks

Many.

Delete an external login

1. Use the SQL Anywhere 12 plug-in to connect to the host database.

2. In the left pane, double-click Remote Servers.

3. Select the remote server, and in the right pane click the External Logins tab.

4. Select the external login, and then click Edit » Delete.

5. Click Yes.

Results

The external login is deleted.

Next

None.

See also
● “DROP EXTERNLOGIN statement” [SQL Anywhere Server - SQL Reference]

Proxy tables
Location transparency of remote data is enabled by creating a local proxy table that maps to the remote
object. You can use a proxy table to access any object (including tables, views, and materialized views)
that the remote database exports as a candidate for a proxy table. Use one of the following statements to
create a proxy table:

● If the table already exists at the remote storage location, use the CREATE EXISTING TABLE
statement. This statement defines the proxy table for an existing table on the remote server.

● If the table does not exist at the remote storage location, use the CREATE TABLE statement. This
statement creates a new table on the remote server, and also defines the proxy table for that table.

Note
You cannot modify data in a proxy table when you are within a savepoint.

When a trigger is fired on a proxy table, the permissions used are those of the user who caused the trigger
to fire, not those of the proxy table owner.

See also
● “Savepoints within transactions” on page 782

Remote data and bulk operations

712 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Proxy table locations

The AT keyword is used with both the CREATE TABLE and the CREATE EXISTING TABLE
statements to define the location of an existing object. This location string has four components, each
separated by either a period or a semicolon. The semicolon delimiter allows file names and extensions to
be used in the database and owner fields.

The syntax of the AT clause is

... AT 'server.database.owner.table-name'

● server This is the name by which the server is known in the current database, as specified in the
CREATE SERVER statement. This field is mandatory for all remote data sources.

● database The meaning of the database field depends on the data source. Sometimes this field does
not apply and should be left empty. The delimiter is still required, however.

If the data source is Adaptive Server Enterprise, database specifies the database where the table
exists. For example master or pubs2.

If the data source is SQL Anywhere, this field does not apply; leave it empty.

If the data source is Excel, Lotus Notes, or Access, you must include the name of the file containing
the table. If the file name includes a period, use the semicolon delimiter.

● owner If the database supports the concept of ownership, this field represents the owner name. This
field is only required when several owners have tables with the same name.

● table-name This field specifies the name of the table. For an Excel spreadsheet, this is the name of
the sheet in the workbook. If table-name is left empty, the remote table name is assumed to be the
same as the local proxy table name.

Examples
The following examples illustrate the use of location strings:

● SQL Anywhere:

'RemoteSA..GROUPO.Employees'

● Adaptive Server Enterprise:

'RemoteASE.pubs2.dbo.publishers'

● Excel:

'excel;d:\pcdb\quarter3.xls;;sheet1$'

● Access:

'access;\\server1\production\inventory.mdb;;parts'

Remote data access

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 713

Creating proxy tables (Sybase Central)

Administrators can create proxy tables using Sybase Central.

Prerequisites

DBA authority.

Context and remarks

Sybase Central does not support creating proxy tables for system tables. However, proxy tables of system
tables can be created using the CREATE EXISTING TABLE statement.

Create a proxy table

1. Use the SQL Anywhere 12 plug-in to connect to the host database.

2. In the left pane, double-click Remote Servers.

3. Select a remote server, and in the right pane click the Proxy Tables tab.

4. In the File menu click New » Proxy Table.

5. Follow the instructions in the Create Proxy Table Wizard.

Results

The proxy table is created.

Next

None.

See also
● “CREATE EXISTING TABLE statement” [SQL Anywhere Server - SQL Reference]

Creating proxy tables (SQL)

Administrators can create proxy tables in Interactive SQL using either the CREATE TABLE or CREATE
EXISTING TABLE statement.

Prerequisites

DBA authority.

Remote data and bulk operations

714 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Context and remarks

The CREATE TABLE statement creates a new table on the remote server, and defines the proxy table for
that table when you use the AT clause. Columns are defined using SQL Anywhere data types. SQL
Anywhere automatically converts the data into the remote server's native types.

If you use the CREATE TABLE statement to create both a local and remote table, and then subsequently
use the DROP TABLE statement to drop the proxy table, the remote table is also dropped. You can,
however, use the DROP TABLE statement to drop a proxy table created using the CREATE EXISTING
TABLE statement. In this case, the remote table is not dropped.

The CREATE EXISTING TABLE statement creates a proxy table that maps to an existing table on the
remote server. SQL Anywhere derives the column attributes and index information from the object at the
remote location.

Create a proxy table with the CREATE EXISTING TABLE statement

1. Connect to the host database as a user with DBA authority.

2. Execute a CREATE EXISTING TABLE statement.

Results

The proxy table is created.

Next

None.

Example

To create a proxy table called p_Employees on the current server that maps to a remote table named
Employees on the server named RemoteSA, use the following syntax:

CREATE EXISTING TABLE p_Employees
AT 'RemoteSA..GROUPO.Employees';

Example

The following statement maps the proxy table a1 to the Microsoft Access file mydbfile.mdb. In this
example, the AT clause uses the semicolon (;) as a delimiter. The server defined for Microsoft Access is
named access.

CREATE EXISTING TABLE a1
AT 'access;d:\mydbfile.mdb;;a1';

Example

The following statement creates a table named Employees on the remote server RemoteSA, and creates a
proxy table named Members that maps to the remote table:

Remote data access

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 715

CREATE TABLE Members
(membership_id INTEGER NOT NULL,
member_name CHAR(30) NOT NULL,
office_held CHAR(20) NULL)
AT 'RemoteSA..GROUPO.Employees';

Example 1

See also
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “CREATE EXISTING TABLE statement” [SQL Anywhere Server - SQL Reference]

List the columns on a remote table

Before you execute a CREATE EXISTING TABLE statement, it may be helpful to get a list of the
columns that are available on a remote table. The sp_remote_columns system procedure produces a list of
the columns on a remote table and a description of those data types. The following is the syntax for the
sp_remote_columns system procedure:

sp_remote_columns servername, tablename [, owner]
[, database]

If a table name, owner, or database name is given, the list of columns is limited to only those that match.

For example, the following returns a list of the columns in the sysobjects table in the production database
on an Adaptive Server Enterprise server named asetest:

CALL sp_remote_columns ('asetest, 'sysobjects', null, 'production');

See also
● “sp_remote_columns system procedure” [SQL Anywhere Server - SQL Reference]

Remote data and bulk operations

716 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Joins between remote tables
The following figure illustrates proxy tables on a local database server that are mapped to the remote
tables Employees and Departments of the SQL Anywhere sample database on the remote server
RemoteSA.

You can use joins between tables on different SQL Anywhere databases. The following example is a
simple case using just one database to illustrate the principles.

Example
Perform a join between two remote tables:

1. Create a new database named empty.db.

This database holds no data. It is used only to define the remote objects, and to access the SQL
Anywhere sample database.

2. Start a database server running the empty.db. You can do this by running the following command:

dbsrv12 empty

3. From Interactive SQL, connect to empty.db as user DBA.

4. In the new database, create a remote server named RemoteSA. Its server class is saodbc, and the
connection string refers to the SQL Anywhere 12 Demo ODBC data source:

CREATE SERVER RemoteSA
CLASS 'saodbc'
USING 'SQL Anywhere 12 Demo';

5. In this example, you use the same user ID and password on the remote database as on the local
database, so no external logins are needed.

Remote data access

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 717

Sometimes you must provide a user ID and password when connecting to the database at the remote
server. In the new database, you could create an external login to the remote server. For simplicity in
this example, the local login name and the remote user ID are both DBA:

CREATE EXTERNLOGIN DBA
TO RemoteSA
REMOTE LOGIN DBA
IDENTIFIED BY sql;

6. Define the p_Employees proxy table:

CREATE EXISTING TABLE p_Employees
AT 'RemoteSA..GROUPO.Employees';

7. Define the p_Departments proxy table:

CREATE EXISTING TABLE p_Departments
AT 'RemoteSA..GROUPO.Departments';

8. Use the proxy tables in the SELECT statement to perform the join.

SELECT GivenName, Surname, DepartmentName
FROM p_Employees JOIN p_Departments
ON p_Employees.DepartmentID = p_Departments.DepartmentID
ORDER BY Surname;

Joins between tables from multiple local databases

A SQL Anywhere server may have several local databases running at one time. By defining tables in
other local SQL Anywhere databases as remote tables, you can perform cross-database joins.

For more information about specifying multiple databases, see “USING parameter in the CREATE
SERVER statement” on page 731.

Example
Suppose you are using database db1, and you want to access data in tables in database db2. You need to
set up proxy table definitions that point to the tables in database db2. For example, on a SQL Anywhere
server named RemoteSA, you might have three databases available: db1, db2, and db3.

1. If you are using ODBC, create an ODBC data source name for each database you will be accessing.

2. Connect to the database from which you will be performing the join. For example, connect to db1.

3. Perform a CREATE SERVER statement for each other local database you will be accessing. This
sets up a loopback connection to your SQL Anywhere server.

CREATE SERVER remote_db2
CLASS 'saodbc'
USING 'RemoteSA_db2';
CREATE SERVER remote_db3
CLASS 'saodbc'
USING 'RemoteSA_db3';

Remote data and bulk operations

718 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

4. Create proxy table definitions by executing CREATE EXISTING TABLE statements for the tables in
the other databases you want to access.

CREATE EXISTING TABLE Employees
AT 'remote_db2...Employees';

Native statements and remote servers
Use the FORWARD TO statement to send one or more statements to the remote server in its native
syntax. This statement can be used in two ways:

● To send a statement to a remote server.

● To place SQL Anywhere into passthrough mode for sending a series of statements to a remote server.

The FORWARD TO statement can be used to verify that a server is configured correctly. If you send a
statement to the remote server and SQL Anywhere does not return an error message, the remote server is
configured correctly.

The FORWARD TO statement cannot be used within procedures or batches.

If a connection cannot be made to the specified server, a message is returned to the user. If a connection is
made, any results are converted into a form that can be recognized by the client program.

See also
● “FORWARD TO statement” [SQL Anywhere Server - SQL Reference]

Example 1
The following statement verifies connectivity to the server named RemoteASE by selecting the version
string:

FORWARD TO RemoteASE {SELECT @@version};

Example 2
The following statements show a passthrough session with the server named RemoteASE:

FORWARD TO RemoteASE
SELECT * FROM titles
SELECT * FROM authors
FORWARD TO;

Remote data access

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 719

Remote procedure calls (RPCs)
SQL Anywhere users can issue procedure calls to the following remote servers:

● SQL Anywhere
● Adaptive Server Enterprise
● Oracle
● IBM DB2

SQL Anywhere supports fetching result sets from remote procedures, including fetching multiple result
sets. As well, remote functions can be used to fetch return values from remote procedures and functions.
Remote procedures can be used in the FROM clause of a SELECT statement.

Data types for remote procedures
The following data types are allowed for remote procedure call parameters:

● [UNSIGNED] SMALLINT
● [UNSIGNED] INT
● [UNSIGNED] BIGINT
● TINYINT
● REAL
● DOUBLE
● CHAR
● BIT
● LONG VARCHAR, LONG NVARCHAR, and LONG BINARY data types are allowed for IN

parameters, but not for OUT or INOUT parameters.
● NUMERIC and DECIMAL data types are allowed for IN parameters, but not for OUT or INOUT

parameters

Creating remote procedures (Sybase Central)

Administrators can use Sybase Central to create a remote procedure.

Prerequisites

DBA authority.

Context and remarks

Many.

Create a remote procedure

If a remote procedure can return a result set, even if it does not always return one, then the local procedure
definition must contain a RESULT clause.

1. Use the SQL Anywhere 12 plug-in to connect to the host database.

Remote data and bulk operations

720 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

2. In the left pane, double-click Remote Servers.

3. Select the remote server, and in the right pane click the Remote Procedures tab.

4. In the File menu, click New » Remote Procedure.

5. Follow the instructions in the Create Remote Procedure Wizard.

Results

The remote procedure is created.

Next

None

See also
● “CREATE PROCEDURE statement” [SQL Anywhere Server - SQL Reference]

Creating remote procedures (SQL)

Administrators can create remote procedures in Interactive SQL.

Prerequisites

DBA authority.

Context and remarks

If a remote procedure can return a result set, even if it does not always return one, then the local procedure
definition must contain a RESULT clause.

Create a remote procedure

1. Connect to the host database.

2. Execute a statement to define the procedure to SQL Anywhere.

For example:

CREATE PROCEDURE RemoteWho()
AT 'bostonase.master.dbo.sp_who';

The syntax is similar to a local procedure definition. The location string defines the location of the
procedure.

Results

The remote procedure is created.

Remote data access

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 721

Next

None

Example

This example specifies a parameter when calling a remote procedure:

CREATE PROCEDURE RemoteUser (IN username CHAR(30))
AT 'bostonase.master.dbo.sp_helpuser';
CALL RemoteUser('joe');

See also
● “CREATE PROCEDURE statement” [SQL Anywhere Server - SQL Reference]

Dropping remote procedures

Administrators can delete remote procedures in Sybase Central.

Prerequisites

DBA authority.

Context and remarks

Many.

Delete a remote procedure

1. Use the SQL Anywhere 12 plug-in to connect to the host database.

2. In the left pane, double-click Remote Servers.

3. Select the remote server, and in the right pane click the Remote Procedures tab.

4. Select the remote procedure, and then click Edit » Delete.

5. Click Yes.

Results

The remote procedure is deleted.

Next

None.

See also
● “DROP PROCEDURE statement” [SQL Anywhere Server - SQL Reference]

Remote data and bulk operations

722 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Transaction management and remote data
Transactions provide a way to group SQL statements so that they are treated as a unit—either all work
performed by the statements is committed to the database, or none of it is.

For the most part, transaction management with remote tables is the same as transaction management for
local tables in SQL Anywhere, but there are some differences. They are discussed in the following
section.

See also
● “Transactions and isolation levels” on page 779

Remote transaction management

The method for managing transactions involving remote servers uses a two-phase commit protocol. SQL
Anywhere implements a strategy that ensures transaction integrity for most scenarios. However, when
more than one remote server is invoked in a transaction, there is still a chance that a distributed unit of
work will be left in an undetermined state. Even though two-phase commit protocol is used, no recovery
process is included.

The general logic for managing a user transaction is as follows:

1. SQL Anywhere prefaces work to a remote server with a BEGIN TRANSACTION notification.

2. When the transaction is ready to be committed, SQL Anywhere sends a PREPARE TRANSACTION
notification to each remote server that has been part of the transaction. This ensures that the remote
server is ready to commit the transaction.

3. If a PREPARE TRANSACTION request fails, all remote servers are instructed to roll back the
current transaction.

If all PREPARE TRANSACTION requests are successful, the server sends a COMMIT
TRANSACTION request to each remote server involved with the transaction.

Any statement preceded by BEGIN TRANSACTION can begin a transaction. Other statements are sent to
a remote server to be executed as a single, remote unit of work.

Restrictions on transaction management

Restrictions on transaction management are as follows:

● Savepoints are not propagated to remote servers.

● If nested BEGIN TRANSACTION and COMMIT TRANSACTION statements are included in a
transaction that involves remote servers, only the outermost set of statements is processed. The

Remote data access

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 723

innermost set, containing the BEGIN TRANSACTION and COMMIT TRANSACTION statements, is
not transmitted to remote servers.

Internal operations
This section describes the underlying steps that SQL Anywhere performs on remote servers on behalf of
client applications.

Internal operations performed on queries
The following steps are performed on all queries, both local and remote:

Query parsing

When a statement is received from a client, the database server parses it. The database server raises an
error if the statement is not a valid SQL Anywhere SQL statement.

Query normalization

Referenced objects in the query are verified and some data type compatibility is checked.

For example, consider the following query:

SELECT *
FROM t1
WHERE c1 = 10;

The query normalization stage verifies that table t1 with a column c1 exists in the system tables. It also
verifies that the data type of column c1 is compatible with the value 10. If the column's data type is
TIMESTAMP, for example, this statement is rejected.

Query preprocessing

Query preprocessing prepares the query for optimization. It may change the representation of a statement
so that the SQL statement that SQL Anywhere generates for passing to a remote server is syntactically
different from the original statement, even though it is semantically equivalent.

Preprocessing performs view expansion so that a query can operate on tables referenced by the view.
Expressions may be reordered and subqueries may be transformed to improve processing efficiency. For
example, some subqueries may be converted into joins.

Remote data and bulk operations

724 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Server capabilities

The following steps depend on the type of SQL statement and the capabilities of the remote servers
involved.

In SQL Anywhere, each remote server has a set of capabilities defined for it. These capabilities are stored
in the ISYSCAPABILITIES system table, and are initialized during the first connection to a remote
server.

The generic server class odbc relies strictly on information returned from the ODBC driver to determine
these capabilities. Other server classes such as db2odbc have more detailed knowledge of the capabilities
of a remote server type and use that knowledge to supplement what is returned from the driver.

Once a server is added to ISYSCAPABILITIES, the capability information is retrieved only from the
system table.

Since a remote server may not support all the features of a given SQL statement, SQL Anywhere must
break the statement into simpler components to the point that the query can be given to the remote server.
SQL features not passed off to a remote server must be evaluated by SQL Anywhere itself.

For example, a query may contain an ORDER BY statement. If a remote server cannot perform ORDER
BY, the statement is sent to the remote server without it and SQL Anywhere performs the ORDER BY on
the result returned, before returning the result to the user. The user can therefore employ the full range of
SQL Anywhere supported SQL.

Complete passthrough of the statement

For efficiency, SQL Anywhere passes off as much of the statement as possible to the remote server.
Often, this is the complete statement originally given to SQL Anywhere.

SQL Anywhere hands off the complete statement when:

● Every table in the statement resides on the same remote server.

● The remote server can process all of the syntax in the statement.

In rare conditions, it may actually be more efficient to let SQL Anywhere do some of the work instead of
the remote server doing it. For example, SQL Anywhere may have a better sorting algorithm. In this case,
you may consider altering the capabilities of a remote server using the ALTER SERVER statement.

See also
● “ALTER SERVER statement” [SQL Anywhere Server - SQL Reference]

Remote data access

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 725

Partial passthrough of the statement

If a statement contains references to multiple servers, or uses SQL features not supported by a remote
server, the query is decomposed into simpler parts.

SELECT
SELECT statements are broken down by removing portions that cannot be passed on and letting SQL
Anywhere perform the work. For example, suppose a remote server can not process the ATAN2 function
in the following statement:

SELECT a,b,c
WHERE ATAN2(b, 10) > 3
AND c = 10;

The statement sent to the remote server would be converted to:

SELECT a,b,c WHERE c = 10;

Then, SQL Anywhere locally applies WHERE ATAN2(b, 10) > 3 to the intermediate result set.

Joins
When two tables are joined, one table is selected to be the outer table. The outer table is scanned based on
the WHERE conditions that apply to it. For every qualifying row found, the other table, known as the
inner table, is scanned to find a row that matches the join condition.

This same algorithm is used when remote tables are referenced. Since the cost of searching a remote table
is usually much higher than a local table (due to network I/O), every effort is made to make the remote
table the outermost table in the join.

UPDATE and DELETE
When a qualifying row is found, if SQL Anywhere cannot pass off an UPDATE or DELETE statement
entirely to a remote server, it must change the statement into a table scan containing as much of the
original WHERE clause as possible, followed by a positioned UPDATE or DELETE statement that
specifies WHERE CURRENT OF cursor-name.

For example, when the function ATAN2 is not supported by a remote server:

UPDATE t1
SET a = atan2(b, 10)
WHERE b > 5;

Would be converted to the following:

SELECT a,b
FROM t1
WHERE b > 5;

Each time a row is found, SQL Anywhere would calculate the new value of a and execute:

UPDATE t1
SET a = 'new value'
WHERE CURRENT OF CURSOR;

Remote data and bulk operations

726 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

If a already has a value that equals the new value, a positioned UPDATE would not be necessary, and
would not be sent remotely.

To process an UPDATE or DELETE statement that requires a table scan, the remote data source must
support the ability to perform a positioned UPDATE or DELETE (WHERE CURRENT OF cursor-
name). Some data sources do not support this capability.

Temporary tables cannot be updated
An UPDATE or DELETE cannot be performed if an intermediate temporary table is required. This occurs
in queries with ORDER BY and some queries with subqueries.

Troubleshooting remote data access
This section provides some hints for troubleshooting access to remote servers.

Features not supported for remote data

The following SQL Anywhere features are not supported on remote data:

● ALTER TABLE statement on remote tables.

● triggers defined on proxy tables.

● SQL Remote.

● foreign keys that refer to remote tables.

● READTEXT, WRITETEXT, and TEXTPTR functions.

● positioned UPDATE and DELETE statements.

● UPDATE and DELETE statements requiring an intermediate temporary table.

● backward scrolling on cursors opened against remote data. Fetch statements must be NEXT or
RELATIVE 1.

● calls to functions that contain an expression that references a proxy table.

● If a column on a remote table has a name that is a keyword on the remote server, you cannot access
data in that column. You can execute a CREATE EXISTING TABLE statement, and import the
definition but you cannot select that column.

Remote data access

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 727

Case sensitivity

The case sensitivity setting of your SQL Anywhere database should match the settings used by any
remote servers accessed.

SQL Anywhere databases are created case insensitive by default. With this configuration, unpredictable
results may occur when selecting from a case-sensitive database. Different results will occur depending
on whether ORDER BY or string comparisons are pushed off to a remote server, or evaluated by the local
SQL Anywhere server.

Connectivity tests

Take the following steps to ensure that you can connect to a remote server:

● Make sure that you can connect to a remote server using a client tool such as Interactive SQL before
configuring SQL Anywhere.

● Perform a simple passthrough statement to a remote server to check your connectivity and remote login
configuration. For example:

FORWARD TO RemoteSA {SELECT @@version};

● Turn on remote tracing for a trace of the interactions with remote servers. For example:

SET OPTION cis_option = 7;

Once you have turned on remote tracing, the tracing information appears in the database server
messages window. You can log this output to a file by specifying the -o server option when you start
the database server.

See also
● “cis_option option” [SQL Anywhere Server - Database Administration]
● “-o dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “PASSTHROUGH statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]

Queries blocked on themselves

You must have enough threads available to support the individual tasks that are being run by a query.
Failure to provide the number of required tasks can lead to a query becoming blocked on itself.

See also
● “Transaction blocking and deadlock” on page 797

Remote data and bulk operations

728 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Remote data access connections via ODBC

If you access remote databases via ODBC, the connection to the remote server is given a name. You can
use the name to drop the connection to cancel a remote request.

The connections are named ASACIS_conn-name, where conn-name is the connection ID of the local
connection. The connection ID can be obtained from the sa_conn_info stored procedure.

See also
● “sa_conn_info system procedure” [SQL Anywhere Server - SQL Reference]

Server classes for remote data access
The server class you specify in the CREATE SERVER statement determines the behavior of a remote
connection. The server classes give SQL Anywhere detailed server capability information. SQL
Anywhere formats SQL statements specific to a server's capabilities.

There are two categories of server classes:

● ODBC-based server classes
● JDBC-based server classes (deprecated)

Each server class has a set of unique characteristics that you need to know to configure the server for
remote data access.

You should refer both to information generic to the server class category (JDBC-based or ODBC-based),
and to the information specific to the individual server class.

ODBC-based server classes

The ODBC-based server classes include:

● saodbc
● ulodbc
● adsodbc
● aseodbc
● db2odbc
● iqodbc
● msaccessodbc
● mssodbc
● mysqlodbc
● odbc
● oraodbc

Server classes for remote data access

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 729

Note
When using remote data access, if you use an ODBC driver that does not support Unicode, then character
set conversion is not performed on data coming from that ODBC driver.

ODBC external server definitions

The most common way of defining an ODBC-based server is to base it on an ODBC data source. To do
this, you can create a data source using the ODBC Administrator.

Once you have defined the data source, the USING clause in the CREATE SERVER statement should
match the ODBC data source name.

For example, to configure a IBM DB2 server named mydb2 whose data source name is also mydb2, use:

CREATE SERVER mydb2
CLASS 'db2odbc'
USING 'mydb2';

Using connection strings instead of data sources
An alternative, which avoids using data sources, is to supply a connection string in the USING clause of
the CREATE SERVER statement. To do this, you must know the connection parameters for the ODBC
driver you are using. For example, a connection to a SQL Anywhere database may be as follows:

CREATE SERVER TestSA
CLASS 'saodbc'
USING 'DRIVER=SQL Anywhere 12;HOST=myhost;Server=TestSA;DBN=sample';

This defines a connection to a SQL Anywhere database server named TestSA, running on a computer
called myhost, and a database named sample using the TCP/IP protocol.

See also
For information specific to particular ODBC server classes, see:

● “Server class saodbc” on page 731
● “Server class ulodbc” on page 731
● “Server class adsodbc” on page 732
● “Server class aseodbc” on page 732
● “Server class db2odbc” on page 734
● “Server class msaccessodbc” on page 737
● “Server class mssodbc” on page 738
● “Server class mysqlodbc” on page 739
● “Server class odbc” on page 741
● “Server class oraodbc” on page 743
● “ODBC data sources” [SQL Anywhere Server - Database Administration]
● “CREATE SERVER statement” [SQL Anywhere Server - SQL Reference]

Remote data and bulk operations

730 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

USING parameter in the CREATE SERVER statement

You must run a separate CREATE SERVER statement for each SQL Anywhere database you intend to
access. For example, if a SQL Anywhere server named TestSA is running on the computer banana and
owns three databases (db1, db2, db3), you would configure the local SQL Anywhere database server
similar to this:

CREATE SERVER TestSAdb1
CLASS 'saodbc'
USING 'banana:2638/db1'
CREATE SERVER TestSAdb2
CLASS 'saodbc'
USING 'banana:2638/db2'
CREATE SERVER TestSAdb3
CLASS 'saodbc'
USING 'banana:2638/db3';

If you do not specify a /database-name value, the remote connection uses the remote SQL Anywhere
default database.

See also
● “CREATE SERVER statement” [SQL Anywhere Server - SQL Reference]

Server class saodbc

A server with server class saodbc is a SQL Anywhere database server. No special requirements exist for
the configuration of a SQL Anywhere data source.

To access SQL Anywhere database servers that support multiple databases, create an ODBC data source
name defining a connection to each database. Execute a CREATE SERVER statement for each of these
ODBC data source names.

Server class ulodbc

A server with server class ulodbc is an UltraLite database. Create an ODBC data source name defining a
connection to the UltraLite database. Execute a CREATE SERVER statement for the ODBC data source
name.

There is a one to one mapping between the UltraLite and SQL Anywhere data types because UltraLite
supports a subset of the data types available in SQL Anywhere.

Note
You cannot create a remote server for an UltraLite database running on Mac OS X.

See also
● “Data types in UltraLite” [UltraLite - Database Management and Reference]

Server classes for remote data access

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 731

Server class adsodbc

When you execute a CREATE TABLE statement, SQL Anywhere automatically converts the data types
to the corresponding Advantage Database Server data types using the following data type conversions.

SQL Anywhere data type ADS default data type

BIT Logical

TINYINT, SMALLINT, INT, INTEGER Integer

BIGINT Numeric(32)

DECIMAL(p,s), NUMERIC(p,s) Numeric(p+3)

DATE Date

TIME Time

DATETIME, TIMESTAMP TimeStamp

MONEY, SMALLMONEY Money

FLOAT, REAL Double

CHAR(n), VARCHAR(n), LONG VARCHAR Char(n)

BINARY(n), VARBINARY(n), LONG BINARY Blob

Server class aseodbc

A server with server class aseodbc is a Sybase SQL Server and Adaptive Server Enterprise (version 10
and later) database server. SQL Anywhere requires the installation of the Adaptive Server Enterprise
ODBC driver and Open Client connectivity libraries to connect to a remote Adaptive Server Enterprise
server with class aseodbc, but the performance is better than with the ASEJDBC class.

Notes
● Open Client should be version 11.1.1, EBF 7886 or later. Install Open Client and verify connectivity to

the Adaptive Server Enterprise server before you install ODBC and configure SQL Anywhere. The
Sybase ODBC driver should be version 11.1.1, EBF 7911 or later.

● The local setting of the quoted_identifier option controls the use of quoted identifiers for Adaptive
Server Enterprise. For example, if you set the quoted_identifier option to Off locally, then quoted
identifiers are turned off for Adaptive Server Enterprise.

● Configure a user data source in the Configuration Manager with the following attributes:

Remote data and bulk operations

732 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

○ General tab Type any value for Data Source Name. This value is used in the USING clause of
the CREATE SERVER statement.

The server name should match the name of the server in the Sybase interfaces file.

○ Advanced tab Click the Application Using Threads and Enable Quoted Identifiers options.

○ Connection tab Set the charset field to match your SQL Anywhere character set.

Set the language field to your preferred language for error messages.

○ Performance tab Set the Prepare Method to 2-Full.

Set the Fetch Array Size as large as possible for the best performance. This increases memory
requirements since this is the number of rows that must be cached in memory. Adaptive Server
Enterprise recommends using a value of 100.

Set Select Method to 0-Cursor.

Set Packet Size to as large a value as possible. Adaptive Server Enterprise recommends using a
value of -1.

Set Connection Cache to 1.

Data type conversions: ODBC and Adaptive Server Enterprise
When you execute a CREATE TABLE statement, SQL Anywhere automatically converts the data types
to the corresponding Adaptive Server Enterprise data types. The following table describes the SQL
Anywhere to Adaptive Server Enterprise data type conversions.

SQL Anywhere data type Adaptive Server Enterprise default data type

BIT bit

TINYINT tinyint

SMALLINT smallint

INT int

INTEGER integer

DECIMAL [defaults p=30, s=6] numeric(30,6)

DECIMAL(128,128) not supported

NUMERIC [defaults p=30 s=6] numeric(30,6)

NUMERIC(128,128) not supported

Server classes for remote data access

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 733

SQL Anywhere data type Adaptive Server Enterprise default data type

FLOAT real

REAL real

DOUBLE float

SMALLMONEY numeric(10,4)

MONEY numeric(19,4)

DATE datetime

TIME datetime

TIMESTAMP datetime

SMALLDATETIME datetime

DATETIME datetime

CHAR(n) varchar(n)

CHARACTER(n) varchar(n)

VARCHAR(n) varchar(n)

CHARACTER VARYING(n) varchar(n)

LONG VARCHAR text

TEXT text

BINARY(n) binary(n)

LONG BINARY image

IMAGE image

BIGINT numeric(20,0)

See also
● “The interfaces file” [SQL Anywhere Server - Database Administration]

Server class db2odbc

A server with server class db2odbc is IBM DB2.

Remote data and bulk operations

734 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Notes
● Sybase certifies the use of IBM's DB2 Connect version 5, with fix pack WR09044. Configure and test

your ODBC configuration using the instructions for that product. SQL Anywhere has no specific
requirements for the configuration of IBM DB2 data sources.

● The following is an example of a CREATE EXISTING TABLE statement for a IBM DB2 server with
an ODBC data source named mydb2:

CREATE EXISTING TABLE ibmcol
AT 'mydb2..sysibm.syscolumns';

Data type conversions: IBM DB2
When you execute a CREATE TABLE statement, SQL Anywhere automatically converts the data types
to the corresponding IBM DB2 data types. The following table describes the SQL Anywhere to IBM DB2
data type conversions.

SQL Anywhere data type IBM DB2 default data type

BIT smallint

TINYINT smallint

SMALLINT smallint

INT int

INTEGER int

BIGINT decimal(20,0)

CHAR(1-254) varchar(n)

CHAR(255-4000) varchar(n)

CHAR(4001-32767) long varchar

CHARACTER(1-254) varchar(n)

CHARACTER(255-4000) varchar(n)

CHARACTER(4001-32767) long varchar

VARCHAR(1-4000) varchar(n)

VARCHAR(4001-32767) long varchar

CHARACTER VARYING(1-4000) varchar(n)

CHARACTER VARYING(4001-32767) long varchar

Server classes for remote data access

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 735

SQL Anywhere data type IBM DB2 default data type

LONG VARCHAR long varchar

TEXT long varchar

BINARY(1-4000) varchar for bit data

BINARY(4001-32767) long varchar for bit data

LONG BINARY long varchar for bit data

IMAGE long varchar for bit data

DECIMAL [defaults p=30, s=6] decimal(30,6)

NUMERIC [defaults p=30 s=6] decimal(30,6)

DECIMAL(128, 128) NOT SUPPORTED

NUMERIC(128, 128) NOT SUPPORTED

REAL real

FLOAT float

DOUBLE float

SMALLMONEY decimal(10,4)

MONEY decimal(19,4)

DATE date

TIME time

SMALLDATETIME timestamp

DATETIME timestamp

TIMESTAMP timestamp

Server class iqodbc

A server with server class iqodbc is a Sybase IQ server. No special requirements exist for the
configuration of a Sybase IQ data source.

Remote data and bulk operations

736 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

To access Sybase IQ servers that support multiple databases, create an ODBC data source name defining
a connection to each database. Execute a CREATE SERVER statement for each of these ODBC data
source names.

See also
● “USING parameter in the CREATE SERVER statement” on page 731

Server class msaccessodbc

Access databases are stored in a .mdb file. Using the ODBC manager, create an ODBC data source and
map it to one of these files. A new .mdb file can be created through the ODBC manager. This database
file becomes the default if you don't specify a different default when you create a table through SQL
Anywhere.

Assuming an ODBC data source named access, you can use any of the following statements to access
data:

● CREATE TABLE tab1 (a int, b char(10))
AT 'access...tab1';

● CREATE TABLE tab1 (a int, b char(10))
AT 'access;d:\pcdb\data.mdb;;tab1';

● CREATE EXISTING TABLE tab1
AT 'access;d:\pcdb\data.mdb;;tab1';

Access does not support the owner name qualification; leave it empty.

Data type conversions: Microsoft Access

SQL Anywhere data type Microsoft Access default data type

BIT, TINYINT TINYINT

SMALLINT SMALLINT

INT, INTEGER INTEGER

BIGINT DECIMAL(19,0)

DECIMAL(p,s), NUMERIC(p,s) DECIMAL(p,s)

DATE, TIME, DATETIME, TIMESTAMP DATETIME

MONEY, SMALLMONEY MONEY

FLOAT FLOAT

REAL REAL

Server classes for remote data access

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 737

SQL Anywhere data type Microsoft Access default data type

CHAR(n), VARCHAR(n) CHARACTER(n) if n is less than 254

TEXT if n is greater than or equal to 254

LONG VARCHAR TEXT

BINARY, VARBINARY BINARY(n) if n is less than 4000

IMAGE if n is greater than or equal to 4000

LONG BINARY IMAGE

Server class mssodbc

A server with server class mssodbc is Microsoft SQL Server version 6.5, Service Pack 4.

Notes
● Sybase certifies the use of Microsoft SQL Server version 3.60.0319 ODBC driver (included in the

MDAC 2.0 release). Configure and test your ODBC configuration using the instructions for that
product.

● The following is an example of a CREATE EXISTING TABLE statement for a Microsoft SQL Server
named mymssql:

CREATE EXISTING TABLE accounts,
AT 'mymssql.database.owner.accounts';

● The local setting of the quoted_identifier option controls the use of quoted identifiers for Microsoft
SQL Server. For example, if you set the quoted_identifier option to Off locally, then quoted identifiers
are turned off for Microsoft SQL Server.

Data type conversions: Microsoft SQL Server
When you execute a CREATE TABLE statement, SQL Anywhere automatically converts the data types
to the corresponding Microsoft SQL Server data types using the following data type conversions.

SQL Anywhere data type Microsoft SQL Server default data type

BIT bit

TINYINT tinyint

SMALLINT smallint

INT int

Remote data and bulk operations

738 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SQL Anywhere data type Microsoft SQL Server default data type

BIGINT numeric(20,0)

DECIMAL [defaults p=30, s=6] decimal(prec, scale)

NUMERIC [defaults p=30 s=6] numeric(prec, scale)

FLOAT if (prec) float(prec) else float

REAL real

SMALLMONEY smallmoney

MONEY money

DATE datetime

TIME datetime

TIMESTAMP datetime

SMALLDATETIME datetime

DATETIME datetime

CHAR(n) if (length > 255) text else varchar(length)

CHARACTER(n) char(n)

VARCHAR(n) if (length > 255) text else varchar(length)

LONG VARCHAR text

BINARY(n) if (length > 255) image else binary(length)

LONG BINARY image

DOUBLE float

UNIQUEIDENTIFIERSTR uniqueidentifier

Server class mysqlodbc

When you execute a CREATE TABLE statement, SQL Anywhere automatically converts the data types
to the corresponding MySQL data types using the following data type conversions.

Server classes for remote data access

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 739

SQL Anywhere data type MySQL default data type

BIT bit(1)

TINYINT tinyint unsigned

SMALLINT smallint

INT, INTEGER int

BIGINT bigint

DECIMAL(p,s), NUMERIC(p,s) decimal(p,s)

DATE date

TIME time

DATETIME, TIMESTAMP datetime

MONEY decimal(19,4)

SMALLMONEY decimal(10,4)

FLOAT float

REAL real

CHAR(n) char(n) if n is less than 254

varchar(n) if n is greater than or equal to 254 but less than 4000

longtext if n is greater than or equal to 4000

VARCHAR(n) varchar(n) if n is less than 4000

longtext if n is greater than or equal to 4000

LONG VARCHAR longtext

BINARY(n), VARBINARY(n) varbinary(n) if n is less than 4000

longblob if n is greater than or equal to 4000

LONG BINARY longblob

Remote data and bulk operations

740 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Server class odbc

ODBC data sources that do not have their own server class use server class odbc. You can use any ODBC
driver. Sybase certifies the following ODBC data sources:

● “Microsoft Excel (Microsoft 3.51.171300)”
● “Microsoft FoxPro (Microsoft 3.51.171300)”
● “Lotus Notes SQL 2.0”

The latest versions of Microsoft ODBC drivers can be obtained through the Microsoft Data Access
Components (MDAC) distribution found at the Microsoft Download Center. The Microsoft driver
versions listed above are part of MDAC 2.0.

Microsoft Excel (Microsoft 3.51.171300)

With Excel, each Excel workbook is logically considered to be a database holding several tables. Tables
are mapped to sheets in a workbook. When you configure an ODBC data source name in the ODBC
driver manager, you specify a default workbook name associated with that data source. However, when
you execute a CREATE TABLE statement, you can override the default and specify a workbook name in
the location string. This allows you to use a single ODBC DSN to access all of your excel workbooks.

In this example, a remote server named excel was created. To create a workbook named work1.xls with a
sheet (table) called mywork:

CREATE TABLE mywork (a int, b char(20))
AT 'excel;d:\work1.xls;;mywork';

To create a second sheet (or table) execute a statement such as:

CREATE TABLE mywork2 (x float, y int)
AT 'excel;d:\work1.xls;;mywork2';

You can import existing worksheets into SQL Anywhere using CREATE EXISTING, under the
assumption that the first row of your spreadsheet contains column names.

CREATE EXISTING TABLE mywork
AT'excel;d:\work1;;mywork';

If SQL Anywhere reports that the table is not found, you may need to explicitly state the column and row
range you want to map to. For example:

CREATE EXISTING TABLE mywork
AT 'excel;d:\work1;;mywork$';

Adding the $ to the sheet name indicates that the entire worksheet should be selected.

Note in the location string specified by AT that a semicolon is used instead of a period for field
separators. This is because periods occur in the file names. Excel does not support the owner name field
so leave this blank.

Server classes for remote data access

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 741

Deletes are not supported. Also some updates may not be possible since the Excel driver does not support
positioned updates.

Microsoft FoxPro (Microsoft 3.51.171300)

You can store FoxPro tables together inside a single FoxPro database file (.dbc), or, you can store each
table in its own separate .dbf file. When using .dbf files, be sure the file name is filled into the location
string; otherwise the directory that SQL Anywhere was started in is used.

CREATE TABLE fox1 (a int, b char(20))
AT 'foxpro;d:\pcdb;;fox1';

This statement creates a file named d:\pcdb\fox1.dbf when you choose the Free Table Directory option
in the ODBC Driver Manager.

Lotus Notes SQL 2.0

To obtain this driver, go to the Lotus web site at http://www.lotus.com/. Read the documentation that is
included with it for an explanation of how Notes data maps to relational tables. You can easily map SQL
Anywhere tables to Notes forms.

Here is how to set up SQL Anywhere to access the Address sample file.

● Create an ODBC data source using the NotesSQL driver. The database will be the sample names file: c:
\notes\data\names.nsf. The Map Special Characters option should be turned on. For this example, the
Data Source Name is my_notes_dsn.

● Create a server in SQL Anywhere:

CREATE SERVER names
CLASS 'odbc'
USING 'my_notes_dsn';

● Map the Person form into a SQL Anywhere table:

CREATE EXISTING TABLE Person
AT 'names...Person';

● Query the table:

SELECT * FROM Person;

Avoiding password prompts
Lotus Notes does not support sending a user name and password through the ODBC API. If you try to
access Lotus notes using a password protected ID, a window appears on the computer where SQL
Anywhere is running, and prompts you for a password. Avoid this behavior in multi-user server
environments.

To access Lotus Notes unattended, without ever receiving a password prompt, you must use a non-
password-protected ID. You can remove password protection from your ID by clearing it (click File »

Remote data and bulk operations

742 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

http://www.lotus.com/

Tools » User ID » Clear Password), unless your Domino administrator required a password when your
ID was created. In this case, you will not be able to clear it.

Server class oraodbc

A server with server class oraodbc is Oracle version 8.0 or later.

Notes
● Sybase certifies the use of the Oracle version 8.0.03 ODBC driver. Configure and test your ODBC

configuration using the instructions for that product.

● The following is an example of a CREATE EXISTING TABLE statement for an Oracle server named
myora:

CREATE EXISTING TABLE employees
AT 'myora.database.owner.employees';

● As a result of Oracle ODBC driver restrictions, you cannot execute a CREATE EXISTING TABLE
statement for system tables. A message returns stating that the table or columns cannot be found.

Data type conversions: Oracle
When you execute a CREATE TABLE statement, SQL Anywhere automatically converts the data types
to the corresponding Oracle data types using the following data type conversions.

SQL Anywhere data type Oracle data type

BIT number(1,0)

TINYINT number(3,0)

SMALLINT number(5,0)

INT number(11,0)

BIGINT number(20,0)

DECIMAL(prec, scale) number(prec, scale)

NUMERIC(prec, scale) number(prec, scale)

FLOAT float

REAL real

SMALLMONEY numeric(13,4)

MONEY number(19,4)

Server classes for remote data access

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 743

SQL Anywhere data type Oracle data type

DATE date

TIME date

TIMESTAMP date

SMALLDATETIME date

DATETIME date

CHAR(n) if (n > 255) long else varchar(n)

VARCHAR(n) if (n > 2000) long else varchar(n)

LONG VARCHAR long or clob

BINARY(n) if (n > 255) long raw else raw(n)

VARBINARY(n) if (n > 255) long raw else raw(n)

LONG BINARY long raw

JDBC-based server classes (deprecated)
Support for the JDBC-based server classes is deprecated. You should update your applications to use the
ODBC-based server classes.

JDBC-based server classes are used when SQL Anywhere internally uses a Java VM and jConnect 5.5 to
connect to the remote server. The JDBC-based server classes are:

● SAJDBC SQL Anywhere.

● ASEJDBC Sybase SQL Server and Adaptive Server Enterprise (version 10 and later).

● IQJDBC Sybase IQ.

See also
● “ODBC external server definitions” on page 730

Configuration notes for JDBC classes

When you access remote servers defined with JDBC-based classes, consider that:

● For optimum performance, an ODBC-based class is recommended (saodbc or aseodbc).

Remote data and bulk operations

744 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● Any remote server that you access using the ASEJDBC or SAJDBC server class must be set up to
handle a jConnect 6.x-based client.

● If a JDBC remote server connection is disconnected or lost, you only find out that the server is
unavailable if you attempt to use the JDBC remote server to access a proxy object, such as a proxy
table or proxy procedure. ODBC does not have this limitation.

Server class SAJDBC (deprecated)

This server class is deprecated. You should update your application to use server class saodbc.

A server with server class SAJDBC is a SQL Anywhere server. No special requirements exist for the
configuration of a SQL Anywhere data source.

See also
● “Server class saodbc” on page 731

Server class ASEJDBC (deprecated)

This server class is deprecated. You should update your application to use server class aseodbc.

A server with server class ASEJDBC is a Sybase SQL Server and Adaptive Server Enterprise (version 10
and later) server. No special requirements exist for the configuration of an Adaptive Server Enterprise
data source.

Notes
● The local setting of the quoted_identifier option controls the use of quoted identifiers for Adaptive

Server Enterprise. For example, if you set the quoted_identifier option to Off locally, then quoted
identifiers are turned off for Adaptive Server Enterprise.

Data type conversions: JDBC and Adaptive Server Enterprise
When you execute a CREATE TABLE statement, SQL Anywhere automatically converts the data types
to the corresponding Adaptive Server Enterprise data types using the following data type conversions.

SQL Anywhere data type Adaptive Server Enterprise default data type

BIT bit

TINYINT tinyint

SMALLINT smallint

INT int

Server classes for remote data access

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 745

SQL Anywhere data type Adaptive Server Enterprise default data type

INTEGER integer

DECIMAL [defaults p=30, s=6] numeric(30,6)

DECIMAL(128,128) not supported

NUMERIC [defaults p=30 s=6] numeric(30,6)

NUMERIC(128,128) not supported

FLOAT real

REAL real

DOUBLE float

SMALLMONEY numeric(10,4)

MONEY numeric(19,4)

DATE datetime

TIME datetime

TIMESTAMP datetime

SMALLDATETIME datetime

DATETIME datetime

CHAR(n) varchar(n)

CHARACTER(n) varchar(n)

VARCHAR(n) varchar(n)

CHARACTER VARYING(n) varchar(n)

LONG VARCHAR text

TEXT text

BINARY(n) binary(n)

LONG BINARY image

IMAGE image

Remote data and bulk operations

746 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SQL Anywhere data type Adaptive Server Enterprise default data type

BIGINT numeric(19,0)

See also
● “Server class aseodbc” on page 732

Server class IQJDBC (deprecated)

This server class is deprecated. You should update your application to use server class iqodbc.

A server with server class IQJDBC is a Sybase IQ server. No special requirements exist for the
configuration of a Sybase IQ data source.

Server classes for remote data access

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 747

748 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Data integrity
If data has integrity, the data is valid—correct and accurate—and the relational structure of the database is
intact. Referential integrity constraints enforce the relational structure of the database. These rules
maintain the consistency of data between tables. Building integrity constraints into the database is the best
way to make sure your data remains consistent.

You can enforce several types of referential integrity checks. For example, you can ensure individual
entries are correct by imposing constraints and CHECK constraints on tables and columns. You can also
configure column properties by choosing an appropriate data type or setting special default values.

SQL Anywhere supports stored procedures, which give you detailed control over how data enters the
database. You can also create triggers, or customized stored procedures that are invoked automatically
when a certain action, such as an update of a particular column, occurs.

See also
● “Stored procedures, triggers, batches, and user defined functions” on page 71

How your data can become invalid
Data in your database may become invalid if proper checks are not made. You can prevent each of these
examples from occurring using facilities described in this section.

Incorrect information
● An operator types the date of a sales transaction incorrectly.

● An employee's salary becomes ten times too small because the operator missed a digit.

Duplicated data
● Two different employees add the same new department (with DepartmentID 200) to the Departments

table of the organization's database.

Foreign key relations invalidated
● The department identified by DepartmentID 300 closes down and one employee record inadvertently

remains unassigned to a new department.

