
MobiLink™
Client Administration

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Copyright © 2010 iAnywhere Solutions, Inc. Portions copyright © 2010 Sybase, Inc. All rights reserved.

This documentation is provided AS IS, without warranty or liability of any kind (unless provided by a separate written agreement between
you and iAnywhere).

You may use, print, reproduce, and distribute this documentation (in whole or in part) subject to the following conditions: 1) you must
retain this and all other proprietary notices, on all copies of the documentation or portions thereof, 2) you may not modify the
documentation, 3) you may not do anything to indicate that you or anyone other than iAnywhere is the author or source of the documentation.

iAnywhere®, Sybase®, and the marks listed at http://www.sybase.com/detail?id=1011207 are trademarks of Sybase, Inc. or its subsidiaries.
® indicates registration in the United States of America.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

http://www.sybase.com/detail?id=1011207

Contents

About this book ... v

About the SQL Anywhere documentation ... v

Introduction to MobiLink clients .. 1

MobiLink clients ... 1
MobiLink users .. 4
MobiLink client utilities ... 18
MobiLink client network protocol options .. 23
Schema changes in remote clients .. 58

SQL Anywhere clients for MobiLink .. 63

SQL Anywhere clients ... 63
MobiLink SQL Anywhere client utility (dbmlsync) ... 93
MobiLink SQL Anywhere client extended options 126
MobiLink SQL statements ... 156
MobiLink synchronization profiles .. 157
Event hooks for SQL Anywhere clients ... 178
Dbmlsync C++ API reference .. 231
Dbmlsync .NET API reference .. 253
Dbmlsync integration component (removed) ... 276
DBTools interface for dbmlsync .. 304
Scripted upload .. 310

Index ... 331

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 iii

iv

About this book
This book describes how to set up, configure, and synchronize MobiLink clients. MobiLink clients can be
SQL Anywhere or UltraLite databases. This book also describes the Dbmlsync API, which allows you to
integrate synchronization seamlessly into your C++ or .NET client applications.

About the SQL Anywhere documentation
The complete SQL Anywhere documentation is available in four formats:

● DocCommentXchange DocCommentXchange is a community for accessing and discussing SQL
Anywhere documentation on the web.

To access the documentation, go to http://dcx.sybase.com.

● HTML Help On Windows platforms, the HTML Help contains the complete SQL Anywhere
documentation, including the books and the context-sensitive help for SQL Anywhere tools.

To access the documentation, choose Start » Programs » SQL Anywhere 12 » Documentation »
HTML Help (English).

● Eclipse On Unix platforms, the complete Help is provided in Eclipse format. To access the
documentation, run sadoc from the bin32 or bin64 directory of your SQL Anywhere installation.

● PDF The complete set of SQL Anywhere books is provided as a set of Portable Document Format
(PDF) files. You must have a PDF reader to view information.

To access the PDF documentation on Windows operating systems, choose Start » Programs » SQL
Anywhere 12 » Documentation » PDF (English).

To access the PDF documentation on Unix operating systems, use a web browser to open /documentation/
en/pdf/index.html under the SQL Anywhere installation directory.

Documentation conventions
This section lists the conventions used in this documentation.

Operating systems
SQL Anywhere runs on a variety of platforms. Typically, the behavior of the software is the same on all
platforms, but there are variations or limitations. These are commonly based on the underlying operating
system (Windows, Unix), and seldom on the particular variant (IBM AIX, Windows Mobile) or version.

To simplify references to operating systems, the documentation groups the supported operating systems
as follows:

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 v

http://dcx.sybase.com/

● Windows The Microsoft Windows family includes platforms that are used primarily on server,
desktop, and laptop computers, as well as platforms used on mobile devices. Unless otherwise
specified, when the documentation refers to Windows, it refers to all supported Windows-based
platforms, including Windows Mobile.

Windows Mobile is based on the Windows CE operating system, which is also used to build a variety
of platforms other than Windows Mobile. Unless otherwise specified, when the documentation refers
to Windows Mobile, it refers to all supported platforms built using Windows CE.

● Unix Unless otherwise specified, when the documentation refers to Unix, it refers to all supported
Unix-based platforms, including Linux and Mac OS X.

For the complete list of platforms supported by SQL Anywhere, see “Supported platforms” [SQL
Anywhere 12 - Introduction].

Directory and file names
Usually references to directory and file names are similar on all supported platforms, with simple
transformations between the various forms. In these cases, Windows conventions are used. Where the
details are more complex, the documentation shows all relevant forms.

These are the conventions used to simplify the documentation of directory and file names:

● Uppercase and lowercase directory names On Windows and Unix, directory and file names
may contain uppercase and lowercase letters. When directories and files are created, the file system
preserves letter case.

On Windows, references to directories and files are not case sensitive. Mixed case directory and file
names are common, but it is common to refer to them using all lowercase letters. The SQL Anywhere
installation contains directories such as Bin32 and Documentation.

On Unix, references to directories and files are case sensitive. Mixed case directory and file names are
not common. Most use all lowercase letters. The SQL Anywhere installation contains directories such
as bin32 and documentation.

The documentation uses the Windows forms of directory names. You can usually convert a mixed
case directory name to lowercase for the equivalent directory name on Unix.

● Slashes separating directory and file names The documentation uses backslashes as the
directory separator. For example, the PDF form of the documentation is found in install-dir
\Documentation\en\PDF (Windows form).

On Unix, replace the backslash with the forward slash. The PDF documentation is found in install-dir/
documentation/en/pdf.

● Executable files The documentation shows executable file names using Windows conventions,
with a suffix such as .exe or .bat. On Unix, executable file names have no suffix.

For example, on Windows, the network database server is dbsrv12.exe. On Unix, it is dbsrv12.

About this book

vi Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● install-dir During the installation process, you choose where to install SQL Anywhere. The
environment variable SQLANY12 is created and refers to this location. The documentation refers to
this location as install-dir.

For example, the documentation may refer to the file install-dir/readme.txt. On Windows, this is
equivalent to %SQLANY12%\readme.txt. On Unix, this is equivalent to $SQLANY12/readme.txt or $
{SQLANY12}/readme.txt.

For more information about the default location of install-dir, see “SQLANY12 environment
variable” [SQL Anywhere Server - Database Administration].

● samples-dir During the installation process, you choose where to install the samples included with
SQL Anywhere. The environment variable SQLANYSAMP12 is created and refers to this location.
The documentation refers to this location as samples-dir.

To open a Windows Explorer window in samples-dir, choose Start » Programs » SQL Anywhere
12 » Sample Applications And Projects.

For more information about the default location of samples-dir, see “SQLANYSAMP12 environment
variable” [SQL Anywhere Server - Database Administration].

Command prompts and command shell syntax
Most operating systems provide one or more methods of entering commands and parameters using a
command shell or command prompt. Windows command prompts include Command Prompt (DOS
prompt) and 4NT. Unix command shells include Korn shell and bash. Each shell has features that extend
its capabilities beyond simple commands. These features are driven by special characters. The special
characters and features vary from one shell to another. Incorrect use of these special characters often
results in syntax errors or unexpected behavior.

The documentation provides command line examples in a generic form. If these examples contain
characters that the shell considers special, the command may require modification for the specific shell.
The modifications are beyond the scope of this documentation, but generally, use quotes around the
parameters containing those characters or use an escape character before the special characters.

These are some examples of command line syntax that may vary between platforms:

● Parentheses and curly braces Some command line options require a parameter that accepts
detailed value specifications in a list. The list is usually enclosed with parentheses or curly braces. The
documentation uses parentheses. For example:

-x tcpip(host=127.0.0.1)

Where parentheses cause syntax problems, substitute curly braces:

-x tcpip{host=127.0.0.1}

If both forms result in syntax problems, the entire parameter should be enclosed in quotes as required
by the shell:

-x "tcpip(host=127.0.0.1)"

About the SQL Anywhere documentation

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 vii

● Semicolons On Unix, semicolons should be enclosed in quotes.

● Quotes If you must specify quotes in a parameter value, the quotes may conflict with the
traditional use of quotes to enclose the parameter. For example, to specify an encryption key whose
value contains double-quotes, you might have to enclose the key in quotes and then escape the
embedded quote:

-ek "my \"secret\" key"

In many shells, the value of the key would be my "secret" key.

● Environment variables The documentation refers to setting environment variables. In Windows
shells, environment variables are specified using the syntax %ENVVAR%. In Unix shells, environment
variables are specified using the syntax $ENVVAR or ${ENVVAR}.

Contacting the documentation team
We would like to receive your opinions, suggestions, and feedback on this Help.

