
QAnywhere™

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Copyright © 2010 iAnywhere Solutions, Inc. Portions copyright © 2010 Sybase, Inc. All rights reserved.

This documentation is provided AS IS, without warranty or liability of any kind (unless provided by a separate written agreement between
you and iAnywhere).

You may use, print, reproduce, and distribute this documentation (in whole or in part) subject to the following conditions: 1) you must
retain this and all other proprietary notices, on all copies of the documentation or portions thereof, 2) you may not modify the
documentation, 3) you may not do anything to indicate that you or anyone other than iAnywhere is the author or source of the documentation.

iAnywhere®, Sybase®, and the marks listed at http://www.sybase.com/detail?id=1011207 are trademarks of Sybase, Inc. or its subsidiaries.
® indicates registration in the United States of America.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

http://www.sybase.com/detail?id=1011207

Contents

About this book ... vii

About the SQL Anywhere documentation ... vii

Introducing QAnywhere technology .. 1

What QAnywhere does .. 2
QAnywhere architecture ... 3
QAnywhere message delivery .. 8
Deciding between SQL Anywhere and UltraLite ... 9
QAnywhere 12 plug-in ... 9
Quick start to QAnywhere ... 10

QAnywhere messages .. 13

Message headers ... 13
Message properties ... 13
Understanding destinations ... 14

QAnywhere message stores ... 17

Local message stores ... 17
Server message stores ... 21
Client message stores ... 23

Setting up QAnywhere messaging .. 29

Setting up server-side components ... 29
Setting up client-side components .. 32
Using push notifications ... 32
Setting up a failover mechanism .. 36

Introduction to the QAnywhere agent ... 39

Message transmission policies .. 39

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 iii

Transmission rules .. 43
Delete rules .. 44
Starting the QAnywhere agent ... 44
Deploying the QAnywhere Agent ... 46
Determining when message transmission should occur on the client 46
Dealing with unreliable networks ... 47

Writing QAnywhere client applications ... 49

Introduction to the QAnywhere interfaces .. 49
Quick start to writing a client application ... 51
Initializing a QAnywhere API .. 52
QAnywhere message addresses .. 58
Sending QAnywhere messages ... 61
Canceling QAnywhere messages .. 67
Receiving QAnywhere messages .. 68
Reading very large messages .. 73
Browsing QAnywhere messages ... 73
Handling QAnywhere exceptions ... 77
Shutting down QAnywhere ... 80
Multi-threading considerations .. 81
QAnywhere manager configuration properties .. 81

QAnywhere standalone client .. 87

Understanding the standalone client message store 87
Deploying the standalone client ... 88
Standalone client API .. 88

Mobile web services .. 91

Setting up mobile web services ... 91
Running the iAnywhere WSDL compiler ... 92
Writing mobile web service applications .. 94
Compiling and running mobile web service applications 99
Making web service requests ... 100

QAnywhere™

iv Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Mobile web service example ... 103

Deploying QAnywhere applications .. 113

Writing secure messaging applications .. 117

Creating a secure client message store .. 117
Encrypting the communication stream ... 118
Using password authentication with MobiLink .. 119
Securing server management requests .. 119
Adding users with the MobiLink user authentication utility 120
Security with the Relay Server ... 120

Administering a server message store .. 121

Transmission rules .. 121
Managing the message archive .. 122
Using server management requests .. 123

Administering a client message store ... 125

Monitoring QAnywhere clients ... 125
Monitoring client properties ... 125
Managing client message store properties ... 125

Destination aliases .. 127

Creating destination aliases ... 127

Connectors ... 129

JMS connectors ... 129
Setting up JMS connectors .. 129
Sending a QAnywhere message to a JMS connector 132
Sending a message from a JMS connector to a QAnywhere client 133
Web service connectors ... 137
Tutorial: Using JMS connectors ... 140

QAnywhere™

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 v

Server management requests .. 145

Writing server management requests ... 146
Administering the server message store with server management
requests .. 148
Administering connectors with server management requests 150
Setting server properties with a server management request 159
Specifying transmission rules with a server management request 160
Creating destination aliases with a server management request 161
Monitoring QAnywhere ... 163

Tutorial: Exploring TestMessage ... 169

Lesson 1: Start MobiLink with messaging .. 169
Lesson 2: Run the TestMessage application .. 171
Lesson 3: Send a message ... 173
Lesson 4: Explore the TestMessage client source code 174
Tutorial cleanup ... 178

QAnywhere reference .. 179

QAnywhere .NET API reference for clients ... 179
QAnywhere .NET API reference for web services .. 306
QAnywhere C++ API reference for clients ... 354
QAnywhere Java API reference for clients ... 467
QAnywhere Java API reference for web services .. 586
QAnywhere SQL API reference .. 619
Message headers and properties ... 656
Server management request reference ... 665
QAnywhere Agent utilities reference ... 673
QAnywhere properties .. 717
QAnywhere transmission and delete rules ... 733

Index ... 745

QAnywhere™

vi Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

About this book
This book describes QAnywhere, which is a messaging platform for mobile, wireless, desktop, and laptop
clients.

About the SQL Anywhere documentation
The complete SQL Anywhere documentation is available in four formats:

● DocCommentXchange DocCommentXchange is a community for accessing and discussing SQL
Anywhere documentation on the web.

To access the documentation, go to http://dcx.sybase.com.

● HTML Help On Windows platforms, the HTML Help contains the complete SQL Anywhere
documentation, including the books and the context-sensitive help for SQL Anywhere tools.

To access the documentation, choose Start » Programs » SQL Anywhere 12 » Documentation »
HTML Help (English).

● Eclipse On Unix platforms, the complete Help is provided in Eclipse format. To access the
documentation, run sadoc from the bin32 or bin64 directory of your SQL Anywhere installation.

● PDF The complete set of SQL Anywhere books is provided as a set of Portable Document Format
(PDF) files. You must have a PDF reader to view information.

To access the PDF documentation on Windows operating systems, choose Start » Programs » SQL
Anywhere 12 » Documentation » PDF (English).

To access the PDF documentation on Unix operating systems, use a web browser to open /documentation/
en/pdf/index.html under the SQL Anywhere installation directory.

Documentation conventions
This section lists the conventions used in this documentation.

Operating systems
SQL Anywhere runs on a variety of platforms. Typically, the behavior of the software is the same on all
platforms, but there are variations or limitations. These are commonly based on the underlying operating
system (Windows, Unix), and seldom on the particular variant (IBM AIX, Windows Mobile) or version.

To simplify references to operating systems, the documentation groups the supported operating systems
as follows:

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 vii

http://dcx.sybase.com/

● Windows The Microsoft Windows family includes platforms that are used primarily on server,
desktop, and laptop computers, as well as platforms used on mobile devices. Unless otherwise
specified, when the documentation refers to Windows, it refers to all supported Windows-based
platforms, including Windows Mobile.

Windows Mobile is based on the Windows CE operating system, which is also used to build a variety
of platforms other than Windows Mobile. Unless otherwise specified, when the documentation refers
to Windows Mobile, it refers to all supported platforms built using Windows CE.

● Unix Unless otherwise specified, when the documentation refers to Unix, it refers to all supported
Unix-based platforms, including Linux and Mac OS X.

For the complete list of platforms supported by SQL Anywhere, see “Supported platforms” [SQL
Anywhere 12 - Introduction].

Directory and file names
Usually references to directory and file names are similar on all supported platforms, with simple
transformations between the various forms. In these cases, Windows conventions are used. Where the
details are more complex, the documentation shows all relevant forms.

These are the conventions used to simplify the documentation of directory and file names:

● Uppercase and lowercase directory names On Windows and Unix, directory and file names
may contain uppercase and lowercase letters. When directories and files are created, the file system
preserves letter case.

On Windows, references to directories and files are not case sensitive. Mixed case directory and file
names are common, but it is common to refer to them using all lowercase letters. The SQL Anywhere
installation contains directories such as Bin32 and Documentation.

On Unix, references to directories and files are case sensitive. Mixed case directory and file names are
not common. Most use all lowercase letters. The SQL Anywhere installation contains directories such
as bin32 and documentation.

The documentation uses the Windows forms of directory names. You can usually convert a mixed
case directory name to lowercase for the equivalent directory name on Unix.

● Slashes separating directory and file names The documentation uses backslashes as the
directory separator. For example, the PDF form of the documentation is found in install-dir
\Documentation\en\PDF (Windows form).

On Unix, replace the backslash with the forward slash. The PDF documentation is found in install-dir/
documentation/en/pdf.

● Executable files The documentation shows executable file names using Windows conventions,
with a suffix such as .exe or .bat. On Unix, executable file names have no suffix.

For example, on Windows, the network database server is dbsrv12.exe. On Unix, it is dbsrv12.

About this book

viii Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● install-dir During the installation process, you choose where to install SQL Anywhere. The
environment variable SQLANY12 is created and refers to this location. The documentation refers to
this location as install-dir.

For example, the documentation may refer to the file install-dir/readme.txt. On Windows, this is
equivalent to %SQLANY12%\readme.txt. On Unix, this is equivalent to $SQLANY12/readme.txt or $
{SQLANY12}/readme.txt.

For more information about the default location of install-dir, see “SQLANY12 environment
variable” [SQL Anywhere Server - Database Administration].

● samples-dir During the installation process, you choose where to install the samples included with
SQL Anywhere. The environment variable SQLANYSAMP12 is created and refers to this location.
The documentation refers to this location as samples-dir.

To open a Windows Explorer window in samples-dir, choose Start » Programs » SQL Anywhere
12 » Sample Applications And Projects.

For more information about the default location of samples-dir, see “SQLANYSAMP12 environment
variable” [SQL Anywhere Server - Database Administration].

Command prompts and command shell syntax
Most operating systems provide one or more methods of entering commands and parameters using a
command shell or command prompt. Windows command prompts include Command Prompt (DOS
prompt) and 4NT. Unix command shells include Korn shell and bash. Each shell has features that extend
its capabilities beyond simple commands. These features are driven by special characters. The special
characters and features vary from one shell to another. Incorrect use of these special characters often
results in syntax errors or unexpected behavior.

The documentation provides command line examples in a generic form. If these examples contain
characters that the shell considers special, the command may require modification for the specific shell.
The modifications are beyond the scope of this documentation, but generally, use quotes around the
parameters containing those characters or use an escape character before the special characters.

These are some examples of command line syntax that may vary between platforms:

● Parentheses and curly braces Some command line options require a parameter that accepts
detailed value specifications in a list. The list is usually enclosed with parentheses or curly braces. The
documentation uses parentheses. For example:

-x tcpip(host=127.0.0.1)

Where parentheses cause syntax problems, substitute curly braces:

-x tcpip{host=127.0.0.1}

If both forms result in syntax problems, the entire parameter should be enclosed in quotes as required
by the shell:

-x "tcpip(host=127.0.0.1)"

About the SQL Anywhere documentation

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 ix

● Semicolons On Unix, semicolons should be enclosed in quotes.

● Quotes If you must specify quotes in a parameter value, the quotes may conflict with the
traditional use of quotes to enclose the parameter. For example, to specify an encryption key whose
value contains double-quotes, you might have to enclose the key in quotes and then escape the
embedded quote:

-ek "my \"secret\" key"

In many shells, the value of the key would be my "secret" key.

● Environment variables The documentation refers to setting environment variables. In Windows
shells, environment variables are specified using the syntax %ENVVAR%. In Unix shells, environment
variables are specified using the syntax $ENVVAR or ${ENVVAR}.

Contacting the documentation team
We would like to receive your opinions, suggestions, and feedback on this Help.

You can leave comments directly on help topics using DocCommentXchange. DocCommentXchange
(DCX) is a community for accessing and discussing SQL Anywhere documentation. Use
DocCommentXchange to:

● View documentation

● Check for clarifications users have made to sections of documentation

● Provide suggestions and corrections to improve documentation for all users in future releases

Go to http://dcx.sybase.com.

Finding out more and requesting technical support

Newsgroups
If you have questions or need help, you can post messages to the Sybase iAnywhere newsgroups listed below.

When you write to one of these newsgroups, always provide details about your problem, including the
build number of your version of SQL Anywhere. You can find this information by running the following
command: dbeng12 -v.

The newsgroups are located on the forums.sybase.com news server.

About this book

x Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

http://dcx.sybase.com/

The newsgroups include the following:

● sybase.public.sqlanywhere.general
● sybase.public.sqlanywhere.linux
● sybase.public.sqlanywhere.mobilink
● sybase.public.sqlanywhere.product_futures_discussion
● sybase.public.sqlanywhere.replication
● sybase.public.sqlanywhere.ultralite
● ianywhere.public.sqlanywhere.qanywhere

For web development issues, see http://groups.google.com/group/sql-anywhere-web-development.

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information, or ideas on its newsgroups, nor
is iAnywhere Solutions obliged to provide anything other than a systems operator to monitor the service
and ensure its operation and availability.

iAnywhere Technical Advisors, and other staff, assist on the newsgroup service when they have time.
They offer their help on a volunteer basis and may not be available regularly to provide solutions and
information. Their ability to help is based on their workload.

Developer Centers
The SQL Anywhere Tech Corner gives developers easy access to product technical documentation. You
can browse technical white papers, FAQs, tech notes, downloads, techcasts and more to find answers to
your questions as well as solutions to many common issues. See http://www.sybase.com/developer/library/
sql-anywhere-techcorner.

The following table contains a list of the developer centers available for use on the SQL Anywhere Tech
Corner:

Name URL Description

SQL Anywhere .NET Developer Center www.sybase.com/de-
veloper/library/sql-
anywhere-techcorner/
microsoft-net

Get started and get
answers to specific
questions regarding
SQL Anywhere
and .NET develop-
ment.

PHP Developer Center www.sybase.com/de-
veloper/library/sql-
anywhere-techcorner/
php

An introduction to us-
ing the PHP (PHP
Hypertext Preproces-
sor) scripting lan-
guage to query your
SQL Anywhere data-
base.

About the SQL Anywhere documentation

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 xi

news://forums.sybase.com/sybase.public.sqlanywhere.general
news://forums.sybase.com/sybase.public.sqlanywhere.linux
news://forums.sybase.com/sybase.public.sqlanywhere.mobilink
news://forums.sybase.com/sybase.public.sqlanywhere.product_futures_discussion
news://forums.sybase.com/sybase.public.sqlanywhere.replication
news://forums.sybase.com/sybase.public.sqlanywhere.ultralite
news://forums.sybase.com/ianywhere.public.sqlanywhere.qanywhere
http://groups.google.com/group/sql-anywhere-web-development
http://www.sybase.com/developer/library/sql-anywhere-techcorner
http://www.sybase.com/developer/library/sql-anywhere-techcorner
http://www.sybase.com/developer/library/sql-anywhere-techcorner/microsoft-net
http://www.sybase.com/developer/library/sql-anywhere-techcorner/microsoft-net
http://www.sybase.com/developer/library/sql-anywhere-techcorner/microsoft-net
http://www.sybase.com/developer/library/sql-anywhere-techcorner/microsoft-net
http://www.sybase.com/developer/library/sql-anywhere-techcorner/php
http://www.sybase.com/developer/library/sql-anywhere-techcorner/php
http://www.sybase.com/developer/library/sql-anywhere-techcorner/php
http://www.sybase.com/developer/library/sql-anywhere-techcorner/php

Name URL Description

SQL Anywhere Windows Mobile Developer Center www.sybase.com/de-
veloper/library/sql-
anywhere-techcorner/
windows-mobile

Get started and get
answers to specific
questions regarding
SQL Anywhere and
Windows Mobile de-
velopment.

About this book

xii Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

http://www.sybase.com/developer/library/sql-anywhere-techcorner/windows-mobile
http://www.sybase.com/developer/library/sql-anywhere-techcorner/windows-mobile
http://www.sybase.com/developer/library/sql-anywhere-techcorner/windows-mobile
http://www.sybase.com/developer/library/sql-anywhere-techcorner/windows-mobile

Introducing QAnywhere technology
QAnywhere helps you develop application-to-application messaging for mobile devices. Application-to-
application messaging permits communication between custom programs running on mobile or wireless
devices and a centrally-located server application.

Using store-and-forward technology, QAnywhere provides secure, assured message delivery for remote
and mobile applications. Because QAnywhere automatically handles the challenges of slow and
unreliable networks, you can concentrate on application functionality instead of issues surrounding
connectivity, communication, and security. QAnywhere store-and-forward technology ensures that your
applications are always available, even when a network connection is not.

QAnywhere provides communication in occasionally-connected environments. It handles the challenges
of wireless networks, such as slow speed, spotty geographic coverage, and dropped network connections.
The store-and-forward nature of QAnywhere messaging means that messages can be constructed even
when the destination application is not reachable over the network; the message is delivered when the
network becomes available.

QAnywhere messages are exchanged via a central server, so that the sender and recipient of a message
never have to be connected to the network at the same time.

QAnywhere has the following additional features:

● QAnywhere can protect proprietary or sensitive information by encrypting all messages sent over
public networks.

● You can customize the delivery of messages using transmission rules so that, for example, large low-
priority messages are transmitted during off-peak hours.

● QAnywhere messages can be transported over TCP/IP, HTTP, or HTTPS protocols. They can also be
delivered from a Windows Mobile handheld device by Microsoft ActiveSync. The message itself is
independent of the network protocol, and can be received by an application that communicates over a
different network.

● QAnywhere compresses data sent between mobile applications and enterprise servers.

● QAnywhere provides a C++, Java, .NET, and SQL API to provide solutions to developers with
different skill sets.

● QAnywhere permits seamless communication with other messaging systems that have a JMS
interface. This allows integration with Java EE applications.

● QAnywhere includes a mobile web services interface that helps you create reliable mobile
applications based on enterprise web services.

QAnywhere is built on MobiLink synchronization technology.

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1

What QAnywhere does
QAnywhere provides the following application-to-application features and components.

● QAnywhere API The object-oriented QAnywhere API provides the infrastructure to build
messaging applications for Windows desktop and Windows Mobile devices. The QAnywhere API is
available in Java, C++, .NET, and SQL.

● Store-and-forward QAnywhere applications store messages locally until a connection between the
client and the server is available for data transmission.

● Complements data synchronization QAnywhere applications use relational databases as a
temporary message store. The relational database ensures that the message store has security, transaction-
based computing, and the other benefits of relational databases.

The use of SQL Anywhere relational databases as message stores makes it easy to use QAnywhere
together with a data synchronization solution. Both use MobiLink synchronization as the underlying
mechanism for exchanging information between client and server.

● Integration with external messaging systems In addition to exchanging messages among
QAnywhere applications, you can integrate QAnywhere clients into external messaging systems that
support a JMS interface.

● Encryption Messages can be sent encrypted using transport-layer security. In addition, message
stores can be encrypted using simple encryption or any FIPS-approved AES algorithm.

● Compression Message content can be stored compressed using the popular ZLIB compression
library.

● Authentication You can authenticate QAnywhere clients using a built-in facility or through
custom authentication scripts (including existing authentication services used in your organization).

● Multiple networks QAnywhere works over any wired or wireless network that supports TCP/IP or
HTTP.

● Failover You can run multiple MobiLink servers so that there are alternate servers if one fails.

● Administration A QAnywhere application can browse and manipulate messages on the client and
server side.

● Multiple queues Support for multiple arbitrarily-named queues on client devices permits multiple
client applications to coexist on a single device. Applications can send and receive on any number of
queues. Messages can be sent between applications that are coexisting on the same device and
between applications on different devices.

● Server-initiated send and receive QAnywhere can push messages to client devices, allowing
client applications to implement message-driven logic.

● Transmission rules You can create rules that specify when message transmission should occur.

Introducing QAnywhere technology

2 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● Resumable downloads Large messages or groups of messages are sent to QAnywhere clients in
piecemeal fashion to minimize the retransmission of data during network failures.

● Guaranteed delivery QAnywhere guarantees the delivery of messages.

● Mobile web services Mobile web services help the transport of web service requests and
responses over QAnywhere.

QAnywhere architecture
This section explains the architecture of QAnywhere messaging applications. The discussion begins with
a simple messaging scenario and then progresses to more advanced scenarios.

Client applications send and receive messages using the QAnywhere API. Messages are queued in the
client message store. Message transmission is the exchange of messages between client message stores
through a central QAnywhere server message store.

The following typical messaging scenarios are supported by QAnywhere:

● Local application-to-application messaging For exchanging messages between applications
using a SQL Anywhere database as the local message store. Messages are transmitted between
applications via their connection to the database.

See

See “Simple messaging scenario” on page 5.

● Simple client/server messaging For exchanging messages among QAnywhere clients. Client
applications control when to transmit messages between the client and server message stores.

See “Simple messaging scenario” on page 5.

● Client/server messaging with push notifications For exchanging messages among
QAnywhere clients. In this scenario, the MobiLink server can initiate message transmission between
clients. This is done by exchanging messages between client and server message stores.

See “Scenario for messaging with push notifications” on page 6.

● Client/server messaging with external messaging systems For exchanging messages among
QAnywhere clients over an external system that supplies a JMS provider, such as BEA WebLogic or
Sybase EAServer.

See “Scenario for messaging with external messaging systems” on page 7.

Push notifications and external messaging systems can be used together, providing the most general solution.

QAnywhere architecture

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 3

Application-to-application messaging scenario
Application-to-application messaging consists of applications transmitting messages via a SQL Anywhere
database acting as a local message store. The messages are transmitted between applications through their
connection to the database. The following diagram illustrates a typical scenario where two applications
use a local message store to transmit messages between them.

This setup includes the following components:

● Local message store Messages are stored in the SQL Anywhere database. The database must be
set up as a local message store.

● QAnywhere Agent The QAnywhere Agent manages the transmission of messages. This process is
independent of QAnywhere applications.

See “Starting the QAnywhere agent” on page 44.

● QAnywhere application An application written using the QAnywhere C++, Java, or .NET API
makes method calls to send and receive messages. The basic object used by the client application is
the QAManager.

See “Writing QAnywhere client applications” on page 49.

Messages are sent and received by QAnywhere applications connected to the SQL Anywhere database.
Messages are not picked up until an application initiates a message transmission. QAnywhere applications
use policies to determine when to perform a message transmission. Policies include on-demand,
automatic, scheduled, and custom. The on-demand policy permits the user to control message
transmission. The automatic policy initiates a message transmission whenever a message to or from the
client is ready for delivery. The custom policy uses transmission rules to add further control over message
transmission.

Introducing QAnywhere technology

4 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See .

Simple messaging scenario

A simple QAnywhere messaging setup is illustrated in the following diagram. For simplicity, only a
single client is shown. However, a typical scenario has multiple clients with the server message store
existing to transmit messages between them.

This setup includes the following components:

● Server message store At the server, the messages are stored in a relational database. The
database must be set up as a MobiLink consolidated database, and may be any supported consolidated
database.

● Client message store The messages at each client are stored in a relational database. QAnywhere
supports SQL Anywhere and UltraLite databases. SQL Anywhere databases are recommended for
data synchronization applications. UltraLite databases are recommended for applications used
exclusively for storing and forwarding messages.

● QAnywhere server The QAnywhere server is a MobiLink server that is enabled for messaging.
MobiLink synchronization provides the transport for transmitting and tracking messages between
QAnywhere clients and the server. MobiLink provides security, authentication, encryption, and
flexibility. It also allows messaging to be combined with data synchronization.

QAnywhere architecture

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 5

To start the QAnywhere server, start the MobiLink server with the -m option. See “Starting
QAnywhere with MobiLink enabled” on page 29.

● QAnywhere Agent The QAnywhere Agent manages the transmission of messages on the client
side. This process is independent of QAnywhere client applications.

See “Starting the QAnywhere agent” on page 44.

● QAnywhere client application An application written using the QAnywhere C++, Java, or .NET
API makes method calls to send and receive messages. The basic object used by the client application
is the QAManager.

See “Writing QAnywhere client applications” on page 49.

Messages are sent and received by QAnywhere clients. Messages at the server are not picked up until the
client initiates a message transmission. QAnywhere clients use policies to determine when to perform a
message transmission. Policies include on demand, automatic, scheduled, and custom. The on demand
policy permits the user to control message transmission. The automatic policy initiates a message
transmission whenever a message to or from the client is ready for delivery. The custom policy uses
transmission rules to add further control over message transmission.

See “Determining when message transmission should occur on the client” on page 46.

Scenario for messaging with push notifications
A push notification is a special message delivered from the server to a QAnywhere client. The push
notification occurs when a message arrives at the server message store. The messaging server
automatically notifies the recipient client Listener of the push request. The client initiates message
transmission to receive messages waiting at the server or takes a custom action.

For more information about the client's response to a push notification, see “Determining when message
transmission should occur on the client” on page 46.

Push notifications introduce two extra components to the QAnywhere architecture. At the server, a
QAnywhere Notifier sends push notifications. At the client, a QAnywhere Listener receives these push
notifications and passes them on to the QAnywhere Agent.

If you do not use push notifications, messages are still transmitted from the server message store to the
client message store, but the transmission must be initiated at the client, such as by using a scheduled
transmission policy.

The architecture for messaging with push notifications is an extension of that described in “Simple
messaging scenario” on page 5. The following diagram shows this architecture:

Introducing QAnywhere technology

6 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The following components are added to the simple messaging scenario to enable push notification:

● QAnywhere Notifier The Notifier is the component of the MobiLink server that is used to deliver
push notifications.

The QAnywhere Notifier is a specially configured instance of the Notifier that sends push
notifications when a message is ready for delivery.

● Listener The Listener is a separate process that runs at the client. It receives push notifications and
passes them on to the QAnywhere Agent. QAnywhere Agent policies determine if push notifications
automatically cause message transmission.

See “Determining when message transmission should occur on the client” on page 46.

See also
● “Using push notifications” on page 32
● “Receiving messages asynchronously” on page 70
● “Introduction to server-initiated synchronization” [MobiLink - Server-Initiated Synchronization]

Scenario for messaging with external messaging systems
In addition to exchanging messages among QAnywhere applications, you can exchange messages with
systems that have a JMS interface using a specially configured client known as a connector. JMS is the
Java Message Service API for adding messaging capabilities to Java applications.

QAnywhere architecture

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 7

The external messaging system is set up to act like a special client. It has its own address and configuration.

The architecture for messaging with external messaging systems is an extension of the architecture
described in “Simple messaging scenario” on page 5. The following diagram shows this architecture:

The component that is added to the simple messaging scenario to enable messaging with an external
messaging system is as follows:

● QAnywhere JMS Connector The JMS Connector provides an interface between QAnywhere and
the external messaging system.

The JMS Connector is a special QAnywhere client that moves messages between QAnywhere and the
external JMS system.

See also
● “Connectors” on page 129
● “Tutorial: Using JMS connectors” on page 140

QAnywhere message delivery
Messages are sent from a client message store to a server message store, and then on to another client
message store. QAnywhere does this via queues: a message is put on a queue in the client message store;
when it is received by the server message store, it is put on a queue for delivery to one or more client
message stores; and when it is received by a client message store, it is put on a queue for pickup.

Introducing QAnywhere technology

8 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Once a message is sent, it gets delivered unless one of the following occurs:

● The message expires (only if an expiration is specified).

● The message is canceled via Sybase Central or via the cancelMessage API call.

● The device from which the message is sent is lost irretrievably before it can synchronize with the
server message store (or for some other reason, synchronization is impossible).

A message does not get delivered more than once. If an application successfully acknowledges or
commits the receipt of a message, then the same message is not delivered again. There is a possible
exception with JMS servers: in the event of the MobiLink server or JMS server crashing, there is a
possibility that a message could get delivered twice.

Deciding between SQL Anywhere and UltraLite
QAnywhere client applications can now use an UltraLite database as the client message store. This
provides a lighter-weight solution for pure messaging applications on mobile devices. A pure messaging
application means an application that uses store and forward messaging, but not data synchronization.

Some of the key advantages of UltraLite are:

● It has a smaller application footprint and does not require full SQL Anywhere installation.
● It has a smaller process footprint. QAnywhere Agent requires only 3 processes instead of 4 (uleng12,

dblsn, and qauagent instead of dbeng12, dbmlsync, dblsn, and qaagent).

UltraLite limitations
Keep in mind the following limitations of UltraLite when deciding between SQL Anywhere and UltraLite:

● There is no support for "ESCAPE" keyword in transmission rule condition syntax.
● There is limited support for property attributes. You can only use property attribute functionality with

the predefined property ias_Network. See “Custom client message store properties” on page 719.

Recommendation
UltraLite should always be used instead of SQL Anywhere when SQL Anywhere is not already installed.
SQL Anywhere is available for circumstances where you want to add messaging along side an already
implemented SQL Anywhere data synchronization solution. However, UltraLite is recommended in all
pure messaging environments.

QAnywhere 12 plug-in
The Sybase Central QAnywhere 12 plug-in helps you create and administer your QAnywhere application.
With the plug-in, you can:

● Create client and server message stores.

Deciding between SQL Anywhere and UltraLite

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 9

● Create and maintain configuration files for the QAnywhere Agent.

● Browse QAnywhere Agent log files.

● Create or modify destination aliases.

● Create JMS connectors and web service connectors.

● Create and maintain transmission rules files.

● Browse message stores remotely.

● Track messages.

To start the QAnywhere 12 plug-in

1. Start Sybase Central:

Choose Start » Programs » SQL Anywhere 12 » Administration Tools » Sybase Central.

2. Choose Connections » Connect With QAnywhere 12.

3. Specify an ODBC Data Source Name or ODBC Data Source File, and the User ID and Password
if required.

4. Click OK.

Quick start to QAnywhere
The following steps provide an overview of the tasks required to set up and run QAnywhere messaging.

To set up and run QAnywhere messaging

1. Set up a local application-to-application message store.

See

OR

Set up a server message store or use an existing MobiLink consolidated database.

See “Setting up the server message store” on page 22.

2. Start the MobiLink server with the -m option and a connection to the server message store.

See “Starting QAnywhere with MobiLink enabled” on page 29.

3. Set up client message stores. These are SQL Anywhere or UltraLite databases that are used to
temporarily store messages.

Introducing QAnywhere technology

10 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See “Setting up the client message store” on page 23.

4. For each client, write a messaging application.

See “Writing QAnywhere client applications” on page 49.

5. If you want to integrate with an external JMS messaging system, set up JMS messaging for QAnywhere.

See “Connectors” on page 129.

6. For each client, start the QAnywhere Agent with a connection to the local client message store.

See “Starting the QAnywhere agent” on page 44.

For information about setting up mobile web services, see “Mobile web services” on page 91.

Other resources for getting started
● “Tutorial: Exploring TestMessage” on page 169
● “Tutorial: Using JMS connectors” on page 140
● Sample applications are installed to samples-dir\QAnywhere. (For information about samples-dir, see

“Samples directory” [SQL Anywhere Server - Database Administration].)
● You can post questions on the QAnywhere newsgroup: ianywhere.public.sqlanywhere.qanywhere

Quick start to QAnywhere

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 11

news://forums.sybase.com/ianywhere.public.sqlanywhere.qanywhere

12

QAnywhere messages
QAnywhere messages consist of the following parts:

● headers
● properties
● content

Message properties can be referenced in transmission rules and delete rules or in your application.

The following sections describe message headers and properties, and how you can set them in
QAnywhere messages.

Notes
● Message headers, message properties, and message content cannot be altered after the message is sent.

● You can read message headers, message properties, and message content after a message is received.
If you are using the QAnywhere SQL API, these become unreadable after a commit or rollback occurs.

● The content is unreadable after acknowledgement or commit in all APIs.

Message headers
All QAnywhere messages support the same set of header fields. Header fields contain values that are used
by both clients and providers to identify and route messages. How you use the headers depends on the
type of client application you have.

QAnywhere supports the following predefined message headers:

● Message ID
● Message creation timestamp
● Reply-to address
● Message address
● Redelivered state of message
● Expiration of message
● Priority of message
● Message ID of a message for which this message is a reply

For details about message headers, see “Message headers” on page 656.

Message properties
Each message contains a built-in facility for supporting application-defined property values. These
message properties allow you to implement application-defined message filtering.

Message properties are name-value pairs that you can optionally insert into messages to provide structure.
For example, in the .NET API the predefined message property ias_Originator, identified by the constant

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 13

MessageProperties.ORIGINATOR, provides the message store ID that sent the message. Message
properties can be used in transmission rules to determine the suitability of a message for transmission.

There are two types of message property:

● Predefined message properties These message properties are always prefixed with ias_ or
IAS_. See “Predefined message properties” on page 659.

● Custom message properties These are message properties that you defined. You cannot prefix
them with ias_ or IAS_. See “Custom message properties” on page 661.

In either case, you access message store properties using get and set methods and pass the name of the
predefined or custom property as the first parameter. See “Managing message properties” on page 662.

Predefined message properties
Some message properties have been predefined for your convenience. Predefined properties can be read
but should not be set. The predefined message properties are:

● ias_Adapters
● ias_DeliveryCount
● ias_MessageType
● ias_RASNames
● ias_NetworkStatus
● ias_Originator
● ias_Status
● ias_StatusTime

For details about message properties, see “Message properties” on page 659.

Understanding destinations
With QAnywhere, messages are addressed to a destination. A destination always consists of an identifier
and a queue name, separated by a backslash (\). For example:

ianywhere.connector.tibco\SomeQueue
 DEV007\app_queue1
 SalesTeam\queue1

The meaning of the identifier before the backslash depends on whether the message is addressed to a JMS
application, destination alias, or a mobile application.

The first example illustrates the case where the message is addressed to a JMS application. In this case the
identifier is the ID of a JMS connector running in the MobiLink server. See “JMS
connectors” on page 129.

The second example illustrates the case where the message is addressed to a mobile application. In this
case, the identifier is a message store ID of a QAnywhere message store. See “Setting up the client
message store” on page 23 and “-id qaagent option” on page 679.

QAnywhere messages

14 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The third example illustrates the case where the message is addressed to a destination alias. In this case,
the identifier is a destination alias name. See “Destination aliases” on page 127.

The queue name in a destination refers to a queue defined in the JMS system when the identifier is a JMS
connector ID, and refers to a QAnywhere application queue when the identifier is either a message store
ID or a destination alias.

Note
QAnywhere destinations should always be specified using EN characters.

For more information on destinations and sending QAnywhere messages, see:

● “Sending QAnywhere messages” on page 61
● “Determining when message transmission should occur on the client” on page 46

Understanding destinations

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 15

16

QAnywhere message stores
A QAnywhere message store is a repository where message are temporarily stored. Messages can be
temporarily stored on the server in a server message store, on the client in a client message store, or on
the server in an archive message store, where they can be saved for a specified period of time.

For more information on message stores, see:

● “Server message stores” on page 21
● “Client message stores” on page 23

Local message stores
In a local message store configuration, applications are connected to a SQL Anywhere database acting as
a local message bus and messages are transmitted between applications via their connection to the database.

Setting up the local message store
The local message store requires that you install QAnywhere. QAnywhere is located under the
Synchronization and Messaging feature in the SQL Anywhere install program. In order to enable
messaging in your SQL Anywhere database, you must install the QAnywhere schema into your SQL
Anywhere database so that it can be used as a local message store. This is accomplished using the -sil
option of the QAnywhere Agent for SQL Anywhere. The -sil option instructs the Agent to initialize the
database as a local message store. The agent is simply used to initialize a local message store and is not
needed any further. All QAnywhere objects created in the database belong to the ml_qa_message_group
owner. Once your SQL Anywhere database has been initialized as a local message store, applications can
use the QAnywhere client API to exchange messages.

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 17

To create a local message store (.NET example)

1. Create a SQL Anywhere database. You can omit this step if you are going to use an existing SQL
Anywhere database.

dbinit localmsgstore.db

2. Install the QAnywhere schema into the SQL Anywhere database so that it can be used as a local
message bus:

qaagent -sil -c "dbf=localmsgstore.db;uid=dba;pwd=sql"

3. Create a sender application to put messages in the message store. For information on using the .NET
version of the QAnywhere client API, see “QAnywhere .NET API reference for clients” on page 179.

using System;
using System.IO;
using iAnywhere.QAnywhere.Client;
namespace sender
{
class sender
 {
 public static void Main() {
 try {
 // QAnywhere initialization
 QAManager mgr =
QAManagerFactory.Instance.CreateQAManager();
 // Be sure to set the DATABASE_TYPE property
 mgr.SetProperty("DATABASE_TYPE", "sqlanywhere");
 mgr.SetProperty("CONNECT_PARAMS",
"dbf=localmsgstore.db;uid=dba;pwd=sql");
 mgr.Open(AcknowledgementMode.IMPLICIT_ACKNOWLEDGEMENT);
 mgr.Start();
 // Create a text message
 QATextMessage msg = mgr.CreateTextMessage();
 msg.Text = "Sample text";
 // Queue the message
 mgr.PutMessage("dbqueue", msg);
 // QAnywhere finalization
 mgr.Stop();
 mgr.Close();
 } catch(Exception exc) {
 Console.WriteLine(exc.Message);
 }
 }
 }
}

4. Compile the program using the following command line. You must have Visual Studio installed on
your machine.

csc /reference:"%SQLANY12%\Assembly\v2\iAnywhere.QAnywhere.Client.dll"
sender.cs

5. Create a receiver application to retrieve messages from the message store. For information on using
the .NET version of the QAnywhere client API, see “QAnywhere .NET API reference for
clients” on page 179.

using System;
using System.IO;

QAnywhere message stores

18 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

using iAnywhere.QAnywhere.Client;
namespace receiver
{
class receiver
{
public static void Main() {
try {
// QAnywhere initialization
QAManager mgr = QAManagerFactory.Instance.CreateQAManager();
// Be sure to set the DATABASE_TYPE property
mgr.SetProperty("DATABASE_TYPE", "sqlanywhere");
mgr.SetProperty("CONNECT_PARAMS",
"dbf=localmsgstore.db;uid=dba;pwd=sql");
mgr.Open(AcknowledgementMode.IMPLICIT_ACKNOWLEDGEMENT);
mgr.Start();
// Get the message
QATextMessage msg = (QATextMessage)mgr.GetMessage("dbqueue");
// Display the text
Console.WriteLine(msg.Text);
// QAnywhere finalization
mgr.Stop();
mgr.Close();
} catch(Exception exc) {
Console.WriteLine(exc.Message);
}
}
}
}

6. Compile the program using the following command line. You must have Visual Studio installed on
your machine.

csc /reference:"%SQLANY12%\Assembly\v2\iAnywhere.QAnywhere.Client.dll"
receiver.cs

7. Start the SQL Anywhere database:

dbsrv12 localmsgstore.db

8. Run the sender application:

sender

9. Run the receiver application:

receiver

The string "Sample Text" is displayed.

To create a local message store (Java example)

1. Create a SQL Anywhere database. You can omit this step if you are going to use an existing SQL
Anywhere database.

dbinit localmsgstore.db

2. Install the QAnywhere schema into the SQL Anywhere database so that it can be used as a message bus.

qaagent -sil -c "dbf=localmsgstore.db;uid=dba;pwd=sql"

Local message stores

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 19

3. Create a sender application to put messages in the message store. For information on using the .NET
version of the QAnywhere client API, see “QAnywhere Java API reference for clients” on page 467.

import java.util.*;
import ianywhere.qanywhere.client.*;
public class sender
{
public static void main(Strings [] args) {
try {
// QAnywhere initialization
QAManager mgr = QAManagerFactory.getInstance().createQAManager();
// Be sure to specify the DATABASE_TYPE
mgr.setProperty("DATABASE_TYPE", "sqlanywhere");
mgr.setProperty("CONNECT_PARAMS",
"dbf=localmsgstore.db;uid=dba;pwd=sql");
mgr.open(AcknowledgementMode.IMPLICIT_ACKNOWLEDGEMENT);
mgr.start();
// Create a text message
QATextMessage msg = mgr.createTextMessage();
msg.setText("Sample text");
// Queue the message
mgr.putMessage("dbqueue", msg);
// QAnywhere finalization
mgr.stop();
mgr.close();
} catch(Exception exc) {
System.out.println(exc.getMessage());
}
}
}

4. Compile the program using the following command line. You must have the Java JDK installed on
your machine.

javac -cp "%SQLANY12%\java\qaclient.jar" sender.java

5. Create a receiver application to retrieve messages from the message store. For information on using
the Java version of the QAnywhere client API, see “QAnywhere Java API reference for
clients” on page 467.

import java.util.*;
import ianywhere.qanywhere.client.*;
public class receiver
{
public static void main(Strings [] args) {
try {
// QAnywhere initialization
QAManager mgr = QAManagerFactory.getInstance().createQAManager();
// Be sure to set the DATABASE_TYPE property.
mgr.setProperty("DATABASE_TYPE", "sqlanywhere");
mgr.setProperty("CONNECT_PARAMS",
"dbf=localmsgstore.db;uid=dba;pwd=sql");
mgr.open(AcknowledgementMode.IMPLICIT_ACKNOWLEDGEMENT);
mgr.start();
// Get the message
QATextMessage msg = (QATextMessage)mgr.getMessage("dbqueue");
// Display the text
System.out.println(msg.getText());
// QAnywhere finalization
mgr.stop();
mgr.close();

QAnywhere message stores

20 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

} catch(Exception exc) {
System.out.println(exc.getMessage());
}
}
}

6. Compile the program using the following command line. You must have the Java JDK installed on
your machine.

javac -cp "%SQLANY12%\java\qaclient.jar" receiver.java

7. Start the SQL Anywhere database:

dbsrv12 localmsgstore.db

8. Run the sender application:

java -cp ".\;%SQLANY12%\java\qaclient.jar;%SQLANY12%\java\jodbc.jar"
sender

9. Run the receiver application:

java -cp ".\;%SQLANY12%\java\qaclient.jar;%SQLANY12%\java\jodbc.jar"
receiver

The string "Sample Text" is displayed.

Cleaning the message store By default, messages that have reached a final state remain in the
message store. After a period of use, messages accumulate causing your database to grow. When you
initialized your database for use as a message bus, a stored procedure called
ml_qa_clearreceivedmessages was created. This stored procedure will delete messages that have reached
a final state from the message store. A convenient way to manage the growth of messages in your
database is to create a database event that, when triggered, invokes the ml_qa_clearreceivedmesssages
stored procedure. For example, the following database event causes messages in a final state to be deleted
every day at midnight:

CREATE EVENT message_cleanup
SCHEDULE
START TIME '12:00AM' EVERY 24 HOURS
HANDLER begin call ml_qa_message_group.ml_qa_clearreceivedmessages() end

Viewing Messages Use Sybase Central to view messages in your SQL Anywhere database by
connecting to a client store using the QAnywhere Plug-in.

Server message stores
The server message store is a relational database on the server that temporarily stores messages until they
are transmitted to a client message store, web service or JMS system. Messages are exchanged between
clients via the server message store.

A server message store is a MobiLink consolidated database and can be any RDBMS that MobiLink
supports, with the exception of MySQL. You can create a new database for this purpose, or use an
existing database.

Server message stores

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 21

Setting up the server message store
When setting up the server message store, an archive message store is created. The archive message store
is a set of tables that coexist with the server message store, and stores all messages waiting to be deleted.
A regularly executed system process transports messages between the message stores by removing all
messages in the server message store that have reached a final state and then inserting them into the
archive message store. Messages remain in the archive message store until deleted by a server delete rule.
Usage of the archive message store improves the performance of the server message store by minimizing
the amount of messages that need to be filtered during synchronization. See “Archive message store
requests” on page 147.

To set up a database to use as a server message store, you run a setup script. The consolidated database
should be configured for case insensitive comparisons and string operations. If you use the Create
Synchronization Model Wizard to create your consolidated database, the setup is done for you.

See “Setting up a consolidated database” [MobiLink - Server Administration].

For information about creating SQL Anywhere databases, see “Initialization utility (dbinit)” [SQL
Anywhere Server - Database Administration].

If you are using a SQL Anywhere database that was created before version 10.0.0, it must be upgraded.

For information about upgrading your database, see “Upgrading to SQL Anywhere 12” [SQL Anywhere
12 - Changes and Upgrading].

Note
The easiest way to create and maintain your server message store is in Sybase Central. From the
QAnywhere 12 plug-in task pane, choose Server Message Store.

Example
To create a SQL Anywhere database called qanytest.db, run the following command:

dbinit -s qanytest.db

Run the MobiLink setup script on the database:

%SQLANY12%\MobiLink\setup\syncsa.sql

This database is ready to use as a server message store.

Introduction to Server Management Requests
A QAnywhere client application can send special messages to the server called server management
requests. These messages contain content that is formatted as XML and are addressed to the QAnywhere
system queue. They require a special authentication string. Server management requests can perform a
variety of functions, such as querying for active clients, querying message store properties, and querying
messages.

QAnywhere message stores

22 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

For details about the functions you can perform with server management requests and how to use them,
see “Writing server management requests” on page 146.

Client message stores
The client message store can be a SQL Anywhere or UltraLite database on the remote device. SQL
Anywhere databases are recommended for data synchronization applications. UltraLite databases are
recommended for applications used exclusively for storing and forwarding messages. The application
connects to this message store using the QAnywhere API. When using an UltraLite database as a client
message store, the QAnywhere API accesses the store using the UltraLite Engine, and not the in-process
UltraLite runtime.

The client message store must be used exclusively for QAnywhere applications. The QAnywhere message
store database should not be accessed by any application other than QAnywhere applications using the
QAnywhere API. However, you can run another database within the database server. This is useful if you
have a QAnywhere client message store and a MobiLink synchronization client running on the same device.

Using a relational database as a message store provides a secure and high-performance store.

See “Creating a secure client message store” on page 117.

Setting up the client message store

To create a client message store

1. Create a SQL Anywhere or UltraLite database.

See “Creating a SQL Anywhere database” [SQL Anywhere Server - Database Administration].

2. Initialize each client message store by running the QAnywhere Agent or the QAnywhere UltraLite
Agent with the following options:

● -c option to specify a connection string to the database you just created.

See “-c qaagent option” on page 676.

● -si option to initialize the database. The -si option creates a default database user and
password. The agent shuts down after initializing the database.

When you initialize QAnywhere by running qaagent with the -si option, the QAnywhere Agent
creates client system tables that are required for QAnywhere messaging. QAnywhere also uses
server system tables. These are created when you install MobiLink setup. All QAnywhere system
table names begin ml_qa_ and cannot be altered.

See “-si qaagent option” on page 690.

● -id option optionally, if you want to pre-assign a client message store ID.

Client message stores

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 23

See “Creating client message store IDs” on page 24 and “-id qaagent option” on page 679.

● -mu option optionally, if you want to create a user name to use for authentication with the
MobiLink server. If you do not use -mu at this point, you can specify it any time you start the
QAnywhere Agent and the name is created if it does not already exist.

3. If you used the -mu option to create a user name, you need to add the name to the server message
store. This can be done automatically using the mlsrv12 -zu+ option, or can be done in other ways.

See “Registering QAnywhere client user names” on page 30.

4. Change the default passwords and take other steps to ensure that the client message store is secure.

See “Creating a secure client message store” on page 117.

You can also upgrade a client message store that was created in a previous version of QAnywhere.

See “-su qaagent option” on page 692 and “-sur qaagent option” on page 693.

Note
The easiest way to create and maintain your client message store is in Sybase Central. From the
QAnywhere 12 plug-in task pane, choose Client Message Store.

Creating client message store IDs
If you do not specify a client message store ID, then the first time you run qaagent after you run qaagent
with -si, the device name is assigned as the client message store ID. The ID appears in the QAnywhere
Agent window.

You may find it convenient to specify an ID manually. You can do so in the following ways:

● Specify the ID with the qaagent -id option when you use the qaagent -si option to initialize the client
message store.

● Specify the ID with the -id option the first time you run qaagent after you initialize the client message
store.

See “QAnywhere Agent utilities reference” on page 673.

Client message store IDs must differ by more than case. For example, don't have two message store IDs
called AAA and aaa.

The client message store ID has a limit of 128 characters.

Transaction logs
It is recommended that you use a transaction log, both because a SQL Anywhere database runs most
efficiently when using one and because transaction logs provide protection if there is database failure.
However, the transaction log can grow very large. For this reason, the QAnywhere Agent by default sets
the dbsrv12 -m option, which causes the contents of the transaction log to be deleted at checkpoints. This
is recommended. If you specify the StartLine parameter in the qaagent -c option, you should specify -m.

QAnywhere message stores

24 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Protecting your client message stores
For information about backup and recovery, see “Designing a backup and recovery plan” [SQL Anywhere
Server - Database Administration].

Example of creating a client message store
The following command creates a SQL Anywhere database called qanyclient.db. (The dbinit -i and -s
options are not required, but are good practice on small devices.)

dbinit -i -s qanyclient.db

The following command connects to qanyclient.db and initializes it as a QAnywhere client database:

qaagent -si -c "DBF=qanyclient.db"

See “Initialization utility (dbinit)” [SQL Anywhere Server - Database Administration] and “QAnywhere
Agent utilities reference” on page 673.

SQL Anywhere and UltraLite client differences
QAnywhere client applications can now use an UltraLite database as the client message store. This
provides a lighter-weight solution for pure messaging applications on mobile devices. A pure messaging
application means an application that uses store and forward messaging, but not data synchronization.

Some of the key advantages of UltraLite are:

● It has a smaller application footprint and does not require full SQL Anywhere installation.
● It has a smaller process footprint. QAnywhere Agent requires only 3 processes instead of 4 (uleng12,

dblsn, and qauagent instead of dbeng12, dbmlsync, dblsn, and qaagent).

Keep in mind the following limitations of UltraLite when deciding between SQL Anywhere and UltraLite:

● There is no support for "ESCAPE" keyword in transmission rule condition syntax.
● There is limited support for property attributes. You can only use property attribute functionality with

the predefined property ias_Network. See “Custom client message store properties” on page 719.

UltraLite should always be used rather than SQL Anywhere when SQL Anywhere is not already installed.
SQL Anywhere is available for circumstances where you want to add messaging along side an already
implemented SQL Anywhere data synchronization solution. However, UltraLite is recommended in all
pure messaging environments.

From an application perspective, the client API remains the same for UltraLite as for SQL Anywhere with
the following exception: the QAManager configuration properties should include the setting
DATABASE_TYPE=UltraLite for UltraLite message stores. If the property DATABASE_TYPE is not
set, the default is SQLAnywhere.

The client APIs supported for UltraLite are C# (for Microsoft .NET) and Java. For UltraLite, the C++ and
SQL APIs are not supported.

Client message stores

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 25

The other difference from an application perspective is that the QAnywhere Agent for UltraLite is
qauagent.exe. The QAnywhere Agent for UltraLite supports many of the same options as the QAnywhere
Agent, with the following exceptions:

● -sv is not applicable to UltraLite
● -pc[+|-] is not supported by qauagent
● -sur is not applicable to UltraLite
● -c connection parameters are restricted to those documented in “UltraLite connection parameters”

[UltraLite - Database Management and Reference]

In general, transmission rules are fully supported by the QAnywhere Agent for UltraLite. The one
limitation is the support for Property attributes. Transmission rules can only use the following attributes
of the predefined property ias_Network:

● ias_Network.Cost
● ias_Network.CommunicationAddress
● ias_Network.CommunicationType

See also
● “Custom client message store properties” on page 719
● “qauagent utility” on page 696

Client message store properties
There are two types of client message store property:

● Predefined message store properties These message store properties are always prefixed with
ias_ or IAS_.

● Custom message store properties These are message store properties that you define. You
cannot prefix them with ias_ or IAS_.

You can access client message store properties using the get and set methods defined in the appropriate
class and pass the name of the predefined or custom property as the first parameter.

See “Managing client message store properties” on page 125.

You can also use message store properties in transmission rules, delete rules, and message selectors. See:

● “QAnywhere transmission and delete rules” on page 733

QAnywhere message stores

26 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Predefined client message store properties
Several client message store properties have been predefined for your convenience. The predefined
message store properties are:

● ias_Adapters
● ias_MaxDeliveryAttempts
● ias_MaxDownloadSize
● ias_MaxUploadSize
● ias_Network
● ias_Network.Adapter
● ias_Network.RAS
● ias_Network.IP
● ias_Network.MAC
● ias_RASNames
● ias_StoreID
● ias_StoreInitialized
● ias_StoreVersion

For details about client message store predefined properties, see:

● “Predefined client message store properties” on page 718

Custom client message store properties
QAnywhere allows you to define your own client message store properties using the QAnywhere C++,
Java, SQL or .NET APIs. These properties are shared between applications connected to the same
message store. They are also synchronized to the server message store so that they are available to server-
side transmission rules for this client.

Client message store property names are case insensitive. You can use a sequence of letters, digits, and
underscores, but the first character must be a letter. The following names are reserved and may not be
used as message store property names:

● NULL
● TRUE
● FALSE
● NOT
● AND
● OR
● BETWEEN
● LIKE
● IN
● IS
● ESCAPE (SQL Anywhere message stores only)
● Any name beginning with ias_

Client message store properties can have attributes that you define. An attribute is defined by appending a
dot after the property name followed by the attribute name. The main use of this feature is to be able to
use information about your network in your transmission rules.

Client message stores

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 27

Limited support is provided for property attributes when using UltraLite as a client message store.
UltraLite message stores only support the predefined ias_Network property.

For more details about using customer client message store properties, see:

● “Using custom client message store property attributes” on page 719
● “Predefined client message store properties” on page 718

QAnywhere message stores

28 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Setting up QAnywhere messaging
The following sections describe how to set up QAnywhere messaging on the client and server, how to use
pus notifications, and how to set up a failover mechanism.

Setting up server-side components
Overview of setting up QAnywhere server-side components

1. Set up a server message store and start it. This can be any MobiLink consolidated database.

See “Setting up the server message store” on page 22.

2. Start mlsrv12 with the -m option and a connection to the server message store.

See “Starting QAnywhere with MobiLink enabled” on page 29.

3. Add client user names to the server message store.

See “Registering QAnywhere client user names” on page 30.

Note
The easiest way to create and maintain your server message store is in Sybase Central. From the
QAnywhere 12 plug-in task pane, choose Server Message Store.

Starting QAnywhere with MobiLink enabled
QAnywhere uses MobiLink synchronization to transport messages. The QAnywhere server is a MobiLink
server with messaging enabled. See “Setting up a consolidated database” [MobiLink - Server
Administration].

To run the QAnywhere server, start the MobiLink server (mlsrv12) with the following options:

● -c connection-string Specifies the connection string to connect to the server message store. This
is a required mlsrv12 option.

See “-c mlsrv12 option” [MobiLink - Server Administration].

● -m Enables QAnywhere messaging.

See “-m mlsrv12 option” [MobiLink - Server Administration].

You can also use other MobiLink server options to customize your operations. For more information, see
“mlsrv12 syntax” [MobiLink - Server Administration].

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 29

Note
If you are integrating with a JMS messaging system, there are other options you must specify when you
start the MobiLink server.

See “Starting the MobiLink server for JMS integration” on page 131.

Example
To start QAnywhere messaging when you are using the sample server message store (samples-dir
\QAnywhere\server\qanyserv.db), run the following command:

mlsrv12 -m -c "dsn=QAnywhere 12 Demo"

The QAnywhere sample server message store uses the following ODBC data source: QAnywhere 12
Demo.

Note
For information about samples-dir, see “Samples directory” [SQL Anywhere Server - Database
Administration].

Registering QAnywhere client user names

Each QAnywhere client message store has a unique ID that identifies it. In addition, the client message
store has a MobiLink user name that you can optionally use to authenticate your client message store with
the MobiLink server. You can specify a MobiLink user name with the qaagent -mu option, or if you do
not, one is created with the same name as your client message store ID.

You must register the MobiLink user name with the server message store. There are several methods for
doing this:

● Use the mluser utility.

See “MobiLink user authentication utility (mluser)” [MobiLink - Server Administration].

● Use the MobiLink 12 plug-in Sybase Central.

● Specify the -zu+ option with mlsrv12. In this case, any existing MobiLink users that have not been
added to the consolidated database are added when they first synchronize. This is useful during
development, but is not recommended for production environments.

See “-zu mlsrv12 option” [MobiLink - Server Administration].

For more information about MobiLink user names, see “Introduction to MobiLink users” [MobiLink -
Client Administration].

For more information about client message store IDs, see “-id qaagent option” on page 679.

Setting up QAnywhere messaging

30 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Setting properties for clients on the QAnywhere server
As a convenience, you can use the QAnywhere 12 plug-in to set properties for QAnywhere clients on the
QAnywhere server. When you do this, you need to add the client to the server. The first time you
synchronize to the client, the properties are downloaded.

To add a client user name using Sybase Central

1. Start Sybase Central:

a. Choose Start » Programs » SQL Anywhere 12 » Administration Tools » Sybase Central.

b. Choose Connections » Connect With QAnywhere 12.

c. Specify an ODBC Data Source Name or ODBC Data Source File, and the User ID and
Password if required. Click OK.

2. Choose File » New » Client.

3. Type the name of the client.

4. Click OK.

See also
● “Registering QAnywhere client user names” on page 30

Logging the QAnywhere server
The QAnywhere server is a MobiLink server with messaging enabled. The QAnywhere server log files
are MobiLink log files.

For information about MobiLink log files, see “Logging MobiLink server actions” [MobiLink - Server
Administration].

MobiLink server Log File Viewer
To view log files for the QAnywhere server, open Sybase Central and choose Tools » QAnywhere 12 »
MobiLink server Log File Viewer. You are prompted to choose a log file to view.

The Log Viewer reads information that is stored in MobiLink log files. It does not connect to the
MobiLink server or change the composition of log files.

The Log Viewer allows you to filter the information that you view. In addition, it provides statistics based
on the information in the log.

Using the Relay Server
To use a Relay Server for communication with the MobiLink server, configure the QAnywhere Agent to
use HTTP or HTTPS as the network protocol.

Setting up server-side components

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 31

For example:

qaagent -c
"dbf=mystore.db;server=mystore;dbn=mystore;uid=ml_qa_user;pwd=qanywhere"
 -x http(host=webserver01;port=80;url_suffix=/rs/client/rs_client.dll/
FarmName)

See also
● “Introduction to the Relay Server” [Relay Server]
● “Running the MobiLink server in a server farm” [MobiLink - Server Administration]

Setting up client-side components
Overview of setting up client-side components

1. Create a SQL Anywhere database and initialize it as a client message store.

See “Setting up the client message store” on page 23.

2. Write client applications.

See “Writing QAnywhere client applications” on page 49.

3. Start the QAnywhere Agent.

See “Starting the QAnywhere agent” on page 44.

Note
The easiest way to create and maintain your client message store is in Sybase Central. From the
QAnywhere 12 plug-in task pane, choose Client Message Store.

Using push notifications
A push notification is a special message delivered from the server message store to a QAnywhere client
that prompts the client to initiate a message transmission. Push notification is on by default but is
optional. Push notifications introduce extra components to the QAnywhere architecture:

● At the server, a QAnywhere Notifier sends push notifications.

● At the client, a QAnywhere Listener receives these push notifications and passes them on to the
QAnywhere Agent.

● At the client, a notification of each push notification is sent to the system queue.

Setting up QAnywhere messaging

32 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

If you use the scheduled or automatic QAnywhere Agent policies, push notifications automatically cause
clients to initiate message transmission. If you use the on demand policy, you must handle push requests
manually using an event handler.

For more information about manually handling push notifications, see “Notifications of push
notification” on page 60.

For more information about QAnywhere Agent policies, see “Determining when message transmission
should occur on the client” on page 46.

Push notifications are enabled by default: the qaagent -push option is by default set to connected. In
connected mode, push notifications are sent over TCP/IP persistent connection.

If you are using UDP, push notifications are likely to work without any configuration, but due to a
limitation in the UDP implementation of ActiveSync, they do not work with ActiveSync.

See also
● “Scenario for messaging with push notifications” on page 6
● “Notifications of push notification” on page 60
● “-push qaagent option” on page 688

Configuring push notifications
A push notification is a special message that is sent from the QAnywhere server to a QAnywhere client
when a message arrives at the server message store that is destined for that client. The push notification is
sent by a program called the Notifier, which runs on the server, and is received by a program called the
Listener, which runs on the client. Push notifications are sent via a gateway. When the client receives the
push notification, it initiates message transmission to receive messages waiting at the server or it takes
some custom action.

Notifiers, Listeners and gateways are configured to work in QAnywhere without any modification. In rare
circumstances, you may want to configure them. Also, there are some Notifier settings that you may want
to change. See:

● “Configuring the QAnywhere Notifier” on page 33
● “Configuring the Listener” on page 35
● “Configuring QAnywhere gateways” on page 36

You can disable push notifications and so not use Notifiers or Listeners. See “-push qaagent
option” on page 688.

For information about the client's response to a push notification, see “Determining when message
transmission should occur on the client” on page 46.

Configuring the QAnywhere Notifier

Using push notifications

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 33

The QAnywhere Notifier is created by MobiLink setup scripts and is started when you run the MobiLink
server with the -m option. The QAnywhere Notifier is called QAnyNotifier_client.

QAnyNotifier_client uses the defaults described in “MobiLink server settings for server-initiated
synchronization” [MobiLink - Server-Initiated Synchronization], with the following exceptions:

● The gui property is set to off, meaning that the Notifier window is not displayed on the computer
where the Notifier is running.

● The enable property is set to no, meaning that you have to run mlsrv12 with the -m option to start the
Notifier.

● The poll_every property is set to 5, which means that the Notifier polls every five seconds to see if a
push notification needs to be sent.

You can change the following Notifier properties:

● poll_every property

● resend interval in the request_cursor property

● time to live in the request_cursor property

Note
Other than the three properties listed here, you should not change any Notifier properties. Do not change
any other columns in the request_cursor.

Poll_every property
You can change the default polling interval of QAnyNotifier_client by changing the value 5 in the
following code and running it against your consolidated database:

CALL ml_add_property('SIS', 'Notifier(QAnyNotifier_client)', 'poll_every',
'5')

See “Notifier properties” [MobiLink - Server-Initiated Synchronization].

Resend interval and time to live
The QAnywhere Notifier contains a default request_cursor. The request_cursor determines what
information is sent in a push request, who receives the information, when, and where. You should not
change any of the defaults except the resend interval and time to live. The resend interval specifies that an
unreceived push notification should be resent every 5 minutes by default. The time to live specifies that an
unreceived push notification is resent for 3 hours by default. These default settings are usually optimal.
Following is the default request_cursor that is provided with QAnyNotifier_client:

SELECT
 u.user_id,
 'Default-DeviceTracker',
 'qa',
 u.name,
 u.name,
 '5M',

Setting up QAnywhere messaging

34 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 '3H'
 FROM ml_qa_notifications u
 WHERE EXISTS(SELECT *
 FROM ml_listening l
 WHERE l.name = u.name AND l.listening = 'y')

For more information about the columns in the request_cursor, see “Push request requirements”
[MobiLink - Server-Initiated Synchronization].

You can change the resend interval from the default of 5 minutes by changing the value 5M in the
following code. You can change the time to live default of 3 hours by changing the value 3H.

CALL ml_add_property(
 'SIS',
 'Notifier(QAnyNotifier_client)',
 'request_cursor',
 'SELECT u.user_id,
 ''Default-DeviceTracker'',
 ''qa'',
 u.name,
 u.name,
 ''5M'',
 ''3H''
 FROM ml_qa_notifications u
 WHERE EXISTS(SELECT *
 FROM ml_listening l
 WHERE l.name = u.name AND l.listening = ''y'')'
)

For more information, see “request_cursor event” [MobiLink - Server-Initiated Synchronization].

See also
● “Configuring Notifier events and properties” [MobiLink - Server-Initiated Synchronization]
● “MobiLink server settings for server-initiated synchronization” [MobiLink - Server-Initiated

Synchronization]
● “Notifiers” [MobiLink - Server-Initiated Synchronization]
● “ml_add_property system procedure” [MobiLink - Server Administration]
● “Push requests” [MobiLink - Server-Initiated Synchronization]

Configuring the Listener

The Listener runs on the same device as the client message store. The Listener receives push notifications
from the server and passes them on to the QAnywhere Agent.

The Listener is configured to work with QAnywhere. In some rare circumstances, you may want to
change the default behavior.

For example, if you need to manually start the Listener with custom options, you could do so with the
following command:

dblsn.exe -u ias_mystore_lsn -e mystore -t+ mystore
 ... other options ...

Using push notifications

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 35

For the QAnywhere Agent to find the Listener you just started, you would also need to restart the
QAnywhere Agent as follows:

qaagent -c "dbf=mystore.db;server=mystore;dbn=mystore" -id mystore
 -lp 5001 -x tcpip(host=acme.com)

where 5001 is the receiver port of the UDP listener library of dblsn.

See also
● “Listeners” [MobiLink - Server-Initiated Synchronization]
● “MobiLink Listener utility for Windows devices (dblsn)” [MobiLink - Server-Initiated

Synchronization]
● “Configuring QAnywhere gateways” on page 36

Configuring QAnywhere gateways

Gateways are the way that push notifications are sent. By default, QAnywhere uses the default device
tracker gateway. The device tracker gateway first tries to use the SYNC gateway, which uses the same
protocol as is used for MobiLink synchronization and which is persistent. Usually the default device
tracker gateway is the best way to send push notifications. However, you can also use an SMS or UDP
gateway.

To configure a gateway, see “MobiLink server settings for server-initiated synchronization” [MobiLink -
Server-Initiated Synchronization] and “Gateway properties” [MobiLink - Server-Initiated
Synchronization].

To use an SMS gateway, you need to start the Listener with new options. See “Configuring the
Listener” on page 35.

To use a UDP gateway, you need to set the -push disconnected option of qaagent. See “-push qaagent
option” on page 688.

See also
● “Gateways and carriers” [MobiLink - Server-Initiated Synchronization]

Setting up a failover mechanism
QAnywhere applications can be set up with a failover mechanism so that alternate MobiLink servers can
be used if one fails. To support failover, each QAnywhere Agent must be started with a list of MobiLink
servers. The first MobiLink server specified in the list is the primary server. The remaining servers in the
list are alternate servers.

For example, running the following command on the remote device starts the QAnywhere Agent with one
primary server and one alternate server:

qaagent -x tcpip(host=ml1.ianywhere.com)
 -x tcpip(host=ml2.ianywhere.com)

Setting up QAnywhere messaging

36 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Each QAnywhere Agent can have a different primary server.

The following diagram describes a failover configuration in which you have multiple MobiLink servers
and multiple QAnywhere agents. You have multiple client message stores, but all MobiLink servers are
connected to the same server-side message store.

This configuration has the following characteristics:

● When a message transmission occurs, all messages in the server message store are delivered to the
client message store regardless of the server that the QAnywhere Agent is connected to.

● Push Notifications are sent to a QAnywhere Agent only when the QAnywhere Agent is connected to
its primary server.

● There is a single point of failure. If the computer with the server message store is unavailable, no
messaging can take place.

By default, when you set up failover MobiLink servers, the QAnywhere Agent always tries an alternate
server immediately upon a failure to reach the primary server. If you want to change this default behavior,
you can use the QAnywhere Agent -fr option to cause the QAnywhere Agent to try the primary server
again before going to the alternate server, and to specify the number of times it should retry. You can use
the -fd option to specify the amount of time between retries of the primary server.

The -fr and -fd options apply only to the primary server. If a connection to the primary server cannot be
established after the specified number of attempts, the QAnywhere Agent tries to connect to an alternate
server. The Agent attempts to connect to each alternate server only once. An error is issued if the Agent
cannot establish a connection to an alternate server.

Setting up a failover mechanism

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 37

See also
● “-x qaagent option” on page 695
● “-fd qaagent option” on page 678
● “-fr qaagent option” on page 678
● “Starting the QAnywhere agent” on page 44

Setting up QAnywhere messaging

38 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Introduction to the QAnywhere agent
The QAnywhere Agent (qaagent) is a separate process running on the client device. It monitors the client
message store and determines when message transmission should occur.

The QAnywhere Agent transmits messages between the server message store and the client message
store. You can run multiple instances of the QAnywhere Agent on the same device, but each instance
must be connected to its own message store. Each message store must have a unique message store ID.

Message transmission policies
QAnywhere clients use policies to determine when to perform a message transmission. Policies include:

● “Scheduled policy” on page 39 The scheduled policy initiates message transmission at a
specified time interval.

● “Automatic policy” on page 40 The automatic policy initiates a message transmission
whenever a message to or from the client is ready for delivery.

● “On demand policy” on page 41 The on demand policy permits the user to control message
transmission.

● “Custom policy” on page 41 The custom policy uses transmission rules to add further control
over message transmission.

Scheduled policy
The scheduled policy instructs the Agent to perform a transmission at a specified time interval.

To invoke a schedule, choose scheduled in the Command File Properties window or specify the
keyword when you start the QAnywhere Agent:

qaagent -policy scheduled [interval] ...

where interval is in seconds.

The default is 900 seconds (15 minutes).

When a schedule is specified, every n seconds the Agent performs message transmission if any of the
following conditions are met:

● New messages were placed in the client message store since the previous time interval elapsed.

● A message status change occurred since the previous time interval elapsed. This typically occurs when
a message is acknowledged by the application.

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 39

For more information about acknowledgement, see:

○ .NET: “AcknowledgementMode enumeration” on page 301
○ C++: “AcknowledgementMode class” on page 354
○ Java: “AcknowledgementMode interface” on page 467

● A push notification was received since the previous time interval elapsed.

● A network status change notification was received since the previous time interval elapsed.

● Push notifications are disabled.

You can call the trigger send/receive method to override the time interval. It forces message transmission
to occur before the time interval elapses. See:

● .NET: “TriggerSendReceive method” on page 264
● C++: “triggerSendReceive method” on page 424
● Java: “triggerSendReceive method” on page 545
● SQL: “ml_qa_triggersendreceive” on page 656

Automatic policy
The automatic policy attempts to keep the client and server message stores as up-to-date as possible by
synchronizing whenever a message is sent or received. This policy is not recommended for applications
that frequently send and receive messages.

When using the automatic policy, message transmission is performed when any of the following
conditions occurs:

● PutMessage() is called. See:

○ .NET: “PutMessage method” on page 250
○ C++: “putMessage method” on page 416
○ Java: “putMessage method” on page 534
○ SQL: “ml_qa_putmessage” on page 655

● A message status changes has occurred. This typically occurs when a received message is
acknowledged by the application. See:

○ .NET: “AcknowledgementMode enumeration” on page 301
○ C++: “AcknowledgementMode class” on page 354
○ Java: “AcknowledgementMode interface” on page 467
○ SQL: all messaging using the SQL API is transactional

● A Push Notification is received.

See “Using push notifications” on page 32.

● A Network Status Change Notification is received.

Introduction to the QAnywhere agent

40 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See “Notifications of push notification” on page 60.

● TriggerSendReceive() is called. See:

○ .NET: “TriggerSendReceive method” on page 264
○ C++: “triggerSendReceive method” on page 424
○ Java: “triggerSendReceive method” on page 545
○ SQL: “ml_qa_triggersendreceive” on page 656

On demand policy
The on demand policy causes message transmission to occur only when instructed to do so by an application.

An application forces a message transmission to occur by calling TriggerSendReceive().

When the agent receives a Push Notification or a Network Status Change Notification, a corresponding
message is sent to the system queue. This allows an application to detect these events and force a message
transmission by calling TriggerSendReceive(). See:

● .NET: “TriggerSendReceive method” on page 264
● C++: “triggerSendReceive method” on page 424
● Java: “triggerSendReceive method” on page 545
● SQL: “ml_qa_triggersendreceive” on page 656

For more information about handling push notifications and network status changes, see “System
queue” on page 59.

Custom policy
A custom policy allows you to define when message transmission occurs and which messages to send in
the message transmission.

When creating custom policy rules for your application, it is recommended that you include a default all-
inclusive rule so that messages are not accidentally overlooked by other rules. For example, this rule
synchronizes messages that are at least one day old,

auto=DATEADD(day, 1, ias_StatusTime) < ias_CurrentTimestamp

The following is a list of factors that impact the effectiveness of synchronization and should be considered
when creating your own custom policy rules.

● Message sizes

● Synchronization frequency

● Bandwidth and network reliability

● Priority messaging

Message transmission policies

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 41

● Data transfer costs

The custom policy is defined by a set of transmission rules.

Each rule is of the following form:

schedule = condition

where schedule defines when condition is evaluated. For more information, see “Rule
syntax” on page 733.

All messages satisfying condition are transmitted. In particular, if schedule is automatic, the condition is
evaluated when any of the following conditions occurs:

● PutMessage() is called. See:

○ .NET: “PutMessage method” on page 250
○ C++: “putMessage method” on page 416
○ Java: “putMessage method” on page 534
○ SQL: “ml_qa_putmessage” on page 655

● A message status change has occurred. This typically occurs when a message is acknowledged by the
application. See:

○ .NET: “AcknowledgementMode enumeration” on page 301
○ C++: “AcknowledgementMode class” on page 354
○ Java: “AcknowledgementMode interface” on page 467
○ SQL: all messaging using the SQL API is transactional

● A Push Notification is received.

See “Using push notifications” on page 32.

● A Network Status Change Notification is received.

● TriggerSendReceive () is called. See:

○ .NET: “TriggerSendReceive method” on page 264
○ C++: “triggerSendReceive method” on page 424
○ Java: “triggerSendReceive method” on page 545
○ SQL: “ml_qa_triggersendreceive” on page 656

Understanding transmission status
The easiest way to determine the transmission status of a message is using Sybase Central. Go to the
General tab of the Message Properties window to view the message transmission status. The possible
values are:

● transmitted The message has been sent.

Introduction to the QAnywhere agent

42 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● transmitting The message is in the process of being sent.

● untransmitted The message has not been sent.

● do_not_transmit The message should not be sent.

Understanding message status
The easiest way to determine the status of a message is using Sybase Central. Go to the General tab of
the Message Properties window to view the message status. The possible values are:

● Pending The message has been sent but not received.

● Receiving The message is in the process of being received, or it was received but not acknowledged.

● Final The message has achieved a final state.

● Expired The message was not received before its expiration time has passed.

● Cancelled The message has been cancelled.

● Unreceivable The message is either malformed, or there were too many failed attempts to deliver it.

● Received The message has been received and acknowledged.

Transmission rules
Message transmission is the action of moving messages from a client message store to a server message
store, or vice versa.

Message transmission is handled by the QAnywhere Agent and the MobiLink server:

● The QAnywhere Agent is connected to the client message store. It transmits messages to and from the
MobiLink server.

● The MobiLink server is connected to the server message store. It receives message transmissions from
QAnywhere Agents and transmits them to other QAnywhere Agents.

Message transmission can only take place between a client message store and a server message store. A
message transmission can only occur when a QAnywhere Agent is connected to a MobiLink server.

In QAnywhere, rules are logic that determines when message transmission is to occur, which messages to
transmit, and when messages should be deleted. You can specify rules on the client and on the server.

Rules have two parts: a schedule and a condition. The schedule defines when an event is to occur. The
condition defines which messages are to be part of the event. For example, if the event is message
transmission, then the schedule indicates when transmission occurs and the condition defines which

Transmission rules

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 43

messages are included in the transmission. If the event is message deletion, then the schedule indicates
when deleting occurs and the condition indicates which messages are deleted.

Transmission rules allow you to specify when message transmission is to occur and which messages to
transmit. You can specify transmission rules for both the client and the server.

For more information about how to specify transmission rules, see:

● “Client transmission rules” on page 740
● “Server transmission rules” on page 741
● “Rule syntax” on page 733
● “Rule variables” on page 738

Delete rules
Delete rules allow you to specify when messages should be deleted from the message stores, if you do not
want to use the default behavior. You can specify delete rules for both the client and the server.

For more information about using delete rules, see “Message delete rules” on page 743.

Starting the QAnywhere agent
You can run the Agent on the command line using command line options. At a minimum, you need to
start the Agent with the following options:

● Connection parameters to connect to the client message store.

In the Agent Configuration File Properties window, this is the information on the Message Store tab.

In the qaagent command line, this is specified with the -c option.

See “-c qaagent option” on page 676.

● Client message store ID to identify the client message store. The first time you run qaagent after
you have initialized a client message store, you can optionally use this option to name the message
store; if you do not, the device name is used by default. After that, you must use the -id option every
time you start qaagent to specify a unique client message store ID.

In the Agent Configuration File Properties window, this is specified on the General tab.

In the qaagent command line, this is specified with the -id option.

See “-id qaagent option” on page 679.

● Network protocol and protocol options to connect to the MobiLink server. This is required
unless the MobiLink server is running on the same device as the QAnywhere agent and default
communication parameters are used.

Introduction to the QAnywhere agent

44 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

In the Agent Configuration File Properties window, this is the server information on the Server tab.

In the qaagent command line, this is the -x option.

See “-x qaagent option” on page 695.

For a complete list of all QAnywhere Agent options, see “qaagent utility” on page 673.

Starting qaagent on Windows Mobile
On Windows Mobile, you might want to start the QAnywhere Agent in quiet mode by specifying the -qi
option.

See “-qi qaagent option” on page 690.

Running multiple instances of QAnywhere Agent
You can run multiple instances of qaagent on a device. However, when you start a second instance:

● The second instance of QAnywhere Agent must be started with a different database file.

● You must specify a unique message store ID using the -id option.

See “-id qaagent option” on page 679.

Stopping the QAnywhere Agent

To stop the QAnywhere Agent, click Shut Down on the QAnywhere Agent messages window.

When you start the QAnywhere Agent in quiet mode, you can only stop it by running qastop.

See also
● “qastop utility” on page 717
● “-qi qaagent option” on page 690

Processes started by the QAnywhere Agent
The QAnywhere Agent starts other processes to handle various messaging tasks. Each of these processes
is managed by the QAnywhere Agent, and does not need to be managed separately. When you start the
QAnywhere Agent, it spawns the following processes:

● dbmlsync The dbmlsync executable is the MobiLink synchronization client. The dbmlsync
executable is used to send and receive messages.

Caution
Do not run dbmlsync on a QAnywhere message store independently of qaagent.

Starting the QAnywhere agent

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 45

● dblsn The dblsn executable is the Listener utility. It receives push notifications. If you are not
using push notifications, you do not need to supply the dblsn executable when you deploy your
application, and you must run qaagent with -push none.

See “-push qaagent option” on page 688.

● database server The client message store is a SQL Anywhere or UltraLite database. QAnywhere
Agent requires the database server to run the database. For Windows Mobile, the database server is
dbsrv12.exe. For Windows, the database server is the personal database server dbeng12.exe.

The QAnywhere Agent can spawn a database server or connect to a running server, depending on the
communication parameters that you specify in the qaagent -c option.

See “-c qaagent option” on page 676.

Deploying the QAnywhere Agent
For deployment information, see “Deploying QAnywhere applications” on page 113.

Determining when message transmission should
occur on the client

On the client side, you determine when message transmission should occur by specifying policies. A
policy tells the QAnywhere Agent when a message should be moved from the client message store to the
server message store. If you do not specify a policy, transmission occurs automatically when a message is
queued for delivery to the server by default. There is a custom policy and three predefined policies:
scheduled, automatic, and on demand.

You can specify policies in the following ways:

● Using the QAnywhere 12 plug-in for Sybase Central, choose Tools » QAnywhere 12 » New Agent
Configuration File for SQL Anywhere. Policies are specified on the General tab of the Agent
Configuration File Properties window. This task creates a file with a .qaa extension, a Sybase
Central convention.

To specify custom properties using the QAnywhere 12 plug-in for Sybase Central, choose Tools »
QAnywhere 12 » New Agent Rule File. This task creates a file with a .qar extension, a Sybase
Central convention.

● Run qaagent on the command line using the -policy option. For custom policies, create a rules file and
specify it.

Introduction to the QAnywhere agent

46 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “Message transmission policies” on page 39
● “Transmission rules” on page 43
● “-policy qaagent option” on page 686

Dealing with unreliable networks
Without incremental upload and download, messages are sent as a single piece, so if network connectivity
is lost while a message is being uploaded or downloaded, transmission of the message fails. With
incremental upload and download, large messages are broken into smaller message pieces. By allowing
messages to be sent in smaller pieces, each message piece can be sent separately, resulting in the gradual
upload or download of the message over several synchronizations. The complete message arrives at its
destination once all of its message pieces have arrived.

For information on how to implement incremental uploads, see “-iu qaagent option” on page 681.

For information on how to implement incremental downloads, see “-idl qaagent option” on page 680.

Dealing with unreliable networks

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 47

48

Writing QAnywhere client applications
The following sections discuss how to write QAnywhere client applications, including an introduction to
the various interfaces available for use with QAnywhere as well as an overview of the steps involved.

Introduction to the QAnywhere interfaces
QAnywhere client applications manage the receiving and sending of QAnywhere messages. The
applications can be written using one of several QAnywhere APIs:

● QAnywhere .NET API

● QAnywhere C++ API

● QAnywhere Java API

● QAnywhere SQL API

You can use a combination of client types in your QAnywhere system. For example, messages that are
generated using QAnywhere SQL can also be received by a client created using the APIs for .NET, C++,
or Java. If you have configured a JMS connector on your server, the messages can also be received by
JMS clients. Similarly, QAnywhere SQL can be used to receive messages that were generated by
QAnywhere .NET, C++, Java, or JMS clients.

QAnywhere .NET API
The QAnywhere .NET API is a programming interface for deployment to Windows computers using the
Microsoft .NET Framework and to handheld devices running the Microsoft .NET Compact Framework.
The QAnywhere .NET API is provided as the iAnywhere.QAnywhere.Client namespace.

QAnywhere supports Microsoft Visual Studio.

Note
In this document, code samples for the .NET API use the C# programming language, but the API can be
accessed using any programming language that Microsoft .NET supports.

Versions of the TestMessage sample application are written in Java, C#, and Visual Basic .NET. There is
also a .NET compact framework sample.

For more information about the .NET version of the TestMessage sample application, see “Lesson 4:
Explore the TestMessage client source code” on page 174.

See “QAnywhere .NET API reference for clients” on page 179.

QAnywhere C++ API
The QAnywhere C++ API supports Microsoft Visual Studio.

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 49

The QAnywhere C++ API consists of the following files:

● A set of header files (the main one being qa.hpp), located in install-dir\sdk\include.

● An import library (qany12.lib), located in install-dir\sdk\lib\x86, and install-dir\sdk\lib\ce\arm.50.

● A run-time DLL (qany12.dll) located in install-dir\bin32, and install-dir\ce\arm.50.

To access the API, your source code file must include the header file. The import library is used to link
your application to the run-time DLL. The run-time DLL must be deployed with your application.

A version of the TestMessage sample application written in C++ is supplied in samples-dir\QAnywhere
\Desktop\MFC.

See “QAnywhere C++ API reference for clients” on page 354.

QAnywhere Java API
The QAnywhere Java API supports JRE 1.4.2 and up. The Mobile web services wsdl compiler generates
Java classes compatible with JDK 1.5.0 and up.

The QAnywhere Java API consists of the following files:

● API reference material, available in this book or in Javadoc format in the documentation\en\javadocs
\QAnywhere subdirectory of your SQL Anywhere 12 installation.

● Runtime DLL (qadbiuljni12.dll) for UltraLite message stores, located in the bin32 subdirectory of
your SQL Anywhere 12 installation.

● An archive of the class files (qaclient.jar), located in the java subdirectory of your SQL Anywhere 12
installation.

The class file archive must be included in your path when you compile your application. The runtime
DLL must be deployed with your application.

A version of the TestMessage sample application written in Java is supplied in samples-dir\QAnywhere\Java
\. (For information about samples-dir, see “Samples directory” [SQL Anywhere Server - Database
Administration].)

See “QAnywhere Java API reference for clients” on page 467.

QAnywhere SQL API
The QAnywhere SQL API is a set of stored procedures that implement a messaging API in SQL. Using
the QAnywhere SQL API, you can create messages, set or get message properties and content, send and
receive messages, trigger message synchronization, and set and get message store properties.

See “QAnywhere SQL API reference” on page 619.

Writing QAnywhere client applications

50 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

JMS connector
QAnywhere includes a JMS connector that provides connectivity between QAnywhere and JMS
applications. See:

● “Scenario for messaging with external messaging systems” on page 7
● “JMS connectors” on page 129
● “Tutorial: Using JMS connectors” on page 140

Mobile web services connector
QAnywhere includes a mobile web services connector for messaging between QAnywhere and web services.

See “Mobile web services” on page 91.

Quick start to writing a client application
Overview of setting up a client application

1. Initialize the appropriate QAnywhere API. See:

● “Setting up .NET applications” on page 52
● “Setting up C++ applications” on page 54
● “Setting up Java applications” on page 55
● “Setting up SQL applications” on page 56

2. Set QAnywhere manager configuration properties. See “QAnywhere manager configuration
properties” on page 81.

3. Write application code and compile. See:

● “QAnywhere messages” on page 13
● “Client message store properties” on page 26
● “Sending QAnywhere messages” on page 61
● “Receiving QAnywhere messages” on page 68
● “Reading very large messages” on page 73
● “Implementing transactional messaging” on page 63
● “Shutting down QAnywhere” on page 80

4. Deploy the application to the target device.

See “Deploying QAnywhere applications” on page 113.

Other resources for getting started
● “Tutorial: Exploring TestMessage” on page 169
● Sample applications are installed to samples-dir\QAnywhere. (For information about samples-dir, see

“Samples directory” [SQL Anywhere Server - Database Administration].)

Quick start to writing a client application

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 51

Initializing a QAnywhere API
Before you can send or receive messages using QAnywhere, you must complete the following
initialization tasks.

Setting up .NET applications
Before you can send or receive messages using QAnywhere .NET clients, you must complete the
following initialization tasks.

You must make two changes to your Visual Studio project to be able to use it:

● Add a reference to the QAnywhere .NET DLL. Adding a reference tells Visual Studio .NET which
DLL to include to find the code for the QAnywhere .NET API.

● Add a line to your source code to reference the QAnywhere .NET API classes. To use the
QAnywhere .NET API, you must add a line to your source code to reference the data provider. You
must add a different line for C# than for Visual Basic .NET.

In addition, you must initialize the QAnywhere .NET API.

To add a reference to the QAnywhere .NET API in a Visual Studio project

1. Start Visual Studio and open your project.

2. In the Solution Explorer window, right-click the References folder and choose Add Reference.

3. On the .NET tab, click Browse to locate iAnywhere.QAnywhere.Client.dll. The default locations are:

● .NET Framework 2.0: install-dir\Assembly\V2
● .NET Compact Framework 2.0: install-dir\ce\Assembly\V2

Select the DLL and click Open.

4. You can verify that the DLL is added to your project. Open the Add Reference window and then
click the .NET tab. iAnywhere.QAnywhere.Client.dll appears in the Selected Components list. Click
OK to close the window.

Referencing the data provider classes in your source code
To reference the QAnywhere .NET API classes in your code

1. Start Visual Studio and open your project.

2. If you are using C#, add the following line to the list of using directives at the beginning of your file:

using iAnywhere.QAnywhere.Client;

3. If you are using Visual Basic, add the following line to the list of imports at the beginning of your file:

Writing QAnywhere client applications

52 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Imports iAnywhere.QAnywhere.Client

This line is not strictly required. However, it allows you to use short forms for the QAnywhere
classes. Without it, you can still use the fully qualified class name in your code. For example:

iAnywhere.QAnywhere.Client.QAManager
mgr =
 new iAnywhere.QAnywhere.Client.QAManagerFactory.Instance.CreateQAManager(
"qa_manager.props");

instead of

QAManager mgr = QAManagerFactory.Instance.CreateQAManager(
 "qa_manager.props");

To initialize the QAnywhere .NET API

1. Include the iAnywhere.QAnywhere.Client namespace, as described in the previous procedure.

using iAnywhere.QAnywhere.Client;

2. Create a QAManager object.

For example, to create a default QAManager object, invoke CreateQAManager with null as its parameter:

QAManager mgr;
mgr = QAManagerFactory.Instance.CreateQAManager(null);

Tip
For maximum concurrency benefits, multi-threaded applications should create a QAManager for each
thread. See “Multi-threading considerations” on page 81.

For more information about QAManagerFactory, see “QAManagerFactory class” on page 265.

You can alternatively create a QAManager object that is customized using a properties file. The
properties file is specified in the CreateQAManager method:

mgr = QAManagerFactory.Instance.CreateQAManager(
 "qa_mgr.props");

where qa_mgr.props is the name of the properties file that resides on the remote device.

3. Initialize the QAManager object. For example:

mgr.Open(
 AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT);

The argument to the open method is an acknowledgement mode, which indicates how messages are to
be acknowledged. It must be one of IMPLICIT_ACKNOWLEDGEMENT or
EXPLICIT_ACKNOWLEDGEMENT. With implicit acknowledgement, messages are acknowledged
when they are received by the client. With explicit acknowledgement, you must call the Acknowledge
method on the QAManager to acknowledge the message.

Initializing a QAnywhere API

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 53

For more information about acknowledgement modes, see “AcknowledgementMode
enumeration” on page 301.

You are now ready to send messages.

Note
Instead of creating a QAManager, you can create a QATransactionalManager. See “Implementing
transactional messaging for .NET clients” on page 63.

See also
● “QAnywhere .NET API reference for clients” on page 179

Setting up C++ applications
Before you can send or receive messages using QAnywhere C++ clients, you must complete the
following initialization tasks.

To initialize the QAnywhere C++ API

1. Include the QAnywhere header file.

#include <qa.hpp>

qa.hpp defines the QAnywhere classes.

2. Initialize QAnywhere.

To do this, initialize a factory for creating QAManager objects.

QAManagerFactory * factory;
factory = QAnywhereFactory_init();
if(factory == NULL) {
 // Fatal error.
}

For more information about QAManagerFactory, see “QAManagerFactory class” on page 424.

3. Create a QAManager instance.

You can create a default QAManager object as follows:

QAManager * mgr;
// Create a manager
mgr = factory->createQAManager(NULL);
if(mgr == NULL) {
 // fatal error
}

See “QAManager class” on page 387.

Writing QAnywhere client applications

54 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Tip
For maximum concurrency benefits, multi-threaded applications should create a QAManager for each
thread. See “Multi-threading considerations” on page 81.

You can customize a QAManager object programmatically or using a properties file.

● To customize QAManager programmatically, use setProperty().

See “Setting QAnywhere manager configuration properties programmatically” on page 84.

● To use a properties file, specify the properties file in createQAManager():

mgr = factory->createQAManager("qa_mgr.props");

where qa_mgr.props is the name of the properties file on the remote device.

See “Setting QAnywhere manager configuration properties in a file” on page 82.

4. Initialize the QAManager object.

qa_bool rc;
rc=mgr->open(
 AcknowledgementMode::IMPLICIT_ACKNOWLEDGEMENT);

The argument to the open method is an acknowledgement mode, which indicates how messages are to
be acknowledged. It must be one of IMPLICIT_ACKNOWLEDGEMENT or
EXPLICIT_ACKNOWLEDGEMENT. With implicit acknowledgement, messages are
acknowledged when they are received by the client. With explicit acknowledgement, you must call
one of the acknowledge methods on the QAManager to acknowledge the message.

For more information about acknowledgement modes, see “AcknowledgementMode
class” on page 354.

Note
Instead of creating a QAManager, you can create a QATransactionalManager. See “Implementing
transactional messaging for C++ clients” on page 65.

You are now ready to send messages.

See also
● “QAnywhere C++ API reference for clients” on page 354

Setting up Java applications
Before you can send or receive messages using QAnywhere Java clients, you must complete the following
initialization tasks.

Initializing a QAnywhere API

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 55

To initialize the QAnywhere Java API

1. Add the location of qaclient.jar to your classpath. By default, the file is located in install-dir\Java.

2. Import the ianywhere.qanywhere.client package.

import ianywhere.qanywhere.client.*;

3. Create a QAManager object.

QAManager mgr;
mgr = QAManagerFactory.getInstance().createQAManager(null);

You can also customize a QAManager object by specifying a properties file to the createQAManager
method:

mgr = QAManagerFactory.getInstance().createQAManager("qa_mgr.props.");

Tip
For maximum concurrency benefits, multi-threaded applications should create a QAManager for each
thread. See “Multi-threading considerations” on page 81.

4. Initialize the QAManager object.

mgr.open(AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT);

The argument to the open method is an acknowledgement mode, which indicates how messages are to
be acknowledged. It must be one of IMPLICIT_ACKNOWLEDGEMENT or
EXPLICIT_ACKNOWLEDGEMENT. With implicit acknowledgement, messages are acknowledged
when they are received by the client. With explicit acknowledgement, you must call one of the
acknowledge methods on the QAManager to acknowledge the message.

For more information about acknowledgement modes, see “AcknowledgementMode
interface” on page 467.

Note
Instead of creating a QAManager, you can create a QATransactionalManager. See “Implementing
transactional messaging for Java clients” on page 66.

You are now ready to send messages.

See also
● “QAnywhere Java API reference for clients” on page 467

Setting up SQL applications
QAnywhere SQL allows you to perform, in SQL, much of the messaging functionality of the
QAnywhere .NET, C++, and Java APIs. This functionality includes creating messages, setting or getting

Writing QAnywhere client applications

56 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

message properties and content, sending and receiving messages, triggering message synchronization, and
setting and getting message store properties.

Messages that are generated with QAnywhere SQL can also be received by clients created with the
programming APIs. If you have configured a JMS connector on your server, the messages can also be
received by JMS clients. Similarly, QAnywhere SQL can be used to receive messages that were generated
by QAnywhere .NET, C++, or Java API, or JMS clients.

QAnywhere SQL messaging coexists with user transactions. This means that committing a transaction
commits all the QAnywhere operations on that connection.

See “Writing QAnywhere client applications” on page 49.

Permissions
Only users with DBA privilege have automatic permission to execute the QAnywhere stored procedures.
To give permission to a user, a user with DBA privilege must call the procedure
ml_qa_grant_messaging_permissions.

See “ml_qa_grant_messaging_permissions” on page 653.

Acknowledgement modes
The QAnywhere SQL API does not support IMPLICIT_ACKNOWLEDGEMENT or
EXPLICIT_ACKNOWLEDGEMENT modes. All messaging through the SQL API is transactional.

Example
The following example creates a trigger on an inventory table. The trigger sends a message when the
inventory for an item falls below a certain threshold. The message is sent after the transaction invoking
the trigger is committed. If the transaction is rolled back, the message is not sent.

CREATE TRIGGER inventory_trigger AFTER UPDATE ON inventory
REFERENCING old AS oldinv new AS newinv
FOR EACH ROW
begin
 DECLARE msgid VARCHAR(128);
 IF oldinv.quantity > newinv.quantity AND newinv.quantity < 10 THEN
 -- Create the message
 SET msgid = ml_qa_createmessage();
 -- Set the message content
 CALL ml_qa_settextcontent(msgid,
 'Inventory of item ' || newinv.itemname
 || ' has fallen to only ' || newinv.quantity);
 -- Make the message high priority
 CALL ml_qa_setpriority(msgid, 9);
 -- Set a message subject
 CALL ml_qa_setstringproperty(msgid,
 'tm_Subject', 'Inventory low!');
 -- Send the message to the inventoryManager queue
 CALL ml_qa_putmessage(msgid,
 'inventoryManager');
 end if;
end

Initializing a QAnywhere API

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 57

See also
● “QAnywhere SQL API reference” on page 619

QAnywhere message addresses
A QAnywhere message address has two parts, the client message store ID and the application queue name:

id\queue-name

The queue name is specified inside the application, and must be known to instances of the sending
application on other devices. For information about client message store IDs, see “Setting up the client
message store” on page 23.

Each address can have at most one application associated with it at a time. More than one application
running with the same address can result in undefined behavior during message retrieval.

When constructing addresses as strings in an application, be sure to escape the backslash character if
necessary. Follow the string escaping rules for the programming language you are using. If your JMS
destination contains a backslash, you must escape it with another backslash.

The address cannot be longer than 255 characters.

System queue
Notifications and network status changes are both sent to QAnywhere applications as system messages.
System messages are the same as other messages, but are received in a separate queue named system.

See “System queue” on page 59.

Sending a message to a JMS connector
A QAnywhere-to-JMS destination address has two parts:

● The connector address. This is the value of the ianywhere.connector.address property.

See “Configuring JMS connector properties” on page 131.

● The JMS queue name. This is a queue that you create using your JMS administration tools.

The form of the destination address is:

connector-address\JMS-queue-name

For more information about addressing messages in a JMS application, see:

● “Sending a QAnywhere message to a JMS connector” on page 132
● “Addressing JMS messages meant for QAnywhere” on page 135
● “Connectors” on page 129

Writing QAnywhere client applications

58 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

System queue
A special queue called system exists to receive QAnywhere system messages. There are two types of
message that are sent to the system queue:

● “Network status notifications” on page 59
● “Notifications of push notification” on page 60

Example
The following C# code processes system and normal messages and can be useful if you are using an on
demand policy. It assumes that you have defined the message handling methods onMessage() and
onSystemMessage() that implement the application logic for processing the messages.

// Declare the message listener and system listener.
private QAManager.MessageListener _receiveListener;
private QAManager.MessageListener _systemListener;
...
// Create a MessageListener that uses the appropriate message handlers.
_receiveListener = new QAManager.MessageListener(onMessage);
_systemListener = new QAManager.MessageListener(onSystemMessage);
...
// Register the message handler.
mgr.SetMessageListener(queue-name, _receiveListener);
mgr.SetMessageListener("system", _systemListener);

The system message handler may query the message properties to identify what information it contains.
The message type property indicates if the message holds a network status notification. For example, for a
message msg, you could perform the following processing:

msg_type = (MessageType)msg.GetIntProperty(MessageProperties.MSG_TYPE);
if(msg_type == MessageType.NETWORK_STATUS_NOTIFICATION) {
 // Process a network status change.
 mgr.TriggerSendReceive();
} else if (msg_type == MessageType.PUSH_NOTIFICATION) {
 // Process a push notification.
 mgr.TriggerSendReceive();
} else if (msg_type == MessageType.REGULAR) {
 // This message type should not be received on the
 // system queue. Take appropriate action here.
}

Network status notifications

When there is a change in network status, a message of type NETWORK_STATUS_NOTIFICATION is
sent to the system queue. It has an expiry of one minute. This expiry time cannot be changed.

When a device goes into network coverage or out of network coverage, a message is sent to the system
queue that contains the following information:

QAnywhere message addresses

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 59

● ias_Adapters String. A list of network adapters that can be used to connect to the MobiLink
server. The list is delimited by a vertical bar. This property can be read but should not be set. See:

○ .NET: “ADAPTER field” on page 181
○ C++: “ADAPTER variable” on page 357
○ Java: “ADAPTER variable” on page 471

● ias_RASNames String. A list of network names that can be used to connect to the MobiLink
server. The list is delimited by a vertical bar. See:

○ .NET: “RASNAMES field” on page 186
○ C++: “RASNAMES variable” on page 362
○ Java: “RASNAMES variable” on page 475

● ias_NetworkStatus Int. The state of the network connection. The value is 1 if connected, 0
otherwise. See:

○ .NET: “NETWORK_STATUS field” on page 184
○ C++: “NETWORK_STATUS variable” on page 360
○ Java: “NETWORK_STATUS variable” on page 474

Monitoring network availability
You can use network status notifications to monitor network availability and take action when a device
comes into coverage. For example, use the on demand policy and call QAManagerBase
triggerSendReceive when a system queue message is received of type
NETWORK_STATUS_NOTIFICATION with ias_NetworkStatus=1.

See also
● ias_MessageType in “Predefined message properties” on page 659
● “System queue” on page 58

Notifications of push notification

A message of type PUSH_NOTIFICATION is sent to the system queue when a push notification is
received from the server. This message is a notification that messages are queued on the server. It has an
expiry of one minute. This expiry time cannot be changed.

This type of system message is useful if you are using the on demand policy. For example, you can call
QAManagerBase triggerSendReceive when a system queue message is received of type
PUSH_NOTIFICATION.

Writing QAnywhere client applications

60 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “Scenario for messaging with push notifications” on page 6
● “Using push notifications” on page 32
● “System queue” on page 58
● “Receiving messages asynchronously” on page 70
● ias_MessageType in “Predefined message properties” on page 659
● .NET: “MessageProperties class” on page 179
● C++: “MessageProperties class” on page 356
● Java: “MessageProperties interface” on page 469

Sending QAnywhere messages
The following procedures describe how to send messages from QAnywhere applications. These
procedures assume that you have created and opened a QAManager object.

Sending a message from your application does not ensure it is delivered from your device. It simply
places the message on a queue to be delivered. The QAnywhere Agent performs the task of sending the
message to the MobiLink server, which in turn delivers it to its destination.

For more information about when message transmission occurs, see “Determining when message
transmission should occur on the client” on page 46.

To send a message (.NET)

1. Create a new message.

You can create either a text message or a binary message, using CreateTextMessage() or
CreateBinaryMessage(), respectively.

QATextMessage msg;
msg = mgr.CreateTextMessage();

2. Set message properties.

Use methods of the QATextMessage or QABinaryMessage class to set properties.

See “QAnywhere messages” on page 13.

3. Put the message on the queue, ready for sending.

mgr.PutMessage("store-id\\queue-name", msg);

where store-id and queue-name are strings that combine to form the destination address.

See “PutMessage method” on page 250 and “Determining when message transmission should occur
on the client” on page 46.

Sending QAnywhere messages

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 61

To send a message (C++)

1. Create a new message.

You can create either a text message or a binary message, using createTextMessage() or
createBinaryMessage(), respectively.

QATextMessage * msg;
msg = mgr->createTextMessage();

2. Set message properties.

Use methods of the QATextMessage or QABinaryMessage class to set message properties.

See “QAnywhere messages” on page 13.

3. Put the message on the queue, ready for sending.

if(msg != NULL) {
 if(!mgr->putMessage("store-id\\queue-name", msg)) {
 // Display error using mgr->getLastErrorMsg().
 }
 mgr->deleteMessage(msg);
}

where store-id and queue-name are strings that combine to form the destination address.

See “putMessage method” on page 416 and “Determining when message transmission should occur
on the client” on page 46.

To send a message (Java)

1. Create a new message.

You can create a text message or a binary message, using QAManagerBase.createTextMessage() or
QAManagerBase.createBinaryMessage(), respectively.

QATextMessage msg;
msg = mgr.createTextMessage();

2. Set message properties.

Use QATextMessage or QABinaryMessage methods to set message properties.

See “QAnywhere messages” on page 13.

3. Put the message on the queue.

mgr.putMessage("store-id\\queue-name", msg);

See “putMessage method” on page 534 and “Determining when message transmission should occur on
the client” on page 46.

Writing QAnywhere client applications

62 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

To send a message (SQL)

1. Declare a variable to hold the message ID.

begin
 declare @msgid varchar(128);

2. Create a new message.

 set @msgid = ml_qa_createmessage();

3. Set message properties.

For more information, see “Message properties” on page 629.

4. Put the message on the queue.

 call ml_qa_putmessage(@msgid, 'clientid\queuename');
 commit;
end

See “ml_qa_putmessage” on page 655 and “Determining when message transmission should occur on the
client” on page 46.

Implementing transactional messaging
Transactional messaging provides the ability to group messages in a way that guarantees that either all
messages in the group are delivered, or none are. This is more commonly referred to as a single
transaction.

When implementing transactional messaging, you create a special QAManagerBase object called
QATransactionalManager.

For more information, see:

● .NET clients: “QATransactionalManager interface” on page 293
● C++ clients: “QATransactionalManager class” on page 457
● Java clients: “QATransactionalManager interface” on page 575
● SQL clients: all messaging is transactional for SQL clients and no transactional manager is required

Implementing transactional messaging for .NET clients

To create a transactional manager

1. Initialize QAnywhere.

This step is the same as in non-transactional messaging.

using iAnywhere.QAnywhere.Client;

Sending QAnywhere messages

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 63

2. Create a QATransactionalManager object.

For example, to create a default QATransactionalManager object, invoke
CreateQATransactionalManager with null as its parameter:

QAManager mgr;
mgr =
 QAManagerFactory.Instance.CreateQATransactionalManager(
 null);

See “QAManagerFactory class” on page 265.

You can alternatively create a QATransactionalManager object that is customized using a properties
file. The properties file is specified in the CreateQATransactionalManager method:

mgr =
 QAManagerFactory.Instance.CreateQATransactionalManager(
 "qa_mgr.props");

where qa_mgr.props is the name of the properties file that resides on the remote device.

3. Initialize the QAManager object.

mgr.Open();

You are now ready to send messages. The following procedure sends two messages in a single transaction.

To send multiple messages in a single transaction

1. Initialize message objects.

QATextMessage msg_1;
QATextMessage msg_2;

2. Send the messages.

The following code sends two messages in a single transaction:

msg_1 = mgr.CreateTextMessage();
if(msg_1 != null) {
 msg_2 = mgr.CreateTextMessage();
 if(msg_2 != null) {
 if(!mgr.PutMessage("jms_1\\queue_name", msg_1)) {
 // Display message using mgr.GetLastErrorMsg().
 } else {
 if(!mgr.PutMessage("jms_1\\queue_name", msg_2)) {
 // Display message using mgr.GetLastErrorMsg().
 } else {
 mgr.Commit();
 }
 }
 }
}

The Commit method commits the current transaction and begins a new transaction. This method
commits all PutMessage() method and GetMessage() method invocations.

Writing QAnywhere client applications

64 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Note
The first transaction begins with the call to open method.

See also
● “QATransactionalManager interface” on page 293

Implementing transactional messaging for C++ clients

To create a transactional manager

1. Initialize QAnywhere.

This step is the same as in non-transactional messaging.

#include <qa.hpp>
QAManagerFactory * factory;
factory = QAnywhereFactory_init();
if(factory == NULL) {
 // Fatal error.
}

2. Create a transactional manager.

QATransactionalManager * mgr;
mgr = factory->createQATransactionalManager(NULL);
if(mgr == NULL) {
 // Fatal error.
}

As with non-transactional managers, you can specify a properties file to customize QAnywhere
behavior. In this example, no properties file is used.

3. Initialize the manager.

if(!mgr->open()) {
 // Display message using mgr->getLastErrorMsg().
}

You are now ready to send messages. The following procedure sends two messages in a single transaction.

To send multiple messages in a single transaction

1. Initialize message objects.

QATextMessage * msg_1;
QATextMessage * msg_2;

2. Send the messages.

The following code sends two messages in a single transaction:

msg_1 = mgr->createTextMessage();
if(msg_1 != NULL) {

Sending QAnywhere messages

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 65

 msg_2 = mgr->createTextMessage();
 if(msg_2 != NULL) {
 if(!mgr->putMessage("jms_1\\queue_name", msg_1)) {
 // Display message using mgr->getLastErrorMsg().
 } else {
 if(!mgr->putMessage("jms_1\\queue_name", msg_2)) {
 // Display message using mgr->getLastErrorMsg().
 } else {
 mgr->commit();
 }
 }
 mgr->deleteMessage(msg_2);
 }
 mgr->deleteMessage(msg_1);
}

The commit method commits the current transaction and begins a new transaction. This method
commits all putMessage() method and getMessage() method invocations.

Note
The first transaction begins with the call to open method.

See also
● C++: “QATransactionalManager class” on page 457
● Java: “QATransactionalManager interface” on page 575

Implementing transactional messaging for Java clients

To create a transactional manager

1. Initialize QAnywhere.

This step is the same as in non-transactional messaging.

import ianywhere.qanywhere.client;
QAManagerFactory factory = new QAManagerFactory();

See “QAManagerFactory class” on page 545.

2. Create a QATransactionalManager object.

For example, to create a default QATransactionalManager object, invoke
createQATransactionalManager with null as its parameter:

QAManager mgr;
mgr = factory.createQATransactionalManager(null);

You can alternatively create a QATransactionalManager object that is customized using a properties
file. The properties file is specified in the createQATransactionalManager method:

mgr = factory.createQATransactionalManager("qa_mgr.props");

Writing QAnywhere client applications

66 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

where qa_mgr.props is the name of the properties file that resides on the remote device.

3. Initialize the QAManager object.

mgr.open();

You are now ready to send messages. The following procedure sends two messages in a single transaction.

To send multiple messages in a single transaction

1. Initialize message objects.

QATextMessage msg_1;
QATextMessage msg_2;

2. Send the messages.

The following code sends two messages in a single transaction:

msg_1 = mgr.createTextMessage();
if(msg_1 != null) {
 msg_2 = mgr.createTextMessage();
 if(msg_2 != null) {
 if(!mgr.putMessage("jms_1\\queue_name", msg_1)) {
 // Display message using mgr.getLastErrorMsg().
 } else {
 if(!mgr.putMessage("jms_1\\queue_name", msg_2)) {
 // Display message using mgr.getLastErrorMsg().
 } else {
 mgr.commit();
 }
 }
 }
}

The commit method commits the current transaction and begins a new transaction. This method
commits all putMessage() method and getMessage() method invocations.

Note
The first transaction begins with the call to open method.

Canceling QAnywhere messages
Canceling a QAnywhere message puts the message into a canceled state before it is transmitted. With the
default delete rules of the QAnywhere Agent, canceled messages are eventually deleted from the message
store. Canceling a QAnywhere message fails if the message is already in a final state, or if it has been
transmitted to the central messaging server.

The following procedures describe how to cancel QAnywhere messages.

Note
You cannot cancel a message using the QAnywhere SQL API.

Canceling QAnywhere messages

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 67

To cancel a message (.NET)

1. Get the ID of the message to cancel.

// msg is a QAMessage instance that has not been
// transmitted.
string msgID = msg.getMessageID();

2. Call CancelMessage with the ID of the message to cancel.

mgr.CancelMessage(msgID);

See “CancelMessage method” on page 234.

To cancel a message (C++)

1. Get the ID of the message to cancel.

// msg is a QAMessage instance that has not been
// transmitted.
qa_string msgID = msg->getMessageID();

2. Call cancelMessage with the ID of the message to cancel.

bool result = mgr->cancelMessage(msgID);

See “cancelMessage method” on page 402.

To cancel a message (Java)

1. Get the ID of the message to cancel.

// msg is a QAMessage instance that has not been
// transmitted.
String msgID = msg.getMessageID();

2. Call cancelMessage with the ID of the message to cancel.

boolean result = mgr.cancelMessage(msgID);

See “cancelMessage method” on page 520.

Receiving QAnywhere messages
The following topics describe how to receive QAnywhere messages.

Receiving messages synchronously

Writing QAnywhere client applications

68 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

To receive messages synchronously, your application explicitly polls the queue for messages. It may poll
the queue periodically, or when a user initiates a particular action such as clicking a Refresh button.

To receive messages synchronously (.NET)

1. Declare message objects to hold the incoming messages.

QAMessage msg;
QATextMessage text_msg;

2. Poll the message queue, collecting messages:

for(;;) {
 msg = mgr.GetMessageNoWait("queue-name");
 if(msg == null) {
 break;
 }
 addMessage(msg);
 }

See “GetMessageNoWait method” on page 243.

To receive messages synchronously (C++)

1. Declare message objects to hold the incoming messages.

QAMessage * msg;
QATextMessage * text_msg;

2. Poll the message queue, collecting messages:

for(;;) {
 msg = mgr->getMessageNoWait("queue-name");
 if(msg == NULL) {
 break;
 }
 addMessage(msg);
 }

See “getMessageNoWait method” on page 412.

To receive messages synchronously (Java)

1. Declare message objects to hold the incoming messages.

QAMessage msg;
QATextMessage text_message;

2. Poll the message queue, collecting messages:

if(mgr.start()) {
 for (;;) {
 msg = mgr.getMessageNoWait("queue-name");
 if (msg == null) {
 break;
 }
 addMessage(msg);
 }

Receiving QAnywhere messages

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 69

 mgr.stop();
}

See “getMessageNoWait method” on page 528.

To receive messages synchronously (SQL)

1. Declare an object to hold the message ID.

begin
 declare @msgid varchar(128);

2. Poll the message queue, collecting messages.

 loop
 set @msgid = ml_qa_getmessagenowait('myaddress');
 if @msgid is null then leave end if;
 message 'a message with content ' || ml_qa_gettextcontent(@msgid)
|| ' has been received';
 end loop;
 commit;
end

See:

● “ml_qa_getmessagenowait” on page 651
● “ml_qa_getmessagetimeout” on page 652
● “ml_qa_getmessage” on page 650

Receiving messages asynchronously

To receive messages asynchronously using the .NET, C++, and Java APIs, you can write and register a
message listener function that is called by QAnywhere when a message appears in the queue. The
message listener takes the incoming message as a parameter. The task you perform in your message
listener depends on your application. For example, in the TestMessage sample application the message
listener adds the message to the list of messages in the main TestMessage window.

Development tip for .NET, C++ and Java
It is safer to use QAManagers in mode EXPLICIT_ACKNOWLEDGEMENT to guard against the
possibility of an application error occurring part way through the processing of received messages and the
message being acknowledged anyway.

If the QAManager is opened in mode EXPLICIT_ACKNOWLEDGEMENT, the message can be
acknowledged in the onMessage method only after it has been successfully processed. That way if there
was an error processing the message, the message is received again because it was not acknowledged.

If the QAManager is opened in mode IMPLICIT_ACKNOWLEDGEMENT, the message passed to
onMessage is acknowledged implicitly when onMessage returns. If the user application encounters an
error while processing the message, the message is acknowledged and never received again.

Writing QAnywhere client applications

70 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

To receive messages asynchronously (.NET)

1. Implement a message handler method.

private void onMessage(QAMessage msg) {
 // Process message.
}

2. Register the message handler.

To register a message handler, create a QAManager.MessageListener object that has the message
handler function as its argument. Then use the QAManager.SetMessageListener function to register
the MessageListener with a specific queue. In the following example, queue-name is a string that is
the name of the queue the QAManager object listens to.

MessageListener listener;
listener = new MessageListener(onMessage);
mgr.SetMessageListener("queue-name", listener);

See “MessageListener delegate” on page 300 and “SetMessageListener method” on page 256.

To receive messages asynchronously (C++)

1. Create a class that implements the QAMessageListener interface.

class MyClass: public QAMessageListener {
 public:
 void onMessage(QAMessage * Msg);
};

See “QAMessageListener class” on page 451.

2. Implement the onMessage method.

The QAMessageListener interface contains one method, onMessage. Each time a message arrives in
the queue, the QAnywhere library calls this method, passing the new message as the single argument.

void MyClass::onMessage(QAMessage * msg) {
 // Process message.
}

3. Register the message listener.

my_listener = new MyClass();
mgr->setMessageListener("queue-name", my_listener);

See “setMessageListener method” on page 420.

To receive a message asynchronously (Java)

1. Implement a message handler method and an exception handler method.

class MyClass implements QAMessageListener {
 public void onMessage(QAMessage message) {

Receiving QAnywhere messages

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 71

 // Process the message.
 }
 public void onException(
 QAException exception, QAMessage message) {
 // Handle the exception.
 }
}

2. Register the message handler.

MyClass listener = new MyClass();
mgr.setMessageListener("queue-name", listener);

See “QAMessageListener interface” on page 566 and “setMessageListener method” on page 539.

To receive messages asynchronously (SQL)

● Create a stored procedure with the name ml_qa_listener_queue, where queue is the name of a
message queue.

This procedure is called whenever a message is queued on the given queue.

See “ml_qa_listener_queue” on page 654.

Receiving messages using a selector
You can use message selectors to select messages for receiving. A message selector is a SQL-like
expression that specifies a condition to select a subset of messages to consider for receive operations.

The syntax and semantics of message selectors are exactly the same as the condition part of transmission
rules.

See “Condition syntax” on page 734.

Example
The following C# example gets the next message from receiveQueue that has a message property called
intprop with value 1.

msg = receiver.GetMessageBySelectorNoWait(
 receiveQueue, "intprop=1");

The following C++ example gets the next message from receiveQueue that has a message property called
intprop with value 1.

msg = receiver->getMessageBySelectorNoWait(
 receiveQueue, "intprop=1");

The following Java example gets the next message from receiveQueue that has a message property called
intprop with value 1.

msg = receiver.getMessageBySelectorNoWait(
 receiveQueue, "intprop=1");

Writing QAnywhere client applications

72 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● .NET: “GetMessageBySelector method” on page 240 and “GetMessageBySelectorNoWait

method” on page 241
● C++: “getMessageBySelector method” on page 410 and “getMessageBySelectorNoWait

method” on page 410
● Java: “getMessageBySelector method” on page 526 and “getMessageBySelectorNoWait

method” on page 526
● SQL: The SQL API does not support receiving messages using a selector

Reading very large messages
Sometimes messages are so large that they exceed the limit set with the QAManager property
MAX_IN_MEMORY_MESSAGE_SIZE or its defaults of 1MB on Windows and 64KB on Windows
Mobile. In this case, the message object cannot contain the full content of the message in memory, so
methods that rely on the full content of the message being loaded into memory, such as readInt() and
readString(), cannot be used. However, you can read very large messages directly from the message store
in pieces. To do this, use QATextMessage.readText() or QABinaryMessage.readBinary() in a loop.

For more information, see:

● .NET: “ReadBinary method” on page 193 and “ReadText method” on page 292
● C++: “readBinary method” on page 371 and “readText method” on page 456
● Java: “readBinary method” on page 485 and “readText method” on page 572
● SQL: The SQL API does not support receiving very large messages

When you do this, you cannot use a QAManager that was opened with
IMPLICIT_ACKNOWLEDGEMENT. You must use a QAManager that was opened with
EXPLICIT_ACKNOWLEDGEMENT and you must complete all calls to readText() or readBinary()
before acknowledging the message.

See “Acknowledgement modes” on page 57.

Browsing QAnywhere messages
You can browse messages in incoming and outgoing queues. Browse operations do not affect the status of
messages.

For more information about message status, see ias_Status in “Predefined message
properties” on page 659.

The following topics describe how to browse QAnywhere messages.

Reading very large messages

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 73

Browse all messages
You can browse the messages in all queues by calling the appropriate browseMessages() method.

The following .NET example uses the QAManager.BrowseMessages() method to browse all queues:

QAMessage msg;
IEnumerator msgs = mgr.BrowseMessages();
while(msgs.MoveNext()) {
 msg = (QAMessage)msgs.Current;
 // Process message.
}

The following C++ example uses the QAManager browseMessages function to browse all queues:

QAMessage *msg;
qa_browse_handle bh = mgr->browseMessages();
for (;;) {
 msg = mgr->browseNextMessage(bh);
 if(msg == qa_null) {
 break;
 }
 // Process message.
 mgr->browseClose(bh);
}

The following Java example uses the QAManager.browseMessages method to browse all queues:

QAMessage msg;
java.util.Enumeration msgs = mgr.browseMessages();
while(msgs.hasMoreElements()) {
 msg = (QAMessage)msgs.nextElement();
 // Process message.
}

See also
● .NET: “BrowseMessages method” on page 231
● C++: “browseMessages method” on page 399
● Java: “browseMessages method” on page 517
● SQL: The SQL API does not support browsing messages

Browsing messages in a queue
You can browse the messages in a given queue by supplying the queue name to the appropriate
browseMessagesByQueue() method.

The following .NET example uses the QAManager.BrowseMessagesByQueue method to browse a queue:

QAMessage msg;
IEnumerator msgs = mgr.BrowseMessagesByQueue("q1");
while(msgs.MoveNext()) {
 msg = (QAMessage)msgs.Current;
 // Process message.
}

The following C++ example uses the QAManager browseMessagesByQueue function to browse a queue:

Writing QAnywhere client applications

74 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

QAMessage *msg;
qa_browse_handle bh = mgr->browseMessagesByQueue(_T("q1"));
for (;;) {
 msg = mgr->browseNextMessage(bh);
 if(msg == qa_null) {
 break;
 }
 // Process message.
}
mgr->browseClose(bh);

The following Java example uses the QAManager.browseMessagesByQueue method to browse a queue:

QAMessage msg;
java.util.Enumeration msgs = mgr.browseMessagesByQueue("q1");
while(msgs.hasMoreElements()) {
 msg = (QAMessage)msgs.nextElement();
 // Process message.
}

See also
● .NET: “BrowseMessagesByQueue method” on page 233
● C++: “browseMessagesByQueue method” on page 400
● Java: “browseMessagesByQueue method” on page 518
● SQL: The SQL API does not support browsing messages

Browsing a message by ID
You can browse a particular message by specifying its ID to a browseMessagesbyID() method.

The following .NET example uses the QAManager.BrowseMessageByID method to browse a message:

QAMessage msg;
IEnumerator msgs = mgr.BrowseMessagesByID("ID:123");
if(msgs.MoveNext()) {
 msg = (QAMessage)msgs.Current;
 // Process message.
}

The following C++ example uses the QAManager browseMessageByID function to browse a message :

QAMessage *msg;
qa_browse_handle bh = mgr->browseMessagesByID(_T("ID:123"));
msg = mgr->browseNextMessage(bh);
if(msg != qa_null) {
 // Process message.
}
mgr->browseClose(bh);

The following Java example uses the QAManager.browseMessageByID method to browse a message:

QAMessage msg;
java.util.Enumeration msgs = mgr.browseMessagesByID("ID:123");
if(msgs.hasMoreElements()) {
 msg = (QAMessage)msgs.nextElement();
 // Process message.
}

Browsing QAnywhere messages

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 75

See also
● .NET: “BrowseMessagesByID method” on page 232
● C++: “browseMessagesByID method” on page 399
● Java: “browseMessagesByID method” on page 518
● SQL: The SQL API does not support browsing messages

Browsing messages using a selector
You can use message selectors to select messages for browsing. A message selector is a SQL-like
expression that specifies a condition to select a subset of messages to consider for browse operations.

The syntax and semantics of message selectors are exactly the same as the condition part of transmission
rules.

See “Condition syntax” on page 734.

The following .NET example browses all messages in the message store that have a property called
intprop with value 1.

QAMessage msg;
IEnumerator msgs = mgr.BrowseMessagesBySelector("intprop = 1");
while(msgs.MoveNext()) {
 msg = (QAMessage)msgs.Current;
 // Process message.
}

The following C++ example browses all messages in the message store that have a property called intprop
with value 1.

QAMessage *msg;
qa_browse_handle bh = mgr->browseMessagesBySelector(_T("intprop = 1"));
for (;;) {
 msg = mgr->browseNextMessage(bh);
 if(msg == qa_null) {
 break;
 }
 // Process message.
}
mgr->browseClose(bh);

The following Java example browses all messages in the message store that have a property called intprop
with value 1.

QAMessage msg;
java.util.Enumeration msgs = mgr.browseMessagesBySelector("intprop = 1");
while(msgs.hasMoreElements()) {
 msg = (QAMessage)msgs.nextElement();
 // Process message.
}

Writing QAnywhere client applications

76 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● .NET: “BrowseMessagesBySelector method” on page 233
● C++: “browseMessagesBySelector method” on page 401
● Java: “browseMessagesBySelector method” on page 519
● SQL: The SQL API does not support browsing messages

Handling QAnywhere exceptions
The QAnywhere C++, Java, and .NET APIs include special objects and properties for exception handling.

.NET exceptions
The QAException class encapsulates QAnywhere client application exceptions. After you catch a
QAnywhere exception, you can use the QAException ErrorCode and Message properties to determine the
error code and error message.

Note that if a QAException is thrown inside a message listener delegate and it is not caught in the
message listener, then it gets logged to the QAManager log file. Since uncaught QAExceptions are only
logged, it is recommended that all exceptions be handled within message listener delegates or handled by
exception listener delegates so that they can be dealt with appropriately.

For more information about message listener delegates and exception listener delegates, see:

● “MessageListener delegate” on page 300
● “MessageListener2 delegate” on page 300
● “ExceptionListener delegate” on page 299
● “ExceptionListener2 delegate” on page 299

For more information about the log file, see “QAnywhere manager configuration properties” on page 81.

When a QAException is thrown, the current transaction is rolled back. When this happens in a message
listener with a QATransactionalManager, the message that was being processed when the QAException
was thrown is put back in the receive queue and so that it can be re-received. You can use the message
store property ias_MaxDeliveryAttempts to prevent an infinite loop.

When the property ias_MaxDeliveryAttempts is set to a positive integer n by a QAnywhere application,
as in mgr.SetIntStoreProperty("ias_MaxDeliveryAttempts", 5), the QAnywhere
client attempts to receive an unacknowledged message up to n times before setting the status of the
message to unreceivable. If the property ias_MaxDeliveryAttempts is not set or is negative, the
QAnywhere client attempts to receive messages an unlimited number of times.

For more information, see:

● “QAException class” on page 207
● “ErrorCode property” on page 211
● “Predefined client message store properties” on page 718

Handling QAnywhere exceptions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 77

C++ exceptions
For C++, the QAError class encapsulates QAnywhere client application exceptions. You can use the
QAManagerBase::getLastError() method or QAManagerFactory::getLastError() method to determine the
error code associated with the last executed method. You can use the corresponding
getLastErrorMessage() method to obtain the error text.

For a list of error codes and more information, see “QAError class” on page 380.

For more information about getLastError and getLastErrorMessage, see:

● QAManagerBase: “getLastError method” on page 408 and “getLastErrorMsg method” on page 408
● QAManagerFactory: “getLastError method” on page 427 and “getLastErrorMsg

method” on page 428

Java exceptions
The QAException class encapsulates QAnywhere client application exceptions. After you catch a
QAnywhere exception, you can use the QAException ErrorCode and Message properties to determine the
error code and error message.

If a QAException is thrown inside a message listener and it is not caught in the message listener, then it is
logged to the QAManager log file. Since uncaught QAExceptions are only logged, it is recommended that
all exceptions be handled within message listeners or handled by exception listeners so that they can be
dealt with appropriately.

For more information about message listeners and exception listeners, see:

● “QAMessageListener interface” on page 566
● “QAMessageListener2 interface” on page 568
● “QAException class” on page 498

For more information about the log file, see “QAnywhere manager configuration properties” on page 81.

When a QAException is thrown, the current transaction is rolled back. When this happens in a message
listener with a QATransactionalManager, the message that was being processed when the QAException
was thrown is put back in the receive queue and so that it can be re-received. You can use the message
store property ias_MaxDeliveryAttempts to prevent an infinite loop.

When the property ias_MaxDeliveryAttempts is set to a positive integer n by a QAnywhere application,
as in mgr.SetIntStoreProperty("ias_MaxDeliveryAttempts", 5), the QAnywhere
client attempts to receive an unacknowledged message up to n times before setting the status of the
message to unreceivable. If the property ias_MaxDeliveryAttempts is not set or is negative, the
QAnywhere client attempts to receive messages an unlimited number of times.

For more information, see:

● “ErrorCode property” on page 211
● “Predefined client message store properties” on page 718

Error codes
The following table lists QAnywhere error code values:

Writing QAnywhere client applications

78 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Error val-
ue

Description

0 No error.

1000 Initialization error.

1001 Termination error.

1002 Unable to access the client properties file.

1003 No destination.

1004 The function is not implemented.

1005 You cannot write to a message as it is in read-only mode.

1006 Error storing a message in the client message store.

1007 Error retrieving a message from the client message store.

1008 Error initializing the background thread.

1009 Error opening a connection to the message store.

1010 There is an invalid property in the client properties file.

1011 Error opening the log file.

1012 Unexpected end of message reached.

1013 The message store is too large relative to the free disk space on the device.

1014 The message store has not been initialized for messaging.

1015 Error getting queue depth.

1016 Cannot use QAManagerBase.getQueueDepth when the message store ID has not been set.

1017 Cannot use QAManagerBase.getQueueDepth on a given destination when filter is ALL.

1018 Error canceling message.

1019 Error canceling message. Cannot cancel a message that has already been sent.

1020 Error acknowledging the message.

1021 The QAManager is not open.

1022 The QAManager is already open.

Handling QAnywhere exceptions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 79

Error val-
ue

Description

1023 The given selector has a syntax error.

1024 The timestamp is outside the acceptable range.

1025 Cannot open QAManager because the maximum number of concurrent server requests is
not high enough. See “-gn dbsrv12 server option” [SQL Anywhere Server - Database Ad-
ministration].

1026 Error retrieving property from message store.

1027 Error storing property to message store.

Shutting down QAnywhere
After you have completed sending and receiving messages, you can shut down the QAnywhere messaging
system by completing one of the following procedures.

To shut down QAnywhere (.NET)

● Stop and close the QAnywhere manager.

mgr.Stop();
mgr.Close();

To shut down QAnywhere (C++)

1. Close the QAnywhere manager.

mgr->stop();
mgr->close();

2. Terminate the factory.

QAnywhereFactory_term();

This step shuts down the messaging part of your application.

To shut down QAnywhere (Java)

● Stop and close the QAnywhere manager.

mgr.stop();
mgr.close();

Writing QAnywhere client applications

80 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● .NET: “Stop method” on page 263
● C++: “stop method” on page 423
● Java: “stop method” on page 544
● SQL: The SQL API does not support shutting down QAnywhere

Multi-threading considerations
Access to a QAManager is serialized. When you have multiple threads accessing a single QAManager,
threads block while one thread performs a method call on the QAManager. To maximize concurrency, use
a different QAManager for each thread. Only one thread is allowed to access an instance of QAManager
at one time. Other threads block until the QAManager method that was invoked by the first thread returns.

QAnywhere manager configuration properties
You can set QAnywhere manager configuration properties in one of the following ways:

● Create a properties text file to define the QAnywhere manager configuration properties that is used by
one Manager instance.

See “Setting QAnywhere manager configuration properties in a file” on page 82.

● Set QAnywhere manager configuration properties programmatically.

See “Setting QAnywhere manager configuration properties programmatically” on page 84.

The following are the QAnywhere manager configuration properties:

● COMPRESSION_LEVEL=n Set the compression level.

n is the compression factor, which is expressed as is an integer between 0 and 9, where 0 indicates no
compression and 9 indicates maximum compression.