Integrity constraints
To ensure the validity of data in a database, you need to formulate checks to define valid and invalid data,
and design rules to which data must adhere (also known as business rules). Typically, business rules are
implemented through check constraints, user-defined data types, and the appropriate use of transactions.

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 749

Constraints that are built into the database are more reliable than constraints that are built into client
applications or that are provided as instructions to database users. Constraints built into the database
become part of the definition of the database itself, and the database enforces them consistently across all
applications. Setting a constraint once in the database imposes it for all subsequent interactions with the
database.

In contrast, constraints built into client applications are vulnerable every time the software changes, and
may need to be imposed in several applications, or in several places in a single client application.

How the contents of your database change
Changes occur to information in database tables when you submit SQL statements from client
applications. Only a few SQL statements actually modify the information in a database. You can:

● Update information in a row of a table using the UPDATE statement.

● Delete an existing row of a table using the DELETE statement.

● Insert a new row into a table using the INSERT statement.

Tools for maintaining data integrity
To maintain data integrity, you can use defaults, data constraints, and constraints that maintain the
referential structure of the database.

Defaults
You can assign default values to columns to make certain kinds of data entry more reliable. For example:

● A column can have a CURRENT DATE default value for recording the date of transactions with any
user or client application action.

● Other types of default values allow column values to increment automatically without any specific user
action other than entering a new row. With this feature, you can guarantee that items (such as purchase
orders for example) are unique, sequential numbers.

Primary keys
Primary keys guarantee that every row of a given table can be uniquely identified in the table.

Table and column constraints
The following constrains maintain the structure of data in the database, and define the relationship
between tables in a relational database:

● Referential constraints Data integrity is also maintained using referential constraints, also called
RI constraints (for referential integrity constraints). RI constraints are data rules that are set on
columns and tables to control what the data can be. RI constraints define the relationship between
tables in a relational database.

Data integrity

750 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

● NOT NULL constraint A NOT NULL constraint prevents a column from containing a NULL
entry.

● CHECK constraint A CHECK constraint assigned to a column can ensure that every item in the
column meets a particular condition. For example, you can ensure that Salary column entries fit within
a specified range and are protected from user error when new values are entered.

CHECK constraints can be made on the relative values in different columns. For example, you can
ensure that a DateReturned entry is later than a DateBorrowed entry in a library database.

Column constraints can be inherited from domains.

Triggers for advanced integrity rules
A trigger is a procedure stored in the database and executed automatically whenever the information in a
specified table changes. Triggers are a powerful mechanism for database administrators and developers to
ensure that data remains reliable. You can also use triggers to maintain data integrity. Triggers can
enforce more sophisticated CHECK conditions.

See also
● “Column defaults” on page 752
● “Primary keys” on page 15
● “Entity and referential integrity” on page 767
● “Table and column constraints” on page 759
● “Stored procedures, triggers, batches, and user defined functions” on page 71

SQL statements for implementing integrity
constraints

The following SQL statements implement integrity constraints:

● CREATE TABLE statement This statement implements integrity constraints during creation of
the table.

● ALTER TABLE statement This statement adds integrity constraints to an existing table, or
modifies constraints for an existing table.

● CREATE TRIGGER statement This statement creates triggers that enforce more complex
business rules.

● CREATE DOMAIN statement This statement creates a user-defined data type. The definition of
the data type can include constraints.

See also
● “SQL statements” [SQL Anywhere Server - SQL Reference]

SQL statements for implementing integrity constraints

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 751

Column defaults
Column defaults automatically assign a specified value to a particular column whenever someone enters a
new row into a database table. The default value assigned requires no action on the part of the client
application, however if the client application does specify a value for the column, the new value overrides
the column default value.

Column defaults can quickly and automatically fill columns with information, such as the date or time a
row is inserted, or the user ID of the person entering the information. Using column defaults encourages
data integrity, but does not enforce it. Client applications can always override defaults.

When default values are defined using variables that start with @, the value used for the default is value
of the variable at the moment the DML or LOAD statement is executed.

Supported default values
SQL supports the following default values:

● A string specified in the CREATE TABLE statement or ALTER TABLE statement.

● A number specified in the CREATE TABLE statement or ALTER TABLE statement.

● AUTOINCREMENT: an automatically incremented number that is one more than the previous highest
value in the column.

● GLOBAL AUTOINCREMENT, which ensures unique primary keys across multiple databases.

● Universally Unique Identifiers (UUIDs) generated using the NEWID function.

● CURRENT DATE, TIME, or TIMESTAMP.

● The CURRENT USER of the database user.

● A NULL value.

● A constant expression, as long as it does not reference database objects.

Creation of column defaults
You can use the CREATE TABLE statement to create column defaults at the time a table is created, or
the ALTER TABLE statement to add column defaults at a later time.

Example
The following statement adds a default to an existing column named ID in the SalesOrders table, so that it
automatically increments (unless a client application specifies a value). Note that in the SQL Anywhere
sample database, this column is already set to AUTOINCREMENT.

ALTER TABLE SalesOrders
ALTER ID DEFAULT AUTOINCREMENT;

Data integrity

752 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “ALTER TABLE statement” [SQL Anywhere Server - SQL Reference]
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]

Altering and dropping column defaults
You can change or remove column defaults using the same form of the ALTER TABLE statement you
used to create the defaults. The following statement changes the default value of a column named
OrderDate from its current setting to CURRENT DATE:

ALTER TABLE SalesOrders
ALTER OrderDate DEFAULT CURRENT DATE;

You can remove column defaults by modifying them to be NULL. The following statement removes the
default from the OrderDate column:

ALTER TABLE SalesOrders
ALTER OrderDate DEFAULT NULL;

Working with column defaults
You can add, alter, and drop column defaults in Sybase Central using the Value tab of the Column
Properties window.

Prerequisites

DBA authority.

Context and remarks

Many.

Display the Properties window for a column (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, double-click Tables.

3. Click the table.

4. Click the Columns tab.

5. Right-click the column and click Properties.

Results

The column properties are displayed and can then be altered.

Column defaults

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 753

Next

None.

Current date and time defaults
For columns with the DATE, TIME, or TIMESTAMP data type, you can use CURRENT DATE,
CURRENT TIME, or CURRENT TIMESTAMP as a default. The default you choose must be compatible
with the column's data type.

Useful examples of the CURRENT DATE default
The CURRENT DATE default might be useful to record:

● dates of phone calls in a contacts database

● dates of orders in a sales entry database

● the date a patron borrows a book in a library database

CURRENT TIMESTAMP
The CURRENT TIMESTAMP default is similar to the CURRENT DATE default, but offers greater
accuracy. For example, a user of a contact management application may have several interactions with a
single customer in one day: the CURRENT TIMESTAMP default would be useful to distinguish these
contacts.

Since it records a date and the time down to a precision of millionths of a second, you may also find
CURRENT TIMESTAMP useful when the sequence of events is important in a database.

DEFAULT TIMESTAMP
DEFAULT TIMESTAMP provides a way of indicating when each row in the table was last modified.
When a column is declared with DEFAULT TIMESTAMP, a default value is provided for inserts, and the
value is updated with the current date and time whenever the row is updated. To provide a default value
on insert, but not update the column whenever the row is updated, use DEFAULT CURRENT
TIMESTAMP instead of DEFAULT TIMESTAMP.

See also
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “SQL data types” [SQL Anywhere Server - SQL Reference]

The user ID defaults
Assigning a DEFAULT USER to a column is an easy and reliable way of identifying the person making
an entry in a database. This information may be required; for example, when salespeople are working on
commission.

Data integrity

754 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Building a user ID default into the primary key of a table is a useful technique for occasionally connected
users, and helps to prevent conflicts during information updates. These users can make a copy of tables
relevant to their work on a portable computer, make changes while not connected to a multi-user database,
and then apply the transaction log to the server when they return.

The LAST USER special value specifies the name of the user who last modified the row. When combined
with the DEFAULT TIMESTAMP, a default value of LAST USER can be used to record (in separate
columns) both the user and the date and time a row was last changed.

See also
● “LAST USER special value” [SQL Anywhere Server - SQL Reference]

The AUTOINCREMENT default
The AUTOINCREMENT default is useful for numeric data fields where the value of the number itself
may have no meaning. The feature assigns each new row a unique value larger than any other value in the
column. You can use AUTOINCREMENT columns to record purchase order numbers, to identify
customer service calls or other entries where an identifying number is required.

AUTOINCREMENT columns are typically primary key columns or columns constrained to hold unique
values.

You can retrieve the most recent value inserted into an AUTOINCREMENT column using the
@@identity global variable.

AUTOINCREMENT and negative numbers
AUTOINCREMENT is intended to work with positive integers.

The initial AUTOINCREMENT value is set to 0 when the table is created. This value remains as the
highest value assigned when inserts are done that explicitly insert negative values into the column. An
insert where no value is supplied causes the AUTOINCREMENT to generate a value of 1, forcing any
other generated values to be positive.

AUTOINCREMENT and the IDENTITY column
A column with the AUTOINCREMENT default is referred to in Transact-SQL applications as an
IDENTITY column.

Column defaults

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 755

See also
● “Reloading tables with AUTOINCREMENT columns” [SQL Anywhere 12 - Changes and Upgrading]
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “The GLOBAL AUTOINCREMENT default” on page 756
● “Choosing between sequences and AUTOINCREMENT values” on page 842
● “GLOBAL AUTOINCREMENT columns” [SQL Remote]
● “sa_reset_identity system procedure” [SQL Anywhere Server - SQL Reference]
● “@@identity global variable” [SQL Anywhere Server - SQL Reference]
● “Entity integrity” on page 767
● “The special IDENTITY column” on page 592

The GLOBAL AUTOINCREMENT default

The GLOBAL AUTOINCREMENT default is intended for use when multiple databases are used in a
SQL Remote replication or MobiLink synchronization environment. It ensures unique primary keys
across multiple databases.

This option is similar to AUTOINCREMENT, except that the domain is partitioned. Each partition
contains the same number of values. You assign each copy of the database a unique global database
identification number. SQL Anywhere supplies default values in a database only from the partition
uniquely identified by that database's number.

The partition size can be any positive integer, although the partition size is generally chosen so that the
supply of numbers within any one partition will rarely, if ever, be exhausted.

If the column is of type BIGINT or UNSIGNED BIGINT, the default partition size is 232 = 4294967296;
for columns of all other types, the default partition size is 216 = 65536. Since these defaults may be
inappropriate, especially if your column is not of type INT or BIGINT, it is best to specify the partition
size explicitly.

When using this option, the value of the public option global_database_id in each database must be set to
a unique, non-negative integer. This value uniquely identifies the database and indicates from which
partition default values are to be assigned. The range of allowed values is np + 1 to (n + 1) p, where n is
the value of the public option global_database_id and p is the partition size. For example, if you define the
partition size to be 1000 and set global_database_id to 3, then the range is from 3001 to 4000.

If the previous value is less than (n + 1) p, the next default value is one greater than the previous largest
value in column. If the column contains no values, the first default value is np + 1. Default column values
are not affected by values in the column outside the current partition; that is, by numbers less than np + 1
or greater than p(n + 1). Such values may be present if they have been replicated from another database
via MobiLink synchronization.

Because the public option global_database_id cannot be set to a negative value, the values chosen are
always positive. The maximum identification number is restricted only by the column data type and the
partition size.

Data integrity

756 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

If the public option global_database_id is set to the default value of 2147483647, a NULL value is
inserted into the column. If NULL values are not permitted, attempting to insert the row causes an error.
This situation arises, for example, if the column is contained in the table's primary key.

NULL default values are also generated when the supply of values within the partition has been
exhausted. In this case, a new value of global_database_id should be assigned to the database to allow
default values to be chosen from another partition. Attempting to insert the NULL value causes an error if
the column does not permit NULLs. To detect that the supply of unused values is low and handle this
condition, create an event of type GlobalAutoincrement.

GLOBAL AUTOINCREMENT columns are typically primary key columns or columns constrained to
hold unique values.

While using the GLOBAL AUTOINCREMENT default in other cases is possible, doing so can adversely
affect database performance. For example, when the next value for each column is stored as a 64-bit
signed integer, using values greater than 231 - 1 or large double or numeric values may cause wraparound
to negative values.

You can retrieve the most recent value inserted into an AUTOINCREMENT column using the
@@identity global variable.

See also
● “Using GLOBAL AUTOINCREMENT” [MobiLink - Server Administration]
● “Entity integrity” on page 767
● “@@identity global variable” [SQL Anywhere Server - SQL Reference]
● “Events” [SQL Anywhere Server - Database Administration]
● “GLOBAL AUTOINCREMENT columns” [SQL Remote]
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “Reloading tables with AUTOINCREMENT columns” [SQL Anywhere 12 - Changes and Upgrading]
● “The AUTOINCREMENT default” on page 755
● “Choosing between sequences and AUTOINCREMENT values” on page 842
● “sa_reset_identity system procedure” [SQL Anywhere Server - SQL Reference]

The NEWID default
Universally Unique Identifiers (UUIDs), also known as Globally Unique Identifiers (GUIDs), can be used
to identify unique rows in a table. The values are generated such that a value produced on one computer
will not match that produced on another. They can therefore be used as keys in replication and
synchronization environments.

Using UUID values as primary keys has some tradeoffs when you compare them with using GLOBAL
AUTOINCREMENT values. For example:

● UUIDs can be easier to set up than GLOBAL AUTOINCREMENT, since there is no need to assign
each remote database a unique database ID. There is also no need to consider the number of databases
in the system or the number of rows in individual tables. The Extraction utility (dbxtract) can be used to
deal with the assignment of database IDs. This isn't usually a concern for GLOBAL

Column defaults

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 757

AUTOINCREMENT if the BIGINT data type is used, but it needs to be considered for smaller data
types.

● UUID values are considerably larger than those required for GLOBAL AUTOINCREMENT, and will
require more table space in both primary and foreign tables. Indexes on these columns will also be less
efficient when UUIDs are used. In short, GLOBAL AUTOINCREMENT is likely to perform better.

● UUIDs have no implicit ordering. For example, if A and B are UUID values, A > B does not imply that
A was generated after B, even when A and B were generated on the same computer. If you require this
behavior, an additional column and index may be necessary.

See also
● “NEWID function [Miscellaneous]” [SQL Anywhere Server - SQL Reference]
● “UNIQUEIDENTIFIER data type” [SQL Anywhere Server - SQL Reference]

The NULL default

For columns that allow NULL values, specifying a NULL default is exactly the same as not specifying a
default at all. If the client inserting the row does not explicitly assign a value, the row automatically
receives A NULL value.

You can use NULL defaults when information for some columns is optional or not always available.

See also
● “NULL special value” [SQL Anywhere Server - SQL Reference]

String and number defaults

You can specify a specific string or number as a default value, as long as the column has a string or
numeric data type. You must ensure that the default specified can be converted to the column's data type.

Default strings and numbers are useful when there is a typical entry for a given column. For example, if
an organization has two offices, the headquarters in city_1 and a small office in city_2, you may want to
set a default entry for a location column to city_1, to make data entry easier.

Constant expression defaults

You can use a constant expression as a default value, as long as it does not reference database objects.
Constant expressions allow column defaults to contain entries such as the date fifteen days from today,
which would be entered as

... DEFAULT (DATEADD(day, 15, GETDATE()));

Data integrity

758 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Table and column constraints
Along with the basic table structure (number, name and data type of columns, name and location of the
table), the CREATE TABLE statement and ALTER TABLE statement can specify many different table
attributes that allow control over data integrity. Constraints allow you to place restrictions on the values
that can appear in a column, or on the relationship between values in different columns. Constraints can
be either table-wide constraints, or can apply to individual columns.

This section describes how to use constraints to help ensure the accuracy of data in the table.

CHECK constraints on columns
You use a CHECK condition to ensure that the values in a column satisfy some criteria or rule. These
rules or criteria may be required to verify that the data is correct, or they may be more rigid rules that
reflect organization policies and procedures. CHECK conditions on individual column values are useful
when only a restricted range of values are valid for that column.

Once a CHECK condition is in place, future values are evaluated against the condition before a row is
modified. When you update a value that has a check constraint, the constraints for that value and for the
rest of the row are checked.

Variables are not allowed in CHECK constraints on columns. Any string starting with @ within a column
CHECK constraint is replaced with the name of the column the constraint is on.

If the column data type is a domain, the column inherits any CHECK constraints defined for the domain.

Note
Column CHECK tests fail if the condition returns a value of FALSE. If the condition returns a value of
UNKNOWN, the behavior is as though it returns TRUE, and the value is allowed.

See also
● “Column CHECK constraints that are inherited from domains” on page 761
● “Search conditions” [SQL Anywhere Server - SQL Reference]

Example 1
You can enforce a particular formatting requirement. For example, if a table has a column for phone
numbers you may want to ensure that users enter them all in the same manner. For North American phone
numbers, you could use a constraint such as:

ALTER TABLE Customers
ALTER Phone
CHECK (Phone LIKE '(___) ___-____');

Once this CHECK condition is in place, if you attempt to set a Phone value to 9835, for example, the
change is not allowed.

Table and column constraints

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 759

Example 2
You can ensure that the entry matches one of a limited number of values. For example, to ensure that a
City column only contains one of a certain number of allowed cities (such as those cities where the
organization has offices), you could use a constraint such as:

ALTER TABLE Customers
ALTER City
CHECK (City IN ('city_1', 'city_2', 'city_3'));

By default, string comparisons are case insensitive unless the database is explicitly created as a case-
sensitive database.

Example 3
You can ensure that a date or number falls in a particular range. For example, you may require that the
StartDate of an employee be between the date the organization was formed and the current date. To
ensure that the StartDate falls between these two dates, use the following constraint:

ALTER TABLE Employees
ALTER StartDate
CHECK (StartDate BETWEEN '1983/06/27'
 AND CURRENT DATE);

You can use several date formats. The YYYY/MM/DD format in this example has the virtue of always
being recognized regardless of the current option settings.

CHECK constraints on tables
A CHECK condition applied as a constraint on the table typically ensures that two values in a row being
added or modified have a proper relation to each other.

When you give a name to the constraint, the constraint is held individually in the system tables, and you
can replace or drop them individually. Since this is more flexible behavior, it is recommended that you
either name a CHECK constraint or use an individual column constraint wherever possible.

For example, you can add a constraint on the Employees table to ensure that the TerminationDate is
always later than, or equal to, the StartDate:

ALTER TABLE Employees
 ADD CONSTRAINT valid_term_date
 CHECK(TerminationDate >= StartDate);

You can specify variables within table CHECK constraints but their names must begin with @. The value
used is the value of the variable at the moment the DML or LOAD statement is executed.

See also
● “ALTER TABLE statement” [SQL Anywhere Server - SQL Reference]

Data integrity

760 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Column CHECK constraints that are inherited from
domains

You can attach CHECK constraints to domains. Columns defined on those domains inherit the CHECK
constraints. A CHECK constraint explicitly specified for the column overrides that from the domain. For
example, the CHECK clause in this domain definition requires that values inserted into columns only be
positive integers.

CREATE DATATYPE positive_integer INT
CHECK (@col > 0);

Any column defined using the positive_integer domain accepts only positive integers unless the column
itself has a CHECK constraint explicitly specified. Since any variable prefixed with the @ sign is
replaced by the name of the column when the CHECK constraint is evaluated, any variable name prefixed
with @ could be used instead of @col.

An ALTER TABLE statement with the DELETE CHECK clause drops all CHECK constraints from the
table definition, including those inherited from domains.

Any changes made to a constraint in a domain definition (after a column is defined on that domain) are
not applied to the column. The column gets the constraints from the domain when it is created, but there is
no further connection between the two.

See also
● “Domains” [SQL Anywhere Server - SQL Reference]
● “CHECK constraints on columns” on page 759

Managing constraints
In Sybase Central, you can add, alter, and drop column constraints on the Constraints tab of the table or
Column Properties window.

Prerequisites

DBA authority.

Context and remarks

Many.

Manage constraints (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, double-click Tables.

3. Click the table you want to alter.

Table and column constraints

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 761

4. In the right pane, click the Constraints tab and modify an existing constraint or add a new constraint.

Results

The column constraints are displayed and can then be altered.

Next

None.

Managing UNIQUE constraints
You can create and drop UNIQUE constraints for columns in Sybase Central.

Prerequisites

DBA authority.

Context and remarks

Spatial columns cannot be included in a UNIQUE constraint.

For a column, a UNIQUE constraint specifies that the values in the column must be unique. For a table,
the UNIQUE constraint identifies one or more columns that identify unique rows in the table. No two
rows in the table can have the same values in all the named column(s). A table can have more than one
UNIQUE constraint.

Manage unique constraints (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, double-click Tables.

3. Click the table you want to alter.

4. In the right pane, click the Constraints tab.

5. Right-click in the Constraints tab and click New » Unique Constraint.

6. Complete the instructions in the Create Unique Constraint Wizard.

Results

A UNIQUE constraint is created.

Next

None.

Data integrity

762 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Alter and drop CHECK constraints

Altering tables can interfere with other users of the database. Although you can execute the ALTER
TABLE statement while other connections are active, you cannot execute the ALTER TABLE statement
if any other connection is using the table you want to alter. For large tables, ALTER TABLE is a time-
consuming operation, and all other requests referencing the table being altered are prohibited while the
statement is processing.

There are several ways to alter the existing set of CHECK constraints on a table.

● You can add a new CHECK constraint to the table or to an individual column.

● You can drop a CHECK constraint on a column by setting it to NULL. For example, the following
statement removes the CHECK constraint on the Phone column in the Customers table:

ALTER TABLE Customers
ALTER Phone CHECK NULL;

● You can replace a CHECK constraint on a column in the same way as you would add a CHECK
constraint. For example, the following statement adds or replaces a CHECK constraint on the Phone
column of the Customers table:

ALTER TABLE Customers
ALTER Phone
CHECK (Phone LIKE '___-___-____');

● You can alter a CHECK constraint defined on the table:

○ You can add a new CHECK constraint using ALTER TABLE with an ADD table-constraint clause.

○ If you have defined constraint names, you can alter individual constraints.

○ If you have not defined constraint names, you can drop all existing CHECK constraints (including
column CHECK constraints and CHECK constraints inherited from domains) using ALTER TABLE
DELETE CHECK, and then add in new CHECK constraints.

To use the ALTER TABLE statement with the DELETE CHECK clause:

ALTER TABLE table-name
DELETE CHECK;

Sybase Central lets you add, alter and drop both table and column CHECK constraints.

Dropping a column from a table does not drop CHECK constraints associated with the column held in the
table constraint. Not removing the constraints produces an error message upon any attempt to insert, or
even just query, data in the table.

Note
Table CHECK constraints fail if a value of FALSE is returned. If the condition returns a value of
UNKNOWN the behavior is as though it returned TRUE, and the value is allowed.

Table and column constraints

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 763

See also
● “ALTER TABLE statement” [SQL Anywhere Server - SQL Reference]
● “Column '%1' not found” [Error Messages]
● “Managing constraints” on page 761

Domains
A domain is a user-defined data type that, together with other attributes, can restrict the range of
acceptable values or provide defaults. A domain extends one of the built-in data types. Normally, the
range of permissible values is restricted by a check constraint. In addition, a domain can specify a default
value and may or may not allow NULLs.

Defining your own domains provides many benefits including:

● Preventing common errors if inappropriate values are entered. A constraint placed on a domain ensures
that all columns and variables intended to hold values in a range or format can hold only the intended
values. For example, a data type can ensure that all credit card numbers typed into the database contain
the correct number of digits.

● Making the applications and the structure of a database easier to understand.

● Convenience. For example, you may intend that all table identifiers are positive integers that, by
default, auto-increment. You could enforce this restriction by entering the appropriate constraints and
defaults each time you define a new table, but it is less work to define a new domain, then simply state
that the identifier can take only values from the specified domain.

See also
● “Domains” [SQL Anywhere Server - SQL Reference]

Creating domains
Administrators can create domains and assign them to columns in Sybase Central.

Prerequisites

DBA authority.

Context and remarks

Some predefined domains are included with SQL Anywhere. For example, the monetary domain
MONEY.

Create a new domain (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database.

Data integrity

764 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

2. In the left pane, right-click Domains and click New » Domain.

3. Follow the instructions in the Create Domain Wizard.

Assign a domain to a column (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, double-click Tables.

3. Click the table.

4. In the right pane, click the Columns tab.

5. Select a column and in the Data Type field click the ellipsis (three dots) button.

6. Click the Data Type tab and click Domain.

7. In the Domain list, select a domain.

8. Click OK.

Results

The domain is created and assigned to the specified column.

Next

None.

Example

Some columns in the database are used for employee names and others to store addresses. You might then
define the following domains.

CREATE DOMAIN persons_name CHAR(30)
CREATE DOMAIN street_address CHAR(35);

Example

Having defined these domains, you can use them much as you would the built-in data types. For example,
you can use these definitions to define a table, as follows.

CREATE TABLE Customers (
 ID INT DEFAULT AUTOINCREMENT PRIMARY KEY,
 Name persons_name,
 Street street_address);

Example

In the above example, the table's primary key is specified to be of type integer. Indeed, many of your
tables may require similar identifiers. Instead of specifying that these are integers, it is much more
convenient to create an identifier domain for use in these applications.

Domains

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 765

When you create a domain, you can specify a default value and provide check constraint to ensure that no
inappropriate values are typed into any column of this type.

Integer values are commonly used as table identifiers. A good choice for unique identifiers is to use
positive integers. Since such identifiers are likely to be used in many tables, you could define the
following domain.

CREATE DOMAIN identifier UNSIGNED INT
DEFAULT AUTOINCREMENT;

Using this definition, you can rewrite the definition of the Customers table, shown above.

CREATE TABLE Customers2 (
 ID identifier PRIMARY KEY,
 Name persons_name,
 Street street_address
);

See also
● “CREATE DOMAIN statement” [SQL Anywhere Server - SQL Reference]

Dropping domains
You can delete user-defined data types in Sybase Central.

Prerequisites

You must have DBA authority or be the creator of the domain.

Since a domain cannot be dropped if any variable or column in the database uses the domain, you need to
first drop any columns or variables of that data type before you can drop the domain.

Context and remarks

Many.

Drop a domain (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, double-click Domains.

3. In the right pane, right-click the domain and click Delete.

4. Click Yes.

Results

The domain is deleted.

Data integrity

766 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Next

None.

See also
● “DROP DOMAIN statement” [SQL Anywhere Server - SQL Reference]

Entity and referential integrity
The relational structure of the database enables the database server to identify information within the
database, and ensures that all the rows in each table uphold the relationships between tables (described in
the database schema).

Entity integrity
When a user inserts or updates a row, the database server ensures that the primary key for the table is still
valid: that each row in the table is uniquely identified by the primary key.

Example 1
The Employees table in the SQL Anywhere sample database uses an employee ID as the primary key.
When you add a new employee to the table, the database server checks that the new employee ID value is
unique and is not NULL.

Example 2
The SalesOrderItems table in the SQL Anywhere sample database uses two columns to define a primary
key.

This table holds information about items ordered. One column contains an ID specifying an order, but
there may be several items on each order, so this column by itself cannot be a primary key. An additional
LineID column identifies which line corresponds to the item. The columns ID and LineID, taken together,
specify an item uniquely, and form the primary key.

If a client application breaches entity integrity

Entity integrity requires that each value of a primary key be unique within the table, and that no NULL
values exist. If a client application attempts to insert or update a primary key value, providing values that
are not unique would breach entity integrity. A breach in entity integrity prevents the new information
from being added to the database, and instead sends the client application an error.

You must decide how to present an integrity breach to the user and enable them to take appropriate action.
The appropriate action is usually as simple as asking the user to provide a different, unique value for the
primary key.

Entity and referential integrity

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 767

Primary keys enforce entity integrity

Once you specify the primary key for each table, maintaining entity integrity requires no further action by
either client application developers or by the database administrator.

The table owner defines the primary key for a table when they create it. If they modify the structure of a
table at a later date, they can also redefine the primary key.

See also
● “Primary keys” on page 15
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TABLE statement” [SQL Anywhere Server - SQL Reference]

Referential integrity

For a foreign key relationship to be valid, the entries in the foreign key must correspond to the primary
key values of a row in the referenced table. Occasionally, some other unique column combination may be
referenced instead of a primary key.

A foreign key is a reference to a primary key or UNIQUE constraint, usually in another table. When that
primary key does not exist, the offending foreign key is called an orphan. SQL Anywhere automatically
ensures that your database contains no rows that violate referential integrity. This process is referred to as
verifying referential integrity. The database server verifies referential integrity by counting orphans.

When using a multi-column foreign key, you can determine what constitutes an orphaned row versus what
constitutes a violation of referential integrity using the MATCH clause. The MATCH clause also allows
you to specify uniqueness for the key, thereby eliminating the need to declare uniqueness separately.

The following is a list of MATCH types you can specify:

● MATCH [UNIQUE] SIMPLE A match occurs for a row in the foreign key table if all the column
values match the corresponding column values present in a row of the primary key table. A row is
orphaned in the foreign key table if at least one column value in the foreign key is NULL.

MATCH SIMPLE is the default behavior.

If the UNIQUE keyword is specified, the referencing table can have only one match for non-NULL
key values.

● MATCH [UNIQUE] FULL A match occurs for a row in the foreign key table if none of the values
are NULL and the values match the corresponding column values in a row of the primary key table. A
row is orphaned if all column values in the foreign key are NULL.

If the UNIQUE keyword is specified, the referencing table can have only one match for non-NULL
key values.

Data integrity

768 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Example 1
The SQL Anywhere sample database contains an Employees table and a Departments table. The primary
key for the Employees table is the employee ID, and the primary key for the Departments table is the
department ID. In the Employees table, the department ID is called a foreign key for the Departments
table because each department ID in the Employees table corresponds exactly to a department ID in the
Departments table.

The foreign key relationship is a many-to-one relationship. Several entries in the Employees table have
the same department ID entry, but the department ID is the primary key for the Departments table, and so
is unique. If a foreign key could reference a column in the Departments table containing duplicate entries,
or entries with a NULL value, there would be no way of knowing which row in the Departments table is
the appropriate reference. This is prevented by defining the foreign key column as NOT NULL.

Example 2
Suppose the database also contained an office table listing office locations. The Employees table might
have a foreign key for the office table that indicates which city the employee's office is in. The database
designer can choose to leave an office location unassigned at the time the employee is hired, for example,
either because they haven't been assigned to an office yet, or because they don't work out of an office. In
this case, the foreign key can allow NULL values, and is optional.

Example 3
Execute the following statement to create a composite primary key.

CREATE TABLE pt(
 pk1 INT NOT NULL,
 pk2 INT NOT NULL,
 str VARCHAR(10)
 PRIMARY KEY (pk1, pk2));

The following statements create a foreign key that has a different column order than the primary key and a
different sortedness for the foreign key columns, which is used to create the foreign key index.

CREATE TABLE ft1(
 fpk INT PRIMARY KEY,
 ref1 INT,
 ref2 INT);

ALTER TABLE ft1 ADD FOREIGN KEY (ref2 ASC, ref1 DESC)
 REFERENCES pt (pk2, pk1) MATCH SIMPLE;

Execute the following statements to create a foreign key that has the same column order as the primary
key but has a different sortedness for the foreign key index. The example also uses the MATCH FULL
clause to specify that orphaned rows result if both columns are NULL. The UNIQUE clause enforces a
one-to-one relationship between the pt table and the ft2 table for columns that are not NULL.

CREATE TABLE ft2(
 fpk INT PRIMARY KEY,
 ref1 INT,
 ref2 INT);

ALTER TABLE ft2 ADD FOREIGN KEY (ref1, ref2 DESC)
 REFERENCES pt (pk1, pk2) MATCH UNIQUE FULL;

Entity and referential integrity

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 769

Referential cycles

A referencing table and a referenced table need not be distinct. A table may contain a foreign key that
references itself. This is called a self-referencing table. A self-referencing table is a special case of a
referential cycle.

Example 1
The SQL Anywhere sample database has one table holding employee information and one table holding
department information:

CREATE TABLE "GROUPO"."Employees" (
 "EmployeeID" int NOT NULL
 ,"ManagerID" int NULL
 ,"Surname" "person_name_t" NOT NULL
 ,"GivenName" "person_name_t" NOT NULL
 ,"DepartmentID" int NOT NULL
 ,"Street" "street_t" NOT NULL
 ,"City" "city_t" NOT NULL
 ,"State" "state_t" NULL
 ,"Country" "country_t" NULL
 ,"PostalCode" "postal_code_t" NULL
 ,"Phone" "phone_number_t" NULL
 ,"Status" char(2) NULL
 ,"SocialSecurityNumber" char(11) NOT NULL
 ,"Salary" numeric(20,3) NOT NULL
 ,"StartDate" date NOT NULL
 ,"TerminationDate" date NULL
 ,"BirthDate" date NULL
 ,"BenefitHealthInsurance" bit NULL
 ,"BenefitLifeInsurance" bit NULL
 ,"BenefitDayCare" bit NULL
 ,"Sex" char(2) NULL CONSTRAINT "Sexes"
check(Sex in('F','M','NA'))
 ,CONSTRAINT "EmployeesKey" PRIMARY KEY ("EmployeeID")
)
ALTER TABLE "GROUPO"."Employees"
 ADD CONSTRAINT "SSN" UNIQUE ("SocialSecurityNumber")
CREATE TABLE "GROUPO"."Departments" (
 "DepartmentID" int NOT NULL
 ,"DepartmentName" char(40) NOT NULL
 ,"DepartmentHeadID" int NULL
 ,CONSTRAINT "DepartmentsKey" PRIMARY KEY ("DepartmentID")
 ,CONSTRAINT "DepartmentRange" check(DepartmentID > 0 and DepartmentID <=
999)
)

The Employees table has a primary key of "EmployeeID" and a candidate key of
"SocialSecurityNumber". The Departments table has a primary key of "DepartmentID". The Employees
table is related to the Departments table by the definition of the foreign key:

ALTER TABLE "GROUPO"."Employees"
 ADD NOT NULL FOREIGN KEY "FK_DepartmentID_DepartmentID" ("DepartmentID")
 REFERENCES "GROUPO"."Departments" ("DepartmentID")

To find the name of a particular employee's department, there is no need to store the name of the
employee's department in the Employees table. Instead, the Employees table contains a column,

Data integrity

770 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

"DepartmentID", that holds the department number that matches one of the DepartmentID values in the
Departments table.

The Employees table references the Departments table through the referential constraint above, declaring
a many-to-one relationship between Employees and Departments. Moreover, this is a mandatory
relationship because the foreign key column in the Employees table, DepartmentID, is declared as NOT
NULL. But this is not the only relationship between the Employees and Departments tables; the
Departments table itself has a foreign key to the Employees table to represent the head of each
department:

ALTER TABLE "GROUPO"."Departments"
 ADD FOREIGN KEY "FK_DepartmentHeadID_EmployeeID" ("DepartmentHeadID")
 REFERENCES "GROUPO"."Employees" ("EmployeeID")
 ON DELETE SET NULL

This represents an optional many-to-one relationship between the Departments table and the Employees
table; it is many-to-one because the referential constraint alone cannot prevent two or more departments
having the same head. Consequently, the Employees and Departments tables form a referential cycle, with
each having a foreign key to the other.

Foreign keys enforce referential integrity
Like primary keys, you use the CREATE TABLE or ALTER TABLE statements to create foreign keys.
Once you create a foreign key, the column or columns in the key can contain only values that are present
as primary key values in the table associated with the foreign key.

Loss of referential integrity
Your database can lose referential integrity if someone:

● Updates or drops a primary key value. All the foreign keys referencing that primary key would become
invalid.

● Adds a new row to the foreign table, and enters a value for the foreign key that has no corresponding
primary key value. The database would become invalid.

SQL Anywhere provides protection against both types of integrity loss.

If a client application breaches referential integrity
If a client application updates or deletes a primary key value in a table, and if a foreign key references that
primary key value elsewhere in the database, there is a danger of a breach of referential integrity.

Example
If the server allowed the primary key to be updated or dropped, and made no alteration to the foreign keys
that referenced it, the foreign key reference would be invalid. Any attempt to use the foreign key

Entity and referential integrity

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 771

reference, for example in a SELECT statement using a KEY JOIN clause, would fail, as no corresponding
value in the referenced table exists.

While SQL Anywhere handles breaches of entity integrity in a generally straightforward fashion by
simply refusing to enter the data and returning an error message, potential breaches of referential integrity
become more complicated. You have several options (known as referential integrity actions) available to
help you maintain referential integrity.

Referential integrity actions
Maintaining referential integrity when updating or deleting a referenced primary key can be as simple as
disallowing the update or drop. Often, however, it is also possible to take a specific action on each foreign
key to maintain referential integrity. The CREATE TABLE and ALTER TABLE statements allow
database administrators and table owners to specify what action to take on foreign keys that reference a
modified primary key when a breach occurs.

Note
Referential integrity actions are triggered by physical, rather than logical, updates to the unique value.
For example, even in a case-insensitive database, updating the primary key value from SAMPLE-VALUE
to sample-value will trigger a referential integrity action, even though the two values are logically the
same.

You can specify each of the following referential integrity actions separately for updates and drops of the
primary key:

● RESTRICT Generates an error and prevents the modification if an attempt to alter a referenced
primary key value occurs. This is the default referential integrity action.

● SET NULL Sets all foreign keys that reference the modified primary key to NULL.

● SET DEFAULT Sets all foreign keys that reference the modified primary key to the default value
for that column (as specified in the table definition).

● CASCADE When used with ON UPDATE, this action updates all foreign keys that reference the
updated primary key to the new value. When used with ON DELETE, this action deletes all rows
containing foreign keys that reference the deleted primary key.

System triggers implement referential integrity actions. The trigger, defined on the primary table, is
executed using the permissions of the owner of the secondary table. This behavior means that cascaded
operations can take place between tables with different owners, without additional permissions having to
be granted.

Data integrity

772 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Referential integrity checking

For foreign keys defined to RESTRICT operations that would violate referential integrity, default checks
occur at the time a statement executes. If you specify a CHECK ON COMMIT clause, then the checks
occur only when the transaction is committed.

Using a database option to control check time
Setting the wait_for_commit database option controls the behavior when a foreign key is defined to
restrict operations that would violate referential integrity. The CHECK ON COMMIT clause can override
this option.

With the default wait_for_commit set to Off, operations that would leave the database inconsistent cannot
execute. For example, an attempt to DELETE a department that still has employees in it is not allowed.
The following statement gives an error:

DELETE FROM Departments
WHERE DepartmentID = 200;

Setting wait_for_commit to On causes referential integrity to remain unchecked until a commit executes.
If the database is in an inconsistent state, the database disallows the commit and reports an error. In this
mode, a database user could drop a department with employees in it, however, the user cannot commit the
change to the database until they:

● Delete or reassign the employees belonging to that department.

● Insert the DepartmentID row back into the Departments table.

● Roll back the transaction to undo the DELETE operation.

Integrity checks on INSERT

SQL Anywhere performs integrity checks when executing INSERT statements. For example, suppose you
attempt to create a department, but supply a DepartmentID value that is already in use:

INSERT
INTO Departments (DepartmentID, DepartmentName, DepartmentHeadID)
VALUES (200, 'Eastern Sales', 902);

The INSERT is rejected because the primary key for the table would no longer be unique. Since the
DepartmentID column is a primary key, duplicate values are not permitted.

Inserting values that violate relationships
The following statement inserts a new row in the SalesOrders table, but incorrectly supplies a
SalesRepresentative ID that does not exist in the Employees table.

INSERT
INTO SalesOrders (ID, CustomerID, OrderDate, SalesRepresentative)
VALUES (2700, 186, '2000-10-19', 284);

Entity and referential integrity

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 773

There is a one-to-many relationship between the Employees table and the SalesOrders table, based on the
SalesRepresentative column of the SalesOrders table and the EmployeeID column of the Employees table.
Only after a record in the primary table (Employees) has been entered can a corresponding record in the
foreign table (SalesOrders) be inserted.

Foreign keys
The primary key for the Employees table is the employee ID number. The sales rep ID number in the
SalesRepresentative table is a foreign key for the Employees table, meaning that each sales rep number in
the SalesOrders table must match the employee ID number for some employee in the Employees table.

When you try to add an order for sales rep 284 an error is raised.

There isn't an employee in the Employees table with that ID number. This prevents you from inserting
orders without a valid sales representative ID.

See also
● “Relationships between tables” [SQL Anywhere 12 - Introduction]

Integrity checks on DELETE or UPDATE

Foreign key errors can also arise when performing update or delete operations. For example, suppose you
try to remove the R&D department from the Departments table. The DepartmentID field, being the
primary key of the Departments table, constitutes the ONE side of a one-to-many relationship (the
DepartmentID field of the Employees table is the corresponding foreign key, and forms the MANY side).
A record on the ONE side of a relationship may not be deleted until all corresponding records on the
MANY side are deleted.

Referential integrity error on DELETE
Suppose you attempt to delete the R&D department (DepartmentID 100) in the Departments table. An
error is reported indicating that there are other records in the database that reference the R&D department,
and the delete operation is not performed. To remove the R&D department, you need to first get rid of all
employees in that department, as follows:

DELETE
FROM Employees
WHERE DepartmentID = 100;

Now that you deleted all the employees that belong to the R&D department, you can now delete the R&D
department:

DELETE
FROM Departments
WHERE DepartmentID = 100;

Cancel these changes to the database by entering a ROLLBACK statement:

ROLLBACK;

Data integrity

774 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Referential integrity error on UPDATE
Now, suppose you try to change the DepartmentID field from the Employees table. The DepartmentID
field, being the foreign key of the Employees table, constitutes the MANY side of a one-to-many
relationship (the DepartmentID field of the Departments table is the corresponding primary key, and
forms the ONE side). A record on the MANY side of a relationship may not be changed unless it
corresponds to a record on the ONE side. That is, unless it has a primary key to reference.

For example, the following UPDATE statement causes an integrity error:

UPDATE Employees
SET DepartmentID = 600
WHERE DepartmentID = 100;

An error is raised because there is no department with a DepartmentID of 600 in the Departments table.

To change the value of the DepartmentID field in the Employees table, it must correspond to an existing
value in the Departments table. For example:

UPDATE Employees
SET DepartmentID = 300
WHERE DepartmentID = 100;

This statement can be executed because the DepartmentID of 300 corresponds to the existing Finance
department.

Cancel these changes to the database by entering a ROLLBACK statement:

ROLLBACK;

Checking the integrity at commit time
In the previous examples, the integrity of the database was checked as each statement was executed. Any
operation that would result in an inconsistent database is not performed.

It is possible to configure the database so that the integrity is not checked until commit time using the
wait_for_commit option. This is useful if you need to make changes that may cause temporary
inconsistencies in the data while the changes are taking place. For example, suppose you want to delete
the R&D department in the Employees and Departments tables. Since these tables reference each other,
and since the deletions must be performed on one table at a time, there will be inconsistencies between the
table during the deletion. In this case, the database cannot perform a COMMIT until the deletion finishes.
Set the wait_for_commit option to On to allow data inconsistencies to exist up until a commit is
performed.

You can also define foreign keys in such a way that they are automatically modified to be consistent with
changes made to the primary key. In the above example, if the foreign key from Employees to
Departments was defined with ON DELETE CASCADE, then deleting the department ID would
automatically delete the corresponding entries in the Employees table.

In the above cases, there is no way to have an inconsistent database committed as permanent. SQL
Anywhere also supports alternative actions if changes would render the database inconsistent.

Entity and referential integrity

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 775

See also
● “wait_for_commit option” [SQL Anywhere Server - Database Administration]
● “Data integrity” on page 749

Integrity rules in the system tables
All the information about database integrity checks and rules is held in system tables. Use their
corresponding system views as follows to access this information:

System view Description

SYS.SYSCONSTRAINT Each row in the SYS.SYSCONSTRAINT system
view describes a constraint in the database. The
constraints currently supported include table and
column checks, primary keys, foreign keys, and
unique constraints.

For table and column check constraints, the ac-
tual CHECK condition is contained in the
SYS.ISYSCHECK system table.

SYS.SYSCHECK Each row in the SYS.SYSCHECK system view
defines a check constraint listed in the SYS.SY-
SCONSTRAINT system view.

SYS.SYSFKEY Each row in the SYS.SYSFKEY system view de-
scribes a foreign key, including the match type
defined for the key.

SYS.SYSIDX Each row in the SYS.SYSIDX system view de-
fines an index in the database.

Data integrity

776 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

System view Description

SYS.SYSTRIGGER Each row in the SYS.SYSTRIGGER system
view describes one trigger in the database, in-
cluding triggers that are automatically created for
foreign key constraints that have a referential
triggered action (such as ON DELETE CAS-
CADE).

The referential_action column holds a single
character indicating whether the action is cascade
(C), delete (D), set null (N), or restrict (R).

The event column holds a single character speci-
fying the event that causes the action to occur:
A=insert and delete, B=insert and update, C=up-
date, D=delete, E=delete and update, I=insert,
U=update, M=insert, delete and update.

The trigger_time column shows whether the ac-
tion occurs after (A) or before (B) the triggering
event.

See also
● “SYSCONSTRAINT system view” [SQL Anywhere Server - SQL Reference]
● “SYSCHECK system view” [SQL Anywhere Server - SQL Reference]
● “SYSFKEY system view” [SQL Anywhere Server - SQL Reference]
● “SYSIDX system view” [SQL Anywhere Server - SQL Reference]
● “SYSTRIGGER system view” [SQL Anywhere Server - SQL Reference]

Integrity rules in the system tables

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 777

778 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Transactions and isolation levels
To ensure data integrity, it is essential that you can identify states in which the information in your
database is consistent. The concept of consistency is best illustrated through an example:

Consistency example
Suppose you use your database to handle financial accounts, and you want to transfer money from one
client's account to another. The database is in a consistent state both before and after the money is
transferred; but it is not in a consistent state after you have debited money from one account and before
you have credited it to the second. During a transfer of money, the database is in a consistent state when
the total amount of money in the clients' accounts is as it was before any money was transferred. When
the money has been half transferred, the database is in an inconsistent state. Either both or neither of the
debit and the credit must be processed.

Transactions are logical units of work
A transaction is a logical unit of work. Each transaction is a sequence of logically related statements that
do one task and transform the database from one consistent state into another. The nature of a consistent
state depends on your database.

The statements within a transaction are treated as an indivisible unit: either all are executed or none is
executed. At the end of each transaction, you commit your changes to make them permanent. If for any
reason some of the statements in the transaction do not process properly, then any intermediate changes
are undone, or rolled back. Another way of saying this is that transactions are atomic.

Grouping statements into transactions is key both to protecting the consistency of your data (even in the
event of media or system failure), and to managing concurrent database operations. Transactions may be
safely interleaved and the completion of each transaction marks a point at which the information in the
database is consistent. You should design each transaction to perform a task that changes your database
from one consistent state to another.

In the event of a system failure or database crash during normal operation, SQL Anywhere performs
automatic recovery of your data when the database is next started. The automatic recovery process
recovers all completed transactions, and rolls back any transactions that were uncommitted when the
failure occurred. The atomic character of transactions ensures that databases are recovered to a consistent
state.

See also
● “Backup and data recovery” [SQL Anywhere Server - Database Administration]
● “Concurrency” on page 781

Transactions
SQL Anywhere expects you to group your statements into transactions. You commit a transaction to
make changes to your database permanent. When you alter data, your alterations are recorded in the
transaction log and are not made permanent until you enter the COMMIT statement.

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 779

Transactions start with one of the following events:

● The first statement following a connection to a database.

● The first statement following the end of a transaction.

Transactions complete with one of the following events:

● A COMMIT statement makes the changes to the database permanent.

● A ROLLBACK statement undoes all the changes made by the transaction.