You can leave comments directly on help topics using DocCommentXchange. DocCommentXchange
(DCX) is a community for accessing and discussing SQL Anywhere documentation. Use
DocCommentXchange to:

● View documentation

● Check for clarifications users have made to sections of documentation

● Provide suggestions and corrections to improve documentation for all users in future releases

Go to http://dcx.sybase.com.

Finding out more and requesting technical support

Newsgroups
If you have questions or need help, you can post messages to the Sybase iAnywhere newsgroups listed below.

When you write to one of these newsgroups, always provide details about your problem, including the
build number of your version of SQL Anywhere. You can find this information by running the following
command: dbeng12 -v.

The newsgroups are located on the forums.sybase.com news server.

About this book

viii Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

http://dcx.sybase.com/

The newsgroups include the following:

● sybase.public.sqlanywhere.general
● sybase.public.sqlanywhere.linux
● sybase.public.sqlanywhere.mobilink
● sybase.public.sqlanywhere.product_futures_discussion
● sybase.public.sqlanywhere.replication
● sybase.public.sqlanywhere.ultralite
● ianywhere.public.sqlanywhere.qanywhere

For web development issues, see http://groups.google.com/group/sql-anywhere-web-development.

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information, or ideas on its newsgroups, nor
is iAnywhere Solutions obliged to provide anything other than a systems operator to monitor the service
and ensure its operation and availability.

iAnywhere Technical Advisors, and other staff, assist on the newsgroup service when they have time.
They offer their help on a volunteer basis and may not be available regularly to provide solutions and
information. Their ability to help is based on their workload.

Developer Centers
The SQL Anywhere Tech Corner gives developers easy access to product technical documentation. You
can browse technical white papers, FAQs, tech notes, downloads, techcasts and more to find answers to
your questions as well as solutions to many common issues. See http://www.sybase.com/developer/library/
sql-anywhere-techcorner.

The following table contains a list of the developer centers available for use on the SQL Anywhere Tech
Corner:

Name URL Description

SQL Anywhere .NET Developer Center www.sybase.com/de-
veloper/library/sql-
anywhere-techcorner/
microsoft-net

Get started and get
answers to specific
questions regarding
SQL Anywhere
and .NET develop-
ment.

PHP Developer Center www.sybase.com/de-
veloper/library/sql-
anywhere-techcorner/
php

An introduction to us-
ing the PHP (PHP
Hypertext Preproces-
sor) scripting lan-
guage to query your
SQL Anywhere data-
base.

About the SQL Anywhere documentation

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 ix

news://forums.sybase.com/sybase.public.sqlanywhere.general
news://forums.sybase.com/sybase.public.sqlanywhere.linux
news://forums.sybase.com/sybase.public.sqlanywhere.mobilink
news://forums.sybase.com/sybase.public.sqlanywhere.product_futures_discussion
news://forums.sybase.com/sybase.public.sqlanywhere.replication
news://forums.sybase.com/sybase.public.sqlanywhere.ultralite
news://forums.sybase.com/ianywhere.public.sqlanywhere.qanywhere
http://groups.google.com/group/sql-anywhere-web-development
http://www.sybase.com/developer/library/sql-anywhere-techcorner
http://www.sybase.com/developer/library/sql-anywhere-techcorner
http://www.sybase.com/developer/library/sql-anywhere-techcorner/microsoft-net
http://www.sybase.com/developer/library/sql-anywhere-techcorner/microsoft-net
http://www.sybase.com/developer/library/sql-anywhere-techcorner/microsoft-net
http://www.sybase.com/developer/library/sql-anywhere-techcorner/microsoft-net
http://www.sybase.com/developer/library/sql-anywhere-techcorner/php
http://www.sybase.com/developer/library/sql-anywhere-techcorner/php
http://www.sybase.com/developer/library/sql-anywhere-techcorner/php
http://www.sybase.com/developer/library/sql-anywhere-techcorner/php

Name URL Description

SQL Anywhere Windows Mobile Developer Center www.sybase.com/de-
veloper/library/sql-
anywhere-techcorner/
windows-mobile

Get started and get
answers to specific
questions regarding
SQL Anywhere and
Windows Mobile de-
velopment.

About this book

x Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

http://www.sybase.com/developer/library/sql-anywhere-techcorner/windows-mobile
http://www.sybase.com/developer/library/sql-anywhere-techcorner/windows-mobile
http://www.sybase.com/developer/library/sql-anywhere-techcorner/windows-mobile
http://www.sybase.com/developer/library/sql-anywhere-techcorner/windows-mobile

Introduction to MobiLink clients
This section introduces the clients you can use for MobiLink synchronization, and provides information
common to all types of MobiLink client.

MobiLink clients
The following sections contain information about MobiLink clients.

SQL Anywhere clients
To use a SQL Anywhere database as a MobiLink client, you add synchronization objects to the database.
The objects you need to add are publications, MobiLink users, and subscriptions that connect publications
to users. See:

● “Creating a remote database” on page 63
● “Publishing data” on page 67
● “Creating MobiLink users” on page 74
● “Creating synchronization subscriptions” on page 77

Synchronization can be initiated using the Dbmlsync API, the SQL SYNCHRONIZE statement or the
dbmlsync command line utility. Most synchronizations use data read from the database transaction log,
however, a transaction log file is not required for scripted-upload synchronization and synchronization of
download-only publications.

See “Initiating synchronization” on page 79.

For more information about SQL Anywhere clients, see “SQL Anywhere clients” on page 63.

For details of dbmlsync command line options, see “MobiLink SQL Anywhere client utility
(dbmlsync)” on page 93.

For information about customizing synchronization, see “Customizing dbmlsync
synchronization” on page 89.

UltraLite clients
UltraLite applications are automatically MobiLink-enabled whenever the application includes a call to the
appropriate synchronization function.

The UltraLite application and libraries handle the synchronization actions at the application end. You can
write your UltraLite application with little regard to synchronization. The UltraLite runtime keeps track of
changes made since the previous synchronization.

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1

When using TCP/IP, HTTP, HTTPS, or Microsoft ActiveSync, synchronization is initiated from your
application by a single call to a synchronization function.

See also
● “UltraLite clients” on page 1
● “Using ActiveSync with UltraLite on Windows Mobile” [UltraLite - Database Management and

Reference]
● “UltraLite synchronization parameters and network protocol options” [UltraLite - Database

Management and Reference]
● “UltraLite - Database Management and Reference”
● “UltraLiteJ clients” on page 2

UltraLiteJ clients
UltraLiteJ provides Java applications with a MobiLink synchronization client, together with change-
tracking and state tracking to ensure robust synchronization. UltraLiteJ applications are automatically
MobiLink-enabled whenever the application includes a call to the appropriate synchronization function.

The UltraLiteJ application and libraries handle the synchronization actions at the application end. You can
write your UltraLiteJ application with little regard to synchronization. The UltraLiteJ runtime keeps track
of changes made since the previous synchronization.

When using HTTP or HTTPS, synchronization is initiated from your application by a single call to a
synchronization function.

The MobiLink File Transfer utility (mlfiletransfer) is not available for UltraLiteJ clients.

See also
● “Data synchronization” [UltraLiteJ]
● “Synchronizing with MobiLink” [UltraLiteJ]
● “Using UltraLiteJ as a MobiLink client” [UltraLiteJ]
● “Synchronizing the CustDB application” [UltraLiteJ]
● “Network protocol options for UltraLiteJ synchronization streams” [UltraLiteJ]
● “UltraLite - Database Management and Reference”
● “UltraLite clients” on page 1

Specifying the network protocol for clients
The MobiLink server uses the -x command line option to specify the network protocol or protocols for
synchronization clients to connect to the MobiLink server. The network protocol you choose must match
the synchronization protocol used by the client.

The syntax for the mlsrv12 command line option is:

mlsrv12 -c "connection-string" -x protocol(options)

Introduction to MobiLink clients

2 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

In the following example, the TCP/IP protocol is selected with no additional protocol options.

mlsrv12 -c "dsn=SQL Anywhere 12 Demo" -x tcpip

You can configure your protocol using options of the form:

(keyword=value;...)

For example:

mlsrv12 -c "dsn=SQL Anywhere 12 Demo" -x tcpip(
 host=localhost;port=2439)

See also
Complete details about MobiLink network protocols and protocol options can be found in the following
locations:

To find... See...