● CONNECT_PARAMS=connect-string Specify a connection string for the QAnywhere manager
to use to connect to the message store database. Specify each connection option in the form
keyword=value with multiple options separated by semicolons.

This property is not supported in the standalone client.

The default is "server=qanywhere;uid=ml_qa_user;pwd=qanywhere".

For a list of options, see “Connection parameters” [SQL Anywhere Server - Database Administration].

For information about managing the database user and password, see “Writing secure messaging
applications” on page 117.

Multi-threading considerations

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 81

● DATABASE_TYPE=string Specify the type of database the QAnywhere manager is connected to.
Use sqlanywhere for a SQL database, or ultralite for an UltraLite database. By default, the manager
uses sqlanywhere.

● LOG_FILE=filename Specify the name of a file to use to write logging messages. Specifying this
option implicitly enables logging.

● MAX_IN_MEMORY_MESSAGE_SIZE=n When reading a message, n is the largest message, in
bytes, for which a buffer is allocated. A message larger than n bytes must be read using streaming
operations. The default value is 1MB on Windows and 64KB on Windows Mobile.

The following are properties made exclusively for the standalone client:

● ML_PROTOCOL_TYPE Specify the protocol type. Valid options are tcpip, tls, http, or https.

● ML_PROTOCOL_PARAMS Specify the MobiLink connect parameters.

● ML_PROTOCOL_USENAME Performs the same effect as the -mu option in QAnywhere agent.

● ML_PROTOCOL_PASSWORD Performs the same effect as the -mn option in QAnywhere agent.

● INC_UPLOAD Performs the same effect as the -iu option in QAnywhere agent.

● INC_DOWNLOAD Performs the same effect as the -idl option in QAnywhere agent.

● STORE_ID Performs the same effect as the -id option in QAnywhere agent.

● STORE_ENCRYPTION_KEY Specify the encryption key to encrypt the MessageStore.

● POLICY Performs the same effect as the -policy option in QAnywhere agent.

● DELETE_PERIOD Specifies the number of seconds between executions of the delete rules. If the
amount specified is a negative number, execution of the delete rules is disabled.

● PUSH Performs the same effect as the -push option in the QAnywhere agent.

Setting QAnywhere manager configuration properties in a
file

Note
You can create or open a QAnywhere manager configuration file in Sybase Central. From the QAnywhere
12 plug-in task pane, choose Create An Agent Configuration File. When you have chosen a file name
and location, the Properties window for the configuration file opens, where you can set the properties.

The information in a QAnywhere manager properties file is specific to one instance of a QAManager.

When using a properties file, it must be configured for and installed on the remote device with each
deployed copy of your application.

Writing QAnywhere client applications

82 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

For information about specifying the name of the property file, see:

● .NET API: “CreateQAManager method” on page 265
● C++ API: “createQAManager method” on page 425
● Java API: “createQAManager method” on page 546
● SQL API: You cannot set properties in a file using the QAnywhere SQL API. See “Setting

QAnywhere manager configuration properties programmatically” on page 84.

If the properties file does not reside in the same directory as your client executable, you must also specify
the absolute path. If you want to use the default settings for the properties, use null instead of a file name.

Values set in the file permit you to enable or disable some of the QAnywhere features, such as automatic
message compression and logging.

Entries in a QAnywhere manager configuration properties file take the form name=value. For a list of
property names, see “QAnywhere manager configuration properties” on page 81. If value has spaces,
enclose it in double-quotes. Comment lines start with #. For example:

contents of QAnywhere manager configuration properties file
LOG_FILE=.\sender.ini.txt
A comment
CONNECT_PARAMS=server=qanywhere;uid=ml_qa_user;pwd=qanywhere
DATABASE_TYPE=sqlanywhere
MAX_IN_MEMORY_MESSAGE_SIZE=2048
COMPRESSION_LEVEL=0

Referencing the configuration file
Suppose you have a QAnywhere manager configuration properties file called mymanager.props with the
following content:

COMPRESSION_LEVEL=9
CONNECT_PARMS=DBF=mystore.db

When you create QAManager, you reference the file by name.

The following is an example using C#:

QAManager mgr;
mgr = QAManagerFactory.Instance.CreateQAManager("mymanager.props");
mgr.Open(AcknowledgeMode.EXPLICIT_ACKNOWLEDGEMENT);

For the .NET API, see “QAManager interface” on page 219 and “QAManagerFactory
class” on page 265.

The following is an example using C++:

QAManagerFactory * qa_factory;
QAManager * mgr;
qa_factory = QAnywhereFactory_init();
mgr = qa_factory->createQAManager("mymanager.props");
mgr->open(AcknowledgementMode::EXPLICIT_ACKNOWLEDGEMENT);

For the C++ API, see “QAManager class” on page 387 and “QAManagerFactory class” on page 424.

The following is an example using Java:

QAnywhere manager configuration properties

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 83

QAManager mgr;
mgr = QAManagerFactory.getInstance().createQAManager("mymanager.props");
mgr.open(AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT);

For the Java API, see “QAManagerFactory class” on page 545 and “QAManager interface” on page 507.

Setting QAnywhere manager configuration properties
programmatically

In the QAnywhere APIs, you can use the QAManagerBase set property method to set properties
programmatically. Setting QAnywhere manager configuration properties programmatically must be done
before calling the open method of a QAManager instance.

For more information about QAManager properties, see “QAnywhere manager configuration
properties” on page 81.

Example
The following C# example sets properties programmatically. When you create the QAManager, you
specify the property settings.

QAManager mgr;
mgr = QAManagerFactory.Instance.CreateQAManager(null);
mgr.SetProperty("COMPRESSION_LEVEL", "9");
mgr.SetProperty("CONNECT_PARAMS", "DBF=mystore.db");
mgr.SetProperty("DATABASE_TYPE", "sqlanywhere");
mgr.Open(AcknowledgeMode.EXPLICIT_ACKNOWLEDGEMENT);

For the .NET API, see “QAManager interface” on page 219 and “QAManagerFactory
class” on page 265.

The following C++ example sets properties programmatically. When you create the QAManager, you
specify the property settings.

QAManagerFactory * qa_factory;
QAManager * mgr;
qa_factory = QAnywhereFactory_init();
mgr = qa_factory->createQAManager(NULL);
mgr->setProperty("COMPRESSION_LEVEL", "9");
mgr->setProperty("CONNECT_PARAMS", "DBF=mystore.db");
mgr->setProperty("DATABASE_TYPE", "sqlanywhere");
mgr->open(AcknowledgementMode::EXPLICIT_ACKNOWLEDGEMENT);

For the C++ API, see “QAManager class” on page 387 and “QAManagerFactory class” on page 424.

The following Java example sets properties programmatically. When you create the QAManager, you
specify the property settings.

QAManager mgr;
mgr = QAManagerFactory.getInstance().createQAManager(null);
mgr.setProperty("COMPRESSION_LEVEL", 9);
mgr.setStringProperty("CONNECT_PARMS", "DBF=mystore.db");
mgr.setStringProperty("DATABASE_TYPE", "sqlanywhere");
mgr.open(AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT);

Writing QAnywhere client applications

84 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

For the Java API, see “QAManagerFactory class” on page 545 and “QAManager interface” on page 507.

QAnywhere manager configuration properties

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 85

86

QAnywhere standalone client
The QAnywhere standalone client provides a compact client that enables you to set up a messaging
system without worrying about running the QAnywhere Agent or administering your database. The
standalone client incorporates both client store administration and QAnywhere Agent functionality into
the same process that accesses the client API, so you are no longer required to create or maintain the
client message stores and do not need to run the QAnywhere Agent as a separate process.

The following diagram shows the standalone client architecture and the existing QAnywhere architecture:

Understanding the standalone client message store
The message store is an UltraLite database that is bound to a store ID and is created and maintained
automatically by the standalone client. The QAnywhere API accesses the message store using the in-
process UltraLite runtime and not the UltraLite engine.

The standalone client message store differs from existing QAnywhere message stores in that only a single
user application can access a message store at a time. That is, multiple standalone client applications on
the same device require separate message stores and distinct store IDs. As a result of this, the Standalone

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 87

Client has no notion of "local messaging" whereby messages can be sent to different queues in the same
message store. All messages sent through the standalone client are assumed to be for a different message
store.

Since messages may reside in the message store even while the client application is not running, you can
secure the store by providing a STORE_ENCRYPTION_KEY value on first use. The same key must then
be provided each subsequent time a user attempts to use the message store. This encryption key also
encrypts the data on disc. See “QAnywhere manager configuration properties” on page 81.

Deploying the standalone client
The QAnywhere standalone client is distributed in a separate dll file for .NET and a separate JAR file for
Java:

● The .NET implementation is distributed in the dll iAnywhere.QAnywhere.StandAloneClient.dll and
uses namespace iAnywhere.QAnywhere.StandAloneClient. See “QAnywhere .NET API reference for
clients” on page 179.

● The Java implementation is distributed in the JAR file qastandaloneclient.jar and uses the package
name ianywhere.qanywhere.standaloneclient. See “QAnywhere Java API reference for
clients” on page 467.

Standalone client API
Both the Java and .NET implementations of the standalone client preserve the same API as the existing
clients with the following exceptions.

The following QAManager configuration properties are exclusively for the standalone client:

● ML_PROTOCOL_TYPE Specifies the protocol type. Valid options are tcpip, tls, http, or https.

● ML_PROTOCOL_PARAMS Specifies MobiLink connection parameters.

● ML_PROTOCOL_USENAME Specifies the MobiLink user name. This is the same as the
QAnywhere Agent -mu option. See “-mu qaagent option” on page 683.

● ML_PROTOCOL_PASSWORD Specifies a new password for the MobiLink user. This is the same
as the QAnywhere Agent -mn option. See “-mn qaagent option” on page 682.

● INC_UPLOAD Specifies the incremental upload size. This is the same as the QAnywhere Agent -iu
option. See “-iu qaagent option” on page 681.

● INC_DOWNLOAD Specifies the incremental download size. This is the same as the QAnywhere
Agent -idl option. See “-idl qaagent option” on page 680.

● STORE_ID Specifies the ID of the client message store that the standalone client is to connect to.
This is the same as the QAnywhere Agent -id option. See “-id qaagent option” on page 679.

QAnywhere standalone client

88 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● STORE_ENCRYPTION_KEY Specifies the encryption key used to encrypt the message store.

● POLICY Specifies a policy that determines when message transmission occurs. This is the same as
the QAnywhere Agent -policy option. See “-policy qaagent option” on page 686.

● DELETE_PERIOD Specifies the number of seconds between execution of deletion of messages
that have reached a final state.

● PUSH Specifies how push notifications are delivered. This is the same as the QAnywhere Agent -
push option, except that the default is -push lwpoll for the standalone client. See “-push qaagent
option” on page 688.

The following QAManager configuration properties are not supported in the QAnywhere standalone client:

● CONNECT_PARAMS
● DATABASE_TYPE

See also
● “QAnywhere manager configuration properties” on page 81
● “qaagent utility” on page 673

Standalone client API

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 89

90

Mobile web services
Web Services have become a popular way to expose application functionality and enable better
interoperability between the resources of various enterprises. They broaden the capabilities of mobile
applications and simplify the development process.

Implementing web services in a mobile environment can be challenging because connectivity may not be
available (or may be interrupted) and because of other limitations of wireless environments and devices.
For example, a user working with a mobile application may want to make a request to a web service while
offline and obtain the response when they go online, or an IT administrator may want to specify rules that
restrict the size of web service responses based on the type of network connectivity the mobile application
is using (such as GPRS, 802.11, or cradled).

QAnywhere addresses these challenges with mobile-optimized asynchronous web services that leverage
the QAnywhere store-and-forward messaging architecture. By using QAnywhere mobile web services,
your mobile applications can make web service requests, even when they are offline, and have those
requests queued up for transmission later. The requests are delivered as QAnywhere messages and then a
web services connector on the server side makes the request, gets the response from the web service, and
returns the response to the client as a message. QAnywhere transmission rules can control which requests
and responses are transmitted based on a wide variety of parameters (network being used, size of request/
response, location, time of day, and so on). The result is a sophisticated and flexible architecture that
allows mobile applications to tap into the vast functionality of web services using proven technology and
a simple programming model.

From a development point of view, you can work with web service proxy classes much as you would in a
connected environment and QAnywhere handles the transmission, authentication, serialization, and so on.
A WSDL compiler is provided to take a WSDL document and generate special proxy classes (either .NET
or Java) that a mobile application can use to invoke a web service. These classes use the underlying
QAnywhere infrastructure to send requests and receive responses. When an object method call is made, a
SOAP request is built automatically and delivered as a message to the server where a connector makes the
web service request and returns the result as a message.

See also
● “Mobile web services” [SQL Anywhere 12 - Introduction]

Setting up mobile web services
The following steps provide an overview of the tasks required to set up mobile web services.

Overview of setting up mobile web services

1. Set up a server message store, if you don't already have one.

See “Setting up the server message store” on page 22.

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 91

2. Start the MobiLink server with the -m option and a connection to the server message store.

See “Starting QAnywhere with MobiLink enabled” on page 29.

3. Set up client message stores, if you don't already have them. These are SQL Anywhere databases that
are used to temporarily store messages.

See “Setting up the client message store” on page 23.

4. Run the iAnywhere WSDL compiler to create classes you can use in your application.

See “Running the iAnywhere WSDL compiler” on page 92.

5. For each client, write a web service client application that uses the classes generated by the WSDL
compiler.

See “Writing mobile web service applications” on page 94.

6. Create a web services connector.

See “Web service connectors” on page 137.

7. For each client, start the QAnywhere Agent (qaagent) with a connection to the local client message store.

See “Starting the QAnywhere agent” on page 44.

Other resources for getting started
● An example showing how to set up a weather web service in Java is described in “Mobile web service

example” on page 103.
● A mobile web service sample application using a currency exchange web service is installed to samples-

dir\QAnywhere\MobileWebServices. (For information about samples-dir, see “Samples directory”
[SQL Anywhere Server - Database Administration].) This sample is provided in both Java and C#.

● You can post questions on the QAnywhere newsgroup: ianywhere.public.sqlanywhere.qanywhere

Mobile web services development tips
● For mobile web services .NET applications, proxy classes generated by the WSDL compiler must be

compiled into the application executable. They cannot be compiled into their own assembly.

● For mobile web services Java applications, JDK 1.5.x must be used.

● The iAnywhere WSDL compiler does not support CHAR data types. It is recommended that a
STRING data type be used in place of CHAR.

Running the iAnywhere WSDL compiler

Mobile web services

92 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

news://forums.sybase.com/ianywhere.public.sqlanywhere.qanywhere

Given a WSDL source that describes a web service, the iAnywhere WSDL compiler generates a set of
Java proxy classes, C# proxy classes, or SQL SOAP client procedures for SQL Anywhere that you
include in your application.

The Java or C# classes generated by the WSDL compiler are intended for use with QAnywhere. These
classes expose web service operations as method calls. The classes that are generated are:

● The main service binding class (this class inherits from ianywhere.qanywhere.ws.WSBase in the
mobile web services runtime).

● A proxy class for each complex type specified in the WSDL file.

For information about the generated proxy classes, see:

● .NET: “QAnywhere .NET API reference for web services” on page 306
● Java: “QAnywhere Java API reference for web services” on page 586

The WSDL compiler supports WSDL 1.1 and SOAP 1.1 over HTTP and HTTPS.

Syntax
wsdlc [options] wsdl-uri

wsdl-uri
This is the specification for the WSDL (Web Services Description Language) source (a URL or file).

Options
● -h Display help text.

● -v Display verbose information.

● -o output-directory Specify an output directory for generated files.

● -l language Specify a language for the generated files. This is one of java, cs, or sql. These
options must be specified in lowercase letters.

● -d Display debug information that may be helpful when contacting iAnywhere customer support.

Java-specific options
● -p package Specify a package name. This permits you to override the default package name.

C#-specific options
● -n namespace Specify a namespace. This permits you to wrap the generated classes in a

namespace of your choosing.

SQL-specific options
● -f filename (Required) Specify the name of the output SQL file to which the SQL statements are

written. This operation overwrites any existing file of the same name.

Running the iAnywhere WSDL compiler

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 93

● -p=prefix Specify a prefix for the generated function or procedure names. The default prefix is the
service name followed by a period (for example, "WSDish.").

● -x Generate procedure definitions rather than function definitions.

Writing mobile web service applications
Your application sends a web service request to QAnywhere, which sends the request to the mobile web
service connector in the MobiLink server. The connector sends the request to the web service or queues
the request until the web service is available. When QAnywhere receives the response, it notifies your
application or queues the response until your application is available.

Setting up .NET mobile web service applications

Before using .NET with QAnywhere, you must make the following changes to your Visual Studio project:

● Add references to the QAnywhere .NET DLL and the mobile web services .NET DLL. This tells
Visual Studio which DLL to include to find the code for the QAnywhere .NET API and the mobile
web services .NET API.

● Add lines to your source code to reference the QAnywhere .NET API classes and the mobile web
services .NET API classes. To use the QAnywhere .NET API, you must add a line to your source
code to reference the data provider. You must add a different line for C# than for Visual Basic.

Complete instructions follow.

To add references to the QAnywhere .NET API and mobile web services API in a Visual
Studio project

1. Start Visual Studio and open your project.

2. In the Solution Explorer window, right-click the References folder and choose Add Reference.

3. On the Browse tab, locate iAnywhere.QAnywhere.Client.dll and iAnywhere.QAnywhere.WS.dll in the
following directories:

● .NET Framework 2.0: install-dir\Assembly\V2
● .NET Compact Framework 2.0: install-dir\ce\Assembly\V2

From the appropriate directory for your environment, select each DLL and click Open.

4. To verify that the DLLs are added to your project, expand the References tree in the Solution
Explorer. iAnywhere.QAnywhere.Client.dll and iAnywhere.QAnywhere.WS.dll should appear in the list.

Mobile web services

94 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Referencing the data provider classes in your source code
To reference the QAnywhere .NET API and mobile web services API classes in your code

1. Start Visual Studio and open your project.

2. If you are using C#, add the following lines to the list of using directives at the beginning of your file:

using iAnywhere.QAnywhere.Client;
using iAnywhere.QAnywhere.WS;

3. If you are using Visual Basic, add the following lines to the list of imports at the beginning of your file:

Imports iAnywhere.QAnywhere.Client
Imports iAnywhere.QAnywhere.WS

The Imports lines are not strictly required. However, they allow you to use short forms for the
QAnywhere and mobile web services classes. Without them, you can still use the fully qualified class
name in your code. For example, the following code uses the long form:

iAnywhere.QAnywhere.Client.QAManager
mgr =
 new iAnywhere.QAnywhere.Client.QAManagerFactory.Instance.CreateQAManager(
"qa_manager.props");

The following code uses the short forms:

QAManager mgr = QAManagerFactory.Instance.CreateQAManager(
 "qa_manager.props");

To initialize QAnywhere and mobile web services for .NET

1. Include the iAnywhere.QAnywhere.Client and iAnywhere.QAnywhere.WS namespaces, as described in
the previous procedure.

using iAnywhere.QAnywhere.Client;
using iAnywhere.QAnywhere.WS;

2. Create a QAManager object.

For example, to create a default QAManager object, invoke CreateQAManager with null as its parameter:

QAManager mgr;
mgr = QAManagerFactory.Instance.CreateQAManager(null);

Tip
For maximum concurrency benefits, multi-threaded applications should create a QAManager for each
thread. See “Multi-threading considerations” on page 81.

For more information about QAManagerFactory, see “QAManagerFactory class” on page 265.

Alternatively, you can create a QAManager object that is customized using a properties file. The
properties file is specified in the CreateQAManager method:

Writing mobile web service applications

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 95

mgr = QAManagerFactory.Instance.CreateQAManager(
 "qa_mgr.props");

where qa_mgr.props is the name of the properties file that resides on the remote device.

3. Initialize the QAManager object. For example:

mgr.Open(
 AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT);

The argument to the open method is an acknowledgement mode, which indicates how messages are to
be acknowledged. It must be one of IMPLICIT_ACKNOWLEDGEMENT or
EXPLICIT_ACKNOWLEDGEMENT.

QAnywhere messages used by mobile web services are not accessible to the mobile web services
application. When using a QAManager in EXPLICIT_ACKNOWLEDGEMENT mode, use the
Acknowledge method of WSResult to acknowledge the QAnywhere message that contains the result
of a web services request. This method indicates that the application has successfully processed the
response.

For more information about acknowledgement modes, see:

● WSBase “SetQAManager method” on page 311
● WSResult “Acknowledge method” on page 324

Note
Instead of creating a QAManager, you can create a QATransactionalManager. See “Implementing
transactional messaging for .NET clients” on page 63.

4. Create an instance of the service binding class.

The mobile web services WSDL compiler generates the service binding class from the WSDL
document that defines the web service.

The QAManager is used by the instance of the web service binding class to perform messaging
operations in the process of making web service requests. You specify the connector address to use to
send web service requests through QAnywhere by setting the property
WS_CONNECTOR_ADDRESS of the service binding class. You configure each QAnywhere web
service connector with the URL of a web service to connect to, and if an application needs web
services located at more than one URL, configure the connector for each URL.

For example:

CurrencyConverterSoap service = new CurrencyConverterSoap()
service.SetQAManager(mgr);
service.setProperty(
 "WS_CONNECTOR_ADDRESS",
 "ianywhere.connector.currencyconvertor\\");

Note that the final \\ in the address must be included.

Mobile web services

96 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “QAnywhere .NET API reference for web services” on page 306
● “QAnywhere .NET API reference for clients” on page 179

Example
To initialize mobile web services, you must create a QAManager and create an instance of the service
binding class. For example:

// QAnywhere initialization
 QAManager mgr = QAManagerFactory.Instance.CreateQAManager();
 mgr.SetProperty("CONNECT_PARAMS",
"server=qanywhere;dbf=qanywhere.db;uid=ml_qa_user;pwd=qanywhere");
 mgr.Open(AcknowledgementMode.IMPLICIT_ACKNOWLEDGEMENT);
 mgr.Start();

 // Instantiate the web service proxy
 CurrencyConvertorSoap service = new CurrencyConvertorSoap();
 service.SetQAManager(mgr);
 service.SetProperty("WS_CONNECTOR_ADDRESS",
"ianywhere.connector.currencyconvertor\\");

The response time for the CurrencyConvertor sample depends on the availability of the web service.
Asynchronous web service requests are useful when the mobile web service application is not always
available. With this method, a web service request is made by calling a method on the service binding
class to place the request in an outgoing queue. The method returns a WSResult, which can be used to
query the status of the response at a later time, even after the application has been restarted. See
“Asynchronous web service requests” on page 101.

Setting up Java mobile web service applications

To create mobile web service applications in Java, you must complete the following initialization tasks.

To initialize QAnywhere and mobile web services for Java

1. Add the location of the following files to your classpath. By default, they are located in install-dir
\Java:

● qaclient.jar
● iawsrt.jar
● jaxrpc.jar

2. Import the ianywhere.qanywhere.client and ianywhere.qanywhere.ws packages:

import ianywhere.qanywhere.client.*;
import ianywhere.qanywhere.ws.*;

3. Create a QAManager object.

QAManager mgr;
mgr = QAManagerFactory.getInstance().createQAManager(null);

Writing mobile web service applications

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 97

You can also customize a QAManager object by specifying a properties file to the createQAManager
method:

mgr = QAManagerFactory.getInstance().createQAManager("qa_mgr.props.");

Tip
For maximum concurrency benefits, multi-threaded applications should create a QAManager for each
thread. See “Multi-threading considerations” on page 81.

4. Initialize the QAManager object.

mgr.open(AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT);

The argument to the open method is an acknowledgement mode, which indicates how messages are to
be acknowledged. It must be one of IMPLICIT_ACKNOWLEDGEMENT or
EXPLICIT_ACKNOWLEDGEMENT.

QAnywhere messages used by mobile web services are not accessible to the mobile web services
application. When using a QAManager in EXPLICIT_ACKNOWLEDGEMENT mode, use the
Acknowledge method of WSResult to acknowledge the QAnywhere message that contains the result
of a web services request. This method indicates that the application has successfully processed the
response.

For more information about acknowledgement modes, see:

● “setQAManager method” on page 590
● “acknowledge method” on page 599

Note
Instead of creating a QAManager, you can create a QATransactionalManager. See “Implementing
transactional messaging for Java clients” on page 66.

5. Create an instance of the service binding class.

The mobile web services WSDL compiler generates the service binding class from the WSDL
document that defines the web service.

In the process of making web service requests, the QAManager is used by the instance of the web
service binding class to perform messaging operations. You specify the connector address to use to
send web service requests through QAnywhere by setting the WS_CONNECTOR_ADDRESS
property of the service binding class. Each QAnywhere web service connector is configured with a
URL of a web service to connect to. This means that if an application needs web services located at
more than one URL, then a QAnywhere connector must be configured for each service URL.

For example:

CurrencyConverterSoap service = new CurrencyConverterSoap();
service.setQAManager(mgr);
service.setProperty("WS_CONNECTOR_ADDRESS",
"ianywhere.connector.currencyconvertor\\");

Mobile web services

98 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Note that the final \\ in the address must be included.

See also
● “QAnywhere Java API reference for web services” on page 586
● “QAnywhere Java API reference for clients” on page 467

Example
To initialize mobile web services, you must create a QAManager and create an instance of the service
binding class. For example:

// QAnywhere initialization
 Properties props = new Properties();
 props.put("CONNECT_PARAMS",
"server=qanywhere;dbf=qanywhere.db;uid=ml_qa_user;pwd=qanywhere");
 QAManager mgr = QAManagerFactory.getInstance().createQAManager(props);
 mgr.open(AcknowledgementMode.IMPLICIT_ACKNOWLEDGEMENT);
 mgr.start();

 // Instantiate the web service proxy
 CurrencyConvertorSoap service = new CurrencyConvertorSoap();
 service.setQAManager(mgr);
 service.setProperty("WS_CONNECTOR_ADDRESS",
"ianywhere.connector.currencyconvertor\\");

Multiple instances of the service binding class
You should create an instance of the service binding class for each QAManager. If a mobile web services
application has more than one instance of a service binding class, it is important that the service ID be set
using the SetServiceID method. For example:

service1.SetServiceID("1")
service2.SetServiceID("2")

The service ID is combined with the service name to form a queue name for receiving web service
responses. It is important that each instance of a given service has a unique service ID so that a given
instance does not get responses to requests made by another instance of the service. If the service ID is not
set, it defaults to "". The service ID is also important for preventing multiple applications that use the
same service from conflicting with each other, since queue names persist messages in the message store
across applications that are transient.

Compiling and running mobile web service
applications
Runtime libraries

The runtime library for Java is iawsrt.jar, located in install-dir\Java.

Compiling and running mobile web service applications

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 99

The runtime library for C# is iAnywhere.QAnywhere.WS.dll, located in the following directories:

● .NET Framework 2.0: install-dir\Assembly\V2
● .NET Compact Framework 2.0: install-dir\ce\Assembly\V2

The following sections describe the files you need to compile and run mobile web service applications.

Required runtime libraries (Java)
Include the following files in your classpath. They are located in install-dir\Java:

● jaxrpc.jar
● qaclient.jar
● iawsrt.jar

Required runtime libraries (.NET)
The SQL Anywhere 12 installation automatically includes the following files in your Global Assembly
Cache:

● iAnywhere.QAnywhere.Client.dll
● iAnywhere.QAnywhere.WS.dll

Shutting down mobile web services
A mobile web services application performs orderly shutdown by closing the QAManager. For example:

// QAnywhere finalization in C#:
mgr.Stop();
mgr.Close();
// QAnywhere finalization in Java:
mgr.stop();
mgr.close();

Making web service requests
There are two basic methods of making web service requests in a mobile web services application:

● Synchronous See “Synchronous web service requests” on page 100.

● Asynchronous See “Asynchronous web service requests” on page 101.

Synchronous web service requests
Synchronous web service requests are used when the application is connected to a network. With this
method, a web service request is made by calling a method on the service binding class, and the result is
returned only when the web service response has been received from the server.

Mobile web services

100 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example
The following example makes a request to get the USD-to-CAD exchange rate:

//C#
double r = service.ConversionRate(Currency.USD, Currency.CAD);
// Java
double r = service.conversionRate(NET.webserviceX.Currency.USD,
NET.webserviceX.Currency.CAD);

Asynchronous web service requests
Asynchronous web service requests are useful when the mobile web service application is only
occasionally connected to a network. With this method, a web service request is made by calling a method
on the service binding class to place the request in an outgoing queue. The method returns a WSResult,
which can be used to query the status of the response at a later time, even after the application has been
restarted.

The following example makes an asynchronous request to get the USD-to-CAD exchange rate:

// C#
WSResult r = service.AsyncConversionRate(Currency.USD, Currency.CAD);

// Get the request ID. Save it for later use if necessary.
string reqID = r.GetRequestID();
// Later: get the response for the specified request ID
WSResult r = service.GetResult(reqID);
if(r.GetStatus() == WSStatus.STATUS_RESULT_AVAILABLE) {
 Console.WriteLine("The conversion rate is " +
r.GetDoubleValue("ConversionRateResult"));
} else {
 Console.WriteLine("Response not available");
}
// Java
WSResult r = service.asyncConversionRate(NET.webserviceX.Currency.USD,
NET.webserviceX.Currency.CAD);

// Get the request ID. Save it for later use if necessary.
String reqID = r.getRequestID();
// Later: get the response for the specified request ID
WSResult r = service.getResult(reqID);
if(r.getStatus() == WSStatus.STATUS_RESULT_AVAILABLE) {
 System.out.println("The conversion rate is " +
r.getDoubleValue("ConversionRateResult"));
} else {
 System.out.println("Response not available");
}

It is also possible to use a WSListener to get an asynchronous callback when the response to a web
service request is available. For example:

// C#
// Make a request to get the USD to CAD exchange rate
WSResult r = service.AsyncConversionRate(Currency.USD, Currency.CAD);

Making web service requests

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 101

// Register a listener for the result
service.SetListener(r.GetRequestID(), new CurrencyConvertorListener());
// Java
// Make a request to get the USD to CAD exchange rate
WSResult r = service.asyncConversionRate(NET.webserviceX.Currency.USD,
NET.webserviceX.Currency.CAD);

// Register a listener for the result
service.setListener(r.getRequestID(), new CurrencyConvertorListener());

The WSListener interface defines two methods for handling asynchronous events:

● OnResult An OnResult method is implemented to handle a response to a web service request. It is
passed a WSResult object that represents the result of the web service request.

● OnException An OnException method is implemented to handle errors that occurred during
processing of the response to the web service request. It is passed a WSException object and a
WSResult object. The WSException object contains information about the error that occurred, and the
WSResult object can be used to obtain the request ID that the response corresponds to.

// C#
class CurrencyConvertorListener : WSListener
{
 public CurrencyConvertorListener() {
 }
 public void OnResult(WSResult r) {
 try {
 USDToCAD._statusMessage = "USD to CAD currency exchange rate: " +
r.GetDoubleValue("ConversionRateResult");
 } catch(Exception exc) {
 USDToCAD._statusMessage = "Request " + r.GetRequestID() + " failed: "
+ exc.Message;
 }
 }
 public void OnException(WSException exc, WSResult r) {
 USDToCAD._statusMessage = "Request " + r.GetRequestID() + " failed: " +
exc.Message;
 }
}
// Java
private class CurrencyConvertorListener implements WSListener
{
 public CurrencyConvertorListener() {
 }

 public void onResult(WSResult r) {
 try {
 USDToCAD._statusMessage = "USD to CAD currency exchange rate: " +
r.getDoubleValue("ConversionRateResult");
 } catch(Exception exc) {
 USDToCAD._statusMessage = "Request " + r.getRequestID() + " failed: "
+ exc.getMessage();
 }
 }
 public void onException(WSException exc, WSResult r) {
 USDToCAD._statusMessage = "Request " + r.getRequestID() + " failed: "
+ exc.getMessage();

Mobile web services

102 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 }
}

Mobile web service example
This example shows you how to create a mobile web service application. The application, which takes
just a few minutes to create, uses the QAnywhere store-and-forward functionality so that you can issue a
request for a weather report even if you are offline, and then see the report when it is available.

Global Weather web service
The following code describes a web service called Global Weather. (It is a wsdl file that was copied from
a public weather web service.) Copy the code into a file and name the file globalweather.wsdl:

<?xml version="1.0" encoding="utf-8"?>
<wsdl:definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:s="http://
www.w3.org/2001/XMLSchema" xmlns:soapenc="http://schemas.xmlsoap.org/soap/
encoding/" xmlns:tns="http://www.webserviceX.NET" xmlns:tm="http://
microsoft.com/wsdl/mime/textMatching/" xmlns:mime="http://
schemas.xmlsoap.org/wsdl/mime/" targetNamespace="http://www.webserviceX.NET"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <wsdl:types>
 <s:schema elementFormDefault="qualified" targetNamespace="http://
www.webserviceX.NET">
 <s:element name="GetWeather">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="CityName"
type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="CountryName"
type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="GetWeatherResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="GetWeatherResult"
type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="GetCitiesByCountry">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="CountryName"
type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="GetCitiesByCountryResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1"
name="GetCitiesByCountryResult" type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>

Mobile web service example

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 103

 <s:element name="string" nillable="true" type="s:string" />
 </s:schema>
 </wsdl:types>
 <wsdl:message name="GetWeatherSoapIn">
 <wsdl:part name="parameters" element="tns:GetWeather" />
 </wsdl:message>
 <wsdl:message name="GetWeatherSoapOut">
 <wsdl:part name="parameters" element="tns:GetWeatherResponse" />
 </wsdl:message>
 <wsdl:message name="GetCitiesByCountrySoapIn">
 <wsdl:part name="parameters" element="tns:GetCitiesByCountry" />
 </wsdl:message>
 <wsdl:message name="GetCitiesByCountrySoapOut">
 <wsdl:part name="parameters" element="tns:GetCitiesByCountryResponse" />
 </wsdl:message>
 <wsdl:message name="GetWeatherHttpGetIn">
 <wsdl:part name="CityName" type="s:string" />
 <wsdl:part name="CountryName" type="s:string" />
 </wsdl:message>
 <wsdl:message name="GetWeatherHttpGetOut">
 <wsdl:part name="Body" element="tns:string" />
 </wsdl:message>
 <wsdl:message name="GetCitiesByCountryHttpGetIn">
 <wsdl:part name="CountryName" type="s:string" />
 </wsdl:message>
 <wsdl:message name="GetCitiesByCountryHttpGetOut">
 <wsdl:part name="Body" element="tns:string" />
 </wsdl:message>
 <wsdl:message name="GetWeatherHttpPostIn">
 <wsdl:part name="CityName" type="s:string" />
 <wsdl:part name="CountryName" type="s:string" />
 </wsdl:message>
 <wsdl:message name="GetWeatherHttpPostOut">
 <wsdl:part name="Body" element="tns:string" />
 </wsdl:message>
 <wsdl:message name="GetCitiesByCountryHttpPostIn">
 <wsdl:part name="CountryName" type="s:string" />
 </wsdl:message>
 <wsdl:message name="GetCitiesByCountryHttpPostOut">
 <wsdl:part name="Body" element="tns:string" />
 </wsdl:message>
 <wsdl:portType name="GlobalWeatherSoap">
 <wsdl:operation name="GetWeather">
 <documentation xmlns="http://schemas.xmlsoap.org/wsdl/">Get weather
report for all major cities around the world.</documentation>
 <wsdl:input message="tns:GetWeatherSoapIn" />
 <wsdl:output message="tns:GetWeatherSoapOut" />
 </wsdl:operation>
 <wsdl:operation name="GetCitiesByCountry">
 <documentation xmlns="http://schemas.xmlsoap.org/wsdl/">Get all major
cities by country name(full / part).</documentation>
 <wsdl:input message="tns:GetCitiesByCountrySoapIn" />
 <wsdl:output message="tns:GetCitiesByCountrySoapOut" />
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:portType name="GlobalWeatherHttpGet">
 <wsdl:operation name="GetWeather">
 <documentation xmlns="http://schemas.xmlsoap.org/wsdl/">Get weather
report for all major cities around the world.</documentation>
 <wsdl:input message="tns:GetWeatherHttpGetIn" />
 <wsdl:output message="tns:GetWeatherHttpGetOut" />
 </wsdl:operation>
 <wsdl:operation name="GetCitiesByCountry">
 <documentation xmlns="http://schemas.xmlsoap.org/wsdl/">Get all major

Mobile web services

104 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

cities by country name(full / part).</documentation>
 <wsdl:input message="tns:GetCitiesByCountryHttpGetIn" />
 <wsdl:output message="tns:GetCitiesByCountryHttpGetOut" />
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:portType name="GlobalWeatherHttpPost">
 <wsdl:operation name="GetWeather">
 <documentation xmlns="http://schemas.xmlsoap.org/wsdl/">Get weather
report for all major cities around the world.</documentation>
 <wsdl:input message="tns:GetWeatherHttpPostIn" />
 <wsdl:output message="tns:GetWeatherHttpPostOut" />
 </wsdl:operation>
 <wsdl:operation name="GetCitiesByCountry">
 <documentation xmlns="http://schemas.xmlsoap.org/wsdl/">Get all major
cities by country name(full / part).</documentation>
 <wsdl:input message="tns:GetCitiesByCountryHttpPostIn" />
 <wsdl:output message="tns:GetCitiesByCountryHttpPostOut" />
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="GlobalWeatherSoap" type="tns:GlobalWeatherSoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document" />
 <wsdl:operation name="GetWeather">
 <soap:operation soapAction="http://www.webserviceX.NET/GetWeather"
style="document" />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="GetCitiesByCountry">
 <soap:operation soapAction="http://www.webserviceX.NET/
GetCitiesByCountry" style="document" />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:binding name="GlobalWeatherHttpGet" type="tns:GlobalWeatherHttpGet">
 <http:binding verb="GET" />
 <wsdl:operation name="GetWeather">
 <http:operation location="/GetWeather" />
 <wsdl:input>
 <http:urlEncoded />
 </wsdl:input>
 <wsdl:output>
 <mime:mimeXml part="Body" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="GetCitiesByCountry">
 <http:operation location="/GetCitiesByCountry" />
 <wsdl:input>
 <http:urlEncoded />
 </wsdl:input>
 <wsdl:output>
 <mime:mimeXml part="Body" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>

Mobile web service example

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 105

 <wsdl:binding name="GlobalWeatherHttpPost"
type="tns:GlobalWeatherHttpPost">
 <http:binding verb="POST" />
 <wsdl:operation name="GetWeather">
 <http:operation location="/GetWeather" />
 <wsdl:input>
 <mime:content type="application/x-www-form-urlencoded" />
 </wsdl:input>
 <wsdl:output>
 <mime:mimeXml part="Body" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="GetCitiesByCountry">
 <http:operation location="/GetCitiesByCountry" />
 <wsdl:input>
 <mime:content type="application/x-www-form-urlencoded" />
 </wsdl:input>
 <wsdl:output>
 <mime:mimeXml part="Body" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="GlobalWeather">
 <wsdl:port name="GlobalWeatherSoap" binding="tns:GlobalWeatherSoap">
 <soap:address location="http://www.webservicex.net/globalweather.asmx" /
>
 </wsdl:port>
 <wsdl:port name="GlobalWeatherHttpGet"
binding="tns:GlobalWeatherHttpGet">
 <http:address location="http://www.webservicex.net/globalweather.asmx" /
>
 </wsdl:port>
 <wsdl:port name="GlobalWeatherHttpPost"
binding="tns:GlobalWeatherHttpPost">
 <http:address location="http://www.webservicex.net/globalweather.asmx" /
>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

Generate proxy class
To create a mobile application to access the Global Weather web service, first run the QAnywhere WSDL
compiler. It generates a proxy class that can be used in an application to make requests of the global
weather service. In this example, the application is written in Java.

wsdlc -l java globalweather.wsdl

This command generates a proxy class called GlobalWeatherSoap.java, located in the NET\webserviceX
subdirectory of the current directory. This proxy class is the service binding class for your application.
The following is the content of GlobalWeatherSoap.java:

/*
 * GlobalWeatherSoap.java
 *
 * Generated by the iAnywhere WSDL Compiler Version 10.0.1.3415
 * Do not edit this file.
 */
package NET.webserviceX;
import ianywhere.qanywhere.ws.*;

Mobile web services

106 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

import ianywhere.qanywhere.client.QABinaryMessage;
import ianywhere.qanywhere.client.QAException;
import java.io.*;
import javax.xml.transform.*;
import javax.xml.transform.sax.*;
import javax.xml.transform.stream.*;
public class GlobalWeatherSoap extends ianywhere.qanywhere.ws.WSBase
{
 public GlobalWeatherSoap(String iniFile) throws WSException
 {
 super(iniFile);
 init();
 }
 public GlobalWeatherSoap() throws WSException
 {
 init();
 }
 public void init()
 {
 setServiceName("GlobalWeather");
 }

 public java.lang.String getWeather(java.lang.String cityName,
 java.lang.String countryName) throws QAException,
WSException, WSFaultException
 {
 try {
 StringWriter sw = new StringWriter();
 SAXTransformerFactory stf = (SAXTransformerFactory)
SAXTransformerFactory.newInstance();
 TransformerHandler hd = stf.newTransformerHandler();
 QABinaryMessage qaRequestMsg = null;
 hd.setResult(new StreamResult(sw));
 String responsePartName = "GetWeatherResult";
 java.lang.String returnValue;
 writeSOAPHeader(hd, "GetWeather", "http://
www.webserviceX.NET");

WSBaseTypeSerializer.serialize(hd,"CityName",cityName,"string","http://
www.w3.org/2001/XMLSchema",true,true);

WSBaseTypeSerializer.serialize(hd,"CountryName",countryName,"string","http://
www.w3.org/2001/XMLSchema",true,true);
 writeSOAPFooter(hd, "GetWeather");
 qaRequestMsg = createQAMessage(sw.toString(), "http://
www.webserviceX.NET/GetWeather", "GetWeatherResponse");
 WSResult wsResult = invokeWait(qaRequestMsg);
 returnValue = wsResult.getStringValue(responsePartName);
 return returnValue;
 } catch(TransformerConfigurationException e) {

Mobile web service example

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 107

 throw new WSException(e);
 }
 }
 public WSResult asyncGetWeather(java.lang.String cityName,
 java.lang.String countryName) throws QAException,
WSException
 {
 try {
 StringWriter sw = new StringWriter();
 SAXTransformerFactory stf = (SAXTransformerFactory)
SAXTransformerFactory.newInstance();
 TransformerHandler hd = stf.newTransformerHandler();
 QABinaryMessage qaRequestMsg = null;
 hd.setResult(new StreamResult(sw));
 writeSOAPHeader(hd, "GetWeather", "http://
www.webserviceX.NET");

WSBaseTypeSerializer.serialize(hd,"CityName",cityName,"string","http://
www.w3.org/2001/XMLSchema",true,true);

WSBaseTypeSerializer.serialize(hd,"CountryName",countryName,"string","http://
www.w3.org/2001/XMLSchema",true,true);
 writeSOAPFooter(hd, "GetWeather");
 qaRequestMsg = createQAMessage(sw.toString(), "http://
www.webserviceX.NET/GetWeather", "GetWeatherResponse");
 WSResult wsResult = invoke(qaRequestMsg);
 return wsResult;
 } catch(TransformerConfigurationException e) {
 throw new WSException(e);
 }
 }

 public java.lang.String getCitiesByCountry(java.lang.String countryName)
throws QAException, WSException, WSFaultException
 {
 try {
 StringWriter sw = new StringWriter();
 SAXTransformerFactory stf = (SAXTransformerFactory)
SAXTransformerFactory.newInstance();
 TransformerHandler hd = stf.newTransformerHandler();
 QABinaryMessage qaRequestMsg = null;
 hd.setResult(new StreamResult(sw));
 String responsePartName = "GetCitiesByCountryResult";
 java.lang.String returnValue;
 writeSOAPHeader(hd, "GetCitiesByCountry", "http://
www.webserviceX.NET");

WSBaseTypeSerializer.serialize(hd,"CountryName",countryName,"string","http://
www.w3.org/2001/XMLSchema",true,true);
 writeSOAPFooter(hd, "GetCitiesByCountry");
 qaRequestMsg = createQAMessage(sw.toString(), "http://
www.webserviceX.NET/GetCitiesByCountry", "GetCitiesByCountryResponse");
 WSResult wsResult = invokeWait(qaRequestMsg);

Mobile web services

108 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 returnValue = wsResult.getStringValue(responsePartName);
 return returnValue;
 } catch(TransformerConfigurationException e) {
 throw new WSException(e);
 }
 }
 public WSResult asyncGetCitiesByCountry(java.lang.String countryName)
throws QAException, WSException
 {
 try {
 StringWriter sw = new StringWriter();
 SAXTransformerFactory stf = (SAXTransformerFactory)
SAXTransformerFactory.newInstance();
 TransformerHandler hd = stf.newTransformerHandler();
 QABinaryMessage qaRequestMsg = null;
 hd.setResult(new StreamResult(sw));
 writeSOAPHeader(hd, "GetCitiesByCountry", "http://
www.webserviceX.NET");

WSBaseTypeSerializer.serialize(hd,"CountryName",countryName,"string","http://
www.w3.org/2001/XMLSchema",true,true);
 writeSOAPFooter(hd, "GetCitiesByCountry");
 qaRequestMsg = createQAMessage(sw.toString(), "http://
www.webserviceX.NET/GetCitiesByCountry", "GetCitiesByCountryResponse");
 WSResult wsResult = invoke(qaRequestMsg);
 return wsResult;
 } catch(TransformerConfigurationException e) {
 throw new WSException(e);
 }
 }
}

Write mobile web service applications
Next, write applications that use the service binding class to make requests of the web service and process
the results. Following are two applications, both of which make web service requests offline and process
the results when a connection is available.

The first application, called RequestWeather, makes a request of the global weather service and displays
the ID of the request. Copy the following code into a file called RequestWeather.java:

import ianywhere.qanywhere.client.*;
import ianywhere.qanywhere.ws.*;
import NET.webserviceX.GlobalWeatherSoap;
class RequestWeather
{
 public static void main(String [] args) {
 try {
 // QAnywhere initialization
 QAManager mgr = QAManagerFactory.getInstance().createQAManager();
 mgr.open(AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT);
 mgr.start();

Mobile web service example

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 109

 // Instantiate the web service proxy
 GlobalWeatherSoap service = new GlobalWeatherSoap();
 service.setQAManager(mgr);
 service.setProperty("WS_CONNECTOR_ADDRESS",
"ianywhere.connector.globalweather\\");

 // Make a request to get weather for Beijing
 WSResult r = service.asyncGetWeather("Beijing", "China");

 // Display the request ID so that it can be used by ShowWeather
 System.out.println("Request ID: " + r.getRequestID());

 // QAnywhere finalization
 mgr.stop();
 mgr.close();

 } catch(Exception exc) {
 System.out.println(exc.getMessage());
 }
 }
}

The second application, called ShowWeather, shows the weather conditions for a given request ID. Copy
the following code into a file called ShowWeather.java:

import ianywhere.qanywhere.client.*;
import ianywhere.qanywhere.ws.*;
import NET.webserviceX.GlobalWeatherSoap;
class ShowWeather
{
 public static void main(String [] args) {
 try {
 // QAnywhere initialization
 QAManager mgr = QAManagerFactory.getInstance().createQAManager();
 mgr.open(AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT);
 mgr.start();

 // Instantiate the web service proxy
 GlobalWeatherSoap service = new GlobalWeatherSoap();
 service.setQAManager(mgr);

 // Get the response for the specified request ID
 WSResult r = service.getResult(args[0]);
 if(r.getStatus() == WSStatus.STATUS_RESULT_AVAILABLE) {
 System.out.println("The weather is " +
r.getStringValue("GetWeatherResult"));
 r.acknowledge();
 } else {
 System.out.println("Response not available");
 }

 // QAnywhere finalization
 mgr.stop();
 mgr.close();

 } catch(Exception exc) {
 System.out.println(exc.getMessage());
 }
 }
}

Compile the application and the service binding class:

Mobile web services

110 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

javac -classpath ".;%sqlany12%\java\iawsrt.jar;%sqlany12%\java\qaclient.jar"
NET.webserviceX.GlobalWeatherSoap.java RequestWeather.java
javac -classpath ".;%sqlany12%\java\iawsrt.jar;%sqlany12%\java\qaclient.jar"
NET.webserviceX.GlobalWeatherSoap.java ShowWeather.java

Create QAnywhere message stores and start a QAnywhere Agent
Your mobile web service application requires a client message store on each mobile device. It also
requires a server message store, but this example uses the QAnywhere sample server message store.

To create a client message store, create a SQL Anywhere database with the dbinit utility and then run the
QAnywhere Agent to set it up as a client message store:

dbinit -i qanywhere.db
qaagent -q -si -c "dbf=qanywhere.db"

Start the QAnywhere Agent to connect to your client message store:

qaagent -c "dbf=qanywhere.db;server=qanywhere;uid=ml_qa_user;pwd=qanywhere"

Start the QAnywhere server:

mlsrv12 -m -zu+ -c "dsn=QAnywhere 12
Demo;uid=ml_server;pwd=sql;start=dbsrv12" -v+ -ot qanyserv.mls

Create a web service connector that listens for QAnywhere messages sent to the GetWeather web service,
makes web service calls when messages arrive, and sends back responses to the originating client.

To create a web service connector

1. Open Sybase Central and click Connections » Connect With QAnywhere 12.

2. In the User ID field, type ml_server.

3. In the Password field, type sql.

4. Click ODBC data source name and type QAnywhere 12 Demo.

5. Click OK.

6. Choose File » New » Connector.

7. Click Web Services. Click Next.

8. In the Connector Name field, type ianywhere.connector.globalweather. Click Next.

9. In the URL field, type http://www.webservicex.net/globalweather.asmx. Click Finish.

Use the web service
To queue up a request to get the weather report from the web service, type:

java -classpath ".;%sqlany12%\java\iawsrt.jar;%sqlany12%\java\qaclient.jar"
RequestWeather

A request ID is returned.

Mobile web service example

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 111

To see the weather report, type the following. The end should be the request ID, which in this example is
REQ123123123.

java -classpath ".;%sqlany12%\java\iawsrt.jar;%sqlany12%\java\qaclient.jar"
ShowWeather REQ123123123

A detailed weather report is returned.

Mobile web services

112 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Deploying QAnywhere applications
QAnywhere provides C++, Java, and .NET API support for SQL Anywhere message stores. The Java
and .NET APIs also support UltraLite message stores. The files required for deploying QAnywhere
applications are based on your Windows environment, message store type, and API selection. Additional
files are required if you are developing Mobile Web Service applications.

In addition to the files listed below, a QAnywhere application requires:

● All files listed in the MobiLink synchronization client, Listener, and optionally the Security sections
of “Deploying SQL Anywhere MobiLink clients” [MobiLink - Server Administration]. The Listener
files are required only if you are using push notifications, which is the default.

● dbeng12 or dbsrv12 files from “Deploying database servers” [SQL Anywhere Server - Programming].

To deploy Sybase Central, see “Deploying administration tools” [SQL Anywhere Server - Programming].

Windows applications
All directories are relative to install-dir .

For more details on the file structure of a Windows Mobile environment, see “Windows Mobile
applications” [MobiLink - Server Administration].

The following is a list of files required to set up a SQL Anywhere message store.

Client API Windows files

C++ ● bin32\qany12.dll
● bin32\qaagent.exe
● bin32\qastop.exe

Java ● bin32\qaagent.exe
● bin32\qastop.exe
● java\qaclient.jar
● java\jodbc.jar

For Mobile Web Service applications, you also need the following:

● java\iawsrt.jar
● java\jaxrpc.jar

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 113

Client API Windows files

.NET ● bin32\qazlib.dll
● bin32\qaagent.exe
● bin32\qastop.exe
● assembly\v2\iAnywhere.QAnywhere.Client.dll
● assembly\v2\iAnywhere.QAnywhere.Resources.dll
● assembly\v2\iAnywhere.Data.SQLAnywhere.dll

For Mobile Web Service applications, you also need the following:

● Assembly\v2\iAnywhere.QAnywhere.WS.dll

The following is a list of files required to set up an UltraLite message store.

Client API Windows files

Java ● bin32\qauagent.exe
● bin32\qastop.exe
● bin32\qadbiuljni12.dll
● java\qaclient.jar

For Mobile Web Service applications, you also need the following:

● java\iawsrt.jar
● java\jaxrpc.jar

.NET ● bin32\qazlib.dll
● bin32\qauagent.exe
● bin32\qastop.exe
● assembly\v2\iAnywhere.QAnywhere.Client.dll
● assembly\v2\iAnywhere.QAnywhere.Resources.dll
● ultralite\ultralite.NET\assembly\v2\iAnywhere.Data.UltraLite.dll

For Mobile Web Service applications, you also need the following:

● Assembly\v2\iAnywhere.QAnywhere.WS.dll

When creating an UltraLite message store, you must create a udb database file using the UltraLite Create
Database utility, then initialize the database using the QAnywhere UltraLite Agent's -si option. See
“UltraLite Initialize Database utility (ulinit)” [UltraLite - Database Management and Reference] and
“qauagent utility” on page 696.

Windows Mobile applications
All directories are relative to install-dir .

For more details on the file structure of a Windows environment, see “Windows applications” [MobiLink
- Server Administration].

Deploying QAnywhere applications

114 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The following is a list of files required to set up a SQL Anywhere message store.

Client API Windows Mobile files

C++ ● ce\arm.50\qany12.dll
● ce\arm.50\qaagent.exe
● ce\arm.50\qastop.exe

Java ● ce\arm.50\qaagent.exe
● ce\arm.50\qastop.exe
● java\qaclient.jar
● java\jodbc.jar

For Mobile Web Service applications, you also need the following:

● java\iawsrt.jar
● java\jaxrpc.jar

.NET ● ce\arm.50\qazlib.dll
● ce\arm.50\qaagent.exe
● ce\arm.50\qastop.exe
● ce\assembly\v2\iAnywhere.QAnywhere.Client.dll
● ce\assembly\v2\iAnywhere.QAnywhere.Resources.dll
● ce\assembly\v2\iAnywhere.Data.SQLAnywhere.dll

For Mobile Web Service applications, you also need the following:

● ce\Assembly\v2\iAnywhere.QAnywhere.WS.dll

The following is a list of files required to set up an UltraLite message store.

Client API Windows Mobile files

Java ● ce\arm.50\qauagent.exe
● ce\arm.50\qastop.exe
● ce\arm.50\qadbiuljni12.dll
● java\qaclient.jar

For Mobile Web Service applications, you also need the following:

● java\iawsrt.jar
● java\jaxrpc.jar

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 115

Client API Windows Mobile files

.NET ● ce\arm.50\qazlib.dll
● ce\arm.50\qauagent.exe
● ce\arm.50\qastop.exe
● ce\assembly\v2\iAnywhere.QAnywhere.Client.dll
● ce\assembly\v2\iAnywhere.QAnywhere.Resources.dll
● ultralite\ultralite.NET\ce\assembly\v2\iAnywhere.Data.UltraLite.dll

For Mobile Web Service applications, you also need the following:

● ce\Assembly\v2\iAnywhere.QAnywhere.WS.dll

When creating an UltraLite message store, you must create a database file using the UltraLite Create
Database utility, then initialize the database using the -si option for the QAnywhere UltraLite Agent. See
“UltraLite Initialize Database utility (ulinit)” [UltraLite - Database Management and Reference] and
“qauagent utility” on page 696.

Registering the QAnywhere .NET API DLL
The QAnywhere .NET API DLL (Assembly\v2\iAnywhere.QAnywhere.Client.dll) needs to be registered in
the Global Assembly Cache on Windows (except on Windows Mobile). The Global Assembly Cache lists
all the registered programs on your computer. When you install SQL Anywhere, the installation program
registers it. In Windows Mobile you do not need to register the DLL.

If you are deploying QAnywhere, you must register the QAnywhere .NET API DLL (Assembly
\v2\iAnywhere.QAnywhere.Client.dll) using the gacutil utility that is included with the .NET Framework.

Deploying QAnywhere applications

116 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Writing secure messaging applications
The following sections describe ways of ensuring your messaging applications are secure.

Creating a secure client message store
To secure your client message store, you can:

● Change the default passwords.

See “Manage client message store passwords” on page 117.

● Encrypt the contents of the message store.

See “Encrypting the client message store” on page 118.

Example
First, create a SQL Anywhere database with an encryption key:

dbinit mystore.db -i -s -ek some_phrase

The -i and -s options are optimal for small devices. The -ek option specifies the encryption key for strong
encryption. See “Initialization utility (dbinit)” [SQL Anywhere Server - Database Administration].

Next, initialize the database as a client message store:

qaagent -id mystore -si -c "dbf=mystore.db;dbkey=some_phrase"

Next, create a new remote user with DBA authority, and a password for this user. Revoke the default
QAnywhere user and change the password of the default DBA user. Log in as user DBA with password
sql and execute the following SQL statements:

CREATE USER secure_user IDENTIFIED BY secure_password
GRANT MEMBERSHIP IN GROUP ml_qa_user_group TO secure_user
GRANT REMOTE DBA TO secure_user
REVOKE CONNECT FROM ml_qa_user
ALTER USER DBA IDENTIFIED BY new_dba_password
COMMIT

Note
All QAnywhere users must belong to ml_qa_user_group and have remote DBA authority.

Next, start the QAnywhere Agent with the secure DBA user:

qaagent -id mystore -c
"dbf=mystore.db;dbkey=some_phrase;uid=secure_user;pwd=secure_password"

Manage client message store passwords

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 117

You should change the passwords for the default user IDs that were created for the message store. The
default user ID DBA with password SQL is created for every SQL Anywhere database. In addition, the
qaagent -si option creates a default user ID of ml_qa_user, and creates a default password of qanywhere.
To change these passwords, use the GRANT statement.

See “Changing a password” [SQL Anywhere Server - Database Administration].

Encrypting the client message store
The following command can be used to encrypt the client message store when you create it.

dbinit -i -s -ek encryption-key database-file

(The -i and -s options are good practice for creating databases on small devices.) When a message store
has been initialized with an encryption key, the encryption key is required to start the database server on
the encrypted message store.

Use the following command to specify the encryption key to start the QAnywhere Agent with an
encrypted message store. The QAnywhere Agent automatically starts the database server on the encrypted
message store using the encryption key provided.

qaagent -c "DBF=database-file;DBKEY=encryption-key"

Any application can now access the encrypted message store through the QAnywhere APIs. Note that,
since the database server used to manage the message store is already running, the application does not
need to provide the encryption key.

If the QAnywhere Agent is not running and an application needs to access an encrypted message store,
the QAnywhere APIs automatically starts the database server using the connection parameters specified in
the QAnywhere Manager initialization file. To start the database server on an encrypted message store,
the encryption key must be specified in the database connection parameters as follows.

CONNECT_PARAMS=DBF=database-file;DBKEY=encryption-key

See also
● “Encrypting and decrypting a database” [SQL Anywhere Server - Database Administration]
● “Initialization utility (dbinit)” [SQL Anywhere Server - Database Administration]
● QAnywhere Agent “-c qaagent option” on page 676

Encrypting the communication stream
The qaagent -x option can be used to specify a secure communication stream that the QAnywhere Agent
can use to communicate with a MobiLink server. It allows you to implement server authentication using
server-side certificates, and it allows you to encrypt the communication stream using strong encryption.

See “-x qaagent option” on page 695.

Writing secure messaging applications

118 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

You must set up transport-layer security for the MobiLink server as well. For information about creating
digital certificates and setting up the MobiLink server, see “Encrypting MobiLink client/server
communications” [SQL Anywhere Server - Database Administration].

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption
technologies are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 12 - Introduction].

Examples
The following examples show how to establish a secure communication stream between the QAnywhere
Agent and the MobiLink server. They use sample identity files that are installed when the SQL Anywhere
security option is installed.

Secure TCP/IP using RSA:

mlsrv12 -x tls(tls_type=rsa;identity=rsaserver.id;identity_password=test)
qaagent -x tls(tls_type=rsa;trusted_certificates=rsaroot.crt)

Secure TCP/IP using ECC:

mlsrv12 -x tls(tls_type=ecc;identity=eccserver.id;identity_password=test)
qaagent -x tls(tls_type=ecc;trusted_certificates=eccroot.crt)

Secure HTTP using HTTPS (only RSA certificates are supported for HTTPS):

mlsrv12 -x https(identity=rsaserver.id;identity_password=test)
qaagent -x https(trusted_certificates=rsaroot.crt)

Using password authentication with MobiLink
Once you have established a secure communication stream between the remote device and the server, you
may also want to authenticate the user of the device to ensure that they are allowed to communicate with
the server.

You do this by creating a MobiLink user name for the client message store and registering it on the server
message store.

See also
● “-mu qaagent option” on page 683
● “-mp qaagent option” on page 682
● “MobiLink users” [MobiLink - Client Administration]

Securing server management requests

Using password authentication with MobiLink

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 119

Server management requests can be secured using a password. The message string property
ias_ServerPassword specifies the server password. The server password is set using the
ianywhere.qa.server.password.e property. If this property is not set, the password is QAnywhere.

The server password is transmitted as text. Use an encrypted communication stream to send server
management requests that require a server password.

For more information about the ianywhere.qa.server.password.e property, see “Server
properties” on page 724.

Adding users with the MobiLink user authentication
utility

To ensure security, use the MobiLink user authentication utility (mluser) to add users. The mluser utility
allows you to register a MobiLink user name with the server message store on the consolidated database.
The user name and password parameters are then used by the QAnywhere agent to authenticate the user
during message transmission. See “MobiLink user authentication utility (mluser)” [MobiLink - Server
Administration].

If you are using push notifications, it is also necessary to add a MobiLink user for the Listener (dblsn).
For each user added, a Listener must also be added with the username ias_[user]_lsn.

New users can also be added using the -zu+ option with mlsrv12, however you should not use this option
if security is an issue. Using mlsrv12 with the -zu+ option causes all new users to be added to the
consolidated database when they first synchronize. This means that unrecognized users are added without
authentication. See “-zu mlsrv12 option” [MobiLink - Server Administration].

Security with the Relay Server
When using the Relay Server, set options in the Relay Server configuration file to control the level of
security required. See “Relay Server configuration file” [Relay Server].

Set up a secure communication stream with the web server, for example, HTTPS with trusted certificate,
to ensure security of communications between the QAnywhere agent and the web server. See the qaagent
“-x qaagent option” on page 695.

Refer to the Relay Server documentation for information on setting up a secure communication stream
between the Relay Server and MobiLink. See “Introduction to the Relay Server” [Relay Server].

Writing secure messaging applications

120 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Administering a server message store
The following sections describe how to administer a server message store.

Transmission rules
Transmission rules allow you to specify when message transmission is to occur and which messages to
transmit. You can specify transmission rules for both the client and the server.

Managing server transmission rules is an important part of administering a server message store.

Server transmission rules govern the behavior of messages going from the server to the client. Server
transmission rules are handled by the MobiLink server. They apply both when you are using push
notifications and when you are not using notifications.

There are several ways to set server transmission rules:

● Write a server management request to set the transmission rule.

See “Specifying transmission rules with a server management request” on page 160.

● Use Sybase Central to set the rules.

See “Specifying server transmission rules using Sybase Central” on page 122.

● Create a server transmission rules file and specify it when you start the MobiLink server. This method
is deprecated.

See “Specifying server transmission rules with a transmission rules file (deprecated)” on page 742.

Server transmission rules
Server transmission rules govern the behavior of messages going from the server to the client. Server
transmission rules are handled by the MobiLink server. They apply both when you are using push
notifications and when you are not using notifications.

There are several ways to set server transmission rules:

● Write a server management request to set the transmission rule.

See “Specifying transmission rules with a server management request” on page 160.

● Use Sybase Central to set the rules.

See “Specifying server transmission rules using Sybase Central” on page 122.

● Create a server transmission rules file and specify it when you start the MobiLink server. This method
is deprecated.

See “Specifying server transmission rules with a transmission rules file (deprecated)” on page 742.

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 121

Specifying server transmission rules using Sybase Central
You can create and edit transmission rules in Sybase Central.

To specify default server transmission rules

1. Start Sybase Central:

● Choose Start » Programs » SQL Anywhere 12 » Administration Tools » Sybase Central.

● From Connections, choose Connect With QAnywhere 12.

● Specify an ODBC Data Source Name or ODBC Data Source File, and the User ID and
Password if required. Click Connect.

2. Under Server Messages Stores, select the data source name.

3. Choose File » Properties.

4. Open the Transmission Rules tab and select Customize The Default Transmission Rules.

5. Click New to add a rule.

6. Add conditions either by typing them into the text field or by choosing Message Variables or
Constants from the dropdown lists.

7. Click OK to exit.

Specifying server transmission rules with a server
management request

You can use a server management request to specify default server transmission rules that apply to all
users, or you can specify transmission rules for each client.

To specify default transmission rules for a server, set the ianywhere.qa.server.rules property for the client
ianywhere.server.defaultClient. For a client, use the ianywhere.qa.server.rules property to specify server
transmission rules.

For more information about using a server management request to specify transmission rules, see
“Specifying transmission rules with a server management request” on page 160.

Managing the message archive
The archive message store is a set of tables that coexist with the server message store, and stores all
messages waiting to be deleted. A regularly executed system process transports messages between the
message stores by removing all messages in the server message store that have reached a final state, and
then inserting them into the archive message store.

Administering a server message store

122 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Messages remain in the archive message store until deleted by a server delete rule. Usage of the archive
message store improves the performance of the server message store by minimizing the amount of
messages that need to be filtered during synchronization. See “Delete rules” on page 44.

Using server management requests
A server management request is a special message sent from the client to the server. The server
management request contains content, formatted XML, that instructs the server to perform various functions.

Use the following functions to administer a server message store with server management requests:

● “Refreshing client transmission rules” on page 148
● “Canceling messages” on page 149
● “Deleting messages” on page 150

For details on using server management requests, see:

● “Administering the server message store with server management requests” on page 148
● “Writing server management requests” on page 146
● “Server management request reference” on page 665

Using server management requests

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 123

124

Administering a client message store
The following sections describe how to administer a client message store.

Monitoring QAnywhere clients
You can monitor QAnywhere clients using server management requests or Sybase Central.

Server management requests can be user to obtain a list of clients currently on the server. This list
contains clients who are registered on the server, including remote clients, open connectors, and
destination aliases. See “Monitoring QAnywhere clients” on page 166.

In Sybase Central, use the Clients pane of the server message store to see a list of clients that are
currently on the server.

Monitoring client properties
You can monitor QAnywhere client properties using server management requests or Sybase Central.

Server management requests can be used to see what properties are set for a client. The response lists only
the properties that have been set for the client (not defaults). See “Monitoring properties” on page 166.

In Sybase Central, you and view and change client properties using the QAnywhere Client Properties
window.

Managing client message store properties
Client message store properties can be set in your client application for each client message store.

See “Managing client message store properties in your application” on page 722.

Client message store properties can be used in transmission rules to filter messages to the client or used in
delete rules to determine messages to add.

See “QAnywhere transmission and delete rules” on page 733.

Client message store properties can also be specified in server management messages, and stored on the
server message store.

See “Server management requests” on page 145.

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 125

126

Destination aliases
A destination alias is a list of message addresses and other destination aliases. When a message is sent to
a destination alias, it is sent to all members of the list.

A member of a destination alias can have a delivery condition associated with it. Only messages that
match the condition are forwarded to the corresponding member.

Example
Define a destination alias called all_clients with members client1 and client2.

Define the following delivery condition for client1:

ias_Priority=1

Define the following delivery condition for client2:

ias_Priority=9

Only messages with priority 1 are sent to client1 and those with priority 9 are sent to client2.

Creating destination aliases
You can create and manage a destination alias using the following methods:

● Server management requests

See “Creating destination aliases with a server management request” on page 161.

● Sybase Central

See “Using Sybase Central” on page 127.

Using Sybase Central
You can use Sybase Central to create or modify a destination alias.

To create a destination alias using Sybase Central

1. Start Sybase Central:

● Choose Start » Programs » SQL Anywhere 12 » Administration Tools » Sybase Central.

● Choose Connections » Connect with QAnywhere 12.

● Specify an ODBC Data Source Name or ODBC Data Source File, and a User ID and Password
if required.

● Click OK.

2. Choose File » New » Destination Alias.

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 127

3. In the Alias field, type a name for the alias.

4. In the Destinations field, type the name of each destination on its own line.

5. Click OK.

Destination aliases

128 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Connectors
The following sections provide information about using JMS connectors and web service connectors with
QAnywhere.

JMS connectors
The Java Message Service (JMS) API provides messaging capabilities to Java applications. In addition to
exchanging messages among QAnywhere client applications, you can exchange messages with external
messaging systems that support a JMS interface. You do this using a specially configured client known as
a connector. In a QAnywhere deployment, the external messaging system is set up to act like a
QAnywhere client. It has its own address and configuration.

For more information about the architecture of this approach, see “Scenario for messaging with external
messaging systems” on page 7.

When running MobiLink with QAnywhere messaging in a server farm environment, only the QAnywhere
connectors in the primary server start. If the primary server fails, the QAnywhere connectors are
automatically started in the new primary server so that message ordering is preserved while exchanging
data in the external messaging system, such as JMS. For more information, see “Running the MobiLink
server in a server farm” [MobiLink - Server Administration].

Setting up JMS connectors
The following steps provide an overview of the tasks required to set up QAnywhere with JMS connectors,
assuming that you already have QAnywhere set up.

Overview of integrating a QAnywhere application with an external JMS system

1. Create JMS queues using the JMS administration tools for your JMS system. The QAnywhere
connector listens on a single JMS queue for JMS messages. You must create this queue if it does not
already exist.

See the documentation of your JMS product for information about how to create queues.

2. Open Sybase Central and connect to your server message store.

3. Choose File » New » Connector.

4. Click JMS and then select the type of web server you are using on the Which JMS System Are You
Using list. Click Next.

5. On the Connector Names page:

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 129

● In the Connector Name field, type the connector address that a QAnywhere client should use to
address the connector. See “Sending a QAnywhere message to a JMS connector” on page 132.

● In the Receiver Destination field, type the queue name used by the connector to listen for
messages from JMS targeted for QAnywhere clients.

● Click Next.

6. On the JNDI Settings page:

● In the JNDI Factory field, type the factory name used to access the external JMS JNDI name service.

● In the Name Service URL field, type the URL to access the JMS JNDI name service.

● In the User Name field, type the authentication name to connect to the external JMS JNDI name
service.

● In the Password field, type the authentication password to connect to the external JMS JNDI
name service.

● Click Next.

7. On the JMS Queue Settings page:

● In the Queue Factory field, type the external JMS provider queue factory name.

● In the User Name field, type the user ID to connect to the external JMS queue connection.

● In the Password field, type the password to connect to the external JMS queue connection.

● Click Next.

8. On the JMS Topic Settings page:

● In the Topic Factory field, type the external JMS provider topic factory name.

● In the User Name field, type the user ID to connect to the external JMS topic connection.

● In the Password field, type the password to connect to the external JMS topic connection.

● Click Finish.

9. Click OK.

10. Start the MobiLink server with a connection to the server message store and the -sl java options. See
“Starting the MobiLink server for JMS integration” on page 131.

11. To set additional options on your JMS connector, right-click the connector you just created and
choose properties; or you can use server management requests.

For a list of available properties, see “Configuring JMS connector properties” on page 131.

For information about how to set connector properties with server management requests, see
“Administering connectors with server management requests” on page 150.

To send messages

1. To send a message from an application in your QAnywhere system to the external messaging system,
create a QAnywhere message and send it to connector-address\JMS-queue-name.

Connectors

130 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See “Sending a QAnywhere message to a JMS connector” on page 132.

2. To send a message from the external messaging system to an application in your QAnywhere system:

● Create a JMS message.

● Set the ias_ToAddress property to the QAnywhere id\queue (where id is the ID of your client
message store and queue is your application queue name).

● Put the message in the JMS queue.

See “Addressing JMS messages meant for QAnywhere” on page 135.

Other resources for getting started
● QAnywhere JMS samples are installed to samples-dir\QAnywhere\jms. (For information about samples-

dir, see “Samples directory” [SQL Anywhere Server - Database Administration].)
● You can post questions on the QAnywhere newsgroup: ianywhere.public.sqlanywhere.qanywhere
● For more information on setting up messaging in a server farm environment, see “Running the

MobiLink server in a server farm” [MobiLink - Server Administration].

Starting the MobiLink server for JMS integration
To exchange messages with an external messaging system that supports a JMS interface, you must start
the MobiLink server (mlsrv12) with the following options:

● -c connection-string To connect to the server message store.

See “-c mlsrv12 option” [MobiLink - Server Administration].

● -m To enable QAnywhere messaging.

● -sl java (-cp "jarfile.jar") To add the client jar files required to use the external JMS provider.

See “-sl java mlsrv12 option” [MobiLink - Server Administration].

Example
The following example starts a MobiLink server using a JMS client library called jmsclient.jar (in the
current working directory) and the QAnywhere sample database as a message store. The command should
be entered all on one line.

mlsrv12 -sl java(-cp
"jmsclient.jar") -m -c "dsn=QAnywhere 12 Demo" ...

Configuring JMS connector properties
You use JMS connector properties to specify connection information with the JMS system. They
configure a connector to a third party JMS messaging system such as BEA WebLogic or Sybase EAServer.

Setting up JMS connectors

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 131

news://forums.sybase.com/ianywhere.public.sqlanywhere.qanywhere

You can set and/or view properties in several places:

● Sybase Central Connector Wizard.

See “Setting up JMS connectors” on page 129.

● Sybase Central Connector Properties window.

● Server management requests.

See “Creating and configuring connectors” on page 151.

● The ml_qa_global_props MobiLink system table.

For a list of all the JMS connector properties, see “JMS connector properties” on page 726.

Configuring multiple connectors
QAnywhere can connect to multiple JMS message systems by defining a JMS connector for each JMS
system. The only property value that must be unique among the configured connectors is
ianywhere.connector.address.

The ianywhere.connector.address property is the address prefix that QAnywhere clients must specify to
address messages meant for the JMS system.

See also
● “Sending a QAnywhere message to a JMS connector” on page 132
● “Configuring JMS connector properties” on page 131
● “Creating and configuring connectors” on page 151

Sending a QAnywhere message to a JMS connector
A QAnywhere client can send a message to a JMS system by setting the address to the following value:

connector-address\JMS-queue-name

The connector-address is the value of the connector property ianywhere.connector.address, while JMS-
queue-name is the name used to look up the JMS queue or topic using the Java Naming and Directory
Interface.

If your JMS-queue-name contains a backslash, you must escape the backslash with another backslash. For
example, a queue called qq in the context ss should be specified as ss\\qq.

// C# example
QAMessage msg;
QAManager mgr;
...
mgr.PutMessage(@"ianywhere.connector.wsmqfs\ss\\qq",msg);

Connectors

132 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

// C++ example
QAManagerBase *mgr;
QATextMessage *msg;
...
mgr->putMessage("ianywhere.connector.easerver\\ss\\\\qq", msg);

Example
For example, if the ianywhere.connector.address is set to ianywhere.connector.easerver and the JMS
queue name is myqueue, then the code to set the address would be:

// C# example
QAManagerBase mgr;
QAMessage msg;
// Initialize the manager.
...
msg = mgr.CreateTextMessage()
 // Set the message content.
...
mgr.PutMessage(@"ianywhere.connector.easerver\myqueue", msg);
// C++ example
QAManagerBase *mgr;
QATextMessage *msg;
// Initialize the manager.
...
msg = mgr.createTextMessage();
// Set the message content.
...
mgr->putMessage("ianywhere.connector.easerver\\myqueue", msg);

See also
● “QAnywhere message addresses” on page 58
● “Configuring JMS connector properties” on page 131

Sending a message from a JMS connector to a
QAnywhere client

QAnywhere messages are mapped naturally on to JMS messages.

QAnywhere message content

QAnywhere JMS Remarks

QATextMessage javax.jms.TextMessage message text copied as Unicode

QABinaryMessage javax.jms.BytesMessage message bytes copied exactly

QAnywhere built-in headers

Sending a message from a JMS connector to a QAnywhere client

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 133

The following table describes the mapping of built-in headers. In C++ and JMS, these are method names;
for example, Address is called getAddress() or setAddress() for QAnywhere, and getJMSDestination() or
setJMSDestination() for JMS. In .NET, these are properties with the exact name given below; for
example, Address is Address.

QAnywhere JMS Remarks

Address JMSDestination and JMS property

ias_ToAddress

If the destination contains a back-
slash, you must escape it with a sec-
ond backslash.

Only the JMS part of the address is
mapped to the Destination. Under
rare circumstances, there may be an
additional QAnywhere address suffix
if a message loops back into QAny-
where. This is put in ias_ToAddress.

Expiration JMSExpiration

InReplyToID N/A Not mapped.

MessageID N/A Not mapped.

Priority JMSPriority

Redelivered N/A Not mapped.

ReplyToAddress JMS property

ias_ReplyToAddress

Mapped to JMS property.

Connector's xjms.receive-
Destination property value

JMSReplyTo ReplyTo set to Destination used by
connector to receive JMS messages.

Timestamp N/A Not mapped.

N/A JMSTimestamp When mapping a JMS message to a
QAnywhere message, the JMSTimes-
tamp property of the QAnywhere
message is set to the JMSTimestamp
of the JMS message.

Timestamp N/A When mapping a QAnywhere mes-
sage to a JMS message, the JMSTi-
mestamp of the JMS message is set
to the time of creation of the JMS mes-
sage.

Connectors

134 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

QAnywhere properties
QAnywhere properties are all mapped naturally to JMS properties, preserving type, with the following
exception: if the QAnywhere message has a property called JMSType, then this is mapped to the JMS
header property JMSType.

Addressing JMS messages meant for QAnywhere
A JMS client can send a message to a QAnywhere client by setting the JMS message property
ias_ToAddress to the QAnywhere address, and then sending the message to the JMS Destination
corresponding to the connector property xjms.receiveDestination.

See “QAnywhere message addresses” on page 58.

Example
For example, to send a message to the QAnywhere address "qaddr" (where the connector setting of
xjms.receiveDestination is "qanywhere_receive"):

import javax.jms.*;
try {
 QueueSession session;
 QueueSender sender;
 TextMessage mgr;
 Queue connectorQueue;
 // Initialize the session.
 connectorQueue = session.createQueue("qanywhere_receive");
 sender = session.createSender(connectorQueue);
 msg = session.createTextMessage();
 msg.setStringProperty("ias_ToAddress", "qaddr");
 // Set the message content.
 sender.send(msg);
}
catch(JMSException e) {
 // Handle the exception.
}

Mapping JMS messages on to QAnywhere messages

JMS messages are mapped naturally on to QAnywhere messages.

JMS message content

JMS QAnywhere Remarks

javax.jms.TextMessage QATextMessage Message text copied as Unicode

javax.jms.BytesMessage QABinaryMessage Message bytes copied exactly

Sending a message from a JMS connector to a QAnywhere client

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 135

JMS QAnywhere Remarks

javax.jms.StreamMessage N/A Not supported

javax.jms.MapMessage N/A Not supported

javax.jms.ObjectMessage N/A Not supported

JMS built-in headers
The following table describes the mapping of built-in headers. In C++ and JMS, these are method names;
for example, Address is called getAddress() or setAddress() for QAnywhere, and getJMSDestination() or
setJMSDestination() for JMS. In .NET, these are properties with the exact name given below; for
example, Address is Address.

JMS QAnywhere Remarks

JMS Destination N/A The JMS destination must be set to
the queue specified in the connector
property xjms.receiveDestination.

JMS Expiration Expiration

JMS CorrelationID InReplyToID

JMS MessageID N/A Not mapped.

JMS Priority Priority

JMS Redelivered N/A Not mapped.

JMS ReplyTo and connector's iany-
where.connector.address property
value

ReplyToAddress The connector address is concaten-
ated with the JMS ReplyTo Destina-
tion name delimited by '\'.

JMS DeliveryMode N/A Not mapped.

JMS Type QAnywhere message
property JMSType

JMS Timestamp N/A Not mapped.

JMS properties

JMS properties are all mapped naturally to QAnywhere properties, preserving type, with a few
exceptions. The QAnywhere Address property is set from the value of the JMS message property

Connectors

136 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ias_ToAddress. If the JMS message property ias_ReplyToAddress is set, then the QAnywhere
ReplyToAddress is additionally suffixed with this value delimited by a '\'.

Web service connectors
A web service connector listens for QAnywhere messages sent to a particular address, and makes web
service calls when messages arrive. Web service responses are sent back to the originating client as
QAnywhere messages. All messages sent to the web services connector should be created using the proxy
classes generated by the QAnywhere WSDL compiler.

When running MobiLink with QAnywhere messaging in a server farm environment, only the QAnywhere
connectors in the primary server start. If the primary server fails, the QAnywhere connectors are
automatically started in the new primary server so that message ordering is preserved while exchanging
data in the external messaging system, such as JMS. For more information, see “Running the MobiLink
server in a server farm” [MobiLink - Server Administration].

Setting up web service connectors

To create a web service connector

1. Open Sybase Central and connect to your server message store.

2. Choose File » New » Connector.

3. Click Web Services. Click Next.

4. In the Connector Name field, type the connector address that a QAnywhere client should use to
address the connector. Click Next.

5. In the URL field, type the URL of the web service (for example, http://localhost:8080/qanyserv/
F2C). Click Next.

You can optionally specify a timeout period in milliseconds, which cancels requests if the web service
does not respond in the specified time. This sets the property webservice.socket.timeout.

6. On the HTTP Parameters page, click The Web Service Must Be Accessed Through A Proxy and
then complete the following fields:

● In the HTTP user name field, type the user name. This sets the property webservice.http.authName.

● In the HTTP password field, type the user password. This sets the property
webservice.http.password.e.

● In the Proxy host name field, type the host name. If you specify this property, you must specify
the webservice.http.proxy.port property.

Web service connectors

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 137

● In the Proxy port field, type the port to connect to on the proxy server. If you specify this
property, you must specify the webservice.http.proxy.host property.

● In the Proxy user name field, type the proxy user name to use if the proxy requires
authentication. If you specify this property, you must also specify the
webservice.http.proxy.password.e property.

● Click Finish.

7. To set additional options on your web service connector, you can right-click the connector you just
created and choose Properties; or you can use server management requests.

For a list of available properties, see “Web service connector properties” on page 138.

For information about using server management requests, see “Administering connectors with server
management requests” on page 150.

Web service connector properties
Use web service connector properties to specify connection information with the web service. You can set
these properties in the Sybase Central Connector Wizard.

See “Web service connectors” on page 137.

You can view web service connector properties in the Sybase Central Connector Properties window, or
in the ml_qa_global_props MobiLink system table.

To open the Connector Properties window, right-click the connector in Sybase Central and choose
Properties.

To view web service properties

1. Open Sybase Central and connect to your server message store.

2. Under Server Message Stores in the left pane, select the name of your data source.

3. In the right pane, select the Connectors tab, and then select the name of the web service connector.

4. Choose File » Properties

Web service connector properties
● ianywhere.connector.nativeConnection The Java class that implements the connector. It is for

QAnywhere internal use only, and should not be deleted or modified.

● ianywhere.connector.id (deprecated) An identifier that uniquely identifies the connector. The
default is ianywhere.connector.address.

● ianywhere.connector.address The connector address that a QAnywhere client should use to
address the connector. This address is also used to prefix all logged error, warning, and informational
messages appearing in the MobiLink messages window for this connector.

Connectors

138 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

In Sybase Central, you set this property in the Connector Wizard, Connector Name page,
Connector Name field.

● ianywhere.connector.compressionLevel The default compression factor of messages received
from the web service. Compression is an integer between 0 and 9, with 0 indicating no compression
and 9 indicating maximum compression.

In Sybase Central, you set this property on the Connector Properties window, on the General tab, in
the Compression Level section.

● ianywhere.connector.logLevel The amount of connector information displayed in the MobiLink
messages window and the MobiLink server message log file. Values for the log level are as follows:

○ 1 Log error messages.

○ 2 Log error and warning messages.

○ 3 Log error, warning, and information messages.

○ 4 Log error, warning, information, and debug messages.

In Sybase Central, you set this property on the Connector Properties window, on the General tab, in
the Logging Level section.

● ianywhere.connector.outgoing.retry.max The default number of retries for messages going
from QAnywhere to the external messaging system. The default value is 5. Specify 0 to have the
connector retry forever.

In Sybase Central, you can set this property in the Connector Properties window under the
Properties tab by clicking New.

● ianywhere.connector.startupType Startup types can be automatic, manual, or disabled.

● webservice.http.authName If the web service requires HTTP authentication, use this property to
specify the user name.

● webservice.http.password.e If the web service requires HTTP authentication, use this property
to specify the password.

● webservice.http.proxy.authName If the proxy requires authentication, use this property to set
the proxy user name. If you specify this property, you must also specify the
webservice.http.proxy.password.e property.

● webservice.http.proxy.host If the web service must be accessed through an HTTP proxy, use
this property to specify the host name. If you specify this property, you must specify the
webservice.http.proxy.port property.

● webservice.http.proxy.password.e If the proxy requires authentication, use this property to set
the proxy password. If you specify this property, you must also specify the
webservice.http.proxy.authName property.

Web service connectors

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 139

● webservice.http.proxy.port The port to connect to on the proxy server. If you specify this
property, you must specify the webservice.http.proxy.host property.

Sending a message to a web service connector
A message is sent to a web service connector through the mobile web services API. Use the setProperty
method from the class ianywhere.qanywhere.ws.WSBase to set the WS_CONNECTOR_ADDRESS
property to the ID of the web service connector. See “WSBase class” on page 586.

For example, when the following line of code from the CurrencyConvertor sample is specified, the web
service APIs used to make web service requests send these requests as messages through the web service
connector.

service.setProperty(
 "WS_CONNECTOR_ADDRESS",
 "ianywhere.connector.currencyconvertor\\");

Tutorial: Using JMS connectors
A JMS connector provides connectivity between a JMS message system and QAnywhere. In this tutorial,
you send messages between a Windows JMS client application and a QAnywhere client application.

Required software
● SQL Anywhere 12

● Java Software Development Kit

● A JMS connector

Competencies and experience
You require:

● Familiarity with Java

● Basic knowledge of configuring your JMS connector

Goals
You gain competence and familiarity with:

● Configuring your JMS connector to communicate with a sample QAnywhere application

● Sending messages between a JMS message system and a sample QAnywhere application

Key concepts
This section uses the following steps to provide connectivity between a JMS message system and
QAnywhere using a SQL Anywhere sample database:

Connectors

140 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● Preparing your JMS connector to send and receive messages

● Running the QAnywhere server and client components, and the JMS client

● Sending a message from the QAnywhere client to the JMS client, and vice-versa

Suggested background reading
For more information about using JMS connectors, see “Connectors” on page 129.

Lesson 1: Set up client and server components
To prepare your JMS provider

1. Refer to your JMS server documentation to start the server.

2. Create the following queues within your JMS server:

● testmessage The TestMessage sample uses this queue name to listen for messages.
● qanywhere_receive The QAnywhere JMS connector uses this queue name to listen for messages.

You may need to restart the server after creating the queues. Refer to your JMS server documentation
for more details.

To start the QAnywhere client and server components

1. Create a QAnywhere JMS connector for your JMS system using Sybase Central. See “Setting up JMS
connectors” on page 129.

2. At the command prompt, run the following command:

mlsrv12 -m -c "dsn=QAnywhere 12 Demo" -sl
java(-cp JMS-client-jar-files) -vcrs
-zu+

where JMS-client-jar-files is a semicolon delimited list of jar files that are required to access the JMS
server. See your JMS server documentation for details.

The MobiLink server starts for messaging.

3. From the Start menu, choose Programs » SQL Anywhere 12 » QAnywhere » Tutorial using SQL
Anywhere » QAnywhere Agent For SQL Anywhere -- saclient1.

The QAnywhere Agent loads.

4. From the Start menu, choose Programs » SQL Anywhere 12 » QAnywhere » Tutorial using SQL
Anywhere » TestMessage -- saclient1.

The QAnywhere sample application loads.

Tutorial: Using JMS connectors

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 141

To start the JMS version of the TestMessage client

1. At the command prompt, run the following command:

edit samples-dir/QAnywhere/JMS/TestMessage/build.bat

2. Examine the code in the build.bat file and ensure that your JMS server file paths are correct.

For example, if you use EAServer, the default settings are defined under the easerver heading:

:easerver
REM For EAServer, compile with the following JAR files
SET easerver_install=c:\program files\sybase\easerver6
SET jmsjars=%easerver_install%\lib\eas-client-15.jar
GOTO build_app

If EAServer is not located in the c:\program files\sybase\easerver6 directory, update the
easerver_install variable so that it points to the proper install directory. Make sure that the jmsjars
variable points to the proper location of the JMS server jar files.

If your JMS server is not listed, use the custom header settings defined near the beginning of the
batch file to define your own JMS file path locations.

When finished, save your changes and exit the editor.

3. At the command prompt, run the following command to compile the JMS TestMessage client:

build.bat JMS-server-name

where JMS-server-name is the name of your JMS server represented as a header name in build.bat.
Acceptable values are easerver, fioranomq, jboss, tibco, weblogic, and custom. By default,
build.bat uses easerver.

4. At the command prompt, run the following command:

edit samples-dir/QAnywhere/JMS/TestMessage/run.bat

5. Examine the code in the run.bat file and ensure that your JMS server file paths are correct.

For example, if you use EAServer, the default settings are defined under the easerver heading:

:easerver
REM For EAServer, compile with the following JAR files
SET easerver_install=c:\program files\sybase\easerver6
SET jmsjars=%easerver_install%\lib\eas-client-15.jar
GOTO build_app

If EAServer is not located in the c:\program files\sybase\easerver6 directory, update the
easerver_install variable so that it points to the proper install directory. Make sure that the jmsjars
variable points to the proper location of the JMS server jar files.

If your JMS server is not listed, use the custom header settings defined near the beginning of the
batch file to define your own JMS file path locations.

Connectors

142 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

When finished, save your changes and exit the editor.

6. At the command prompt, run the following command to run the JMS TestMessage client:

run.bat JMS-server-name

where JMS-server-name is the name of your JMS server represented as a header name in build.bat.
Acceptable values are easerver, fioranomq, jboss, tibco, weblogic, and custom. By default,
build.bat uses easerver.

7. Move the JMS TestMessage window to the right side of your screen under the existing TestMessage
-- saclient1 window.

Lesson 2: Send a message from a JMS client to a
QAnywhere client

To send a message from a JMS client to a QAnywhere client

1. From JMS TestMessage Message menu, choose New.

2. In the Destination ID field, type saclient1.

3. Complete the Subject and Message fields with sample text.

4. Click Send.

A window appears, indicating that a message has been received.

Lesson 3: Send a message from a QAnywhere client to a
JMS client

To find out the name of the QAnywhere JMS connector

1. Choose Start » Programs » SQL Anywhere » Sybase Central.

2. Choose Connections » Connect With QAnywhere 12.

3. Click ODBC Data Source Name.

4. Click Browse and select QAnywhere 12 Demo.

5. Click OK.

6. Click OK.

7. Select the Connectors tab.

The right-pane displays a list of all active JMS connectors.

Tutorial: Using JMS connectors

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 143

8. Examine the name field.

There should only be one active QAnywhere JMS connector in the list. The name of the connector is
displayed under the name field.

To send a message from a QAnywhere client to a JMS client

1. In the saclient1 - TestMessage window, click Message » New.

2. In the Destination ID field, type the name of your JMS system.

3. In the Subject and Message fields, type sample text.

4. Click Send.

A window appears, indicating that a message has been received.

Tutorial cleanup
Shut down TestMessage clients, the QAnywhere Agent, and the MobiLink server.

To Shut down all applications

1. To close the JMS TestMessage client application, choose File » Exit.

2. To close the saclient1 - TestMessage Client window, choose File » Exit.

3. To close the saclient1 - QAnywhere Agent window and the MobiLink server, choose Shut Down in
their respective windows.

4. To disconnect from your JMS connector, refer to your JMS server documentation.

Connectors

144 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Server management requests
A QAnywhere client application can send special messages to the server called server management
requests. These messages contain content that is formatted as XML and are addressed to the QAnywhere
system queue. They require a special authentication string. Server management requests can perform a
variety of functions, such as:

● Starting and stopping connectors and web services.

See “Opening connectors” on page 152 and “Closing connectors” on page 153.

● Monitoring connector status.

See “Monitoring connectors” on page 153.

● Setting and refreshing client transmission rules.

See “Specifying transmission rules with a server management request” on page 160.

● Monitoring message status.

See “Monitoring QAnywhere” on page 163.

● Setting, updating, deleting, and querying client message store properties on the server.

See “Setting server properties with a server management request” on page 159.

● Canceling messages.

See “Canceling messages” on page 149.

● Querying for active clients, message store properties, and messages.

Addressing server management requests
By default, server management requests must be addressed to ianywhere.server\system. To change the
client ID portion of this address, set the ianywhere.qa.server.id property and restart the server. For
example, if the ianywhere.qa.server.id property is set to myServer, server management requests are
addressed to myServer\system.

For more information about setting the ianywhere.qa.server.id property, see “Server
properties” on page 724.

For more information about addressing QAnywhere messages, see “Sending QAnywhere
messages” on page 61.

For more information about the system queue, see “System queue” on page 59.

Examples
The following is a sample message details request. It generates a single report that displays the message
ID, status, and target address of all messages with priority 9 currently on the server.

<?xml version="1.0" encoding="UTF-8"?>
<actions>

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 145

 <MessageDetailsRequest>
 <request>
 <requestId>testRequest</requestId>
 <condition>
 <priority>9</priority>
 </condition>
 <status/>
 <address/>
 </request>
 </MessageDetailsRequest>
</actions>

The following example is in C#. It sets a server-side transmission rule for a client such that messages
from the server are only transmitted to the client called someClient if the priority is greater than 4.

QAManager mgr = ...; // Initialize the QAManager
QAMessage msg = mgr.CreateTextMessage();
msg.SetStringProperty("ias_ServerPassword", "QAnywhere");
// Indenting and newlines are just for readability
msg.Text = "<?xml version="1.0" encoding="UTF-8"?>\n"
+ "<actions>\n"
+ " <SetProperty>\n"
+ " <prop>\n"
+ " <client>someClient</client>\n"
+ " <name>ianywhere.qa.server.rules</name>\n"
+ " <value>ias_Priority > 4</value>\n"
+ " </prop>\n"
+ " </SetProperty>\n"
+ " <RestartRules>\n"
+ " <client>someClient</client>\n"
+ " </RestartRules>\n"
+ "</actions>\n";
mgr.PutMessage(@"ianywhere.server\system", msg);

Authenticating server management requests
The ianywhere.qa.server.password.e server property is used to specify a password that is used for
authenticating server management requests. If this property is not set, the password is QAnywhere. See
“Server properties” on page 724.

Writing server management requests
Server management requests contain content that is formatted as XML.

Note
You cannot use symbols such as > or < in the content of server management requests. Instead, use >
and <.

Each type of server management request includes it own XML tags. For example, to close a connector
you use the <CloseConnector> tag.

Each server management request starts with an <actions> tag.

Server management requests

146 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

actionsResponseId Tag
Use the actionsResponseId tag as a subtag to the <actions> tag to track and report the progress of the
operations in the <action> tag. A report is created by the server when the <action> tag is processed.

The report contains the id of the <actionsResponseId> tag and the error messages generated by the
request. Once the report is created, it is sent to the reply address of the server management request.

The following is an example of a server management request using the actionsResponseId tag,

<?xml version="1.0" encountered="UTF-8"?>
<actions>
 <actionsResponseId>myActionID</actionsResponseId>
 <MessageDetailsRequest>
 <request>
 <requestId>testRequest</requestId>
 <condition>
 <priority>9</priority>
 </condition>
 <status/>
 <address/>
 </request>
 </MessageDetailsRequest>
</actions>

The following is an example of an actionsResponseId report where the myActionId request did not
generate errors.

<?xml version="1.0" encoding="UTF-8"?>
<ActionsResponse>
<actionsResponseId>myActionId</actionsResponseId>
<error/>
</ActionsResponse>

Archive message store requests

To view the details of messages in the archive message store, use the <archived> tag as a subtag to the
<condition> tag. If the tag is omitted, the report only contains messages from the server message store.

To determine if a message exists in the archive message store, use the <archived> tag as a subtag to the
<request> tag.

Example
The following request returns true if testRequest exists in the archive message store, and false if it exists
in the server message store.

<request>
 <requestID>testRequest</requestID>
 <status/>
 <archived/>
</request>

Writing server management requests

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 147

Creating destination aliases
You can use server management requests to create and modify destination aliases. See “Creating
destination aliases with a server management request” on page 161.

For more information about destination aliases, see “Destination aliases” on page 127.

For an overview of how to use server management requests, including how to authenticate and schedule
them, see “Server management requests” on page 145.

Administering the server message store with server
management requests

You can use server management requests to administer the server message store.

For an overview of how to use server management requests, including how to authenticate and schedule
them, see “Server management requests” on page 145.

Refreshing client transmission rules
When a server-side client transmission rule is changed, the rules for the corresponding client must be
refreshed. You can change client transmission rules in a server management request by setting the
property ianywhere.qa.server.rules.

A RestartRules tag contains a single client tag, which specifies the name of the client to refresh.

<RestartRules> subtags Description

<client> The name of the client for which to refresh transmission rules.

Example
The server XML needs to specify the new transmission rule property and then restart rule processing
using the RestartRules tag. For example, the following XML changes the server-side transmission rule for
client myclient to auto = ias_Priority > 4. Note the proper encoding of ">" in the XML.

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <SetProperty>
 <prop>
 <client>myclient</client>
 <name>ianywhere.qa.server.rules</name>
 <value>auto = ias_Priority > 4</value>
 </prop>
 </SetProperty>
 <RestartRules>
 <client>myclient</client>

Server management requests

148 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 </RestartRules>
</actions>

Canceling messages
You can create a server management request to cancel messages in the server message store. You can
create a one-time cancellation request or you can schedule your cancellation request to happen
automatically. You can also optionally generate a report that details the messages that have been canceled.

Messages can only be canceled if they are in a non-final state and have not been transmitted to the
recipient when the request is activated.

<CancelMessageRequest> subtags Description

<request> Groups information about a particular request. Specifying
more than one <request> tag is equivalent to sending multiple
separate server management requests.

<Request> subtags Description

<condition> Groups conditions for including a message to be canceled. See “Condition
tag” on page 665.

<persistent> Specifies that the request should be made persistent in the server database (so
that messages can be canceled even if the server is restarted). Only used with
schedules.

<requestId> Specifies a unique identifier for the request that is included in each report gener-
ated as a result of this request. Using different values for this field allows more
than one request to be active at the same time. Using the same request id allows
the client to override or delete active requests.

<replyAddr> The return address for each report generated as a result of this request. If this
tag is omitted, the default return address of reports is the return address of the
originating message.

<report> Causes a report to be sent each time the request is activated. To cause a report
to be sent each time the request is activated, put an empty <report> tag inside
the <request> tag.

<schedule> Specifies that the report should be generated on a schedule. See “Server manage-
ment request parent tags” on page 665.

Example
This request cancels messages on the server with the address ianywhere.connector.myConnector\deadqueue:

Administering the server message store with server management requests

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 149

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <CancelMessageRequest>
 <request>
 <requestId>cancelRequest</requestId>
 <condition>
 <customRule>ias_Address='ianywhere.connector.myConnector\deadqueue'</
customRule>
 </condition>
 </request>
 </CancelMessageRequest>
</actions>

Deleting messages
To specify a clean-up policy on the server, set the property ianywhere.qa.server.deleteRules for the
special client ianywhere.server.deleteRules with the rule or rules governing which messages can be
deleted from the server.

The following example changes the message clean-up policy to delete expired and canceled messages:

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <SetProperty>
 <prop>
 <client>ianywhere.server.deleteRules</client>
 <name>ianywhere.qa.server.deleteRules</name>
 <value>auto = ias_Status in (ias_ExpiredStatus, ias_CancelledStatus)
and ias_TransmissionStatus = IAS_TRANSMITTED</value>
 </prop>
 </SetProperty>
 <RestartRules>
 <client>ianywhere.server.deleteRules</client>
 </RestartRules>
</actions>

Administering connectors with server management
requests

You can use server management requests to create, configure, delete, start, stop, and monitor connectors.

For an overview of how to use server management requests, including how to authenticate and schedule
them, see “Server management requests” on page 145.

See also
● “Connectors” on page 129
● “Web service connectors” on page 137

Server management requests

150 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Creating and configuring connectors

To create connectors, add properties using <SetProperty> and then use <OpenConnector>.

Example
In the following example, the server management request first sets several relevant properties and
associates them with the client ianywhere.connector.jboss, which is the client ID of the new connector. JMS-
specific properties are set in such a way that a connector to a local JBOSS JMS server are indicated. The
connector is then started using the OpenConnector tag. Note that if you have not started the MobiLink
server with the relevant jar files of the JMS client, the connector is not started.

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <SetProperty>
 <prop>
 <client>ianywhere.connector.jboss</client>
 <name>ianywhere.connector.nativeConnection</name>
 <value>ianywhere.message.connector.jms.NativeConnectionJMS</value>
 </prop>
 <prop>
 <client>ianywhere.connector.jboss</client>
 <name>ianywhere.connector.address</name>
 <value>ianywhere.connector.jboss</value>
 </prop>
 <prop>
 <client>ianywhere.connector.jboss</client>
 <name>xjms.jndi.factory</name>
 <value>org.jnp.interfaces.NamingContextFactory</value>
 </prop>
 <prop>
 <client>ianywhere.connector.jboss</client>
 <name>xjms.jndi.url</name>
 <value>jnp://0.0.0.0:1099</value>
 </prop>
 <prop>
 <client>ianywhere.connector.jboss</client>
 <name>xjms.topicFactory</name>
 <value>ConnectionFactory</value>
 </prop>
 <prop>
 <client>ianywhere.connector.jboss</client>
 <name>xjms.queueFactory</name>
 <value>ConnectionFactory</value>
 </prop>
 <prop>
 <client>ianywhere.connector.jboss</client>
 <name>xjms.receiveDestination</name>
 <value>qanywhere_receive</value>
 </prop>
 <prop>
 <client>ianywhere.connector.jboss</client>
 <name>xjms.deadMessageDestination</name>
 <value>qanywhere_deadMessage</value>
 </prop>
 </SetProperty>
 <OpenConnector>
 <client>ianywhere.connector.jboss</client>
 </OpenConnector>
</actions>

Administering connectors with server management requests

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 151

Modifying connectors
To modify connectors, close the connector, change properties with the <SetProperty> tag, and then open
the connector.

Example
In the following example, the logging level of the connector is changed to 4. The connector with the ID
ianywhere.connector.jboss is closed; the connector property logLevel is changed to 4, and then the
connector is re-opened with the new log level.

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <CloseConnector>
 <client>ianywhere.connector.jboss</client>
 </CloseConnector>
 <SetProperty>
 <prop>
 <client>ianywhere.connector.jboss</client>
 <name>ianywhere.connector.logLevel</name>
 <value>4</value>
 </prop>
 </SetProperty>
 <OpenConnector>
 <client>ianywhere.connector.jboss</client>
 </OpenConnector>
</actions>

Deleting connectors
To delete connectors, use <SetProperty> to remove all properties for the client.

Example
In the following example, the connector with the ID ianywhere.connector.jboss is closed. All of its
properties are deleted by the <SetProperty> tag, omitting the name and value tags.

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <SetProperty>
 <prop>
 <client>ianywhere.connector.jboss</client>
 <name>ianywhere.connector.nativeConnection</name>
 </prop>
 </SetProperty>
</actions>

Opening connectors
To open connectors, use <OpenConnector>.

An OpenConnector tag contains a single client tag that specifies the name of the connector to open.

Server management requests

152 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

<OpenConnector> subtag Description

<client> The name of the connector to open.

See also
● “Connectors” on page 129
● “Web service connectors” on page 137

Example
The following example opens the simpleGroup connector.

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <OpenConnector>
 <client>simpleGroup</client>
 </OpenConnector>
</actions>

Closing connectors
To close connectors, use <CloseConnector>. A CloseConnector tag contains a single client tag that
specifies the name of the connector to close.

<CloseConnector> subtags Description

<client> The name of the connector to close.

See also
● “Connectors” on page 129
● “Web service connectors” on page 137

Example
The following example closes the simpleGroup connector.

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <CloseConnector>
 <client>simpleGroup</client>
 </CloseConnector>
</actions>

Monitoring connectors
To obtain information about connectors, write a special kind of server management request called a client
status request. It contains a <ClientStatusRequest> tag that uses one or more <request> tags containing
the information necessary to register the request.

Administering connectors with server management requests

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 153

Your client status request can obtain reports about connectors in several ways:

● Make a one-time request.

● Register a State Change Listener to have a report sent whenever the connector's state changes.

● Register an Error Listener to have a report sent whenever an error occurs on the connector.

In addition, you can schedule a report to be sent at certain times or intervals.

ClientStatusRequest tag
To get information about connectors, use <ClientStatusRequest>.

A client status request is composed of one or more <request> tags containing all the necessary
information to register the request.

<ClientStatusRequest> subtag Description

<request> Groups information in requests.

request tag for client status requests
In the <request> tag, use an optional <replyAddr> tag to specify the return address for each report
generated as a result of this request. If this tag is omitted, the default return address of reports is the reply
address of the originating message.

Use an optional <requestId> to add a label for the request that is included in each report. When you
register multiple requests, or when you delete or modify requests, the ID makes it possible to distinguish
which reports were generated from a particular request.

To specify a list of connectors for the request, include one or more <client> tags, each with one connector
address. For a one-time request, all the connectors are included in the report. For an event listener request,
the server listens to each of these connectors.

To specify that event details should be made persistent during any server downtime, specify the
<persistent> tag. This tag does not require any data and can be of the form <persistent/> or <persistent></
persistent>.

You can optionally specify a list of events by including one or more <onEvent> tags with one event type
per tag. If these tags are omitted, the client status request produces a one-time request. Otherwise, the
client status request registers event listeners for the specified events.

Server management requests

154 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

<request> subtags for client status re-
quests

Description

<client> You can include one or more <client> tags, with one con-
nector address per tag. For a one-time request, all the con-
nectors listed are included in the report. For an event lis-
tener request, the server begins to listen to each of these
connectors.

<onEvent> Specifies the events upon which the server should gener-
ate reports. You can include one or more <onEvent> tags,
with one event type per tag. If these tags are omitted, the
Client Status Request produces a one-time request. Other-
wise, the Client Status Request is used to register event lis-
teners for the specified events.

<persistent> Specifies that the details information in this Client Status
Request should be made persistent in the server database.

<replyAddr> Specifies the return address for each report generated as a
result of this request. If this tag is omitted, the default re-
turn address of reports is the reply address of the originat-
ing message.

<requestId> A label for the report. This value is used as a label for the
request and is included in each report generated as a result
of this request. This makes it possible to distinguish which
reports were generated from a particular request when mul-
tiple requests have been registered and to delete or modify
outstanding requests.

<schedule> See “Server management request parent
tags” on page 665.

One-time client status requests
You create a one-time request by omitting <onEvent> and <schedule> tags from the client status request.
In this case, a single report is generated that contains the current status information for each connector
specified in the client status request.

The following XML message omits the <onEvent> and <schedule> tags and so is an example of a one-
time request. It generates a single report containing the current status information for each connector
specified in the <ClientStatusRequest> tag.

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <ClientStatusRequest>
 <request>
 <replyAddr>ianywhere.connector.beajms\q11</replyAddr>
 <requestId>myOneTimeRequest</requestId>
 <client>ianywhere.server</client>

Administering connectors with server management requests

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 155

 <client>ianywhere.connector.beajms</client>
 </request>
 </ClientStatusRequest>
</actions>

On-event client status requests
To specify events for which you want the QAnywhere Server to generate status reports, include one or
more <onEvent> tags in your client status request. Unlike one-time requests, the server does not
immediately respond to the request, but instead begins listening for events to occur. Each time one of
these events is triggered, a report is sent containing information about the connector that caused the event.

The following events are supported for on-event requests:

Event When it occurs

open A closed connector is opened.

close A previously opened or paused connector is closed.

statusChange The status of the connector is changed from one state to another. Possible states are
open and close.

error An unexpected error is thrown by the connector.

fatalError An unhandled fatal error is thrown by the connector.

none This never occurs. This effectively removes all previous event watches from the connec-
tor.

In the following example, the connector with address ianywhere.connector.beajms\q11 is sent a status
report each time the server connector changes its status or generates an error.

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <ClientStatusRequest>
 <request>
 <replyAddr>ianywhere.connector.beajms\q11</replyAddr>
 <requestId>myEventRequest</requestId>
 <client>ianywhere.server</client>
 <onEvent>statusChange</onEvent>
 <onEvent>error</onEvent>
 </request>
 </ClientStatusRequest>
</actions>

Multiple simultaneous requests
Each return address can have its own set of event listeners for any number of connectors, including the
server connector. Adding an event listener to a connector does not disturb any other event listeners in the
server (except possibly one that it is replacing).

Server management requests

156 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Request replacement
If you add an event listener to a connector that already has an event listener registered to it by the same
return address, it replaces the old listener with the new one. For example, if a statusChange listener for
connector abc is registered to address x/y and you register an error listener for abc to address x/y, abc no
longer responds to statusChange events.

To register more than one event to the same address, you must create a single request with more than one
<onEvent> tag.

Removing a request
If an event listener for a connector is registered to an address, you can remove the event listener by
providing another client status request from the same address with the "none" event specified.

In the following example, all event listeners are removed for the server connector registered to the address
ianywhere.connector.beajms\q11:

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <ClientStatusRequest>
 <request>
 <replyAddr>ianywhere.connector.beajms\q11</replyAddr>
 <client>ianywhere.server</client>
 <onEvent>none</onEvent>
 </request>
 </ClientStatusRequest>
</actions>

Persistent client status requests
To specify that the details of a request are saved into the global properties table on the message store
(where they can be automatically reinstated after a server restart), include the <persistent> tag in a client
status request. Persistence can be used with scheduled events and event listeners, but not one-time
requests. The rules for adding and removing persistent requests are similar to those for regular requests,
except that scheduled events and event listeners cannot be added separately. Instead, when adding a
persistent request, the client must specify all event listeners and schedules for a particular connector/reply
address pair in the same request.

The following example adds the event listener and schedule to ianywhere.connector.myConnector and
makes them persistent. It also overwrites any previous persistent requests from this connector/reply
address pair. A report is sent every half hour and when a connector status change occurs.

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <ClientStatusRequest>
 <request>
 <replyAddr>ianywhere.connector.beajms\q11</replyAddr>
 <client>ianywhere.connector.myConnector</client>
 <onEvent>statusChange</onEvent>
 <schedule>
 <everyminute>30</everyminute>
 </schedule>
 <persistent/>
 </request>
 </ClientStatusRequest>
</actions>

Administering connectors with server management requests

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 157

Event listener persistence
If a connector is closed, any event listeners it has registered to its address persist in the server until the
server is shut down. If the connector is reopened, the stored event listeners become active again.

Connector states
A connector can be in one of two states:

● running The connector is accepting and processing incoming and outgoing messages. This state is
reflected in the connector property ianywhere.connector.state=1.

● not running The connector is not accepting or processing incoming or outgoing messages. This
state is reflected in the connector property ianywhere.connector.state=2. When the connector state is
changed to "running" the connector is initialized from scratch.

For information about how to change the connector state, see “Modifying connectors” on page 152.

Client status reports

A client status report is generated by the server each time a report is requested by a connector or a
registered event occurs. It is generated as a simple text message which does not contain any message
properties.

Depending on what information is available at the time of the event, any of the following values may be
included in each component report:

● client (always present)
● UTCDatetime (always present)
● vendorStatusDescription (always present)
● statusCode (always present)
● vendorStatusCode
● statusSubCode
● statusDescription

For example:

<?xml version="1.0" encoding="UTF-8"?>
<ClientStatusReport>
 <requestId>myRequest</requestId>
 <componentReport>
 <client>ianywhere.server</client>
 <UTCDatetime>Tue May 31 13:53:02 EDT 2005</UTCDatetime>
 <statusCode>Running</statusCode>
 <vendorStatusDescription></vendorStatusDescription>
 </componentReport>
 <componentReport>
 <client>ianywhere.connector.beajms</client>
 <UTCDatetime>Tue May 31 13:53:02 EDT 2005</UTCDatetime>
 <statusCode>Not running</statusCode>
 <vendorStatusDescription></vendorStatusDescription>
 </componentReport>
</ClientStatusReport>

Server management requests

158 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Setting server properties with a server management
request

A <SetProperty> tag contains one or more <prop> tags, each of which specifies a property to set. Each
prop tag consists of a <client> tag, a <name> tag, and a <value> tag. To delete a property, omit the
<value> tag.

<prop> subtags Description

<client> The name of the client for which to set a server property.

<name> The name of the property to set.

<value> The value of the property being set. If not included, the property gets deleted.

For an overview of how to use server management requests, including how to authenticate and schedule
them, see “Server management requests” on page 145.

Example
The following server management request sets the ianywhere.qa.member.client3 property to Y for the
destination alias called simpleGroup, which adds client3 to simpleGroup.

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <SetProperty>
 <prop>
 <client>simpleGroup</client>
 <name>ianywhere.qa.member.client3</name>
 <value>Y</value>
 </prop>
 </SetProperty>
</actions>

The next example does the following:

● Creates or modifies the value of the client1 property myProp1 to 3.

● Deletes the client1 property myProp2.

● Modifies the value of the client2 property myProp3 to "some value".

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <SetProperty>
 <prop>
 <client>client1</client>
 <name>myProp1</name>
 <value>3</value>
 </prop>
 <prop>
 <client>client1</client>
 <name>myProp2</name>
 </prop>

Setting server properties with a server management request

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 159

 <prop>
 <client>client2</client>
 <name>myProp3</name>
 <value>some value</value>
 </prop>
 </SetProperty>
</actions>

Specifying transmission rules with a server
management request

With a server management request, you can specify default server transmission rules that apply to all
users, or you can specify transmission rules for each client.

To specify default transmission rules (for a server), set the ianywhere.qa.server.rules property for the
client ianywhere.server.defaultClient. For a client, use the ianywhere.qa.server.rules property to specify
server transmission rules.

For an overview of how to use server management requests, including how to authenticate and schedule
them, see “Server management requests” on page 145.

Example
The following example creates the default rule that only high priority messages (priority greater than 6)
should be sent:

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <SetProperty>
 <prop>
 <client>ianywhere.server.defaultClient</client>
 <name>ianywhere.qa.server.rules</name>
 <value>auto = ias_Priority > 6</value>
 </prop>
 </SetProperty>
 <RestartRules>
 <client>ianywhere.server.defaultClient</client>
 </RestartRules>
</actions>

The following example creates a rule for a client called myClient that only messages with a content size
less than 100 should be transmitted during business hours (8 a.m. and 6 p.m.):

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <SetProperty>
 <prop>
 <client>myClient</client>
 <name>ianywhere.qa.server.rules</name>
 <value>auto = ias_ContentSize < 100
 or ias_CurrentTime > '8:00:00'
 or ias_CurrentTime < '18:00:00'</value>
 </prop>
 </SetProperty>
 <RestartRules>

Server management requests

160 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 <client>myClient</client>
 </RestartRules>
</actions>

Creating destination aliases with a server
management request

You can use server management requests to create and modify destination aliases.

For more information about destination aliases, see “Destination aliases” on page 127.

For an overview of how to use server management requests, including how to authenticate and schedule
them, see “Server management requests” on page 145.

To create a destination alias, send a server management request in which the client name is the name of
the destination alias and the following properties are specified. The group is identified by the group,
address, and nativeConnection properties. Members of the group are specified with the member property.

<prop>
 <client>simpleGroup</client>
 <name>ianywhere.connector.nativeConnection</name>
 <value>ianywhere.message.connector.group.GroupConnector
 </value>
</prop>

Property Description

iany-
where.qa.group

Set this property to Y to indicate that you are configuring a destination alias. For
example:

<prop>
 <client>simpleGroup</client>
 <name>ianywhere.qa.group</name>
 <value>Y</value>
</prop>

ianywhere.con-
nector.address

Specify the client ID of the destination alias. For example:

<prop>
 <client>simpleGroup</client>
 <name>ianywhere.connector.address</name>
 <value>simpleGroup</value>
</prop>

ianywhere.con-
nector.native-
Connection

Set to ianywhere.message.connector.group.GroupConnector. For example:

<prop>
 <client>simpleGroup</client>
 <name>ianywhere.connector.nativeConnection</name>
 <value>ianywhere.message.connector.group.GroupConnector
 </value>
</prop>

Creating destination aliases with a server management request

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 161

Property Description

iany-
where.qa.mem-
ber.client-name
\queue-name

Specify Y to add a member or N to remove a member. You can also optionally spec-
ify a delivery condition. See “Condition syntax” on page 734. For example, to add
client1 to the destination alias simpleGroup, set the property as follows. The queue-
name is optional. Repeat this property for every client you want to add:

<prop>
 <client>simpleGroup</client>
 <name>ianywhere.qa.member.client1\queue1</name>
 <value>Y</value>
</prop>

For more information about server management requests, see “Server management requests” on page 145.

See also
● “QAnywhere transmission and delete rules” on page 733

Example
The following server management request creates a destination alias called simpleGroup with members
called client1 and client2\q11. This example starts the destination alias so that it immediately begins
handling messages.

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <SetProperty>
 <prop>
 <client>simpleGroup</client>
 <name>ianywhere.qa.group</name>
 <value>Y</value>
 </prop>
 <prop>
 <client>simpleGroup</client>
 <name>ianywhere.connector.address</name>
 <value>simpleGroup</value>
 </prop>
 <prop>
 <client>simpleGroup</client>
 <name>ianywhere.connector.nativeConnection</name>
 <value>ianywhere.message.connector.group.GroupConnector</value>
 </prop>
 <prop>
 <client>simpleGroup</client>
 <name>ianywhere.connector.logLevel</name>
 <value>4</value>
 </prop>
 <prop>
 <client>simpleGroup</client>
 <name>ianywhere.qa.member.client1</name>
 <value>Y</value>
 </prop>
 <prop>
 <client>simpleGroup</client>
 <name>ianywhere.qa.member.client2\q11</name>
 <value>Y</value>
 </prop>
 </SetProperty>

Server management requests

162 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 <OpenConnector>
 <client>simpleGroup</client>
 </OpenConnector>
</actions>

Adding and removing members in a destination alias
To add members to a destination alias, create a server management request that specifies the member in a
property. The group must be restarted for the member setting to take effect.

The following example adds the member client3 and restarts the group simpleGroup:

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <SetProperty>
 <prop>
 <client>simpleGroup</client>
 <name>ianywhere.qa.member.client3</name>
 <value>Y</value>
 </prop>
 </SetProperty>
 <CloseConnector>
 <client>simpleGroup</client>
 </CloseConnector>
 <OpenConnector>
 <client>simpleGroup</client>
 </OpenConnector>
</actions>

To remove members from a destination alias, create a server management request that contains a property
setting indicating that the member must be removed. The group must be restarted for the member removal
setting to take effect.

The following example removes the member client3 and restarts the group simpleGroup:

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <SetProperty>
 <prop>
 <client>simpleGroup</client>
 <name>ianywhere.qa.member.client3</name>
 </prop>
 </SetProperty>
 <CloseConnector>
 <client>simpleGroup</client>
 </CloseConnector>
 <OpenConnector>
 <client>simpleGroup</client>
 </OpenConnector>
</actions>

Monitoring QAnywhere
You can use a server management request to get information about a set of messages. The server compiles
the information and sends it back to the client in a message. You can create a one-time message details

Monitoring QAnywhere

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 163

request or schedule your message details request to happen automatically. In addition, you can specify
that your request should be persistent, so that the message is sent even if the server is restarted.

For an overview of how to use server management requests, including how to authenticate and schedule
them, see “Server management requests” on page 145.

Message details requests
To write a server management request for message details, use the <MessageDetailsRequest> tag.

A message details request contains one or more <request> tags containing all the necessary information to
register the request. Specifying more than one <request> tag is equivalent to sending multiple separate
message details requests.

Use the optional <replyAddr> tag to specify the return address for each report generated as a result of the
request. If this tag is omitted, the default return address of reports is the reply address of the originating
message.

Use a <requestId> tag to specify a unique identifier for the request that is included in each report
generated as a result of this request. Using different values for this field allows more than one request to
be active at the same time. Using the same request ID allows the client to override or delete active requests.

Specify a <condition> tag to determine which messages should be included in the report. See “Condition
tag” on page 665.

You can also specify a list of details to determine what details of each message should be included in the
report. You do this by including a set of empty detail element tags in the request.

You can use the <persistent> tag to specify that event details should be made persistent during any server
downtime. This tag does not require any data and can be of the form <persistent/> or <persistent></
persistent>.

You can use <schedule> to include all the necessary details needed to register a scheduled report. See
“Server management request parent tags” on page 665.

<MessageDetailsRequest> sub-
tags

Description

<request> Groups information about a particular request. Specifying more
than one <request> tag is equivalent to sending multiple sepa-
rate server management requests for message information. See
below.

Server management requests

164 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Request tag

<Request> sub-
tags

Description

<address> Requests the address of each message.

<archived> Requests whether the message is in the archive store.

<condition> Groups conditions for including a message in the report. See “Condition
tag” on page 665.

<contentSize> Requests the content size of each message.

<expires> Requests the expiration time of each message.

<kind> Requests whether the message is text or binary.

<messageId> Requests the message ID of each message.

<originator> Requests the originator of each message.

<persistent> Including this tag indicates that the results of the request should be made persistent
in the server database (so that the report is sent even if the server is restarted).

<priority> Requests the priority of each message.

<property> Requests a list of all message properties and values for each message.

<statusTime> Requests the status time of each message.

<replyAddr> Specifies the return address for each report generated as a result of this request. If
this tag is omitted, the default return address of reports is the reply address of the
originating message.

<requestId> This value is a unique identifier for the request and is included in each report gener-
ated as a result of this request. Using different values for this field allows more
than one request to be active at the same time. Using the same request id allows the
client to override or delete active requests.

<schedule> Including this tag indicates that the report should be generated on a schedule. Sub-
tags of <schedule> identify the schedule on which the report runs. See “Server man-
agement request parent tags” on page 665.

<status> Requests the status of each message.

<transmission-
Status>

Requests the transmission status of each message.

Monitoring QAnywhere

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 165

Monitoring QAnywhere clients
You can use a server management request to obtain a list of clients currently on the server. This list
contains clients who are registered on the server, including remote clients, open connectors, and
destination aliases.

For an overview of how to use server management requests, including how to authenticate and schedule
them, see “Server management requests” on page 145.

To obtain a list of clients, use the <GetClientList> tag in your server management request. For example:

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <GetClientList/> (or <GetClientList></GetClientList>)
</actions>

The response that is generated is sent to the reply address of the message containing the request. The
response contains a list of <client> tags, each naming one client connected to the server. For example:

<?xml version="1.0" encoding="UTF-8"?>
<GetClientListResponse>
 <client>ianywhere.server</client>
 <client>ianywhere.connector.myConnector</client>
 <client>myClient</client>
</GetClientListResponse>

Monitoring properties
You can use a server management request to see what properties are set for a client. The response lists
only the properties that have been set for the client (not defaults).

For an overview of how to use server management requests, including how to authenticate and schedule
them, see “Server management requests” on page 145.

To get a list of properties for a client, use the <GetProperties> tag in your server management request. For
example:

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <GetProperties>
 <client>ianywhere.connector.myConnector</client>
 </GetProperties>
</actions>

The response that is generated is sent to the reply address of the message containing the request. The
response contains the name of the client and a list of <prop> tags, each containing the details of one
property. For example:

<?xml version="1.0" encoding="UTF-8"?>
<GetPropertiesResponse>
 <client>ianywhere.connector.myConnector</client>
 <prop>
 <name>ianywhere.connector.logLevel</name>
 <value>4</value>
 </prop>

Server management requests

166 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 <prop>
 <name>ianywhere.connector.state</name>
 <value>2</value>
 </prop>
</GetPropertiesResponse>

Monitoring QAnywhere

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 167

168

Tutorial: Exploring TestMessage
TestMessage is a sample QAnywhere client application. This application demonstrates how you can use
QAnywhere to create your own messaging client applications. TestMessage provides a single client-to-
client interface to send, receive, and display messages. Being human-readable, text messages provide a
useful demonstration of QAnywhere messaging, but QAnywhere provides much more than text
messaging. It is a general purpose application-to-application messaging system that provides message-
based communication among many clients.

The tutorial is written for a Windows desktop system. While these platforms are convenient for
demonstration purposes, you can also use the QAnywhere API to write applications that run on Windows
Mobile devices. Source code is provided for Windows Mobile for C++, Visual Basic, C#, and Java. There
is also a C# version written on the .NET Compact Framework.

Lesson 1: Start MobiLink with messaging
Background

QAnywhere uses MobiLink synchronization to send and receive messages. All messages from one client
to another are delivered through a central MobiLink server. The architecture of a typical system, with only
two QAnywhere clients, is shown in the following diagram.

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 169

The server message store is a database configured for use as a MobiLink consolidated database. The
TestMessage sample uses a SQL Anywhere consolidated database as its server message store.

The only tables needed in the server message store are the MobiLink system tables that are included in
any supported database that is set up as a MobiLink consolidated database.

The system tables are maintained by MobiLink. A relational database provides a secure, high performance
message store. It enables you to easily integrate messaging into an existing data management and
synchronization system.

QAnywhere messaging is usually run over separate computers, but in this tutorial all components are
running on a single computer. It is important to keep track of which activities are client activities and
which are server activities.

In this lesson, you perform actions at the server.

Activity
The MobiLink server can be started with messaging by supplying the -m option, and specifying a
connection string to the server message store. The TestMessage sample uses a QAnywhere sample
database for the server message store. For the TestMessage sample, you can start the MobiLink server for
messaging using the command line options, using a sample shortcut in your SQL Anywhere installation,
or with the QAnywhere 12 plug-in to Sybase Central.

Tutorial: Exploring TestMessage

170 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Start the messaging server

1. From the Start menu, choose Programs » SQL Anywhere 12 » QAnywhere » MobiLink
QAnywhere Sample.

Alternatively, at a command prompt, run the following command:

mlsrv12 -m -c "dsn=QAnywhere 12 Demo" -vcrs -zu+

This command line uses the following mlsrv12 options:

Option Description

-m The -m option enables messaging. See “-m mlsrv12 option” [MobiLink - Server Ad-
ministration].

-c The -c option specifies the connection string to the server message store, in this case
using the QAnywhere 12 Demo ODBC data source. See “-c mlsrv12 option” [Mobi-
Link - Server Administration].

-vcrs The -vcrs option provides verbose logging of server activities, which is useful during
development. See “-v mlsrv12 option” [MobiLink - Server Administration].

-zu+ The -zu+ option automatically adds user names to the system; this is convenient for
tutorial or development purposes but is not normally used in a production environ-
ment. See “-zu mlsrv12 option” [MobiLink - Server Administration].

2. Move the MobiLink server messages window to the center of your screen, which represents the server
in this tutorial.

See also
● “Starting QAnywhere with MobiLink enabled” on page 29
● “-m mlsrv12 option” [MobiLink - Server Administration]
● “Quick start to QAnywhere” on page 10
● “Simple messaging scenario” on page 5

Lesson 2: Run the TestMessage application
Background

TestMessage is a simple application that uses QAnywhere to send and receive text messages. Text
messaging is used in this tutorial because it provides a simple and accessible demonstration of messaging.
QAnywhere is, however, not just a text messaging system; it provides general purpose application-to-
application messaging.

In this lesson, you are performing activities at a client. Typically, clients run on separate computers from
the server.

Lesson 2: Run the TestMessage application

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 171

In this lesson, you start the client message store that is part of the TestMessage sample. In Lesson 3, you
use this message store to send a message to another client message store.

Activity
To start the QAnywhere Agent with the TestMessage client message store

1. From the Start menu, choose Programs » SQL Anywhere 12 » QAnywhere » Tutorial Using SQL
Anywhere » QAnywhere Agent For SQLAnywhere - saclient1.

The QAnywhere Agent connects to the first TestMessage sample client message store and manages
message transmission to and from this message store.

2. Move the first QAnywhere Agent window to the right side of your screen.

Note
You must allow a few seconds for the first instance of the QAnywhere Agent to start before you
proceed to the next step.

3. From the Start menu, choose Programs » SQL Anywhere 12 » QAnywhere » Tutorial Using SQL
Anywhere » QAnywhere Agent For SQLAnywhere - saclient2.

A second QAnywhere Agent starts and connects to the second TestMessage sample client message
store and manages message transmission to and from this message store.

4. Move the second QAnywhere Agent window to the left side of your screen.

To start TestMessage

1. From the Start menu, choose Programs » SQL Anywhere 12 » QAnywhere » Tutorial Using SQL
Anywhere » TestMessage -- saclient1.

2. Move the saclient1 - TestMessage window to the right side of your screen.

3. In the saclient1 - TestMessage window, click Tools » Options.

4. Verify testmessage appears in the Queue Name Used To Listen For Incoming Messages field.
Click Cancel.

5. From the Start menu, choose Programs » SQL Anywhere 12 » QAnywhere » Tutorial Using SQL
Anywhere » TestMessage -- saclient2.