● A statement with a side effect of an automatic commit is executed: most data definition statements,
such as ALTER, CREATE, COMMENT, and DROP have the side effect of an automatic commit.

● A disconnection from a database performs an implicit rollback.

● ODBC and JDBC have an autocommit setting that enforces a COMMIT after each statement. By
default, ODBC and JDBC require autocommit to be on, and each statement is a single transaction. If
you want to take advantage of transaction design possibilities, then you should turn autocommit off.

● Setting the chained database option to Off is similar to enforcing an autocommit after each statement.
By default, connections that use jConnect or Open Client applications have chained set to Off.

Options in Interactive SQL
Interactive SQL provides you with two options that let you control when and how transactions end:

● If you set the auto_commit option to On, Interactive SQL automatically commits your results following
every successful statement and automatically performs a ROLLBACK after each failed statement.

● The setting of the option commit_on_exit controls what happens to uncommitted changes when you
exit Interactive SQL. If this option is set to On (the default), Interactive SQL does a COMMIT;
otherwise, it undoes your uncommitted changes with a ROLLBACK statement.

Using a data source in Interactive SQL
By default, ODBC operates in autocommit mode. Even if you have set the auto_commit option to Off in
Interactive SQL, the ODBC setting overrides the Interactive SQL settings. You can change ODBC's
setting using the SQL_ATTR_AUTOCOMMIT connection attribute. ODBC autocommit is independent
of the chained option.

SQL Anywhere also supports Transact-SQL statements, such as BEGIN TRANSACTION, for
compatibility with Adaptive Server Enterprise.

Determining when a transaction began
The TransactionStartTime database property returns the time the database was first modified after a
COMMIT or ROLLBACK. You can use this property to find the start time of the earliest transaction for
all active connections. For example:

BEGIN
 DECLARE connid int;

Transactions and isolation levels

780 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 DECLARE earliest char(50);
 DECLARE connstart char(50);
 SET connid=next_connection(null);
 SET earliest = NULL;
 lp: LOOP
 IF connid IS NULL THEN LEAVE lp END IF;
 SET connstart = CONNECTION_PROPERTY('TransactionStartTime',connid);
 IF connstart <> '' THEN
 IF earliest IS NULL
 OR CAST(connstart AS TIMESTAMP) < CAST(earliest AS TIMESTAMP) THEN
 SET earliest = connstart;
 END IF;
 END IF;
 SET connid=next_connection(connid);
 END LOOP;
 SELECT earliest
END

See also
● “SQL statements” [SQL Anywhere Server - SQL Reference]
● “Autocommit and manual commit mode” [SQL Anywhere Server - Programming]
● “chained option” [SQL Anywhere Server - Database Administration]
● “auto_commit option [Interactive SQL]” [SQL Anywhere Server - Database Administration]
● “commit_on_exit option [Interactive SQL]” [SQL Anywhere Server - Database Administration]
● “Transact-SQL compatibility” on page 580

Concurrency
Concurrency is the ability of the database server to process multiple transactions at the same time. Were it
not for special mechanisms within the database server, concurrent transactions could interfere with each
other to produce inconsistent and incorrect information.

Who needs to know about concurrency
Concurrency is a concern to all database administrators and developers. Even if you are working with a
single-user database, you must be concerned with concurrency if you want to process requests from
multiple applications or even from multiple connections from a single application. These applications and
connections can interfere with each other in exactly the same way as multiple users in a network setting.

Transaction size affects concurrency
The way you group SQL statements into transactions can have significant effects on data integrity and on
system performance. If you make a transaction too short and it does not contain an entire logical unit of
work, then inconsistencies can be introduced into the database. If you write a transaction that is too long
and contains several unrelated actions, then there is a greater chance that a ROLLBACK will
unnecessarily undo work that could have been committed quite safely into the database.

If your transactions are long, they can lower concurrency by preventing other transactions from being
processed concurrently.

There are many factors that determine the appropriate length of a transaction, depending on the type of
application and the environment.

Concurrency

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 781

See also
● “Using SQL Anywhere database servers” [SQL Anywhere Server - Database Administration]

Savepoints within transactions
You can identify important states within a transaction and return to them selectively using savepoints to
separate groups of related statements.

A SAVEPOINT statement defines an intermediate point during a transaction. You can undo all changes
after that point using a ROLLBACK TO SAVEPOINT statement. Once a RELEASE SAVEPOINT
statement has been executed or the transaction has ended, you can no longer use the savepoint. Note that
savepoints do not have an effect on COMMITs. When a COMMIT is executed, all changes within the
transaction are made permanent in the database.

No locks are released by the RELEASE SAVEPOINT or ROLLBACK TO SAVEPOINT statements:
locks are released only at the end of a transaction.

Naming and nesting savepoints
Using named, nested savepoints, you can have many active savepoints within a transaction. Changes
between a SAVEPOINT and a RELEASE SAVEPOINT can be canceled by rolling back to a previous
savepoint or rolling back the transaction itself. Changes within a transaction are not a permanent part of
the database until the transaction is committed. All savepoints are released when a transaction ends.

Savepoints cannot be used in bulk operations mode. There is very little additional overhead in using
savepoints.

Isolation levels and consistency
SQL Anywhere allows you to control the degree to which the operations in one transaction are visible to
the operations in other concurrent transactions. You do so by setting a database option called the isolation
level.

SQL Anywhere also allows you to control the isolation levels of individual tables in a query with
corresponding table hints.

SQL Anywhere provides the following isolation levels:

Transactions and isolation levels

782 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

This isolation
level...

Has these characteristics...

0—read un-
committed

● Read permitted on row with or without write lock

● No read locks are applied

● No guarantee that concurrent transaction will not modify row or roll back changes
to row

● Corresponds to table hints NOLOCK and READUNCOMMITTED

● Allow dirty reads, non-repeatable reads, and phantom rows

1—read com-
mitted

● Read only permitted on row with no write lock

● Read lock acquired and held for read on current row only, but released when cur-
sor moves off the row

● No guarantee that data will not change during transaction

● Corresponds to table hint READCOMMITTED

● Prevent dirty reads

● Allow non-repeatable reads and phantom rows

2—repeatable
read

● Read only permitted on row with no write lock

● Read lock acquired as each row in the result set is read, and held until transaction
ends

● Corresponds to table hint REPEATABLEREAD

● Prevent dirty reads and non-repeatable reads

● Allow phantom rows

3—serializable ● Read only permitted on rows in result without write lock

● Read locks acquired when cursor is opened and held until transaction ends

● Corresponds to table hints HOLDLOCK and SERIALIZABLE

● Prevent dirty reads, non-repeatable reads, and phantom rows

Isolation levels and consistency

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 783

This isolation
level...

Has these characteristics...

snapshot1 ● No read locks are applied

● Read permitted on any row

● Database snapshot of committed data is taken when the first row is read or updated
by the transaction

statement-
snapshot1

● No read locks are applied

● Read permitted on any row

● Database snapshot of committed data is taken when the first row is read by the
statement

readonly-state-
ment-snap-
shot1

● No read locks are applied

● Read permitted on any row

● Database snapshot of committed data is taken when the first row is read by a read-
only statement

● Uses the isolation level (0, 1, 2, or 3) specified by the updatable_statement_isola-
tion option for an updatable statement

1 Snapshot isolation must be enabled for the database by setting the allow_snapshot_isolation option to
On for the database.

The default isolation level is 0, except for Open Client, jConnect, and TDS connections, which have a
default isolation level of 1.

Lock-based isolation levels prevent some or all interference. Level 3 provides the highest level of
isolation. Lower levels allow more inconsistencies, but typically have better performance. Level 0 (read
uncommitted) is the default setting.

The snapshot isolation levels prevent all interference between reads and writes. However, writes can still
interfere with each other. Few inconsistencies are possible and contention performance is the same as
isolation level 0. Performance not related to contention is worse because of the need to save and use row
versions.

Notes
All isolation levels guarantee that each transaction executes completely or not at all, and no updates are
lost.

The isolation is between transactions only: multiple cursors within the same transaction cannot interfere
with each other.

Transactions and isolation levels

784 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “FROM clause” [SQL Anywhere Server - SQL Reference]
● “MobiLink isolation levels” [MobiLink - Server Administration]
● “Enabling snapshot isolation” on page 788

Snapshot isolation
Blocks and deadlocks can occur when users are reading and writing the same data simultaneously.
Snapshot isolation is designed to improve concurrency and consistency by maintaining different versions
of data. When you use snapshot isolation in a transaction, the database server returns a committed version
of the data in response to any read requests. It does this without acquiring read locks, and prevents
interference with users who are writing data.

A snapshot is a set of data that has been committed in the database. When using snapshot isolation, all
queries within a transaction use the same set of data. No locks are acquired on database tables, which
allows other transactions to access and modify the data without blocking. SQL Anywhere supports three
snapshot isolation levels that let you control when a snapshot is taken:

● snapshot Use a snapshot of committed data from the time when the first row is read, inserted,
updated, or deleted by the transaction.

● statement-snapshot Use a snapshot of committed data from the time when the first row is read
by the statement. Each statement within the transaction sees a snapshot of data from a different time.

● readonly-statement-snapshot For read-only statements, use a snapshot of committed data from
the time when the first row is read. Each read-only statement within the transaction sees a snapshot of
data from a different time. For insert, update, and delete statements, use the isolation level specified
by the updatable_statement_isolation option (can be one of 0 (the default), 1, 2, or 3).

You also have the option of specifying when the snapshot starts for a transaction by using the BEGIN
SNAPSHOT statement.

Snapshot isolation is often useful, such as:

● Applications that perform many reads and few updates Snapshot transactions acquire write
locks only for statements that modify the database. If a transaction is performing mainly read
operations, then the snapshot transaction does not acquire read locks that could interfere with other
users' transactions.

● Applications that perform long-running transactions while other users need to access
data Snapshot transactions do not acquire read locks, which makes data available to other users for
reading and updating while the snapshot transaction takes place.

● Applications that must read a consistent set of data from the database Because a snapshot
shows a committed set of data from a specific point in time, you can use snapshot isolation to see
consistent data that does not change throughout the transaction, even if other users are making
changes to the data while your transaction is running.

Isolation levels and consistency

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 785

Snapshot isolation only affects base tables and global temporary tables that are shared by all users. A read
operation on any other table type never sees an old version of the data, and never initiates a snapshot. The
only time where an update to another table type initiates a snapshot is if the isolation_level option is set to
snapshot, and the update initiates a transaction.

The following statements cannot be executed when there are cursors opened with the WITH HOLD
clause that use either statement or transaction snapshots:

● “ALTER INDEX statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TABLE statement” [SQL Anywhere Server - SQL Reference]
● “CREATE INDEX statement” [SQL Anywhere Server - SQL Reference]
● “DROP INDEX statement” [SQL Anywhere Server - SQL Reference]
● “REFRESH MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “REORGANIZE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “CREATE TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]
● “REFRESH TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]

When opening cursors with the WITH HOLD clause, a snapshot of all rows committed at the snapshot
start time is visible. Also visible are all modifications completed by the current connection since the start
of the transaction within which the cursor was opened.

TRUNCATE TABLE is allowed only when a fast truncation is not performed because in this case,
individual DELETEs are then recorded in the transaction log.

In addition, if any of these statements are performed from a non-snapshot transaction, then snapshot
transactions that are already in progress that subsequently try to use the table return an error indicating
that the schema has changed.

Materialized view matching avoids using a view if it was refreshed after the start of the snapshot for a
transaction.

Snapshot isolation levels are supported in all programming interfaces. You can set the isolation level
using the SET OPTION statement. For information about using snapshot isolation, see:

● “isolation_level option” [SQL Anywhere Server - Database Administration]
● ADO and OLE DB: “ADO transactions” [SQL Anywhere Server - Programming]
● ADO.NET: “SATransaction.IsolationLevel property [SQL Anywhere .NET]” [SQL Anywhere Server

- Programming]

Row versions
When snapshot isolation is enabled for a database, each time a row is updated, the database server adds a
copy of the original row to the version stored in the temporary file. The original row version entries are
stored until all the active snapshot transactions complete that might need access to the original row values.
A transaction using snapshot isolation sees only committed values, so if the update to a row was not
committed or rolled back before a snapshot transaction began, the snapshot transaction needs to be able to
access the original row value. This allows transactions using snapshot isolation to view data without
placing any locks on the underlying tables.

Transactions and isolation levels

786 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The VersionStorePages database property returns the number of pages in the temporary file that are
currently being used for the version store. To obtain this value, execute the following query:

SELECT DB_PROPERTY ('VersionStorePages');

Old row version entries are removed when they are no longer needed. Old versions of BLOBs are stored
in the original table, not the temporary file, until they are no longer required, and index entries for old row
versions are stored in the original index until they are not required.

You can retrieve the amount of free space in the temporary file using the sa_disk_free_space system
procedure.

If a trigger is fired that updates row values, the original values of those rows are also stored in the
temporary file.

Designing your application to use shorter transactions and shorter snapshots reduces temporary file space
requirements.

If you are concerned about temporary file growth, you can set up a GrowTemp system event that specifies
the actions to take when the temporary file reaches a specific size.

Understanding snapshot transactions
Snapshot transactions acquire write locks on updates, but read locks are never acquired for a transaction
or statement that uses a snapshot. As a result, readers never block writers and writers never block readers,
but writers can block writers if they attempt to update the same rows.

With snapshot isolation a transaction does not begin with a BEGIN TRANSACTION statement. Rather, it
begins with the first read, insert, update, or delete within the transaction, depending on the snapshot
isolation level being used for the transaction. The following example shows when a transaction begins for
snapshot isolation:

SET OPTION PUBLIC.allow_snapshot_isolation = 'On';
 SET TEMPORARY OPTION isolation_level = 'snapshot';
 SELECT * FROM Products; --transaction begins and the statement only
 --sees changes that are already committed
 INSERT INTO Products
 SELECT ID + 30, Name, Description,
 'Extra large', Color, 50, UnitPrice, NULL
 FROM Products
 WHERE Name = 'Tee Shirt';
COMMIT; --transaction ends

See also
● “BEGIN SNAPSHOT statement” [SQL Anywhere Server - SQL Reference]
● “TRUNCATE statement” [SQL Anywhere Server - SQL Reference]
● “sa_disk_free_space system procedure” [SQL Anywhere Server - SQL Reference]
● “System events” [SQL Anywhere Server - Database Administration]

Isolation levels and consistency

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 787

Enabling snapshot isolation

Snapshot isolation is enabled or disabled for a database using the allow_snapshot_isolation option. When
the option is set to On, row versions are maintained in the temporary file, and connections are allowed to
use any of the snapshot isolation levels. When this option is set to Off, any attempt to use snapshot
isolation results in an error.

Enabling a database to use snapshot isolation can affect performance because copies of all modified rows
must be maintained, regardless of the number of transactions that use snapshot isolation.

The following statement enables snapshot isolation for a database:

SET OPTION PUBLIC.allow_snapshot_isolation = 'On';

The setting of the allow_snapshot_isolation option can be changed, even when there are users connected
to the database. When you change the setting of this option from Off to On, all current transactions must
complete before new transactions can use snapshot isolation. When you change the setting of this option
from On to Off, all outstanding transactions using snapshot isolation must complete before the database
server stops maintaining row version information.

You can view the current snapshot isolation setting for a database by querying the value of the
SnapshotIsolationState database property:

SELECT DB_PROPERTY ('SnapshotIsolationState');

The SnapshotIsolationState property has one of the following values:

● On Snapshot isolation is enabled for the database.

● Off Snapshot isolation is disabled for the database.

● in_transition_to_on Snapshot isolation will be enabled once the current transactions complete.

● in_transition_to_off Snapshot isolation will be disabled once the current transactions complete.

When snapshot isolation is enabled for a database, row versions must be maintained for a transaction until
the transaction commits or rolls back, even if snapshots are not being used. Therefore, it is best to set the
allow_snapshot_isolation option to Off if snapshot isolation is never used.

See also
● “Cursor sensitivity and isolation levels” [SQL Anywhere Server - Programming]

Snapshot isolation example
The following example uses two connections to the SQL Anywhere sample database to illustrate how
snapshot isolation can be used to maintain consistency without blocking.

Transactions and isolation levels

788 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Use snapshot isolation

1. Run the following command to create an Interactive SQL connection (Connection1) to the SQL
Anywhere sample database:

dbisql -c "DSN=SQL Anywhere 12 Demo;ConnectionName=Connection1"

2. Run the following command to create an Interactive SQL connection (Connection2) to the SQL
Anywhere sample database:

dbisql -c "DSN=SQL Anywhere 12 Demo;ConnectionName=Connection2"

3. In Connection1, execute the following statement to set the isolation level to 1 (read committed), which
acquires and holds a read lock on the current row.

SET OPTION isolation_level = 1;

4. In Connection1, execute the following statement:

SELECT * FROM Products;

ID Name Description Size Color Quantity ...

300 Tee Shirt Tank Top Small White 28 ...

301 Tee Shirt V-neck Medium Orange 54 ...

302 Tee Shirt Crew Neck One size fits all Black 75 ...

400 Baseball Cap Cotton Cap One size fits all Black 112 ...

...

5. In Connection2, execute the following statement:

UPDATE Products
SET Name = 'New Tee Shirt'
WHERE ID = 302;

6. In Connection1, execute the SELECT statement again:

SELECT * FROM Products;

The SELECT statement is blocked and cannot proceed because the UPDATE statement in
Connection2 has not been committed or rolled back. The SELECT statement must wait until the
transaction in Connection2 is complete before it can proceed. This ensures that the SELECT statement
does not read uncommitted data into its result.

7. In Connection2, execute the following statement:

ROLLBACK;

The transaction in Connection2 completes, and the SELECT statement in Connection1 proceeds.

Isolation levels and consistency

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 789

8. Using the statement snapshot isolation level achieves the same concurrency as isolation level 1, but
without blocking.

In Connection1, execute the following statement to allow snapshot isolation:

SET OPTION PUBLIC.allow_snapshot_isolation = 'On';

9. In Connection 1, execute the following statement to change the isolation level to statement snapshot:

SET TEMPORARY OPTION isolation_level = 'statement-snapshot';

10. In Connection1, execute the following statement:

SELECT * FROM Products;

11. In Connection2, execute the following statement:

UPDATE Products
SET Name = 'New Tee Shirt'
WHERE ID = 302;

12. In Connection1, execute the SELECT statement again:

SELECT * FROM Products;

The SELECT statement executes without being blocked, but does not include the data from the
UPDATE statement executed by Connection2.

13. In Connection2, finish the transaction by executing the following statement:

COMMIT;

14. In Connection1, finish the transaction (the query against the Products table), and then execute the
SELECT statement again to view the updated data:

COMMIT;
SELECT * FROM Products;

ID Name Descriptio
n

Size Color Quantity ...

300 Tee Shirt Tank Top Small White 28 ...

301 Tee Shirt V-neck Medium Orange 54 ...

302 New Tee
Shirt

Crew Neck One size
fits all

Black 75 ...

400 Baseball
Cap

Cotton Cap One size
fits all

Black 112 ...

...

15. Undo the changes to the SQL Anywhere sample database by executing the following statement:

Transactions and isolation levels

790 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

UPDATE Products
SET Name = 'Tee Shirt'
WHERE id = 302;
COMMIT;

See also
● “Using snapshot isolation to avoid dirty reads” on page 823
● “Using snapshot isolation to avoid non-repeatable reads” on page 830
● “Using snapshot isolation to avoid phantom rows” on page 835

Update conflicts and snapshot isolation

With snapshot isolation, an update conflict can occur when a transaction sees an old version of a row and
tries to update or delete it. When this happens, the server gives an error when it detects the conflict. For a
committed change, this is when the update or delete is attempted. For an uncommitted change, the update
or delete blocks and the server returns the error when the change commits.

Update conflicts cannot occur when using readonly-statement-snapshot because updatable statements run
at a non-snapshot isolation, and always see the most recent version of the database. Therefore, the
readonly-statement-snapshot isolation level has many of the benefits of snapshot isolation, without
requiring large changes to an application originally designed to run at another isolation level. When using
the readonly-statement-snapshot isolation level:

● Read locks are never acquired for read-only statements

● Read-only statements always see a committed state of the database

Typical types of inconsistency
There are three typical types of inconsistency that can occur during the execution of concurrent
transactions. This list is not exhaustive as other types of inconsistencies can also occur. These three types
are mentioned in the ISO SQL/2008 standard and are defined in terms of the behaviors that can occur at
the lower isolation levels.

● Dirty read Transaction A modifies a row, but does not commit or roll back the change. Transaction
B reads the modified row. Transaction A then either further changes the row before performing a
COMMIT, or rolls back its modification. In either case, transaction B has seen the row in a state
which was never committed.

● Non-repeatable read Transaction A reads a row. Transaction B then modifies or deletes the row
and performs a COMMIT. If transaction A then attempts to read the same row again, the row will
have been changed or deleted.

● Phantom row Transaction A reads a set of rows that satisfy some condition. Transaction B then
executes an INSERT or an UPDATE on a row which did not previously meet A's condition.
Transaction B commits these changes. These newly committed rows now satisfy Transaction A's
condition. If Transaction A then repeats the read, it obtains the updated set of rows.

Isolation levels and consistency

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 791

Isolation levels and dirty reads, non-repeatable reads, and phantom rows
SQL Anywhere allows dirty reads, non-repeatable reads, and phantom rows, depending on the isolation
level that is used. An X in the following table indicates that the behavior is allowed for that isolation
level.

Isolation level Dirty reads Non-repeatable reads Phantom rows

0-read uncommitted X X X

readonly-statement-snapshot X1 X2 X3

1-read committed X X

statement-snapshot X2 X3

2-repeatable read X

3-serializable

snapshot

1 Dirty reads can occur for updatable statements within a transaction if the isolation level specified by the
updatable_statement_isolation option does not prevent them from occurring.

2 Non-repeatable reads can occur for statements within a transaction if the isolation level specified by the
updatable_statement_isolation option does not prevent them from occurring. Non-repeatable reads can
occur because each statement starts a new snapshot, so one statement may see changes that another
statement does not see.

3 Phantom rows can occur for statements within a transaction if the isolation level specified by the
updatable_statement_isolation option does not prevent them from occurring. Phantom rows can occur
because each statement starts a new snapshot, so one statement may see changes that another statement
does not see.

This table demonstrates two points:

● Each isolation level eliminates one of the three typical types of inconsistencies.

● Each level eliminates the types of inconsistencies eliminated at all lower levels.

● For statement snapshot isolation levels, non-repeatable reads and phantom rows can occur within a
transaction, but not within a single statement in a transaction.

The isolation levels have different names under ODBC. These names are based on the names of the
inconsistencies that they prevent.

Transactions and isolation levels

792 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “The ValuePtr parameter” on page 795
● “Tutorial: Understanding dirty reads” on page 820
● “Tutorial: Understanding non-repeatable reads” on page 825
● “Tutorial: Understanding phantom rows” on page 831

Cursor instability

Another significant inconsistency is cursor instability. When this inconsistency is present, a transaction
can modify a row that is being referenced by another transaction's cursor. Cursor stability ensures that
applications using cursors do not introduce inconsistencies into the data in the database.

Example
Transaction A reads a row using a cursor. Transaction B modifies that row and commits. Not realizing
that the row has been modified, Transaction A modifies it.

Eliminating cursor instability
SQL Anywhere provides cursor stability at isolation levels 1, 2, and 3. Cursor stability ensures that no
other transactions can modify information that is contained in the present row of your cursor. The
information in a row of a cursor may be the copy of information contained in a particular table or may be
a combination of data from different rows of multiple tables. More than one table will likely be involved
whenever you use a join or sub-selection within a SELECT statement.

Cursors are used only when you are using SQL Anywhere through another application.

A related but distinct concern for applications using cursors is whether changes to underlying data are
visible to the application. You can control the changes that are visible to applications by specifying the
sensitivity of the cursor.

See also
● “Stored procedures, triggers, batches, and user defined functions” on page 71
● “Using SQL in applications” [SQL Anywhere Server - Programming]
● “SQL Anywhere cursors” [SQL Anywhere Server - Programming]

Set the isolation level
Each connection to the database has its own isolation level. In addition, the database can store a default
isolation level for each user or group. The PUBLIC setting of the isolation_level database option enables
you to set a single default isolation level for the entire database group.

You can also set the isolation level using table hints, but this is an advanced feature that should be used
only when needed.

Isolation levels and consistency

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 793

You can change the isolation of your connection and the default level associated with your user ID by
using the SET OPTION statement. If you have permission, you can also change the isolation level for
other users or groups.

Set the isolation level for the current user

If you want to use snapshot isolation, you must first enable snapshot isolation for the database.

● Execute the SET OPTION statement. For example, the following statement sets the isolation level to 3
for the current user:

SET OPTION isolation_level = 3;

Set the isolation level for a user or group

If you want to use snapshot isolation, you must first enable snapshot isolation for the database.

1. Connect to the database as a user with DBA authority.

2. Execute the SET OPTION statement, adding the name of the group and a period before
isolation_level. For example, the following statement sets the default isolation for the PUBLIC group
to 3.

SET OPTION PUBLIC.isolation_level = 3;

Set the isolation level just the current connection

If you want to use snapshot isolation, you must first enable snapshot isolation for the database.

● Execute the SET OPTION statement using the TEMPORARY keyword. For example, the following
statement sets the isolation level to 3 for the duration of the current connection:

SET TEMPORARY OPTION isolation_level = 3;

Default isolation level
When you connect to a database, the database server determines your initial isolation level as follows:

1. A default isolation level may be set for each user and group. If a level is stored in the database for
your user ID, then the database server uses it.

2. If not, the database server checks the groups to which you belong until it finds a level. All users are
members of the special group PUBLIC. If it finds no other setting first, then SQL Anywhere uses the
level assigned to that group.

You may want to change the isolation level mid-transaction if, for example, just one or more tables
requires serialized access.

Transactions and isolation levels

794 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “User IDs, authorities, and permissions” [SQL Anywhere Server - Database Administration]
● “SET OPTION statement” [SQL Anywhere Server - SQL Reference]
● “WITH table-hint clause, FROM clause” [SQL Anywhere Server - SQL Reference]
● “Enabling snapshot isolation” on page 788
● “Changes to isolation levels within a transaction” on page 796

Isolation levels in ODBC-enabled applications
ODBC applications call SQLSetConnectAttr with Attribute set to SQL_ATTR_TXN_ISOLATION and
ValuePtr set according to the corresponding isolation level:

The ValuePtr parameter

ValuePtr Isolation level

SQL_TXN_READ_UNCOMMITTED 0

SQL_TXN_READ_COMMITTED 1

SQL_TXN_REPEATABLE_READ 2

SQL_TXN_SERIALIZABLE 3

SA_SQL_TXN_SNAPSHOT snapshot

SA_SQL_TXN_STATEMENT_SNAPSHOT statement-snapshot

SA_SQL_TXN_READONLY_STATEMENT_SNAPSHOT readonly-statement-snapshot

Changing an isolation level via ODBC
You can change the isolation level of your connection via ODBC using the function
SQLSetConnectOption in the library ODBC32.dll.

The SQLSetConnectOption function takes three parameters: the value of the ODBC connection handle,
the fact that you want to set the isolation level, and the value corresponding to the isolation level. These
values appear in the table below.

String Value

SQL_TXN_ISOLATION 108

SQL_TXN_READ_UNCOMMITTED 1

SQL_TXN_READ_COMMITTED 2

Isolation levels and consistency

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 795

String Value

SQL_TXN_REPEATABLE_READ 4

SQL_TXN_SERIALIZABLE 8

SA_SQL_TXN_SNAPSHOT 32

SA_SQL_TXN_STATEMENT_SNAPSHOT 64

SA_SQL_TXN_READONLY_STATEMENT_SNAPSHOT 128

Do not use the SET OPTION statement to change an isolation level from within an ODBC application.
Since the ODBC driver does not parse the statements, execution of any statement in ODBC is not
recognized by the ODBC driver. This could lead to unexpected locking behavior.

Example
The following function call sets the isolation level of the connection MyConnection to isolation level 2:

SQLSetConnectOption(MyConnection.hDbc,
 SQL_TXN_ISOLATION,
 SQL_TXN_REPEATABLE_READ)

ODBC uses the isolation feature to support assorted database lock options. For example, in PowerBuilder
you can use the Lock attribute of the transaction object to set the isolation level when you connect to the
database. The Lock attribute is a string, and is set as follows:

SQLCA.lock = "RU"

The Lock option is honored only at the moment the CONNECT occurs. Changes to the Lock attribute
after the CONNECT have no effect on the connection.

Changes to isolation levels within a transaction

Different isolation levels may be suitable for different parts of a single transaction. SQL Anywhere allows
you to change the isolation level of your database in the middle of a transaction.

When you change the isolation_level option in the middle of a transaction, the new setting affects only the
following:

● Any cursors opened after the change

● Any statements executed after the change

You may want to change the isolation level during a transaction to control the number of locks your
transaction places. You may find a transaction needs to read a large table, but perform detailed work with
only a few of the rows. If an inconsistency would not seriously affect your transaction, set the isolation to
a low level while you scan the large table to avoid delaying the work of others.

Transactions and isolation levels

796 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

You may also want to change the isolation level mid-transaction if, for example, just one table or group of
tables requires serialized access.

For an example in which the isolation level is changed in the middle of a transaction, see “Tutorial:
Understanding phantom rows” on page 831.

Note
You can also set the isolation level (levels 0-3 only) using table hints, but this is an advanced feature that
you should use only when needed. For more information, see the WITH table-hint section in “FROM
clause” [SQL Anywhere Server - SQL Reference].

Changing isolation levels when using snapshot isolation
When using snapshot isolation, you can change the isolation level within a transaction. This can be done
by changing the setting of the isolation_level option or by using table hints that affect the isolation level
in a query. You can use statement-snapshot, readonly-statement-snapshot, and isolation levels 0-3 at any
time. However, you cannot use the snapshot isolation level in a transaction if it began at an isolation level
other than snapshot. A transaction is initiated by an update and continues until the next COMMIT or
ROLLBACK. If the first update takes place at some isolation level other than snapshot, then any
statement that tries to use the snapshot isolation level before the transaction commits or rolls back returns
error -1065 (SQLE_NON_SNAPSHOT_TRANSACTION). For example:

SET OPTION PUBLIC.allow_snapshot_isolation = 'On';
BEGIN TRANSACTION
 SET OPTION isolation_level = 3;
 INSERT INTO Departments
 (DepartmentID, DepartmentName, DepartmentHeadID)
 VALUES(700, 'Foreign Sales', 129);
 SET TEMPORARY OPTION isolation_level = 'snapshot';
 SELECT * FROM Departments;

Viewing the isolation level

View the isolation level for the current connection using the CONNECTION_PROPERTY
function

● Execute the following statement:

SELECT CONNECTION_PROPERTY('isolation_level');

Transaction blocking and deadlock
When a transaction is being executed, the database server places locks on rows to prevent other
transactions from interfering with the affected rows. Locks control the amount and types of interference
permitted.

Transaction blocking and deadlock

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 797

SQL Anywhere uses transaction blocking to allow transactions to execute concurrently without
interference, or with limited interference. Any transaction can acquire a lock to prevent other concurrent
transactions from modifying or even accessing a particular row. This transaction blocking scheme always
stops some types of interference. For example, a transaction that is updating a particular row of a table
always acquires a lock on that row to ensure that no other transaction can update or delete the same row at
the same time.

See also
● “blocking_others_timeout option” [SQL Anywhere Server - Database Administration]
● “blocking_timeout option” [SQL Anywhere Server - Database Administration]
● “blocking option” [SQL Anywhere Server - Database Administration]

Transaction blocking

When a transaction attempts to perform an operation, but is forbidden by a lock held by another
transaction, a conflict arises and the progress of the transaction attempting to perform the operation is
impeded.

Sometimes a set of transactions arrive at a state where none of them can proceed.

See also
● “Deadlock” on page 799
● “blocking_others_timeout option” [SQL Anywhere Server - Database Administration]
● “blocking_timeout option” [SQL Anywhere Server - Database Administration]
● “blocking option” [SQL Anywhere Server - Database Administration]

The blocking option

If two transactions have each acquired a read lock on a single row, the behavior when one of them
attempts to modify that row depends on the setting of the blocking option. To modify the row, that
transaction must block the other, yet it cannot do so while the other transaction has it blocked.

● If the blocking is option is set to On (the default), then the transaction that attempts to write waits until
the other transaction releases its read lock. At that time, the write goes through.

● If the blocking option has been set to Off, then the statement that attempts to write receives an error.

When the blocking option is set to Off, the statement terminates instead of waiting and any partial
changes it has made are rolled back. In this event, try executing the transaction again, later.

Blocking is more likely to occur at higher isolation levels because more locking and more checking is
done. Higher isolation levels usually provide less concurrency. How much less depends on the individual
natures of the concurrent transactions.

Transactions and isolation levels

798 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “blocking option” [SQL Anywhere Server - Database Administration]
● “blocking_others_timeout option” [SQL Anywhere Server - Database Administration]
● “blocking_timeout option” [SQL Anywhere Server - Database Administration]

Deadlock

Transaction blocking can lead to deadlock, a situation in which a set of transactions arrive at a state
where none of them can proceed.

Reasons for deadlocks
A deadlock can arise for two reasons:

● A cyclical blocking conflict Transaction A is blocked on transaction B, and transaction B is
blocked on transaction A. More time will not solve the problem, and one of the transactions must be
canceled, allowing the other to proceed. The same situation can arise with more than two transactions
blocked in a cycle.

To eliminate a transactional deadlock, SQL Anywhere selects a connection from those involved in the
deadlock, rolls back the changes for the transaction that is active on that connection and returns an
error. SQL Anywhere selects the connection to roll back by using an internal heuristic that prefers the
connection with the smallest blocking wait time left as determined by the blocking_timeout option. If
all connections are set to wait forever, then the connection that caused the server to detect a deadlock
is selected as the victim connection.

● All workers are blocked When a transaction becomes blocked, its worker is not relinquished. For
example, if the database server is configured with three workers and transactions A, B, and C are
blocked on transaction D which is not currently executing a request, then a deadlock situation has
arisen since there are no available workers. This situation is called thread deadlock.

Suppose that the database server has n workers. Thread deadlock occurs when n-1 workers are
blocked, and the last worker is about to block. The database server's kernel cannot permit this last
worker to block, since doing so would result in all workers being blocked, and the database server
would hang. Instead, the database server ends the task that is about to block the last worker, rolls back
the changes for the transaction active on that connection, and returns an error (SQLCODE -307,
SQLSTATE 40W06).

Database servers with tens or hundreds of connections may experience thread deadlock in cases where
there are many long-running requests either because of the size of the database or because of blocking.
In this case, increasing the database server's multiprogramming level may be an appropriate solution.
The design of your application may also cause thread deadlock because of excessive or unintentional
contention. In these cases, scaling the application to larger data sets can make the problem worse, and
increasing the database server's multiprogramming level may not solve the problem.

The number of database threads that the server uses depends on the individual database's setting.

Transaction blocking and deadlock

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 799

See also
● “log_deadlocks option” [SQL Anywhere Server - Database Administration]
● “blocking_timeout option” [SQL Anywhere Server - Database Administration]
● “sa_report_deadlocks system procedure” [SQL Anywhere Server - SQL Reference]
● “Threading behavior” [SQL Anywhere Server - Database Administration]
● “All threads are blocked” [Error Messages]
● “Database server configuration of the multiprogramming level” [SQL Anywhere Server - Database

Administration]

Determining who is blocked

You can use the sa_conn_info system procedure to determine which connections are blocked on which
other connections. This procedure returns a result set consisting of a row for each connection. One column
of the result set lists whether the connection is blocked, and if so which other connection it is blocked on.

You can also use the Deadlock event to take action when a deadlock occurs. The event handler can use
the sa_report_deadlocks procedure to obtain information about the conditions that led to the deadlock. To
retrieve more details about the deadlock from the database server, use the log_deadlocks option and
enable the RememberLastStatement feature.

The follow procedure shows you how to set up a table and system event that can be used to obtain
information about deadlocks when they occur. If you find that your application has frequent deadlocks,
you can use application profiling to help diagnose the cause of the deadlocks.

Take action when a deadlock occurs

1. Create a table to store the data returned from the sa_report_deadlocks system procedure:

CREATE TABLE DeadlockDetails(
 deadlockId INT PRIMARY KEY DEFAULT AUTOINCREMENT,
 snapshotId BIGINT,
 snapshotAt TIMESTAMP,
 waiter INTEGER,
 who VARCHAR(128),
 what LONG VARCHAR,
 object_id UNSIGNED BIGINT,
 record_id BIGINT,
 owner INTEGER,
 is_victim BIT,
 rollback_operation_count UNSIGNED INTEGER);

2. Create an event that fires when a deadlock occurs.

This event copies the results of the sa_report_deadlocks system procedure into a table and notifies an
administrator about the deadlock:

CREATE EVENT DeadlockNotification
TYPE Deadlock
HANDLER
BEGIN
 INSERT INTO DeadlockDetails WITH AUTO NAME
 SELECT snapshotId, snapshotAt, waiter, who, what, object_id, record_id,

Transactions and isolation levels

800 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

 owner, is_victim, rollback_operation_count
 FROM sa_report_deadlocks ();
 COMMIT;
 CALL xp_startmail (mail_user ='George Smith',
 mail_password ='mypwd');
 CALL xp_sendmail(recipient='DBAdmin',
 subject='Deadlock details added to the DeadlockDetails
table.');
 CALL xp_stopmail ();
END;

3. Set the log_deadlocks option to On:

SET OPTION PUBLIC.log_deadlocks = 'On';

4. Enable logging of the most-recently executed statement:

CALL sa_server_option('RememberLastStatement', 'YES');

See also
● “log_deadlocks option” [SQL Anywhere Server - Database Administration]
● “sa_report_deadlocks system procedure” [SQL Anywhere Server - SQL Reference]
● “sa_server_option system procedure” [SQL Anywhere Server - SQL Reference]
● “sa_conn_info system procedure” [SQL Anywhere Server - SQL Reference]
● “CREATE EVENT statement” [SQL Anywhere Server - SQL Reference]
● “Tutorial: Diagnosing deadlocks” on page 227

Viewing deadlocks from Sybase Central
When you are connected to a database in Sybase Central, you can see a diagram of any deadlocks that
have occurred in the database since the log_deadlocks option was set to On. Deadlock information is
recorded in an internal buffer.

Use Sybase Central deadlock reporting

1. Select the database in the left pane of Sybase Central, and then click File » Options.

2. Turn on the log_deadlocks option.

a. In the Options list, click log_deadlocks.

b. In the Value field, click On.

c. Click Set Permanent Now.

d. Click Close.

3. In the right pane, click the Deadlocks tab.

A deadlock diagram appears if there are deadlocks in the database. Each node in the deadlock diagram
represents a connection and gives details about which connection was deadlocked, the user name, and
the SQL statement the connection was trying to execute when the deadlock occurred. There are two
types of deadlocks: connection deadlocks and thread deadlocks. Connection deadlocks are
characterized by a circular dependency for the nodes. A thread deadlock is indicated by nodes that are

Transaction blocking and deadlock

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 801

not connected in a circular dependency, and the number of nodes is equal to the thread limit on the
database plus one.

See also
● “log_deadlocks option” [SQL Anywhere Server - Database Administration]

How locking works
A lock is a concurrency control mechanism that protects the integrity of data during the simultaneous
execution of multiple transactions. SQL Anywhere automatically applies locks to prevent two connections
from changing the same data at the same time, and to prevent other connections from reading data that is
in the process of being changed. Locks improve the consistency of query result by protecting information
that is in the process of being updated.

The database server places these locks automatically and needs no explicit instruction. It holds all the
locks acquired by a transaction until the transaction is completed, for example by either a COMMIT or
ROLLBACK statement, with a single exception.

The transaction that has access to the row is said to hold the lock. Depending on the type of lock, other
transactions may have limited access to the locked row, or none at all.

See also
● “Lock duration” on page 816

Objects that can be locked
To ensure database consistency and to support appropriate isolation levels between transactions, SQL
Anywhere uses the following types of locks:

● Schema locks These locks control the ability to make schema changes. For example, a transaction
can lock the schema of a table, preventing other transactions from modifying the table's structure.

● Row locks These locks are used to ensure consistency between concurrent transactions at a row
level. For example, a transaction can lock a particular row to prevent another transaction from
changing it, and a transaction must place a write lock on a row if it intends to modify the row. To
maximize concurrency, the key and non-key portions of the row can be locked independently.
Updating non-key columns of a row does not interfere with the insertion and deletion of foreign rows
referencing that row.

● Table locks These locks are used to ensure consistency between concurrent transactions at a table
level. For example, a transaction that is changing the structure of a table by inserting a new column
can lock a table so that other transactions are not affected by the schema change. In such a case, it is
essential to limit the access of other transactions to prevent errors.

● Position locks These locks are used to ensure consistency within a sequential or indexed scan of a
table. Transactions typically scan rows using the ordering imposed by an index, or scan rows

Transactions and isolation levels

802 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

sequentially. In either case, a lock can be placed on the scan position. For example, placing a lock in
an index can prevent another transaction from inserting a row with a specific value or range of values.

Schema locks provide a mechanism to prevent schema changes from inadvertently affecting executing
transactions. Row locks, table locks, and position locks each have a separate purpose, but they do interact.
Each lock type prevents a particular set of inconsistencies. Depending on the isolation level you select, the
database server uses some or all these lock types to maintain the degree of consistency you require.

Lock duration
The different classes of locks can be held for different durations:

● Position Short-term locks, such as read locks on specific rows used to implement cursor stability at
isolation level 1.

● Transaction Row, table, and position locks that are held until the end of a transaction.

● Connection Schema locks that are held beyond the end of a transaction, such as schema locks
created when WITH HOLD cursors are used.

How to obtain information about locks
To diagnose a locking issue in the database it may be useful to know the contents of the rows that are
locked. You can view the locks currently held in the database using either the sa_locks system procedure,
or using the Locks tab in Sybase Central. Both methods provide the information you need, including the
connection holding the lock, lock duration, and lock type.

Note
Due to the transient nature of locks in the database, the rows visible in Sybase Central, or returned by the
sa_locks system procedure, may no longer exist by the time a query completes.

Viewing locks using Sybase Central
You can view locks in Sybase Central. Select the database in the left pane and then click the Locks tab in
the right pane. For each lock, this tab shows you the connection ID, user ID, table name, lock type, and
lock name.

Viewing locks using the sa_locks system procedure
The result set of the sa_locks system procedure contains the row_identifier column that allows you to
identify the row in a table the lock refers to. To determine the actual values stored in the locked row, you
can join the results of the sa_locks system procedure to a particular table, using the rowID of the table in
the join predicate. For example:

SELECT S.conn_id, S.user_id, S.lock_class, S.lock_type, E.*
 FROM sa_locks() S JOIN Employees E WITH(NOLOCK)
 ON RowId(E) = S.row_identifier
 WHERE S.table_name = 'Employees';

How locking works

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 803

Note
It may not be necessary to specify the NOLOCK table hint; however, if the query is issued at isolation
levels other than 0, the query may block until the locks are released, which will reduce the usefulness of
this method of checking.

See also
● “sa_locks system procedure” [SQL Anywhere Server - SQL Reference]
● “FROM clause” [SQL Anywhere Server - SQL Reference]
● “ROWID function [Miscellaneous]” [SQL Anywhere Server - SQL Reference]

Schema locks
Schema locks are used to serialize changes to a database schema, and to ensure that transactions using a
table are not affected by schema changes initiated by other connections. For example, a schema lock
prevents an ALTER TABLE statement from dropping a column from a table when that table is being read
by an open cursor on another connection.

There are two classes of schema locks:

● Shared locks The table schema is locked in shared (read) mode.

● Exclusive locks The table schema is locked for the exclusive use of a single connection.

A shared schema lock is acquired when a transaction refers directly or indirectly to a table in the database.
Shared schema locks do not conflict with each other; any number of transactions can acquire shared locks
on the same table at the same time. The shared schema lock is held until the transaction completes via a
COMMIT or ROLLBACK.

Any connection holding a shared schema lock is allowed to change table data, providing the change does
not conflict with other connections.

An exclusive schema lock is acquired when the schema of a table is modified, usually through the use of a
DDL statement. The ALTER TABLE statement is one example of a DDL statement that acquires an
exclusive lock on the table before modifying it. Only one connection can acquire an exclusive schema
lock on a table at any time—all other attempts to lock the table's schema (shared or exclusive) will either
block or fail with an error. This means that a connection executing at isolation level 0, which is the least
restrictive isolation level, will be blocked from reading rows from a table whose schema has been locked
in exclusive mode.

Only the connection holding the exclusive table schema lock can change the table data.

Row locks
Row locks are used to prevent lost updates and other types of transaction inconsistencies by ensuring that
any row modified by a transaction cannot be modified by another transaction until the first transaction

Transactions and isolation levels

804 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

completes, either by committing the changes by issuing an implicit or explicit COMMIT statement, or by
aborting the changes via a ROLLBACK statement.

There are three classes of row locks: read (shared) locks, write (exclusive) locks, and intent locks. The
database server acquires these locks automatically for each transaction.

Read locks

When a transaction reads a row, the isolation level of the transaction determines if a read lock is acquired.
Once a row is read locked, no other transaction can obtain a write lock on it. Acquiring a read lock
ensures that a different transaction does not modify or delete a row while it is being read. Any number of
transactions can acquire read locks on any row at the same time, so read locks are sometimes referred to
as shared locks, or non-exclusive locks.

Read locks can be held for different durations. At isolation levels 2 and 3, any read locks acquired by a
transaction are held until the transaction completes through a COMMIT or a ROLLBACK. These read
locks are called long-term read locks.

For transactions executing at isolation level 1, the database server acquires a short-term read lock on the
row upon which a cursor is positioned. As the application scrolls through the cursor, the short-term read
lock on the previously-positioned row is released, and a new short-term read lock is acquired on the
subsequent row. This technique is called cursor stability. Because the application holds a read lock on
the current row, another transaction cannot make changes to the row until the application moves off the
row. Note that more than one lock can be acquired if the cursor is over a query involving multiple tables.
Short-term read locks are acquired only when the position within a cursor must be maintained across
requests (ordinarily, these would be FETCH statements issued by the application). For example, short-
term read locks are not acquired when processing a SELECT COUNT(*) query since a cursor opened
over this statement will never be positioned on a particular base table row. In this case, the database server
only needs to guarantee read committed semantics, that is, that the rows processed by the statement have
been committed by other transactions.

Transactions executing at isolation level 0 (read uncommitted) do not acquire long-term or short-term
read locks, and do not conflict with other transactions (except for exclusive schema locks). However,
isolation level 0 transactions may process uncommitted changes made by other concurrent transactions.
You can avoid processing uncommitted changes by using snapshot isolation.

See also
● “Snapshot isolation” on page 785

Write locks

A transaction acquires a write lock whenever it inserts, updates, or deletes a row. This is true for
transactions at all isolation levels, including isolation level 0 and snapshot isolation levels. No other
transaction can obtain a read, intent, or write lock on the same row after a write lock is acquired. Write
locks are also referred to as exclusive locks because only one transaction can hold an exclusive lock on a

How locking works

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 805

row at any time. No transaction can obtain a write lock while any other transaction holds a lock of any
type on the same row. Similarly, once a transaction acquires a write lock, requests to lock the row by
other transactions are denied.

Intent locks

Intent locks, also known as intent-for-update locks, indicate an intent to modify a particular row. Intent
locks are acquired when a transaction:

● issues a FETCH FOR UPDATE statement

● issues a SELECT...FOR UPDATE BY LOCK statement

● uses SQL_CONCUR_LOCK as its concurrency basis in an ODBC application (set by using the
SQL_ATTR_CONCURRENCY parameter of the SQLSetStmtAttr ODBC API call)

Intent locks do not conflict with read locks, so acquiring an intent lock does not block other transactions
from reading the same row. However, intent locks do prevent other transactions from acquiring either an
intent lock or a write lock on the same row, guaranteeing that the row cannot be changed by any other
transaction before an update.