How to set network options for the Mobi-
Link server

“-x mlsrv12 option” [MobiLink - Server Administration]

All the network protocol options available
to MobiLink client applications

“MobiLink client network protocol option summa-
ry” on page 23

How to set options for SQL Anywhere cli-
ents

“CommunicationAddress (adr) extended op-
tion” on page 128

“CommunicationType (ctp) extended op-
tion” on page 129

How to set options for UltraLite clients “Stream Parameters synchronization parameter” [Ultra-
Lite - Database Management and Reference]

“Stream Type synchronization parameter” [UltraLite - Da-
tabase Management and Reference]

“UltraLite Synchronization utility (ulsync)” [UltraLite -
Database Management and Reference]

System tables in MobiLink

MobiLink server system tables
When you set up a database for use as a consolidated database, MobiLink system tables are created that
are required by the MobiLink server.

See “MobiLink server system tables” [MobiLink - Server Administration].

MobiLink clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 3

UltraLite system tables
See “UltraLite system tables” [UltraLite - Database Management and Reference].

SQL Anywhere system tables
SQL Anywhere system tables cannot be accessed directly, but are accessed via system views. See
“System views” [SQL Anywhere Server - SQL Reference].

The following SQL Anywhere system views are of particular interest to MobiLink users:

● “SYSSYNC system view” [SQL Anywhere Server - SQL Reference]
● “SYSPUBLICATION system view” [SQL Anywhere Server - SQL Reference]
● “SYSSUBSCRIPTION system view” [SQL Anywhere Server - SQL Reference]
● “SYSSYNCSCRIPT system view” [SQL Anywhere Server - SQL Reference]
● “SYSSYNCPROFILE system view” [SQL Anywhere Server - SQL Reference]
● “SYSARTICLE system view” [SQL Anywhere Server - SQL Reference]
● “SYSARTICLECOL system view” [SQL Anywhere Server - SQL Reference]

SQL Anywhere also provides consolidated views that query system views to provide information that you
might need. See “Consolidated views” [SQL Anywhere Server - SQL Reference].

MobiLink users

Introduction to MobiLink users

A MobiLink user, also called a synchronization user, is the name you use to authenticate when you
connect to the MobiLink server.

For a user to be part of a synchronization system:

● A MobiLink user name must be created on the remote database.

● The MobiLink user name must be registered with the MobiLink server.

MobiLink user names and passwords are not the same as database user names and passwords. MobiLink
user names are used to authenticate the connection from the remote database to the MobiLink server.

MobiLink user names are always case sensitive unless you are using custom authentication scripts, so the
user name provided by the remote database has to exactly match the case of the user name that what was
registered in the consolidated database. Keep the following in mind when defining MobiLink user names:

● In a MobiLink synchronization system, no two user names can be the same except for
case For example, you can have user name aA or user name Aa, but not both.

Introduction to MobiLink clients

4 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● For any given user name, you must always use the same case once you start using it For
example, if you add a user as Aa and synchronize with it, you must continue to synchronize using Aa.
Using aA will fail.

When using custom authentication scripts, the script determines the case sensitivity of user names.

You can also use user names to control the behavior of the MobiLink server. You do so using the
username parameter in synchronization scripts. See “Using remote IDs and MobiLink user names in
scripts” on page 10.

The MobiLink user name is stored in the name column of the ml_user MobiLink system table in the
consolidated database.

The MobiLink user name does not have to be unique within your synchronization system. If security is
not an issue, you can even assign the same MobiLink user name to every remote database.

UltraLite user authentication
Although UltraLite and MobiLink user authentication schemes are separate, you may want to share the
values of UltraLite user IDs with MobiLink user names for simplicity. This only works when the
UltraLite application is used by a single user.

See “UltraLite user authentication” [UltraLite - Database Management and Reference].

Creating and registering MobiLink users

You create a MobiLink user in the remote database and register it in the consolidated database.

Creating MobiLink users in the remote database
To add users to the remote database, you have the following options:

● For SQL Anywhere remote databases, use Sybase Central or the CREATE SYNCHRONIZATION
USER statement.

See “Creating MobiLink users” on page 74.

● For UltraLite remote databases, you set the User Name and Password synchronization parameters.

See “User Name synchronization parameter” [UltraLite - Database Management and Reference] and
“Password synchronization parameter” [UltraLite - Database Management and Reference].

Adding MobiLink user names to the consolidated database
Once user names are created in the remote database, you can use any of the following methods to register
the user names in the consolidated database:

● Use the mluser utility.

See “MobiLink user authentication utility (mluser)” [MobiLink - Server Administration].

● Use Sybase Central.

MobiLink users

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 5

● Implement a script for the authenticate_user or authenticate_user_hashed events. When either of these
scripts are invoked, the MobiLink server automatically adds users that successfully authenticate.

See “authenticate_user connection event” [MobiLink - Server Administration] or
“authenticate_user_hashed connection event” [MobiLink - Server Administration].

● Specify the -zu+ command line option with mlsrv12. In this case, any existing MobiLink users that
have not been added to the consolidated database are added when they first synchronize. This option
is useful during development but is not recommended for deployed applications.

See “-zu mlsrv12 option” [MobiLink - Server Administration].

Providing initial passwords for users

The password for each user is stored with the user name in the ml_user table. You can use Sybase Central
or the mluser command line utility to provide initial passwords.

Sybase Central is a convenient way of adding individual users and passwords. The mluser utility is useful
for batch additions.

If you create a user without a password, MobiLink does not authenticate the user and a password is not
required to connect and synchronize.

To provide an initial MobiLink password for a user (Sybase Central)

1. From the View menu, choose Folders.

2. Open your MobiLink project and expand Consolidated Databases using the MobiLink 12 plug-in.

3. Expand the name of your consolidated database.

4. Click Users.

5. Choose File » New » User.

6. Follow the instructions in the Create User Wizard.

To provide initial MobiLink passwords (command line)

1. Create a file with a single user name and password on each line, separated by white space.

2. Open a command prompt and run the mluser command line utility. For example:

mluser -c "dsn=my_dsn" -f password-file

In this command line, the -c option specifies an ODBC connection to the consolidated database. The -f
option specifies the file containing the user names and passwords.

See “MobiLink user authentication utility (mluser)” [MobiLink - Server Administration].

Introduction to MobiLink clients

6 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Synchronizations from new users

Ordinarily, each MobiLink client must provide a valid MobiLink user name and password to connect to a
MobiLink server.

Setting the -zu+ option when you start the MobiLink server allows the server to accept and respond to
synchronization requests from unregistered users. When a request is received from a user not listed in the
ml_user table, the request is serviced and the user is added to the ml_user table.

When you use -zu+, if a MobiLink client synchronizes with a user name that is not in the current ml_user
table, MobiLink, by default, takes the following actions:

● New user, no password If the user supplied no password, then the user name is added to the
ml_user table with a null password. This user is allowed to synchronize without a password.

● New user, password If the user supplies a password, then the user name and password are both
added to the ml_user table and the new user name becomes a recognized name in your MobiLink
system. In future, this user must specify the same password to synchronize.

● New user, new password A new user may provide information in the new password field, or in
the password field. In either case, the new password setting overrides the old password setting, and the
new user is added to the MobiLink system using the new password. In future, this user must specify
the same password to synchronize.

See “-zu mlsrv12 option” [MobiLink - Server Administration].

Preventing synchronization by unknown users
By default, the MobiLink server only recognizes users who are registered in the ml_user table. This
default provides two benefits. First, it reduces the risk of unauthorized access to the MobiLink server.
Second, it prevents authorized users from accidentally connecting using an incorrect or misspelled user
name. Such accidents should be avoided because they can cause the MobiLink system to behave in
unpredictable ways.

Prompting end users to enter passwords

Each end user must supply a MobiLink user name and password each time they synchronize from a
MobiLink client, unless you choose to disable user authentication on your MobiLink server.

To prompt your end users to enter their MobiLink passwords

● The mechanism for supplying the user name and password is different for UltraLite and SQL
Anywhere clients.

● UltraLite When synchronizing, the UltraLite client must supply a valid value in the password
field of the synchronization structure. For built-in MobiLink synchronization, a valid password is
one that matches the value in the ml_user MobiLink system table.

MobiLink users

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 7

Your application should prompt the end user to enter their MobiLink user name and password
before synchronizing.

See “UltraLite synchronization parameters and network protocol options” [UltraLite - Database
Management and Reference].

● SQL Anywhere Users can supply a valid password on the dbmlsync command line using the -
mp option, or store it in the database with the synchronization subscription using the MobilinkPwd
extended option. Otherwise, they are prompt to specify a password in the dbmlsync connection
window. The latter method is more secure than specifying the password on the command line
because command lines are visible to other processes running on the same computer.

If authentication fails, the user is prompted to re-enter the user name and password.