6. Move the saclient2 - TestMessage window to the left side of your screen.

7. In the saclient2 - TestMessage window, click Tools » Options.

8. Verify testmessage appears in the Queue Name Used To Listen For Incoming Messages field.
Click Cancel.

Tutorial: Exploring TestMessage

172 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Discussion
You can configure the way that the QAnywhere Agent monitors messages by setting a message
transmission policy. This sample is designed to only work with the automatic or scheduled policy, and it
starts the QAnywhere Agent using the automatic policy. The QAnywhere policies are:

● scheduled This policy setting instructs the QAnywhere Agent to transmit messages periodically. If
you don't specify an interval, the default is 15 minutes.

● automatic This default policy setting causes the QAnywhere Agent to transmit messages whenever
a message to or from the client message store is ready for delivery.

● on demand This policy setting causes the QAnywhere Agent to transmit messages only when
instructed to by an application.

● custom In this mode, you provide a set of rules to specify more complicated transmission behavior.

QAnywhere messages are delivered to a QAnywhere address, which consists of a client message store ID
and a queue name. The default ID is the computer name on which the QAnywhere Agent is running. Each
message store requires its own QAnywhere Agent. Each application can listen to multiple queues, but
each queue should be specific to a single application.

See also
● “Starting the QAnywhere agent” on page 44
● “Determining when message transmission should occur on the client” on page 46
● “qaagent utility” on page 673
● “QAnywhere transmission and delete rules” on page 733
● “Writing QAnywhere client applications” on page 49
● QAnywhere samples, which are installed to samples-dir\QAnywhere. (For more information about

samples-dir, see “Samples directory” [SQL Anywhere Server - Database Administration].)

Lesson 3: Send a message
Background

In this lesson you send a message from the TestMessage saclient1 application to the TestMessage
saclient2 application.

Activity
To send a message from TestMessage

1. In the saclient1 - TestMessage window, click Message » New.

2. In the Destination ID field, type saclient2.

3. In the Subject field, type the current time. Using the current time makes it easy to track individual
messages.

Lesson 3: Send a message

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 173

4. In Message field, type sample.

5. Click Send.

6. Click OK.

7. In the saclient2 - TestMessage window, select the message. The content of the message appears in
the bottom pane.

Discussion
Like other QAnywhere applications, TestMessage uses the QAnywhere API to manage messages. The
QAnywhere API is supplied as a C++ API, a Java API, a Microsoft .NET API, and a SQL API.

See also
● “QAnywhere message addresses” on page 58
● “Sending QAnywhere messages” on page 61
● “Message delete rules” on page 743

Lesson 4: Explore the TestMessage client source
code
Background

This section of the tutorial takes you on a brief tour of the source code behind the TestMessage client
application.

A lot of the code implements the Windows interface, through which you can send, receive, and view the
messages. This portion of the tutorial, however, focuses on the portions of the code given to QAnywhere.

You can find the TestMessage source code in Samples\QAnywhere.

Several versions of the TestMessage source code are provided. The following versions are provided for
Windows platforms:

● A C++ version built using the Microsoft Foundation Classes is provided as Samples\QAnywhere
\Windows\MFC\TestMessage\TestMessage.sln.

● A C# version built on the .NET Framework is provided as Samples\QAnywhere\Windows\.NET\CS
\TestMessage\TestMessage.sln.

● A Java version is provided as Samples\QAnywhere\Java\TestMessage\TestMessage.java.

The following version is provided for .NET Compact Framework:

● A C# version built on the .NET Compact Framework is provided as Samples\QAnywhere\Windows
Mobile Classic\.NET\CS\TestMessage\TestMessage.sln.

Tutorial: Exploring TestMessage

174 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Required software
Visual Studio 2005 or later is required to open the solution files and build the .NET Framework projects
and the .NET Compact Framework project.

Exploring the C# source
This section takes you through the C# source code. The two versions are structured in a very similar manner.

Rather than look at each line in the application, this lesson highlights particular lines that are useful for
understanding QAnywhere applications. It uses the C# version to illustrate these lines.

1. Open the version of the TestMessage project that you are interested in.

Double-click the solution file to open the project in Visual Studio. For example, Samples\QAnywhere
\Windows\.NET\CS\TestMessage\TestMessage.sln is a solution file. There are several solution files for
different environments.

2. Ensure that Solution Explorer is open.

You can open the Solution Explorer from the View menu.

3. Inspect the Source Files folder.

There are two files of particular importance. The MessageList file (MessageList.cs) receives messages
and lets you view them. The NewMessage file (NewMessage.cs) allows you to construct and send
messages.

4. From Solution Explorer, open the MessageList file.

5. Inspect the included namespaces.

Every QAnywhere application requires the iAnywhere.QAnywhere.Client namespace. The assembly
that defines this namespace is supplied as the DLL iAnywhere.QAnywhere.Client.dll. The files are in
the following locations:

● .NET Framework 2.0: install-dir\Assembly\V2
● .NET Compact Framework 2.0: install-dir\ce\Assembly\V2

For your own projects, you must include a reference to this DLL when compiling. The namespace is
included using the following line at the top of each file:

using iAnywhere.QAnywhere.Client;

6. Inspect the startReceiver method.

This method performs initialization tasks that are common to QAnywhere applications:

● Create a QAManager object.

_qaManager =
QAManagerFactory.Instance.CreateQAManager();

Lesson 4: Explore the TestMessage client source code

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 175

QAnywhere provides a QAManagerFactory object to create QAManager objects. The QAManager
object handles QAnywhere messaging operations: in particular, receiving messages (getting
messages from a queue) and sending messages (putting messages on a queue).

QAnywhere provides two types of manager: QAManager and QATransactionalManager. When
using QATransactionalManager, all send and receive operations occur within a transaction, so that
either all messages are sent (or received) or none are.

● Write a method to handle messages.

The onMessage() method is called by QAnywhere to handle regular non-system messages. The
message it receives is encoded as a QAMessage object. The QAMessage class and its children,
QATextMessage and QABinaryMessage, provide properties and methods that hold all the
information QAnywhere applications need about a message.

private void onMessage(QAMessage msg) {
 Invoke(new onMessageDelegate(onMessageReceived),
 new Object [] { msg });
}

This code uses the Invoke method of the Form to cause the event to be processed on the thread
that runs the underlying window so that the user interface can be updated to display the message.
This is also the thread that created the QAManager. With some exceptions, the QAManager can
only be accessed from the thread that created it.

● Declare a MessageListener, as defined in the MessageList_Load method.

_receiveListener = new
 QAManager.MessageListener(onMessage);

The OnMessage() method is called whenever a message is received by the QAnywhere Agent and
placed in the queue that the application listens to.

Message listeners and notification listeners
Message listeners are different from the Listener component described in “Scenario for messaging
with push notifications” on page 6. The Listener component receives notifications, while message
listener objects retrieve messages from the queue.

When you set a message listener for the queue, the QAnywhere Manager passes messages that arrive
on that queue to that listener. Only one listener can be set for a given queue. Setting with a null
listener clears out any listener for that queue.

The MessageListener implementation receives messages asynchronously. You can also receive
messages synchronously; that is, the application explicitly goes and looks for messages on the queue,
perhaps in response to a user action such as clicking a Refresh button, rather than being notified when
messages appear.

Other initialization tasks include:

● Open and start the QAManager object.

Tutorial: Exploring TestMessage

176 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

_qaManager.Open(
 AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT);
_qaManager.Start();

The AcknowledgementMode enumeration constants determine how the receipt of messages is
acknowledged to the sender. The EXPLICIT_ACKNOWLEDGEMENT constant indicates that
messages are not acknowledged until a call to one of the QAManager acknowledge methods is made.

● Load any messages that are waiting in the queue.

loadMessages();

● Assign a listener to a queue for future messages.

The listener was declared in the MessageList_Load() method.

_qaManager.SetMessageListener(
 _options.ReceiveQueueName,
 _receiveListener);

The Options ReceiveQueueName property contains the string testmessage, which is the
TestMessage queue as set in the TestMessage Options window.

7. Inspect the addMessage() method in the same file.

This method is called whenever the application receives a message. It gets properties of the message
such as its reply-to address, preferred name, and the time it was sent (Timestamp), and displays the
information in the TestMessage user interface. The following lines cast the incoming message into a
QATextMessage object and get the reply-to address of the message:

text_msg = (QATextMessage)msg;
from = text_msg.ReplyToAddress;

This completes a brief look at some of the major tasks in the MessageList file.

8. From Solution Explorer, open the NewMessage file.

9. Inspect the sendMessage() method.

This method takes the information entered in the New Message window and constructs a
QATextMessage object. The QAManager then puts the message in the queue to be sent.

Here are the lines that create a QATextMessage object and set its ReplyToAddress property:

qa_manager = MessageList.GetQAManager();
msg = qa_manager.CreateTextMessage();
msg.ReplyToAddress = MessageList.getOptions().ReceiveQueueName;

Here are the lines that put the message in the queue to be sent. The variable dest is the destination
address, supplied as an argument to the function.

qa_manager.PutMessage(dest, msg);

Lesson 4: Explore the TestMessage client source code

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 177

See also
● “QAnywhere C++ API reference for clients” on page 354
● “QAnywhere .NET API reference for clients” on page 179
● “Writing QAnywhere client applications” on page 49
● The TestMessage sample, which is installed to samples-dir\QAnywhere. (For information about samples-

dir, see “Samples directory” [SQL Anywhere Server - Database Administration].)

Tutorial cleanup
Shut down all instances of TestMessage, the QAnywhere Agent, and the MobiLink server.

Tutorial: Exploring TestMessage

178 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

QAnywhere reference
This section provides reference documentation of the QAnywhere APIs.

QAnywhere .NET API reference for clients
Namespace (for regular clients)

iAnywhere.QAnywhere.Client

Namespace (for standalone clients)
iAnywhere.QAnywhere.StandAloneClient

MessageProperties class
Provides fields storing standard message property names.

Visual Basic syntax
Public Class MessageProperties

C# syntax
public class MessageProperties

Members
All members of MessageProperties class, including all inherited members.

Name Description

“ADAPTER field” For system queue messages, the network adapter that is being
used to connect to the QAnywhere server.

“ADAPTERS field” This property name refers to a delimited list of network adapters
that can be used to connect to the QAnywhere server.

“DELIVERY_COUNT field” This property name refers to the number of attempts that have
been made so far to deliver the message.

“IP field” For system queue messages, the IP address of the network adapt-
er that is being used to connect to the QAnywhere server.

“MAC field” For system queue messages, the MAC address of the network
adapter that is being used to connect to the QAnywhere server.

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 179

Name Description

“MSG_TYPE field” This property name refers to MessageType values associated
with a QAnywhere message.

“NETWORK_STATUS field” This property name refers to the state of the network connection.

“ORIGINATOR field” This property name refers to the message store ID of the origina-
tor of the message.

“RAS field” For system queue messages, the RAS entry name that is being
used to connect to the QAnywhere server.

“RASNAMES field” For system queue messages, a delimited list of RAS entry
names that can be used to connect to the QAnywhere server.

“STATUS field” This property name refers to the current status of the message.

“STATUS_TIME field” This property name refers to the time at which the message be-
came its current status.

“TRANSMISSION_STATUS field” This property name refers to the current transmission status of
the message.

Remarks
The MessageProperties class provides standard message property names. You can pass MessageProperties
fields to QAMessage methods used to get and set message properties.

For more information, see “QAnywhere messages” on page 13.

See also
● “QAMessage interface” on page 271
● “GetIntProperty method” on page 276
● “GetStringProperty method” on page 279

Example
Assume you have the following QAMessage instance:

QAMessage msg = mgr.createTextMessage();

The following example gets the value corresponding to MessageProperties.MSG_TYPE using the
QAMessage.GetIntProperty method. The MessageType enumeration maps the integer result to an
appropriate message type.

msg_type = (MessageType)t_msg.GetIntProperty(
 MessageProperties.MSG_TYPE
);

The following example shows the onSystemMessage method which is used to handle QAnywhere system
messages. The message type is evaluated using MessageProperties.MSG_TYPE variable and the

QAnywhere reference

180 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

QAMessage.GetIntProperty method. A delimited list of RAS entry names is obtained using
MessageProperties.RASNAMES and the QAMessage.GetStringProperty method.

private void onSystemMessage(QAMessage msg) {
 QATextMessage t_msg;
 MessageType msg_type;
 String network_adapters;
 String network_names;
 String network_info;
 t_msg = (QATextMessage)msg;
 if(t_msg != null) {
 // Evaluate message type.
 msg_type =
(MessageType)t_msg.GetIntProperty(MessageProperties.MSG_TYPE);
 if(msg_type == MessageType.NETWORK_STATUS_NOTIFICATION) {
 // Handle network status notification.
 network_info = "";
 network_adapters =
t_msg.GetStringProperty(MessageProperties.ADAPTERS);
 if(network_adapters != null && network_adapters.Length > 0)
{
 network_info +=
String.Format(_resources.GetString("NetworkAdapter"), network_adapters);
 }
 network_names =
t_msg.GetStringProperty(MessageProperties.RASNAMES);
 //...
 }
 }
}

ADAPTER field

For system queue messages, the network adapter that is being used to connect to the QAnywhere server.

Visual Basic syntax
Public Const ADAPTER As String

C# syntax
public const string ADAPTER;

Remarks
The value of this field is ias_Network.Adapter.

For more information, see “Predefined client message store properties” on page 718.

You can pass MessageProperties.ADAPTER in the QAMessage.GetStringProperty method to access the
associated property.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 181

See also
● “MessageProperties class” on page 179
● “GetStringProperty method” on page 279

ADAPTERS field

This property name refers to a delimited list of network adapters that can be used to connect to the
QAnywhere server.

Visual Basic syntax
Public Const ADAPTERS As String

C# syntax
public const string ADAPTERS;

Remarks
It is used for system queue messages.

You can pass MessageProperties.ADAPTERS in the QAMessage.GetStringProperty method to access the
associated property.

For more information, see “Predefined client message store properties” on page 718.

See also
● “MessageProperties class” on page 179
● “GetStringProperty method” on page 279

DELIVERY_COUNT field

This property name refers to the number of attempts that have been made so far to deliver the message.

Visual Basic syntax
Public Const DELIVERY_COUNT As String

C# syntax
public const string DELIVERY_COUNT;

Remarks
The value of this field is ias_DeliveryCount.

You can pass MessageProperties.DELIVERY_COUNT in the QAMessage.GetIntProperty method to
access the associated property.

QAnywhere reference

182 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “MessageProperties class” on page 179
● “GetIntProperty method” on page 276

IP field

For system queue messages, the IP address of the network adapter that is being used to connect to the
QAnywhere server.

Visual Basic syntax
Public Const IP As String

C# syntax
public const string IP;

Remarks
The value of this field is ias_Network.IP.

For more information, see “Predefined client message store properties” on page 718.

You can pass MessageProperties.IP in the QAMessage.GetStringProperty method to access the associated
property.

See also
● “MessageProperties class” on page 179
● “GetStringProperty method” on page 279

MAC field

For system queue messages, the MAC address of the network adapter that is being used to connect to the
QAnywhere server.

Visual Basic syntax
Public Const MAC As String

C# syntax
public const string MAC;

Remarks
The value of this field is ias_Network.MAC.

For more information, see “Predefined client message store properties” on page 718.

You can pass MessageProperties.MAC in the QAMessage.GetStringProperty method to access the
associated property.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 183

See also
● “MessageProperties class” on page 179
● “GetStringProperty method” on page 279

MSG_TYPE field

This property name refers to MessageType values associated with a QAnywhere message.

Visual Basic syntax
Public Const MSG_TYPE As String

C# syntax
public const string MSG_TYPE;

Remarks
The value of this field is ias_MessageType.

You can pass MessageProperties.MSG_TYPE in the QAMessage.GetIntProperty method to access the
associated property.

See also
● “MessageProperties class” on page 179
● “MessageType enumeration” on page 302
● “GetIntProperty method” on page 276
● “GetStringProperty method” on page 279

NETWORK_STATUS field

This property name refers to the state of the network connection.

Visual Basic syntax
Public Const NETWORK_STATUS As String

C# syntax
public const string NETWORK_STATUS;

Remarks
The value is 1 if the network is accessible and 0 otherwise.

The network status is used for system queue messages (for example, network status changes).

For more information, see “Predefined client message store properties” on page 718.

You can pass MessageProperties.NETWORK_STATUS in the QAMessage.GetIntProperty method to
access the associated property.

QAnywhere reference

184 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “MessageProperties class” on page 179
● “GetIntProperty method” on page 276

ORIGINATOR field

This property name refers to the message store ID of the originator of the message.

Visual Basic syntax
Public Const ORIGINATOR As String

C# syntax
public const string ORIGINATOR;

Remarks
The value of this field is ias_Originator.

You can pass MessageProperties.ORIGINATOR in the QAMessage.GetStringProperty method to access
the associated property.

See also
● “MessageProperties class” on page 179
● “GetStringProperty method” on page 279

RAS field

For system queue messages, the RAS entry name that is being used to connect to the QAnywhere server.

Visual Basic syntax
Public Const RAS As String

C# syntax
public const string RAS;

Remarks
The value of this field is ias_Network.RAS.

For more information, see “Predefined client message store properties” on page 718.

You can pass MessageProperties.RAS in the QAMessage.GetStringProperty method to access the
associated property.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 185

See also
● “MessageProperties class” on page 179
● “GetStringProperty method” on page 279

RASNAMES field

For system queue messages, a delimited list of RAS entry names that can be used to connect to the
QAnywhere server.

Visual Basic syntax
Public Const RASNAMES As String

C# syntax
public const string RASNAMES;

Remarks
The value of this field is ias_RASNames.

For more information, see “Predefined client message store properties” on page 718.

You can pass MessageProperties.RASNAMES in the QAMessage.GetStringProperty method to access
the associated property.

See also
● “MessageProperties class” on page 179
● “GetStringProperty method” on page 279

STATUS field

This property name refers to the current status of the message.

Visual Basic syntax
Public Const STATUS As String

C# syntax
public const string STATUS;

Remarks
For a list of property values, see the StatusCodes.

The value of this field is ias_Status.

You can pass MessageProperties.STATUS in the QAMessage.GetIntProperty method to access the
associated property.

QAnywhere reference

186 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “StatusCodes enumeration” on page 305
● “MessageProperties class” on page 179
● “GetIntProperty method” on page 276

STATUS_TIME field

This property name refers to the time at which the message became its current status.

Visual Basic syntax
Public Const STATUS_TIME As String

C# syntax
public const string STATUS_TIME;

Remarks
It is a local time. When STATUS_TIME is passed to QAMessage.GetProperty, it returns a DateTime
object. The value of this field is ias_StatusTime.

See also
● “GetProperty method” on page 277
● “MessageProperties class” on page 179
● “GetProperty method” on page 277

TRANSMISSION_STATUS field

This property name refers to the current transmission status of the message.

Visual Basic syntax
Public Const TRANSMISSION_STATUS As String

C# syntax
public const string TRANSMISSION_STATUS;

Remarks
For a list of property values, see the StatusCodes.

The value of this field is ias_TransmissionStatus.

You can pass MessageProperties.TRANSMISSION_STATUS in the QAMessage.GetIntProperty method
to access the associated property.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 187

See also
● “StatusCodes enumeration” on page 305
● “MessageProperties class” on page 179
● “GetIntProperty method” on page 276

MessageStoreProperties class
This class defines constant values for useful message store property names.

Visual Basic syntax
Public Class MessageStoreProperties

C# syntax
public class MessageStoreProperties

Members
All members of MessageStoreProperties class, including all inherited members.

Name Description

“MAX_DELIVERY_ATTEMPTS field” This property name refers to the maximum number of times
that a message can be received, without explicit acknowl-
edgement, before its status is set to StatusCodes.UNREC-
EIVABLE.

Remarks
The MessageStoreProperties class provides standard message property names. You can pass
MessageProperties fields to QAManagerBase methods used to get and set pre-defined or custom message
store properties.

For more information, see “Client message store properties” on page 26.

MAX_DELIVERY_ATTEMPTS field

This property name refers to the maximum number of times that a message can be received, without
explicit acknowledgement, before its status is set to StatusCodes.UNRECEIVABLE.

Visual Basic syntax
Public Const MAX_DELIVERY_ATTEMPTS As String

C# syntax
public const string MAX_DELIVERY_ATTEMPTS;

QAnywhere reference

188 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
The value of this field is ias_MaxDeliveryAttempts.

iAnywhere.QAnywhere.Client.StatusCodes MessageStoreProperties

QABinaryMessage interface

An QABinaryMessage object is used to send a message containing a stream of uninterpreted bytes.

Visual Basic syntax
Public Interface QABinaryMessage Inherits QAMessage

C# syntax
public interface QABinaryMessage : QAMessage

Base classes
● “QAMessage interface” on page 271

Members
All members of QABinaryMessage interface, including all inherited members.

Name Description

“ClearBody method” Clears the body of the message.

“ClearProperties method” Clears all the properties of the message.

“GetBooleanProperty method” Gets a boolean message property.

“GetByteProperty method” Gets a byte message property.

“GetDoubleProperty method” Gets a double message property.

“GetFloatProperty method” Gets a float message property.

“GetIntProperty method” Gets an int message property.

“GetLongProperty method” Gets a long message property.

“GetProperty method” Gets a message property.

“GetPropertyNames method” Gets an enumerator over the property names of the message.

“GetPropertyType method” Returns the property type of the given property.

“GetSbyteProperty method” Gets a signed byte message property.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 189

Name Description

“GetShortProperty method” Gets a short message property.

“GetStringProperty method” Gets a string message property.

“PropertyExists method” Indicates whether the given property has been set for this message.

“ReadBinary method” Reads up to length number of bytes starting from the unread portion
of a QABinaryMessage instance body and stores them into the array
dest.

“ReadBoolean method” Reads a boolean value starting from the unread portion of the QABi-
naryMessage instance's message body.

“ReadChar method” Reads a char value starting from the unread portion of a QABinary-
Message message body.

“ReadDouble method” Reads a double value starting from the unread portion of a QABinary-
Message message body.

“ReadFloat method” Reads a float value starting from the unread portion of a QABinary-
Message message body.

“ReadInt method” Reads an integer value starting from the unread portion of a QABinar-
yMessage message body.

“ReadLong method” Reads a long value starting from the unread portion of a QABinary-
Message message body.

“ReadSbyte method” Reads a signed byte value starting from the unread portion of a QABi-
naryMessage message body.

“ReadShort method” Reads a short value starting from the unread portion of a QABinary-
Message message body.

“ReadString method” Reads a string value starting from the unread portion of a QABinary-
Message message body.

“Reset method” Resets a message so that the reading of values starts from the begin-
ning of the message body.

“SetBooleanProperty method” Sets a boolean property.

“SetByteProperty method” Sets a byte property.

“SetDoubleProperty method” Sets a double property.

“SetFloatProperty method” Sets a float property.

QAnywhere reference

190 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“SetIntProperty method” Sets an int property.

“SetLongProperty method” Sets a long property.

“SetProperty method” Sets a property.

“SetSbyteProperty method” Sets a signed byte property.

“SetShortProperty method” Sets a short property.

“SetStringProperty method” Sets a string property.

“WriteBinary method” Appends length bytes from a byte array starting at the given offset to
the QABinaryMessage instance's message body.

“WriteBoolean method” Appends a boolean value to the QABinaryMessage instance's mes-
sage body.

“WriteChar method” Appends a char value to the QABinaryMessage instance's message
body.

“WriteDouble method” Appends a double value to the QABinaryMessage instance's message
body.

“WriteFloat method” Appends a float value to the QABinaryMessage instance's message
body.

“WriteInt method” Appends an integer value to the QABinaryMessage instance's mes-
sage body.

“WriteLong method” Appends a long value to the QABinaryMessage instance's message
body.

“WriteSbyte method” Appends a signed byte value to the QABinaryMessage instance's mes-
sage body.

“WriteShort method” Appends a short value to the QABinaryMessage instance's message
body.

“WriteString method” Appends a string value to the QABinaryMessage instance's message
body.

“Address property” The destination address for the QAMessage instance.

“BodyLength property” Returns the size of the message body in bytes.

“Expiration property” Gets the message's expiration value.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 191

Name Description

“InReplyToID property” The message id of the message for which this message is a reply.

“MessageID property” The globally unique message id of the message.

“Priority property” The priority of the message (ranging from 0 to 9).

“Redelivered property” Indicates whether the message has been previously received but not
acknowledged.

“ReplyToAddress property” The reply to address of this message.

“Timestamp property” The message timestamp.

Remarks
It inherits from the QAMessage class and adds a bytes message body. QABinaryMessage provides a
variety of functions to read from and write to the bytes message body.

When the message is first created, the body of the message is in write-only mode. After a message has
been sent, the client that sent it can retain and modify it without affecting the message that has been sent.
The same message object can be sent multiple times.

When a message is received, the provider has called QABinaryMessage.Reset() so that the message body
is in read-only mode and reading of values starts from the beginning of the message body.

Example
The following example uses the QABinaryMessage writeString function to write the string "Q" followed
by the string "Anywhere" to a QABinaryMessage instances message body.

// create a binary message instance
QABinaryMessage binary_message;
binary_message = qa_manager.CreateBinaryMessage();
// set optional message properties ...
binary_message.ReplyToAddress = "my-queue-name";
// write to the message body
binary_message->WriteString("Q");
binary_messge->WriteString("Anywhere");
// put the message in the local database, ready for sending
 if(!qa_manager->putMessage("store-id\\queue-name", msg)) {
 handleError();
 }

The message is sent by the QAnywhere Agent. On the receiving end, the first
QABinaryMessage.ReadString invocation returns "Q", and the next QABinaryMessage.ReadString
invocation returns "Anywhere".

For more information, see “Determining when message transmission should occur on the
client” on page 46 and “Writing QAnywhere client applications” on page 49.

QAnywhere reference

192 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ReadBinary method

Reads up to length number of bytes starting from the unread portion of a QABinaryMessage instance
body and stores them into the array dest.

Overload list

Name Description

“ReadBinary(byte[])
method”

Reads some number of bytes starting from the unread portion of a QABinar-
yMessage instance body and stores them into the array dest.

“ReadBinary(byte[],
int) method”

Reads up to length number of bytes starting from the unread portion of a QA-
BinaryMessage instance body and stores them into the array dest.

“ReadBinary(byte[],
int, int) method”

Reads up to length number of bytes starting from the unread portion of a QA-
BinaryMessage instance body and stores them into the array dest starting at
dest[offset].

ReadBinary(byte[]) method
Reads some number of bytes starting from the unread portion of a QABinaryMessage instance body and
stores them into the array dest.

Visual Basic syntax
Public Function ReadBinary(ByVal dest As Byte()) As Integer

C# syntax
public int ReadBinary(byte[] dest)

Parameters
● dest The byte array that will contain the read bytes.

Returns
The number of bytes read from the message body, or -1 if there are no more bytes available.

Exceptions
● “QAException class” Thrown if there was an error reading bytes from the message.

Remarks
The ReadBinary(dest) method has the same effect as: ReadBinary(dest,0,dest.Length)

See also
● “QABinaryMessage interface” on page 189

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 193

ReadBinary(byte[], int) method
Reads up to length number of bytes starting from the unread portion of a QABinaryMessage instance
body and stores them into the array dest.

Visual Basic syntax
Public Function ReadBinary(
 ByVal dest As Byte(),
 ByVal length As Integer
) As Integer

C# syntax
public int ReadBinary(byte[] dest, int length)

Parameters
● dest The byte array that will contain the read bytes.

● length The maximum number of bytes to read.

Returns
The number of bytes read from the message body, or -1 if there are no more bytes available.

Exceptions
● “QAException class” Thrown if there was an error reading bytes

Remarks
The ReadBinary(dest,len) method has the same effect as: ReadBinary(dest,0,len)

See also
● “QABinaryMessage interface” on page 189

ReadBinary(byte[], int, int) method
Reads up to length number of bytes starting from the unread portion of a QABinaryMessage instance
body and stores them into the array dest starting at dest[offset].

Visual Basic syntax
Public Function ReadBinary(
 ByVal dest As Byte(),
 ByVal offset As Integer,
 ByVal length As Integer
) As Integer

C# syntax
public int ReadBinary(byte[] dest, int offset, int length)

QAnywhere reference

194 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters
● dest The byte array that will contain the read bytes.

● offset The start offset of the destination array.

● length The maximum number of bytes to read.

Returns
The number of bytes read from the message body, or -1 if there are no more bytes available

Exceptions
● “QAException class” Thrown if there was a conversion error reading the value or if there is no

more input.

Remarks
If dest is null, an ArgumentNullException is thrown. If offset is negative, or length is negative, or offset
+length is greater than the length of dest, then an ArgumentOutOfRangeException is thrown.

See also
● “QABinaryMessage interface” on page 189

ReadBoolean method

Reads a boolean value starting from the unread portion of the QABinaryMessage instance's message body.

Visual Basic syntax
Public Function ReadBoolean() As Boolean

C# syntax
public bool ReadBoolean()

Returns
The boolean value read from the message body.

Exceptions
● “QAException class” Thrown if there was a conversion error reading the value or if there is no

more input.

See also
● “QABinaryMessage interface” on page 189
● “WriteBoolean method” on page 202

ReadChar method

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 195

Reads a char value starting from the unread portion of a QABinaryMessage message body.

Visual Basic syntax
Public Function ReadChar() As Char

C# syntax
public char ReadChar()

Returns
The character value read from the message body.

Exceptions
● “QAException class” if there was a conversion error reading the value or if there is no more input.

See also
● “QABinaryMessage interface” on page 189
● “WriteChar method” on page 202

ReadDouble method

Reads a double value starting from the unread portion of a QABinaryMessage message body.

Visual Basic syntax
Public Function ReadDouble() As Double

C# syntax
public double ReadDouble()

Returns
The double value read from the message body.

Exceptions
● “QAException class” Thrown if there was a conversion error reading the value or if there is no

more input.

See also
● “QABinaryMessage interface” on page 189
● “WriteDouble method” on page 203

ReadFloat method

Reads a float value starting from the unread portion of a QABinaryMessage message body.

QAnywhere reference

196 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Visual Basic syntax
Public Function ReadFloat() As Single

C# syntax
public float ReadFloat()

Returns
The float value read from the message body.

Exceptions
● “QAException class” Thrown if there was a conversion error reading the value or if there is no

more input.

See also
● “QABinaryMessage interface” on page 189
● “WriteFloat method” on page 203

ReadInt method

Reads an integer value starting from the unread portion of a QABinaryMessage message body.

Visual Basic syntax
Public Function ReadInt() As Integer

C# syntax
public int ReadInt()

Returns
The int value read from the message body.

Exceptions
● “QAException class” Thrown if there was a conversion error reading the value or if there is no

more input.

See also
● “QABinaryMessage interface” on page 189
● “WriteInt method” on page 204

ReadLong method

Reads a long value starting from the unread portion of a QABinaryMessage message body.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 197

Visual Basic syntax
Public Function ReadLong() As Long

C# syntax
public long ReadLong()

Returns
The long value read from the message body.

Exceptions
● “QAException class” Thrown if there was a conversion error reading the value or if there is no

more input.

See also
● “QABinaryMessage interface” on page 189
● “WriteLong method” on page 204

ReadSbyte method

Reads a signed byte value starting from the unread portion of a QABinaryMessage message body.

Visual Basic syntax
Public Function ReadSbyte() As SByte

C# syntax
public sbyte ReadSbyte()

Returns
The signed byte value read from the message body.

Exceptions
● “QAException class” Thrown if there was a conversion error reading the value or if there is no

more input.

See also
● “QABinaryMessage interface” on page 189
● “WriteSbyte method” on page 205

ReadShort method

Reads a short value starting from the unread portion of a QABinaryMessage message body.

QAnywhere reference

198 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Visual Basic syntax
Public Function ReadShort() As Short

C# syntax
public short ReadShort()

Returns
The short value read from the message body.

Exceptions
● “QAException class” Thrown if there was a conversion error reading the value or if there is no

more input.

See also
● “QABinaryMessage interface” on page 189
● “WriteShort method” on page 205

ReadString method

Reads a string value starting from the unread portion of a QABinaryMessage message body.

Visual Basic syntax
Public Function ReadString() As String

C# syntax
public string ReadString()

Returns
The string value read from the message body.

Exceptions
● “QAException class” Thrown if there was a conversion error reading the value or if there is no

more input.

See also
● “QABinaryMessage interface” on page 189
● “WriteString method” on page 206

Reset method

Resets a message so that the reading of values starts from the beginning of the message body.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 199

Visual Basic syntax
Public Sub Reset()

C# syntax
public void Reset()

Remarks
The Reset method also puts the QABinaryMessage message body in read-only mode.

See also
● “QABinaryMessage interface” on page 189

WriteBinary method

Appends length bytes from a byte array starting at the given offset to the QABinaryMessage instance's
message body.

Overload list

Name Description

“WriteBinary(byte[]) meth-
od”

Appends a byte array value to the QABinaryMessage instance's mes-
sage body.

“WriteBinary(byte[], int)
method”

Appends length bytes from a byte array to the QABinaryMessage instan-
ce's message body.

“WriteBinary(byte[], int,
int) method”

Appends length bytes from a byte array starting at the given offset to
the QABinaryMessage instance's message body.

WriteBinary(byte[]) method
Appends a byte array value to the QABinaryMessage instance's message body.

Visual Basic syntax
Public Sub WriteBinary(ByVal val As Byte())

C# syntax
public void WriteBinary(byte[] val)

Parameters
● val The byte array value to write to the message body.

Exceptions
● “QAException class” Thrown if there was a problem appending the byte array to the message body

QAnywhere reference

200 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
The WriteBinary(val) method has the same effect as: WriteBinary(val,0,val.Length)

See also
● “QABinaryMessage interface” on page 189

WriteBinary(byte[], int) method
Appends length bytes from a byte array to the QABinaryMessage instance's message body.

Visual Basic syntax
Public Sub WriteBinary(ByVal val As Byte(), ByVal length As Integer)

C# syntax
public void WriteBinary(byte[] val, int length)

Parameters
● val The byte array value to write to the message body.

● length The number of bytes to write.

Exceptions
● “QAException class” Thrown if there was a problem appending the byte array to the message body

Remarks
The WriteBinary(val,len) method has the same effect as: WriteBinary(val,0,len)

See also
● “QABinaryMessage interface” on page 189

WriteBinary(byte[], int, int) method
Appends length bytes from a byte array starting at the given offset to the QABinaryMessage instance's
message body.

Visual Basic syntax
Public Sub WriteBinary(
 ByVal val As Byte(),
 ByVal offset As Integer,
 ByVal length As Integer
)

C# syntax
public void WriteBinary(byte[] val, int offset, int length)

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 201

Parameters
● val The byte array value to write to the message body.

● offset The offset within the byte array to begin writing.

● length The number of bytes to write.

Exceptions
● “QAException class” Thrown if there was a problem appending the byte array to the message body

Remarks
If val is null, a ArgumentNullException is thrown. If offset is negative, or length is negative, or length
+offset is greater than the length of val then an ArgumentOutOfRangeException is thrown.

See also
● “QABinaryMessage interface” on page 189

WriteBoolean method

Appends a boolean value to the QABinaryMessage instance's message body.

Visual Basic syntax
Public Sub WriteBoolean(ByVal val As Boolean)

C# syntax
public void WriteBoolean(bool val)

Parameters
● val The boolean value to write to the message body.

Remarks
The boolean is represented as a one-byte value. True is represented as 1; false is represented as 0.

See also
● “QABinaryMessage interface” on page 189
● “ReadBoolean method” on page 195

WriteChar method

Appends a char value to the QABinaryMessage instance's message body.

Visual Basic syntax
Public Sub WriteChar(ByVal val As Char)

QAnywhere reference

202 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

C# syntax
public void WriteChar(char val)

Parameters
● val The char value to write to the message body.

Remarks
The char is represented as a two byte value and the high order byte is appended first.

See also
● “QABinaryMessage interface” on page 189
● “ReadChar method” on page 195

WriteDouble method

Appends a double value to the QABinaryMessage instance's message body.

Visual Basic syntax
Public Sub WriteDouble(ByVal val As Double)

C# syntax
public void WriteDouble(double val)

Parameters
● val The double value to write to the message body.

Remarks
The double is converted to a representive 8-byte long and higher order bytes are appended first.

See also
● “QABinaryMessage interface” on page 189
● “ReadDouble method” on page 196

WriteFloat method

Appends a float value to the QABinaryMessage instance's message body.

Visual Basic syntax
Public Sub WriteFloat(ByVal val As Single)

C# syntax
public void WriteFloat(float val)

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 203

Parameters
● val The float value to write to the message body.

Remarks
The float parameter is converted to a representative 4-byte integer and the higher order bytes are
appended first.

See also
● “QABinaryMessage interface” on page 189
● “ReadFloat method” on page 196

WriteInt method

Appends an integer value to the QABinaryMessage instance's message body.

Visual Basic syntax
Public Sub WriteInt(ByVal val As Integer)

C# syntax
public void WriteInt(int val)

Parameters
● val The int value to write to the message body.

Remarks
The integer parameter is represented as a 4 byte value and higher order bytes are appended first.

See also
● “QABinaryMessage interface” on page 189
● “ReadInt method” on page 197

WriteLong method

Appends a long value to the QABinaryMessage instance's message body.

Visual Basic syntax
Public Sub WriteLong(ByVal val As Long)

C# syntax
public void WriteLong(long val)

QAnywhere reference

204 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters
● val The long value to write to the message body.

Remarks
The long parameter is represented using an 8-byte value and higher order bytes are appended first.

See also
● “QABinaryMessage interface” on page 189
● “ReadLong method” on page 197

WriteSbyte method

Appends a signed byte value to the QABinaryMessage instance's message body.

Visual Basic syntax
Public Sub WriteSbyte(ByVal val As SByte)

C# syntax
public void WriteSbyte(sbyte val)

Parameters
● val The signed byte value to write to the message body.

Remarks
The signed byte is represented as a one byte value.

See also
● “QABinaryMessage interface” on page 189
● “ReadSbyte method” on page 198

WriteShort method

Appends a short value to the QABinaryMessage instance's message body.

Visual Basic syntax
Public Sub WriteShort(ByVal val As Short)

C# syntax
public void WriteShort(short val)

Parameters
● val The short value to write to the message body.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 205

Remarks
The short parameter is represented as a two byte value and the higher order byte is appended first.

See also
● “QABinaryMessage interface” on page 189
● “ReadShort method” on page 198

WriteString method

Appends a string value to the QABinaryMessage instance's message body.

Visual Basic syntax
Public Sub WriteString(ByVal val As String)

C# syntax
public void WriteString(string val)

Parameters
● val The string value to write to the message body.

Remarks

Note
The receving application needs to invoke QABinaryMessage.ReadString for each WriteString invocation.

Note
The UTF-8 representation of the string to be written can be at most 32767 bytes.

See also
● “QABinaryMessage interface” on page 189
● “ReadString method” on page 199

BodyLength property

Returns the size of the message body in bytes.

Visual Basic syntax
Public ReadOnly Property BodyLength As Long

C# syntax
public long BodyLength {get;}

QAnywhere reference

206 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “QABinaryMessage interface” on page 189

QAException class
Encapsulates QAnywhere client application exceptions.

Visual Basic syntax
Public MustInherit Class QAException Inherits System.Exception

C# syntax
public abstract class QAException : System.Exception

Base classes
● System.Exception

Members
All members of QAException class, including all inherited members.

Name Description

GetBaseException method (Inherited from System.Exception) When overridden in a derived
class, returns the System.Excep-
tion that is the root cause of
one or more subsequent excep-
tions.

GetObjectData method (Inherited from System.Exception) When overridden in a derived
class, sets the System.Run-
time.Serialization.Serializatio-
nInfo with information about
the exception.

GetType method (Inherited from System.Exception) Gets the runtime type of the cur-
rent instance.

ToString method (Inherited from System.Exception) Creates and returns a string rep-
resentation of the current excep-
tion.

Data property (Inherited from System.Exception) Gets a collection of key/value
pairs that provide additional
user-defined information about
the exception.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 207

http://msdn.microsoft.com/en-us/library/System.Exception.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.GetBaseException.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.GetObjectData.aspx
http://msdn.microsoft.com/en-us/library/System.Runtime.Serialization.SerializationInfo.aspx
http://msdn.microsoft.com/en-us/library/System.Runtime.Serialization.SerializationInfo.aspx
http://msdn.microsoft.com/en-us/library/System.Runtime.Serialization.SerializationInfo.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.GetType.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.ToString.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.Data.aspx

Name Description

“DetailedMessage property” The detailed error message of
the exception.

“ErrorCode property” The error code of the exception.

HelpLink property (Inherited from System.Exception) Gets or sets a link to the help
file associated with this excep-
tion.

HResult property (Inherited from System.Exception) Gets or sets HRESULT, a co-
ded numerical value that is as-
signed to a specific exception.

InnerException property (Inherited from System.Exception) Gets the System.Exception in-
stance that caused the current
exception.

Message property (Inherited from System.Exception) Gets a message that describes
the current exception.

“NativeErrorCode property” The native error code of the ex-
ception.

Source property (Inherited from System.Exception) Gets or sets the name of the ap-
plication or the object that cau-
ses the error.

StackTrace property (Inherited from System.Exception) Gets a string representation of
the frames on the call stack at
the time the current exception
was thrown.

TargetSite property (Inherited from System.Exception) Gets the method that throws
the current exception.

“COMMON_ALREADY_OPEN_ERROR field” The QAManager is already
open.

“COMMON_GET_INIT_FILE_ERROR field” Unable to access the client prop-
erties file.

“COMMON_GET_PROPERTY_ERROR field” Error retrieving property from
message store.

“COMMON_GETQUEUEDEPTH_ERROR field” Error getting the queue depth.

QAnywhere reference

208 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

http://msdn.microsoft.com/en-us/library/System.Exception.HelpLink.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.HResult.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.InnerException.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.Message.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.Source.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.StackTrace.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.TargetSite.aspx

Name Description

“COMMON_GETQUEUEDEPTH_ERROR_INVALID_ARG field” Cannot use QAManager-
Base.getQueueDepth on a giv-
en destination when filter is
ALL.

“COMMON_GETQUEUEDEPTH_ERROR_NO_STORE_ID field” Cannot use %QAManager-
Base.getQueueDepth when the
message store ID has not been
set.

“COMMON_INIT_ERROR field” Initialization error.

“COMMON_INIT_THREAD_ERROR field” Error initializing the back-
ground thread.

“COMMON_INVALID_PROPERTY field” There is an invalid property in
the client properties file.

“COMMON_MSG_ACKNOWLEDGE_ERROR field” Error acknowledging the mes-
sage.

“COMMON_MSG_CANCEL_ERROR field” Error cancelling message.

“COMMON_MSG_CANCEL_ERROR_SENT field” Error cancelling message.

“COMMON_MSG_NOT_WRITEABLE_ERROR field” You cannot write to a message
that is in read-only mode.

“COMMON_MSG_RETRIEVE_ERROR field” Error retrieving a message
from the client message store.

“COMMON_MSG_STORE_ERROR field” Error storing a message in the
client message store.

“COMMON_MSG_STORE_NOT_INITIALIZED field” The message store has not been
initialized for messaging.

“COMMON_MSG_STORE_TOO_LARGE field” The message store is too large
relative to the free disk space
on the device.

“COMMON_NO_DEST_ERROR field” No destination.

“COMMON_NO_IMPLEMENTATION field” The method is not implemented.

“COMMON_NOT_OPEN_ERROR field” The QAManager is not open.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 209

Name Description

“COMMON_OPEN_ERROR field” Error opening a connection to
the message store.

“COMMON_OPEN_LOG_FILE_ERROR field” Error opening the log file.

“COMMON_OPEN_MAXTHREADS_ERROR field” Cannot open the QAManager
because the maximum number
of concurrent server requests is
not high enough (see database
server -gn option).

“COMMON_REOPEN_ERROR field” Error re-opening connection to
message store.

“COMMON_SELECTOR_SYNTAX_ERROR field” The given selector has a syntax
error.

“COMMON_SET_PROPERTY_ERROR field” Error storing property to mes-
sage store.

“COMMON_TERMINATE_ERROR field” Termination error.

“COMMON_UNEXPECTED_EOM_ERROR field” Unexpected end of message
reached.

“COMMON_UNREPRESENTABLE_TIMESTAMP field” The timestamp is outside of the
acceptable range.

“QA_NO_ERROR field” No error.

Remarks
You can use the QAException class to catch QAnywhere exceptions.

Example
The following method uses the QAException class to catch QAnywhere exceptions:

public static void startReceiver() {
 _mainWindow._messageList.Items.Clear();
 _mainWindow._detailWindow.Text = "";
 try {
 _qaManager = QAManagerFactory.Instance.CreateQAManager(null);
 _qaManager.Open(AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT);
 _qaManager.Start();
 _mainWindow.loadMessages();

_qaManager.SetMessageListener(Options.getReceiveQueueName(),_receiveListener)
;
 _qaManager.SetMessageListener("system", _systemListener);

QAnywhere reference

210 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 }
 catch(QAException e) {
 MessageBox.Show("Error code: " + e.ErrorCode);
 MessageBox.Show("Error message: " + e.Message);
 }
}

DetailedMessage property

The detailed error message of the exception.

Visual Basic syntax
Public ReadOnly Property DetailedMessage As String

C# syntax
public abstract string DetailedMessage {get;}

ErrorCode property

The error code of the exception.

Visual Basic syntax
Public ReadOnly Property ErrorCode As Integer

C# syntax
public abstract int ErrorCode {get;}

NativeErrorCode property

The native error code of the exception.

Visual Basic syntax
Public ReadOnly Property NativeErrorCode As Integer

C# syntax
public abstract int NativeErrorCode {get;}

COMMON_ALREADY_OPEN_ERROR field

The QAManager is already open.

Visual Basic syntax
Public Const COMMON_ALREADY_OPEN_ERROR As Integer

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 211

C# syntax
public const int COMMON_ALREADY_OPEN_ERROR;

See also
● “QAManager interface” on page 219

COMMON_GET_INIT_FILE_ERROR field

Unable to access the client properties file.

Visual Basic syntax
Public Const COMMON_GET_INIT_FILE_ERROR As Integer

C# syntax
public const int COMMON_GET_INIT_FILE_ERROR;

COMMON_GET_PROPERTY_ERROR field

Error retrieving property from message store.

Visual Basic syntax
Public Const COMMON_GET_PROPERTY_ERROR As Integer

C# syntax
public const int COMMON_GET_PROPERTY_ERROR;

COMMON_GETQUEUEDEPTH_ERROR field

Error getting the queue depth.

Visual Basic syntax
Public Const COMMON_GETQUEUEDEPTH_ERROR As Integer

C# syntax
public const int COMMON_GETQUEUEDEPTH_ERROR;

See also
● “GetQueueDepth method” on page 244

COMMON_GETQUEUEDEPTH_ERROR_INVALID_ARG field

QAnywhere reference

212 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Cannot use QAManagerBase.getQueueDepth on a given destination when filter is ALL.

Visual Basic syntax
Public Const COMMON_GETQUEUEDEPTH_ERROR_INVALID_ARG As Integer

C# syntax
public const int COMMON_GETQUEUEDEPTH_ERROR_INVALID_ARG;

See also
● “GetQueueDepth method” on page 244

COMMON_GETQUEUEDEPTH_ERROR_NO_STORE_ID field

Cannot use %QAManagerBase.getQueueDepth when the message store ID has not been set.

Visual Basic syntax
Public Const COMMON_GETQUEUEDEPTH_ERROR_NO_STORE_ID As Integer

C# syntax
public const int COMMON_GETQUEUEDEPTH_ERROR_NO_STORE_ID;

See also
● “GetQueueDepth method” on page 244

COMMON_INIT_ERROR field

Initialization error.

Visual Basic syntax
Public Const COMMON_INIT_ERROR As Integer

C# syntax
public const int COMMON_INIT_ERROR;

COMMON_INIT_THREAD_ERROR field

Error initializing the background thread.

Visual Basic syntax
Public Const COMMON_INIT_THREAD_ERROR As Integer

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 213

C# syntax
public const int COMMON_INIT_THREAD_ERROR;

COMMON_INVALID_PROPERTY field

There is an invalid property in the client properties file.

Visual Basic syntax
Public Const COMMON_INVALID_PROPERTY As Integer

C# syntax
public const int COMMON_INVALID_PROPERTY;

COMMON_MSG_ACKNOWLEDGE_ERROR field

Error acknowledging the message.

Visual Basic syntax
Public Const COMMON_MSG_ACKNOWLEDGE_ERROR As Integer

C# syntax
public const int COMMON_MSG_ACKNOWLEDGE_ERROR;

COMMON_MSG_CANCEL_ERROR field

Error cancelling message.

Visual Basic syntax
Public Const COMMON_MSG_CANCEL_ERROR As Integer

C# syntax
public const int COMMON_MSG_CANCEL_ERROR;

COMMON_MSG_CANCEL_ERROR_SENT field

Error cancelling message.

Visual Basic syntax
Public Const COMMON_MSG_CANCEL_ERROR_SENT As Integer

QAnywhere reference

214 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

C# syntax
public const int COMMON_MSG_CANCEL_ERROR_SENT;

Remarks
You cannot cancel a message that has already been sent.

COMMON_MSG_NOT_WRITEABLE_ERROR field

You cannot write to a message that is in read-only mode.

Visual Basic syntax
Public Const COMMON_MSG_NOT_WRITEABLE_ERROR As Integer

C# syntax
public const int COMMON_MSG_NOT_WRITEABLE_ERROR;

COMMON_MSG_RETRIEVE_ERROR field

Error retrieving a message from the client message store.

Visual Basic syntax
Public Const COMMON_MSG_RETRIEVE_ERROR As Integer

C# syntax
public const int COMMON_MSG_RETRIEVE_ERROR;

COMMON_MSG_STORE_ERROR field

Error storing a message in the client message store.

Visual Basic syntax
Public Const COMMON_MSG_STORE_ERROR As Integer

C# syntax
public const int COMMON_MSG_STORE_ERROR;

COMMON_MSG_STORE_NOT_INITIALIZED field

The message store has not been initialized for messaging.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 215

Visual Basic syntax
Public Const COMMON_MSG_STORE_NOT_INITIALIZED As Integer

C# syntax
public const int COMMON_MSG_STORE_NOT_INITIALIZED;

COMMON_MSG_STORE_TOO_LARGE field

The message store is too large relative to the free disk space on the device.

Visual Basic syntax
Public Const COMMON_MSG_STORE_TOO_LARGE As Integer

C# syntax
public const int COMMON_MSG_STORE_TOO_LARGE;

COMMON_NO_DEST_ERROR field

No destination.

Visual Basic syntax
Public Const COMMON_NO_DEST_ERROR As Integer

C# syntax
public const int COMMON_NO_DEST_ERROR;

COMMON_NO_IMPLEMENTATION field

The method is not implemented.

Visual Basic syntax
Public Const COMMON_NO_IMPLEMENTATION As Integer

C# syntax
public const int COMMON_NO_IMPLEMENTATION;

COMMON_NOT_OPEN_ERROR field

The QAManager is not open.

QAnywhere reference

216 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Visual Basic syntax
Public Const COMMON_NOT_OPEN_ERROR As Integer

C# syntax
public const int COMMON_NOT_OPEN_ERROR;

See also
● “QAManager interface” on page 219

COMMON_OPEN_ERROR field

Error opening a connection to the message store.

Visual Basic syntax
Public Const COMMON_OPEN_ERROR As Integer

C# syntax
public const int COMMON_OPEN_ERROR;

COMMON_OPEN_LOG_FILE_ERROR field

Error opening the log file.

Visual Basic syntax
Public Const COMMON_OPEN_LOG_FILE_ERROR As Integer

C# syntax
public const int COMMON_OPEN_LOG_FILE_ERROR;

COMMON_OPEN_MAXTHREADS_ERROR field

Cannot open the QAManager because the maximum number of concurrent server requests is not high
enough (see database server -gn option).

Visual Basic syntax
Public Const COMMON_OPEN_MAXTHREADS_ERROR As Integer

C# syntax
public const int COMMON_OPEN_MAXTHREADS_ERROR;

COMMON_REOPEN_ERROR field

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 217

Error re-opening connection to message store.

Visual Basic syntax
Public Const COMMON_REOPEN_ERROR As Integer

C# syntax
public const int COMMON_REOPEN_ERROR;

COMMON_SELECTOR_SYNTAX_ERROR field

The given selector has a syntax error.

Visual Basic syntax
Public Const COMMON_SELECTOR_SYNTAX_ERROR As Integer

C# syntax
public const int COMMON_SELECTOR_SYNTAX_ERROR;

COMMON_SET_PROPERTY_ERROR field

Error storing property to message store.

Visual Basic syntax
Public Const COMMON_SET_PROPERTY_ERROR As Integer

C# syntax
public const int COMMON_SET_PROPERTY_ERROR;

COMMON_TERMINATE_ERROR field

Termination error.

Visual Basic syntax
Public Const COMMON_TERMINATE_ERROR As Integer

C# syntax
public const int COMMON_TERMINATE_ERROR;

COMMON_UNEXPECTED_EOM_ERROR field

Unexpected end of message reached.

QAnywhere reference

218 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Visual Basic syntax
Public Const COMMON_UNEXPECTED_EOM_ERROR As Integer

C# syntax
public const int COMMON_UNEXPECTED_EOM_ERROR;

COMMON_UNREPRESENTABLE_TIMESTAMP field

The timestamp is outside of the acceptable range.

Visual Basic syntax
Public Const COMMON_UNREPRESENTABLE_TIMESTAMP As Integer

C# syntax
public const int COMMON_UNREPRESENTABLE_TIMESTAMP;

QA_NO_ERROR field

No error.

Visual Basic syntax
Public Const QA_NO_ERROR As Integer

C# syntax
public const int QA_NO_ERROR;

QAManager interface
The QAManager class derives from QAManagerBase and manages non-transactional QAnywhere
messaging operations.

Visual Basic syntax
Public Interface QAManager Inherits QAManagerBase

C# syntax
public interface QAManager : QAManagerBase

Base classes
● “QAManagerBase interface” on page 226

Members
All members of QAManager interface, including all inherited members.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 219

Name Description

“Acknowledge method” Acknowledges that the client application successfully re-
ceived a QAnywhere message.

“AcknowledgeAll method” Acknowledges that the client application successfully re-
ceived QAnywhere messages.

“AcknowledgeUntil method” Acknowledges the given QAMessage instance and all un-
acknowledged messages received before the given mes-
sage.

“BrowseMessages method” This method is deprecated.

“BrowseMessagesByID method” Browses the message with the given message ID.

“BrowseMessagesByQueue method” Browses the next available messages waiting that have
been sent to the given address.

“BrowseMessagesBySelector method” Browses messages queued in the message store that satis-
fy the given selector.

“CancelMessage method” Cancels the message with the given message ID.

“Close method” Closes the connection to the QAnywhere message system
and releases any resources used by the QAManagerBase.

“CreateBinaryMessage method” Creates a QABinaryMessage object.

“CreateTextMessage method” Creates a QATextMessage object.

“GetBooleanStoreProperty method” Gets a boolean value for a pre-defined or custom message
store property.

“GetDoubleStoreProperty method” Gets a double value for a pre-defined or custom message
store property.

“GetFloatStoreProperty method” Gets a float value for a pre-defined or custom message
store property.

“GetIntStoreProperty method” Gets a int value for a pre-defined or custom message store
property.

“GetLongStoreProperty method” Gets a long value for a pre-defined or custom message
store property.

“GetMessage method” Returns the next available QAMessage sent to the speci-
fied address.

QAnywhere reference

220 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“GetMessageBySelector method” Returns the next available QAMessage sent to the speci-
fied address that satisfies the given selector.

“GetMessageBySelectorNoWait method” Returns the next available QAMessage sent to the given
address that satisfies the given selector.

“GetMessageBySelectorTimeout method” Returns the next available QAMessage sent to the given
address that satisfies the given selector.

“GetMessageNoWait method” Returns the next available QAMessage sent to the given
address.

“GetMessageTimeout method” Returns the next available QAMessage sent to the given
address.

“GetQueueDepth method” Returns the total depth of all queues, based on a given filter.

“GetSbyteStoreProperty method” Gets a signed byte value for a pre-defined or custom mes-
sage store property.

“GetShortStoreProperty method” Gets a short value for a pre-defined or custom message
store property.

“GetStoreProperty method” Gets a System.Object representing a message store prop-
erty.

“GetStorePropertyNames method” Gets an enumerator over the message store property names.

“GetStringStoreProperty method” Gets a string value for a pre-defined or custom message
store property.

“Open method” Open the QAManager with the given Acknowledgement-
Mode value.

“PropertyExists method” Tests if there currently exists a value for the given the prop-
erty.

“PutMessage method” Prepares a message to send to another QAnywhere client.

“PutMessageTimeToLive method” Prepares a message to send to another QAnywhere client.

“Recover method” Forces all unacknowledged messages into a status of Sta-
tusCodes.PENDING.

“ReOpen method” Reopens the QAManagerBase.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 221

Name Description

“SetBooleanStoreProperty method” Sets a pre-defined or custom message store property to a
boolean value.

“SetDoubleStoreProperty method” Sets a pre-defined or custom message store property to a
double value.

“SetExceptionListener method” Sets an ExceptionListener delegate to receive QAExcep-
tions when processing QAnywhere messages asynchro-
nously.

“SetExceptionListener2 method” Sets an ExceptionListener2 delegate to receive QAExcep-
tions when processing QAnywhere messages asynchro-
nously.

“SetFloatStoreProperty method” Sets a pre-defined or custom message store property to a
float value.

“SetIntStoreProperty method” Sets a pre-defined or custom message store property to a
int value.

“SetLongStoreProperty method” Sets a pre-defined or custom message store property to a
long value.

“SetMessageListener method” Sets a MessageListener delegate to receive QAnywhere
messages asynchronously.

“SetMessageListener2 method” Sets a MessageListener2 delegate to receive QAnywhere
messages asynchronously.

“SetMessageListenerBySelector method” Sets a MessageListener delegate to receive QAnywhere
messages asynchronously, with a message selector.

“SetMessageListenerBySelector2 method” Sets a MessageListener2 delegate to receive QAnywhere
messages asynchronously, with a message selector.

“SetProperty method” Allows you to set QAnywhere Manager configuration
properties programmatically.

“SetSbyteStoreProperty method” Sets a pre-defined or custom message store property to a
sbyte value.

“SetShortStoreProperty method” Sets a pre-defined or custom message store property to a
short value.

“SetStoreProperty method” Sets a pre-defined or custom message store property to a
System.Object value.

QAnywhere reference

222 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“SetStringStoreProperty method” Sets a pre-defined or custom message store property to a
string value.

“Start method” Starts the QAManagerBase for receiving incoming mes-
sages in message listeners.

“Stop method” Stops the QAManagerBase's reception of incoming mes-
sages.

“TriggerSendReceive method” Causes a synchronization with the QAnywhere message
server, uploading any messages addressed to other clients,
and downloading any messages addressed to the local cli-
ent.

“Mode property” Returns the QAManager acknowledgement mode for re-
ceived messages.

Remarks
For a detailed description of derived behavior, see QAManagerBase.

The QAManager can be configured for implicit or explicit acknowledgement as defined in the
AcknowledgementMode class. To acknowledge messages as part of a transaction, use
QATransactionalManager. Use the QAManagerFactory to create QAManager and
QATransactionalManager objects.

See also
● “AcknowledgementMode enumeration” on page 301
● “QATransactionalManager interface” on page 293

Acknowledge method

Acknowledges that the client application successfully received a QAnywhere message.

Visual Basic syntax
Public Sub Acknowledge(ByVal msg As QAMessage)

C# syntax
public void Acknowledge(QAMessage msg)

Parameters
● msg the message to acknowledge.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 223

Exceptions
● “QAException class” Thrown if there is a problem acknowledging the message.

Remarks

Note
when a QAMessage is acknowledged, its status property changes to StatusCodes.RECEIVED. When a
QAMessage MessageProperties.STATUS message property changes to StatusCodes.RECEIVED, it can
be deleted using the default delete rule.

For more information about delete rules, see “Message delete rules” on page 743.

See also
● “QAManager interface” on page 219
● “AcknowledgeUntil method” on page 225
● “StatusCodes enumeration” on page 305
● “MessageProperties class” on page 179
● “AcknowledgeAll method” on page 224

AcknowledgeAll method

Acknowledges that the client application successfully received QAnywhere messages.

Visual Basic syntax
Public Sub AcknowledgeAll()

C# syntax
public void AcknowledgeAll()

Exceptions
● “QAException class” Thrown if there is a problem acknowledging the messages.

Remarks
All unacknowledged messages are acknowledged.

Note
when a QAMessage is acknowledged, its MessageProperties.STATUS property changes to
StatusCodes.RECEIVED. When a QAMessage status changes to StatusCodes.RECEIVED, it can be
deleted using the default delete rule.

For more information about delete rules, see “Message delete rules” on page 743.

QAnywhere reference

224 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “QAManager interface” on page 219
● “Acknowledge method” on page 223
● “AcknowledgeUntil method” on page 225
● “StatusCodes enumeration” on page 305
● “MessageProperties class” on page 179

AcknowledgeUntil method

Acknowledges the given QAMessage instance and all unacknowledged messages received before the
given message.

Visual Basic syntax
Public Sub AcknowledgeUntil(ByVal msg As QAMessage)

C# syntax
public void AcknowledgeUntil(QAMessage msg)

Parameters
● msg The last message to acknowledge. All earlier unacknowledged messages are also acknowledged.

Exceptions
● “QAException class” Thrown if there is a problem acknowledging the messages.

Remarks

Note
when a QAMessage is acknowledged, its MessageProperties.STATUS property changes to
StatusCodes.RECEIVED. When a QAMessage status changes to StatusCodes.RECEIVED, it can be
deleted using the default delete rule.

For more information about delete rules, see “Message delete rules” on page 743.

See also
● “QAManager interface” on page 219
● “Acknowledge method” on page 223
● “AcknowledgeAll method” on page 224
● “StatusCodes enumeration” on page 305
● “MessageProperties class” on page 179

Open method

Open the QAManager with the given AcknowledgementMode value.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 225

Visual Basic syntax
Public Sub Open(ByVal mode As AcknowledgementMode)

C# syntax
public void Open(AcknowledgementMode mode)

Parameters
● mode The acknowledgement mode, one of

AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT or
AcknowledgementMode.IMPLICIT_ACKNOWLEDGEMENT.

Exceptions
● “QAException class” Thrown if there is a problem opening the QAManager instance.

Remarks
The Open method must be the first method called after creating a QAManager.

See also
● “QAManager interface” on page 219

Recover method

Forces all unacknowledged messages into a status of StatusCodes.PENDING.

Visual Basic syntax
Public Sub Recover()

C# syntax
public void Recover()

Exceptions
● “QAException class” Thrown if there is a problem recovering.

Remarks
That is, these messages must be received again using QAManagerBase.GetMessage.

See also
● “QAManager interface” on page 219
● “GetMessage method” on page 240

QAManagerBase interface

QAnywhere reference

226 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

This class acts as a base class for QATransactionalManager and QAManager, which manage transactional
and non-transactional messaging, respectively.

Visual Basic syntax
Public Interface QAManagerBase

C# syntax
public interface QAManagerBase

Derived classes
● “QAManager interface” on page 219
● “QATransactionalManager interface” on page 293

Members
All members of QAManagerBase interface, including all inherited members.

Name Description

“BrowseMessages method” This method is deprecated.

“BrowseMessagesByID method” Browses the message with the given message ID.

“BrowseMessagesByQueue method” Browses the next available messages waiting that have
been sent to the given address.

“BrowseMessagesBySelector method” Browses messages queued in the message store that satis-
fy the given selector.

“CancelMessage method” Cancels the message with the given message ID.

“Close method” Closes the connection to the QAnywhere message system
and releases any resources used by the QAManagerBase.

“CreateBinaryMessage method” Creates a QABinaryMessage object.

“CreateTextMessage method” Creates a QATextMessage object.

“GetBooleanStoreProperty method” Gets a boolean value for a pre-defined or custom message
store property.

“GetDoubleStoreProperty method” Gets a double value for a pre-defined or custom message
store property.

“GetFloatStoreProperty method” Gets a float value for a pre-defined or custom message
store property.

“GetIntStoreProperty method” Gets a int value for a pre-defined or custom message store
property.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 227

Name Description

“GetLongStoreProperty method” Gets a long value for a pre-defined or custom message
store property.

“GetMessage method” Returns the next available QAMessage sent to the speci-
fied address.

“GetMessageBySelector method” Returns the next available QAMessage sent to the speci-
fied address that satisfies the given selector.

“GetMessageBySelectorNoWait method” Returns the next available QAMessage sent to the given
address that satisfies the given selector.

“GetMessageBySelectorTimeout method” Returns the next available QAMessage sent to the given
address that satisfies the given selector.

“GetMessageNoWait method” Returns the next available QAMessage sent to the given
address.

“GetMessageTimeout method” Returns the next available QAMessage sent to the given
address.

“GetQueueDepth method” Returns the total depth of all queues, based on a given filter.

“GetSbyteStoreProperty method” Gets a signed byte value for a pre-defined or custom mes-
sage store property.

“GetShortStoreProperty method” Gets a short value for a pre-defined or custom message
store property.

“GetStoreProperty method” Gets a System.Object representing a message store prop-
erty.

“GetStorePropertyNames method” Gets an enumerator over the message store property names.

“GetStringStoreProperty method” Gets a string value for a pre-defined or custom message
store property.

“PropertyExists method” Tests if there currently exists a value for the given the prop-
erty.

“PutMessage method” Prepares a message to send to another QAnywhere client.

“PutMessageTimeToLive method” Prepares a message to send to another QAnywhere client.

“ReOpen method” Reopens the QAManagerBase.

QAnywhere reference

228 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“SetBooleanStoreProperty method” Sets a pre-defined or custom message store property to a
boolean value.

“SetDoubleStoreProperty method” Sets a pre-defined or custom message store property to a
double value.

“SetExceptionListener method” Sets an ExceptionListener delegate to receive QAExcep-
tions when processing QAnywhere messages asynchro-
nously.

“SetExceptionListener2 method” Sets an ExceptionListener2 delegate to receive QAExcep-
tions when processing QAnywhere messages asynchro-
nously.

“SetFloatStoreProperty method” Sets a pre-defined or custom message store property to a
float value.

“SetIntStoreProperty method” Sets a pre-defined or custom message store property to a
int value.

“SetLongStoreProperty method” Sets a pre-defined or custom message store property to a
long value.

“SetMessageListener method” Sets a MessageListener delegate to receive QAnywhere
messages asynchronously.

“SetMessageListener2 method” Sets a MessageListener2 delegate to receive QAnywhere
messages asynchronously.

“SetMessageListenerBySelector method” Sets a MessageListener delegate to receive QAnywhere
messages asynchronously, with a message selector.

“SetMessageListenerBySelector2 method” Sets a MessageListener2 delegate to receive QAnywhere
messages asynchronously, with a message selector.

“SetProperty method” Allows you to set QAnywhere Manager configuration
properties programmatically.

“SetSbyteStoreProperty method” Sets a pre-defined or custom message store property to a
sbyte value.

“SetShortStoreProperty method” Sets a pre-defined or custom message store property to a
short value.

“SetStoreProperty method” Sets a pre-defined or custom message store property to a
System.Object value.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 229

Name Description

“SetStringStoreProperty method” Sets a pre-defined or custom message store property to a
string value.

“Start method” Starts the QAManagerBase for receiving incoming mes-
sages in message listeners.

“Stop method” Stops the QAManagerBase's reception of incoming mes-
sages.

“TriggerSendReceive method” Causes a synchronization with the QAnywhere message
server, uploading any messages addressed to other clients,
and downloading any messages addressed to the local cli-
ent.

“Mode property” Returns the QAManager acknowledgement mode for re-
ceived messages.

Remarks
Use the QAManagerBase.Start() method to allow a QAManagerBase instance to listen for messages.
There must be only a single instance of QAManagerBase per thread in your application.

You can use instances of this class to create and manage QAnywhere messages. Use the
QAManagerBase.CreateBinaryMessage() method and the QAManagerBase.CreateTextMessage() method
to create appropriate QAMessage instances. QAMessage instances provide a variety of methods to set
message content and properties.

To send QAnywhere messages, use the QAManagerBase.PutMessage method to place the addressed
message in the local message store queue. The message is transmitted by the QAnywhere Agent based on
its transmission policies or when you call QAManagerBase.TriggerSendReceive().

For more information about qaagent transmission policies, see “Determining when message transmission
should occur on the client” on page 46.

Messages are released from memory when you close a QAManagerBase instance using the
QAManagerBase.Close method.

QAManagerBase also provides methods to set and get message store properties.

For more information, see “Client message store properties” on page 26 and the MessageStoreProperties
class.

See also
● “CreateBinaryMessage method” on page 235
● “TriggerSendReceive method” on page 264
● “Close method” on page 235
● “QAException class” on page 207

QAnywhere reference

230 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

BrowseMessages method

This method is deprecated.

Overload list

Name Description

“BrowseMessages() method” Browses all available messages in the message store.

“BrowseMessages(string) method” This method is deprecated.

BrowseMessages() method
Browses all available messages in the message store.

Visual Basic syntax
Public Function BrowseMessages() As System.Collections.IEnumerator

C# syntax
public System.Collections.IEnumerator BrowseMessages()

Returns
An enumerator over the available messages.

Remarks
The messages are just being browsed, so they cannot be acknowledged. Because browsing messages
allocates native resources, you should call the Reset() method of the enumerator when you are done with
it. If it is not called, the native resources will not be freed until this QAManagerBase object is freed.

Use QAManagerBase.GetMessage to receive messages so they can be acknowledged.

See also
● “BrowseMessagesByQueue method” on page 233
● “BrowseMessagesByID method” on page 232
● “BrowseMessages method” on page 231

BrowseMessages(string) method
This method is deprecated.

Visual Basic syntax
Public Function BrowseMessages(
 ByVal address As String
) As System.Collections.IEnumerator

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 231

C# syntax
public System.Collections.IEnumerator BrowseMessages(string address)

Parameters
● address The address of the messages.

Returns
An enumerator over the available messages.

Remarks
Use the BrowseMessagesByQueue(string) method instead.

Browses the next available messages waiting that have been sent to a given address. The address
parameter takes the form store-id\queue-name or queue-name. The messages are just being browsed, so
they cannot be acknowledged.

Because browsing messages allocates native resources, you should call the Reset() method of the
enumerator when you are done with it. If it is not called, the native resources will not be freed until this
QAManagerBase object is freed.

Use QAManagerBase.GetMessage to receive messages so they can be acknowledged.

See also
● “BrowseMessagesByQueue method” on page 233
● “BrowseMessagesByID method” on page 232
● “BrowseMessagesBySelector method” on page 233
● “BrowseMessages method” on page 231

BrowseMessagesByID method

Browses the message with the given message ID.

Visual Basic syntax
Public Function BrowseMessagesByID(
 ByVal msgid As String
) As System.Collections.IEnumerator

C# syntax
public System.Collections.IEnumerator BrowseMessagesByID(string msgid)

Parameters
● msgid The message id of the message.

Returns
An enumerator containing 0 or 1 messages.

QAnywhere reference

232 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
The message is just being browsed, so it cannot be acknowledged. Because browsing messages allocates
native resources, you should call the Reset() method of the enumerator when you are done with it. If it is
not called, the native resources will not be freed until this QAManagerBase object is freed.

Use QAManagerBase.GetMessage to receive messages so they can be acknowledged.

See also
● “BrowseMessagesByQueue method” on page 233
● “BrowseMessages method” on page 231

BrowseMessagesByQueue method
Browses the next available messages waiting that have been sent to the given address.

Visual Basic syntax
Public Function BrowseMessagesByQueue(
 ByVal address As String
) As System.Collections.IEnumerator

C# syntax
public System.Collections.IEnumerator BrowseMessagesByQueue(
 string address
)

Parameters
● address The address of the messages.

Returns
An enumerator over the available messages.

Remarks
The messages are just being browsed, so they cannot be acknowledged. Because browsing messages
allocates native resources, you should call the Reset() method of the enumerator when you are done with
it. If it is not called, the native resources will not be freed until this QAManagerBase object is freed.

Use QAManagerBase.GetMessage to receive messages so they can be acknowledged.

See also
● “BrowseMessagesByID method” on page 232
● “BrowseMessages method” on page 231

BrowseMessagesBySelector method
Browses messages queued in the message store that satisfy the given selector.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 233

Visual Basic syntax
Public Function BrowseMessagesBySelector(
 ByVal selector As String
) As System.Collections.IEnumerator

C# syntax
public System.Collections.IEnumerator BrowseMessagesBySelector(
 string selector
)

Parameters
● selector The selector.

Returns
An enumerator over the available messages.

Remarks
The message is just being browsed, so it cannot be acknowledged. Because browsing messages allocates
native resources, you should call the Reset() method of the enumerator when you are done with it. If it is
not called, the native resources will not be freed until this QAManagerBase object is freed.

Use QAManagerBase.GetMessage to receive messages so they can be acknowledged.

See also
● “BrowseMessagesByQueue method” on page 233
● “BrowseMessages method” on page 231
● “BrowseMessagesByID method” on page 232

CancelMessage method

Cancels the message with the given message ID.

Visual Basic syntax
Public Sub CancelMessage(ByVal msgid As String)

C# syntax
public void CancelMessage(string msgid)

Parameters
● msgid The message ID of the message to cancel.

Exceptions
● “QAException class” Thrown if there is a problem cancelling the message.

QAnywhere reference

234 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
CancelMessage puts a message into a canceled state before it is transmitted. With the default delete rules
of the QAnywhere Agent, canceled messages will eventually be deleted from the message store.

CancelMessage will fail if the message is already in a final state, or if it has been transmitted to the central
messaging server.

For more information about delete rules, see “Message delete rules” on page 743.

Close method

Closes the connection to the QAnywhere message system and releases any resources used by the
QAManagerBase.

Visual Basic syntax
Public Sub Close()

C# syntax
public void Close()

Exceptions
● “QAException class” Thrown if there is a problem closing the QAManagerBase instance.

Remarks
This method cannot be called in a message/exception listener.

Additional calls to Close() following the first are ignored.

CreateBinaryMessage method

Creates a QABinaryMessage object.

Visual Basic syntax
Public Function CreateBinaryMessage() As QABinaryMessage

C# syntax
public QABinaryMessage CreateBinaryMessage()

Returns
A new QABinaryMessage instance.

Exceptions
● “QAException class” Thrown if there is a problem creating the message.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 235

Remarks
A QABinaryMessage object is used to send a message containing a message body of uninterpreted bytes.

See also
● “QABinaryMessage interface” on page 189

CreateTextMessage method

Creates a QATextMessage object.

Visual Basic syntax
Public Function CreateTextMessage() As QATextMessage

C# syntax
public QATextMessage CreateTextMessage()

Returns
A new QATextMessage instance.

Exceptions
● “QAException class” Thrown if there is a problem creating the message.

Remarks
A QATextMessage object is used to send a message containing a string message body.

See also
● “QATextMessage interface” on page 289

GetBooleanStoreProperty method

Gets a boolean value for a pre-defined or custom message store property.

Visual Basic syntax
Public Function GetBooleanStoreProperty(
 ByVal propName As String
) As Boolean

C# syntax
public bool GetBooleanStoreProperty(string propName)

Parameters
● propName The pre-defined or custom property name.

QAnywhere reference

236 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns
The boolean property value.

Exceptions
● “QAException class” Thrown if there is a conversion error or message store error getting the

property value or if the property does not exist.

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

For more information, see “Client message store properties” on page 26.

See also
● “MessageStoreProperties class” on page 188

GetDoubleStoreProperty method

Gets a double value for a pre-defined or custom message store property.

Visual Basic syntax
Public Function GetDoubleStoreProperty(
 ByVal propName As String
) As Double

C# syntax
public double GetDoubleStoreProperty(string propName)

Parameters
● propName The pre-defined or custom property name.

Returns
The double property value.

Exceptions
● “QAException class” Thrown if there is a conversion error or message store error getting the

property value or if the property does not exist.

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

For more information, see “Client message store properties” on page 26.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 237

See also
● “MessageStoreProperties class” on page 188

GetFloatStoreProperty method

Gets a float value for a pre-defined or custom message store property.

Visual Basic syntax
Public Function GetFloatStoreProperty(
 ByVal propName As String
) As Single

C# syntax
public float GetFloatStoreProperty(string propName)

Parameters
● propName The pre-defined or custom property name.

Returns
The float property value.

Exceptions
● “QAException class” Thrown if there is a conversion error or message store error getting the

property value or if the property does not exist.

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

For more information, see “Client message store properties” on page 26.

See also
● “MessageStoreProperties class” on page 188

GetIntStoreProperty method

Gets a int value for a pre-defined or custom message store property.

Visual Basic syntax
Public Function GetIntStoreProperty(ByVal propName As String) As Integer

C# syntax
public int GetIntStoreProperty(string propName)

QAnywhere reference

238 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters
● propName The pre-defined or custom property name.

Returns
The integer property value.

Exceptions
● “QAException class” Thrown if there is a conversion error or message store error getting the

property value or if the property does not exist.

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

For more information, see “Client message store properties” on page 26.

See also
● “MessageStoreProperties class” on page 188

GetLongStoreProperty method

Gets a long value for a pre-defined or custom message store property.

Visual Basic syntax
Public Function GetLongStoreProperty(ByVal propName As String) As Long

C# syntax
public long GetLongStoreProperty(string propName)

Parameters
● propName The pre-defined or custom property name.

Returns
The long property value.

Exceptions
● “QAException class” Thrown if there is a conversion error or message store error getting the

property value or if the property does not exist.

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 239

For more information, see “Client message store properties” on page 26

See also
● “MessageStoreProperties class” on page 188

GetMessage method

Returns the next available QAMessage sent to the specified address.

Visual Basic syntax
Public Function GetMessage(ByVal address As String) As QAMessage

C# syntax
public QAMessage GetMessage(string address)

Parameters
● address Specifies the queue name used by the QAnywhere client to receive messages.

Returns
The next QAMessage, or null if no message is available.

Exceptions
● “QAException class” Thrown if there is a problem getting the message.

Remarks
The address parameter specifies a local queue name. The address can be in the form store-id\queue-name
or queue-name.

If there is no message available, this call blocks indefinitely until a message is available. Use this method
to receive messages synchronously.

For more information about receiving messages asynchronously (using a message event handler), see
“Receiving messages asynchronously” on page 70.

See also
● “QAMessage interface” on page 271

GetMessageBySelector method

Returns the next available QAMessage sent to the specified address that satisfies the given selector.

Visual Basic syntax
Public Function GetMessageBySelector(
 ByVal address As String,

QAnywhere reference

240 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 ByVal selector As String
) As QAMessage

C# syntax
public QAMessage GetMessageBySelector(string address, string selector)

Parameters
● address This address specifies the queue name used by the QAnywhere client to receive messages.

● selector The selector.

Returns
The next QAMessage, or null if no message is available.

Exceptions
● “QAException class” Thrown if there is a problem getting the message.

Remarks
The address parameter specifies a local queue name. The address can be in the form store-id\queue-name
or queue-name.

If there is no message available, this call blocks indefinitely until a message is available. Use this method
to receive messages synchronously.

For more information about receiving messages asynchronously (using a message event handler), see
“Receiving messages asynchronously” on page 70.

See also
● “QAMessage interface” on page 271

GetMessageBySelectorNoWait method

Returns the next available QAMessage sent to the given address that satisfies the given selector.

Visual Basic syntax
Public Function GetMessageBySelectorNoWait(
 ByVal address As String,
 ByVal selector As String
) As QAMessage

C# syntax
public QAMessage GetMessageBySelectorNoWait(
 string address,
 string selector
)

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 241

Parameters
● address Specifies the queue name used by the QAnywhere client to receive messages.

● selector The selector.

Returns
The next available message or null there are no available message.

Exceptions
● “QAException class” Thrown if there is a problem getting the message.

Remarks
The address parameter specifies a local queue name. The address can be in the form store-id\queue-name
or queue-name. If no message is available, this method returns immediately. Use this method to receive
messages synchronously.

For more information about receiving messages asynchronously (using a message event handler), see
“Receiving messages asynchronously” on page 70.

See also
● “QAMessage interface” on page 271

GetMessageBySelectorTimeout method

Returns the next available QAMessage sent to the given address that satisfies the given selector.

Visual Basic syntax
Public Function GetMessageBySelectorTimeout(
 ByVal address As String,
 ByVal selector As String,
 ByVal timeout As Long
) As QAMessage

C# syntax
public QAMessage GetMessageBySelectorTimeout(
 string address,
 string selector,
 long timeout
)

Parameters
● address Specifies the queue name used by the QAnywhere client to receive messages.

● selector The selector.

● timeout The time to wait, in milliseconds, for a message to become available.

QAnywhere reference

242 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns
The next QAMessage, or null if no message is available.

Exceptions
● “QAException class” Thrown if there is a problem getting the message.

Remarks
The address parameter specifies a local queue name. The address can be in the form store-id\queue-name
or queue-name. If no message is available, this method waits for the specified timeout and then returns.
Use this method to receive messages synchronously.

For more information about receiving messages asynchronously (using a message event handler), see
“Receiving messages asynchronously” on page 70.

See also
● “QAMessage interface” on page 271

GetMessageNoWait method

Returns the next available QAMessage sent to the given address.

Visual Basic syntax
Public Function GetMessageNoWait(ByVal address As String) As QAMessage

C# syntax
public QAMessage GetMessageNoWait(string address)

Parameters
● address this address specifies the queue name used by the QAnywhere client to receive messages.

Returns
The next available message or null there is no available message.

Exceptions
● “QAException class” Thrown if there is a problem getting the message.

Remarks
The address parameter specifies a local queue name. The address can be in the form store-id\queue-name
or queue-name. If no message is available, this method returns immediately. Use this method to receive
messages synchronously. For more information about receiving messages asynchronously (using a
message event handler), see “Receiving messages asynchronously” on page 70.

See also
● “QAMessage interface” on page 271

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 243

GetMessageTimeout method

Returns the next available QAMessage sent to the given address.

Visual Basic syntax
Public Function GetMessageTimeout(
 ByVal address As String,
 ByVal timeout As Long
) As QAMessage

C# syntax
public QAMessage GetMessageTimeout(string address, long timeout)

Parameters
● address Specifies the queue name used by the QAnywhere client to receive messages.

● timeout The time to wait, in milliseconds, for a message to become available.

Returns
The next QAMessage, or null if no message is available.

Exceptions
● “QAException class” Thrown if there is a problem getting the message.

Remarks
The address parameter specifies a local queue name. The address can be in the form store-id\queue-name
or queue-name.

If no message is available, this method waits for the specified timeout and then returns. Use this method
to receive messages synchronously.

For more information about receiving messages asynchronously (using a message event handler), see
“Receiving messages asynchronously” on page 70.

GetQueueDepth method

Returns the total depth of all queues, based on a given filter.

Overload list

Name Description

“GetQueueDepth(QueueDepthFilter) meth-
od”

Returns the total depth of all queues, based on a given filter.

QAnywhere reference

244 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“GetQueueDepth(string, QueueDepthFil-
ter) method”

Returns the depth of a queue, based on a given filter.

GetQueueDepth(QueueDepthFilter) method
Returns the total depth of all queues, based on a given filter.

Visual Basic syntax
Public Function GetQueueDepth(
 ByVal filter As QueueDepthFilter
) As Integer

C# syntax
public int GetQueueDepth(QueueDepthFilter filter)

Parameters
● filter A filter indicating incoming messages, outgoing messages, or all messages.

Returns
The number of messages.

Exceptions
● “QAException class” Thrown if there was an error.

Remarks
The incoming depth of the queue is the number of incoming messages which have not been received (for
example, using QAManagerBase.GetMessage). The outgoing depth of a queue is the number of outgoing
messages (including uncommitted) that have not been transmitted to the server.

See also
● “QueueDepthFilter enumeration” on page 304

GetQueueDepth(string, QueueDepthFilter) method
Returns the depth of a queue, based on a given filter.

Visual Basic syntax
Public Function GetQueueDepth(
 ByVal address As String,
 ByVal filter As QueueDepthFilter
) As Integer

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 245

C# syntax
public int GetQueueDepth(string address, QueueDepthFilter filter)

Parameters
● filter A filter indicating incoming messages, outgoing messages, or all messages.

● address The queue name.

Returns
The number of messages.

Exceptions
● “QAException class” Thrown if there was an error.

Remarks
The incoming depth of the queue is the number of incoming messages which have not been received (for
example, using QAManagerBase.GetMessage). The outgoing depth of a queue is the number of outgoing
messages (including uncommitted) that have not been transmitted to the server.

See also
● “QueueDepthFilter enumeration” on page 304

GetSbyteStoreProperty method

Gets a signed byte value for a pre-defined or custom message store property.

Visual Basic syntax
Public Function GetSbyteStoreProperty(ByVal propName As String) As SByte

C# syntax
public sbyte GetSbyteStoreProperty(string propName)

Parameters
● propName The pre-defined or custom property name.

Returns
The signed byte property value.

Exceptions
● “QAException class” Thrown if there is a conversion error or message store error getting the

property value or if the property does not exist.

Remarks
You can use this method to access pre-defined or user-defined client store properties.

QAnywhere reference

246 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

For a list of pre-defined properties, see MessageStoreProperties.

For more information, see “Client message store properties” on page 26.

See also
● “MessageStoreProperties class” on page 188

GetShortStoreProperty method

Gets a short value for a pre-defined or custom message store property.

Visual Basic syntax
Public Function GetShortStoreProperty(ByVal propName As String) As Short

C# syntax
public short GetShortStoreProperty(string propName)

Parameters
● propName the pre-defined or custom property name.

Returns
The short property value.

Exceptions
● “QAException class” Thrown if there is a conversion error or message store error getting the

property value or if the property does not exist.

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

For more information, see “Client message store properties” on page 26.

See also
● “MessageStoreProperties class” on page 188

GetStoreProperty method

Gets a System.Object representing a message store property.

Visual Basic syntax
Public Function GetStoreProperty(ByVal propName As String) As Object

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 247

C# syntax
public Object GetStoreProperty(string propName)

Parameters
● propName The pre-defined or custom property name.

Returns
The property value.

Exceptions
● “QAException class” Thrown if there is a problem retrieving the property.

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

For more information, see “Client message store properties” on page 26.

See also
● “MessageStoreProperties class” on page 188

GetStorePropertyNames method

Gets an enumerator over the message store property names.

Visual Basic syntax
Public Function GetStorePropertyNames()
 As System.Collections.IEnumerator

C# syntax
public System.Collections.IEnumerator GetStorePropertyNames()

Returns
An enumerator over the message store property names.

Remarks
For more information about client store properties, see “Client message store properties” on page 26.

GetStringStoreProperty method

Gets a string value for a pre-defined or custom message store property.

QAnywhere reference

248 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Visual Basic syntax
Public Function GetStringStoreProperty(
 ByVal propName As String
) As String

C# syntax
public string GetStringStoreProperty(string propName)

Parameters
● propName The pre-defined or custom property name.

Returns
The string property value or null if the property does not exist.

Exceptions
● “QAException class” Thrown if there is a problem retrieving the string value.

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

For more information, see “Client message store properties” on page 26.

See also
● “MessageStoreProperties class” on page 188

PropertyExists method

Tests if there currently exists a value for the given the property.

Visual Basic syntax
Public Function PropertyExists(ByVal propName As String) As Boolean

C# syntax
public bool PropertyExists(string propName)

Parameters
● propName The pre-defined or custom property name.

Returns
true if the message store has a value mapped to the property. false otherwise.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 249

Exceptions
● “QAException class” Thrown if there is a problem retrieving the property value.

Remarks
You can use this method to determine if a given property name currently has a value mapped to it by the
message store.

See also
● “MessageStoreProperties class” on page 188

PutMessage method

Prepares a message to send to another QAnywhere client.

Visual Basic syntax
Public Sub PutMessage(ByVal address As String, ByVal msg As QAMessage)

C# syntax
public void PutMessage(string address, QAMessage msg)

Parameters
● address The address of the message specifying the destination queue name.

● msg The message to put in the local message store for transmission.

Exceptions
● “QAException class” Thrown if there is a problem putting the message.

Remarks
The PutMessage method inserts a message and a destination address into your local message store. The
time of message transmission depends on QAnywhere Agent transmission policies.

For more information, see “Determining when message transmission should occur on the
client” on page 46.

The address takes the form id\queue-name, where id is the destination message store ID and queue-name
identifies a queue that is used by the destination QAnywhere client to listen for or receive messages.

For more information about QAnywhere addresses, see “QAnywhere message addresses” on page 58.

See also
● “PutMessageTimeToLive method” on page 251

QAnywhere reference

250 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

PutMessageTimeToLive method

Prepares a message to send to another QAnywhere client.

Visual Basic syntax
Public Sub PutMessageTimeToLive(
 ByVal address As String,
 ByVal msg As QAMessage,
 ByVal ttl As Long
)

C# syntax
public void PutMessageTimeToLive(
 string address,
 QAMessage msg,
 long ttl
)

Parameters
● address The address of the message specifying the destination queue name.

● msg The message to put.

● ttl The delay, in milliseconds, before the message will expire if it has not been delivered. A value of
0 indicates the message will not expire.

Exceptions
● “QAException class” Thrown if there is a problem putting the message.

Remarks
The PutMessageTimeToLive method inserts a message and a destination address into your local message
store. The time of message transmission depends on QAnywhere Agent transmission policies. However,
if the next message tranmission time exceeds the given time-to-live value, the message expires.

For more information, see “Determining when message transmission should occur on the
client” on page 46.

The address takes the form id\queue-name, where id is the destination message store id and queue-name
identifies a queue that is used by the destination QAnywhere client to listen for or receive messages.

For more information about QAnywhere addresses, see “QAnywhere message addresses” on page 58.

ReOpen method

Reopens the QAManagerBase.

Visual Basic syntax
Public Sub ReOpen()

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 251

C# syntax
public void ReOpen()

Exceptions
● “QAException class” Thrown if there is a problem reopening the QAManagerBase instance.

Remarks
This re-establishes connections to the message store, without releasing any resources. This method may
called in a message or exception listener, and in that case it is not necessary to call Start() again. This
method simply executes Close() then Open() if not called in a listener, and in that case Start() must be
called to restart receiving of messages.

SetBooleanStoreProperty method

Sets a pre-defined or custom message store property to a boolean value.

Visual Basic syntax
Public Sub SetBooleanStoreProperty(
 ByVal propName As String,
 ByVal val As Boolean
)

C# syntax
public void SetBooleanStoreProperty(string propName, bool val)

Parameters
● propName The pre-defined or custom property name.

● val The boolean property value.

Remarks
You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

For more information, see “Client message store properties” on page 26.

See also
● “MessageStoreProperties class” on page 188

SetDoubleStoreProperty method

Sets a pre-defined or custom message store property to a double value.

QAnywhere reference

252 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Visual Basic syntax
Public Sub SetDoubleStoreProperty(
 ByVal propName As String,
 ByVal val As Double
)

C# syntax
public void SetDoubleStoreProperty(string propName, double val)

Parameters
● propName The pre-defined or custom property name.

● val The double property value.

Remarks
You can use this method to set pre-defined or user-defined client. store properties.

For a list of pre-defined properties, see MessageStoreProperties.

For more information, see “Client message store properties” on page 26.

See also
● “MessageStoreProperties class” on page 188

SetExceptionListener method

Sets an ExceptionListener delegate to receive QAExceptions when processing QAnywhere messages
asynchronously.

Visual Basic syntax
Public Sub SetExceptionListener(
 ByVal address As String,
 ByVal listener As ExceptionListener
)

C# syntax
public void SetExceptionListener(
 string address,
 ExceptionListener listener
)

Parameters
● address The address of messages.

● listener The exception listener to register.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 253

Remarks
ExceptionListener delegate accepts QAException and QAMessage parameters. You may set an
ExceptionListener and a MessageListener for a given address, but you must be consistent with the Listener/
Listener2 delegates. That is, you cannot set an ExceptionListener and a MessageListener2, nor an
ExceptionListener2 and a MessageListener, for the same address.

For more information, see “Receiving messages asynchronously” on page 70.

SetExceptionListener2 method

Sets an ExceptionListener2 delegate to receive QAExceptions when processing QAnywhere messages
asynchronously.

Visual Basic syntax
Public Sub SetExceptionListener2(
 ByVal address As String,
 ByVal listener As ExceptionListener2
)

C# syntax
public void SetExceptionListener2(
 string address,
 ExceptionListener2 listener
)

Parameters
● address The address of messages.

● listener The exception listener to register.

Remarks
ExceptionListener2 delegate accepts QAManagerBase, QAException and QAMessage parameters. You
may set an ExceptionListener2 and a MessageListener2 for a given address, but you must be consistent
with the Listener/Listener2 delegates. That is, you cannot set an ExceptionListener and a
MessageListener2, nor an ExceptionListener2 and a MessageListener, for the same address.

For more information, see “Receiving messages asynchronously” on page 70.

SetFloatStoreProperty method

Sets a pre-defined or custom message store property to a float value.

Visual Basic syntax
Public Sub SetFloatStoreProperty(
 ByVal propName As String,

QAnywhere reference

254 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 ByVal val As Single
)

C# syntax
public void SetFloatStoreProperty(string propName, float val)

Parameters
● propName The pre-defined or custom property name.

● val The float property value.

Remarks
You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

For more information, see “Client message store properties” on page 26.

See also
● “MessageStoreProperties class” on page 188

SetIntStoreProperty method

Sets a pre-defined or custom message store property to a int value.

Visual Basic syntax
Public Sub SetIntStoreProperty(
 ByVal propName As String,
 ByVal val As Integer
)

C# syntax
public void SetIntStoreProperty(string propName, int val)

Parameters
● propName The pre-defined or custom property name.

● val The int property value.

Remarks
You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

For more information, see “Client message store properties” on page 26.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 255

See also
● “MessageStoreProperties class” on page 188

SetLongStoreProperty method

Sets a pre-defined or custom message store property to a long value.

Visual Basic syntax
Public Sub SetLongStoreProperty(
 ByVal propName As String,
 ByVal val As Long
)

C# syntax
public void SetLongStoreProperty(string propName, long val)

Parameters
● propName The pre-defined or custom property name.

● val The long property value

Remarks
You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

For more information, see “Client message store properties” on page 26.

See also
● “MessageStoreProperties class” on page 188

SetMessageListener method

Sets a MessageListener delegate to receive QAnywhere messages asynchronously.

Visual Basic syntax
Public Sub SetMessageListener(
 ByVal address As String,
 ByVal listener As MessageListener
)

C# syntax
public void SetMessageListener(string address, MessageListener listener)

QAnywhere reference

256 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters
● address The address of messages.

● listener The listener to register.

Remarks
Use this method to receive message asynchronously.

MessageListener delegate accepts a single QAMessage parameter.

The SetMessageListener address parameter specifies a local queue name used to receive the message.
You can only have one listener delegate assigned to a given queue. You may set an ExceptionListener and
a MessageListener for a given address, but you must be consistent with the Listener/Listener2 delegates.
That is, you cannot set an ExceptionListener and a MessageListener2, nor an ExceptionListener2 and a
MessageListener, for the same address.

If you want to listen for QAnywhere system messages, including push notifications and network status
changes, specify system as the queue name.

For more information, see “Receiving messages asynchronously” on page 70.

See also
● “MessageListener delegate” on page 300

SetMessageListener2 method

Sets a MessageListener2 delegate to receive QAnywhere messages asynchronously.

Visual Basic syntax
Public Sub SetMessageListener2(
 ByVal address As String,
 ByVal listener As MessageListener2
)

C# syntax
public void SetMessageListener2(
 string address,
 MessageListener2 listener
)

Parameters
● address The address of messages.

● listener The listener to register.

Remarks
Use this method to receive message asynchronously.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 257

MessageListener2 delegate accepts QAManagerBase and QAMessage parameters.

The SetMessageListener2 address parameter specifies a local queue name used to receive the message.
You can only have one listener delegate assigned to a given queue. You may set an ExceptionListener2
and a MessageListener2 for a given address, but you must be consistent with the Listener/Listener2
delegates. That is, you cannot set an ExceptionListener and a MessageListener2, nor an
ExceptionListener2 and a MessageListener, for the same address.

If you want to listen for QAnywhere system messages, including push notifications and network status
changes, specify system as the queue name.

For more information, see “Receiving messages asynchronously” on page 70.

SetMessageListenerBySelector method

Sets a MessageListener delegate to receive QAnywhere messages asynchronously, with a message selector.

Visual Basic syntax
Public Sub SetMessageListenerBySelector(
 ByVal address As String,
 ByVal selector As String,
 ByVal listener As MessageListener
)

C# syntax
public void SetMessageListenerBySelector(
 string address,
 string selector,
 MessageListener listener
)

Parameters
● address The address of messages.

● listener The listener to register.

● selector The selector to be used to filter the messages to be received.

Remarks
Use this method to receive message asynchronously.

MessageListener delegate accepts a single QAMessage parameter.

The SetMessageListener address parameter specifies a local queue name used to receive the message.
You can only have one listener delegate assigned to a given queue. The selector parameter specifies a
selector to be used to filter the messages to be received on the given address. You may set an
ExceptionListener and a MessageListener for a given address, but you must be consistent with the Listener/
Listener2 delegates. That is, you cannot set an ExceptionListener and a MessageListener2, nor an
ExceptionListener2 and a MessageListener, for the same address.

QAnywhere reference

258 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

If you want to listen for QAnywhere system messages, including push notifications and network status
changes, specify system as the queue name.

For more information, see “Receiving messages asynchronously” on page 70 and “System
queue” on page 58.

See also
● “MessageListener delegate” on page 300

SetMessageListenerBySelector2 method

Sets a MessageListener2 delegate to receive QAnywhere messages asynchronously, with a message selector.

Visual Basic syntax
Public Sub SetMessageListenerBySelector2(
 ByVal address As String,
 ByVal selector As String,
 ByVal listener As MessageListener2
)

C# syntax
public void SetMessageListenerBySelector2(
 string address,
 string selector,
 MessageListener2 listener
)

Parameters
● address The address of messages.

● listener The listener to register.

● selector The selector to be used to filter the messages to be received.

Remarks
Use this method to receive message asynchronously.

MessageListener2 delegate accepts a single QAMessage parameter.

The SetMessageListener2 address parameter specifies a local queue name used to receive the message.
You can only have one listener delegate assigned to a given queue. The selector parameter specifies a
selector to be used to filter the messages to be received on the given address. You may set an
ExceptionListener2 and a MessageListener2 for a given address, but you must be consistent with the Listener/
Listener2 delegates. That is, you cannot set an ExceptionListener and a MessageListener2, nor an
ExceptionListener2 and a MessageListener, for the same address.

If you want to listen for QAnywhere system messages, including push notifications and network status
changes, specify system as the queue name.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 259

For more information, see “Receiving messages asynchronously” on page 70 and “System
queue” on page 58.

SetProperty method

Allows you to set QAnywhere Manager configuration properties programmatically.

Visual Basic syntax
Public Sub SetProperty(ByVal name As String, ByVal val As String)

C# syntax
public void SetProperty(string name, string val)

Parameters
● name The QAnywhere Manager configuration property name.

● val The QAnywhere Manager configuration property value

Exceptions
● “QAException class” Thrown if there is a problem setting the property.

Remarks
You can use this method to override default QAnywhere Manager configuration properties by specifying
a property name and value. For a list of properties, see “QAnywhere manager configuration
properties” on page 81.

You can also set QAnywhere Manager configuration properties using a properties file and the
QAManagerFactory.CreateQAManager method.

Note
For more information, see “Setting QAnywhere manager configuration properties in a file” on page 82.
you must set required properties before calling QAManager.Open or QATransactionalManager.Open().

See also
● “Open method” on page 225
● “Open method” on page 298

SetSbyteStoreProperty method

Sets a pre-defined or custom message store property to a sbyte value.

Visual Basic syntax
Public Sub SetSbyteStoreProperty(
 ByVal propName As String,

QAnywhere reference

260 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 ByVal val As SByte
)

C# syntax
public void SetSbyteStoreProperty(string propName, sbyte val)

Parameters
● propName The pre-defined or custom property name.

● val The sbyte property value.

Remarks
You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

For more information, see “Client message store properties” on page 26.

See also
● “MessageStoreProperties class” on page 188

SetShortStoreProperty method

Sets a pre-defined or custom message store property to a short value.

Visual Basic syntax
Public Sub SetShortStoreProperty(
 ByVal propName As String,
 ByVal val As Short
)

C# syntax
public void SetShortStoreProperty(string propName, short val)

Parameters
● propName The pre-defined or custom property name.

● val The short property value.

Remarks
You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

For more information, see “Client message store properties” on page 26.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 261

See also
● “MessageStoreProperties class” on page 188

SetStoreProperty method

Sets a pre-defined or custom message store property to a System.Object value.

Visual Basic syntax
Public Sub SetStoreProperty(
 ByVal propName As String,
 ByVal val As Object
)

C# syntax
public void SetStoreProperty(string propName, Object val)

Parameters
● propName The pre-defined or custom property name.

● val The property value.

Remarks
The property type must be one of the acceptable primitive types, or String. You can use this method to set
pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

For more information, see “Client message store properties” on page 26.

See also
● “MessageStoreProperties class” on page 188

SetStringStoreProperty method

Sets a pre-defined or custom message store property to a string value.

Visual Basic syntax
Public Sub SetStringStoreProperty(
 ByVal propName As String,
 ByVal val As String
)

C# syntax
public void SetStringStoreProperty(string propName, string val)

QAnywhere reference

262 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters
● propName The pre-defined or custom property name.

● val The string property value.

Remarks
You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

For more information, see “Client message store properties” on page 26.

See also
● “MessageStoreProperties class” on page 188

Start method

Starts the QAManagerBase for receiving incoming messages in message listeners.

Visual Basic syntax
Public Sub Start()

C# syntax
public void Start()

Exceptions
● “QAException class” Thrown if there is a problem starting the QAManagerBase instance.

Remarks
The QAManagerBase does not need to be started if there are no message listeners set, that is, if messages
are received with the GetMessage methods. It is not recommended to use the GetMessage methods as
well as message listeners for receiving messages. Use one or the other of the asynchronous (message
listener) or synchronous (GetMessage) models. Any calls to Start() beyond the first without an
intervening QAManagerBase.Stop() call are ignored.

See also
● “Stop method” on page 263

Stop method

Stops the QAManagerBase's reception of incoming messages.

Visual Basic syntax
Public Sub Stop()

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 263

C# syntax
public void Stop()

Exceptions
● “QAException class” Thrown if there is a problem stopping the QAManagerBase instance.

Remarks
The messages are not lost. They will not be received until the manager is started again. Any calls to Stop()
beyond the first without an intervening QAManagerBase.Start() call are ignored.

See also
● “Start method” on page 263

TriggerSendReceive method

Causes a synchronization with the QAnywhere message server, uploading any messages addressed to
other clients, and downloading any messages addressed to the local client.

Visual Basic syntax
Public Sub TriggerSendReceive()

C# syntax
public void TriggerSendReceive()

Exceptions
● “QAException class” Thrown if there is a problem triggering the send/receive.

Remarks
QAManagerBase TriggerSendReceive results in immediate message synchronization between a
QAnywhere Agent and the central messaging server. A manual TriggerSendReceive call results in
immediate message transmission, independent of the QAnywhere Agent transmission policies.

QAnywhere Agent transmission policies determine how message transmission occurs. For example,
message transmission can occur automatically at regular intervals, when your client receives a push
notification, or when you call the QAManagerBase.PutMessage method to send a message.

For more information, see “Determining when message transmission should occur on the
client” on page 46.

See also
● “PutMessage method” on page 250

Mode property

QAnywhere reference

264 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns the QAManager acknowledgement mode for received messages.

Visual Basic syntax
Public ReadOnly Property Mode As AcknowledgementMode

C# syntax
public AcknowledgementMode Mode {get;}

Remarks
For a list of possible values, see AcknowledgementMode.
AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT and
AcknowledgementMode.IMPLICIT_ACKNOWLEDGEMENT apply to QAManager instances;
AcknowledgementMode.TRANSACTIONAL is the mode for QATransactionalManager instances.

QAManagerFactory class

This class acts as a factory class for creating QATransactionalManager and QAManager objects.

Visual Basic syntax
Public MustInherit Class QAManagerFactory

C# syntax
public abstract class QAManagerFactory

Members
All members of QAManagerFactory class, including all inherited members.

Name Description

“CreateQAManager method” Returns a new QAManager instance with the specified
properties.

“CreateQATransactionalManager method” Returns a new QATransactionalManager instance with
the specified properties.

“Instance property” A singleton QAManagerFactory instance.

Remarks
You can only have one instance of QAManagerFactory.

CreateQAManager method

Returns a new QAManager instance with the specified properties.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 265

Overload list

Name Description

“CreateQAManager() method” Returns a new QAManager instance with default properties.

“CreateQAManager(Hashtable)
method”

Returns a new QAManager instance with the specified proper-
ties as a Hashtable.

“CreateQAManager(string) meth-
od”

Returns a new QAManager instance with the specified properties.

CreateQAManager() method
Returns a new QAManager instance with default properties.

Visual Basic syntax
Public Overridable Function CreateQAManager() As QAManager

C# syntax
public virtual abstract QAManager CreateQAManager()

Returns
A new QAManager instance.

Exceptions
● “QAException class” Thrown if there is a problem creating the manager.

Remarks
You can use the QAManagerBase.SetProperty to set QAnywhere manager configuration properties
programmatically after you create the instance.

For a list of QAnywhere manager configuration properties, see “QAnywhere manager configuration
properties” on page 81.

See also
● “QAManager interface” on page 219

CreateQAManager(Hashtable) method
Returns a new QAManager instance with the specified properties as a Hashtable.

Visual Basic syntax
Public Overridable Function CreateQAManager(
 ByVal properties As Hashtable
) As QAManager

QAnywhere reference

266 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

C# syntax
public virtual abstract QAManager CreateQAManager(Hashtable properties)

Parameters
● properties A hashtable for configuring the QAManager instance.

Returns
A new QAManager instance.

Exceptions
● “QAException class” Thrown if there is a problem creating the manager.

Remarks
If the hashtable parameter is null, the QAManager is created using default properties. You can use the
QAManagerBase.SetProperty to set QAnywhere manager configuration properties programmatically after
you create the instance.

For a list of QAnywhere manager configuration properties, see “QAnywhere manager configuration
properties” on page 81.

See also
● “QAManager interface” on page 219

CreateQAManager(string) method
Returns a new QAManager instance with the specified properties.

Visual Basic syntax
Public Overridable Function CreateQAManager(
 ByVal iniFile As String
) As QAManager

C# syntax
public virtual abstract QAManager CreateQAManager(string iniFile)

Parameters
● iniFile A properties file for configuring the QAManager instance.

Returns
A new QAManager instance.

Exceptions
● “QAException class” Thrown if there is a problem creating the manager.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 267

Remarks
If the properties file parameter is null, the QAManager is created using default properties. You can use the
QAManagerBase.SetProperty to set QAnywhere manager configuration properties programmatically after
you create the instance.

For a list of QAnywhere manager configuration properties, see “QAnywhere manager configuration
properties” on page 81.

For more information, see “Setting QAnywhere manager configuration properties in a file” on page 82.

See also
● “QAManager interface” on page 219

CreateQATransactionalManager method

Returns a new QATransactionalManager instance with the specified properties.

Overload list

Name Description

“CreateQATransactionalManager()
method”

Returns a new QATransactionalManager instance with de-
fault properties.

“CreateQATransactionalManag-
er(Hashtable) method”

Returns a new QATransactionalManager instance with the
specified properties as a Hashtable.

“CreateQATransactionalManag-
er(string) method”

Returns a new QATransactionalManager instance with the
specified properties.

CreateQATransactionalManager() method
Returns a new QATransactionalManager instance with default properties.

Visual Basic syntax
Public Overridable Function CreateQATransactionalManager()
 As QATransactionalManager

C# syntax
public virtual abstract QATransactionalManager
CreateQATransactionalManager()

Returns
A new QATransactionalManager instance.

QAnywhere reference

268 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Exceptions
● “QAException class” Thrown if there is a problem creating the manager.

Remarks
You can use the QAManagerBase.SetProperty to set QAnywhere manager configuration properties
programmatically after you create the instance.

For a list of QAnywhere manager configuration properties, see “QAnywhere manager configuration
properties” on page 81.

See also
● “QATransactionalManager interface” on page 293

CreateQATransactionalManager(Hashtable) method
Returns a new QATransactionalManager instance with the specified properties as a Hashtable.

Visual Basic syntax
Public Overridable Function CreateQATransactionalManager(
 ByVal properties As Hashtable
) As QATransactionalManager

C# syntax
public virtual abstract QATransactionalManager
CreateQATransactionalManager(
 Hashtable properties
)

Parameters
● properties A hashtable for configuring the QATransactionalManager instance.

Returns
A new QATransactionalManager

Exceptions
● “QAException class” Thrown if there is a problem creating the manager.

Remarks
If the hashtable parameter is null, the QATransactionalManager is created using default properties. You
can use the QAManagerBase.SetProperty to set QAnywhere manager configuration properties
programmatically after you create the instance.

For a list of QAnywhere manager configuration properties, see “QAnywhere manager configuration
properties” on page 81.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 269

See also
● “QATransactionalManager interface” on page 293

CreateQATransactionalManager(string) method
Returns a new QATransactionalManager instance with the specified properties.

Visual Basic syntax
Public Overridable Function CreateQATransactionalManager(
 ByVal iniFile As String
) As QATransactionalManager

C# syntax
public virtual abstract QATransactionalManager
CreateQATransactionalManager(
 string iniFile
)

Parameters
● iniFile A properties file for configuring the QATransactionalManager instance, or null to create the

QATransactionalManager instance with default properties.

Returns
A new QATransactionalManager

Exceptions
● “QAException class” Thrown if there is a problem creating the manager.

Remarks
If the properties file parameter is null, the QATransactionalManager is created using default properties.
You can use the QAManagerBase.SetProperty to set QAnywhere Manager configuration properties
programmatically after you create the instance.

For a list of QAnywhere Manager configuration properties, see “QAnywhere manager configuration
properties” on page 81.

For more information, see “Setting QAnywhere manager configuration properties in a file” on page 82.

See also
● “QATransactionalManager interface” on page 293

Instance property

A singleton QAManagerFactory instance.

QAnywhere reference

270 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Visual Basic syntax
Public Shared ReadOnly Property Instance As QAManagerFactory

C# syntax
public QAManagerFactory Instance {get;}

Exceptions
● “QAException class” Thrown if there is a problem creating the manager factory.

QAMessage interface
Provides an interface to set message properties and header fields.

Visual Basic syntax
Public Interface QAMessage

C# syntax
public interface QAMessage

Derived classes
● “QABinaryMessage interface” on page 189
● “QATextMessage interface” on page 289

Members
All members of QAMessage interface, including all inherited members.

Name Description

“ClearBody method” Clears the body of the message.

“ClearProperties method” Clears all the properties of the message.

“GetBooleanProperty method” Gets a boolean message property.

“GetByteProperty method” Gets a byte message property.

“GetDoubleProperty method” Gets a double message property.

“GetFloatProperty method” Gets a float message property.

“GetIntProperty method” Gets an int message property.

“GetLongProperty method” Gets a long message property.

“GetProperty method” Gets a message property.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 271

Name Description

“GetPropertyNames method” Gets an enumerator over the property names of the message.

“GetPropertyType method” Returns the property type of the given property.

“GetSbyteProperty method” Gets a signed byte message property.

“GetShortProperty method” Gets a short message property.

“GetStringProperty method” Gets a string message property.

“PropertyExists method” Indicates whether the given property has been set for this message.

“SetBooleanProperty method” Sets a boolean property.

“SetByteProperty method” Sets a byte property.

“SetDoubleProperty method” Sets a double property.

“SetFloatProperty method” Sets a float property.

“SetIntProperty method” Sets an int property.

“SetLongProperty method” Sets a long property.

“SetProperty method” Sets a property.

“SetSbyteProperty method” Sets a signed byte property.

“SetShortProperty method” Sets a short property.

“SetStringProperty method” Sets a string property.

“Address property” The destination address for the QAMessage instance.

“Expiration property” Gets the message's expiration value.

“InReplyToID property” The message id of the message for which this message is a reply.

“MessageID property” The globally unique message id of the message.

“Priority property” The priority of the message (ranging from 0 to 9).

“Redelivered property” Indicates whether the message has been previously received but not
acknowledged.

“ReplyToAddress property” The reply to address of this message.

“Timestamp property” The message timestamp.

QAnywhere reference

272 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
The derived classes QABinaryMessage and QATextMessage provide specialized methods to read and
write to the message body. You can use QAMessage methods to set predefined or custom message properties.

For a list of pre-defined property names, see the MessageProperties.

For more information about setting message properties and header fields, see “QAnywhere
messages” on page 13.

See also
● “QABinaryMessage interface” on page 189
● “QATextMessage interface” on page 289

ClearBody method

Clears the body of the message.

Visual Basic syntax
Public Sub ClearBody()

C# syntax
public void ClearBody()

ClearProperties method

Clears all the properties of the message.

Visual Basic syntax
Public Sub ClearProperties()

C# syntax
public void ClearProperties()

GetBooleanProperty method

Gets a boolean message property.

Visual Basic syntax
Public Function GetBooleanProperty(ByVal propName As String) As Boolean

C# syntax
public bool GetBooleanProperty(string propName)

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 273

Parameters
● propName The property name.

Returns
The property value.

Exceptions
● “QAException class” Thrown if there is a conversion error getting the property value or if the

property does not exist.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 179

GetByteProperty method

Gets a byte message property.

Visual Basic syntax
Public Function GetByteProperty(ByVal propName As String) As Byte

C# syntax
public byte GetByteProperty(string propName)

Parameters
● propName The property name.

Returns
The property value.

Exceptions
● “QAException class” Thrown if there is a conversion error getting the property value or if the

property does not exist.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 179

QAnywhere reference

274 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

GetDoubleProperty method

Gets a double message property.

Visual Basic syntax
Public Function GetDoubleProperty(ByVal propName As String) As Double

C# syntax
public double GetDoubleProperty(string propName)

Parameters
● propName The property name.

Returns
The property value.

Exceptions
● “QAException class” Thrown if there is a conversion error getting the property value or if the

property does not exist.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 179

GetFloatProperty method

Gets a float message property.

Visual Basic syntax
Public Function GetFloatProperty(ByVal propName As String) As Single

C# syntax
public float GetFloatProperty(string propName)

Parameters
● propName The property name.

Returns
The property value.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 275

Exceptions
● “QAException class” Thrown if there is a conversion error getting the property value or if the

property does not exist.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 179

GetIntProperty method

Gets an int message property.

Visual Basic syntax
Public Function GetIntProperty(ByVal propName As String) As Integer

C# syntax
public int GetIntProperty(string propName)

Parameters
● propName The property name.

Returns
The property value.

Exceptions
● “QAException class” Thrown if there is a conversion error getting the property value or if the

property does not exist.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 179

GetLongProperty method

Gets a long message property.

QAnywhere reference

276 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Visual Basic syntax
Public Function GetLongProperty(ByVal propName As String) As Long

C# syntax
public long GetLongProperty(string propName)

Parameters
● propName The property name.

Returns
The property value.

Exceptions
● “QAException class” Thrown if there is a conversion error getting the property value or if the

property does not exist.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 179

GetProperty method

Gets a message property.

Visual Basic syntax
Public Function GetProperty(ByVal propName As String) As Object

C# syntax
public Object GetProperty(string propName)

Parameters
● propName The property name.

Returns
The property value.

Exceptions
● “QAException class” Thrown if the property does not exist.

Remarks
The property must be one of the acceptable primitive types, string, or DateTime.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 277

GetPropertyNames method

Gets an enumerator over the property names of the message.

Visual Basic syntax
Public Function GetPropertyNames() As System.Collections.IEnumerator

C# syntax
public System.Collections.IEnumerator GetPropertyNames()

Returns
An enumerator over the message property names.

GetPropertyType method

Returns the property type of the given property.

Visual Basic syntax
Public Function GetPropertyType(
 ByVal propName As String
) As PropertyType

C# syntax
public PropertyType GetPropertyType(string propName)

Parameters
● propName The name of the property.

Returns
The property type.

GetSbyteProperty method

Gets a signed byte message property.

Visual Basic syntax
Public Function GetSbyteProperty(ByVal propName As String) As SByte

C# syntax
public sbyte GetSbyteProperty(string propName)

Parameters
● propName the property name.

QAnywhere reference

278 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns
The property value.

Exceptions
● “QAException class” Thrown if there is a conversion error getting the property value or if the

property does not exist.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 179

GetShortProperty method

Gets a short message property.

Visual Basic syntax
Public Function GetShortProperty(ByVal propName As String) As Short

C# syntax
public short GetShortProperty(string propName)

Parameters
● propName The property name.

Returns
The property value.

Exceptions
● “QAException class” Thrown if there is a conversion error getting the property value or if the

property does not exist.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 179

GetStringProperty method

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 279

Gets a string message property.

Visual Basic syntax
Public Function GetStringProperty(ByVal propName As String) As String

C# syntax
public string GetStringProperty(string propName)

Parameters
● propName The property name.

Returns
The property value or null if the property does not exist.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 179

PropertyExists method

Indicates whether the given property has been set for this message.

Visual Basic syntax
Public Function PropertyExists(ByVal propName As String) As Boolean

C# syntax
public bool PropertyExists(string propName)

Parameters
● propName The property name.

Returns
True if the property exists.

SetBooleanProperty method

Sets a boolean property.

QAnywhere reference

280 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Visual Basic syntax
Public Sub SetBooleanProperty(
 ByVal propName As String,
 ByVal val As Boolean
)

C# syntax
public void SetBooleanProperty(string propName, bool val)

Parameters
● propName The property name.

● val The property value.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 179

SetByteProperty method

Sets a byte property.

Visual Basic syntax
Public Sub SetByteProperty(ByVal propName As String, ByVal val As Byte)

C# syntax
public void SetByteProperty(string propName, byte val)

Parameters
● propName The property name.

● val The property value.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 179

SetDoubleProperty method

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 281

Sets a double property.

Visual Basic syntax
Public Sub SetDoubleProperty(
 ByVal propName As String,
 ByVal val As Double
)

C# syntax
public void SetDoubleProperty(string propName, double val)

Parameters
● propName The property name.

● val The property value.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 179

SetFloatProperty method

Sets a float property.

Visual Basic syntax
Public Sub SetFloatProperty(
 ByVal propName As String,
 ByVal val As Single
)

C# syntax
public void SetFloatProperty(string propName, float val)

Parameters
● propName The property name.

● val The property value.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

QAnywhere reference

282 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “MessageProperties class” on page 179

SetIntProperty method

Sets an int property.

Visual Basic syntax
Public Sub SetIntProperty(
 ByVal propName As String,
 ByVal val As Integer
)

C# syntax
public void SetIntProperty(string propName, int val)

Parameters
● propName The property name.

● val The property value.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 179

SetLongProperty method

Sets a long property.

Visual Basic syntax
Public Sub SetLongProperty(ByVal propName As String, ByVal val As Long)

C# syntax
public void SetLongProperty(string propName, long val)

Parameters
● propName The property name.

● val The property value.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 283

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 179

SetProperty method

Sets a property.

Visual Basic syntax
Public Sub SetProperty(ByVal propName As String, ByVal val As Object)

C# syntax
public void SetProperty(string propName, Object val)

Parameters
● propName The property name.

● val The property value.

Remarks
The property type must be one of the acceptable primitive types, or String.

For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 179

SetSbyteProperty method

Sets a signed byte property.

Visual Basic syntax
Public Sub SetSbyteProperty(
 ByVal propName As String,
 ByVal val As SByte
)

C# syntax
public void SetSbyteProperty(string propName, sbyte val)

QAnywhere reference

284 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters
● propName The property name.

● val The property value.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 179

SetShortProperty method

Sets a short property.

Visual Basic syntax
Public Sub SetShortProperty(
 ByVal propName As String,
 ByVal val As Short
)

C# syntax
public void SetShortProperty(string propName, short val)

Parameters
● propName The property name.

● val The property value.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 179

SetStringProperty method

Sets a string property.

Visual Basic syntax
Public Sub SetStringProperty(
 ByVal propName As String,

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 285

 ByVal val As String
)

C# syntax
public void SetStringProperty(string propName, string val)

Parameters
● propName The property name.

● val The property value.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 179

Address property

The destination address for the QAMessage instance.

Visual Basic syntax
Public ReadOnly Property Address As String

C# syntax
public string Address {get;}

Remarks
When a message is sent, this field is ignored. After completion of a send operation, the field holds the
destination address specified in QAManagerBase.PutMessage.

For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “PutMessage method” on page 250

Expiration property

Gets the message's expiration value.

Visual Basic syntax
Public ReadOnly Property Expiration As Date

QAnywhere reference

286 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

C# syntax
public DateTime Expiration {get;}

Remarks
When a message is sent, the Expiration header field is left unassigned. After completion of the send
method, it holds the expiration time of the message.

This is a read-only property because the expiration time of a message is set by adding the time-to-live
argument of QAManagerBase.PutMessageTimeToLive to the current time.

For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

InReplyToID property

The message id of the message for which this message is a reply.

Visual Basic syntax
Public Property InReplyToID As String

C# syntax
public string InReplyToID {get;set;}

Remarks
May be null.

For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

MessageID property

The globally unique message id of the message.

Visual Basic syntax
Public ReadOnly Property MessageID As String

C# syntax
public string MessageID {get;}

Remarks
This property is null until a message is put.

When a message is sent using QAManagerBase.PutMessage, the MessageID is null and can be ignored.
When the send method returns, it contains an assigned value.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 287

For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “PutMessage method” on page 250

Priority property

The priority of the message (ranging from 0 to 9).

Visual Basic syntax
Public Property Priority As Integer

C# syntax
public int Priority {get;set;}

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

Redelivered property

Indicates whether the message has been previously received but not acknowledged.

Visual Basic syntax
Public ReadOnly Property Redelivered As Boolean

C# syntax
public bool Redelivered {get;}

Remarks
Redelivered is set by a receiving QAManager when it detects that a message being received was received
before.

For example, an application receives a message using a QAManager opened with
AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT, and shuts down without acknowledging
the message. When the application starts again and receives the same message the Redelivered header will
be true.

For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

QAnywhere reference

288 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “QAManager interface” on page 219
● “AcknowledgementMode enumeration” on page 301

ReplyToAddress property

The reply to address of this message.

Visual Basic syntax
Public Property ReplyToAddress As String

C# syntax
public string ReplyToAddress {get;set;}

Remarks
May be null.

For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

Timestamp property

The message timestamp.

Visual Basic syntax
Public ReadOnly Property Timestamp As Date

C# syntax
public DateTime Timestamp {get;}

Remarks
This Timestamp header field contains the time a message was created.

For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

QATextMessage interface
QATextMessage inherits from the QAMessage class and adds a text message body.

Visual Basic syntax
Public Interface QATextMessage Inherits QAMessage

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 289

C# syntax
public interface QATextMessage : QAMessage

Base classes
● “QAMessage interface” on page 271

Members
All members of QATextMessage interface, including all inherited members.

Name Description

“ClearBody method” Clears the body of the message.

“ClearProperties method” Clears all the properties of the message.

“GetBooleanProperty method” Gets a boolean message property.

“GetByteProperty method” Gets a byte message property.

“GetDoubleProperty method” Gets a double message property.

“GetFloatProperty method” Gets a float message property.

“GetIntProperty method” Gets an int message property.

“GetLongProperty method” Gets a long message property.

“GetProperty method” Gets a message property.

“GetPropertyNames method” Gets an enumerator over the property names of the message.

“GetPropertyType method” Returns the property type of the given property.

“GetSbyteProperty method” Gets a signed byte message property.

“GetShortProperty method” Gets a short message property.

“GetStringProperty method” Gets a string message property.

“PropertyExists method” Indicates whether the given property has been set for this message.

“ReadText method” Read unread text into the given buffer.

“Reset method” Resets the text position of the message to the beginning.

“SetBooleanProperty method” Sets a boolean property.

“SetByteProperty method” Sets a byte property.

QAnywhere reference

290 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“SetDoubleProperty method” Sets a double property.

“SetFloatProperty method” Sets a float property.

“SetIntProperty method” Sets an int property.

“SetLongProperty method” Sets a long property.

“SetProperty method” Sets a property.

“SetSbyteProperty method” Sets a signed byte property.

“SetShortProperty method” Sets a short property.

“SetStringProperty method” Sets a string property.

“WriteText method” Append text to the text of the message.

“Address property” The destination address for the QAMessage instance.

“Expiration property” Gets the message's expiration value.

“InReplyToID property” The message id of the message for which this message is a reply.

“MessageID property” The globally unique message id of the message.

“Priority property” The priority of the message (ranging from 0 to 9).

“Redelivered property” Indicates whether the message has been previously received but not
acknowledged.

“ReplyToAddress property” The reply to address of this message.

“Text property” The message text.

“TextLength property” The length, in characters, of the message.

“Timestamp property” The message timestamp.

Remarks
QATextMessage provides methods to read from and write to the text message body.

When the message is first created, the body of the message is in write-only mode. After a message has
been sent, the client that sent it can retain and modify it without affecting the message that has been sent.
The same message object can be sent multiple times.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 291

When a message is received, the provider has called QATextMessage.Reset() so that the message body is
in read-only mode and reading of values starts from the beginning of the message body.

See also
● “QABinaryMessage interface” on page 189
● “QAMessage interface” on page 271

ReadText method

Read unread text into the given buffer.

Visual Basic syntax
Public Function ReadText(ByVal buf As StringBuilder) As Integer

C# syntax
public int ReadText(StringBuilder buf)

Parameters
● buf Target buffer for any read text.

Returns
The number of characters read or -1 if there are no more characters to read.

Remarks
Any additional unread text must be read by subsequent calls to this method. Text is read from the
beginning of any unread text.

Reset method

Resets the text position of the message to the beginning.

Visual Basic syntax
Public Sub Reset()

C# syntax
public void Reset()

WriteText method

Append text to the text of the message.

QAnywhere reference

292 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Visual Basic syntax
Public Sub WriteText(ByVal val As String)

C# syntax
public void WriteText(string val)

Parameters
● val The text to append.

Text property

The message text.

Visual Basic syntax
Public Property Text As String

C# syntax
public string Text {get;set;}

Remarks
If the message exceeds the maximum size specified by the
QAManager.MAX_IN_MEMORY_MESSAGE_SIZE, this property is null. In this case, use the
QATextMessage.ReadText method to read the text.

For more information about QAManager properties, see “QAnywhere manager configuration
properties” on page 81.

See also
● “ReadText method” on page 292

TextLength property

The length, in characters, of the message.

Visual Basic syntax
Public ReadOnly Property TextLength As Long

C# syntax
public long TextLength {get;}

QATransactionalManager interface

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 293

The QATransactionalManager class derives from QAManagerBase and manages transactional
QAnywhere messaging operations.

Visual Basic syntax
Public Interface QATransactionalManager Inherits QAManagerBase

C# syntax
public interface QATransactionalManager : QAManagerBase

Base classes
● “QAManagerBase interface” on page 226

Members
All members of QATransactionalManager interface, including all inherited members.

Name Description

“BrowseMessages method” This method is deprecated.

“BrowseMessagesByID method” Browses the message with the given message ID.

“BrowseMessagesByQueue method” Browses the next available messages waiting that have
been sent to the given address.

“BrowseMessagesBySelector method” Browses messages queued in the message store that satis-
fy the given selector.

“CancelMessage method” Cancels the message with the given message ID.

“Close method” Closes the connection to the QAnywhere message system
and releases any resources used by the QAManagerBase.

“Commit method” Commits the current transaction and begins a new transac-
tion.

“CreateBinaryMessage method” Creates a QABinaryMessage object.

“CreateTextMessage method” Creates a QATextMessage object.

“GetBooleanStoreProperty method” Gets a boolean value for a pre-defined or custom message
store property.

“GetDoubleStoreProperty method” Gets a double value for a pre-defined or custom message
store property.

“GetFloatStoreProperty method” Gets a float value for a pre-defined or custom message
store property.

QAnywhere reference

294 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“GetIntStoreProperty method” Gets a int value for a pre-defined or custom message store
property.

“GetLongStoreProperty method” Gets a long value for a pre-defined or custom message
store property.

“GetMessage method” Returns the next available QAMessage sent to the speci-
fied address.

“GetMessageBySelector method” Returns the next available QAMessage sent to the speci-
fied address that satisfies the given selector.

“GetMessageBySelectorNoWait method” Returns the next available QAMessage sent to the given
address that satisfies the given selector.

“GetMessageBySelectorTimeout method” Returns the next available QAMessage sent to the given
address that satisfies the given selector.

“GetMessageNoWait method” Returns the next available QAMessage sent to the given
address.

“GetMessageTimeout method” Returns the next available QAMessage sent to the given
address.

“GetQueueDepth method” Returns the total depth of all queues, based on a given filter.

“GetSbyteStoreProperty method” Gets a signed byte value for a pre-defined or custom mes-
sage store property.

“GetShortStoreProperty method” Gets a short value for a pre-defined or custom message
store property.

“GetStoreProperty method” Gets a System.Object representing a message store prop-
erty.

“GetStorePropertyNames method” Gets an enumerator over the message store property names.

“GetStringStoreProperty method” Gets a string value for a pre-defined or custom message
store property.

“Open method” Opens a QATransactionalManager instance.