If an intent lock is requested by a transaction executing at snapshot isolation, the intent lock is only
acquired if the row is an unmodified row in the database and common to all concurrent transactions. If the
row is a snapshot copy, however, an intent lock is not acquired since the original row has already been
modified by another transaction. Any attempt by the snapshot transaction to update that row fails and a
snapshot update conflict error is returned.

Table locks

In addition to locks on rows, SQL Anywhere also supports locks on tables. Table locks are different than
schema locks: a table lock places a lock on all the rows in the table, as opposed to a lock on the table's
schema. There are three types of table locks:

● shared
● intent to write
● exclusive

Table locks are only released at the end of a transaction when a COMMIT or ROLLBACK occurs.

The following table identifies the combinations of table locks that conflict.

Shared Intent Exclusive

Shared conflict conflict

Transactions and isolation levels

806 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Intent conflict conflict

Exclusive conflict conflict conflict

Shared table locks

A shared table lock allows multiple transactions to read the data of a base table. A transaction that has a
shared table lock on a base table can modify the table provided no other transaction holds a lock of any
kind on the rows being modified.

A shared table lock is acquired, for example, by executing a LOCK TABLE...IN SHARED MODE
statement. The REFRESH MATERIALIZED VIEW and REFRESH TEXT INDEX statements also
provide a WITH SHARE MODE clause that you can use to create shared table locks on the underlying
tables while the refresh operation takes place.

See also
● “LOCK TABLE statement” [SQL Anywhere Server - SQL Reference]
● “REFRESH MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “REFRESH TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]

Intent to write table locks

An intent to write table lock, also known as an intent table lock, is implicitly acquired the first time a
write lock on a row is acquired by a transaction. As with shared table locks, intent table locks held until
the transaction completes via a COMMIT or a ROLLBACK. Intent table locks conflict with shared and
exclusive table locks, but not with other intent table locks.

Exclusive locks

An exclusive table lock prevents any other transaction from accessing the table for any operation (reads,
writes, schema modifications, and so on). Only one transaction can hold an exclusive lock on any table at
one time. Exclusive table locks conflict with all other table and row locks. However, unlike an exclusive
schema lock, transactions executing at isolation level 0 can still read the rows in a table whose table lock
is held exclusively.

You can acquire an exclusive table lock explicitly by using of the LOCK TABLE...IN EXCLUSIVE
MODE statement. The REFRESH MATERIALIZED VIEW and REFRESH TEXT INDEX statements
also provide a WITH EXCLUSIVE MODE clause that you can use to create exclusive table locks on the
underlying tables while the refresh operation takes place.

How locking works

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 807

See also
● “LOCK TABLE statement” [SQL Anywhere Server - SQL Reference]
● “REFRESH MATERIALIZED VIEW statement” [SQL Anywhere Server - SQL Reference]
● “REFRESH TEXT INDEX statement” [SQL Anywhere Server - SQL Reference]

Position locks
In addition to row locks, SQL Anywhere also implements a form of key-range locking designed to
prevent anomalies because of the presence of phantoms, or phantom rows. Position locks are only
relevant only when the database server is processing transactions operating at isolation level 3.

Transactions that operate at isolation level 3 are said to be serializable. This means that a transaction's
behavior at isolation level 3 should not be impacted by concurrent update activity by other transactions. In
particular, at isolation level 3, transactions cannot be affected by INSERTs or UPDATEs—phantoms—
that introduce rows that can affect the result of a computation. SQL Anywhere uses position locks to
prevent such updates from occurring. It is this additional locking that differentiates isolation level 2
(repeatable read) from isolation level 3.

To prevent the creation of phantoms rows, SQL Anywhere acquires locks on positions within a physical
scan of a table. For a sequential scan, the scan position is based on the row identifier of the current row.
For an index scan, the scan's position is based on the current row's index key value (which can be unique
or non-unique). Through locking a scan position, a transaction prevents insertions by other transactions
relating to a particular range of values in that ordering of the rows. This includes INSERT statements and
UPDATE statements that change the value of an indexed attribute. When a scan position is locked, an
UPDATE statement is considered a request to DELETE the index entry followed immediately by an
INSERT request.

There are two types of position locks supported by SQL Anywhere: phantom locks and anti-phantom
locks. Both types of locks are shared, in that any number of transactions can acquire the same type of lock
on the same row. However, phantom and anti-phantom locks conflict.

Phantom locks

A phantom lock, sometimes called an anti-insert lock, is placed on a scan position to prevent the
subsequent creation of phantom rows by other transactions. When a phantom lock is acquired, it prevents
other transactions from inserting a row into a table immediately before the row that is anti-insert locked.
A phantom lock is a long-term lock, that is held until the end of the transaction.

Phantom locks are acquired only by transactions operating at isolation level 3; it is the only isolation level
that guarantees consistency with phantoms.

For an index scan, phantom locks are acquired on each row read through the index, and one additional
phantom lock is acquired at the end of the index scan to prevent insertions into the index at the end of the
satisfying index range. Phantom locks with index scans prevent phantoms from being created by the
insertion of new rows to the table, or the update of an indexed value that would cause the creation of an
index entry at a point covered by a phantom lock.

Transactions and isolation levels

808 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

With a sequential scan, phantom locks are acquired on every row in a table to prevent any insertion from
altering the result set. So, isolation level 3 scans often have a negative effect on database concurrency.
While one or more phantom locks conflict with an insert lock, and one or more read locks conflict with a
write lock, no interaction exists between phantom/insert locks and read/write locks. For example,
although a write lock cannot be acquired on a row that contains a read lock, it can be acquired on a row
that has only a phantom lock. More options are open to the database server because of this flexible
arrangement, but it means that the server must generally take the extra precaution of acquiring a read lock
when acquiring a phantom lock. Otherwise, another transaction could delete the row.

Insert locks

An insert lock, sometimes termed an anti-phantom lock, is a very short-term lock placed on a scan
position to reserve the right to insert a row. The lock is held only for the duration of the insertion itself;
once the row is properly inserted within a database page it is write-locked to ensure consistency, and the
insert lock is released. A transaction that acquires an insert lock on a row prevents other transactions from
acquiring a phantom lock on the same row. Insert locks are necessary because the server must anticipate
an isolation level 3 scan operation by any active connection, which could potentially occur with any new
request. Note that phantom and insert locks do not conflict with each other when they are held by the
same transaction.

Locking conflicts
SQL Anywhere uses schema, row, table, and position locks as necessary to ensure the level of consistency
that you require. You do not need to explicitly request the use of a particular lock. Instead, you control the
level of consistency that is maintained by choosing the isolation level that best fits your requirements.
Knowledge of the types of locks will guide you in choosing isolation levels and understanding the impact
of each level on performance. Keep in mind that any one transaction cannot block itself by acquiring
locks; a locking conflict can only occur between two (or more) transactions.

Which locks conflict?
While each of the four types of locks have specific purposes, all the types interact and therefore may
cause a locking conflict between transactions. To ensure database consistency, only one transaction
should change any one row at any one time. Otherwise, two simultaneous transactions might try to change
one value to two different new ones. So, it is important that a row write lock be exclusive. In contrast, no
difficulty arises if more than one transaction wants to read a row. Since neither is changing it, there is no
conflict. So, row read locks may be shared across many connections.

The following table identifies the combination of locks that conflict. Schema locks are not included
because they do not apply to rows.

Row locks readpk read intent writenopk write

readpk conflict

How locking works

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 809

Row locks readpk read intent writenopk write

read conflict conflict

intent conflict conflict conflict

writenopk conflict conflict conflict conflict

write conflict conflict conflict conflict conflict

Table locks shared intent exclusive

shared conflict conflict

intent conflict conflict

exclusive conflict conflict conflict

Position locks phantom insert

phantom conflict

insert conflict

See also
● “sa_locks system procedure” [SQL Anywhere Server - SQL Reference]

Locks during queries

The locks that SQL Anywhere uses when a user enters a SELECT statement depend on the transaction's
isolation level. All SELECT statements, regardless of isolation level, acquire schema locks on the
referenced tables.

SELECT statements at isolation level 0
No locking operations are required when executing a SELECT statement at isolation level 0. Each
transaction is not protected from changes introduced by other transactions. It is your responsibility or that
of the database user to interpret the result of these queries with this limitation in mind.

SELECT statements at isolation level 1
SQL Anywhere does not use many more locks when running a transaction at isolation level 1 than it does
at isolation level 0. The database server modifies its operation in only two ways.

The first difference in operation has nothing to do with acquiring locks, but rather with respecting them.
At isolation level 0, a transaction can read any row, even if another transaction has acquired a write lock.
By contrast, before reading each row, an isolation level 1 transaction must check whether a write lock is

Transactions and isolation levels

810 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

in place. It cannot read past any write-locked rows because doing so might entail reading dirty data. The
use of the READPAST hint permits the server to ignore write-locked rows, but while the transaction will
no longer block, its semantics no longer coincide with those of isolation level 1.

The second difference in operation affects cursor stability. Cursor stability is achieved by acquiring a
short-term read lock on the current row of a cursor. This read lock is released when the cursor is moved.
More than one row may be affected if the contents of the cursor is the result of a join. In this case, the
database server acquires short-term read locks on all rows which have contributed information to the
cursor's current row, and releases these locks when another row of the cursor is selected as the current
row.

SELECT statements at isolation level 2
At isolation level 2, the database server modifies its operation to ensure repeatable read semantics. If a
SELECT statement returns values from every row in a table, then the database server acquires a read lock
on each row of the table as it reads it. If, instead, the SELECT contains a WHERE clause, or another
condition which restricts the rows in the result, then the database server instead reads each row, tests the
values in the row against that condition, and then acquires a read lock on the row if it meets that
condition. The read locks that are acquired are long-term read locks and are held until the transaction
completes via an implicit or explicit COMMIT or ROLLBACK statement. As with isolation level 1,
cursor stability is assured at isolation level 2, and dirty reads are not permitted.

SELECT statements at isolation level 3
When operating at isolation level 3, the database server is obligated to ensure that all transaction
schedules are serializable. In particular, in addition to the requirements imposed at isolation level 2, it
must prevent phantom rows so that re-executing the same statement is guaranteed to return the same
results in all circumstances.

To accommodate this requirement, the database server uses read locks and phantom locks. When
executing a SELECT statement at isolation level 3, the database server acquires a read lock on each row
that is processed during the computation of the result set. Doing so ensures that no other transactions can
modify those rows until the transaction completes.

This requirement is similar to the operations that the database server performs at isolation level 2, but
differs in that a lock must be acquired for each row read, whether those rows satisfy any predicates in the
SELECT's WHERE, ON, or HAVING clauses. For example, if you select the names of all employees in
the sales department, then the server must lock all the rows which contain information about a sales
person, whether the transaction is executing at isolation level 2 or 3. At isolation level 3, however, the
server must also acquire read locks on each of the rows of employees which are not in the sales
department. Otherwise, another transaction could potentially transfer another employee to the sales
department while the first transaction was still executing.

There are two implications when a read lock must be acquired for each row read:

● The database server may need to place many more locks than would be necessary at isolation level 2.
The number of phantom locks acquired is one more than the number of read locks that are acquired for
the scan. This doubling of the lock overhead adds to the execution time of the request.

● The acquisition of read locks on each row read has a negative impact on the concurrency of database
update operations to the same table.

How locking works

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 811

The number of phantom locks the database server acquires can vary greatly and depends upon the
execution strategy chosen by the query optimizer. The SQL Anywhere query optimizer will attempt to
avoid sequential scans at isolation level 3 because of the potentially adverse affects on overall system
concurrency, but the optimizer's ability to do so depends upon the predicates in the statement and on the
relevant indexes available on the referenced tables.

As an example, suppose you want to select information about the employee with Employee ID 123. As
EmployeeID is the primary key of the employee table, the query optimizer will almost certainly choose an
indexed strategy, using the primary key index, to locate the row efficiently. In addition, there is no danger
that another transaction could change another Employee's ID to 123 because primary key values must be
unique. The server can guarantee that no second employee is assigned that ID number simply by
acquiring a read lock on the row containing information about employee 123.

In contrast, the database server would acquire more locks were you instead to select all the employees in
the sales department. In the absence of a relevant index, the database server must read every row in the
employee table and test whether each employee is in sales. If this is the case, both read and phantom locks
must be acquired for each row in the table.

SELECT statements and snapshot isolation
SELECT statements that execute at snapshot, statement-snapshot, or readonly-statement-snapshot do not
acquire read locks. This is because each snapshot transaction (or statement) sees a snapshot of a
committed state of the database at some previous point in time. The specific point in time is determined
by which of the three snapshot isolation levels is being used by the statement. As such, read transactions
never block update transactions and update transactions never block readers. Therefore, snapshot isolation
can give considerable concurrency benefits in addition to the obvious consistency benefits. However,
there is a tradeoff; snapshot isolation can be very expensive. This is because the consistency guarantee of
snapshot isolation means that copies of changed rows must be saved, tracked, and (eventually) deleted for
other concurrent transactions.

See also
● “FROM clause” [SQL Anywhere Server - SQL Reference]

Locks during inserts

INSERT operations create new rows. SQL Anywhere utilizes various types of locks during insertions to
ensure data integrity. The following sequence of operations occurs for INSERT statements executing at
any isolation level.

1. Acquire a shared schema lock on the table, if one is not already held.

2. Acquire an intent-to-write table lock on the table, if one is not already held.

3. Find an unlocked position in a page to store the new row. To minimize lock contention, the database
server does not immediately reuse space made available by deleted (but as yet uncommitted) rows. A
new page may be allocated to the table (and the database file may grow) to accommodate the new
row.

Transactions and isolation levels

812 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

4. Fill the new row with any supplied values.

5. Place an insert lock in the table to which the row is being added. Insert locks are exclusive, so once
the insert lock is acquired, no other isolation level 3 transaction can block the insertion by acquiring a
phantom lock.

6. Write lock the new row. The insert lock is released once the write lock has been obtained.

7. Insert the row into the table. Other transactions at isolation level 0 can now, for the first time, see that
the new row exists. However, these other transactions cannot modify or delete the new row because
of the write lock acquired earlier.

8. Update all affected indexes and verify uniqueness where appropriate. Primary key values must be
unique. Other columns may also be defined to contain only unique values, and if any such columns
exist, uniqueness is verified.

9. If the table is a foreign table, acquire a shared schema lock on the primary table (if not already held),
and acquire a read lock on the matching primary row in the primary table if the foreign key column
values being inserted are not NULL. The database server must ensure that the primary row still exists
when the inserting transaction COMMITs. It does so by acquiring a read lock on the primary row.
With the read lock in place, any other transaction is still free to read that row, but none can delete or
update it.

If the corresponding primary row does not exist, a referential integrity constraint violation is given.

After the last step, any AFTER INSERT triggers defined on the table may fire. Processing within triggers
follows the same locking behavior as for applications. Once the transaction is committed (assuming all
referential integrity constraints are satisfied) or rolled back, all long-term locks are released.

Uniqueness
You can ensure that all values in a particular column, or combination of columns, are unique. The
database server always performs this task by building an index for the unique column, even if you do not
explicitly create one.

In particular, all primary key values must be unique. The database server automatically builds an index for
the primary key of every table. Do not ask the database server to create an index on a primary key, as that
index would be a redundant index.

Orphans and referential integrity
A foreign key is a reference to a primary key or UNIQUE constraint, usually in another table. When that
primary key does not exist, the offending foreign key is called an orphan. SQL Anywhere automatically
ensures that your database contains no rows that violate referential integrity. This process is referred to as
verifying referential integrity. The database server verifies referential integrity by counting orphans.

wait_for_commit
You can instruct the database server to delay verifying referential integrity to the end of your transaction.
In this mode, you can insert a row which contains a foreign key, then subsequently insert a primary row
which contains the missing primary key. Both operations must occur in the same transaction.

How locking works

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 813

To request that the database server delay referential integrity checks until commit time, set the value of
the option wait_for_commit to On. By default, this option is Off. To turn it on, execute the following
statement:

SET OPTION wait_for_commit = On;

If the server does not find a matching primary row when a new foreign key value is inserted, and
wait_for_commit is On, then the server permits the insertion as an orphan. For orphaned foreign rows,
upon insertion the following series of steps occurs:

● The server acquires a shared schema lock on the primary table (if not already held). The server also
acquires an intent-to-write lock on the primary table.

● The server inserts a surrogate row into the primary table. An actual row is not inserted into the primary
table, but the server manufactures a unique row identifier for that row for locking, and a write lock is
acquired on this surrogate row. Subsequently, the server inserts the appropriate values into the primary
table's primary key index

Before committing a transaction, the database server verifies that referential integrity is maintained by
checking the number of orphans your transaction has created. At the end of every transaction, that number
must be zero.

Locks during updates

The database server modifies the information contained in a particular record using the following
procedure. As with insertions, this sequence of operations is followed for all transactions regardless of
their isolation level.

1. Acquire a shared schema lock on the table, if one is not already held.

2. Acquire an intent-to-write table lock for each table to be updated, if one is not already held.

a. For each table to be updated, if the table has triggers then create the temporary tables for the
OLD and NEW values as required.

b. Identify candidate rows to be updated. As rows are scanned, they are locked.

At isolation levels 2 and 3 the following differences occur that are different from the default
locking behavior: intent-to-write row-level locks are acquired instead of read locks, and intent-
to-write locks may be acquired on rows that are ultimately rejected as candidates for update.

c. For each candidate row identified in step 2.a, follow the rest of the sequence.

3. Write lock the affected row.

4. Update each of the affected column values as per the UPDATE statement.

Transactions and isolation levels

814 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

5. If indexed values were changed, add new index entries. The original index entries for the row remain,
but are marked as deleted. New index entries for the new values are inserted while a short-term insert
lock is held. The server verifies index uniqueness where appropriate.

6. If a uniqueness violation occurred, a temporary "hold" table is created to store the old and new values
of the row. The old and new values are copied to the hold table, and the base table row is deleted.
Any DELETE triggers are not fired. Defer steps 7 through 9 until the end of row-by-row processing.

7. If any foreign key values in the row were altered, acquire a shared schema lock on the primary
table(s) and follow the procedure for inserting new foreign key values.

Similarly, follow the procedure for WAIT_FOR_COMMIT if applicable.

8. If the table is a primary table in a referential integrity relationship, and the relationship's UPDATE
action is not RESTRICT, determine the affected row(s) in the foreign table(s) by first acquiring a
shared schema lock on the table(s), an intent-to-write table lock on each, and acquire write locks on
all the affected rows, modifying each as appropriate. Note that this process may cascade through a
nested hierarchy of referential integrity constraints.

9. Fire AFTER ROW triggers as appropriate.

After the last step, if a hold temporary table was required, each row in the hold temporary table is now
inserted into the base table (but INSERT triggers are not fired). If the row insertion succeeds, steps 7-9
above are executed and the old and new row values are copied to the OLD and NEW temporary tables to
permit any AFTER STATEMENT UPDATE triggers to correctly process all of the modified rows. After
all of the hold rows have been processed, the AFTER STATEMENT UPDATE triggers are fired in order.
Upon COMMIT, the server verifies referential integrity by ensuring that the number of orphans produced
by this transaction is 0, and release all locks.

Modifying a column value can necessitate a large number of operations. The amount of work that the
database server needs to do is much less if the column being modified is not part of a primary or foreign
key. It is lower still if it is not contained in an index, either explicitly or implicitly because the column has
been declared as unique.

The operation of verifying referential integrity during an UPDATE operation is no less simple than when
the verification is performed during an INSERT. In fact, when you change the value of a primary key, you
may create orphans. When you insert the replacement value, the database server must check for orphans
once more.

See also
● “Locks during inserts” on page 812
● “Isolation levels and consistency” on page 782

Locks during deletes
The DELETE operation follows almost the same steps as the INSERT operation, except in the opposite
order. As with insertions and updates, this sequence of operations is followed for all transactions
regardless of their isolation level.

How locking works

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 815

1. Acquire a shared schema lock on the table, if one is not already held.

2. Acquire an intent-to-write table lock on the table, if one is not already held.

a. Identify candidate rows to be updated. As rows are scanned, they are locked.

At isolation levels 2 and 3 the following differences occur that are different from the default
locking behavior: intent-to-write row-level locks are acquired instead of read locks, and intent-
to-write locks may be acquired on rows that are ultimately rejected as candidates for update.

b. For each candidate row identified in step 2.a, follow the rest of the sequence.

3. Write lock the row to be deleted.

4. Remove the row from the table so that it is no longer visible to other transactions. The row cannot be
destroyed until the transaction is committed because doing so would remove the option of rolling
back the transaction. Index entries for the deleted row are preserved, though marked as deleted, until
transaction completion. This prevents other transactions from re-inserting the same row.

5. If the table is a primary table in a referential integrity relationship, and the relationship's DELETE
action is not RESTRICT, determine the affected row(s) in the foreign table(s) by first acquiring a
shared schema lock on the table(s), an intent-to-write table lock on each, and acquire write locks on
all the affected rows, modifying each as appropriate. Note that this process may cascade through a
nested hierarchy of referential integrity constraints.

The transaction can be committed provided referential integrity is not violated by doing so. To verify
referential integrity, the database server also keeps track of any orphans created as a side effect of the
deletion. Upon COMMIT, the server records the operation in the transaction log file and release all locks.

See also
● “Isolation levels and consistency” on page 782

Lock duration

Locks are typically held by a transaction until it completes. This behavior prevents other transactions from
making changes that would make it impossible to roll back the original transaction. At isolation level
three, all locks must be held until a transaction ends to guarantee transaction serializability.

The only locks that are not held until the end of a transaction are cursor stability locks. These row locks
are held for as long as the row in question is the current row of a cursor. In most cases, this amount of
time is shorter than the lifetime of the transaction, but for WITH HOLD cursors, cursor stability locks can
be held for the lifetime of the connection.

See also
● “LOCK TABLE statement” [SQL Anywhere Server - SQL Reference]
● “OPEN statement [ESQL] [SP]” [SQL Anywhere Server - SQL Reference]

Transactions and isolation levels

816 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Guidelines for choosing isolation levels
The choice of isolation level depends on the kind of task an application is performing. This section gives
some guidelines for choosing isolation levels.

To choose an appropriate isolation level, you must balance the need for consistency and accuracy with the
need for concurrent transactions to proceed unimpeded. If a transaction involves only one or two specific
values in one table, it is unlikely to interfere as much with other processes compared to one that searches
many large tables and therefore may need to lock many rows or entire tables and may take a very long
time to complete.

For example, if your transactions involve transferring money between bank accounts, you likely want to
ensure that the information you return is correct. However, if you just want a rough estimate of the
proportion of inactive accounts, then you may not care whether your transaction waits for others or not,
and you may be willing to sacrifice some accuracy to avoid interfering with other users of the database.

Furthermore, a transfer may affect only the two rows which contain the two account balances, whereas all
the accounts must be read to calculate the estimate. For this reason, the transfer is less likely to delay
other transactions.

SQL Anywhere provides four isolation levels: levels 0, 1, 2, and 3. Level 3 provides complete isolation
and ensures that transactions are interleaved in such a manner that the schedule is serializable.

If you have enabled snapshot isolation for a database, then three additional isolation levels are available:
snapshot, statement-snapshot, and readonly-statement-snapshot.

Choosing a snapshot isolation level
Snapshot isolation offers both concurrency and consistency benefits. Using snapshot isolation incurs a
cost penalty since old versions of rows are saved as long as they may be needed by running transactions.
Therefore, long running snapshots can require storage of many old row versions. Usually, snapshots used
for statement-snapshot do not last as long as those for snapshot. Therefore, statement-snapshot may have
some space advantages over snapshot at the cost of less consistency (every statement within the
transaction sees the database at a different point in time).

For most purposes, the snapshot isolation level is recommended because it provides a single view of the
database for the entire transaction.

The statement-snapshot isolation level provides less consistency, but may be useful when long running
transactions result in too much space being used in the temporary file by the version store.

The readonly-statement-snapshot isolation level provides less consistency than statement-snapshot, but
avoids the possibility of update conflicts. Therefore, it is most appropriate for porting applications
originally intended to run under different isolation levels.

See also
● “Snapshot isolation” on page 785
● “Cursor sensitivity and isolation levels” [SQL Anywhere Server - Programming]

Guidelines for choosing isolation levels

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 817

Serializable schedules

To process transactions concurrently, the database server must execute some component statements of one
transaction, then some from other transactions, before continuing to process further operations from the
first. The order in which the component operations of the various transactions are interleaved is called the
schedule.

Applying transactions concurrently in this manner can result in many possible outcomes, including the
three particular inconsistencies described in the previous section. Sometimes, the final state of the
database also could have been achieved had the transactions been executed sequentially, meaning that one
transaction was always completed in its entirety before the next was started. A schedule is called
serializable whenever executing the transactions sequentially, in some order, could have left the database
in the same state as the actual schedule.

Serializability is the commonly accepted criterion for correctness. A serializable schedule is accepted as
correct because the database is not influenced by the concurrent execution of the transactions.

The isolation level affects a transaction's serializability. At isolation level 3, all schedules are serializable.
The default setting is 0.

Serializable means that concurrency has added no effect
Even when transactions are executed sequentially, the final state of the database can depend upon the
order in which these transactions are executed. For example, if one transaction sets a particular cell to the
value 5 and another sets it to the number 6, then the final value of the cell is determined by which
transaction executes last.

Knowing a schedule is serializable does not settle which order transactions would best be executed, but
rather states that concurrency has added no effect. Outcomes which may be achieved by executing the set
of transactions sequentially in some order are all assumed correct.

Unserializable schedules introduce inconsistencies
The inconsistencies are typical of the types of problems that appear when the schedule is not serializable.
In each case, the inconsistency appeared because of the way the statements were interleaved; the result
produced would not be possible if all transactions were executed sequentially. For example, a dirty read
can only occur if one transaction can select rows while another transaction is in the middle of inserting or
updating data in the same row.

See also
● “Typical types of inconsistency” on page 791

Typical transactions at various isolation levels

Various isolation levels lend themselves to particular types of tasks. Use the information below to help
you decide which level is best suited to each particular operation.

Transactions and isolation levels

818 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Typical level 0 transactions
Transactions that involve browsing or performing data entry may last several minutes, and read a large
number of rows. If isolation level 2 or 3 is used, concurrency can suffer. Isolation level of 0 or 1 is
typically used for this kind of transaction.

For example, a decision support application that reads large amounts of information from the database to
produce statistical summaries may not be significantly affected if it reads a few rows that are later
modified. If high isolation is required for such an application, it may acquire read locks on large amounts
of data, not allowing other applications write access to it.

Typical level 1 transactions
Isolation level 1 is useful in conjunction with cursors, because this combination ensures cursor stability
without greatly increasing locking requirements. SQL Anywhere achieves this benefit through the early
release of read locks acquired for the present row of a cursor. These locks must persist until the end of the
transaction at either levels two or three to guarantee repeatable reads.

For example, a transaction that updates inventory levels through a cursor is suited to this level, because
each of the adjustments to inventory levels as items are received and sold would not be lost, yet these
frequent adjustments would have minimal impact on other transactions.

Typical level 2 transactions
At isolation level 2, rows that match your criterion cannot be changed by other transactions. You can
employ this level when you must read rows more than once and rely that rows contained in your first
result set won't change.

Because of the relatively large number of read locks required, you should use this isolation level with
care. As with level 3 transactions, careful design of your database and indexes reduce the number of locks
acquired and can improve the performance of your database.

Typical level 3 transactions
Isolation level 3 is appropriate for transactions that demand the most in security. The elimination of
phantom rows lets you perform multi-step operations on a set of rows without fear that new rows will
appear partway through your operations and corrupt the result.

However much integrity it provides, isolation level 3 should be used sparingly on large systems that are
required to support a large number of concurrent transactions. SQL Anywhere places more locks at this
level than at any other, raising the likelihood that one transaction will impede the process of many others.

Concurrency improvement at isolation levels 2 and 3

Isolation levels 2 and 3 use a lot of locks and so good design is of particular importance for databases that
make regular use of these isolation levels. When you must make use of serializable transactions, it is
important that you design your database, in particular the indexes, with the business rules of your project
in mind. You may also improve performance by breaking large transactions into several smaller ones, and
shorten the length of time that rows are locked.

Guidelines for choosing isolation levels

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 819

Although serializable transactions have the most potential to block other transactions, they are not
necessarily less efficient. When processing these transactions, SQL Anywhere can perform certain
optimizations that may improve performance, in spite of the increased number of locks. For example,
since all rows read must be locked whether they match the search criteria, the database server is free to
combine the operation of reading rows and placing locks.

Reducing the impact of locking
To avoid placing a large number of locks that might impact the execution of other concurrent transactions,
it is recommended that you avoid running transactions at isolation level 3.

When the nature of an operation demands that it run at isolation level 3, you can lower its impact on
concurrency by designing the query to read as few rows and index entries as possible. These steps will
help the level 3 transaction run more quickly and, of possibly greater importance, will reduce the number
of locks it places.

When at least one operation executes at isolation level 3, you may find that adding an index improves
transaction speed. An index can have two benefits:

● An index enables rows to be located in an efficient manner

● Searches that make use of the index may need fewer locks.

See also
● “How locking works” on page 802
● “Performance monitoring and diagnostic tools” on page 125

Isolation level tutorials
The different isolation levels behave in very different ways, and which one you will want to use depends
on your database and on the operations you are performing. The following set of tutorials will help you
determine which isolation levels are suitable for different tasks.

Tutorial: Understanding dirty reads
The following tutorial demonstrates one type of inconsistency that can occur when multiple transactions
are executed concurrently. Two employees at a small merchandising company access the corporate
database at the same time. The first person is the company's Sales Manager. The second is the
Accountant.

The Sales Manager wants to increase the price of tee shirts sold by their firm by $0.95, but is having a
little trouble with the syntax of the SQL language. At the same time, unknown to the Sales Manager, the
Accountant is trying to calculate the retail value of the current inventory to include in a report he
volunteered to bring to the next management meeting.

Transactions and isolation levels

820 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Tip
Before altering your database in the following way, it is prudent to test the change by using SELECT in
place of UPDATE.

Note
For this tutorial to work properly, the Automatically Release Database Locks option must not be
selected in Interactive SQL (Tools » Options » SQL Anywhere).

In this example, you assume the role of two employees, both using the SQL Anywhere sample database
concurrently.

Create a dirty read

1. Start Interactive SQL.

2. In the Connect window, connect to the SQL Anywhere sample database as the Sales Manager:

● In the Action dropdown list, click Connect With An ODBC Data Source.

● Click ODBC Data Source Name, and then type SQL Anywhere 12 Demo in the field below.

● Click Advanced to reveal Advanced Options tab.

● Click the Advanced Options tab, and type Sales Manager in the ConnectionName field.

● Click Connect.

3. Start a second instance of Interactive SQL.

4. In the Connect window, connect to the SQL Anywhere sample database as the Accountant:

● In the Action dropdown list, click Connect With An ODBC Data Source.

● Click ODBC Data Source Name, and then type SQL Anywhere 12 Demo in the field below.

● If necessary, click Advanced to reveal the Advanced Options tab.

● Click the Advanced Options tab and type Accountant in the ConnectionName field.

● Click Connect.

5. As the Sales Manager, raise the price of all tee shirts by $0.95:

● In the Sales Manager window, execute the following statements:

UPDATE Products
 SET UnitPrice = UnitPrice + 95
 WHERE Name = 'Tee Shirt';
SELECT ID, Name, UnitPrice
 FROM Products;

The result is:

Isolation level tutorials

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 821

ID Name UnitPrice

300 Tee Shirt 104.00

301 Tee Shirt 109.00

302 Tee Shirt 109.00

400 Baseball Cap 9.00

...

You observe immediately that you should have entered 0.95 instead of 95, but before you can fix your
error, the Accountant accesses the database from another office.

6. The company's Accountant is worried that too much money is tied up in inventory. As the
Accountant, execute the following statement to calculate the total retail value of all the merchandise in
stock:

SELECT SUM(Quantity * UnitPrice)
 AS Inventory
 FROM Products;

The result is:

Inventory

21453.00

Unfortunately, this calculation is not accurate. The Sales Manager accidentally raised the price of the
tee shirt by $95, and the result reflects this erroneous price. This mistake demonstrates one typical
type of inconsistency known as a dirty read. You, as the Accountant, accessed data which the Sales
Manager has entered, but has not yet committed.

7. As the Sales Manager, fix the error by rolling back your first changes and entering the correct
UPDATE statement. Check that your new values are correct.

ROLLBACK;
UPDATE Products
SET UnitPrice = UnitPrice + 0.95
WHERE NAME = 'Tee Shirt';

ID Name UnitPrice

300 Tee Shirt 9.95

301 Tee Shirt 14.95

302 Tee Shirt 14.95

Transactions and isolation levels

822 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

ID Name UnitPrice

400 Baseball Cap 9.00

...

8. The Accountant does not know that the amount he calculated was in error. You can see the correct
value by executing the SELECT statement again in the Accountant's window.

SELECT SUM(Quantity * UnitPrice)
 AS Inventory
 FROM Products;

Inventory

6687.15

9. Finish the transaction in the Sales Manager's window. The Sales Manager would enter a COMMIT
statement to make the changes permanent, but you should execute a ROLLBACK, instead, to avoid
changing the local copy of the SQL Anywhere sample database.

ROLLBACK;

The Accountant unknowingly receives erroneous information from the database because the database
server is processing the work of both the Sales Manager and the Accountant concurrently.

10. (optional) Restore the sample database (demo.db) to its original state by following the steps found
here: “Recreate the sample database (demo.db)” [SQL Anywhere 12 - Introduction].

Using snapshot isolation to avoid dirty reads

When you use snapshot isolation, other database connections see only committed data in response to their
queries. Setting the isolation level to statement-snapshot or snapshot prevents the possibility of dirty reads
occurring. The Accountant can use snapshot isolation to ensure that they only see committed data when
executing their queries.

1. Start Interactive SQL.

2. In the Connect window, connect to the SQL Anywhere sample database as the Sales Manager:

● In the Action dropdown list, click Connect With An ODBC Data Source.

● Click ODBC Data Source Name, and then type SQL Anywhere 12 Demo in the field below.

● If necessary, click Advanced, to reveal the Advanced Options tab.

● Click the Advanced Options tab and type Sales Manager in the ConnectionName field.

● Click Connect.

3. Execute the following statement to enable snapshot isolation for the database:

SET OPTION PUBLIC.allow_snapshot_isolation = 'ON';

Isolation level tutorials

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 823

4. Start a second instance of Interactive SQL.

5. In the Connect window, connect to the SQL Anywhere sample database as the Accountant:

● In the Action dropdown list, click Connect With An ODBC Data Source.

● Click ODBC Data Source Name, and then type SQL Anywhere 12 Demo in the field below.

● If necessary, click Advanced, to reveal the Advanced Options tab.

● Click the Advanced Options tab and type Accountant in the ConnectionName field.

● Click Connect.

6. As the Sales Manager, raise the price of all the tee shirts by $0.95:

● In the window labeled Sales Manager, execute the following statement:

UPDATE Products
SET UnitPrice = UnitPrice + 0.95
WHERE Name = 'Tee Shirt';

● Calculate the total retail value of all merchandise in stock using the new tee shirt price for the Sales
Manager:

SELECT SUM(Quantity * UnitPrice)
 AS Inventory
 FROM Products;

The result is:

Inventory

6687.15

7. As the Accountant, execute the following statements to calculate the total retail value of all the
merchandise in stock. Because this transaction uses the snapshot isolation level, the result is calculated
only for data that has been committed to the database.

SET OPTION isolation_level = 'Snapshot';
SELECT SUM(Quantity * UnitPrice)
 AS Inventory
 FROM Products;

The result is:

Inventory

6538.00

8. As the Sales Manager, commit your changes to the database by executing the following statement:

COMMIT;

9. As the Accountant, execute the following statements to view the updated retail value of the current
inventory:

Transactions and isolation levels

824 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

COMMIT;
SELECT SUM(Quantity * UnitPrice)
 AS Inventory
 FROM Products;

The result is:

Inventory

6687.15

Because the snapshot used for the Accountant's transaction began with the first read operation, you
must execute a COMMIT to end the transaction and allow the Accountant to see changes made to the
data after the snapshot transaction began.

10. As the Sales Manager, execute the following statement to undo the tee shirt price changes and restore
the SQL Anywhere sample database to its original state:

UPDATE Products
SET UnitPrice = UnitPrice - 0.95
WHERE Name = 'Tee Shirt';
COMMIT;

11. (optional) Restore the sample database (demo.db) to its original state by following the steps found
here: “Recreate the sample database (demo.db)” [SQL Anywhere 12 - Introduction].

See also
● “Isolation levels and consistency” on page 782
● “Understanding snapshot transactions” on page 787

Tutorial: Understanding non-repeatable reads
The example in the dirty reads tutorial demonstrated the first type of inconsistency, namely the dirty read.
In that example, an Accountant made a calculation while the Sales Manager was in the process of
updating a price. The Accountant's calculation used erroneous information which the Sales Manager had
entered and was in the process of fixing.

The following example demonstrates another type of inconsistency: non-repeatable reads. In this example,
you assume the role of the same two employees, both using the SQL Anywhere sample database
concurrently. The Sales Manager wants to offer a new sales price on plastic visors. The Accountant wants
to verify the prices of some items that appear on a recent order.

This example begins with both connections at isolation level 1, rather than at isolation level 0, which is
the default for the SQL Anywhere sample database supplied with SQL Anywhere. By setting the isolation
level to 1, you eliminate the type of inconsistency which the previous tutorial demonstrated, namely the
dirty read.

Isolation level tutorials

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 825

Note
For this tutorial to work properly, the Automatically Release Database Locks option must not be
selected in Interactive SQL (Tools » Options » SQL Anywhere).

Lesson 1: Creating non-repeatable reads
Create a non-repeatable read

1. Start Interactive SQL.

2. In the Connect window, connect to the SQL Anywhere sample database as the Sales Manager:

a. In the Action dropdown list, click Connect With An ODBC Data Source.

b. Click ODBC Data Source Name, and then type SQL Anywhere 12 Demo in the field below.

c. If necessary, click Advanced to reveal the Advanced Options tab.

d. Click the Advanced Options tab and type Sales Manager in the ConnectionName field.

e. Click Connect.

3. Start a second instance of Interactive SQL.

4. In the Connect window, connect to the SQL Anywhere sample database as the Accountant:

a. In the Action dropdown list, click Connect With An ODBC Data Source.

b. Click ODBC Data Source Name, and then type SQL Anywhere 12 Demo in the field below.

c. If necessary, click Advanced, to reveal the Advanced Options tab.

d. Click the Advanced Options tab and type Accountant in the ConnectionName field.

e. Click Connect.

5. Set the isolation level to 1 for the Accountant's connection by executing the following statement.

SET TEMPORARY OPTION isolation_level = 1;

6. Set the isolation level to 1 in the Sales Manager's window by executing the following statement:

SET TEMPORARY OPTION isolation_level = 1;

7. The Accountant decides to list the prices of the visors. As the Accountant, execute the following
statement:

SELECT ID, Name, UnitPrice FROM Products;

ID Name UnitPrice

300 Tee Shirt 9.00

301 Tee Shirt 14.00

Transactions and isolation levels

826 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

ID Name UnitPrice

302 Tee Shirt 14.00

400 Baseball Cap 9.00

401 Baseball Cap 10.00

500 Visor 7.00

501 Visor 7.00

...

8. The Sales Manager decides to introduce a new sale price for the plastic visor. As the Sales Manager,
execute the following statements:

SELECT ID, Name, UnitPrice FROM Products
WHERE Name = 'Visor';
UPDATE Products
SET UnitPrice = 5.95 WHERE ID = 501;
COMMIT;
SELECT ID, Name, UnitPrice FROM Products
WHERE Name = 'Visor';

ID Name UnitPrice

500 Visor 7.00

501 Visor 5.95

9. Compare the price of the visor in the Sales Manager window with the price for the same visor in the
Accountant window. The Accountant executes the SELECT statement again, and sees the Sales
Manager's new sale price.

SELECT ID, Name, UnitPrice
FROM Products;

ID Name UnitPrice

300 Tee Shirt 9.00

301 Tee Shirt 14.00

302 Tee Shirt 14.00

400 Baseball Cap 9.00

401 Baseball Cap 10.00

500 Visor 7.00

Isolation level tutorials

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 827

ID Name UnitPrice

501 Visor 5.95

...

This inconsistency is called a non-repeatable read because when the Accountant executes the same
SELECT a second time in the same transaction, and did not get the same results.

Of course, if the Accountant had finished his transaction, for example by issuing a COMMIT or
ROLLBACK statement before using SELECT again, it would be a different matter. The database is
available for simultaneous use by multiple users and it is completely permissible for someone to
change values either before or after the Accountant's transaction. The change in results is only
inconsistent because it happens in the middle of his transaction. Such an event makes the schedule
unserializable.

10. The Accountant notices this behavior and decides that from now on he doesn't want the prices
changing while he looks at them. Non-repeatable reads are eliminated at isolation level 2. As the
Accountant, execute the following statements:

SET TEMPORARY OPTION isolation_level = 2;
SELECT ID, Name, UnitPrice
FROM Products;

11. The Sales Manager decides that it would be better to delay the sale on the plastic visor until next week
so that she won't have to give the lower price on a big order that she's expecting will arrive tomorrow.
In her window, try to execute the following statements. The statement starts to execute, and then her
window appears to freeze.

UPDATE Products
SET UnitPrice = 7.00
WHERE ID = 501;

The database server must guarantee repeatable reads at isolation level 2. Because the Accountant is
using isolation level 2, the database server places a read lock on each row of the Products table that
the Accountant reads. When the Sales Manager tries to change the price back, her transaction must
acquire a write lock on the plastic visor row of the Products table. Since write locks are exclusive, her
transaction must wait until the Accountant's transaction releases its read lock.

12. The Accountant is finished looking at the prices. He doesn't want to risk accidentally changing the
database, so he completes his transaction with a ROLLBACK statement.

ROLLBACK;

When the database server executes this statement, the Sales Manager's transaction completes.

ID Name UnitPrice

500 Visor 7.00

Transactions and isolation levels

828 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

ID Name UnitPrice

501 Visor 7.00

13. The Sales Manager can finish now. She wants to commit her change to restore the original price.

COMMIT;

Types of locks and different isolation levels
When you upgraded the Accountant's isolation from level 1 to level 2, the database server used read locks
where none had previously been acquired. In general, each isolation level is characterized by the types of
locks needed and by how locks held by other transactions are treated.

At isolation level 0, the database server needs only write locks. It makes use of these locks to ensure that
no two transactions make modifications that conflict. For example, a level 0 transaction acquires a write
lock on a row before it updates or deletes it, and inserts any new rows with a write lock already in place.

Level 0 transactions perform no checks on the rows they are reading. For example, when a level 0
transaction reads a row, it does not check what locks may or may not have been acquired on that row by
other transactions. Since no checks are needed, level 0 transactions are fast. This speed comes at the
expense of consistency. Whenever they read a row which is write locked by another transaction, they risk
returning dirty data.

At level 1, transactions check for write locks before they read a row. Although one more operation is
required, these transactions are assured that all the data they read is committed. Try repeating the first
tutorial with the isolation level set to 1 instead of 0. You will find that the Accountant's computation
cannot proceed while the Sales Manager's transaction, which updates the price of the tee shirts, remains
incomplete.

When the Accountant raised his isolation to level 2, the database server began using read locks. From then
on, it acquired a read lock for his transaction on each row that matched his selection.

Transaction blocking
In the above tutorial, the Sales Manager's window froze during the execution of her UPDATE statement.
The database server began to execute her statement, then found that the Accountant's transaction had
acquired a read lock on the row that the Sales Manager needed to change. At this point, the database
server simply paused the execution of the UPDATE. Once the Accountant finished his transaction with
the ROLLBACK, the database server automatically released his locks. Finding no further obstructions, it
then proceeded to complete execution of the Sales Manager's UPDATE.

In general, a locking conflict occurs when one transaction attempts to acquire an exclusive lock on a row
on which another transaction holds a lock, or attempts to acquire a shared lock on a row on which another
transaction holds an exclusive lock. One transaction must wait for another transaction to complete. The
transaction that must wait is said to be blocked by another transaction.

When the database server identifies a locking conflict which prohibits a transaction from proceeding
immediately, it can either pause execution of the transaction, or it can terminate the transaction, roll back
any changes, and return an error. You control the route by setting the blocking option. When the blocking
is set to On the second transaction waits, as in the above tutorial.

Isolation level tutorials

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 829

See also
● “Lesson 2: Avoiding non-repeatable reads” on page 830
● “The blocking option” on page 798

Lesson 2: Avoiding non-repeatable reads
Using snapshot isolation to avoid non-repeatable reads

You can also use snapshot isolation to help avoid blocking. Because transactions that use snapshot
isolation only see committed data, the Accountant's transaction does not block the Sales Manager's
transaction.

1. Start Interactive SQL.

2. In the Connect window, connect to the SQL Anywhere sample database as the Sales Manager:

a. From the Action dropdown list, click Connect to an ODBC Data Source.

b. Click ODBC Data Source Name, and then type SQL Anywhere 12 Demo in the field below.

c. If necessary, click Advanced, to reveal the Advanced Options tab.

d. Click the Advanced Options tab and type Sales Manager in the ConnectionName field.

e. Click Connect.

3. Start a second instance of Interactive SQL.

4. In the Connect window, connect to the SQL Anywhere sample database as the Accountant:

a. In the Action dropdown list, click Connect With An ODBC Data Source.

b. Click ODBC Data Source Name, and then type SQL Anywhere 12 Demo in the field below.

c. If necessary, click Advanced button, to reveal the Advanced Options tab.

d. Click the Advanced Options tab and type Accountant in the ConnectionName field.

e. Click Connect.

5. As the Accountant, execute the following statements to enable snapshot isolation for the database and
specify that the snapshot isolation level is used:

SET OPTION PUBLIC.allow_snapshot_isolation = 'On';
SET TEMPORARY OPTION isolation_level = 'snapshot';

6. The Accountant decides to list the prices of the visors. As the Accountant, execute the following
statement:

SELECT ID, Name, UnitPrice
FROM Products
ORDER BY ID;

Transactions and isolation levels

830 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

ID Name UnitPrice

300 Tee Shirt 9.00

301 Tee Shirt 14.00

302 Tee Shirt 14.00

400 Baseball Cap 9.00

401 Baseball Cap 10.00

500 Visor 7.00

501 Visor 7.00

...

7. The Sales Manager decides to introduce a new sale price for the plastic visor. As the Sales Manager,
execute the following statements:

UPDATE Products
SET UnitPrice = 5.95 WHERE ID = 501;
COMMIT;
SELECT ID, Name, UnitPrice FROM Products
WHERE Name = 'Visor';

8. The Accountant executes his query again, and does not see the change in price because the data that
was committed at the time of the first read is used for the transaction.

SELECT ID, Name, UnitPrice
FROM Products;

9. As the Sales Manager, change the plastic visor back to its original price.

UPDATE Products
SET UnitPrice = 7.00
WHERE ID = 501;
COMMIT;

The database server does not place a read lock on the rows in the Products table that the Accountant is
reading because the Accountant is viewing a snapshot of committed data that was taken before the
Sales Manager made any changes to the Products table.

10. The Accountant is finished looking at the prices. He doesn't want to risk accidentally changing the
database, so he completes his transaction with a ROLLBACK statement.