See:

○ “-c dbmlsync option” on page 101
○ “-mp dbmlsync option” on page 110
○ “MobiLinkPwd (mp) extended option” on page 140

Changing passwords

MobiLink provides a mechanism for end users to change their password. The interface differs between
UltraLite and SQL Anywhere clients.

To prompt your end users to enter MobiLink passwords

● The mechanism for supplying the user name and password is different for UltraLite and SQL
Anywhere clients.

● SQL Anywhere Supply a valid existing password together with the new password on the
dbmlsync command line, or in the dbmlsync connection window if you do not supply command
line parameters.

See “-mp dbmlsync option” on page 110 and “-mn dbmlsync option” on page 109.

● UltraLite When synchronizing, the application must supply the existing password in the
password field of the synchronization structure and the new password in the new_password field.

See “Password synchronization parameter” [UltraLite - Database Management and Reference]
and “New Password synchronization parameter” [UltraLite - Database Management and
Reference].

An initial password can be set in the consolidated server or on the first synchronization attempt. See
“Providing initial passwords for users” on page 6 and “Synchronizations from new users” on page 7.

Once a password is assigned, you cannot reset the password to an empty string from the client side.

Introduction to MobiLink clients

8 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remote IDs

The remote ID uniquely identifies a remote database in a MobiLink synchronization system.

When a SQL Anywhere or UltraLite database is created, it is given a remote ID of null. When the
database synchronizes with MobiLink, the MobiLink client checks for a null remote ID. If it finds a null
remote ID, it assigns a GUID as the remote ID. Once set, the database maintains the same remote ID
unless it is manually changed (changing a remote ID manually is not recommended).

For SQL Anywhere remote databases, the MobiLink server tracks synchronization progress by remote ID
and subscription. For UltraLite databases, the MobiLink server tracks synchronization progress by remote
ID and publication. This information is stored in the ml_subscription system table. The remote ID is also
recorded in the MobiLink server log for each synchronization.

Remote IDs must be unique
Each remote database must be uniquely identified by its remote ID. The built-in GUID remote ID
accomplishes this. For an alternative, more human-readable identifier to represent a remote database in
your scripts and business logic, consider using the MobiLink username and/or a unique authentication
parameter. If you must assign your own remote IDs, then you must ensure that each remote database is
assigned a unique remote ID.

If the same remote ID is used in two or more concurrent synchronizations, it can potentially cause
corruption and/or data loss, depending on your synchronization scripts and business logic. Concurrent
synchronizations with the same remote ID can happen for either of the following reasons:

● A remote database has been assigned a duplicate remote ID. In this case the duplicate remote ID must
be set to a unique remote ID.

● A network error disconnects the client, which synchronizes again immediately. It is possible for both
the original and the new synchronization to be processed at the same time.

In either case, the MobiLink server automatically tries to prevent corruption or data loss. To do this,
MobiLink server will typically cancel all but one of the concurrent synchronizations are cancelled with an
error.

A caution about reusing remote IDs
If you set the remote ID manually and you subsequently recreate the remote database, you must either
give the recreated remote database a different name from the old one or use the ml_reset_sync_state
stored procedure to reset the state information in the consolidated database for the remote database. For
more detailed information, see “ml_reset_sync_state system procedure” [MobiLink - Server
Administration].

See also
● “Introduction to MobiLink users” on page 4
● “Authentication parameters” [MobiLink - Server Administration]
● “ml_reset_sync_state system procedure” [MobiLink - Server Administration]

MobiLink users

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 9

Setting the MobiLink remote ID
The remote ID is created as a GUID, but you can change it to a more meaningful name. For both SQL
Anywhere and UltraLite databases, the remote ID is stored in the database as a property called ml_remote_id.

For SQL Anywhere clients, see “Setting remote IDs” on page 65.

For UltraLite clients, see “UltraLite ml_remote_id option” [UltraLite - Database Management and
Reference].

If you set the remote ID manually and you subsequently recreate the remote database, you must either
give the recreated remote database a different name from the old one or use the ml_reset_sync_state
stored procedure to reset the state information in the consolidated database for the remote database.
“ml_reset_sync_state system procedure” [MobiLink - Server Administration]

When deploying a starter database to multiple locations, it is safest to deploy databases that have a null
remote ID. If you have synchronized the databases to prepopulate them, you can set the remote ID back to
null before deployment. This method ensures that the remote ID is unique because the first time the
remote database synchronizes, a unique remote ID is assigned. Alternatively, the remote ID can be set as a
remote setup step, but it must be unique.

Example
To simplify administrative duties when defining a MobiLink setup where you have one user per remote,
you might want to use the same number for all three MobiLink identifiers on each remote database. For
example, in a SQL Anywhere remote database you can set them as follows:

-- Set the MobiLink user name:
 CREATE SYNCHRONIZATION USER "1" ... ;
-- Set the partition number for DEFAULT GLOBAL AUTOINCREMENT:
 SET OPTION PUBLIC.GLOBAL_DATABASE_ID = '1';
-- Set the MobiLink remote ID:
 SET OPTION PUBLIC.ml_remote_id = '1';

Using remote IDs and MobiLink user names in scripts

The MobiLink user identifies a person and is used for authentication. The remote ID uniquely identifies a
MobiLink remote database.

In many synchronization scripts, you have the option of identifying the remote database by the remote ID
(with the named parameter s.remote_id) or by the MobiLink user name (with s.username). Using the
remote ID has some advantages, especially in UltraLite.

When deployments have a one-to-one relationship between a remote database and a MobiLink user, you
can ignore the remote ID. In this case MobiLink event scripts can reference the username parameter,
which is the MobiLink user name used for authentication.

If a MobiLink user wants to synchronize data in different databases but each remote has the same data,
the synchronization scripts can reference the MobiLink user name. But if the MobiLink user wants to

Introduction to MobiLink clients

10 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

synchronize different sets of data in different databases, the synchronization scripts should reference the
remote ID.

In UltraLite databases, the same database can also be synchronized by different users, even if the previous
upload state is unknown, because the MobiLink server tracks synchronization progress by remote ID. In
this case, you can no longer reference the MobiLink user name in download scripts for timestamp-based
downloads, because some rows for each of the other users may be missed and never downloaded. To
prevent this, you need to implement a mapping table in the consolidated database with one row for each
user using the same remote database. You can make sure that all data for all users is being downloaded
with a join of the consolidated table and mapping table that is based on the remote ID for the current
synchronization.

You can also use different script versions to synchronize different data to different remote databases. See
“Script versions” [MobiLink - Server Administration].

Choosing a user authentication mechanism

User authentication is one part of a security system for protecting your data.

MobiLink provides you with a choice of user authentication mechanisms. You do not have to use a single
installation-wide mechanism; MobiLink lets you use different authentication mechanisms for different
script versions within the installation for flexibility.

● No MobiLink user authentication If your data is such that you do not need password protection,
you can choose not to use any user authentication in your installation. In this case, the MobiLink user
name must still be included in the ml_user table, but the hashed_password column is null.

● Built-in MobiLink user authentication MobiLink uses the user names and passwords stored in
the ml_user MobiLink system table to perform authentication.

The built-in mechanism is described in the following sections.

● Custom authentication You can use the MobiLink script authenticate_user to replace the built-in
MobiLink user authentication system with one of your own. For example, depending on your
consolidated database management system, you may be able to use the database user authentication
instead of the MobiLink system.

See “Custom user authentication” on page 14.

For information about other security-related features of MobiLink and its related products, see:

● “Encrypting MobiLink client/server communications” [SQL Anywhere Server - Database
Administration]

● UltraLite clients: “Securing UltraLite databases” [UltraLite - Database Management and Reference]
● SQL Anywhere clients: “Keeping your data secure” [SQL Anywhere Server - Database

Administration]

MobiLink users

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 11

User authentication architecture
The MobiLink user authentication system relies on user names and passwords. You can choose either to
let the MobiLink server validate the user name and password using a built-in mechanism, or you can
implement your own custom user authentication mechanism.

In the built-in authentication system, both the user name and the password are stored in the ml_user
MobiLink system table in the consolidated database. The password is stored in hashed form so that
applications other than the MobiLink server cannot read the ml_user table and reconstruct the original
form of the password. You add user names and passwords to the consolidated database using Sybase
Central, using the mluser utility, or by specifying -zu+ when you start the MobiLink server.

See “Creating and registering MobiLink users” on page 5.

When a MobiLink client connects to a MobiLink server, it provides the following values:

● user name The MobiLink user name. Mandatory. To synchronize, the user name must be stored in
the ml_user system table, or you must start the MobiLink server with the -zu+ option to add new users
to the ml_user table.