“PropertyExists method” Tests if there currently exists a value for the given the prop-
erty.

“PutMessage method” Prepares a message to send to another QAnywhere client.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 295

Name Description

“PutMessageTimeToLive method” Prepares a message to send to another QAnywhere client.

“ReOpen method” Reopens the QAManagerBase.

“Rollback method” Rolls back the current transaction and begins a new trans-
action.

“SetBooleanStoreProperty method” Sets a pre-defined or custom message store property to a
boolean value.

“SetDoubleStoreProperty method” Sets a pre-defined or custom message store property to a
double value.

“SetExceptionListener method” Sets an ExceptionListener delegate to receive QAExcep-
tions when processing QAnywhere messages asynchro-
nously.

“SetExceptionListener2 method” Sets an ExceptionListener2 delegate to receive QAExcep-
tions when processing QAnywhere messages asynchro-
nously.

“SetFloatStoreProperty method” Sets a pre-defined or custom message store property to a
float value.

“SetIntStoreProperty method” Sets a pre-defined or custom message store property to a
int value.

“SetLongStoreProperty method” Sets a pre-defined or custom message store property to a
long value.

“SetMessageListener method” Sets a MessageListener delegate to receive QAnywhere
messages asynchronously.

“SetMessageListener2 method” Sets a MessageListener2 delegate to receive QAnywhere
messages asynchronously.

“SetMessageListenerBySelector method” Sets a MessageListener delegate to receive QAnywhere
messages asynchronously, with a message selector.

“SetMessageListenerBySelector2 method” Sets a MessageListener2 delegate to receive QAnywhere
messages asynchronously, with a message selector.

“SetProperty method” Allows you to set QAnywhere Manager configuration
properties programmatically.

“SetSbyteStoreProperty method” Sets a pre-defined or custom message store property to a
sbyte value.

QAnywhere reference

296 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“SetShortStoreProperty method” Sets a pre-defined or custom message store property to a
short value.

“SetStoreProperty method” Sets a pre-defined or custom message store property to a
System.Object value.

“SetStringStoreProperty method” Sets a pre-defined or custom message store property to a
string value.

“Start method” Starts the QAManagerBase for receiving incoming mes-
sages in message listeners.

“Stop method” Stops the QAManagerBase's reception of incoming mes-
sages.

“TriggerSendReceive method” Causes a synchronization with the QAnywhere message
server, uploading any messages addressed to other clients,
and downloading any messages addressed to the local cli-
ent.

“Mode property” Returns the QAManager acknowledgement mode for re-
ceived messages.

Remarks
For a detailed description of derived behavior, see QAManagerBase.

The QATransactionalManager can only be used for transactional acknowledgement. Use the
QATransactionalManager.Commit() method to commit all QAManagerBase.PutMessage and
QAManagerBase.GetMessage invocations.

For more information, see “Implementing transactional messaging” on page 63.

See also
● “QATransactionalManager interface” on page 293

Commit method

Commits the current transaction and begins a new transaction.

Visual Basic syntax
Public Sub Commit()

C# syntax
public void Commit()

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 297

Exceptions
● “QAException class” Thrown if there is a problem committing.

Remarks

Note
This method commits all QAManagerBase.PutMessage and QAManagerBase.GetMessage invocations.
The first transaction begins with the call to QATransactionalManager.Open().

See also
● “QATransactionalManager interface” on page 293

Open method

Opens a QATransactionalManager instance.

Visual Basic syntax
Public Sub Open()

C# syntax
public void Open()

Exceptions
● “QAException class” Thrown if there is a problem opening the manager

Remarks
The Open method must be the first method called after creating a manager.

See also
● “QATransactionalManager interface” on page 293

Rollback method

Rolls back the current transaction and begins a new transaction.

Visual Basic syntax
Public Sub Rollback()

C# syntax
public void Rollback()

Exceptions
● “QAException class” Thrown if there is a problem rolling back

QAnywhere reference

298 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
This method rolls back all uncommitted QAManagerBase.PutMessage and QAManagerBase.GetMessage
invocations.

See also
● “QATransactionalManager interface” on page 293

ExceptionListener delegate
ExceptionListener delegate definition.

Visual Basic syntax
Public Delegate Sub ExceptionListener(
 ByVal ex As QAException,
 ByVal msg As QAMessage
)

C# syntax
public delegate void ExceptionListener(QAException ex, QAMessage msg);

Parameters
● ex The exception that occurred.

● msg The message that was received, or null if the message could not be constructed.

Remarks
You pass an ExceptionListener to the QAManagerBase.SetExceptionListener.

ExceptionListener2 delegate
ExceptionListener2 delegate definition.

Visual Basic syntax
Public Delegate Sub ExceptionListener2(
 ByVal mgr As QAManagerBase,
 ByVal ex As QAException,
 ByVal msg As QAMessage
)

C# syntax
public delegate void ExceptionListener2(
 QAManagerBase mgr,
 QAException ex,
 QAMessage msg
);

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 299

Parameters
● mgr The QAManagerBase that processed the message.

● ex The exception that occurred.

● msg The message that was received, or null if the message could not be constructed.

Remarks
You pass an ExceptionListener2 to the QAManagerBase.SetExceptionListener2.

MessageListener delegate
MessageListener delegate definition.

Visual Basic syntax
Public Delegate Sub MessageListener(ByVal msg As QAMessage)

C# syntax
public delegate void MessageListener(QAMessage msg);

Parameters
● msg The message that was received.

Remarks
You pass a MessageListener to the QAManagerBase.SetMessageListener method.

See also
● “SetMessageListener method” on page 256

MessageListener2 delegate
MessageListener2 delegate definition.

Visual Basic syntax
Public Delegate Sub MessageListener2(
 ByVal mgr As QAManagerBase,
 ByVal msg As QAMessage
)

C# syntax
public delegate void MessageListener2(QAManagerBase mgr, QAMessage msg);

QAnywhere reference

300 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters
● mgr The QAManagerBase that received the message.

● msg The message that was received.

Remarks
You pass a MessageListener2 to the QAManagerBase.SetMessageListener2.

AcknowledgementMode enumeration

Indicates how messages should be acknowledged by QAnywhere client applications.

Visual Basic syntax
Public Enum AcknowledgementMode

C# syntax
public enum AcknowledgementMode

Members

Member
name

Description

EXPLIC-
IT_AC-
KNOWL-
EDGE-
MENT

Indicates that received messages are acknowledged using one of the QAManager ac-
knowledge methods.

IMPLIC-
IT_AC-
KNOWL-
EDGE-
MENT

Indicates that all messages are acknowledged as soon as they are received by a client
application.

If you receive messages synchronously, messages are acknowledged as soon as the QA-
ManagerBase.GetMessage(string) method returns. If you receive messages asynchronous-
ly, the message is acknowledged as soon as the event handling function returns.

TRANS-
ACTION-
AL

This mode indicates that messages are only acknowledged as part of the on going trans-
action.

This mode is automatically assigned to QATransactionalManager instances.

Remarks
The implicit and explicit acknowledgement modes are assigned to a QAManager instance using the
QAManager.Open(AcknowledgementMode) method.

For more information, see “Initializing a QAnywhere API” on page 52.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 301

With implicit acknowledgement, messages are acknowledged as soon as they are received by a client
application. With explicit acknowledgement, you must call one of the QAManager acknowledgement
methods. The server propagates all status changes from client to client.

For more information, see “Receiving messages synchronously” on page 68 and “Receiving messages
asynchronously” on page 70.

See also
● “QAManager interface” on page 219
● “QATransactionalManager interface” on page 293
● “QAManagerBase interface” on page 226

MessageType enumeration
Defines constant values for the MessageProperties.MSG_TYPE message property.

Visual Basic syntax
Public Enum MessageType

C# syntax
public enum MessageType

Members

Member name Description Val-
ue

NET-
WORK_STA-
TUS_NOTIFI-
CATION

Identifies a QAnywhere system message used to notify QAnywhere client ap-
plications of network status changes.

Network status changes apply to the device receiving the system message.
Use MessageProperties.ADAPTERS, MessageProperties.RASNAMES, and
MessageProperties.NETWORK_STATUS fields to identify new network sta-
tus information.

For more information, see “System queue” on page 58.

14

PUSH_NOTI-
FICATION

Identifies a QAnywhere system message used to notify QAnywhere client ap-
plications of push notifications.

If you use the on-demand qaagent policy, a typical response is to call QAMa-
nagerBase.TriggerSendReceive() to receive messages waiting with the cen-
tral message server.

For more information, see “System queue” on page 58.

13

QAnywhere reference

302 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Member name Description Val-
ue

REGULAR If no message type property exists then the message type is assumed to be
REGULAR.

This type of message is not treated specially by the message system.

0

See also
● “TriggerSendReceive method” on page 264
● “MessageProperties class” on page 179

Example
The following example shows the onSystemMessage method which is used to handle QAnywhere system
messages. The message type is compared to MessageType.NETWORK_STATUS_NOTIFICATION.

private void onSystemMessage(QAMessage msg) {
 QATextMessage t_msg;
 MessageType msg_type;
 String network_adapters;
 String network_names;
 String network_info;
 t_msg = (QATextMessage)msg;
 if(t_msg != null) {
 // Evaluate message type.
 msg_type =
(MessageType)t_msg.GetIntProperty(MessageProperties.MSG_TYPE);
 if(msg_type == MessageType.NETWORK_STATUS_NOTIFICATION) {
 // Handle network status notification...
 }
 }
}

PropertyType enumeration
QAMessage property type enumeration, corresponding naturally to the C# types.

Visual Basic syntax
Public Enum PropertyType

C# syntax
public enum PropertyType

Members

Member name Description

BOOLEAN Indicates a boolean property.

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 303

Member name Description

BYTE Indicates a signed byte property.

DOUBLE Indicates a double property.

FLOAT Indicates a float property.

INT Indicates an int property.

LONG Indicates an long property.

SHORT Indicates a short property.

STRING Indicates a string property.

UNKNOWN Indicates an unknown property type, usually because the property is unknown.

QueueDepthFilter enumeration

Provides queue depth filter values for QAManagerBase.GetQueueDepth(QueueDepthFilter) and
QAManagerBase.GetQueueDepth(string,QueueDepthFilter).

Visual Basic syntax
Public Enum QueueDepthFilter

C# syntax
public enum QueueDepthFilter

Members

Member
name

Description

ALL Count both incoming and outgoing messages.

System messages and expired messages are not included in any queue depth counts.

IN-
COM-
ING

Count only incoming messages.

An incoming message is defined as a message whose originator is different than the agent
ID of the message store.

LOCAL Count only local messages in the message store.

A local message is defined as a message whose originator and target are the agent ID of the
message store.

QAnywhere reference

304 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Member
name

Description

OUT-
GOING

Count only outgoing messages.

An outgoing message is defined as a message whose originator is the agent ID of the mes-
sage store, and whose destination is not the agent ID of the message store.

See also
● “GetQueueDepth method” on page 244

StatusCodes enumeration
This enumeration defines a set of codes for the status of a message.

Visual Basic syntax
Public Enum StatusCodes

C# syntax
public enum StatusCodes

Members

Member
name

Description Value

CAN-
CELED

The message has been canceled.

This code applies to the MessageProperties.STATUS.

40

EXPIRED The message has expired because it was not received before its expiration time
had passed.

This code applies to the MessageProperties.STATUS.

30

FINAL This constant is used to determine if a message has achieved a final state.

A message has achieved a final state if and only if its status is greater than this
constant.

This code applies to the MessageProperties.STATUS.

20

LOCAL The message is addressed to the local message store and will not be transmitted
to the server.

This code applies to the MessageProperties.TRANSMISSION_STATUS.

2

QAnywhere .NET API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 305

Member
name

Description Value

PENDING The message has been sent but not received and acknowledged.

This code applies to the MessageProperties.STATUS.

1

RE-
CEIVED

The message has been received and acknowledged by the receiver.

This code applies to the MessageProperties.STATUS.

60

RECEIV-
ING

The message is in the process of being received, or it was received but not ac-
knowledged.

This code applies to the MessageProperties.STATUS.

10

TRANS-
MITTED

The message has been transmitted to the server.

This code applies to the MessageProperties.TRANSMISSION_STATUS.

1

TRANS-
MITTING

The message is in the process of being transmitted to the server.

This code applies to the MessageProperties.TRANSMISSION_STATUS.

3

UNREC-
EIVABLE

The message has been marked as unreceivable.

The message is either malformed, or there were too many failed attempts to deliv-
er it.

This code applies to the MessageProperties.STATUS.

50

UN-
TRANS-
MITTED

The message has not been transmitted to the server.

This code applies to the MessageProperties.TRANSMISSION_STATUS.

0

QAnywhere .NET API reference for web services
Namespace

iAnywhere.QAnywhere.WS

WSBase class
This is the base class for the main web service proxy class generated by the mobile web service compiler.

QAnywhere reference

306 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Visual Basic syntax
Public Class WSBase

C# syntax
public class WSBase

Members
All members of WSBase class, including all inherited members.

Name Description

“WSBase constructor” Constructs a WSBase instance with the properties specified by a
configuration property file.

“ClearRequestProperties method” Clears all request properties that have been set for this WSBase.

“GetResult method” Gets a WSResult object that represents the results of a web service
request.

“GetServiceID method” Gets the service ID for this instance of WSBase.

“SetListener method” Sets a listener for the results of a given web service request.

“SetProperty method” Sets a configuration property for this instance of WSBase.

“SetQAManager method” Sets the QAManagerBase that is used by this web service client to
do web service requests.

“SetRequestProperty method” Sets a request property for webservice requests made by this
WSBase.

“SetServiceID method” Sets a user-defined ID for this instance of WSBase.

WSBase constructor

Constructs a WSBase instance with the properties specified by a configuration property file.

Overload list

Name Description

“WSBase() constructor” Constructs a WSBase instance with default properties.

“WSBase(string) constructor” Constructs a WSBase instance with the properties specified by a con-
figuration property file.

QAnywhere .NET API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 307

WSBase() constructor
Constructs a WSBase instance with default properties.

Visual Basic syntax
Public Sub New()

C# syntax
public WSBase()

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem constructing the WSBase.

WSBase(string) constructor
Constructs a WSBase instance with the properties specified by a configuration property file.

Visual Basic syntax
Public Sub New(ByVal iniFile As String)

C# syntax
public WSBase(string iniFile)

Parameters
● iniFile A file containing configuration properties.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem constructing the WSBase.

Remarks
Valid configuration properties are:

LOG_FILE a file to which to log runtime information.

LOG_LEVEL a value between 0 and 6 that controls the verbosity of information logged, with 6 being the
highest verbosity.

WS_CONNECTOR_ADDRESS the address of the web service connector in the MobiLink server.

The default WS_CONNECTOR_ADDRESS is ianywhere.connector.webservices\\.

ClearRequestProperties method

Clears all request properties that have been set for this WSBase.

QAnywhere reference

308 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Visual Basic syntax
Public Sub ClearRequestProperties()

C# syntax
public void ClearRequestProperties()

GetResult method

Gets a WSResult object that represents the results of a web service request.

Visual Basic syntax
Public Function GetResult(ByVal requestID As String) As WSResult

C# syntax
public WSResult GetResult(String requestID)

Parameters
● requestID The ID of the web service request.

Returns
A WSResult instance representing the results of the web service request.

See also
● “WSStatus enumeration” on page 353

GetServiceID method

Gets the service ID for this instance of WSBase.

Visual Basic syntax
Public Function GetServiceID() As String

C# syntax
public String GetServiceID()

Returns
The service ID.

SetListener method

Sets a listener for the results of a given web service request.

QAnywhere .NET API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 309

Overload list

Name Description

“SetListener(string, WSListener)
method”

Sets a listener for the results of a given web service request.

“SetListener(WSListener) meth-
od”

Sets a listener for the results of all web service requests made by
this instance of WSBase.

SetListener(string, WSListener) method
Sets a listener for the results of a given web service request.

Visual Basic syntax
Public Sub SetListener(
 ByVal requestID As String,
 ByVal listener As WSListener
)

C# syntax
public void SetListener(string requestID, WSListener listener)

Parameters
● requestID The ID of the web service request to which to listen for results.

● listener The listener object that gets called when the result of the given web service request is
available.

Remarks
Listeners are typically used to get results of the asyncXYZ methods of the service.

To remove a listener, call SetListener with null as the listener.

Note
This method replaces the listener set by any previous call to SetListener.

SetListener(WSListener) method
Sets a listener for the results of all web service requests made by this instance of WSBase.

Visual Basic syntax
Public Sub SetListener(ByVal listener As WSListener)

C# syntax
public void SetListener(WSListener listener)

QAnywhere reference

310 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters
● listener The listener object that gets called when the result of a web service request is available.

Remarks
Listeners are typically used to get results of the asyncXYZ methods of the service.

To remove a listener, call SetListener with null as the listener.

Note
This method replaces the listener set by any previous call to SetListener.

SetProperty method

Sets a configuration property for this instance of WSBase.

Visual Basic syntax
Public Sub SetProperty(ByVal property As String, ByVal val As String)

C# syntax
public void SetProperty(string property, string val)

Parameters
● property The property name to set.

● val The property value.

Remarks
Configuration properties must be set before any asynchronous or synchronous web service request is
made. This method has no effect if it is called after a web service request has been made.

Valid configuration properties are:

LOG_FILE a file to which to log runtime information.

LOG_LEVEL a value between 0 and 6 that controls the verbosity of information logged, with 6 being the
highest verbosity.

WS_CONNECTOR_ADDRESS the address of the web service connector in the MobiLink server. The
default is: ianywhere.connector.webservices\\.

SetQAManager method

Sets the QAManagerBase that is used by this web service client to do web service requests.

QAnywhere .NET API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 311

Visual Basic syntax
Public Sub SetQAManager(ByVal mgr As QAManagerBase)

C# syntax
public void SetQAManager(QAManagerBase mgr)

Parameters
● mgr The QAManagerBase to use.

Remarks

Note
If you use an EXPLICIT_ACKNOWLEDGEMENT QAManager, you can acknowledge the result of an
asynchronous web service request by calling the acknowledge() method of WSResult. The result of a
synchronous web service request is automatically acknowledged, even in the case of an
EXPLICIT_ACKNOWLEDGEMENT QAManager. If you use an IMPLICIT_ACKNOWLEDGEMENT
QAManager, the result of any web service request is acknowledged automatically.

SetRequestProperty method

Sets a request property for webservice requests made by this WSBase.

Visual Basic syntax
Public Sub SetRequestProperty(
 ByVal name As String,
 ByVal value As Object
)

C# syntax
public void SetRequestProperty(string name, Object value)

Parameters
● name The property name to set.

● value The property value.

Remarks
A request property is set on each QAMessage that is sent by this WSBase, until the property is cleared. A
request property is cleared by setting it to a null value. The type of the message property is determined by
the class of the value parameter. For example, if value is an instance of Int32, then SetIntProperty is used
to set the property on the QAMessage.

SetServiceID method

Sets a user-defined ID for this instance of WSBase.

QAnywhere reference

312 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Visual Basic syntax
Public Sub SetServiceID(ByVal serviceID As String)

C# syntax
public void SetServiceID(String serviceID)

Parameters
● serviceID The service ID.

Remarks
The service ID should be set to a value unique to this instance of WSBase. It is used internally to form a
queue name for sending and receiving web service requests. Therefore, the service ID should be persisted
between application sessions, in order to retrieve results of web service requests made in a previous session.

WSException class
This class represents an exception that occurred during processing of a web service request.

Visual Basic syntax
Public Class WSException Inherits System.Exception

C# syntax
public class WSException : System.Exception

Base classes
● System.Exception

Derived classes
● “WSFaultException class” on page 317

Members
All members of WSException class, including all inherited members.

Name Description

“WSException constructor” Constructs a new exception with the
specified error message.

GetBaseException method (Inherited from System.Exception) When overridden in a derived class, re-
turns the System.Exception that is the
root cause of one or more subsequent
exceptions.

QAnywhere .NET API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 313

http://msdn.microsoft.com/en-us/library/System.Exception.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.GetBaseException.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.aspx

Name Description

GetObjectData method (Inherited from System.Exception) When overridden in a derived class,
sets the System.Runtime.Serializa-
tion.SerializationInfo with information
about the exception.

GetType method (Inherited from System.Exception) Gets the runtime type of the current in-
stance.

ToString method (Inherited from System.Exception) Creates and returns a string representa-
tion of the current exception.

Data property (Inherited from System.Exception) Gets a collection of key/value pairs
that provide additional user-defined in-
formation about the exception.

“ErrorCode property” The error code associated with this ex-
ception.

HelpLink property (Inherited from System.Exception) Gets or sets a link to the help file asso-
ciated with this exception.

HResult property (Inherited from System.Exception) Gets or sets HRESULT, a coded nu-
merical value that is assigned to a spe-
cific exception.

InnerException property (Inherited from System.Exception) Gets the System.Exception instance
that caused the current exception.

Message property (Inherited from System.Exception) Gets a message that describes the cur-
rent exception.

Source property (Inherited from System.Exception) Gets or sets the name of the applica-
tion or the object that causes the error.

StackTrace property (Inherited from System.Exception) Gets a string representation of the
frames on the call stack at the time the
current exception was thrown.

TargetSite property (Inherited from System.Exception) Gets the method that throws the cur-
rent exception.

“WS_STATUS_HTTP_ERROR field” Error code indicating that there was an
error in the web service HTTP request
made by the web services connector.

QAnywhere reference

314 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

http://msdn.microsoft.com/en-us/library/System.Exception.GetObjectData.aspx
http://msdn.microsoft.com/en-us/library/System.Runtime.Serialization.SerializationInfo.aspx
http://msdn.microsoft.com/en-us/library/System.Runtime.Serialization.SerializationInfo.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.GetType.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.ToString.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.Data.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.HelpLink.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.HResult.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.InnerException.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.Message.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.Source.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.StackTrace.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.TargetSite.aspx

Name Description

“WS_STATUS_HTTP_OK field” Error code indicating that the webser-
vice HTTP request by the web serv-
ices connector was successful.

“WS_STATUS_HTTP_RETRIES_EXCEEDED field” Error code indicating that the number
of HTTP retries was exceeded the web
services connector.

“WS_STATUS_SOAP_PARSE_ERROR field” Error code indicating that there was an
error in the web services runtime or in
the webservices connector in parsing a
SOAP response or request.

WSException constructor

Constructs a new exception with the specified error message.

Overload list

Name Description

“WSException(Exception) construc-
tor”

Constructs a new exception.

“WSException(string) constructor” Constructs a new exception with the specified error message.

“WSException(string, int) constructor” Constructs a new exception with the specified error message
and error code.

WSException(Exception) constructor
Constructs a new exception.

Visual Basic syntax
Public Sub New(ByVal ex As Exception)

C# syntax
public WSException(Exception ex)

Parameters
● ex The exception.

QAnywhere .NET API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 315

WSException(string) constructor
Constructs a new exception with the specified error message.

Visual Basic syntax
Public Sub New(ByVal msg As String)

C# syntax
public WSException(string msg)

Parameters
● msg The error message.

WSException(string, int) constructor
Constructs a new exception with the specified error message and error code.

Visual Basic syntax
Public Sub New(ByVal msg As String, ByVal errorCode As Integer)

C# syntax
public WSException(string msg, int errorCode)

Parameters
● msg The error message.

● errorCode The error code.

ErrorCode property

The error code associated with this exception.

Visual Basic syntax
Public Property ErrorCode As Integer

C# syntax
public int ErrorCode {get;set;}

WS_STATUS_HTTP_ERROR field

Error code indicating that there was an error in the web service HTTP request made by the web services
connector.

QAnywhere reference

316 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Visual Basic syntax
Public Shared WS_STATUS_HTTP_ERROR As Integer

C# syntax
public static int WS_STATUS_HTTP_ERROR;

WS_STATUS_HTTP_OK field

Error code indicating that the webservice HTTP request by the web services connector was successful.

Visual Basic syntax
Public Shared WS_STATUS_HTTP_OK As Integer

C# syntax
public static int WS_STATUS_HTTP_OK;

WS_STATUS_HTTP_RETRIES_EXCEEDED field

Error code indicating that the number of HTTP retries was exceeded the web services connector.

Visual Basic syntax
Public Shared WS_STATUS_HTTP_RETRIES_EXCEEDED As Integer

C# syntax
public static int WS_STATUS_HTTP_RETRIES_EXCEEDED;

WS_STATUS_SOAP_PARSE_ERROR field

Error code indicating that there was an error in the web services runtime or in the webservices connector
in parsing a SOAP response or request.

Visual Basic syntax
Public Shared WS_STATUS_SOAP_PARSE_ERROR As Integer

C# syntax
public static int WS_STATUS_SOAP_PARSE_ERROR;

WSFaultException class

This class represents a SOAP Fault exception from the web service connector.

QAnywhere .NET API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 317

Visual Basic syntax
Public Class WSFaultException Inherits WSException

C# syntax
public class WSFaultException : WSException

Base classes
● “WSException class” on page 313

Members
All members of WSFaultException class, including all inherited members.

Name Description

“WSFaultException constructor” Constructs a new exception with the
specified error message.

GetBaseException method (Inherited from System.Exception) When overridden in a derived class, re-
turns the System.Exception that is the
root cause of one or more subsequent
exceptions.

GetObjectData method (Inherited from System.Exception) When overridden in a derived class,
sets the System.Runtime.Serializa-
tion.SerializationInfo with information
about the exception.

GetType method (Inherited from System.Exception) Gets the runtime type of the current in-
stance.

ToString method (Inherited from System.Exception) Creates and returns a string representa-
tion of the current exception.

“WSException constructor” Constructs a new exception with the
specified error message.

Data property (Inherited from System.Exception) Gets a collection of key/value pairs
that provide additional user-defined in-
formation about the exception.

“ErrorCode property” The error code associated with this ex-
ception.

HelpLink property (Inherited from System.Exception) Gets or sets a link to the help file asso-
ciated with this exception.

QAnywhere reference

318 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

http://msdn.microsoft.com/en-us/library/System.Exception.GetBaseException.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.GetObjectData.aspx
http://msdn.microsoft.com/en-us/library/System.Runtime.Serialization.SerializationInfo.aspx
http://msdn.microsoft.com/en-us/library/System.Runtime.Serialization.SerializationInfo.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.GetType.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.ToString.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.Data.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.HelpLink.aspx

Name Description

HResult property (Inherited from System.Exception) Gets or sets HRESULT, a coded nu-
merical value that is assigned to a spe-
cific exception.

InnerException property (Inherited from System.Exception) Gets the System.Exception instance
that caused the current exception.

Message property (Inherited from System.Exception) Gets a message that describes the cur-
rent exception.

Source property (Inherited from System.Exception) Gets or sets the name of the applica-
tion or the object that causes the error.

StackTrace property (Inherited from System.Exception) Gets a string representation of the
frames on the call stack at the time the
current exception was thrown.

TargetSite property (Inherited from System.Exception) Gets the method that throws the cur-
rent exception.

“WS_STATUS_HTTP_ERROR field” Error code indicating that there was an
error in the web service HTTP request
made by the web services connector.

“WS_STATUS_HTTP_OK field” Error code indicating that the webser-
vice HTTP request by the web serv-
ices connector was successful.

“WS_STATUS_HTTP_RETRIES_EXCEEDED field” Error code indicating that the number
of HTTP retries was exceeded the web
services connector.

“WS_STATUS_SOAP_PARSE_ERROR field” Error code indicating that there was an
error in the web services runtime or in
the webservices connector in parsing a
SOAP response or request.

WSFaultException constructor

Constructs a new exception with the specified error message.

Visual Basic syntax
Public Sub New(ByVal msg As String)

QAnywhere .NET API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 319

http://msdn.microsoft.com/en-us/library/System.Exception.HResult.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.InnerException.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.Message.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.Source.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.StackTrace.aspx
http://msdn.microsoft.com/en-us/library/System.Exception.TargetSite.aspx

C# syntax
public WSFaultException(string msg)

Parameters
● msg The error message.

WSListener interface
This class represents a listener for results of web service requests.

Visual Basic syntax
Public Interface WSListener

C# syntax
public interface WSListener

Members
All members of WSListener interface, including all inherited members.

Name Description

“OnException method” Called when an exception occurs during processing of the result of an asyn-
chronous web service request.

“OnResult method” Called with the result of an asynchronous web service request.

OnException method

Called when an exception occurs during processing of the result of an asynchronous web service request.

Visual Basic syntax
Public Sub OnException(
 ByVal e As WSException,
 ByVal wsResult As WSResult
)

C# syntax
public void OnException(WSException e, WSResult wsResult)

Parameters
● e The WSException that occurred during processing of the result.

● wsResult A WSResult, from which the request ID may be obtained. Values of this WSResult are
not defined.

QAnywhere reference

320 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

OnResult method

Called with the result of an asynchronous web service request.

Visual Basic syntax
Public Sub OnResult(ByVal wsResult As WSResult)

C# syntax
public void OnResult(WSResult wsResult)

Parameters
● wsResult The WSResult describing the result of a web service request.

WSResult class

This class represents the results of a web service request.

Visual Basic syntax
Public Class WSResult

C# syntax
public class WSResult

Members
All members of WSResult class, including all inherited members.

Name Description

“Acknowledge method” Acknowledges that this WSResult has been processed.

“GetArrayValue method” Gets an array of complex types value from this WSResult.

“GetBoolArrayValue method” Gets an array of bool values from this WSResult.

“GetBooleanArrayValue method” Gets an array of Boolean values from this WSResult.

“GetBooleanValue method” Gets a Boolean value from this WSResult.

“GetBoolValue method” Gets a bool value from this WSResult.

“GetByteArrayValue method” Gets an array of byte values from this WSResult.

“GetByteValue method” Gets a byte value from this WSResult.

“GetCharArrayValue method” Gets an array of char values from this WSResult.

QAnywhere .NET API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 321

Name Description

“GetCharValue method” Gets a char value from this WSResult.

“GetDecimalArrayValue method” Gets an array of decimal values from this WSResult.

“GetDecimalValue method” Gets a decimal value from this WSResult.

“GetDoubleArrayValue method” Gets an array of double values from this WSResult.

“GetDoubleValue method” Gets a double value from this WSResult.

“GetErrorMessage method” Gets the error message.

“GetFloatArrayValue method” Gets an array of float values from this WSResult.

“GetFloatValue method” Gets a float value from this WSResult.

“GetInt16ArrayValue method” Gets an array of Int16 values from this WSResult.

“GetInt16Value method” Gets an Int16 value from this WSResult.

“GetInt32ArrayValue method” Gets an array of Int32 values from this WSResult.

“GetInt32Value method” Gets an Int32 value from this WSResult.

“GetInt64ArrayValue method” Gets an array of Int64 values from this WSResult.

“GetInt64Value method” Gets an Int64 value from this WSResult.

“GetIntArrayValue method” Gets an array of int values from this WSResult.

“GetIntValue method” Gets an int value from this WSResult.

“GetLongArrayValue method” Gets an array of long values from this WSResult.

“GetLongValue method” Gets a long value from this WSResult.

“GetNullableBoolArrayValue method” Gets an array of bool values from this WSResult.

“GetNullableBoolValue method” Gets a bool value from this WSResult.

“GetNullableDecimalArrayValue method” Gets an array of NullableDecimal values from this WSRe-
sult.

“GetNullableDecimalValue method” Gets a NullableDecimal value from this WSResult.

“GetNullableDoubleArrayValue method” Gets an array of double values from this WSResult.

“GetNullableDoubleValue method” Gets a double value from this WSResult.

QAnywhere reference

322 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“GetNullableFloatArrayValue method” Gets an array of float values from this WSResult.

“GetNullableFloatValue method” Gets a float value from this WSResult.

“GetNullableIntArrayValue method” Gets an array of int values from this WSResult.

“GetNullableIntValue method” Gets an int value from this WSResult.

“GetNullableLongArrayValue method” Gets an array of long values from this WSResult.

“GetNullableLongValue method” Gets an Int64 value from this WSResult.

“GetNullableSByteArrayValue method” Gets an array of byte values from this WSResult.

“GetNullableSByteValue method” Gets a byte value from this WSResult.

“GetNullableShortArrayValue method” Gets an array of short values from this WSResult.

“GetNullableShortValue method” Gets a short value from this WSResult.

“GetObjectArrayValue method” Gets an array of Object values from this WSResult.

“GetObjectValue method” Gets an object value from this WSResult.

“GetRequestID method” Gets the request ID that this WSResult represents.

“GetSByteArrayValue method” Gets an array of sbyte values from this WSResult.

“GetSByteValue method” Gets an sbyte value from this WSResult.

“GetShortArrayValue method” Gets an array of short values from this WSResult.

“GetShortValue method” Gets a short value from this WSResult.

“GetSingleArrayValue method” Gets an array of Single values from this WSResult.

“GetSingleValue method” Gets a Single value from this WSResult.

“GetStatus method” Gets the status of this WSResult.

“GetStringArrayValue method” Gets an array of string values from this WSResult.

“GetStringValue method” Gets a string value from this WSResult.

“GetUIntArrayValue method” Gets an array of unsigned int values from this WSResult.

“GetUIntValue method” Gets a unsigned int value from this WSResult.

QAnywhere .NET API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 323

Name Description

“GetULongArrayValue method” Gets an array of unsigned long values from this WSResult.

“GetULongValue method” Gets a unsigned long value from this WSResult.

“GetUShortArrayValue method” Gets an array of unsigned short values from this WSResult.

“GetUShortValue method” Gets a unsigned short value from this WSResult.

“GetValue method” Gets the value of a complex type from this WSResult.

“SetLogger method” Turns debug on or off.

Remarks
A WSResult object is obtained in one of three ways:

● It is passed to the WSListener.onResult.

● It is returned by an asyncXYZ method of the service proxy generated by the compiler.

● It is obtained by calling WSBase.getResult with a specific request ID.

Acknowledge method

Acknowledges that this WSResult has been processed.

Visual Basic syntax
Public Sub Acknowledge()

C# syntax
public void Acknowledge()

Remarks
This method is only useful when an EXPLICIT_ACKNOWLEDGEMENT QAManager is being used.

GetArrayValue method

Gets an array of complex types value from this WSResult.

Visual Basic syntax
Public Function GetArrayValue(
 ByVal parentName As String
) As WSSerializable()

QAnywhere reference

324 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

C# syntax
public WSSerializable[] GetArrayValue(string parentName)

Parameters
● parentName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetBoolArrayValue method

Gets an array of bool values from this WSResult.

Visual Basic syntax
Public Function GetBoolArrayValue(
 ByVal elementName As String
) As Boolean()

C# syntax
public bool[] GetBoolArrayValue(string elementName)

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetBooleanArrayValue method

Gets an array of Boolean values from this WSResult.

Visual Basic syntax
Public Function GetBooleanArrayValue(
 ByVal elementName As String
) As System.Boolean()

C# syntax
public System.Boolean[] GetBooleanArrayValue(string elementName)

QAnywhere .NET API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 325

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetBooleanValue method

Gets a Boolean value from this WSResult.

Visual Basic syntax
Public Function GetBooleanValue(
 ByVal childName As String
) As System.Boolean

C# syntax
public System.Boolean GetBooleanValue(string childName)

Parameters
● childName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetBoolValue method

Gets a bool value from this WSResult.

Visual Basic syntax
Public Function GetBoolValue(ByVal childName As String) As Boolean

C# syntax
public bool GetBoolValue(string childName)

Parameters
● childName The element name in the WSDL document of this value.

QAnywhere reference

326 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetByteArrayValue method

Gets an array of byte values from this WSResult.

Visual Basic syntax
Public Function GetByteArrayValue(ByVal elementName As String) As Byte()

C# syntax
public byte[] GetByteArrayValue(string elementName)

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetByteValue method

Gets a byte value from this WSResult.

Visual Basic syntax
Public Function GetByteValue(ByVal childName As String) As Byte

C# syntax
public byte GetByteValue(string childName)

Parameters
● childName The element name in the WSDL document of this value.

Returns
The value.

QAnywhere .NET API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 327

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetCharArrayValue method

Gets an array of char values from this WSResult.

Visual Basic syntax
Public Function GetCharArrayValue(ByVal elementName As String) As Char()

C# syntax
public char[] GetCharArrayValue(string elementName)

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetCharValue method

Gets a char value from this WSResult.

Visual Basic syntax
Public Function GetCharValue(ByVal childName As String) As Char

C# syntax
public char GetCharValue(string childName)

Parameters
● childName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

QAnywhere reference

328 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

GetDecimalArrayValue method

Gets an array of decimal values from this WSResult.

Visual Basic syntax
Public Function GetDecimalArrayValue(
 ByVal elementName As String
) As Decimal()

C# syntax
public decimal[] GetDecimalArrayValue(string elementName)

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetDecimalValue method

Gets a decimal value from this WSResult.

Visual Basic syntax
Public Function GetDecimalValue(ByVal childName As String) As Decimal

C# syntax
public decimal GetDecimalValue(string childName)

Parameters
● childName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetDoubleArrayValue method

Gets an array of double values from this WSResult.

QAnywhere .NET API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 329

Visual Basic syntax
Public Function GetDoubleArrayValue(
 ByVal elementName As String
) As Double()

C# syntax
public double[] GetDoubleArrayValue(string elementName)

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetDoubleValue method

Gets a double value from this WSResult.

Visual Basic syntax
Public Function GetDoubleValue(ByVal childName As String) As Double

C# syntax
public double GetDoubleValue(string childName)

Parameters
● childName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetErrorMessage method

Gets the error message.

Visual Basic syntax
Public Function GetErrorMessage() As String

QAnywhere reference

330 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

C# syntax
public string GetErrorMessage()

Returns
The error message.

GetFloatArrayValue method

Gets an array of float values from this WSResult.

Visual Basic syntax
Public Function GetFloatArrayValue(
 ByVal elementName As String
) As Single()

C# syntax
public float[] GetFloatArrayValue(string elementName)

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetFloatValue method

Gets a float value from this WSResult.

Visual Basic syntax
Public Function GetFloatValue(ByVal childName As String) As Single

C# syntax
public float GetFloatValue(string childName)

Parameters
● childName The element name in the WSDL document of this value.

Returns
The value.

QAnywhere .NET API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 331

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetInt16ArrayValue method

Gets an array of Int16 values from this WSResult.

Visual Basic syntax
Public Function GetInt16ArrayValue(
 ByVal elementName As String
) As System.Int16()

C# syntax
public System.Int16[] GetInt16ArrayValue(string elementName)

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetInt16Value method

Gets an Int16 value from this WSResult.

Visual Basic syntax
Public Function GetInt16Value(ByVal childName As String) As System.Int16

C# syntax
public System.Int16 GetInt16Value(string childName)

Parameters
● childName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

QAnywhere reference

332 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

GetInt32ArrayValue method

Gets an array of Int32 values from this WSResult.

Visual Basic syntax
Public Function GetInt32ArrayValue(
 ByVal elementName As String
) As System.Int32()

C# syntax
public System.Int32[] GetInt32ArrayValue(string elementName)

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetInt32Value method

Gets an Int32 value from this WSResult.

Visual Basic syntax
Public Function GetInt32Value(ByVal childName As String) As System.Int32

C# syntax
public System.Int32 GetInt32Value(string childName)

Parameters
● childName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetInt64ArrayValue method

Gets an array of Int64 values from this WSResult.

QAnywhere .NET API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 333

Visual Basic syntax
Public Function GetInt64ArrayValue(
 ByVal elementName As String
) As System.Int64()

C# syntax
public System.Int64[] GetInt64ArrayValue(string elementName)

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetInt64Value method

Gets an Int64 value from this WSResult.

Visual Basic syntax
Public Function GetInt64Value(ByVal childName As String) As System.Int64

C# syntax
public System.Int64 GetInt64Value(string childName)

Parameters
● childName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetIntArrayValue method

Gets an array of int values from this WSResult.

Visual Basic syntax
Public Function GetIntArrayValue(
 ByVal elementName As String
) As Integer()

QAnywhere reference

334 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

C# syntax
public int[] GetIntArrayValue(string elementName)

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetIntValue method

Gets an int value from this WSResult.

Visual Basic syntax
Public Function GetIntValue(ByVal childName As String) As Integer

C# syntax
public int GetIntValue(string childName)

Parameters
● childName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetLongArrayValue method

Gets an array of long values from this WSResult.

Visual Basic syntax
Public Function GetLongArrayValue(ByVal elementName As String) As Long()

C# syntax
public long[] GetLongArrayValue(string elementName)

QAnywhere .NET API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 335

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetLongValue method

Gets a long value from this WSResult.

Visual Basic syntax
Public Function GetLongValue(ByVal childName As String) As Long

C# syntax
public long GetLongValue(string childName)

Parameters
● childName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetNullableBoolArrayValue method

Gets an array of bool values from this WSResult.

Visual Basic syntax
Public Function GetNullableBoolArrayValue(
 ByVal elementName As String
) As NullableBool()

C# syntax
public NullableBool[] GetNullableBoolArrayValue(string elementName)

Parameters
● elementName The element name in the WSDL document of this value.

QAnywhere reference

336 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetNullableBoolValue method

Gets a bool value from this WSResult.

Visual Basic syntax
Public Function GetNullableBoolValue(
 ByVal childName As String
) As NullableBool

C# syntax
public NullableBool GetNullableBoolValue(string childName)

Parameters
● childName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetNullableDecimalArrayValue method

Gets an array of NullableDecimal values from this WSResult.

Visual Basic syntax
Public Function GetNullableDecimalArrayValue(
 ByVal elementName As String
) As NullableDecimal()

C# syntax
public NullableDecimal[] GetNullableDecimalArrayValue(
 string elementName
)

Parameters
● elementName The element name in the WSDL document of this value.

QAnywhere .NET API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 337

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetNullableDecimalValue method

Gets a NullableDecimal value from this WSResult.

Visual Basic syntax
Public Function GetNullableDecimalValue(
 ByVal childName As String
) As NullableDecimal

C# syntax
public NullableDecimal GetNullableDecimalValue(string childName)

Parameters
● childName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetNullableDoubleArrayValue method

Gets an array of double values from this WSResult.

Visual Basic syntax
Public Function GetNullableDoubleArrayValue(
 ByVal elementName As String
) As NullableDouble()

C# syntax
public NullableDouble[] GetNullableDoubleArrayValue(string elementName)

Parameters
● elementName The element name in the WSDL document of this value.

QAnywhere reference

338 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetNullableDoubleValue method

Gets a double value from this WSResult.

Visual Basic syntax
Public Function GetNullableDoubleValue(
 ByVal childName As String
) As NullableDouble

C# syntax
public NullableDouble GetNullableDoubleValue(string childName)

Parameters
● childName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetNullableFloatArrayValue method

Gets an array of float values from this WSResult.

Visual Basic syntax
Public Function GetNullableFloatArrayValue(
 ByVal elementName As String
) As NullableFloat()

C# syntax
public NullableFloat[] GetNullableFloatArrayValue(string elementName)

Parameters
● elementName The element name in the WSDL document of this value.

QAnywhere .NET API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 339

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetNullableFloatValue method

Gets a float value from this WSResult.

Visual Basic syntax
Public Function GetNullableFloatValue(
 ByVal childName As String
) As NullableFloat

C# syntax
public NullableFloat GetNullableFloatValue(string childName)

Parameters
● childName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetNullableIntArrayValue method

Gets an array of int values from this WSResult.

Visual Basic syntax
Public Function GetNullableIntArrayValue(
 ByVal elementName As String
) As NullableInt()

C# syntax
public NullableInt[] GetNullableIntArrayValue(string elementName)

Parameters
● elementName The element name in the WSDL document of this value.

QAnywhere reference

340 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetNullableIntValue method

Gets an int value from this WSResult.

Visual Basic syntax
Public Function GetNullableIntValue(
 ByVal childName As String
) As NullableInt

C# syntax
public NullableInt GetNullableIntValue(string childName)

Parameters
● childName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetNullableLongArrayValue method

Gets an array of long values from this WSResult.

Visual Basic syntax
Public Function GetNullableLongArrayValue(
 ByVal elementName As String
) As NullableLong()

C# syntax
public NullableLong[] GetNullableLongArrayValue(string elementName)

Parameters
● elementName The element name in the WSDL document of this value.

QAnywhere .NET API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 341

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetNullableLongValue method

Gets an Int64 value from this WSResult.

Visual Basic syntax
Public Function GetNullableLongValue(
 ByVal childName As String
) As NullableLong

C# syntax
public NullableLong GetNullableLongValue(string childName)

Parameters
● childName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetNullableSByteArrayValue method

Gets an array of byte values from this WSResult.

Visual Basic syntax
Public Function GetNullableSByteArrayValue(
 ByVal elementName As String
) As NullableSByte()

C# syntax
public NullableSByte[] GetNullableSByteArrayValue(string elementName)

Parameters
● elementName The element name in the WSDL document of this value.

QAnywhere reference

342 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetNullableSByteValue method

Gets a byte value from this WSResult.

Visual Basic syntax
Public Function GetNullableSByteValue(
 ByVal childName As String
) As NullableSByte

C# syntax
public NullableSByte GetNullableSByteValue(string childName)

Parameters
● childName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetNullableShortArrayValue method

Gets an array of short values from this WSResult.

Visual Basic syntax
Public Function GetNullableShortArrayValue(
 ByVal elementName As String
) As NullableShort()

C# syntax
public NullableShort[] GetNullableShortArrayValue(string elementName)

Parameters
● elementName The element name in the WSDL document of this value.

QAnywhere .NET API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 343

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetNullableShortValue method

Gets a short value from this WSResult.

Visual Basic syntax
Public Function GetNullableShortValue(
 ByVal childName As String
) As NullableShort

C# syntax
public NullableShort GetNullableShortValue(string childName)

Parameters
● childName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetObjectArrayValue method

Gets an array of Object values from this WSResult.

Visual Basic syntax
Public Function GetObjectArrayValue(
 ByVal elementName As String
) As System.Object()

C# syntax
public System.Object[] GetObjectArrayValue(string elementName)

Parameters
● elementName The element name in the WSDL document of this value.

QAnywhere reference

344 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetObjectValue method

Gets an object value from this WSResult.

Visual Basic syntax
Public Function GetObjectValue(
 ByVal childName As String
) As System.Object

C# syntax
public System.Object GetObjectValue(string childName)

Parameters
● childName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetRequestID method

Gets the request ID that this WSResult represents.

Visual Basic syntax
Public Function GetRequestID() As String

C# syntax
public string GetRequestID()

Returns
The request ID.

Remarks
This request ID should be persisted between runs of the application if it is desired to obtain a WSResult
corresponding to a web service request in a run of the application different from when the request was made.

QAnywhere .NET API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 345

GetSByteArrayValue method

Gets an array of sbyte values from this WSResult.

Visual Basic syntax
Public Function GetSByteArrayValue(
 ByVal elementName As String
) As SByte()

C# syntax
public sbyte[] GetSByteArrayValue(string elementName)

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetSByteValue method

Gets an sbyte value from this WSResult.

Visual Basic syntax
Public Function GetSByteValue(ByVal childName As String) As SByte

C# syntax
public sbyte GetSByteValue(string childName)

Parameters
● childName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetShortArrayValue method

Gets an array of short values from this WSResult.

QAnywhere reference

346 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Visual Basic syntax
Public Function GetShortArrayValue(
 ByVal elementName As String
) As Short()

C# syntax
public short[] GetShortArrayValue(string elementName)

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetShortValue method

Gets a short value from this WSResult.

Visual Basic syntax
Public Function GetShortValue(ByVal childName As String) As Short

C# syntax
public short GetShortValue(string childName)

Parameters
● childName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetSingleArrayValue method

Gets an array of Single values from this WSResult.

Visual Basic syntax
Public Function GetSingleArrayValue(
 ByVal elementName As String
) As System.Single()

QAnywhere .NET API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 347

C# syntax
public System.Single[] GetSingleArrayValue(string elementName)

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetSingleValue method

Gets a Single value from this WSResult.

Visual Basic syntax
Public Function GetSingleValue(
 ByVal childName As String
) As System.Single

C# syntax
public System.Single GetSingleValue(string childName)

Parameters
● childName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetStatus method

Gets the status of this WSResult.

Visual Basic syntax
Public Function GetStatus() As WSStatus

C# syntax
public WSStatus GetStatus()

QAnywhere reference

348 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns
The status code.

See also
● “WSStatus enumeration” on page 353

GetStringArrayValue method

Gets an array of string values from this WSResult.

Visual Basic syntax
Public Function GetStringArrayValue(
 ByVal elementName As String
) As String()

C# syntax
public string[] GetStringArrayValue(string elementName)

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetStringValue method

Gets a string value from this WSResult.

Visual Basic syntax
Public Function GetStringValue(ByVal childName As String) As String

C# syntax
public string GetStringValue(string childName)

Parameters
● childName The element name in the WSDL document of this value.

Returns
The value.

QAnywhere .NET API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 349

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetUIntArrayValue method

Gets an array of unsigned int values from this WSResult.

Visual Basic syntax
Public Function GetUIntArrayValue(
 ByVal elementName As String
) As UInteger()

C# syntax
public uint[] GetUIntArrayValue(string elementName)

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetUIntValue method

Gets a unsigned int value from this WSResult.

Visual Basic syntax
Public Function GetUIntValue(ByVal childName As String) As UInteger

C# syntax
public uint GetUIntValue(string childName)

Parameters
● childName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

QAnywhere reference

350 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

GetULongArrayValue method

Gets an array of unsigned long values from this WSResult.

Visual Basic syntax
Public Function GetULongArrayValue(
 ByVal elementName As String
) As ULong()

C# syntax
public ulong[] GetULongArrayValue(string elementName)

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetULongValue method

Gets a unsigned long value from this WSResult.

Visual Basic syntax
Public Function GetULongValue(ByVal childName As String) As ULong

C# syntax
public ulong GetULongValue(string childName)

Parameters
● childName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetUShortArrayValue method

Gets an array of unsigned short values from this WSResult.

QAnywhere .NET API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 351

Visual Basic syntax
Public Function GetUShortArrayValue(
 ByVal elementName As String
) As UShort()

C# syntax
public ushort[] GetUShortArrayValue(string elementName)

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetUShortValue method

Gets a unsigned short value from this WSResult.

Visual Basic syntax
Public Function GetUShortValue(ByVal childName As String) As UShort

C# syntax
public ushort GetUShortValue(string childName)

Parameters
● childName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

GetValue method

Gets the value of a complex type from this WSResult.

Visual Basic syntax
Public Function GetValue(ByVal childName As String) As Object

QAnywhere reference

352 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

C# syntax
public object GetValue(string childName)

Parameters
● childName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● iAnywhere.QAnywhere.WS.WSException Thrown if there is a problem getting the value.

SetLogger method

Turns debug on or off.

Visual Basic syntax
Public Sub SetLogger(ByVal wsLogger As WSLogger)

C# syntax
public void SetLogger(WSLogger wsLogger)

WSStatus enumeration
This class defines codes for the status of a web service request.

Visual Basic syntax
Public Enum WSStatus

C# syntax
public enum WSStatus

Members

Member name Description

STATUS_SUCCESS The request was successful.

STATUS_ERROR There was an error processing the request.

STATUS_QUEUED The request has been queued for delivery to the server.

The final status of the request is not known yet.

QAnywhere .NET API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 353

Member name Description

STATUS_RESULT_AVAILABLE The result of the request is available.

QAnywhere C++ API reference for clients
The QAnywhere C++ API does not support UltraLite databases.

Header file
qa.hpp

AcknowledgementMode class
Indicates how messages should be acknowledged by QAnywhere client applications.

Syntax
public class AcknowledgementMode

Members
All members of AcknowledgementMode class, including all inherited members.

Name Description

“EXPLICIT_ACKNOWLEDGEMENT variable” Indicates that received messages are acknowledged
using one of the QAManager acknowledge methods.

“IMPLICIT_ACKNOWLEDGEMENT variable” Indicates that all messages are acknowledged as
soon as they are received by a client application.

“TRANSACTIONAL variable” Indicates that messages are only acknowledged as
part of the ongoing transaction.

Remarks
The IMPLICIT_ACKNOWLEDGEMENT and EXPLICIT_ACKNOWLEDGEMENT modes are
assigned to a QAManager instance using the QAManager::open() method. The TRANSACTIONAL
mode is implicitly assigned to QATransactionalManager instances.

For more information, see “Initializing a QAnywhere API” on page 52.

In implicit acknowledgement mode, messages are acknowledged as soon as they are received by a client
application. In explicit acknowledgement mode, you must call one of the QAManager acknowledgement
methods. In transactional mode, you must call the QATransactionalManager::commit() method to
acknowledge all outstanding messages. The server propagates all status changes from client to client.

QAnywhere reference

354 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

For more information, see “Receiving messages synchronously” on page 68 and “Receiving messages
asynchronously” on page 70.

For transactional messaging, use the QATransactionalManager. In this case, you use the
QATransactionalManager::commit method to acknowledge messages belonging to a transaction.

You can determine the mode of a QAManagerBase instance using the QAManagerBase::Mode property.

See also
● “QAManager class” on page 387
● “QATransactionalManager class” on page 457
● “QAManagerBase class” on page 394

EXPLICIT_ACKNOWLEDGEMENT variable

Indicates that received messages are acknowledged using one of the QAManager acknowledge methods.

Syntax
public static const qa_short EXPLICIT_ACKNOWLEDGEMENT;

IMPLICIT_ACKNOWLEDGEMENT variable

Indicates that all messages are acknowledged as soon as they are received by a client application.

Syntax
public static const qa_short IMPLICIT_ACKNOWLEDGEMENT;

Remarks
If you receive messages synchronously, messages are acknowledged as soon as the
QAManagerBase::getMessage method returns. If you receive messages asynchronously, the message is
acknowledged as soon as the event handling function returns.

TRANSACTIONAL variable

Indicates that messages are only acknowledged as part of the ongoing transaction.

Syntax
public static const qa_short TRANSACTIONAL;

Remarks
This mode is automatically assigned to QATransactionalManager instances.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 355

MessageProperties class
Provides fields storing standard message property names.

Syntax
public class MessageProperties

Members
All members of MessageProperties class, including all inherited members.

Name Description

“ADAPTER variable” This property name refers to the currently active network
adapter that is being used to connect to the QAnywhere server.

“ADAPTERS variable” This property name refers to a delimited list of network adapt-
ers that can be used to connect to the QAnywhere server.

“DELIVERY_COUNT variable” This property name refers to the number of attempts that
have been made so far to deliver the message.

“IP variable” This property name refers to the IP address of the currently
active network adapter that is being used to connect to the
QAnywhere server.

“MAC variable” This property name refers to the MAC address of the current-
ly active network adapter that is being used to connect to the
QAnywhere server.

“MSG_TYPE variable” This property name refers to MessageType enumeration val-
ues associated with a QAnywhere message.

“NETWORK_STATUS variable” This property name refers to the state of the network connec-
tion.

“ORIGINATOR variable” This property name refers to the message store ID of the orig-
inator of the message.

“RAS variable” This property name refers to the currently active RAS name
that is being used to connect to the QAnywhere server.

“RASNAMES variable” This property name refers to a delimited list of RAS entry
names that can be used to connect to the QAnywhere server.

“STATUS variable” This property name refers to the current status of the message.

“STATUS_TIME variable” This property name refers to the time at which the message
received its current status.

QAnywhere reference

356 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“TRANSMISSION_STATUS variable” This property name refers to the current transmission status
of the message.

Remarks
The MessageProperties class provides standard message property names. You can pass MessageProperties
fields to QAMessage methods used to get and set message properties.

For more information, see “QAnywhere messages” on page 13.

See also
● “QAMessage class” on page 429

Example
For example, assume you have the following QATextMessage instance:

QATextMessage * t_msg;

The following example gets the value corresponding to MessageProperties::MSG_TYPE using the
QAMessage::getIntProperty method. The MessageType enumeration maps the integer result to an
appropriate message type.

int msg_type;
t_msg->getIntProperty(MessageProperties::MSG_TYPE, &msg_type)

The following example, evaluates the message type and RAS names using
MessageProperties::MSG_TYPE and MessageProperties::RASNAMES respectively.

void SystemQueueListener::onMessage(QAMessage * msg) {
 QATextMessage * t_msg;
 TCHAR buffer[512];
 int len;
 int msg_type;
 t_msg = msg->castToTextMessage();
 if(t_msg != NULL) {
 t_msg->getIntProperty(MessageProperties::MSG_TYPE, &msg_type);
 if(msg_type == MessageType::NETWORK_STATUS_NOTIFICATION) {
 // get RAS names using MessageProperties::RASNAMES
 len = t_msg-
>getStringProperty(MessageProperties::RASNAMES,buffer,sizeof(buffer));
 }
 //...
 }
}

ADAPTER variable

This property name refers to the currently active network adapter that is being used to connect to the
QAnywhere server.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 357

Syntax
public static const qa_string ADAPTER;

Remarks
It is used for system queue messages.

The value of this field is "ias_Network.Adapter".

Pass MessageProperties::ADAPTER as the first parameter to the QAMessage::getStringProperty method
to access the associated message property.

For more information, see “Message properties” on page 659.

See also
● “getStringProperty method” on page 440

ADAPTERS variable

This property name refers to a delimited list of network adapters that can be used to connect to the
QAnywhere server.

Syntax
public static const qa_string ADAPTERS;

Remarks
It is used for system queue messages.

The value of this field is "ias_Adapters".

Pass MessageProperties::ADAPTERS as the first parameter to the QAMessage::getStringProperty method
to access the associated message property.

For more information, see “Message properties” on page 659.

See also
● “getStringProperty method” on page 440

DELIVERY_COUNT variable

This property name refers to the number of attempts that have been made so far to deliver the message.

Syntax
public static const qa_string DELIVERY_COUNT;

QAnywhere reference

358 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
The value of this field is "ias_DeliveryCount".

Pass MessageProperties::DELIVERY_COUNT as the first parameter in the
QAMessage::setStringProperty method or the QAMessage::getStringProperty method to access the
associated message property.

See also
● “setStringProperty method” on page 450
● “getStringProperty method” on page 440

IP variable

This property name refers to the IP address of the currently active network adapter that is being used to
connect to the QAnywhere server.

Syntax
public static const qa_string IP;

Remarks
It is used for system queue messages.

The value of this field is "ias_Network.IP".

Pass MessageProperties::IP as the first parameter to the QAMessage::getStringProperty method to access
the associated message property.

For more information, see “Message properties” on page 659.

See also
● “getStringProperty method” on page 440

MAC variable

This property name refers to the MAC address of the currently active network adapter that is being used
to connect to the QAnywhere server.

Syntax
public static const qa_string MAC;

Remarks
It is used for system queue messages.

The value of this field is "ias_Network.MAC".

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 359

Pass MessageProperties::MAC as the first parameter to the QAMessage::getStringProperty method to
access the associated message property.

For more information, see “Message properties” on page 659.

See also
● “getStringProperty method” on page 440

MSG_TYPE variable

This property name refers to MessageType enumeration values associated with a QAnywhere message.

Syntax
public static const qa_string MSG_TYPE;

Remarks
The value of this field is "ias_MessageType". Pass MessageProperties::MSG_TYPE as the first parameter
in the QAMessage::setIntProperty method or the QAMessage::getIntProperty method to determine the
associated property.

See also
● “MessageType class” on page 364
● “setIntProperty method” on page 447
● “getIntProperty method” on page 437

NETWORK_STATUS variable

This property name refers to the state of the network connection.

Syntax
public static const qa_string NETWORK_STATUS;

Remarks
The value of this field is "ias_NetworkStatus".

The value of this property is 1 if the network is accessible and 0 otherwise. The network status is used for
system queue messages (for example, network status changes).

For more information, see “Message properties” on page 659.

Pass MessageProperties::NETWORK_STATUS as the first parameter in the
QAMessage::setStringProperty method or the QAMessage::getStringProperty method to access the
associated message property.

QAnywhere reference

360 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “setStringProperty method” on page 450
● “getStringProperty method” on page 440

ORIGINATOR variable

This property name refers to the message store ID of the originator of the message.

Syntax
public static const qa_string ORIGINATOR;

Remarks
The value of this field is "ias_Originator".

Pass MessageProperties::ORIGINATOR as the first parameter in the QAMessage::setStringProperty
method or the QAMessage::getStringProperty method to access the associated message property.

See also
● “setStringProperty method” on page 450
● “getStringProperty method” on page 440

RAS variable

This property name refers to the currently active RAS name that is being used to connect to the
QAnywhere server.

Syntax
public static const qa_string RAS;

Remarks
It is used for system queue messages.

The value of this field is "ias_Network.RAS".

Pass MessageProperties::RAS as the first parameter to the QAMessage::getStringProperty method to
access the associated message property.

For more information, see “Message properties” on page 659.

See also
● “getStringProperty method” on page 440

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 361

RASNAMES variable

This property name refers to a delimited list of RAS entry names that can be used to connect to the
QAnywhere server.

Syntax
public static const qa_string RASNAMES;

Remarks
It is used for system queue messages.

The value of this field is "ias_RASNames".

For more information, see “Message properties” on page 659.

Pass MessageProperties::RASNAMES as the first parameter in the QAMessage::setStringProperty
method or the QAMessage::getStringProperty method to access the associated message property.

See also
● “setStringProperty method” on page 450
● “getStringProperty method” on page 440
● “setIntProperty method” on page 447
● “getIntProperty method” on page 437

STATUS variable

This property name refers to the current status of the message.

Syntax
public static const qa_string STATUS;

Remarks
For a list of values, see the StatusCodes. The value of this field is "ias_Status".

Pass MessageProperties::STATUS as the first parameter in the QAMessage::setIntProperty method or the
QAMessage::getIntProperty method to access the associated message property.

See also
● “StatusCodes class” on page 464
● “setIntProperty method” on page 447
● “getIntProperty method” on page 437

STATUS_TIME variable

This property name refers to the time at which the message received its current status.

QAnywhere reference

362 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
public static const qa_string STATUS_TIME;

Remarks
It is in units that are natural for the platform. For Windows/PocketPC platforms, the timestamp is the
SYSTEMTIME, converted to a FILETIME, which is copied to a qa_long value. It is a local time. The
value of this field is "ias_StatusTime".

Pass MessageProperties::STATUS_TIME as the first parameter in the QAMessage::getLongProperty
method to access the associated read-only message property.

See also
● “getLongProperty method” on page 437

TRANSMISSION_STATUS variable

This property name refers to the current transmission status of the message.

Syntax
public static const qa_string TRANSMISSION_STATUS;

Remarks
For a list of values, see the StatusCodes.

The value of this field is "ias_TransmissionStatus".

Pass MessageProperties::TRANSMISSION_STATUS as the first parameter in the
QAMessage::setIntProperty method or the QAMessage::getIntProperty method to access the associated
message property.

See also
● “StatusCodes class” on page 464
● “setIntProperty method” on page 447
● “getIntProperty method” on page 437

MessageStoreProperties class
The MessageStoreProperties class provides standard message property names.

Syntax
public class MessageStoreProperties

Members
All members of MessageStoreProperties class, including all inherited members.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 363

Name Description

“MAX_DELIVERY_ATTEMPTS variable” This property name refers to the maximum number of
times that a message can be received, without explicit ac-
knowledgement, before its status is set to StatusCo-
des::UNRECEIVABLE.

Remarks
You can pass MessageStoreProperties fields to QAManagerBase methods used to get and set pre-defined
or custom message store properties.

For more information, see “Client message store properties” on page 26.

MAX_DELIVERY_ATTEMPTS variable

This property name refers to the maximum number of times that a message can be received, without
explicit acknowledgement, before its status is set to StatusCodes::UNRECEIVABLE.

Syntax
public static const qa_string MAX_DELIVERY_ATTEMPTS;

Remarks
The value of this field is "ias_MaxDeliveryAttempts".

See also
● “StatusCodes class” on page 464

MessageType class

Defines constant values for the MessageProperties::MSG_TYPE message property.

Syntax
public class MessageType

Members
All members of MessageType class, including all inherited members.

Name Description

“NETWORK_STATUS_NOTIFICATION variable” Identifies a QAnywhere system message used
to notify QAnywhere client applications of net-
work status changes.

QAnywhere reference

364 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“PUSH_NOTIFICATION variable” Identifies a QAnywhere system message used
to notify QAnywhere client applications of
push notifications.

“REGULAR variable” If no message type property exists then the mes-
sage type is assumed to be REGULAR.

Remarks
The following example shows the onSystemMessage method which is used to handle QAnywhere system
messages.

The message type is compared to MessageType.NETWORK_STATUS_NOTIFICATION.

 void SystemQueueListener::onMessage(QAMessage * msg) {
 QATextMessage * t_msg;
 TCHAR buffer[512];
 int len;
 int msg_type;
 t_msg = msg->castToTextMessage();
 if(t_msg != NULL) {
 t_msg->getIntProperty(MessageProperties::MSG_TYPE, &msg_type);
 if(msg_type == MessageType::NETWORK_STATUS_NOTIFICATION) {
 // get network names using MessageProperties::NETWORK
 len = t_msg-
>getStringProperty(MessageProperties::NETWORK,buffer,sizeof(buffer));
 }
 //...
 }
}

NETWORK_STATUS_NOTIFICATION variable

Identifies a QAnywhere system message used to notify QAnywhere client applications of network status
changes.

Syntax
public static const qa_int NETWORK_STATUS_NOTIFICATION;

Remarks
Network status changes apply to the device receiving the system message. Use the
MessageProperties::ADAPTER, MessageProperties::NETWORK, and
MessageProperties::NETWORK_STATUS fields to identify new network status information.

For more information, see “Predefined message properties” on page 659.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 365

PUSH_NOTIFICATION variable

Identifies a QAnywhere system message used to notify QAnywhere client applications of push notifications.

Syntax
public static const qa_int PUSH_NOTIFICATION;

Remarks
If you use the on-demand QAnywhere Agent policy, a typical response is to call the
QAManagerBase::triggerSendReceive() method to receive messages waiting with the central message
server.

For more information, see “Predefined message properties” on page 659.

REGULAR variable

If no message type property exists then the message type is assumed to be REGULAR.

Syntax
public static const qa_int REGULAR;

Remarks
This type of message is not treated specially by the message system.

QABinaryMessage class

A QABinaryMessage object is used to send a message containing a stream of uninterpreted bytes.

Syntax
public class QABinaryMessage : QAMessage

Base classes
● “QAMessage class” on page 429

Members
All members of QABinaryMessage class, including all inherited members.

Name Description

“QABinaryMessage deconstructor” Virtual destructor.

“beginEnumPropertyNames method” Begins an enumeration of message property names.

QAnywhere reference

366 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“castToBinaryMessage method” Casts this QAMessage to a QABinaryMessage.

“castToTextMessage method” Casts this QAMessage to a QATextMessage.

“clearProperties method” Clears a message's properties.

“endEnumPropertyNames method” Frees the resources associated with a message property
name enumeration.

“getAddress method” Gets the destination address for the QAMessage instance.

“getBodyLength method” Returns the size of the message body in bytes.

“getBooleanProperty method” Gets the value of the qa_bool property with the specified
name.

“getByteProperty method” Gets the value of the qa_byte property with the specified
name.

“getDoubleProperty method” Gets the value of the qa_double property with the specified
name.

“getExpiration method” Gets the message's expiration time.

“getFloatProperty method” Gets the value of the qa_float property with the specified
name.

“getInReplyToID method” Gets the ID of the message that this message is in reply to.

“getIntProperty method” Gets the value of the qa_int property with the specified name.

“getLongProperty method” Gets the value of the qa_long property with the specified
name.

“getMessageID method” Gets the message ID.

“getPriority method” Gets the message priority level.

“getPropertyType method” Returns the type of a property with the given name.

“getRedelivered method” Indicates whether the message has been previously re-
ceived but not acknowledged.

“getReplyToAddress method” Gets the address to which a reply to this message should be
sent.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 367

Name Description

“getShortProperty method” Gets the value of the qa_short property with the specified
name.

“getStringProperty method” Gets the value of the qa_string property with the specified
name.

“getTimestamp method” Gets the message timestamp.

“getTimestampAsString method” Gets the message timestamp as a formatted string.

“nextPropertyName method” Returns the message property name for the given enumera-
tion, returning -1 if there are no more property names.

“propertyExists method” Indicates whether a property value exists.

“readBinary method” Reads a specified number of bytes starting from the unread
portion of the QABinaryMessage instance's message body.

“readBoolean method” Reads a boolean value starting from the unread portion of
the QABinaryMessage instance's message body.

“readByte method” Reads a signed 8-bit value starting from the unread portion
of the QABinaryMessage instance's message body.

“readChar method” Reads a character value starting from the unread portion of
the QABinaryMessage instance's message body.

“readDouble method” Reads a double value starting from the unread portion of
the QABinaryMessage instance's message body.

“readFloat method” Reads a float value starting from the unread portion of the
QABinaryMessage instance's message body.

“readInt method” Reads a signed 32-bit integer value starting from the unread
portion of the QABinaryMessage instance's message body.

“readLong method” Reads a signed 64-bit integer value starting from the unread
portion of the QABinaryMessage instance's message body.

“readShort method” Reads a signed 16-bit value starting from the unread por-
tion of the QABinaryMessage instance's message body.

“readString method” Reads a string value starting from the unread portion of the
QABinaryMessage instance's message body.

“reset method” Resets a message so that the reading of values starts from
the beginning of the message body.

QAnywhere reference

368 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“setAddress method” Sets the destination address for this message.

“setBooleanProperty method” Sets the qa_bool property with the specified name to the
specified value.

“setByteProperty method” Sets a qa_byte property with the specified name to the speci-
fied value.

“setDoubleProperty method” Sets the qa_double property with the specified name to the
specified value.

“setFloatProperty method” Sets the qa_float property with the specified name to the
specified value.

“setInReplyToID method” Sets the In-Reply-To ID for the message.

“setIntProperty method” Sets the qa_int property with the specified name to the speci-
fied value.

“setLongProperty method” Sets the qa_long property with the specified name to the
specified value.

“setMessageID method” Sets the message ID.

“setPriority method” Sets the priority level for this message.

“setRedelivered method” Sets an indication of whether this message was redelivered.

“setReplyToAddress method” Sets the address to which a reply to this message should be
sent.

“setShortProperty method” Sets e qa_short property with the specified name to the speci-
fied value.

“setStringProperty method” Sets a qa_string property with the specified name to the
specified value.

“setTimestamp method” Sets the message timestamp.

“writeBinary method” Appends a byte array value to the QABinaryMessage instan-
ce's message body.

“writeBoolean method” Appends a boolean value to the QABinaryMessage instan-
ce's message body.

“writeByte method” Appends a byte value to the QABinaryMessage instance's
message body.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 369

Name Description

“writeChar method” Appends a char value to the QABinaryMessage instance's
message body.

“writeDouble method” Appends a double value to the QABinaryMessage instan-
ce's message body.

“writeFloat method” Appends a float value to the QABinaryMessage instance's
message body.

“writeInt method” Appends an integer value to the QABinaryMessage instan-
ce's message body.

“writeLong method” Appends a long value to the QABinaryMessage instance's
message body.

“writeShort method” Appends a short value to the QABinaryMessage instance's
message body.

“writeString method” Appends a string value to the QABinaryMessage instance's
message body.

“DEFAULT_PRIORITY variable” The default message priority.

“DEFAULT_TIME_TO_LIVE variable” The default message time-to-live value.

Remarks
It inherits from the QAMessage class and adds a bytes message body. QABinaryMessage provides a
variety of methods to read from and write to the bytes message body.

When the message is first created, the body of the message is write-only. After a message has been sent,
the client that sent it can retain and modify it without affecting the message that has been sent. The same
message object can be sent multiple times.

When a message is received, the provider has called the QABinaryMessage::reset method so that the
message body is in read-only mode and reading of values starts from the beginning of the message body.
If a client attempts to write a message in read-only mode, a
COMMON_MSG_NOT_WRITEABLE_ERROR is set.

Example
The following example uses the QABinaryMessage::writeString method to write the string "Q" followed
by the string "Anywhere" to a QABinaryMessage instance's message body.

// Create a binary message instance.
QABinaryMessage * binary_message;
binary_message = qa_manager->createBinaryMessage();
// Set optional message properties.
binary_message->setReplyToAddress("my-queue-name");

QAnywhere reference

370 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

// Write to the message body.
binary_message->writeString("Q");
binary_message->writeString("Anywhere");
// Put the message in the local database, ready for sending.
if(!qa_manager->putMessage("store-id\\queue-name", msg)) {
 handleError();
}

On the receiving end, the first QABinaryMessage::readString() invocation returns "Q" and the next
QABinaryMessage::readString() invocation returns "Anywhere".

The message is sent by the QAnywhere Agent.

For more information, see “Determining when message transmission should occur on the
client” on page 46 and “Writing QAnywhere client applications” on page 49.

QABinaryMessage deconstructor

Virtual destructor.

Syntax
public virtual ~QABinaryMessage()

getBodyLength method

Returns the size of the message body in bytes.

Syntax
public virtual qa_long getBodyLength()

Returns
The size of the message body in bytes.

readBinary method

Reads a specified number of bytes starting from the unread portion of the QABinaryMessage instance's
message body.

Syntax
public virtual qa_int readBinary(qa_bytes value, qa_int length)

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 371

Parameters
● value The buffer into which the data is read.

● length The maximum number of bytes to read.

Returns
The total number of bytes read into the buffer, or -1 if there is no more data because the end of the stream
has been reached.

See also
● “writeBinary method” on page 376

readBoolean method

Reads a boolean value starting from the unread portion of the QABinaryMessage instance's message body.

Syntax
public virtual qa_bool readBoolean(qa_bool * value)

Parameters
● value The destination of the qa_bool value read from the bytes message stream.

Returns
True if and only if the operation succeeded.

See also
● “writeBoolean method” on page 376

readByte method

Reads a signed 8-bit value starting from the unread portion of the QABinaryMessage instance's message
body.

Syntax
public virtual qa_bool readByte(qa_byte * value)

Parameters
● value The destination of the qa_byte value read from the bytes message stream.

Returns
True if and only if the operation succeeded.

QAnywhere reference

372 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “writeByte method” on page 376

readChar method

Reads a character value starting from the unread portion of the QABinaryMessage instance's message body.

Syntax
public virtual qa_bool readChar(qa_char * value)

Parameters
● value The destination of the qa_char value read from the bytes message stream.

Returns
The character value read.

See also
● “writeChar method” on page 377

readDouble method

Reads a double value starting from the unread portion of the QABinaryMessage instance's message body.

Syntax
public virtual qa_bool readDouble(qa_double * value)

Parameters
● value The destination of the double value read from the bytes message stream.

Returns
True if and only if the operation succeeded.

See also
● “writeDouble method” on page 377

readFloat method

Reads a float value starting from the unread portion of the QABinaryMessage instance's message body.

Syntax
public virtual qa_bool readFloat(qa_float * value)

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 373

Parameters
● value The destination of the float value read from the bytes message stream.

Returns
True if and only if the operation succeeded.

See also
● “writeFloat method” on page 378

readInt method

Reads a signed 32-bit integer value starting from the unread portion of the QABinaryMessage instance's
message body.

Syntax
public virtual qa_bool readInt(qa_int * value)

Parameters
● value The destination of the qa_int value read from the bytes message stream.

Returns
True if and only if the operation succeeded.

See also
● “writeInt method” on page 378

readLong method

Reads a signed 64-bit integer value starting from the unread portion of the QABinaryMessage instance's
message body.

Syntax
public virtual qa_bool readLong(qa_long * value)

Parameters
● value The destination of the long value read from the bytes message stream.

Returns
True if and only if the operation succeeded.

See also
● “writeLong method” on page 378

QAnywhere reference

374 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

readShort method

Reads a signed 16-bit value starting from the unread portion of the QABinaryMessage instance's message
body.

Syntax
public virtual qa_bool readShort(qa_short * value)

Parameters
● value The destination of the qa_short value read from the bytes message stream.

Returns
True if and only if the operation succeeded.

See also
● “writeShort method” on page 379

readString method

Reads a string value starting from the unread portion of the QABinaryMessage instance's message body.

Syntax
public virtual qa_int readString(qa_string dest, qa_int maxLen)

Parameters
● dest The destination of the qa_string value read from the bytes message stream.

● maxLen The maximum number of characters to read, including the null terminator character.

Returns
The total number of non-null qa_chars read into the buffer, -1 if there is no more data or an error
occurred, or -2 if the buffer is too small.

See also
● “writeString method” on page 379

reset method

Resets a message so that the reading of values starts from the beginning of the message body.

Syntax
public virtual void reset()

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 375

Remarks
The reset method also puts the QABinaryMessage message body in read-only mode.

writeBinary method

Appends a byte array value to the QABinaryMessage instance's message body.

Syntax
public virtual void writeBinary(
 qa_const_bytes value,
 qa_int offset,
 qa_int length
)

Parameters
● value The byte array value to write to the message body.

● offset The offset within the byte array to begin writing.

● length The number of bytes to write.

See also
● “readBinary method” on page 371

writeBoolean method

Appends a boolean value to the QABinaryMessage instance's message body.

Syntax
public virtual void writeBoolean(qa_bool value)

Parameters
● value The boolean value to write to the message body.

Remarks
The boolean is represented as a one-byte value. True is represented as 1; false is represented as 0.

See also
● “readBoolean method” on page 372

writeByte method

Appends a byte value to the QABinaryMessage instance's message body.

QAnywhere reference

376 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
public virtual void writeByte(qa_byte value)

Parameters
● value The byte array value to write to the message body.

Remarks
The byte is represented as a one-byte value.

See also
● “readByte method” on page 372

writeChar method

Appends a char value to the QABinaryMessage instance's message body.

Syntax
public virtual void writeChar(qa_char value)

Parameters
● value the char value to write to the message body.

Remarks
The char parameter is represented as a two-byte value and the high order byte is appended first.

See also
● “readChar method” on page 373

writeDouble method

Appends a double value to the QABinaryMessage instance's message body.

Syntax
public virtual void writeDouble(qa_double value)

Parameters
● value The double value to write to the message body.

Remarks
The double parameter is converted to a representive eight-byte long value. Higher order bytes are
appended first.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 377

See also
● “readDouble method” on page 373

writeFloat method
Appends a float value to the QABinaryMessage instance's message body.

Syntax
public virtual void writeFloat(qa_float value)

Parameters
● value The float value to write to the message body.

Remarks
The float parameter is converted to a representative 4-byte integer and the higher order bytes are
appended first.

See also
● “readFloat method” on page 373

writeInt method
Appends an integer value to the QABinaryMessage instance's message body.

Syntax
public virtual void writeInt(qa_int value)

Parameters
● value the int value to write to the message body.

Remarks
The integer parameter is represented as a four-byte value and higher order bytes are appended first.

See also
● “readInt method” on page 374

writeLong method
Appends a long value to the QABinaryMessage instance's message body.

Syntax
public virtual void writeLong(qa_long value)

QAnywhere reference

378 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters
● value The long value to write to the message body.

Remarks
The long parameter is represented as an eight-byte value and higher order bytes are appended first.

See also
● “readLong method” on page 374

writeShort method

Appends a short value to the QABinaryMessage instance's message body.

Syntax
public virtual void writeShort(qa_short value)

Parameters
● value The short value to write to the message body.

Remarks
The short parameter is represented as a two-byte value and the higher order byte is appended first.

See also
● “readShort method” on page 375

writeString method

Appends a string value to the QABinaryMessage instance's message body.

Syntax
public virtual void writeString(qa_const_string value)

Parameters
● value The string value to write to the message body.

Remarks

Note
The receving application needs to invoke QABinaryMessage::readString for each writeString invocation.

Note
The UTF-8 representation of the string can be at most 32767 bytes.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 379

See also
● “readString method” on page 375

QAError class
This class defines error constants associated with a QAnywhere client application.

Syntax
public class QAError

Members
All members of QAError class, including all inherited members.

Name Description

“COMMON_ALREADY_OPEN_ERROR variable” The QAManager is already
open.

“COMMON_GET_INIT_FILE_ERROR variable” Unable to access the client
properties file.

“COMMON_GET_PROPERTY_ERROR variable” Error retrieving the property.

“COMMON_GETQUEUEDEPTH_ERROR variable” Error getting queue depth.

“COMMON_GETQUEUEDEPTH_ERROR_INVALID_ARG variable” Cannot use QAManager-
Base.getQueueDepth on a
given destination when fil-
ter is ALL.

“COMMON_GETQUEUEDEPTH_ERROR_NO_STORE_ID variable” Cannot use QAManager-
Base.getQueueDepth when
the message store ID has
not been set.

“COMMON_INIT_ERROR variable” Initialization error.

“COMMON_INIT_THREAD_ERROR variable” Error initializing the back-
ground thread.

“COMMON_INVALID_PROPERTY variable” There is an invalid property
in the client properties file.

“COMMON_MSG_ACKNOWLEDGE_ERROR variable” Error acknowledging the
message.

QAnywhere reference

380 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“COMMON_MSG_CANCEL_ERROR variable” Error canceling message.

“COMMON_MSG_CANCEL_ERROR_SENT variable” Error canceling message.

“COMMON_MSG_NOT_WRITEABLE_ERROR variable” You cannot write to a mes-
sage as it is in read-only
mode.

“COMMON_MSG_RETRIEVE_ERROR variable” Error retrieving a message
from the client message
store.

“COMMON_MSG_STORE_ERROR variable” Error storing a message in
the client message store.

“COMMON_MSG_STORE_NOT_INITIALIZED variable” The message store has not
been initialized for messag-
ing.

“COMMON_MSG_STORE_TOO_LARGE variable” The message store is too
large relative to the free
disk space on the device.

“COMMON_NO_DEST_ERROR variable” No destination.

“COMMON_NO_IMPLEMENTATION variable” The function is not imple-
mented.

“COMMON_NOT_OPEN_ERROR variable” The QAManager is not open.

“COMMON_OPEN_ERROR variable” Error opening a connection
to the message store.

“COMMON_OPEN_LOG_FILE_ERROR variable” Error opening the log file.

“COMMON_OPEN_MAXTHREADS_ERROR variable” Cannot open the QAManag-
er because the maximum
number of concurrent serv-
er requests is not high
enough.

“COMMON_SELECTOR_SYNTAX_ERROR variable” The given selector has a syn-
tax error.

“COMMON_SET_PROPERTY_ERROR variable” Error setting the property.

“COMMON_TERMINATE_ERROR variable” Termination error.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 381

Name Description

“COMMON_UNEXPECTED_EOM_ERROR variable” Unexpected end of message
reached.

“COMMON_UNREPRESENTABLE_TIMESTAMP variable” The timestamp is outside of
the acceptable range.

“QA_NO_ERROR variable” No error.

Remarks
A QAError object is used internally by the QAManager object to keep track of errors associated with
messaging operations. The application programmer should not need to create an instance of this class. The
error constants should be used by the application programmer to interpret error codes returned by
QAManager::getLastError

See also
● “getLastErrorMsg method” on page 408

Example
Assume your QAManager instance is called qa_mgr. The following example, uses the
QAManager::getLastError method to compare the last error code to QAError::QA_NO_ERROR.

if (qa_mgr->getLastError() != QAError::QA_NO_ERROR) {
 // Process error.
}

COMMON_ALREADY_OPEN_ERROR variable

The QAManager is already open.

Syntax
public static const qa_int COMMON_ALREADY_OPEN_ERROR;

COMMON_GET_INIT_FILE_ERROR variable

Unable to access the client properties file.

Syntax
public static const qa_int COMMON_GET_INIT_FILE_ERROR;

COMMON_GET_PROPERTY_ERROR variable

QAnywhere reference

382 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Error retrieving the property.

Syntax
public static const qa_int COMMON_GET_PROPERTY_ERROR;

COMMON_GETQUEUEDEPTH_ERROR variable

Error getting queue depth.

Syntax
public static const qa_int COMMON_GETQUEUEDEPTH_ERROR;

COMMON_GETQUEUEDEPTH_ERROR_INVALID_ARG variable

Cannot use QAManagerBase.getQueueDepth on a given destination when filter is ALL.

Syntax
public static const qa_int COMMON_GETQUEUEDEPTH_ERROR_INVALID_ARG;

COMMON_GETQUEUEDEPTH_ERROR_NO_STORE_ID variable

Cannot use QAManagerBase.getQueueDepth when the message store ID has not been set.

Syntax
public static const qa_int COMMON_GETQUEUEDEPTH_ERROR_NO_STORE_ID;

COMMON_INIT_ERROR variable

Initialization error.

Syntax
public static const qa_int COMMON_INIT_ERROR;

COMMON_INIT_THREAD_ERROR variable

Error initializing the background thread.

Syntax
public static const qa_int COMMON_INIT_THREAD_ERROR;

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 383

COMMON_INVALID_PROPERTY variable

There is an invalid property in the client properties file.

Syntax
public static const qa_int COMMON_INVALID_PROPERTY;

COMMON_MSG_ACKNOWLEDGE_ERROR variable

Error acknowledging the message.

Syntax
public static const qa_int COMMON_MSG_ACKNOWLEDGE_ERROR;

COMMON_MSG_CANCEL_ERROR variable

Error canceling message.

Syntax
public static const qa_int COMMON_MSG_CANCEL_ERROR;

COMMON_MSG_CANCEL_ERROR_SENT variable

Error canceling message.

Syntax
public static const qa_int COMMON_MSG_CANCEL_ERROR_SENT;

Remarks
Cannot cancel a message that has already been sent.

COMMON_MSG_NOT_WRITEABLE_ERROR variable

You cannot write to a message as it is in read-only mode.

Syntax
public static const qa_int COMMON_MSG_NOT_WRITEABLE_ERROR;

COMMON_MSG_RETRIEVE_ERROR variable

QAnywhere reference

384 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Error retrieving a message from the client message store.

Syntax
public static const qa_int COMMON_MSG_RETRIEVE_ERROR;

COMMON_MSG_STORE_ERROR variable

Error storing a message in the client message store.

Syntax
public static const qa_int COMMON_MSG_STORE_ERROR;

COMMON_MSG_STORE_NOT_INITIALIZED variable

The message store has not been initialized for messaging.

Syntax
public static const qa_int COMMON_MSG_STORE_NOT_INITIALIZED;

COMMON_MSG_STORE_TOO_LARGE variable

The message store is too large relative to the free disk space on the device.

Syntax
public static const qa_int COMMON_MSG_STORE_TOO_LARGE;

COMMON_NO_DEST_ERROR variable

No destination.

Syntax
public static const qa_int COMMON_NO_DEST_ERROR;

COMMON_NO_IMPLEMENTATION variable

The function is not implemented.

Syntax
public static const qa_int COMMON_NO_IMPLEMENTATION;

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 385

COMMON_NOT_OPEN_ERROR variable

The QAManager is not open.

Syntax
public static const qa_int COMMON_NOT_OPEN_ERROR;

COMMON_OPEN_ERROR variable

Error opening a connection to the message store.

Syntax
public static const qa_int COMMON_OPEN_ERROR;

COMMON_OPEN_LOG_FILE_ERROR variable

Error opening the log file.

Syntax
public static const qa_int COMMON_OPEN_LOG_FILE_ERROR;

COMMON_OPEN_MAXTHREADS_ERROR variable

Cannot open the QAManager because the maximum number of concurrent server requests is not high enough.

Syntax
public static const qa_int COMMON_OPEN_MAXTHREADS_ERROR;

Remarks
For more information, see “-gn dbsrv12 server option” [SQL Anywhere Server - Database
Administration].

COMMON_SELECTOR_SYNTAX_ERROR variable

The given selector has a syntax error.

Syntax
public static const qa_int COMMON_SELECTOR_SYNTAX_ERROR;

QAnywhere reference

386 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

COMMON_SET_PROPERTY_ERROR variable

Error setting the property.

Syntax
public static const qa_int COMMON_SET_PROPERTY_ERROR;

COMMON_TERMINATE_ERROR variable

Termination error.

Syntax
public static const qa_int COMMON_TERMINATE_ERROR;

COMMON_UNEXPECTED_EOM_ERROR variable

Unexpected end of message reached.

Syntax
public static const qa_int COMMON_UNEXPECTED_EOM_ERROR;

COMMON_UNREPRESENTABLE_TIMESTAMP variable

The timestamp is outside of the acceptable range.

Syntax
public static const qa_int COMMON_UNREPRESENTABLE_TIMESTAMP;

QA_NO_ERROR variable

No error.

Syntax
public static const qa_int QA_NO_ERROR;

QAManager class
The QAManager class derives from QAManagerBase and manages non-transactional QAnywhere
messaging operations.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 387

Syntax
public class QAManager : QAManagerBase

Base classes
● “QAManagerBase class” on page 394

Members
All members of QAManager class, including all inherited members.

Name Description

“acknowledge method” Acknowledges that the client application successfully re-
ceived a QAnywhere message.

“acknowledgeAll method” Acknowledges that the client application successfully re-
ceived all unacknowledged QAnywhere messages.

“acknowledgeUntil method” Acknowledges the given QAMessage instance and all un-
acknowledged messages received before the given mes-
sage.

“beginEnumStorePropertyNames method” Begins an enumeration of message store property names.

“browseClose method” Frees the resources associated with a browse operation.

“browseMessages method” Begins a browse of messages queued in the message store.

“browseMessagesByID method” Begins a browse of the message that is queued in the mes-
sage store, with the given message ID.

“browseMessagesByQueue method” Begins a browse of messages queued in the message store
for the given queue.

“browseMessagesBySelector method” Begins a browse of messages queued in the message store
that satisfy the given selector.

“browseNextMessage method” Returns the next message for the given browse operation,
returning null if there are no more messages.

“cancelMessage method” Cancels the message with the given message ID.

“close method” Closes the connection to the QAnywhere message system
and releases any resources used by the QAManagerBase.

“createBinaryMessage method” Creates a QABinaryMessage instance.

“createTextMessage method” Creates a QATextMessage instance.

QAnywhere reference

388 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“deleteMessage method” Deletes a QAMessage object.

“endEnumStorePropertyNames method” Frees the resources associated with a message store prop-
erty name enumeration.

“getAllQueueDepth method” Returns the total depth of all queues, based on a given filter.

“getBooleanStoreProperty method” Gets a boolean value for a pre-defined or custom message
store property.

“getByteStoreProperty method” Gets a byte value for a pre-defined or custom message
store property.

“getDoubleStoreProperty method” Gets a double value for a pre-defined or custom message
store property.

“getFloatStoreProperty method” Gets a float value for a pre-defined or custom message
store property.

“getIntStoreProperty method” Gets an int value for a pre-defined or custom message
store property.

“getLastError method” The error code associated with the last excecuted QAMa-
nagerBase method.

“getLastErrorMsg method” The error text associated with the last executed QAMana-
gerBase method.

“getLastNativeError method” The native error code associated with the last excecuted
QAManagerBase method.

“getLongStoreProperty method” Gets a long value for a pre-defined or custom message
store property.

“getMessage method” Returns the next available QAMessage sent to the speci-
fied address.

“getMessageBySelector method” Returns the next available QAMessage sent to the speci-
fied address that satisfies the given selector.

“getMessageBySelectorNoWait method” Returns the next available QAMessage sent to the given
address that satisfies the given selector.

“getMessageBySelectorTimeout method” Returns the next available QAMessage sent to the given
address that satisfies the given selector.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 389

Name Description

“getMessageNoWait method” Returns the next available QAMessage sent to the given
address.

“getMessageTimeout method” Returns the next available QAMessage sent to the given
address.

“getMode method” Returns the QAManager acknowledgement mode for re-
ceived messages.

“getQueueDepth method” Returns the depth of a queue, based on a given filter.

“getShortStoreProperty method” Gets a short value for a pre-defined or custom message
store property.

“getStringStoreProperty method” Gets a string value for a pre-defined or custom message
store property.

“nextStorePropertyName method” Returns the message store property name for the given enu-
meration.

“open method” Opens the QAManager with the given Acknowledgement-
Mode value.

“putMessage method” Puts a message into the queue for the given destination.

“putMessageTimeToLive method” Puts a message into the queue for the given destination
and a given time-to-live in milliseconds.

“recover method” Force all unacknowledged messages into a state of unre-
ceived.

“setBooleanStoreProperty method” Sets a pre-defined or custom message store property to a
boolean value.

“setByteStoreProperty method” Sets a pre-defined or custom message store property to a
byte value.

“setDoubleStoreProperty method” Sets a pre-defined or custom message store property to a
double value.

“setFloatStoreProperty method” Sets a pre-defined or custom message store property to a
float value.

“setIntStoreProperty method” Sets a pre-defined or custom message store property to a
int value.

QAnywhere reference

390 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“setLongStoreProperty method” Sets a pre-defined or custom message store property to a
long value.

“setMessageListener method” Sets a message listener class to receive QAnywhere mes-
sages asynchronously.

“setMessageListenerBySelector method” Sets a message listener class to receive QAnywhere mes-
sages asynchronously, with a message selector.

“setProperty method” Allows you to set QAnywhere manager configuration prop-
erties programmatically.

“setShortStoreProperty method” Sets a pre-defined or custom message store property to a
short value.

“setStringStoreProperty method” Sets a pre-defined or custom message store property to a
string value.

“start method” Starts the QAManagerBase for receiving incoming mes-
sages in message listeners.

“stop method” Stops the QAManagerBase's reception of incoming mes-
sages.

“triggerSendReceive method” Causes a synchronization with the QAnywhere message
server, uploading any messages addressed to other clients,
and downloading any messages addressed to the local cli-
ent.

Remarks
For a detailed description of derived behavior, see QAManagerBase.

The QAManager can be configured for implicit or explicit acknowledgement as defined in the
AcknowledgementMode enumeration. To acknowledge messages as part of a transaction, use
QATransactionalManager.

Use the QAManagerFactory to create QAManager and QATransactionalManager objects.

See also
● “QAManagerFactory class” on page 424
● “QAManagerBase class” on page 394
● “QATransactionalManager class” on page 457
● “AcknowledgementMode class” on page 354

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 391

acknowledge method

Acknowledges that the client application successfully received a QAnywhere message.

Syntax
public virtual qa_bool acknowledge(QAMessage * msg)

Parameters
● msg The message to acknowledge.

Returns
True if and only if the operation succeeded.

Remarks

Note
When a QAMessage is acknowledged, its MessageProperties::STATUS property changes to
StatusCodes.RECEIVED. When a QAMessage status changes to StatusCodes.RECEIVED, it can be
deleted using the default delete rule.

For more information about delete rules, see “Message delete rules” on page 743.

See also
● “acknowledgeAll method” on page 392
● “acknowledgeUntil method” on page 393

acknowledgeAll method

Acknowledges that the client application successfully received all unacknowledged QAnywhere messages.

Syntax
public virtual qa_bool acknowledgeAll()

Returns
True if and only if the operation succeeded.

Remarks

Note
When a QAMessage is acknowledged, its MessageProperties::STATUS property changes to
StatusCodes.RECEIVED. When a QAMessage status changes to StatusCodes.RECEIVED, it can be
deleted using the default delete rule.

For more information about delete rules, see “Message delete rules” on page 743.

QAnywhere reference

392 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “acknowledge method” on page 392
● “acknowledgeUntil method” on page 393

acknowledgeUntil method

Acknowledges the given QAMessage instance and all unacknowledged messages received before the
given message.

Syntax
public virtual qa_bool acknowledgeUntil(QAMessage * msg)

Parameters
● msg The last message to acknowledge. All earlier unacknowledged messages are also acknowledged.

Returns
True if and only if the operation succeeded.

Remarks

Note
When a QAMessage is acknowledged, its MessageProperties::STATUS property changes to
StatusCodes.RECEIVED. When a QAMessage status changes to StatusCodes.RECEIVED, it can be
deleted using the default delete rule.

For more information about delete rules, see “Message delete rules” on page 743.

See also
● “acknowledge method” on page 392
● “acknowledgeAll method” on page 392

open method

Opens the QAManager with the given AcknowledgementMode value.

Syntax
public virtual qa_bool open(qa_short mode)

Parameters
● mode The acknowledgement mode.

Returns
True if and only if the operation succeeded.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 393

Remarks
The open method must be the first method called after creating a QAManager.

If a database connection error is detected, you can re-open a QAManager by calling the close function
followed by the open function. When re-opening a QAManager, you do not need to re-create it, reset the
properties, or reset the message listeners. The properties of the QAManager cannot be changed after the
first open, and subsequent open calls must supply the same acknowledgement mode.

See also
● “AcknowledgementMode class” on page 354

recover method

Force all unacknowledged messages into a state of unreceived.

Syntax
public virtual qa_bool recover()

Returns
True if and only if the operation succeeded.

Remarks
That is, these messages must be received again using QAManager::getMessage().

QAManagerBase class

This class acts as a base class for QATransactionalManager and QAManager, which manage transactional
and non-transactional messaging, respectively.

Syntax
public class QAManagerBase

Derived classes
● “QAManager class” on page 387
● “QATransactionalManager class” on page 457

Members
All members of QAManagerBase class, including all inherited members.

Name Description

“beginEnumStorePropertyNames method” Begins an enumeration of message store property names.

QAnywhere reference

394 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“browseClose method” Frees the resources associated with a browse operation.

“browseMessages method” Begins a browse of messages queued in the message store.

“browseMessagesByID method” Begins a browse of the message that is queued in the mes-
sage store, with the given message ID.

“browseMessagesByQueue method” Begins a browse of messages queued in the message store
for the given queue.

“browseMessagesBySelector method” Begins a browse of messages queued in the message store
that satisfy the given selector.

“browseNextMessage method” Returns the next message for the given browse operation,
returning null if there are no more messages.

“cancelMessage method” Cancels the message with the given message ID.

“close method” Closes the connection to the QAnywhere message system
and releases any resources used by the QAManagerBase.

“createBinaryMessage method” Creates a QABinaryMessage instance.

“createTextMessage method” Creates a QATextMessage instance.

“deleteMessage method” Deletes a QAMessage object.

“endEnumStorePropertyNames method” Frees the resources associated with a message store prop-
erty name enumeration.

“getAllQueueDepth method” Returns the total depth of all queues, based on a given filter.

“getBooleanStoreProperty method” Gets a boolean value for a pre-defined or custom message
store property.

“getByteStoreProperty method” Gets a byte value for a pre-defined or custom message
store property.

“getDoubleStoreProperty method” Gets a double value for a pre-defined or custom message
store property.

“getFloatStoreProperty method” Gets a float value for a pre-defined or custom message
store property.

“getIntStoreProperty method” Gets an int value for a pre-defined or custom message
store property.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 395

Name Description

“getLastError method” The error code associated with the last excecuted QAMa-
nagerBase method.

“getLastErrorMsg method” The error text associated with the last executed QAMana-
gerBase method.

“getLastNativeError method” The native error code associated with the last excecuted
QAManagerBase method.

“getLongStoreProperty method” Gets a long value for a pre-defined or custom message
store property.

“getMessage method” Returns the next available QAMessage sent to the speci-
fied address.

“getMessageBySelector method” Returns the next available QAMessage sent to the speci-
fied address that satisfies the given selector.

“getMessageBySelectorNoWait method” Returns the next available QAMessage sent to the given
address that satisfies the given selector.

“getMessageBySelectorTimeout method” Returns the next available QAMessage sent to the given
address that satisfies the given selector.

“getMessageNoWait method” Returns the next available QAMessage sent to the given
address.

“getMessageTimeout method” Returns the next available QAMessage sent to the given
address.

“getMode method” Returns the QAManager acknowledgement mode for re-
ceived messages.

“getQueueDepth method” Returns the depth of a queue, based on a given filter.

“getShortStoreProperty method” Gets a short value for a pre-defined or custom message
store property.

“getStringStoreProperty method” Gets a string value for a pre-defined or custom message
store property.

“nextStorePropertyName method” Returns the message store property name for the given enu-
meration.

“putMessage method” Puts a message into the queue for the given destination.

QAnywhere reference

396 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“putMessageTimeToLive method” Puts a message into the queue for the given destination
and a given time-to-live in milliseconds.

“setBooleanStoreProperty method” Sets a pre-defined or custom message store property to a
boolean value.

“setByteStoreProperty method” Sets a pre-defined or custom message store property to a
byte value.

“setDoubleStoreProperty method” Sets a pre-defined or custom message store property to a
double value.

“setFloatStoreProperty method” Sets a pre-defined or custom message store property to a
float value.

“setIntStoreProperty method” Sets a pre-defined or custom message store property to a
int value.

“setLongStoreProperty method” Sets a pre-defined or custom message store property to a
long value.

“setMessageListener method” Sets a message listener class to receive QAnywhere mes-
sages asynchronously.

“setMessageListenerBySelector method” Sets a message listener class to receive QAnywhere mes-
sages asynchronously, with a message selector.

“setProperty method” Allows you to set QAnywhere manager configuration prop-
erties programmatically.

“setShortStoreProperty method” Sets a pre-defined or custom message store property to a
short value.

“setStringStoreProperty method” Sets a pre-defined or custom message store property to a
string value.

“start method” Starts the QAManagerBase for receiving incoming mes-
sages in message listeners.

“stop method” Stops the QAManagerBase's reception of incoming mes-
sages.

“triggerSendReceive method” Causes a synchronization with the QAnywhere message
server, uploading any messages addressed to other clients,
and downloading any messages addressed to the local cli-
ent.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 397

Remarks
Use the QAManagerBase::start() method to allow a QAManagerBase instance to listen for messages.
There must be only a single instance of QAManagerBase per thread in your application.

You can use instances of this class to create and manage QAnywhere messages. Use the
QAManagerBase::createBinaryMessage() method and the QAManagerBase::createTextMessage() method
to create appropriate QAMessage instances. QAMessage instances provide a variety of methods to set
message content and properties. To send QAnywhere messages, use the QAManager::putMessage() to
place the addressed message in the local message store queue. The message is transmitted by the
QAnywhere Agent based on its transmission policies or when you call the
QAManagerBase::triggerSendReceive().

For more information about qaagent transmission policies, see “Determining when message transmission
should occur on the client” on page 46.

Messages are released from memory when you close a QAManagerBase instance using the
QAManagerBase::close().

You can use QAManagerBase::getLastError, QAManagerBase::getLastNativeError, and
QAManagerBase::getLastErrorMessage to return error information when a QAException occurs.
QAManagerBase also provides methods to set and get message store properties.

For more information, see “Client message store properties” on page 26 and the MessageStoreProperties.

See also
● “QATransactionalManager class” on page 457
● “QAManager class” on page 387

beginEnumStorePropertyNames method

Begins an enumeration of message store property names.

Syntax
public virtual qa_store_property_enum_handle
beginEnumStorePropertyNames()

Returns
A handle that is supplied to QAManagerBase::nextStorePropertyName.

Remarks
The handle returned by this method is supplied to the QAManagerBase::nextStorePropertyName. This
method and the QAManagerBase::nextStorePropertyName can be used to enumerate the message store
property names at the time this method was called. Message store properties cannot be set between the
QAManagerBase::beginEnumStorePropertyNames and the
QAManagerBase::endEnumStorePropertyNames calls.

QAnywhere reference

398 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “nextStorePropertyName method” on page 415
● “beginEnumStorePropertyNames method” on page 398
● “endEnumStorePropertyNames method” on page 404

browseClose method

Frees the resources associated with a browse operation.

Syntax
public virtual void browseClose(qa_browse_handle handle)

Parameters
● handle A handle returned by one of the begin browse operations.

browseMessages method

Begins a browse of messages queued in the message store.

Syntax
public virtual qa_browse_handle browseMessages()

Returns
A handle that is supplied to QAManagerBase::browseNextMessage

Remarks
The handle returned by this method is supplied to QAManagerBase::browseNextMessage. This method
and the QAManagerBase::browseNextMessage can be used to enumerate the messages in the message
store at the time this method was called.

The messages are just being browsed, so they cannot be acknowledged. Use
QAManagerBase::getMessage to receive messages so they can be acknowledged.

See also
● “browseNextMessage method” on page 401
● “browseMessagesByQueue method” on page 400
● “browseMessagesByID method” on page 399
● “browseClose method” on page 399

browseMessagesByID method

Begins a browse of the message that is queued in the message store, with the given message ID.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 399

Syntax
public virtual qa_browse_handle browseMessagesByID(
 qa_const_string msgid
)

Parameters
● msgid The message ID.

Returns
A handle that is supplied to browseNextMessage.

Remarks
The handle returned by this method is supplied to QAManagerBase::browseNextMessage. This method
and QAManagerBase::browseNextMessage can be used to enumerate the messages in the message store
at the time this method was called.

The messages are just being browsed, so they cannot be acknowledged. Use
QAManagerBase::getMessage to receive messages so they can be acknowledged.

See also
● “browseNextMessage method” on page 401
● “browseMessagesByQueue method” on page 400
● “browseMessages method” on page 399
● “browseClose method” on page 399

browseMessagesByQueue method

Begins a browse of messages queued in the message store for the given queue.

Syntax
public virtual qa_browse_handle browseMessagesByQueue(
 qa_const_string address
)

Parameters
● address The queue in which to browse.

Returns
A handle that is supplied to browseNextMessage.

Remarks
The handle returned by this method is supplied to QAManagerBase::browseNextMessage. This method
and QAManagerBase::browseNextMessage can be used to enumerate the messages in the message store
at the time this method was called.

QAnywhere reference

400 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The messages are just being browsed, so they cannot be acknowledged. Use
QAManagerBase::getMessage to receive messages so they can be acknowledged.

See also
● “browseNextMessage method” on page 401
● “browseMessagesByID method” on page 399
● “browseMessages method” on page 399
● “browseClose method” on page 399

browseMessagesBySelector method

Begins a browse of messages queued in the message store that satisfy the given selector.

Syntax
public virtual qa_browse_handle browseMessagesBySelector(
 qa_const_string selector
)

Parameters
● selector The selector.

Returns
A handle that is supplied to browseNextMessage.

Remarks
The handle returned by this method is supplied to QAManagerBase::browseNextMessage. This method
and QAManagerBase::browseNextMessage can be used to enumerate the messages in the message store
at the time this method was called.

The messages are just being browsed, so they cannot be acknowledged.

Use QAManagerBase::getMessage to receive messages so they can be acknowledged.

See also
● “browseNextMessage method” on page 401
● “browseMessagesByID method” on page 399
● “browseMessagesByQueue method” on page 400
● “browseMessages method” on page 399
● “browseClose method” on page 399

browseNextMessage method

Returns the next message for the given browse operation, returning null if there are no more messages.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 401

Syntax
public virtual QAMessage * browseNextMessage(qa_browse_handle handle)

Parameters
● handle A handle returned by one of the begin browse operations.

Returns
The next message, or qa_null if there are no more messages.

Remarks
To obtain the handle to browsed messages, use QAManagerBase::browseMessages or other
QAManagerBase methods which allow you to browse messages by queue or message ID.

See also
● “browseMessages method” on page 399
● “browseMessagesByQueue method” on page 400
● “browseMessagesByID method” on page 399
● “browseClose method” on page 399

cancelMessage method

Cancels the message with the given message ID.

Syntax
public virtual qa_bool cancelMessage(qa_const_string msgid)

Parameters
● msgid The ID of the message to cancel.

Returns
True if and only if the operation succeeded.

Remarks
The cancelMessage method puts a message into a canceled state before it is transmitted. With the default
delete rules of the QAnywhere Agent, canceled messages are eventually deleted from the message store.

The cancelMessage method fails if the message is already in a final state, or if it has been transmitted to
the central messaging server.

For more information about delete rules, see “Message delete rules” on page 743.

close method

QAnywhere reference

402 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Closes the connection to the QAnywhere message system and releases any resources used by the
QAManagerBase.

Syntax
public virtual qa_bool close()

Returns
True if and only if the operation succeeded.

Remarks
Subsequent calls to close() are ignored. When an instance of QAManagerBase is closed, it cannot be re-
opened; you must create and open a new QAManagerBase instance in this case.

If a database connection error is detected, you can re-open a QAManager by calling the close method
followed by the open method. When re-opening a QAManager, you do not need to re-create it, reset the
properties, or reset the message listeners. The properties of the QAManager cannot be changed after the
first open, and subsequent open calls must supply the same acknowledgement mode.

See also
● “open method” on page 393

createBinaryMessage method

Creates a QABinaryMessage instance.

Syntax
public virtual QABinaryMessage * createBinaryMessage()

Returns
A new QABinaryMessage instance.

Remarks
A QABinaryMessage instance is used to send a message containing a message body of uninterpreted bytes.

See also
● “QABinaryMessage class” on page 366

createTextMessage method

Creates a QATextMessage instance.

Syntax
public virtual QATextMessage * createTextMessage()

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 403

Returns
A new QATextMessage instance.

Remarks
A QATextMessage object is used to send a message containing a string message body.

See also
● “QATextMessage class” on page 452

deleteMessage method

Deletes a QAMessage object.

Syntax
public virtual void deleteMessage(QAMessage * msg)

Parameters
● msg The message to delete.

Remarks
By default, messages created by QAManagerBase::createTextMessage or
QAManagerBase::createBinaryMessage are deleted automatically when the QAManagerBase is closed.
This method allows more control over when messages are deleted.

endEnumStorePropertyNames method

Frees the resources associated with a message store property name enumeration.

Syntax
public virtual void endEnumStorePropertyNames(
 qa_store_property_enum_handle h
)

Parameters
● h A handle returned by beginEnumStorePropertyNames.

See also
● “beginEnumStorePropertyNames method” on page 398

getAllQueueDepth method

Returns the total depth of all queues, based on a given filter.

QAnywhere reference

404 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
public virtual qa_int getAllQueueDepth(qa_short filter)

Parameters
● filter A filter indicating incoming messages, outgoing messages, or all messages.

Returns
The number of messages, or -1 if an error occurs.

Remarks
The incoming depth of a queue is the number of incoming messages which have not been received (for
example, using QAManagerBase::getMessage). The outgoing depth of a queue is the number of outgoing
messages (including uncommitted) that have not been transmitted to the server.

See also
● “QueueDepthFilter class” on page 462

getBooleanStoreProperty method

Gets a boolean value for a pre-defined or custom message store property.

Syntax
public virtual qa_bool getBooleanStoreProperty(
 qa_const_string name,
 qa_bool * value
)

Parameters
● name The pre-defined or custom property name.

● value The destination for the boolean value.

Returns
True if and only if the operation succeeded.

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

For more information, see “Client message store properties” on page 26.

getByteStoreProperty method

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 405

Gets a byte value for a pre-defined or custom message store property.

Syntax
public virtual qa_bool getByteStoreProperty(
 qa_const_string name,
 qa_byte * value
)

Parameters
● name The pre-defined or custom property name.

● value The destination for the byte value.

Returns
True if and only if the operation succeeded.

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

For more information, see “Client message store properties” on page 26.

getDoubleStoreProperty method

Gets a double value for a pre-defined or custom message store property.

Syntax
public virtual qa_bool getDoubleStoreProperty(
 qa_const_string name,
 qa_double * value
)

Parameters
● name The pre-defined or custom property name.

● value The destination for the double value.

Returns
True if and only if the operation succeeded.

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

For more information, see “Client message store properties” on page 26.

QAnywhere reference

406 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

getFloatStoreProperty method

Gets a float value for a pre-defined or custom message store property.

Syntax
public virtual qa_bool getFloatStoreProperty(
 qa_const_string name,
 qa_float * value
)

Parameters
● name The pre-defined or custom property name.

● value The destination for the float value.

Returns
True if and only if the operation succeeded.

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

For more information, see “Client message store properties” on page 26.

getIntStoreProperty method

Gets an int value for a pre-defined or custom message store property.

Syntax
public virtual qa_bool getIntStoreProperty(
 qa_const_string name,
 qa_int * value
)

Parameters
● name The pre-defined or custom property name.

● value The destination for the int value.

Returns
True if and only if the operation succeeded.

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 407

For more information, see “Client message store properties” on page 26.

getLastError method

The error code associated with the last excecuted QAManagerBase method.

Syntax
public virtual qa_int getLastError()

Returns
The error code.

Remarks
0 indicates no error.

See also
● “getLastNativeError method” on page 408
● “getLastErrorMsg method” on page 408
● “QAError class” on page 380

getLastErrorMsg method

The error text associated with the last executed QAManagerBase method.

Syntax
public virtual qa_string getLastErrorMsg()

Returns
The error message.

Remarks
This method returns null if QAManagerBase::getLastError returns 0. You can retrieve this property after
catching a QAError.

See also
● “getLastError method” on page 408
● “getLastNativeError method” on page 408
● “QAError class” on page 380

getLastNativeError method

The native error code associated with the last excecuted QAManagerBase method.

QAnywhere reference

408 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
public virtual an_sql_code getLastNativeError()

Returns
The native error code.

Remarks
0 indicates no error.

See also
● “getLastError method” on page 408
● “getLastErrorMsg method” on page 408
● “QAError class” on page 380

getLongStoreProperty method
Gets a long value for a pre-defined or custom message store property.

Syntax
public virtual qa_bool getLongStoreProperty(
 qa_const_string name,
 qa_long * value
)

Parameters
● name The pre-defined or custom property name.

● value The destination for the long value.

Returns
True if and only if the operation succeeded.

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

For more information, see “Client message store properties” on page 26.

getMessage method
Returns the next available QAMessage sent to the specified address.

Syntax
public virtual QAMessage * getMessage(qa_const_string address)

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 409

Parameters
● address The destination.

Returns
The next QAMessage, or null if no message is available.

Remarks
The address parameter specifies a local queue name. The address can be in the form 'store-id\queue-name'
or 'queue-name'. If there is no message available, this call blocks indefinitely until a message is available.
Use this method to receive messages synchronously.

For more information about receiving messages asynchronously (using a message event handler), see
“Receiving messages asynchronously” on page 70.

getMessageBySelector method

Returns the next available QAMessage sent to the specified address that satisfies the given selector.

Syntax
public virtual QAMessage * getMessageBySelector(
 qa_const_string address,
 qa_const_string selector
)

Parameters
● address The destination.

● selector The selector.

Returns
The next QAMessage, or null if no message is available.

Remarks
The address parameter specifies a local queue name. The address can be in the form 'store-id\queue-name'
or 'queue-name'. If there is no message available, this call blocks indefinitely until a message is available.
Use this method to receive messages synchronously.

For more information about receiving messages asynchronously (using a message event handler), see
“Receiving messages asynchronously” on page 70.

getMessageBySelectorNoWait method

Returns the next available QAMessage sent to the given address that satisfies the given selector.

QAnywhere reference

410 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
public virtual QAMessage * getMessageBySelectorNoWait(
 qa_const_string address,
 qa_const_string selector
)

Parameters
● address The destination.

● selector The selector.

Returns
The next message, or qa_null if no message is available.

Remarks
The address parameter specifies a local queue name. The address can be in the form 'store-id\queue-name'
or 'queue-name'. If no message is available, this method returns immediately. Use this method to receive
messages synchronously.

For more information about receiving messages asynchronously (using a message event handler), see
“Receiving messages asynchronously” on page 70.

getMessageBySelectorTimeout method

Returns the next available QAMessage sent to the given address that satisfies the given selector.

Syntax
public virtual QAMessage * getMessageBySelectorTimeout(
 qa_const_string address,
 qa_const_string selector,
 qa_long timeout
)

Parameters
● address The destination.

● selector The selector.

● timeout the maximum time, in milliseconds, to wait

Returns
The next QAMessage, or null if no message is available.

Remarks
The address parameter specifies a local queue name. The address can be in the form 'store-id\queue-name'
or 'queue-name'. If no message is available, this method waits for the specified timeout and then returns.
Use this method to receive messages synchronously.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 411

For more information about receiving messages asynchronously (using a message event handler), see
“Receiving messages asynchronously” on page 70.

getMessageNoWait method

Returns the next available QAMessage sent to the given address.

Syntax
public virtual QAMessage * getMessageNoWait(qa_const_string address)

Parameters
● address The destination.

Returns
The next message, or qa_null if no message is available.

Remarks
The address parameter specifies a local queue name. The address can be in the form 'store-id\queue-name'
or 'queue-name'. If no message is available, this method returns immediately. Use this method to receive
messages synchronously.

For more information about receiving messages asynchronously (using a message event handler), see
“Receiving messages asynchronously” on page 70.

getMessageTimeout method

Returns the next available QAMessage sent to the given address.

Syntax
public virtual QAMessage * getMessageTimeout(
 qa_const_string address,
 qa_long timeout
)

Parameters
● address The destination

● timeout The maximum time, in milliseconds, to wait

Returns
The next QAMessage, or null if no message is available.

QAnywhere reference

412 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
The address parameter specifies a local queue name. The address can be in the form 'store-id\queue-name'
or 'queue-name'. If no message is available, this method waits for the specified timeout and then returns.
Use this method to receive messages synchronously.

For more information about receiving messages asynchronously (using a message event handler), see
“Receiving messages asynchronously” on page 70.

getMode method

Returns the QAManager acknowledgement mode for received messages.

Syntax
public virtual qa_short getMode()

Returns
The acknowledgement mode.

Remarks
For a list of values, see the AcknowledgementMode class.

AcknowledgementMode::EXPLICIT_ACKNOWLEDGEMENT and
AcknowledgementMode::IMPLICIT_ACKNOWLEDGEMENT apply to QAManager instances;
AcknowledgementMode::TRANSACTIONAL is the mode for QATransactionalManager instances.

See also
● “AcknowledgementMode class” on page 354

getQueueDepth method

Returns the depth of a queue, based on a given filter.

Syntax
public virtual qa_int getQueueDepth(
 qa_const_string address,
 qa_short filter
)

Parameters
● address The queue name.

● filter A filter indicating incoming messages, outgoing messages, or all messages.

Returns
The number of messages in the queue, or -1 if an error occurs.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 413

Remarks
The incoming depth of the queue is the number of incoming messages which have not been received (for
example, using QAManagerBase::getMessage). The outgoing depth of a queue is the number of outgoing
messages (including uncommitted) that have not been transmitted to the server.

If getQueueDepth is called with the LOCAL filter and a queue is specified, it returns the number of
unreceived local messages that are addressed to that queue. If a queue is not specified, it returns the total
number of unreceived local messages in the message store, excluding system messages.

See also
● “QueueDepthFilter class” on page 462

getShortStoreProperty method

Gets a short value for a pre-defined or custom message store property.

Syntax
public virtual qa_bool getShortStoreProperty(
 qa_const_string name,
 qa_short * value
)

Parameters
● name The pre-defined or custom property name.

● value The destination for the short value.

Returns
True if and only if the operation succeeded.

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

For more information, see “Client message store properties” on page 26.

getStringStoreProperty method

Gets a string value for a pre-defined or custom message store property.

Syntax
public virtual qa_int getStringStoreProperty(
 qa_const_string name,
 qa_string address,

QAnywhere reference

414 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 qa_int maxlen
)

Parameters
● name The pre-defined or custom property name.

● address The destination for the qa_string value.

● maxlen The maximum number of qa_chars of the value to copy, including the null terminator
character.

Returns
The number of non-null qa_chars actually copied, or -1 if the operation failed.

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

For more information, see “Client message store properties” on page 26.

nextStorePropertyName method

Returns the message store property name for the given enumeration.

Syntax
public virtual qa_int nextStorePropertyName(
 qa_store_property_enum_handle h,
 qa_string buffer,
 qa_int bufferLen
)

Parameters
● h A handle returned by beginEnumStorePropertyNames.

● buffer The buffer into which to write the property name.

● bufferLen The length of the buffer to store the property name. This length must include space for
the null terminator.

Returns
The length of the property name, or -1 if there are no more property names. property names

Remarks
If there are no more property names, returns -1.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 415

See also
● “beginEnumStorePropertyNames method” on page 398

putMessage method

Puts a message into the queue for the given destination.

Syntax
public virtual qa_bool putMessage(
 qa_const_string address,
 QAMessage * msg
)

Parameters
● address The destination.

● msg The message.

Returns
True if and only if the operation succeeded.

putMessageTimeToLive method

Puts a message into the queue for the given destination and a given time-to-live in milliseconds.

Syntax
public virtual qa_bool putMessageTimeToLive(
 qa_const_string address,
 QAMessage * msg,
 qa_long ttl
)

Parameters
● address The destination.

● msg The message.

● ttl The time-to-live, in milliseconds.

Returns
True if and only if the operation succeeded.

setBooleanStoreProperty method

QAnywhere reference

416 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Sets a pre-defined or custom message store property to a boolean value.

Syntax
public virtual qa_bool setBooleanStoreProperty(
 qa_const_string name,
 qa_bool value
)

Parameters
● name The pre-defined or custom property name.

● value The qa_bool value of the property.

Returns
True if and only if the operation succeeded.

Remarks
You can use this method to set pre-defined or user-defined client. store properties.

For a list of pre-defined properties, see MessageStoreProperties.

For more information, see “Client message store properties” on page 26.

setByteStoreProperty method

Sets a pre-defined or custom message store property to a byte value.

Syntax
public virtual qa_bool setByteStoreProperty(
 qa_const_string name,
 qa_byte value
)

Parameters
● name The pre-defined or custom property name.

● value The qa_byte value of the property.

Returns
True if and only if the operation succeeded.

Remarks
You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

For more information, see “Client message store properties” on page 26.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 417

setDoubleStoreProperty method

Sets a pre-defined or custom message store property to a double value.

Syntax
public virtual qa_bool setDoubleStoreProperty(
 qa_const_string name,
 qa_double value
)

Parameters
● name The pre-defined or custom property name.

● value The qa_double value of the property.

Returns
True if and only if the operation succeeded.

Remarks
You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

For more information, see “Client message store properties” on page 26.

setFloatStoreProperty method

Sets a pre-defined or custom message store property to a float value.

Syntax
public virtual qa_bool setFloatStoreProperty(
 qa_const_string name,
 qa_float value
)

Parameters
● name The pre-defined or custom property name.

● value The qa_float value of the property.

Returns
True if and only if the operation succeeded.

Remarks
You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

QAnywhere reference

418 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

For more information, see “Client message store properties” on page 26.

setIntStoreProperty method

Sets a pre-defined or custom message store property to a int value.

Syntax
public virtual qa_bool setIntStoreProperty(
 qa_const_string name,
 qa_int value
)

Parameters
● name The pre-defined or custom property name.

● value The qa_int value of the property.

Returns
True if and only if the operation succeeded.

Remarks
You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

For more information, see “Client message store properties” on page 26.

setLongStoreProperty method

Sets a pre-defined or custom message store property to a long value.

Syntax
public virtual qa_bool setLongStoreProperty(
 qa_const_string name,
 qa_long value
)

Parameters
● name The pre-defined or custom property name.

● value The qa_long value of the property.

Returns
True if and only if the operation succeeded.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 419

Remarks
You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

For more information, see “Client message store properties” on page 26.

setMessageListener method

Sets a message listener class to receive QAnywhere messages asynchronously.

Syntax
public virtual void setMessageListener(
 qa_const_string address,
 QAMessageListener * listener
)

Parameters
● address The destination address that the listener applies to.

● listener The message listener to associate with destination address.

Remarks
The listener is an instance of a class implementing QAMessageListener::onMessage, the only method
defined in the QAMessageListener interface. QAMessageListener::onMessage accepts a single
QAMessage parameter.

The setMessageListener address parameter specifies a local queue name used to receive the message. You
can only have one listener assigned to a given queue.

If you want to listen for QAnywhere system messages, including push notifications and network status
changes, specify "system" as the queue name. Use this method to receive message asynchronously.

For more information, see “Receiving messages asynchronously” on page 70 and “System
queue” on page 58.

setMessageListenerBySelector method

Sets a message listener class to receive QAnywhere messages asynchronously, with a message selector.

Syntax
public virtual void setMessageListenerBySelector(
 qa_const_string address,
 qa_const_string selector,
 QAMessageListener * listener
)

QAnywhere reference

420 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters
● address The destination address that the listener applies to.

● selector The selector to be used to filter the messages to be received.

● listener The message listener to associate with destination address.

Remarks
The listener is an instance of a class implementing QAMessageListener::onMessage, the only method
defined in the QAMessageListener interface. QAMessageListener::onMessage accepts a single
QAMessage parameter.

The setMessageListener address parameter specifies a local queue name used to receive the message. You
can only have one listener assigned to a given queue. The selector parameter specifies a selector to be
used to filter the messages to be received on the given address.

If you want to listen for QAnywhere system messages, including push notifications and network status
changes, specify "system" as the queue name. Use this method to receive message asynchronously.

For more information, see “Receiving messages asynchronously” on page 70 and “System
queue” on page 58.

setProperty method

Allows you to set QAnywhere manager configuration properties programmatically.

Syntax
public virtual qa_bool setProperty(
 qa_const_string name,
 qa_const_string value
)

Parameters
● name The pre-defined or custom QAnywhere Manager configuration property name.

● value The value of the QAnywhere Manager configuration property.

Returns
True if and only if the operation succeeded.

Remarks
You can use this method to override default QAnywhere manager configuration properties by specifying a
property name and value.

For a list of QAnywhere manager configuration properties, see “QAnywhere manager configuration
properties” on page 81.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 421

You can also set QAnywhere manager configuration properties using a properties file and the
QAManagerFactory::createQAManager method.

For more information, see “Setting QAnywhere manager configuration properties in a file” on page 82.

Note
You must set required properties before calling QAManager::open() or QATransactionalManager::open().

setShortStoreProperty method

Sets a pre-defined or custom message store property to a short value.

Syntax
public virtual qa_bool setShortStoreProperty(
 qa_const_string name,
 qa_short value
)

Parameters
● name The pre-defined or custom property name.

● value The qa_short value of the property.

Returns
True if and only if the operation succeeded.

Remarks
You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

For more information, see “Client message store properties” on page 26.

setStringStoreProperty method

Sets a pre-defined or custom message store property to a string value.

Syntax
public virtual qa_bool setStringStoreProperty(
 qa_const_string name,
 qa_const_string value
)

Parameters
● name The pre-defined or custom property name.

QAnywhere reference

422 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● value The qa_string value of the property.

Returns
True if and only if the operation succeeded.

Remarks
You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

For more information, see “Client message store properties” on page 26.

start method

Starts the QAManagerBase for receiving incoming messages in message listeners.

Syntax
public virtual qa_bool start()

Returns
True if and only if the operation succeeded.

Remarks
The QAManagerBase does not need to be started if there are no message listeners set, that is, if messages
are received with the getMessage methods. It is not recommended to use the getMessage methods as well
as message listeners for receiving messages. Use one or the other of the asynchronous (message listener)
or synchronous (getMessage) models.

Any calls to start beyond the first without an intervening QAManagerBase::stop() call are ignored.

See also
● “stop method” on page 423

stop method

Stops the QAManagerBase's reception of incoming messages.

Syntax
public virtual qa_bool stop()

Returns
True if and only if the operation succeeded.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 423

Remarks
The messages are not lost. They are not received until the manager is started again. Any calls to stop
beyond the first without an intervening QAManagerBase::start() are ignored.

See also
● “start method” on page 423

triggerSendReceive method

Causes a synchronization with the QAnywhere message server, uploading any messages addressed to
other clients, and downloading any messages addressed to the local client.

Syntax
public virtual qa_bool triggerSendReceive()

Returns
True if and only if the operation succeeded.

Remarks
A call to triggerSendReceive results in immediate message synchronization between a QAnywhere Agent
and the central messaging server. A manual triggerSendReceive call results in immediate message
transmission, independent of the QAnywhere Agent transmission policies. QAnywhere Agent
transmission policies determine how message transmission occurs. For example, message transmission
can occur automatically at regular intervals, when your client receives a push notification, or when you
call the QAManagerBase::putMessage to send a message.

For more information, see “Determining when message transmission should occur on the
client” on page 46.

See also
● “putMessage method” on page 416

QAManagerFactory class
This class acts as a factory class for creating QATransactionalManager and QAManager objects.

Syntax
public class QAManagerFactory

Members
All members of QAManagerFactory class, including all inherited members.

QAnywhere reference

424 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“createQAManager method” Returns a new QAManager instance with the specified
properties.

“createQATransactionalManager method” Returns a new QATransactionalManager instance with the
specified properties.

“deleteQAManager method” Destroys a QAManager, freeing its resources.

“deleteQATransactionalManager method” Destroys a QATransactionalManager instance, freeing its
resources.

“getLastError method” The error code associated with the last excecuted QAMa-
nagerFactory method.

“getLastErrorMsg method” The error text associated with the last executed QAMana-
gerFactory method.

“getLastNativeError method” The native error code associated with the last excecuted
QAManagerFactory method.

Remarks
You can only have one instance of QAManagerFactory.

See also
● “QAManager class” on page 387
● “QATransactionalManager class” on page 457

createQAManager method

Returns a new QAManager instance with the specified properties.

Syntax
public virtual QAManager * createQAManager(qa_const_string iniFile)

Parameters
● iniFile The path of the properties file.

Returns
The QAManager instance.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 425

Remarks
If the properties file parameter is null, the QAManager is created using default properties. You can use the
QAManager::setProperty() method to set QAnywhere Manager properties programmatically after you
create the QAManager.

For a list of QAnywhere Manager configuration properties, see “QAnywhere manager configuration
properties” on page 81.

See also
● “QAManager class” on page 387

createQATransactionalManager method

Returns a new QATransactionalManager instance with the specified properties.

Syntax
public virtual QATransactionalManager * createQATransactionalManager(
 qa_const_string iniFile
)

Parameters
● iniFile The path of the properties file.

Returns
The QATransactionalManager instance.

Remarks
If the properties file parameter is null, the QATransactionalManager is created using default properties.
You can use the QATransactionalManager::setProperty() method to set QAnywhere Manager properties
programmatically after you create the QATransactionalManager.

For a list of QAnywhere Manager configuration properties, see “QAnywhere manager configuration
properties” on page 81.

See also
● “QATransactionalManager class” on page 457

deleteQAManager method

Destroys a QAManager, freeing its resources.