ROLLBACK;

Tutorial: Understanding phantom rows
In this tutorial, you will observe the appearance of a phantom row.

Isolation level tutorials

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 831

Note
For this tutorial to work properly, the Automatically Release Database Locks option must not be
selected in Interactive SQL (Tools » Options » SQL Anywhere).

Lesson 1: Creating phantom rows
Create a phantom row

1. Start two instances of Interactive SQL. See steps 1 through 4 of “Tutorial: Understanding non-
repeatable reads” on page 825.

2. Set the isolation level to 2 in the Sales Manager window by executing the following statement.

SET TEMPORARY OPTION isolation_level = 2;

3. Set the isolation level to 2 for the Accountant window by executing the following statement.

SET TEMPORARY OPTION isolation_level = 2;

4. In the Accountant window, enter the following statement to list all the departments.

SELECT * FROM Departments
ORDER BY DepartmentID;

DepartmentID DepartmentName DepartmentHeadID

100 R & D 501

200 Sales 902

300 Finance 1293

400 Marketing 1576

500 Shipping 703

5. The Sales Manager decides to set up a new department to focus on the foreign market. Philip Chin,
who has EmployeeID 129, heads the new department.

INSERT INTO Departments
 (DepartmentID, DepartmentName, DepartmentHeadID)
 VALUES(600, 'Foreign Sales', 129);

COMMIT;

The final statement creates the new entry for the new department. It appears as a new row at the
bottom of the table in the Sales Manager's window.

In the Sales Manager window, enter the following statement to list all the departments.

Transactions and isolation levels

832 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SELECT *
FROM Departments
ORDER BY DepartmentID;

DepartmentID DepartmentName DepartmentHeadID

100 R & D 501

200 Sales 902

300 Finance 1293

400 Marketing 1576

500 Shipping 703

600 Foreign Sales 129

6. The Accountant, however, is not aware of the new department. At isolation level 2, the database
server places locks to ensure that no row changes, but places no locks that stop other transactions from
inserting new rows.

The Accountant will only discover the new row if he executes his SELECT statement again. In the
Accountant's window, execute the SELECT statement again. You will see the new row appended to
the table.

SELECT *
FROM Departments
ORDER BY DepartmentID;

DepartmentID DepartmentName DepartmentHeadID

100 R & D 501

200 Sales 902

300 Finance 1293

400 Marketing 1576

500 Shipping 703

600 Foreign Sales 129

The new row that appears is called a phantom row because, from the Accountant's point of view, it
appears like an apparition, seemingly from nowhere. The Accountant is connected at isolation level 2.
At that level, the database server acquires locks only on the rows that he is using. Other rows are left
untouched, so there is nothing to prevent the Sales Manager from inserting a new row.

7. The Accountant would prefer to avoid such surprises in future, so he raises the isolation level of his
current transaction to level 3. Enter the following statements for the Accountant.

Isolation level tutorials

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 833

SET TEMPORARY OPTION isolation_level = 3;
SELECT *
FROM Departments
ORDER BY DepartmentID;

8. The Sales Manager would like to add a second department to handle a sales initiative aimed at large
corporate partners. Execute the following statement in the Sales Manager's window.

INSERT INTO Departments
 (DepartmentID, DepartmentName, DepartmentHeadID)
 VALUES(700, 'Major Account Sales', 902);

The Sales Manager's window pauses during execution because the Accountant's locks block the
statement. From the toolbar, click Stop (or click SQL » Stop) to interrupt this entry.

9. To avoid changing the SQL Anywhere sample database, you should roll back the incomplete
transaction that inserts the Major Account Sales department row and use a second transaction to delete
the Foreign Sales department.

a. Execute the following statement in the Sales Manager's window to rollback the last, incomplete
transaction:

ROLLBACK;
b. Also in the Sales Manager's window, execute the following two statements to delete the row that

you inserted earlier and commit this operation.

DELETE FROM Departments
WHERE DepartmentID = 600;
COMMIT;

Explanation
When the Accountant raised his isolation to level 3 and again selected all rows in the Departments table,
the database server placed anti-insert locks on each row in the table, and added one extra phantom lock to
block inserts at the end of the table. When the Sales Manager attempted to insert a new row at the end of
the table, it was this final lock that blocked her statement.

Notice that the Sales Manager's statement was blocked even though she is still connected at isolation level
2. The database server places anti-insert locks, like read locks, as demanded by the isolation level and
statements of each transactions. Once placed, these locks must be respected by all other concurrent
transactions.

See also
● “Lesson 2: Avoiding phantom rows” on page 835
● “How locking works” on page 802

Transactions and isolation levels

834 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Lesson 2: Avoiding phantom rows
Using snapshot isolation to avoid phantom rows

You can use the snapshot isolation level to maintain consistency at the same level as isolation level at 3,
without any sort of blocking. The Sales Manager's statement is not blocked, and the Accountant does not
see a phantom row.

If you have not done so, follow steps 1 through 4 of the phantom rows tutorial, which describes how to
start two instances of Interactive SQL. See “Tutorial: Understanding phantom rows” on page 831.

1. Enable snapshot isolation for the Accountant by executing the following statements.

SET OPTION PUBLIC. allow_snapshot_isolation = 'On';
SET TEMPORARY OPTION isolation_level = 'snapshot';

2. In the Accountant window, enter the following statement to list all the departments.

SELECT * FROM Departments
ORDER BY DepartmentID;

DepartmentID DepartmentName DepartmentHeadID

100 R & D 501

200 Sales 902

300 Finance 1293

400 Marketing 1576

500 Shipping 703

3. The Sales Manager decides to set up a new department to focus on the foreign market. Philip Chin,
who has EmployeeID 129, heads the new department.

INSERT INTO Departments
 (DepartmentID, DepartmentName, DepartmentHeadID)
 VALUES(600, 'Foreign Sales', 129);
COMMIT;

The final statement creates the new entry for the new department. It appears as a new row at the
bottom of the table in the Sales Manager's window.

SELECT * FROM Departments
ORDER BY DepartmentID;

DepartmentID DepartmentName DepartmentHeadID

100 R & D 501

200 Sales 902

Isolation level tutorials

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 835

DepartmentID DepartmentName DepartmentHeadID

300 Finance 1293

400 Marketing 1576

500 Shipping 703

600 Foreign Sales 129

4. The Accountant can execute his query again, and does not see the new row because the transaction has
not ended.

SELECT *
FROM Departments
ORDER BY DepartmentID;

DepartmentID DepartmentName DepartmentHeadID

100 R & D 501

200 Sales 902

300 Finance 1293

400 Marketing 1576

500 Shipping 703

5. The Sales Manager would like to add a second department to handle sales initiative aimed at large
corporate partners. Execute the following statement in the Sales Manager's window.

INSERT INTO Departments
 (DepartmentID, DepartmentName, DepartmentHeadID)
 VALUES(700, 'Major Account Sales', 902);

The Sales Manager's change is not blocked because the Accountant is using snapshot isolation.

6. The Accountant must end his snapshot transaction to see the changes the Sales Manager committed to
the database.

COMMIT;
 SELECT * FROM Departments
 ORDER BY DepartmentID;

Now the Accountant sees the Foreign Sales department, but not the Major Account Sales department.

DepartmentID DepartmentName DepartmentHeadID

100 R & D 501

Transactions and isolation levels

836 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

DepartmentID DepartmentName DepartmentHeadID

200 Sales 902

300 Finance 1293

400 Marketing 1576

500 Shipping 703

600 Foreign Sales 129

7. To avoid changing the SQL Anywhere sample database, you should roll back the incomplete
transaction that inserts the Major Account Sales department row and use a second transaction to delete
the Foreign Sales department.

a. Execute the following statement in the Sales Manager's window to rollback the last, incomplete
transaction:

ROLLBACK;
b. Also in the Sales Manager's window, execute the following two statements to delete the row that

you inserted earlier and commit this operation.

DELETE FROM Departments
WHERE DepartmentID = 600;
COMMIT;

Tutorial: Understanding phantom locks
In this tutorial the Accountant and the Sales Manager both have tasks that involve the SalesOrder and
SalesOrderItems tables. The Accountant needs to verify the amounts of the commission checks paid to the
sales employees for the sales they made during the month of April 2001. The Sales Manager notices that a
few orders have not been added to the database and wants to add them.

Their work demonstrates phantom locking. A phantom lock is a shared lock that is placed on an indexed
scan position to prevent phantom rows. When a transaction at isolation level 3 selects rows that match the
specified criteria, the database server places anti-insert locks to stop other transactions from inserting
rows that would also match. The number of locks placed on your behalf depends both on the search
criteria and on the design of your database.

Note
For this tutorial to work properly, the Automatically Release Database Locks option must not be
selected in Interactive SQL. You can check the setting of this option by clicking Tools » Options, and
then clicking SQL Anywhere in the left pane.

Isolation level tutorials

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 837

Create a phantom lock

1. Start two instances of Interactive SQL. See steps 1 through 4 of the non-repeatable reads tutorial. See
“Tutorial: Understanding non-repeatable reads” on page 825.

2. Set the isolation level to 2 in both the Sales Manager window and the Accountant window by
executing the following statement.

SET TEMPORARY OPTION isolation_level = 2;

3. Each month, the sales representatives are paid a commission that is calculated as a percentage of their
sales for that month. The Accountant is preparing the commission checks for the month of April 2001.
His first task is to calculate the total sales of each representative during this month.

Enter the following statement in the Accountant's window. Prices, sales order information, and
employee data are stored in separate tables. Join these tables using the foreign key relationships to
combine the necessary pieces of information.

SELECT EmployeeID, GivenName, Surname,
 SUM(SalesOrderItems.Quantity * UnitPrice)
 AS "April sales"
FROM Employees
 KEY JOIN SalesOrders
 KEY JOIN SalesOrderItems
 KEY JOIN Products
WHERE '2001-04-01' <= OrderDate
 AND OrderDate < '2001-05-01'
GROUP BY EmployeeID, GivenName, Surname
ORDER BY EmployeeID;

EmployeeID GivenName Surname April sales

129 Philip Chin 2160.00

195 Marc Dill 2568.00

299 Rollin Overbey 5760.00

467 James Klobucher 3228.00

...

4. The Sales Manager notices that a big order sold by Philip Chin was not entered into the database.
Philip likes to be paid his commission promptly, so the Sales Manager enters the missing order, which
was placed on April 25.

In the Sales Manager's window, enter the following statements. The sales order and the items are
entered in separate tables because one order can contain many items. You should create the entry for
the sales order before you add items to it. To maintain referential integrity, the database server allows
a transaction to add items to an order only if that order already exists.

INSERT into SalesOrders
VALUES (2653, 174, '2001-04-22', 'r1',
 'Central', 129);

Transactions and isolation levels

838 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

INSERT into SalesOrderItems
VALUES (2653, 1, 601, 100, '2001-04-25');
COMMIT;

5. The Accountant has no way of knowing that the Sales Manager has just added a new order. Had the
new order been entered earlier, it would have been included in the calculation of Philip Chin's April
sales.

In the Accountant's window, calculate the April sales totals again. Use the same statement, and
observe that Philip Chin's April sales changes to $4560.00.

EmployeeID GivenName Surname April sales

129 Philip Chin 4560.00

195 Marc Dill 2568.00

299 Rollin Overbey 5760.00

467 James Klobucher 3228.00

...

Imagine that the Accountant now marks all orders placed in April to indicate that commission has
been paid. The order that the Sales Manager just entered might be found in the second search and
marked as paid, even though it was not included in Philip's total April sales.

6. At isolation level 3, the database server places anti-insert locks to ensure that no other transactions can
add a row that matches the criteria of a search or select.

In the Sales Manager's window, execute the following statements to remove the new order.

DELETE
FROM SalesOrderItems
WHERE ID = 2653;
DELETE
FROM SalesOrders
WHERE ID = 2653;
COMMIT;

7. In the Accountant's window, execute the following two statements.

ROLLBACK;
SET TEMPORARY OPTION isolation_level = 3;

8. In the Accountant's window, execute same query as before.

SELECT EmployeeID, GivenName, Surname,
 SUM(SalesOrderItems.Quantity * UnitPrice)
 AS "April sales"
FROM Employees
 KEY JOIN SalesOrders
 KEY JOIN SalesOrderItems
 KEY JOIN Products
WHERE '2001-04-01' <= OrderDate

Isolation level tutorials

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 839

 AND OrderDate < '2001-05-01'
GROUP BY EmployeeID, GivenName, Surname;

Because you set the isolation to level 3, the database server automatically places anti-insert locks to
ensure that the Sales Manager cannot insert April order items until the Accountant finishes their
transaction.

9. Return to the Sales Manager's window. Attempt to enter Philip Chin's missing order by executing the
following statement.

INSERT INTO SalesOrders
VALUES (2653, 174, '2001-04-22',
 'r1','Central', 129);

The Sales Manager's window stops responding, and the operation does not complete. On the toolbar,
click Stop (or click SQL » Stop) to interrupt this entry.

10. The Sales Manager cannot enter the order in April, but you might think that they could still enter it in
May.

Change the date in the statement to May 05 and try again.

INSERT INTO SalesOrders
VALUES (2653, 174, '2001-05-05', 'r1',
 'Central', 129);

The Sales Manager's window stops responding again. On the toolbar, click Stop (or click SQL »
Stop) to interrupt this entry. Although the database server places no more locks than necessary to
prevent insertions, these locks have the potential to interfere with many transactions.

The database server places locks in table indexes. For example, it places a phantom lock in an index
so a new row cannot be inserted immediately before it. However, when no suitable index is present, it
must lock every row in the table.

In some situations, anti-insert locks may block some insertions into a table, yet allow others.

11. Conclude this tutorial by undoing any changes to avoid changing the SQL Anywhere sample database.
Execute the following statement in the Sales Manager's window.

ROLLBACK;

Execute the following statement in the Accountant's window.

ROLLBACK;

12. Shut down both instances of Interactive SQL.

Primary key generation and concurrency
You will encounter situations where the database should automatically generate a unique number. For
example, if you are building a table to store sales invoices you might prefer that the database assign
unique invoice numbers automatically, rather than require sales staff to pick them.

Transactions and isolation levels

840 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Example
For example, invoice numbers could be obtained by adding 1 to the previous invoice number. This
method does not work when there is more than one person adding invoices to the database. Two
employees may decide to use the same invoice number.

There is more than one solution to the problem:

● Assign a range of invoice numbers to each person who adds new invoices.

You could implement this scheme by creating a table with the columns user name and invoice number.
The table would have one row for each user that adds invoices. Each time a user adds an invoice, the
number in the table would be incremented and used for the new invoice. To handle all tables in the
database, the table should have three columns: table name, user name, and last key value. You should
periodically verify that each person has enough numbers.

● Create a table with the columns table name and last key value.

One row in the table contains the last invoice number used. The invoice number is automatically
incremented every time a user adds an invoice, establishes a new connection, increments the invoice
number, or immediately commits a change. Other users can access new invoice numbers because the
row is instantly updated by a separate transaction.

● Use a column with a default value of NEWID in conjunction with the UNIQUEIDENTIFIER binary
data type to generate a universally unique identifier.

You can use UUID and GUID values to uniquely identify table rows. Because the values generated on
one computer do not match the values generated on another computer, the UUID and GUID values can
be used as keys in replication and synchronization environments.

● Use a column with a default value of AUTOINCREMENT. For example:

CREATE TABLE Orders (
 OrderID INTEGER NOT NULL DEFAULT AUTOINCREMENT,
 OrderDate DATE,
 primary key(OrderID)
);

On inserts into the table, if a value is not specified for the AUTOINCREMENT column, a unique value
is generated. If a value is specified, it will be used. If the value is larger than the current maximum
value for the column, that value will be used as a starting point for subsequent inserts. The value of the
most recently inserted row in an AUTOINCREMENT column is available as the global variable
@@identity.

See also
● “The NEWID default” on page 757

Use of a sequence to generate unique values
You can use a sequence to generate values that are unique across multiple tables or that are different from
a set of natural numbers. A sequence is created using the CREATE SEQUENCE statement. Sequence
values are returned as BIGINT values.

Primary key generation and concurrency

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 841

For each connection, the most recent use of the next value is saved as the current value.

When you create a sequence, its definition includes the number of sequence values the database server
holds in memory. When this cache is exhausted, the sequence cache is repopulated. If the database server
fails, then sequence values that were held in the cache may be skipped.

Obtaining values in a sequence
Use the following statement to obtain the current value in the sequence:

SELECT sequence-name.CURRVAL;

Use the following statement to obtain the next value in the sequence:

SELECT sequence-name.NEXTVAL;

Choosing between sequences and AUTOINCREMENT values

AUTOINCREMENT behavior Sequence behavior

Defined for a single column in a table Stored as a database object and can be used
anywhere that an expression is allowed

Column must have an integer data type or an exact nu-
meric data type

Values can be referred to anywhere that an
expression can be used and do not have to
conform to default value for a column

Values can only be used for a single column in one table Values can be used across multiple tables

Values are part of the set of natural numbers (1, 2, 3, ...) Can generate values other than the set of
natural numbers

Values must increment Values can increment or decrement

A unique value that is one greater than the previous max-
imum value in the column is generated by default

The sa_reset_identity system procedure can be used to
change the AUTOINCREMENT value for the next row
that will be inserted

Unit of increment can be specified

If the next value to be generated exceeds the maximum
value that can be stored in the column, NULL is returned

Can choose to allow values to be generated
after the maximum or minimum value is
reached, or return an error by specifying
NO CYCLE

Sequence example
Consider a sequence that is used to generate incident numbers for a customer hotline. Suppose that
customers can call in with two different types of complaints: incorrect billing or missing shipments.

Transactions and isolation levels

842 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

CREATE SEQUENCE incidentSequence
 MINVALUE 1000
 MAXVALUE 100000;
CREATE TABLE reportedBillingMistake(
 incidentID INT PRIMARY KEY DEFAULT (incidentSequence.nextval),
 billNumber INT,
 valueOnBill NUMERIC(10,2),
 expectedValue NUMERIC(10,2),
 comments LONG VARCHAR);
CREATE TABLE reportedMissingShipment(
 incidentID INT PRIMARY KEY DEFAULT(incidentSequence.nextval),
 orderNumber INT,
 comments LONG VARCHAR);

Using incidentSequence.nextval for the incidentID columns guarantees that incidentIDs are unique across
the two tables. This means that when a customer calls back for further inquiries and provides an incident
value, there is no possibility of confusion as to whether the incident is a billing or shipping mistake.

To insert a billing mistake, the following statements would be equivalent:

INSERT INTO reportedBillingMistake VALUES(DEFAULT, 12345, 100.00, 75.00,
'Bad bill');
INSERT INTO reportedBillingMistake
 SELECT incidentSequence.nextval, 12345, 100.00, 75.00, 'Bad bill';

To find the incidentID that was just inserted, the connection that performed the insert (using either of the
above two statements) could execute the following statement:

SELECT incidentSequence.currval;

See also
● “CREATE SEQUENCE statement” [SQL Anywhere Server - SQL Reference]
● “The AUTOINCREMENT default” on page 755
● “The GLOBAL AUTOINCREMENT default” on page 756
● “sequence-expression clause, SELECT statement” [SQL Anywhere Server - SQL Reference]

Creating sequences

Create a sequence (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with RESOURCE or DBA
authority.

2. In the left pane, right-click Sequence Generators, and click New » Sequence Generator.

3. Follow the instructions in the Create Sequence Generator Wizard.

Create a sequence (SQL)

1. Connect to the database as a user with RESOURCE or DBA authority.

Primary key generation and concurrency

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 843

2. Execute a CREATE SEQUENCE statement.

3. If other users need to have access to the sequence, you must execute a GRANT USAGE ON
SEQUENCE statement.

See also
● “CREATE SEQUENCE statement” [SQL Anywhere Server - SQL Reference]
● “GRANT statement” [SQL Anywhere Server - SQL Reference]

Altering sequences

Alter a sequence (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with RESOURCE or DBA
authority.

2. Right-click a sequence generator and then click Properties.

On the General tab, you can change the settings for the sequence. Clicking Restart Now executes an
ALTER SEQUENCE...RESTART WITH n statement, where n corresponds to the value in the Start
Value field. The change takes effect immediately.

Alter a sequence (SQL)

1. Connect to the database as a user with RESOURCE or DBA authority.

2. Execute an ALTER SEQUENCE statement.

See also
● “ALTER SEQUENCE statement” [SQL Anywhere Server - SQL Reference]

Dropping sequences

Drop a sequence (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with RESOURCE or DBA
authority.

2. Right-click a sequence generator and then click Delete.

Drop a sequence (SQL)

1. Connect to the database as a user with RESOURCE or DBA authority.

2. Execute a DROP SEQUENCE statement.

Transactions and isolation levels

844 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

See also
● “DROP SEQUENCE statement” [SQL Anywhere Server - SQL Reference]

Data definition statements and concurrency
Data definition statements that change an entire table, such as CREATE INDEX, ALTER TABLE, and
TRUNCATE TABLE, are prevented whenever the table on which the statement is acting is currently
being used by another connection. These data definition statements can be time consuming and the
database server will not process requests referencing the same table while the statement is being
processed.

The CREATE TABLE statement does not cause any concurrency conflicts.

The GRANT statement, REVOKE statement, and SET OPTION statement also do not cause concurrency
conflicts. These statements affect any new SQL statements sent to the database server, but do not affect
existing outstanding statements.

GRANT and REVOKE for a user are not allowed if that user is connected to the database.

Data definition statements and synchronized databases
Using data definition statements in databases using synchronization requires special care. See “MobiLink
- Server Administration”.

See also
● “Data definition statements” [SQL Remote]

Summary
Transactions and locking are second only in importance to relations between tables. The integrity and
performance of any database can benefit from the judicious use of locking and careful construction of
transactions. Both are essential to creating databases that must execute a large number of statements
concurrently.

Transactions group SQL statements into logical units of work. To complete transactions, you can either
roll back all the changes you made, or commit the changes to make them permanent.

In the event of system failure, transactions are essential to data recovery. They also play a pivotal role in
interweaving statements from concurrent transactions.

To improve performance, multiple transactions must be executed concurrently. Each transaction is
composed of component SQL statements. When two or more transactions are executed concurrently, the
database server must schedule the execution of the individual statements. Unlike sequentially executed
transactions, concurrent transactions could introduce inconsistencies.

Four types of inconsistencies are used to define isolation levels:

Data definition statements and concurrency

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 845

● Dirty read One transaction reads data modified, but not yet committed, by another.

● Non-repeatable read A transaction reads the same row twice and gets different values.

● Phantom row A transaction selects rows, using a certain criterion, twice and finds new rows in the
second result set.

● Lost update One transaction's changes to a row are completely lost because another transaction is
allowed to save an update based on earlier data.

A schedule is called serializable whenever the effect of executing the statements according to the schedule
is the same as could be achieved by executing each of the transactions sequentially. Schedules are said to
be correct if they are serializable. A serializable schedule will cause none of the above inconsistencies.

Locking controls the amount and types of interference permitted. SQL Anywhere provides you with four
levels of locking: isolation levels 0, 1, 2, and 3. At the highest isolation, level 3, SQL Anywhere
guarantees that the schedule is serializable, meaning that the effect of executing all the transactions is
equivalent to running them sequentially.

Unfortunately, locks acquired by one transaction may impede the progress of other transactions. Because
of this problem, lower isolation levels are desirable whenever the inconsistencies they may allow are
tolerable. Increased isolation to improve data consistency frequently means lowering the concurrency, the
efficiency of the database at processing concurrent transactions. You must frequently balance the
requirements for consistency against the need for performance to determine the best isolation level for
each operation.

Conflicting locking requirements between different transactions may lead to blocking or deadlock. SQL
Anywhere contains mechanisms for dealing with both these situations, and provides you with options to
control them.

Transactions at higher isolation levels do not, however, always impact concurrency. Other transactions
will be impeded only if they require access to locked rows. You can improve concurrency through careful
design of your database and transactions. For example, you can shorten the time that locks are held by
dividing one transaction into two shorter ones, or you might find that adding an index allows your
transaction to operate at higher isolation levels with fewer locks.

Transactions and isolation levels

846 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The SQL Anywhere debugger
You can use the SQL Anywhere debugger to debug SQL stored procedures, triggers, event handlers, and
user-defined functions you create.

You can also use the debugger to:

● Debug event handlers Event handlers are an extension of SQL stored procedures. The material in
this section about debugging stored procedures applies equally to debugging event handlers.

● Browse stored procedures and classes You can browse the source code of SQL procedures.

● Trace execution Step line by line through the code of a stored procedure. You can also look up
and down the stack of functions that have been called.

● Set breakpoints Run the code until you hit a breakpoint, and stop at that point in the code.

● Set break conditions Breakpoints include lines of code, but you can also specify conditions when
the code is to break. For example, you can stop at a line the tenth time it is executed, or only if a
variable has a particular value.

● Inspect and modify local variables When execution is stopped at a breakpoint, you can inspect
the values of local variables and alter their value.

● Inspect and break on expressions When execution is stopped at a breakpoint, you can inspect
the value of a wide variety of expressions.

● Inspect and modify row variables Row variables are the OLD and NEW values of row-level
triggers. You can inspect and modify these values.

● Execute queries You can execute queries when execution is stopped at a breakpoint in a SQL
procedure. This permits you to look at intermediate results held in temporary tables, check values in
base tables, and to view the query execution plan.

Requirements for using the debugger
To use the debugger, you must either have DBA authority or be granted permissions in the SA_DEBUG
group. This group is added to all databases when they are created. Only one user can debug a database at a
time.

When using the debugger over HTTP/SOAP connections, you should change the port timeout options on
the server. For example, -xs http{TO=600;KTO=0;PORT=8081) sets the timeout to 6 minutes and
turns off keep-alive timeout for port 8081. Note that timeout (TO) is the period of time between received
packets. Keep-alive timeout (KTO) is the total time that the connection is allowed to run. When you set
KTO to 0, it is equivalent to setting it to never time out.

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 847

If using a SQL Anywhere HTTP/SOAP client procedure to call into the SQL Anywhere HTTP/SOAP
service you are debugging, you should set the client's remote_idle_timeout database option to a large
value such as 150 (the default is 15 seconds) to avoid timing out during the debugging session.

See also
● “-xs dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “remote_idle_timeout option” [SQL Anywhere Server - Database Administration]
● “KeepaliveTimeout (KTO) protocol option” [SQL Anywhere Server - Database Administration]
● “Timeout (TO) protocol option” [SQL Anywhere Server - Database Administration]

Tutorial: Getting started with the debugger
This tutorial describes how to connect to a database, how start the debugger, and how to debug a simple
stored procedure.

Lesson 1: Connecting to a database and starting the
debugger

Start the debugger

1. Create a directory to hold the copy of the sample database you will use in this tutorial, for example c:
\demodb.

2. Run the following command to create a copy of the sample database:

newdemo c:\demodb\demo.db

3. Click Start » Programs » SQL Anywhere 12 » Administration Tools » Sybase Central.

4. Click Connections » Connect With SQL Anywhere 12.

5. In the User ID field, type DBA and in the Password field, type sql.

6. In the Action dropdown list, click Start And Connect To A Database On This Computer.

7. In the Database File field, type c:\demodb\demo.db.

8. In the Server Name field, type demo_server.

9. Click Connect.

10. Click Mode » Debug.

11. In the Which User Would You Like To Debug field, type * and click OK.

If you want to debug a different user, you must exit Debug mode, and then re-enter Debug mode.

The SQL Anywhere debugger

848 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

The Debugger Details pane appears at the bottom of Sybase Central and the Sybase Central toolbar
displays a set of debugger tools.

When you provide a user name, information for connections with that user name is captured and
appears on the Connections tab.

12. (optional) Restore the sample database (demo.db) to its original state.

See also
● “Recreate the sample database (demo.db)” [SQL Anywhere 12 - Introduction]

Lesson 2: Debugging a stored procedure

In this lesson, you learn how to use the debugger to identify errors in stored procedures. The SQL
Anywhere sample database, demo.db, contains a stored procedure named debugger_tutorial, which
contains a deliberate error. The debugger_tutorial procedure should return a result set that contains the
name of the company that has placed the highest value of orders, and the value of their orders. It
computes these values by looping over the result set of a query that lists companies and orders. (This
result could be achieved without adding the logic into the procedure by using a SELECT FIRST query.
The procedure is used to create a convenient example.) However, the bug contained in the

Tutorial: Getting started with the debugger

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 849

debugger_tutorial procedure results in its failure to return the specified result set. In this lesson, you run
the stored procedure and diagnose and fix the bug.

Run the debugger_tutorial stored procedure

1. In the left pane of Sybase Central, double-click Procedures & Functions.

2. Right-click Debugger_Tutorial (GROUPO) and click Execute From Interactive SQL.

Interactive SQL opens and the following result set appears:

top_company top_value

(NULL) (NULL)

This is an incorrect result. The remainder of the tutorial diagnoses the error that produced this result.

3. Close Interactive SQL.

To diagnose the bug in the procedure, set breakpoints in the procedure, beginning with the first executable
statement. Step through the code, watching the value of variables as the procedure is executed.

Diagnose the bug

1. Click Mode » Debug.

2. In the right pane, double-click Debugger_Tutorial (GROUPO).

3. In the right pane, locate the following statement:

OPEN cursor_this_customer;

4. To add a breakpoint, click the vertical gray area to the left of the statement. The breakpoint appears as
a red circle.

5. In the left pane, right-click Debugger_Tutorial (GROUPO) and click Execute From Interactive
SQL.

In the right pane of Sybase Central, a yellow arrow appears on top of the red circle indicating the
break point.

6. In the Debugger Details window, click the Local tab to display a list of local variables in the
procedure together with their current value and data type. The Top_Company, Top_Value,
This_Value, and This_Company variables are all uninitialized and are therefore NULL.

7. Press F11 to scroll through the procedure. The value of the variables changes when you reach the
following line:

IF SQLSTATE = error_not_found THEN

8. Press F11 once more to determine which branch the execution takes. The yellow arrow moves back to
the following text:

The SQL Anywhere debugger

850 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

customer_loop: loop

The IF test did not return true. The test failed because a comparison of any value to NULL returns
NULL. A value of NULL fails the test and the code inside the IF...END IF statement is not
executed.

At this point, you may realize that the problem is that Top_Value is not initialized.

You can test the hypothesis that the problem is the lack of initialization for Top_Value without changing
the procedure code.

Test the hypothesis

1. In the Debugger Details window, click the Local tab.

2. Click the Top_Value variable and type 3000 in the Value field and press Enter.

3. Press F11 repeatedly until the Value field of the This_Value variable is greater than 3000.

4. Click the breakpoint so that it turns gray.

5. Press F5 to execute the procedure.

The Interactive SQL window appears again. It shows the correct results.

top_company top_value

Chadwicks 8076

6. Close Interactive SQL.

The hypothesis is confirmed. The problem is that the Top_Value is not initialized.

Fix the bug

1. Click Mode » Design.

2. In the right pane, locate the following statement:

OPEN cursor_this_customer;

3. Type a new line underneath that initializes the Top_Value variable:

SET top_value = 0;

4. Click File » Save.

5. Execute the procedure again, and confirm that Interactive SQL displays the correct results.

You have now completed the lesson. Close any open Interactive SQL windows.

Tutorial: Getting started with the debugger

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 851

Breakpoints
Breakpoints control when the debugger interrupts the execution of your source code.

When you are running in Debug mode and a connection hits a breakpoint, the behavior changes
depending on the connection that is selected:

● If you do not have a connection selected, the connection is automatically selected and the source code
of the procedure is shown.

● If you already have a connection selected and it is the same connection that hit the breakpoint, the
source code of the procedure is shown.

● If you already have a connection selected, but it is not the connection that hit the breakpoint, a window
appears that prompts you to change to the connection that encountered the breakpoint.

Setting breakpoints
Administrators can set breakpoints in Sybase Central. A breakpoint instructs the debugger to interrupt
execution at a specified line. By default, a breakpoint applies to all connections.

Prerequisites

DBA authority.

Context and remarks

Many.

Set a breakpoint

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with DBA authority.

2. In the left pane, double-click Procedures & Functions.

3. Select a procedure.

4. Click Mode » Debug.

5. In the Which User Would You Like To Debug field, type * to debug all users, or type the name of
the database user you want to debug.

6. In the right pane, click the line where you want to insert the breakpoint.

A cursor appears in the line where you clicked.

7. Press F9.

The SQL Anywhere debugger

852 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

A red circle appears to the left of the line of code.

Set a breakpoint (Debug menu)

1. Click Debug » Breakpoints.

2. Click New.

3. In the Procedure list, select a procedure.

4. If required, complete the Condition and Count fields.

The condition is a SQL expression that must evaluate to true for the breakpoint to interrupt execution.
For example, you can set a breakpoint to apply to a connection made by a specified user, by entering
the following condition:

CURRENT USER = 'user-name'

The count is the number of times the breakpoint is hit before it stops execution. A value of 0 means
that the breakpoint always stops execution.

5. Click OK. The breakpoint is set on the first executable statement in the procedure.

Results

The breakpoint is set.

Next

None.

Changing the status of a breakpoint
Administrators can change the status of a breakpoint from the Sybase Central right pane or from the
Breakpoints window.

Prerequisites

DBA authority.

Context and remarks

Many.

Change the status of a breakpoint

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, double-click Procedures & Functions.

Breakpoints

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 853

3. Select a procedure.

4. Click Mode » Debug.

5. In the right pane, click the breakpoint indicator to the left of the line you want to edit. The breakpoint
changes from active to inactive.

Change the status of a breakpoint (Breakpoints window)

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, double-click Procedures & Functions.

3. Select a procedure.

4. Click Mode » Debug.

5. Click Debug » Breakpoints.

6. Select the breakpoint and click Edit, Disable or Remove.

7. Click Close.

Results

The status of the breakpoint is changed.

Next

None.

Editing breakpoint conditions
You can add conditions to breakpoints to instruct the debugger to interrupt execution at that breakpoint
only when a certain condition or count is satisfied. For procedures and triggers, it must be a SQL search
condition.

Prerequisites

DBA authority.

Context and remarks

Many.

Set a condition or count on a breakpoint

1. Use the SQL Anywhere 12 plug-in to connect to the database.

2. In the left pane, double-click Procedures & Functions.

The SQL Anywhere debugger

854 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

3. Select a procedure.

4. Click Mode » Debug.

5. Click Debug » Breakpoints.

6. Select the breakpoint you want to edit and then click Edit.

7. In the Condition list, click a condition. For example, to set the breakpoint so that it applies only to
connections from a specific user ID, enter the following condition:

CURRENT USER='user-name'

In this condition, user-name is the user ID for which the breakpoint is to be active.

8. Click OK and then click Close.

Results

The conditions on the breakpoint is set.

Next

None.

Variables
The debugger lets you view and edit the behavior of your variables while stepping through your code. The
debugger provides a Debugger Details pane to display the different kinds of variables used in stored
procedures. The Debugger Details pane appears at the bottom of Sybase Central when Sybase Central is
running in Debug mode.

Viewing variable values
Administrators can view variable values in Sybase Central.

Prerequisites

DBA authority.

Context and remarks

Many.

View variable values

1. Use the SQL Anywhere 12 plug-in to connect to the database.

Variables

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 855

2. In the left pane, double-click Procedures & Functions.

3. Select a procedure.

4. Click Mode » Debug.

5. In the Which User Would You Like To Debug field, type * to debug all users, or type the name of
the database user you want to debug.

6. In the right pane, click the line where you want to insert the breakpoint.

A cursor appears in the line where you clicked.

7. Press F9.

A red circle appears to the left of the line of code.

8. In the Debugger Details pane, click the Local tab.

9. In the left pane, right-click the procedure and click Execute From Interactive SQL.

10. Click the Local tab.

Results

The variables, along with their values, are displayed.

Next

None.

Global variables

Global variables are defined by SQL Anywhere and hold information about the current connection,
database, and other settings. They appear in the Debugger Details pane on the Global tab.

Row variables are used in triggers to hold the values of rows affected by the triggering statement. They
appear in the Debugger Details pane on the Row tab.

Static variables are used in Java classes. They appear on the Statics tab.

See also
● “Global variables” [SQL Anywhere Server - SQL Reference]
● “Triggers” on page 80

The SQL Anywhere debugger

856 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Displaying the call stack
It is useful to examine the sequence of calls that has been made when you are debugging nested
procedures. You can view a listing of the procedures on the Call Stack tab.

Prerequisites

DBA authority.

Context and remarks

Many.

Display the call stack

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with DBA authority.

2. In the left pane, double-click Procedures & Functions.

3. Select a procedure.

4. Click Mode » Debug.

5. In the Which User Would You Like To Debug field, type * to debug all users, or type the name of
the database user you want to debug.

6. In the right pane, click the line where you want to insert the breakpoint.

A cursor appears in the line where you clicked.

7. Press F9.

A red circle appears to the left of the line of code.

8. In the Debugger Details pane, click the Local tab.

9. In the left pane, right-click the procedure and click Execute From Interactive SQL.

10. In the Debugger Details pane, click the Call Stack tab.

Results

The names of the procedures appear on the Calls Stack tab. The current procedure is shown at the top of
the list. The procedure that called it is immediately below.

Next

None.

Variables

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 857

Connection debugging
The Connections tab displays the connections to the database. At any time, multiple connections may be
running. Some may be stopped at a breakpoint, and others may not.

To switch connections, double-click a connection on the Connections tab.

A useful technique is to set a breakpoint so that it interrupts execution for a single user ID. You can do
this by setting a breakpoint condition of the following form:

CURRENT USER = 'user-name'

The SQL special value CURRENT USER holds the user ID of the connection.

See also
● “Editing breakpoint conditions” on page 854
● “CURRENT USER special value” [SQL Anywhere Server - SQL Reference]

The SQL Anywhere debugger

858 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Index
Symbols
* (asterisk)

SELECT statement, 252
*=

Transact-SQL outer joins, 445
-im option

performance improvement tips, 217
<

comparison operator, 265
=*

Transact-SQL outer joins, 445
>

comparison operator, 265
@@error global variable

return values, 602
@@identity global variable

IDENTITY column, 593

A
a_init_pre_filter

prefilter entry point function, 404
a_init_pre_filter structure

about, 394
a_init_term_breaker

term breaker entry point function, 405
a_init_term_breaker structure

about, 398
a_server_context structure

about, 393
a_term structure

about, 402
a_term_breaker_for enumeration

about, 399
a_text_source interface

about, 395
a_word_source interface

about, 399
abbreviations used in execution plans

about, 306
access plans

about, 286
explanation of statistics, 316

access_date_time
directory access server, 703

accessing data on client computers
about, 675

accessing remote data
about, 693
basic concepts, 693

actions
CASCADE, 772
RESTRICT, 772
SET DEFAULT, 772
SET NULL, 772

Adaptive Server Enterprise
architecture, 582
compatibility, 580
compatibility in data import/export, 693
data type conversions, 733
emulating, 587
ensuring compatible object names, 591
migrating to SQL Anywhere, 687
server class, 732
special IDENTITY column, 592

Adaptive Server Enterprise compatibility
about, 693

adding
data to databases, 643

adding data
about, 558
using INSERT, 558

adding statistics
Performance Monitor, 170

administrator roles
Adaptive Server Enterprise, 584

adsodbc server class
about, 732

Advantage Database Server
ODBC server class, 732

aggregate functions
about, 406
applying to grouped data, 280
data types, 409
DISTINCT keyword, 410
equivalent formulas for OLAP, 532
GROUP BY clause, 414
introduction, 279
multiple levels, 476
NULL, 410
OLAP, 506
order by and group by, 422
outer references, 408

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 859

scalar aggregates, 407
vector aggregates, 411
windows (OLAP), 505

aggregates
item in execution plans, 320

aliases
about, 254
correlation names, 260
for calculated columns, 256
SQL Anywhere implementation, 578

ALL
keyword and UNION clause, 423
subquery tests, 547

ALL operator
about, 546
notes, 547
subquery tests, 546

All-rows optimization goal
choosing the optimizer goal, 198
performance, 225

allow_nulls_by_default option
setting for Transact-SQL compatibility, 589

allow_snapshot_isolation option
using, 788

alphabetical order
ORDER BY clause, 276

ALTER INDEX statement
unavailable with snapshot isolation, 786

ALTER SERVER statement
altering remote servers, 700

ALTER statement
automatic commit, 779

ALTER TABLE statement
CHECK constraints, 759
concurrency, 845
foreign keys, 21
primary keys, 17
unavailable with snapshot isolation, 786

ALTER TRIGGER statement
using, 85

altering
CHECK constraints, 763
procedures using Sybase Central, 74
remote servers, 700
sequences, 844
text indexes, 326
triggers, 85

altering procedures

about, 74
analyzing procedure profiling results

about, 132
AND

using logical operators, 274
annotation phase

query processing, 283
ANSI

non-ANSI joins, 436
SQL standards and inconsistencies, 791

ANSI update constraints
execution plans, 317

ANY operator
about, 545
problems, 546
subquery tests, 545

apostrophes
character strings, 270

application profiling
about, 126
creating a tracing session, 153
detecting whether CPU is a limiting factor, 156
detecting whether I/O bandwidth is a limiting
factor, 156
detecting whether memory is a limiting factor, 156
Index consultant, 134
procedure profiling, 128
production database, 140
request trace analysis, 158
tracing database, 140
tutorials, 226

application profiling mode
using, 126

application profiling wizard
about, 127
enabling and disabling automatic start, 127
starting, 127
tutorials, 226

apply
CROSS APPLY and OUTER APPLY joins, 454

apply expressions
about, 454
examples, 454

architectures
Adaptive Server Enterprise, 582

arithmetic operators
expressions and operator precedence, 258
overflow errors, 258

Index

860 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

summarizing query results, 406
AS keyword

aliases, 254
SQL Anywhere implementation, 578

ascending order
ORDER BY clause, 418

ASEJDBC server class (deprecated)
about, 745

aseodbc server class
about, 732

assigning
data types to columns, 764
domains to columns, 764

asterisks
SELECT statement, 252
used for prefix searching in full text searches, 338

atomic compound statements
about, 99

atomic transactions
about, 779

attributes
obtaining query results as XML, 615
SQLCA.lock, 795

AUTO mode
using, 620

AUTO REFRESH
text indexes, about, 365

auto_commit option
grouping changes in Interactive SQL, 780

autocommit
performance, 213
transactions, 780

AUTOINCREMENT
default, 755
differences from sequences, 842
IDENTITY column, 592
negative numbers, 755
signed data types, 755
UltraLite applications, 755
when to use, 841

automatic commit
ALTER statement, 779
COMMENT statement, 779
data definition statements, 779
DROP statement, 779

automatic joins
foreign keys, 577

automatic_timestamp option

setting for Transact-SQL compatibility, 589
automation

generating unique keys, 840
Avail IO statistic

description, 184
AVG function

equivalent mathematical formula, 532
usage, 506

AvgDiskReads
estimate in access plans, 317

AvgDiskReadTime
estimate in access plans, 317

AvgDiskWrites
estimate in access plans, 317

AvgRowCount
estimate in access plans, 317

AvgRunTime
estimate in access plans, 317

B
base tables

about, 4
creating, 4
quick comparison with regular and materialized
views, 36

baselining
tutorial: using procedure profiling, 241

basic aggregate functions
OLAP, 506

basic concepts to access remote data
overview, 693

batch mode
Interactive SQL, 691

batch operations
Interactive SQL, 691

batches
about, 91
compared to stored procedures, 91
compound statements, 92
control statements, 91
OUTPUT statement, 93
SQL statements allowed, 122
statements allowed, 122
tips for writing, 120
Transact-SQL, 600
using SELECT statements, 122
writing, 91

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 861

BCP format
import/export with ASE, 693

BEGIN TRANSACTION statement
remote data access, 723
restrictions on transaction management, 723

benefits
Index Consultant results, 137

BETWEEN keyword
range queries, 266

BINARY data type
SQL Anywhere implementation, 577

binary files
importing, 660

binary large objects
inserting, 563

bitmaps
scanning, 215

bits
item in execution plans, 320

BLOBs
inserting, 563

blocking
about, 798
deadlock, 799
example, 829
transactions, 797
troubleshooting, 800

blocking option
using, 798

boolean searching
full text search, 342

break conditions
setting, 852

breakpoints
about, 852
conditions, 854
counts, 854
disabling, 853
enabling, 853
individual connections, 854
individual users, 854
setting, 852
status, 853

browsing
regular views, 48

browsing databases
isolation levels, 818

buckets

histograms, 288
build values

item in execution plans, 320
bulk loading

performance, 641
bulk operations

about, 641
issues for recovering data, 642
performance impacts, 641
performance improvement tips, 217

business rules
about, 749

bypass queries
bypassing optimizer, 284
defined, 284
not appearing in graphical plan, 301

bypassing optimization
bypass queries, 284

C
cache

dynamic sizing, 194
encrypted databases require larger cache, 190
execution plans, 290
initial, min, and max size, 192
monitoring size, 196
read-hit ratio, 299
statement level caching, 290
statements in stored procedures, 290
statements that bypass query optimization, 290
Unix, 195
use the cache to improve performance, 190
warming, 197

Cache Hits/sec statistic
description, 173

Cache Pages Allocated Structures statistic
description, 179

Cache Pages File Dirty statistic
description, 179

Cache Pages File statistic
description, 179

Cache Pages Free statistic
description, 179

Cache Pages Pinned statistic
description, 179

Cache Panics statistic
description, 179

Index

862 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Cache Reads Index Interior/sec statistic
description, 173

Cache Reads Index Leaf/sec statistic
description, 173

Cache Reads Table/sec statistic
description, 173

Cache Reads Total Pages/sec statistic
description, 173

Cache Reads Work Table
description, 173

Cache Replacements: Total Pages/sec statistic
description, 179

Cache Scavenge Visited statistic
description, 179

Cache Scavenges statistic
description, 179

cache size
considerations for Windows Mobile, 215
initial, min, and max size, 192
monitoring, 196
page sizes, 215
performance considerations, 215
Unix, 195
Windows, 195
Windows Mobile, 195

Cache Size Current statistic
description, 173

Cache Size Maximum statistic
description, 173

Cache Size Minimum statistic
description, 173

Cache Size Peak statistic
description, 173

cache sizing
performance, 194

cache statistics
list, 173

cache warming
about, 197

cached plans
optimizer bypass, 284

CacheHits property
Node Statistics field descriptions, 314
statistic in access plans, 316

CacheRead property
Node Statistics field descriptions, 314
statistic in access plans, 316

CacheReadIndLeaf property

statistic in access plans, 316
CacheReadTable property

statistic in access plans, 316
caching

execution plans, 290
statements that bypass query optimization, 290
subqueries, 291
user-defined functions, 292

call stack
debugger, 857

CALL statement
control statements, 97
examples, 75
parameters, 95
using in procedures, 71

calling procedures
about, 75

canceling changes
about, 558

canceling requests
remote data access, 729

candidate indexes
about, 136
Index Consultant, 136

cardinality
item in execution plans, 319

Cartesian products
about, 439

CASCADE action
about, 772

case sensitivity
creating ASE-compatible databases, 588
data, 590
databases, 590
domains, 590
identifiers, 590
passwords, 591
remote access, 728
sort order, 419
SQL, 251
table names, 251
Transact-SQL compatibility, 590
user IDs, 590

CASE statement
control statements, 97

catalog
Adaptive Server Enterprise compatibility, 584
finding dependency information, 39