● password The MobiLink password. Optional only if the user is unknown or if the corresponding
password in the ml_user MobiLink system table is null.

● new password A new MobiLink password. Optional. MobiLink users can change their password
by setting this value.

Custom authentication
Optionally, you can substitute your own user authentication mechanism.

See “Custom user authentication” on page 14.

Authentication process
The following is an explanation of the order of events that occur during authentication.

1. A remote application initiates a synchronization request using a remote ID, a MobiLink user name,
and optionally a password and new password. The MobiLink server starts a new transaction and
triggers the begin_connection_autocommit event and begin_connection event.

2. MobiLink verifies that the remote ID is not currently synchronizing and presets the
authentication_status to be 4000.

3. If you have defined an authenticate_user script, then the following occurs:

a. If the authenticate_user script is written in SQL, then this script is called with the preset
authentication_status of 4000, the MobiLink user name you provided, and optionally the password
and new password.

Introduction to MobiLink clients

12 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

If the authenticate_user script is written in Java or .NET and returns a SQL statement, then this
SQL statement is called with the preset authentication_status of 4000, the MobiLink user name
you provided, and optionally the password and new password.

b. If the authenticate_user script throws an exception or an error occurs in executing the script, the
synchronization process stops.

The authenticate_user script or the returned SQL statement must be a call to a stored procedure taking
two to four arguments. The preset authentication_status value is passed as the first parameter and may
be updated by the stored procedure. The returned value of the first parameter is the
authentication_status from the authenticate_user script.

4. If an authenticate_user_hashed script exists, then the following occurs:

a. If a password was provided, a hashed value is calculated for it. If a new password was provided, a
hashed value is calculated for it.

b. The authenticate_user_hashed script is called with the current value of authentication_status
(either the preset authentication_status if the authenticate_user script doesn't exist, or the
authentication_status returned from the authenticate_user script) and the hashed passwords. The
behavior is identical to step 3. The returned value of the first parameter is used as the
authentication_status of the authenticate_user_hashed script.

5. The MobiLink server takes the greater value of the auth_user status returned from the
authenticate_user script and authenticate_user_hashed script, if they exist, or the preset
authentication_status if neither of the scripts exist.

6. The MobiLink server queries the ml_user table for the MobiLink user name you provided.

a. If either of the custom scripts authenticate_user or authenticate_user_hashed was called but the
MobiLink user name you provided is not in the ml_user table and the authentication_status is valid
(1000 or 2000), the MobiLink user name is added to the MobiLink system table ml_user. If
authentication_status is not valid, ml_user is not updated and an error occurs.

b. If the custom scripts were not called and the MobiLink user name you provided is not in the
ml_user table, the MobiLink user name you provided is added to ml_user if you started the
MobiLink server with the -zu+ option. Otherwise, an error occurs and authentication_status is set
to be invalid.

c. If the custom scripts were called and the MobiLink user name you provided is in the ml_user
table, nothing happens.

d. If the custom scripts were not called and the MobiLink user name you provided is in the ml_user
table, the password is checked against the value in the ml_user table. If the password matches the
one in the ml_user table for the MobiLink user, the authentication_status is set to be valid.
Otherwise the authentication_status is set to be invalid.

7. If that authentication_status is valid and neither of the scripts authenticate_user or
authenticate_user_hashed was called and you provided a new password in the ml_user table for this
MobiLink user, the password is changed to the one you provided.

MobiLink users

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 13

8. If you have defined an authenticate_parameters script and the authentication_status is valid (1000 or
2000), then the following occurs:

a. The parameters are passed to the authenticate_parameters script.

b. If the authenticate_parameters script returns an authentication_status value greater than the current
authentication_status, the new authentication_status overwrites the old value.

9. If authentication_status is not valid, the synchronization is aborted.

10. If you have defined the modify_user script, it is called to replace the MobiLink user name you
provided with a new MobiLink user name returned by this script.

11. The MobiLink server always commits the transaction after MobiLink user authentication, regardless
of the authentication_status. If the authentication_status is valid (1000 or 2000), synchronization
continues. If the authentication_status is invalid, the synchronization is aborted.

Custom user authentication

You can choose to use a user authentication mechanism other than the built-in MobiLink mechanism. The
following are some reasons for using a custom user authentication mechanism:

● To include integration with existing database user authentication schemes or external authentication
mechanisms.

● To supply custom features, such as minimum password length or password expiry, that do not exist in
the built-in MobiLink mechanism.

There are three custom authentication tools:

● mlsrv12 -zu+ option

● authenticate_user script or authenticate_user_hashed script

● authenticate_parameters script

The mlsrv12 -zu+ option allows you to control the automatic addition of users. For example, specify -zu+
to have all unrecognized MobiLink user names added to the ml_user table when they first synchronize.
The -zu+ option is only needed for built-in MobiLink authentication.

The authenticate_user, authenticate_user_hashed, and authenticate_parameters scripts override the default
MobiLink user authentication mechanism. Any user who successfully authenticates is automatically
added to the ml_user table.

You can use the authenticate_user script to create custom authentication of user IDs and passwords. If this
script exists, it is executed instead of the built-in password comparison. The script must return error codes
to indicate the success or failure of the authentication.

Introduction to MobiLink clients

14 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

There are several predefined scripts for the authenticate_user event that are installed with MobiLink.
These make it easier for you to authenticate using LDAP, POP3, and IMAP servers. See “Authenticating
to external servers” on page 15.

Use authenticate_parameters to create custom authentication that depends on values other than user IDs
and passwords.

See also
● “-zu mlsrv12 option” [MobiLink - Server Administration]
● “authenticate_user connection event” [MobiLink - Server Administration]
● “authenticate_user_hashed connection event” [MobiLink - Server Administration]
● “authenticate_parameters connection event” [MobiLink - Server Administration]

Java and .NET user authentication

User authentication is a natural use of Java and .NET synchronization logic because Java and .NET
classes allow you to reach out to other sources of user names and passwords used in your computing
environment, such as application servers.

A simple sample is included in the directory samples-dir\MobiLink\JavaAuthentication. The sample code
in samples-dir\MobiLink\JavaAuthentication\CustEmpScripts.java implements a simple user
authentication system. On the first synchronization, a MobiLink user name is added to the login_added
table. On subsequent synchronizations, a row is added to the login_audit table. In this sample, there is no
test before adding a user ID to the login_added table. (For information about samples-dir, see “Samples
directory” [SQL Anywhere Server - Database Administration].)

For a .NET sample that explains user authentication, see “.NET synchronization example” [MobiLink -
Server Administration].

Authenticating to external servers

Predefined Java synchronization scripts are included with MobiLink that make it simpler for you to
authenticate to external servers using the authenticate_user event. Predefined scripts are available for the
following authentication servers:

● POP3 or IMAP servers using the JavaMail 1.2 API

● LDAP servers using the Java Naming and Directory Interface (JNDI)

How you use these scripts is determined by whether your MobiLink user names map directly to the user
IDs in your external authentication system.

Note
You can also set up authentication to external servers in Sybase Central, using the Authentication tab. See
“MobiLink Plug-in for Sybase Central” [MobiLink - Getting Started].

MobiLink users

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 15

If your MobiLink user names map directly to your user IDs
In the simple case where the MobiLink user name maps directly to a valid user ID in your authentication
system, the predefined scripts can be used directly in response to the authenticate_user connection event.
The authentication code initializes itself based on properties stored in the ml_property table.

To use predefined scripts directly in authenticate_user

1. Add the predefined Java synchronization script to the ml_scripts MobiLink system table. You can do
this using a stored procedure or in Sybase Central.

● To use the ml_add_java_connection_script stored procedure, run the following command:

call ml_add_java_connection_script(
 'MyVersion',
 'authenticate_user',
 'ianywhere.ml.authentication.ServerType.authenticate')

where MyVersion is the name of a script version, and ServerType is LDAP, POP3, or IMAP.

● To use the Add Connection Script Wizard in Sybase Central, choose authenticate_user as the
script type, and enter the following in the Code Editor:

ianywhere.ml.authentication.ServerType.authenticate

where ServerType is LDAP, POP3, or IMAP.

See “ml_add_java_connection_script system procedure” [MobiLink - Server Administration].

2. Add properties for this authentication server.

Use the ml_add_property stored procedure for each property you need to set:

call ml_add_property(
 'ScriptVersion',
 'MyVersion',
 'property_name',
 'property_value')

where MyVersion is the name of a script version, property_name is determined by your authentication
server, and property_value is a value appropriate to your application. Repeat this call for every
property you want to set.