Syntax
public virtual void deleteQAManager(QAManager * mgr)

QAnywhere reference

426 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters
● mgr The QAManager instance to destroy.

Remarks
It is not necessary to use this method, since all created QAManager's are destroyed when
QAnywhereFactory_term() is called. It is provided as a convenience for when it is desirable to free
resources in a timely manner.

For more information, see “Shutting down QAnywhere” on page 80.

deleteQATransactionalManager method

Destroys a QATransactionalManager instance, freeing its resources.

Syntax
public virtual void deleteQATransactionalManager(
 QATransactionalManager * mgr
)

Parameters
● mgr The QATransactionalManager instance to destroy.

Remarks
It is not necessary to use this method, since all created QATransactionalManager instances are destroyed
when QAnywhereFactory_term() is called. It is provided as a convenience for when it is desirable to free
resources in a timely manner.

For more information, see “Shutting down QAnywhere” on page 80

getLastError method

The error code associated with the last excecuted QAManagerFactory method.

Syntax
public virtual qa_int getLastError()

Returns
The error code.

Remarks
0 indicates no error.

For a list of values, see the QAError.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 427

See also
● “getLastNativeError method” on page 428
● “getLastErrorMsg method” on page 428

getLastErrorMsg method

The error text associated with the last executed QAManagerFactory method.

Syntax
public virtual qa_string getLastErrorMsg()

Returns
The error message.

Remarks
This method returns null if QAManagerFactory::getLastError returns 0.

You can retrieve this property after catching a QAError.

See also
● “getLastError method” on page 427
● “getLastNativeError method” on page 428
● “QAError class” on page 380

getLastNativeError method

The native error code associated with the last excecuted QAManagerFactory method.

Syntax
public virtual an_sql_code getLastNativeError()

Returns
The native error code.

Remarks
0 indicates no error.

See also
● “getLastError method” on page 427
● “getLastErrorMsg method” on page 428

QAnywhere reference

428 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

QAMessage class
QAMessage provides an interface to set message properties and header fields.

Syntax
public class QAMessage

Derived classes
● “QABinaryMessage class” on page 366
● “QATextMessage class” on page 452

Members
All members of QAMessage class, including all inherited members.

Name Description

“beginEnumPropertyNames method” Begins an enumeration of message property names.

“castToBinaryMessage method” Casts this QAMessage to a QABinaryMessage.

“castToTextMessage method” Casts this QAMessage to a QATextMessage.

“clearProperties method” Clears a message's properties.

“endEnumPropertyNames method” Frees the resources associated with a message property
name enumeration.

“getAddress method” Gets the destination address for the QAMessage instance.

“getBooleanProperty method” Gets the value of the qa_bool property with the specified
name.

“getByteProperty method” Gets the value of the qa_byte property with the specified
name.

“getDoubleProperty method” Gets the value of the qa_double property with the specified
name.

“getExpiration method” Gets the message's expiration time.

“getFloatProperty method” Gets the value of the qa_float property with the specified
name.

“getInReplyToID method” Gets the ID of the message that this message is in reply to.

“getIntProperty method” Gets the value of the qa_int property with the specified name.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 429

Name Description

“getLongProperty method” Gets the value of the qa_long property with the specified
name.

“getMessageID method” Gets the message ID.

“getPriority method” Gets the message priority level.

“getPropertyType method” Returns the type of a property with the given name.

“getRedelivered method” Indicates whether the message has been previously re-
ceived but not acknowledged.

“getReplyToAddress method” Gets the address to which a reply to this message should be
sent.

“getShortProperty method” Gets the value of the qa_short property with the specified
name.

“getStringProperty method” Gets the value of the qa_string property with the specified
name.

“getTimestamp method” Gets the message timestamp.

“getTimestampAsString method” Gets the message timestamp as a formatted string.

“nextPropertyName method” Returns the message property name for the given enumera-
tion, returning -1 if there are no more property names.

“propertyExists method” Indicates whether a property value exists.

“setAddress method” Sets the destination address for this message.

“setBooleanProperty method” Sets the qa_bool property with the specified name to the
specified value.

“setByteProperty method” Sets a qa_byte property with the specified name to the speci-
fied value.

“setDoubleProperty method” Sets the qa_double property with the specified name to the
specified value.

“setFloatProperty method” Sets the qa_float property with the specified name to the
specified value.

“setInReplyToID method” Sets the In-Reply-To ID for the message.

QAnywhere reference

430 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“setIntProperty method” Sets the qa_int property with the specified name to the speci-
fied value.

“setLongProperty method” Sets the qa_long property with the specified name to the
specified value.

“setMessageID method” Sets the message ID.

“setPriority method” Sets the priority level for this message.

“setRedelivered method” Sets an indication of whether this message was redelivered.

“setReplyToAddress method” Sets the address to which a reply to this message should be
sent.

“setShortProperty method” Sets e qa_short property with the specified name to the speci-
fied value.

“setStringProperty method” Sets a qa_string property with the specified name to the
specified value.

“setTimestamp method” Sets the message timestamp.

“DEFAULT_PRIORITY variable” The default message priority.

“DEFAULT_TIME_TO_LIVE variable” The default message time-to-live value.

Remarks
The derived classes QABinaryMessage and QATextMessage provide specialized methods to read and
write to the message body. You can use QAMessage methods to set predefined or custom message properties.

For a list of pre-defined property names, see the MessageProperties.

For more information about setting message properties and header fields, see “QAnywhere
messages” on page 13.

beginEnumPropertyNames method

Begins an enumeration of message property names.

Syntax
public virtual qa_property_enum_handle beginEnumPropertyNames()

Returns
A handle that is supplied to nextPropertyName.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 431

Remarks
The handle returned by this method is supplied to nextPropertyName. This method and
nextPropertyName can be used to enumerate the message property names at the time this method was
called. Message properties cannot be set between beginEnumPropertyNames and endEnumPropertyNames.

castToBinaryMessage method

Casts this QAMessage to a QABinaryMessage.

Syntax
public virtual QABinaryMessage * castToBinaryMessage()

Returns
A pointer to the QABinaryMessage, or NULL if this message is not an instance of QABinaryMessage.

Remarks
You can also use the conversion operator to convert this QAMessage to a QABinaryMessage.

To convert a QAMessage to a QABinaryMessage using the conversion operator, do the following:

QAMessage *msg;
QABinaryMessage *bmsg;
...
bmsg = (QABinaryMessage *)(*msg);

castToTextMessage method

Casts this QAMessage to a QATextMessage.

Syntax
public virtual QATextMessage * castToTextMessage()

Returns
A pointer to the QATextMessage, or NULL if this message is not an instance of QATextMessage.

Remarks
You can also use the conversion operator to convert this QAMessage to a QATextMessage.

For example, to convert a QAMessage to a QATextMessage using the conversion operator, do the following:

QAMessage *msg;
QATextMessage *bmsg;
...
bmsg = (QATextMessage *)(*msg);

QAnywhere reference

432 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

clearProperties method

Clears a message's properties.

Syntax
public virtual void clearProperties()

Remarks

Note
The message's header fields and body are not cleared.

endEnumPropertyNames method

Frees the resources associated with a message property name enumeration.

Syntax
public virtual void endEnumPropertyNames(qa_property_enum_handle h)

Parameters
● h A handle returned by beginEnumPropertyNames.

getAddress method

Gets the destination address for the QAMessage instance.

Syntax
public virtual qa_const_string getAddress()

Returns
The destination address.

Remarks
When a message is sent, this field is ignored. After completion of the send method, the field holds the
destination address specified in QAManagerBase::putMessage().

For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

getBooleanProperty method

Gets the value of the qa_bool property with the specified name.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 433

Syntax
public virtual qa_bool getBooleanProperty(
 qa_const_string name,
 qa_bool * value
)

Parameters
● name The name of the property to get.

● value The destination for the qa_bool value.

Returns
True if and only if the operation succeeded.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 356

getByteProperty method

Gets the value of the qa_byte property with the specified name.

Syntax
public virtual qa_bool getByteProperty(
 qa_const_string name,
 qa_byte * value
)

Parameters
● name The name of the property to get.

● value The destination for the qa_byte value.

Returns
True if and only if the operation succeeded.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 356

QAnywhere reference

434 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

getDoubleProperty method

Gets the value of the qa_double property with the specified name.

Syntax
public virtual qa_bool getDoubleProperty(
 qa_const_string name,
 qa_double * value
)

Parameters
● name The name of the property to get.

● value The destination for the qa_double value.

Returns
True if and only if the operation succeeded.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 356

getExpiration method

Gets the message's expiration time.

Syntax
public virtual qa_long getExpiration()

Returns
The expiration time.

Remarks
When a message is sent, the Expiration header field is left unassigned. After the send method completes,
the Expiration header holds the expiration time of the message.

This property is read-only because the expiration time of a message is set by adding the time-to-live
argument of QAManagerBase::putMessageTimeToLive to the current time.

The expiration time is in units that are natural for the platform. For Windows/PocketPC platforms,
expiration is a SYSTEMTIME, converted to a FILETIME, which is copied to an qa_long value.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 435

For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “getTimestamp method” on page 442

getFloatProperty method

Gets the value of the qa_float property with the specified name.

Syntax
public virtual qa_bool getFloatProperty(
 qa_const_string name,
 qa_float * value
)

Parameters
● name The name of the property to get.

● value The destination for the qa_float value.

Returns
True if and only if the operation succeeded.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 356

getInReplyToID method

Gets the ID of the message that this message is in reply to.

Syntax
public virtual qa_const_string getInReplyToID()

Returns
The In-Reply-To ID.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

QAnywhere reference

436 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

getIntProperty method

Gets the value of the qa_int property with the specified name.

Syntax
public virtual qa_bool getIntProperty(
 qa_const_string name,
 qa_int * value
)

Parameters
● name The name of the property to get.

● value The destination for the qa_int value.

Returns
True if and only if the operation succeeded.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 356

getLongProperty method

Gets the value of the qa_long property with the specified name.

Syntax
public virtual qa_bool getLongProperty(
 qa_const_string name,
 qa_long * value
)

Parameters
● name The name of the property to get.

● value The destination for the qa_long value.

Returns
True if and only if the operation succeeded.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 437

See also
● “MessageProperties class” on page 356

getMessageID method

Gets the message ID.

Syntax
public virtual qa_const_string getMessageID()

Returns
The message ID.

Remarks
The MessageID header field contains a value that uniquely identifies each message sent by the
QAnywhere client.

When a message is sent using QAManagerBase::putMessage method, the MessageID header is null and
can be ignored. When the send method returns, it contains an assigned value.

A MessageID is a qa_string value that should function as a unique key for identifying messages in a
historical repository.

For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

getPriority method

Gets the message priority level.

Syntax
public virtual qa_int getPriority()

Returns
The message priority.

Remarks
The QAnywhere client API defines ten levels of priority value, with 0 as the lowest priority and 9 as the
highest. Clients should consider priorities 0-4 as gradations of normal priority and priorities 5-9 as
gradations of expedited priority.

For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

QAnywhere reference

438 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

getPropertyType method

Returns the type of a property with the given name.

Syntax
public virtual qa_short getPropertyType(qa_const_string name)

Parameters
● name The name of the property.

Returns
The type of the property.

Remarks
One of PROPERTY_TYPE_BOOLEAN, PROPERTY_TYPE_BYTE, PROPERTY_TYPE_SHORT,
PROPERTY_TYPE_INT, PROPERTY_TYPE_LONG, PROPERTY_TYPE_FLOAT,
PROPERTY_TYPE_DOUBLE, PROPERTY_TYPE_STRING, PROPERTY_TYPE_UNKNOWN.

getRedelivered method

Indicates whether the message has been previously received but not acknowledged.

Syntax
public virtual qa_bool getRedelivered()

Returns
True if and only if the message was redelivered.

Remarks
The Redelivered header is set by a receiving QAManager when it detects that a message being received
was received before.

For example, an application receives a message using a QAManager opened with
AcknowledgementMode::EXPLICIT_ACKNOWLEDGEMENT, and shuts down without acknowledging
the message. When the application starts again and receives the same message the Redelivered header is
true.

For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

getReplyToAddress method

Gets the address to which a reply to this message should be sent.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 439

Syntax
public virtual qa_const_string getReplyToAddress()

Returns
The reply-to address.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

getShortProperty method

Gets the value of the qa_short property with the specified name.

Syntax
public virtual qa_bool getShortProperty(
 qa_const_string name,
 qa_short * value
)

Parameters
● name The name of the property to get.

● value The destination for the qa_short value.

Returns
True if and only if the operation succeeded.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 356

getStringProperty method

Gets the value of the qa_string property with the specified name.

QAnywhere reference

440 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Overload list

Name Description

“getStringProperty(qa_const_string, qa_int,
qa_string, qa_int) method”

Gets the value of the qa_string property (starting at off-
set) with the specified name.

“getStringProperty(qa_const_string,
qa_string, qa_int) method”

Gets the value of the qa_string property with the speci-
fied name.

getStringProperty(qa_const_string, qa_int, qa_string, qa_int) method
Gets the value of the qa_string property (starting at offset) with the specified name.

Syntax
public virtual qa_int getStringProperty(
 qa_const_string name,
 qa_int offset,
 qa_string dest,
 qa_int maxlen
)

Parameters
● name The name of the property to get.

● offset The starting offset into the property value from which to copy.

● dest The destination for the qa_string value.

● maxlen The maximum number of qa_chars of the value to copy. This value includes the null
terminator qa_char.

Returns
The number of non-null qa_chars actually copied, or -1 if the operation failed.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 356

getStringProperty(qa_const_string, qa_string, qa_int) method
Gets the value of the qa_string property with the specified name.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 441

Syntax
public virtual qa_int getStringProperty(
 qa_const_string name,
 qa_string dest,
 qa_int maxlen
)

Parameters
● name The name of the property to get.

● dest The destination for the qa_string value.

● maxlen The maximum number of qa_chars of the value to copy. This value includes the null
terminator qa_char.

Returns
The number of non-null qa_chars actually copied, or -1 if the operation failed.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 356

getTimestamp method

Gets the message timestamp.

Syntax
public virtual qa_long getTimestamp()

Returns
The message timestamp.

Remarks
This Timestamp header field contains the time a message was created. It is a coordinated universal time
(UTC).

It is not the time the message was actually transmitted, because the actual send may occur later due to
transactions or other client-side queuing of messages. It is in units that are natural for the platform. For
Windows/PocketPC platforms, the timestamp is a SYSTEMTIME, converted to a FILETIME, which is
copied to a qa_long value.

To convert a timestamp ts to SYSTEMTIME for displaying to a user, run the following code:

QAnywhere reference

442 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SYSTEMTIME stime;
FILETIME ftime;
ULARGE_INTEGER time;
time.QuadPart = ts;
memcpy(&ftime, &time, sizeof(FILETIME));
FileTimeToSystemTime(&ftime, &stime);

For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

getTimestampAsString method

Gets the message timestamp as a formatted string.

Syntax
public virtual qa_int getTimestampAsString(
 qa_string buffer,
 qa_int bufferLen
)

Parameters
● buffer The buffer for the formatted timestamp.

● bufferLen The size of the buffer.

Returns
The number of non-null qa_chars written to the buffer.

Remarks
The format is: "dow, MMM dd, yyyy hh:mm:ss.nnn GMT".

For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

nextPropertyName method

Returns the message property name for the given enumeration, returning -1 if there are no more property
names.

Syntax
public virtual qa_int nextPropertyName(
 qa_property_enum_handle h,
 qa_string buffer,

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 443

 qa_int bufferLen
)

Parameters
● h A handle returned by beginEnumPropertyNames.

● buffer The buffer into which to write the property name.

● bufferLen The length of the buffer to store the property name. This length must include space for
the null terminator

Returns
The length of the property name, or -1 if there are no more property names.

propertyExists method

Indicates whether a property value exists.

Syntax
public virtual qa_bool propertyExists(qa_const_string name)

Parameters
● name The name of the property.

Returns
True if and only if the property exists.

setAddress method

Sets the destination address for this message.

Syntax
public virtual void setAddress(qa_const_string destination)

Parameters
● destination The destination address.

Remarks
This method can be used to change the value for a message that has been received.

For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

QAnywhere reference

444 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

setBooleanProperty method

Sets the qa_bool property with the specified name to the specified value.

Syntax
public virtual void setBooleanProperty(
 qa_const_string name,
 qa_bool value
)

Parameters
● name the name of the property to set.

● value the qa_bool value of the property.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 356

setByteProperty method

Sets a qa_byte property with the specified name to the specified value.

Syntax
public virtual void setByteProperty(qa_const_string name, qa_byte value)

Parameters
● name The name of the property to set.

● value The qa_byte value of the property.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 356

setDoubleProperty method

Sets the qa_double property with the specified name to the specified value.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 445

Syntax
public virtual void setDoubleProperty(
 qa_const_string name,
 qa_double value
)

Parameters
● name The name of the property to set.

● value The qa_double value of the property.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 356

setFloatProperty method

Sets the qa_float property with the specified name to the specified value.

Syntax
public virtual void setFloatProperty(
 qa_const_string name,
 qa_float value
)

Parameters
● name The name of the property to set.

● value The qa_float value of the property.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 356

setInReplyToID method

Sets the In-Reply-To ID for the message.

QAnywhere reference

446 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
public virtual void setInReplyToID(qa_const_string id)

Parameters
● id The In-Reply-To ID.

Remarks
A client can use the InReplyToID header field to link one message with another. A typical use is to link a
response message with its request message.

For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

setIntProperty method

Sets the qa_int property with the specified name to the specified value.

Syntax
public virtual void setIntProperty(qa_const_string name, qa_int value)

Parameters
● name The name of the property to set.

● value The qa_int value of the property.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 356

setLongProperty method

Sets the qa_long property with the specified name to the specified value.

Syntax
public virtual void setLongProperty(qa_const_string name, qa_long value)

Parameters
● name The name of the property to set.

● value The qa_long value of the property.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 447

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 356

setMessageID method

Sets the message ID.

Syntax
public virtual void setMessageID(qa_const_string id)

Parameters
● id The message ID.

Remarks
This method can be used to change the value for a message that has been received.

For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

setPriority method

Sets the priority level for this message.

Syntax
public virtual void setPriority(qa_int priority)

Parameters
● priority The message priority.

Remarks
This method can be used to change the value for a message that has been received.

For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

setRedelivered method

Sets an indication of whether this message was redelivered.

QAnywhere reference

448 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
public virtual void setRedelivered(qa_bool redelivered)

Parameters
● redelivered The redelivered indication.

Remarks
This method can be used to change the value for a message that has been received.

For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

setReplyToAddress method

Sets the address to which a reply to this message should be sent.

Syntax
public virtual void setReplyToAddress(qa_const_string replyTo)

Parameters
● replyTo The reply-to address.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

setShortProperty method

Sets e qa_short property with the specified name to the specified value.

Syntax
public virtual void setShortProperty(
 qa_const_string name,
 qa_short value
)

Parameters
● name The name of the property to set.

● value The qa_short value of the property.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 449

See also
● “MessageProperties class” on page 356

setStringProperty method

Sets a qa_string property with the specified name to the specified value.

Syntax
public virtual void setStringProperty(
 qa_const_string name,
 qa_const_string value
)

Parameters
● name The name of the property to set.

● value The qa_string value of the property.

Remarks
For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “MessageProperties class” on page 356

setTimestamp method

Sets the message timestamp.

Syntax
public virtual void setTimestamp(qa_long timestamp)

Parameters
● timestamp The message timestamp, a coordinated universal time (UTC).

Remarks
This method can be used to change the value for a message that has been received.

For more information about getting and setting message headers and properties, see “QAnywhere
messages” on page 13.

See also
● “getTimestamp method” on page 442

QAnywhere reference

450 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

DEFAULT_PRIORITY variable

The default message priority.

Syntax
public static const qa_int DEFAULT_PRIORITY;

Remarks
This value is 4. This is normal priority as values 0-4 are gradations of normal priority and values 5-9 are
gradations of expedited priority.

DEFAULT_TIME_TO_LIVE variable

The default message time-to-live value.

Syntax
public static const qa_long DEFAULT_TIME_TO_LIVE;

Remarks
This value is 0, which indicates that the message does not expire.

QAMessageListener class
A QAMessageListener object is used to receive asynchronously delivered messages.

Syntax
public class QAMessageListener

Members
All members of QAMessageListener class, including all inherited members.

Name Description

“QAMessageListener deconstructor” Virtual destructor.

“onMessage method” Passes a message to the listener.

QAMessageListener deconstructor

Virtual destructor.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 451

Syntax
public virtual ~QAMessageListener()

onMessage method

Passes a message to the listener.

Syntax
public virtual void onMessage(QAMessage * message)

Parameters
● message The message passed to the listener.

QATextMessage class
QATextMessage inherits from the QAMessage class and adds a text message body.

Syntax
public class QATextMessage : QAMessage

Base classes
● “QAMessage class” on page 429

Members
All members of QATextMessage class, including all inherited members.

Name Description

“beginEnumPropertyNames method” Begins an enumeration of message property names.

“castToBinaryMessage method” Casts this QAMessage to a QABinaryMessage.

“castToTextMessage method” Casts this QAMessage to a QATextMessage.

“clearProperties method” Clears a message's properties.

“endEnumPropertyNames method” Frees the resources associated with a message property
name enumeration.

“getAddress method” Gets the destination address for the QAMessage instance.

“getBooleanProperty method” Gets the value of the qa_bool property with the specified
name.

QAnywhere reference

452 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“getByteProperty method” Gets the value of the qa_byte property with the specified
name.

“getDoubleProperty method” Gets the value of the qa_double property with the specified
name.

“getExpiration method” Gets the message's expiration time.

“getFloatProperty method” Gets the value of the qa_float property with the specified
name.

“getInReplyToID method” Gets the ID of the message that this message is in reply to.

“getIntProperty method” Gets the value of the qa_int property with the specified name.

“getLongProperty method” Gets the value of the qa_long property with the specified
name.

“getMessageID method” Gets the message ID.

“getPriority method” Gets the message priority level.

“getPropertyType method” Returns the type of a property with the given name.

“getRedelivered method” Indicates whether the message has been previously re-
ceived but not acknowledged.

“getReplyToAddress method” Gets the address to which a reply to this message should be
sent.

“getShortProperty method” Gets the value of the qa_short property with the specified
name.

“getStringProperty method” Gets the value of the qa_string property with the specified
name.

“getText method” Gets the string containing this message's data.

“getTextLength method” Returns the text length.

“getTimestamp method” Gets the message timestamp.

“getTimestampAsString method” Gets the message timestamp as a formatted string.

“nextPropertyName method” Returns the message property name for the given enumera-
tion, returning -1 if there are no more property names.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 453

Name Description

“propertyExists method” Indicates whether a property value exists.

“readText method” Reads the requested length of text from the current text po-
sition into a buffer.

“reset method” Repositions the current text position to the beginning.

“setAddress method” Sets the destination address for this message.

“setBooleanProperty method” Sets the qa_bool property with the specified name to the
specified value.

“setByteProperty method” Sets a qa_byte property with the specified name to the speci-
fied value.

“setDoubleProperty method” Sets the qa_double property with the specified name to the
specified value.

“setFloatProperty method” Sets the qa_float property with the specified name to the
specified value.

“setInReplyToID method” Sets the In-Reply-To ID for the message.

“setIntProperty method” Sets the qa_int property with the specified name to the speci-
fied value.

“setLongProperty method” Sets the qa_long property with the specified name to the
specified value.

“setMessageID method” Sets the message ID.

“setPriority method” Sets the priority level for this message.

“setRedelivered method” Sets an indication of whether this message was redelivered.

“setReplyToAddress method” Sets the address to which a reply to this message should be
sent.

“setShortProperty method” Sets e qa_short property with the specified name to the speci-
fied value.

“setStringProperty method” Sets a qa_string property with the specified name to the
specified value.

“setText method” Sets the string containing this message's data.

“setTimestamp method” Sets the message timestamp.

QAnywhere reference

454 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“writeText method” Concatenates text to the current text.

“DEFAULT_PRIORITY variable” The default message priority.

“DEFAULT_TIME_TO_LIVE variable” The default message time-to-live value.

Remarks
QATextMessage provides methods to read from and write to the text message body.

When the message is first created, the body of the message is in write-only mode. After a message has
been sent, the client that sent it can retain and modify it without affecting the message that has been sent.
The same message object can be sent multiple times.

When a message is received, the provider has called QATextMessage::reset so that the message body is in
read-only mode and reading of values starts from the beginning of the message body. If a client attempts
to write a message in read-only mode, a COMMON_MSG_NOT_WRITEABLE_ERROR is set.

See also
● “QABinaryMessage class” on page 366

getText method

Gets the string containing this message's data.

Syntax
public virtual qa_string getText()

Returns
A string containing the message's data.

Remarks
The default value is null.

If the message exceeds the maximum size specified by the
QAManager::MAX_IN_MEMORY_MESSAGE_SIZE property, this function returns null. In this case,
use the QATextMessage::readText method to read the text.

For more information about QAManager properties, see “QAnywhere manager configuration
properties” on page 81.

getTextLength method

Returns the text length.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 455

Syntax
public virtual qa_long getTextLength()

Returns
The text length.

Remarks

Note
If the text length is non-zero and getText() returns qa_null then the text does not fit in memory, and must
be read in pieces using the readText.

readText method

Reads the requested length of text from the current text position into a buffer.

Syntax
public virtual qa_int readText(qa_string string, qa_int length)

Parameters
● string The destination for the text.

● length The maximum number of qa_chars to read into the destination. buffer, including the null
termination character.

Returns
The actual number of non-null qa_chars read, or -1 if the entire text stream has been read.

reset method

Repositions the current text position to the beginning.

Syntax
public virtual void reset()

setText method

Sets the string containing this message's data.

Syntax
public virtual void setText(qa_const_string string)

QAnywhere reference

456 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters
● string A string containing the message data to set.

writeText method

Concatenates text to the current text.

Syntax
public virtual void writeText(
 qa_const_string string,
 qa_int offset,
 qa_int length
)

Parameters
● string The source text to concatenate.

● offset The offset into the source text at which to start reading.

● length The number of qa_chars of the source text to read.

QATransactionalManager class

This class is the manager for transactional messaging.

Syntax
public class QATransactionalManager : QAManagerBase

Base classes
● “QAManagerBase class” on page 394

Members
All members of QATransactionalManager class, including all inherited members.

Name Description

“beginEnumStorePropertyNames method” Begins an enumeration of message store property names.

“browseClose method” Frees the resources associated with a browse operation.

“browseMessages method” Begins a browse of messages queued in the message store.

“browseMessagesByID method” Begins a browse of the message that is queued in the mes-
sage store, with the given message ID.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 457

Name Description

“browseMessagesByQueue method” Begins a browse of messages queued in the message store
for the given queue.

“browseMessagesBySelector method” Begins a browse of messages queued in the message store
that satisfy the given selector.

“browseNextMessage method” Returns the next message for the given browse operation,
returning null if there are no more messages.

“cancelMessage method” Cancels the message with the given message ID.

“close method” Closes the connection to the QAnywhere message system
and releases any resources used by the QAManagerBase.

“commit method” Commits the current transaction and begins a new transac-
tion.

“createBinaryMessage method” Creates a QABinaryMessage instance.

“createTextMessage method” Creates a QATextMessage instance.

“deleteMessage method” Deletes a QAMessage object.

“endEnumStorePropertyNames method” Frees the resources associated with a message store prop-
erty name enumeration.

“getAllQueueDepth method” Returns the total depth of all queues, based on a given filter.

“getBooleanStoreProperty method” Gets a boolean value for a pre-defined or custom message
store property.

“getByteStoreProperty method” Gets a byte value for a pre-defined or custom message
store property.

“getDoubleStoreProperty method” Gets a double value for a pre-defined or custom message
store property.

“getFloatStoreProperty method” Gets a float value for a pre-defined or custom message
store property.

“getIntStoreProperty method” Gets an int value for a pre-defined or custom message
store property.

“getLastError method” The error code associated with the last excecuted QAMa-
nagerBase method.

QAnywhere reference

458 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“getLastErrorMsg method” The error text associated with the last executed QAMana-
gerBase method.

“getLastNativeError method” The native error code associated with the last excecuted
QAManagerBase method.

“getLongStoreProperty method” Gets a long value for a pre-defined or custom message
store property.

“getMessage method” Returns the next available QAMessage sent to the speci-
fied address.

“getMessageBySelector method” Returns the next available QAMessage sent to the speci-
fied address that satisfies the given selector.

“getMessageBySelectorNoWait method” Returns the next available QAMessage sent to the given
address that satisfies the given selector.

“getMessageBySelectorTimeout method” Returns the next available QAMessage sent to the given
address that satisfies the given selector.

“getMessageNoWait method” Returns the next available QAMessage sent to the given
address.

“getMessageTimeout method” Returns the next available QAMessage sent to the given
address.

“getMode method” Returns the QAManager acknowledgement mode for re-
ceived messages.

“getQueueDepth method” Returns the depth of a queue, based on a given filter.

“getShortStoreProperty method” Gets a short value for a pre-defined or custom message
store property.

“getStringStoreProperty method” Gets a string value for a pre-defined or custom message
store property.

“nextStorePropertyName method” Returns the message store property name for the given enu-
meration.

“open method” Opens a QATransactionalManager intance.

“putMessage method” Puts a message into the queue for the given destination.

“putMessageTimeToLive method” Puts a message into the queue for the given destination
and a given time-to-live in milliseconds.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 459

Name Description

“rollback method” Rolls back the current transaction and begins a new trans-
action.

“setBooleanStoreProperty method” Sets a pre-defined or custom message store property to a
boolean value.

“setByteStoreProperty method” Sets a pre-defined or custom message store property to a
byte value.

“setDoubleStoreProperty method” Sets a pre-defined or custom message store property to a
double value.

“setFloatStoreProperty method” Sets a pre-defined or custom message store property to a
float value.

“setIntStoreProperty method” Sets a pre-defined or custom message store property to a
int value.

“setLongStoreProperty method” Sets a pre-defined or custom message store property to a
long value.

“setMessageListener method” Sets a message listener class to receive QAnywhere mes-
sages asynchronously.

“setMessageListenerBySelector method” Sets a message listener class to receive QAnywhere mes-
sages asynchronously, with a message selector.

“setProperty method” Allows you to set QAnywhere manager configuration prop-
erties programmatically.

“setShortStoreProperty method” Sets a pre-defined or custom message store property to a
short value.

“setStringStoreProperty method” Sets a pre-defined or custom message store property to a
string value.

“start method” Starts the QAManagerBase for receiving incoming mes-
sages in message listeners.

“stop method” Stops the QAManagerBase's reception of incoming mes-
sages.

“triggerSendReceive method” Causes a synchronization with the QAnywhere message
server, uploading any messages addressed to other clients,
and downloading any messages addressed to the local cli-
ent.

QAnywhere reference

460 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
The QATransactionalManager class derives from QAManagerBase and manages transactional
QAnywhere messaging operations.

For a detailed description of derived behavior, see QAManagerBase.

The QATransactionalManager can only be used for transactional acknowledgement. Use the
QATransactionalManager::commit() method to commit all QAManagerBase::putMessage() and
QAManagerBase::getMessage() invocations.

For more information, see “Implementing transactional messaging” on page 63

See also
● “QATransactionalManager class” on page 457

commit method

Commits the current transaction and begins a new transaction.

Syntax
public virtual qa_bool commit()

Returns
True if and only if the commit operation was successful.

Remarks
This method commits all QAManagerBase::putMessage() and QAManagerBase::getMessage() invocations.

Note
The first transaction begins with the call to QATransactionalManager::open().

See also
● “QATransactionalManager class” on page 457

open method

Opens a QATransactionalManager intance.

Syntax
public virtual qa_bool open()

Returns
True if and only if the operation was successful.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 461

Remarks
The open method must be the first method called after creating a manager.

See also
● “QATransactionalManager class” on page 457

rollback method

Rolls back the current transaction and begins a new transaction.

Syntax
public virtual qa_bool rollback()

Returns
True if and only if the open operation was successful.

Remarks
This method rolls back all uncommitted QAManagerBase::putMessage() and
QAManagerBase::getMessage() invocations.

See also
● “QATransactionalManager class” on page 457

QueueDepthFilter class
QueueDepthFilter values for queue depth methods of QAManagerBase.

Syntax
public class QueueDepthFilter

Members
All members of QueueDepthFilter class, including all inherited members.

Name Description

“ALL variable” Count both incoming and outgoing messages.

“INCOMING variable” Count only incoming messages.

“LOCAL variable” Count only local messages.

“OUTGOING variable” Count only outgoing messages.

QAnywhere reference

462 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ALL variable

Count both incoming and outgoing messages.

Syntax
public static const qa_short ALL;

Remarks
System messages and expired messages are not included in any queue depth counts.

INCOMING variable

Count only incoming messages.

Syntax
public static const qa_short INCOMING;

Remarks
An incoming message is defined as a message whose originator is different than the agent ID of the
message store.

LOCAL variable

Count only local messages.

Syntax
public static const qa_short LOCAL;

Remarks
A local message is defined as a message whose originator and target are the agent ID of the message store.

OUTGOING variable

Count only outgoing messages.

Syntax
public static const qa_short OUTGOING;

Remarks
An outgoing message is defined as a message whose originator is the agent ID of the message store, and
whose destination is not the agent ID of the message store.

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 463

StatusCodes class
This interface defines a set of codes for the status of a message.

Syntax
public class StatusCodes

Members
All members of StatusCodes class, including all inherited members.

Name Description

“CANCELED variable” The message has been canceled.

“EXPIRED variable” The message has expired, that is the message was not received be-
fore its expiration time passed.

“FINAL variable” This constant is used to determine if a message has achieved a final
state.

“LOCAL variable” The message is addressed to the local message store and will not be
transmitted to the server.

“PENDING variable” The message has been sent but not received and acknowledged.

“RECEIVED variable” The message has been received and acknowledged by the receiver.

“RECEIVING variable” The message is in the process of being received, or it was received
but not acknowledged.

“TRANSMITTED variable” The message has been transmitted to the server.

“TRANSMITTING variable” The message is in the process of being transmitted to the server.

“UNRECEIVABLE variable” The message has been marked as unreceivable.

“UNTRANSMITTED variable” The message has not been transmitted to the server.

CANCELED variable

The message has been canceled.

Syntax
public static const qa_int CANCELED;

QAnywhere reference

464 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
This code has value 40. This code applies to MessageProperties::STATUS.

EXPIRED variable

The message has expired, that is the message was not received before its expiration time passed.

Syntax
public static const qa_int EXPIRED;

Remarks
This code has value 30. This code applies to MessageProperties::STATUS.

FINAL variable

This constant is used to determine if a message has achieved a final state.

Syntax
public static const qa_int FINAL;

Remarks
A message has achieved a final state if and only if its status is greater than this constant.

This code has value 20. This code applies to MessageProperties::STATUS.

LOCAL variable

The message is addressed to the local message store and will not be transmitted to the server.

Syntax
public static const qa_int LOCAL;

Remarks
This code has value 2. This code applies to MessageProperties::TRANSMISSION_STATUS.

PENDING variable

The message has been sent but not received and acknowledged.

Syntax
public static const qa_int PENDING;

QAnywhere C++ API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 465

Remarks
This code has value 1. This code applies to MessageProperties::STATUS.

RECEIVED variable

The message has been received and acknowledged by the receiver.

Syntax
public static const qa_int RECEIVED;

Remarks
This code has value 60. This code applies to MessageProperties::STATUS.

RECEIVING variable

The message is in the process of being received, or it was received but not acknowledged.

Syntax
public static const qa_int RECEIVING;

Remarks
This code has value 10. This code applies to MessageProperties::STATUS.

TRANSMITTED variable

The message has been transmitted to the server.

Syntax
public static const qa_int TRANSMITTED;

Remarks
This code has value 1. This code applies to MessageProperties::TRANSMISSION_STATUS.

TRANSMITTING variable

The message is in the process of being transmitted to the server.

Syntax
public static const qa_int TRANSMITTING;

QAnywhere reference

466 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
This code has value 3. This code applies to MessageProperties::TRANSMISSION_STATUS.

UNRECEIVABLE variable

The message has been marked as unreceivable.

Syntax
public static const qa_int UNRECEIVABLE;

Remarks
The message is either malformed, or there were too many failed attempts to deliver it.

This code has value 50. This code applies to MessageProperties::STATUS.

UNTRANSMITTED variable

The message has not been transmitted to the server.

Syntax
public static const qa_int UNTRANSMITTED;

Remarks
This code has value 0. This code applies to MessageProperties::TRANSMISSION_STATUS.

QAnywhere Java API reference for clients
Package (for regular clients)

ianywhere.qanywhere.client

Package (for standalone clients)
ianywhere.qanywhere.standaloneclient

AcknowledgementMode interface

Indicates how messages should be acknowledged by QAnywhere client applications.

Syntax
public interface AcknowledgementMode

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 467

Members
All members of AcknowledgementMode interface, including all inherited members.

Name Description

“EXPLICIT_ACKNOWLEDGEMENT variable” Indicates that received messages are acknowledged
using one of the QAManager acknowledge methods.

“IMPLICIT_ACKNOWLEDGEMENT variable” Indicates that all messages are acknowledged as
soon as they are received by a client application.

“TRANSACTIONAL variable” This mode indicates that messages are only ac-
knowledged as part of the on going transaction.

Remarks
The implicit and explicit acknowledgement modes are assigned to a QAManager instance using the
QAManager.open(short) method.

With implicit acknowledgement, messages are acknowledged as soon as they are received by a client
application. With explicit acknowledgement, you must call one of the QAManager acknowledgement
methods. The server propagates all status changes from client to client.

See also
● “QAManager interface” on page 507
● “QATransactionalManager interface” on page 575
● “QAManagerBase interface” on page 514

EXPLICIT_ACKNOWLEDGEMENT variable

Indicates that received messages are acknowledged using one of the QAManager acknowledge methods.

Syntax
final short AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT

See also
● “QAManager interface” on page 507

IMPLICIT_ACKNOWLEDGEMENT variable

Indicates that all messages are acknowledged as soon as they are received by a client application.

Syntax
final short AcknowledgementMode.IMPLICIT_ACKNOWLEDGEMENT

QAnywhere reference

468 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
If you receive messages synchronously, messages are acknowledged as soon as the
QAManagerBase.getMessage(String) method returns. If you receive messages asynchronously, the
message is acknowledged as soon as the event handling method returns.

See also
● “getMessage method” on page 525

TRANSACTIONAL variable

This mode indicates that messages are only acknowledged as part of the on going transaction.

Syntax
final short AcknowledgementMode.TRANSACTIONAL

Remarks
This mode is automatically assigned to QATransactionalManager instances.

See also
● “QATransactionalManager interface” on page 575

MessageProperties interface
Provides fields storing standard message property names.

Syntax
public interface MessageProperties

Members
All members of MessageProperties interface, including all inherited members.

Name Description

“ADAPTER variable” For "system" queue messages, the network adapter that is be-
ing used to connect to the QAnywhere server.

“ADAPTERS variable” This property name refers to a delimited list of network adapt-
ers that can be used to connect to the QAnywhere server.

“DELIVERY_COUNT variable” This property name refers to the number of attempts that
have been made so far to deliver the message.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 469

Name Description

“IP variable” For "system" queue messages, the IP address of the network
adapter that is being used to connect to the QAnywhere server.

“MAC variable” For "system" queue messages, the MAC address of the net-
work adapter that is being used to connect to the QAny-
where server.

“MSG_TYPE variable” This property name refers to MessageType enumeration val-
ues associated with a QAnywhere message.

“NETWORK_STATUS variable” This property name refers to the state of the network connec-
tion.

“ORIGINATOR variable” This property name refers to the message store ID of the orig-
inator of the message.

“RAS variable” For "system" queue messages, the RAS entry name that is be-
ing used to connect to the QAnywhere server.

“RASNAMES variable” For "system" queue messages, a delimited list of RAS entry
names that can be used to connect to the QAnywhere server.

“STATUS variable” This property name refers to the current status of the message.

“STATUS_TIME variable” This property name refers to the time at which the message
assumed its current status.

“TRANSMISSION_STATUS variable” This property name refers to the current transmission status
of the message.

Remarks
The MessageProperties class provides standard message property names. You can pass MessageProperties
fields to QAMessage methods used to get and set message properties.

For example, assume you have the following QAMessage instance:

QAMessage msg = mgr.createTextMessage();

The following example gets the value corresponding to MessageProperties.MSG_TYPE using the
QAMessage.getIntProperty(String) method. The MessageType enumeration maps the integer result to an
appropriate message type.

int msg_type = t_msg.getIntProperty(MessageProperties.MSG_TYPE);

The following example shows the onSystemMessage(QAMessage) method, which is used to handle
QAnywhere system messages.

QAnywhere reference

470 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The message type is evaluated using MessageProperties.MSG_TYPE variable and the
QAMessage.getIntProperty(String) method.

A delimited list of RAS entry names is obtained using MessageProperties.RASNAMES and the
QAMessage.getStringProperty(String) method.

private void onSystemMessage(QAMessage msg) {
 QATextMessage t_msg;
 int msg_type;
 String network_adapters;
 String network_names;
 String network_info;
 t_msg = (QATextMessage)msg;
 if(t_msg != null) {
 // Evaluate the message type.
 msg_type =
(MessageType)t_msg.getIntProperty(MessageProperties.MSG_TYPE);
 if(msg_type == MessageType.NETWORK_STATUS_NOTIFICATION) {
 // Handle network status notification.
 network_info = "";
 network_adapters =
t_msg.getStringProperty(MessageProperties.ADAPTERS);
 if(network_adapters != null && network_adapters.length > 0) {
 network_info += network_adapters;
 }
 network_names =
t_msg.getStringProperty(MessageProperties.RASNAMES);
 //...
 }
 }
}

ADAPTER variable

For "system" queue messages, the network adapter that is being used to connect to the QAnywhere server.

Syntax
final String MessageProperties.ADAPTER

Remarks
The value of this field is "ias_Network.Adapter".

You can pass MessageProperties.ADAPTER in the QAMessage.getStringProperty(String) method to
access the associated property.

This property is read-only.

See also
● “MessageProperties interface” on page 469
● “getStringProperty method” on page 560

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 471

ADAPTERS variable

This property name refers to a delimited list of network adapters that can be used to connect to the
QAnywhere server.

Syntax
final String MessageProperties.ADAPTERS

Remarks
It is used for system queue messages.

You can pass MessageProperties.ADAPTERS in the QAMessage.getStringProperty(String) method to
access the associated property. This property is read-only.

See also
● “MessageProperties interface” on page 469
● “getStringProperty method” on page 560

DELIVERY_COUNT variable

This property name refers to the number of attempts that have been made so far to deliver the message.

Syntax
final String MessageProperties.DELIVERY_COUNT

IP variable

For "system" queue messages, the IP address of the network adapter that is being used to connect to the
QAnywhere server.

Syntax
final String MessageProperties.IP

Remarks
The value of this field is "ias_Network.IP".

You can pass MessageProperties.IP in the QAMessage.getStringProperty(String) method to access the
associated property.

This property is read-only.

QAnywhere reference

472 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “MessageProperties interface” on page 469
● “getStringProperty method” on page 560

MAC variable

For "system" queue messages, the MAC address of the network adapter that is being used to connect to
the QAnywhere server.

Syntax
final String MessageProperties.MAC

Remarks
The value of this field is "ias_Network.MAC".

You can pass MessageProperties.MAC in the QAMessage.getStringProperty(String) method to access the
associated property.

This property is read-only.

See also
● “MessageProperties interface” on page 469
● “getStringProperty method” on page 560

MSG_TYPE variable

This property name refers to MessageType enumeration values associated with a QAnywhere message.

Syntax
final String MessageProperties.MSG_TYPE

Remarks
The value of this field is "ias_MessageType".

You can pass MessageProperties.MSG_TYPE in the QAMessage.getIntProperty(String) method to access
the associated property.

This property is read-only.

See also
● “MessageProperties interface” on page 469
● “getIntProperty method” on page 556

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 473

NETWORK_STATUS variable

This property name refers to the state of the network connection.

Syntax
final String MessageProperties.NETWORK_STATUS

Remarks
The value is 1 if the network is accessible and 0 otherwise. The network status is used for system queue
messages (for example, network status changes).

You can pass MessageProperties.NETWORK_STATUS in the QAMessage.getIntProperty(String)
method to access the associated property.

This property is read-only.

See also
● “MessageProperties interface” on page 469
● “getIntProperty method” on page 556

ORIGINATOR variable

This property name refers to the message store ID of the originator of the message.

Syntax
final String MessageProperties.ORIGINATOR

RAS variable

For "system" queue messages, the RAS entry name that is being used to connect to the QAnywhere server.

Syntax
final String MessageProperties.RAS

Remarks
The value of this field is "ias_Network.RAS".

You can pass MessageProperties.RAS in the QAMessage.getStringProperty(String) method to access the
associated property.

This property is read-only.

QAnywhere reference

474 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “MessageProperties interface” on page 469
● “getStringProperty method” on page 560

RASNAMES variable

For "system" queue messages, a delimited list of RAS entry names that can be used to connect to the
QAnywhere server.

Syntax
final String MessageProperties.RASNAMES

Remarks
The value of this field is "ias_RASNames".

You can pass MessageProperties.RASNAMES in the QAMessage.getStringProperty(String) method to
access the associated property.

This property is read-only.

See also
● “MessageProperties interface” on page 469
● “getStringProperty method” on page 560

STATUS variable

This property name refers to the current status of the message.

Syntax
final String MessageProperties.STATUS

See also
● “StatusCodes interface” on page 581

STATUS_TIME variable

This property name refers to the time at which the message assumed its current status.

Syntax
final String MessageProperties.STATUS_TIME

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 475

Remarks
If you pass MessageProperties.STATUS_TIME to the QAMessage.getProperty method, it returns a
java.util.Date instance.

See also
● “getProperty method” on page 557

TRANSMISSION_STATUS variable

This property name refers to the current transmission status of the message.

Syntax
final String MessageProperties.TRANSMISSION_STATUS

See also
● “StatusCodes interface” on page 581

MessageStoreProperties interface
This class defines constant values for useful message store property names.

Syntax
public interface MessageStoreProperties

Members
All members of MessageStoreProperties interface, including all inherited members.

Name Description

“MAX_DELIVERY_ATTEMPTS variable” This property name refers to the maximum number of
times that a message can be received without being ac-
knowledged before its status is set to StatusCodes.UN-
RECEIVABLE.

Remarks
The MessageStoreProperties class provides standard message property names. You can pass
MessageStoreProperties fields to QAManagerBase methods used to get and set pre-defined or custom
message store properties.

See also
● “QAManagerBase interface” on page 514

QAnywhere reference

476 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

MAX_DELIVERY_ATTEMPTS variable

This property name refers to the maximum number of times that a message can be received without being
acknowledged before its status is set to StatusCodes.UNRECEIVABLE.

Syntax
final String MessageStoreProperties.MAX_DELIVERY_ATTEMPTS

See also
● “UNRECEIVABLE variable” on page 585

MessageType interface
Defines constant values for the MessageProperties.MSG_TYPE message property.

Syntax
public interface MessageType

Members
All members of MessageType interface, including all inherited members.

Name Description

“NETWORK_STATUS_NOTIFICATION variable” Identifies a QAnywhere system message used
to notify QAnywhere client applications of net-
work status changes.

“PUSH_NOTIFICATION variable” Identifies a QAnywhere system message used
to notify QAnywhere client applications of
push notifications.

“REGULAR variable” If no message type property exists, the message
type is assumed to be REGULAR.

Remarks
The following example shows the onSystemMessage(QAMessage) method, which is used to handle
QAnywhere system messages. The message type is compared to
MessageType.NETWORK_STATUS_NOTIFICATION.

private void onSystemMessage(QAMessage msg)
{
 QATextMessage t_msg;
 int msg_type;
 String network_adapters;
 String network_names;
 String network_info;

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 477

 t_msg = (QATextMessage)msg;
 if(t_msg != null)
 {
 // Evaluate message type.
 msg_type = t_msg.getIntProperty(MessageProperties.MSG_TYPE);
 if(msg_type == MessageType.NETWORK_STATUS_NOTIFICATION)
 {
 // Handle network status notification.
 }
 }
}

NETWORK_STATUS_NOTIFICATION variable
Identifies a QAnywhere system message used to notify QAnywhere client applications of network status
changes.

Syntax
final int MessageType.NETWORK_STATUS_NOTIFICATION

Remarks
Network status changes apply to the device receiving the system message. Use the
MessageProperties.ADAPTER, MessageProperties.NETWORK, and
MessageProperties.NETWORK_STATUS fields to identify new network status information.

PUSH_NOTIFICATION variable
Identifies a QAnywhere system message used to notify QAnywhere client applications of push notifications.

Syntax
final int MessageType.PUSH_NOTIFICATION

Remarks
If you use the on-demand QAnywhere Agent policy, a typical response is to call the
QAManagerBase.triggerSendReceive() method to receive messages waiting with the central message server.

REGULAR variable
If no message type property exists, the message type is assumed to be REGULAR.

Syntax
final int MessageType.REGULAR

Remarks
This type of message is not treated specially by the message system.

QAnywhere reference

478 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

PropertyType interface

QAMessage property type enumeration, corresponding naturally to the Java types.

Syntax
public interface PropertyType

Members
All members of PropertyType interface, including all inherited members.

Name Description

“PROPERTY_TYPE_BOOLEAN variable” Indicates a boolean property.

“PROPERTY_TYPE_BYTE variable” Indicates a signed byte property.

“PROPERTY_TYPE_DOUBLE variable” Indicates a double property.

“PROPERTY_TYPE_FLOAT variable” Indicates a float property.

“PROPERTY_TYPE_INT variable” Indicates an int property.

“PROPERTY_TYPE_LONG variable” Indicates an long property.

“PROPERTY_TYPE_SHORT variable” Indicates a short property.

“PROPERTY_TYPE_STRING variable” Indicates a String property.

“PROPERTY_TYPE_UNKNOWN variable” Indicates an unknown property type, usually because
the property is unknown.

See also
● “QAMessage interface” on page 550

PROPERTY_TYPE_BOOLEAN variable

Indicates a boolean property.

Syntax
final short PropertyType.PROPERTY_TYPE_BOOLEAN

PROPERTY_TYPE_BYTE variable

Indicates a signed byte property.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 479

Syntax
final short PropertyType.PROPERTY_TYPE_BYTE

PROPERTY_TYPE_DOUBLE variable

Indicates a double property.

Syntax
final short PropertyType.PROPERTY_TYPE_DOUBLE

PROPERTY_TYPE_FLOAT variable

Indicates a float property.

Syntax
final short PropertyType.PROPERTY_TYPE_FLOAT

PROPERTY_TYPE_INT variable

Indicates an int property.

Syntax
final short PropertyType.PROPERTY_TYPE_INT

PROPERTY_TYPE_LONG variable

Indicates an long property.

Syntax
final short PropertyType.PROPERTY_TYPE_LONG

PROPERTY_TYPE_SHORT variable

Indicates a short property.

Syntax
final short PropertyType.PROPERTY_TYPE_SHORT

QAnywhere reference

480 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

PROPERTY_TYPE_STRING variable

Indicates a String property.

Syntax
final short PropertyType.PROPERTY_TYPE_STRING

PROPERTY_TYPE_UNKNOWN variable

Indicates an unknown property type, usually because the property is unknown.

Syntax
final short PropertyType.PROPERTY_TYPE_UNKNOWN

QABinaryMessage interface
A QABinaryMessage object is used to send a message containing a stream of uninterpreted bytes.

Syntax
public interface QABinaryMessage

Base classes
● “QAMessage interface” on page 550

Members
All members of QABinaryMessage interface, including all inherited members.

Name Description

“clearProperties method” Clear all the properties of the message.

“getAddress method” Returns the destination address for the QAMessage instance.

“getBodyLength method” Returns the size of the message body in bytes.

“getBooleanProperty method” Gets a boolean message property.

“getByteProperty method” Gets a signed byte message property.

“getDoubleProperty method” Gets a double message property.

“getExpiration method” Returns the message's expiration value, or null if the mes-
sage does not expire or has not yet been sent.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 481

Name Description

“getFloatProperty method” Gets a float message property.

“getInReplyToID method” Returns the message ID of the message to which this mes-
sage is a reply.

“getIntProperty method” Gets an int message property.

“getLongProperty method” Gets a long message property.

“getMessageID method” Returns the globally unique message ID of the message.

“getPriority method” Returns the priority of the message (ranging from 0 to 9).

“getProperty method” Gets a message property.

“getPropertyNames method” Gets an enumerator over the property names of the message.

“getPropertyType method” Returns the property type of the given property.

“getRedelivered method” Indicates whether the message has been previously re-
ceived but not acknowledged.

“getReplyToAddress method” Returns the reply-to address of this message.

“getShortProperty method” Gets a short message property.

“getStringProperty method” Gets a String message property.

“getTimestamp method” Returns the message timestamp, which is the time the mes-
sage was created.

“propertyExists method” Indicates whether the given property has been set for this
message.

“readBinary method” Reads some number of bytes starting from the unread por-
tion of a QABinaryMessage instance body and stores them
into the array dest.

“readBoolean method” Reads a boolean value starting from the unread portion of
the QABinaryMessage instance's message body.

“readByte method” Reads a signed byte value starting from the unread portion
of a QABinaryMessage message body.

“readChar method” Reads a char value starting from the unread portion of a QA-
BinaryMessage message body.

QAnywhere reference

482 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“readDouble method” Reads a double value starting from the unread portion of a
QABinaryMessage message body.

“readFloat method” Reads a float value starting from the unread portion of a QA-
BinaryMessage message body.

“readInt method” Reads an integer value starting from the unread portion of a
QABinaryMessage message body.

“readLong method” Reads a long value starting from the unread portion of a QA-
BinaryMessage message body.

“readShort method” Reads a short value starting from the unread portion of a
QABinaryMessage message body.

“readString method” Reads a string value starting from the unread portion of a
QABinaryMessage message body.

“reset method” Resets a message so that the reading of values starts from
the beginning of the message body.

“setBooleanProperty method” Sets a boolean property.

“setByteProperty method” Sets a signed byte property.

“setDoubleProperty method” Sets a double property.

“setFloatProperty method” Sets a float property.

“setInReplyToID method” Sets the in reply to ID, which identifies the message this
message is a reply to.

“setIntProperty method” Sets an int property.

“setLongProperty method” Sets a long property.

“setPriority method” Sets the priority of the message (ranging from 0 to 9).

“setProperty method” Sets a property.

“setReplyToAddress method” Sets the reply-to address.

“setShortProperty method” Sets a short property.

“setStringProperty method” Sets a string property.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 483

Name Description

“writeBinary method” Appends a byte array value to the QABinaryMessage instan-
ce's message body.

“writeBoolean method” Appends a boolean value to the QABinaryMessage instan-
ce's message body.

“writeByte method” Appends a signed byte value to the QABinaryMessage in-
stance's message body.

“writeChar method” Appends a char value to the QABinaryMessage instance's
message body.

“writeDouble method” Appends a double value to the QABinaryMessage instan-
ce's message body.

“writeFloat method” Appends a float value to the QABinaryMessage instance's
message body.

“writeInt method” Appends an integer value to the QABinaryMessage instan-
ce's message body.

“writeLong method” Appends a long value to the QABinaryMessage instance's
message body.

“writeShort method” Appends a short value to the QABinaryMessage instance's
message body.

“writeString method” Appends a string value to the QABinaryMessage instance's
message body.

“DEFAULT_PRIORITY variable” The default message priority.

“DEFAULT_TIME_TO_LIVE variable” The default time-to-live value.

Remarks
QABinaryMessage inherits from the QAMessage class and adds a bytes message body.
QABinaryMessage provides a variety of functions to read from and write to the bytes message body.

When the message is first created, the body of the message is in write-only mode. After a message has
been sent, the client that sent it can retain and modify it without affecting the message that has been sent.
The same message object can be sent multiple times.

When a message is received, the provider has called QABinaryMessage.reset() so that the message body
is in read-only mode and reading of values starts from the beginning of the message body.

The following example uses the QABinaryMessage.writeString(String) to write the string "Q" followed
by the string "Anywhere" to a QABinaryMessage instance's message body.

QAnywhere reference

484 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

// Create a binary message instance.
QABinaryMessage binary_message;
binary_message = qa_manager.createBinaryMessage();
// Set optional message properties.
binary_message.setReplyToAddress("my-queue-name");
// Write to the message body.
binary_message.writeString("Q");
binary_message.writeString("Anywhere");
// Put the message in the local database, ready for sending.
try {
 qa_manager.putMessage("store-id\\queue-name", binary_message);
}
catch (QAException e) {
 handleError();
}

Note
On the receiving end, the first QABinaryMessage.readString() invocation returns "Q" and the next
QABinaryMessage.readString() invocation returns "Anywhere".

The message is sent by the QAnywhere Agent.

See also
● “QAMessage interface” on page 550
● “readString method” on page 491

getBodyLength method

Returns the size of the message body in bytes.

Syntax
long QABinaryMessage.getBodyLength() throws QAException

Returns
The size of the message body in bytes.

Exceptions
● “QAException class” Thrown if there is a problem retrieving the size of the message body.

readBinary method

Reads some number of bytes starting from the unread portion of a QABinaryMessage instance body and
stores them into the array dest.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 485

Overload list

Name Description

“readBinary(byte[])
method”

Reads some number of bytes starting from the unread portion of a QABinar-
yMessage instance body and stores them into the array dest.

“readBinary(byte[], int)
method”

Reads up to length number of bytes starting from the unread portion of a QA-
BinaryMessage instance body and stores them into the array dest.

“readBinary(byte[], int,
int) method”

Reads up to length number of bytes starting from the unread portion of a QA-
BinaryMessage instance body and stores them into the array dest starting at
dest[offset].

readBinary(byte[]) method
Reads some number of bytes starting from the unread portion of a QABinaryMessage instance body and
stores them into the array dest.

Syntax
int QABinaryMessage.readBinary(byte[] dest) throws QAException

Parameters
● dest The byte array to hold the read bytes.

Returns
The number of bytes read from the message body, or -1 if there are no more bytes available.

Exceptions
● “QAException class” Thrown if there was an error reading bytes from the message.

Remarks
The readBinary(dest) method has the same effect as: readBinary(dest,0,dest.length)

See also
● “writeBinary method” on page 492

readBinary(byte[], int) method
Reads up to length number of bytes starting from the unread portion of a QABinaryMessage instance
body and stores them into the array dest.

Syntax
int QABinaryMessage.readBinary(
 byte[] dest,

QAnywhere reference

486 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 int length
) throws QAException

Parameters
● dest The byte array to hold the read bytes.

● length The maximum number of bytes to read.

Returns
The number of bytes read from the message body, or -1 if there are no more bytes available.

Exceptions
● “QAException class” Thrown if there was an error reading bytes from the message.

Remarks
The readBinary(dest, len) method has the same effect as: readBinary(dest,0,len)

See also
● “writeBinary method” on page 492

readBinary(byte[], int, int) method
Reads up to length number of bytes starting from the unread portion of a QABinaryMessage instance
body and stores them into the array dest starting at dest[offset].

Syntax
int QABinaryMessage.readBinary(
 byte[] dest,
 int offset,
 int length
) throws QAException

Parameters
● dest The byte array to hold the read bytes.

● offset The start offset of the destination array.

● length The maximum number of bytes to read.

Returns
The number of bytes read from the message body, or -1 if there are no more bytes available.

Exceptions
● “QAException class” Thrown if there was an error reading bytes from the message.

Remarks
If dest is null, a NullPointerException is thrown.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 487

If offset is negative, or length is negative, or offset+length is greater than the length of dest, then an
IndexOutOfBoundsException is thrown.

See also
● “writeBinary method” on page 492

readBoolean method

Reads a boolean value starting from the unread portion of the QABinaryMessage instance's message body.

Syntax
boolean QABinaryMessage.readBoolean() throws QAException

Returns
The boolean value read from the message body.

Exceptions
● “QAException class” Thrown if there was a conversion error reading the value or if there is no

more input.

See also
● “writeBoolean method” on page 494

readByte method

Reads a signed byte value starting from the unread portion of a QABinaryMessage message body.

Syntax
byte QABinaryMessage.readByte() throws QAException

Returns
The signed byte value read from the message body.

Exceptions
● “QAException class” Thrown if there was a conversion error reading the value or if there is no

more input.

See also
● “writeByte method” on page 494

readChar method

QAnywhere reference

488 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Reads a char value starting from the unread portion of a QABinaryMessage message body.

Syntax
char QABinaryMessage.readChar() throws QAException

Returns
The character value read from the message body.

Exceptions
● “QAException class” Thrown if there was a conversion error reading the value or if there is no

more input.

See also
● “writeChar method” on page 495

readDouble method

Reads a double value starting from the unread portion of a QABinaryMessage message body.

Syntax
double QABinaryMessage.readDouble() throws QAException

Returns
The double value read from the message body.

Exceptions
● “QAException class” Thrown if there was a conversion error reading the value or if there is no

more input.

See also
● “writeDouble method” on page 495

readFloat method

Reads a float value starting from the unread portion of a QABinaryMessage message body.

Syntax
float QABinaryMessage.readFloat() throws QAException

Returns
The float value read from the message body.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 489

Exceptions
● “QAException class” Thrown if there was a conversion error reading the value or if there is no

more input.

See also
● “writeFloat method” on page 496

readInt method

Reads an integer value starting from the unread portion of a QABinaryMessage message body.

Syntax
int QABinaryMessage.readInt() throws QAException

Returns
The int value read from the message body.

Exceptions
● “QAException class” Thrown if there was a conversion error reading the value or if there is no

more input.

See also
● “writeInt method” on page 496

readLong method

Reads a long value starting from the unread portion of a QABinaryMessage message body.

Syntax
long QABinaryMessage.readLong() throws QAException

Returns
The long value read from the message body.

Exceptions
● “QAException class” Thrown if there was a conversion error reading the value or if there is no

more input.

See also
● “writeLong method” on page 497

QAnywhere reference

490 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

readShort method

Reads a short value starting from the unread portion of a QABinaryMessage message body.

Syntax
short QABinaryMessage.readShort() throws QAException

Returns
The short value read from the message body.

Exceptions
● “QAException class” Thrown if there was a conversion error reading the value or if there is no

more input.

See also
● “writeShort method” on page 497

readString method

Reads a string value starting from the unread portion of a QABinaryMessage message body.

Syntax
String QABinaryMessage.readString() throws QAException

Returns
The string value read from the message body.

Exceptions
● “QAException class” Thrown if there was a conversion error reading the value or if there is no

more input.

See also
● “writeString method” on page 497

reset method

Resets a message so that the reading of values starts from the beginning of the message body.

Syntax
void QABinaryMessage.reset() throws QAException

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 491

Exceptions
● “QAException class” Thrown if there is a problem resetting the message.

Remarks
The reset method also puts the QABinaryMessage message body in read-only mode.

writeBinary method

Appends a byte array value to the QABinaryMessage instance's message body.

Overload list

Name Description

“writeBinary(byte[]) meth-
od”

Appends a byte array value to the QABinaryMessage instance's mes-
sage body.

“writeBinary(byte[], int)
method”

Appends length bytes from a byte array to the QABinaryMessage instan-
ce's message body.

“writeBinary(byte[], int, int)
method”

Appends length bytes from a byte array starting at the given offset to
the QABinaryMessage instance's message body.

writeBinary(byte[]) method
Appends a byte array value to the QABinaryMessage instance's message body.

Syntax
void QABinaryMessage.writeBinary(byte[] val) throws QAException

Parameters
● val The byte array value to write to the message body.

Exceptions
● “QAException class” Thrown if there is a problem appending the byte array to the message body.

Remarks
The writeBinary(val) method has the same effect as: writeBinary(val,0,val.length)

See also
● “readBinary method” on page 485

QAnywhere reference

492 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

writeBinary(byte[], int) method
Appends length bytes from a byte array to the QABinaryMessage instance's message body.

Syntax
void QABinaryMessage.writeBinary(
 byte[] val,
 int length
) throws QAException

Parameters
● val The byte array value to write to the message body.

● length The number of bytes to write.

Exceptions
● “QAException class” Thrown if there is a problem appending the byte array to the message body.

Remarks
The writeBinary(val,len) method has the same effect as: writeBinary(val,0,len)

See also
● “readBinary method” on page 485

writeBinary(byte[], int, int) method
Appends length bytes from a byte array starting at the given offset to the QABinaryMessage instance's
message body.

Syntax
void QABinaryMessage.writeBinary(
 byte[] val,
 int offset,
 int length
) throws QAException

Parameters
● val The byte array value to write to the message body.

● offset The offset within the byte array to begin writing.

● length The number of bytes to write.

Exceptions
● “QAException class” Thrown if there is a problem appending the byte array to the message body.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 493

Remarks
If val is null, a NullPointerException is thrown. If offset is negative, or length is negative, or length+offset
is greater than the length of val then an IndexOutOfBoundsException is thrown.

See also
● “readBinary method” on page 485

writeBoolean method

Appends a boolean value to the QABinaryMessage instance's message body.

Syntax
void QABinaryMessage.writeBoolean(boolean val) throws QAException

Parameters
● val The boolean value to write to the message body.

Exceptions
● “QAException class” Thrown if there is a problem appending the boolean value to the message

body.

Remarks
The boolean is represented as a one byte value. True is represented as 1; false is represented as 0.

See also
● “readBoolean method” on page 488

writeByte method

Appends a signed byte value to the QABinaryMessage instance's message body.

Syntax
void QABinaryMessage.writeByte(byte val) throws QAException

Parameters
● val The signed byte value to write to the message body.

Exceptions
● “QAException class” Thrown if there is a problem appending the signed byte value to the

message body.

QAnywhere reference

494 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
The signed byte is represented as a one byte value.

See also
● “readByte method” on page 488

writeChar method

Appends a char value to the QABinaryMessage instance's message body.

Syntax
void QABinaryMessage.writeChar(char val) throws QAException

Parameters
● val The char value to write to the message body.

Exceptions
● “QAException class” Thrown if there is a problem appending the char value to the message body.

Remarks
The char is represented as a two byte value and the high order byte is appended first.

See also
● “readChar method” on page 488

writeDouble method

Appends a double value to the QABinaryMessage instance's message body.

Syntax
void QABinaryMessage.writeDouble(double val) throws QAException

Parameters
● val the double value to write to the message body.

Exceptions
● “QAException class” Thrown if there is a problem appending the double value to the message

body.

Remarks
The double is converted to a representative 8-byte long and higher order bytes are appended first.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 495

See also
● “readDouble method” on page 489

writeFloat method

Appends a float value to the QABinaryMessage instance's message body.

Syntax
void QABinaryMessage.writeFloat(float val) throws QAException

Parameters
● val The float value to write to the message body.

Exceptions
● “QAException class” Thrown if there is a problem appending the float value to the message body.

Remarks
The float is converted to a representative 4-byte integer and the higher order bytes are appended first.

See also
● “readFloat method” on page 489

writeInt method

Appends an integer value to the QABinaryMessage instance's message body.

Syntax
void QABinaryMessage.writeInt(int val) throws QAException

Parameters
● val The int value to write to the message body.

Exceptions
● “QAException class” Thrown if there is a problem appending the integer value to the message

body.

Remarks
The integer parameter is represented as a 4 byte value and higher order bytes are appended first.

See also
● “readInt method” on page 490

QAnywhere reference

496 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

writeLong method

Appends a long value to the QABinaryMessage instance's message body.

Syntax
void QABinaryMessage.writeLong(long val) throws QAException

Parameters
● val The long value to write to the message body.

Exceptions
● “QAException class” Thrown if there is a problem appending the long value to the message body.

Remarks
The long parameter is represented using 8-bytes value and higher order bytes are appended first.

See also
● “readLong method” on page 490

writeShort method

Appends a short value to the QABinaryMessage instance's message body.

Syntax
void QABinaryMessage.writeShort(short val) throws QAException

Parameters
● val The short value to write to the message body.

Exceptions
● “QAException class” Thrown if there is a problem appending the short value to the message body.

Remarks
The short parameter is represented as a two byte value and the higher order byte is appended first.

See also
● “readShort method” on page 491

writeString method

Appends a string value to the QABinaryMessage instance's message body.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 497

Syntax
void QABinaryMessage.writeString(String val) throws QAException

Parameters
● val The string value to write to the message body.

Exceptions
● “QAException class” Thrown if there is a problem appending the string value to the message body.

Remarks

Note
The receiving application needs to invoke QABinaryMessage.readString for each writeString invocation.

Note
The UTF-8 representation of the string to be written can be at most 32767 bytes.

See also
● “readString method” on page 491

QAException class
Encapsulates QAnywhere client application exceptions.

Syntax
public class QAException

Members
All members of QAException class, including all inherited members.

Name Description

“getDetailedMessage method” Returns the detailed text de-
scription of the exception.

“getErrorCode method” Returns the error code of
the last exception.

“getNativeErrorCode method” Returns the native error
code of the last exception.

“COMMON_ALREADY_OPEN_ERROR variable” The QAManager is already
open.

QAnywhere reference

498 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“COMMON_GET_INIT_FILE_ERROR variable” Unable to access the client
properties file.

“COMMON_GET_PROPERTY_ERROR variable” Error retrieving property
from message store.

“COMMON_GETQUEUEDEPTH_ERROR variable” Error getting the queue
depth.

“COMMON_GETQUEUEDEPTH_ERROR_INVALID_ARG variable” Cannot use QAManager-
Base.getQueueDepth on a
given destination when fil-
ter is ALL.

“COMMON_GETQUEUEDEPTH_ERROR_NO_STORE_ID variable” Cannot use QAManager-
Base.getQueueDepth when
the message store ID has
not been set.

“COMMON_INIT_ERROR variable” Initialization error.

“COMMON_INIT_THREAD_ERROR variable” Error initializing the back-
ground thread.

“COMMON_INVALID_PROPERTY variable” There is an invalid property
in the client properties file.

“COMMON_MSG_ACKNOWLEDGE_ERROR variable” Error acknowledging the
message.

“COMMON_MSG_CANCEL_ERROR variable” Error cancelling message.

“COMMON_MSG_CANCEL_ERROR_SENT variable” Error cancelling message.

“COMMON_MSG_NOT_WRITEABLE_ERROR variable” You cannot write to a mes-
sage that is in read-only
mode.

“COMMON_MSG_RETRIEVE_ERROR variable” Error retrieving a message
from the client message
store.

“COMMON_MSG_STORE_ERROR variable” Error storing a message in
the client message store.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 499

Name Description

“COMMON_MSG_STORE_NOT_INITIALIZED variable” The message store has not
been initialized for messag-
ing.

“COMMON_MSG_STORE_TOO_LARGE variable” The message store is too
large relative to the free
disk space on the device.

“COMMON_NO_DEST_ERROR variable” No destination.

“COMMON_NO_IMPLEMENTATION variable” The method is not imple-
mented.

“COMMON_NOT_OPEN_ERROR variable” The QAManager is not open.

“COMMON_OPEN_ERROR variable” Error opening a connection
to the message store.

“COMMON_OPEN_LOG_FILE_ERROR variable” Error opening the log file.

“COMMON_OPEN_MAXTHREADS_ERROR variable” Cannot open the QAManag-
er because the maximum
number of concurrent serv-
er requests is not high
enough (see database server
-gn option).

“COMMON_REOPEN_ERROR variable” Error re-opening connec-
tion to message store.

“COMMON_SELECTOR_SYNTAX_ERROR variable” The given selector has a syn-
tax error.

“COMMON_SET_PROPERTY_ERROR variable” Error storing property to
message store.

“COMMON_TERMINATE_ERROR variable” Termination error.

“COMMON_UNEXPECTED_EOM_ERROR variable” Unexpected end of message
reached.

“COMMON_UNREPRESENTABLE_TIMESTAMP variable” The timestamp is outside of
the acceptable range.

“QA_NO_ERROR variable” No error.

QAnywhere reference

500 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
You can use the QAException class to catch QAnywhere exceptions.

The following example catches a QAnywhere exception:

 try
 {
 _qaManager = QAManagerFactory.getInstance().CreateQAManager();
 _qaManager.open(AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT);
 _qaManager.start();
 }
 catch(QAException e)
 {
 // Handle exception.
 System.err.println("Error code: " + e.getErrorCode());
 System.err.println("Error message: " + e.getMessage());
 }
}

getDetailedMessage method

Returns the detailed text description of the exception.

Syntax
abstract String QAException.getDetailedMessage()

Returns
The detailed text description of the exception.

getErrorCode method

Returns the error code of the last exception.

Syntax
abstract int QAException.getErrorCode()

Returns
The error code of the last exception.

getNativeErrorCode method

Returns the native error code of the last exception.

Syntax
abstract int QAException.getNativeErrorCode()

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 501

Returns
The native error code of the last exception.

COMMON_ALREADY_OPEN_ERROR variable

The QAManager is already open.

Syntax
final int QAException.COMMON_ALREADY_OPEN_ERROR

See also
● “QAManager interface” on page 507

COMMON_GET_INIT_FILE_ERROR variable

Unable to access the client properties file.

Syntax
final int QAException.COMMON_GET_INIT_FILE_ERROR

COMMON_GET_PROPERTY_ERROR variable

Error retrieving property from message store.

Syntax
final int QAException.COMMON_GET_PROPERTY_ERROR

COMMON_GETQUEUEDEPTH_ERROR variable

Error getting the queue depth.

Syntax
final int QAException.COMMON_GETQUEUEDEPTH_ERROR

See also
● “getQueueDepth method” on page 530

COMMON_GETQUEUEDEPTH_ERROR_INVALID_ARG variable

Cannot use QAManagerBase.getQueueDepth on a given destination when filter is ALL.

QAnywhere reference

502 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
final int QAException.COMMON_GETQUEUEDEPTH_ERROR_INVALID_ARG

See also
● “getQueueDepth method” on page 530

COMMON_GETQUEUEDEPTH_ERROR_NO_STORE_ID variable

Cannot use QAManagerBase.getQueueDepth when the message store ID has not been set.

Syntax
final int QAException.COMMON_GETQUEUEDEPTH_ERROR_NO_STORE_ID

See also
● “getQueueDepth method” on page 530

COMMON_INIT_ERROR variable

Initialization error.

Syntax
final int QAException.COMMON_INIT_ERROR

COMMON_INIT_THREAD_ERROR variable

Error initializing the background thread.

Syntax
final int QAException.COMMON_INIT_THREAD_ERROR

COMMON_INVALID_PROPERTY variable

There is an invalid property in the client properties file.

Syntax
final int QAException.COMMON_INVALID_PROPERTY

COMMON_MSG_ACKNOWLEDGE_ERROR variable

Error acknowledging the message.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 503

Syntax
final int QAException.COMMON_MSG_ACKNOWLEDGE_ERROR

COMMON_MSG_CANCEL_ERROR variable

Error cancelling message.

Syntax
final int QAException.COMMON_MSG_CANCEL_ERROR

COMMON_MSG_CANCEL_ERROR_SENT variable

Error cancelling message.

Syntax
final int QAException.COMMON_MSG_CANCEL_ERROR_SENT

Remarks
You cannot cancel a message that has already been sent.

COMMON_MSG_NOT_WRITEABLE_ERROR variable

You cannot write to a message that is in read-only mode.

Syntax
final int QAException.COMMON_MSG_NOT_WRITEABLE_ERROR

COMMON_MSG_RETRIEVE_ERROR variable

Error retrieving a message from the client message store.

Syntax
final int QAException.COMMON_MSG_RETRIEVE_ERROR

COMMON_MSG_STORE_ERROR variable

Error storing a message in the client message store.

Syntax
final int QAException.COMMON_MSG_STORE_ERROR

QAnywhere reference

504 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

COMMON_MSG_STORE_NOT_INITIALIZED variable

The message store has not been initialized for messaging.

Syntax
final int QAException.COMMON_MSG_STORE_NOT_INITIALIZED

COMMON_MSG_STORE_TOO_LARGE variable

The message store is too large relative to the free disk space on the device.

Syntax
final int QAException.COMMON_MSG_STORE_TOO_LARGE

COMMON_NO_DEST_ERROR variable

No destination.

Syntax
final int QAException.COMMON_NO_DEST_ERROR

COMMON_NO_IMPLEMENTATION variable

The method is not implemented.

Syntax
final int QAException.COMMON_NO_IMPLEMENTATION

COMMON_NOT_OPEN_ERROR variable

The QAManager is not open.

Syntax
final int QAException.COMMON_NOT_OPEN_ERROR

See also
● “QAManager interface” on page 507

COMMON_OPEN_ERROR variable

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 505

Error opening a connection to the message store.

Syntax
final int QAException.COMMON_OPEN_ERROR

COMMON_OPEN_LOG_FILE_ERROR variable

Error opening the log file.

Syntax
final int QAException.COMMON_OPEN_LOG_FILE_ERROR

COMMON_OPEN_MAXTHREADS_ERROR variable

Cannot open the QAManager because the maximum number of concurrent server requests is not high
enough (see database server -gn option).

Syntax
final int QAException.COMMON_OPEN_MAXTHREADS_ERROR

COMMON_REOPEN_ERROR variable

Error re-opening connection to message store.

Syntax
final int QAException.COMMON_REOPEN_ERROR

COMMON_SELECTOR_SYNTAX_ERROR variable

The given selector has a syntax error.

Syntax
final int QAException.COMMON_SELECTOR_SYNTAX_ERROR

COMMON_SET_PROPERTY_ERROR variable

Error storing property to message store.

Syntax
final int QAException.COMMON_SET_PROPERTY_ERROR

QAnywhere reference

506 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

COMMON_TERMINATE_ERROR variable

Termination error.

Syntax
final int QAException.COMMON_TERMINATE_ERROR

COMMON_UNEXPECTED_EOM_ERROR variable

Unexpected end of message reached.

Syntax
final int QAException.COMMON_UNEXPECTED_EOM_ERROR

COMMON_UNREPRESENTABLE_TIMESTAMP variable

The timestamp is outside of the acceptable range.

Syntax
final int QAException.COMMON_UNREPRESENTABLE_TIMESTAMP

QA_NO_ERROR variable

No error.

Syntax
final int QAException.QA_NO_ERROR

QAManager interface
QAManager manages non-transactional QAnywhere messaging operations.

Syntax
public interface QAManager

Base classes
● “QAManagerBase interface” on page 514

Members
All members of QAManager interface, including all inherited members.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 507

Name Description

“acknowledge method” Acknowledges that the client application successfully re-
ceived a QAnywhere message.

“acknowledgeAll method” Acknowledges that the client application successfully re-
ceived QAnywhere messages.

“acknowledgeUntil method” Acknowledges the given QAMessage instance and all un-
acknowledged messages received before the given message.

“browseMessages method” Browses all available messages in the message store.

“browseMessagesByID method” Browse the message with the given message ID.

“browseMessagesByQueue method” Browses the available messages waiting that have been
sent to the given address.

“browseMessagesBySelector method” Browse messages queued in the message store that satisfy
the given selector.

“cancelMessage method” Cancels the message with the given message ID.

“close method” Closes the connection to the QAnywhere message system
and releases any resources used by the QAManagerBase.

“createBinaryMessage method” Creates a QABinaryMessage object.

“createTextMessage method” Creates a QATextMessage object.

“getBooleanStoreProperty method” Gets a boolean value for a pre-defined or custom message
store property.

“getByteStoreProperty method” Gets a signed byte value for a pre-defined or custom mes-
sage store property.

“getDoubleStoreProperty method” Gets a double value for a pre-defined or custom message
store property.

“getFloatStoreProperty method” Gets a float value for a pre-defined or custom message
store property.

“getIntStoreProperty method” Gets a int value for a pre-defined or custom message store
property.

“getLongStoreProperty method” Gets a long value for a pre-defined or custom message
store property.

QAnywhere reference

508 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“getMessage method” Returns the next available QAMessage sent to the speci-
fied address.

“getMessageBySelector method” Returns the next available QAMessage sent to the speci-
fied address that satisfies the given selector.

“getMessageBySelectorNoWait method” Returns the next available QAMessage sent to the given
address that satisfies the given selector.

“getMessageBySelectorTimeout method” Returns the next available QAMessage sent to the given
address that satisfies the given selector.

“getMessageNoWait method” Returns the next available QAMessage sent to the given
address.

“getMessageTimeout method” Returns the next available QAMessage sent to the given
address.

“getMode method” Returns the QAManager acknowledgement mode for re-
ceived messages.

“getQueueDepth method” Returns the total depth of all queues, based on a given filter.

“getShortStoreProperty method” Gets a short value for a pre-defined or custom message
store property.

“getStoreProperty method” Gets an Object representing a message store property.

“getStorePropertyNames method” Gets an enumerator over the message store property names.

“getStringStoreProperty method” Gets a string value for a pre-defined or custom message
store property.

“open method” Opens the QAManager with the given Acknowledgement-
Mode value.

“propertyExists method” Tests if there currently exists a value for the given the prop-
erty.

“putMessage method” Prepares a message to send to another QAnywhere client.

“putMessageTimeToLive method” Prepares a message to send to another QAnywhere client.

“recover method” Forces all unacknowledged messages into a status of Sta-
tusCodes.PENDING.

“reOpen method” Reopens the QAManagerBase.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 509

Name Description

“setBooleanStoreProperty method” Sets a pre-defined or custom message store property to a
boolean value.

“setByteStoreProperty method” Sets a pre-defined or custom message store property to a
sbyte value.

“setDoubleStoreProperty method” Sets a pre-defined or custom message store property to a
double value.

“setFloatStoreProperty method” Sets a pre-defined or custom message store property to a
float value.

“setIntStoreProperty method” Sets a pre-defined or custom message store property to a
int value.

“setLongStoreProperty method” Sets a pre-defined or custom message store property to a
long value.

“setMessageListener method” Registers a QAMessageListener object to receive QAny-
where messages asynchronously.

“setMessageListener2 method” Registers a QAMessageListener2 object to receive QAny-
where messages asynchronously.

“setMessageListenerBySelector method” Registers a QAMessageListener object to receive QAny-
where messages asynchronously, with a message selector.

“setMessageListenerBySelector2 method” Registers a QAMessageListener2 object to receive QAny-
where messages asynchronously, with a message selector.

“setProperty method” Allows you to set QAnywhere Manager configuration prop-
erties programmatically.

“setShortStoreProperty method” Sets a pre-defined or custom message store property to a
short value.

“setStoreProperty method” Sets a pre-defined or custom message store property to a
System.Object value.

“setStringStoreProperty method” Sets a pre-defined or custom message store property to a
String value.

“start method” Starts the QAManagerBase for receiving incoming mes-
sages.

“stop method” Halts the QAManagerBase's reception of incoming mes-
sages.

QAnywhere reference

510 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“triggerSendReceive method” Causes a synchronization with the QAnywhere message
server, uploading any messages addressed to other clients,
and downloading any messages addressed to the local client.

Remarks
It derives from QAManagerBase.

For a detailed description of derived behavior, see QAManagerBase.

The QAManager instance can be configured for implicit or explicit acknowledgement, as defined in the
AcknowledgementMode class. To acknowledge messages as part of a transaction, use
QATransactionalManager.

Use the QAManagerFactory class to create QAManager and QATransactionalManager objects.

See also
● “AcknowledgementMode interface” on page 467
● “QAManagerFactory class” on page 545
● “QATransactionalManager interface” on page 575

acknowledge method

Acknowledges that the client application successfully received a QAnywhere message.

Syntax
void QAManager.acknowledge(QAMessage msg) throws QAException

Parameters
● msg The message to acknowledge.

Exceptions
● “QAException class” Thrown if there is a problem acknowledging the message.

Remarks

Note
When a QAMessage is acknowledged, its status property changes to StatusCodes.RECEIVED. It can then
be deleted using the default delete rule.

See also
● “RECEIVED variable” on page 584
● “acknowledgeUntil method” on page 512
● “acknowledgeAll method” on page 512

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 511

acknowledgeAll method

Acknowledges that the client application successfully received QAnywhere messages.

Syntax
void QAManager.acknowledgeAll() throws QAException

Exceptions
● “QAException class” Thrown if there is a problem acknowledging the messages.

Remarks
All unacknowledged messages are acknowledged.

Note
When a QAMessage is acknowledged, its status property changes to StatusCodes.RECEIVED. It can then
be deleted using the default delete rule.

See also
● “RECEIVED variable” on page 584
● “acknowledge method” on page 511
● “acknowledgeUntil method” on page 512

acknowledgeUntil method

Acknowledges the given QAMessage instance and all unacknowledged messages received before the
given message.

Syntax
void QAManager.acknowledgeUntil(QAMessage msg) throws QAException

Parameters
● msg The last message to acknowledge. All earlier unacknowledged messages are also acknowledged.

Exceptions
● “QAException class” Thrown if there is a problem acknowledging the messages.

Remarks

Note
When a QAMessage is acknowledged, its status property changes to StatusCodes.RECEIVED. It can then
be deleted using the default delete rule.

QAnywhere reference

512 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “QAMessage interface” on page 550
● “RECEIVED variable” on page 584
● “acknowledge method” on page 511
● “acknowledgeAll method” on page 512

open method

Opens the QAManager with the given AcknowledgementMode value.

Syntax
void QAManager.open(short mode) throws QAException

Parameters
● mode The acknowledgement mode, one of

AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT or
AcknowledgementMode.IMPLICIT_ACKNOWLEDGEMENT.

Exceptions
● “QAException class” Thrown if there is a problem opening the QAManager instance.

Remarks
The open(short) method must be the first method called after creating a QAManager.

If a database connection error is detected, you can re-open a QAManager by calling the close method
followed by the open method. When re-opening a QAManager, you do not need to re-create it, reset the
properties, or reset the message listeners. The properties of the QAManager cannot be changed after the
first open, and subsequent open calls must supply the same acknowledgement mode.

See also
● “AcknowledgementMode interface” on page 467
● “EXPLICIT_ACKNOWLEDGEMENT variable” on page 468
● “IMPLICIT_ACKNOWLEDGEMENT variable” on page 468

recover method

Forces all unacknowledged messages into a status of StatusCodes.PENDING.

Syntax
void QAManager.recover() throws QAException

Exceptions
● “QAException class” Thrown if there is a problem recovering.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 513

Remarks
These messages must be received again using QAManagerBase.getMessage(String).

See also
● “getMessage method” on page 525

QAManagerBase interface
This class acts as a base class for QATransactionalManager and QAManager, which manage transactional
and non-transactional messaging, respectively.

Syntax
public interface QAManagerBase

Derived classes
● “QAManager interface” on page 507
● “QATransactionalManager interface” on page 575

Members
All members of QAManagerBase interface, including all inherited members.

Name Description

“browseMessages method” Browses all available messages in the message store.

“browseMessagesByID method” Browse the message with the given message ID.

“browseMessagesByQueue method” Browses the available messages waiting that have been
sent to the given address.

“browseMessagesBySelector method” Browse messages queued in the message store that satisfy
the given selector.

“cancelMessage method” Cancels the message with the given message ID.

“close method” Closes the connection to the QAnywhere message system
and releases any resources used by the QAManagerBase.

“createBinaryMessage method” Creates a QABinaryMessage object.

“createTextMessage method” Creates a QATextMessage object.

“getBooleanStoreProperty method” Gets a boolean value for a pre-defined or custom message
store property.

QAnywhere reference

514 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“getByteStoreProperty method” Gets a signed byte value for a pre-defined or custom mes-
sage store property.

“getDoubleStoreProperty method” Gets a double value for a pre-defined or custom message
store property.

“getFloatStoreProperty method” Gets a float value for a pre-defined or custom message
store property.

“getIntStoreProperty method” Gets a int value for a pre-defined or custom message store
property.

“getLongStoreProperty method” Gets a long value for a pre-defined or custom message
store property.

“getMessage method” Returns the next available QAMessage sent to the speci-
fied address.

“getMessageBySelector method” Returns the next available QAMessage sent to the speci-
fied address that satisfies the given selector.

“getMessageBySelectorNoWait method” Returns the next available QAMessage sent to the given
address that satisfies the given selector.

“getMessageBySelectorTimeout method” Returns the next available QAMessage sent to the given
address that satisfies the given selector.

“getMessageNoWait method” Returns the next available QAMessage sent to the given
address.

“getMessageTimeout method” Returns the next available QAMessage sent to the given
address.

“getMode method” Returns the QAManager acknowledgement mode for re-
ceived messages.

“getQueueDepth method” Returns the total depth of all queues, based on a given filter.

“getShortStoreProperty method” Gets a short value for a pre-defined or custom message
store property.

“getStoreProperty method” Gets an Object representing a message store property.

“getStorePropertyNames method” Gets an enumerator over the message store property names.

“getStringStoreProperty method” Gets a string value for a pre-defined or custom message
store property.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 515

Name Description

“propertyExists method” Tests if there currently exists a value for the given the prop-
erty.

“putMessage method” Prepares a message to send to another QAnywhere client.

“putMessageTimeToLive method” Prepares a message to send to another QAnywhere client.

“reOpen method” Reopens the QAManagerBase.

“setBooleanStoreProperty method” Sets a pre-defined or custom message store property to a
boolean value.

“setByteStoreProperty method” Sets a pre-defined or custom message store property to a
sbyte value.

“setDoubleStoreProperty method” Sets a pre-defined or custom message store property to a
double value.

“setFloatStoreProperty method” Sets a pre-defined or custom message store property to a
float value.

“setIntStoreProperty method” Sets a pre-defined or custom message store property to a
int value.

“setLongStoreProperty method” Sets a pre-defined or custom message store property to a
long value.

“setMessageListener method” Registers a QAMessageListener object to receive QAny-
where messages asynchronously.

“setMessageListener2 method” Registers a QAMessageListener2 object to receive QAny-
where messages asynchronously.

“setMessageListenerBySelector method” Registers a QAMessageListener object to receive QAny-
where messages asynchronously, with a message selector.

“setMessageListenerBySelector2 method” Registers a QAMessageListener2 object to receive QAny-
where messages asynchronously, with a message selector.

“setProperty method” Allows you to set QAnywhere Manager configuration prop-
erties programmatically.

“setShortStoreProperty method” Sets a pre-defined or custom message store property to a
short value.

“setStoreProperty method” Sets a pre-defined or custom message store property to a
System.Object value.

QAnywhere reference

516 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“setStringStoreProperty method” Sets a pre-defined or custom message store property to a
String value.

“start method” Starts the QAManagerBase for receiving incoming mes-
sages.

“stop method” Halts the QAManagerBase's reception of incoming mes-
sages.

“triggerSendReceive method” Causes a synchronization with the QAnywhere message
server, uploading any messages addressed to other clients,
and downloading any messages addressed to the local client.

Remarks
Use the QAManagerBase.start() method to allow a QAManagerBase instance to listen for messages. An
instance of QAManagerBase must be used only on the thread that created it.

You can use instances of this class to create and manage QAnywhere messages. Use the
QAManagerBase.createBinaryMessage() and QAManagerBase.createTextMessage() methods to create
appropriate QAMessage instances. QAMessage instances provide a variety of methods to set message
content and properties. To send QAnywhere messages, use the QAManagerBase.putMessage(String,
QAMessage) method to place the addressed message in the local message store queue. The message is
transmitted by the QAnywhere Agent based on its transmission policies or when you call
QAManagerBase.triggerSendReceive().

QAManagerBase also provides methods to set and get message store properties.

See also
● “QATransactionalManager interface” on page 575
● “QAManager interface” on page 507

browseMessages method

Browses all available messages in the message store.

Syntax
java.util.Enumeration QAManagerBase.browseMessages() throws QAException

Returns
An enumerator over the available messages.

Exceptions
● “QAException class” Thrown if there is a problem browsing the messages.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 517

Remarks
The messages are just being browsed, so they cannot be acknowledged.

Use the QAManagerBase.getMessage(String) method to receive messages so that they can be acknowledged.

See also
● “browseMessagesByQueue method” on page 518
● “browseMessagesByID method” on page 518
● “getMessage method” on page 525

browseMessagesByID method

Browse the message with the given message ID.

Syntax
java.util.Enumeration QAManagerBase.browseMessagesByID(
 String id
) throws QAException

Parameters
● id The message ID of the message.

Returns
An enumerator containing 0 or 1 messages.

Exceptions
● “QAException class” Thrown if there is a problem browsing the messages.

Remarks
The message is just being browsed, so it cannot be acknowledged. Use
QAManagerBase.getMessage(String) to receive messages so that they can be acknowledged.

See also
● “browseMessagesByQueue method” on page 518
● “browseMessages method” on page 517
● “getMessage method” on page 525

browseMessagesByQueue method

Browses the available messages waiting that have been sent to the given address.

QAnywhere reference

518 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
java.util.Enumeration QAManagerBase.browseMessagesByQueue(
 String address
) throws QAException

Parameters
● address The address of the messages.

Returns
An enumerator over the available messages.

Exceptions
● “QAException class” Thrown if there is a problem browsing the messages.

Remarks
The messages are just being browsed, so they cannot be acknowledged.

Use the QAManagerBase.getMessage(String) method to receive messages so they can be acknowledged.

See also
● “browseMessagesByID method” on page 518
● “browseMessages method” on page 517
● “getMessage method” on page 525

browseMessagesBySelector method

Browse messages queued in the message store that satisfy the given selector.

Syntax
java.util.Enumeration QAManagerBase.browseMessagesBySelector(
 String selector
) throws QAException

Parameters
● selector The selector.

Returns
An enumerator over the available messages.

Exceptions
● “QAException class” Thrown if there is a problem browsing the messages.

Remarks
The message is just being browsed, so it cannot be acknowledged. Use
QAManagerBase.getMessage(String) to receive messages so that they can be acknowledged.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 519

See also
● “browseMessagesByQueue method” on page 518
● “browseMessages method” on page 517
● “browseMessagesByID method” on page 518
● “getMessage method” on page 525

cancelMessage method

Cancels the message with the given message ID.

Syntax
boolean QAManagerBase.cancelMessage(String id) throws QAException

Parameters
● id The message ID of the message to cancel.

Exceptions
● “QAException class” Thrown if there is a problem cancelling the message.

Remarks
Puts a message into a canceled state before it is transmitted.

With the default delete rules of the QAnywhere Agent, canceled messages are eventually deleted from the
message store.

Fails if the message is already in a final state, or if the message has been transmitted to the central
messaging server.

close method

Closes the connection to the QAnywhere message system and releases any resources used by the
QAManagerBase.

Syntax
void QAManagerBase.close() throws QAException

Exceptions
● “QAException class” Thrown if there is a problem closing the QAManagerBase instance.

Remarks
Additional calls to close() following the first are ignored. This method cannot be called in a message/
exception listener.

QAnywhere reference

520 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

If a database connection error is detected, you can re-open a QAManager by calling the close method
followed by the open method. When re-opening a QAManager, you do not need to re-create it, reset the
properties, or reset the message listeners. The properties of the QAManager cannot be changed after the
first open, and subsequent open calls must supply the same acknowledgement mode.

createBinaryMessage method

Creates a QABinaryMessage object.

Syntax
QABinaryMessage QAManagerBase.createBinaryMessage() throws QAException

Returns
A new QABinaryMessage instance.

Exceptions
● “QAException class” Thrown if there is a problem creating the message.

Remarks
A QABinaryMessage object is used to send a message containing a message body of uninterpreted bytes.

See also
● “QABinaryMessage interface” on page 481

createTextMessage method

Creates a QATextMessage object.

Syntax
QATextMessage QAManagerBase.createTextMessage() throws QAException

Returns
A new QATextMessage instance.

Exceptions
● “QAException class” Thrown if there is a problem creating the message.

Remarks
A QATextMessage object is used to send a message containing a string message body.

See also
● “QATextMessage interface” on page 569

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 521

getBooleanStoreProperty method

Gets a boolean value for a pre-defined or custom message store property.

Syntax
boolean QAManagerBase.getBooleanStoreProperty(
 String name
) throws QAException

Parameters
● name The pre-defined or custom property name.

Returns
The boolean property value.

Exceptions
● “QAException class” Thrown if there is a conversion error or message store error getting the

property value or if the property does not exist.

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

See also
● “MessageStoreProperties interface” on page 476

getByteStoreProperty method

Gets a signed byte value for a pre-defined or custom message store property.

Syntax
byte QAManagerBase.getByteStoreProperty(String name) throws QAException

Parameters
● name The pre-defined or custom property name.

Returns
The signed byte property value.

Exceptions
● “QAException class” Thrown if there is a conversion error or message store error getting the

property value or if the property does not exist.

QAnywhere reference

522 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

See also
● “MessageStoreProperties interface” on page 476

getDoubleStoreProperty method

Gets a double value for a pre-defined or custom message store property.

Syntax
double QAManagerBase.getDoubleStoreProperty(
 String name
) throws QAException

Parameters
● name the pre-defined or custom property name.

Returns
The double property value.

Exceptions
● “QAException class” Thrown if there is a conversion error or message store error getting the

property value or if the property does not exist.

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

See also
● “MessageStoreProperties interface” on page 476

getFloatStoreProperty method

Gets a float value for a pre-defined or custom message store property.

Syntax
float QAManagerBase.getFloatStoreProperty(
 String name
) throws QAException

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 523

Parameters
● name The pre-defined or custom property name.

Returns
The float property value.

Exceptions
● “QAException class” Thrown if there is a conversion error or message store error getting the

property value or if the property does not exist.

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

See also
● “MessageStoreProperties interface” on page 476

getIntStoreProperty method

Gets a int value for a pre-defined or custom message store property.

Syntax
int QAManagerBase.getIntStoreProperty(String name) throws QAException

Parameters
● name The pre-defined or custom property name.

Returns
The integer property value.

Exceptions
● “QAException class” Thrown if there is a conversion error or message store error getting the

property value or if the property does not exist.

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

See also
● “MessageStoreProperties interface” on page 476

QAnywhere reference

524 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

getLongStoreProperty method

Gets a long value for a pre-defined or custom message store property.

Syntax
long QAManagerBase.getLongStoreProperty(String name) throws QAException

Parameters
● name The pre-defined or custom property name.

Returns
The long property value.

Exceptions
● “QAException class” Thrown if there is a conversion error or message store error getting the

property value or if the property does not exist.

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

See also
● “MessageStoreProperties interface” on page 476

getMessage method

Returns the next available QAMessage sent to the specified address.

Syntax
QAMessage QAManagerBase.getMessage(String address) throws QAException

Parameters
● address This address specifies the queue name used by the QAnywhere client to receive messages.

Returns
The next QAMessage, or null if no message is available.

Exceptions
● “QAException class” Thrown if there is a problem getting the message.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 525

Remarks
The address parameter specifies a local queue name. The address can be in the form 'store-id\queue-name'
or 'queue-name'. If there is no message available, this call blocks indefinitely until a message is available.
Use this method to receive messages synchronously.

See also
● “QAMessage interface” on page 550

getMessageBySelector method

Returns the next available QAMessage sent to the specified address that satisfies the given selector.

Syntax
QAMessage QAManagerBase.getMessageBySelector(
 String address,
 String selector
) throws QAException

Parameters
● address This address specifies the queue name used by the QAnywhere client to receive messages.

● selector The selector.

Returns
The next QAMessage, or null if no message is available.

Exceptions
● “QAException class” Thrown if there is a problem getting the message.

Remarks
The address parameter specifies a local queue name. The address can be in the form 'store-id\queue-name'
or 'queue-name'. If there is no message available, this call blocks indefinitely until a message is available.

Use this method to receive messages synchronously.

See also
● “QAMessage interface” on page 550

getMessageBySelectorNoWait method

Returns the next available QAMessage sent to the given address that satisfies the given selector.

QAnywhere reference

526 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
QAMessage QAManagerBase.getMessageBySelectorNoWait(
 String address,
 String selector
) throws QAException

Parameters
● address This address specifies the queue name used by the QAnywhere client to receive messages.

● selector The selector.

Returns
The next available QAMessage or null there is no available message.

Exceptions
● “QAException class” Thrown if there is a problem getting the message.

Remarks
The address parameter specifies a local queue name. The address can be in the form 'store-id\queue-name'
or 'queue-name'. If no message is available, this method returns immediately.

Use this method to receive messages synchronously.

See also
● “QAMessage interface” on page 550

getMessageBySelectorTimeout method

Returns the next available QAMessage sent to the given address that satisfies the given selector.

Syntax
QAMessage QAManagerBase.getMessageBySelectorTimeout(
 String address,
 String selector,
 long timeout
) throws QAException

Parameters
● address This address specifies the queue name used by the QAnywhere client to receive messages.

● selector The selector.

● timeout The time to wait, in milliseconds, for a message to become available.

Returns
The next available QAMessage, or null if no message is available.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 527

Exceptions
● “QAException class” Thrown if there is a problem getting the message.

Remarks
The address parameter specifies a local queue name. The address can be in the form 'store-id\queue-name'
or 'queue-name'. If no message is available, this method waits for the specified timeout and then returns.

Use this method to receive messages synchronously.

See also
● “QAMessage interface” on page 550

getMessageNoWait method

Returns the next available QAMessage sent to the given address.

Syntax
QAMessage QAManagerBase.getMessageNoWait(
 String address
) throws QAException

Parameters
● address This address specifies the queue name used by the QAnywhere client to receive messages.

Returns
The next available QAMessage or null there is no available message.

Exceptions
● “QAException class” Thrown if there is a problem getting the message.

Remarks
The address parameter specifies a local queue name. The address can be in the form 'store-id\queue-name'
or 'queue-name'. If no message is available, this method returns immediately.

Use this method to receive messages synchronously.

See also
● “QAMessage interface” on page 550

getMessageTimeout method

Returns the next available QAMessage sent to the given address.

QAnywhere reference

528 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
QAMessage QAManagerBase.getMessageTimeout(
 String address,
 long timeout
) throws QAException

Parameters
● address This address specifies the queue name used by the QAnywhere client to receive messages.

● timeout The time to wait, in milliseconds, for a message to become available.

Returns
The next QAMessage, or null if no message is available.

Exceptions
● “QAException class” Thrown if there is a problem getting the message.

Remarks
The address parameter specifies a local queue name. The address can be in the form 'store-id\queue-name'
or 'queue-name'. If no message is available, this method waits for the specified timeout and then returns.
Use this method to receive messages synchronously.

See also
● “QAMessage interface” on page 550

getMode method

Returns the QAManager acknowledgement mode for received messages.

Syntax
short QAManagerBase.getMode() throws QAException

Returns
The QAManager acknowledgement mode for received messages.

Exceptions
● “QAException class” Thrown if there is a problem retrieving the QAManager acknowledgement

mode.

Remarks
For a list of return values, see AcknowledgementMode.

AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT and
AcknowledgementMode.IMPLICIT_ACKNOWLEDGEMENT apply to QAManager instances.
AcknowledgementMode.TRANSACTIONAL is the mode for QATransactionalManager instances.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 529

See also
● “EXPLICIT_ACKNOWLEDGEMENT variable” on page 468
● “IMPLICIT_ACKNOWLEDGEMENT variable” on page 468
● “QAManager interface” on page 507
● “QATransactionalManager interface” on page 575

getQueueDepth method

Returns the total depth of all queues, based on a given filter.

Overload list

Name Description

“getQueueDepth(short) method” Returns the total depth of all queues, based on a given filter.

“getQueueDepth(String, short) method” Returns the depth of a queue, based on a given filter.

getQueueDepth(short) method
Returns the total depth of all queues, based on a given filter.

Syntax
int QAManagerBase.getQueueDepth(short filter) throws QAException

Parameters
● filter A filter indicating incoming messages, outgoing messages, or all messages.

Returns
The number of messages in all queues for the given filter.

Exceptions
● “QAException class” Thrown if there was an error.

Remarks
The incoming depth of the queue is the number of incoming messages that have not been received (for
example, using the QAManagerBase.getMessage(String) method). The outgoing depth of a queue is the
number of outgoing messages (including uncommitted) that have not been transmitted to the server.

For a list of possible filter values, see QueueDepthFilter.

See also
● “getMessage method” on page 525

QAnywhere reference

530 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

getQueueDepth(String, short) method
Returns the depth of a queue, based on a given filter.

Syntax
int QAManagerBase.getQueueDepth(
 String queue,
 short filter
) throws QAException

Parameters
● filter A filter indicating incoming messages, outgoing messages, or all messages.

● queue The queue name.

Returns
The number of messages.

Exceptions
● “QAException class” Thrown if there was an error.

Remarks
The incoming depth of the queue is the number of incoming messages that have not been received (for
example, using the QAManagerBase.getMessage(String) method). The outgoing depth of a queue is the
number of outgoing messages (including uncommitted) that have not been transmitted to the server.

For a list of possible filter values, see QueueDepthFilter.

getShortStoreProperty method

Gets a short value for a pre-defined or custom message store property.

Syntax
short QAManagerBase.getShortStoreProperty(
 String name
) throws QAException

Parameters
● name The pre-defined or custom property name.

Returns
The short property value.

Exceptions
● “QAException class” Thrown if there is a conversion error or message store error getting the

property value or if the property does not exist.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 531

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

See also
● “MessageStoreProperties interface” on page 476

getStoreProperty method

Gets an Object representing a message store property.

Syntax
Object QAManagerBase.getStoreProperty(String name) throws QAException

Parameters
● name The pre-defined or custom property name.

Returns
The property value.

Exceptions
● “QAException class” Thrown if there is a problem retrieving the property.

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

See also
● “MessageStoreProperties interface” on page 476

getStorePropertyNames method

Gets an enumerator over the message store property names.

Syntax
java.util.Enumeration QAManagerBase.getStorePropertyNames()
 throws QAException

Returns
An enumerator over the message store property names.

QAnywhere reference

532 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Exceptions
● “QAException class” Thrown if there is a problem retrieving the enumerator.

getStringStoreProperty method

Gets a string value for a pre-defined or custom message store property.

Syntax
String QAManagerBase.getStringStoreProperty(
 String name
) throws QAException

Parameters
● name The pre-defined or custom property name.

Returns
The string property value or null if the property does not exist.

Exceptions
● “QAException class” Thrown if there is a problem retrieving the string value.

Remarks
You can use this method to access pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

See also
● “MessageStoreProperties interface” on page 476

propertyExists method

Tests if there currently exists a value for the given the property.

Syntax
boolean QAManagerBase.propertyExists(String name) throws QAException

Parameters
● name The pre-defined or custom property name.

Returns
true if the message store has a value mapped to the property. false otherwise.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 533

Exceptions
● “QAException class” Thrown if there is a problem retrieving the property value.

Remarks
You can use this method to determine if a given property name currently has a value mapped to it by the
message store.

For a list of pre-defined properties, see MessageStoreProperties.

See also
● “MessageStoreProperties interface” on page 476

putMessage method

Prepares a message to send to another QAnywhere client.

Syntax
void QAManagerBase.putMessage(
 String address,
 QAMessage msg
) throws QAException

Parameters
● address The address of the message specifying the destination queue name.

● msg The message to put in the local message store for transmission.

Exceptions
● “QAException class” Thrown if there is a problem putting the message.

Remarks
This method inserts a message and a destination address into your local message store. The time of
message transmission depends on QAnywhere Agent transmission policies.

The address takes the form 'id\queue-name', where 'id' is the destination message store id and 'queue-
name' identifies a queue that is used by the destination QAnywhere client to listen for or receive messages.

See also
● “putMessageTimeToLive method” on page 534

putMessageTimeToLive method

Prepares a message to send to another QAnywhere client.

QAnywhere reference

534 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
void QAManagerBase.putMessageTimeToLive(
 String address,
 QAMessage msg,
 long ttl
) throws QAException

Parameters
● address The address of the message specifying the destination queue name.

● msg The message to put.

● ttl The delay, in milliseconds, before the message expires if it has not been delivered. A value of 0
indicates the message does not expire.

Exceptions
● “QAException class” Thrown if there is a problem putting the message.

Remarks
This method inserts a message and a destination address into your local message store. The time of
message transmission depends on QAnywhere Agent transmission policies. However, if the next message
transmission time exceeds the given time-to-live value, the message expires.

The address takes the form 'id\queue-name', where 'id' is the destination message store id and 'queue-
name' identifies a queue that is used by the destination QAnywhere client to listen for or receive messages.

reOpen method

Reopens the QAManagerBase.

Syntax
void QAManagerBase.reOpen() throws QAException

Exceptions
● “QAException class” Thrown if there is a problem reopening the QAManagerBase instance.

Remarks
This re-establishes connections to the message store, without releasing any resources. This method may
called in a message or exception listener, and in that case it is not necessary to call start() again. This
method simply executes close() then open() if not called in a listener, and in that case start() must be
called to restart receiving of messages.

setBooleanStoreProperty method

Sets a pre-defined or custom message store property to a boolean value.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 535

Syntax
void QAManagerBase.setBooleanStoreProperty(
 String name,
 boolean value
) throws QAException

Parameters
● name The pre-defined or custom property name.

● value The boolean property value.

Exceptions
● “QAException class” Thrown if there is a problem setting the message store property.

Remarks
You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

See also
● “MessageStoreProperties interface” on page 476

setByteStoreProperty method

Sets a pre-defined or custom message store property to a sbyte value.

Syntax
void QAManagerBase.setByteStoreProperty(
 String name,
 byte value
) throws QAException

Parameters
● name The pre-defined or custom property name.

● value The sbyte property value.

Exceptions
● “QAException class” Thrown if there is a problem setting the message store property.

Remarks
You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

QAnywhere reference

536 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “MessageStoreProperties interface” on page 476

setDoubleStoreProperty method

Sets a pre-defined or custom message store property to a double value.

Syntax
void QAManagerBase.setDoubleStoreProperty(
 String name,
 double value
) throws QAException

Parameters
● name The pre-defined or custom property name.

● value The double property value.

Exceptions
● “QAException class” Thrown if there is a problem setting the message store property.

Remarks
You can use this method to set pre-defined or user-defined client. store properties.

For a list of pre-defined properties, see MessageStoreProperties.

See also
● “MessageStoreProperties interface” on page 476

setFloatStoreProperty method

Sets a pre-defined or custom message store property to a float value.

Syntax
void QAManagerBase.setFloatStoreProperty(
 String name,
 float value
) throws QAException

Parameters
● name The pre-defined or custom property name.

● value The float property value.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 537

Exceptions
● “QAException class” Thrown if there is a problem setting the message store property.

Remarks
You can use this method to set pre-defined or user-defined client store properties. For a list of pre-defined
properties, see MessageStoreProperties.

See also
● “MessageStoreProperties interface” on page 476

setIntStoreProperty method

Sets a pre-defined or custom message store property to a int value.

Syntax
void QAManagerBase.setIntStoreProperty(
 String name,
 int value
) throws QAException

Parameters
● name The pre-defined or custom property name.

● value The int property value.

Exceptions
● “QAException class” Thrown if there is a problem setting the message store property.

Remarks
You can use this method to set pre-defined or user-defined client store properties. For a list of pre-defined
properties, see MessageStoreProperties.

See also
● “MessageStoreProperties interface” on page 476

setLongStoreProperty method

Sets a pre-defined or custom message store property to a long value.

Syntax
void QAManagerBase.setLongStoreProperty(
 String name,
 long value
) throws QAException

QAnywhere reference

538 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters
● name The pre-defined or custom property name.

● value The long property value.

Exceptions
● “QAException class” Thrown if there is a problem setting the message store property.

Remarks
You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

See also
● “MessageStoreProperties interface” on page 476

setMessageListener method

Registers a QAMessageListener object to receive QAnywhere messages asynchronously.

Syntax
void QAManagerBase.setMessageListener(
 String address,
 QAMessageListener listener
) throws QAException

Parameters
● address The address of a local queue name used to receive messages, or system to listen for

QAnywhere system messages.

● listener The listener.

Exceptions
● “QAException class” Thrown if there is a problem registering the QAMessageListener object.

Remarks
The address parameter specifies a local queue name used to receive the message. You can only have one
listener object assigned to a given queue. If you want to listen for QAnywhere system messages,
including push notifications and network status changes, specify "system" as the queue name.

Use this method to receive messages asynchronously.

See also
● “QAMessageListener interface” on page 566

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 539

setMessageListener2 method

Registers a QAMessageListener2 object to receive QAnywhere messages asynchronously.

Syntax
void QAManagerBase.setMessageListener2(
 String address,
 QAMessageListener2 listener
) throws QAException

Parameters
● address The address of a local queue name used to receive messages, or system to listen for

QAnywhere system messages.

● listener The listener.

Exceptions
● “QAException class” Thrown if there is a problem registering the QAMessageListener2 object.

Remarks
The address parameter specifies a local queue name used to receive the message. You can only have one
listener object assigned to a given queue. If you want to listen for QAnywhere system messages,
including push notifications and network status changes, specify "system" as the queue name.

Use this method to receive messages asynchronously.

See also
● “QAMessageListener2 interface” on page 568

setMessageListenerBySelector method

Registers a QAMessageListener object to receive QAnywhere messages asynchronously, with a message
selector.

Syntax
void QAManagerBase.setMessageListenerBySelector(
 String address,
 String selector,
 QAMessageListener listener
) throws QAException

Parameters
● address The address of a local queue name used to receive messages, or system to listen for

QAnywhere system messages.

● selector The selector to be used to filter the messages to be received.

QAnywhere reference

540 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● listener The listener.

Exceptions
● “QAException class” Thrown if there is a problem registering the QAMessageListener object,

such as because there is already a listener object assigned to the given queue.

Remarks
The address parameter specifies a local queue name used to receive the message. You can only have one
listener object assigned to a given queue. The selector parameter specifies a selector to be used to filter
the messages to be received on the given address. If you want to listen for QAnywhere system messages,
including push notifications and network status changes, specify "system" as the queue name.

Use this method to receive messages asynchronously.

setMessageListenerBySelector2 method

Registers a QAMessageListener2 object to receive QAnywhere messages asynchronously, with a message
selector.

Syntax
void QAManagerBase.setMessageListenerBySelector2(
 String address,
 String selector,
 QAMessageListener2 listener
) throws QAException

Parameters
● address The address of a local queue name used to receive messages, or system to listen for

QAnywhere system messages.

● selector The selector to be used to filter the messages to be received.

● listener The listener.

Exceptions
● “QAException class” Thrown if there is a problem registering the QAMessageListener2 object.

Remarks
The address parameter specifies a local queue name used to receive the message. You can only have one
listener object assigned to a given queue. The selector parameter specifies a selector to be used to filter
the messages to be received on the given address. If you want to listen for QAnywhere system messages,
including push notifications and network status changes, specify "system" as the queue name.

Use this method to receive messages asynchronously.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 541

See also
● “QAMessageListener2 interface” on page 568

setProperty method

Allows you to set QAnywhere Manager configuration properties programmatically.

Syntax
void QAManagerBase.setProperty(
 String name,
 String val
) throws QAException

Parameters
● name The QAnywhere Manager configuration property name.

● val The QAnywhere Manager configuration property value.

Exceptions
● “QAException class” Thrown if there is a problem setting the property to the value.

Remarks
You can use this method to override default QAnywhere Manager configuration properties by specifying
a property name and value. For a list of properties, see MessageStoreProperties.

You can also set QAnywhere Manager configuration properties using a properties file and the
QAManagerFactory.CreateQAManager method. For more information, see Setting properties using a
properties files and the QAManagerFactory.CreateQAManager method.

Note
You must set required properties before calling QAManager.Open or QATransactionalManager.Open().

See also
● “MessageStoreProperties interface” on page 476

setShortStoreProperty method

Sets a pre-defined or custom message store property to a short value.

Syntax
void QAManagerBase.setShortStoreProperty(
 String name,
 short value
) throws QAException

QAnywhere reference

542 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters
● name The pre-defined or custom property name.

● value The short property value.

Exceptions
● “QAException class” Thrown if there is a problem setting the message store property.

Remarks
You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

See also
● “MessageStoreProperties interface” on page 476

setStoreProperty method

Sets a pre-defined or custom message store property to a System.Object value.

Syntax
void QAManagerBase.setStoreProperty(
 String name,
 Object value
) throws QAException

Parameters
● name The pre-defined or custom property name.

● value The property value.

Exceptions
● “QAException class” Thrown if there is a problem setting the message store property to the value.

Remarks
The property type must correspond to one of the acceptable primitive types, or String. You can use this
method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

See also
● “MessageStoreProperties interface” on page 476

setStringStoreProperty method

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 543

Sets a pre-defined or custom message store property to a String value.

Syntax
void QAManagerBase.setStringStoreProperty(
 String name,
 String value
) throws QAException

Parameters
● name The pre-defined or custom property name.

● value The String property value.

Exceptions
● “QAException class” Thrown if there is a problem setting the message store property to a string

value.

Remarks
You can use this method to set pre-defined or user-defined client store properties.

For a list of pre-defined properties, see MessageStoreProperties.

See also
● “MessageStoreProperties interface” on page 476

start method

Starts the QAManagerBase for receiving incoming messages.

Syntax
void QAManagerBase.start() throws QAException

Exceptions
● “QAException class” Thrown if there is a problem starting the QAManagerBase instance.

Remarks
Any calls to this method beyond the first without an intervening QAManagerBase.stop() call are ignored.

See also
● “stop method” on page 544

stop method

QAnywhere reference

544 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Halts the QAManagerBase's reception of incoming messages.

Syntax
void QAManagerBase.stop() throws QAException

Exceptions
● “QAException class” Thrown if there is a problem stopping the QAManagerBase instance.

Remarks
The messages are not lost. They just are not received until the manager is started again. Any calls to stop()
beyond the first without an intervening QAManagerBase.start() call are ignored.

See also
● “start method” on page 544

triggerSendReceive method

Causes a synchronization with the QAnywhere message server, uploading any messages addressed to
other clients, and downloading any messages addressed to the local client.

Syntax
void QAManagerBase.triggerSendReceive() throws QAException

Exceptions
● “QAException class” Thrown if there is a problem triggering the send/receive.

Remarks
A call to this method results in immediate message synchronization between a QAnywhere Agent and the
central messaging server. A manual triggerSendReceive() call results in immediate message transmission,
independent of the QAnywhere Agent transmission policies.

QAnywhere Agent transmission policies determine how message transmission occurs. For example,
message transmission can occur automatically at regular intervals, when your client receives a push
notification, or when you call the QAManagerBase.putMessage() method to send a message.

See also
● “putMessage method” on page 534

QAManagerFactory class
This class acts as a factory class for creating QATransactionalManager and QAManager objects.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 545

Syntax
public class QAManagerFactory

Members
All members of QAManagerFactory class, including all inherited members.

Name Description

“createQAManager method” Returns a new QAManager instance with the specified
properties.

“createQATransactionalManager method” Returns a new QATransactionalManager instance with the
specified properties.

“getInstance method” Returns the singleton QAManagerFactory instance.

Remarks
You can only have one instance of QAManagerFactory.

See also
● “QAManager interface” on page 507
● “QATransactionalManager interface” on page 575

createQAManager method

Returns a new QAManager instance with the specified properties.

Overload list

Name Description

“createQAManager() method” Returns a new QAManager instance with default properties.

“createQAManager(Hashtable)
method”

Returns a new QAManager instance with the specified proper-
ties as a Hashtable.

“createQAManager(String) method” Returns a new QAManager instance with the specified properties.

createQAManager() method
Returns a new QAManager instance with default properties.

Syntax
abstract QAManager QAManagerFactory.createQAManager() throws QAException

QAnywhere reference

546 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns
A new QAManager instance.

Exceptions
● “QAException class” Thrown if there is a problem creating the manager.

See also
● “QAManager interface” on page 507

createQAManager(Hashtable) method
Returns a new QAManager instance with the specified properties as a Hashtable.

Syntax
abstract QAManager QAManagerFactory.createQAManager(
 java.util.Hashtable properties
) throws QAException

Parameters
● properties A Hashtable for configuring the QAManager instance.

Returns
A new QAManager instance.

Exceptions
● “QAException class” Thrown if there is a problem creating the manager.

See also
● “QAManager interface” on page 507

createQAManager(String) method
Returns a new QAManager instance with the specified properties.

Syntax
abstract QAManager QAManagerFactory.createQAManager(
 String iniFile
) throws QAException

Parameters
● iniFile A properties file for configuring the QAManager instance, or null to create the QAManager

instance using default properties.

Returns
A new QAManager instance.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 547

Exceptions
● “QAException class” Thrown if there is a problem creating the manager.

Remarks
If the iniFile parameter is null, the QAManager is created using default properties. You can use the
QAManagerBase set property methods to set QAManager properties programmatically after you create
the instance.

See also
● “QAManager interface” on page 507

createQATransactionalManager method

Returns a new QATransactionalManager instance with the specified properties.

Overload list

Name Description

“createQATransactionalManager() meth-
od”

Returns a new QATransactionalManager instance with de-
fault properties.

“createQATransactionalManager(Hashta-
ble) method”

Returns a new QATransactionalManager instance with the
specified properties.

“createQATransactionalManager(String)
method”

Returns a new QATransactionalManager instance with the
specified properties.

createQATransactionalManager() method
Returns a new QATransactionalManager instance with default properties.

Syntax
abstract QATransactionalManager
QAManagerFactory.createQATransactionalManager()
 throws QAException

Returns
A new QATransactionalManager.

Exceptions
● “QAException class” Thrown if there is a problem creating the manager.

See also
● “QATransactionalManager interface” on page 575

QAnywhere reference

548 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

createQATransactionalManager(Hashtable) method
Returns a new QATransactionalManager instance with the specified properties.

Syntax
abstract QATransactionalManager
QAManagerFactory.createQATransactionalManager(
 java.util.Hashtable properties
) throws QAException

Parameters
● properties A hashtable for configuring the QATransactionalManager instance.

Returns
The configured QATransactionalManager.

Exceptions
● “QAException class” Thrown if there is a problem creating the manager.

See also
● “QATransactionalManager interface” on page 575

createQATransactionalManager(String) method
Returns a new QATransactionalManager instance with the specified properties.

Syntax
abstract QATransactionalManager
QAManagerFactory.createQATransactionalManager(
 String iniFile
) throws QAException

Parameters
● iniFile A properties file for configuring the QATransactionalManager instance.

Returns
The configured QATransactionalManager.

Exceptions
● “QAException class” Thrown if there is a problem creating the manager.

Remarks
If the iniFile parameter is null, the QATransactionalManager is created using default properties. You can
use the QAManagerBase set property methods to set QATransactionalManager properties
programmatically after you create the instance.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 549

See also
● “QATransactionalManager interface” on page 575

getInstance method

Returns the singleton QAManagerFactory instance.

Syntax
QAManagerFactory QAManagerFactory.getInstance() throws QAException

Returns
The singleton QAManagerFactory instance.

Exceptions
● “QAException class” Thrown if there is a problem creating the manager factory.

QAMessage interface
QAMessage provides an interface to set message properties and header fields.

Syntax
public interface QAMessage

Derived classes
● “QABinaryMessage interface” on page 481
● “QATextMessage interface” on page 569

Members
All members of QAMessage interface, including all inherited members.

Name Description

“clearProperties method” Clear all the properties of the message.

“getAddress method” Returns the destination address for the QAMessage instance.

“getBooleanProperty method” Gets a boolean message property.

“getByteProperty method” Gets a signed byte message property.

“getDoubleProperty method” Gets a double message property.

QAnywhere reference

550 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“getExpiration method” Returns the message's expiration value, or null if the mes-
sage does not expire or has not yet been sent.

“getFloatProperty method” Gets a float message property.

“getInReplyToID method” Returns the message ID of the message to which this mes-
sage is a reply.

“getIntProperty method” Gets an int message property.

“getLongProperty method” Gets a long message property.

“getMessageID method” Returns the globally unique message ID of the message.

“getPriority method” Returns the priority of the message (ranging from 0 to 9).

“getProperty method” Gets a message property.

“getPropertyNames method” Gets an enumerator over the property names of the message.

“getPropertyType method” Returns the property type of the given property.

“getRedelivered method” Indicates whether the message has been previously re-
ceived but not acknowledged.

“getReplyToAddress method” Returns the reply-to address of this message.

“getShortProperty method” Gets a short message property.

“getStringProperty method” Gets a String message property.

“getTimestamp method” Returns the message timestamp, which is the time the mes-
sage was created.

“propertyExists method” Indicates whether the given property has been set for this
message.

“setBooleanProperty method” Sets a boolean property.

“setByteProperty method” Sets a signed byte property.

“setDoubleProperty method” Sets a double property.

“setFloatProperty method” Sets a float property.

“setInReplyToID method” Sets the in reply to ID, which identifies the message this
message is a reply to.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 551

Name Description

“setIntProperty method” Sets an int property.

“setLongProperty method” Sets a long property.

“setPriority method” Sets the priority of the message (ranging from 0 to 9).

“setProperty method” Sets a property.

“setReplyToAddress method” Sets the reply-to address.

“setShortProperty method” Sets a short property.

“setStringProperty method” Sets a string property.

“DEFAULT_PRIORITY variable” The default message priority.

“DEFAULT_TIME_TO_LIVE variable” The default time-to-live value.

Remarks
The derived classes QABinaryMessage and QATextMessage provide specialized functions to read and
write to the message body. You can use QAMessage functions to set predefined or custom message
properties.

For a list of pre-defined property names, see the MessageProperties.

See also
● “QABinaryMessage interface” on page 481
● “QATextMessage interface” on page 569

clearProperties method

Clear all the properties of the message.

Syntax
void QAMessage.clearProperties() throws QAException

Exceptions
● “QAException class” Thrown if there is a problem clearing the message properties.

getAddress method

Returns the destination address for the QAMessage instance.

QAnywhere reference

552 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
String QAMessage.getAddress() throws QAException

Returns
The destination address for the QAMessage instance.

Exceptions
● “QAException class” Thrown if there is a problem retrieving the destination address.

Remarks
When a message is sent, this field is ignored. After completion of a send operation, the field holds the
destination address specified in QAManagerBase.putMessage(String, QAMessage).

getBooleanProperty method

Gets a boolean message property.

Syntax
boolean QAMessage.getBooleanProperty(String name) throws QAException

Parameters
● name The property name.

Returns
The property value.

Exceptions
● “QAException class” Thrown if there is a conversion error getting the property value or if the

property does not exist.

See also
● “MessageProperties interface” on page 469

getByteProperty method

Gets a signed byte message property.

Syntax
byte QAMessage.getByteProperty(String name) throws QAException

Parameters
● name The property name.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 553

Returns
The property value.

Exceptions
● “QAException class” Thrown if there is a conversion error getting the property value or if the

property does not exist.

See also
● “MessageProperties interface” on page 469

getDoubleProperty method

Gets a double message property.

Syntax
double QAMessage.getDoubleProperty(String name) throws QAException

Parameters
● name The property name.

Returns
The property value.

Exceptions
● “QAException class” Thrown if there is a conversion error getting the property value or if the

property does not exist.

See also
● “MessageProperties interface” on page 469

getExpiration method

Returns the message's expiration value, or null if the message does not expire or has not yet been sent.

Syntax
java.util.Date QAMessage.getExpiration() throws QAException

Returns
The message's expiration value, or null if the message does not expire or has not yet been sent.

Exceptions
● “QAException class” Thrown if there is a problem getting the expiration.

QAnywhere reference

554 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
When a message is sent, the expiration is left unassigned. After the send operation completes, it holds the
expiration time of the message.

This is a read-only property because the expiration time of a message is set by adding the time-to-live
argument of QAManagerBase.putMessageTimeToLive(String, QAMessage, long) to the current time.

See also
● “putMessageTimeToLive method” on page 534

getFloatProperty method

Gets a float message property.

Syntax
float QAMessage.getFloatProperty(String name) throws QAException

Parameters
● name The property name.

Returns
The property value.

Exceptions
● “QAException class” Thrown if there is a conversion error getting the property value or if the

property does not exist.

See also
● “MessageProperties interface” on page 469

getInReplyToID method

Returns the message ID of the message to which this message is a reply.

Syntax
String QAMessage.getInReplyToID() throws QAException

Returns
The message ID of the message to which this message is a reply, or null if this message is not a reply.

Exceptions
● “QAException class” Thrown if there is a problem getting the message ID of the message to

which this message is a reply.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 555

getIntProperty method

Gets an int message property.

Syntax
int QAMessage.getIntProperty(String name) throws QAException

Parameters
● name The property name.

Returns
The property value.

Exceptions
● “QAException class” Thrown if there is a conversion error getting the property value or if the

property does not exist.

See also
● “MessageProperties interface” on page 469

getLongProperty method

Gets a long message property.

Syntax
long QAMessage.getLongProperty(String name) throws QAException

Parameters
● name The property name.

Returns
The property value.

Exceptions
● “QAException class” Thrown if there is a conversion error getting the property value or if the

property does not exist.

See also
● “MessageProperties interface” on page 469

getMessageID method

QAnywhere reference

556 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns the globally unique message ID of the message.

Syntax
String QAMessage.getMessageID() throws QAException

Returns
The message ID of the message, or null if the message has not yet been put.

Exceptions
● “QAException class” Thrown if there is a problem getting the message ID.

Remarks
This property is null until a message is put.

When a message is sent using QAManagerBase.putMessage(String, QAMessage) the message ID is null
and can be ignored. When the send method returns, it contains an assigned value.

See also
● “putMessage method” on page 534

getPriority method

Returns the priority of the message (ranging from 0 to 9).

Syntax
int QAMessage.getPriority() throws QAException

Returns
The priority of the message.

Exceptions
● “QAException class” Thrown if there is a problem getting the message priority.

getProperty method

Gets a message property.

Syntax
Object QAMessage.getProperty(String name) throws QAException

Parameters
● name The property name.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 557

Returns
The property value, or null if the property does not exist.

Exceptions
● “QAException class” Thrown if there is a conversion error getting the property value.

getPropertyNames method

Gets an enumerator over the property names of the message.