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 863

index information, 31
cdata directive

using, 631
changing data

INSERT statement, 569
permissions, 557
processing UPDATE statements with constraint
violations, 568
UPDATE statement, 565
updating data using more than one table, 566

changing diagnostic tracing settings when a tracing
session is in progress

about, 152
changing the isolation level

about, 793
CHAR data type

SQL Anywhere implementation, 577
character data

searching for, 270
character set conversion

remote date access, 695
character strings

quotes, 270
SELECT list using, 256
usage, 270

CHECK conditions
Transact-SQL, 583

CHECK constraints
altering, 763
columns, 759
domains, 761
dropping, 763
tables, 760
tools for maintaining data integrity, 751
using in domains, 765

checking referential integrity at commit
about, 813

Checkpoint Flushes/sec statistic
description, 174

checkpoint log statistic
description, 174

checkpoint logs
performance, 209

checkpoint statistics
list, 174

Checkpoint Urgency statistic
description, 174

Checkpoints/sec statistic

description, 174
ChkptLog Bitmap size statistic

description, 174
ChkptLog Commit to disk/sec statistic

description, 174
ChkptLog Log size statistic

description, 174
ChkptLog Page images saved/sec statistic

description, 174
ChkptLog Pages in use statistic

description, 174
ChkptLog Relocate pages statistic

description, 174
ChkptLog Save preimage/sec statistic

description, 174
ChkptLog Write pages/sec statistic

description, 174
ChkptLog Writes to bitmap/sec statistic

description, 174
ChkptLog Writes/sec statistic

description, 174
choosing isolation levels

about, 817
classes

remote servers, 729
clauses

about, 247
COMPUTE, 595
FOR BROWSE, 595
FOR READ ONLY, 596
GROUP BY ALL, 595
INTO, 101
ISOLATION, 595
PLAN, 595

client files
importing from, and exporting to, client computers,
675

client side data
preventing loss of data loaded from a client, 678

client side loading
about, 641

client statement caching
using with request logging, 162

CLOSE statement
cursor management procedures, 106

clustered indexes
declaring, 27
implementing Index Consultant results, 138

Index

864 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Index Consultant results, 137
using, 27

ClusteredHashGroupBy plan item
abbreviations in the plan, 306

colons separate join strategies
about, 295

column attributes
AUTOINCREMENT, 841
generating default values, 841
NEWID, 841

column CHECK constraints from domains
inheriting, 761

column constraints
tools for maintaining data integrity, 750
UNIQUE, 762

column defaults
modifying and dropping, 753
value when defined as variable starting with @,
752

column order
composite indexes, 25
results reflect order in SELECT list, 253
tables, 211

column statistics
about, 287
updating, 213

columns
altering using Sybase Central, 5
assigning data types and domains, 764
calculated, 256
CHECK constraints, 763
defaults, 752
GROUP BY clause, 411
IDENTITY, 592
managing column constraints, 761
SELECT list, 253
SELECT statements, 253
timestamp, 591
value when default defined as variable starting with
@, 752
wide, 211

Comm Bytes Received /sec statistic
description, 176

Comm Bytes Received Uncompressed/sec statistic
description, 176

Comm Bytes Sent Uncompressed/sec statistic
description, 176

Comm Bytes Sent/sec statistic

description, 176
Comm Free Buffers statistic

description, 176
Comm Multi-packets Received/sec statistic

description, 176
Comm Multi-packets Sent/sec statistic

description, 176
Comm Packets Received Uncompressed/sec statistic

description, 176
Comm Packets Received/sec statistic

description, 176
Comm Packets Sent Uncompressed/sec statistic

description, 176
Comm Packets Sent/sec statistic

description, 176
Comm Requests Received statistic

description, 176
Comm Send Fails/sec statistic

description, 176
Comm TotalBuffers statistic

description, 176
Comm Unique Client Addresses statistic

description, 176
command delimiter

setting, 120
commas

star joins, 449
table expression lists, 440
when joining table expressions, 464

COMMENT statement
automatic commit, 779

comments
altering procedures using Sybase Central, 74

COMMIT statement
compound statements, 99
procedures and triggers, 119
remote data access, 723
transactions, 779
UltraLite using, 557
verify referential integrity, 813

COMMIT TRANSACTION statement
restrictions on transaction management, 723

commits
wait_for_commit option, 813

common statistics used in the plan
about, 316

common table expressions
about, 472

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 865

common applications, 475
data types in recursive, 480
examples, 472
exploring hierarchical data structures, 478
least distance problems, 485
multiple aggregation levels, 476
parts explosion problem, 482
recursive, 478
restrictions on recursive, 478
storing constant sets, 477
where permitted, 474

communications statistics
list, 176

comparison operators
NULL values, 272
subqueries, 550
symbols, 265

comparison test
subqueries, 543

comparisons
introduction, 274
NULL values, 272
sort order, 265
trailing blanks, 265

compatibility
Adaptive Server Enterprise with Transact SQL,
580
automatic translation of stored procedures, 600
case sensitivity, 590
configuring databases for Transact-SQL
compatibility, 587
GROUP BY clause, 415
import/export with ASE, 693
joins in Transact-SQL, 598
non-ANSI joins, 436
outputting NULLs, 671
servers and databases, 582
setting options for Transact-SQL compatibility,
589
SQL Anywhere compatibility with Transact-SQL,
580
Transact-SQL, 580
writing compatible SQL statements, 593

competing triggers
execution order, 89

complete passthrough of the statement
remote data access, 725

completing transactions

about, 779
complex outer joins

about, 443
composite indexes

about, 25
effect of column order, 25
ORDER BY clause, 26

compound statements
atomic, 99
declarations, 98
using, 98

compression
recommendations for connection packets, 224
warning against compressing database or log files,
224

COMPUTE clause
CREATE TABLE, 11
Transact-SQL SELECT statement syntax
unsupported, 595

computed columns
altering computed column expressions, 13
converting to non-computed column, 13
indexes, 28
inserting and updating, 14
limitations, 14
making queries using sargable functions, 249
recalculating, 14
triggers, 14
working with computed columns, 11

concatenating strings
NULL, 273

concurrency
about, 781
benefits, 781
consistency, 791
DDL statements, 845
how locking works, 802
improving, 819
improving using indexes, 820
inconsistencies, 791
ISO SQL standard, 791
performance, 781
primary keys, 840

concurrent transactions
blocking, 798
blocking example, 829

conditions
connecting with logical operators, 274

Index

866 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

GROUP BY clause, 282
pattern matching, 267

configuring
diagnostic tracing, 141
diagnostic tracing settings, 151

configuring diagnostic tracing
about, 141

configuring UNIQUE constraints
about, 762

conflicts
cyclical blocking, 799
locking, 809
snapshot isolation, 791
table locks, 806
transaction blocking, 798
transaction blocking example, 829

Connection Count statistic
description, 184

connection locks
duration, 803

connection options
impact on materialized views, 53

CONNECTION_PROPERTY function
about, 167

connections
debugger, 858
debugging, 848
loopback, 718
materialized view candidacy, 222
remote, 723

connectivity problems
remote data access, 728

consistency
about, 779
assuring using locks, 802
correctness and scheduling, 818
dirty reads, 791
dirty reads and locking, 810
dirty reads tutorial, 820
during transactions, 791
effects of unserializable schedules, 818
example of non-repeatable read, 826
ISO SQL standard, 791
isolation level 0, 810
isolation levels, 782
phantom rows, 791
phantom rows and locking, 811
phantom rows tutorial, 831

practical locking implications, 837
repeatable reads, 791
repeatable reads and locking, 810
repeatable reads tutorial, 825
snapshot isolation, 812
versus isolation levels, 792
versus typical transactions, 818

constant expression defaults
about, 758

constraints
about, 759
CHECK constraints, 761
data integrity, 759
in Sybase Central, 761
integrity, 759
referential integrity, 759
unique constraints, 762

CONTAINS search condition
dropping terms, 385

contents
directory access server, 703

context
external libraries for full text search, 393

contiguous storage of rows
about, 563

control statements
in batches, 91
list, 97

conversion errors during import
about, 657

conversion_error option
impact on text indexes, 355

converting subqueries in the WHERE clause to joins
about, 549

copying
data with INSERT, 562
procedures, 75

correlated subqueries
about, 537
defined, 537
outer references, 537

correlation function
OLAP, 522

correlation names
about, 461
in self-joins, 447
restrictions, 260
star joins, 449

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 867

table names, 260
using with common table expressions, 473

cost models
about, 286

cost-based optimization
about, 286
bypassing, 284

Costed Best Plans
Optimizer Statistics field descriptions, 311

Costed Plans
Optimizer Statistics field descriptions, 311

costs
Index Consultant results, 137

COUNT function
about, 409
applying aggregate functions to grouped data, 280
NULL, 410

Counter1 statistic
description, 183

Counter2 statistic
description, 183

Counter3 statistic
description, 183

Counter4 statistic
description, 183

Counter5 statistic
description, 183

COVAR_POP function
equivalent mathematical formula, 532

COVAR_SAMP function
equivalent mathematical formula, 532

CPUTime
Node Statistics field descriptions, 314

create column check constraint wizard
accessing, 761

create database wizard
creating Transact-SQL compatible databases, 588

CREATE DEFAULT statement
unsupported, 583

create directory access server wizard
using, 704

CREATE DOMAIN statement
Transact-SQL compatibility, 583
using domains, 764

create domain wizard
using, 764

CREATE EXISTING TABLE statement

creating proxy tables for directory access servers,
704
specifying proxy table location, 713
using, 714

create external login wizard
using, 711

CREATE EXTERNLOGIN statement
creating external logins for directory access
servers, 704
using, 711

create foreign key wizard
using, 20

CREATE FUNCTION statement
using, 76

create function wizard
accessing, 77

create global temporary table wizard
accessing, 10

CREATE INDEX statement
concurrency, 845
unavailable with snapshot isolation, 786

create index wizard
using, 28

create materialized view wizard
accessing, 56

CREATE PROCEDURE statement
examples, 72
parameters, 94
using, 721

create procedure wizard
using, 72

create proxy table wizard
using, 714

create remote procedure wizard
using, 720

create remote server wizard
using, 698

CREATE RULE statement
unsupported, 583

create sequence generator wizard
using, 843

CREATE SERVER statement
creating directory access servers, 704
creating remote servers, 696
IBM DB2 data type conversions, 735
JDBC and Adaptive Server Enterprise, 745
Microsoft SQL Server data type conversions, 738
ODBC and ASE data type conversions, 733

Index

868 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

Oracle data type conversions, 743
remote servers, 731

create table check constraint wizard
accessing, 761

CREATE TABLE statement
concurrency, 845
creating proxy tables for directory access servers,
704
creating Transact-SQL-compatible tables, 594
foreign keys, 21
primary keys, 17
proxy tables, 714
specifying proxy table location, 713

create table wizard
accessing, 4

create text configuration object wizard
settings defined, 349

CREATE TEXT CONFIGURATION statement
using, 349

CREATE TEXT INDEX statement
using, 328

create text index wizard
using, 328

CREATE TRIGGER statement
using, 82

create trigger wizard
using, 82

create unique constraint wizard
accessing, 762

CREATE VIEW statement
WITH CHECK OPTION clause, 41

create view wizard
using, 43

create_date_time
directory access server, 703

creating
column defaults, 752
data types using SQL, 764
data types using Sybase Central, 764
diagnostic tracing session, 153
directory access servers, 704
domains using SQL, 764
domains using Sybase Central, 764
external logins, 711
external tracing database, 159
procedures, 72
proxy tables from Sybase Central, 714
remote procedures, 720

remote servers, 696
sequences, 843
temporary procedures, 73
text indexes, 364
Transact-SQL-compatible tables, 594
triggers, 82
user-defined functions, 76

creating databases
external tracing, 159
Transact-SQL-compatible database, 587

CROSS APPLY clause
about, 454
example, 454

cross joins
about, 439

cross products
about, 439

CUBE clause
about, 495
using as a shortcut to GROUPING SETS, 492

CUME_DIST function
equivalent mathematical formula, 532
usage, 529

Current Active statistic
description, 179

CurrentCacheSize property
Optimizer Statistics field descriptions, 311

cursor instability
about, 793

cursor stability
about, 793

cursor stability locks
about, 816
WITH HOLD cursors, 816

cursors
in procedures, triggers and user-defined functions,
106
instability, 793
LOOP statement, 107
procedures, 107
SELECT statements, 107
SQL Anywhere implementation, 578
stability, 793
updating in joins, 435

Cursors Open statistic
description, 182

Cursors statistic
description, 182

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 869

customizing
graphical plan appearance, 305

customizing graphical plans
about, 297

cyclical blocking conflict
about, 799

D
data

adding, changing, and deleting, 556
case sensitivity, 590
consistency, 791
export tools, 660
exporting, 660
exporting as XML, 606
importing, 643
importing and exporting, 641
integrity and correctness, 818
invalid, 749
permissions required to modify data, 557
populating materialized views, 57
refreshing manual views, 58
searching, 23
viewing data in views using SQL, 8
viewing table and view data using Sybase Central,
7

data consistency
assuring using locks, 802
correctness, 818
dirty reads, 791
dirty reads and locking, 810
dirty reads tutorial, 820
ISO SQL standard, 791
isolation level 0, 810
phantom rows, 791
phantom rows and locking, 811
phantom rows tutorial, 831
practical locking implications, 837
repeatable reads, 791
repeatable reads and locking, 810
repeatable reads tutorial, 825
snapshot isolation, 812

data cube
about, 495

data entry
isolation levels, 818

data integrity

about, 749
checking, 773
column defaults, 752
constraints, 751
effects of unserializable schedules on, 818
enforcing, 767
ensuring, 749
information in the system tables, 776
losing, 771
tools for maintaining data integrity, 750

data manipulation statements
about, 556

data recovery
importing and exporting, 642
transactions, 558

data sources
external servers, 730

data tab
SQL Anywhere 12 plug-in, 7

data type conversions
IBM DB2, 735
Microsoft SQL Server, 738
ODBC and ASE, 733
Oracle, 743

data types
aggregate functions, 409
assigning columns, 764
creating using SQL, 764
creating using Sybase Central, 764
dropping, 766
EXCEPT clause, 422
INTERSECT clause, 422
recursive subqueries, 480
remote procedures, 720
Transact-SQL timestamp, 591
UNION clause, 422
user-defined, 764

database files
file fragmentation, 200
fragmentation, 199
performance, 209

database objects
direct references, 39
editing properties, 1
indirect references, 39
working with database objects, 1

database options
impact on materialized views, 53

Index

870 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

impact on text indexes, 355
Index Consultant, 138
setting for Transact-SQL compatibility, 589
text configuration object settings, 355

database pages
Index Consultant results, 137

database threads
blocked, 799

database tracing wizard
tutorials, 226
using, 153

databases
case sensitivity, 590
case sensitivity in ASE-compatible databases, 588
displaying lists of system objects in Interactive
SQL, 3
displaying system objects, 2
exporting, 672
extracting for SQL Remote, 686
importing XML, 607
joining tables from multiple, 718
migrating to SQL Anywhere, 687
rebuilding databases not involved in
synchronization, 681
reloading, 685
storing XML, 605
Transact-SQL compatibility, 587
unloading, 672
unloading and reloading, 686
unloading and reloading databases involved in
synchronization, 682
unloading and reloading databases not involved in
synchronization, 681
upgrading database file format, 679
viewing and editing properties, 1
warning against compressing database files, 224
working with objects, 1
XML support, 605

DataSet
using to export relational data as XML, 606
using to import XML, 613

date and time defaults
about, 754

DATE format
text indexes, 355

date_format option
changing for text configuration objects, 326
impact on text indexes, 355

dates
entry rules, 270
procedures and triggers, 121
search conditions introduction, 274
searching for, 270
SQL Anywhere implementation, 575

db2odbc server class
about, 734

DB_PROPERTY function
about, 167

DBA
roles, 585

dbisql utility
rebuilding databases, 678

dbo user
Adaptive Server Enterprise, 584

dbspaces
managing, 583

dbunload utility
exporting data, 666
rebuild tools, 678
using, 672

dbxtract utility
extracting data, 686

DDL
about, 1
automatic commit, 779
concurrency, 845
statements disallowed in snapshot isolation
transactions, 786

deadlock reporting
about, 800

Deadlock system event
using, 800

deadlocks
about, 797
Application Profiling tutorial, 227
diagnosing, 800
reasons for, 799
reporting, 800
transaction blocking, 799
tutorial: diagnosing deadlocks, 227

debug mode
using, 847

debugger
about, 847
connecting, 848
debugging stored procedures, 849

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 871

examining variables, 855
features, 847
getting started, 848
HTTP functions, 847
requirements, 847
SOAP functions, 847
starting, 848
tutorial, 848
working with breakpoints, 852
working with connections, 858

debugger_tutorial procedure
about, 849

debugging
about, 847
HTTP procedures, 847
permissions, 847
requirements, 847
stored procedures, 849
tutorial, 849
using the SQL Anywhere debugger, 847

debugging application logic
about, 157

decision support
isolation levels, 818

DECLARE statement
compound statements, 98
cursor management procedures, 106
procedures, 111

decrypting
materialized views using Sybase Central, 62

default handling of warnings in procedures and
triggers

about, 113
default_char

default CHAR text configuration object, 356
text configuration objects, 349

default_nchar
default NCHAR text configuration object, 356
text configuration objects, 349

defaults
AUTOINCREMENT, 755
column, 752
constant expressions, 758
creating, 752
creating in Sybase Central, 753
current date and time, 754
GLOBAL AUTOINCREMENT, 756
INSERT statement and, 560

NEWID, 757
NULL, 758
string and number, 758
Transact-SQL, 583
user ID, 754
using for data integrity, 750
using in domains, 765
value when defined as variable starting with @,
752
with transactions and locks, 841

defining the merge behavior
about, 651

defragmenting
about, 199
all tables in a database, 200
hard disk, 200
individual tables in a database, 200

delayed_commits option
performance improvement tips, 217

delaying commits
performance improvement tips, 217

delaying referential integrity checks
about, 813

DELETE statement
errors, 774
locking during, 815
referential integrity check on DELETE, 774
using, 570

deleting
directory access servers, 708
remote servers, 699
triggers, 86

deleting data
DELETE statement, 570
TRUNCATE TABLE statement, 571

delimiter
consistency when querying directory access proxy
tables, 704
setting, 120

demo.db
schema, 430

DENSE_RANK function
equivalent mathematical formula, 532
usage, 526

dependencies
view dependencies, 37

depth
item in execution plans, 319

Index

872 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

derived tables
about, 260
joins, 453
key joins, 468
natural joins, 459
outer joins, 444
selecting from DML statements, 262

DerivedTable plan item
abbreviations in the plan, 306

descending order
ORDER BY clause, 418

detecting slow statements
tutorial: diagnosing slow statements, 232

deterministic functions
defined, 292
side-effects, 292

devices
managing, 583

diagnostic tracing
about, 139
changing tracing settings during a tracing session,
152
configure tracing settings, 151
configuring, 141
creating a tracing session, 153
creating an external tracing database, 159
database properties related to tracing, 141
determining tracing settings, 149
interpreting information, 155
production database, 140
tracing conditions, 149
tracing database, 140
tracing levels, 141
tracing scopes, 143
tracing types, 145

diagnostic tracing conditions
about, 149

diagnostic tracing levels
about, 141
customizing, 142
setting, 151

diagnostic tracing scopes
about, 143
descriptions of, 143

diagnostic tracing session
creating, 153

diagnostic tracing types
about, 145

OPTIMIZATION_LOGGING, 145
OPTIMIZATION_LOGGING_WITH_PLANS,
145

direct references
database objects, 39

directed graphs
about, 485

direction
item in execution plans, 319

directory access servers
about, 702
altering, 708
creating, 704
deleting, 708
deleting proxy tables, 708
delimiters, 704
querying proxy tables, 703
result set, 703

dirty reads
inconsistencies, 791
locking during queries, 810
tutorial, 820
versus isolation levels, 792

disabled
materialized view statuses, 67

disabling
materialized views, 59
regular views using SQL, 47
regular views using Sybase Central, 46
trigger operations, 86

disabling breakpoints
about, 853
enabling, 853

disabling procedure profiling
about, 131

disk access cost models
about, 286

Disk Active I/Os statistic
description, 177

disk I/O statistics
list, 177

Disk Maximum I/Os statistic
description, 177

disk read statistics
list, 177

Disk Reads Active statistic
description, 177

Disk Reads Index interior/sec statistic

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 873

description, 177
Disk Reads Index leaf/sec statistic

description, 177
Disk Reads Maximum Active statistic

description, 177
Disk Reads Table/sec statistic

description, 177
Disk Reads Total Pages/sec statistic

description, 177
Disk Reads Work Table statistics

description, 177
DISK statements

unsupported, 583
disk write statistics

list, 178
Disk Writes Active statistic

description, 178
Disk Writes Commit Files/sec statistic

description, 178
Disk Writes Database Extends/sec statistic

description, 178
Disk Writes Maximum Active statistic

description, 178
Disk Writes Pages/sec statistic

description, 178
Disk Writes Temp Extends/sec statistic

description, 178
Disk Writes Transaction Log/sec statistic

description, 178
DiskRead property

Node Statistics field descriptions, 314
statistic in access plans, 316

DiskReadIndInt property
statistic in access plans, 316

DiskReadIndLeaf property
statistic in access plans, 316

DiskReadTable property
statistic in access plans, 316

DiskReadTime
Node Statistics field descriptions, 314

DiskWrite property
Node Statistics field descriptions, 314
statistic in access plans, 316

DiskWriteTime
Node Statistics field descriptions, 314

DistH plan item
abbreviations in the plan, 306

DISTINCT clause

eliminating duplicate results, 259
unnecessary distinct elimination, 185

distinct elimination
about, 185

DISTINCT keyword
aggregate functions, 410

distinct list
item in execution plans, 321

DistO plan item
abbreviations in the plan, 306

DML
about, 556
permissions, 557
using in queries, 262

documents
full text search, 386
full text search workflow, 387
inserting, 563

domains
assigning columns, 764
case sensitivity, 590
CHECK constraints, 761
creating using SQL, 764
creating using Sybase Central, 764
dropping, 766
examples of uses, 764
using, 764

double quotes
character strings, 270

DROP DATABASE statement
Adaptive Server Enterprise, 583

DROP EXTERNLOGIN statement
using, 711

DROP INDEX statement
unavailable with snapshot isolation, 786

DROP PROCEDURE statement
using, 722

DROP SERVER statement
deleting directory access servers, 708
deleting remote servers, 699

DROP statement
automatic commit, 779
concurrency, 845

DROP TABLE statement
dropping proxy tables from directory access
servers, 708

DROP TRIGGER statement
using, 86

Index

874 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

dropping
CHECK constraints, 763
column defaults, 753
data types, 766
directory access servers, 708
domains, 766
external logins, 711
procedures, 75
remote procedures, 722
remote servers, 699
sequences, 844
terms from CONTAINS queries, 385
terms from the text index, 385
triggers, 86
user-defined data types, 766

dropping connections
remote data access, 729

DT plan item
abbreviations in the plan, 306

DUMP DATABASE statement
unsupported, 583

DUMP TRANSACTION statement
unsupported, 583

duplicate results
eliminating, 259

duplicate rows
removing with UNION, 423

duration
locks, 803

dynamic cache sizing
about, 194
performance improvement tips, 194
Unix, 195
Windows, 195
Windows Mobile, 195

E
EAH plan item

abbreviations in the plan, 306
EAM plan item

abbreviations in the plan, 306
early release of locks

transactions, 819
efficiency

improving and locks, 820
saving time when importing data, 643

EH plan item

abbreviations in the plan, 306
element directive

using, 628
elements

generating XML from relational data, 606
obtaining query results as XML, 615
storing XML in databases, 605

EM plan item
abbreviations in the plan, 306

enabled
materialized view statuses, 67

enabling
materialized views, 59
procedure profiling in Sybase Central, 128
regular views using SQL, 47
regular views using Sybase Central, 46

enabling breakpoints
about, 853

enabling snapshot isolation
about, 788

encoding
XML, 605

encoding illegal XML names
about, 617

encrypting
materialized views using Sybase Central, 62

encryption
cache size, 190
hiding objects, 123
materialized views, 62

ending transactions
about, 779

enforcing column uniqueness
about, 35

enforcing referential integrity
about, 768

ensuring data integrity
about, 749

entities
forcing integrity, 767

entity integrity
breached by client application, 767
primary keys, 576
UPDATE statement, 568

entry points
external prefilters, 404
external term breakers, 405

enumeration phase

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 875

query processing, 283
equals operator

comparison operator, 265
equijoins

about, 438
error handling

ON EXCEPTION RESUME, 111
procedures and triggers, 110

errors
conversion, 657
imitating Transact-SQL behavior using Watcom
SQL, 604
procedures and triggers, 109
Transact-SQL, 602

errors on DELETE or UPDATE
about, 774

EstCpuTime
estimate in access plans, 317

EstDiskReads
estimate in access plans, 317

EstDiskReadTime
estimate in access plans, 317

EstDiskWrites
estimate in access plans, 317

estimate sources
optimizer selectivity estimate sources, 289

Estimated Active statistic
description, 179

Estimated Cache Pages
Optimizer Statistics field descriptions, 311

estimated leaf pages
item in execution plans, 319

estimated pages
item in execution plans, 319

estimated row size
item in execution plans, 319

estimated rows
item in execution plans, 319

EstRowCount
estimate in access plans, 317

EstRunTime
estimate in access plans, 317

events
generating and reviewing profiling results, 128
statements allowed, 122

examining variables
debugger, 855

example string interpretations

full text search, 358
example text configuration objects

full text search, 357
examples

dirty reads, 820
Excel

exporting data into a SQL Anywhere database, 663
importing data into a SQL Anywhere database, 647
remote data access, 741

Excel files
external prefilter and term breaker library support,
386

EXCEPT clause
combining queries, 422
NULL, 425
rules, 424
Transact-SQL compatibility, 595
using, 423

exception handlers
nested compound statements, 116
procedures and triggers, 114

exceptions
declaring, 111

Exchange plan item
abbreviations in the plan, 306

exclusive locks
about, 804

exclusive table locks
about, 807

EXECUTE IMMEDIATE statement
procedures, 117
WITH RESULT SET clause, 117

executing
queries more than once, 278
triggers, 84

execution phase
query processing, 284

execution plans
abbreviations, 306
caching, 290
context sensitive help, 301
customizing the appearance, 305
graphical plans, 297
long text plans, 295
reading, 293
short text plans, 294
view matching outcomes, 317
viewing without executing a query, 294

Index

876 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

existence test
about, 547
negation of, 548

EXISTS operator
about, 547

explicit join conditions
about, 432

EXPLICIT mode
syntax, 623
using, 623
using the cdata directive, 631
using the element directive, 628
using the hide directive, 629
using the xml directive, 630
writing queries, 625

export tools
about, 660
dbunload utility, 666
Interactive SQL export wizard, 661
OUTPUT statement, 663
UNLOAD statement, 665
UNLOAD TABLE statement, 665

export wizard
using, 661

exporting
about, 660
ASE compatibility, 693
NULL values, 671
NULLs, 671
query results, 669
relational data as XML, 606
schemas, 684
tables, 674

exporting data
about, 660
backing up the database, 642
considerations, 660
dbunload utility, 666
Interactive SQL export wizard, 661
OUTPUT statement, 663
query results, 669
result sets, 692
schemas, 684
to file using UNLOAD statement, 665
tools, 660
UNLOAD statement, 665
UNLOAD TABLE statement, 665
XML, 606

exporting databases
about, 672

exporting query results
about, 669

exporting relational data as XML
about, 606

exporting tables
about, 674
schemas, 684

exporting views
about, 674

expression SQL
item in execution plans, 321

expressions
apply expressions, 454
NULL values, 273

external loading
about, 641

external logins
about, 710
creating, 711
dropping, 711
remote servers, 710

external prefilter libraries
text configuration object settings, 354

external servers
ODBC, 730

external term breaker libraries
text configuration object settings, 350

Extra Available statistic
description, 179

extract database wizard
SQL Remote, 686

extracting
databases for SQL Remote, 686

F
FALSE conditions

NULL, 273
fan-out

indexes, 34
FASTFIRSTROW table hint

choosing the optimizer goal, 198
FETCH statement

cursor management procedures, 106
fetchtst

about, 207

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 877

file fragmentation
about, 200

file_name
directory access server, 703

files
fragmentation, 199
graphical plan, 297

Filter plan item
abbreviations in the plan, 306

finishing transactions
about, 779

FIRST clause
using, 419

First-row optimization goal
choosing the optimizer goal, 198

FIRST_VALUE function
examples, 516
usage, 506

FirstRowRunTime
Node Statistics field descriptions, 314

FOR BROWSE clause
Transact-SQL SELECT statement syntax
unsupported, 595

FOR clause
obtaining query results as XML, 615
using FOR XML AUTO, 620
using FOR XML EXPLICIT, 623
using FOR XML RAW, 618

FOR READ ONLY clause
ignored, 596

FOR statement
control statements, 97

FOR XML AUTO
using, 620

FOR XML clause
BINARY data type, 616
EXPLICIT mode syntax, 623
IMAGE data type, 616
LONG BINARY data type, 616
obtaining query results as XML, 615
restrictions, 616
usage, 616
using AUTO mode, 620
using EXPLICIT mode, 623
using RAW mode, 618
VARBINARY data type, 616
viewing in Interactive SQL, 632

FOR XML EXPLICIT

syntax, 623
using, 623
using the cdata directive, 631
using the element directive, 628
using the hide directive, 629
using the xml directive, 630

FOR XML RAW
using, 618

FORCE NO OPTIMIZATION clause
eligibility to skip query processing phases, 285

FORCE OPTIMIZATION clause
eligibility to skip query processing phases, 285

foreign keys
composite foreign keys, 18
creating in Sybase Central, 20
creating using SQL, 21
displaying in Sybase Central, 20
generated indexes, 24
indexes, 576
inserts, 774
integrity, 576
key joins, 460
managing, 18
mandatory/optional, 769
MATCH clause, 576
modifying using SQL, 21
orphans, 18
performance, 219
referential cycles, 770
referential integrity, 771
role name, 461
sort sequence, 576
terminology, 18

formulas
OLAP aggregate functions, 532

FORWARD TO statement
native statements, 719
sending native statements to remote servers, 719

FoxPro
remote data access, 742

fragmentation
about, 199
files, 200
Fragmentation tab, 202
indexes, 206
indexes, application profiling tutorial, 236
reducing for tables, 200
table fragmentation, 200

Index

878 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

tables, 200
tables, application profiling tutorial, 238

FROM clause
derived tables in, 260
introduction, 260
isolation levels, 782
stored procedures in, 261

full compares
about, 34
statistic in access plans, 316

full outer joins
about, 441
SQL Anywhere implementation, 577

full text search
about, 324
altering text indexes, 326
boolean searching, 342
callbacks from external libraries, 393
Chinese, Japanese, and Korean (CJK) data, 324
declaring an external prefilter library, 388
declaring an external term breaker library, 391
documents, 387
example string interpretations, 358
example text configuration objects, 357
forbidden keywords and wildcards, 334
forming a full text query, 325
grouping terms and expressions, 333
impact of database options on text indexes, 355
indexing files such as Word, PDF, and HTML, 386
listing text configuration objects, 327
listing text indexes, 332
managing text indexes, 364
maximum term length, 349
minimum term length, 349
obtaining scores for search results, 346
phrase searching, 337
prefilter entry point function, 404
prefix searching, 338
proximity searching, 340
searches for unindexed terms, 385
searching across multiple columns, 344
searching multiple columns, 333
stoplists, 349
term and phrase searching, 334
term breaker algorithm, 349
term breaker entry point function, 405
text configuration objects, 349
text indexes, 364

tutorial: performing a full text on an NGRAM text
index, 376
tutorial: performing a fuzzy full text search, 373
tutorial: performing a non-fuzzy full text search,
366
types of full text searches, 333

FullCompare property
statistic in access plans, 316

FullOuterHashJoin plan item
abbreviations in the plan, 306

functions
caching, 292
create function wizard, 77
generating and reviewing profiling results, 128
idempotent or deterministic, 292
inlining, 185
SOUNDEX function, 275
TRACEBACK, 111
TSEQUAL, 592
user defined, working with, 76
window, 505
window ranking (OLAP), 524

fuzzy
how the database server interprets a fuzzy search,
356
performing fuzzy searches on text indexes, 344
tutorial: performing a fuzzy full text search, 373

G
general problems with queries

remote data access, 728
generated join conditions

about, 432
generating

unique keys, 840
generic term breaker algorithm

text configuration object settings, 350
GENERIC text indexes

prefix searches, 339
tutorial: performing a non-fuzzy full text search,
366

GLOBAL AUTOINCREMENT
default, 756
differences from sequences, 842

global autoincrement
compared to GUIDs and UUIDs, 757

global temporary tables

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 879

about, 9
merging table structures, 659
non-shared, 9
shared, 9

global variables
debugger, 856

go
batch statement delimiter, 91

GRANT statement
concurrency, 845
Transact-SQL, 586

graphical plans
abbreviations, 306
about, 297
accessing using SQL functions, 305
bypass queries, 301
bypassing optimization, 301
context sensitive help, 301
customizing appearance, 305
Node Statistics field descriptions, 314
Optimizer Statistics field descriptions, 311
predicate, 303
printing, 305
reading execution plans, 297
statistics, 298
viewing detailed node information, 301
viewing in Interactive SQL, 305
viewing without executing a query, 294

graphing
using the Performance Monitor, 169

GrByH plan item
abbreviations in the plan, 306

GrByHClust plan item
abbreviations in the plan, 306

GrByHSets plan item
abbreviations in the plan, 306

GrByO plan item
abbreviations in the plan, 306

GrByOSets plan item
abbreviations in the plan, 306

GrByS plan item
abbreviations in the plan, 306

GrBySSets plan item
abbreviations in the plan, 306

greater than
comparison operator, 265
range specification, 266

greater than or equal to

comparison operator, 265
GROUP BY ALL clause

Transact-SQL SELECT statement syntax
unsupported, 595

GROUP BY clause
aggregate functions, 414
applying aggregate functions to grouped data, 280
errors, 281
execution, 411
extensions, 489
order by and, 422
performance, 212
SQL standard compliance, 415
SQL/2008 standard, 415
using with the HAVING and WHERE clauses, 411
using with the WHERE and HAVING clauses, 411
WHERE clause, 413

group by multiple columns
about, 413

group reads
tables, 215

group-by list
item in execution plans, 320

grouped data
about, 279

grouping
full text search, 343
using multiple columns, 413

grouping changes into transactions
about, 779

GROUPING function
detecting NULL placeholders, 497
used with a CUBE clause (OLAP), 495
used with a ROLLUP clause (OLAP), 493

groups
Adaptive Server Enterprise, 585

GUIDs
compared to global autoincrement, 757
default column value, 757
generating, 841

H
HashAntisemijoin plan item

abbreviations in the plan, 306
HashDistinct plan item

abbreviations in the plan, 306
HashExcept plan item

Index

880 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

abbreviations in the plan, 306
HashExceptAll plan item

abbreviations in the plan, 306
HashFilter plan item

abbreviations in the plan, 306
HashGroupBy plan item

abbreviations in the plan, 306
HashGroupBySets plan item

abbreviations in the plan, 306
HashIntersect plan item

abbreviations in the plan, 306
HashIntersectAll plan item

abbreviations in the plan, 306
HashJoin plan item

abbreviations in the plan, 306
HashSemijoin plan item

abbreviations in the plan, 306
HashTableScan plan item

abbreviations in the plan, 306
HAVING clause

logical operators, 417
performance, 248
selecting groups of data, 416
subqueries, 541
using with GROUP BY clause, 416
using with the GROUP BY clause, 411
WHERE clause and, 282
with and without aggregates, 416

Heaps Carver statistic
description, 179

Heaps Query Processing statistic
description, 179

Heaps Relocatable Locked statistic
description, 179

Heaps Relocatable statistic
description, 179

heuristics
query optimization, 288

HF plan item
abbreviations in the plan, 306

HFP plan item
abbreviations in the plan, 306

hide directive
using, 629

hiding
materialized views, 60

hierarchical data structures
exploring hierarchical data structures, 478

parts explosion problem, 482
hinting

index hints, 23
Using clustered indexes, 27

histograms
about, 288
updating, 213

HOLDLOCK keyword
Transact-SQL, 597

host variables
in batches, 91

HTS plan item
abbreviations in the plan, 306

HTTP functions
debugging, 847

HTTP services
debugging, 847

I
I/O

scanning bitmaps, 215
IAH plan item

abbreviations in the plan, 306
IAM plan item

abbreviations in the plan, 306
IBM DB2

data type conversions, 735
migrating to SQL Anywhere, 687
remote data access to IBM DB2, 734

IBM DB2 remote data access
about, 734

id
metaproperty name, 610

idempotent functions
defined, 292

identifiers
case sensitivity, 590
qualifying, 251
uniqueness, 591
using in domains, 765

IDENTITY column
retrieving values, 593
special IDENTITY, 592

Idle Actives/sec statistic
description, 174

Idle Checkpoint Time statistic
description, 174

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 881

Idle Checkpoints/sec statistic
description, 174

Idle Writes/sec statistic
description, 174

IF statement
control statements, 97

IGNORE NULLS clause
usage in LAST_VALUE function, 517

IH plan item
abbreviations in the plan, 306

IM plan item
abbreviations in the plan, 306

images
inserting, 563

IMMEDIATE REFRESH
text indexes, about, 364

immediate views
about, 52
changing to a manual view, 65
creating, 65
materialized views with immediate refresh type, 52
only changed rows updated during a refresh, 52
restrictions when creating, 54

import tools
about, 643
INPUT statement, 646
INSERT statement, 650
Interactive SQL import wizard, 644
LOAD TABLE statement, 648
MERGE statement, 651
proxy tables, 656

Import Wizard
using, 657

import wizard
about, 644

importing
about, 643
ASE compatibility, 693
tools, 643
using temporary tables, 9

importing and exporting data
about, 641

importing binary files
about, 660

importing data
about, 641
backing up the database, 642
binary files, 660

considerations, 643
conversion errors, 657
DEFAULTS option, 659
from other databases, 656
images, 660
import wizard, 644
INPUT statement, 646
INSERT statement, 650
into databases, 643
LOAD TABLE statement, 648
LOAD TABLE statement example, 657
MERGE statement, 651
non-matching table structures, 659
NULL values, 659
performance, 641
performance tips, 643
proxy tables, 656
situations for import/export, 641
tables, 657
temporary tables, 659
tools, 643
using INSERT statement, 558
XML documents, 607
XML using openxml, 607
XML using the DataSet object, 613
XML using xp_read_file system procedure, 611
xp_read_file system procedure, 611

importing tables
about, 657
DEFAULTS option, 659
merging table structures, 659
non-matching table structures, 659
NULL values, 659
temporary tables, 659

importing XML
about, 607
using openxml, 607
using the DataSet object, 613

improving performance
about, 185
bulk operations, 641
checking for concurrency issues, 198
choosing the optimizer goal, 198
consider collecting statistics on small tables, 199
declare constraints, 207
indexes, 207
order of columns in tables, 211
place different files on different devices, 209

Index

882 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

reduce primary key width, 210
transaction log, 185

IN conditions
subqueries, 544

IN keyword
matching lists, 267

In List
item in execution plans, 321
optimization, 185

in memory mode
performance improvement tips, 217

IN parameters
defined, 95

IN plan item
abbreviations in the plan, 306

inconsistencies
avoiding using locks, 802
dirty reads, 791
dirty reads and locking, 810
dirty reads tutorial, 820
effects of unserializable schedules, 818
example of non-repeatable read, 826
ISO SQL standard, 791
non-repeatable reads, 791
phantom rows, 791
phantom rows and locking, 811
phantom rows tutorial, 831
practical locking implications, 837

inconsistencies non-repeatable reads
about, 810
tutorial, 825

IndAdd property
statistic in access plans, 316

Index Adds/sec statistic
description, 179

Index Consultant
about, 134
assessing results, 138
connection state, 138
DBA or PROFILE authority required to run, 134
implementing results, 138
introduction, 24
obtaining recommendations for a database, 135
obtaining recommendations for a query, 134
server state, 138
understanding recommendations, 136
understanding results, 137
using for a database, 135

using for a query, 134
index fan-out

about, 34
index fragmentation

about, 206
application profiling tutorial, 236

Index Full Compares/sec statistic
description, 179

index functions
row numbering, 531

index hints
Using clustered indexes, 27

Index Lookups/sec statistic
description, 179

index name
item in execution plans, 319

index selectivity
about, 34

indexes
about, 23
benefits and locking, 820
candidate, 136
catalogs, 31
clustering, 27
column order, 25
composite, 25
computed columns, 28
correlations between, 138
costs and benefits, 134
creating using Sybase Central, 28
deciding what indexes to create, 24
determining shared physical indexes, 33
dropping using Sybase Central, 31
fan-out and page sizes, 216
fragmentation, 206
HAVING clause performance, 248
improving performance, 207
leaf pages, 34
logical, 32
optimization, 23
page sizes, 216
physical, 32
predicate analysis, 248
querying a view using a text index, 345
rebuilding using Sybase Central, 30
restrictions and considerations, 23
sargable predicates, 248
skew, 206

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 883

SQL Anywhere implementation, 577
statistics list, 179
structure, 34
temporary tables, 24
text indexes, 364
Transact-SQL compatibility and naming, 591
tutorial: diagnosing index fragmentation, 236
understanding Index Consultant recommendations,
136
unused, 138
use on frequently-searched columns, 23
used to satisfy a predicate, 218
using the Index Consultant, 134
validating using Sybase Central, 29
when to use, 23
WHERE clause performance, 248
working with indexes, 23

IndexOnlyScan plan item
abbreviations in the plan, 306

IndexScan plan item
abbreviations in the plan, 306

indirect references
database objects, 39

IndLookup property
statistic in access plans, 316

inequalities
testing for inequality, 274

initial cache size
about, 192

initializing
materialized views, 57

inlining
simple stored procedures, 185
user-defined functions, 185

InList plan item
abbreviations in the plan, 306

inner and outer joins
about, 440

inner joins
about, 441
join elimination rewrite optimization, 185
SQL Anywhere implementation, 577

INOUT parameters
defined, 95

INPUT statement
Excel, 647
materialized views, 646
text indexes, 647

using, 646
insert locks

about, 809
INSERT statement

considerations for materialized views, 650
considerations for text indexes, 650
duplicate data, 773
locking during, 812
referential integrity check on INSERT, 773
SELECT, 559
using, 650
using to add data, 558
using to change data, 569

INSERT triggers
fire as a result of INPUT statements, 641

inserting
NULLs, behavior for unspecified columns, 560

inserting data
behavior for unspecified columns, 560
BLOBs, 563
column data INSERT statement, 560, 561
constraints, 560
defaults, 560
INPUT statement, 646
INSERT statement, 650
into all columns, 559
MERGE statement, 651
using INSERT, 558
with SELECT, 562

INSTEAD OF triggers
about, 89
recursion, 89
using to update views, 90

instest
about, 207

integrity
about, 749
checking, 773
column defaults, 752
enforcing, 767
implementing integrity constraints, 751
information in the system tables, 776
losing, 771
tools for maintaining data integrity, 750

integrity checks
CHECK constraint, 751
NOT NULL constraint, 751
RI constraints, 750

Index

884 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

table and column constraints, 750
triggers, 751

intent locks
about, 806
conflicts, 809
snapshot isolation, 806

inter-query parallelism
about, 322
intra- vs. inter-query parallelism, 322

Interactive SQL
batch mode, 691
batch operations, 691
displaying a list of tables, 428
exiting, 780
exporting query results, 669
exporting relational data as XML, 606
grouping changes into transactions, 780
Index Consultant, 134
loading SQL scripts, 692
rebuilding databases, 678
running scripts, 691
script files, 691
statement delimiter, 120
viewing data in views and tables, 8
viewing graphical plans, 305

interference between transactions
about, 798
example, 829

interleaving transactions
about, 818

internal loading
about, 641

internal operations
remote data access, 724

INTERSECT clause
combining queries, 422
NULL, 425
rules, 424
Transact-SQL compatibility, 595
using, 423

INTO clause
using, 101

INTO CLIENT FILE clause
importing from, and exporting to, client computers,
676

INTO VARIABLE clause
importing from, and exporting to, client computers,
676

intra-query parallelism
about, 322
exchange algorithm, 322
intra- vs. inter-query parallelism, 322

invalid data
about, 749

investigating deadlocks
about, 227

Invocations
Node Statistics field descriptions, 314
statistic in access plans, 316

IO plan item
abbreviations in the plan, 306

IQJDBC server class (deprecated)
about, 747

iqodbc server class
about, 736

IS NULL keyword
about, 273

ISNULL function
about, 273

ISO SQL standards
concurrency, 791
typical inconsistencies, 791

ISOLATION clause
Transact-SQL SELECT statement syntax
unsupported, 595

isolation level 0
about, 782
example, 820
SELECT statement locking, 810

isolation level 1
about, 782
example, 825
SELECT statement locking, 810

isolation level 2
about, 782
locking implications example, 837
phantom rows example, 831
SELECT statement locking, 811

isolation level 3
about, 782
example, 832
SELECT statement locking, 811

isolation level read committed
about, 782

isolation level read uncommitted
about, 782

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 885

isolation level readonly-statement-snapshot
about, 782

isolation level repeatable read
about, 782

isolation level serializable
about, 782

isolation level snapshot
about, 782

isolation level statement-snapshot
about, 782

isolation levels
about, 782
changing within a transaction, 796
choosing, 817
choosing a snapshot isolation level, 817
choosing types of locking tutorial, 829
implementation at level 0, 810
implementation at level 1, 810
implementation at level 2, 811
implementation at level 3, 811
improving concurrency at levels 2 and 3, 819
ODBC, 795
phantom rows tutorial, 831
setting, 793
tutorials, 820
types of inconsistency, 792
typical transactions for each, 819
versus typical inconsistencies, 837
versus typical transactions, 818
viewing, 797

isolation levels and consistency
about, 782

isolation_level option
Optimizer Statistics field descriptions, 311

ISYSFKEY
system table usage, 32

ISYSIDX
index sharing, 32
system table usage, 32

ISYSIDXCOL
system table usage, 32

ISYSPHYSIDX
index sharing, 32
system table usage, 32

J
JDBC

materialized view candidacy, 222
JDBC classes

configuration notes, 744
limitations, 744

JDBC-based server classes (deprecated)
about, 744

JH plan item
abbreviations in the plan, 306

JHA plan item
abbreviations in the plan, 306

JHAP plan item
abbreviations in the plan, 306

JHFO plan item
abbreviations in the plan, 306

JHO plan item
abbreviations in the plan, 306

JHPO plan item
abbreviations in the plan, 306

JHR plan item
abbreviations in the plan, 306

JHRO plan item
abbreviations in the plan, 306

JHS plan item
abbreviations in the plan, 306

JHSP plan item
abbreviations in the plan, 306

JM plan item
abbreviations in the plan, 306

JMFO plan item
abbreviations in the plan, 306

JMO plan item
abbreviations in the plan, 306

JNL plan item
abbreviations in the plan, 306

JNLA plan item
abbreviations in the plan, 306

JNLFO plan item
abbreviations in the plan, 306

JNLO plan item
abbreviations in the plan, 306

JNLS plan item
abbreviations in the plan, 306

join conditions
about, 432
types, 438

join operators
Transact-SQL, 598

joining tables

Index

886 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

more than two tables, 434
two tables, 434

joins
about, 428
automatic, 577
behavior, 432
Cartesian product, 439
commas, 440
compatibility with Transact-SQL, 598
converting subqueries into, 549
converting subqueries to joins, 549
CROSS APPLY and OUTER APPLY joins, 454
cross joins, 439
data type conversion, 435
default is KEY JOIN, 433
delete, update and insert statements, 435
derived tables, 453
duplicate correlation names, 449
equijoins, 438
full outer join, 577
how an inner join is computed, 434
inner, 441
inner and outer, 440
join conditions, 432
join elimination rewrite optimization, 185
joined tables, 433
joining remote tables, 717
joining tables from multiple local databases, 718
key, 577
key joins, 460
left outer join, 577
more than two tables, 434
natural, 577
natural joins, 456
nesting, 434
non-ANSI joins, 436
null-supplying tables, 441
ON clause, 436
or subqueries, 538
outer, 441
preserved tables, 441
resulting from apply expressions, 454
retrieving Data from Several Tables, 428
right outer join, 577
search conditions, 438
self-joins, 447
star joins, 449
table expressions, 434