See “External authenticator properties” on page 17 and “ml_add_property system procedure”
[MobiLink - Server Administration].

If your MobiLink user names do not map directly to your user IDs
If your MobiLink user names are not equivalent to your user IDs, the code must be called indirectly and
you must extract or map the user ID from the ml_user value. You do this by writing a Java class.

See “Writing synchronization scripts in Java” [MobiLink - Server Administration].

The following is a simple example. In this example, the code in the extractUserID method has been left
out because it depends on how the ml_user value maps to a userid. All the work is done in the
"authenticate" method of the authentication class.

Introduction to MobiLink clients

16 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

package com.mycompany.mycode;
import ianywhere.ml.authentication.*;
import ianywhere.ml.script.*;
public class MLEvents
{
 private DBConnectionContext _context;
 private POP3 _pop3;
 public MLEvents(DBConnectionContext context)
 {
 _context = context;
 _pop3 = new POP3(context);
 }
 public void authenticateUser(
 InOutInteger status,
 String userID,
 String password,
 String newPassword)
 {
 String realUserID = extractUserID(userID);
 _pop3.authenticate(status, realUserID, password, newPassword);
 }
 private String extractUserID(String userID)
 {
 // code here to map ml_user to a "real" POP3 user
 }
}

In this example, The POP3 object needs to be initialized with the DBConnectContext object so that it can
find its initialization properties. If you do not initialize it this way, you must set the properties in code. For
example,

POP3 pop3 = new POP3();
pop3.setServerName("smtp.sybase.com");
pop3.setServerPort(25);

This applies to any of the authentication classes, although the properties vary by class.

External authenticator properties

MobiLink provides reasonable defaults wherever possible, especially in the LDAP case. The properties
that can be set vary, but following are the basic ones.

POP3 authenticator

mail.pop3.host the hostname of the server

mail.pop3.port the port number (can be omitted if default 110 is used)

See http://java.sun.com/products/javamail/javadocs/com/sun/mail/pop3/package-summary.html.

MobiLink users

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 17

http://java.sun.com/products/javamail/javadocs/com/sun/mail/pop3/package-summary.html

IMAP authenticator

mail.imap.host the hostname of the server

mail.imap.port the port number (can be omitted if default 143 is used)

See http://java.sun.com/products/javamail/javadocs/com/sun/mail/imap/package-summary.html.

LDAP authenticator

java.nam-
ing.provider.url

the URL of the LDAP server, such as ldap://ops-yourLocation/dn=syb-
ase,dn=com

For more information, see the JNDI documentation.

MobiLink client utilities

Introduction to MobiLink client utilities
There are two MobiLink client utilities:

● “Microsoft ActiveSync Provider Installation utility (mlasinst)” on page 18
● “MobiLink File Transfer utility (mlfiletransfer)” on page 21

In addition, see:

● UltraLite utilities: “UltraLite utilities” [UltraLite - Database Management and Reference]
● MobiLink server utilities: “MobiLink utilities” [MobiLink - Server Administration]
● Other SQL Anywhere utilities: “Database administration utilities” [SQL Anywhere Server - Database

Administration]

Microsoft ActiveSync Provider Installation utility (mlasinst)

Installs a MobiLink provider for Microsoft ActiveSync (known as Windows Mobile Device Center on
Windows Vista), or registers and installs UltraLite applications on Windows Mobile devices.

Syntax
mlasinst [options] [[src] dst name class [args]]

Options Description

-d Initially disable the application.

Introduction to MobiLink clients

18 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

http://java.sun.com/products/javamail/javadocs/com/sun/mail/imap/package-summary.html

Options Description

-k path Specify the location of the desktop provider mlasdesk.dll.

By default, the file is located in install-dir\bin32.

End users (who generally do not have the full SQL Anywhere install) may need to
specify -k when installing the MobiLink Microsoft ActiveSync provider.

-l filename Specify the name of the activity log file.

-n Register the application but do not copy it to the device.

In addition to installing the MobiLink Microsoft ActiveSync provider, this option
registers an application but does not copy it to the device. This is appropriate if the
application includes more than one file (for example, if it is compiled to use the
UltraLite runtime library DLL rather than a static library) or if you have an alterna-
tive method of copying the application to the device.

-t n Specify how long, in seconds, the desktop provider should wait for a response
from the client before timing out; the default is 30.

-u Uninstall the MobiLink provider for Microsoft ActiveSync.

This option unregisters all applications that have been registered for use with the
MobiLink Microsoft ActiveSync provider and uninstalls the MobiLink Microsoft
ActiveSync provider. No files are deleted from the desktop computer or the device
by this operation. If the device is not connected to the desktop, an error is reported.

-v path Specify the location of the device provider mlasdev.dll. By default, the file is
looked for in a platform-specific directory in install-dir\CE.

End users (who generally do not have the full SQL Anywhere install) may need to
specify -v when installing the MobiLink Microsoft ActiveSync provider.

Other parameters Description

src Specify the source file name and path for copying an application to the device.
Supply this parameter only if you are registering an application and copying it
to the device. Do not supply the parameter if you use the -n option.

dst Specify the destination file name and path on the device for an application.

name Specify the name by which Microsoft ActiveSync refers to the application.

class Specify the registered Windows class name of the application.

MobiLink client utilities

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 19

Other parameters Description

args Specify command line arguments to pass to the application when Microsoft Ac-
tiveSync starts the application.

Remarks
This utility installs a MobiLink provider for Microsoft ActiveSync. The provider includes both a
component that runs on the desktop (mlasdesk.dll) and a component that is deployed to the Windows
Mobile device (mlasdev.dll). The mlasinst utility makes a registry entry pointing to the current location of
the desktop provider; and copies the device provider to the device.

If additional arguments are supplied, the mlasinst utility can also be used to register and install UltraLite
applications onto a Windows Mobile device. Alternatively, you can register and install UltraLite
applications using the Microsoft ActiveSync software.

Subject to licensing requirements, you may supply this application together with the desktop and device
components to end users so that they can prepare their copies of your application for use with Microsoft
ActiveSync.

You must be connected to a remote device to install the Microsoft ActiveSync provider.

For complete instructions on using the Microsoft ActiveSync Provider Installation utility, see:

● SQL Anywhere: “Installing the MobiLink provider for Microsoft ActiveSync” on page 84
● UltraLite: “Using ActiveSync with UltraLite on Windows Mobile” [UltraLite - Database

Management and Reference]

Examples
The following command installs the MobiLink provider for Microsoft ActiveSync using default
arguments. It does not register an application. The device must be connected to your desktop for the
installation to succeed.

mlasinst

The following command uninstalls the MobiLink provider for Microsoft ActiveSync. The device must be
connected to your desktop for the uninstall to succeed:

mlasinst -u

The following command installs the MobiLink provider for Microsoft ActiveSync, if it is not already
installed, and registers the application myapp.exe. It also copies the c:\My Files\myapp.exe file to
\Program Files\myapp.exe on the device. The -p -x arguments are command line options for myapp.exe
when started by Microsoft ActiveSync. The command must be entered on a single line:

mlasinst "C:\My Files\myapp.exe" "\Program Files\myapp.exe"
 "My Application" MYAPP -p -x

Introduction to MobiLink clients

20 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “Using Microsoft ActiveSync synchronization” on page 83
● “UltraLite synchronization parameters and network protocol options” [UltraLite - Database

Management and Reference]

MobiLink File Transfer utility (mlfiletransfer)
Uploads or downloads a file through MobiLink.

Syntax
mlfiletransfer [options] file

Option Description

-ap param1, ... MobiLink authentication parameters. See “Authentication pa-
rameters” [MobiLink - Server Administration].

-g Shows transfer progress.

-i Ignore partial transfer from a previous attempt.

-k Remote key to identify the remote. This is optional.

-lf filename The local name of the file to be transferred. By default, the
name as recognized by the server (i.e. file) is used.

-lp path The local path for the file to be transferred. By default, the lo-
cal path is the root directory on Windows Mobile, and the cur-
rent directory on other platforms.

-p password The password for the MobiLink user name.

-q Quiet mode. Messages are not displayed.

-s Upload a file to MobiLink. Download is the default.

-u username MobiLink user name. This option is required.

-v version The script version. This option is required.

-x protocol (options) The protocol can be one of tcpip, tls, http, or https.This op-
tion is required.

The protocol-options you can use depend on the protocol. For
a list of options for each protocol, see “MobiLink client net-
work protocol option summary” on page 23.