Syntax
java.util.Enumeration QAMessage.getPropertyNames() throws QAException

Returns
An enumerator over the message property names.

Exceptions
● “QAException class” Thrown if there is a problem getting the enumerator over the property

names of the message.

getPropertyType method

Returns the property type of the given property.

Syntax
short QAMessage.getPropertyType(String name) throws QAException

Parameters
● name The property name.

Returns
The property type.

Exceptions
● “QAException class” Thrown if there is a problem retrieving the property type.

See also
● “PropertyType interface” on page 479

getRedelivered method

QAnywhere reference

558 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Indicates whether the message has been previously received but not acknowledged.

Syntax
boolean QAMessage.getRedelivered() throws QAException

Returns
True if the message has been previously received but not acknowledged.

Exceptions
● “QAException class” Thrown if there is a problem retrieving the redelivered status.

Remarks
Redelivered is set by a receiving QAManager when it detects that a message being received was received
before.

For example, an application receives a message using a QAManager opened with
AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT and shuts down without acknowledging
the message. When the application starts again and receives the same message, the message will be
marked as redelivered.

getReplyToAddress method

Returns the reply-to address of this message.

Syntax
String QAMessage.getReplyToAddress() throws QAException

Returns
The reply-to address of this message, or null if it does not exist.

Exceptions
● “QAException class” Thrown if there is a problem retrieving the reply-to address.

getShortProperty method

Gets a short message property.

Syntax
short QAMessage.getShortProperty(String name) throws QAException

Parameters
● name the property name.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 559

Returns
The property value.

Exceptions
● “QAException class” Thrown if there is a conversion error getting the property value or if the

property does not exist.

See also
● “MessageProperties interface” on page 469

getStringProperty method

Gets a String message property.

Syntax
String QAMessage.getStringProperty(String name) throws QAException

Parameters
● name The property name.

Returns
The property value, or null if the property does not exist.

Exceptions
● “QAException class” Thrown if there is a problem retrieving the message property.

See also
● “MessageProperties interface” on page 469

getTimestamp method

Returns the message timestamp, which is the time the message was created.

Syntax
java.util.Date QAMessage.getTimestamp() throws QAException

Returns
The message timestamp.

Exceptions
● “QAException class” Thrown if there is a problem retrieving the message timestamp.

QAnywhere reference

560 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

propertyExists method

Indicates whether the given property has been set for this message.

Syntax
boolean QAMessage.propertyExists(String name) throws QAException

Parameters
● name The property name

Returns
True if the property exists.

Exceptions
● “QAException class” Thrown if there is a problem checking if the property has been set.

setBooleanProperty method

Sets a boolean property.

Syntax
void QAMessage.setBooleanProperty(
 String name,
 boolean value
) throws QAException

Parameters
● name The property name.

● value The property value.

Exceptions
● “QAException class” Thrown if there is a problem setting the property.

See also
● “MessageProperties interface” on page 469

setByteProperty method

Sets a signed byte property.

Syntax
void QAMessage.setByteProperty(
 String name,

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 561

 byte value
) throws QAException

Parameters
● name The property name.

● value The property value.

Exceptions
● “QAException class” Thrown if there is a problem setting the property.

See also
● “MessageProperties interface” on page 469

setDoubleProperty method

Sets a double property.

Syntax
void QAMessage.setDoubleProperty(
 String name,
 double value
) throws QAException

Parameters
● name The property name.

● value The property value.

Exceptions
● “QAException class” Thrown if there is a problem setting the property.

See also
● “MessageProperties interface” on page 469

setFloatProperty method

Sets a float property.

Syntax
void QAMessage.setFloatProperty(
 String name,
 float value
) throws QAException

QAnywhere reference

562 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters
● name The property name.

● value The property value.

Exceptions
● “QAException class” Thrown if there is a problem setting the property.

See also
● “MessageProperties interface” on page 469

setInReplyToID method

Sets the in reply to ID, which identifies the message this message is a reply to.

Syntax
void QAMessage.setInReplyToID(String id) throws QAException

Parameters
● id The ID of the message this message is in reply to.

Exceptions
● “QAException class” Thrown if there is a problem setting the in reply to ID.

setIntProperty method

Sets an int property.

Syntax
void QAMessage.setIntProperty(String name, int value) throws QAException

Parameters
● name The property name.

● value The property value.

Exceptions
● “QAException class” Thrown if there is a problem setting the property.

See also
● “MessageProperties interface” on page 469

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 563

setLongProperty method

Sets a long property.

Syntax
void QAMessage.setLongProperty(
 String name,
 long value
) throws QAException

Parameters
● name The property name.

● value The property value.

Exceptions
● “QAException class” Thrown if there is a problem setting the property.

See also
● “MessageProperties interface” on page 469

setPriority method

Sets the priority of the message (ranging from 0 to 9).

Syntax
void QAMessage.setPriority(int priority) throws QAException

Parameters
● priority The priority of the message.

Exceptions
● “QAException class” Thrown if there is a problem setting the priority.

setProperty method

Sets a property.

Syntax
void QAMessage.setProperty(String name, Object value) throws QAException

Parameters
● name The property name.

QAnywhere reference

564 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● value The property value.

Exceptions
● “QAException class” Thrown if there is a problem setting the property.

Remarks
The property type must correspond to one of the acceptable primitive types, or String.

See also
● “MessageProperties interface” on page 469

setReplyToAddress method

Sets the reply-to address.

Syntax
void QAMessage.setReplyToAddress(String address) throws QAException

Parameters
● address The reply-to address.

Exceptions
● “QAException class” Thrown if there is a problem setting the reply-to address.

setShortProperty method

Sets a short property.

Syntax
void QAMessage.setShortProperty(
 String name,
 short value
) throws QAException

Parameters
● name The property name.

● value The property value.

Exceptions
● “QAException class” Thrown if there is a problem setting the property.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 565

See also
● “MessageProperties interface” on page 469

setStringProperty method
Sets a string property.

Syntax
void QAMessage.setStringProperty(
 String name,
 String value
) throws QAException

Parameters
● name The property name.

● value The property value.

Exceptions
● “QAException class” Thrown if there is a problem setting the property.

See also
● “MessageProperties interface” on page 469

DEFAULT_PRIORITY variable
The default message priority.

Syntax
final int QAMessage.DEFAULT_PRIORITY

DEFAULT_TIME_TO_LIVE variable
The default time-to-live value.

Syntax
final long QAMessage.DEFAULT_TIME_TO_LIVE

QAMessageListener interface
To listen for messages, implement this interface and register your implementation by calling
QAMangerBase.setMessageListener(String,QAMessageListener).

QAnywhere reference

566 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
public interface QAMessageListener

Members
All members of QAMessageListener interface, including all inherited members.

Name Description

“onException method” This method is called whenever an exception occurs while listening for mes-
sages.

“onMessage method” This method is called whenever a message is received.

See also
● “setMessageListener method” on page 539

onException method

This method is called whenever an exception occurs while listening for messages.

Syntax
void QAMessageListener.onException(
 QAException exception,
 QAMessage message
)

Parameters
● exception The exception that occurred.

● message If the exception occurred after the message was passed to onMessage(QAMessage), the
message that was processed. Otherwise, null.

Remarks
Note that this method cannot be used to automatically close the QAManagerBase instance, as the
QAManagerBase.close() method blocks until all message listeners are finished processing.

See also
● “QAManagerBase interface” on page 514
● “close method” on page 520

onMessage method

This method is called whenever a message is received.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 567

Syntax
void QAMessageListener.onMessage(QAMessage message) throws QAException

Parameters
● message The message that was received.

QAMessageListener2 interface
To listen for messages, implement this interface and register your implementation by calling
QAMangerBase.

Syntax
public interface QAMessageListener2

Members
All members of QAMessageListener2 interface, including all inherited members.

Name Description

“onException method” This method is called whenever an exception occurs while listening for mes-
sages.

“onMessage method” This method is called whenever a message is received.

Remarks
setMessageListener2(String,QAMessageListener2).

See also
● “setMessageListener2 method” on page 540

onException method

This method is called whenever an exception occurs while listening for messages.

Syntax
void QAMessageListener2.onException(
 QAManagerBase mgr,
 QAException exception,
 QAMessage message
)

Parameters
● mgr The QAManagerBase that processed the message.

QAnywhere reference

568 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● exception The exception that occurred.

● message If the exception occurred after the message was passed to onMessage(QAMessage), the
message that was processed. Otherwise, null.

Remarks
Note that this method cannot be used to automatically close the QAManagerBase instance, as the
QAManagerBase.close() method blocks until all message listeners are finished processing.

See also
● “QAManagerBase interface” on page 514
● “close method” on page 520

onMessage method

This method is called whenever a message is received.

Syntax
void QAMessageListener2.onMessage(
 QAManagerBase mgr,
 QAMessage message
) throws QAException

Parameters
● mgr The QAManagerBase that received the message.

● message The message that was received.

See also
● “QAManagerBase interface” on page 514

QATextMessage interface
QATextMessage inherits from the QAMessage class and adds a text message body, and methods to read
from and write to the text message body.

Syntax
public interface QATextMessage

Base classes
● “QAMessage interface” on page 550

Members
All members of QATextMessage interface, including all inherited members.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 569

Name Description

“clearProperties method” Clear all the properties of the message.

“getAddress method” Returns the destination address for the QAMessage instance.

“getBooleanProperty method” Gets a boolean message property.

“getByteProperty method” Gets a signed byte message property.

“getDoubleProperty method” Gets a double message property.

“getExpiration method” Returns the message's expiration value, or null if the mes-
sage does not expire or has not yet been sent.

“getFloatProperty method” Gets a float message property.

“getInReplyToID method” Returns the message ID of the message to which this mes-
sage is a reply.

“getIntProperty method” Gets an int message property.

“getLongProperty method” Gets a long message property.

“getMessageID method” Returns the globally unique message ID of the message.

“getPriority method” Returns the priority of the message (ranging from 0 to 9).

“getProperty method” Gets a message property.

“getPropertyNames method” Gets an enumerator over the property names of the message.

“getPropertyType method” Returns the property type of the given property.

“getRedelivered method” Indicates whether the message has been previously re-
ceived but not acknowledged.

“getReplyToAddress method” Returns the reply-to address of this message.

“getShortProperty method” Gets a short message property.

“getStringProperty method” Gets a String message property.

“getText method” Returns the message text.

“getTextLength method” Returns the length, in characters, of the message.

“getTimestamp method” Returns the message timestamp, which is the time the mes-
sage was created.

QAnywhere reference

570 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“propertyExists method” Indicates whether the given property has been set for this
message.

“readText method” Returns unread text from the message.

“reset method” Resets the text position of the message to the beginning.

“setBooleanProperty method” Sets a boolean property.

“setByteProperty method” Sets a signed byte property.

“setDoubleProperty method” Sets a double property.

“setFloatProperty method” Sets a float property.

“setInReplyToID method” Sets the in reply to ID, which identifies the message this
message is a reply to.

“setIntProperty method” Sets an int property.

“setLongProperty method” Sets a long property.

“setPriority method” Sets the priority of the message (ranging from 0 to 9).

“setProperty method” Sets a property.

“setReplyToAddress method” Sets the reply-to address.

“setShortProperty method” Sets a short property.

“setStringProperty method” Sets a string property.

“setText method” Overwrites the message text.

“writeText method” Appends text to the text of the message.

“DEFAULT_PRIORITY variable” The default message priority.

“DEFAULT_TIME_TO_LIVE variable” The default time-to-live value.

Remarks
When the message is first created, the body of the message is in write-only mode. After a message has
been sent, the client that sent it can retain and modify it without affecting the message that has been sent.
The same message object can be sent multiple times.

When a message is received, the provider has called QATextMessage.reset() so that the message body is
in read-only mode and reading values starts from the beginning of the message body.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 571

See also
● “onMessage method” on page 567

getText method

Returns the message text.

Syntax
String QATextMessage.getText() throws QAException

Returns
The message text, or null .

Exceptions
● “QAException class” Thrown if there is a problem retrieving the message text.

Remarks
If the message text exceeds the maximum size specified by the
QAManager.MAX_IN_MEMORY_MESSAGE_SIZE property, this method returns null. In this case, use
the QATextMessage.readText(int) method to read the text.

See also
● “readText method” on page 572

getTextLength method

Returns the length, in characters, of the message.

Syntax
long QATextMessage.getTextLength() throws QAException

Returns
The length in characters of the message.

Exceptions
● “QAException class” Thrown if there is a problem retrieving the length of the message.

readText method

Returns unread text from the message.

QAnywhere reference

572 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
String QATextMessage.readText(int maxLength) throws QAException

Parameters
● maxLength The maximum number of characters to read.

Returns
The text.

Exceptions
● “QAException class” Thrown if there is a problem retrieving the unread text.

Remarks
Any additional unread text must be read by subsequent calls to this method. Text is read from the
beginning of any unread text.

reset method
Resets the text position of the message to the beginning.

Syntax
void QATextMessage.reset() throws QAException

Exceptions
● “QAException class” Thrown if there is a problem resetting the text position of the message.

setText method
Overwrites the message text.

Syntax
void QATextMessage.setText(String value) throws QAException

Parameters
● value The text to write to the message body.

Exceptions
● “QAException class” Thrown if there is a problem overwriting the message text.

writeText method
Appends text to the text of the message.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 573

Overload list

Name Description

“writeText(String) method” Appends text to the text of the message.

“writeText(String, int) method” Appends text to the text of the message.

“writeText(String, int, int) method” Appends text to the text of the message.

writeText(String) method
Appends text to the text of the message.

Syntax
void QATextMessage.writeText(String value) throws QAException

Parameters
● value The text to append.

Exceptions
● “QAException class” Thrown if there is a problem appending the message text.

writeText(String, int) method
Appends text to the text of the message.

Syntax
void QATextMessage.writeText(
 String value,
 int length
) throws QAException

Parameters
● value The text to append.

● length The number of characters of text to append.

Exceptions
● “QAException class” Thrown if there is a problem appending the message text.

writeText(String, int, int) method
Appends text to the text of the message.

QAnywhere reference

574 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
void QATextMessage.writeText(
 String value,
 int offset,
 int length
) throws QAException

Parameters
● value The text to append.

● offset The offset into value of the text to append.

● length The number of characters of text to append.

Exceptions
● “QAException class” Thrown if there is a problem appending the message text.

QATransactionalManager interface
The QATransactionalManager class derives from QAManagerBase and manages transactional
QAnywhere messaging operations.

Syntax
public interface QATransactionalManager

Base classes
● “QAManagerBase interface” on page 514

Members
All members of QATransactionalManager interface, including all inherited members.

Name Description

“browseMessages method” Browses all available messages in the message store.

“browseMessagesByID method” Browse the message with the given message ID.

“browseMessagesByQueue method” Browses the available messages waiting that have been
sent to the given address.

“browseMessagesBySelector method” Browse messages queued in the message store that satisfy
the given selector.

“cancelMessage method” Cancels the message with the given message ID.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 575

Name Description

“close method” Closes the connection to the QAnywhere message system
and releases any resources used by the QAManagerBase.

“commit method” Commits the current transaction and begins a new transac-
tion.

“createBinaryMessage method” Creates a QABinaryMessage object.

“createTextMessage method” Creates a QATextMessage object.

“getBooleanStoreProperty method” Gets a boolean value for a pre-defined or custom message
store property.

“getByteStoreProperty method” Gets a signed byte value for a pre-defined or custom mes-
sage store property.

“getDoubleStoreProperty method” Gets a double value for a pre-defined or custom message
store property.

“getFloatStoreProperty method” Gets a float value for a pre-defined or custom message
store property.

“getIntStoreProperty method” Gets a int value for a pre-defined or custom message store
property.

“getLongStoreProperty method” Gets a long value for a pre-defined or custom message
store property.

“getMessage method” Returns the next available QAMessage sent to the speci-
fied address.

“getMessageBySelector method” Returns the next available QAMessage sent to the speci-
fied address that satisfies the given selector.

“getMessageBySelectorNoWait method” Returns the next available QAMessage sent to the given
address that satisfies the given selector.

“getMessageBySelectorTimeout method” Returns the next available QAMessage sent to the given
address that satisfies the given selector.

“getMessageNoWait method” Returns the next available QAMessage sent to the given
address.

“getMessageTimeout method” Returns the next available QAMessage sent to the given
address.

QAnywhere reference

576 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“getMode method” Returns the QAManager acknowledgement mode for re-
ceived messages.

“getQueueDepth method” Returns the total depth of all queues, based on a given filter.

“getShortStoreProperty method” Gets a short value for a pre-defined or custom message
store property.

“getStoreProperty method” Gets an Object representing a message store property.

“getStorePropertyNames method” Gets an enumerator over the message store property names.

“getStringStoreProperty method” Gets a string value for a pre-defined or custom message
store property.

“open method” Opens a QATransactionalManager instance.

“propertyExists method” Tests if there currently exists a value for the given the prop-
erty.

“putMessage method” Prepares a message to send to another QAnywhere client.

“putMessageTimeToLive method” Prepares a message to send to another QAnywhere client.

“reOpen method” Reopens the QAManagerBase.

“rollback method” Rolls back the current transaction and begins a new trans-
action.

“setBooleanStoreProperty method” Sets a pre-defined or custom message store property to a
boolean value.

“setByteStoreProperty method” Sets a pre-defined or custom message store property to a
sbyte value.

“setDoubleStoreProperty method” Sets a pre-defined or custom message store property to a
double value.

“setFloatStoreProperty method” Sets a pre-defined or custom message store property to a
float value.

“setIntStoreProperty method” Sets a pre-defined or custom message store property to a
int value.

“setLongStoreProperty method” Sets a pre-defined or custom message store property to a
long value.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 577

Name Description

“setMessageListener method” Registers a QAMessageListener object to receive QAny-
where messages asynchronously.

“setMessageListener2 method” Registers a QAMessageListener2 object to receive QAny-
where messages asynchronously.

“setMessageListenerBySelector method” Registers a QAMessageListener object to receive QAny-
where messages asynchronously, with a message selector.

“setMessageListenerBySelector2 method” Registers a QAMessageListener2 object to receive QAny-
where messages asynchronously, with a message selector.

“setProperty method” Allows you to set QAnywhere Manager configuration prop-
erties programmatically.

“setShortStoreProperty method” Sets a pre-defined or custom message store property to a
short value.

“setStoreProperty method” Sets a pre-defined or custom message store property to a
System.Object value.

“setStringStoreProperty method” Sets a pre-defined or custom message store property to a
String value.

“start method” Starts the QAManagerBase for receiving incoming mes-
sages.

“stop method” Halts the QAManagerBase's reception of incoming mes-
sages.

“triggerSendReceive method” Causes a synchronization with the QAnywhere message
server, uploading any messages addressed to other clients,
and downloading any messages addressed to the local client.

Remarks
For a detailed description of derived behavior, see QAManagerBase.

QATransactionalManager instances can only be used for transactional acknowledgement. Use the
QATransactionalManager.commit() method to commit all QAManagerBase.putMessage(String,
QAMessage) and QAManagerBase.getMessage(String) invocations.

See also
● “commit method” on page 579
● “putMessage method” on page 534
● “getMessage method” on page 525

QAnywhere reference

578 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

commit method

Commits the current transaction and begins a new transaction.

Syntax
void QATransactionalManager.commit() throws QAException

Exceptions
● “QAException class” Thrown if there is a problem committing.

Remarks
This method commits all QAManagerBase.putMessage(String, QAMessage) and
QAManagerBase.getMessage(String) invocations.

Note
The first transaction begins with the call to QATransactionalManager.open().

open method

Opens a QATransactionalManager instance.

Syntax
void QATransactionalManager.open() throws QAException

Exceptions
● “QAException class” Thrown if there is a problem opening the manager.

Remarks
This method must be the first method called after creating a manager.

rollback method

Rolls back the current transaction and begins a new transaction.

Syntax
void QATransactionalManager.rollback() throws QAException

Exceptions
● “QAException class” Thrown if there is a problem rolling back.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 579

Remarks
This method rolls back all uncommitted QAManagerBase.putMessage(String, QAMessage) and
QAManagerBase.getMessage(String) invocations.

QueueDepthFilter interface
Provides queue depth filter values for QAManagerBase.getQueueDepth(short) and
QAManagerBase.getQueueDepth(String, short).

Syntax
public interface QueueDepthFilter

Members
All members of QueueDepthFilter interface, including all inherited members.

Name Description

“ALL variable” This filter specifies both incoming and outgoing messages.

“INCOMING variable” This filter specifies only incoming messages.

“LOCAL variable” This filter specifies only local messages.

“OUTGOING variable” This filter specifies only outgoing messages.

See also
● “getQueueDepth method” on page 530

ALL variable

This filter specifies both incoming and outgoing messages.

Syntax
final short QueueDepthFilter.ALL

Remarks
System messages and expired messages are not included in any queue depth counts.

INCOMING variable

This filter specifies only incoming messages.

QAnywhere reference

580 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
final short QueueDepthFilter.INCOMING

Remarks
An incoming message is defined as a message whose originator is different than the agent ID of the
message store.

LOCAL variable

This filter specifies only local messages.

Syntax
final short QueueDepthFilter.LOCAL

Remarks
A local message is defined as a message whose originator and target are the agent ID of the message store.

OUTGOING variable

This filter specifies only outgoing messages.

Syntax
final short QueueDepthFilter.OUTGOING

Remarks
An outgoing message is defined as a message whose originator is the agent ID of the message store, and
whose destination is not the agent ID of the message store.

StatusCodes interface

This interface defines a set of codes for the status of a message.

Syntax
public interface StatusCodes

Members
All members of StatusCodes interface, including all inherited members.

Name Description

“CANCELED variable” The message has been canceled.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 581

Name Description

“EXPIRED variable” The message has expired; the message was not received before its
expiration time had passed.

“FINAL variable” This constant is used to determine if a message has achieved a final
state.

“LOCAL variable” The message is addressed to the local message store and will not be
transmitted to the server.

“PENDING variable” The message has been sent but not received and acknowledged.

“RECEIVED variable” The message has been received and acknowledged by the receiver.

“RECEIVING variable” The message is in the process of being received, or it was received
but not acknowledged.

“TRANSMITTED variable” The message has been transmitted to the server.

“TRANSMITTING variable” The message is in the process of being transmitted to the server.

“UNRECEIVABLE variable” The message has been marked as unreceivable.

“UNTRANSMITTED variable” The message has not been transmitted to the server.

CANCELED variable

The message has been canceled.

Syntax
final int StatusCodes.CANCELED

Remarks
This code applies to MessageProperties.STATUS.

See also
● “STATUS variable” on page 475

EXPIRED variable

The message has expired; the message was not received before its expiration time had passed.

Syntax
final int StatusCodes.EXPIRED

QAnywhere reference

582 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
This code applies to MessageProperties.STATUS.

See also
● “STATUS variable” on page 475

FINAL variable

This constant is used to determine if a message has achieved a final state.

Syntax
final int StatusCodes.FINAL

Remarks
A message has achieved a final state if and only if its status is greater than this constant.

This code applies to MessageProperties.STATUS.

See also
● “STATUS variable” on page 475

LOCAL variable

The message is addressed to the local message store and will not be transmitted to the server.

Syntax
final int StatusCodes.LOCAL

Remarks
This code applies to MessageProperties.TRANSMISSION_STATUS.

See also
● “TRANSMISSION_STATUS variable” on page 476

PENDING variable

The message has been sent but not received and acknowledged.

Syntax
final int StatusCodes.PENDING

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 583

Remarks
This code applies to MessageProperties.STATUS.

See also
● “STATUS variable” on page 475

RECEIVED variable

The message has been received and acknowledged by the receiver.

Syntax
final int StatusCodes.RECEIVED

Remarks
This code applies to MessageProperties.STATUS.

See also
● “STATUS variable” on page 475

RECEIVING variable

The message is in the process of being received, or it was received but not acknowledged.

Syntax
final int StatusCodes.RECEIVING

Remarks
This code applies to MessageProperties.STATUS.

See also
● “STATUS variable” on page 475

TRANSMITTED variable

The message has been transmitted to the server.

Syntax
final int StatusCodes.TRANSMITTED

Remarks
This code applies to MessageProperties.TRANSMISSION_STATUS.

QAnywhere reference

584 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “TRANSMISSION_STATUS variable” on page 476

TRANSMITTING variable

The message is in the process of being transmitted to the server.

Syntax
final int StatusCodes.TRANSMITTING

Remarks
This code applies to MessageProperties.TRANSMISSION_STATUS.

See also
● “TRANSMISSION_STATUS variable” on page 476

UNRECEIVABLE variable

The message has been marked as unreceivable.

Syntax
final int StatusCodes.UNRECEIVABLE

Remarks
The message is either malformed, or there were too many failed attempts to deliver it.

This code applies to MessageProperties.STATUS.

See also
● “STATUS variable” on page 475

UNTRANSMITTED variable

The message has not been transmitted to the server.

Syntax
final int StatusCodes.UNTRANSMITTED

Remarks
This code applies to MessageProperties.TRANSMISSION_STATUS.

QAnywhere Java API reference for clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 585

See also
● “TRANSMISSION_STATUS variable” on page 476

QAnywhere Java API reference for web services
Package

ianywhere.qanywhere.ws

WSBase class
This is the base class for the main web service proxy class generated by the mobile web service compiler.

Syntax
public class WSBase

Members
All members of WSBase class, including all inherited members.

Name Description

“WSBase constructor” Constructor with configuration property file.

“clearRequestProperties method” Clears all request properties that have been set for this WSBase.

“getResult method” Gets a WSResult object that represents the results of a web service
request.

“getServiceID method” Gets the service ID for this instance of WSBase.

“setListener method” Sets a listener for the results of a given web service request.

“setProperty method” Sets a configuration property for this instance of WSBase.

“setQAManager method” Sets the QAManagerBase that is used by this web service client to
do web service requests.

“setRequestProperty method” Sets a request property for webservice requests made by this in-
stance of WSBase.

“setServiceID method” Sets a user-defined ID for this instance of WSBase.

WSBase constructor

QAnywhere reference

586 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Constructor with configuration property file.

Overload list

Name Description

“WSBase() constructor” Constructor.

“WSBase(String) constructor” Constructor with configuration property file.

WSBase() constructor
Constructor.

Syntax
WSBase.WSBase() throws WSException

Exceptions
● “WSException class” Thrown if there is a problem constructing the WSBase.

WSBase(String) constructor
Constructor with configuration property file.

Syntax
WSBase.WSBase(String iniFile) throws WSException

Parameters
● iniFile A file containing configuration properties.

Exceptions
● “WSException class” Thrown if there is a problem constructing the WSBase.

Remarks
Valid configuration properties are:

LOG_FILE a file to which to log runtime information.

LOG_LEVEL a value between 0 and 6 that controls the verbosity of information logged, with 6 being the
highest verbosity.

WS_CONNECTOR_ADDRESS the address of the web service connector in the MobiLink server. The
default WS_CONNECTOR_ADDRESS is "ianywhere.connector.webservices\\".

clearRequestProperties method

QAnywhere Java API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 587

Clears all request properties that have been set for this WSBase.

Syntax
void WSBase.clearRequestProperties()

getResult method

Gets a WSResult object that represents the results of a web service request.

Syntax
WSResult WSBase.getResult(String requestID) throws QAException

Parameters
● requestID The ID of the web service request.

Returns
A WSResult instance representing the results of the web service request.

See also
● “WSStatus class” on page 618

getServiceID method

Gets the service ID for this instance of WSBase.

Syntax
String WSBase.getServiceID()

Returns
The service ID.

setListener method

Sets a listener for the results of a given web service request.

Overload list

Name Description

“setListener(String, WSListener)
method”

Sets a listener for the results of a given web service request.

QAnywhere reference

588 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“setListener(WSListener) method” Sets a listener for the results of all web service requests made by
this instance of WSBase.

setListener(String, WSListener) method
Sets a listener for the results of a given web service request.

Syntax
void WSBase.setListener(
 String requestID,
 WSListener listener
) throws QAException

Parameters
● requestID The ID of the web service request to which to listen for results.

● listener The listener object that gets called when the result of the given web service request is
available.

Remarks
Listeners are typically used to get results of the asyncXYZ methods of the service.

To remove a listener, call setListener with null as the listener.

Note
This method replaces the listener set by any previous call to setListener.

setListener(WSListener) method
Sets a listener for the results of all web service requests made by this instance of WSBase.

Syntax
void WSBase.setListener(WSListener listener) throws QAException

Parameters
● listener The listener object that gets called when the result of a web service request is available.

Remarks
Listeners are typically used to get results of the asyncXYZ methods of the service.

To remove a listener, call setListener with null as the listener.

QAnywhere Java API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 589

Note
This method replaces the listener set by any previous call to setListener.

setProperty method

Sets a configuration property for this instance of WSBase.

Syntax
void WSBase.setProperty(String property, String val) throws WSException

Parameters
● property The property name to set.

● val The property value.

Remarks
Configuration properties must be set before any asynchronous or synchronous web service request is
made; after which this method has no effect.

Valid configuration properties are:

LOG_FILE a file to which to log runtime information.

LOG_LEVEL a value between 0 and 6 that controls the verbosity of information logged, with 6 being the
highest verbosity.

WS_CONNECTOR_ADDRESS the address of the web service connector in the MobiLink server. The
default is: "ianywhere.connector.webservices\\".

setQAManager method

Sets the QAManagerBase that is used by this web service client to do web service requests.

Syntax
void WSBase.setQAManager(QAManagerBase mgr)

Parameters
● mgr The QAManagerBase to use.

QAnywhere reference

590 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks

Note
If you use an EXPLICIT_ACKNOWLEDGEMENT QAManager, you can acknowledge the result of an
asynchronous web service request by calling the acknowledge() method of WSResult. The result of a
synchronous web service request is automatically acknowledged, even in the case of an
EXPLICIT_ACKNOWLEDGEMENT QAManager. If you use an IMPLICIT_ACKNOWLEDGEMENT
QAManager, the result of any web service request is acknowledged automatically.

setRequestProperty method

Sets a request property for webservice requests made by this instance of WSBase.

Syntax
void WSBase.setRequestProperty(String name, Object value)

Parameters
● name The property name to set.

● value The property value.

Remarks
A request property is set on each QAMessage that is sent by this WSBase, until the property is cleared. A
request property is cleared by setting it to a null value. The type of the message property is determined by
the class of the value parameter. For example, if value is an instance of Integer, then setIntProperty is
used to set the property on the QAMessage.

setServiceID method

Sets a user-defined ID for this instance of WSBase.

Syntax
void WSBase.setServiceID(String serviceID)

Parameters
● serviceID The service ID.

Remarks
The service ID should be set to a value unique to this instance of WSBase. It is used internally to form a
queue name for sending and receiving web service requests. Therefore, the service ID should be persisted
between application sessions, in order to retrieve results of web service requests made in a previous session.

QAnywhere Java API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 591

WSException class
This class represents an exception that occurred during processing of a web service request.

Syntax
public class WSException

Derived classes
● “WSFaultException class” on page 595

Members
All members of WSException class, including all inherited members.

Name Description

“WSException constructor” Constructs a new exception with the speci-
fied error message.

“getErrorCode method” Gets the error code associated with this ex-
ception.

“WS_STATUS_HTTP_ERROR variable” Error code indicating that there was an er-
ror in the web service HTTP request made
by the web services connector.

“WS_STATUS_HTTP_OK variable” Error code indicating that the webservice
HTTP request by the web services connec-
tor was successful.

“WS_STATUS_HTTP_RETRIES_EXCEEDED variable” Error code indicating that the number of
HTTP retries was exceeded the web serv-
ices connector.

“WS_STATUS_SOAP_PARSE_ERROR variable” Error code indicating that there was an er-
ror in the web services runtime or in the
webservices connector in parsing a SOAP
response or request.

WSException constructor

Constructs a new exception with the specified error message.

QAnywhere reference

592 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Overload list

Name Description

“WSException(Exception) construc-
tor”

Constructs a new exception.

“WSException(String) constructor” Constructs a new exception with the specified error message.

“WSException(String, int) constructor” Constructs a new exception with the specified error message
and error code.

WSException(Exception) constructor
Constructs a new exception.

Syntax
WSException.WSException(Exception exception)

Parameters
● exception The exception.

WSException(String) constructor
Constructs a new exception with the specified error message.

Syntax
WSException.WSException(String msg)

Parameters
● msg The error message.

WSException(String, int) constructor
Constructs a new exception with the specified error message and error code.

Syntax
WSException.WSException(String msg, int errorCode)

Parameters
● msg The error message.

● errorCode The error code.

QAnywhere Java API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 593

getErrorCode method

Gets the error code associated with this exception.

Syntax
int WSException.getErrorCode()

Returns
The error code associated with this exception.

WS_STATUS_HTTP_ERROR variable

Error code indicating that there was an error in the web service HTTP request made by the web services
connector.

Syntax
final int WSException.WS_STATUS_HTTP_ERROR

WS_STATUS_HTTP_OK variable

Error code indicating that the webservice HTTP request by the web services connector was successful.

Syntax
final int WSException.WS_STATUS_HTTP_OK

WS_STATUS_HTTP_RETRIES_EXCEEDED variable

Error code indicating that the number of HTTP retries was exceeded the web services connector.

Syntax
final int WSException.WS_STATUS_HTTP_RETRIES_EXCEEDED

WS_STATUS_SOAP_PARSE_ERROR variable

Error code indicating that there was an error in the web services runtime or in the webservices connector
in parsing a SOAP response or request.

Syntax
final int WSException.WS_STATUS_SOAP_PARSE_ERROR

QAnywhere reference

594 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

WSFaultException class
This class represents a SOAP Fault exception from the web service connector.

Syntax
public class WSFaultException

Base classes
● “WSException class” on page 592

Members
All members of WSFaultException class, including all inherited members.

Name Description

“WSFaultException constructor” Constructs a new exception with the speci-
fied error message.

“getErrorCode method” Gets the error code associated with this ex-
ception.

“WSException constructor” Constructs a new exception with the speci-
fied error message.

“WS_STATUS_HTTP_ERROR variable” Error code indicating that there was an er-
ror in the web service HTTP request made
by the web services connector.

“WS_STATUS_HTTP_OK variable” Error code indicating that the webservice
HTTP request by the web services connec-
tor was successful.

“WS_STATUS_HTTP_RETRIES_EXCEEDED variable” Error code indicating that the number of
HTTP retries was exceeded the web serv-
ices connector.

“WS_STATUS_SOAP_PARSE_ERROR variable” Error code indicating that there was an er-
ror in the web services runtime or in the
webservices connector in parsing a SOAP
response or request.

WSFaultException constructor

Constructs a new exception with the specified error message.

QAnywhere Java API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 595

Syntax
WSFaultException.WSFaultException(String msg)

Parameters
● msg The error message.

WSListener interface

This class represents a listener for results of web service requests.

Syntax
public interface WSListener

Members
All members of WSListener interface, including all inherited members.

Name Description

“onException method” Called when an exception occurs during processing of the result of an asyn-
chronous web service request.

“onResult method” Called with the result of an asynchronous web service request.

onException method

Called when an exception occurs during processing of the result of an asynchronous web service request.

Syntax
void WSListener.onException(WSException e, WSResult wsResult)

Parameters
● e The WSException that occurred during processing of the result.

● wsResult A WSResult, from which the request ID may be obtained. Values of this WSResult are
not defined.

See also
● “WSException class” on page 592
● “WSResult class” on page 597

onResult method

QAnywhere reference

596 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Called with the result of an asynchronous web service request.

Syntax
void WSListener.onResult(WSResult wsResult)

Parameters
● wsResult The WSResult describing the result of a web service request.

See also
● “WSResult class” on page 597

WSResult class
This class represents the results of a web service request.

Syntax
public class WSResult

Members
All members of WSResult class, including all inherited members.

Name Description

“acknowledge method” Acknowledges that this WSResult has been processed.

“getArrayValue method” Gets an array of complex types value from this WSResult.

“getBigDecimalArrayValue method” Gets a BigDecimal array value from this WSResult.

“getBigDecimalValue method” Gets a BigDecimal value from this WSResult.

“getBigIntegerArrayValue method” Gets a BigInteger array value from this WSResult.

“getBigIntegerValue method” Gets a BigInteger value from this WSResult.

“getBooleanArrayValue method” Gets a java.lang.Boolean array value from this WSResult.

“getBooleanValue method” Gets a java.lang.Boolean value from this WSResult.

“getByteArrayValue method” Gets a java.lang.Byte array value from this WSResult.

“getByteValue method” Gets a java.lang.Byte value from this WSResult.

“getCharacterArrayValue method” Gets a java.lang.Character array value from this WSResult.

“getCharacterValue method” Gets a java.lang.Character value from this WSResult.

QAnywhere Java API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 597

Name Description

“getDoubleArrayValue method” Gets a java.lang.Double array value from this WSResult.

“getDoubleValue method” Gets a java.lang.Double value from this WSResult.

“getErrorMessage method” Gets the error message.

“getFloatArrayValue method” Gets a java.lang.Float array value from this WSResult.

“getFloatValue method” Gets a java.lang.Float value from this WSResult.

“getIntegerArrayValue method” Gets a java.lang.Integer array value from this WSResult.

“getIntegerValue method” Gets a java.lang.Integer value from this WSResult.

“getLongArrayValue method” Gets a java.lang.Long array value from this WSResult.

“getLongValue method” Gets a java.lang.Long value from this WSResult.

“getObjectArrayValue method” Gets an array of complex types value from this WSResult.

“getObjectValue method” Gets value of a complex type from this WSResult.

“getPrimitiveBooleanArrayValue method” Gets a boolean array value from this WSResult.

“getPrimitiveBooleanValue method” Gets a boolean value from this WSResult.

“getPrimitiveByteArrayValue method” Gets a byte array value from this WSResult.

“getPrimitiveByteValue method” Gets a byte value from this WSResult.

“getPrimitiveCharArrayValue method” Gets a char array value from this WSResult.

“getPrimitiveCharValue method” Gets a char value from this WSResult.

“getPrimitiveDoubleArrayValue method” Gets a double array value from this WSResult.

“getPrimitiveDoubleValue method” Gets a double value from this WSResult.

“getPrimitiveFloatArrayValue method” Gets a float array value from this WSResult.

“getPrimitiveFloatValue method” Gets a float value from this WSResult.

“getPrimitiveIntArrayValue method” Gets an int array value from this WSResult.

“getPrimitiveIntValue method” Gets an int value from this WSResult.

“getPrimitiveLongArrayValue method” Gets a long array value from this WSResult.

QAnywhere reference

598 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“getPrimitiveLongValue method” Gets a long value from this WSResult.

“getPrimitiveShortArrayValue method” Gets a short array value from this WSResult.

“getPrimitiveShortValue method” Gets a short value from this WSResult.

“getRequestID method” Gets the request ID that this WSResult represents.

“getShortArrayValue method” Gets a java.lang.Short array value from this WSResult.

“getShortValue method” Gets a java.lang.Short value from this WSResult.

“getStatus method” Gets the status of this WSResult.

“getStringArrayValue method” Gets a String array value from this WSResult.

“getStringValue method” Gets a String value from this WSResult.

“getValue method” Gets the value of a complex type from this WSResult.

Remarks
A WSResult object is obtained in one of three ways:

● It is passed to the WSListener.onResult.

● It is returned by an asyncXYZ method of the service proxy generated by the compiler.

● It is obtained by calling WSBase.getResult with a specific request ID.

acknowledge method

Acknowledges that this WSResult has been processed.

Syntax
void WSResult.acknowledge() throws WSException, QAException

Remarks
This method is only useful when an EXPLICIT_ACKNOWLEDGEMENT QAManager is being used.

getArrayValue method

Gets an array of complex types value from this WSResult.

QAnywhere Java API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 599

Syntax
WSSerializable[] WSResult.getArrayValue(
 String parentName
) throws WSException

Parameters
● parentName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getBigDecimalArrayValue method

Gets a BigDecimal array value from this WSResult.

Syntax
BigDecimal[] WSResult.getBigDecimalArrayValue(
 String elementName
) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getBigDecimalValue method

Gets a BigDecimal value from this WSResult.

Syntax
BigDecimal WSResult.getBigDecimalValue(
 String elementName
) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

QAnywhere reference

600 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getBigIntegerArrayValue method

Gets a BigInteger array value from this WSResult.

Syntax
BigInteger[] WSResult.getBigIntegerArrayValue(
 String elementName
) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getBigIntegerValue method

Gets a BigInteger value from this WSResult.

Syntax
BigInteger WSResult.getBigIntegerValue(
 String elementName
) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

QAnywhere Java API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 601

getBooleanArrayValue method

Gets a java.lang.Boolean array value from this WSResult.

Syntax
Boolean[] WSResult.getBooleanArrayValue(
 String elementName
) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getBooleanValue method

Gets a java.lang.Boolean value from this WSResult.

Syntax
Boolean WSResult.getBooleanValue(String elementName) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getByteArrayValue method

Gets a java.lang.Byte array value from this WSResult.

Syntax
Byte[] WSResult.getByteArrayValue(String elementName) throws WSException

QAnywhere reference

602 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getByteValue method

Gets a java.lang.Byte value from this WSResult.

Syntax
Byte WSResult.getByteValue(String elementName) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getCharacterArrayValue method

Gets a java.lang.Character array value from this WSResult.

Syntax
Character[] WSResult.getCharacterArrayValue(
 String elementName
) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

QAnywhere Java API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 603

getCharacterValue method

Gets a java.lang.Character value from this WSResult.

Syntax
Character WSResult.getCharacterValue(
 String elementName
) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getDoubleArrayValue method

Gets a java.lang.Double array value from this WSResult.

Syntax
Double[] WSResult.getDoubleArrayValue(
 String elementName
) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getDoubleValue method

Gets a java.lang.Double value from this WSResult.

Syntax
Double WSResult.getDoubleValue(String elementName) throws WSException

QAnywhere reference

604 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getErrorMessage method

Gets the error message.

Syntax
String WSResult.getErrorMessage()

Returns
The error message.

getFloatArrayValue method

Gets a java.lang.Float array value from this WSResult.

Syntax
Float[] WSResult.getFloatArrayValue(
 String elementName
) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getFloatValue method

Gets a java.lang.Float value from this WSResult.

QAnywhere Java API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 605

Syntax
Float WSResult.getFloatValue(String elementName) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getIntegerArrayValue method

Gets a java.lang.Integer array value from this WSResult.

Syntax
Integer[] WSResult.getIntegerArrayValue(
 String elementName
) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getIntegerValue method

Gets a java.lang.Integer value from this WSResult.

Syntax
Integer WSResult.getIntegerValue(String elementName) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

QAnywhere reference

606 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getLongArrayValue method

Gets a java.lang.Long array value from this WSResult.

Syntax
Long[] WSResult.getLongArrayValue(String elementName) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getLongValue method

Gets a java.lang.Long value from this WSResult.

Syntax
Long WSResult.getLongValue(String elementName) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getObjectArrayValue method

Gets an array of complex types value from this WSResult.

QAnywhere Java API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 607

Syntax
Object[] WSResult.getObjectArrayValue(
 String elementName
) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getObjectValue method

Gets value of a complex type from this WSResult.

Syntax
Object WSResult.getObjectValue(String elementName) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getPrimitiveBooleanArrayValue method

Gets a boolean array value from this WSResult.

Syntax
boolean[] WSResult.getPrimitiveBooleanArrayValue(
 String elementName
) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

QAnywhere reference

608 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getPrimitiveBooleanValue method

Gets a boolean value from this WSResult.

Syntax
boolean WSResult.getPrimitiveBooleanValue(
 String elementName
) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getPrimitiveByteArrayValue method

Gets a byte array value from this WSResult.

Syntax
byte[] WSResult.getPrimitiveByteArrayValue(
 String elementName
) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

QAnywhere Java API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 609

getPrimitiveByteValue method

Gets a byte value from this WSResult.

Syntax
byte WSResult.getPrimitiveByteValue(
 String elementName
) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getPrimitiveCharArrayValue method

Gets a char array value from this WSResult.

Syntax
char[] WSResult.getPrimitiveCharArrayValue(
 String elementName
) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getPrimitiveCharValue method

Gets a char value from this WSResult.

Syntax
char WSResult.getPrimitiveCharValue(
 String elementName
) throws WSException

QAnywhere reference

610 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getPrimitiveDoubleArrayValue method

Gets a double array value from this WSResult.

Syntax
double[] WSResult.getPrimitiveDoubleArrayValue(
 String elementName
) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getPrimitiveDoubleValue method

Gets a double value from this WSResult.

Syntax
double WSResult.getPrimitiveDoubleValue(
 String elementName
) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

QAnywhere Java API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 611

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getPrimitiveFloatArrayValue method

Gets a float array value from this WSResult.

Syntax
float[] WSResult.getPrimitiveFloatArrayValue(
 String elementName
) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getPrimitiveFloatValue method

Gets a float value from this WSResult.

Syntax
float WSResult.getPrimitiveFloatValue(
 String elementName
) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getPrimitiveIntArrayValue method

Gets an int array value from this WSResult.

QAnywhere reference

612 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
int[] WSResult.getPrimitiveIntArrayValue(
 String elementName
) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getPrimitiveIntValue method

Gets an int value from this WSResult.

Syntax
int WSResult.getPrimitiveIntValue(String elementName) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getPrimitiveLongArrayValue method

Gets a long array value from this WSResult.

Syntax
long[] WSResult.getPrimitiveLongArrayValue(
 String elementName
) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

QAnywhere Java API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 613

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getPrimitiveLongValue method

Gets a long value from this WSResult.

Syntax
long WSResult.getPrimitiveLongValue(
 String elementName
) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getPrimitiveShortArrayValue method

Gets a short array value from this WSResult.

Syntax
short[] WSResult.getPrimitiveShortArrayValue(
 String elementName
) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

QAnywhere reference

614 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

getPrimitiveShortValue method

Gets a short value from this WSResult.

Syntax
short WSResult.getPrimitiveShortValue(
 String elementName
) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getRequestID method

Gets the request ID that this WSResult represents.

Syntax
String WSResult.getRequestID()

Returns
The request ID.

Remarks
This request ID should be persisted between runs of the application if it is desired to obtain a WSResult
corresponding to a web service request in a run of the application different from when the request was made.

getShortArrayValue method

Gets a java.lang.Short array value from this WSResult.

Syntax
Short[] WSResult.getShortArrayValue(
 String elementName
) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

QAnywhere Java API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 615

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getShortValue method

Gets a java.lang.Short value from this WSResult.

Syntax
Short WSResult.getShortValue(String elementName) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getStatus method

Gets the status of this WSResult.

Syntax
int WSResult.getStatus() throws QAException, WSException

Returns
The status code.

See also
● “WSStatus class” on page 618

getStringArrayValue method

Gets a String array value from this WSResult.

QAnywhere reference

616 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
String[] WSResult.getStringArrayValue(
 String elementName
) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getStringValue method

Gets a String value from this WSResult.

Syntax
String WSResult.getStringValue(String elementName) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

getValue method

Gets the value of a complex type from this WSResult.

Syntax
Object WSResult.getValue(String elementName) throws WSException

Parameters
● elementName The element name in the WSDL document of this value.

Returns
The value.

QAnywhere Java API reference for web services

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 617

Exceptions
● “WSException class” Thrown if there is a problem getting the value.

WSStatus class
This class defines codes for the status of a web service request.

Syntax
public class WSStatus

Members
All members of WSStatus class, including all inherited members.

Name Description

“STATUS_ERROR variable” There was an error processing the request.

“STATUS_QUEUED variable” The request has been queued for delivery to the server.

“STATUS_RESULT_AVAILABLE variable” The result of the request is available.

“STATUS_SUCCESS variable” The request was successful.

STATUS_ERROR variable

There was an error processing the request.

Syntax
final int WSStatus.STATUS_ERROR

STATUS_QUEUED variable

The request has been queued for delivery to the server.

Syntax
final int WSStatus.STATUS_QUEUED

Remarks
The final status of the request is not known yet.

QAnywhere reference

618 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

STATUS_RESULT_AVAILABLE variable

The result of the request is available.

Syntax
final int WSStatus.STATUS_RESULT_AVAILABLE

STATUS_SUCCESS variable

The request was successful.

Syntax
final int WSStatus.STATUS_SUCCESS

QAnywhere SQL API reference

Message properties, headers, and content
This section documents QAnywhere SQL stored procedures that help you set message headers, message
content, and message properties.

Message headers
You can use the following stored procedures to get and set message header information.

See “Message headers” on page 656.

ml_qa_getaddress

Returns the QAnywhere address of the message.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

Return value
The QAnywhere message address as VARCHAR(128). QAnywhere message addresses take the form id
\queue-name.

QAnywhere SQL API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 619

You can read this header after a message is received and until a rollback or commit occurs; after that you
cannot read it.

See also
● “Setting up SQL applications” on page 56
● “QAnywhere message addresses” on page 58
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650

Example
In the following example, a message is received and its address is output to the database server messages
window:

begin
 declare @msgid varchar(128);
 declare @addr varchar(128);
 set @msgid = ml_qa_getmessage('myaddress');
 set @addr = ml_qa_getaddress(@msgid);
 message 'message to address ' || @addr || ' received';
 commit;
end

ml_qa_getexpiration

Returns the expiration time of the message.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

Return value
The expiration time as TIMESTAMP. Returns null if there is no expiration.

Remarks
After completion of ml_qa_putmessage, a message expires if it is not received by the intended recipient in
the specified time. The message may then be deleted using default QAnywhere delete rules.

You can read this header after a message is received and until a rollback or commit occurs; after that you
cannot read it.

QAnywhere reference

620 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “Setting up SQL applications” on page 56
● “Message delete rules” on page 743
● “Sending QAnywhere messages” on page 61
● “ml_qa_setexpiration” on page 626
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650

Example
In the following example, a message is received and the message expiration is output to the database
server messages window:

begin
 declare @msgid varchar(128);
 declare @expires timestamp;
 set @msgid = ml_qa_getmessage('myaddress');
 set @expires = ml_qa_getexpiration(@msgid);
 message 'message would have expired at ' || @expires || ' if it had not
been received';
 commit;
end

ml_qa_getinreplytoid

Returns the in-reply-to ID for the message.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

Return value
The in-reply-to ID as VARCHAR(128).

Remarks
A client can use the InReplyToID header field to link one message with another. A typical use is to link a
response message with its request message.

The in-reply-to ID is the ID of the message that this message is replying to.

You can read this header after a message is received and until a rollback or commit occurs; after that you
cannot read it.

QAnywhere SQL API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 621

See also
● “Setting up SQL applications” on page 56
● “ml_qa_setinreplytoid” on page 627
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650

Example
In the following example, a message is received and the in-reply-to-id of the message is output to the
database server messages window:

begin
 declare @msgid varchar(128);
 declare @inreplytoid varchar(128);
 set @msgid = ml_qa_getmessage('myaddress');
 set @inreplytoid = ml_qa_getinreplytoid(@msgid);
 message 'message is likely a reply to the message with id ' ||
@inreplytoid;
 commit;
end

ml_qa_getpriority

Returns the priority level of the message.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

Return value
The priority level as INTEGER.

Remarks
The QAnywhere API defines ten levels of priority value, with 0 as the lowest priority and 9 as the highest.
Clients should consider priorities 0-4 as gradations of normal priority and priorities 5-9 as gradations of
expedited priority.

You can read this header after a message is received and until a rollback or commit occurs; after that you
cannot read it.

See also
● “Setting up SQL applications” on page 56
● “ml_qa_setpriority” on page 628
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650

QAnywhere reference

622 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example
In the following example, a message is received and the priority of the message is output to the database
server messages window:

begin
 declare @msgid varchar(128);
 declare @priority integer;
 set @msgid = ml_qa_getmessage('myaddress');
 set @priority = ml_qa_getpriority(@msgid);
 message 'a message with priority ' || @priority || ' has been received';
 commit;
end

ml_qa_getredelivered

Returns a value indicating whether this message has previously been received but not acknowledged.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

Return value
The redelivered value as BIT. A value of 1 indicates that the message is being redelivered; 0 indicates that
it is not being redelivered.

Remarks
A message may be redelivered if it was previously received but not acknowledged. For example, the
message was received but the application receiving the message did not complete processing the message
content before it crashed. In these cases, QAnywhere marks the message as redelivered to alert the
receiver that the message might be partly processed.

For example, assume that the receipt of a message occurs in three steps:

1. An application using a non-transactional QAnywhere manager receives the message.

2. The application writes the message content and message ID to a database table called T1, and
commits the change.

3. The application acknowledges the message.

If the application fails between steps 1 and 2 or between steps 2 and 3, the message is redelivered when
the application restarts.

If the failure occurs between steps 1 and 2, you should process the redelivered message by running steps 2
and 3. If the failure occurs between steps 2 and 3, then the message is already processed and you only
need to acknowledge it.

QAnywhere SQL API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 623

To determine what happened when the application fails, you can have the application call
ml_qa_getredelivered to check if the message has been previously redelivered. Only messages that are
redelivered need to be looked up in table T1. This is more efficient than having the application access the
received message's message ID to check whether the message is in the table T1, because application
failures are rare.

You can read this header after a message is received and until a rollback or commit occurs; after that you
cannot read it.

See also
● “Setting up SQL applications” on page 56
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650

Example
In the following example, a message is received; if the message was previously delivered but not
received, the message ID is output to the database server messages window:

begin
 declare @msgid varchar(128);
 declare @redelivered bit;
 set @msgid = ml_qa_getmessage('myaddress');
 set @redelivered = ml_qa_getredelivered(@msgid);
 if @redelivered = 1 then
 message 'message with message ID ' || @msgid || ' has been
redelivered';
 end if;
 commit;
end

ml_qa_getreplytoaddress

Returns the address to which a reply to this message should be sent.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

Return value
The reply address as VARCHAR(128).

Remarks
You can read this header after a message is received and until a rollback or commit occurs; after that you
cannot read it.

QAnywhere reference

624 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “Setting up SQL applications” on page 56
● “ml_qa_setreplytoaddress” on page 628
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650

Example
In the following example, if the received message has a reply-to address, then a message is sent to the reply-
to-address with the content 'message received':

begin
 declare @msgid varchar(128);
 declare @rmsgid varchar(128);
 declare @replytoaddr varchar(128);
 set @msgid = ml_qa_getmessage('myaddress');
 set @replytoaddr = ml_qa_getreplytoaddress(@msgid);
 if @replytoaddr is not null then
 set @rmsgid = ml_qa_createmessage();
 call ml_qa_settextcontent(@rmsgid, 'message received');
 call ml_qa_putmessage(@rmsgid, @replytoaddr);
 end if;
 commit;
end

ml_qa_gettimestamp

Returns the creation time of the message.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

Return value
The message creation time as TIMESTAMP.

Remarks
The Timestamp header field contains the time a message was created. It is a coordinated universal time
(UTC). It is not the time the message was actually transmitted, because the actual send may occur later
due to transactions or other client-side queuing of messages.

You can read this header after a message is received and until a rollback or commit occurs; after that you
cannot read it.

QAnywhere SQL API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 625

See also
● “Setting up SQL applications” on page 56
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650

Example
In the following example, a message is received and the creation time of the message is output to the
database server messages window:

begin
 declare @msgid varchar(128);
 declare @ts timestamp;
 set @msgid = ml_qa_getmessage('myaddress');
 set @ts = ml_qa_gettimestamp(@msgid);
 message 'message received with create time: ' || @ts ;
 commit;
end

ml_qa_setexpiration

Sets the expiration time for a message.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Expiration TIMESTAMP

Remarks
You can read this header after a message is received and until a rollback or commit occurs; after that you
cannot read it.

See also
● “Setting up SQL applications” on page 56
● “ml_qa_getexpiration” on page 620
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650

Example
In the following example, a message is created so that if it is not delivered within the next 3 days it expires:

begin
 declare @msgid varchar(128);
 set @msgid = ml_qa_createmessage();
 call ml_qa_setexpiration(@msgid, dateadd(day, 3, current timestamp));
 call ml_qa_settextcontent(@msgid, 'time-limited offer');
 call ml_qa_putmessage(@msgid, 'clientid\queuename');

QAnywhere reference

626 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 commit;
end

ml_qa_setinreplytoid

Sets the in-reply-to ID of this message.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 in-reply-to ID VARCHAR(128)

Remarks
An in-reply-to ID is similar to the in-reply-to IDs that are used by email systems to track replies.

Typically you set the in-reply-to ID to be the message ID of the message to which this message is
replying, if any.

A client can use the InReplyToID header field to link one message with another. A typical use is to link a
response message with its request message.

You cannot alter this header after the message has been sent.

See also
● “Setting up SQL applications” on page 56
● “ml_qa_getinreplytoid” on page 621
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650

Example
In the following example, when a message is received that contains a reply-to-address, a reply message is
created and sent containing the message ID in the in-reply-to-id:

begin
 declare @msgid varchar(128);
 declare @rmsgid varchar(128);
 declare @replyaddr varchar(128);
 set @msgid = ml_qa_getmessage('myaddress');
 set @replyaddr = ml_qa_getreplyaddress(@msgid);
 if @replyaddr is not null then
 set @rmsgid = ml_qa_createmessage();
 call ml_qa_settextcontent(@rmsgid, 'message received');
 call ml_qa_setinreplytoid(@rmsgid, @msgid);
 call ml_qa_putmessage(@rmsgid, @replyaddr);
 end if;
 commit;
end

QAnywhere SQL API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 627

ml_qa_setpriority

Sets the priority of a message.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Priority INTEGER

Remarks
The QAnywhere API defines ten levels of priority value, with 0 as the lowest priority and 9 as the highest.
Clients should consider priorities 0-4 as gradations of normal priority and priorities 5-9 as gradations of
expedited priority.

You cannot alter this header after the message has been sent.

See also
● “Setting up SQL applications” on page 56
● “ml_qa_getpriority” on page 622
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650

Example
The following example sends a high priority message:

begin
 declare @msgid varchar(128);
 set @msgid = ml_qa_createmessage();
 call ml_qa_setpriority(@msgid, 9);
 call ml_qa_settextcontent(@msgid, 'priority content');
 call ml_qa_putmessage(@msgid, 'clientid\queuename');
 commit;
end

ml_qa_setreplytoaddress

Sets the reply-to address of the message.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

QAnywhere reference

628 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Item Description Remarks

2 Reply address VARCHAR(128)

Remarks
You cannot alter this header after the message has been sent.

See also
● “Setting up SQL applications” on page 56
● “ml_qa_getreplytoaddress” on page 624
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650

Example
In the following example, a reply-to-address is added to a message. The recipient of the message can then
use that reply-to-address to create a reply.

begin
 declare @msgid varchar(128);
 set @msgid = ml_qa_createmessage();
 call ml_qa_setreplytoaddress(@msgid, 'myaddress');
 call ml_qa_settextcontent(@msgid, 'some content');
 call ml_qa_putmessage(@msgid, 'clientid\queuename');
 commit;
end

Message properties
You can use the following stored procedures to get and set your custom message properties, or to get
predefined message properties.

See “Message properties” on page 659.

ml_qa_getbooleanproperty

Returns the specified message property as a SQL BIT data type.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Property name VARCHAR(128)

QAnywhere SQL API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 629

Return value
The property value as BIT.

Remarks
If the message property value is out of range, then a SQL error with SQLSTATE 22003 occurs.

You can read this property after a message is received and until a rollback or commit occurs; after that
you cannot read it.

See also
● “Setting up SQL applications” on page 56
● “ml_qa_setbooleanproperty” on page 637
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650
● “Custom message properties” on page 661

Example
In the following example, a message is received and the value of the boolean property mybooleanproperty
is output to the database server messages window:

begin
 declare @msgid varchar(128);
 declare @prop bit;
 set @msgid = ml_qa_getmessage('myaddress');
 set @prop = ml_qa_getbooleanproperty(@msgid, 'mybooleanproperty');
 message 'message property mybooleanproperty is set to ' || @prop;
 commit;
end

ml_qa_getbyteproperty

Returns the specified message property as a SQL TINYINT data type.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Property name VARCHAR(128)

Return value
The property value as TINYINT.

Remarks
If the message property value is out of range, then a SQL error with SQLSTATE 22003 occurs.

QAnywhere reference

630 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

You can read this property after a message is received and until a rollback or commit occurs; after that
you cannot read it.

See also
● “Setting up SQL applications” on page 56
● “ml_qa_setbyteproperty” on page 638
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650
● “Custom message properties” on page 661

Example
In the following example, a message is received and the value of byte property mybyteproperty is output
to the database server messages window:

begin
 declare @msgid varchar(128);
 declare @prop tinyint;
 set @msgid = ml_qa_getmessage('myaddress');
 set @prop = ml_qa_getbyteproperty(@msgid, 'mybyteproperty');
 message 'message property mybyteproperty is set to ' || @prop;
 commit;
end

ml_qa_getdoubleproperty

Returns the specified message property as a SQL DOUBLE data type.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Property name VARCHAR(128)

Return value
The property value as DOUBLE.

Remarks
If the message property value is out of range, then a SQL error with SQLSTATE 22003 occurs.

You can read this property after a message is received and until a rollback or commit occurs; after that
you cannot read it.

QAnywhere SQL API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 631

See also
● “Setting up SQL applications” on page 56
● “ml_qa_setdoubleproperty” on page 639
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650
● “Custom message properties” on page 661

Example
In the following example, a message is received and the value of double property mydoubleproperty is
output to the database server messages window:

begin
 declare @msgid varchar(128);
 declare @prop double;
 set @msgid = ml_qa_getmessage('myaddress');
 set @prop = ml_qa_getdoubleproperty(@msgid, 'mydoubleproperty');
 message 'message property mydoubleproperty is set to ' || @prop;
 commit;
end

ml_qa_getfloatproperty

Returns the specified message property as a SQL FLOAT data type.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Property name VARCHAR(128)

Return value
The property value as FLOAT.

Remarks
If the message property value is out of range, then a SQL error with SQLSTATE 22003 occurs.

You can read this property after a message is received and until a rollback or commit occurs; after that
you cannot read it.

See also
● “Setting up SQL applications” on page 56
● “ml_qa_setfloatproperty” on page 639
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650
● “Custom message properties” on page 661

QAnywhere reference

632 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example
In the following example, a message is received and the value of float property myfloatproperty is output
to the database server messages window:

begin
 declare @msgid varchar(128);
 declare @prop float;
 set @msgid = ml_qa_getmessage('myaddress');
 set @prop = ml_qa_getfloatproperty(@msgid, 'myfloatproperty');
 message 'message property myfloatproperty is set to ' || @prop;
 commit;
end

ml_qa_getintproperty

Returns the specified message property as a SQL INTEGER data type.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Property name VARCHAR(128)

Return value
The property value as INTEGER.

Remarks
If the message property value is out of range, then a SQL error with SQLSTATE 22003 occurs.

You can read this property after a message is received and until a rollback or commit occurs; after that
you cannot read it.

See also
● “Setting up SQL applications” on page 56
● “ml_qa_setintproperty” on page 640
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650
● “Custom message properties” on page 661

Example
In the following example, a message is received and the value of integer property myintproperty is output
to the database server messages window:

begin
 declare @msgid varchar(128);
 declare @prop integer;

QAnywhere SQL API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 633

 set @msgid = ml_qa_getmessage('myaddress');
 set @prop = ml_qa_getintproperty(@msgid, 'myintproperty');
 message 'message property myintproperty is set to ' || @prop;
 commit;
end

ml_qa_getlongproperty

Returns the specified message property as a SQL BIGINT data type.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Property name VARCHAR(128

Return value
The property value as BIGINT.

Remarks
If the message property value is out of range, then a SQL error with SQLSTATE 22003 occurs.

You can read this property after a message is received and until a rollback or commit occurs; after that
you cannot read it.

See also
● “Setting up SQL applications” on page 56
● “ml_qa_setlongproperty” on page 641
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650
● “Custom message properties” on page 661

ml_qa_getpropertynames

Retrieves the property names of the specified message.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

QAnywhere reference

634 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
This stored procedure opens a result set over the property names of the specified message. The message
ID parameter must be that of a message that has been received.

The result set is a single VARCHAR(128) column, where each row contains the name of a message
property. QAnywhere reserved property names (those with the prefix "ias_" or "QA") are not returned.

You can read this property after a message is received and until a rollback or commit occurs; after that
you cannot read it.

See also
● “Setting up SQL applications” on page 56
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650
● “Custom message properties” on page 661

Example
The following example declares a cursor over the result set of property names for a message that has the
message ID msgid. It then gets a message that has the address clientid\queuename; opens a cursor to
access the property names of the message; and finally fetches the next property name.

begin
 declare prop_name_cursor cursor for
 call ml_qa_getpropertynames(@msgid);
 declare @msgid varchar(128);
 declare @name varchar(128);
 set @msgid = ml_qa_getmessage('clientid\queuename');
 open prop_name_cursor;
 lp: loop
 fetch next prop_name_cursor into name;
 if sqlcode <> 0 then leave lp end if;
 ...
 end loop;
 close prop_name_cursor;
end

ml_qa_getshortproperty

Returns the specified message property as a SQL SMALLINT data type.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Property name VARCHAR(128)

QAnywhere SQL API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 635

Return value
The property value as SMALLINT.

Remarks
If the message property value is out of range, then a SQL error with SQLSTATE 22003 occurs.

You can read this property after a message is received and until a rollback or commit occurs; after that
you cannot read it.

See also
● “Setting up SQL applications” on page 56
● “ml_qa_setshortproperty” on page 642
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650
● “Custom message properties” on page 661

Example
In the following example, a message is received and the value of the short property myshortproperty is
output to the database server messages window:

begin
 declare @msgid varchar(128);
 declare @prop smallint;
 set @msgid = ml_qa_getmessage('myaddress');
 set @prop = ml_qa_getshortproperty(@msgid, 'myshortproperty');
 message 'message property myshortproperty is set to ' || @prop;
 commit;
end

ml_qa_getstringproperty

Returns the specified message property as a SQL LONG VARCHAR data type.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Property name VARCHAR(128)

Return value
The property value as LONG VARCHAR.

Remarks
If the message property value is out of range, then a SQL error with SQLSTATE 22003 occurs.

QAnywhere reference

636 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

You can read this property after a message is received and until a rollback or commit occurs; after that
you cannot read it.

See also
● “Setting up SQL applications” on page 56
● “ml_qa_setstringproperty” on page 643
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650
● “Custom message properties” on page 661

Example
In the following example, a message is received and the value of the string property mystringproperty is
output to the database server messages window:

begin
 declare @msgid varchar(128);
 declare @prop long varchar;
 set @msgid = ml_qa_getmessage('myaddress');
 set @prop = ml_qa_getstringproperty(@msgid, 'mystringproperty');
 message 'message property mystringproperty is set to ' || @prop;
 commit;
end

ml_qa_setbooleanproperty

Sets the specified message property from a SQL BIT data type.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Property name VARCHAR(128)

3 Property value BIT

Remarks
You cannot alter this property after the message has been sent.

See also
● “Setting up SQL applications” on page 56
● “ml_qa_getbooleanproperty” on page 629
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650
● “Custom message properties” on page 661

QAnywhere SQL API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 637

Example
In the following example, a message is created, the boolean properties mybooleanproperty1 and
mybooleanproperty2 are set, and the message is sent to the address clientid\queuename:

begin
 declare @msgid varchar(128);
 set @msgid = ml_qa_createmessage();
 call ml_qa_setbooleanproperty(@msgid, 'mybooleanproperty1', 0);
 call ml_qa_setbooleanproperty(@msgid, 'mybooleanproperty2', 1);
 call ml_qa_putmessage(@msgid, 'clientid\queuename');
 commit;
end

ml_qa_setbyteproperty

Sets the specified message property from a SQL TINYINT data type.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Property name VARCHAR(128)

3 Property value TINYINT

Remarks
You cannot alter this property after the message has been sent.

See also
● “Setting up SQL applications” on page 56
● “ml_qa_getbyteproperty” on page 630
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650
● “Custom message properties” on page 661

Example
In the following example, a message is created, the byte properties mybyteproperty1 and
mybyteproperty2 are set, and the message is sent to the address clientid\queuename:

begin
 declare @msgid varchar(128);
 set @msgid = ml_qa_createmessage();
 call ml_qa_setbyteproperty(@msgid, 'mybyteproperty1', 0);
 call ml_qa_setbyteproperty(@msgid, 'mybyteproperty2', 255);
 call ml_qa_putmessage(@msgid, 'clientid\queuename');
 commit;
end

QAnywhere reference

638 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ml_qa_setdoubleproperty

Sets the specified message property from a SQL DOUBLE data type.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Property name VARCHAR(128)

3 Property value DOUBLE

Remarks
You cannot alter this property after the message has been sent.

See also
● “Setting up SQL applications” on page 56
● “ml_qa_getdoubleproperty” on page 631
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650
● “Custom message properties” on page 661

Example
In the following example, a message is created, the double properties mydoubleproperty1 and
mydoubleproperty2 are set, and the message is sent to the address clientid\queuename:

begin
 declare @msgid varchar(128);
 set @msgid = ml_qa_createmessage();
 call ml_qa_setdoubleproperty(@msgid, 'mydoubleproperty1', -12.34e-56);
 call ml_qa_setdoubleproperty(@msgid, 'mydoubleproperty2', 12.34e56);
 call ml_qa_putmessage(@msgid, 'clientid\queuename');
 commit;
end

ml_qa_setfloatproperty

Sets the specified message property from a SQL FLOAT data type.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

QAnywhere SQL API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 639

Item Description Remarks

2 Property name VARCHAR(128)

3 Property value FLOAT

Remarks
You cannot alter this property after the message has been sent.

See also
● “Setting up SQL applications” on page 56
● “ml_qa_getfloatproperty” on page 632
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650
● “Custom message properties” on page 661

Example
In the following example, a message is created, the float properties myfloatproperty1 and
myfloatproperty2 are set, and the message is sent to the address clientid\queuename:

begin
 declare @msgid varchar(128);
 set @msgid = ml_qa_createmessage();
 call ml_qa_setfloatproperty(@msgid, 'myfloatproperty1', -1.3e-5);
 call ml_qa_setfloatproperty(@msgid, 'myfloatproperty2', 1.3e5);
 call ml_qa_putmessage(@msgid, 'clientid\queuename');
 commit;
end

ml_qa_setintproperty

Sets the specified message property from a SQL INTEGER data type.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Property name VARCHAR(128)

3 Property value INTEGER

Remarks
You cannot alter this property after the message has been sent.

QAnywhere reference

640 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “Setting up SQL applications” on page 56
● “ml_qa_getintproperty” on page 633
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650
● “Custom message properties” on page 661

Example
In the following example, a message is created, the integer properties myintproperty1 and myintproperty2
are set, and the message is sent to the address clientid\queuename:

begin
 declare @msgid varchar(128);
 set @msgid = ml_qa_createmessage();
 call ml_qa_setintproperty(@msgid, 'myintproperty1', -1234567890);
 call ml_qa_setintproperty(@msgid, 'myintproperty2', 1234567890);
 call ml_qa_putmessage(@msgid, 'clientid\queuename');
 commit;
end

ml_qa_setlongproperty

Sets the specified message property from a SQL BIGINT data type.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Property name VARCHAR(128)

3 Property value BIGINT

Remarks
You cannot alter this property after the message has been sent.

See also
● “Setting up SQL applications” on page 56
● “ml_qa_getlongproperty” on page 634
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650
● “Custom message properties” on page 661

Example
In the following example, a message is created, the long properties mylongproperty1 and
mylongproperty2 are set, and the message is sent to the address clientid\queuename:

QAnywhere SQL API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 641

begin
 declare @msgid varchar(128);
 set @msgid = ml_qa_createmessage();
 call ml_qa_setlongproperty(@msgid, 'mylongproperty1',
-12345678900987654321);
 call ml_qa_setlongproperty(@msgid, 'mylongproperty2',
12345678900987654321);
 call ml_qa_putmessage(@msgid, 'clientid\queuename');
 commit;
end

ml_qa_setshortproperty

Sets the specified message property from a SQL SMALLINT data type.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Property name VARCHAR(128)

3 Property value SMALLINT

Remarks
You cannot alter this property after the message has been sent.

See also
● “Setting up SQL applications” on page 56
● “ml_qa_getshortproperty” on page 635
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650
● “Custom message properties” on page 661

Example
In the following example, a message is created, the short properties myshortproperty1 and
myshortproperty2 are set, and the message is sent to the address clientid\queuename:

begin
 declare @msgid varchar(128);
 set @msgid = ml_qa_createmessage();
 call ml_qa_setshortproperty(@msgid, 'myshortproperty1', -12345);
 call ml_qa_setshortproperty(@msgid, 'myshortproperty2', 12345);
 call ml_qa_putmessage(@msgid, 'clientid\queuename');
 commit;
end

QAnywhere reference

642 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ml_qa_setstringproperty

Sets the specified message property from a SQL LONG VARCHAR data type.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Property name VARCHAR(128)

3 Property value LONG VARCHAR

Remarks
You cannot alter this property after the message has been sent.

See also
● “Setting up SQL applications” on page 56
● “ml_qa_getstringproperty” on page 636
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650
● “Custom message properties” on page 661

Example
In the following example, a message is created, the string properties mystringproperty1 and
mystringproperty2 are set, and the message is sent to the address clientid\queuename:

begin
 declare @msgid varchar(128);
 set @msgid = ml_qa_createmessage();
 call ml_qa_setstringproperty(@msgid, 'mystringproperty1', 'c:\\temp');
 call ml_qa_setstringproperty(@msgid, 'mystringproperty2', 'first line
\nsecond line');
 call ml_qa_putmessage(@msgid, 'clientid\queuename');
 commit;
end

Message content
You can use the following stored procedures to get and set message content.

ml_qa_getbinarycontent

Returns the message content of a binary message.

QAnywhere SQL API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 643

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

Return value
The message content as LONG BINARY.

If the message has text content rather than binary content, this stored procedure returns null.

You can read this content after a message is received and until a rollback or commit occurs; after that you
cannot read it.

See also
● “Setting up SQL applications” on page 56
● “ml_qa_setbinarycontent” on page 646
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650
● “ml_qa_getcontentclass” on page 644

Example
In the following example, a message's encrypted content is decrypted and output to the database server
messages window:

begin
 declare @msgid varchar(128);
 declare @content long binary;
 declare @plaintext long varchar;
 set @msgid = ml_qa_getmessage('myaddress');
 set @content = ml_qa_getbinarycontent(@msgid);
 set @plaintext = decrypt(@content, 'mykey');
 message 'message content decrypted: ' || @plaintext;
 commit;
end

ml_qa_getcontentclass

Returns the message type (text or binary).

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

QAnywhere reference

644 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Return value
The content class as INTEGER.

The return value can be:

● 1 indicates that the message content is binary and should be read using the stored procedure
ml_qa_getbinarycontent.

● 2 indicates that the message content is text and should be read using the stored procedure
ml_qa_gettextcontent.

Remarks
You can read this content after a message is received and until a rollback or commit occurs; after that you
cannot read it.

See also
● “Setting up SQL applications” on page 56
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650
● “ml_qa_getbinarycontent” on page 643
● “ml_qa_gettextcontent” on page 645

Example
In the following example, a message is received and the content is output to the database server messages
window:

begin
 declare @msgid varchar(128);
 declare @contentclass integer;
 set @msgid = ml_qa_getmessage('myaddress');
 set @contentclass = ml_qa_getcontentclass(@msgid);
 if @contentclass = 1 then
 message 'message binary is ' || ml_qa_getbinarycontent(@msgid);
 elseif @contentclass = 2 then
 message 'message text is ' || ml_qa_gettextcontent(@msgid);
 end if;
 commit;
end

ml_qa_gettextcontent

Returns the message content of a text message.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

QAnywhere SQL API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 645

Return value
The text content as LONG VARCHAR.

If the message has binary content rather than text content, this stored procedure returns null.

Remarks
You can read this content after a message is received and until a rollback or commit occurs; after that you
cannot read it.

See also
● “Setting up SQL applications” on page 56
● “ml_qa_settextcontent” on page 647
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650
● “ml_qa_getcontentclass” on page 644

Example
In the following example, the content of a message is output to the database server messages window:

begin
 declare @msgid varchar(128);
 declare @content long binary;
 set @msgid = ml_qa_getmessage('myaddress');
 set @content = ml_qa_gettextcontent(@msgid);
 message 'message content: ' || @content ;
 commit;
end

ml_qa_setbinarycontent

Sets the binary content of the message.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Content LONG BINARY

You cannot alter this content after the message has been sent.

See also
● “Setting up SQL applications” on page 56
● “ml_qa_getbinarycontent” on page 643
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650

QAnywhere reference

646 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example
In the following example, a message is created with encrypted content and sent:

begin
 declare @msgid varchar(128);
 set @msgid = ml_qa_createmessage();
 call ml_qa_setbinarycontent(@msgid, encrypt('my secret message',
'mykey'));
 call ml_qa_putmessage(@msgid, 'clientid\queuename');
 commit;
end

ml_qa_settextcontent

Sets the text content of the message.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Content LONG VARCHAR

Remarks
You cannot alter this content after the message has been sent.

See also
● “Setting up SQL applications” on page 56
● “ml_qa_gettextcontent” on page 645
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650

Example
In the following example, a message is created and then set with the given content:

begin
 declare @msgid varchar(128);
 set @msgid = ml_qa_createmessage();
 call ml_qa_settextcontent(@msgid, 'my simple message');
 call ml_qa_putmessage(@msgid, 'clientid\queuename');
 commit;
end

Message store properties
You can use the following stored procedures to get and set properties for client message stores.

For more information about message store properties, see “Client message store properties” on page 26.

QAnywhere SQL API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 647

ml_qa_getstoreproperty

Returns a client message store property.

Parameters

Item Description Remarks

1 Property name VARCHAR(128)

Return value
The property value as LONG VARCHAR.

Remarks
Client message store properties are readable from every connection to this client message store.

See also
● “Setting up SQL applications” on page 56
● “ml_qa_setstoreproperty” on page 648

Example
The following example gets the current synchronization policy of this message store and outputs it to the
database server messages window:

begin
 declare @policy varchar(128);
 set @policy = ml_qa_getstoreproperty('policy');
 message 'the current policy for synchronizing this message store is ' ||
@policy;
end

ml_qa_setstoreproperty

Sets a client message store property.

Parameters

Item Description Remarks

1 Property name VARCHAR(128)

2 Property value SMALLINT

Remarks
Client message store properties are readable from every connection to this client message store. The
values are synchronized up to the server, as well, where they can be used in transmission rules.

QAnywhere reference

648 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “Setting up SQL applications” on page 56
● “ml_qa_getstoreproperty” on page 648

Example
The following example sets the synchronization policy to automatic for the message store:

begin
 call ml_qa_setstoreproperty('policy', 'automatic');
 commit;
end

Message management
You can use the following stored procedures to manage your QAnywhere client transactions.

ml_qa_createmessage

Returns the message ID of a new message.

Return value
The message ID of the new message.

Remarks
Use this stored procedure to create a message. Once created, you can associate content, properties, and
headers with this message and then send the message.

You can associate content, properties, and headers using any of the QAnywhere stored procedures starting
with ml_qa_set. For example, use ml_qa_setbinarycontent or ml_qa_settextcontent to create a binary or
text message.

See also
● “Setting up SQL applications” on page 56
● “Message headers” on page 619
● “Message properties” on page 629
● “Message content” on page 643

Example
The following example creates a message, sets the message content, and sends the message to the address
clientid\queuename:

begin
 declare @msgid varchar(128);
 set @msgid = ml_qa_createmessage();
 call ml_qa_settextcontent(@msgid, 'some content');
 call ml_qa_putmessage(@msgid, 'clientid\queuename');
 commit;
end

QAnywhere SQL API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 649

ml_qa_getmessage

Returns the message ID of the next message that is queued for the given address, blocking until one is queued.

Parameters

Item Description Remarks

1 Address VARCHAR(128)

Return value
The message ID as VARCHAR(128).

Returns null if there is no queued message for this address.

Remarks
Use this stored procedure to check synchronously whether there is a message waiting for the specified
QAnywhere message address. Use the Listener if you want a SQL procedure to be called asynchronously
when a message is available for a specified QAnywhere address.

This stored procedure blocks until a message is queued.

For information about avoiding blocking, see “ml_qa_getmessagenowait” on page 651 or
“ml_qa_getmessagetimeout” on page 652.

The message corresponding to the returned message ID is not considered to be received until the current
transaction is committed. Once the receive is committed, the message cannot be received again by this or
any other QAnywhere API. Similarly, a rollback of the current transaction means that the message is not
received, so subsequent calls to ml_qa_getmessage may return the same message ID.

The properties and content of the received message can be read by the various ml_qa_get stored
procedures until a commit or rollback is executed on the current transaction. Once a commit or rollback is
executed on the current transaction, the message data is no longer readable. Before committing, you
should store any data you need from the message as tabular data or in SQL variables.

See also
● “Setting up SQL applications” on page 56
● “ml_qa_getmessagenowait” on page 651
● “ml_qa_getmessagetimeout” on page 652
● “Message headers” on page 619
● “Message properties” on page 629
● “Message content” on page 643

Example
The following example displays the content of all messages sent to the address myaddress:

begin
 declare @msgid varchar(128);

QAnywhere reference

650 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 loop
 set @msgid = ml_qa_getmessage('myaddress');
 message 'a message with content ' || ml_qa_gettextcontent(@msgid)
|| ' has been received';
 commit;
 end loop;
end

ml_qa_getmessagenowait

Returns the message ID of the next message that is currently queued for the given address.

Parameters

Item Description Remarks

1 Address VARCHAR(128)

Return value
The message ID as VARCHAR(128).

Returns the message ID of the next message that is queued for the given address. Returns null if there is
no queued message for this address.

Remarks
Use this stored procedure to check synchronously whether there is a message waiting for the specified
QAnywhere message address. Use the Listener if you want a SQL procedure to be called asynchronously
when a message is available for a specified QAnywhere address.

For information about blocking until a message is available, see “ml_qa_getmessage” on page 650 and
“ml_qa_getmessagetimeout” on page 652.

The message corresponding to the returned message is not considered to be received until the current
transaction is committed. Once the receive is committed, the message cannot be received again by this or
any other QAnywhere API. Similarly, a rollback of the current transaction means that the message is not
received, so subsequent calls to ml_qa_getmessage may return the same message ID.

The properties and content of the received message can be read by the various ml_qa_get stored
procedures until a commit or rollback is executed on the current transaction. Once a commit or rollback is
executed on the current transaction, the message data is no longer readable. Before committing, you
should store any data you need from the message as tabular data or in SQL variables.

QAnywhere SQL API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 651

See also
● “Setting up SQL applications” on page 56
● “QAnywhere message addresses” on page 58
● “Listeners” [MobiLink - Server-Initiated Synchronization]
● “ml_qa_getmessagetimeout” on page 652
● “Message headers” on page 619
● “Message properties” on page 629
● “Message content” on page 643

Example
The following example displays the content of all messages that are queued at the address myaddress until
all such messages are read (it is generally more efficient to commit after the last message has been read,
rather than after each message is read):

begin
 declare @msgid varchar(128);
 loop
 set @msgid = ml_qa_getmessagenowait('myaddress');
 if @msgid is null then leave end if;
 message 'a message with content ' || ml_qa_gettextcontent(@msgid)
|| ' has been received';
 end loop;
 commit;
end

ml_qa_getmessagetimeout

Waits for the specified timeout period to return the message ID of the next message that is queued for the
given address.

Parameters

Item Description Remarks

1 Address VARCHAR(128)

2 Timeout in milliseconds INTEGER

Return value
The message ID as VARCHAR(128).

Returns null if there is no queued message for this address within the timeout period.

Remarks
Use this stored procedure to check synchronously whether there is a message waiting for the specified
QAnywhere message address. Use the Listener if you want a SQL procedure to be called asynchronously
when a message is available for a specified QAnywhere address.

QAnywhere reference

652 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The message corresponding to the returned message is not considered to be received until the current
transaction is committed. Once the receive is committed, the message cannot be received again by this or
any other QAnywhere API. Similarly, a rollback of the current transaction means that the message is not
received, so subsequent calls to ml_qa_getmessage may return the same message ID.

The properties and content of the received message can be read by the various ml_qa_get stored
procedures until a commit or rollback is executed on the current transaction. Once a commit or rollback is
executed on the current transaction, the message data is no longer readable. Before committing, you
should store any data you need from the message as tabular data or in SQL variables.

See also
● “Setting up SQL applications” on page 56
● “ml_qa_getmessage” on page 650
● “ml_qa_getmessagenowait” on page 651

Example
The following example outputs the content of all messages sent to the address myaddress to the database
server messages window, and updates the database server messages window every 10 seconds if no
message has been received:

begin
 declare @msgid varchar(128);
 loop
 set @msgid = ml_qa_getmessagetimeout('myaddress', 10000);
 if @msgid is null then
 message 'waiting for a message...';
 else
 message 'a message with content ' || ml_qa_gettextcontent(@msgid)
|| ' has been received';
 commit;
 end if;
 end loop;
end

ml_qa_grant_messaging_permissions

Grants permission to other users to use QAnywhere stored procedures.

Parameters

Item Description Remarks

1 Database user ID VARCHAR(128)

Remarks
Only users with DBA privilege automatically have permission to execute the QAnywhere stored
procedures. Other users must be granted permission by having a user with DBA privileges run this stored
procedure.

QAnywhere SQL API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 653

This procedure adds the user to a group called ml_qa_message_group and gives them execute permissions
on all QAnywhere stored procedures.

See also
● “Setting up SQL applications” on page 56

Example
For example, to grant messaging permissions to a user with the database ID user1, execute the following
code:

call dbo.ml_qa_grant_messaging_permissions('user1')

ml_qa_listener_queue

Create a stored procedure named ml_qa_listener_queue (where queue is the name of a message queue)
to receive messages asynchronously.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from the
QAnywhere Listener.

Remarks

Note
This procedure is different from all the other QAnywhere stored procedures in that the stored procedure is
not provided. If you create a stored procedure named ml_qa_listener_queue, where queue is a message
queue, then it is used by QAnywhere.

Although messages can be received synchronously on a connection, it is often convenient to receive
messages asynchronously. You can create a stored procedure that is called when a message has been
queued on a particular address. The name of this procedure must be ml_qa_listener_queue, where queue
is the message queue. When this procedure exists, the procedure is called whenever a message is queued
on the given address.

This procedure is called from a separate connection. As long as a SQL error does not occur while this
procedure is executing, the message is automatically acknowledged and committed.

Note
Do not commit or rollback within this procedure.

The queue name is part of the QAnywhere address. For more information, see “QAnywhere message
addresses” on page 58.

QAnywhere reference

654 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “Setting up SQL applications” on page 56
● “Receiving messages asynchronously” on page 70
● “Receiving messages synchronously” on page 68
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650

Example
The following example creates a procedure that is called whenever a message is queued on the address
named executesql. In this example, the procedure assumes that the content of the message is a SQL
statement that it can execute against the current database.

CREATE PROCEDURE ml_qa_listener_executesql(IN @msgid VARCHAR(128))
begin
 DECLARE @execstr LONG VARCHAR;
 SET @execstr = ml_qa_gettextcontent(@msgid);
 EXECUTE IMMEDIATE @execstr;
end

ml_qa_putmessage

Sends a message.

Parameters

Item Description Remarks

1 Message ID VARCHAR(128). You can obtain the message ID from
ml_qa_createmessage or ml_qa_getmessage.

2 Address VARCHAR(128)

Remarks
The message ID you specify must have been previously created using ml_qa_createmessage. Only
content, properties and headers associated with the message ID before the call to ml_qa_putmessage are
sent with the message. Any added after the ml_qa_putmessage are ignored.

A commit is required before the message is actually queued for sending.

See also
● “Setting up SQL applications” on page 56
● “ml_qa_createmessage” on page 649
● “ml_qa_getmessage” on page 650

Example
In the following example, a message is created with the content 'a simple message' and sent to the address
clientid\queuename:

QAnywhere SQL API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 655

begin
 declare @msgid varchar(128);
 set @msgid = ml_qa_createmessage();
 call ml_qa_settextcontent(@msgid, 'a simple message');
 call ml_qa_putmessage(@msgid, 'clientid\queuename');
 commit;
end

ml_qa_triggersendreceive

Triggers a synchronization of messages with the MobiLink server.

Remarks
Normally, message synchronization is handled by the QAnywhere Agent. However, if the
synchronization policy is on demand, then it is the application's responsibility to trigger the
synchronization of messages. You can do so using this stored procedure. The trigger does not take effect
until the current transaction is committed.

See also
● “Setting up SQL applications” on page 56

Example
In the following example, a message is sent and the transmission of the message is immediately initiated:

begin
 declare @msgid varchar(128);
 set @msgid = ml_qa_createmessage();
 call ml_qa_settextcontent(@msgid, 'my simple message');
 call ml_qa_putmessage(@msgid, 'clientid\queuename');
 call ml_qa_triggersendreceive();
 commit;
end

Message headers and properties
Message headers

All QAnywhere messages support the same set of header fields. Header fields contain values that are used
by both clients and providers to identify and route messages.

The following message headers are predefined. How you use them depends on the type of client
application you have.

QAnywhere reference

656 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● Message ID Read-only. The message ID of the new message. This header has a value only after
the message is sent. See:

○ .NET API: “MessageID property” on page 287
○ C++ API: “getMessageID method” on page 438 and “setMessageID method” on page 448
○ Java API: “getMessageID method” on page 556
○ SQL API: “ml_qa_createmessage” on page 649 and “ml_qa_getmessage” on page 650

● Message creation timestamp Read-only. The Timestamp header field contains the time a
message was created. It is a coordinated universal time (UTC). It is not the time the message was
actually transmitted, because the actual send may occur later due to transactions or other client-side
queuing of messages. You can read this header after a message is received and until a rollback or
commit occurs; after that you cannot read it. See:

○ .NET API: “Timestamp property” on page 289
○ C++ API: “getTimestamp method” on page 442 and “setTimestamp method” on page 450
○ Java API: “getTimestamp method” on page 560
○ SQL API: “ml_qa_gettimestamp” on page 625

● Reply-to address Read-write. The reply address as VARCHAR(128) or null if it does not exist.
You can read this header after a message is received and until a rollback or commit occurs; after that
you cannot read it. See:

○ .NET API: “ReplyToAddress property” on page 289
○ C++ API: “getReplyToAddress method” on page 439 and “setReplyToAddress

method” on page 449
○ Java API: “getReplyToAddress method” on page 559 and “setReplyToAddress

method” on page 565
○ SQL API: “ml_qa_getreplytoaddress” on page 624 and “ml_qa_setreplytoaddress” on page 628

● Message address Read-only. The QAnywhere message address as VARCHAR(128).
QAnywhere message addresses take the form id\queue-name. You can read this header after a
message is received and until a rollback or commit occurs; after that you cannot read it. See:

○ .NET API: “Address property” on page 286
○ C++ API: “getAddress method” on page 433
○ Java API: “getAddress method” on page 552
○ SQL API: “ml_qa_getaddress” on page 619

● Redelivered state of message Read-only. The redelivered value as BIT. A value of 1 indicates
that the message is being redelivered; 0 indicates that it is not being redelivered.

A message may be redelivered if it was previously received but not acknowledged. For example, the
message was received but the application receiving the message did not complete processing the
message content before it crashed. In these cases, QAnywhere marks the message as redelivered to
alert the receiver that the message might be partly processed.

For example, assume that the receipt of a message occurs in three steps:

Message headers and properties

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 657

1. An application using a non-transactional QAnywhere manager receives the message.

2. The application writes the message content and message ID to a database table called T1, and
commits the change.

3. The application acknowledges the message.

If the application fails between steps 1 and 2 or between steps 2 and 3, the message is redelivered
when the application restarts.

If the failure occurs between steps 1 and 2, you should process the redelivered message by running
steps 2 and 3. If the failure occurs between steps 2 and 3, then the message is already processed and
you only need to acknowledge it.

To determine what happened when the application fails, you can have the application call
ml_qa_getredelivered to check if the message has been previously redelivered. Only messages that are
redelivered need to be looked up in table T1. This is more efficient than having the application access
the received message's message ID to check whether the message is in the table T1, because
application failures are rare.

You can read this header after a message is received and until a rollback or commit occurs; after that
you cannot read it.

See:

○ .NET API: “Redelivered property” on page 288
○ C++ API: “getRedelivered method” on page 439 and “setRedelivered method” on page 448
○ Java API: “getRedelivered method” on page 558
○ SQL API: “ml_qa_getredelivered” on page 623

● Expiration of message Read-only except in the SQL API, where it is read-write. The expiration
time as TIMESTAMP. Returns null if there is no expiration. A message expires if it is not received by
the intended recipient in the specified time. The message may then be deleted using default
QAnywhere delete rules. You can read this header after a message is received and until a rollback or
commit occurs; after that you cannot read it. See:

○ .NET API: “Expiration property” on page 286
○ C++ API: “getExpiration method” on page 435
○ Java API: “getExpiration method” on page 554
○ SQL API: “ml_qa_getexpiration” on page 620 and “ml_qa_setexpiration” on page 626

● Priority of message Read-write. The QAnywhere API defines ten levels of priority value, with 0
as the lowest priority and 9 as the highest. Clients should consider priorities 0-4 as gradations of
normal priority and priorities 5-9 as gradations of expedited priority. You can read this header after a
message is received and until a rollback or commit occurs; after that you cannot read it. See:

○ .NET API: “Priority property” on page 288
○ C++ API: “getPriority method” on page 438
○ Java API: “getPriority method” on page 557
○ SQL API: “ml_qa_getpriority” on page 622

QAnywhere reference

658 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● Message ID of a message for which this message is a reply Read-write. The in-reply-to ID
as VARCHAR(128). A client can use the InReplyToID header field to link one message with another.
A typical use is to link a response message with its request message. The in-reply-to ID is the ID of
the message that this message is replying to. You can read this header after a message is received and
until a rollback or commit occurs; after that you cannot read it. See:

○ .NET API: “InReplyToID property” on page 287
○ C++ API: “getInReplyToID method” on page 436
○ Java API: “getInReplyToID method” on page 555
○ SQL API: “ml_qa_getinreplytoid” on page 621

Some message headers can be used in transmission rules. See “Variables defined by the rule
engine” on page 738.

See also
● .NET API: “QAMessage interface” on page 271
● C++ API: “QAMessage class” on page 429
● Java API: “QAMessage interface” on page 550
● SQL API: “Message headers” on page 619

Message properties
Each message contains a built-in facility for supporting application-defined property values. These
message properties allow you to implement application-defined message filtering.

Message properties are name-value pairs that you can optionally insert into messages to provide structure.
For example, in the .NET API the predefined message property ias_Originator, identified by the constant
MessageProperties.ORIGINATOR, provides the message store ID that sent the message. Message
properties can be used in transmission rules to determine the suitability of a message for transmission.

There are two types of message property:

● Predefined message properties These message properties are always prefixed with ias_ or IAS_.

● Custom message properties These are message properties that you defined. You cannot prefix
them with ias_ or IAS_.

In either case, you access message store properties using get and set methods and pass the name of the
predefined or custom property as the first parameter.

See “Managing message properties” on page 662.

Predefined message properties

Some message properties have been predefined for your convenience. Predefined properties can be read
but should not be set. The predefined message properties are:

Message headers and properties

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 659

● ias_Adapters For network status notification messages, a list of network adapters that can be used
to connect to the MobiLink server. The list is a string and is delimited by a vertical bar.

● ias_DeliveryCount Int. The number of attempts that have been made so far to deliver the message.

● ias_MessageType Int. Indicates the type of the message. The message types can be:

Value Message type Description

0 REGULAR If a message does not have the ias_MessageType property set, it is
a regular message.

13 PUSH_NOTIFICA-
TION

When a push notification is received from the server, a message of
type PUSH_NOTIFICATION is sent to the system queue. See
“Notifications of push notification” on page 60.

14 NETWORK_STA-
TUS_NOTIFICA-
TION

When there is a change in network status, a message of this type is
sent to the system queue. See “Network status notifica-
tions” on page 59.

● ias_RASNames String. For network status notification messages, a list of RAS entry names that
can be used to connect to the MobiLink server. The list is delimited by a vertical bar.

● ias_NetworkStatus Int. For network status notification messages, the state of the network
connection. The value is 1 if connected, 0 otherwise.

● ias_Originator String. The message store ID of the originator of the message.

● ias_Status Int. The current status of the message. This property is not supported in the SQL API.
The values can be:

Status Code Description

1 Pending - The message has been sent but not received.

10 Receiving - The message is in the process of being received, or it was re-
ceived but not acknowledged.

20 Final - The message has achieved a final state.

30 Expired - The message was not received before its expiration time has passed.

40 Cancelled - The message has been canceled.

50 Unreceivable - The message is either malformed, or there were too many
failed attempts to deliver it.

60 Received - The message has been received and acknowledged.

QAnywhere reference

660 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

There are constants for the status values. See:

○ .NET API: “StatusCodes enumeration” on page 305
○ C++ API: “StatusCodes class” on page 464
○ Java API: “StatusCodes interface” on page 581

● ias_StatusTime The time at which the message became its current status. It is in units that are
natural for the platform. It is a local time. In the C++ API, for Windows and PocketPC platforms, the
timestamp is the SYSTEMTIME, converted to a FILETIME, which is copied to a qa_long value. This
property is not supported in the SQL API.

API This property returns...

.NET DateTime

C++ string

Java java.util.Date object

Message property constants
The QAnywhere APIs for .NET, C++, and Java provide constants for specifying message properties. See:

● .NET API: “MessageProperties class” on page 179
● C++ API: “MessageProperties class” on page 356
● Java API: “MessageProperties interface” on page 469

Custom message properties

QAnywhere allows you to define message properties using the C++, Java, or .NET APIs. Custom
message properties allow you to create name-value pairs that you associate with an object. For example:

msg.SetStringProperty("Product", "widget");
msg.SetFloatProperty("Price",1.00);
msg.SetIntProperty("Quantity",10);

Message headers and properties

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 661

Message property names are case insensitive. You can use a sequence of letters, digits and underscores,
but the first character must be a letter. The following names are reserved and may not be used as message
property names:

● NULL
● TRUE
● FALSE
● NOT
● AND
● OR
● BETWEEN
● LIKE
● IN
● IS
● ESCAPE
● Any name beginning with ias_

Managing message properties

The following QAMessage methods can be used to manage message properties.

Note
You can get and set custom properties, but should only get predefined properties.

QAnywhere reference

662 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

.NET methods to manage message properties
● Object GetProperty(String name)
● void SetProperty(String name, Object value)
● boolean GetBooleanProperty(String name)
● void SetBooleanProperty(String name, boolean value)
● byte GetByteProperty(String name)
● void SetByteProperty(String name, byte value)
● short GetShortProperty(String name)
● void SetShortProperty(String name, short value)
● int GetIntProperty(String name)
● void SetIntProperty(String name, int value)
● long GetLongProperty(String name)
● void SetLongProperty(String name, long value)
● float GetFloatProperty(String name)
● void SetFloatProperty(String name, float value)
● double GetDoubleProperty(String name)
● void SetDoubleProperty(String name, double value)
● String GetStringProperty(String name)
● void SetStringProperty(String name, String value)
● IEnumerator GetPropertyNames()
● void ClearProperties()
● PropertyType GetPropertyType(string propName)
● bool PropertyExists(string propName)

See “QAMessage interface” on page 271.

C++ methods to manage message properties
● qa_bool getBooleanProperty(qa_const_string name, qa_bool * value)
● qa_bool setBooleanProperty(qa_const_string name, qa_bool value)
● qa_bool getByteProperty(qa_const_string name, qa_byte * value)
● qa_bool setByteProperty(qa_const_string name, qa_byte value)
● qa_bool getShortProperty(qa_const_string name, qa_short * value)
● qa_bool setShortProperty(qa_const_string name, qa_short value)
● qa_bool getIntProperty(qa_const_string name, qa_int * value)
● qa_bool setIntProperty(qa_const_string name, qa_int value)
● qa_bool getLongProperty(qa_const_string name, qa_long * value)
● qa_bool setLongProperty(qa_const_string name, qa_long value)
● qa_bool getFloatProperty(qa_const_string name, qa_float * value)
● qa_bool setFloatProperty(qa_const_string name, qa_float value)
● qa_bool getDoubleProperty(qa_const_string name, qa_double * value)
● qa_bool setDoubleProperty(qa_const_string name, qa_double value)
● qa_int getStringProperty(qa_const_string name, qa_string value, qa_int len)
● qa_bool setStringProperty(qa_const_string name, qa_const_string value)
● void QAMessage::clearProperties()
● qa_short QAMessage::getPropertyType(qa_const_string name)
● qa_bool QAMessage::propertyExists(qa_const_string name)

See “QAMessage class” on page 429.

Message headers and properties

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 663

Java methods to manage message properties
● void clearProperties()
● boolean getBooleanProperty(String name)
● void setBooleanProperty(String name, boolean value)
● byte getByteProperty(String name)
● void setByteProperty(String name, byte value)
● double getDoubleProperty(String name)
● void setDoubleProperty(String name, double value)
● java.util.Date getExpiration() void setFloatProperty(String name, float value)
● float getFloatProperty(String name)
● int getIntProperty(String name)
● void setIntProperty(String name, int value)
● long getLongProperty(String name)
● void setLongProperty(String name, long value)
● Object getProperty(String name)
● void setProperty(String name, Object value)
● java.util.Enumeration getPropertyNames()
● short getPropertyType(String name)
● short getShortProperty(String name)
● void setShortProperty(String name, short value)
● String getStringProperty(String name)
● void setStringProperty(String name, String value)
● boolean propertyExists(String name)

See “QAMessage interface” on page 550.

SQL stored procedures to manage message properties
● ml_qa_getbooleanproperty
● ml_qa_getbyteproperty
● ml_qa_getdoubleproperty
● ml_qa_getfloatproperty
● ml_qa_getintproperty
● ml_qa_getlongproperty
● ml_qa_getpropertynames
● ml_qa_getshortproperty
● ml_qa_getstringproperty
● ml_qa_setbooleanproperty
● ml_qa_setbyteproperty
● ml_qa_setdoubleproperty
● ml_qa_setfloatproperty
● ml_qa_setfloatproperty
● ml_qa_setintproperty
● ml_qa_setlongproperty
● ml_qa_setshortproperty
● ml_qa_setstringproperty

See “Message properties” on page 629.

QAnywhere reference

664 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example
// C++ example.
QAManagerFactory factory;
QAManager * mgr = factory->createQAManager(NULL);
mgr->open(AcknowledgementMode::EXPLICIT_ACKNOWLEDGEMENT);
QAMessage * msg = mgr->createTextMessage();
msg->setStringProperty("tm_Subject", "Some message subject.");
mgr->putMessage("myqueue", mgr);

// C# example.
QAManager mgr = QAManagerFactory.Instance.CreateQAManager(null);
mgr.Open(AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT);
QAMessage msg = mgr.CreateTextMessage();
msg.SetStringProperty("tm_Subject", "Some message subject.");
mgr.PutMessage("myqueue", msg);

// Java example
QAManager mgr = QAManagerFactory.getInstance().createQAManager(null);
mgr.open(AcknowledgementMode.EXPLICIT_ACKNOWLEDGEMENT);
QAMessage msg = mgr.createTextMessage();
msg.setStringProperty("tm_Subject", "Some message subject.");
mgr.putMessage("myqueue", mgr);

-- SQL example
begin
 DECLARE @msgid VARCHAR(128);
 SET @msgid = ml_qa_createmessage();
 CALL ml_qa_setfloatproperty(@msgid, 'myfloatproperty1', -1.3e-5);
 CALL ml_qa_setfloatproperty(@msgid, 'myfloatproperty2', 1.3e5);
 CALL ml_qa_putmessage(@msgid, 'clientid\queuename');
 COMMIT;
end

Server management request reference
Server management request parent tags

Condition tag

Use the following condition subtags to filter the messages to include in the MessageDetailsRequest. You
can specify as many of these tags as you want in the <condition> tag. If you use more than one of the
same tag, then the values given are logically ORed together, whereas if you use two different tags, the
values are logically ANDed together.

<condition> subtags Description

<address> Selects messages that are addressed to the specified address.

<archived> Returns the details of messages in the archive message store.

<customRule> Selects messages based on rules.

Server management request reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 665

<condition> subtags Description

<kind> Filters either binary or text messages. For example,
<kind>text</kind> filters text messages, and <kind>bina-
ry</kind> filters binary messages.

<messageId> Selects the message with a particular message ID.

<originator> Selects messages that originated from the specified client.

<priority> Selects messages that currently have the priority specified.

<property> Selects messages that have the specified message property. To
check a property name and value, use the syntax <proper-
ty>property-name=property-value</property>. To check
the existence of a property, use the format <property>proper-
ty-name</property>.

<status> Selects messages that currently have the status specified.

CustomRule tag

To construct more complex condition statements, use the <customRule> tag as a subtag to the
<condition> tag (and other tags). This tag takes as its data a server rule similar to those used for server
transmission rules. You can construct these queries in the same manner as the condition part of a
transmission rule. See “Condition syntax” on page 734.

Example
The following condition selects messages following the search criteria: priority is set to 4; the originator
name is like'%sender%'; and the status is greater than or equal to 20.

<condition>
 <priority>4</priority>
 <customRule>ias_Originator LIKE '%sender%' AND ias_Status >= 20</
customRule>
</condition>

Schedule tag

You can optionally set up server management requests to run on a schedule. Use the following
<schedule> subtags to define the schedule on which the request runs.

QAnywhere reference

666 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

<schedule> sub-
tags

Description

<starttime> Defines the time of day at which the server begins generating reports. For example:

<starttime>09:00:00</starttime>

<between> Contains two subtags, starttime and endtime, which define an interval during
which the server generates reports. May not be used in the same schedule as start-
time. For example:

<between>
 <starttime>Mon Jan 16 09:00:00 EST 2006</starttime>
 <endtime>Mon Jan 17 09:00:00 EST 2006</endtime>
</between>

<everyhour> Defines the interval between subsequent reports in hours. May not be used in the
same schedule as everyminute or everysecond. For example, the following re-
quest generates a report every two hours starting at 9 AM:

<schedule>
 <starttime>09:00:00</starttime>
 <everyhour>2</everyhour>
</schedule>

<everyminute> Defines the interval between subsequent reports in minutes. May not be used in
the same schedule as everyhour or everysecond.

<schedule>
 <everyminute>10</everyminute>
</schedule>

<everysecond> Defines the interval between subsequent reports in seconds. May not be used in
the same schedule as everyhour or everyminute.

<schedule>
 <everysecond>45</everysecond>
</schedule>

<ondayofweek> Each tag contains one day of the week in which the schedule is active. For exam-
ple, the following schedule runs on Mondays and Tuesdays:

<schedule>
 <ondayofweek>Monday</ondayofweek>
 <ondayofweek>Tuesday</ondayofweek>
</schedule>

<ondayofmonth> Each tag contains one day of the month on which the schedule is active. For exam-
ple, the following schedule runs on the 15th of the month:

<schedule>
 <ondayofmonth>15</ondayofmonth>
</schedule>

Server management request reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 667

<schedule> sub-
tags

Description

<startdate> The date on which the schedule becomes active. For example:

<startdate>Mon Jan 16 2006</startdate>

To modify a schedule, register a new server management request with the same requestId. To delete a
schedule, register a server management request with the same requestId, but include the schedule tag
<schedule>none</schedule>.

Notes
● Each tag, except for the <ondayofweek> and <ondayofmonth> tags, can only be used once in a schedule.

● The <between> tag and the individual <starttime> tag may not both be used in the same schedule.

● Only one of <everysecond>, <everyminute>, and <everyhour> may be used in the same schedule.

Example
The following example creates a persistent schedule that reports on all the messages on the server
including the ID and status of each message. It also overwrites any previous persistent requests assigned
to the request ID dailyMessageStatus.

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <MessageDetailsRequest>
 <request>
 <replyAddr>myclient\messageStatusQueue</replyAddr>
 <requestId>dailyMessageStatus</requestId>
 <schedule>
 <everyhour>24</everyhour>
 </schedule>
 <persistent/>
 <messageId/>
 <status/>
 </request>
 </MessageDetailsRequest>
</actions>

The following is an example of what the report might look like. It is sent to the address myclient
\messageStatusQueue. It indicates that there are two messages on the server, one with status 60 (received)
and one with status 1 (pending).

<?xml version="1.0" encoding="UTF-8"?>
<MessageDetailsReport>
 <requestId>dailyMessageStatus</requestId>
 <UTCDatetime>Mon Jan 16 15:03:04 EST 2007</UTCDatetime>
 <statusDescription>Scheduled report</statusDescription>
 <messageCount>2</messageCount>
 <message>
 <messageId>ID:26080b8927f83f9722357eab0a0628eb</messageId>
 <status>60</status>
 </message>
 <message>
 <messageId>ID:fe857fa8-a7d7-4266-985b-a1818a85d1a2</messageId>

QAnywhere reference

668 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 <status>1</status>
 </message>
</MessageDetailsReport>

MessageDetailsReport tag

Each Message Details Report is an XML message containing the <MessageDetailsReport> tag, and is
composed of a report header followed by optional <message> tags. The header of each report consists of
the following tags:

<MessageDetailsReport> subtags Description

<message> The body of the report consists of a list of <message> tags
whose subtags display the specific details of each message
that satisfied the selection criteria. If no messages were se-
lected, or no detail elements were specified in the original
request, then no <message> tags are included in the report.
Otherwise, each message has its own <message> tag.

<messageCount> The number of messages that satisfy the selection criteria
of the request.

<requestId> The ID of the request that generated the report.

<statusDescription> A brief description of the reason why this report was gener-
ated.

<UTCDateline> The time and date that this report was generated.

Message tag

<message> subtags Description

<address> The address of the message. For example, myclient\myqueue.

<contentSize> The size of the message content. If the message is a text message, this is the
number of characters. If the message is binary, this is the number of bytes.

<expires> The date and time when the message expires if it is not delivered.

<kind> Indicates whether the message is binary (1) or text (2).

<messageId> The message ID of the new message. See “Message headers” on page 656.

<originator> The message store ID of the originator of the message.

<priority> The priority of message: an integer between 0 and 9, where 0 indicates low-
est priority and 9 indicates highest priority.

Server management request reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 669

<message> subtags Description

<property> Properties of the message. See “Message properties” on page 659.

<status> The current status of the message. The status codes are defined in “Prede-
fined message properties” on page 659.

<statusTime> The time at which the message became its current status. This is the local time.

<transmissionStatus> The synchronization status of the message. This value can be one of:

● 0 - The message has not been transmitted to its intended recipient mes-
sage store.

● 1 - The message has been transmitted to its intended recipient message
store.

● 2 - The recipient and originating message stores are the same so no trans-
mission is necessary.

● 3 - The message has been transmitted to its intended recipient, but that
transmission has yet to be confirmed. There is a possibility that the mes-
sage transmission was interrupted, and that QAnywhere may transmit
the message again.

Examples
The following is an example of a message details report:

<?xml version="1.0" encoding="UTF-8"?>
<MessageDetailsReport>
 <requestId>testReport</requestId>
 <UTCDatetime>Mon Jan 16 15:03:04 EST 2006</UTCDatetime>
 <statusDescription>Scheduled report</statusDescription>
 <messageCount>1</messageCount>
 <message>
 <messageId>ID:26080b8927f83f9722357eab0a0628eb</messageId>
 <status>60</status>
 <property>
 <name>myPropName</name>
 <value>myPropVal</value>
 </property>
 </message>
</MessageDetailsReport>

The following condition selects messages following the search criteria: (msgId=ID:144... OR
msgId=ID225...) AND (status=pending) AND (kind=textmessage) AND (contains the property 'myProp'
with value 'myVal')

<condition>
 <messageId>ID:144d7e44dc2d7e1d</messageId>
 <messageId>ID:22578sd5dsd99s8e</messageId>
 <status>1</status>
 <kind>text</kind>
 <property>myProp=myVal</property>
</condition>

QAnywhere reference

670 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

A one-time request is a request that has omitted the <schedule> tag. These requests are used to generate a
single report and are deleted when the report has been sent. This request generates a single report that
displays the message id, status, and target address of all messages with priority 9 currently on the server.

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <MessageDetailsRequest>
 <request>
 <requestId>testRequest</client>
 <condition>
 <priority>9</priority>
 </condition>
 <messageId/>
 <status/>
 <address/>
 </request>
 </MessageDetailsRequest>
</actions>

The following sample message details request generates a report that includes the message ID and
message status.

<?xml version="1.0" encoding="UTF-8"?>
<actions>
 <MessageDetailsRequest>
 <!-- ... -->
 <messageId />
 <status />
 </MessageDetailsRequest>
</actions>

Server management request DTD
The following is the complete definition of the server management request XML document type. This
DTD is provided as a summary of the server management tags that are described in this section.

<!DOCTYPE actions [
<!ELEMENT actions (ActionsResponseId?,(CloseConnector|OpenConnector|
RestartRules|SetProperty
 |ClientStatusRequest|MessageDetailsRequest|CancelMessageRequest|
PauseConnector|ResumeConnector
 |CancelMessages|GetClientList)+)>
<!ELEMENT ActionsResponseId (#PCDATA)>
<!ELEMENT GetClientList EMPTY>
<!ELEMENT CloseConnector (client+)>
<!ELEMENT PauseConnector (client+)>
<!ELEMENT ResumeConnector (client+)>
<!ELEMENT OpenConnector (client+)>
<!ELEMENT RestartRules (client+)>
<!ELEMENT CancelMessages (client+)>
<!ELEMENT SetProperty (prop+)>
<!ELEMENT prop (client,name,value?)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT value (#PCDATA)>
<!ELEMENT GetProperties (client+)>
<!ELEMENT ClientStatusRequest (requestId?,replyAddr?,client+,(schedule
+,persistent?)?,onEvent*)>
<!ELEMENT onEvent (#PCDATA)>

Server management request reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 671

<!ELEMENT requestId (#PCDATA)>
<!ELEMENT client (#PCDATA)>
<!ELEMENT replyAddr (#PCDATA)>
<!ELEMENT persistent EMPTY>
<!ELEMENT MessageDetailsRequest (requestId?,replyAddr?,(schedule
+,persistent?)?,condition?,

getAddress?,getArchived?,getContentSize?,getExpires?,getKind?,getMessageId?,g
etOriginator?,

getPriority?,getProperties?,getStatus?,getStatusTime?,getTransmissionStatus?)
>
<!ELEMENT getAddress EMPTY>
<!ELEMENT getArchived EMPTY>
<!ELEMENT getContentSize EMPTY>
<!ELEMENT getExpires EMPTY>
<!ELEMENT getKind EMPTY>
<!ELEMENT getMessageId EMPTY>
<!ELEMENT getOriginator EMPTY>
<!ELEMENT getPriority EMPTY>
<!ELEMENT getProperties EMPTY>
<!ELEMENT getStatus EMPTY>
<!ELEMENT getStatusTime EMPTY>
<!ELEMENT getTransmissionStatus EMPTY>
<!ELEMENT CancelMessageRequest (requestId?,replyAddr?,report?,(schedule
+,persistent?)?,condition?,

getAddress?,getArchived?,getContentSize?,getExpires?,getKind?,getMessageId?,g
etOriginator?,

getPriority?,getProperties?,getStatus?,getStatusTime?,getTransmissionStatus?)
>
<!ELEMENT report EMPTY>
<!ELEMENT schedule (((startTime|
between)?,everyHour?,everyMinute?,everySecond?,onDayOfWeek*,
 onDayOfMonth*)?)>
<!ELEMENT between (startTime,endTime)>
<!ELEMENT startTime (#PCDATA)>
<!ELEMENT endTime (#PCDATA)>
<!ELEMENT everyHour (#PCDATA)>
<!ELEMENT everyMinute (#PCDATA)>
<!ELEMENT everySecond (#PCDATA)>
<!ELEMENT onDayOfWeek (#PCDATA)>
<!ELEMENT onDayOfMonth (#PCDATA)>
<!ELEMENT condition ((messageId|status|priority|address|originator|kind|
archived|
 customRule|property)+)>
<!ELEMENT archived EMPTY>
<!ELEMENT messageId (#PCDATA)>
<!ELEMENT status (#PCDATA)>
<!ELEMENT priority (#PCDATA)>
<!ELEMENT address (#PCDATA)>
<!ELEMENT originator (#PCDATA)>
<!ELEMENT kind (#PCDATA)>
<!ELEMENT customRule (#PCDATA)>
<!ELEMENT property (#PCDATA)>
]>

QAnywhere reference

672 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

QAnywhere Agent utilities reference
qaagent utility

Sends and receives messages for all QAnywhere applications on a single client device. This utility should
only be used when the client message store is a SQL Anywhere database.

External utilities, such as dbmlsync, that are used to synchronize message stores are not supported on
QAnywhere.

Syntax
qaagent [option ...]

Option Description

@data Reads options from the specified environment variable or configura-
tion file. See “@data qaagent option” on page 675.

-c connection-string Specifies a connection string to the client message store. See “-c qa-
agent option” on page 676.

-cd seconds Specifies the delay time between retry attempts to the database. See “-
cd qaagent option” on page 677.

-cr number-of-retries Specifies the number of retries to connect to the database after a con-
nection failure. See “-cr qaagent option” on page 677.

-fd seconds Specifies the delay time between retry attempts to the primary Mobi-
Link server. See “-fd qaagent option” on page 678.

-fr number-of-retries Specifies the number of retries to connect to the primary MobiLink
server after a connection failure. See “-fr qaagent op-
tion” on page 678.

-id id Specifies the ID of the client message store that the QAnywhere
Agent is to connect to. See “-id qaagent option” on page 679.

-idl download-size Specifies the maximum size of a download to use during a message
transmission. See “-idl qaagent option” on page 680.

-iu upload-size Specifies the maximum size of an upload to use during a message
transmission. See “-iu qaagent option” on page 681.

-lp number Specifies the port on which the Listener listens for notifications from
the MobiLink server. The default is 5001. See “-lp qaagent op-
tion” on page 681.

QAnywhere Agent utilities reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 673

Option Description

-mn password Specifies a new password for the MobiLink user. See “-mn qaagent
option” on page 682.

-mp password Specifies the password for the MobiLink user. See “-mp qaagent op-
tion” on page 682.

-mu username Specifies the MobiLink user. See “-mu qaagent op-
tion” on page 683.

-o logfile Specifies a file to which to log output messages. See “-o qaagent op-
tion” on page 683.

-on size Specifies a maximum size for the QAnywhere Agent message log
file, after which the file is renamed with the extension .old and a new
file is started. See “-on qaagent option” on page 684.

-os size Specifies a maximum size for the QAnywhere Agent message log
file, after which a new log file with a new name is created and used.
See “-os qaagent option” on page 684.

-ot logfile Specifies a file to which to log output messages. See “-ot qaagent op-
tion” on page 685.

-pc{+|-} Enables persistent connections for message transmission. See “-pc qa-
agent option” on page 686.

-policy policy-type Specifies the transmission policy used by the QAnywhere Agent. See
“-policy qaagent option” on page 686.

-push mode Enables or disables push notifications. The default is enabled. See “-
push qaagent option” on page 688.

-q Starts the QAnywhere Agent in quiet mode with the window mini-
mized in the system tray. See “-q qaagent option” on page 690.

-qi Starts the QAnywhere Agent in quiet mode with the window complete-
ly hidden. See “-qi qaagent option” on page 690.

-si Initializes the database for use as a client message store. See “-si qa-
agent option” on page 690.

-su Upgrades a client message store to the current version without run-
ning dbunload/reload. See “-su qaagent option” on page 692.

-sur Upgrades a client message store to the current version and performs
dbunload/reload of the message store. See “-sur qaagent op-
tion” on page 693

QAnywhere reference

674 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Option Description

-sv Uses the SQL Anywhere Network Database Server as the database
server. See “-sv qaagent option” on page 693.

-v [levels] Specifies a level of verbosity. See “-v qaagent option” on page 694.

-wc name Specifies the window class name that the QAnywhere Agent or Ultra-
Lite Agent is to start. See also “qastop utility” on page 717.

-x { http|tcpip|tls|https }
[(keyword=value;...)]

Specifies protocol options for communication with the MobiLink serv-
er. See “-x qaagent option” on page 695.

-xd Specifies that the QAnywhere Agent should use dynamic addressing
of the MobiLink server. See “-xd qaagent option” on page 696.

See also
● “Starting the QAnywhere agent” on page 44

@data qaagent option

Reads options from the specified environment variable or configuration file.

Syntax
qaagent @{ filename | environment-variable } ...

Remarks
With this option, you can put command line options in an environment variable or configuration file. If
both exist with the name you specify, the environment variable is used.

See “Using configuration files” [SQL Anywhere Server - Database Administration].

If you want to protect passwords or other information in the configuration file, you can use the File
Hiding utility to obfuscate the contents of the configuration file. See “File Hiding utility (dbfhide)” [SQL
Anywhere Server - Database Administration].

This option is useful for Windows Mobile because command lines in shortcuts are limited to 256 characters.

Sybase Central equivalent
The QAnywhere plug-in to Sybase Central has a task called Create An Agent Command File. When
you choose it, you are prompted to enter a file name and then a Properties window appears that helps you
enter the command information. The file that is produced has a .qaa extension. The .qaa file extension is a
Sybase Central convention; this file is the same as what you would create for the @data option. You can
use the command file created by Sybase Central as your @data configuration file.

QAnywhere Agent utilities reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 675

-c qaagent option

Specifies a string to connect to the client message store.

Syntax
qaagent -c connection-string ...

Defaults

Connection parameter Default value

uid ml_qa_user

pwd qanywhere

Remarks
The connection string must specify connection parameters in the form keyword=value, separated by
semicolons, with no spaces between parameters.

DSNs are not typically used on client devices. ODBC is not used by qaagent.

The following are some of the connection parameters you may need to use:

● dbf=filename Connect to a message store with the specified file name. See “DatabaseFile (DBF)
connection parameter” [SQL Anywhere Server - Database Administration].

● dbn=database-name Connect to a client message store that is already running by specifying a
database name rather than a database file. See “DatabaseName (DBN) connection parameter” [SQL
Anywhere Server - Database Administration].

● server=server-name Specify the name of the database server that is already running. The default
value is the name of the database. See “ServerName (Server) connection parameter” [SQL Anywhere
Server - Database Administration].

● uid=user Specify a database user ID to connect to the client message store. This parameter is
required if you change the default UID or PWD connection parameters. See “Userid (UID) connection
parameter” [SQL Anywhere Server - Database Administration].

● pwd=password Specify the password for the database user ID. This is required if you change the
default UID or PWD connection parameters. See “Password (PWD) connection parameter” [SQL
Anywhere Server - Database Administration].

● dbkey=key Specify the encryption key required to access the database. See “DatabaseKey
(DBKEY) connection parameter” [SQL Anywhere Server - Database Administration].

● start=startline Specify the database server start line. If you do not specify the startline, the default
for Windows Mobile is start=dbsrv12 -m -gn 5, and the default for other Windows platforms

QAnywhere reference

676 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

is start=dbsrv12 -m. The -m option causes the contents of the transaction log to be deleted at
checkpoints and is recommended. See:

○ “StartLine (START) connection parameter” [SQL Anywhere Server - Database Administration]
○ “-m dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
○ “-gn dbsrv12 server option” [SQL Anywhere Server - Database Administration]

See also
● “Connection parameters” [SQL Anywhere Server - Database Administration]
● “SQL Anywhere database connections” [SQL Anywhere Server - Database Administration]

Example
qaagent -id Device1 -c "DBF=qanyclient.db" -x tcpip(host=hostname) -policy
automatic

-cd qaagent option

When specified in conjunction with the -cr option, this option specifies the delay between attempts to
connect to the database.

Syntax
qaagent -cd seconds ...

Remarks
The default is a 10 second delay between retries.

If all retries fail, the QAnywhere Agent displays an error and waits to be shut down.

If a database connection fails during operation, the QAnywhere Agent goes through termination steps,
including finalizing connections and terminating threads and external processes, and then re-starts.

You must use this option with the qaagent -cr option. The -cr option specifies how many times to retry the
connection to the database, and the -cd option specifies the delay between retry attempts.

-cr qaagent option

Specifies the number of times that the QAnywhere Agent should retry the connection to the database.

Syntax
qaagent -cr number-of-retries ...

Remarks
The default number of retries is 3, with a 10 second delay between retries.

QAnywhere Agent utilities reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 677

-fd qaagent option

When specified in conjunction with the -fr option, this option specifies the delay between attempts to
connect to the MobiLink server.

Syntax
qaagent -fd seconds ...

Default
● If you specify -fr and do not specify -fd, the delay is 0 (no delay between retry attempts).
● If you do not specify -fr, the default is no retry attempts.

Remarks
You must use this option with the qaagent -fr option. The -fr option specifies how many times to retry the
connection to the primary server, and the -fd option specifies the delay between retry attempts.

This option is typically used when you specify failover MobiLink servers with the -x option. By default,
when you set up a failover MobiLink server, the QAnywhere Agent tries an alternate server immediately
upon a failure to reach the primary server. You can use the -fr option to cause the QAnywhere Agent to
try the primary server again before going to the alternate server, and you can use the -fd option to specify
the amount of time between retries of the primary server.

It is recommended that you set this option to 10 seconds or less.

You cannot use this option with the qaagent -xd option.

See also
● “-fr qaagent option” on page 678
● “-x qaagent option” on page 695
● “Setting up a failover mechanism” on page 36

-fr qaagent option

Specifies the number of times that the QAnywhere Agent should retry the connection to the primary
MobiLink server.

Syntax
qaagent -fr number-of-retries ...

Default
0 - the QAnywhere Agent does not attempt to retry the primary MobiLink server.

Remarks
By default, if the QAnywhere Agent is not able to connect to the MobiLink server, there is no error and
messages are not sent. This option specifies that the QAnywhere Agent should retry the connection to the

QAnywhere reference

678 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

MobiLink server, and specifies the number of times that it should retry before trying an alternate server or
issuing an error if you have not specified an alternate server.

This option is typically used when you specify failover MobiLink servers with the -x option. By default
when you set up a failover MobiLink server, the QAnywhere Agent tries an alternate server immediately
upon a failure to reach the primary server. This option causes the QAnywhere Agent to try the primary
server again before going to the alternate server.

In addition, you can use the -fd option to specify the amount of time between retries of the primary server.

You cannot use this option with the qaagent -xd option.

See also
● “-fd qaagent option” on page 678
● “-x qaagent option” on page 695
● “Setting up a failover mechanism” on page 36

-id qaagent option

Specifies the ID of the client message store that the QAnywhere Agent is to connect to.

Syntax
qaagent -id id ...

Default
The default value of the ID is the device name on which the Agent is running. You must use the -id option
when the device names are not unique.

Remarks
Each client message store is represented by a unique sequence of characters called the message store ID.
If you do not supply an ID when you first connect to the message store, the default is the device name. On
subsequent connections, you must always specify the same message store ID with the -id option.

The message store ID corresponds to the MobiLink remote ID. It is required because in all MobiLink
applications, each remote database must have a unique ID. See “Creating and registering MobiLink users”
[MobiLink - Client Administration].

If you are starting a second instance of the qaagent on a device, the -id option must be used to specify a
unique message store ID.

You cannot use the following characters in an ID:

● double quotes

● control characters

● double backslashes

QAnywhere Agent utilities reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 679

The following additional constraints apply:

● The ID has a limit of 120 characters.

● You can use a single backslash only if it is used as an escape character.

● If your client message store database has the quoted_identifier database option set to Off, then your ID
can only include alphanumeric characters and underscores, at signs, pounds, and dollar signs.

See also
● “Introduction to MobiLink users” [MobiLink - Client Administration]
● “Setting up the client message store” on page 23

-idl qaagent option

Specifies the incremental download size.

Syntax
qaagent -idl download-size [K | M] ...

Default
-1 - no maximum download size.

Remarks
This option specifies the size in bytes of the download part of a message transmission. Use the suffix K or
M to specify units of kilobytes or megabytes, respectively.

When the QAnywhere Agent starts, it assigns the value specified by this option to the
ias_MaxDownloadSize message store property. This message store property defines an upper bound on
the size of a download. When a transmission is triggered, the server tags messages for delivery to the
client until the total size of all messages reaches the limit set with this option. The server continues
sending batches of messages until all queued messages have been delivered. Transmission rules are re-
executed after each batch of messages is transmitted so that if a high priority messages gets queued during
a transmission, it jumps to the front of the queue.

Messages queued for delivery that exceed the download threshold are broken into multiple smaller
message parts. Each message part can be downloaded separately, resulting in the gradual download of the
message over several synchronizations. The complete message arrives at its destination once all of its
message parts have arrived.

The incremental download size is an approximation. The actual download size depends on many factors
beyond the size of the message.

See also
● ias_MaxDownloadSize in “Predefined client message store properties” on page 718

QAnywhere reference

680 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

-iu qaagent option

Specifies the incremental upload size.

Syntax
qaagent -iu upload-size [K | M] ...

Default
256K

Remarks
This option specifies the size in bytes of the upload part of a message transmission. Use the suffix K or M
to specify units of kilobytes or megabytes, respectively.

When the QAnywhere Agent starts, it assigns the value specified by this option to the
ias_MaxUploadSize message store property. This message store property defines an upper bound on the
size of an upload. When a transmission is triggered, the Agent tags messages for delivery to the server
until the total size of all messages reaches the limit set with this option. When the limit is reached, these
messages are sent to the server. As long as the messages arrive at the server and an acknowledgement is
successfully sent from the server to the client, these messages are considered to be successfully delivered,
even if the download phase of the transmission fails. The Agent continues sending batches of messages to
the server until all queued messages have been delivered. Transmission rules are re-executed after each
batch of messages is transmitted so that if a high priority messages gets queued during a transmission, it
jumps to the front of the queue.