Transact-SQL outer and NULL values, 447
Transact-SQL outer and views, 447
Transact-SQL restrictions on outer, 446
two tables, 434
updating cursors, 435
WHERE clause, 439

K
key joins

about, 460
if more than one foreign key, 461
lists and table expressions that do not contain
commas, 467
ON clause, 437
rules, 470
SQL Anywhere implementation, 577
table expression lists, 465
table expressions, 464
table expressions that do not contain commas, 464
views and derived tables, 468
with an ON clause, 461

key type
item in execution plans, 319

key values
item in execution plans, 319

keys
generating using sequences, 841
performance, 219
primary, 15

keywords
HOLDLOCK, 597
NOHOLDLOCK, 597
remote servers, 727

L
LAST_VALUE function

examples, 516
usage, 506

leaf pages
about, 34

least distance problems
about, 485

LEAVE statement
control statements, 97

left outer joins
about, 441
SQL Anywhere implementation, 577

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 887

LeftOuterHashJoin plan item
abbreviations in the plan, 306

less than
comparison operator, 265
range specification, 266

less than or equal to
comparison operator, 265

LIKE search condition
introduction, 267
wildcards, 269

LIMIT clause
using, 419

limitations
JDBC classes, 744
remote data access character set conversion, 695

limiting rows
FIRST clause, 419
TOP clause, 419

line breaks
SQL, 250

linear regression functions
OLAP, 522

LOAD DATABASE statement
unsupported, 583

LOAD TABLE statement
considerations for materialized views, 649
considerations for text indexes, 649
importing BCP format data, 693
using, 648, 657

LOAD TRANSACTION statement
unsupported, 583

loading
considerations for database recovery, 649
considerations for synchronization, 649
SQL scripts in Interactive SQL, 692

loading data
conversion errors, 657

loading tables
database mirroring considerations, 649

local temporary tables
about, 9
naming, 9

local variables
debugger, 855

localname
metaproperty name, 610

Lock Count statistic
description, 182

lockable objects
about, 802

locked tables
item in access plans, 318

locking
about, 802
conflicts, 809
duration, 803
during deletes, 815
during inserts, 812
during queries, 810
during updates, 814
effects of WITH HOLD, 816
exclusive table locks, 807
insert locks, 809
intent locks, 806
intent to write table locks, 807
phantom lock tutorial, 837
phantom locks, 808
position table locks, 808
reducing through indexes, 35
shared table locks, 807

locks
about, 802
blocking, 798
blocking example, 829
choosing isolation levels tutorial, 829
conflict handling, 798
conflict handling tutorial, 829
conflicting types, 806
conflicts, 809
cursor stability, 816
deadlock, 799
duration, 803
early release of, 819
effects of WITH HOLD, 816
exclusive schema, 804
exclusive table, 807
implementation at isolation level 0, 810
implementation at isolation level 1, 810
implementation at isolation level 2, 811
implementation at isolation level 3, 811
inconsistencies versus typical isolation levels, 792
insert, 809
intent, 806
intent to write table, 807
isolation levels, 782
objects that can be locked, 802

Index

888 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

orphans and referential integrity, 813
phantom, 808
phantom lock tutorial, 837
phantom rows versus isolation levels, 831
position table, 808
procedure for deletes, 815
procedure for inserts, 812
procedure for updates, 814
read, 805
reducing the impact through indexes, 820
row, 804
schema, 804
shared schema, 804
shared table, 807
table, 806
transaction blocking and deadlock, 797
typical transactions versus isolation levels, 818
viewing in Sybase Central, 803
viewing information, 803
viewing using the sa_locks system procedure, 803
write, 805

log files
warning against compressing log files, 224

log tab
Index Consultant results, 138

logical indexes
about, 32
determining shared physical indexes, 33

logical operators
connecting conditions, 274
HAVING clauses, 417

logs
rollback log, 782

long running queries
monitor query performance, 207
troubleshooting performance problems, 156
tutorial: diagnosing slow statements, 232
using Application Profiling to detect slow
statements, 232

long text plans
about, 295
viewing using SQL functions, 297

LONG VARCHAR data type
storing XML, 605

long-term read locks
about, 805

lookup table name window
displaying a list of tables, 428

LOOP statement
control statements, 97
procedures, 107

loopback connections
about, 718

Lotus Notes
passwords, 742
remote data access, 742

M
Mac OS X

remote servers unsupported for UltraLite on Mac
OS X, 731

Main Heap Bytes statistic
description, 184

maintenance
performance, 185

making changes permanent
about, 557

managing remote data access connections
about, 729

managing text indexes
about, 364

mandatory
foreign keys, 769

MANUAL REFRESH
text indexes, about, 365

manual views
about, 52
changing to an immediate view, 65
creating using Sybase Central, 56
materialized views with manual refresh type, 52
refreshing, 58
restrictions when converting to manual views, 54
staleness, 52

Map physical memory/sec statistic
description, 179

master database
unsupported, 582

materialized view statuses and properties
about, 66

materialized views
about, 49
changing a manual view to an immediate view, 65
changing an immediate view to a manual view, 65
changing the refresh type, 65
column statistics, 49

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 889

connections and option mismatches, 222
COSTED view matching outcome, 317
creating an immediate view, 65
creating using Sybase Central, 56
data freshness and consistency, 49
database options consideration, 53
deciding when to use materialized views, 50
decrypting using Sybase Central, 62
dependencies that block table alterations, 37
determining candidate list for the connection, 222
determining whether considered by optimizer, 223
disabling use in optimization using Sybase Central,
63
disk space considerations, 49
dropping using Sybase Central, 61
enabling and disabling, 59
enabling use in optimization using Sybase Central,
63
encrypting using Sybase Central, 62
evaluating whether to use, 220
evaluation by view matching algorithm, 220
hiding, 60
how to retrieve materialized views creation
options, 64
improving performance with materialized views,
220
initializing using Sybase Central, 57
maintenance costs, 49
manual and immediate, compared, 52
optimizer consideration, 51
performance tip, 220
plan caching, 290
populating with data using Sybase Central, 57
properties overview, 67
quick comparison with regular views and base
tables, 36
refreshing using Sybase Central, 58
restrictions when creating immediate views, 54
restrictions when managing materialized views, 53
retrieving information about materialized views, 64
setting the optimizer staleness threshold for
materialized views, 70
SQL Anywhere implementation, 578
staleness, 52
status and properties diagram, 68
statuses, 67
using to improve performance, 50
using view matching with snapshot isolation, 786

view dependencies, 37
materialized_view_optimization option

using, 70
materializing result sets

query processing, 225
MAX function

equivalent mathematical formula, 532
usage, 506

max_query_tasks option
controlling intra-query parallelism, 322
Optimizer Statistics field descriptions, 311

maximum
cache size, 192

MAXIMUM TERM LENGTH setting
defined, 352
recommended size for n-grams, 352

Mem Pages Carver statistic
description, 179

Mem Pages Lock Table statistic
description, 181

Mem Pages Locked Heap statistic
description, 181

Mem Pages Main Heap statistic
description, 181

Mem Pages Map Pages statistic
description, 181

Mem Pages Pinned Cursor statistic
description, 179

Mem Pages Procedure Definitions statistic
description, 181

Mem Pages Query Processing statistic
description, 179

Mem Pages Relocatable statistic
description, 181

Mem Pages Relocations/sec statistic
description, 181

Mem Pages Rollback Log statistic
description, 181

Mem Pages Trigger Definitions statistic
description, 181

Mem Pages View Definitions statistic
description, 181

memory governor
about, 191

memory pages statistics
list, 181

MERGE statement
considerations for materialized views, 653

Index

890 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

considerations for text indexes, 653
using, 651
using the RAISERROR action, 655

MergeExcept plan item
abbreviations in the plan, 306

MergeExceptAll plan item
abbreviations in the plan, 306

MergeIntersect plan item
abbreviations in the plan, 306

MergeIntersectAll plan item
abbreviations in the plan, 306

MergeJoin plan item
abbreviations in the plan, 306

merging
behavior with triggers, 652

merging table structures
about, 659

MESSAGE statement
procedures, 111

metaproperty names
id, 610
localname, 610

Microsoft Access
migrating to SQL Anywhere, 687
remote data access, 737

Microsoft Excel
exporting data into a SQL Anywhere database, 663
importing data into a SQL Anywhere database, 647
remote data access, 741

Microsoft FoxPro
remote data access, 742

Microsoft SQL Server
migrating to SQL Anywhere, 687

migrate database wizard
about, 687
using, 687

migrating databases
about, 687
migrate database wizard, 687
using sa_migrate system procedures, 688

MIN function
equivalent mathematical formula, 532

minimum cache size
about, 192

MINIMUM TERM LENGTH setting
defined, 352

miscellaneous statistics
list, 184

MobiLink
rebuilding databases, 682

modified_date_time
directory access server, 703

modifying
column defaults, 753

monitoring and improving performance
about, 125

monitoring cache size
about, 196

monitoring performance
abbreviations used in execution plans, 306
Performance Monitor statistics, 173
reading execution plans, 293
tools to measure queries, 207

moving data
exporting, 660
importing, 643

msaccessodbc server class
about, 737

msodbc server class
about, 738

Multi-Page Allocations statistic
description, 179

MultIdx plan item
abbreviations in the plan, 306

multiple databases
joins, 718

multiple result sets
Interactive SQL displaying, 104

multiple row subqueries
about, 534

multiple transactions
concurrency, 781

MultipleIndexScan plan item
abbreviations in the plan, 306

MySQL
ODBC server class, 739

mysqlodbc server class
about, 739

N
n-grams

defined, 350
how n-grams are generated, 356
recommended size, 352
two-step process to generate, 356

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 891

understanding how terms are broken up, 349
name spaces

indexes, 591
triggers, 591

namespaces
defining in XML, 613

naming savepoints
about, 782

native statements
sending to remote servers, 719

natural joins
about, 456
errors, 457
of table expressions, 458
of views and derived tables, 459
SQL Anywhere implementation, 577
SQL language, 577
with an ON clause, 457

NCHAR data type
SQL Anywhere implementation, 577

nested compound statements and exception handlers
about, 116

nested subqueries
about, 537

NestedLoopsAntisemijoin plan item
abbreviations in the plan, 306

NestedLoopsJoin plan item
abbreviations in the plan, 306

NestedLoopsSemijoin plan item
abbreviations in the plan, 306

nesting
derived tables in joins, 453
joins, 434
outer joins, 443

nesting savepoints
about, 782

NEWID function
default column value, 757
when to use, 841

NGRAM term breaker
tutorial: performing a fuzzy full text search, 373

NGRAM text indexes
prefix searches, 339
tutorial: performing a full text search on an
NGRAM text index, 376

ngrams
tutorial: performing a fuzzy full text search, 373

NOHOLDLOCK keyword

ignored, 597
non-ANSI joins

about, 436
non-deterministic functions

side-effects, 292
non-dirty reads

tutorial, 820
non-repeatable reads

about, 791
example, 826
isolation levels, 792
tutorial, 825

normalization
performance benefits, 208

NOT
using logical operators, 274

NOT BETWEEN keyword
range queries, 266

not equal to
comparison operator, 265

not greater than
comparison operator, 265

NOT keyword
example, 266

not less than
comparison operator, 265

NOT NULL constraints
tools for maintaining data integrity, 751

Notes and remote access
about, 742

NULL
aggregate functions, 410
as different from zeros or blanks, 271
column default, 589
column definition, 273
comparing, 272
default, 758
default parameters, 272
eliminating duplicate NULL values using the
DISTINCT clause, 260
EXCEPT clause, 425
INTERSECT clause, 425
output, 671
placeholder in OLAP, 497
properties, 273
results in UNKNOWN when used in comparison,
272
set operators and NULL, 425

Index

892 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

sort order, 419
Transact-SQL compatibility, 594
Transact-SQL outer joins, 447
UNION clause, 425
unknown values and the WHERE clause, 271

NULL values
ignoring conversion errors, 657
importing data, 659
inserting, 560

null-supplying tables
in outer joins, 441

Number of Grant Fails statistic
description, 179

Number of Grant Requests statistic
description, 179

Number of Grant Waits statistic
description, 179

O
objects

hiding, 123
lockable objects, 802

ODBC
applications, and locking, 795
external servers, 730
materialized view candidacy, 222
setting isolation levels, 795

ODBC server classes
about, 729
Adaptive Server Enterprise, 732
Advantage Database Server, 732
IBM DB2, 734
iqodbc, 736
Lotus Notes SQL 2.0, 742
Microsoft Access, 737
Microsoft Excel, 741
Microsoft FoxPro, 742
MySQL, 739
Oracle, 743
server class odbc, 741
SQL Anywhere, 731
SQL Server, 738
UltraLite, 731

odbcfet
about, 207

OLAP
about, 487

basic aggregate functions, 506
correlation functions, 522
CUBE clause, 495
GROUP BY clause extensions, 489
improving OLAP performance, 488
introduction, 487
linear regression functions, 522
ROLLUP clause, 493
row numbering functions, 531
standard deviation functions, 518
variance functions, 518
window aggregate functions, 505
window functions, 505
window ranking functions, 524
WITH CUBE clause, 496
WITH ROLLUP clause, 494

OLAP functions
formulas, 532

ON clause
introduction, 436
joins, 436
referencing tables, 436

ON EXCEPTION RESUME clause
error handling, 111
exception handling, 115
stored procedures, 110
Transact-SQL, 604

OPEN statement
cursor management procedures, 106

OpenString plan item
abbreviations in the plan, 306

openxml system procedure
using, 607
using with xp_read_file, 611

operators
arithmetic, 258
connecting conditions, 274
NOT keyword, 266
precedence, 258

optimization
about, 286
cost based, 286
reading execution plans, 293

optimization goal
execution plans, 317

Optimization Method
Optimizer Statistics field descriptions, 311

optimization of queries

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 893

about, 286
phases of, 283
reading execution plans, 293

optimization phase
query processing, 283

Optimization Time
Optimizer Statistics field descriptions, 311

optimization_goal option
Optimizer Statistics field descriptions, 311

optimization_level option
Optimizer Statistics field descriptions, 311

optimization_workload option
Optimizer Statistics field descriptions, 311
using, 208

optimizations
list of transformations the optimizer applies, 292

optimizer
about, 286
bypass, 284
list of optimizations for improved performance,
292
phases of query processing, 283
predicate analysis, 248
selectivity estimate sources, 289
semantic transformations, 292
using materialized views, 63

optimizer estimates
about, 287

optional foreign keys
about, 769

options
blocking, 798
DEFAULTS, 659
isolation_level, 793

OR
using logical operators, 274

Oracle
data type conversions, 743
migrating to SQL Anywhere, 687

Oracle and remote access
about, 743

oraodbc server class
about, 743

ORDER BY and GROUP BY
about, 422

ORDER BY clause
composite indexes, 26
examples, 276

GROUP BY, 422
impact on partially defined windows (OLAP), 501
including in materialized view definitions, 54
limiting results, 419
performance, 212
regular view definition restrictions, 40
required to ensure rows always appear in same
order, 278
sorting query results, 418
using indexes to improve performance, 278

order-by
item in execution plans, 321

OrderedDistinct plan item
abbreviations in the plan, 306

OrderedGroupBy plan item
abbreviations in the plan, 306

OrderedGroupBySets plan item
abbreviations in the plan, 306

ordering of transactions
about, 818

organizing query results
into groups, 411

orphan and referential integrity
about, 813

OUT parameters
defined, 95

OUTER APPLY clause
about, 454
example, 454

outer joins
about, 441
and join conditions, 442
compatibility with Transact-SQL, 598
complex, 443
join elimination rewrite optimization, 185
restrictions, 446
star join example, 451
Transact-SQL, 445
Transact-SQL and views, 447
Transact-SQL restrictions, 446
views and derived tables, 444

outer references
about, 537
aggregate functions, 408
defined, 537
HAVING clause, 541

output redirection
about, 669

Index

894 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

OUTPUT statement
Excel, 663
exporting query results, 669
using, 663
using to export data as XML, 606

outputting NULLs
about, 671

OVER clause
usage in functions used as window functions, 503

overflow errors
arithmetic operations, 258

owner
directory access server, 703

P
page maps

item in execution plans, 319
scanning, 215

page sizes
about, 215
and indexes, 216
considerations for Windows Mobile, 215
disk allocation for inserted rows, 563
performance, 215
performance considerations, 215

pages
disk allocation for inserted rows, 563
item in execution plans, 320

Pages Granted statistic
description, 179

ParallelHashAntisemijoin plan item
abbreviations in the plan, 306

ParallelHashFilter plan item
abbreviations in the plan, 306

ParallelHashSemijoin plan item
abbreviations in the plan, 306

ParallelIndexScan plan item
abbreviations in the plan, 306

parallelism
about, 322
in queries, 323

ParallelLeftOuterHashJoin plan item
abbreviations in the plan, 306

ParallelTableScan plan item
abbreviations in the plan, 306

parameters
to functions, 279

parentheses
in arithmetic statements, 258
UNION operators, 423

parse trees
query processing, 283

partial index scan
about, 35

partial passthrough of the statement
remote data access, 726

PARTITION keyword
Transact-SQL SELECT statement syntax
unsupported, 595

parts explosion problem
about, 482

passing parameters
to functions, 96
to procedures, 95

passwords
case sensitivity, 591
Lotus Notes, 742

pattern matching
introduction, 267

PC plan item
abbreviations in the plan, 306

PCTFREE setting
reducing table fragmentation, 200

PDF files
external prefilter and term breaker library support,
386

PERCENT_RANK function
equivalent mathematical formula, 532
usage, 530

PercentTotalCost
Node Statistics field descriptions, 314

performance
about, 185
advanced application profiling, 139
All-rows optimization goal, 225
application profiling, 126
bulk loading, 641
cache read-hit ratio, 299
comparing optimizer estimates and actual statistics,
298
estimate source, 299
file fragmentation, 200
improving, 27
improving using materialized views, 220
improving versus locks, 820

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 895

index considerations, 218
indexes, 23
keys, 219
list of improvement tips, 185
measuring query speed, 207
minimize cascading referential actions, 207
monitoring, 167
monitoring using the Performance Monitor, 169
monitoring using Windows Performance Monitor,
171
optimizer workload, 198
page sizes, 215
Performance Monitor statistics, 173
predicate analysis, 248
reading execution plans, 293
rebuild your database, 210
recommended page sizes, 215
runtime actual and estimated, 299
scattered reads, 216
selectivity, 299
statistics in Windows Performance Monitor, 171
table and page sizes, 215
tools for monitoring and improving performance,
125
using indexes, 23
WITH EXPRESS CHECK, 224
work tables, 225

performance improvement tips
monitor query performance, 207
reduce fragmentation, 199
reducing table fragmentation, 200

Performance Monitor
about, 169
adding and removing statistics, 170
list of supported statistics, 173
opening in Sybase Central, 169
overview, 169
Sybase Central, 169
Windows Performance Monitor, 171

performance statistics
monitoring, 167

performance tools
graphical plans, 297
procedure profiling system procedures, 163
timing utilities, 166

PerformanceFetch
about, 207

PerformanceInsert

about, 207
PerformanceTraceTime

about, 207
PerformanceTransaction

about, 207
permissions

Adaptive Server Enterprise, 585
data manipulation, 557
debugging, 847
directory access server, 703
procedure result sets, 102
triggers, 88
user-defined functions, 79

phantom locks
about, 808
tutorial, 837

phantom rows
data inconsistencies, 791
preventing with isolation level 2, 811
tutorial, 831
versus isolation levels, 792

phases
query processing phases, 283

phrases
full text search, 337
special characters in full text search, 337

phrases, full text search
about, 334

physical indexes
about, 32
determining shared physical indexes, 33

plan building phase
query processing, 284

plan caching
about, 290

PLAN clause
Transact-SQL SELECT statement syntax
unsupported, 595

plan viewer
accessing, 305
Node Statistics field descriptions, 314
Optimizer Statistics field descriptions, 311

planning for capacity
about, 156

plans
abbreviations used in, 306
caching, 290
context sensitive help, 301

Index

896 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

customizing graphical plans, 305
graphical plans, 297
long text plans, 295
printing, 305
reading, 293
short text plans, 294
viewing without executing a query, 294

plus operator
NULL values, 273

portable SQL
writing, 593

position locks
about, 802
duration, 803

position table locks
about, 808
insert locks, 809
phantom locks, 808

positioned updates
example, 109

pre-optimization phase
query processing, 283

predicate
item in execution plans, 320

predicate analysis
about, 248

predicates
optimizer, 248
optimizing IN-lists, 185
performance, 248
reading in execution plans, 303
usage, 264

prefilter libraries
callbacks from external libraries, 393

PreFilter plan item
abbreviations in the plan, 306

prefiltering
text configuration object settings, 354

prefilters
external prefilter sample, 388
full text search, defining an external prefilter
library, 388
logic flow for external prefilter library, 389
text configuration object settings, 354

prefix searches
on GENERIC text indexes, 339
on NGRAM text indexes, 339

prefix searching

full text search, 338
unexpected results on n-gram text indexes, 338

prefix term
about, 338

prefixes, full text search
about, 334

PREPARE statement
remote data access, 723

PREPARE TRANSACTION statement
remote data access, 723

preserved tables
in outer joins, 441

primary key column
item in execution plans, 319

primary key table
item in execution plans, 319

primary key table estimated rows
item in execution plans, 319

primary keys
about, 15
AUTOINCREMENT, 755
concurrency, 840
creating in Sybase Central, 16
creating using SQL, 17
entity integrity, 768
example, 15
generated indexes, 24
generating using sequences, 841
generation, 840
GLOBAL AUTOINCREMENT, 756
integrity, 576
managing, 15
modifying in Sybase Central, 16
modifying using SQL, 17
performance, 219
sort sequence, 576
tools for maintaining data integrity, 750
using NEWID to create UUIDs, 757

probe values
item in execution plans, 320

ProcCall plan item
abbreviations in the plan, 306

procedure language
overview, 598

procedure profiling
analyzing profiling results, 133
baselining, 241
disabling, 131

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 897

enabling, 128
in Sybase Central, 128
objects you can profile, 132
performing using system procedures, 163
resetting, 130
understanding profiling results, 132
using sa_server_option to disable, 165
using sa_server_option to reset profiling, 164
using sa_server_option to set profiling filters, 164
using system procedures to retrieve profiling data,
166

procedures
about, 71
altering using Sybase Central, 74
benefits, 71
caching statements, 290
calling, 75
considerations when referencing temporary tables,
11
copying, 75
create procedure wizard, 72
create remote procedures, 720
creating, 72
cursors, 106
dates, 121
declaring parameters, 94
default error handling, 110
dropping, 75
dropping remote procedures, 722
error handling, 109
error handling in Transact-SQL, 602
exception handlers, 114
EXECUTE IMMEDIATE statement, 117
generating and reviewing profiling results, 128
imitating Transact-SQL error handling using
Watcom SQL, 604
inlining as part of query transformation, 185
multiple result sets from, 104
overview, 71
parameters, 95
permissions for result sets, 102
result sets, 102
return values, 603
returning results, 100
returning results in result sets, 102
savepoints, 119
security, 72
statement delimiter, 120

statements allowed, 122
statistics, 288
structure, 94
table names, 120
times, 121
tips for writing, 120
tips for writing procedures, triggers, user-defined
functions, and batches, 120
Transact-SQL, 600
Transact-SQL overview, 598
translation, 600
using, 72
using cursors in, 107
using in the FROM clause, 261
variable result sets from, 105
verifying input, 121
warnings, 113
WITH RESULT SET clause, 117

production database
about, 140

profiling applications
about, 126

profiling database
creating internally vs. externally, 140

program variables
common table expression, 476

projections
about, 253

properties
setting database object properties, 1

properties of NULL
about, 273

PROPERTY function
about, 167

proximity searching
full text search, 340

proxy tables
about, 712
creating, 694
creating from Sybase Central, 714
creating using CREATE EXISTING TABLE
statement, 714
creating using SQL, 714
creating using the CREATE TABLE statement,
714
deleting from directory access servers, 708
delimiters and directory access, 704
importing data, 656

Index

898 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

querying directory access proxy tables, 703
specifying proxy table location, 713

publications
dropping tables, 6

Q
qualifications

about, 264
qualified names

database objects, 251
quantified comparison test

about, 551
subqueries, 542

queries
about, 247
bypass queries defined, 284
common table expressions, 472
directory access proxy tables, 703
elimination of unnecessary case translation, 185
elimination of unnecessary inner and outer joins,
185
execution plans, 293
exporting, 669
list of optimizations the optimizer can apply, 292
long running, monitoring query performance, 207
long running, troubleshooting performance
problems, 156
long running, tutorial on diagnosing, 232
optimization, 286
optimizer bypass, 284
optimizing without executing, 294
parallelism in, 323
phases of processing, 283
SELECT statement, 247
selecting data from a table, 247
semantic transformations, 292
set operations, 422
writing Transact-SQL-compatible queries, 595

queries blocked on themselves
remote data access, 728

queries that are eligible to skip query processing
phases

about, 284
queries that bypass optimization

about, 284
eligibility to skip query processing phases, 284

query algorithms

abbreviations used in execution plans, 306
query execution

about, 322
parallelism, 322
view matching, 220

Query Low memory strategies statistic
description, 184

query memory
about, 191

query normalization
remote data access, 724

query optimization
IN-list predicates, 185
optimizer bypass, 284

query optimizer
about, 286

query parsing
remote data access, 724

query performance
cache reads and hits, 299
estimate sources, 299
identifying data fragmentation problems, 300
lack of effective indexes, 299
predicate selectivity, 299
reading execution plans, 293
RowsReturned statistic, 299
selectivity statistics, 298

Query Plan cache pages statistic
description, 184

query preprocessing
remote data access, 724

query processing
phases, 283

query processing phases
about, 283

query results
exporting, 669

Query Rows materialized/sec statistic
description, 184

query semantic transformation phase
query processing, 283

query transformations
inlining of simple stored procedures, 185
inlining of user-defined functions, 185

QueryMemActiveEst property
Optimizer Statistics field descriptions, 311

QueryMemActiveMax property
Optimizer Statistics field descriptions, 311

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 899

QueryMemLikelyGrant
Optimizer Statistics field descriptions, 311

QueryMemMaxUseful
Node Statistics field descriptions, 314

QueryMemMaxUseful property
Optimizer Statistics field descriptions, 311

QueryMemNeedsGrant
Optimizer Statistics field descriptions, 311

QueryMemPages property
Optimizer Statistics field descriptions, 311

quotation marks
Adaptive Server Enterprise, 270
character strings, 270

quoted_identifier option
about, 270
setting for Transact-SQL compatibility, 589

R
RAISERROR action

using for a merge operation, 655
RAISERROR statement

Transact-SQL, 604
using ON EXCEPTION RESUME, 604

random transitions
item in execution plans, 319

range bounds
item in execution plans, 319

RANGE clause
defaults when window only partially defined, 501
using, 500

range queries
about, 266

RANK function
equivalent mathematical formula, 532
usage, 524

rank functions
finding top and bottom percentiles, 531

ranking
using with aggregation, 527

ranking functions
examples, 524

ranking functions with windows
about, 524

RAW mode
using, 618

read committed
introduction, 782

SELECT statements, 810
setting for ODBC, 795
types of inconsistency, 792

read locks
about, 805
conflicts, 809
long-term, 805

READ statement
executing SQL script files, 691

read uncommitted
introduction, 782
SELECT statements, 810
setting for ODBC, 795
types of inconsistency, 792

READ_CLIENT_FILE function
importing from, and exporting to, client computers,
676

READCLIENTFILE authority
importing from, and exporting to, client computers,
676

reading execution plans
about, 293

readonly-statement-snapshot isolation level
SELECT statement locking, 812
using, 817

ReadPK locks
conflicts, 809

rebuild tools
about, 678
dbisql utility, 680
dbunload utility, 680
UNLOAD TABLE statement, 684

rebuilding
databases, 678
indexes, 30
minimizing downtime, 686
purpose, 679
tools, 678

rebuilding database
performance improvement tips, 210

rebuilding databases
about, 678
command line, 685
compared to exporting, 679
considerations, 678
MobiLink, 682
non-replicating databases, 681
reasons, 680

Index

900 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

reducing table fragmentation, 200
replicating databases, 682
tools, 678
UNLOAD TABLE statement, 684
using dbunload for databases involved in
synchronization, 683

recalculating
computed columns, 14

ReceivingTracingFrom
tracing configuration, 141

recommended indexes tab
Index Consultant results, 137

recovery
import/export, 642
loading client side data, 678

Recovery I/O Estimate statistic
description, 174

recovery statistics
list, 174

Recovery Urgency statistic
description, 174

recursive queries
restrictions, 478

recursive subqueries
about, 478
data type declarations in, 480
least distance problems, 485
multiple aggregation levels, 476
parts explosion problem, 482

RecursiveHashJoin plan item
abbreviations in the plan, 306

RecursiveLeftOuterHashJoin plan item
abbreviations in the plan, 306

RecursiveTable plan item
abbreviations in the plan, 306

RecursiveUnion plan item
abbreviations in the plan, 306

redirecting
output to files, 669

referenced object
about, 37

references
displaying references from other tables, 20

referencing object
about, 37

referential constraints
tools for maintaining data integrity, 750

referential integrity

about, 749
actions, 772
breached by client application, 771
CHECK constraints, 759
check performed during DELETE, 774
check performed during INSERT, 773
checking, 773
column defaults, 752
constraints, 751
enforcing, 768
foreign keys, 771
information in the system tables, 776
losing, 771
orphans, 813
primary keys, 576
system triggers, 772
tools for maintaining data integrity, 750
UPDATE statement, 568
verification at commit, 813

referential integrity actions
implemented by system triggers, 772

REFRESH MATERIALIZED VIEW statement
unavailable with snapshot isolation, 786

REFRESH TEXT INDEX statement
using, 329

refresh types
changing for a materialized view, 65
for text indexes, 364
manual and immediate views, 52

refreshing
choosing a type for refreshing text indexes, 364
manual views, 58
text indexes, 364
text indexes in Sybase Central, 329
text indexes using SQL, 329

REGR_AVGX function
equivalent mathematical formula, 532

REGR_AVGY function
equivalent mathematical formula, 532

REGR_COUNT function
equivalent mathematical formula, 532

REGR_INTERCEPT function
equivalent mathematical formula, 532

REGR_R2 function
equivalent mathematical formula, 532

REGR_SLOPE function
equivalent mathematical formula, 532

REGR_SXX function

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 901

equivalent mathematical formula, 532
REGR_SXY function

equivalent mathematical formula, 532
REGR_SYY function

equivalent mathematical formula, 532
regular views

about, 40
altering using Sybase Central, 44
browsing data in views, 48
creating regular views using Sybase Central, 43
disabling regular views using SQL, 47
disabling regular views using Sybase Central, 46
dropping using Sybase Central, 45
enabling regular views using SQL, 47
enabling regular views using Sybase Central, 46
quick comparison with materialized views and base
tables, 36

relational data
exporting as XML, 606

relative benefit
Index Consultant results, 137

releasing locks
exceptions, 816

reload.sql
about, 679
exporting table data, 684
exporting tables, 674
rebuilding databases, 679
rebuilding remote databases, 678
reloading databases, 685

reloading databases
about, 678
command line, 685

remote data
accessing, 693
features not supported for remote data, 727
remote table mappings, 694
specifying proxy table location, 713
unsupported features, 727

remote data access
case sensitivity, 728
character set conversion limitation, 695
complete passthrough of the statement, 725
connection names, 729
connectivity problems, 728
general problems with queries, 728
internal operations, 724
introduction, 693

Lotus Notes SQL 2.0, 742
Microsoft Access, 737
Microsoft Excel, 741
Microsoft FoxPro, 742
partial passthrough of the statement, 726
passthrough mode, 719
performance limitations, 693
queries blocked on themselves, 728
query normalization, 724
query parsing, 724
query preprocessing, 724
remote servers, 696
server capabilities, 725
Sybase IQ, 736
troubleshooting, 727

remote procedure calls
about, 720

remote procedures
calls, 720
creating, 720
data types, 720
dropping, 722

remote servers
Advantage Database Server, 732
altering, 700
ASE JDBC, 745
ASE ODBC, 732
classes, 729
creating, 696
creating in Sybase Central, 698
creating using the create remote server wizard, 698
deleting, 699
dropping, 699
external logins, 710
IBM DB2, 734
JDBC, 744
JDBC limitations, 744
listing capabilities on a remote server, 702
listing properties, 702
listing the tables on a remote server, 701
Lotus Notes SQL 2.0, 742
Microsoft Access, 737
Microsoft Excel, 741
Microsoft FoxPro, 742
MySQL, 739
ODBC, 741
Oracle, 743
sending native statements, 719

Index

902 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SQL Anywhere IQJDBC, 747
SQL Anywhere JDBC, 745
SQL Anywhere saodbc, 731
SQL Server, 738
Sybase IQ iqodbc, 736
transaction management, 723
UltraLite, 731
unsupported for UltraLite on Mac OS X, 731
working with remote servers, 696

remote tables
about, 694
accessing, 693
joins, 717
listing columns, 716
listing the remote tables on a server, 701

remote transaction management
overview, 723

removing statistics
Performance Monitor, 170

REORGANIZE TABLE statement
unavailable with snapshot isolation, 786

reorganizing tables
reducing table fragmentation, 200

repeatable reads
improving concurrency, 819
introduction, 782
SELECT statements, 810
setting for ODBC, 795
tutorial, 825
types of inconsistency, 792

replace expensive triggers
performance improvement tips, 211

replication
rebuilding databases, 682
rebuilding databases involved in synchronization,
682

request log
about, 161
security, 161

request logging
about, 161
using with client statement caching, 162

request trace analysis
about, 158
performing, 158

requests
reducing number of, 211

Requests Active statistic

description, 182
Requests Exchange statistic

description, 182
Requests GET DATA/sec statistic

description, 184
Requests statistic

description, 182
requests tab

Index Consultant results, 137
Requests Unscheduled statistic

description, 182
Requests Waiting statistic

description, 179
requirements

SQL Anywhere debugger, 847
reserved words

remote servers, 727
resetting procedure profiling

about, 130
RESIGNAL statement

using, 115
restarting

sequences, 844
RESTRICT action

about, 772
restrictions

about, 253
changing manual views to immediate views, 54
remote data access, 727

result sets
executing a query more than once, 278
limiting the number of rows, 419
multiple, 104
permissions, 102
remote procedures, 720
returning from procedures, 102
returning multiple from procedures, 102
saving to a file, 692
Transact-SQL, 601
troubleshooting, 278
variable, 105

results
understanding Index Consultant, 137

RETURN statement
using, 100

return values
procedures, 603

returning results from procedures

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 903

about, 100
REVOKE statement

concurrency, 845
Transact-SQL, 586

rewrite optimizations
list of, 292

RI constraints
about, 750
tools for maintaining data integrity, 750

right outer joins
about, 441
SQL Anywhere implementation, 577

RL plan item
abbreviations in the plan, 306

role names
about, 461

roles
Adaptive Server Enterprise, 584

rollback logs
data recovery, 642
savepoints, 782

ROLLBACK statement
compound statements, 99
procedures and triggers, 119
transactions, 779
triggers, 599
UltraLite using, 558

ROLLUP clause
about, 493
using as a shortcut to GROUPING SETS, 492

ROLLUP operation
understanding GROUP BY, 412

row limit count
item in execution plans, 321

row limitation clauses
using, 419

row locks
about, 802
exclusive, 804
intent, 806
read, 805
types, 804
write, 805

row numbering functions with windows
about, 531
window ranking functions, 524

row versions
about, 786

ROW_NUMBER function
usage, 532

RowConstructor plan item
abbreviations in the plan, 306

ROWID plan item
abbreviations in the plan, 306

RowIdScan plan item
abbreviations in the plan, 306

RowLimit plan item
abbreviations in the plan, 306

RowReplicate plan item
abbreviations in the plan, 306

rows
copying with INSERT, 562
deleting, 570
impact of deleting, 564
intent locks, 806
locks, 804
selecting, 264

ROWS clause
defaults when window only partially defined, 501
using, 500

ROWS plan item
abbreviations in the plan, 306

RowsReturned
Node Statistics field descriptions, 314
statistic in access plans, 316

RR plan item
abbreviations in the plan, 306

RT plan item
abbreviations in the plan, 306

RU plan item
abbreviations in the plan, 306

rules
Transact-SQL, 583

running
SQL scripts, 691
SQL scripts in Interactive SQL, 691

running SQL script files
about, 691

RunTime
Node Statistics field descriptions, 314
statistic in access plans, 316

S
sa_ansi_standard_packages system procedure

SQL Flagger usage, 574

Index

904 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SA_DEBUG group
debugger, 847

sa_dependent_views system procedure
using, 39

sa_locks system procedure
using, 803

sa_migrate system procedure
using, 688

sa_migrate_create_fks system procedure
using, 688

sa_migrate_create_remote_fks_list system procedure
using, 688

sa_migrate_create_remote_table_list system
procedure

using, 688
sa_migrate_create_tables system procedure

using, 688
sa_migrate_data system procedure

using, 688
sa_migrate_drop_proxy_tables system procedure

using, 688
sa_procedure_profile system procedure

obtaining in-depth profiling information, 166
sa_procedure_profile_summary system procedure

obtaining summary profiling information, 166
sa_report_deadlocks system procedure

using, 800
sa_server_option system procedure

disabling procedure profiling, 165
enabling procedure profiling, 163
resetting procedure profiling, 164
setting filters on procedure profiling, 164

SA_SQL_TXN_READONLY_STATEMENT_SNAP
SHOT

ODBC isolation level, 795
SA_SQL_TXN_SNAPSHOT

ODBC isolation level, 795
SA_SQL_TXN_STATEMENT_SNAPSHOT

ODBC isolation level, 795
SAJDBC server class (deprecated)

about, 745
sample database

schema for demo.db, 430
saodbc server class

about, 731
saplan files

about, 297
sargable predicates

about, 248
savepoints

naming, 782
nesting, 782
procedures and triggers, 119
within transactions, 782

saving
result sets, 692
transaction results, 779

saving transaction results
about, 779

scalar aggregate functions
defined, 414

scalar aggregates
about, 407

scattered reads
performance, 216

schedules
effects of serializability, 818
effects of unserializable, 818
lock duration, 816
serializable, 818

scheduling of transactions
about, 818

schema
locks, 804

schema locks
about, 804
exclusive, 804
shared, 804

schemas
exporting, 684

scopes
diagnostic tracing, 143

scoring
full text search, 346

script files
executing SQL, 691

scripts
about SQL files, 691
creating SQL script files, 691
loading SQL script files, 692
running in Interactive SQL, 691

search conditions
date comparisons, 274
example with NOT keyword, 266
GROUP BY clause, 282
pattern matching, 267

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 905

subqueries, 534
usage, 264

searching
Chinese, Japanese, and Korean (CJK) data, 324
full text search, 324

security
hiding objects, 123
importing from, and exporting to, client computers,
676
procedures, 72
request log, 161

select from DML
using, 262

SELECT list
about, 251
aliases, 254
aliases and SQL compatibility, 578
calculated columns, 256
column order impacts order in results, 253
EXCEPT statements, 422
execution plans, 317
INTERSECT statements, 422
UNION clause, 423
UNION statements, 422

SELECT statement
aliases, 254
aliases and SQL compatibility, 578
character data, 270
column headings, 254
column order, 253
cursors, 107
INSERT from, 559
INTO clause, 101
keys and query access, 219
restrictions in regular views, 40
selecting from DML statements, 262
specifying rows, 264
strings in display, 256
subqueries, 534
Transact-SQL compatibility, 595
using, 247
variables, 597

selecting data
using subqueries, 534

selectivity
item in execution plans, 319
optimizer estimate sources, 289
reading in execution plans, 303

reading the execution plan, 298
selectivity estimates

reading in execution plans, 303
using a partial index scan, 35

selectivity in the plan
about, 303

selectivity statistics
about, 298

self-joins
about, 447

self_recursion option
Adaptive Server Enterprise, 599

semantic transformations
list of, 292

semicolons
statement delimiter, 120

SendingTracingTo
tracing configuration, 141

seq plan item
abbreviations in the plan, 306

sequence generator
altering, 844
creating, 843
differences from autoincrement, 842
dropping, 844

sequence generators
using a sequence to generate unique keys, 841

sequences
about, 841
altering, 844
creating, 843
differences from autoincrement, 842
dropping, 844
example of creating and using a sequence, 842
generating unique keys, 841
getting current or next values, 841
restarting, 844

sequential scans
disk allocation and performance, 563

sequential table scans
disk allocation and performance, 563

sequential transitions
item in execution plans, 319

serializable
improving concurrency, 819
introduction, 782
schedules, 818
SELECT statements, 810

Index

906 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

setting for ODBC, 795
types of inconsistency, 792

serializable schedules
about, 818
effect of, 818
releasing locks, 816

server capabilities
remote data access, 725

server classes
about, 695
Advantage Database Server, 732
ASEJDBC, 745
aseodbc, 732
db2odbc, 734
defining, 694
IQJDBC, 747
iqodbc, 736
msaccessodbc, 737
msodbc, 738
MySQL, 739
ODBC, 741
ODBC-based, 729
oraodbc, 743
SAJDBC, 745
saodbc, 731
ulodbc, 731

server side loading
about, 641

server state
Index Consultant, 138

servers
graphing with the Performance Monitor, 169
working with remote servers, 696

servers and databases
compatibility, 582

SET clause
UPDATE statement, 566

SET DEFAULT action
about, 772

set membership test
=ANY, 544
about, 554
negation of, 544

SET NULL action
about, 772

set operations
about, 422
NULL, 425

rules, 424
SET OPTION statement

ignored by the SQL Flagger, 575
Transact-SQL, 589

set primary key wizard
accessing, 17

setting
diagnostic tracing levels, 151

setting breakpoints
debugger, 852

SHARED keyword
Transact-SQL SELECT statement syntax
unsupported, 595

shared locks
about, 804

shared table locks
about, 807

sharing indexes
about, 32

short text plans
about, 294
viewing using SQL functions, 297

SIGNAL statement
procedures, 111
Transact-SQL, 604

simple queries
about, 285

single row subqueries
about, 534

SingleRowGroupBy plan item
abbreviations in the plan, 306

size
directory access server, 703

Snapshot Count statistic
description, 182

snapshot isolation
about, 785
avoiding update conflicts, 791
changing levels within a transaction, 797
choosing a level, 817
enabling, 788
intent locks, 806
materialized view matching, 786
performance implications, 817
row versions, 786
SELECT statement locking, 812
SQL Anywhere implementation, 579
transactions, 787

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 907

snapshot isolation level
using, 817

SnapshotIsolationState property
using, 788

SOAP functions
debugging, 847

SOAP services
debugging, 847

sort order
comparisons, 265
ORDER BY clause, 418

Sort plan item
abbreviations in the plan, 306

SortedGroupBySets plan item
abbreviations in the plan, 306

sorting
query results, 276
with an index, 212

SortTopN plan item
abbreviations in the plan, 306

SOUNDEX function
about, 275

source code
setting breakpoints, 852

sp_addgroup system procedure
Transact-SQL, 586

sp_addlogin system procedure
support, 582
Transact-SQL, 586

sp_adduser system procedure
Transact-SQL, 586

sp_bindefault procedure
Transact-SQL, 584

sp_bindrule procedure
Transact-SQL, 584

sp_changegroup system procedure
Transact-SQL, 586

sp_dboption system procedure
Transact-SQL, 589

sp_dropgroup system procedure
Transact-SQL, 586

sp_droplogin system procedure
Transact-SQL, 586

sp_dropuser system procedure
Transact-SQL, 586

sp_remote_columns system procedure
using, 716

sp_remote_tables system procedure

using, 701
sp_servercaps system procedure

using, 702
specialized joins

about, 447
SQL

differences from other SQL dialects, 575
entering, 250

SQL Anywhere
differences from other SQL dialects, 575
IBM DB2 data type conversions, 735
Microsoft SQL Server data type conversions, 738
ODBC and ASE data type conversions, 733
Oracle data type conversions, 743
server class iqodbc, 736
server class saodbc, 731
XML support, 605

SQL Flagger
about, 573
invoking, 574
standards and compatibility, 574
testing SQL compliance with UltraLite, 573

SQL preprocessor utility (sqlpp)
SQL Flagger usage, 574

SQL queries
about, 250

SQL Remote
features not supported for remote data, 727

SQL script files
about, 691
creating, 691
executing, 691
running, 691
SQL Statements pane, 691
writing output, 692

SQL scripts
loading in Interactive SQL, 692

SQL Server
data type conversions, 738
remote access, 738

SQL standards
about, 574
compliance, 573
GROUP BY clause, 415
non-ANSI joins, 436
spatial data, 573
special features of SQL Anywhere, 575
testing compliance of SQL statements, 573

Index

908 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

SQL statements
creating script files, 691
disallowed in snapshot isolation transactions, 786
executing in Interactive SQL, 691
writing compatible SQL statements, 593

SQL/1999
testing compliance of SQL statements, 573

SQL/2003
testing compliance of SQL statements, 573

SQL/2008
special features of SQL Anywhere, 575
testing compliance of SQL statements, 573

SQL/XML
about, 614

sql_flagger_error_level option
SQL Flagger usage, 574

sql_flagger_warning_level option
SQL Flagger usage, 574

SQL_TXN_ISOLATION
about, 795

SQL_TXN_READ_COMMITTED
ODBC isolation level, 795

SQL_TXN_READ_UNCOMMITTED
ODBC isolation level, 795

SQL_TXN_REPEATABLE_READ
ODBC isolation level, 795

SQL_TXT_SERIALIZABLE
ODBC isolation level, 795

SQLCA.lock
selecting isolation levels, 795
versus isolation levels, 792

SQLCODE variable
introduction, 109

SQLFLAGGER function
SQL Flagger usage, 574

SQLSetConnectOption
about, 795

SQLSTATE variable
introduction, 109

SrtN plan item
abbreviations in the plan, 306

stale data
refreshing in manual views, 52

staleness
manual views, 52
settings for materialized views, 70

standard deviation functions
OLAP, 518

standard output
redirecting to files, 669

star joins
about, 449

starting
transactions, 779

Statement Cache Hits statistic
description, 182

Statement Cache Misses statistic
description, 182

Statement Prepares statistic
description, 182

statement-level triggers
Transact-SQL, 599

statement-snapshot isolation level
SELECT statement locking, 812
using, 817

statements
compound, 98
delimiter, 120
detecting slow statements, 232
optimization, 286
unsupported Transact-SQL statements, 583

statements allowed in batches
about, 122

Statements statistic
description, 182

statistics
access plans, 316
adding to the Performance Monitor, 170
alphabetical list of cache statistics, 173
alphabetical list of checkpoint and recovery
statistics, 174
alphabetical list of communications statistics, 176
alphabetical list of disk I/O statistics, 177
alphabetical list of disk read statistics, 177
alphabetical list of disk write statistics, 178
alphabetical list of index statistics, 179
alphabetical list of memory diagnostic statistics,
179
alphabetical list of memory pages statistics, 181
alphabetical list of miscellaneous statistics, 184
alphabetical list of request statistics, 182
alphabetical list of user defined statistics, 183
cache, 173
checkpoint and recovery, 174
communications, 176
disk I/O, 177