MobiLink client utilities

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 21

Option Description

file The file to be transferred as named on the server. When down-
loading, MobiLink looks for the file in the username subdirec-
tory of the -ftr directory; if it does not find it there, it looks in
the -ftr directory. If the file is not in either place, MobiLink gen-
erates an error. See “-ftr mlsrv12 option” [MobiLink - Server
Administration].

When uploading, MobiLink looks for the files in the directory
specified with the -ftru mlsrv12 option. See “-ftru mlsrv12 op-
tion” [MobiLink - Server Administration].

Remarks
This utility is useful for downloading files when you first create a remote database, when you need to
upgrade software on your remote device, and so on.

To use this utility to download files, you must start the MobiLink server with the -ftr option. The -ftr
option creates a root directory for the file to be transferred, and creates a subdirectory for every registered
MobiLink user.

To use this utility to upload files, you must start the MobiLink server with the -ftru option. The -ftru
option creates a location for files that are to be uploaded.

You can use mlagent as an alternative to mlfiletransfer. See “Configuring and running the MobiLink
Agent on the client device” [MobiLink - Server Administration].

UltraLite users can also use the MLFileDownload and MLFileUpload methods in the UltraLite runtime.
See “Using MobiLink file transfers” [UltraLite - Database Management and Reference].

See also
● “-ftr mlsrv12 option” [MobiLink - Server Administration]
● “authenticate_file_transfer connection event” [MobiLink - Server Administration]

Example
The following command connects the MobiLink server to the CustDB sample database. The -ftr
%SystemRoot%\system32 option tells the MobiLink server to start monitoring the Windows
\system32 directory for requested files. In this example the MobiLink server first looks for the file in the C:
\Windows\system32\mobilink-username directory. If the file does not exist, it looks in the C:\Windows
\system32 directory. In general you would not want to have the MobiLink server monitor your Windows
\system32 folder for files. This example uses the Windows\system32 directory so that it can transfer the
Notepad utility, which is located there.

mlsrv12 -c "dsn=SQL Anywhere 12 CustDB" -zu+ -ftr %SystemRoot%\system32

The following command runs the mlfiletransfer utility. It causes the MobiLink server to download
notepad.exe to your local directory.

Introduction to MobiLink clients

22 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

MLFileTransfer -u 1 -v "custdb 12.0" -x tcpip notepad.exe

MobiLink client network protocol options

MobiLink client network protocol option summary
This section describes the network protocol options you can use when connecting a MobiLink client to
the MobiLink server. Several MobiLink client utilities use the MobiLink client network protocol options:

To use cli-
ent network
protocol op-
tions with...

See...

dbmlsync “CommunicationAddress (adr) extended option” on page 128

UltraLite “Stream Parameters synchronization parameter” [UltraLite - Database Management
and Reference] or -x option in “UltraLite Synchronization utility (ulsync)” [UltraLite -
Database Management and Reference]

UltraLiteJ “Network protocol options for UltraLiteJ synchronization streams” [UltraLiteJ]

Relay Server “Relay Server configuration file” [Relay Server]

MobiLink
Monitor

“Starting the MobiLink Monitor” [MobiLink - Server Administration]

MobiLink
file transfer

“MobiLink File Transfer utility (mlfiletransfer)” on page 21

MobiLink
Listener

-x in “MobiLink Listener utility for Windows devices (dblsn)” [MobiLink - Server-Ini-
tiated Synchronization]

QAnywhere
Agent

“-x qaagent option” [QAnywhere]

The network protocol you choose must match the synchronization protocol used by the client. For
information about how to set connection options for the MobiLink server, see “-x mlsrv12 option”
[MobiLink - Server Administration].

Protocol options
● TCP/IP protocol options If you specify the tcpip option, you can optionally specify the following

protocol options:

MobiLink client network protocol options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 23

TCP/IP protocol option For more information, see...

buffer_size=bytes “buffer_size” on page 28

client_port=nnnnn[-mmmmm] “client_port” on page 32

e2ee_type={rsa|ecc} “e2ee_type” on page 35

e2ee_public_key=file “e2ee_public_key” on page 36

compression={zlib|none} “compression” on page 33

host=hostname “host” on page 38

network_leave_open={off|on} “network_leave_open” on page 45

network_name=name “network_name” on page 45

port=portnumber “port” on page 47

timeout=seconds “timeout” on page 50

zlib_download_window_size=window-bits “zlib_download_window_size” on page 56

zlib_upload_window_size=window-bits “zlib_upload_window_size” on page 57

● TCP/IP protocol with security If you specify the tls option, which is TCP/IP with TLS security,
you can optionally specify the following protocol options:

TLS protocol option For more information, see...

buffer_size=bytes “buffer_size” on page 28

certificate_company=company_name “certificate_company” on page 29

certificate_name=name “certificate_name” on page 30

certificate_unit=company_unit “certificate_unit” on page 32

client_port=nnnnn[-mmmmm] “client_port” on page 32

compression={zlib|none} “compression” on page 33

e2ee_type={rsa|ecc} “e2ee_type” on page 35

e2ee_public_key=file “e2ee_public_key” on page 36

fips={y|n} “fips” on page 36

Introduction to MobiLink clients

24 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

TLS protocol option For more information, see...

host=hostname “host” on page 38

identity=filename “identity” on page 42

identity_password= password “identity_password” on page 44

network_leave_open={off|on} “network_leave_open” on page 45

network_name=name “network_name” on page 45

port=portnumber “port” on page 47

timeout=seconds “timeout” on page 50

tls_type={rsa|ecc} “tls_type” on page 51

trusted_certificates=filename “trusted_certificates” on page 53

zlib_download_window_size=window-bits “zlib_download_window_size” on page 56

zlib_upload_window_size=window-bits “zlib_upload_window_size” on page 57

● HTTP protocol If you specify the http option, you can optionally specify the following protocol
options:

HTTP protocol option For more information, see...

buffer_size=number “buffer_size” on page 28

client_port=nnnnn[-mmmmm] “client_port” on page 32

compression={zlib|none} “compression” on page 33

custom_header=header “custom_header” on page 34

e2ee_type={rsa|ecc} “e2ee_type” on page 35

e2ee_public_key=file “e2ee_public_key” on page 36

http_password=password “http_password” on page 39

http_proxy_password=password “http_proxy_password” on page 40

http_proxy_userid=userid “http_proxy_userid” on page 41

http_userid=userid “http_userid” on page 42

MobiLink client network protocol options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 25

HTTP protocol option For more information, see...

host=hostname “host” on page 38

network_leave_open={off|on} “network_leave_open” on page 45

network_name=name “network_name” on page 45

persistent={off|on} “persistent” on page 47

port=portnumber “port” on page 47

proxy_host= proxy-hostname-or-ip “proxy_host” on page 48

proxy_port=proxy-portnumber “proxy_port” on page 49

set_cookie=cookie-name = cookie-value “set_cookie” on page 49

timeout=seconds “timeout” on page 50

url_suffix=suffix “url_suffix” on page 54

version=HTTP-version-number “version” on page 55

zlib_download_window_size=window-bits “zlib_download_window_size” on page 56

zlib_upload_window_size=window-bits “zlib_upload_window_size” on page 57

● HTTPS protocol If you specify the https option, which is HTTP with RSA encryption, you can
optionally specify the following protocol options:

HTTPS protocol option For more information, see...

buffer_size=number “buffer_size” on page 28

certificate_company=company_name “certificate_company” on page 29

certificate_name=name “certificate_name” on page 30

certificate_unit=company_unit “certificate_unit” on page 32

client_port=nnnnn[-mmmmm] “client_port” on page 32

compression={zlib|none} “compression” on page 33

custom_header=header “custom_header” on page 34

e2ee_type={rsa|ecc} “e2ee_type” on page 35

Introduction to MobiLink clients

26 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

HTTPS protocol option For more information, see...

e2ee_public_key=file “e2ee_public_key” on page 36

fips={y|n} “fips” on page 36

host=hostname “host” on page 38

http_password=password “http_password” on page 39

http_proxy_password=password “http_proxy_pass-
word” on page 40

http_proxy_userid=userid “http_proxy_userid” on page 41

http_userid=userid “http_userid” on page 42

identity=filename “identity” on page 42

identity_password=password “identity_password” on page 44

network_leave_open={off|on} “network_leave_open” on page 45

network_name=name “network_name” on page 45

persistent={off|on} “persistent” on page 47

port=portnumber “port” on page 47

proxy_host=proxy-hostname-or-ip “proxy_host” on page 48

proxy_port= proxy-portnumber “proxy_port” on page 49

set_cookie=cookie-name = cookie-value “set_cookie” on page 49

timeout=seconds “timeout” on page 50

tls_type={rsa|ecc} “tls_type” on page 51

trusted_certificates=filename “trusted_certificates” on page 53

url_suffix=suffix “url_suffix” on page 54

version=HTTP-version-number “version” on page 55

zlib_download_window_size=window-size “zlib_download_win-
dow_size” on page 56

zlib_upload_window_size=window-bits “zlib_upload_win-
dow_size” on page 57

MobiLink client network protocol options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 27

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption
technologies are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 12 - Introduction].

buffer_size
Specify the maximum number of bytes to buffer before writing to the network. For HTTP and HTTPS,
this translates to the maximum HTTP request body size.