Messages that exceed the upload threshold are broken into multiple smaller message parts. Each message
part can be uploaded separately, resulting in the gradual upload of the message over several
synchronizations. The complete message arrives at its destination once all of its message parts have arrived.

The incremental upload size is an approximation. The actual upload size depends on many factors beyond
the size of the message.

See also
● ias_MaxUploadSize in “Predefined client message store properties” on page 718

-lp qaagent option

Specifies the Listener port.

Syntax
qaagent -lp number ...

Default
5001

QAnywhere Agent utilities reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 681

Remarks
The port number on which the Listener listens for UDP notifications from the MobiLink server.
Notifications are used to inform the QAnywhere Agent that a message is waiting. The UDP port is also
used by the QAnywhere Agent to send control commands to the Listener.

See also
● “Scenario for messaging with push notifications” on page 6
● “-push qaagent option” on page 688

-mn qaagent option

Specifies a new password for the MobiLink user.

Syntax
qaagent -mp password ...

Default
None

Remarks
Use to change the password.

See also
● “MobiLink users” [MobiLink - Client Administration]
● “-mp qaagent option” on page 682
● “-mu qaagent option” on page 683

-mp qaagent option

Specifies the MobiLink password for the MobiLink user.

Syntax
qaagent -mp password ...

Default
None

Remarks
If the MobiLink server requires user authentication, use -mp to supply the MobiLink password.

QAnywhere reference

682 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “MobiLink users” [MobiLink - Client Administration]
● “-mu qaagent option” on page 683

-mu qaagent option

Specifies the MobiLink user name.

Syntax
qaagent -mu username ...

Default
The client message store ID

Remarks
The MobiLink user name is used for authentication with the MobiLink server.

If you specify a user name that does not exist, it is created for you.

All MobiLink user names must be registered in the server message store. See “Registering QAnywhere
client user names” on page 30.

See also
● “MobiLink users” [MobiLink - Client Administration]
● “-id qaagent option” on page 679
● “-mp qaagent option” on page 682
● “Remote IDs” [MobiLink - Client Administration]

-o qaagent option

Sends output to the specified log file.

Syntax
qaagent -o logfile ...

Default
None

Remarks
The QAnywhere Agent logs output to the file name that you specify. If the file already exists, new log
information is appended to the file. The SQL Anywhere synchronization client (dbmlsync) logs output to
a file with the same name, but including the suffix _sync. The Listener utility (dblsn) logs output to a file
with the same name, but including the suffix _lsn.

QAnywhere Agent utilities reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 683

For example, if you specify the log file c:\tmp\mylog.out, then qaagent logs to c:\tmp\mylog.out,
dbmlsync logs to c:\tmp\mylog_sync.out, and dblsn logs to c:\tmp\mylog_lsn.out.

See also
● “-ot qaagent option” on page 685
● “-on qaagent option” on page 684
● “-os qaagent option” on page 684
● “-v qaagent option” on page 694

-on qaagent option

Specifies a maximum size for the QAnywhere Agent message log file, after which the file is renamed
with the extension .old and a new file is started.

Syntax
qaagent -on size [k | m] ...

Default
None

Remarks
The size is the maximum file size for the message log, in bytes. Use the suffix k or m to specify units of
kilobytes or megabytes, respectively. The minimum size limit is 10k.

When the log file reaches the specified size, the QAnywhere Agent renames the output file with the
extension .old, and starts a new one with the original name.

Notes
If the .old file already exists, it is overwritten. To avoid losing old log files, use the -os option instead.

This option cannot be used with the -os option.

See also
● “-o qaagent option” on page 683
● “-ot qaagent option” on page 685
● “-os qaagent option” on page 684
● “-v qaagent option” on page 694

-os qaagent option

Specifies a maximum size for the QAnywhere Agent message log file, after which a new log file with a
new name is created and used.

QAnywhere reference

684 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
qaagent -os size [k | m] ...

Default
None

Remarks
The size is the maximum file size for logging output messages. The default units is bytes. Use the suffix k
or m to specify units of kilobytes or megabytes, respectively. The minimum size limit is 10k.

Before the QAnywhere Agent logs output messages to a file, it checks the current file size. If the log
message makes the file size exceed the specified size, the QAnywhere Agent renames the message log file
to yymmddxx.mls. In this instance, xx are sequential characters ranging from 00 to 99, and yymmdd
represents the current year, month, and day.

You can use this option to prune old message log files to free up disk space. The latest output is always
appended to the file specified by -o or -ot.

Note
This option cannot be used with the -on option.

See also
● “-o qaagent option” on page 683
● “-ot qaagent option” on page 685
● “-on qaagent option” on page 684
● “-v qaagent option” on page 694

-ot qaagent option

Truncates the log file and appends output messages to it.

Syntax
qaagent -ot logfile ...

Default
None

Remarks
The QAnywhere Agent logs output to the file name that you specify. If the file exists, it is first truncated
to a size of 0. The SQL Anywhere synchronization client (dbmlsync) logs output to a file with the same
name, but including the suffix _sync. The Listener utility (dblsn) logs output to a file with the same name,
but including the suffix _lsn.

For example, if you specify the log file c:\tmp\mylog.out, then qaagent logs to c:\tmp\mylog.out,
dbmlsync logs to c:\tmp\mylog_sync.out, and dblsn logs to c:\tmp\mylog_lsn.out.

QAnywhere Agent utilities reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 685

See also
● “-o qaagent option” on page 683
● “-on qaagent option” on page 684
● “-os qaagent option” on page 684
● “-v qaagent option” on page 694

-pc qaagent option

Maintains a persistent connection to the MobiLink server between synchronizations.

Syntax
qaagent -pc { + | - } ...

Default
-pc-

Remarks
Enabling persistent connections (-pc+) is useful when network coverage is good and there is heavy
message traffic over QAnywhere. In this scenario, you can reduce the network overhead of setting up and
taking down a TCP/IP connection every time a message transmission occurs.

Disabling persistent connections (-pc-) is useful in the following scenarios when the client device has a
public IP address and is reachable by UDP or SMS:

● The client device is using dial-up networking and connection time charges are an issue.
● There is light message traffic over QAnywhere. Persistent TCP/IP connections consume network

server resources, and so could have an impact on scalability.
● The client device network coverage is unreliable. You can use the automatic policy to transmit

messages when connection is possible. Trying to maintain persistent connections in this environment
is not useful and can waste CPU resources.

See also
● “-push qaagent option” on page 688
● “-pc+ dbmlsync option” [MobiLink - Client Administration]

-policy qaagent option

Specifies a policy that determines when message transmission occurs.

Syntax
qaagent -policy policy-type ...

policy-type: ondemand | scheduled[interval-in-seconds] | automatic | rules-file

QAnywhere reference

686 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Defaults
● The default policy type is automatic.
● The default interval for scheduled policies is 900 seconds (15 minutes).

Remarks
QAnywhere uses a policy to determine when message transmission occurs. The policy-type can be one of
the following values:

● ondemand Only transmit messages when the QAnywhere client application makes the appropriate
method call.

The QAManager PutMessage() method causes messages to be queued locally. These messages are not
transmitted to the server until the QAManager TriggerSendReceive() method is called. Similarly,
messages waiting on the server are not sent to the client until TriggerSendReceive() is called by the
client.

When using the on demand policy, the application is responsible for causing a message transmission
to occur when it receives a push notification from the server. A push notification causes a system
message to be delivered to the QAnywhere client. In your application, you may choose to respond to
this system message by calling TriggerSendReceive().

For an example, see “System queue” on page 59.

● scheduled When a schedule is specified, every n seconds the Agent performs message
transmission if any of the following conditions are met:

○ New messages were placed in the client message store since the previous time interval elapsed.

○ A message status change occurred since the previous time interval elapsed. This typically occurs
when a message is acknowledged by the application. For more information about
acknowledgement, see:

● .NET: “AcknowledgementMode enumeration” on page 301
● C++: “AcknowledgementMode class” on page 354
● Java: “AcknowledgementMode interface” on page 467

○ A push notification was received since the previous time interval elapsed.

○ A network status change notification was received since the previous time interval elapsed.

○ Push notifications are disabled.

You can call the trigger send/receive method to override the time interval. It forces message
transmission to occur before the time interval elapses. See:

○ .NET: “TriggerSendReceive method” on page 264
○ C++: “triggerSendReceive method” on page 424
○ Java: “triggerSendReceive method” on page 545
○ SQL: “ml_qa_triggersendreceive” on page 656

QAnywhere Agent utilities reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 687

● automatic Transmit messages when one of the events described below occurs.

The QAnywhere Agent attempts to keep message queues as current as possible. Any of the following
events cause messages queued on the client to be delivered to the server and messages queued on the
server to be delivered to the client:

○ Invoking PutMessage().

○ Invoking TriggerSendReceive().

○ A push notification.

For information about notifications, see “Scenario for messaging with push
notifications” on page 6.

○ A message status change on the client. For example, a status change occurs when an application
retrieves a message from a local queue which causes the message status to change from pending to
received.

● rules-file Specifies a client transmission rules file. The transmission rules file can indicate a more
complicated set of rules to determine when messages are transmitted.

See “Client transmission rules” on page 740.

See also
● “Determining when message transmission should occur on the client” on page 46
● “Scenario for messaging with push notifications” on page 6

-push qaagent option

Specifies whether push notifications are enabled.

Syntax
qaagent -push mode ...

mode : none | connected | disconnected | lwpoll

Default
connected

Options

Mode Description

none Push notifications are disabled for this agent. The Listener (dblsn) is not started.

QAnywhere reference

688 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Mode Description

connected Push notifications are enabled for this agent over TCP/IP with persistent connec-
tion. The Listener (dblsn) is started by qaagent and attempts to maintain a persistent
connection to the MobiLink server. This mode is useful when the client device does
not have a public IP address or when the MobiLink server is behind a firewall that
does not allow UDP messages out. This is the default.

disconnected Push notifications are enabled for this agent over UDP without a persistent connec-
tion. The Listener (dblsn) is started by qaagent but does not maintain a persistent
connection to the MobiLink server. Instead, a UDP listener receives push notifica-
tions from MobiLink. This mode is useful in the following scenarios when the cli-
ent device has a public IP address and is reachable by UDP or SMS:

● The client device is using dial-up networking and connection time charges are
an issue.

● There is light message traffic over QAnywhere. Persistent TCP/IP connections
consume network server resources, and so could have an impact on scalability.

● The client device network coverage is unreliable. You can use the automatic pol-
icy to transmit messages when connection is possible. Trying to maintain persis-
tent connections in this environment is not useful and can waste CPU resources.

lwpoll Push notifications are enabled for this agent using light weight polling. The poll pe-
riod for the light weight poll can be adjusted by including the desired interval in
seconds in square brackets following lwpoll. For example, -push lwpoll[5]
sets a QAnywhere agent to use light weight polling with an interval of 5 seconds
between polls. If no interval is given, the default period is 60 seconds.

Clients using light weight polling in a secure environment do not need to register a
MobiLink user for the Listener, as required by other push notification modes.

Remarks
If you do not want to use notifications, set this option to none. You then do not have to deploy the
dblsn.exe executable with your clients.

For a description of QAnywhere without notifications, see “Simple messaging scenario” on page 5.

If you are using UDP, you cannot use push notifications in disconnected mode with ActiveSync due to the
limitations of the UDP implementation of ActiveSync.

See also
● “Using push notifications” on page 32
● “-pc qaagent option” on page 686
● “Starting the QAnywhere agent” on page 44
● “Notifications of push notification” on page 60
● “-lp qaagent option” on page 681

QAnywhere Agent utilities reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 689

-q qaagent option

Starts the QAnywhere Agent in quiet mode with the window minimized in the system tray.

Syntax
qaagent -q ...

Default
None

Remarks
When you start the QAnywhere Agent in quiet mode with -q, the main window is minimized to the
system tray. In addition, the database server for the message store is started with the -qi option.

See also
● “-qi qaagent option” on page 690

-qi qaagent option

Starts the QAnywhere Agent in quiet mode with the window completely hidden.

Syntax
qaagent -qi ...

Default
None

Remarks
When you start the QAnywhere Agent in quiet mode, on Windows desktop the main window is
minimized to the system tray, and on Windows Mobile the main window is hidden. In addition, the
database server for the message store is started with the -qi option.

Quiet mode is useful for some Windows Mobile applications because it prevents an application from
being closed when Windows Mobile reaches its limit of 32 concurrent processes. Quiet mode allows the
QAnywhere Agent to run like a service.

When in -qi quiet mode, you can only stop the QAnywhere Agent by typing qastop.

See also
● “qastop utility” on page 717
● “-q qaagent option” on page 690

-si qaagent option

QAnywhere reference

690 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Initializes the database for use as a client message store.

Syntax
qaagent -c "connection-string" -si ...

Default
None. You only use this option once, to initialize the client message store.

Remarks
Before using this option, you must create a SQL Anywhere database. When you use -si, the QAnywhere
Agent initializes the database with database objects such as QAnywhere system tables; it then exits
immediately.

When you run -si, you must specify a connection string with the -c option that indicates which database to
initialize. The connection string specified in the -c option should also specify a user ID with DBA
privileges. If you do not specify a user ID and password, the default user DBA with password SQL is used.

The -si option creates a database user named ml_qa_user and password qanywhere for the client message
store. The user called ml_qa_user has permissions suitable for QAnywhere applications only. If you do
not change this database user name and password, then you do not need to specify the pwd or uid in the -c
option when you start qaagent. If you change either of them, then you must supply the uid and/or pwd in
the -c option on the qaagent command line.

Note
You should change the default passwords. To change them, use the GRANT statement. See “Changing a
password” [SQL Anywhere Server - Database Administration].

The -si option does not provide an ID for the client message store. You can assign an ID using the -id
option when you run -si or the next time you run qaagent; or, if you do not do that, qaagent, by default,
assigns the device name as the ID.

When a message store is created but is not set up with an ID, QAnywhere applications local to the
message store can send and receive messages, but cannot exchange messages with remote QAnywhere
applications. Once an ID is assigned, remote messaging may also occur.

The -si and -sil options of qaagent are mutually exclusive. You cannot run qaagent with -si on a database
that has been initialized with -sil.

See also
● “Setting up the client message store” on page 23
● “Creating a secure client message store” on page 117

Examples
The following command connects to a database called qaclient.db and initializes it as a QAnywhere client
message store. The QAnywhere Agent immediately exits when the initialization is complete.

qaagent -si -c "DBF=qaclient.db"

QAnywhere Agent utilities reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 691

-sil qaagent option

Initializes a SQL Anywhere database for local application-to-application messaging.

Syntax
qaagent -c "connection-string" -sil ...

Default
None. You only use this option once, to initialize the client message store.

Remarks
This option allows you to use a synchronization database for local-only messaging.

Note
It is not possible to use a synchronization database for QAnywhere remote messaging. For remote
QAnywhere messaging applications, the message store database must be dedicated to QAnywhere.

The -si and -sil options of qaagent are mutually exclusive. You cannot run qaagent with -sil on a database
that has been initialized with -si.

See also
● “-si qaagent option” on page 690

Example
Following is an example of a command to initialize a database for local-only messaging:

qaagent -c "dbf=qanywhere.db" -sil

-su qaagent option

Upgrades a client message store to the current version.

Syntax
qaagent -su -c "connection-string" ...

Remarks
This option is useful if you want to perform custom actions after the unload/reload and before the qaagent
upgrade. Use the -sur option if you are upgrading from a pre-10.0.0 message store and you want the
Agent to automatically perform the unload/reload step for you.

If you are upgrading from a pre-10.0.0 message store, you must first manually unload and reload the
message store.

This operation exits when the upgrade is complete.

This operation cannot be undone.

QAnywhere reference

692 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “-sur qaagent option” on page 693

Example
To upgrade from a version 9 database, first, unload and reload the database:

dbunload -q -c "UID=dba;PWD=sql;DBF=qanywhere.db" -ar

Next, run qaagent with the -su option:

qaagent -q -su -c "UID=dba;PWD=sql;DBF=qanywhere.db"

-sur qaagent option

Upgrades a client message store to the current version.

Syntax
qaagent -sur -c "connection-string" ...

Remarks
Specify the database to upgrade in the connection string. The -sur option automatically unloads the
message store, reloads it, and upgrades it.

Automatic unload/reload is not supported on Windows Mobile. For Windows Mobile, you must first
manually unload and reload the message store.

The unload/reload is necessary to upgrade message stores between major versions of the product. The unload/
reload can be done manually along with the -su option. For example, if you need to perform custom
actions after the reload and before the upgrade, use the -su option.

This operation exits when the upgrade is complete.

This operation cannot be undone.

See also
● “-su qaagent option” on page 692

Example
The following example unloads and reloads a version 9.0.2 SQL Anywhere database called
qanywhere.db, making it useful with QAnywhere version 12.

qaagent -q -sur -c "UID=dba;PWD=sql;DBF=qanywhere.db"

-sv qaagent option
Informs the agent to use the SQL Anywhere network database server as the database server instead of
using the personal database server.

QAnywhere Agent utilities reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 693

Syntax
qaagent -sv -c "connection-string" ...

Remarks
By default, the qaagent connects to the personal database server using the dbeng12 application. When -sv
is specified, the qaagent connects to the network database server using the dbsrv12 application.

See also
● “The SQL Anywhere database server” [SQL Anywhere Server - Database Administration]

-v qaagent option

Allows you to specify what information is logged to the QAnywhere Agent message log file and
displayed in the QAnywhere Agent messages window.

Syntax
qaagent -v levels ...

Default
Minimal verbosity

Remarks
The -v option affects the message log files and messages window. You only have a message log file if you
specify -o or -ot on the qaagent command line.

A high level of verbosity may affect performance and should normally be used in the development phase
only.

If you specify -v alone, a minimal amount of information is logged.

The values of levels are as follows. You can use one or more of these options at once; for example, -vlm.

● + Turn on all logging options.

● l Show all MobiLink Listener logging. This causes the MobiLink Listener (dblsn) to start with
verbosity level -v3. See the -v option in the “MobiLink Listener utility for Windows devices (dblsn)”
[MobiLink - Server-Initiated Synchronization].

● m Show all dbmlsync logging. This causes the SQL Anywhere synchronization client (dbmlsync)
to start with verbosity level -v+. See the dbmlsync “-v dbmlsync option” [MobiLink - Client
Administration].

● n Show all network status change notifications. the QAnywhere Agent receives these notifications
from the Listener utility.

QAnywhere reference

694 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● p Show all message push notifications. The QAnywhere Agent receives these notifications from the
Listener utility via the MobiLink server, which includes a MobiLink Notifier.

● q Show the SQL that is used to represent the transmission rules.

● s Show all the message synchronizations that are initialized by QAnywhere Agent.

See also
● “-o qaagent option” on page 683
● “-ot qaagent option” on page 685
● “-on qaagent option” on page 684
● “-os qaagent option” on page 684

-x qaagent option

Specify the network protocol and the protocol options for communication with the MobiLink server.

Syntax
qaagent -x protocol [(protocol-options;...) ...]

protocol: http, tcpip, https, tls

protocol-options: keyword=value

Remarks
For a complete list of protocol-options, see “MobiLink client network protocol options” [MobiLink -
Client Administration].

The -x option is required when the MobiLink server is not on the same device as the QAnywhere Agent.

You can specify -x multiple times. This allows you to set up failover to multiple MobiLink servers. When
you set up failover, the QAnywhere Agent attempts to connect to the MobiLink servers in the order in
which you enter them on the command line.

The QAnywhere Agent also has a Listener that receives notifications from the MobiLink server that
messages are available at the server for transmission to the client. This Listener only uses the first
MobiLink server that is specified, and does not fail over to others.

See also
● “MobiLink client network protocol options” [MobiLink - Client Administration]
● “Encrypting the communication stream” on page 118
● “Transport-layer security” [SQL Anywhere Server - Database Administration]
● “Setting up a failover mechanism” on page 36
● “-fd qaagent option” on page 678
● “-fr qaagent option” on page 678

QAnywhere Agent utilities reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 695

-xd qaagent option
Specify that the QAnywhere Agent should use dynamic addressing of the MobiLink server.

Syntax
qaagent -xd

Remarks
When you specify -xd, the QAnywhere Agent can determine the protocol and address of the MobiLink
server based on message store properties. This means that it can dynamically determine the address of a
single MobiLink server, where the server address is dependent on the current network that is active for the
device where the QAnywhere Agent is running.

The QAnywhere application must initialize message store properties that describe the communication
protocol and address of the MobiLink server, and establish a relationship with the currently active
network interface. As the mobile device switches between different networks, the QAnywhere Agent
detects which network is active and automatically adjusts the communication protocol and address of the
MobiLink server—without having to be restarted.

See also
● “Client message store properties” on page 26

Example
The following example sets properties so that the appropriate MobiLink address is used based on the type
of network the device is on. For example, if the device is on a LAN the appropriate LAN address is used.

QAManager mgr;
...
mgr.SetStringStoreProperty("LAN.CommunicationAddress",
"host=1.2.3.4;port=10997");
mgr.SetStringStoreProperty("LAN.CommunicationType", "tcpip");
mgr.SetStringStoreProperty("WAN.CommunicationAddress",
"host=5.6.7.8;port=7777");
mgr.SetStringStoreProperty("WAN.CommunicationType", "tcpip");
mgr.SetStringStoreProperty("EL3C589 Ethernet Adapter.type", "LAN");
mgr.SetStringStoreProperty("Acme Wireless Adapter.type", "WAN");

qauagent utility
Sends and receives messages for all QAnywhere applications on a single client device. This utility should
only be used when the client message store is an UltraLite database.

Note
The dbmlsync utility, which is designed to synchronize SQL Anywhere message stores, does not support
UltraLite message stores.

Syntax
qauagent [option ...]

QAnywhere reference

696 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Option Description

@data Reads options from the specified environment variable or configura-
tion file. See “@data qauagent option” on page 698.

-c connection-string Specifies a connection string to the client message store. See “-c qau-
agent option” on page 699.

-cd seconds Specifies the delay time between retry attempts to the database. See “-
cd qauagent option” on page 700 on page 677.

-cr number-of-retries Specifies the number of retries to connect to the database after a con-
nection failure. See “-cr qauagent option” on page 701 on page 677.

-fd seconds Specifies the delay time between retry attempts to the primary server.
See “-fd qauagent option” on page 701.

-fr number-of-retries Specifies the number of retries to connect to the primary server after
a connection failure. See “-fr qauagent option” on page 701.

-id id Specifies the ID of the client message store that the QAnywhere Ultra-
Lite Agent is to connect to. See “-id qauagent option” on page 702.

-idl download-size Specifies the maximum size of a download to use during a message
transmission. See “-idl qauagent option” on page 703.

-iu upload-size Specifies the maximum size of an upload to use during a message
transmission. See “-iu qauagent option” on page 704.

-lp number Specifies the port on which the Listener listens for notifications from
the MobiLink server. The default is 5001. See “-lp qauagent op-
tion” on page 705.

-mn password Specifies a new password for the MobiLink user. See “-mn qauagent
option” on page 705.

-mp password Specifies the password for the MobiLink user. See “-mp qauagent op-
tion” on page 705.

-mu username Specifies the MobiLink user. See “-mp qauagent op-
tion” on page 705.

-o logfile Specifies a file to which to log output messages. See “-o qauagent op-
tion” on page 706.

-on size Specifies a maximum size for the QAnywhere UltraLite Agent mes-
sage log file, after which the file is renamed with the extension .old
and a new file is started. See “-on qauagent option” on page 707.

QAnywhere Agent utilities reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 697

Option Description

-os size Specifies a maximum size for the QAnywhere UltraLite Agent mes-
sage log file, after which a new log file with a new name is created
and used. See “-os qauagent option” on page 708.

-ot logfile Specifies a file to which to log output messages. See “-ot qauagent
option” on page 708.

-policy policy-type Specifies the transmission policy used by the QAnywhere UltraLite
Agent. See “-policy qauagent option” on page 709.

-push mode Enables or disables push notifications. The default is enabled. See “-
push qauagent option” on page 711.

-q Starts the QAnywhere UltraLite Agent in quiet mode with the win-
dow minimized in the system tray. See “-q qauagent op-
tion” on page 712.

-qi Starts the QAnywhere UltraLite Agent in quiet mode with the win-
dow completely hidden. See “-qi qauagent option” on page 712.

-si Initializes the database for use as a client message store. See “-si qau-
agent option” on page 713.

-su Upgrades a client message store to the current version without run-
ning dbunload/reload. See “-su qauagent option” on page 714.

-v [levels] Specifies a level of verbosity. See “-v qauagent op-
tion” on page 714.

-wc name Specifies the window class name that the QAnywhere UltraLite
Agent is to start. See also “qastop utility” on page 717.

-x { http|tcpip|tls|https }
[(keyword=value;...)]

Specifies protocol options for communication with the MobiLink serv-
er. See “-x qauagent option” on page 715.

-xd Specifies that the QAnywhere UltraLite Agent should use dynamic ad-
dressing of the MobiLink server. See “-xd qauagent op-
tion” on page 716.

See also
● “Starting the QAnywhere agent” on page 44

@data qauagent option

Reads options from the specified environment variable or configuration file.

QAnywhere reference

698 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
qauagent @{ filename | environment-variable } ...

Remarks
With this option, you can put command line options in an environment variable or configuration file. If
both exist with the name you specify, the environment variable is used.

See “Using configuration files” [SQL Anywhere Server - Database Administration].

If you want to protect passwords or other information in the configuration file, you can use the File
Hiding utility to obfuscate the contents of the configuration file. See “File Hiding utility (dbfhide)” [SQL
Anywhere Server - Database Administration].

This option is useful for Windows Mobile because command lines in shortcuts are limited to 256 characters.

Sybase Central equivalent
The QAnywhere 12 plug-in to Sybase Central has a task called Create An Agent Command File. When
you choose it, you are prompted to enter a file name and then a Properties window appears that helps you
enter the command information. The file that is produced has a .qaa extension. The .qaa file extension is a
Sybase Central convention; this file is the same as what you would create for the @data option. You can
use the command file created by Sybase Central as your @data configuration file.

-c qauagent option

Specifies a string to connect to the client message store.

Syntax
qauagent -c connection-string ...

Defaults

Connection parameter Default value

uid ml_qa_user

pwd qanywhere

Remarks
The connection string must specify connection parameters in the form keyword=value, separated by
semicolons, with no spaces between parameters.

DSNs are not typically used on client devices. ODBC is not used by qauagent.

The following are some of the connection parameters you may need to use:

QAnywhere Agent utilities reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 699

● dbf=filename Connect to a message store with the specified file name. See “UltraLite DBF
connection parameter” [UltraLite - Database Management and Reference].

● dbn=database-name Connect to a client message store that is already running by specifying a
database name rather than a database file. See “UltraLite DBN connection parameter” [UltraLite -
Database Management and Reference].

● uid=user Specify a database user ID to connect to the client message store. This parameter is
required if you change the default UID or PWD connection parameters. See “UltraLite UID
connection parameter” [UltraLite - Database Management and Reference].

● pwd=password Specify the password for the database user ID. This is required if you change the
default UID or PWD connection parameters. See “UltraLite PWD connection parameter” [UltraLite -
Database Management and Reference].

● dbkey=key Specify the encryption key required to access the database. See “UltraLite DBKEY
connection parameter” [UltraLite - Database Management and Reference].

See also
● “Connection parameters” [SQL Anywhere Server - Database Administration]
● “SQL Anywhere database connections” [SQL Anywhere Server - Database Administration]

Example
qauagent -id Device1 -c "DBF=qanyclient.db" -x tcpip(host=hostname) -policy
automatic

-cd qauagent option

When specified in conjunction with the -cr option, this option specifies the delay between attempts to
connect to the database.

Syntax
qauagent -cd seconds ...

Remarks
The default is a 10 second delay between retries.

If all retries fail, the QAnywhere Agent displays an error and waits to be shut down.

If a database connection fails during operation, the QAnywhere Agent goes through termination steps,
including finalizing connections and terminating threads and external processes, and then re-starts.

You must use this option with the qauagent -cr option. The -cr option specifies how many times to retry
the connection to the database, and the -cd option specifies the delay between retry attempts.

QAnywhere reference

700 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

-cr qauagent option

Specifies the number of times that the QAnywhere UltraLite Agent should retry the connection to the
database.

Syntax
qauagent -cr number-of-retries ...

Remarks
The default number of retries is 3, with a 10 second delay between retries.

-fd qauagent option

When specified in conjunction with the -fr option, this option specifies the delay between attempts to
connect to the MobiLink server.

Syntax
qauagent -fd seconds ...

Default
● If you specify -fr and do not specify -fd, the delay is 0 (no delay between retry attempts).
● If you do not specify -fr, the default is no retry attempts.

Remarks
You must use this option with the qauagent -fr option. The -fr option specifies how many times to retry
the connection to the primary server, and the -fd option specifies the delay between retry attempts.

This option is typically used when you specify failover MobiLink servers with the -x option. By default,
when you set up a failover MobiLink server, the QAnywhere UltraLite Agent tries an alternate server
immediately upon a failure to reach the primary server. You can use the -fr option to cause the
QAnywhere UltraLite Agent to try the primary server again before going to the alternate server, and you
can use the -fd option to specify the amount of time between retries of the primary server.

It is recommended that you set this option to 10 seconds or less.

You cannot use this option with the qauagent -xd option.

See also
● “-fr qauagent option” on page 701
● “-x qauagent option” on page 715
● “Setting up a failover mechanism” on page 36

-fr qauagent option

QAnywhere Agent utilities reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 701

Specifies the number of times that the QAnywhere UltraLite Agent should retry the connection to the
primary MobiLink server.

Syntax
qauagent -fr number-of-retries ...

Default
0 - the QAnywhere UltraLite Agent does not attempt to retry the primary MobiLink server.

Remarks
By default, if the QAnywhere UltraLite Agent is not able to connect to the MobiLink server, there is no
error and messages are not sent. This option specifies that the QAnywhere UltraLite Agent should retry
the connection to the MobiLink server, and specifies the number of times that it should retry before trying
an alternate server or issuing an error if you have not specified an alternate server.

This option is typically used when you specify failover MobiLink servers with the -x option. By default
when you set up a failover MobiLink server, the QAnywhere UltraLite Agent tries an alternate server
immediately upon a failure to reach the primary server. This option causes the QAnywhere UltraLite
Agent to try the primary server again before going to the alternate server.

In addition, you can use the -fd option to specify the amount of time between retries of the primary server.

You cannot use this option with the qauagent -xd option.

See also
● “-fd qauagent option” on page 701
● “-x qauagent option” on page 715
● “Setting up a failover mechanism” on page 36

-id qauagent option

Specifies the ID of the client message store that the QAnywhere UltraLite Agent is to connect to.

Syntax
qauagent -id id ...

Default
The default value of the ID is the device name on which the Agent is running. You must use the -id option
when the device names are not unique.

Remarks
Each client message store is represented by a unique sequence of characters called the message store ID.
If you do not supply an ID when you first connect to the message store, the default is the device name. On
subsequent connections, you must always specify the same message store ID with the -id option.

QAnywhere reference

702 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The message store ID corresponds to the MobiLink remote ID. It is required because in all MobiLink
applications, each remote database must have a unique ID. See “Creating and registering MobiLink users”
[MobiLink - Client Administration].

If you are starting a second instance of the qauagent on a device, the -id option must be used to specify a
unique message store ID.

You cannot use the following characters in an ID:

● double quotes

● control characters

● double backslashes

The following additional constraints apply:

● The ID has a limit of 120 characters.

● You can use a single backslash only if it is used as an escape character.

● If your client message store database has the quoted_identifier database option set to Off, then your ID
can only include alphanumeric characters and underscores, at signs, pounds, and dollar signs.

See also
● “Introduction to MobiLink users” [MobiLink - Client Administration]
● “Setting up the client message store” on page 23

-idl qauagent option

Specifies the incremental download size.

Syntax
qauagent -idl download-size [K | M] ...

Default
-1 - no maximum download size.

Remarks
This option specifies the size in bytes of the download part of a message transmission. Use the suffix K or
M to specify units of kilobytes or megabytes, respectively.

When the QAnywhere UltraLite Agent starts, it assigns the value specified by this option to the
ias_MaxDownloadSize message store property. This message store property defines an upper bound on
the size of a download. When a transmission is triggered, the server tags messages for delivery to the
client until the total size of all messages reaches the limit set with this option. The server continues
sending batches of messages until all queued messages have been delivered. Transmission rules are re-

QAnywhere Agent utilities reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 703

executed after each batch of messages is transmitted so that if a high priority messages gets queued during
a transmission, it jumps to the front of the queue.

Messages queued for delivery that exceed the download threshold are broken into multiple smaller
message parts. Each message part can be downloaded separately, resulting in the gradual download of the
message over several synchronizations. The complete message arrives at its destination once all of its
message parts have arrived.

The incremental download size is an approximation. The actual download size depends on many factors
beyond the size of the message.

See also
● ias_MaxDownloadSize in “Predefined client message store properties” on page 718

-iu qauagent option

Specifies the incremental upload size.

Syntax
qauagent -iu upload-size [K | M] ...

Default
256K

Remarks
This option specifies the size in bytes of the upload part of a message transmission. Use the suffix K or M
to specify units of kilobytes or megabytes, respectively.

When the QAnywhere UltraLite Agent starts, it assigns the value specified by this option to the
ias_MaxUploadSize message store property. This message store property defines an upper bound on the
size of an upload. When a transmission is triggered, the Agent tags messages for delivery to the server
until the total size of all messages reaches the limit set with this option. When the limit is reached, these
messages are sent to the server. As long as the messages arrive at the server and an acknowledgement is
successfully sent from the server to the client, these messages are considered to be successfully delivered,
even if the download phase of the transmission fails. The Agent continues sending batches of messages to
the server until all queued messages have been delivered. Transmission rules are re-executed after each
batch of messages is transmitted so that if a high priority messages gets queued during a transmission, it
jumps to the front of the queue.

Messages that exceed the upload threshold are broken into multiple smaller message parts. Each message
part can be uploaded separately, resulting in the gradual upload of the message over several
synchronizations. The complete message arrives at its destination once all of its message parts have arrived.

The incremental upload size is an approximation. The actual upload size depends on many factors beyond
the size of the message.

QAnywhere reference

704 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● ias_MaxUploadSize in “Predefined client message store properties” on page 718

-lp qauagent option

Specifies the Listener port.

Syntax
qauagent -lp number ...

Default
5001

Remarks
The port number on which the Listener listens for UDP notifications from the MobiLink server.
Notifications are used to inform the QAnywhere UltraLite Agent that a message is waiting. The UDP port
is also used by the QAnywhere UltraLite Agent to send control commands to the Listener.

See also
● “Scenario for messaging with push notifications” on page 6
● “-push qauagent option” on page 711

-mn qauagent option

Specifies a new password for the MobiLink user.

Syntax
qauagent -mp password ...

Default
None

Remarks
Use to change the password.

See also
● “MobiLink users” [MobiLink - Client Administration]
● “-mp qauagent option” on page 705
● “-mu qauagent option” on page 706

-mp qauagent option

QAnywhere Agent utilities reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 705

Specifies the MobiLink password for the MobiLink user.

Syntax
qauagent -mp password ...

Default
None

Remarks
If the MobiLink server requires user authentication, use -mp to supply the MobiLink password.

See also
● “MobiLink users” [MobiLink - Client Administration]
● “-mu qauagent option” on page 706

-mu qauagent option

Specifies the MobiLink user name.

Syntax
qauagent -mu username ...

Default
The client message store ID

Remarks
The MobiLink user name is used for authentication with the MobiLink server.

If you specify a user name that does not exist, it is created for you.

All MobiLink user names must be registered in the server message store. See “Registering QAnywhere
client user names” on page 30.

See also
● “MobiLink users” [MobiLink - Client Administration]
● “-id qauagent option” on page 702
● “-mp qauagent option” on page 705
● “Remote IDs” [MobiLink - Client Administration]

-o qauagent option

Sends output to the specified log file.

QAnywhere reference

706 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
qauagent -o logfile ...

Default
None

Remarks
The QAnywhere UltraLite Agent logs output to the file name that you specify. If the file already exists,
new log information is appended to the file. The Listener utility (dblsn) logs output to a file with the same
name, but including the suffix _lsn.

For example, if you specify the log file c:\tmp\mylog.out, then qauagent logs to c:\tmp\mylog.out, and
dblsn logs to c:\tmp\mylog_lsn.out.

See also
● “-ot qauagent option” on page 708
● “-on qauagent option” on page 707
● “-os qauagent option” on page 708
● “-v qauagent option” on page 714

-on qauagent option

Specifies a maximum size for the QAnywhere UltraLite Agent message log file, after which the file is
renamed with the extension .old and a new file is started.

Syntax
qauagent -on size [k | m] ...

Default
None

Remarks
The size is the maximum file size for the message log, in bytes. Use the suffix k or m to specify units of
kilobytes or megabytes, respectively. The minimum size limit is 10k.

When the log file reaches the specified size, the QAnywhere UltraLite Agent renames the output file with
the extension .old, and starts a new one with the original name.

Notes
If the .old file already exists, it is overwritten. To avoid losing old log files, use the -os option instead.

This option cannot be used with the -os option.

QAnywhere Agent utilities reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 707

See also
● “-o qauagent option” on page 706
● “-ot qauagent option” on page 708
● “-os qauagent option” on page 708
● “-v qauagent option” on page 714

-os qauagent option

Specifies a maximum size for the QAnywhere UltraLite Agent message log file, after which a new log file
with a new name is created and used.

Syntax
qauagent -os size [k | m] ...

Default
None

Remarks
The size is the maximum file size for logging output messages. The default units is bytes. Use the suffix k
or m to specify units of kilobytes or megabytes, respectively. The minimum size limit is 10k.

Before the QAnywhere UltraLite Agent logs output messages to a file, it checks the current file size. If the
log message makes the file size exceed the specified size, the QAnywhere UltraLite Agent renames the
message log file to yymmddxx.mls. In this instance, xx are sequential characters ranging from 00 to 99,
and yymmdd represents the current year, month, and day.

You can use this option to prune old message log files to free up disk space. The latest output is always
appended to the file specified by -o or -ot.

Note
This option cannot be used with the -on option.

See also
● “-o qauagent option” on page 706
● “-ot qauagent option” on page 708
● “-on qauagent option” on page 707
● “-v qauagent option” on page 714

-ot qauagent option

Truncates the log file and appends output messages to it.

Syntax
qauagent -ot logfile ...

QAnywhere reference

708 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Default
None

Remarks
The QAnywhere UltraLite Agent logs output to the file name that you specify. If the file exists, it is first
truncated to a size of 0. The Listener utility (dblsn) logs output to a file with the same name, but including
the suffix _lsn.

For example, if you specify the log file c:\tmp\mylog.out, then qauagent logs to c:\tmp\mylog.out, and
dblsn logs to c:\tmp\mylog_lsn.out.

See also
● “-o qauagent option” on page 706
● “-on qauagent option” on page 707
● “-os qauagent option” on page 708
● “-v qauagent option” on page 714

-policy qauagent option

Specifies a policy that determines when message transmission occurs.

Syntax
qauagent -policy policy-type ...

policy-type: ondemand | scheduled[interval-in-seconds] | automatic | rules-file

Defaults
● The default policy type is automatic.
● The default interval for scheduled policies is 900 seconds (15 minutes).

Remarks
QAnywhere uses a policy to determine when message transmission occurs. The policy-type can be one of
the following values:

● ondemand Only transmit messages when the QAnywhere client application makes the appropriate
method call.

The QAManager PutMessage() method causes messages to be queued locally. These messages are not
transmitted to the server until the QAManager TriggerSendReceive() method is called. Similarly,
messages waiting on the server are not sent to the client until TriggerSendReceive() is called by the
client.

When using the on demand policy, the application is responsible for causing a message transmission
to occur when it receives a push notification from the server. A push notification causes a system
message to be delivered to the QAnywhere client. In your application, you may choose to respond to
this system message by calling TriggerSendReceive().

QAnywhere Agent utilities reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 709

For an example, see “System queue” on page 59.

● scheduled Transmit messages at a specified interval. The default value is 900 seconds (15 minutes).

When a schedule is specified, every n seconds the Agent performs message transmission if any of the
following conditions are met:

○ New messages were placed in the client message store since the previous time interval elapsed.

○ A message status change occurred since the previous time interval elapsed. This typically occurs
when a message is acknowledged by the application.

○ A push notification was received since the previous time interval elapsed.

○ A network status change notification was received since the previous time interval elapsed.

○ Push notifications are disabled.

You can call the trigger send/receive method to override the time interval. It forces message
transmission to occur before the time interval elapses.

● automatic Transmit messages when one of the events described below occurs.

The QAnywhere UltraLite Agent attempts to keep message queues as current as possible. Any of the
following events cause messages queued on the client to be delivered to the server and messages
queued on the server to be delivered to the client:

○ Invoking PutMessage().

○ Invoking TriggerSendReceive().

○ A push notification.

For information about notifications, see “Scenario for messaging with push
notifications” on page 6.

○ A message status change on the client. For example, a status change occurs when an application
retrieves a message from a local queue which causes the message status to change from pending to
received.

● rules-file Specifies a client transmission rules file. The transmission rules file can indicate a more
complicated set of rules to determine when messages are transmitted.

See “Client transmission rules” on page 740.

See also
● “Determining when message transmission should occur on the client” on page 46
● “Scenario for messaging with push notifications” on page 6

QAnywhere reference

710 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

-push qauagent option

Specifies whether push notifications are enabled.

Syntax
qauagent -push mode ...

mode : none | connected | disconnected | lwpoll

Default
connected

Options

Mode Description

none Push notifications are disabled for this agent. The Listener (dblsn) is not started.

connected Push notifications are enabled for this agent over TCP/IP with persistent connec-
tion. The Listener (dblsn) is started by qauagent and attempts to maintain a persis-
tent connection to the MobiLink server. This mode is useful when the client device
does not have a public IP address or when the MobiLink server is behind a firewall
that does not allow UDP messages out. This is the default.

disconnected Push notifications are enabled for this agent over UDP without a persistent connec-
tion. The Listener (dblsn) is started by qauagent but does not maintain a persistent
connection to the MobiLink server. Instead, a UDP listener receives push notifica-
tions from MobiLink. This mode is useful in the following scenarios when the cli-
ent device has a public IP address and is reachable by UDP or SMS:

● The client device is using dial-up networking and connection time charges are
an issue.

● There is light message traffic over QAnywhere. Persistent TCP/IP connections
consume network server resources, and so could have an impact on scalability.

● The client device network coverage is unreliable. You can use the automatic pol-
icy to transmit messages when connection is possible. Trying to maintain persis-
tent connections in this environment is not useful and can waste CPU resources.

lwpoll Push notifications are enabled for this agent using light weight polling. The poll pe-
riod for the light weight poll can be adjusted by including the desired interval in
seconds in square brackets following lwpoll. For example, -push lwpoll[5]
sets a QAnywhere agent to use light weight polling with an interval of 5 seconds
between polls. If no interval is given, the default period is 60 seconds.

Clients using light weight polling in a secure environment do not need to register a
MobiLink user for the Listener, as required by other push notification modes.

QAnywhere Agent utilities reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 711

Remarks
If you do not want to use notifications, set this option to none. You then do not have to deploy the
dblsn.exe executable with your clients.

For a description of QAnywhere without notifications, see “Simple messaging scenario” on page 5.

If you are using UDP, you cannot use push notifications in disconnected mode with ActiveSync due to the
limitations of the UDP implementation of ActiveSync.

See also
● “Using push notifications” on page 32
● “Starting the QAnywhere agent” on page 44
● “Notifications of push notification” on page 60
● “-lp qauagent option” on page 705

-q qauagent option

Starts the QAnywhere UltraLite Agent in quiet mode with the window minimized in the system tray.

Syntax
qauagent -q ...

Default
None

Remarks
When you start the QAnywhere UltraLite Agent in quiet mode with -q, the main window is minimized to
the system tray. In addition, the database server for the message store is started with the -qi option.

See also
● “-qi qauagent option” on page 712

-qi qauagent option

Starts the QAnywhere UltraLite Agent in quiet mode with the window completely hidden.

Syntax
qauagent -qi ...

Default
None

QAnywhere reference

712 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
When you start the QAnywhere UltraLite Agent in quiet mode, on Windows desktop the main window is
minimized to the system tray, and on Windows Mobile the main window is hidden. In addition, the
database server for the message store is started with the -qi option.

Quiet mode is useful for some Windows Mobile applications because it prevents an application from
being closed when Windows Mobile reaches its limit of 32 concurrent processes. Quiet mode allows the
QAnywhere UltraLite Agent to run like a service.

When in -qi quiet mode, you can only stop the QAnywhere UltraLite Agent by typing qastop.

See also
● “qastop utility” on page 717
● “-q qauagent option” on page 712

-si qauagent option

Initializes the database for use as a client message store.

Syntax
qauagent -c "connection-string" -si ...

Default
None. You only use this option once, to initialize the client message store.

Remarks
Before using this option, you must create an UltraLite database. When you use -si, the QAnywhere
UltraLite Agent initializes the database with database objects such as QAnywhere system tables; it then
exits immediately.

When you run -si, you must specify a connection string with the -c option that indicates which database to
initialize. The connection string specified in the -c option should also specify a user ID with DBA
privileges. If you do not specify a user ID and password, the default user DBA with password SQL is used.

The -si option creates a database user named ml_qa_user and password qanywhere for the client message
store. The user called ml_qa_user has permissions suitable for QAnywhere applications only. If you do
not change this database user name and password, then you do not need to specify the pwd or uid in the -c
option when you start qauagent. If you change either of them, then you must supply the uid and/or pwd in
the -c option on the qauagent command line.

Note
You should change the default passwords. To change them, use the GRANT statement. See “Changing a
password” [SQL Anywhere Server - Database Administration].

QAnywhere Agent utilities reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 713

The -si option does not provide an ID for the client message store. You can assign an ID using the -id
option when you run -si or the next time you run qauagent; or, if you do not do that, qauagent, by default,
assigns the device name as the ID.

When a message store is created but is not set up with an ID, QAnywhere applications local to the
message store can send and receive messages, but cannot exchange messages with remote QAnywhere
applications. Once an ID is assigned, remote messaging may also occur.

See also
● “Setting up the client message store” on page 23
● “Creating a secure client message store” on page 117

Examples
The following command connects to a database called qaclient.db and initializes it as a QAnywhere client
message store. The QAnywhere UltraLite Agent immediately exits when the initialization is complete.

qauagent -si -c "DBF=qaclient.db"

-su qauagent option

Upgrades a client message store to the current version. If you are upgrading from a pre-10.0.0 message
store, you must first manually unload and reload the message store.

Syntax
qauagent -su -c "connection-string" ...

Remarks
This option is useful if you want to perform custom actions after the unload/reload and before the
qauagent upgrade. Use the -sur option if you are upgrading from a pre-10.0.0 message store and you want
the Agent to automatically perform the unload/reload step for you.

This operation exits when the upgrade is complete.

This operation cannot be undone.

Example
To upgrade from a version 9 database, first, unload and reload the database:

dbunload -q -c "UID=dba;PWD=sql;DBF=qanywhere.db" -ar

Next, run qauagent with the -su option:

qauagent -q -su -c "UID=dba;PWD=sql;DBF=qanywhere.db"

-v qauagent option

QAnywhere reference

714 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Allows you to specify what information is logged to the message log file and displayed in the QAnywhere
UltraLite Agent console.

Syntax
qauagent -v levels ...

Default
Minimal verbosity

Remarks
The -v option affects the log files and console. You only have a message log if you specify -o or -ot on the
qauagent command line.

A high level of verbosity may affect performance and should normally be used in the development phase
only.

If you specify -v alone, a minimal amount of information is logged.

The values of levels are as follows. You can use one or more of these options at once; for example, -vlm.

● + Turn on all logging options.

● l Show all MobiLink Listener logging. This causes the MobiLink Listener (dblsn) to start with
verbosity level -v3. See the -v option in the “MobiLink Listener utility for Windows devices (dblsn)”
[MobiLink - Server-Initiated Synchronization].

● m Show all synchronization logging.

● n Show all network status change notifications. the QAnywhere UltraLite Agent receives these
notifications from the Listener utility.

● p Show all message push notifications. The QAnywhere UltraLite Agent receives these
notifications from the Listener utility via the MobiLink server, which includes a MobiLink Notifier.

● q Show the SQL that is used to represent the transmission rules.

● s Show all the message synchronizations that are initialized by QAnywhere UltraLite Agent.

See also
● “-o qauagent option” on page 706
● “-ot qauagent option” on page 708
● “-on qauagent option” on page 707
● “-os qauagent option” on page 708

-x qauagent option

Specify the network protocol and the protocol options for communication with the MobiLink server.

QAnywhere Agent utilities reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 715

Syntax
qauagent -x protocol [(protocol-options;...) ...]

protocol: http, tcpip, https, tls

protocol-options: keyword=value

Remarks
For a complete list of protocol-options, see “MobiLink client network protocol options” [MobiLink -
Client Administration].

The -x option is required when the MobiLink server is not on the same device as the QAnywhere
UltraLite Agent.

You can specify -x multiple times. This allows you to set up failover to multiple MobiLink servers. When
you set up failover, the QAnywhere UltraLite Agent attempts to connect to the MobiLink servers in the
order in which you enter them on the command line.

The QAnywhere UltraLite Agent also has a Listener that receives notifications from the MobiLink server
that messages are available at the server for transmission to the client. This Listener only uses the first
MobiLink server that is specified, and does not fail over to others.

See also
● “MobiLink client network protocol options” [MobiLink - Client Administration]
● “Encrypting the communication stream” on page 118
● “Transport-layer security” [SQL Anywhere Server - Database Administration]
● “Setting up a failover mechanism” on page 36
● “-fd qauagent option” on page 701
● “-fr qauagent option” on page 701

-xd qauagent option

Specify that the QAnywhere UltraLite Agent should use dynamic addressing of the MobiLink server.

Syntax
qauagent -xd

Remarks
When you specify -xd, the QAnywhere UltraLite Agent can determine the protocol and address of the
MobiLink server based on message store properties. This means that it can dynamically determine the
address of a single MobiLink server, where the server address is dependent on the current network that is
active for the device where the QAnywhere UltraLite Agent is running.

The QAnywhere application must initialize message store properties that describe the communication
protocol and address of the MobiLink server, and establish a relationship with the currently active
network interface. As the mobile device switches between different networks, the QAnywhere UltraLite

QAnywhere reference

716 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Agent detects which network is active and automatically adjusts the communication protocol and address
of the MobiLink server—without having to be restarted.

See also
● “Client message store properties” on page 26

Example
The following example sets properties so that the appropriate MobiLink address is used based on the type
of network the device is on. For example, if the device is on a LAN the appropriate LAN address is used.

QAManager mgr;
...
mgr.SetStringStoreProperty("LAN.CommunicationAddress",
"host=1.2.3.4;port=10997");
mgr.SetStringStoreProperty("LAN.CommunicationType", "tcpip");
mgr.SetStringStoreProperty("WAN.CommunicationAddress",
"host=5.6.7.8;port=7777");
mgr.SetStringStoreProperty("WAN.CommunicationType", "tcpip");
mgr.SetStringStoreProperty("EL3C589 Ethernet Adapter.type", "LAN");
mgr.SetStringStoreProperty("Acme Wireless Adapter.type", "WAN");

qastop utility
Stops the QAnywhere Agent or QAnywhere UltraLite Agent when the agent is running in quiet mode.

Syntax
qastop [option ...]

Option Description

-id id Specifies the ID of the client message store that the QAnywhere
Agent or UltraLite Agent is to stop.

-wc name Specifies the window class name that the QAnywhere Agent or Ultra-
Lite Agent is to stop.

See also
● “-q qaagent option” on page 690
● “-q qauagent option” on page 712
● “Stopping the QAnywhere Agent” on page 45

QAnywhere properties
Client message store properties

The following sections provide information about client message store properties.

QAnywhere properties

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 717

Predefined client message store properties

Several client message store properties have been predefined for your convenience. The predefined
message store properties are:

● ias_Adapters A list of network adapters that can be used to connect to the MobiLink server. The
list is a string and is delimited by a vertical bar.

● ias_MaxDeliveryAttempts When defined, the maximum number of times that a message can be
received without being acknowledged before its status is set to UNRECEIVABLE. By default, this
property is not defined and is equivalent to a value of -1, which means that the client library continues
to attempt to deliver an unacknowledged message forever.

● ias_MaxDownloadSize The download increment size. By default, QAnywhere uses a maximum
download size of -1 which means there is no maximum. If a message originating from a server
connector or destination alias exceeds the download increment size specified, the message is broken
into smaller message parts and sent in separate downloads. This property is set by the qaagent -idl
option. See “-idl qaagent option” on page 680.

● ias_MaxUploadSize The upload increment size. By default, QAnywhere uploads messages in
increments of 256K. If a message exceeds the upload increment size specified, the message is broken
into smaller message parts and sent in separate uploads. This property is set by the qaagent -iu option.
See “-iu qaagent option” on page 681.

● ias_Network Information about the current network in use. This property can be read but should
not be set. ias_Network is a special property. It has several built-in attributes that provide information
regarding the current network that is being used by the device. The following attributes are
automatically set by QAnywhere:

○ ias_Network.Adapter The current name of the network card, if any. (The name of the network
card that is assigned to the Adapter attribute is displayed in the Agent window when the network
connection is established.)

○ ias_Network.RAS The current RAS entry name, if any.

○ ias_Network.IP The current IP address assigned to the device, if any.

○ ias_Network.MAC The current MAC address of the network card being used, if any.

● ias_RASNames String. A list of RAS entry names that can be used to connect to the MobiLink
server. The list is delimited by a vertical bar.

● ias_StoreID The message store ID.

● ias_StoreInitialized True if this message stores has successfully been initialized for QAnywhere
messaging; otherwise False.

See “-si qaagent option” on page 690.

QAnywhere reference

718 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● ias_StoreVersion The QAnywhere-defined version number of this message store.

For information about managing predefined message properties, see:

● C++ API: “MessageStoreProperties class” on page 363
● .NET API: “MessageProperties class” on page 179
● Java API: “MessageStoreProperties interface” on page 476
● SQL API: “Message store properties” on page 647

Custom client message store properties

QAnywhere allows you to define your own client message store properties using the QAnywhere C++,
Java, SQL or .NET APIs. These properties are shared between applications connected to the same
message store. They are also synchronized to the server message store so that they are available to server-
side transmission rules for this client.

Client message store property names are case insensitive. You can use a sequence of letters, digits, and
underscores, but the first character must be a letter. The following names are reserved and may not be
used as message store property names:

● NULL
● TRUE
● FALSE
● NOT
● AND
● OR
● BETWEEN
● LIKE
● IN
● IS
● ESCAPE (SQL Anywhere message stores only)
● Any name beginning with ias_

Using custom client message store property attributes

Client message store properties can have attributes that you define. An attribute is defined by appending a
dot after the property name followed by the attribute name. The main use of this feature is to be able to
use information about your network in your transmission rules.

Limited support is provided for property attributes when using UltraLite as a client message store.
UltraLite message stores only support the predefined ias_Network property.

Example (SQL Anywhere only)
The following is a simple example of how to set custom client message store property attributes. In this
example, the Object property has two attributes: Shape and Color. The value of the Shape attribute is
Round and the value of the Color attribute is Blue.

QAnywhere properties

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 719

// C++ example.
mgr->setStringStoreProperty("Object.Shape", "Round");
mgr->setStringStoreProperty("Object.Color", "Blue");
// C# example.
mgr.SetStoreStringProperty("Object.Shape", "Round");
mgr.SetStringStoreProperty("Object.Color", "Blue");
// Java example
mgr.setStringStoreProperty("Object.Shape", "Round");
mgr.setStringStoreProperty("Object.Color", "Blue");
-- SQL example
BEGIN
 CALL ml_qa_setstoreproperty('Object.Shape', 'Round');
 CALL ml_qa_setstoreproperty('Object.Color', 'Blue');
 COMMIT;
END

All client message store properties have a Type attribute that initially has no value. The value of the Type
attribute must be the name of another property. When setting the Type attribute of a property, the property
inherits the attributes of the property being assigned to it. In the following example, the Object property
inherits the attributes of the Circle property. Therefore, the value of Object.Shape is Round and the value
of Object.Color is Blue.

// C++ example
QAManager qa_manager;
qa_manager->setStoreStringProperty("Circle.Shape", "Round");
qa_manager->setStoreStringProperty("Circle.Color", "Blue");
qa_manager->setStoreStringProperty("Object.Type", "Circle");
// C# example
QAManager qa_manager;
qa_manager.SetStringStoreProperty("Circle.Shape", "Round");
qa_manager.SetStringStoreProperty("Circle.Color", "Blue");
qa_manager.SetStringStoreProperty("Object.Type", "Circle");
// Java example
QAManager qa_manager;
qa_manager.setStringStoreProperty("Circle.Shape", "Round");
qa_manager.setStringStoreProperty("Circle.Color", "Blue");
qa_manager.setStringStoreProperty("Object.Type", "Circle");
-- SQL example
BEGIN
 CALL ml_qa_setstoreproperty('Circle.Shape', 'Round');
 CALL ml_qa_setstoreproperty('Circle.Color', 'Blue');
 CALL ml_qa_setstoreproperty('Object.Type', 'Circle');
 COMMIT;
END

Example
The following C# example shows how you can use message store properties to provide information about
your network to your transmission rules.

Assume you have a Windows laptop that has the following network connectivity options: LAN, Wireless
LAN, and Wireless WAN. Access to the network via LAN is provided by a network card named My LAN
Card. Access to the network via Wireless LAN is provided by a network card named My Wireless LAN

QAnywhere reference

720 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Card. Access to the network via Wireless WAN is provided by a network card named My Wireless WAN
Card.

Assume you want to develop a messaging application that sends all messages to the server when
connected using LAN or Wireless LAN and only high priority messages when connected using Wireless
WAN. You define high priority messages as those whose priority is greater than or equal to 7.

First, find the names of your network adapters. The names of network adapters are fixed when the card is
plugged in and the driver is installed. To find the name of a particular network card, connect to the
network through that adapter, and then run qaagent with the -vn option. The QAnywhere Agent displays
the network adapter name, as follows:

"Listener thread received message '[netstat] network-adapter-name !...'

Next, define three client message store properties for each of the network types: LAN, WLAN, and
WWAN. Each of these properties are assigned a Cost attribute. The Cost attribute is a value between 1
and 3 and represents the cost incurred when using the network. A value of 1 represents the lowest cost.

QAManager qa_manager;
qa_manager.SetStoreProperty("LAN.Cost", "1");
qa_manager.SetStoreProperty("WLAN.Cost", "2");
qa_manager.SetStoreProperty("WWAN.Cost", "3");

Next, define three client message store properties, one for each network card that is used. The property
name must match the network card name. Assign the appropriate network classification to each property
by assigning the network type to the Type attribute. Each property therefore inherits the attributes of the
network types assigned to them.

QAManager qa_manager;
qa_manager.SetStoreProperty("My LAN Card.Type", "LAN");
qa_manager.SetStoreProperty("My Wireless LAN Card.Type", "WLAN");
qa_manager.SetStoreProperty("My Wireless WAN Card.Type", "WWAN");

When network connectivity is established, QAnywhere automatically defines the Adapter attribute of the
ias_Network property to one of My LAN Card, My Wireless LAN Card or My Wireless WAN Card,
depending on the network in use. Similarly, it automatically sets the Type attribute of the ias_Network
property to one of My LAN Card, My Wireless LAN Card, or My Wireless WAN Card so that the
ias_Network property inherits the attributes of the network being used.

Finally, create the following transmission rule.

automatic=ias_Network.Cost < 3 or ias_Priority >= 7

For more information about transmission rules, see “QAnywhere transmission and delete
rules” on page 733.

Enumerating client message store properties
The QAnywhere .NET, C++, and Java APIs can provide an enumeration of predefined and custom client
message store properties.

QAnywhere properties

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 721

.NET example
See “GetStorePropertyNames method” on page 248.

// qaManager is a QAManager instance.
IEnumerator propertyNames = qaManager.GetStorePropertyNames();

C++ example
See “beginEnumStorePropertyNames method” on page 398.

// qaManager is a QAManager instance.
qa_store_property_enum_handle handle = qaManager-
>beginEnumStorePropertyNames();
qa_char propertyName[256];
if(handle != qa_null) {
 while(qaManager->nextStorePropertyName(handle, propertyName, 255) != -1)
{
 // Do something with the message store property name.
 }
 // Message store properties cannot be set after
 // the beginEnumStorePropertyNames call
 // and before the endEnumStorePropertyNames call.
 qaManager->endEnumStorePropertyNames(handle);
}

Java example
See “getStorePropertyNames method” on page 532.

// qaManager is a QAManager instance.
Enumeration propertyNames = qaManager.getStorePropertyNames();

Managing client message store properties in your application

The following QAManagerBase methods can be used to get and set client message store properties.

QAnywhere reference

722 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

C++ methods to manage client message store properties
● qa_bool getBooleanStoreProperty(qa_const_string name, qa_bool * value)
● qa_bool setBooleanStoreProperty(qa_const_string name, qa_bool value)
● qa_bool getByteStoreProperty(qa_const_string name, qa_byte * value)
● qa_bool setByteStoreProperty(qa_const_string name, qa_byte value)
● qa_bool getShortStoreProperty(qa_const_string name, qa_short * value)
● qa_bool setShortStoreProperty(qa_const_string name, qa_short value)
● qa_bool getIntStoreProperty(qa_const_string name, qa_int * value)
● qa_bool setIntStoreProperty(qa_const_string name, qa_int value)
● qa_bool getLongStoreProperty(qa_const_string name, qa_long * value)
● qa_bool setLongStoreProperty(qa_const_string name, qa_long value)
● qa_bool getFloatStoreProperty(qa_const_string name, qa_float * value)
● qa_bool setFloatStoreProperty(qa_const_string name, qa_float value)
● qa_bool getDoubleStoreProperty(qa_const_string name, qa_double * value)
● qa_bool setDoubleStoreProperty(qa_const_string name, qa_double value)
● qa_int getStringStoreProperty(qa_const_string name, qa_string value, qa_int len)
● qa_bool setStringStoreProperty(qa_const_string name, qa_const_string value)
● qa_store_property_enum_handle QAManagerBase::beginEnumStorePropertyNames()
● virtual qa_int QAManagerBase::nextStorePropertyName(qa_store_property_enum_handle h,

qa_string buffer, qa_int bufferLen)
● virtual void QAManagerBase::endEnumStorePropertyNames(qa_store_property_enum_handle h)

See “QAManagerBase class” on page 394.

C# methods to manage client message store properties
● Object GetStoreProperty(String name)
● void SetStoreProperty(String name, Object value)
● boolean GetBooleanStoreProperty(String name)
● void SetBooleanStoreProperty(String name, boolean value)
● byte GetByteStoreProperty(String name)
● void SetByteStoreProperty(String name, byte value)
● short GetShortStoreProperty(String name)
● void SetShortStoreProperty(String name, short value)
● int GetIntStoreProperty(String name)
● void SetIntStoreProperty(String name, int value)
● long GetLongStoreProperty(String name)
● void SetLongStoreProperty(String name, long value)
● float GetFloatStoreProperty(String name)
● void SetFloatStoreProperty(String name, float value)
● double GetDoubleStoreProperty(String name)
● void SetDoubleStoreProperty(String name, double value)
● String GetStringStoreProperty(String name)
● void SetStringStoreProperty(String name, String value)
● IEnumerator GetStorePropertyNames()

See “QAManagerBase interface” on page 226.

QAnywhere properties

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 723

Java methods to manage client message store properties
● boolean getBooleanStoreProperty(String name)
● void setBooleanStoreProperty(String name, boolean value)
● byte getByteStoreProperty(String name)
● void setByteStoreProperty(String name, byte value)
● double getDoubleStoreProperty(String name)
● void setDoubleStoreProperty(String name, double value)
● float getFloatStoreProperty(String name)
● void setFloatStoreProperty(String name, float value)
● int getIntStoreProperty(String name)
● void setIntStoreProperty(String name, int value)
● long getLongStoreProperty(String name)
● void setLongStoreProperty(String name, long value)
● short getShortStoreProperty(String name)
● void setShortStoreProperty(String name, short value)
● void setStringStoreProperty(String name, String value)
● String getStringStoreProperty(String name)
● java.util.Enumeration getStorePropertyNames()

See “QAManagerBase interface” on page 514.

SQL stored procedures to manage client message store properties
● ml_qa_getstoreproperty
● ml_qa_setstoreproperty

See “Message store properties” on page 647.

Server properties
You can set server properties in Sybase Central or with a server management request. Server properties
are always stored in the database. See:

● “Setting server properties with a server management request” on page 159
● “Setting server properties with Sybase Central” on page 726

Server properties
● ianywhere.qa.server.autoRulesEvaluationPeriod The time in milliseconds between

evaluations of rules, including message transmission and persistence rules. Since, typically, rules are
evaluated dynamically as messages are transmitted to the server store, the rule evaluation period is
only for rules that are timing-sensitive. The default value is 60000 (one minute).

● ianywhere.qa.server.compressionLevel The default amount of compression applied to each
message received by a QAnywhere connector. The compression is an integer between 0 and 9, with 0
being no compression and 9 being the most compression. The default is 0.

QAnywhere reference

724 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

If you also set the compression level for a connector in the connector properties file, this setting is
overridden for that connector. See “Configuring JMS connector properties” on page 131.

● ianywhere.qa.server.connectorPropertiesFiles

Deprecated feature
Replaced by Sybase Central.

A list of one or more files that specify the configuration of QAnywhere connectors to an external
message system such as JMS. The default is no connectors.

See “Connectors” on page 129.

● ianywhere.qa.server.disableNotifications Set this to true to disable notification from the server
about pending messages. This disables the processing on the server that is required to initiate
notifications to clients when messages are waiting on the server for those clients. Set to true in any
setup where notifications cannot be sent from the server, such as when firewall restrictions make
notifications impossible. The default is false.

● ianywhere.qa.server.logLevel The logging level of the messaging. The property value may be
one of 1, 2, 3, or 4. 1 indicates that only message errors are logged. 2 additionally causes warnings to
be logged. 3 additionally causes informational messages to be logged. 4 additionally causes more
verbose informational messages to be logged, including details about each QAnywhere message that
is transmitted with the MobiLink server. The default is 2.

These logging messages are output to the MobiLink server messages window. If the mlsrv12 -o or -ot
option was specified, the messages are output to the MobiLink server message log file.

● ianywhere.qa.server.id Specifies the agent portion of the address to which to send server
management requests. If this property is not set, this value is ianywhere.server.

● ianywhere.qa.server.password.e Specifies the password for authenticating server management
requests. If this property is not set, the password is QAnywhere.

See “Server management requests” on page 145.

● ianywhere.qa.server.scheduleDateFormat Specifies the date format used for server-side
transmission rules. By default, the date format is yyyy-MM-dd.

Letter Date component Example

y year 1996

M month in year July

d day in month 10

● ianywhere.qa.server.scheduleTimeFormat Specifies the time format used for server-side
transmission rules. By default, the time format is HH:mm:ss.

QAnywhere properties

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 725

Letter Date component Example

a AM/PM marker PM

H hour in day, a value between 0 and 23 0

k hour in day, a value between 1 and 24 24

K hour in AM/PM, a value between 0 and 11 0

h hour in AM/PM, a value between 1 and 12 12

m minute in hour 30

s second in minute 55

● ianywhere.qa.server.transmissionRulesFile

Deprecated feature
Replaced by Sybase Central.

A file used to specify rules for governing the transmission and persistence of messages. By default,
there are no filters for messages, and messages are deleted when the final status of the message has
been transmitted to the message originator.

Setting server properties with Sybase Central

To set server properties with Sybase Central

1. Start Sybase Central:

Choose Start » Programs » SQL Anywhere 12 » Administration Tools » Sybase Central.

2. Choose Connections » Connect With QAnywhere 12.

3. Specify an ODBC Data Source Name or ODBC Data Source File, and the User ID and Password
if required. Click OK.

4. Under Server Message Stores in the left pane, select the name of the data source.

5. Choose File » Properties.

JMS connector properties
The following properties are used to configure the JMS connectors:

QAnywhere reference

726 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● ianywhere.connector.nativeConnection The Java class that implements the connector. It is for
QAnywhere internal use only, and should not be deleted or modified.

● ianywhere.connector.id (deprecated) An identifier that uniquely identifies the connector. The
default is the value of the connector property ianywhere.connector.address.

● ianywhere.connector.address The connector address that a QAnywhere client should use to
address the connector. This address is also used to prefix all logged error, warning, and informational
messages appearing in the MobiLink server messages window for this connector.

See “Sending a QAnywhere message to a JMS connector” on page 132.

In Sybase Central, set this property in the Connector Wizard on the Connector Names page in the
Connector name field.

● ianywhere.connector.incoming.priority The priority, expressed as an integer, assigned to all
incoming messages. If the value is unspecified or negative, the default for that type of connector is
used. In JMS, the default is to use the priority of the JMS message. In web services, the default is 4.

● ianywhere.connector.incoming.retry.max The maximum number of times the connector retries
transferring a JMS message to a QAnywhere message store before giving up. After the maximum
number of failed attempts, the JMS message is re-addressed to the
ianywhere.connector.jms.deadMessageDestination property value. The default is -1, which means that
the connector does not give up.

● ianywhere.connector.incoming.ttl The time-to-live, expressed as an integer, assigned to all
incoming messages measured in milliseconds. If the value is unspecified or negative, the default for
that type of connector is used. If the value is 0, messages do not expire. In JMS, the default is
calculated using the expiration time of the JMS message. In web services, the default is 0.

● ianywhere.connector.outgoing.deadMessageAddress The address that a message is sent to
when it cannot be processed. For example, if a message contains a JMS address that is malformed or
unknown, the message is marked as unreceivable and a copy of the message is sent to the dead
message address.

If no dead message address is specified, the message is marked as unreceivable but no copy of the
message is sent.

In Sybase Central, you can set this property in the Connector Properties window, Properties tab, by
clicking New.

● ianywhere.connector.logLevel The amount of connector information displayed in the MobiLink
server messages window and message log file. Values for the log level are as follows:

○ 1 Log error messages.

○ 2 Log error and warning messages.

○ 3 Log error, warning, and information messages.

QAnywhere properties

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 727

○ 4 Log error, warning, information, and debug messages.

In Sybase Central, set this property on the Connector Properties window, on the General tab, in the
Logging Level section.

You can also set this property for all connectors. To do this in Sybase Central, connect to a server
message store and choose the task Change Properties Of This Message Store. Open the Server
Properties tab.

● ianywhere.connector.compressionLevel The default message compression factor of messages
received from JMS: an integer between 0 and 9, with 0 indicating no compression and 9 indicating
maximum compression.

In Sybase Central, set this property on the Connector Properties window, on the General tab, in the
Compression Level section.

You can also set this property for all connectors. To do this in Sybase Central, connect to a server
message store, choose the task Change Properties Of This Message Store, and open the Server
Properties tab.

● ianywhere.connector.jms.deadMessageDestination The address that a JMS message is sent to
when it cannot be converted to a QAnywhere message. This might occur if the JMS message is an
instance of an unsupported class, if the JMS message does not specify a QAnywhere address, if an
unexpected JMS provider exception occurs, or if an unexpected QAnywhere exception occurs.

In Sybase Central, set this property on the Connector Properties window, on the JMS tab, in the
Other section, in the Dead message destination field.

● ianywhere.connector.outgoing.retry.max The default number of retries for messages going
from QAnywhere to the external messaging system. The default value is 5. Specify 0 to have the
connector retry forever.

In Sybase Central, you can set this property in the Connector Properties window, Properties tab, by
clicking New.

● ianywhere.connector.runtimeError.retry.max The number of times a connector retries a
message that causes a RuntimeException. If a dead message queue is specified, the message is put in
that queue. Otherwise, the message is marked as unreceivable and skipped. Specify a value of 0 to
have the server never give up.

● ianywhere.connector.startupType Startup types can be automatic, manual, or disabled.

● xjms.jndi.authName The authentication name to connect to the external JMS JNDI name service.

In Sybase Central, set this property in the Connector Wizard, JNDI Settings page, User name field;
or on the Connector Properties window on the JMS tab, JNDI section, User name field.

● xjms.jndi.factory The factory name used to access the external JMS JNDI name service. In Sybase
Central, set this property in the Connector Wizard, JNDI Settings page, JNDI factory field; or on
the Connector Properties window on the JMS tab, JNDI section, JNDI Factory field,

QAnywhere reference

728 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● xjms.jndi.password.e The authentication password to connect to the external JMS JNDI name
service.

In Sybase Central, set this property in the Connector Wizard, JNDI Settings page, Password field;
or on the Connector Properties window on the JMS tab, JNDI section, Password field.

● xjms.jndi.url The URL to access the JMS JNDI name service.

In Sybase Central, set this property in the Connector Wizard, JNDI Settings page, Name service
URL field; or on the Connector Properties window on the JMS tab, JNDI section, URL field.

● xjms.password.e The authentication password to connect to the external JMS provider.

● xjms.queueConnectionAuthName The user ID to connect to the external JMS queue connection.

In Sybase Central, set this property in the Connector Wizard, JMS Queue Settings page, User
name field; or on the Connector Properties window on the JMS tab, Queue section, User name field.

● xjms.queueConnectionPassword.e The password to connect to the external JMS queue
connection.

In Sybase Central, set this property in the Connector Wizard, JMS Queue Settings page, Password
field; or on the Connector Properties window on the JMS tab, Queue section, Password field.

● xjms.queueFactory The external JMS provider queue factory name.

In Sybase Central, set this property in the Connector Wizard, JMS Queue Settings page, Queue
factory field; or on the Connector Properties window on the JMS tab, Queue section, Queue
factory field.

● xjms.receiveDestination The queue name used by the connector to listen for messages from JMS
targeted for QAnywhere clients.

In Sybase Central, set this property in the Connector Wizard, Connector Names page, Receiver
destination field.

● xjms.topicFactory The external JMS provider topic factory name.

In Sybase Central, set this property in the Connector Wizard, JMS Topic Settings page, Topic
Factory field; or on the Connector Properties window on the JMS tab, Topic section, Topic
factory field.

● xjms.topicConnectionAuthName The user ID to connect to the external JMS topic connection.

In Sybase Central, set this property in the Connector Wizard, JMS Topic Settings page, User name
field; or on the Connector Properties window on the JMS tab, Topic section, User name field.

● xjms.topicConnectionPassword.e The password to connect to the external JMS topic connection.

In Sybase Central, set this property in the Connector Wizard, JMS Topic Settings page, Password
field; or on the Connector Properties window on the JMS tab, Topic section, Password field.

QAnywhere properties

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 729

● ianywhere.connector.nativeConnection The Java class that implements the connector. It is for
QAnywhere internal use only, and should not be deleted or modified.

● ianywhere.connector.id (deprecated) An identifier that uniquely identifies the connector. The
default is the value of the connector property ianywhere.connector.address.

● ianywhere.connector.address The connector address that a QAnywhere client should use to
address the connector. This address is also used to prefix all logged error, warning, and informational
messages appearing in the MobiLink server messages window for this connector.

See “Sending a QAnywhere message to a JMS connector” on page 132.

In Sybase Central, set this property in the Connector Wizard on the Connector Names page in the
Connector name field.

● ianywhere.connector.incoming.priority The priority, expressed as an integer, assigned to all
incoming messages. If the value is unspecified or negative, the default for that type of connector is
used. In JMS, the default is to use the priority of the JMS message. In web services, the default is 4.

● ianywhere.connector.incoming.retry.max The maximum number of times the connector retries
transferring a JMS message to a QAnywhere message store before giving up. After the maximum
number of failed attempts, the JMS message is re-addressed to the
ianywhere.connector.jms.deadMessageDestination property value. The default is -1, which means that
the connector does not give up.

● ianywhere.connector.incoming.ttl The time-to-live, expressed as an integer, assigned to all
incoming messages measured in milliseconds. If the value is unspecified or negative, the default for
that type of connector is used. If the value is 0, messages do not expire. In JMS, the default is
calculated using the expiration time of the JMS message. In web services, the default is 0.

● ianywhere.connector.outgoing.deadMessageAddress The address that a message is sent to
when it cannot be processed. For example, if a message contains a JMS address that is malformed or
unknown, the message is marked as unreceivable and a copy of the message is sent to the dead
message address.

If no dead message address is specified, the message is marked as unreceivable but no copy of the
message is sent.

In Sybase Central, you can set this property in the Connector Properties window, Properties tab, by
clicking New.

● ianywhere.connector.logLevel The amount of connector information displayed in the MobiLink
server messages window and message log file. Values for the log level are as follows:

○ 1 Log error messages.

○ 2 Log error and warning messages.

○ 3 Log error, warning, and information messages.

QAnywhere reference

730 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

○ 4 Log error, warning, information, and debug messages.

In Sybase Central, set this property on the Connector Properties window, on the General tab, in the
Logging Level section.

You can also set this property for all connectors. To do this in Sybase Central, connect to a server
message store and choose the task Change Properties Of This Message Store. Open the Server
Properties tab.

● ianywhere.connector.compressionLevel The default message compression factor of messages
received from JMS: an integer between 0 and 9, with 0 indicating no compression and 9 indicating
maximum compression.

In Sybase Central, set this property on the Connector Properties window, on the General tab, in the
Compression Level section.

You can also set this property for all connectors. To do this in Sybase Central, connect to a server
message store, choose the task Change Properties Of This Message Store, and open the Server
Properties tab.

● ianywhere.connector.jms.deadMessageDestination The address that a JMS message is sent to
when it cannot be converted to a QAnywhere message. This might occur if the JMS message is an
instance of an unsupported class, if the JMS message does not specify a QAnywhere address, if an
unexpected JMS provider exception occurs, or if an unexpected QAnywhere exception occurs.

In Sybase Central, set this property on the Connector Properties window, on the JMS tab, in the
Other section, in the Dead message destination field.

● ianywhere.connector.outgoing.retry.max The default number of retries for messages going
from QAnywhere to the external messaging system. The default value is 5. Specify 0 to have the
connector retry forever.

In Sybase Central, you can set this property in the Connector Properties window, Properties tab, by
clicking New.

● ianywhere.connector.runtimeError.retry.max The number of times a connector retries a
message that causes a RuntimeException. If a dead message queue is specified, the message is put in
that queue. Otherwise, the message is marked as unreceivable and skipped. Specify a value of 0 to
have the server never give up.

● ianywhere.connector.startupType Startup types can be automatic, manual, or disabled.

● xjms.jndi.authName The authentication name to connect to the external JMS JNDI name service.

In Sybase Central, set this property in the Connector Wizard, JNDI Settings page, User name field;
or on the Connector Properties window on the JMS tab, JNDI section, User name field.

● xjms.jndi.factory The factory name used to access the external JMS JNDI name service. In Sybase
Central, set this property in the Connector Wizard, JNDI Settings page, JNDI factory field; or on
the Connector Properties window on the JMS tab, JNDI section, JNDI Factory field,

QAnywhere properties

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 731

● xjms.jndi.password.e The authentication password to connect to the external JMS JNDI name
service.

In Sybase Central, set this property in the Connector Wizard, JNDI Settings page, Password field;
or on the Connector Properties window on the JMS tab, JNDI section, Password field.

● xjms.jndi.url The URL to access the JMS JNDI name service.

In Sybase Central, set this property in the Connector Wizard, JNDI Settings page, Name service
URL field; or on the Connector Properties window on the JMS tab, JNDI section, URL field.

● xjms.password.e The authentication password to connect to the external JMS provider.

● xjms.queueConnectionAuthName The user ID to connect to the external JMS queue connection.

In Sybase Central, set this property in the Connector Wizard, JMS Queue Settings page, User
name field; or on the Connector Properties window on the JMS tab, Queue section, User name field.

● xjms.queueConnectionPassword.e The password to connect to the external JMS queue
connection.

In Sybase Central, set this property in the Connector Wizard, JMS Queue Settings page, Password
field; or on the Connector Properties window on the JMS tab, Queue section, Password field.

● xjms.queueFactory The external JMS provider queue factory name.

In Sybase Central, set this property in the Connector Wizard, JMS Queue Settings page, Queue
factory field; or on the Connector Properties window on the JMS tab, Queue section, Queue
factory field.

● xjms.receiveDestination The queue name used by the connector to listen for messages from JMS
targeted for QAnywhere clients.

In Sybase Central, set this property in the Connector Wizard, Connector Names page, Receiver
destination field.

● xjms.topicFactory The external JMS provider topic factory name.

In Sybase Central, set this property in the Connector Wizard, JMS Topic Settings page, Topic
Factory field; or on the Connector Properties window on the JMS tab, Topic section, Topic
factory field.

● xjms.topicConnectionAuthName The user ID to connect to the external JMS topic connection.

In Sybase Central, set this property in the Connector Wizard, JMS Topic Settings page, User name
field; or on the Connector Properties window on the JMS tab, Topic section, User name field.

● xjms.topicConnectionPassword.e The password to connect to the external JMS topic connection.

In Sybase Central, set this property in the Connector Wizard, JMS Topic Settings page, Password
field; or on the Connector Properties window on the JMS tab, Topic section, Password field.

QAnywhere reference

732 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

QAnywhere transmission and delete rules
Rule syntax

Rule syntax
Each rule has the following form:

schedules=condition

Schedule syntax
Schedule syntax

schedules : { AUTOMATIC | schedule-spec ,... }

schedule-spec :
 { START TIME start-time | BETWEEN start-time AND end-time }
 [EVERY period { HOURS | MINUTES | SECONDS }]
 [ON { (day-of-week, ...) | (day-of-month, ...) }]
 [START DATE start-date]

Parameters
● AUTOMATIC For transmission rules, rules are evaluated when a message changes state or there is a

change in network status. For delete rules, messages that satisfy the delete rule condition are deleted
when a message transmission is initiated.

● schedule-spec Schedule specifications other than AUTOMATIC specify times when conditions
are to be evaluated. At those scheduled times, the corresponding condition is evaluated.

● START TIME The first scheduled time for each day on which the event is scheduled. If a START
DATE is specified, the START TIME refers to that date. If no START DATE is specified, the
START TIME is on the current day (unless the time has passed) and each subsequent day (if the
schedule includes EVERY or ON).

● BETWEEN ... AND ... A range of times during the day outside which no scheduled times occur. If
a START DATE is specified, the scheduled times do not occur until that date.

● EVERY An interval between successive scheduled events. Scheduled events occur only after the
START TIME for the day, or in the range specified by BETWEEN ... AND.

● ON A list of days on which the scheduled events occur. The default is every day if EVERY is
specified. Days can be specified as days of the week or days of the month.

Days of the week are Mon, Tues, and so on. You may also use the full forms of the day, such as
Monday. You must use the full forms of the day names if the language you are using is not English, is
not the language requested by the client in the connection string, and is not the language that appears
in the server messages window.

Days of the month are integers from 0 to 31. A value of 0 represents the last day of any month.

QAnywhere transmission and delete rules

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 733

● START DATE The date on which scheduled events are to start occurring. The default is the current
date.

Usage
You can create more than one schedule for a given condition. This permits complex schedules to be
implemented.

A schedule specification is recurring if its definition includes EVERY or ON; if neither of these reserved
words is used, the schedule specifies at most a single time. An attempt to create a non-recurring schedule
for which the start time has passed generates an error.

Each time a scheduled time occurs, the associated condition is evaluated and then the next scheduled time
and date is calculated.

The next scheduled time is computed by inspecting the schedule or schedules, and finding the next
schedule time that is in the future. If a schedule specifies every minute, and it takes 65 seconds to evaluate
the conditions, it runs every two minutes. If you want execution to overlap, you must create more than
one rule.

1. If the EVERY clause is used, find whether the next scheduled time falls on the current day, and is
before the end of the BETWEEN ... AND range. If so, that is the next scheduled time.

2. If the next scheduled time does not fall on the current day, find the next date on which the event is to
be executed.

3. Find the START TIME for that date, or the beginning of the BETWEEN ... AND range.

The QAnywhere schedule syntax is derived from the SQL Anywhere CREATE EVENT schedule syntax.

Keywords are case insensitive.

See also
● “CREATE EVENT statement” [SQL Anywhere Server - SQL Reference]

Example
The following sample server transmission rules file applies to the client identified by the client message
store ID sample_store_id. It creates a dual schedule: high priority messages are sent once an hour. The
schedule is every 1 hours and the condition is ias_priority=9. Also, between the hours of 8
A.M. and 9 A.M., high priority messages are sent every minute.

[sample_store_id]
; This rule governs when messages are transmitted to the client
; store with id sample_store_id.
;
 START TIME '06:00:00' EVERY 1 hours = ias_Priority = 9
 BETWEEN '08:00:00' AND '09:00:00' EVERY 1 minutes = ias_Priority = 9

Condition syntax

QAnywhere reference

734 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

QAnywhere conditions use a SQL-like syntax. Conditions are evaluated against messages in the message
store. A condition evaluates to true, false, or unknown. If a condition is empty, all messages are judged to
satisfy the condition. Conditions can be used in transmission rules, delete rules, and the QAnywhere
programming APIs.

Keywords and string comparisons are case insensitive.

Syntax
condition :
expression IS [NOT] NULL
| expression compare expression
| expression [NOT] BETWEEN expression AND expression
| expression [NOT] LIKE pattern [ESCAPE character]
| expression [NOT] IN (string, ...)
| NOT condition
| condition AND condition
| condition OR condition
| (condition)

compare: = |> | < | >= | <= | <>

expression:
constant
| rule-variable
| -expression
| expression operator expression
| (expression)
| rule-function (expression, ...)

constant: integer | floating-point number | string | boolean

integer: An integer in the range -2**63 to 2**63-1.

floating-point number: A number in scientific notation in the range 2.2250738585072e-308 to
1.79769313486231e+308.

string: A sequence of characters enclosed in single quotes. A single quote in a string is represented
by two consecutive single quotes.

boolean: A statement that is TRUE or FALSE, T or F, Y or N, 1 or 0.

operator: + | - | * | /

rule-variable:

See “Rule variables” on page 738.

rule-function:

See “Rule functions” on page 737.

QAnywhere transmission and delete rules

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 735

Parameters
● BETWEEN The BETWEEN condition can evaluate as true, false, or unknown. Without the NOT

keyword, the condition evaluates as true if expression is greater than or equal to the start expression
and less than or equal to the end expression.

The NOT keyword reverses the meaning of the condition but leaves UNKNOWN unchanged.

The BETWEEN condition is equivalent to a combination of two inequalities:

[NOT] (expression >= start-expression AND arithmetic-expression <= end-expr)

For example:

○ age BETWEEN 15 AND 19 is equivalent to age >=15 AND age <= 19

○ age NOT BETWEEN 15 AND 19 is equivalent to age < 15 OR age > 19.

● IN The IN condition evaluates according to the following rules:

○ True if expression is not null and equals at least one of the values in the list.

○ Unknown if expression is null and the values list is not empty, or if at least one of the values is
null and expression does not equal any of the other values.

○ False if none of the values are null, and expression does not equal any of the values in the list.

The NOT keyword interchanges true and false.

For example:

○ Country IN ('UK', 'US', 'France') is true for 'UK' and false for 'Peru'. It is
equivalent to the following:

(Country = 'UK') \
OR (Country = 'US') \
OR (Country = 'France')

○ Country NOT IN ('UK', 'US', 'France') is false for 'UK' and true for 'Peru'.
It is equivalent to the following:

NOT ((Country = 'UK') \
 OR (Country = 'US') \
 OR (Country = 'France'))

● LIKE The LIKE condition can evaluate as true, false, or unknown.

Without the NOT keyword, the condition evaluates as true if expression matches the like expression.
If either expression or like expression is null, this condition is unknown.

The NOT keyword reverses the meaning of the condition, but leaves unknown unchanged.

The like expression may contain any number of wildcards. The wildcards are:

QAnywhere reference

736 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Wildcard Matches

_ (underscore) Any one character

% (percent) Any string of zero or more characters

For example:

○ phone LIKE 12%3 is true for '123' or '12993' and false for '1234'

○ word LIKE 's_d' is true for 'sad' and false for 'said'

○ phone NOT LIKE '12%3' is false for '123' or '12993' and true for '1234'

● ESCAPE CHARACTER The ESCAPE CHARACTER is a single character string literal whose
character is used to escape the special meaning of the wildcard characters (_, %) in pattern. For example:

○ underscored LIKE '_%' ESCAPE '\' is true for '_myvar' and false for 'myvar'.

● IS NULL The IS NULL condition evaluates to true if the rule-variable is unknown; otherwise it
evaluates to false. The NOT keyword reverses the meaning of the condition. This condition cannot
evaluate to unknown.

Rule functions

You can use the following functions in transmission rules:

Syntax Description

DATEADD(date-
part, count, date-
time)

Returns a datetime produced by adding several date parts to a datetime. The
datepart can be one of year, quarter, month, week, day, hour, minute, or sec-
ond. For example, the following example adds two months, resulting in the val-
ue 2006-07-02 00:00:00.0:

DATEADD(month, 2, '2006/05/02')

DATEPART(date-
part, date)

Returns the value of part of a datetime value. The datepart can be one of year,
quarter, month, week, day, dayofyear, weekday, hour, minute, or second. For
example, the following example gets the month May as a number, resulting in
the value 5:

DATEPART(month, '2006/05/02')

DATE-
TIME(string)

Converts a string value to a datetime. The string must have the format 'yyyy-mm-
dd hh:nn:ss'.

LENGTH(string) Returns the number of characters in a string.

QAnywhere transmission and delete rules

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 737

Syntax Description

SUB-
STRING(string,
start, length)

Returns a substring of a string. The start is the start position of the substring to
return, in characters. The length is the length of the substring to return, in char-
acters.

Example
The following delete rule deletes all messages that entered a final state more than 10 days ago:

START TIME '06:00:00' every 1 hours = ias_Status >= ias_FinalState \
 AND ias_StatusTime < DATEADD(day, -10, ias_CurrentTimestamp) \
 AND ias_TransmissionStatus = ias_Transmitted

Rule variables

QAnywhere rule variables can be used in the condition part of rules. You can use the following as rule
variables:

● “Message properties” on page 659
● “Client message store properties” on page 26
● “Variables defined by the rule engine” on page 738

Using properties as rule variables
Message properties and message store properties can be used as transmission rule variables. In both cases
you can use predefined properties or you can create custom properties. If you have a message property
and a message store property with the same name, the message property is used. To override this
precedence, you can explicitly reference the property as follows:

● Preface a message store property name with ias_Store.

● Preface a message property name with ias_Message.

For example, the following automatic transmission rule selects all messages with the custom message
property urgent set to yes:

automatic = ias_Message.urgent = 'yes'

The following automatic transmission rule selects messages when the custom message store property
transmitNow is set to yes:

automatic = ias_Store.transmitNow = 'yes'

Variables defined by the rule engine

The following variables are defined by the rule engine:

QAnywhere reference

738 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● ias_Address The address of the message. For example, myclient\myqueue.

● ias_ContentSize The size of the message content. If the message is a text message, this is the
number of characters. If the message is binary, this is the number of bytes.

● ias_ContentType The type of message:

IAS_TEXT_CONTENT The message content consists of unicode characters.

IAS_BINARY_CONTENT The message content is treated as an uninterpreted sequence of bytes.

● ias_CurrentDate The current date.

A string can be compared against ias_currentDate if it is supplied in one of two ways:

○ as a string of format, which is interpreted unambiguously.

○ as a string according to the date_format database option set for the client message store database.

See “Setting database options” [SQL Anywhere Server - Database Administration] and
“date_format option” [SQL Anywhere Server - Database Administration].

● ias_CurrentTime The current time.

A string can be compared against ias_CurrentTime if the hours, minutes, and seconds are separated by
colons in the format hh:mm:ss:sss. A 24-hour clock is assumed unless am or pm is specified. See
“time_format option” [SQL Anywhere Server - Database Administration].

● ias_CurrentTimestamp The current timestamp (current date and time). See “time_format option”
[SQL Anywhere Server - Database Administration].

● ias_Expires The date and time when the message expires if it is not delivered.

● ias_Network Information about the current network in use. ias_Network is a special transmission
variable. It has many built-in attributes that provide information regarding the current network that is
being used by the device.

● ias_Priority The priority of message: an integer between 0 and 9, where 0 indicates less priority
and 9 indicates more priority.

● ias_Status The current status of the message. The values can be:

IAS_CANCEL-
LED_STATE

The message has been canceled.

IAS_EXPIRED_STATE The message expired before it could be received by the intended recip-
ient.

QAnywhere transmission and delete rules

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 739

IAS_FINAL_STATE The message is received or expired. Therefore, >=IAS_FI-
NAL_STATE means that the message is received or expired, and
<IAS_FINAL_STATE means that the message is neither received
nor expired.

IAS_PENDING_STATE The message has not yet been received by the intended recipient.

IAS_RECEIVED_STATE The message was received by the intended recipient.

IAS_UNRECEIVA-
BLE_STATE

The message has been marked as unreceivable because it is either mal-
formed or there were too many failed attempts to deliver it.

● ias_TransmissionStatus The synchronization status of the message. It can be one of:

IAS_UNTRANSMITTED The message has not been transmitted to its intended recipient mes-
sage store.

IAS_TRANSMITTED The message has been transmitted to its intended recipient message
store.

IAS_DO_NOT_TRANSMIT The recipient and originating message stores are the same so no
transmission is necessary.

IAS_TRANSMITTING The message has been transmitted to its intended recipient, but that
transmission has yet to be confirmed. There is a possibility that the
message transmission was interrupted, and that QAnywhere may
transmit the message again.

Example
For an example of how to create client store properties and use them in transmission rules, see “Using
custom client message store property attributes” on page 719.

Message transmission rules

You can specify transmission rules on the server and on the client. See:

● “Client transmission rules” on page 740
● “Server transmission rules” on page 741

Client transmission rules

Client transmission rules govern the behavior of messages going from the client to the server. Client
transmission rules are handled by the QAnywhere Agent.

QAnywhere reference

740 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

By default, the QAnywhere Agent uses the automatic policy. You can change and customize this behavior
by specifying a transmission rules file as the transmission policy for the QAnywhere Agent.

The following partial qaagent command line shows how to specify a rules file for the QAnywhere Agent:

qaagent -policy myrules.txt ...

For a complete description of how to write transmission rules, see “Rule syntax” on page 733.

For more information about policies, see:

● “Determining when message transmission should occur on the client” on page 46
● “-policy qaagent option” on page 686

For information about client delete rules, see “Client delete rules” on page 744.

The transmission rules file holds the following kinds of entry:

● Rules No more than one rule can be entered per line.

Each rule must be entered on a single line, but you can use \ as a line continuation character.

● Comments Comments are indicated by a line beginning with either a # or ; character. Any
characters on that line are ignored.

See “Rule syntax” on page 733 and “Condition syntax” on page 734.

You can also use transmission rules files to determine when messages are to be deleted from the message
stores.

See “Message delete rules” on page 743.

You can also use the Sybase Central QAnywhere 12 plug-in to create a QAnywhere Agent rules file.

Example
For example, the following client transmission rules file specifies that during business hours only small,
high priority messages should be transmitted, and any message can be transmitted outside business hours.
This rule is automatic, which indicates that if the condition is satisfied, the message is transmitted
immediately. This example demonstrates that conditions can use information derived from the message
and other information such as the current time.

automatic=(ias_ContentSize < 100000 AND ias_Priority > 7) \
 OR datepart(Weekday,ias_CurrentDate) in (1, 7) \
 OR ias_CurrentTime < datetime('8:00:00') \
 OR ias_CurrentTime > datetime('18:00:00')

Server transmission rules

Setting default rules

QAnywhere transmission and delete rules

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 741

You can specify server transmission rules for a particular message store or destination alias, or you can set
default rules for all clients. Every user that does not have an explicit transmission rule uses the default rule.

To set default rules, you use the special client name ianywhere.server.defaultClient.

Scheduled server transmission rules
Keep the following points in mind when specifying scheduled server transmission rules:

● Automatic rules for a given client are evaluated whenever that client synchronizes and at the
automatic rule evaluation period.

● Scheduled rules for a given client are evaluated on the specified schedule.

● The evaluation of a rule causes push notifications to be sent to clients that currently have messages
satisfying the rule conditions.

● Every time a client synchronizes, messages that satisfy conditions of automatic rules for that client are
transmitted to the client.

● If and only if a scheduled rule has caused a push notification to be sent to a client since the last time
that client synchronized, all messages satisfying the condition of the scheduled rule at the time of the
next synchronization are transmitted to the client.

Specifying server transmission rules with a transmission rules file (deprecated)

You can create a server transmission rules file and specify it with the
ianywhere.qa.server.transmissionRulesFile property in your QAnywhere messaging properties file.

For more information about the messaging properties file, see “-m mlsrv12 option” [MobiLink - Server
Administration].

To specify transmission rules for a particular client, precede a section of rules with the client message
store ID in square brackets.

Default server transmission rules can be created that apply to all users.

To specify default transmission rules, start a section with the following line:

[ianywhere.server.defaultClient]

For new transmission rules to take effect, you must restart the MobiLink server. This only applies to
transmission rules specified in a transmission rules file. Server transmission rules specified using Sybase
Central or a server management request take effect immediately.

For information about server delete rules, see “Server delete rules” on page 744.

Example
The following section of a server transmission rules file creates the default rule that only high priority
messages should be sent:

QAnywhere reference

742 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

[ianywhere.server.defaultClient]
auto = ias_Priority > 6

In the following sample server transmission rules file, the rules apply only to the client identified by the
client message store ID sample_store_id.

[sample_store_id]
; This rule governs when messages are transmitted to the client
; store with id sample_store_id.
;
; ias_Priority >= 7
;
; Messages with priority 7 or greater should always be
; transmitted.
;
; ias_ContentSize < 100
;
; Small messages (messages less than 100 characters or
; bytes in size) should always be transmitted.
;
; ias_CurrentTime < '8:00am' OR ias_CurrentTime > '6:00pm'
;
; Messages outside business hours should always be
; transmitted
auto = ias_Priority >= 7 OR ias_ContentSize < 100 \
 OR ias_CurrentTime < datetime('8:00:00') \
 OR ias_CurrentTime > datetime('18:00:00')

In the following example, the rules apply only to the client identified by the client message store ID
qanywhere.

[qanywhere]
; This rule governs when messages are transmitted to the client
; store with id qanywhere.
;
; tm_Subject not like '%non-business%'
;
; Messages with the property tm_Subject set to a value that
; includes the phrase 'non-business' should not be transmitted
;
; ias_CurrentTime < '8:00:00' OR ias_CurrentTime > '18:00:00'
;
; Messages outside business hours should always be
; transmitted
auto = tm_Subject NOT LIKE '%non-business%' \
 OR ias_CurrentTime < datetime('8:00am') OR ias_CurrentTime >
datetime('6:00pm')

Message delete rules
Delete rules determine the persistence of messages in the client message store and the server message store.

Default behavior
A QAnywhere message expires when the expiry time has passed and the message has not been received
or transmitted anywhere. After a message expires, it is deleted by the default delete rules. If a message has

QAnywhere transmission and delete rules

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 743

been received at least once, but not acknowledged, it is possible to receive it again, even if the expiry time
passes.

Client delete rules
By default, messages are deleted from the client message store when the status of the message is
determined to be received, expired, canceled, or undeliverable and the final state has been transmitted to
the server message store. You may want messages to be deleted faster than that, or to hold on to messages
longer. You do that by creating a delete section in your client transmission rules file. The delete section
must be prefaced by [system:delete].

For more information about acknowledgement, see:

● .NET: “AcknowledgementMode enumeration” on page 301
● C++: “AcknowledgementMode class” on page 354
● Java: “AcknowledgementMode interface” on page 467

For more information about client transmission rules, see “Client transmission rules” on page 740.

The following is an example of the delete rules section in a client transmission rules file:

[system:delete]
; This rule governs when messages are deleted from the client
; store.
;
; start time '1:00:00' on ('Sunday')
;
; Messages are deleted every Sunday at 1:00 A.M.
;
; ias_Status >= ias_FinalState
;
; Typically, messages are deleted when they reach a final
; state: received, unreceivable, expired, or canceled.
START TIME '1:00:00' ON ('Sunday') = ias_Status >= ias_FinalState

For an explanation of ias_Status, see “Rule variables” on page 738.

Server delete rules
By default, messages are deleted from the server message store when the status of the message is
determined to be received, expired, canceled, or undeliverable and the final state has been transmitted
back to the message originator. You may want to keep messages longer for purposes such as auditing.

Server-side delete rules apply to all messages in the server message store.

For more information about server transmission rules, see “Server transmission rules” on page 741.

For an explanation of ias_Status, see “Rule variables” on page 738.

QAnywhere reference

744 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Index
Symbols
-c option

QAnywhere Agent utility (qaagent), 676
QAnywhere UltraLite Agent utility (qauagent), 699

-cd option
QAnywhere Agent utility (qaagent), 677
QAnywhere Agent utility (qauagent), 700

-cr option
QAnywhere Agent utility (qaagent), 677
QAnywhere Agent utility (qauagent), 701

-fd option
QAnywhere Agent utility (qaagent), 678
QAnywhere UltraLite Agent utility (qauagent), 701

-fr option
QAnywhere Agent utility (qaagent), 678
QAnywhere UltraLite Agent utility (qauagent), 701

-id option
QAnywhere Agent utility (qaagent), 679
QAnywhere stop agent utility (qastop), 717
QAnywhere UltraLite Agent utility (qauagent), 702

-idl option
QAnywhere Agent utility (qaagent), 680
QAnywhere UltraLite Agent utility (qauagent), 703

-iu option
QAnywhere Agent utility (qaagent), 681
QAnywhere UltraLite Agent utility (qauagent), 704

-lp option
QAnywhere Agent utility (qaagent), 681
QAnywhere UltraLite Agent utility (qauagent), 705

-mn option
QAnywhere Agent utility (qaagent), 682
QAnywhere UltraLite Agent utility (qauagent), 705

-mp option
QAnywhere Agent utility (qaagent), 682
QAnywhere UltraLite Agent utility (qauagent), 705

-mu option
QAnywhere Agent utility (qaagent), 683
QAnywhere UltraLite Agent utility (qauagent), 706

-o option
QAnywhere Agent utility (qaagent), 683
QAnywhere UltraLite Agent utility (qauagent), 706

-on option
QAnywhere Agent utility (qaagent), 684
QAnywhere UltraLite Agent utility (qauagent), 707

-os option
QAnywhere Agent utility (qaagent), 684
QAnywhere UltraLite Agent utility (qauagent), 708

-ot option
QAnywhere Agent utility (qaagent), 685
QAnywhere UltraLite Agent utility (qauagent), 708

-pc option
QAnywhere Agent utility (qaagent), 686

-policy option
QAnywhere Agent utility (qaagent), 686
QAnywhere UltraLite Agent utility (qauagent), 709

-push option
QAnywhere Agent utility (qaagent), 688
QAnywhere UltraLite Agent utility (qauagent), 711

-q option
QAnywhere Agent utility (qaagent), 690
QAnywhere UltraLite Agent utility (qauagent), 712

-qi option
QAnywhere Agent utility (qaagent), 690
QAnywhere UltraLite Agent utility (qauagent), 712

-si option
QAnywhere Agent utility (qaagent), 690
QAnywhere UltraLite Agent utility (qauagent), 713

-sil option
QAnywhere Agent utility (qaagent), 692

-su option
QAnywhere Agent utility (qaagent), 692
QAnywhere UltraLite Agent utility (qauagent), 714

-sur option
QAnywhere Agent utility (qaagent), 693

-v option
QAnywhere Agent utility (qaagent), 694
QAnywhere UltraLite Agent utility (qauagent), 714

-wc option
QAnywhere stop agent utility (qastop), 717

-x option
QAnywhere Agent utility (qaagent), 695
QAnywhere UltraLite Agent utility (qauagent), 715

-xd option
QAnywhere Agent utility (qaagent), 696
QAnywhere UltraLite Agent utility (qauagent), 716

@data option
QAnywhere Agent utility (qaagent), 675
QAnywhere UltraLite Agent utility (qauagent), 698

A
Acknowledge method

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 745

QAManager interface [QAnywhere .NET API],
223
WSResult class [QAnywhere .NET API], 324

acknowledge method
QAManager class [QAnywhere C++ API], 392
QAManager interface [QAnywhere Java API], 511
WSResult class [QAnywhere Java API], 599

AcknowledgeAll method
QAManager interface [QAnywhere .NET API],
224

acknowledgeAll method
QAManager class [QAnywhere C++ API], 392
QAManager interface [QAnywhere Java API], 512

acknowledgement modes
QAManager class (.NET), 53
QAManager class (.NET) for web services, 95
QAManager class (C++), 54
QAManager class (Java), 55
QAManager class (Java) for web services, 97
QAnywhere SQL API, 57

AcknowledgementMode class [QAnywhere C++ API]
description, 354
EXPLICIT_ACKNOWLEDGEMENT variable,
355
IMPLICIT_ACKNOWLEDGEMENT variable,
355
TRANSACTIONAL variable, 355

AcknowledgementMode enumeration
[QAnywhere .NET API]

description, 301
AcknowledgementMode interface [QAnywhere Java
API]

description, 467
EXPLICIT_ACKNOWLEDGEMENT variable,
468
IMPLICIT_ACKNOWLEDGEMENT variable,
468
TRANSACTIONAL variable, 469

AcknowledgeUntil method
QAManager interface [QAnywhere .NET API],
225

acknowledgeUntil method
QAManager class [QAnywhere C++ API], 393
QAManager interface [QAnywhere Java API], 512

ADAPTER field
MessageProperties class [QAnywhere .NET API],
181

ADAPTER variable

MessageProperties class [QAnywhere C++ API],
357
MessageProperties interface [QAnywhere Java
API], 471

adapters
QAnywhere message property, 60

ADAPTERS field
MessageProperties class [QAnywhere .NET API],
182

ADAPTERS variable
MessageProperties class [QAnywhere C++ API],
358
MessageProperties interface [QAnywhere Java
API], 472

adding client user names
QAnywhere, 30

Address message header
QAnywhere message headers, 656

Address property
QAMessage interface [QAnywhere .NET API],
286

addresses
QAnywhere, 58
QAnywhere JMS connector, 58
setting in QAnywhere messages (.NET), 61
setting in QAnywhere messages (C++), 61
setting in QAnywhere messages (Java), 62

addressing JMS messages
QAnywhere, 135

addressing messages
JMS, 132
JMS meant for QAnywhere, 135

addressing QAnywhere messages
JMS, 132

addressing QAnywhere messages meant for web
services

about, 137
administering

QAnywhere server message store, 145
administering connectors

QAnywhere server management requests, 150
administering QAnywhere server message store
requests

QAnywhere with server management, 148
agent configuration files

about, 46
agent rule files

about, 46

Index

746 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ALL variable
QueueDepthFilter class [QAnywhere C++ API],
463
QueueDepthFilter interface [QAnywhere Java
API], 580

APIs
QAnywhere SQL API, 619

application to application messaging
QAnywhere -sil option, 692

application-to-application messaging
(see also messaging)
QAnywhere, 1

architectures
QAnywhere, 3

Archive message store requests
QAnywhere server management requests, 147

archive message stores
QAnywhere, 22

archived tag
QAnywhere server management requests, 147

asynchronous message receipt
QAnywhere, 70

asynchronous web service requests
mobile web services, 101

authentication
QAnywhere, 119

automatic policy
QAnywhere Agent, 688
QAnywhere UltraLite Agent, 710

B
beginEnumPropertyNames method

QAMessage class [QAnywhere C++ API], 431
beginEnumStorePropertyNames method

QAManagerBase class [QAnywhere C++ API],
398

BodyLength property
QABinaryMessage interface [QAnywhere .NET
API], 206

browseClose method
QAManagerBase class [QAnywhere C++ API],
399

BrowseMessages method
QAManagerBase interface [QAnywhere .NET
API], 231

browseMessages method

QAManagerBase class [QAnywhere C++ API],
399
QAManagerBase interface [QAnywhere Java API],
517

BrowseMessagesByID method
QAManagerBase interface [QAnywhere .NET
API], 232

browseMessagesByID method
QAManagerBase class [QAnywhere C++ API],
399
QAManagerBase interface [QAnywhere Java API],
518

BrowseMessagesByQueue method
QAManagerBase interface [QAnywhere .NET
API], 233

browseMessagesByQueue method
QAManagerBase class [QAnywhere C++ API],
400
QAManagerBase interface [QAnywhere Java API],
518

BrowseMessagesBySelector method
QAManagerBase interface [QAnywhere .NET
API], 233

browseMessagesBySelector method
QAManagerBase class [QAnywhere C++ API],
401
QAManagerBase interface [QAnywhere Java API],
519

browseNextMessage method
QAManagerBase class [QAnywhere C++ API],
401

browsing
QAnywhere messages, 73

browsing messages
QAnywhere, 73

bugs
providing feedback, x

C
CANCELED variable

StatusCodes class [QAnywhere C++ API], 464
StatusCodes interface [QAnywhere Java API], 582

canceling messages
about QAnywhere, 67
QAnywhere (.NET), 68
QAnywhere (C++), 68
QAnywhere (Java), 68

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 747

QAnywhere server management requests, 149
CancelMessage method

QAManagerBase interface [QAnywhere .NET
API], 234

cancelMessage method
QAManagerBase class [QAnywhere C++ API],
402
QAManagerBase interface [QAnywhere Java API],
520

CancelMessageRequest tag
QAnywhere server management requests, 149

castToBinaryMessage method
QAMessage class [QAnywhere C++ API], 432

castToTextMessage method
QAMessage class [QAnywhere C++ API], 432

ClearBody method
QAMessage interface [QAnywhere .NET API],
273

ClearProperties method
QAMessage interface [QAnywhere .NET API],
273

clearProperties method
QAMessage class [QAnywhere C++ API], 433
QAMessage interface [QAnywhere Java API], 552

ClearRequestProperties method
WSBase class [QAnywhere .NET API], 308

clearRequestProperties method
WSBase class [QAnywhere Java API], 588

client message store IDs
about QAnywhere, 24

client message store properties
managing QAnywhere, 125
QAnywhere attributes, 719

client message stores
about, 23
creating, 23
creating the IDs, 24
custom message store properties, 719
encrypting QAnywhere, 118
encrypting the communication stream, 118
initializing with -si option, 690, 713
passwords, 118
predefined message store properties, 718
QAnywhere, 23
QAnywhere architecture, 5
QAnywhere properties, 26, 717
QAnywhere security, 117

client status reports

QAnywhere server management requests for
connectors, 158

client transmission rules
delete rules, 744

client user names
adding QAnywhere to the server message store, 30

ClientStatusRequest tag
QAnywhere server management requests, 154

Close method
QAManagerBase interface [QAnywhere .NET
API], 235

close method
QAManagerBase class [QAnywhere C++ API],
402
QAManagerBase interface [QAnywhere Java API],
520

CloseConnector tag
QAnywhere server management requests, 153

closing connectors
QAnywhere server management requests, 153

command line utilities
QAnywhere Agent (qaagent) syntax, 673
QAnywhere UltraLite Agent (qauagent) syntax,
696

command prompts
conventions, ix
curly braces, ix
environment variables, ix
parentheses, ix
quotes, ix
semicolons, ix

command shells
conventions, ix
curly braces, ix
environment variables, ix
parentheses, ix
quotes, ix

Commit method
QATransactionalManager interface
[QAnywhere .NET API], 297

commit method
QATransactionalManager class [QAnywhere C++
API], 461
QATransactionalManager interface [QAnywhere
Java API], 579

COMMON_ALREADY_OPEN_ERROR field
QAException class [QAnywhere .NET API], 211

COMMON_ALREADY_OPEN_ERROR variable

Index

748 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

QAError class [QAnywhere C++ API], 382
QAException class [QAnywhere Java API], 502

COMMON_GET_INIT_FILE_ERROR field
QAException class [QAnywhere .NET API], 212

COMMON_GET_INIT_FILE_ERROR variable
QAError class [QAnywhere C++ API], 382
QAException class [QAnywhere Java API], 502

COMMON_GET_PROPERTY_ERROR field
QAException class [QAnywhere .NET API], 212

COMMON_GET_PROPERTY_ERROR variable
QAError class [QAnywhere C++ API], 382
QAException class [QAnywhere Java API], 502

COMMON_GETQUEUEDEPTH_ERROR field
QAException class [QAnywhere .NET API], 212

COMMON_GETQUEUEDEPTH_ERROR variable
QAError class [QAnywhere C++ API], 383
QAException class [QAnywhere Java API], 502

COMMON_GETQUEUEDEPTH_ERROR_INVALI
D_ARG field

QAException class [QAnywhere .NET API], 212
COMMON_GETQUEUEDEPTH_ERROR_INVALI
D_ARG variable

QAError class [QAnywhere C++ API], 383
QAException class [QAnywhere Java API], 502

COMMON_GETQUEUEDEPTH_ERROR_NO_STO
RE_ID field

QAException class [QAnywhere .NET API], 213
COMMON_GETQUEUEDEPTH_ERROR_NO_STO
RE_ID variable

QAError class [QAnywhere C++ API], 383
QAException class [QAnywhere Java API], 503

COMMON_INIT_ERROR field
QAException class [QAnywhere .NET API], 213

COMMON_INIT_ERROR variable
QAError class [QAnywhere C++ API], 383
QAException class [QAnywhere Java API], 503

COMMON_INIT_THREAD_ERROR field
QAException class [QAnywhere .NET API], 213

COMMON_INIT_THREAD_ERROR variable
QAError class [QAnywhere C++ API], 383
QAException class [QAnywhere Java API], 503

COMMON_INVALID_PROPERTY field
QAException class [QAnywhere .NET API], 214

COMMON_INVALID_PROPERTY variable
QAError class [QAnywhere C++ API], 384
QAException class [QAnywhere Java API], 503

COMMON_MSG_ACKNOWLEDGE_ERROR field
QAException class [QAnywhere .NET API], 214

COMMON_MSG_ACKNOWLEDGE_ERROR
variable

QAError class [QAnywhere C++ API], 384
QAException class [QAnywhere Java API], 503

COMMON_MSG_CANCEL_ERROR field
QAException class [QAnywhere .NET API], 214

COMMON_MSG_CANCEL_ERROR variable
QAError class [QAnywhere C++ API], 384
QAException class [QAnywhere Java API], 504

COMMON_MSG_CANCEL_ERROR_SENT field
QAException class [QAnywhere .NET API], 214

COMMON_MSG_CANCEL_ERROR_SENT
variable

QAError class [QAnywhere C++ API], 384
QAException class [QAnywhere Java API], 504

COMMON_MSG_NOT_WRITEABLE_ERROR
field

QAException class [QAnywhere .NET API], 215
COMMON_MSG_NOT_WRITEABLE_ERROR
variable

QAError class [QAnywhere C++ API], 384
QAException class [QAnywhere Java API], 504

COMMON_MSG_RETRIEVE_ERROR field
QAException class [QAnywhere .NET API], 215

COMMON_MSG_RETRIEVE_ERROR variable
QAError class [QAnywhere C++ API], 384
QAException class [QAnywhere Java API], 504

COMMON_MSG_STORE_ERROR field
QAException class [QAnywhere .NET API], 215

COMMON_MSG_STORE_ERROR variable
QAError class [QAnywhere C++ API], 385
QAException class [QAnywhere Java API], 504

COMMON_MSG_STORE_NOT_INITIALIZED
field

QAException class [QAnywhere .NET API], 215
COMMON_MSG_STORE_NOT_INITIALIZED
variable

QAError class [QAnywhere C++ API], 385
QAException class [QAnywhere Java API], 505

COMMON_MSG_STORE_TOO_LARGE field
QAException class [QAnywhere .NET API], 216

COMMON_MSG_STORE_TOO_LARGE variable
QAError class [QAnywhere C++ API], 385
QAException class [QAnywhere Java API], 505

COMMON_NO_DEST_ERROR field
QAException class [QAnywhere .NET API], 216

COMMON_NO_DEST_ERROR variable
QAError class [QAnywhere C++ API], 385

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 749

QAException class [QAnywhere Java API], 505
COMMON_NO_IMPLEMENTATION field

QAException class [QAnywhere .NET API], 216
COMMON_NO_IMPLEMENTATION variable

QAError class [QAnywhere C++ API], 385
QAException class [QAnywhere Java API], 505

COMMON_NOT_OPEN_ERROR field
QAException class [QAnywhere .NET API], 216

COMMON_NOT_OPEN_ERROR variable
QAError class [QAnywhere C++ API], 386
QAException class [QAnywhere Java API], 505

COMMON_OPEN_ERROR field
QAException class [QAnywhere .NET API], 217

COMMON_OPEN_ERROR variable
QAError class [QAnywhere C++ API], 386
QAException class [QAnywhere Java API], 505

COMMON_OPEN_LOG_FILE_ERROR field
QAException class [QAnywhere .NET API], 217

COMMON_OPEN_LOG_FILE_ERROR variable
QAError class [QAnywhere C++ API], 386
QAException class [QAnywhere Java API], 506

COMMON_OPEN_MAXTHREADS_ERROR field
QAException class [QAnywhere .NET API], 217

COMMON_OPEN_MAXTHREADS_ERROR
variable

QAError class [QAnywhere C++ API], 386
QAException class [QAnywhere Java API], 506

COMMON_REOPEN_ERROR field
QAException class [QAnywhere .NET API], 218

COMMON_REOPEN_ERROR variable
QAException class [QAnywhere Java API], 506

COMMON_SELECTOR_SYNTAX_ERROR field
QAException class [QAnywhere .NET API], 218

COMMON_SELECTOR_SYNTAX_ERROR
variable

QAError class [QAnywhere C++ API], 386
QAException class [QAnywhere Java API], 506

COMMON_SET_PROPERTY_ERROR field
QAException class [QAnywhere .NET API], 218

COMMON_SET_PROPERTY_ERROR variable
QAError class [QAnywhere C++ API], 387
QAException class [QAnywhere Java API], 506

COMMON_TERMINATE_ERROR field
QAException class [QAnywhere .NET API], 218

COMMON_TERMINATE_ERROR variable
QAError class [QAnywhere C++ API], 387
QAException class [QAnywhere Java API], 507

COMMON_UNEXPECTED_EOM_ERROR field

QAException class [QAnywhere .NET API], 218
COMMON_UNEXPECTED_EOM_ERROR variable

QAError class [QAnywhere C++ API], 387
QAException class [QAnywhere Java API], 507

COMMON_UNREPRESENTABLE_TIMESTAMP
field

QAException class [QAnywhere .NET API], 219
COMMON_UNREPRESENTABLE_TIMESTAMP
variable

QAError class [QAnywhere C++ API], 387
QAException class [QAnywhere Java API], 507

communication streams
encrypting QAnywhere, 118

compiling
QAnywhere running mobile web service
applications, 99

compression
QAnywhere JMS connector, 728, 731
QAnywhere web service connector, 139

COMPRESSION_LEVEL property
QAnywhere manager configuration properties, 81

condition syntax
QAnywhere, 734

condition tag
QAnywhere server management requests, 665

conditions
QAnywhere schedule syntax, 734

configuring
QAnywhere JMS connector properties, 131
QAnywhere push notifications, 33
QAnywhere web service connector properties, 138

configuring gateways
QAnywhere, 36

configuring Listeners
QAnywhere, 35

configuring multiple connectors
QAnywhere, 132

configuring push notifications
QAnywhere, 33

configuring QAnywhere gateways
about, 36

configuring QAnywhere Notifiers
about, 33

configuring the Notifier
QAnywhere, 33

CONNECT_PARAMS property
QAnywhere manager configuration properties, 81

connecting

Index

750 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

QAnywhere, 676, 699
connection strings

QAnywhere, 676, 699
connector

QAnywhere, 129
connectors

configuring multiple QAnywhere JMS, 132
QAnywhere addresses for JMS, 58
QAnywhere closing, 153
QAnywhere JMS connector properties, 131
QAnywhere mobile web service, 137
QAnywhere opening, 152
QAnywhere server management requests, 150
QAnywhere web service connector properties, 138

conventions
command prompts, ix
command shells, ix
documentation, vii
file names in documentation, viii
operating systems, vii
Unix , vii
Windows, vii
Windows CE, vii
Windows Mobile, vii

create an agent configuration file
Sybase Central task, 82

CreateBinaryMessage method
QAManagerBase interface [QAnywhere .NET
API], 235

createBinaryMessage method
QAManagerBase class [QAnywhere C++ API],
403
QAManagerBase interface [QAnywhere Java API],
521

CreateQAManager method
QAManagerFactory class [QAnywhere .NET API],
265

createQAManager method
QAManagerFactory class [QAnywhere C++ API],
425
QAManagerFactory class [QAnywhere Java API],
546

CreateQATransactionalManager method
QAManagerFactory class [QAnywhere .NET API],
268

createQATransactionalManager method
QAManagerFactory class [QAnywhere C++ API],
426

QAManagerFactory class [QAnywhere Java API],
548

CreateTextMessage method
QAManagerBase interface [QAnywhere .NET
API], 236

createTextMessage method
QAManagerBase class [QAnywhere C++ API],
403
QAManagerBase interface [QAnywhere Java API],
521

creating
QAnywhere messages with ml_qa_createmessage,
649
QAnywhere server message store, 22

creating and configuring connectors
QAnywhere server management requests, 151

creating client message store IDs
QAnywhere, 24

creating client message stores
QAnywhere, 117

creating destination aliases
QAnywhere, 127

custom message properties
QAnywhere, 661

custom message store properties
QAnywhere, 719

custom message store property attributes
QAnywhere, 719

customrule tag
QAnywhere server management requests, 666

D
DATABASE_TYPE property

QAnywhere manager configuration properties, 81
DATEADD function

QAnywhere syntax, 737
DATEPART function

QAnywhere syntax, 737
DATETIME function

QAnywhere syntax, 737
dbeng12

QAnywhere Agent and, 46
dblsn utility

QAnywhere Agent and, 46
QAnywhere architecture, 7
QAnywhere configuration, 35

dbmlsync utility

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 751

QAnywhere Agent and, 45
DCX

about, vii
DEFAULT_PRIORITY variable

QAMessage class [QAnywhere C++ API], 451
QAMessage interface [QAnywhere Java API], 566

DEFAULT_TIME_TO_LIVE variable
QAMessage class [QAnywhere C++ API], 451
QAMessage interface [QAnywhere Java API], 566

delete rules
QAnywhere, 743

deleteMessage method
QAManagerBase class [QAnywhere C++ API],
404

deleteQAManager method
QAManagerFactory class [QAnywhere C++ API],
426

deleteQATransactionalManager method
QAManagerFactory class [QAnywhere C++ API],
427

deleting
QAnywhere messages, 743

deleting connectors
QAnywhere server management requests, 152

deleting messages
QAnywhere server management requests, 150

delivery condition syntax
QAnywhere, 734

DELIVERY_COUNT field
MessageProperties class [QAnywhere .NET API],
182

DELIVERY_COUNT variable
MessageProperties class [QAnywhere C++ API],
358
MessageProperties interface [QAnywhere Java
API], 472

deploying
QAnywhere applications, 113

deploying QAnywhere clients
about, 113

destination alias
creating, 127

destination aliases
QAnywhere, 127
QAnywhere creating server management requests,
148, 161

DetailedMessage property
QAException class [QAnywhere .NET API], 211

developer centers
finding out more and requesting technical support,
xi

developer community
newsgroups, x

DocCommentXchange (DCX)
about, vii

documentation
conventions, vii
SQL Anywhere, vii

DTD
QAnywhere server management request, 671

dynamic addressing
QAnywhere Agent utility (qaagent), 696
QAnywhere UltraLite Agent utility (qauagent), 716

E
EAServer

QAnywhere and, 7
encrypting

QAnywhere client message stores, 118
QAnywhere communication stream, 118

endEnumPropertyNames method
QAMessage class [QAnywhere C++ API], 433

endEnumStorePropertyNames method
QAManagerBase class [QAnywhere C++ API],
404

environment variables
command prompts, ix
command shells, ix

ErrorCode property
QAException class [QAnywhere .NET API], 211
WSException class [QAnywhere .NET API], 316

ExceptionListener delegate [QAnywhere .NET API]
description, 299

ExceptionListener2 delegate [QAnywhere .NET API]
description, 299

exceptions
QAnywhere, 77

Expiration message header
QAnywhere message headers, 656

Expiration property
QAMessage interface [QAnywhere .NET API],
286

EXPIRED variable
StatusCodes class [QAnywhere C++ API], 465
StatusCodes interface [QAnywhere Java API], 582

Index

752 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

EXPLICIT_ACKNOWLEDGEMENT variable
AcknowledgementMode class [QAnywhere C++
API], 355
AcknowledgementMode interface [QAnywhere
Java API], 468

F
failover

QAnywhere, 36
QAnywhere Agent -fd option, 678
QAnywhere Agent -fr option, 678
QAnywhere UltraLite Agent -fd option, 701
QAnywhere UltraLite Agent -fr option, 701

feedback
documentation, x
providing, x
reporting an error, x
requesting an update, x

FINAL variable
StatusCodes class [QAnywhere C++ API], 465
StatusCodes interface [QAnywhere Java API], 583

finding out more and requesting technical assistance
technical support, x

functions
QAnywhere rules, 737
QAnywhere stored procedures, 56

functions, system
QAnywhere SQL API, 619

G
getAddress method

QAMessage class [QAnywhere C++ API], 433
QAMessage interface [QAnywhere Java API], 552

getAllQueueDepth method
QAManagerBase class [QAnywhere C++ API],
404

GetArrayValue method
WSResult class [QAnywhere .NET API], 324

getArrayValue method
WSResult class [QAnywhere Java API], 599

getBigDecimalArrayValue method
WSResult class [QAnywhere Java API], 600

getBigDecimalValue method
WSResult class [QAnywhere Java API], 600

getBigIntegerArrayValue method
WSResult class [QAnywhere Java API], 601

getBigIntegerValue method

WSResult class [QAnywhere Java API], 601
getBodyLength method

QABinaryMessage class [QAnywhere C++ API],
371
QABinaryMessage interface [QAnywhere Java
API], 485

GetBoolArrayValue method
WSResult class [QAnywhere .NET API], 325

GetBooleanArrayValue method
WSResult class [QAnywhere .NET API], 325

getBooleanArrayValue method
WSResult class [QAnywhere Java API], 602

GetBooleanProperty method
QAMessage interface [QAnywhere .NET API],
273

getBooleanProperty method
QAMessage class [QAnywhere C++ API], 433
QAMessage interface [QAnywhere Java API], 553

GetBooleanStoreProperty method
QAManagerBase interface [QAnywhere .NET
API], 236

getBooleanStoreProperty method
QAManagerBase class [QAnywhere C++ API],
405
QAManagerBase interface [QAnywhere Java API],
522

GetBooleanValue method
WSResult class [QAnywhere .NET API], 326

getBooleanValue method
WSResult class [QAnywhere Java API], 602

GetBoolValue method
WSResult class [QAnywhere .NET API], 326

GetByteArrayValue method
WSResult class [QAnywhere .NET API], 327

getByteArrayValue method
WSResult class [QAnywhere Java API], 602

GetByteProperty method
QAMessage interface [QAnywhere .NET API],
274

getByteProperty method
QAMessage class [QAnywhere C++ API], 434
QAMessage interface [QAnywhere Java API], 553

getByteStoreProperty method
QAManagerBase class [QAnywhere C++ API],
405
QAManagerBase interface [QAnywhere Java API],
522

GetByteValue method

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 753

WSResult class [QAnywhere .NET API], 327
getByteValue method

WSResult class [QAnywhere Java API], 603
getCharacterArrayValue method

WSResult class [QAnywhere Java API], 603
getCharacterValue method

WSResult class [QAnywhere Java API], 604
GetCharArrayValue method

WSResult class [QAnywhere .NET API], 328
GetCharValue method

WSResult class [QAnywhere .NET API], 328
GetDecimalArrayValue method

WSResult class [QAnywhere .NET API], 329
GetDecimalValue method

WSResult class [QAnywhere .NET API], 329
getDetailedMessage method

QAException class [QAnywhere Java API], 501
GetDoubleArrayValue method

WSResult class [QAnywhere .NET API], 329
getDoubleArrayValue method

WSResult class [QAnywhere Java API], 604
GetDoubleProperty method

QAMessage interface [QAnywhere .NET API],
275

getDoubleProperty method
QAMessage class [QAnywhere C++ API], 435
QAMessage interface [QAnywhere Java API], 554

GetDoubleStoreProperty method
QAManagerBase interface [QAnywhere .NET
API], 237

getDoubleStoreProperty method
QAManagerBase class [QAnywhere C++ API],
406
QAManagerBase interface [QAnywhere Java API],
523

GetDoubleValue method
WSResult class [QAnywhere .NET API], 330

getDoubleValue method
WSResult class [QAnywhere Java API], 604

getErrorCode method
QAException class [QAnywhere Java API], 501
WSException class [QAnywhere Java API], 594

GetErrorMessage method
WSResult class [QAnywhere .NET API], 330

getErrorMessage method
WSResult class [QAnywhere Java API], 605

getExpiration method
QAMessage class [QAnywhere C++ API], 435

QAMessage interface [QAnywhere Java API], 554
GetFloatArrayValue method

WSResult class [QAnywhere .NET API], 331
getFloatArrayValue method

WSResult class [QAnywhere Java API], 605
GetFloatProperty method

QAMessage interface [QAnywhere .NET API],
275

getFloatProperty method
QAMessage class [QAnywhere C++ API], 436
QAMessage interface [QAnywhere Java API], 555