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 909

disk read, 177
disk write, 178
execution plans, 293
index, 179
list, 173
memory pages, 181
miscellaneous, 184
monitoring, 167
monitoring performance, 173
monitoring using the Performance Monitor, 169
removing from the Performance Monitor, 170
statistics cleaner, 214
statistics governor, 214
updating column statistics, 213
user defined, 183

statistics cleaner
about, 214

statistics governor
about, 214

statuses
of regular views, 42

STDDEV function
equivalent mathematical formula, 532

STDDEV_POP function
equivalent mathematical formula, 532
example, 519
usage, 519

STDDEV_SAMP function
equivalent mathematical formula, 532
example, 521
usage, 521

steps in optimization
about, 283

STOPLIST setting
defined, 353

stoplists
about, 349
behavior when searching for stoplist terms, 385
cautions when using, 353
full text search, 349

stored procedure language
overview, 598

stored procedures
caching statements, 290
common table expressions in, 476
compared to batches, 91
debugging, 849
generating and reviewing profiling results, 128

Transact-SQL stored procedure overview, 598
using in the FROM clause, 261
using Sybase Central to translate stored procedures,
601

storing values
common table expressions, 477

string and number defaults
about, 758

strings
matching, 267
quotation marks and character strings, 270
quoted_identifier and quotation marks, 271
searching the database using full text search, 324

subqueries
about, 534
ALL test, 546
ANY operator, 546
ANY test, 545
caching of, 291
categorization of, 534
comparison operators, 550
comparison test, 543
converting to joins, 549
correlated, 537
correlated subqueries, 537
existence test, 547
GROUP BY, 541
HAVING clause, 541
IN keyword, 267
introduction, 534
multiple row subqueries, 534
nested, 537
or joins, 538
outer references, 541
quantified comparison test, 542
rewriting as joins, 549
row group selection, 541
row selection, 540
search conditions, 542
set membership test, 544
single row subqueries, 534
types of operators, 542
un-nesting, 185
WHERE clause, 540
WHERE clause and optimizer behavior, 549

subqueries and joins
about, 549

subquery tests

Index

910 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

about, 542
substituting a value for NULL

about, 273
subtotaling results

CUBE clause, 495
ROLLUP clause, 493
WITH CUBE clause, 496
WITH ROLLUP clause, 494

subtransactions
procedures and triggers, 119
savepoints, 782

SUM function
equivalent mathematical formula, 532
usage, 506

summary tab
Index Consultant results, 137

summary values
about, 406
GROUP BY clause, 411

surrogate rows
about, 814

swap space
database cache, 195

Sybase Central
creating tables, 4
creating text indexes, 328
displaying system object contents, 2
displaying system objects, 2
profiling applications, 126
table constraints, 761
translating procedures, 601
unloading databases, 667

Sybase IQ
remote access, 736

symbols
string comparisons, 268

synchronization
rebuilding databases, 682

syntax-independent optimization
about, 287

SYSCOLSTAT
system view, updating column statistics, 213

SYSCOLUMNS
Transact-SQL name conflicts, 589

SYSINDEXES
Transact-SQL name conflicts, 589

SYSSERVER
system view, remote servers, 696

system administrator
Adaptive Server Enterprise, 584

system catalog
Adaptive Server Enterprise, 584

system failures
transactions, 558

system functions
TSEQUAL, 592

system objects
displaying lists of system objects in Interactive
SQL, 3
displaying system objects in a database, 2
querying for a list of system objects by owner, 3
viewing contents, 2
viewing lists of objects in Interactive SQL, 3

system procedures
generating and reviewing profiling results, 128
procedure profiling using system procedures, 163

system security officer
Adaptive Server Enterprise, 584

system tables
Adaptive Server Enterprise, 584
information about referential integrity, 776
owner, 584
querying for a list of system tables by owner, 3
Transact-SQL name conflicts, 589
viewing contents, 2

system triggers
enforcing referential integrity, 772
generating and reviewing profiling results, 128
implementing referential integrity actions, 772

system views
indexes, 31
information about referential integrity, 776
querying for a list of views tables by owner, 3

T
table constraints

tools for maintaining data integrity, 750
UNIQUE, 762

table expressions
how they are joined, 434
key joins, 464

table fragmentation
about, 200
application profiling tutorial, 238
finding and fixing using SQL statements, 240

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 911

Fragmentation tab, 202
table functions

SQL Anywhere implementation, 577
table hints

corresponding isolation levels, 782
table locks

about, 802
behavior, 806
conflicts, 806
exclusive, 807
insert, 809
intent to write, 807
phantom, 808
position, 808
shared, 807

table locks tab
Sybase Central, 803

table names
fully qualified in procedures, 120
identifying, 251
procedures and triggers, 120

table scans
disk allocation and performance, 563

table size
about, 215
performance considerations, 215

table structures for import
about, 659

tables
adding foreign keys using SQL, 21
adding primary keys in Sybase Central, 16
adding primary keys using SQL, 17
altering if referenced by a materialized view, 37
altering using Sybase Central, 5
bitmaps, 215
CHECK constraints, 763
considerations when altering, 5
copying rows, 562
correlation names, 260
creating, 4
creating a foreign key in Sybase Central, 20
creating proxy tables from Sybase Central, 714
creating proxy tables using CREATE EXISTING
TABLE statement, 714
creating proxy tables using CREATE TABLE
statement, 714
creating temporary tables, 10
creating Transact-SQL-compatible tables, 594

defragmenting, 200
displaying primary keys in Sybase Central, 16
displaying references from other tables, 20
dropping using Sybase Central, 6
exclusive locks, 807
exporting, 674
exporting data, 684
fragmentation, 200
group reads, 215
importing, 657
insert locks, 809
intent to write locks, 807
joining from multiple databases, 718
listing the remote tables on a server, 701
locks, 806
managing foreign keys, 18
managing foreign keys using SQL, 21
managing primary keys, 15
managing primary keys in Sybase Central, 16
managing primary keys using SQL, 17
managing table constraints, 761
naming in queries, 260
phantom locks, 808
position locks, 808
remote access, 693
shared locks, 807
tutorial: diagnosing table fragmentation, 238
unloading from Sybase Central, 668
view dependencies, 6
viewing and editing data in Sybase Central, 7
viewing and editing data using SQL, 8
viewing system table contents, 2
work tables, 225
working with, 4
working with proxy tables, 712

TableScan plan item
abbreviations in the plan, 306

temporary files
work tables, 209

temporary procedures
creating, 73

Temporary Table Pages statistic
description, 184

temporary tables
about, 9
benefits of non-transactional, 9
considerations when referencing from within
procedures, 11

Index

912 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

creating, 4
creating in Sybase Central, 10
importing data, 659
indexes, 24
local and global, 9
making non-transactional, 9
merging table structures, 659
Transact-SQL compatibility, 594
work tables in query processing, 225
working with temporary tables, 9

term and phrase searching
full text search, 334

term breaker libraries
callbacks from external libraries, 393

TERM BREAKER setting
defined, 350

term breakers
external term breaker libraries, 350
external term breaker sample, 388
full text search, 349
full text search, defining an external term breaker
library, 391
generic term breaker algorithm, 350
logic flow for external term breaker library, 392

term length
setting term lengths for text indexes, 349

term lengths
full text search, 349

terms
searching the database using full text search, 324

terms, full text search
about, 334

text configuration objects
altering, 326
changing date, time, and time stamp formats, 326
creating, 326
default_char settings, 349
default_nchar settings, 349
determining if used by text indexes, 327
examples, 357
settings for default_char and default_nchar, 356
viewing settings for text configuration objects, 327

text indexes
about, 364
altering, 326
altering refresh type, 330
cannot change the text configuration object, 326
choosing a refresh type for a text index, 364

creating, 364
determining the text configuration object used, 332
full text search, 364
how to retrieve text index creation options, 332
impact of database options on creating and
refreshing, 355
not allowed on views or temporary tables, 364
querying views, 345
refreshing, 364
renaming, 330
require storage space, 324
settings in underlying text configuration objects,
349
staleness and refreshing, 364
tutorial: performing a non-fuzzy full text search,
366

text plans
reading, 294

thread deadlock
about, 799
explanation, 799

thread safety
user-defined functions, 76

threads
deadlock when none available, 799

TIME format
text indexes, 355

time-saving strategies
importing data, 643

time_format option
changing for text configuration objects, 326
impact on text indexes, 355

times
procedures and triggers, 121
SQL Anywhere implementation, 575

TIMESTAMP data type
Transact-SQL, 591

TIMESTAMP format
text indexes, 355

timestamp_format option
changing for text configuration objects, 326
impact on text indexes, 355

timestamp_with_time_zone_format option
changing for text configuration objects, 326

timestamps
SQL Anywhere implementation, 575

timing utilities
about, 166

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 913

tips
improving performance, 185

tips for writing procedures
remember to delimit statements within your
procedure, 120
use fully-qualified names for tables in procedures,
120

tokens
term breakers and full text search, 386

tools
exporting data, 660
importing data, 643
rebuilding databases, 678
reloading data, 678
unloading data, 660

TOP clause
using, 419

top performance tips
list of, 185

total benefits
Index Consultant results, 137

total cost benefit
Index Consultant results, 137

TRACEBACK function
about, 111

tracing
about, 139
application profiling using database tracing, 139
tracing database, 140

tracing data
about, 140
not unloaded as part of an unload operation, 140

tracing databases
about, 140

tracing session
about, 140

trailing blanks
comparisons, 265
creating databases, 588
Transact-SQL, 588

Transact-SQL
batches, 600
compatibility overview, 580
configuring databases for Transact-SQL
compatibility, 587
creating databases, 587
emulating Adaptive Server Enterprise, 587
error handling in Transact-SQL procedures, 602

IDENTITY column, 592
joins, 598
NULL, 594
NULL values and joins, 447
outer join limitations, 446
outer joins, 445
outer joins and views, 447
overview of batches, 600
procedure language overview, 598
procedures, 598
result sets, 601
returning result sets from Transact-SQL
procedures, 601
setting options for Transact-SQL compatibility,
589
special Transact-SQL TIMESTAMP column and
data type, 591
stored procedure overview, 598
trailing blanks, 588
triggers, 599
unsupported file manipulation statements, 583
using the RAISERROR statement in procedures,
604
using WITH ROLLUP, 494
variables, 602
writing compatible SQL statements, 593
writing portable SQL, 593

Transact-SQL compatibility
databases, 590
SELECT statement, 595
setting database options, 589

transaction blocking
about, 797

Transaction Commits statistic
description, 182

transaction locks
duration, 803

transaction log
data recovery, 642
dbmlsync, 682
performance improvement tips, 217
performance tip, 185
replication, 682

transaction management and remote data
about, 723

transaction processing
data recovery, 558
effects of scheduling, 818

Index

914 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

performance, 781
scheduling, 818
serializable scheduling, 818

Transaction Rollbacks statistic
description, 182

transaction scheduling
effects of, 818

transactions
about, 779
beginning in snapshot isolation, 787
blocking, 798
blocking example, 829
changing isolation levels, 796
completing, 779
concurrency, 781
data manipulation, 557
data recovery, 558
deadlock, 799
interference between, 798
interference between example, 829
multiple, 781
procedures and triggers, 119
remote data access, 723
restrictions on transaction management, 723
savepoints, 782
starting, 779
subtransactions and savepoints, 782
typical isolation levels, 818
using, 779

transactions and isolation levels
about, 779

transactions processing
blocking, 798
blocking example, 829

transformations
list of rewrite optimizations, 292

Translog Group Commits statistic
description, 178

trantest
about, 207

trigger conditions
order in which triggers fire, 89

triggers
about, 71
AFTER triggers, 80
altering, 85
BEFORE triggers, 80
benefits, 71

create trigger wizard, 82
creating, 82
cursors, 106
dates, 121
deleting, 86
disabling operations temporarily, 86
error handling, 109
exception handlers, 114
executing, 84
execution permissions, 88
firing order, 89
generating and reviewing profiling results, 128
INPUT statement causes INSERT triggers to fire,
641
INSTEAD OF triggers, 89
order in which triggers fire, 89
overview, 71
recursion, 599
ROLLBACK statement, 599
savepoints, 119
statement delimiter, 120
statement-level, 599
statements allowed, 122
structure, 94
times, 121
tips for writing, 120
tools for maintaining data integrity, 751
Transact-SQL, 599
Transact-SQL compatibility and naming, 591
types, 80
UPDATE statement, 566
using, 80
warnings, 113

troubleshooting
ANY operator, 546
application profiling, 156
deadlocks, 800
GROUP BY clause, 281
natural joins, 457
performance, 185
remote data access, 727
result set appears to change, 278

TRUNCATE TABLE statement
using, 571
using with snapshot isolation, 786

tutorials
application profiling, 226
baselining with procedure profiling, 241

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 915

debugger, 848
diagnosing deadlocks, 227
diagnosing index fragmentation, 236
diagnosing slow statements, 232
diagnosing table fragmentation, 238
dirty reads, 820
full text search on a GENERIC text index, 366
full text search on an NGRAM text index, 376
isolation levels, 820
non-repeatable reads, 825
performing a fuzzy full text search, 373
phantom rows, 831
practical locking implications, 837

types of full text searches
about, 333

U
UA plan item

abbreviations in the plan, 306
ulodbc server class

about, 731
UltraLite

server class, 731
testing compliance of SQL statements, 573

UltraLite SQL
testing whether a SQL Anywhere statement
complies with UltraLite SQL, 573

un-nesting subqueries
about, 185

uncorrelated subqueries
about, 537

understanding group by
about, 411

UNION clause
combining queries, 422
NULL, 425
rules, 424
Transact-SQL compatibility, 595

union list
item in execution plans, 320

UnionAll plan item
abbreviations in the plan, 306

unique constraints
about, 762
generated indexes, 24

unique identifiers
tables, 15

unique keys
generating and concurrency, 840

unique results
limiting, 259

uniqueness
enforcing with an index, 35

Unix
initial cache size, 192
maximum cache size, 192
minimum cache size, 192

UNKNOWN
NULL, 273

unknown values
about, 271

unload data window
using, 668

unload database wizard
using, 667

UNLOAD statement
using, 665

UNLOAD TABLE statement
using, 665

unload tools
about, 660
unload data window, 668
unload database wizard, 667

unloading
about, 678

unloading and reloading
databases, 686
databases involved in synchronization, 682
databases not involved in synchronization, 681

unloading databases
about, 678
exporting, 672
from Sybase Central, 667
in comma-delimited format, 680

unnecessary distinct elimination
about, 185

unserializable transaction scheduling
effects of, 818

unused indexes tab
Index Consultant results, 138

updatable views
about, 40

UPDATE conflicts
snapshot isolation, 791

UPDATE statement

Index

916 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

constraint violations, 568
errors, 775
examples, 775
firing triggers, 566
locking during, 814
SQL Anywhere implementation, 577
updating joins, 566
using, 565

updates
based on joins, 566

updates tab
Index Consultant results, 138

updating column statistics
about, 213

updating the database
overview, 556

upgrading
database file format, 680

upgrading databases
about, 680

user defined functions
about, 76
calling, 77
creating, 76
dropping, 79
execution permissions, 79
generating and reviewing profiling results, 128
inlining as part of query transformation, 185
parameters, 96
thread safety, 76

user defined statistics
list, 183

user IDs
Adaptive Server Enterprise, 585
case sensitivity, 590
default, 754

user-defined data types
CHECK constraints, 761
creating, 764
creating using SQL, 764
dropping, 766

user-defined functions
caching, 292
tips for writing, 120

user_estimates option
Optimizer Statistics field descriptions, 311

USING CLIENT FILE clause

importing from, and exporting to, client computers,
676

USING VALUE clause
importing from, and exporting to, client computers,
676

UUIDs
compared to global autoincrement, 757
default column value, 757
generating, 841

V
validating

indexes, 29
tables using WITH EXPRESS CHECK, 224
XML, 631

validation
XML, 631

ValuePtr parameter
about, 795

VAR_POP function
equivalent mathematical formula, 532
example, 521
usage, 521

VAR_SAMP function
equivalent mathematical formula, 532
example, 522
usage, 522

variables
assigning, 597
local, 597
SELECT statement, 597
SET statement, 597
Transact-SQL, 602

VARIANCE function
equivalent mathematical formula, 532

variance functions
OLAP, 518

vector aggregate functions
about, 411
defined, 414

Version Store Pages statistic
description, 184

VersionStorePages property
using, 787

view dependencies
about, 37
finding dependency information, 39

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 917

information in the catalog, 39
regular view status, 42
schema changes, 37

view matching
about, 220
algorithm requirements, 220
execution plan outcomes, 317
query evaluation, 220
query execution, 220
using with snapshot isolation, 786
view matching algorithm, about, 220
view matching algorithm, execution plan
outcomes, 317

view status
determining, 42
disabled, 42
invalid, 42
regular views, 42
understanding, 42
valid, 42

view statuses
materialized view statuses, 67

viewing
procedure profiling results, 132
regular view data, 48

viewing the isolation level
about, 797

views
altering and view dependencies, 44
altering regular views using Sybase Central, 44
altering regular views, considerations, 44
browsing data in regular views, 48
check option and regular views, 41
common table expressions, 472
creating regular views using Sybase Central, 43
DISABLED status for regular views, 42
disabling regular views using SQL, 47
disabling regular views using Sybase Central, 46
dropping using Sybase Central, 45
enabling regular views using SQL, 47
enabling regular views using Sybase Central, 46
exporting, 663
FROM clause, 260
INVALID status for regular views, 42
key joins, 468
natural joins, 459
outer joins, 444
querying using a text index, 345

referencing program variables, 476
regular view status, 42
SELECT statement restrictions for regular views,
40
updating, 40
updating using INSTEAD OF triggers, 90
using regular views, 40
VALID status for regular views, 42
viewing data in Sybase Central, 7
viewing data using SQL, 8
working with view dependencies, 37
working with views, 35

virtual indexes
about, 136
Index Consultant, 136

virtual memory
scarce resource, 190

W
wait_for_commit option

processing UPDATE statements with constraint
violations, 568
using, 813

waiting
to access locked rows, 829
to verify referential integrity, 813

waiting to access locked rows
deadlock, 798

warming
cache, 197

warnings
procedures and triggers, 113

Watcom SQL
about, 579
dialect, 580
writing compatible SQL statements, 593

WHERE clause
about, 264
compared to HAVING, 416
date comparisons introduction, 274
GROUP BY clause, 413
HAVING clause and, 282
joins, 439
modifying rows in a table, 565
NULL values, 272
pattern matching, 267
performance, 248

Index

918 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

string comparisons, 268
subqueries, 540
using with the GROUP BY clause, 411

WHILE statement
control statements, 97

wide columns
about, 211

wildcards
pattern matching, 267
string comparisons, 268

window aggregate functions
about, 505
list of supported functions, 505
OLAP, 505

WINDOW clause
inlining and the WINDOW clause, 503
using in the SELECT statement, 499

window functions
about, 498
aggregate, list of, 505
ranking, list of, 524
row numbering, 531

Window plan item
abbreviations in the plan, 306

Windows
initial cache size, 192
maximum cache size, 192
minimum cache size, 192

windows (OLAP)
defaults when window only partially defined, 501
defining inline windows, 499
impact of ORDER BY clause on defaults, 501
inlining and the WINDOW clause, 503
order of evaluation of clauses, 499
size, 500
sizing using RANGE clause, 500
sizing using ROWS clause, 500
WINDOW clause of the SELECT statement, 499

Windows Mobile
cache and page size considerations, 215

Windows Performance Monitor
about, 171
running multiple copies, 171
starting, 171

WITH CHECK OPTION clause
using in the CREATE VIEW statement, 41

WITH clause
common table expressions, 472

WITH CUBE clause
about, 496

WITH EXPRESS CHECK
performance, 224

WITH HOLD clause
cursor stability, 816

WITH HOLD cursors
cursor stability, 816

WITH RESULT SET clause
using EXECUTE IMMEDIATE in a procedure,
117

WITH ROLLUP clause
about, 494

Word files
external prefilter and term breaker library support,
386

work tables
about, 225
performance tips, 209
query processing, 225

write locks
about, 805
conflicts, 809

WRITE_CLIENT_FILE function
importing from, and exporting to, client computers,
676

WRITECLIENTFILE authority
importing from, and exporting to, client computers,
676

WriteNoPK locks
conflicts, 809

X
XML

about, 605
default namespaces, 613
defined, 605
encoding, 605
exporting data as from Interactive SQL, 606
exporting data as using the DataSet object, 606
exporting relational data as, 606
importing as relational data, 607
importing using openxml, 607
importing using the DataSet object, 613
obtaining query results as XML, 615
obtaining query results as XML from relational
data, 614

Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1 919

storing in relational databases, 605
using FOR XML AUTO, 620
using FOR XML EXPLICIT, 623
using FOR XML RAW, 618
using in SQL Anywhere databases, 605

XML data type
using, 605

xml directive
using, 630

XML document
well-formed, 632

XMLAGG function
using, 633

XMLCONCAT function
using, 634

XMLELEMENT function
using, 635

XMLFOREST function
using, 637

XMLGEN function
using, 638

xp_read_file system procedure
importing XML, 611

XPath
using, 607

Index

920 Copyright © 2012, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.1

	SQL Anywhere Server - SQL Usage
	Contents
	About this book
	Tables, views, and indexes
	Setting properties for database objects
	Viewing lists of system objects (Sybase Central)
	Viewing lists of system objects (SQL)
	Tables
	Creating a table
	Table alteration
	Altering a table
	Dropping a table

	Viewing data in tables or views (Sybase Central)
	Viewing data in tables or views (SQL)

	Temporary tables
	Creating a global temporary table
	References to temporary tables within procedures

	Computed columns
	Altering a computed column
	Inserts into, and updates of, computed columns
	Recalculation of computed columns

	Primary keys
	Creating and modifying a primary key (Sybase Central)
	Creating and modifying a primary key (SQL)

	Foreign keys
	Creating a foreign key (Sybase Central)
	Creating a foreign key (SQL)

	Indexes
	Composite indexes
	Clustered indexes
	Creating an index
	Validating an index
	Rebuilding an index
	Dropping an index
	Advanced: Index information in the catalog
	Advanced: Logical and physical indexes
	Determination of which logical indexes share a physical index

	Advanced: Index selectivity and fan-out
	Advanced: Other ways SQL Anywhere uses indexes

	Views
	Documentation conventions for views
	Comparison of regular views, materialized views, and base tables
	Benefits of using views
	View dependencies
	Dependencies and schema-altering changes
	Retrieve dependency information (SQL)

	Regular views
	Statuses for regular views
	Creating a regular view (Sybase Central)
	Alter a regular view (Sybase Central)
	Dropping a regular view (Sybase Central)
	Disabling or enabling a regular view (Sybase Central)
	Disabling or enabling a regular view (SQL)
	Browsing data a regular view

	Materialized views
	Performance improvements using materialized views
	Materialized views and view dependencies
	Whether to set refresh type to manual or immediate
	Staleness and manual materialized views

	Materialized views restrictions

	Creating a materialized view
	Initializing a materialized view
	Refreshing a manual materialized view
	Enabling or disabling a materialized view
	Hiding a materialized view
	Dropping a materialized view
	Encrypting or decrypting a materialized view
	Enabling or disabling optimizer use of a materialized view
	Advanced: Viewing materialized view information in the catalog
	Advanced: Changing refresh type for a materialized view
	Advanced: Status and properties for materialized views
	Materialized view statuses
	Materialized view properties
	Status and property changes when altering, refreshing, and truncating a materialized view

	Advanced: Settings controlling data staleness for materialized views

	Stored procedures, triggers, batches, and user defined functions
	Benefits of procedures, triggers, and user-defined functions
	Procedures
	Creating procedures
	Altering procedures
	Calling procedures
	Copying procedures in Sybase Central
	Dropping procedures

	User-defined functions
	Creating user-defined functions
	Calling user-defined functions
	Dropping user-defined functions
	Permissions to execute user-defined functions
	Advanced information on user-defined functions

	Triggers
	Creating triggers
	Trigger execution
	Altering triggers
	Dropping triggers
	Temporarily disabling trigger operations
	Permissions to execute triggers
	Advanced information on triggers
	INSTEAD OF triggers

	Batches
	The structure of procedures, triggers, and user-defined functions
	Parameter declaration for procedures
	Ways to pass parameters to procedures
	Passing parameters to functions

	Control statements
	Compound statements
	Declarations in compound statements
	Atomic compound statements

	Result sets
	Returning a value using the RETURN statement
	Ways to return results as procedure parameters
	Information returned in result sets from procedures
	Returning multiple result sets from procedures
	Variable result sets for procedures

	Cursors in procedures, triggers, user-defined functions, and batches
	Cursor management
	Cursors on SELECT statements
	Positioned updates inside procedures, triggers, user-defined functions, batches

	Error and warning handling
	Default handling of errors
	Error handling with ON EXCEPTION RESUME
	Default handling of warnings
	Exception handlers
	Nested compound statements and exception handlers

	EXECUTE IMMEDIATE used in procedures, triggers, user-defined functions, and batches
	Transactions and savepoints in procedures, triggers, and user-defined functions
	Tips for writing procedures, triggers, user-defined functions, and batches
	Statements allowed in procedures, triggers, events, and batches
	SELECT statements used in batches

	Hiding the contents of procedures, functions, triggers, events, and views

	Performance improvements, diagnostics, and monitoring
	Performance monitoring and diagnostic tools
	Application profiling
	Using the Application Profiling Wizard
	Procedure profiling in Application Profiling mode
	Enabling procedure profiling
	Resetting procedure profiling
	Disabling procedure profiling
	Procedure profiling results
	Analyzing procedure profiling results

	Index Consultant
	Obtaining Index Consultant recommendations for a query
	Obtaining Index Consultant recommendations for a database
	Index Consultant recommendations
	Index Consultant results
	Implementation of Index Consultant results

	Diagnostic tracing
	Tracing session data
	Diagnostic tracing configuration
	Diagnostic tracing levels
	Customized diagnostic tracing levels
	Diagnostic tracing scopes
	Diagnostic tracing types
	Diagnostic tracing conditions
	Determining current diagnostic tracing settings (Sybase Central)
	Determining current diagnostic tracing settings (SQL)
	Change the diagnostic tracing configuration settings
	Changing diagnostic tracing settings during a tracing session
	Creating a diagnostic tracing session (Sybase Central)
	Creating a diagnostic tracing session (SQL)
	Analysis of diagnostic tracing information
	Troubleshooting performance problems
	Detecting when hardware resources are a limiting factor
	Tools for debugging application logic
	Performing request trace analysis
	Creating an external tracing database (Sybase Central)
	Creating an external tracing database (command line)

	Use other diagnostic tools and techniques
	Request logging
	Procedure profiling using system procedures
	Enabling procedure profiling (SQL)
	Filtering procedure profiling by user (SQL)
	Resetting procedure profiling (SQL)
	Disabling procedure profiling (SQL)
	Retrieve profiling information using system procedures

	Timing utilities

	Monitor database performance
	SQL functions used to monitor statistics
	Sybase Central Performance Monitor features for monitoring statistics
	Opening the Sybase Central Performance Monitor
	Adding and removing statistics

	Monitor statistics using Windows Performance Monitor
	Using the Windows Performance Monitor

	Performance Monitor statistics
	Cache statistics
	Checkpoint and recovery statistics
	Communications statistics
	Disk I/O statistics
	Disk read statistics
	Disk write statistics
	Index statistics
	Memory diagnostic statistics
	Memory pages statistics
	Request statistics
	User-defined statistics
	Miscellaneous statistics

	Tips for improving performance
	Always use a transaction log
	Build efficient SQL queries
	Cache-related performance tips
	Use the cache to improve performance
	Cache and the memory governor
	Cache and the optimizer

	Limit cache memory use
	Dynamic cache sizing
	Dynamic cache sizing on Windows
	Dynamic cache sizing on Unix

	Statistics that monitor cache size
	Cache warming

	Check for concurrency issues
	Choose the optimizer goal
	Collect statistics on small tables
	Fragmentation-related performance tips
	Reduce fragmentation
	Reduce file fragmentation
	Reduce table fragmentation
	Methods to reduce table fragmentation
	The Fragmentation tab (SQL Anywhere plug-in)
	Viewing an object's fragmentation details
	Reorganizing base tables and indexes

	Reduce index fragmentation and skew

	Declare constraints
	Improve index performance
	Minimize cascading referential actions
	Monitor query performance
	Normalize your table structure
	Optimize for mixed or OLAP workload
	Place different files on different devices
	Rebuild your database
	Reduce primary key width
	Reduce table widths
	Reduce requests between client and server
	Reduce expensive user-defined functions
	Replace expensive triggers
	Review the order of columns in tables
	Use strategic sorting of query results
	Specify the correct cursor type
	Supply explicit selectivity estimates sparingly
	Turn off autocommit mode
	Update column statistics
	How the statistics governor maintains statistics

	Use an appropriate page size
	Use appropriate data types
	Use AUTOINCREMENT to create primary keys
	Use bulk operations methods
	Use delayed commits
	Use in-memory mode
	Use indexes effectively
	Use keys to improve query performance
	Use materialized views to improve query performance
	Materialized views and view matching
	Retrieving the list of materialized view candidates
	Determining which materialized views were considered by the optimizer

	Use compression carefully
	Use the WITH EXPRESS CHECK option when validating tables
	Use work tables in query processing (use All-rows optimization goal)

	Application profiling tutorials
	Creating a test database for the application profiling tutorials
	Tutorial: Diagnosing deadlocks
	Lesson 1: Setting up the database
	Lesson 2: Creating a deadlock and capturing information about it
	Lesson 3: Reviewing blocked connection data

	Tutorial: Diagnosing slow statements
	Lesson 1: Creating a diagnostic tracing session
	Lesson 2: Reviewing statements processed by the database server

	Tutorial: Diagnosing index fragmentation
	Lesson 1: Finding and fixing index fragmentation using the Application Profiling Wizard
	Lesson 2: Identifying and fixing index fragmentation using SQL

	Tutorial: Diagnosing table fragmentation
	Lesson 1: Checking for table fragmentation using the Application Profiling Wizard
	Lesson 2: Identifying and fixing table fragmentation using SQL

	Tutorial: Baselining with procedure profiling
	Lesson 1: Creating a baseline procedure
	Lesson 2: Running an updated procedure against the baseline procedure
	Lesson 3: Comparing the procedure profiling results

	Query and modify data
	Queries
	The SELECT statement and querying
	Query predicates
	SQL queries
	The SELECT list: Specifying columns
	Selection of all columns from a table
	Selection of specific columns from a table
	Renamed columns in query results
	Character strings in query results
	Computed values in the SELECT list
	Elimination of duplicate query results

	The FROM clause: Specifying tables
	SELECT over a DML statement

	The WHERE clause: Specifying rows
	Comparison operators in the WHERE clause
	Ranges in the WHERE clause
	Lists in the WHERE clause
	Pattern matching character strings in the WHERE clause
	Character strings and quotation marks
	Unknown values: NULL
	Testing a column for NULL
	Properties of NULL
	Logical operators that provide connecting conditions
	Search conditions that compare dates
	Row matching by sound

	The ORDER BY clause: Ordering results
	Indexes that improve ORDER BY performance

	Aggregate functions in queries
	Applying aggregate functions to grouped data
	Restricting groups
	Combination of WHERE and HAVING clauses

	Advanced: Query processing phases
	Eligibility to skip query processing phases

	Advanced: Query optimization
	How the optimizer works
	Optimizer estimates and statistics
	Selectivity estimate sources
	Plan caching
	Subquery and function caching

	Optimizations performed during query processing

	Advanced: Query execution plans
	Short text plan
	Long text plan
	Viewing short and long text plans
	Graphical plans
	Graphical plan with statistics
	Performance analysis using the graphical plan with statistics
	Detailed graphical plan node information
	Selectivity information in the graphical plan
	Viewing graphical plans
	Customized graphical plans

	Execution plan components

	Advanced: Parallelism during query execution
	Parallelism in queries

	Full text search
	What is full text search?
	Full text search tasks
	Creating a text configuration object
	Altering a text configuration object
	Viewing a text configuration object in the database
	Creating a text index
	Refreshing a text index
	Alter a text index
	Altering text indexes

	Viewing information about a text index in the database (Sybase Central)
	Viewing information about a text index in the database (SQL)

	Types of full text searches
	Term and phrase search
	Prefix search
	Proximity search
	Boolean search
	Fuzzy search
	View search

	Scores for full text search results
	Text configuration object concepts and reference
	What to specify when creating or altering text configuration objects
	TERM BREAKER clause - Specify the term breaker algorithm
	MINIMUM TERM LENGTH clause - Set the minimum term length
	MAXIMUM TERM LENGTH clause - Set the maximum term length
	STOPLIST clause - Configure the stoplist
	PREFILTER clause - Specify the external prefilter algorithm
	Date, time, and timestamp format settings

	Database options that impact text configuration objects
	Example text configuration objects

	Text index concepts and reference
	Text index refresh types

	Tutorial: Performing a full text search on a GENERIC text index
	Tutorial: Performing a fuzzy full text search
	Tutorial: Performing a full text search on an NGRAM text index
	Advanced: Term dropping in full text search
	Advanced: External term breaker and prefilter libraries
	Why use an external term breaker or prefilter library
	Full text pipeline workflow
	External prefilter libraries
	How to configure SQL Anywhere to use an external prefilter
	How to design an external prefilter library

	External term breaker libraries
	How to configure SQL Anywhere to use an external term breaker
	How to design an external term breaker library

	Advanced: API for external full text libraries
	a_server_context structure
	a_init_pre_filter structure
	a_text_source interface
	a_init_term_breaker structure
	a_term_breaker_for enumeration
	a_word_source interface
	a_term structure
	extpf_use_new_api entry point function (prefilters)
	exttb_use_new_api entry point function (term breakers)
	extfn_post_load_library global entry point function
	extfn_pre_unload_library global entry point function
	Prefilter entry point function
	Term breaker entry point function

	Summarizing, grouping, and sorting query results
	Aggregate functions that summarize query results
	Where you can use aggregate functions
	Aggregate functions and data types
	COUNT(*)
	Aggregate functions with DISTINCT
	Aggregate functions and NULL

	The GROUP BY clause: Organizing query results into groups
	How queries with GROUP BY are executed
	GROUP BY with multiple columns
	WHERE clause and GROUP BY
	GROUP BY with aggregate functions
	GROUP BY and the SQL/2008 standard

	The HAVING clause: Selecting groups of data
	The ORDER BY clause: Sorting query results
	Row limitation clauses in SELECT, UPDATE, and DELETE query blocks
	ORDER BY and GROUP BY

	Set operations on query results using UNION, INTERSECT, and EXCEPT
	The UNION clause: Combining result sets
	EXCEPT and INTERSECT
	Rules for set operations
	Set operators and NULL

	Joins: Retrieving data from several tables
	Displaying a list of tables
	Sample database schema
	How joins work
	Join conditions
	Joined tables
	Joins between two tables
	Joins between more than two tables
	Join compatible data types
	Joins in delete, update, and insert statements
	Non-ANSI joins

	Explicit join conditions (the ON clause)
	Table references in ON clauses
	Generated joins and the ON clause
	Types of explicit join conditions
	WHERE clauses in join conditions

	Cross joins
	Commas

	Inner and outer joins
	Inner joins
	Outer joins
	Outer joins and join conditions
	Complex outer joins
	Outer joins of views and derived tables

	Transact-SQL outer joins (*= or =*)
	Transact-SQL outer join limitations
	Views and Transact-SQL outer joins
	How NULL affects Transact-SQL joins

	Specialized joins
	Self-joins
	Duplicate correlation names in joins (star joins)
	Joins that use derived tables
	Joins resulting from apply expressions

	Natural joins
	Errors using NATURAL JOIN
	Natural joins with an ON clause
	Natural joins of table expressions
	Natural joins of views and derived tables

	Key joins
	Key joins with an ON clause
	Key joins when there are multiple foreign key relationships
	Key joins of table expressions
	Key joins of table expressions that do not contain commas
	Key joins of table expression lists
	Key joins of lists and table expressions that do not contain commas

	Key joins of views and derived tables
	Rules describing the operation of key joins

	Common table expressions
	Multiple correlation names
	Multiple table expressions
	Where common table expressions are permitted
	Typical applications of common table expressions
	Multiple aggregate functions
	Views that reference program variables
	Views that store values

	Recursive common table expressions
	Data type declarations in recursive common table expressions
	Multiple recursive common table expressions

	Parts explosion problem
	Least distance problem

	OLAP support
	OLAP performance improvements
	GROUP BY clause extensions
	GROUP BY GROUPING SETS

	ROLLUP and CUBE as a shortcut to GROUPING SETS
	The ROLLUP clause
	The CUBE clause
	Detection of NULLs using the GROUPING function

	Window functions
	Window definitions
	Window definition: Inlining using the OVER clause and WINDOW clause

	Window functions
	Window aggregate functions
	Basic aggregate functions
	SUM function example
	AVG function example
	MAX function example
	FIRST_VALUE function and LAST_VALUE function examples

	Standard deviation and variance functions
	Correlation and linear regression functions
	Window ranking functions
	RANK function
	DENSE_RANK function
	CUME_DIST function
	PERCENT_RANK function

	Row numbering functions
	ROW_NUMBER function
	Mathematical formulas for the aggregate functions

	Use of subqueries
	Single-row and multiple-row subqueries
	Correlated and uncorrelated subqueries
	Nested subqueries
	Use of subqueries instead of joins
	Subqueries in the WHERE clause
	Subqueries in the HAVING clause
	Subquery testing
	Subquery comparison test
	Subqueries and the IN test
	Subqueries and the ANY test
	Subqueries and the ALL test
	Subqueries and the EXISTS test

	Optimizer automatic conversion of subqueries to joins
	Subquery that follows a comparison operator
	Subquery that follows ANY, ALL, or SOME
	Subquery that follows IN
	Subquery that follows EXISTS

	Data manipulation statements
	Permissions for data manipulation
	Transactions and data manipulation
	Permanent data changes
	Cancellation of changes
	Transactions and data recovery
	Referential integrity
	Addition of data using INSERT
	Inserting values into all columns of a row
	Insert values into specific columns
	Inserting values into specific columns

	Addition of new rows with SELECT
	Insertion of documents and images
	Advanced: Disk allocation for inserted rows

	Data changes using UPDATE
	Data changes using INSERT
	Deletion of data using DELETE
	Deletion of all rows from a table

	SQL dialects and compatibility
	SQL compliance testing using the SQL Flagger
	Invocation of the SQL Flagger
	Standards and compatibility

	SQL Anywhere features that differ from other SQL implementations
	Watcom SQL
	Transact-SQL compatibility
	Adaptive Server Enterprise architectures
	Servers and databases
	Device management
	Defaults and rules
	System tables
	Administrative roles
	Users and groups

	Transact-SQL-compatible databases
	Creating a Transact-SQL-compatible database
	Options for Transact-SQL compatibility
	Case sensitivity
	Compatible object names
	The special Transact-SQL TIMESTAMP column and data type
	The special IDENTITY column
	Retrieval of IDENTITY column values with @@identity

	Compatible SQL statements
	General guidelines for writing portable SQL
	Tables that are compatible with Transact-SQL
	Queries that are compatible with Transact-SQL
	Compatibility of joins

	Transact-SQL procedure language
	Transact-SQL stored procedures
	Transact-SQL triggers
	Transact-SQL batches

	Automatic translation of stored procedures
	Using Sybase Central to translate stored procedures

	Returning result sets from Transact-SQL procedures
	Variables in Transact-SQL procedures
	Error handling in Transact-SQL procedures
	Procedures that use the RAISERROR statement
	Transact-SQL-like error handling in the Watcom SQL dialect

	Use of XML in the database
	Storage of XML documents in relational databases
	Exporting relational data as XML
	Exporting relational data as XML from Interactive SQL
	Exporting relational data as XML using the DataSet object

	Importing XML documents as relational data
	Importing XML using openxml
	Importing XML using the DataSet object
	Definition of default XML namespaces

	Query results as XML
	Use of the FOR XML clause to retrieve query results as XML
	FOR XML and binary data
	FOR XML and NULL values
	Encoding illegal XML names
	FOR XML examples

	Using FOR XML RAW
	Using FOR XML AUTO
	Using FOR XML EXPLICIT

	Use of Interactive SQL to view results
	Use of SQL/XML to obtain query results as XML
	Use of the XMLAGG function
	Use of the XMLCONCAT function
	Use of the XMLELEMENT function
	Use of the XMLFOREST function
	Use of the XMLGEN function

	Remote data and bulk operations
	Data import and export
	Performance aspects of bulk operations
	Data recovery issues for bulk operations
	Data import
	Performance tips for importing data
	Import data with the Import Wizard (Interactive SQL)
	Import data with the INPUT statement
	Importing data with the INPUT statement

	Import data with the LOAD TABLE statement
	Import data with the INSERT statement
	Import data with the MERGE statement
	Import data with proxy tables
	Conversion errors during import
	Importing tables
	Table structures for import
	Merge different table structures
	Importing binary files

	Data export
	Export data with the Export Wizard
	Export data with the OUTPUT statement
	Exporting data to Excel and CSV files

	Export data with the UNLOAD TABLE statement
	Export data with the UNLOAD statement
	Export data with the Unload utility (dbunload)
	Export data with the Unload Database Wizard
	Unloading a database file or running database

	Exporting data with the Unload Data window
	Exporting query results
	Using the OUTPUT statement to output NULLs
	Exporting databases (Sybase Central)
	Exporting databases (command line)
	Exporting tables (SQL)
	Exporting tables (command line)

	Access to data on client computers
	Client-side data security
	Recovery when loading client-side data

	Database rebuilds
	Reasons to rebuild databases
	Using the Unload utility to rebuild databases
	Rebuilding databases not involved in synchronization or replication

	Rebuilding databases involved in synchronization or replication
	Using the UNLOAD TABLE statement to rebuild databases
	Export table data or table schema
	Reload a database
	Minimize downtime when rebuilding a database

	Database extraction
	Database migration to SQL Anywhere
	Use the Migrate Database Wizard
	Use the sa_migrate system procedures

	SQL script files
	Run SQL script files in Interactive SQL
	Writing database output to a file

	Adaptive Server Enterprise compatibility

	Remote data access
	Remote table mappings
	Creating proxy tables that map to remote data

	Server classes
	Remote servers
	The CREATE SERVER statement
	Creating remote servers
	Deleting remote servers
	Altering remote servers (Sybase Central)
	Altering remote servers (SQL)
	Listing the tables on a remote server
	Remote server capabilities

	Directory access servers
	Queries on directory access proxy tables
	Delimiter consistency

	Creating directory access servers (Sybase Central)
	Creating directory access servers (SQL)
	Dropping directory access servers (Sybase Central)
	Dropping directory access servers (SQL)
	Dropping proxy tables (Sybase Central)

	External logins
	Creating external logins
	Dropping external logins

	Proxy tables
	Proxy table locations
	Creating proxy tables (Sybase Central)
	Creating proxy tables (SQL)
	List the columns on a remote table

	Joins between remote tables
	Joins between tables from multiple local databases
	Native statements and remote servers
	Remote procedure calls (RPCs)
	Creating remote procedures (Sybase Central)
	Creating remote procedures (SQL)
	Dropping remote procedures

	Transaction management and remote data
	Remote transaction management
	Restrictions on transaction management

	Internal operations
	Internal operations performed on queries
	Query parsing
	Query normalization
	Query preprocessing

	Server capabilities
	Complete passthrough of the statement
	Partial passthrough of the statement

	Troubleshooting remote data access
	Features not supported for remote data
	Case sensitivity
	Connectivity tests
	Queries blocked on themselves
	Remote data access connections via ODBC

	Server classes for remote data access
	ODBC-based server classes
	ODBC external server definitions
	USING parameter in the CREATE SERVER statement
	Server class saodbc
	Server class ulodbc
	Server class adsodbc
	Server class aseodbc
	Server class db2odbc
	Server class iqodbc
	Server class msaccessodbc
	Server class mssodbc
	Server class mysqlodbc
	Server class odbc
	Microsoft Excel (Microsoft 3.51.171300)
	Microsoft FoxPro (Microsoft 3.51.171300)
	Lotus Notes SQL 2.0

	Server class oraodbc

	JDBC-based server classes (deprecated)
	Configuration notes for JDBC classes
	Server class SAJDBC (deprecated)
	Server class ASEJDBC (deprecated)
	Server class IQJDBC (deprecated)

	Data integrity
	How your data can become invalid
	Integrity constraints
	How the contents of your database change
	Tools for maintaining data integrity
	SQL statements for implementing integrity constraints
	Column defaults
	Creation of column defaults
	Altering and dropping column defaults
	Working with column defaults
	Current date and time defaults
	The user ID defaults
	The AUTOINCREMENT default
	The GLOBAL AUTOINCREMENT default
	The NEWID default
	The NULL default
	String and number defaults
	Constant expression defaults

	Table and column constraints
	CHECK constraints on columns
	CHECK constraints on tables
	Column CHECK constraints that are inherited from domains
	Managing constraints
	Managing UNIQUE constraints
	Alter and drop CHECK constraints

	Domains
	Creating domains
	Dropping domains

	Entity and referential integrity
	Entity integrity
	If a client application breaches entity integrity
	Primary keys enforce entity integrity
	Referential integrity
	Referential cycles

	Foreign keys enforce referential integrity
	Loss of referential integrity
	If a client application breaches referential integrity
	Referential integrity actions
	Referential integrity checking
	Integrity checks on INSERT
	Integrity checks on DELETE or UPDATE

	Integrity rules in the system tables

	Transactions and isolation levels
	Transactions
	Concurrency
	Savepoints within transactions
	Isolation levels and consistency
	Snapshot isolation
	Enabling snapshot isolation
	Snapshot isolation example
	Update conflicts and snapshot isolation

	Typical types of inconsistency
	Cursor instability

	Set the isolation level
	Isolation levels in ODBC-enabled applications
	Changes to isolation levels within a transaction

	Viewing the isolation level

	Transaction blocking and deadlock
	Transaction blocking
	The blocking option
	Deadlock
	Determining who is blocked
	Viewing deadlocks from Sybase Central

	How locking works
	Objects that can be locked
	How to obtain information about locks
	Schema locks
	Row locks
	Read locks
	Write locks
	Intent locks

	Table locks
	Shared table locks
	Intent to write table locks
	Exclusive locks

	Position locks
	Phantom locks
	Insert locks

	Locking conflicts
	Locks during queries
	Locks during inserts
	Locks during updates
	Locks during deletes
	Lock duration

	Guidelines for choosing isolation levels
	Serializable schedules
	Typical transactions at various isolation levels
	Concurrency improvement at isolation levels 2 and 3
	Reducing the impact of locking

	Isolation level tutorials
	Tutorial: Understanding dirty reads
	Tutorial: Understanding non-repeatable reads
	Lesson 1: Creating non-repeatable reads
	Lesson 2: Avoiding non-repeatable reads

	Tutorial: Understanding phantom rows
	Lesson 1: Creating phantom rows
	Lesson 2: Avoiding phantom rows

	Tutorial: Understanding phantom locks

	Primary key generation and concurrency
	Use of a sequence to generate unique values
	Creating sequences
	Altering sequences
	Dropping sequences

	Data definition statements and concurrency
	Summary

	The SQL Anywhere debugger
	Requirements for using the debugger
	Tutorial: Getting started with the debugger
	Lesson 1: Connecting to a database and starting the debugger
	Lesson 2: Debugging a stored procedure

	Breakpoints
	Setting breakpoints
	Changing the status of a breakpoint
	Editing breakpoint conditions

	Variables
	Viewing variable values
	Global variables
	Displaying the call stack

	Connection debugging

	Index