GetFloatStoreProperty method
QAManagerBase interface [QAnywhere .NET
API], 238

getFloatStoreProperty method
QAManagerBase class [QAnywhere C++ API],
407
QAManagerBase interface [QAnywhere Java API],
523

GetFloatValue method
WSResult class [QAnywhere .NET API], 331

getFloatValue method
WSResult class [QAnywhere Java API], 605

getInReplyToID method
QAMessage class [QAnywhere C++ API], 436
QAMessage interface [QAnywhere Java API], 555

getInstance method
QAManagerFactory class [QAnywhere Java API],
550

GetInt16ArrayValue method
WSResult class [QAnywhere .NET API], 332

GetInt16Value method
WSResult class [QAnywhere .NET API], 332

GetInt32ArrayValue method
WSResult class [QAnywhere .NET API], 333

GetInt32Value method
WSResult class [QAnywhere .NET API], 333

GetInt64ArrayValue method
WSResult class [QAnywhere .NET API], 333

GetInt64Value method
WSResult class [QAnywhere .NET API], 334

GetIntArrayValue method
WSResult class [QAnywhere .NET API], 334

getIntegerArrayValue method
WSResult class [QAnywhere Java API], 606

getIntegerValue method
WSResult class [QAnywhere Java API], 606

GetIntProperty method

Index

754 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

QAMessage interface [QAnywhere .NET API],
276

getIntProperty method
QAMessage class [QAnywhere C++ API], 437
QAMessage interface [QAnywhere Java API], 556

GetIntStoreProperty method
QAManagerBase interface [QAnywhere .NET
API], 238

getIntStoreProperty method
QAManagerBase class [QAnywhere C++ API],
407
QAManagerBase interface [QAnywhere Java API],
524

GetIntValue method
WSResult class [QAnywhere .NET API], 335

getLastError method
QAManagerBase class [QAnywhere C++ API],
408
QAManagerFactory class [QAnywhere C++ API],
427

getLastErrorMsg method
QAManagerBase class [QAnywhere C++ API],
408
QAManagerFactory class [QAnywhere C++ API],
428

getLastNativeError method
QAManagerBase class [QAnywhere C++ API],
408
QAManagerFactory class [QAnywhere C++ API],
428

GetLongArrayValue method
WSResult class [QAnywhere .NET API], 335

getLongArrayValue method
WSResult class [QAnywhere Java API], 607

GetLongProperty method
QAMessage interface [QAnywhere .NET API],
276

getLongProperty method
QAMessage class [QAnywhere C++ API], 437
QAMessage interface [QAnywhere Java API], 556

GetLongStoreProperty method
QAManagerBase interface [QAnywhere .NET
API], 239

getLongStoreProperty method
QAManagerBase class [QAnywhere C++ API],
409
QAManagerBase interface [QAnywhere Java API],
525

GetLongValue method
WSResult class [QAnywhere .NET API], 336

getLongValue method
WSResult class [QAnywhere Java API], 607

GetMessage method
QAManagerBase interface [QAnywhere .NET
API], 240

getMessage method
QAManagerBase class [QAnywhere C++ API],
409
QAManagerBase interface [QAnywhere Java API],
525

GetMessageBySelector method
QAManagerBase interface [QAnywhere .NET
API], 240

getMessageBySelector method
QAManagerBase class [QAnywhere C++ API],
410
QAManagerBase interface [QAnywhere Java API],
526

GetMessageBySelectorNoWait method
QAManagerBase interface [QAnywhere .NET
API], 241

getMessageBySelectorNoWait method
QAManagerBase class [QAnywhere C++ API],
410
QAManagerBase interface [QAnywhere Java API],
526

GetMessageBySelectorTimeout method
QAManagerBase interface [QAnywhere .NET
API], 242

getMessageBySelectorTimeout method
QAManagerBase class [QAnywhere C++ API],
411
QAManagerBase interface [QAnywhere Java API],
527

getMessageID method
QAMessage class [QAnywhere C++ API], 438
QAMessage interface [QAnywhere Java API], 556

GetMessageNoWait method
QAManagerBase interface [QAnywhere .NET
API], 243

getMessageNoWait method
QAManagerBase class [QAnywhere C++ API],
412
QAManagerBase interface [QAnywhere Java API],
528

GetMessageTimeout method

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 755

QAManagerBase interface [QAnywhere .NET
API], 244

getMessageTimeout method
QAManagerBase class [QAnywhere C++ API],
412
QAManagerBase interface [QAnywhere Java API],
528

getMode method
QAManagerBase class [QAnywhere C++ API],
413
QAManagerBase interface [QAnywhere Java API],
529

getNativeErrorCode method
QAException class [QAnywhere Java API], 501

GetNullableBoolArrayValue method
WSResult class [QAnywhere .NET API], 336

GetNullableBoolValue method
WSResult class [QAnywhere .NET API], 337

GetNullableDecimalArrayValue method
WSResult class [QAnywhere .NET API], 337

GetNullableDecimalValue method
WSResult class [QAnywhere .NET API], 338

GetNullableDoubleArrayValue method
WSResult class [QAnywhere .NET API], 338

GetNullableDoubleValue method
WSResult class [QAnywhere .NET API], 339

GetNullableFloatArrayValue method
WSResult class [QAnywhere .NET API], 339

GetNullableFloatValue method
WSResult class [QAnywhere .NET API], 340

GetNullableIntArrayValue method
WSResult class [QAnywhere .NET API], 340

GetNullableIntValue method
WSResult class [QAnywhere .NET API], 341

GetNullableLongArrayValue method
WSResult class [QAnywhere .NET API], 341

GetNullableLongValue method
WSResult class [QAnywhere .NET API], 342

GetNullableSByteArrayValue method
WSResult class [QAnywhere .NET API], 342

GetNullableSByteValue method
WSResult class [QAnywhere .NET API], 343

GetNullableShortArrayValue method
WSResult class [QAnywhere .NET API], 343

GetNullableShortValue method
WSResult class [QAnywhere .NET API], 344

GetObjectArrayValue method
WSResult class [QAnywhere .NET API], 344

getObjectArrayValue method
WSResult class [QAnywhere Java API], 607

GetObjectValue method
WSResult class [QAnywhere .NET API], 345

getObjectValue method
WSResult class [QAnywhere Java API], 608

getPrimitiveBooleanArrayValue method
WSResult class [QAnywhere Java API], 608

getPrimitiveBooleanValue method
WSResult class [QAnywhere Java API], 609

getPrimitiveByteArrayValue method
WSResult class [QAnywhere Java API], 609

getPrimitiveByteValue method
WSResult class [QAnywhere Java API], 610

getPrimitiveCharArrayValue method
WSResult class [QAnywhere Java API], 610

getPrimitiveCharValue method
WSResult class [QAnywhere Java API], 610

getPrimitiveDoubleArrayValue method
WSResult class [QAnywhere Java API], 611

getPrimitiveDoubleValue method
WSResult class [QAnywhere Java API], 611

getPrimitiveFloatArrayValue method
WSResult class [QAnywhere Java API], 612

getPrimitiveFloatValue method
WSResult class [QAnywhere Java API], 612

getPrimitiveIntArrayValue method
WSResult class [QAnywhere Java API], 612

getPrimitiveIntValue method
WSResult class [QAnywhere Java API], 613

getPrimitiveLongArrayValue method
WSResult class [QAnywhere Java API], 613

getPrimitiveLongValue method
WSResult class [QAnywhere Java API], 614

getPrimitiveShortArrayValue method
WSResult class [QAnywhere Java API], 614

getPrimitiveShortValue method
WSResult class [QAnywhere Java API], 615

getPriority method
QAMessage class [QAnywhere C++ API], 438
QAMessage interface [QAnywhere Java API], 557

GetProperty method
QAMessage interface [QAnywhere .NET API],
277

getProperty method
QAMessage interface [QAnywhere Java API], 557

GetPropertyNames method

Index

756 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

QAMessage interface [QAnywhere .NET API],
278

getPropertyNames method
QAMessage interface [QAnywhere Java API], 558

GetPropertyType method
QAMessage interface [QAnywhere .NET API],
278

getPropertyType method
QAMessage class [QAnywhere C++ API], 439
QAMessage interface [QAnywhere Java API], 558

GetQueueDepth method
QAManagerBase interface [QAnywhere .NET
API], 244

getQueueDepth method
QAManagerBase class [QAnywhere C++ API],
413
QAManagerBase interface [QAnywhere Java API],
530

getRedelivered method
QAMessage class [QAnywhere C++ API], 439
QAMessage interface [QAnywhere Java API], 558

getReplyToAddress method
QAMessage class [QAnywhere C++ API], 439
QAMessage interface [QAnywhere Java API], 559

GetRequestID method
WSResult class [QAnywhere .NET API], 345

getRequestID method
WSResult class [QAnywhere Java API], 615

GetResult method
WSBase class [QAnywhere .NET API], 309

getResult method
WSBase class [QAnywhere Java API], 588

GetSByteArrayValue method
WSResult class [QAnywhere .NET API], 346

GetSbyteProperty method
QAMessage interface [QAnywhere .NET API],
278

GetSbyteStoreProperty method
QAManagerBase interface [QAnywhere .NET
API], 246

GetSByteValue method
WSResult class [QAnywhere .NET API], 346

GetServiceID method
WSBase class [QAnywhere .NET API], 309

getServiceID method
WSBase class [QAnywhere Java API], 588

GetShortArrayValue method
WSResult class [QAnywhere .NET API], 346

getShortArrayValue method
WSResult class [QAnywhere Java API], 615

GetShortProperty method
QAMessage interface [QAnywhere .NET API],
279

getShortProperty method
QAMessage class [QAnywhere C++ API], 440
QAMessage interface [QAnywhere Java API], 559

GetShortStoreProperty method
QAManagerBase interface [QAnywhere .NET
API], 247

getShortStoreProperty method
QAManagerBase class [QAnywhere C++ API],
414
QAManagerBase interface [QAnywhere Java API],
531

GetShortValue method
WSResult class [QAnywhere .NET API], 347

getShortValue method
WSResult class [QAnywhere Java API], 616

GetSingleArrayValue method
WSResult class [QAnywhere .NET API], 347

GetSingleValue method
WSResult class [QAnywhere .NET API], 348

GetStatus method
WSResult class [QAnywhere .NET API], 348

getStatus method
WSResult class [QAnywhere Java API], 616

GetStoreProperty method
QAManagerBase interface [QAnywhere .NET
API], 247

getStoreProperty method
QAManagerBase interface [QAnywhere Java API],
532

GetStorePropertyNames method
QAManagerBase interface [QAnywhere .NET
API], 248

getStorePropertyNames method
QAManagerBase interface [QAnywhere Java API],
532

GetStringArrayValue method
WSResult class [QAnywhere .NET API], 349

getStringArrayValue method
WSResult class [QAnywhere Java API], 616

GetStringProperty method
QAMessage interface [QAnywhere .NET API],
279

getStringProperty method

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 757

QAMessage class [QAnywhere C++ API], 440
QAMessage interface [QAnywhere Java API], 560

GetStringStoreProperty method
QAManagerBase interface [QAnywhere .NET
API], 248

getStringStoreProperty method
QAManagerBase class [QAnywhere C++ API],
414
QAManagerBase interface [QAnywhere Java API],
533

GetStringValue method
WSResult class [QAnywhere .NET API], 349

getStringValue method
WSResult class [QAnywhere Java API], 617

getText method
QATextMessage class [QAnywhere C++ API], 455
QATextMessage interface [QAnywhere Java API],
572

getTextLength method
QATextMessage class [QAnywhere C++ API], 455
QATextMessage interface [QAnywhere Java API],
572

getTimestamp method
QAMessage class [QAnywhere C++ API], 442
QAMessage interface [QAnywhere Java API], 560

getTimestampAsString method
QAMessage class [QAnywhere C++ API], 443

getting help
technical support, x

getting started
QAnywhere, 10

GetUIntArrayValue method
WSResult class [QAnywhere .NET API], 350

GetUIntValue method
WSResult class [QAnywhere .NET API], 350

GetULongArrayValue method
WSResult class [QAnywhere .NET API], 351

GetULongValue method
WSResult class [QAnywhere .NET API], 351

GetUShortArrayValue method
WSResult class [QAnywhere .NET API], 351

GetUShortValue method
WSResult class [QAnywhere .NET API], 352

GetValue method
WSResult class [QAnywhere .NET API], 352

getValue method
WSResult class [QAnywhere Java API], 617

H
handling

QAnywhere exceptions about, 77
QAnywhere push notifications and network status
changes, 59

handling errors
QAnywhere, 77

headers
QAnywhere message headers, 656

help
technical support, x

I
iAnywhere developer community

newsgroups, x
ianywhere.connector.address property

QAnywhere JMS connector, 727, 730
QAnywhere web service connector, 138

ianywhere.connector.compressionLevel property
QAnywhere JMS connector, 728, 731
QAnywhere web service connector, 139

ianywhere.connector.id property
QAnywhere JMS connector (deprecated), 727, 730
QAnywhere web service connector (deprecated),
138

ianywhere.connector.incoming.retry.max property
QAnywhere JMS connector, 727, 730

ianywhere.connector.jms.deadMessageDestination
property

QAnywhere JMS connector, 728, 731
ianywhere.connector.logLevel property

QAnywhere JMS connector, 727, 730
QAnywhere web service connector, 139

ianywhere.connector.NativeConnection property
QAnywhere JMS connector, 727, 730
QAnywhere web service connector, 138

ianywhere.connector.outgoing.deadMessageAddress
property

QAnywhere JMS connector, 727, 730
ianywhere.connector.outgoing.retry.max property

QAnywhere JMS connector, 728, 731
QAnywhere web service connector, 139

ianywhere.connector.runtimeError.retry.max property
QAnywhere JMS connector, 728, 731

ianywhere.connector.startupType property
QAnywhere JMS connector, 728, 731
QAnywhere web service connector, 139

Index

758 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ianywhere.qa.server.autoRulesEvaluationPeriod
property

QAnywhere server property, 724
ianywhere.qa.server.compressionLevel property

QAnywhere server property, 724
ianywhere.qa.server.connectorPropertiesFile property

QAnywhere server property, 725
ianywhere.qa.server.disableNotifications property

QAnywhere server property, 725
ianywhere.qa.server.id property

QAnywhere server property, 725
ianywhere.qa.server.logLevel property

QAnywhere server property, 725
ianywhere.qa.server.password.e property

QAnywhere server property, 725
ianywhere.qa.server.rules property

QAnywhere transmission rules, 160
ianywhere.qa.server.scheduleDateFormat property

QAnywhere server property, 725
ianywhere.qa.server.scheduleTimeFormat property

QAnywhere server property, 725
ianywhere.qa.server.transmissionRulesFile property

QAnywhere server property, 726
iAnywhere.QAnywhere.Client namespace

QAnywhere .NET API, 179
ianywhere.qanywhere.client package

QAnywhere Java API, 467
iAnywhere.QAnywhere.StandAloneClient namespace

QAnywhere .NET API, 179
ianywhere.qanywhere.standaloneclient package

QAnywhere Java API, 467
iAnywhere.QAnywhere.WS namespace

QAnywhere .NET API, 306
ianywhere.qanywhere.ws package

QAnywhere Java API, 586
ianywhere.server.defaultClient

QAnywhere transmission rules, 741
ias_Adapters

QAnywhere message store property, 718
QAnywhere network status notifications, 60
QAnywhere predefined message property, 660

ias_Address
QAnywhere transmission rule variable, 738

ias_ContentSize
QAnywhere transmission rule variable, 738

ias_ContentType
QAnywhere transmission rule variable, 738

ias_CurrentDate

QAnywhere transmission rule variable, 738
ias_CurrentTime

QAnywhere transmission rule variable, 738
ias_CurrentTimestamp

QAnywhere transmission rule variable, 738
ias_DeliveryCount

QAnywhere predefined message property, 660
ias_Expires

QAnywhere transmission rule variable, 738
ias_ExpireState

QAnywhere transmission rule variable, 738
ias_FinalState

QAnywhere transmission rule variable, 738
ias_MaxDeliveryAttempts

QAnywhere message store property, 718
QAnywhere transmission rule variable, 738

ias_MaxDownloadSize
QAnywhere message store property, 718

ias_MaxUploadSize
QAnywhere message store property, 718

ias_MessageType
QAnywhere predefined message property, 660

ias_Network
QAnywhere message store property, 718
QAnywhere predefined message property, 660
QAnywhere property, 720
QAnywhere transmission rule variable, 738

ias_Network.Adapter
QAnywhere message store property, 718
QAnywhere transmission rule variable, 738

ias_Network.IP
QAnywhere message store property, 718
QAnywhere transmission rule variable, 738

ias_Network.MAC
QAnywhere message store property, 718
QAnywhere transmission rule variable, 738

ias_Network.RAS
QAnywhere message store property, 718
QAnywhere transmission rule variable, 738

ias_NetworkStatus
QAnywhere network status notifications, 60
QAnywhere predefined message property, 660

ias_Originator
QAnywhere predefined message property, 660
QAnywhere transmission rule variable, 738

ias_PendingState
QAnywhere transmission rule variable, 738

ias_Priority

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 759

QAnywhere transmission rule variable, 738
ias_RASNames

QAnywhere network status notifications, 60
ias_Received

QAnywhere transmission rule variable, 738
ias_Status

QAnywhere predefined message property, 660
QAnywhere transmission rule variable, 738

ias_StatusTime
QAnywhere predefined message property, 661

ias_StoreID
QAnywhere message store property, 718

ias_StoreInitialized
QAnywhere message store property, 718

ias_StoreVersion
QAnywhere message store property, 719

ias_TransmissionStatus
QAnywhere transmission rule variable, 738

IDs
understanding QAnywhere addresses, 58

IMPLICIT_ACKNOWLEDGEMENT variable
AcknowledgementMode class [QAnywhere C++
API], 355
AcknowledgementMode interface [QAnywhere
Java API], 468

INCOMING variable
QueueDepthFilter class [QAnywhere C++ API],
463
QueueDepthFilter interface [QAnywhere Java
API], 580

incremental download
qaagent, 47

incremental upload
qaagent, 47

incremental uploads
QAnywhere message transmission, 681, 704

initializing
QAnywhere client message stores, 690, 713

initializing a QAnywhere API
about, 52

InReplyToID message header
QAnywhere message headers, 656

InReplyToID property
QAMessage interface [QAnywhere .NET API],
287

install-dir
documentation usage, viii

Instance property

QAManagerFactory class [QAnywhere .NET API],
270

IP field
MessageProperties class [QAnywhere .NET API],
183

IP variable
MessageProperties class [QAnywhere C++ API],
359
MessageProperties interface [QAnywhere Java
API], 472

J
Java EE

QAnywhere, 1
JMS

running MobiLink with messaging and a JMS
connector, 129

JMS connector properties
configuring, 131

JMS connectors
QAnywhere, 129
QAnywhere addresses, 58
QAnywhere architecture, 8
tutorial, 140

JMS properties
mapping JMS messages on to QAnywhere
messages, 136

JMS providers
QAnywhere architecture, 7

JMSDestination
mapping QAnywhere messages on to JMS
messages, 133

JMSExpiration
mapping QAnywhere messages on to JMS
messages, 134

JMSPriority
mapping QAnywhere messages on to JMS
messages, 134

JMSReplyTo
mapping QAnywhere messages on to JMS
messages, 134

JMSTimestamp
mapping QAnywhere messages on to JMS
messages, 134

L
LENGTH function

Index

760 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

QAnywhere syntax, 737
Listener utility (dblsn)

QAnywhere Agent and, 46
QAnywhere architecture, 7
QAnywhere configuration, 35

local message store
QAnywhere, 17

local message stores
about, 17
QAnywhere architecture, 4

LOCAL variable
QueueDepthFilter class [QAnywhere C++ API],
463
QueueDepthFilter interface [QAnywhere Java
API], 581
StatusCodes class [QAnywhere C++ API], 465
StatusCodes interface [QAnywhere Java API], 583

log file viewer
QAnywhere server logs, 31

log files
QAnywhere server viewing, 31

LOG_FILE property
QAnywhere manager configuration properties, 81

logging
QAnywhere Agent, 683
QAnywhere server, 31
QAnywhere UltraLite Agent, 706

logging QAnywhere server
about, 31

M
MAC field

MessageProperties class [QAnywhere .NET API],
183

MAC variable
MessageProperties class [QAnywhere C++ API],
359
MessageProperties interface [QAnywhere Java
API], 473

making web service requests
mobile web services, 100

manage client message store IDs
passwords, 117

managing client message store properties
QAnywhere, 125

managing client message store properties in your
application

about, 722
managing message properties

QAnywhere, 662
mapping JMS messages on to QAnywhere messages

about, 135
mapping messages

QAnywhere JMS, 135
mapping QAnywhere messages

JMS messages, 133
MAX_DELIVERY_ATTEMPTS field

MessageStoreProperties class [QAnywhere .NET
API], 188

MAX_DELIVERY_ATTEMPTS variable
MessageStoreProperties class [QAnywhere C++
API], 364
MessageStoreProperties interface [QAnywhere
Java API], 477

MAX_IN_MEMORY_MESSAGE_SIZE property
QAnywhere manager configuration properties, 81

message addresses
QAnywhere, 58

message details requests
QAnywhere about, 163

message headers
about QAnywhere, 656

message listeners
QAnywhere, 71

message properties
about QAnywhere, 659
managing for QAnywhere, 662

message selectors
QAnywhere, 73

message store IDs
about QAnywhere, 24
QAnywhere message store property, 718

message store properties
about QAnywhere client, 717
about QAnywhere server, 724
managing QAnywhere client, 125
QAnywhere client, 26
QAnywhere custom client, 719
QAnywhere predefined, 718

message stores
creating the QAnywhere server message store, 22
encrypting QAnywhere client message stores, 118
QAnywhere architecture for local, 4
QAnywhere client architecture, 5
QAnywhere client properties, 26, 717

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 761

QAnywhere server architecture, 5
message transmission

QAnywhere, 43, 740
message transmission rules

about, 43, 740
message types

QAnywhere, 660
messagedetailsreport tag

QAnywhere server management requests, 669
MessageDetailsRequest tag

QAnywhere server management requests, 164
MessageID message header

QAnywhere message headers, 656
MessageID property

QAMessage interface [QAnywhere .NET API],
287

MessageListener class
QAnywhere (.NET), 70
QAnywhere (Java), 71
QAnywhere system messages, 59

MessageListener delegate [QAnywhere .NET API]
description, 300

MessageListener2 delegate [QAnywhere .NET API]
description, 300

MessageProperties class [QAnywhere .NET API]
ADAPTER field, 181
ADAPTERS field, 182
DELIVERY_COUNT field, 182
description, 179
IP field, 183
MAC field, 183
MSG_TYPE field, 184
NETWORK_STATUS field, 184
ORIGINATOR field, 185
RAS field, 185
RASNAMES field, 186
STATUS field, 186
STATUS_TIME field, 187
TRANSMISSION_STATUS field, 187

MessageProperties class [QAnywhere C++ API]
ADAPTER variable, 357
ADAPTERS variable, 358
DELIVERY_COUNT variable, 358
description, 356
IP variable, 359
MAC variable, 359
MSG_TYPE variable, 360
NETWORK_STATUS variable, 360

ORIGINATOR variable, 361
RAS variable, 361
RASNAMES variable, 362
STATUS variable, 362
STATUS_TIME variable, 362
TRANSMISSION_STATUS variable, 363

MessageProperties interface [QAnywhere Java API]
ADAPTER variable, 471
ADAPTERS variable, 472
DELIVERY_COUNT variable, 472
description, 469
IP variable, 472
MAC variable, 473
MSG_TYPE variable, 473
NETWORK_STATUS variable, 474
ORIGINATOR variable, 474
RAS variable, 474
RASNAMES variable, 475
STATUS variable, 475
STATUS_TIME variable, 475
TRANSMISSION_STATUS variable, 476

messages
sending QAnywhere, 61

messages stores
creating QAnywhere client message stores, 23

MessageStoreProperties class [QAnywhere .NET API]
description, 188
MAX_DELIVERY_ATTEMPTS field, 188

MessageStoreProperties class [QAnywhere C++ API]
description, 363
MAX_DELIVERY_ATTEMPTS variable, 364

MessageStoreProperties interface [QAnywhere Java
API]

description, 476
MAX_DELIVERY_ATTEMPTS variable, 477

MessageType class [QAnywhere C++ API]
description, 364
NETWORK_STATUS_NOTIFICATION variable,
365
PUSH_NOTIFICATION variable, 366
REGULAR variable, 366

MessageType enumeration [QAnywhere .NET API]
description, 302

MessageType interface [QAnywhere Java API]
description, 477
NETWORK_STATUS_NOTIFICATION variable,
478
PUSH_NOTIFICATION variable, 478

Index

762 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

REGULAR variable, 478
messaging

(see also QAnywhere)
application-to-application, 1
QAnywhere addresses, 58
QAnywhere features, 2
QAnywhere quick start, 10
QAnywhere with external messaging systems, 7

messaging systems
JMS integration with QAnywhere, 129

messaging with push notifications
QAnywhere architecture, 6

ml_qa_createmessage
QAnywhere stored procedure, 649

ml_qa_getaddress
QAnywhere stored procedure, 619

ml_qa_getbinarycontent
QAnywhere stored procedure, 643

ml_qa_getbooleanproperty
QAnywhere stored procedure, 629

ml_qa_getbyteproperty
QAnywhere stored procedure, 630

ml_qa_getcontentclass
QAnywhere stored procedure, 644

ml_qa_getdoubleproperty
QAnywhere stored procedure, 631

ml_qa_getexpiration
QAnywhere stored procedure, 620

ml_qa_getfloatproperty
QAnywhere stored procedure, 632

ml_qa_getinreplytoid
QAnywhere stored procedure, 621

ml_qa_getintproperty
QAnywhere stored procedure, 633

ml_qa_getlongproperty
QAnywhere stored procedure, 634

ml_qa_getmessage
QAnywhere stored procedure, 650

ml_qa_getmessagenowait
QAnywhere stored procedure, 651

ml_qa_getmessagetimeout
QAnywhere stored procedure, 652

ml_qa_getpriority
QAnywhere stored procedure, 622

ml_qa_getpropertynames
QAnywhere stored procedure, 634

ml_qa_getredelivered
QAnywhere stored procedure, 623

ml_qa_getreplytoaddress
QAnywhere stored procedure, 624

ml_qa_getshortproperty
QAnywhere stored procedure, 635

ml_qa_getstoreproperty
QAnywhere stored procedure, 648

ml_qa_getstringproperty
QAnywhere stored procedure, 636

ml_qa_gettextcontent
QAnywhere stored procedure, 645

ml_qa_gettimestamp
QAnywhere stored procedure, 625

ml_qa_grant_messaging_permissions
QAnywhere stored procedure, 653

ml_qa_listener_<queue>
QAnywhere stored procedure, 654

ml_qa_listener_queue stored procedure
QAnywhere SQL, 654

ml_qa_putmessage
QAnywhere stored procedure, 655

ml_qa_setbinarycontent
QAnywhere stored procedure, 646

ml_qa_setbooleanproperty
QAnywhere stored procedure, 637

ml_qa_setbyteproperty
QAnywhere stored procedure, 638

ml_qa_setdoubleproperty
QAnywhere stored procedure, 639

ml_qa_setexpiration
QAnywhere stored procedure, 626

ml_qa_setfloatproperty
QAnywhere stored procedure, 639

ml_qa_setinreplytoid
QAnywhere stored procedure, 627

ml_qa_setintproperty
QAnywhere stored procedure, 640

ml_qa_setlongproperty
QAnywhere stored procedure, 641

ml_qa_setpriority
QAnywhere stored procedure, 628

ml_qa_setreplytoaddress
QAnywhere stored procedure, 628

ml_qa_setshortproperty
QAnywhere stored procedure, 642

ml_qa_setstoreproperty
QAnywhere stored procedure, 648

ml_qa_setstringproperty
QAnywhere stored procedure, 643

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 763

ml_qa_settextcontent
QAnywhere stored procedure, 647

ml_qa_triggersendreceive
QAnywhere stored procedure, 656

mobile web service connectors
QAnywhere, 137

mobile web services
example, 103
QAnywhere about, 91
QAnywhere writing service applications, 94

MobiLink Listener utility (dblsn)
QAnywhere Agent and, 46
QAnywhere architecture, 7
QAnywhere configuration, 35

MobiLink log file viewer
QAnywhere server logs, 31

MobiLink server
QAnywhere, 29

MobiLink server log file viewer
QAnywhere logs, 31
QAnywhere server logs, 31

MobiLink user names
adding QAnywhere to the server message store, 30

MobiLink with messaging
QAnywhere setup, 29
QAnywhere tutorial, 169
simple messaging architecture, 5
starting, 29

Mode property
QAManagerBase interface [QAnywhere .NET
API], 264

modifying connectors
QAnywhere server management requests, 152

monitoring connectors
QAnywhere server management requests, 153

monitoring network availability
QAnywhere system queue messages, 59

MSG_TYPE field
MessageProperties class [QAnywhere .NET API],
184

MSG_TYPE variable
MessageProperties class [QAnywhere C++ API],
360
MessageProperties interface [QAnywhere Java
API], 473

multi-threaded
QAnywhere QAManager, 81

N
NativeErrorCode property

QAException class [QAnywhere .NET API], 211
network availability

QAnywhere custom message store properties, 719
QAnywhere system queue messages, 59

network property attributes
QAnywhere client, 719

network status
handling changes in QAnywhere, 59
QAnywhere message property, 60

network status notifications message type
QAnywhere system queue, 59

NETWORK_STATUS field
MessageProperties class [QAnywhere .NET API],
184

NETWORK_STATUS variable
MessageProperties class [QAnywhere C++ API],
360
MessageProperties interface [QAnywhere Java
API], 474

network_status_notification
QAnywhere ias_MessageType, 660

NETWORK_STATUS_NOTIFICATION message
type

QAnywhere system queue, 59
NETWORK_STATUS_NOTIFICATION variable

MessageType class [QAnywhere C++ API], 365
MessageType interface [QAnywhere Java API],
478

newsgroups
technical support, x

nextPropertyName method
QAMessage class [QAnywhere C++ API], 443

nextStorePropertyName method
QAManagerBase class [QAnywhere C++ API],
415

notifications
handling in QAnywhere, 59
QAnywhere, 688, 711
QAnywhere introduction to, 32

O
ODBC data sources

QAnywhere Demo 12, 22
on demand policy

QAnywhere Agent, 687

Index

764 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

QAnywhere UltraLite Agent, 709
OnException method

WSListener interface [QAnywhere .NET API], 320
onException method

QAMessageListener interface [QAnywhere Java
API], 567
QAMessageListener2 interface [QAnywhere Java
API], 568
WSListener interface [QAnywhere Java API], 596

online books
PDF, vii

onMessage method
QAManager class (C++), 71
QAMessageListener class [QAnywhere C++ API],
452
QAMessageListener interface [QAnywhere Java
API], 567
QAMessageListener2 interface [QAnywhere Java
API], 569

OnResult method
WSListener interface [QAnywhere .NET API], 321

onResult method
WSListener interface [QAnywhere Java API], 596

Open method
QAManager interface [QAnywhere .NET API],
225
QATransactionalManager interface
[QAnywhere .NET API], 298

open method
QAManager class [QAnywhere C++ API], 393
QAManager interface [QAnywhere Java API], 513
QATransactionalManager class [QAnywhere C++
API], 461
QATransactionalManager interface [QAnywhere
Java API], 579

OpenConnector tag
QAnywhere server management requests, 152

opening connectors
QAnywhere server management requests, 152

operating systems
Unix, vii
Windows, vii
Windows CE, vii
Windows Mobile, vii

ORIGINATOR field
MessageProperties class [QAnywhere .NET API],
185

ORIGINATOR variable

MessageProperties class [QAnywhere C++ API],
361
MessageProperties interface [QAnywhere Java
API], 474

OUTGOING variable
QueueDepthFilter class [QAnywhere C++ API],
463
QueueDepthFilter interface [QAnywhere Java
API], 581

P
parent tags

QAnywhere, 665
password authentication with MobiLink

QAnywhere applications, 119
PDF

documentation, vii
PENDING variable

StatusCodes class [QAnywhere C++ API], 465
StatusCodes interface [QAnywhere Java API], 583

persistence
QAnywhere messages, 743

persistent connections
qaagent -pc option, 686

plug-ins
QAnywhere, 9

policies
QAnywhere, 46
QAnywhere architecture, 4, 6
QAnywhere tutorial, 173

predefined message properties
QAnywhere, 659

predefined message store properties
QAnywhere, 718

Priority message header
QAnywhere message headers, 656

Priority property
QAMessage interface [QAnywhere .NET API],
288

programming interfaces
QAnywhere, 49

prop tag
QAnywhere server management requests, 159

properties
QAnywhere client message store properties, 26,
717
QAnywhere manager configuration, 81

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 765

QAnywhere message properties, 659
QAnywhere server message store properties, 724

PROPERTY_TYPE_BOOLEAN variable
PropertyType interface [QAnywhere Java API],
479

PROPERTY_TYPE_BYTE variable
PropertyType interface [QAnywhere Java API],
479

PROPERTY_TYPE_DOUBLE variable
PropertyType interface [QAnywhere Java API],
480

PROPERTY_TYPE_FLOAT variable
PropertyType interface [QAnywhere Java API],
480

PROPERTY_TYPE_INT variable
PropertyType interface [QAnywhere Java API],
480

PROPERTY_TYPE_LONG variable
PropertyType interface [QAnywhere Java API],
480

PROPERTY_TYPE_SHORT variable
PropertyType interface [QAnywhere Java API],
480

PROPERTY_TYPE_STRING variable
PropertyType interface [QAnywhere Java API],
481

PROPERTY_TYPE_UNKNOWN variable
PropertyType interface [QAnywhere Java API],
481

PropertyExists method
QAManagerBase interface [QAnywhere .NET
API], 249
QAMessage interface [QAnywhere .NET API],
280

propertyExists method
QAManagerBase interface [QAnywhere Java API],
533
QAMessage class [QAnywhere C++ API], 444
QAMessage interface [QAnywhere Java API], 561

PropertyType enumeration [QAnywhere .NET API]
description, 303

PropertyType interface [QAnywhere Java API]
description, 479
PROPERTY_TYPE_BOOLEAN variable, 479
PROPERTY_TYPE_BYTE variable, 479
PROPERTY_TYPE_DOUBLE variable, 480
PROPERTY_TYPE_FLOAT variable, 480
PROPERTY_TYPE_INT variable, 480

PROPERTY_TYPE_LONG variable, 480
PROPERTY_TYPE_SHORT variable, 480
PROPERTY_TYPE_STRING variable, 481
PROPERTY_TYPE_UNKNOWN variable, 481

push notifications
about, 32
handling in QAnywhere, 59
QAnywhere -push option, 688, 711
QAnywhere configuration, 33
QAnywhere example, 6

push_notification
QAnywhere ias_MessageType, 660

PUSH_NOTIFICATION message type
QAnywhere system queue, 60

PUSH_NOTIFICATION variable
MessageType class [QAnywhere C++ API], 366
MessageType interface [QAnywhere Java API],
478

PutMessage method
QAManagerBase interface [QAnywhere .NET
API], 250

putMessage method
QAManagerBase class [QAnywhere C++ API],
416
QAManagerBase interface [QAnywhere Java API],
534

PutMessageTimeToLive method
QAManagerBase interface [QAnywhere .NET
API], 251

putMessageTimeToLive method
QAManagerBase class [QAnywhere C++ API],
416
QAManagerBase interface [QAnywhere Java API],
534

Q
qa.hpp

QAnywhere header file, 54
qa.hpp header file

QAnywhere C++ API reference for clients, 354
QA_NO_ERROR field

QAException class [QAnywhere .NET API], 219
QA_NO_ERROR variable

QAError class [QAnywhere C++ API], 387
QAException class [QAnywhere Java API], 507

QAA files
QAnywhere, 46

Index

766 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

qaagent utility
about, 44
starting on Windows Mobile, 45
stopping, 45
syntax, 673

QABinaryMessage class
instantiating (.NET), 61
instantiating (C++), 61

QABinaryMessage class [QAnywhere C++ API]
description, 366
getBodyLength method, 371
QABinaryMessage deconstructor, 371
readBinary method, 371
readBoolean method, 372
readByte method, 372
readChar method, 373
readDouble method, 373
readFloat method, 373
readInt method, 374
readLong method, 374
readShort method, 375
readString method, 375
reset method, 375
writeBinary method, 376
writeBoolean method, 376
writeByte method, 376
writeChar method, 377
writeDouble method, 377
writeFloat method, 378
writeInt method, 378
writeLong method, 378
writeShort method, 379
writeString method, 379

QABinaryMessage deconstructor
QABinaryMessage class [QAnywhere C++ API],
371

QABinaryMessage interface [QAnywhere .NET API]
BodyLength property, 206
description, 189
ReadBinary method, 193
ReadBoolean method, 195
ReadChar method, 195
ReadDouble method, 196
ReadFloat method, 196
ReadInt method, 197
ReadLong method, 197
ReadSbyte method, 198
ReadShort method, 198

ReadString method, 199
Reset method, 199
WriteBinary method, 200
WriteBoolean method, 202
WriteChar method, 202
WriteDouble method, 203
WriteFloat method, 203
WriteInt method, 204
WriteLong method, 204
WriteSbyte method, 205
WriteShort method, 205
WriteString method, 206

QABinaryMessage interface [QAnywhere Java API]
description, 481
getBodyLength method, 485
readBinary method, 485
readBoolean method, 488
readByte method, 488
readChar method, 488
readDouble method, 489
readFloat method, 489
readInt method, 490
readLong method, 490
readShort method, 491
readString method, 491
reset method, 491
writeBinary method, 492
writeBoolean method, 494
writeByte method, 494
writeChar method, 495
writeDouble method, 495
writeFloat method, 496
writeInt method, 496
writeLong method, 497
writeShort method, 497
writeString method, 497

QAError class [QAnywhere C++ API]
COMMON_ALREADY_OPEN_ERROR variable,
382
COMMON_GET_INIT_FILE_ERROR variable,
382
COMMON_GET_PROPERTY_ERROR variable,
382
COMMON_GETQUEUEDEPTH_ERROR
variable, 383
COMMON_GETQUEUEDEPTH_ERROR_INVA
LID_ARG variable, 383

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 767

COMMON_GETQUEUEDEPTH_ERROR_NO_S
TORE_ID variable, 383
COMMON_INIT_ERROR variable, 383
COMMON_INIT_THREAD_ERROR variable,
383
COMMON_INVALID_PROPERTY variable, 384
COMMON_MSG_ACKNOWLEDGE_ERROR
variable, 384
COMMON_MSG_CANCEL_ERROR variable,
384
COMMON_MSG_CANCEL_ERROR_SENT
variable, 384
COMMON_MSG_NOT_WRITEABLE_ERROR
variable, 384
COMMON_MSG_RETRIEVE_ERROR variable,
384
COMMON_MSG_STORE_ERROR variable, 385
COMMON_MSG_STORE_NOT_INITIALIZED
variable, 385
COMMON_MSG_STORE_TOO_LARGE
variable, 385
COMMON_NO_DEST_ERROR variable, 385
COMMON_NO_IMPLEMENTATION variable,
385
COMMON_NOT_OPEN_ERROR variable, 386
COMMON_OPEN_ERROR variable, 386
COMMON_OPEN_LOG_FILE_ERROR variable,
386
COMMON_OPEN_MAXTHREADS_ERROR
variable, 386
COMMON_SELECTOR_SYNTAX_ERROR
variable, 386
COMMON_SET_PROPERTY_ERROR variable,
387
COMMON_TERMINATE_ERROR variable, 387
COMMON_UNEXPECTED_EOM_ERROR
variable, 387
COMMON_UNREPRESENTABLE_TIMESTAM
P variable, 387
description, 380
QA_NO_ERROR variable, 387

QAException class [QAnywhere .NET API]
COMMON_ALREADY_OPEN_ERROR field,
211
COMMON_GET_INIT_FILE_ERROR field, 212
COMMON_GET_PROPERTY_ERROR field, 212
COMMON_GETQUEUEDEPTH_ERROR field,
212

COMMON_GETQUEUEDEPTH_ERROR_INVA
LID_ARG field, 212
COMMON_GETQUEUEDEPTH_ERROR_NO_S
TORE_ID field, 213
COMMON_INIT_ERROR field, 213
COMMON_INIT_THREAD_ERROR field, 213
COMMON_INVALID_PROPERTY field, 214
COMMON_MSG_ACKNOWLEDGE_ERROR
field, 214
COMMON_MSG_CANCEL_ERROR field, 214
COMMON_MSG_CANCEL_ERROR_SENT
field, 214
COMMON_MSG_NOT_WRITEABLE_ERROR
field, 215
COMMON_MSG_RETRIEVE_ERROR field, 215
COMMON_MSG_STORE_ERROR field, 215
COMMON_MSG_STORE_NOT_INITIALIZED
field, 215
COMMON_MSG_STORE_TOO_LARGE field,
216
COMMON_NO_DEST_ERROR field, 216
COMMON_NO_IMPLEMENTATION field, 216
COMMON_NOT_OPEN_ERROR field, 216
COMMON_OPEN_ERROR field, 217
COMMON_OPEN_LOG_FILE_ERROR field,
217
COMMON_OPEN_MAXTHREADS_ERROR
field, 217
COMMON_REOPEN_ERROR field, 217
COMMON_SELECTOR_SYNTAX_ERROR
field, 218
COMMON_SET_PROPERTY_ERROR field, 218
COMMON_TERMINATE_ERROR field, 218
COMMON_UNEXPECTED_EOM_ERROR field,
218
COMMON_UNREPRESENTABLE_TIMESTAM
P field, 219
description, 207
DetailedMessage property, 211
ErrorCode property, 211
NativeErrorCode property, 211
QA_NO_ERROR field, 219

QAException class [QAnywhere Java API]
COMMON_ALREADY_OPEN_ERROR variable,
502
COMMON_GET_INIT_FILE_ERROR variable,
502

Index

768 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

COMMON_GET_PROPERTY_ERROR variable,
502
COMMON_GETQUEUEDEPTH_ERROR
variable, 502
COMMON_GETQUEUEDEPTH_ERROR_INVA
LID_ARG variable, 502
COMMON_GETQUEUEDEPTH_ERROR_NO_S
TORE_ID variable, 503
COMMON_INIT_ERROR variable, 503
COMMON_INIT_THREAD_ERROR variable,
503
COMMON_INVALID_PROPERTY variable, 503
COMMON_MSG_ACKNOWLEDGE_ERROR
variable, 503
COMMON_MSG_CANCEL_ERROR variable,
504
COMMON_MSG_CANCEL_ERROR_SENT
variable, 504
COMMON_MSG_NOT_WRITEABLE_ERROR
variable, 504
COMMON_MSG_RETRIEVE_ERROR variable,
504
COMMON_MSG_STORE_ERROR variable, 504
COMMON_MSG_STORE_NOT_INITIALIZED
variable, 505
COMMON_MSG_STORE_TOO_LARGE
variable, 505
COMMON_NO_DEST_ERROR variable, 505
COMMON_NO_IMPLEMENTATION variable,
505
COMMON_NOT_OPEN_ERROR variable, 505
COMMON_OPEN_ERROR variable, 505
COMMON_OPEN_LOG_FILE_ERROR variable,
506
COMMON_OPEN_MAXTHREADS_ERROR
variable, 506
COMMON_REOPEN_ERROR variable, 506
COMMON_SELECTOR_SYNTAX_ERROR
variable, 506
COMMON_SET_PROPERTY_ERROR variable,
506
COMMON_TERMINATE_ERROR variable, 507
COMMON_UNEXPECTED_EOM_ERROR
variable, 507
COMMON_UNREPRESENTABLE_TIMESTAM
P variable, 507
description, 498
getDetailedMessage method, 501

getErrorCode method, 501
getNativeErrorCode method, 501
QA_NO_ERROR variable, 507

QAManager
C++ application setup, 54
configuration properties, 81
Java application setup, 55
multi-threaded, 81

QAManager class
acknowledgement modes (.NET), 53
acknowledgement modes (.NET) for web services,
95
acknowledgement modes (C++), 54
acknowledgement modes (Java), 55
acknowledgement modes (Java) for web services,
97
initializing (.NET), 53
initializing (.NET) for web services, 95
initializing (C++), 54
initializing (Java), 55
initializing (Java) for web services, 97
instantiating (.Java), 55
instantiating (.Java) for web services, 97
instantiating (.NET), 53
instantiating (.NET) for web services, 95
instantiating (C++), 54

QAManager class [QAnywhere C++ API]
acknowledge method, 392
acknowledgeAll method, 392
acknowledgeUntil method, 393
description, 387
open method, 393
recover method, 394

QAManager interface [QAnywhere .NET API]
Acknowledge method, 223
AcknowledgeAll method, 224
AcknowledgeUntil method, 225
description, 219
Open method, 225
Recover method, 226

QAManager interface [QAnywhere Java API]
acknowledge method, 511
acknowledgeAll method, 512
acknowledgeUntil method, 512
description, 507
open method, 513
recover method, 513

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 769

QAManager properties (see QAnywhere Manager
configuration properties)

properties file, 53
QAManagerBase class [QAnywhere C++ API]

beginEnumStorePropertyNames method, 398
browseClose method, 399
browseMessages method, 399
browseMessagesByID method, 399
browseMessagesByQueue method, 400
browseMessagesBySelector method, 401
browseNextMessage method, 401
cancelMessage method, 402
close method, 402
createBinaryMessage method, 403
createTextMessage method, 403
deleteMessage method, 404
description, 394
endEnumStorePropertyNames method, 404
getAllQueueDepth method, 404
getBooleanStoreProperty method, 405
getByteStoreProperty method, 405
getDoubleStoreProperty method, 406
getFloatStoreProperty method, 407
getIntStoreProperty method, 407
getLastError method, 408
getLastErrorMsg method, 408
getLastNativeError method, 408
getLongStoreProperty method, 409
getMessage method, 409
getMessageBySelector method, 410
getMessageBySelectorNoWait method, 410
getMessageBySelectorTimeout method, 411
getMessageNoWait method, 412
getMessageTimeout method, 412
getMode method, 413
getQueueDepth method, 413
getShortStoreProperty method, 414
getStringStoreProperty method, 414
nextStorePropertyName method, 415
putMessage method, 416
putMessageTimeToLive method, 416
setBooleanStoreProperty method, 416
setByteStoreProperty method, 417
setDoubleStoreProperty method, 418
setFloatStoreProperty method, 418
setIntStoreProperty method, 419
setLongStoreProperty method, 419
setMessageListener method, 420

setMessageListenerBySelector method, 420
setProperty method, 421
setShortStoreProperty method, 422
setStringStoreProperty method, 422
start method, 423
stop method, 423
triggerSendReceive method, 424

QAManagerBase interface [QAnywhere .NET API]
BrowseMessages method, 231
BrowseMessagesByID method, 232
BrowseMessagesByQueue method, 233
BrowseMessagesBySelector method, 233
CancelMessage method, 234
Close method, 235
CreateBinaryMessage method, 235
CreateTextMessage method, 236
description, 226
GetBooleanStoreProperty method, 236
GetDoubleStoreProperty method, 237
GetFloatStoreProperty method, 238
GetIntStoreProperty method, 238
GetLongStoreProperty method, 239
GetMessage method, 240
GetMessageBySelector method, 240
GetMessageBySelectorNoWait method, 241
GetMessageBySelectorTimeout method, 242
GetMessageNoWait method, 243
GetMessageTimeout method, 244
GetQueueDepth method, 244
GetSbyteStoreProperty method, 246
GetShortStoreProperty method, 247
GetStoreProperty method, 247
GetStorePropertyNames method, 248
GetStringStoreProperty method, 248
Mode property, 264
PropertyExists method, 249
PutMessage method, 250
PutMessageTimeToLive method, 251
ReOpen method, 251
SetBooleanStoreProperty method, 252
SetDoubleStoreProperty method, 252
SetExceptionListener method, 253
SetExceptionListener2 method, 254
SetFloatStoreProperty method, 254
SetIntStoreProperty method, 255
SetLongStoreProperty method, 256
SetMessageListener method, 256
SetMessageListener2 method, 257

Index

770 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SetMessageListenerBySelector method, 258
SetMessageListenerBySelector2 method, 259
SetProperty method, 260
SetSbyteStoreProperty method, 260
SetShortStoreProperty method, 261
SetStoreProperty method, 262
SetStringStoreProperty method, 262
Start method, 263
Stop method, 263
TriggerSendReceive method, 264

QAManagerBase interface [QAnywhere Java API]
browseMessages method, 517
browseMessagesByID method, 518
browseMessagesByQueue method, 518
browseMessagesBySelector method, 519
cancelMessage method, 520
close method, 520
createBinaryMessage method, 521
createTextMessage method, 521
description, 514
getBooleanStoreProperty method, 522
getByteStoreProperty method, 522
getDoubleStoreProperty method, 523
getFloatStoreProperty method, 523
getIntStoreProperty method, 524
getLongStoreProperty method, 525
getMessage method, 525
getMessageBySelector method, 526
getMessageBySelectorNoWait method, 526
getMessageBySelectorTimeout method, 527
getMessageNoWait method, 528
getMessageTimeout method, 528
getMode method, 529
getQueueDepth method, 530
getShortStoreProperty method, 531
getStoreProperty method, 532
getStorePropertyNames method, 532
getStringStoreProperty method, 533
propertyExists method, 533
putMessage method, 534
putMessageTimeToLive method, 534
reOpen method, 535
setBooleanStoreProperty method, 535
setByteStoreProperty method, 536
setDoubleStoreProperty method, 537
setFloatStoreProperty method, 537
setIntStoreProperty method, 538
setLongStoreProperty method, 538

setMessageListener method, 539
setMessageListener2 method, 540
setMessageListenerBySelector method, 540
setMessageListenerBySelector2 method, 541
setProperty method, 542
setShortStoreProperty method, 542
setStoreProperty method, 543
setStringStoreProperty method, 543
start method, 544
stop method, 544
triggerSendReceive method, 545

QAManagerFactory class
implementing transactional messaging (Java), 66
initializing (.Java), 55
initializing (.Java) for web services, 97
initializing (.NET), 53
initializing (.NET) for web services, 95
initializing (C++), 54
initializing for transactional messaging (.NET), 63

QAManagerFactory class [QAnywhere .NET API]
CreateQAManager method, 265
CreateQATransactionalManager method, 268
description, 265
Instance property, 270

QAManagerFactory class [QAnywhere C++ API]
createQAManager method, 425
createQATransactionalManager method, 426
deleteQAManager method, 426
deleteQATransactionalManager method, 427
description, 424
getLastError method, 427
getLastErrorMsg method, 428
getLastNativeError method, 428

QAManagerFactory class [QAnywhere Java API]
createQAManager method, 546
createQATransactionalManager method, 548
description, 545
getInstance method, 550

QAMessage class
managing QAnywhere message properties, 662

QAMessage class [QAnywhere C++ API]
beginEnumPropertyNames method, 431
castToBinaryMessage method, 432
castToTextMessage method, 432
clearProperties method, 433
DEFAULT_PRIORITY variable, 451
DEFAULT_TIME_TO_LIVE variable, 451
description, 429

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 771

endEnumPropertyNames method, 433
getAddress method, 433
getBooleanProperty method, 433
getByteProperty method, 434
getDoubleProperty method, 435
getExpiration method, 435
getFloatProperty method, 436
getInReplyToID method, 436
getIntProperty method, 437
getLongProperty method, 437
getMessageID method, 438
getPriority method, 438
getPropertyType method, 439
getRedelivered method, 439
getReplyToAddress method, 439
getShortProperty method, 440
getStringProperty method, 440
getTimestamp method, 442
getTimestampAsString method, 443
nextPropertyName method, 443
propertyExists method, 444
setAddress method, 444
setBooleanProperty method, 445
setByteProperty method, 445
setDoubleProperty method, 445
setFloatProperty method, 446
setInReplyToID method, 446
setIntProperty method, 447
setLongProperty method, 447
setMessageID method, 448
setPriority method, 448
setRedelivered method, 448
setReplyToAddress method, 449
setShortProperty method, 449
setStringProperty method, 450
setTimestamp method, 450

QAMessage interface [QAnywhere .NET API]
Address property, 286
ClearBody method, 273
ClearProperties method, 273
description, 271
Expiration property, 286
GetBooleanProperty method, 273
GetByteProperty method, 274
GetDoubleProperty method, 275
GetFloatProperty method, 275
GetIntProperty method, 276
GetLongProperty method, 276

GetProperty method, 277
GetPropertyNames method, 278
GetPropertyType method, 278
GetSbyteProperty method, 278
GetShortProperty method, 279
GetStringProperty method, 279
InReplyToID property, 287
MessageID property, 287
Priority property, 288
PropertyExists method, 280
Redelivered property, 288
ReplyToAddress property, 289
SetBooleanProperty method, 280
SetByteProperty method, 281
SetDoubleProperty method, 281
SetFloatProperty method, 282
SetIntProperty method, 283
SetLongProperty method, 283
SetProperty method, 284
SetSbyteProperty method, 284
SetShortProperty method, 285
SetStringProperty method, 285
Timestamp property, 289

QAMessage interface [QAnywhere Java API]
clearProperties method, 552
DEFAULT_PRIORITY variable, 566
DEFAULT_TIME_TO_LIVE variable, 566
description, 550
getAddress method, 552
getBooleanProperty method, 553
getByteProperty method, 553
getDoubleProperty method, 554
getExpiration method, 554
getFloatProperty method, 555
getInReplyToID method, 555
getIntProperty method, 556
getLongProperty method, 556
getMessageID method, 556
getPriority method, 557
getProperty method, 557
getPropertyNames method, 558
getPropertyType method, 558
getRedelivered method, 558
getReplyToAddress method, 559
getShortProperty method, 559
getStringProperty method, 560
getTimestamp method, 560
propertyExists method, 561

Index

772 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

setBooleanProperty method, 561
setByteProperty method, 561
setDoubleProperty method, 562
setFloatProperty method, 562
setInReplyToID method, 563
setIntProperty method, 563
setLongProperty method, 564
setPriority method, 564
setProperty method, 564
setReplyToAddress method, 565
setShortProperty method, 565
setStringProperty method, 566

QAMessageListener class [QAnywhere C++ API]
description, 451
onMessage method, 452
QAMessageListener deconstructor, 451

QAMessageListener deconstructor
QAMessageListener class [QAnywhere C++ API],
451

QAMessageListener interface [QAnywhere Java API]
description, 566
onException method, 567
onMessage method, 567

QAMessageListener2 interface [QAnywhere Java API]
description, 568
onException method, 568
onMessage method, 569

QAnyNotifier_client
QAnywhere Notifier, 33

QAnywhere
about, 1
addresses, 58
architecture, 3
client message store, 23
connecting to the client message store, 676, 699
connectors, 129
delete rules, 743
deploying, 113
failover, 36
features, 2
local message store, 17
message archive, 22
mobile web services, 91
programming interfaces, 49
quick start, 10
receiving notifications, 70
security, 117
server message store, 21

setting up client-side components, 32
setting up server-side components, 29
transmission rules, 43, 740
transmission rules variables, 738
tutorial, 169
using JMS connectors, 129
WSDL compiler, 92

QAnywhere .NET API
AcknowledgementMode enumeration, 301
ExceptionListener delegate, 299
ExceptionListener2 delegate, 299
iAnywhere.QAnywhere.Client namespace, 179
iAnywhere.QAnywhere.StandAloneClient
namespace, 179
iAnywhere.QAnywhere.WS namespace, 306
initializing, 52
initializing mobile web services, 94
introduction, 49
MessageListener delegate, 300
MessageListener2 delegate, 300
MessageProperties class, 179
MessageStoreProperties class, 188
MessageType enumeration, 302
PropertyType enumeration, 303
QABinaryMessage interface, 189
QAException class, 207
QAManager interface, 219
QAManagerBase interface, 226
QAManagerFactory class, 265
QAMessage interface, 271
QATextMessage interface, 289
QATransactionalManager interface, 293
QueueDepthFilter enumeration, 304
StatusCodes enumeration, 305
WSBase class, 306
WSException class, 313
WSFaultException class, 317
WSListener interface, 320
WSResult class, 321
WSStatus enumeration, 353

QAnywhere 12 plug-in
Sybase Central, 9

QAnywhere administration
about, 145

QAnywhere Agent
about, 39
simple messaging architecture, 4, 6

QAnywhere Agent (qaagent) utility

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 773

syntax, 673
QAnywhere Agent utility (qaagent)

-cd option, 677
-cr option, 677

QAnywhere Agent utility (qauagent)
-cd option, 700
-cr option, 701

QAnywhere architecture
about, 3

QAnywhere C++ API
AcknowledgementMode class, 354
initializing, 54
introduction, 49
MessageProperties class, 356
MessageStoreProperties class, 363
MessageType class, 364
QABinaryMessage class, 366
QAError class, 380
QAManager class, 387
QAManagerBase class, 394
QAManagerFactory class, 424
QAMessage class, 429
QAMessageListener class, 451
QATextMessage class, 452
QATransactionalManager class, 457
QueueDepthFilter class, 462
StatusCodes class, 464

QAnywhere C++ API reference for clients
qa.hpp header file, 354

QAnywhere client
shutting down, 80

QAnywhere client applications
writing, 49

QAnywhere clients
deploying, 113
introduction, 4, 6

QAnywhere delete rules
about, 743

QAnywhere header file
qa.hpp, 54

QAnywhere Java API
AcknowledgementMode interface, 467
ianywhere.qanywhere.client package, 467
ianywhere.qanywhere.standaloneclient package,
467
ianywhere.qanywhere.ws package, 586
initializing, 55
initializing mobile web services, 97

introduction, 50
MessageProperties interface, 469
MessageStoreProperties interface, 476
MessageType interface, 477
PropertyType interface, 479
QABinaryMessage interface, 481
QAException class, 498
QAManager interface, 507
QAManagerBase interface, 514
QAManagerFactory class, 545
QAMessage interface, 550
QAMessageListener interface, 566
QAMessageListener2 interface, 568
QATextMessage interface, 569
QATransactionalManager interface, 575
QueueDepthFilter interface, 580
StatusCodes interface, 581
WSBase class, 586
WSException class, 592
WSFaultException class, 595
WSListener interface, 596
WSResult class, 597
WSStatus class, 618

QAnywhere log file viewer
about, 31

QAnywhere Manager configuration properties
.NET application setup, 52
properties file, 95

QAnywhere manager configuration properties
about, 81
COMPRESSION_LEVEL, 81
CONNECT_PARAMS, 81
DATABASE_TYPE, 81
LOG_FILE, 81
MAX_IN_MEMORY_MESSAGE_SIZE, 81
properties file, 54
RECEIVER_INTERVAL, 81
setting, 81

QAnywhere Manager properties (see QAnywhere
Manager configuration properties)
QAnywhere message properties

about, 659
QAnywhere namespace

including, 53
including for web services, 95

QAnywhere Notifier
architecture, 7

QAnywhere package

Index

774 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

including, 55
including for web services, 97

QAnywhere properties
mapping QAnywhere messages on to JMS
messages, 135

QAnywhere server
about, 29
simple messaging architecture, 5

QAnywhere SQL
about, 56

QAnywhere SQL API
about, 56
initializing, 56
introduction, 50
reference, 619

QAnywhere SQL API reference
about, 619

QAnywhere stop agent utility (qastop)
syntax, 717

QAnywhere stored procedures
about, 56
ml_qa_createmessage, 649
ml_qa_getaddress, 619
ml_qa_getbinarycontent, 643
ml_qa_getbooleanproperty, 629
ml_qa_getbyteproperty, 630
ml_qa_getcontentclass, 644
ml_qa_getdoubleproperty, 631
ml_qa_getexpiration, 620
ml_qa_getfloatproperty, 632
ml_qa_getinreplytoid, 621
ml_qa_getintproperty, 633
ml_qa_getlongproperty, 634
ml_qa_getmessage, 650
ml_qa_getmessagenowait, 651
ml_qa_getmessagetimeout, 652
ml_qa_getpriority, 622
ml_qa_getpropertynames, 634
ml_qa_getredelivered, 623
ml_qa_getreplytoaddress, 624
ml_qa_getshortproperty, 635
ml_qa_getstoreproperty, 648
ml_qa_getstringproperty, 636
ml_qa_gettextcontent, 645
ml_qa_gettimestamp, 625
ml_qa_grant_messaging_permissions, 653
ml_qa_listener_queue, 654
ml_qa_putmessage, 655

ml_qa_setbinarycontent, 646
ml_qa_setbooleanproperty, 637
ml_qa_setbyteproperty, 638
ml_qa_setdoubleproperty, 639
ml_qa_setexpiration, 626
ml_qa_setfloatproperty, 639
ml_qa_setinreplytoid, 627
ml_qa_setintproperty, 640
ml_qa_setlongproperty, 641
ml_qa_setpriority, 628
ml_qa_setreplytoaddress, 628
ml_qa_setshortproperty, 642
ml_qa_setstoreproperty, 648
ml_qa_setstringproperty, 643
ml_qa_settextcontent, 647
ml_qa_triggersendreceive, 656

QAnywhere transmission rules
about, 43, 740

QAnywhere UltraLite Agent utility (qauagent)
syntax, 696

QAR files
QAnywhere, 46

qastop utility
syntax, 717
use with qaagent -qi (quiet mode), 690
use with qauagent -qi (quiet mode), 712

QATextMessage class
instantiating (.NET), 61
instantiating (C++), 61

QATextMessage class [QAnywhere C++ API]
description, 452
getText method, 455
getTextLength method, 455
readText method, 456
reset method, 456
setText method, 456
writeText method, 457

QATextMessage interface [QAnywhere .NET API]
description, 289
ReadText method, 292
Reset method, 292
Text property, 293
TextLength property, 293
WriteText method, 292

QATextMessage interface [QAnywhere Java API]
description, 569
getText method, 572
getTextLength method, 572

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 775

readText method, 572
reset method, 573
setText method, 573
writeText method, 573

QATransactionalManager class
implementing transactional messaging (C++), 65
implementing transactional messaging (Java), 66
initializing (.NET), 63
instantiating (Java), 66
instantiating for transactional messaging (.NET),
63

QATransactionalManager class [QAnywhere C++
API]

commit method, 461
description, 457
open method, 461
rollback method, 462

QATransactionalManager interface
[QAnywhere .NET API]

Commit method, 297
description, 293
Open method, 298
Rollback method, 298

QATransactionalManager interface [QAnywhere Java
API]

commit method, 579
description, 575
open method, 579
rollback method, 579

qauagent utility
syntax, 696

QueueDepthFilter class [QAnywhere C++ API]
ALL variable, 463
description, 462
INCOMING variable, 463
LOCAL variable, 463
OUTGOING variable, 463

QueueDepthFilter enumeration [QAnywhere .NET
API]

description, 304
QueueDepthFilter interface [QAnywhere Java API]

ALL variable, 580
description, 580
INCOMING variable, 580
LOCAL variable, 581
OUTGOING variable, 581

queues
understanding QAnywhere addresses, 58

quick start
mobile web services, 91
QAnywhere, 10

quiet mode
QAnywhere Agent utility (qaagent) -q, 690
QAnywhere Agent utility (qaagent) -qi, 690
QAnywhere UltraLite Agent utility (qauagent) -q,
712
QAnywhere UltraLite Agent utility (qauagent) -qi,
712

R
RAS field

MessageProperties class [QAnywhere .NET API],
185

RAS variable
MessageProperties class [QAnywhere C++ API],
361
MessageProperties interface [QAnywhere Java
API], 474

RASNames
QAnywhere message property, 60

RASNAMES field
MessageProperties class [QAnywhere .NET API],
186

RASNAMES variable
MessageProperties class [QAnywhere C++ API],
362
MessageProperties interface [QAnywhere Java
API], 475

ReadBinary method
QABinaryMessage interface [QAnywhere .NET
API], 193

readBinary method
QABinaryMessage class [QAnywhere C++ API],
371
QABinaryMessage interface [QAnywhere Java
API], 485

ReadBoolean method
QABinaryMessage interface [QAnywhere .NET
API], 195

readBoolean method
QABinaryMessage class [QAnywhere C++ API],
372
QABinaryMessage interface [QAnywhere Java
API], 488

readByte method

Index

776 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

QABinaryMessage class [QAnywhere C++ API],
372
QABinaryMessage interface [QAnywhere Java
API], 488

ReadChar method
QABinaryMessage interface [QAnywhere .NET
API], 195

readChar method
QABinaryMessage class [QAnywhere C++ API],
373
QABinaryMessage interface [QAnywhere Java
API], 488

ReadDouble method
QABinaryMessage interface [QAnywhere .NET
API], 196

readDouble method
QABinaryMessage class [QAnywhere C++ API],
373
QABinaryMessage interface [QAnywhere Java
API], 489

ReadFloat method
QABinaryMessage interface [QAnywhere .NET
API], 196

readFloat method
QABinaryMessage class [QAnywhere C++ API],
373
QABinaryMessage interface [QAnywhere Java
API], 489

reading
QAnywhere large messages, 73

reading messages
QAnywhere, 73

ReadInt method
QABinaryMessage interface [QAnywhere .NET
API], 197

readInt method
QABinaryMessage class [QAnywhere C++ API],
374
QABinaryMessage interface [QAnywhere Java
API], 490

ReadLong method
QABinaryMessage interface [QAnywhere .NET
API], 197

readLong method
QABinaryMessage class [QAnywhere C++ API],
374
QABinaryMessage interface [QAnywhere Java
API], 490

ReadSbyte method
QABinaryMessage interface [QAnywhere .NET
API], 198

ReadShort method
QABinaryMessage interface [QAnywhere .NET
API], 198

readShort method
QABinaryMessage class [QAnywhere C++ API],
375
QABinaryMessage interface [QAnywhere Java
API], 491

ReadString method
QABinaryMessage interface [QAnywhere .NET
API], 199

readString method
QABinaryMessage class [QAnywhere C++ API],
375
QABinaryMessage interface [QAnywhere Java
API], 491

ReadText method
QATextMessage interface [QAnywhere .NET
API], 292

readText method
QATextMessage class [QAnywhere C++ API], 456
QATextMessage interface [QAnywhere Java API],
572

RECEIVED variable
StatusCodes class [QAnywhere C++ API], 466
StatusCodes interface [QAnywhere Java API], 584

receiving messages
about QAnywhere, 68
QAnywhere asynchronously, 70
QAnywhere synchronously, 68

receiving messages asynchronously
QAnywhere, 70

receiving messages synchronously
QAnywhere, 68

RECEIVING variable
StatusCodes class [QAnywhere C++ API], 466
StatusCodes interface [QAnywhere Java API], 584

Recover method
QAManager interface [QAnywhere .NET API],
226

recover method
QAManager class [QAnywhere C++ API], 394
QAManager interface [QAnywhere Java API], 513

Redelivered message header
QAnywhere message headers, 656

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 777

Redelivered property
QAMessage interface [QAnywhere .NET API],
288

refreshing client transmission rules
QAnywhere server management requests, 148

regular
QAnywhere ias_MessageType, 660

REGULAR variable
MessageType class [QAnywhere C++ API], 366
MessageType interface [QAnywhere Java API],
478

ReOpen method
QAManagerBase interface [QAnywhere .NET
API], 251

reOpen method
QAManagerBase interface [QAnywhere Java API],
535

ReplyToAddress message header
QAnywhere message headers, 656

ReplyToAddress property
QAMessage interface [QAnywhere .NET API],
289

Reset method
QABinaryMessage interface [QAnywhere .NET
API], 199
QATextMessage interface [QAnywhere .NET
API], 292

reset method
QABinaryMessage class [QAnywhere C++ API],
375
QABinaryMessage interface [QAnywhere Java
API], 491
QATextMessage class [QAnywhere C++ API], 456
QATextMessage interface [QAnywhere Java API],
573

RestartRules tag
QAnywhere server management requests, 148

Rollback method
QATransactionalManager interface
[QAnywhere .NET API], 298

rollback method
QATransactionalManager class [QAnywhere C++
API], 462
QATransactionalManager interface [QAnywhere
Java API], 579

rule functions
QAnywhere, 737

rule syntax

QAnywhere transmission rules, 733
rule variables

QAnywhere transmission rules, 738
rules

(see also transmission rules)
rules file

QAnywhere Agent -policy option, 688
QAnywhere client transmission rules, 740
QAnywhere server transmission rules, 741
QAnywhere UltraLite Agent -policy option, 710

running
QAnywhere mobile web services, 99

running MobiLink
QAnywhere messaging and a JMS connector, 131
QAnywhere simple messaging, 29

runtime libraries
QAnywhere mobile web services, 99

S
samples-dir

documentation usage, viii
schedule syntax

QAnywhere transmission rules, 733
schedule tag

QAnywhere server management requests, 666
scheduled policy

QAnywhere Agent, 687
QAnywhere UltraLite Agent, 710

schedules
QAnywhere transmission rules, 733

security
QAnywhere, 117

sending messages
implementing QAnywhere transactional messaging
(.NET), 64, 67
implementing QAnywhere transactional messaging
(C++), 65
QAnywhere, 61
QAnywhere JMS connector, 133

sending QAnywhere messages
about, 61
JMS, 132

server management request DTD
QAnywhere, 671

server management requests
addressing QAnywhere, 145
authenticating QAnywhere, 119

Index

778 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

formatting QAnywhere, 146
QAnywhere, 145

server message store
QAnywhere, 21
setting properties with server management request,
159
setting properties with Sybase Central, 726

server message stores
about, 21
administering QAnywhere with server
management requests, 148
QAnywhere architecture, 5
QAnywhere client properties, 724
QAnywhere properties, 724
setting up in QAnywhere, 22

server properties
QAnywhere setting with server management
request, 159
QAnywhere setting with Sybase Central, 726

setAddress method
QAMessage class [QAnywhere C++ API], 444

SetBooleanProperty method
QAMessage interface [QAnywhere .NET API],
280

setBooleanProperty method
QAMessage class [QAnywhere C++ API], 445
QAMessage interface [QAnywhere Java API], 561

SetBooleanStoreProperty method
QAManagerBase interface [QAnywhere .NET
API], 252

setBooleanStoreProperty method
QAManagerBase class [QAnywhere C++ API],
416
QAManagerBase interface [QAnywhere Java API],
535

SetByteProperty method
QAMessage interface [QAnywhere .NET API],
281

setByteProperty method
QAMessage class [QAnywhere C++ API], 445
QAMessage interface [QAnywhere Java API], 561

setByteStoreProperty method
QAManagerBase class [QAnywhere C++ API],
417
QAManagerBase interface [QAnywhere Java API],
536

SetDoubleProperty method

QAMessage interface [QAnywhere .NET API],
282

setDoubleProperty method
QAMessage class [QAnywhere C++ API], 445
QAMessage interface [QAnywhere Java API], 562

SetDoubleStoreProperty method
QAManagerBase interface [QAnywhere .NET
API], 252

setDoubleStoreProperty method
QAManagerBase class [QAnywhere C++ API],
418
QAManagerBase interface [QAnywhere Java API],
537

SetExceptionListener method
QAManagerBase interface [QAnywhere .NET
API], 253

SetExceptionListener2 method
QAManagerBase interface [QAnywhere .NET
API], 254

SetFloatProperty method
QAMessage interface [QAnywhere .NET API],
282

setFloatProperty method
QAMessage class [QAnywhere C++ API], 446
QAMessage interface [QAnywhere Java API], 562

SetFloatStoreProperty method
QAManagerBase interface [QAnywhere .NET
API], 254

setFloatStoreProperty method
QAManagerBase class [QAnywhere C++ API],
418
QAManagerBase interface [QAnywhere Java API],
537

setInReplyToID method
QAMessage class [QAnywhere C++ API], 446
QAMessage interface [QAnywhere Java API], 563

SetIntProperty method
QAMessage interface [QAnywhere .NET API],
283

setIntProperty method
QAMessage class [QAnywhere C++ API], 447
QAMessage interface [QAnywhere Java API], 563

SetIntStoreProperty method
QAManagerBase interface [QAnywhere .NET
API], 255

setIntStoreProperty method
QAManagerBase class [QAnywhere C++ API],
419

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 779

QAManagerBase interface [QAnywhere Java API],
538

SetListener method
WSBase class [QAnywhere .NET API], 309

setListener method
WSBase class [QAnywhere Java API], 588

SetLogger method
WSResult class [QAnywhere .NET API], 353

SetLongProperty method
QAMessage interface [QAnywhere .NET API],
283

setLongProperty method
QAMessage class [QAnywhere C++ API], 447
QAMessage interface [QAnywhere Java API], 564

SetLongStoreProperty method
QAManagerBase interface [QAnywhere .NET
API], 256

setLongStoreProperty method
QAManagerBase class [QAnywhere C++ API],
419
QAManagerBase interface [QAnywhere Java API],
538

setMessageID method
QAMessage class [QAnywhere C++ API], 448

SetMessageListener method
QAManagerBase interface [QAnywhere .NET
API], 256

setMessageListener method
QAManagerBase class [QAnywhere C++ API],
420
QAManagerBase interface [QAnywhere Java API],
539

SetMessageListener2 method
QAManagerBase interface [QAnywhere .NET
API], 257

setMessageListener2 method
QAManagerBase interface [QAnywhere Java API],
540

SetMessageListenerBySelector method
QAManagerBase interface [QAnywhere .NET
API], 258

setMessageListenerBySelector method
QAManagerBase class [QAnywhere C++ API],
420
QAManagerBase interface [QAnywhere Java API],
540

SetMessageListenerBySelector2 method

QAManagerBase interface [QAnywhere .NET
API], 259

setMessageListenerBySelector2 method
QAManagerBase interface [QAnywhere Java API],
541

setPriority method
QAMessage class [QAnywhere C++ API], 448
QAMessage interface [QAnywhere Java API], 564

SetProperty method
QAManagerBase interface [QAnywhere .NET
API], 260
QAMessage interface [QAnywhere .NET API],
284
WSBase class [QAnywhere .NET API], 311

setProperty method
QAManagerBase class [QAnywhere C++ API],
421
QAManagerBase interface [QAnywhere Java API],
542
QAMessage interface [QAnywhere Java API], 564
WSBase class [QAnywhere Java API], 590

SetProperty tag
QAnywhere server management requests, 159

SetQAManager method
WSBase class [QAnywhere .NET API], 311

setQAManager method
WSBase class [QAnywhere Java API], 590

setRedelivered method
QAMessage class [QAnywhere C++ API], 448

setReplyToAddress method
QAMessage class [QAnywhere C++ API], 449
QAMessage interface [QAnywhere Java API], 565

SetRequestProperty method
WSBase class [QAnywhere .NET API], 312

setRequestProperty method
WSBase class [QAnywhere Java API], 591

SetSbyteProperty method
QAMessage interface [QAnywhere .NET API],
284

SetSbyteStoreProperty method
QAManagerBase interface [QAnywhere .NET
API], 260

SetServiceID method
WSBase class [QAnywhere .NET API], 312

setServiceID method
WSBase class [QAnywhere Java API], 591

SetShortProperty method

Index

780 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

QAMessage interface [QAnywhere .NET API],
285

setShortProperty method
QAMessage class [QAnywhere C++ API], 449
QAMessage interface [QAnywhere Java API], 565

SetShortStoreProperty method
QAManagerBase interface [QAnywhere .NET
API], 261

setShortStoreProperty method
QAManagerBase class [QAnywhere C++ API],
422
QAManagerBase interface [QAnywhere Java API],
542

SetStoreProperty method
QAManagerBase interface [QAnywhere .NET
API], 262

setStoreProperty method
QAManagerBase interface [QAnywhere Java API],
543

SetStringProperty method
QAMessage interface [QAnywhere .NET API],
285

setStringProperty method
QAMessage class [QAnywhere C++ API], 450
QAMessage interface [QAnywhere Java API], 566

SetStringStoreProperty method
QAManagerBase interface [QAnywhere .NET
API], 262

setStringStoreProperty method
QAManagerBase class [QAnywhere C++ API],
422
QAManagerBase interface [QAnywhere Java API],
544

setText method
QATextMessage class [QAnywhere C++ API], 456
QATextMessage interface [QAnywhere Java API],
573

setTimestamp method
QAMessage class [QAnywhere C++ API], 450

setting properties
QAnywhere QAManager in a file, 82
QAnywhere QAManager programmatically, 84

setting QAnywhere manager configuration properties
about, 81
in a file, 82
programmatically, 84

setting up
QAnywhere, 10

QAnywhere client message store, 23
QAnywhere client-side components, 32
QAnywhere failover, 36
QAnywhere Java mobile web service applications,
97
QAnywhere messaging about, 29
QAnywhere mobile web services, 91
QAnywhere server message store, 22
QAnywhere server-side components, 29

setting up .NET mobile web service applications
about, 94

setting up web service connectors
mobile web services, 137

shutting down
QAnywhere, 80
QAnywhere mobile web services, 100

shutting down mobile web services
about, 100

shutting down QAnywhere
about, 80

simple messaging
QAnywhere architecture, 4, 5
QAnywhere example, 4, 5

SQL Anywhere
documentation, vii

SQL Anywhere Developer Centers
finding out more and requesting technical support,
xi

SQL Anywhere Tech Corner
finding out more and requesting technical support,
xi

SQL stored procedures
QAnywhere, 56

Start method
QAManagerBase interface [QAnywhere .NET
API], 263

start method
QAManagerBase class [QAnywhere C++ API],
423
QAManagerBase interface [QAnywhere Java API],
544

starting MobiLink servers
QAnywhere JMS integration, 131
QAnywhere messaging, 29

starting QAnywhere servers
about, 29

starting the QAnywhere Agent
about, 44

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 781

STATUS field
MessageProperties class [QAnywhere .NET API],
186

STATUS variable
MessageProperties class [QAnywhere C++ API],
362
MessageProperties interface [QAnywhere Java
API], 475

STATUS_ERROR variable
WSStatus class [QAnywhere Java API], 618

STATUS_QUEUED variable
WSStatus class [QAnywhere Java API], 618

STATUS_RESULT_AVAILABLE variable
WSStatus class [QAnywhere Java API], 619

STATUS_SUCCESS variable
WSStatus class [QAnywhere Java API], 619

STATUS_TIME field
MessageProperties class [QAnywhere .NET API],
187

STATUS_TIME variable
MessageProperties class [QAnywhere C++ API],
362
MessageProperties interface [QAnywhere Java
API], 475

StatusCodes class [QAnywhere C++ API]
CANCELED variable, 464
description, 464
EXPIRED variable, 465
FINAL variable, 465
LOCAL variable, 465
PENDING variable, 465
RECEIVED variable, 466
RECEIVING variable, 466
TRANSMITTED variable, 466
TRANSMITTING variable, 466
UNRECEIVABLE variable, 467
UNTRANSMITTED variable, 467

StatusCodes enumeration [QAnywhere .NET API]
description, 305

StatusCodes interface [QAnywhere Java API]
CANCELED variable, 582
description, 581
EXPIRED variable, 582
FINAL variable, 583
LOCAL variable, 583
PENDING variable, 583
RECEIVED variable, 584
RECEIVING variable, 584

TRANSMITTED variable, 584
TRANSMITTING variable, 585
UNRECEIVABLE variable, 585
UNTRANSMITTED variable, 585

Stop method
QAManagerBase interface [QAnywhere .NET
API], 263

stop method
QAManagerBase class [QAnywhere C++ API],
423
QAManagerBase interface [QAnywhere Java API],
544

stopping
QAnywhere, 80

store IDs
about QAnywhere, 24

stored procedures
ml_qa_createmessage, 649
ml_qa_getaddress, 619
ml_qa_getbinarycontent, 643
ml_qa_getbooleanproperty, 629
ml_qa_getbyteproperty, 630
ml_qa_getcontentclass, 644
ml_qa_getdoubleproperty, 631
ml_qa_getexpiration, 620
ml_qa_getfloatproperty, 632
ml_qa_getinreplytoid, 621
ml_qa_getintproperty, 633
ml_qa_getlongproperty, 634
ml_qa_getmessage, 650
ml_qa_getmessagenowait, 651
ml_qa_getmessagetimeout, 652
ml_qa_getpriority, 622
ml_qa_getpropertynames, 634
ml_qa_getredelivered, 623
ml_qa_getreplytoaddress, 624
ml_qa_getshortproperty, 635
ml_qa_getstoreproperty, 648
ml_qa_getstringproperty, 636
ml_qa_gettextcontent, 645
ml_qa_gettimestamp, 625
ml_qa_grant_messaging_permissions, 653
ml_qa_listener_queue, 654
ml_qa_putmessage, 655
ml_qa_setbinarycontent, 646
ml_qa_setbooleanproperty, 637
ml_qa_setbyteproperty, 638
ml_qa_setdoubleproperty, 639

Index

782 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ml_qa_setexpiration, 626
ml_qa_setfloatproperty, 639
ml_qa_setinreplytoid, 627
ml_qa_setintproperty, 640
ml_qa_setlongproperty, 641
ml_qa_setpriority, 628
ml_qa_setreplytoaddress, 628
ml_qa_setshortproperty, 642
ml_qa_setstoreproperty, 648
ml_qa_setstringproperty, 643
ml_qa_settextcontent, 647
ml_qa_triggersendreceive, 656
QAnywhere, 56

SUBSTRING function
QAnywhere syntax, 737

support
newsgroups, x

synchronous message receipt
QAnywhere, 68

synchronous web service requests
mobile web services, 100

system messages
QAnywhere, 59

system queue
about QAnywhere, 59

system queue messages
QAnywhere, 59

T
tech corners

finding out more and requesting technical support,
xi

technical support
newsgroups, x

TestMessage application
QAnywhere tutorial, 169
source code, 174

Text property
QATextMessage interface [QAnywhere .NET
API], 293

TextLength property
QATextMessage interface [QAnywhere .NET
API], 293

Timestamp message header
QAnywhere message headers, 656

Timestamp property

QAMessage interface [QAnywhere .NET API],
289

transactional messaging
QAnywhere, 63

TRANSACTIONAL variable
AcknowledgementMode class [QAnywhere C++
API], 355
AcknowledgementMode interface [QAnywhere
Java API], 469

transactions
QAnywhere messages, 63

transmission rule functions
QAnywhere, 737

transmission rule variables
QAnywhere, 738

transmission rules
about QAnywhere client, 740
about QAnywhere server, 741
default rules, 741
delete rules, 743
message store properties, 720
QAnywhere, 43, 740
QAnywhere refreshing with server management
requests, 148
QAnywhere rule syntax, 733
specifying using client management requests, 160
specifying using transmission rules files, 742
variables, 738

TRANSMISSION_STATUS field
MessageProperties class [QAnywhere .NET API],
187

TRANSMISSION_STATUS variable
MessageProperties class [QAnywhere C++ API],
363
MessageProperties interface [QAnywhere Java
API], 476

TRANSMITTED variable
StatusCodes class [QAnywhere C++ API], 466
StatusCodes interface [QAnywhere Java API], 584

TRANSMITTING variable
StatusCodes class [QAnywhere C++ API], 466
StatusCodes interface [QAnywhere Java API], 585

TriggerSendReceive method
QAManagerBase interface [QAnywhere .NET
API], 264

triggerSendReceive method
QAManagerBase class [QAnywhere C++ API],
424

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 783

QAManagerBase interface [QAnywhere Java API],
545

troubleshooting
newsgroups, x

tutorials
QAnywhere, 169
QAnywhere JMS connector, 140

types of message
QAnywhere, 660

U
Unix

documentation conventions, vii
operating systems, vii

UNRECEIVABLE variable
StatusCodes class [QAnywhere C++ API], 467
StatusCodes interface [QAnywhere Java API], 585

UNTRANSMITTED variable
StatusCodes class [QAnywhere C++ API], 467
StatusCodes interface [QAnywhere Java API], 585

upgrading
QAnywhere [qaagent] -su option, 692
QAnywhere [qaagent] -sur option, 693
QAnywhere [qauagent] -su option, 714

utilities
QAnywhere Agent (qaagent) syntax, 673
QAnywhere stop agent utility (qastop), 717
QAnywhere UltraLite Agent (qauagent) syntax,
696

V
variables

QAnywhere transmission rules, 738
verbosity

QAnywhere [qaagent] -v option, 694
QAnywhere [qauagent] -v option, 714

W
web service connector properties

configuring, 138
web service connectors

creating, 137
QAnywhere, 137

web services
QAnywhere about, 91

WebLogic
QAnywhere and, 7

webservice.http.authName property
mobile web services connector, 139

webservice.http.password.e property
mobile web services connector, 139

webservice.http.proxy.authName property
mobile web services connector, 139

webservice.http.proxy.host property
mobile web services connector, 139

webservice.http.proxy.password.e property
mobile web service connector, 139

webservice.http.proxy.port property
mobile web services connector, 140

webservice.url property
mobile web services connector, 137

Windows
documentation conventions, vii
operating systems, vii

Windows Mobile
documentation conventions, vii
operating systems, vii
Windows CE, vii

work with a client message store
Sybase Central task, 32

WriteBinary method
QABinaryMessage interface [QAnywhere .NET
API], 200

writeBinary method
QABinaryMessage class [QAnywhere C++ API],
376
QABinaryMessage interface [QAnywhere Java
API], 492

WriteBoolean method
QABinaryMessage interface [QAnywhere .NET
API], 202

writeBoolean method
QABinaryMessage class [QAnywhere C++ API],
376
QABinaryMessage interface [QAnywhere Java
API], 494

writeByte method
QABinaryMessage class [QAnywhere C++ API],
376
QABinaryMessage interface [QAnywhere Java
API], 494

WriteChar method
QABinaryMessage interface [QAnywhere .NET
API], 202

writeChar method

Index

784 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

QABinaryMessage class [QAnywhere C++ API],
377
QABinaryMessage interface [QAnywhere Java
API], 495

WriteDouble method
QABinaryMessage interface [QAnywhere .NET
API], 203

writeDouble method
QABinaryMessage class [QAnywhere C++ API],
377
QABinaryMessage interface [QAnywhere Java
API], 495

WriteFloat method
QABinaryMessage interface [QAnywhere .NET
API], 203

writeFloat method
QABinaryMessage class [QAnywhere C++ API],
378
QABinaryMessage interface [QAnywhere Java
API], 496

WriteInt method
QABinaryMessage interface [QAnywhere .NET
API], 204

writeInt method
QABinaryMessage class [QAnywhere C++ API],
378
QABinaryMessage interface [QAnywhere Java
API], 496

WriteLong method
QABinaryMessage interface [QAnywhere .NET
API], 204

writeLong method
QABinaryMessage class [QAnywhere C++ API],
378
QABinaryMessage interface [QAnywhere Java
API], 497

WriteSbyte method
QABinaryMessage interface [QAnywhere .NET
API], 205

WriteShort method
QABinaryMessage interface [QAnywhere .NET
API], 205

writeShort method
QABinaryMessage class [QAnywhere C++ API],
379
QABinaryMessage interface [QAnywhere Java
API], 497

WriteString method

QABinaryMessage interface [QAnywhere .NET
API], 206

writeString method
QABinaryMessage class [QAnywhere C++ API],
379
QABinaryMessage interface [QAnywhere Java
API], 497

WriteText method
QATextMessage interface [QAnywhere .NET
API], 292

writeText method
QATextMessage class [QAnywhere C++ API], 457
QATextMessage interface [QAnywhere Java API],
573

WS_STATUS_HTTP_ERROR field
WSException class [QAnywhere .NET API], 316

WS_STATUS_HTTP_ERROR variable
WSException class [QAnywhere Java API], 594

WS_STATUS_HTTP_OK field
WSException class [QAnywhere .NET API], 317

WS_STATUS_HTTP_OK variable
WSException class [QAnywhere Java API], 594

WS_STATUS_HTTP_RETRIES_EXCEEDED field
WSException class [QAnywhere .NET API], 317

WS_STATUS_HTTP_RETRIES_EXCEEDED
variable

WSException class [QAnywhere Java API], 594
WS_STATUS_SOAP_PARSE_ERROR field

WSException class [QAnywhere .NET API], 317
WS_STATUS_SOAP_PARSE_ERROR variable

WSException class [QAnywhere Java API], 594
WSBase class [QAnywhere .NET API]

ClearRequestProperties method, 308
description, 306
GetResult method, 309
GetServiceID method, 309
SetListener method, 309
SetProperty method, 311
SetQAManager method, 311
SetRequestProperty method, 312
SetServiceID method, 312
WSBase constructor, 307

WSBase class [QAnywhere Java API]
clearRequestProperties method, 587
description, 586
getResult method, 588
getServiceID method, 588
setListener method, 588

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 785

setProperty method, 590
setQAManager method, 590
setRequestProperty method, 591
setServiceID method, 591
WSBase constructor, 586

WSBase constructor
WSBase class [QAnywhere .NET API], 307
WSBase class [QAnywhere Java API], 586

WSDL compiler
QAnywhere, 92
QAnywhere about, 92

WSDLC
QAnywhere about, 92

WSException class [QAnywhere .NET API]
description, 313
ErrorCode property, 316
WS_STATUS_HTTP_ERROR field, 316
WS_STATUS_HTTP_OK field, 317
WS_STATUS_HTTP_RETRIES_EXCEEDED
field, 317
WS_STATUS_SOAP_PARSE_ERROR field, 317
WSException constructor, 315

WSException class [QAnywhere Java API]
description, 592
getErrorCode method, 594
WS_STATUS_HTTP_ERROR variable, 594
WS_STATUS_HTTP_OK variable, 594
WS_STATUS_HTTP_RETRIES_EXCEEDED
variable, 594
WS_STATUS_SOAP_PARSE_ERROR variable,
594
WSException constructor, 592

WSException constructor
WSException class [QAnywhere .NET API], 315
WSException class [QAnywhere Java API], 592

WSFaultException class [QAnywhere .NET API]
description, 317
WSFaultException constructor, 319

WSFaultException class [QAnywhere Java API]
description, 595
WSFaultException constructor, 595

WSFaultException constructor
WSFaultException class [QAnywhere .NET API],
319
WSFaultException class [QAnywhere Java API],
595

WSListener interface [QAnywhere .NET API]
description, 320

OnException method, 320
OnResult method, 321

WSListener interface [QAnywhere Java API]
description, 596
onException method, 596
onResult method, 596

WSResult class [QAnywhere .NET API]
Acknowledge method, 324
description, 321
GetArrayValue method, 324
GetBoolArrayValue method, 325
GetBooleanArrayValue method, 325
GetBooleanValue method, 326
GetBoolValue method, 326
GetByteArrayValue method, 327
GetByteValue method, 327
GetCharArrayValue method, 328
GetCharValue method, 328
GetDecimalArrayValue method, 329
GetDecimalValue method, 329
GetDoubleArrayValue method, 329
GetDoubleValue method, 330
GetErrorMessage method, 330
GetFloatArrayValue method, 331
GetFloatValue method, 331
GetInt16ArrayValue method, 332
GetInt16Value method, 332
GetInt32ArrayValue method, 333
GetInt32Value method, 333
GetInt64ArrayValue method, 333
GetInt64Value method, 334
GetIntArrayValue method, 334
GetIntValue method, 335
GetLongArrayValue method, 335
GetLongValue method, 336
GetNullableBoolArrayValue method, 336
GetNullableBoolValue method, 337
GetNullableDecimalArrayValue method, 337
GetNullableDecimalValue method, 338
GetNullableDoubleArrayValue method, 338
GetNullableDoubleValue method, 339
GetNullableFloatArrayValue method, 339
GetNullableFloatValue method, 340
GetNullableIntArrayValue method, 340
GetNullableIntValue method, 341
GetNullableLongArrayValue method, 341
GetNullableLongValue method, 342
GetNullableSByteArrayValue method, 342

Index

786 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

GetNullableSByteValue method, 343
GetNullableShortArrayValue method, 343
GetNullableShortValue method, 344
GetObjectArrayValue method, 344
GetObjectValue method, 345
GetRequestID method, 345
GetSByteArrayValue method, 346
GetSByteValue method, 346
GetShortArrayValue method, 346
GetShortValue method, 347
GetSingleArrayValue method, 347
GetSingleValue method, 348
GetStatus method, 348
GetStringArrayValue method, 349
GetStringValue method, 349
GetUIntArrayValue method, 350
GetUIntValue method, 350
GetULongArrayValue method, 351
GetULongValue method, 351
GetUShortArrayValue method, 351
GetUShortValue method, 352
GetValue method, 352
SetLogger method, 353

WSResult class [QAnywhere Java API]
acknowledge method, 599
description, 597
getArrayValue method, 599
getBigDecimalArrayValue method, 600
getBigDecimalValue method, 600
getBigIntegerArrayValue method, 601
getBigIntegerValue method, 601
getBooleanArrayValue method, 602
getBooleanValue method, 602
getByteArrayValue method, 602
getByteValue method, 603
getCharacterArrayValue method, 603
getCharacterValue method, 604
getDoubleArrayValue method, 604
getDoubleValue method, 604
getErrorMessage method, 605
getFloatArrayValue method, 605
getFloatValue method, 605
getIntegerArrayValue method, 606
getIntegerValue method, 606
getLongArrayValue method, 607
getLongValue method, 607
getObjectArrayValue method, 607
getObjectValue method, 608

getPrimitiveBooleanArrayValue method, 608
getPrimitiveBooleanValue method, 609
getPrimitiveByteArrayValue method, 609
getPrimitiveByteValue method, 610
getPrimitiveCharArrayValue method, 610
getPrimitiveCharValue method, 610
getPrimitiveDoubleArrayValue method, 611
getPrimitiveDoubleValue method, 611
getPrimitiveFloatArrayValue method, 612
getPrimitiveFloatValue method, 612
getPrimitiveIntArrayValue method, 612
getPrimitiveIntValue method, 613
getPrimitiveLongArrayValue method, 613
getPrimitiveLongValue method, 614
getPrimitiveShortArrayValue method, 614
getPrimitiveShortValue method, 615
getRequestID method, 615
getShortArrayValue method, 615
getShortValue method, 616
getStatus method, 616
getStringArrayValue method, 616
getStringValue method, 617
getValue method, 617

WSStatus class [QAnywhere Java API]
description, 618
STATUS_ERROR variable, 618
STATUS_QUEUED variable, 618
STATUS_RESULT_AVAILABLE variable, 619
STATUS_SUCCESS variable, 619

WSStatus enumeration [QAnywhere .NET API]
description, 353

X
xjms.jndi.authName property

QAnywhere JMS connector, 728, 731
xjms.jndi.factory property

QAnywhere JMS connector, 728, 731
xjms.jndi.password.e property

QAnywhere JMS connector, 729, 732
xjms.jndi.url property

QAnywhere JMS connector, 729, 732
xjms.password.e property

QAnywhere JMS connector, 729, 732
xjms.queueConnectionAuthName property

QAnywhere JMS connector, 729, 732
xjms.queueConnectionPassword.e property

QAnywhere JMS connector, 729, 732

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 787

xjms.queueFactory property
QAnywhere JMS connector, 729, 732

xjms.receiveDestination property
QAnywhere JMS connector, 729, 732

xjms.topicConnectionAuthName property
QAnywhere JMS connector, 729, 732

xjms.topicConnectionPassword.e property
QAnywhere JMS connector, 729, 732

xjms.topicFactory property
QAnywhere JMS connector, 729, 732

Index

788 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

	QAnywhere™
	Contents
	About this book
	About the SQL Anywhere documentation
	Documentation conventions
	Contacting the documentation team
	Finding out more and requesting technical support

	Introducing QAnywhere technology
	What QAnywhere does
	QAnywhere architecture
	Application-to-application messaging scenario
	Simple messaging scenario
	Scenario for messaging with push notifications
	Scenario for messaging with external messaging systems

	QAnywhere message delivery
	Deciding between SQL Anywhere and UltraLite
	QAnywhere 12 plug-in
	Quick start to QAnywhere

	QAnywhere messages
	Message headers
	Message properties
	Understanding destinations

	QAnywhere message stores
	Local message stores
	Setting up the local message store

	Server message stores
	Setting up the server message store
	Introduction to Server Management Requests

	Client message stores
	Setting up the client message store
	SQL Anywhere and UltraLite client differences
	Client message store properties

	Setting up QAnywhere messaging
	Setting up server-side components
	Starting QAnywhere with MobiLink enabled
	Registering QAnywhere client user names
	Setting properties for clients on the QAnywhere server
	Logging the QAnywhere server
	Using the Relay Server

	Setting up client-side components
	Using push notifications
	Configuring push notifications
	Configuring the QAnywhere Notifier
	Configuring the Listener
	Configuring QAnywhere gateways

	Setting up a failover mechanism

	Introduction to the QAnywhere agent
	Message transmission policies
	Scheduled policy
	Automatic policy
	On demand policy
	Custom policy
	Understanding transmission status
	Understanding message status

	Transmission rules
	Delete rules
	Starting the QAnywhere agent
	Stopping the QAnywhere Agent
	Processes started by the QAnywhere Agent

	Deploying the QAnywhere Agent
	Determining when message transmission should occur on the client
	Dealing with unreliable networks

	Writing QAnywhere client applications
	Introduction to the QAnywhere interfaces
	Quick start to writing a client application
	Initializing a QAnywhere API
	Setting up .NET applications
	Setting up C++ applications
	Setting up Java applications
	Setting up SQL applications

	QAnywhere message addresses
	System queue
	Network status notifications
	Notifications of push notification

	Sending QAnywhere messages
	Implementing transactional messaging
	Implementing transactional messaging for .NET clients
	Implementing transactional messaging for C++ clients
	Implementing transactional messaging for Java clients

	Canceling QAnywhere messages
	Receiving QAnywhere messages
	Receiving messages synchronously
	Receiving messages asynchronously
	Receiving messages using a selector

	Reading very large messages
	Browsing QAnywhere messages
	Browse all messages
	Browsing messages in a queue
	Browsing a message by ID
	Browsing messages using a selector

	Handling QAnywhere exceptions
	Shutting down QAnywhere
	Multi-threading considerations
	QAnywhere manager configuration properties
	Setting QAnywhere manager configuration properties in a file
	Setting QAnywhere manager configuration properties programmatically

	QAnywhere standalone client
	Understanding the standalone client message store
	Deploying the standalone client
	Standalone client API

	Mobile web services
	Setting up mobile web services
	Mobile web services development tips

	Running the iAnywhere WSDL compiler
	Writing mobile web service applications
	Setting up .NET mobile web service applications
	Setting up Java mobile web service applications
	Multiple instances of the service binding class

	Compiling and running mobile web service applications
	Shutting down mobile web services

	Making web service requests
	Synchronous web service requests
	Asynchronous web service requests

	Mobile web service example

	Deploying QAnywhere applications
	Writing secure messaging applications
	Creating a secure client message store
	Manage client message store passwords
	Encrypting the client message store

	Encrypting the communication stream
	Using password authentication with MobiLink
	Securing server management requests
	Adding users with the MobiLink user authentication utility
	Security with the Relay Server

	Administering a server message store
	Transmission rules
	Server transmission rules
	Specifying server transmission rules using Sybase Central
	Specifying server transmission rules with a server management request

	Managing the message archive
	Using server management requests

	Administering a client message store
	Monitoring QAnywhere clients
	Monitoring client properties
	Managing client message store properties

	Destination aliases
	Creating destination aliases

	Connectors
	JMS connectors
	Setting up JMS connectors
	Starting the MobiLink server for JMS integration
	Configuring JMS connector properties
	Configuring multiple connectors

	Sending a QAnywhere message to a JMS connector
	Sending a message from a JMS connector to a QAnywhere client
	QAnywhere properties
	Addressing JMS messages meant for QAnywhere
	Mapping JMS messages on to QAnywhere messages
	JMS properties

	Web service connectors
	Setting up web service connectors
	Web service connector properties
	Sending a message to a web service connector

	Tutorial: Using JMS connectors
	Lesson 1: Set up client and server components
	Lesson 2: Send a message from a JMS client to a QAnywhere client
	Lesson 3: Send a message from a QAnywhere client to a JMS client
	Tutorial cleanup

	Server management requests
	Writing server management requests
	Archive message store requests
	Creating destination aliases

	Administering the server message store with server management requests
	Refreshing client transmission rules
	Canceling messages
	Deleting messages

	Administering connectors with server management requests
	Creating and configuring connectors
	Modifying connectors
	Deleting connectors
	Opening connectors
	Closing connectors
	Monitoring connectors
	Client status reports

	Setting server properties with a server management request
	Specifying transmission rules with a server management request
	Creating destination aliases with a server management request
	Adding and removing members in a destination alias

	Monitoring QAnywhere
	Message details requests
	Monitoring QAnywhere clients
	Monitoring properties

	Tutorial: Exploring TestMessage
	Lesson 1: Start MobiLink with messaging
	Lesson 2: Run the TestMessage application
	Lesson 3: Send a message
	Lesson 4: Explore the TestMessage client source code
	Tutorial cleanup

	QAnywhere reference
	QAnywhere .NET API reference for clients
	MessageProperties class
	ADAPTER field
	ADAPTERS field
	DELIVERY_COUNT field
	IP field
	MAC field
	MSG_TYPE field
	NETWORK_STATUS field
	ORIGINATOR field
	RAS field
	RASNAMES field
	STATUS field
	STATUS_TIME field
	TRANSMISSION_STATUS field

	MessageStoreProperties class
	MAX_DELIVERY_ATTEMPTS field

	QABinaryMessage interface
	ReadBinary method
	ReadBinary(byte[]) method
	ReadBinary(byte[], int) method
	ReadBinary(byte[], int, int) method

	ReadBoolean method
	ReadChar method
	ReadDouble method
	ReadFloat method
	ReadInt method
	ReadLong method
	ReadSbyte method
	ReadShort method
	ReadString method
	Reset method
	WriteBinary method
	WriteBinary(byte[]) method
	WriteBinary(byte[], int) method
	WriteBinary(byte[], int, int) method

	WriteBoolean method
	WriteChar method
	WriteDouble method
	WriteFloat method
	WriteInt method
	WriteLong method
	WriteSbyte method
	WriteShort method
	WriteString method
	BodyLength property

	QAException class
	DetailedMessage property
	ErrorCode property
	NativeErrorCode property
	COMMON_ALREADY_OPEN_ERROR field
	COMMON_GET_INIT_FILE_ERROR field
	COMMON_GET_PROPERTY_ERROR field
	COMMON_GETQUEUEDEPTH_ERROR field
	COMMON_GETQUEUEDEPTH_ERROR_INVALID_ARG field
	COMMON_GETQUEUEDEPTH_ERROR_NO_STORE_ID field
	COMMON_INIT_ERROR field
	COMMON_INIT_THREAD_ERROR field
	COMMON_INVALID_PROPERTY field
	COMMON_MSG_ACKNOWLEDGE_ERROR field
	COMMON_MSG_CANCEL_ERROR field
	COMMON_MSG_CANCEL_ERROR_SENT field
	COMMON_MSG_NOT_WRITEABLE_ERROR field
	COMMON_MSG_RETRIEVE_ERROR field
	COMMON_MSG_STORE_ERROR field
	COMMON_MSG_STORE_NOT_INITIALIZED field
	COMMON_MSG_STORE_TOO_LARGE field
	COMMON_NO_DEST_ERROR field
	COMMON_NO_IMPLEMENTATION field
	COMMON_NOT_OPEN_ERROR field
	COMMON_OPEN_ERROR field
	COMMON_OPEN_LOG_FILE_ERROR field
	COMMON_OPEN_MAXTHREADS_ERROR field
	COMMON_REOPEN_ERROR field
	COMMON_SELECTOR_SYNTAX_ERROR field
	COMMON_SET_PROPERTY_ERROR field
	COMMON_TERMINATE_ERROR field
	COMMON_UNEXPECTED_EOM_ERROR field
	COMMON_UNREPRESENTABLE_TIMESTAMP field
	QA_NO_ERROR field

	QAManager interface
	Acknowledge method
	AcknowledgeAll method
	AcknowledgeUntil method
	Open method
	Recover method

	QAManagerBase interface
	BrowseMessages method
	BrowseMessages() method
	BrowseMessages(string) method

	BrowseMessagesByID method
	BrowseMessagesByQueue method
	BrowseMessagesBySelector method
	CancelMessage method
	Close method
	CreateBinaryMessage method
	CreateTextMessage method
	GetBooleanStoreProperty method
	GetDoubleStoreProperty method
	GetFloatStoreProperty method
	GetIntStoreProperty method
	GetLongStoreProperty method
	GetMessage method
	GetMessageBySelector method
	GetMessageBySelectorNoWait method
	GetMessageBySelectorTimeout method
	GetMessageNoWait method
	GetMessageTimeout method
	GetQueueDepth method
	GetQueueDepth(QueueDepthFilter) method
	GetQueueDepth(string, QueueDepthFilter) method

	GetSbyteStoreProperty method
	GetShortStoreProperty method
	GetStoreProperty method
	GetStorePropertyNames method
	GetStringStoreProperty method
	PropertyExists method
	PutMessage method
	PutMessageTimeToLive method
	ReOpen method
	SetBooleanStoreProperty method
	SetDoubleStoreProperty method
	SetExceptionListener method
	SetExceptionListener2 method
	SetFloatStoreProperty method
	SetIntStoreProperty method
	SetLongStoreProperty method
	SetMessageListener method
	SetMessageListener2 method
	SetMessageListenerBySelector method
	SetMessageListenerBySelector2 method
	SetProperty method
	SetSbyteStoreProperty method
	SetShortStoreProperty method
	SetStoreProperty method
	SetStringStoreProperty method
	Start method
	Stop method
	TriggerSendReceive method
	Mode property

	QAManagerFactory class
	CreateQAManager method
	CreateQAManager() method
	CreateQAManager(Hashtable) method
	CreateQAManager(string) method

	CreateQATransactionalManager method
	CreateQATransactionalManager() method
	CreateQATransactionalManager(Hashtable) method
	CreateQATransactionalManager(string) method

	Instance property

	QAMessage interface
	ClearBody method
	ClearProperties method
	GetBooleanProperty method
	GetByteProperty method
	GetDoubleProperty method
	GetFloatProperty method
	GetIntProperty method
	GetLongProperty method
	GetProperty method
	GetPropertyNames method
	GetPropertyType method
	GetSbyteProperty method
	GetShortProperty method
	GetStringProperty method
	PropertyExists method
	SetBooleanProperty method
	SetByteProperty method
	SetDoubleProperty method
	SetFloatProperty method
	SetIntProperty method
	SetLongProperty method
	SetProperty method
	SetSbyteProperty method
	SetShortProperty method
	SetStringProperty method
	Address property
	Expiration property
	InReplyToID property
	MessageID property
	Priority property
	Redelivered property
	ReplyToAddress property
	Timestamp property

	QATextMessage interface
	ReadText method
	Reset method
	WriteText method
	Text property
	TextLength property

	QATransactionalManager interface
	Commit method
	Open method
	Rollback method

	ExceptionListener delegate
	ExceptionListener2 delegate
	MessageListener delegate
	MessageListener2 delegate
	AcknowledgementMode enumeration
	MessageType enumeration
	PropertyType enumeration
	QueueDepthFilter enumeration
	StatusCodes enumeration

	QAnywhere .NET API reference for web services
	WSBase class
	WSBase constructor
	WSBase() constructor
	WSBase(string) constructor

	ClearRequestProperties method
	GetResult method
	GetServiceID method
	SetListener method
	SetListener(string, WSListener) method
	SetListener(WSListener) method

	SetProperty method
	SetQAManager method
	SetRequestProperty method
	SetServiceID method

	WSException class
	WSException constructor
	WSException(Exception) constructor
	WSException(string) constructor
	WSException(string, int) constructor

	ErrorCode property
	WS_STATUS_HTTP_ERROR field
	WS_STATUS_HTTP_OK field
	WS_STATUS_HTTP_RETRIES_EXCEEDED field
	WS_STATUS_SOAP_PARSE_ERROR field

	WSFaultException class
	WSFaultException constructor

	WSListener interface
	OnException method
	OnResult method

	WSResult class
	Acknowledge method
	GetArrayValue method
	GetBoolArrayValue method
	GetBooleanArrayValue method
	GetBooleanValue method
	GetBoolValue method
	GetByteArrayValue method
	GetByteValue method
	GetCharArrayValue method
	GetCharValue method
	GetDecimalArrayValue method
	GetDecimalValue method
	GetDoubleArrayValue method
	GetDoubleValue method
	GetErrorMessage method
	GetFloatArrayValue method
	GetFloatValue method
	GetInt16ArrayValue method
	GetInt16Value method
	GetInt32ArrayValue method
	GetInt32Value method
	GetInt64ArrayValue method
	GetInt64Value method
	GetIntArrayValue method
	GetIntValue method
	GetLongArrayValue method
	GetLongValue method
	GetNullableBoolArrayValue method
	GetNullableBoolValue method
	GetNullableDecimalArrayValue method
	GetNullableDecimalValue method
	GetNullableDoubleArrayValue method
	GetNullableDoubleValue method
	GetNullableFloatArrayValue method
	GetNullableFloatValue method
	GetNullableIntArrayValue method
	GetNullableIntValue method
	GetNullableLongArrayValue method
	GetNullableLongValue method
	GetNullableSByteArrayValue method
	GetNullableSByteValue method
	GetNullableShortArrayValue method
	GetNullableShortValue method
	GetObjectArrayValue method
	GetObjectValue method
	GetRequestID method
	GetSByteArrayValue method
	GetSByteValue method
	GetShortArrayValue method
	GetShortValue method
	GetSingleArrayValue method
	GetSingleValue method
	GetStatus method
	GetStringArrayValue method
	GetStringValue method
	GetUIntArrayValue method
	GetUIntValue method
	GetULongArrayValue method
	GetULongValue method
	GetUShortArrayValue method
	GetUShortValue method
	GetValue method
	SetLogger method

	WSStatus enumeration

	QAnywhere C++ API reference for clients
	AcknowledgementMode class
	EXPLICIT_ACKNOWLEDGEMENT variable
	IMPLICIT_ACKNOWLEDGEMENT variable
	TRANSACTIONAL variable

	MessageProperties class
	ADAPTER variable
	ADAPTERS variable
	DELIVERY_COUNT variable
	IP variable
	MAC variable
	MSG_TYPE variable
	NETWORK_STATUS variable
	ORIGINATOR variable
	RAS variable
	RASNAMES variable
	STATUS variable
	STATUS_TIME variable
	TRANSMISSION_STATUS variable

	MessageStoreProperties class
	MAX_DELIVERY_ATTEMPTS variable

	MessageType class
	NETWORK_STATUS_NOTIFICATION variable
	PUSH_NOTIFICATION variable
	REGULAR variable

	QABinaryMessage class
	QABinaryMessage deconstructor
	getBodyLength method
	readBinary method
	readBoolean method
	readByte method
	readChar method
	readDouble method
	readFloat method
	readInt method
	readLong method
	readShort method
	readString method
	reset method
	writeBinary method
	writeBoolean method
	writeByte method
	writeChar method
	writeDouble method
	writeFloat method
	writeInt method
	writeLong method
	writeShort method
	writeString method

	QAError class
	COMMON_ALREADY_OPEN_ERROR variable
	COMMON_GET_INIT_FILE_ERROR variable
	COMMON_GET_PROPERTY_ERROR variable
	COMMON_GETQUEUEDEPTH_ERROR variable
	COMMON_GETQUEUEDEPTH_ERROR_INVALID_ARG variable
	COMMON_GETQUEUEDEPTH_ERROR_NO_STORE_ID variable
	COMMON_INIT_ERROR variable
	COMMON_INIT_THREAD_ERROR variable
	COMMON_INVALID_PROPERTY variable
	COMMON_MSG_ACKNOWLEDGE_ERROR variable
	COMMON_MSG_CANCEL_ERROR variable
	COMMON_MSG_CANCEL_ERROR_SENT variable
	COMMON_MSG_NOT_WRITEABLE_ERROR variable
	COMMON_MSG_RETRIEVE_ERROR variable
	COMMON_MSG_STORE_ERROR variable
	COMMON_MSG_STORE_NOT_INITIALIZED variable
	COMMON_MSG_STORE_TOO_LARGE variable
	COMMON_NO_DEST_ERROR variable
	COMMON_NO_IMPLEMENTATION variable
	COMMON_NOT_OPEN_ERROR variable
	COMMON_OPEN_ERROR variable
	COMMON_OPEN_LOG_FILE_ERROR variable
	COMMON_OPEN_MAXTHREADS_ERROR variable
	COMMON_SELECTOR_SYNTAX_ERROR variable
	COMMON_SET_PROPERTY_ERROR variable
	COMMON_TERMINATE_ERROR variable
	COMMON_UNEXPECTED_EOM_ERROR variable
	COMMON_UNREPRESENTABLE_TIMESTAMP variable
	QA_NO_ERROR variable

	QAManager class
	acknowledge method
	acknowledgeAll method
	acknowledgeUntil method
	open method
	recover method

	QAManagerBase class
	beginEnumStorePropertyNames method
	browseClose method
	browseMessages method
	browseMessagesByID method
	browseMessagesByQueue method
	browseMessagesBySelector method
	browseNextMessage method
	cancelMessage method
	close method
	createBinaryMessage method
	createTextMessage method
	deleteMessage method
	endEnumStorePropertyNames method
	getAllQueueDepth method
	getBooleanStoreProperty method
	getByteStoreProperty method
	getDoubleStoreProperty method
	getFloatStoreProperty method
	getIntStoreProperty method
	getLastError method
	getLastErrorMsg method
	getLastNativeError method
	getLongStoreProperty method
	getMessage method
	getMessageBySelector method
	getMessageBySelectorNoWait method
	getMessageBySelectorTimeout method
	getMessageNoWait method
	getMessageTimeout method
	getMode method
	getQueueDepth method
	getShortStoreProperty method
	getStringStoreProperty method
	nextStorePropertyName method
	putMessage method
	putMessageTimeToLive method
	setBooleanStoreProperty method
	setByteStoreProperty method
	setDoubleStoreProperty method
	setFloatStoreProperty method
	setIntStoreProperty method
	setLongStoreProperty method
	setMessageListener method
	setMessageListenerBySelector method
	setProperty method
	setShortStoreProperty method
	setStringStoreProperty method
	start method
	stop method
	triggerSendReceive method

	QAManagerFactory class
	createQAManager method
	createQATransactionalManager method
	deleteQAManager method
	deleteQATransactionalManager method
	getLastError method
	getLastErrorMsg method
	getLastNativeError method

	QAMessage class
	beginEnumPropertyNames method
	castToBinaryMessage method
	castToTextMessage method
	clearProperties method
	endEnumPropertyNames method
	getAddress method
	getBooleanProperty method
	getByteProperty method
	getDoubleProperty method
	getExpiration method
	getFloatProperty method
	getInReplyToID method
	getIntProperty method
	getLongProperty method
	getMessageID method
	getPriority method
	getPropertyType method
	getRedelivered method
	getReplyToAddress method
	getShortProperty method
	getStringProperty method
	getStringProperty(qa_const_string, qa_int, qa_string, qa_int) method
	getStringProperty(qa_const_string, qa_string, qa_int) method

	getTimestamp method
	getTimestampAsString method
	nextPropertyName method
	propertyExists method
	setAddress method
	setBooleanProperty method
	setByteProperty method
	setDoubleProperty method
	setFloatProperty method
	setInReplyToID method
	setIntProperty method
	setLongProperty method
	setMessageID method
	setPriority method
	setRedelivered method
	setReplyToAddress method
	setShortProperty method
	setStringProperty method
	setTimestamp method
	DEFAULT_PRIORITY variable
	DEFAULT_TIME_TO_LIVE variable

	QAMessageListener class
	QAMessageListener deconstructor
	onMessage method

	QATextMessage class
	getText method
	getTextLength method
	readText method
	reset method
	setText method
	writeText method

	QATransactionalManager class
	commit method
	open method
	rollback method

	QueueDepthFilter class
	ALL variable
	INCOMING variable
	LOCAL variable
	OUTGOING variable

	StatusCodes class
	CANCELED variable
	EXPIRED variable
	FINAL variable
	LOCAL variable
	PENDING variable
	RECEIVED variable
	RECEIVING variable
	TRANSMITTED variable
	TRANSMITTING variable
	UNRECEIVABLE variable
	UNTRANSMITTED variable

	QAnywhere Java API reference for clients
	AcknowledgementMode interface
	EXPLICIT_ACKNOWLEDGEMENT variable
	IMPLICIT_ACKNOWLEDGEMENT variable
	TRANSACTIONAL variable

	MessageProperties interface
	ADAPTER variable
	ADAPTERS variable
	DELIVERY_COUNT variable
	IP variable
	MAC variable
	MSG_TYPE variable
	NETWORK_STATUS variable
	ORIGINATOR variable
	RAS variable
	RASNAMES variable
	STATUS variable
	STATUS_TIME variable
	TRANSMISSION_STATUS variable

	MessageStoreProperties interface
	MAX_DELIVERY_ATTEMPTS variable

	MessageType interface
	NETWORK_STATUS_NOTIFICATION variable
	PUSH_NOTIFICATION variable
	REGULAR variable

	PropertyType interface
	PROPERTY_TYPE_BOOLEAN variable
	PROPERTY_TYPE_BYTE variable
	PROPERTY_TYPE_DOUBLE variable
	PROPERTY_TYPE_FLOAT variable
	PROPERTY_TYPE_INT variable
	PROPERTY_TYPE_LONG variable
	PROPERTY_TYPE_SHORT variable
	PROPERTY_TYPE_STRING variable
	PROPERTY_TYPE_UNKNOWN variable

	QABinaryMessage interface
	getBodyLength method
	readBinary method
	readBinary(byte[]) method
	readBinary(byte[], int) method
	readBinary(byte[], int, int) method

	readBoolean method
	readByte method
	readChar method
	readDouble method
	readFloat method
	readInt method
	readLong method
	readShort method
	readString method
	reset method
	writeBinary method
	writeBinary(byte[]) method
	writeBinary(byte[], int) method
	writeBinary(byte[], int, int) method

	writeBoolean method
	writeByte method
	writeChar method
	writeDouble method
	writeFloat method
	writeInt method
	writeLong method
	writeShort method
	writeString method

	QAException class
	getDetailedMessage method
	getErrorCode method
	getNativeErrorCode method
	COMMON_ALREADY_OPEN_ERROR variable
	COMMON_GET_INIT_FILE_ERROR variable
	COMMON_GET_PROPERTY_ERROR variable
	COMMON_GETQUEUEDEPTH_ERROR variable
	COMMON_GETQUEUEDEPTH_ERROR_INVALID_ARG variable
	COMMON_GETQUEUEDEPTH_ERROR_NO_STORE_ID variable
	COMMON_INIT_ERROR variable
	COMMON_INIT_THREAD_ERROR variable
	COMMON_INVALID_PROPERTY variable
	COMMON_MSG_ACKNOWLEDGE_ERROR variable
	COMMON_MSG_CANCEL_ERROR variable
	COMMON_MSG_CANCEL_ERROR_SENT variable
	COMMON_MSG_NOT_WRITEABLE_ERROR variable
	COMMON_MSG_RETRIEVE_ERROR variable
	COMMON_MSG_STORE_ERROR variable
	COMMON_MSG_STORE_NOT_INITIALIZED variable
	COMMON_MSG_STORE_TOO_LARGE variable
	COMMON_NO_DEST_ERROR variable
	COMMON_NO_IMPLEMENTATION variable
	COMMON_NOT_OPEN_ERROR variable
	COMMON_OPEN_ERROR variable
	COMMON_OPEN_LOG_FILE_ERROR variable
	COMMON_OPEN_MAXTHREADS_ERROR variable
	COMMON_REOPEN_ERROR variable
	COMMON_SELECTOR_SYNTAX_ERROR variable
	COMMON_SET_PROPERTY_ERROR variable
	COMMON_TERMINATE_ERROR variable
	COMMON_UNEXPECTED_EOM_ERROR variable
	COMMON_UNREPRESENTABLE_TIMESTAMP variable
	QA_NO_ERROR variable

	QAManager interface
	acknowledge method
	acknowledgeAll method
	acknowledgeUntil method
	open method
	recover method

	QAManagerBase interface
	browseMessages method
	browseMessagesByID method
	browseMessagesByQueue method
	browseMessagesBySelector method
	cancelMessage method
	close method
	createBinaryMessage method
	createTextMessage method
	getBooleanStoreProperty method
	getByteStoreProperty method
	getDoubleStoreProperty method
	getFloatStoreProperty method
	getIntStoreProperty method
	getLongStoreProperty method
	getMessage method
	getMessageBySelector method
	getMessageBySelectorNoWait method
	getMessageBySelectorTimeout method
	getMessageNoWait method
	getMessageTimeout method
	getMode method
	getQueueDepth method
	getQueueDepth(short) method
	getQueueDepth(String, short) method

	getShortStoreProperty method
	getStoreProperty method
	getStorePropertyNames method
	getStringStoreProperty method
	propertyExists method
	putMessage method
	putMessageTimeToLive method
	reOpen method
	setBooleanStoreProperty method
	setByteStoreProperty method
	setDoubleStoreProperty method
	setFloatStoreProperty method
	setIntStoreProperty method
	setLongStoreProperty method
	setMessageListener method
	setMessageListener2 method
	setMessageListenerBySelector method
	setMessageListenerBySelector2 method
	setProperty method
	setShortStoreProperty method
	setStoreProperty method
	setStringStoreProperty method
	start method
	stop method
	triggerSendReceive method

	QAManagerFactory class
	createQAManager method
	createQAManager() method
	createQAManager(Hashtable) method
	createQAManager(String) method

	createQATransactionalManager method
	createQATransactionalManager() method
	createQATransactionalManager(Hashtable) method
	createQATransactionalManager(String) method

	getInstance method

	QAMessage interface
	clearProperties method
	getAddress method
	getBooleanProperty method
	getByteProperty method
	getDoubleProperty method
	getExpiration method
	getFloatProperty method
	getInReplyToID method
	getIntProperty method
	getLongProperty method
	getMessageID method
	getPriority method
	getProperty method
	getPropertyNames method
	getPropertyType method
	getRedelivered method
	getReplyToAddress method
	getShortProperty method
	getStringProperty method
	getTimestamp method
	propertyExists method
	setBooleanProperty method
	setByteProperty method
	setDoubleProperty method
	setFloatProperty method
	setInReplyToID method
	setIntProperty method
	setLongProperty method
	setPriority method
	setProperty method
	setReplyToAddress method
	setShortProperty method
	setStringProperty method
	DEFAULT_PRIORITY variable
	DEFAULT_TIME_TO_LIVE variable

	QAMessageListener interface
	onException method
	onMessage method

	QAMessageListener2 interface
	onException method
	onMessage method

	QATextMessage interface
	getText method
	getTextLength method
	readText method
	reset method
	setText method
	writeText method
	writeText(String) method
	writeText(String, int) method
	writeText(String, int, int) method

	QATransactionalManager interface
	commit method
	open method
	rollback method

	QueueDepthFilter interface
	ALL variable
	INCOMING variable
	LOCAL variable
	OUTGOING variable

	StatusCodes interface
	CANCELED variable
	EXPIRED variable
	FINAL variable
	LOCAL variable
	PENDING variable
	RECEIVED variable
	RECEIVING variable
	TRANSMITTED variable
	TRANSMITTING variable
	UNRECEIVABLE variable
	UNTRANSMITTED variable

	QAnywhere Java API reference for web services
	WSBase class
	WSBase constructor
	WSBase() constructor
	WSBase(String) constructor

	clearRequestProperties method
	getResult method
	getServiceID method
	setListener method
	setListener(String, WSListener) method
	setListener(WSListener) method

	setProperty method
	setQAManager method
	setRequestProperty method
	setServiceID method

	WSException class
	WSException constructor
	WSException(Exception) constructor
	WSException(String) constructor
	WSException(String, int) constructor

	getErrorCode method
	WS_STATUS_HTTP_ERROR variable
	WS_STATUS_HTTP_OK variable
	WS_STATUS_HTTP_RETRIES_EXCEEDED variable
	WS_STATUS_SOAP_PARSE_ERROR variable

	WSFaultException class
	WSFaultException constructor

	WSListener interface
	onException method
	onResult method

	WSResult class
	acknowledge method
	getArrayValue method
	getBigDecimalArrayValue method
	getBigDecimalValue method
	getBigIntegerArrayValue method
	getBigIntegerValue method
	getBooleanArrayValue method
	getBooleanValue method
	getByteArrayValue method
	getByteValue method
	getCharacterArrayValue method
	getCharacterValue method
	getDoubleArrayValue method
	getDoubleValue method
	getErrorMessage method
	getFloatArrayValue method
	getFloatValue method
	getIntegerArrayValue method
	getIntegerValue method
	getLongArrayValue method
	getLongValue method
	getObjectArrayValue method
	getObjectValue method
	getPrimitiveBooleanArrayValue method
	getPrimitiveBooleanValue method
	getPrimitiveByteArrayValue method
	getPrimitiveByteValue method
	getPrimitiveCharArrayValue method
	getPrimitiveCharValue method
	getPrimitiveDoubleArrayValue method
	getPrimitiveDoubleValue method
	getPrimitiveFloatArrayValue method
	getPrimitiveFloatValue method
	getPrimitiveIntArrayValue method
	getPrimitiveIntValue method
	getPrimitiveLongArrayValue method
	getPrimitiveLongValue method
	getPrimitiveShortArrayValue method
	getPrimitiveShortValue method
	getRequestID method
	getShortArrayValue method
	getShortValue method
	getStatus method
	getStringArrayValue method
	getStringValue method
	getValue method

	WSStatus class
	STATUS_ERROR variable
	STATUS_QUEUED variable
	STATUS_RESULT_AVAILABLE variable
	STATUS_SUCCESS variable

	QAnywhere SQL API reference
	Message properties, headers, and content
	Message headers
	ml_qa_getaddress
	ml_qa_getexpiration
	ml_qa_getinreplytoid
	ml_qa_getpriority
	ml_qa_getredelivered
	ml_qa_getreplytoaddress
	ml_qa_gettimestamp
	ml_qa_setexpiration
	ml_qa_setinreplytoid
	ml_qa_setpriority
	ml_qa_setreplytoaddress

	Message properties
	ml_qa_getbooleanproperty
	ml_qa_getbyteproperty
	ml_qa_getdoubleproperty
	ml_qa_getfloatproperty
	ml_qa_getintproperty
	ml_qa_getlongproperty
	ml_qa_getpropertynames
	ml_qa_getshortproperty
	ml_qa_getstringproperty
	ml_qa_setbooleanproperty
	ml_qa_setbyteproperty
	ml_qa_setdoubleproperty
	ml_qa_setfloatproperty
	ml_qa_setintproperty
	ml_qa_setlongproperty
	ml_qa_setshortproperty
	ml_qa_setstringproperty

	Message content
	ml_qa_getbinarycontent
	ml_qa_getcontentclass
	ml_qa_gettextcontent
	ml_qa_setbinarycontent
	ml_qa_settextcontent

	Message store properties
	ml_qa_getstoreproperty
	ml_qa_setstoreproperty

	Message management
	ml_qa_createmessage
	ml_qa_getmessage
	ml_qa_getmessagenowait
	ml_qa_getmessagetimeout
	ml_qa_grant_messaging_permissions
	ml_qa_listener_queue
	ml_qa_putmessage
	ml_qa_triggersendreceive

	Message headers and properties
	Message headers
	Message properties
	Predefined message properties
	Custom message properties
	Managing message properties

	Server management request reference
	Server management request parent tags
	Condition tag
	CustomRule tag
	Schedule tag
	MessageDetailsReport tag

	Server management request DTD

	QAnywhere Agent utilities reference
	qaagent utility
	@data qaagent option
	-c qaagent option
	-cd qaagent option
	-cr qaagent option
	-fd qaagent option
	-fr qaagent option
	-id qaagent option
	-idl qaagent option
	-iu qaagent option
	-lp qaagent option
	-mn qaagent option
	-mp qaagent option
	-mu qaagent option
	-o qaagent option
	-on qaagent option
	-os qaagent option
	-ot qaagent option
	-pc qaagent option
	-policy qaagent option
	-push qaagent option
	-q qaagent option
	-qi qaagent option
	-si qaagent option
	-sil qaagent option
	-su qaagent option
	-sur qaagent option
	-sv qaagent option
	-v qaagent option
	-x qaagent option
	-xd qaagent option

	qauagent utility
	@data qauagent option
	-c qauagent option
	-cd qauagent option
	-cr qauagent option
	-fd qauagent option
	-fr qauagent option
	-id qauagent option
	-idl qauagent option
	-iu qauagent option
	-lp qauagent option
	-mn qauagent option
	-mp qauagent option
	-mu qauagent option
	-o qauagent option
	-on qauagent option
	-os qauagent option
	-ot qauagent option
	-policy qauagent option
	-push qauagent option
	-q qauagent option
	-qi qauagent option
	-si qauagent option
	-su qauagent option
	-v qauagent option
	-x qauagent option
	-xd qauagent option

	qastop utility

	QAnywhere properties
	Client message store properties
	Predefined client message store properties
	Custom client message store properties
	Using custom client message store property attributes

	Enumerating client message store properties
	Managing client message store properties in your application

	Server properties
	Setting server properties with Sybase Central

	JMS connector properties

	QAnywhere transmission and delete rules
	Rule syntax
	Schedule syntax
	Condition syntax
	Rule functions

	Rule variables
	Variables defined by the rule engine

	Message transmission rules
	Client transmission rules
	Server transmission rules
	Specifying server transmission rules with a transmission rules file (deprecated)

	Message delete rules

	Index