Syntax
buffer_size=bytes

Available protocols
● TCPIP, TLS, HTTP, HTTPS

Default
● Windows Mobile - 16K
● All other platforms - 64K

Remarks
In general for HTTP and HTTPS, the larger the buffer size, the fewer the number of HTTP request-
response cycles, but the more memory required.

For TCPIP and TLS, it is also the case that a larger size performs faster but requires more memory;
however, the performance difference is less significant than for HTTP.

Units are in bytes. Specify K for kilobytes, M for megabytes or G for gigabytes.

The maximum value is 1G.

This option controls the size of the requests from the client and has no bearing on the size of the responses
from MobiLink.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 128.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

Example
The following example sets the maximum number of bytes to 32K.

On a SQL Anywhere client, the implementation is:

Introduction to MobiLink clients

28 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

dbmlsync -e "adr=buffer_size=32K"

In an UltraLite application written in embedded SQL or C++, the implementation is:

synch_info.stream_parms = TEXT("buffer_size=32K");

certificate_company
If specified, the application only accepts server certificates when the Organization field on the certificate
matches this value.

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption
technologies are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 12 - Introduction].

Syntax
certificate_company=organization

Available protocols
● TLS, HTTPS

Default
None

Remarks
MobiLink clients trust all certificates signed by the certificate authority, so they may also trust certificates
that the same certificate authority has issued to other companies. Without a means to discriminate, your
clients might mistake a competitor's MobiLink server for your own and accidentally send it sensitive
information. This option specifies a further level of verification, that the Organization field in the identity
portion of the certificate also matches a value you specify.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 128.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

MobiLink client network protocol options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 29

See also
● “Encrypting MobiLink client/server communications” [SQL Anywhere Server - Database

Administration]
● “Verifying certificate fields” [SQL Anywhere Server - Database Administration]
● “-x mlsrv12 option” [MobiLink - Server Administration]
● “trusted_certificates” on page 53
● “certificate_name” on page 30
● “certificate_unit” on page 32

Example
The following examples tell a SQL Anywhere client to check all three identity fields and to accept only
the named values. This example verifies all three fields. You can instead choose to verify only one or two
fields.

For example, if you have SQL Anywhere clients you can set up certificate verification in the subscription
as follows:

CREATE SYNCHRONIZATION SUBSCRIPTION
FOR user01
TO test_pub
ADDRESS 'port=3333;
 trusted_certificates=certicom.crt;
 certificate_company=Sybase, Inc.;
 certificate_unit=iAnywhere;certificate_name=sample'

In an UltraLite application written in embedded SQL in C or C++, you can set up certificate verification
as follows, assuming that the trusted certificate was installed in the database when the database was created:

ul_sync_info info;
info.stream = "tls";
info.stream_parms = UL_TEXT("port=9999;")
 UL_TEXT ("certificate_company=Sybase, Inc.;")
 UL_TEXT ("certificate_unit=iAnywhere;")
 UL_TEXT ("certificate_name=sample;");
...
ULSynchronize(&info);

certificate_name
If specified, the application only accepts server certificates when the Common Name field on the
certificate matches this value.

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption
technologies are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 12 - Introduction].

Syntax
certificate_name=common-name

Introduction to MobiLink clients

30 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Available protocols
● TLS, HTTPS

Default
None

Remarks
For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 128.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

See also
● “Encrypting MobiLink client/server communications” [SQL Anywhere Server - Database

Administration]
● “Verifying certificate fields” [SQL Anywhere Server - Database Administration]
● “-x mlsrv12 option” [MobiLink - Server Administration]
● “trusted_certificates” on page 53
● “certificate_company” on page 29
● “certificate_unit” on page 32

Example
The following example sets up RSA encryption for an HTTPS protocol. This requires setup on the server
and client. Each command must be written on one line.

On the server, the implementation is:

mlsrv12
 -c "dsn=SQL Anywhere 12 Demo;uid=DBA;pwd=sql"
 -x https(
 port=9999;
 identity=c:\sa12\bin32\rsaserver.id;
 identity_password=test)

On a SQL Anywhere client, the implementation is:

dbmlsync
 -c "dsn=mydb;uid=DBA;pwd=sql"
 -e "ctp=https;
 adr='port=9999;
 trusted_certificates=c:\sa12\bin32\rsaroot.crt;
 certificate_name=RSA Server'"

On an UltraLite client, the implementation is:

 info.stream = "https";
 info.stream_parms = TEXT(
 "port=9999;
 trusted_certificates=\sa12\bin32\rsaroot.crt;
 certificate_name=RSA Server");

MobiLink client network protocol options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 31

certificate_unit
If specified, the application only accepts server certificates when the Organization Unit field on the
certificate matches this value.

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption
technologies are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 12 - Introduction].

Syntax
certificate_unit=organization-unit

Available protocols
● TLS, HTTPS

Default
None

Remarks
For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 128.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

See also
● “Encrypting MobiLink client/server communications” [SQL Anywhere Server - Database

Administration]
● “Verifying certificate fields” [SQL Anywhere Server - Database Administration]
● “-x mlsrv12 option” [MobiLink - Server Administration]
● “trusted_certificates” on page 53
● “certificate_company” on page 29
● “certificate_name” on page 30

Example
For examples of security, see “certificate_name” on page 30 and “trusted_certificates” on page 53.

client_port
Specify a range of client ports for communication.

Introduction to MobiLink clients

32 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
client_port=nnnnn[-mmmmm]

Available protocols
● TCPIP, TLS, HTTP, HTTPS

Default
None

Remarks
Specify a low value and a high value to create a range of possible port numbers. To restrict the client to a
specific port number, specify the same number for nnnnn and mmmmm. If you specify only one value, the
end of the range is 100 greater than the initial value, for a total of 101 ports.

The option can be useful for clients inside a firewall communicating with a MobiLink server outside the
firewall.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 128.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

Example
The following example sets a 10000 port range of allowable client ports.

On a SQL Anywhere client, the implementation is:

dbmlsync -e "adr=client_port=10000-19999"

In an UltraLite application written in embedded SQL or C++, the implementation is:

synch_info.stream_parms = TEXT("client_port=10000-19999");

compression
Turns on or off compression of the synchronization stream between the MobiLink server and MobiLink
clients.

Syntax
compression= { zlib | none }

Available protocols
● TCPIP, TLS, HTTP, HTTPS

Default
For UltraLite, compression is off by default.

MobiLink client network protocol options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 33

For dbmlsync, zlib compression is used by default.

Caution
In SQL Anywhere clients, if you turn off compression the data is completely unobfuscated; if security is
an issue, you should encrypt the stream.

See “Transport-layer security” [SQL Anywhere Server - Database Administration].

Remarks
When you use zlib compression, you can configure the upload and download compression using the
zlib_download_window_size option and zlib_upload_window_size option. Using these options, you can
also turn off compression for either the upload or the download.

To use zlib compression in UltraLite, mlczlib12.dll must be deployed and for C++ only, applications must
call ULEnableZlibSyncCompression(sqlca).

See also
● “zlib_download_window_size” on page 56
● “zlib_upload_window_size” on page 57

Example
The following option sets compression for upload only, and sets the upload window size to 9:

"compression=zlib;zlib_download_window_size=0;zlib_upload_window_size=9"

custom_header

Specify a custom HTTP header.

Syntax
custom_header=header

HTTP headers are of the form header-name: header-value.

Available protocols
● HTTP, HTTPS

Default
None

Remarks
When you specify custom HTTP headers, the client includes the headers with every HTTP request it
sends. To specify more than one custom header, use custom_header multiple times, using the semicolon
(;) as a divider. For example: custom_header=header1:value1; customer_header=header2:value2

Introduction to MobiLink clients

34 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Custom headers are useful when your synchronization client interacts with a third-party tool that requires
custom headers.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 128.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

Example
Some HTTP proxies require all requests to contain special headers. The following example sets a custom
HTTP header called MyProxyHdr to the value ProxyUser in an embedded SQL or C++ UltraLite application:

info.stream = "http";
info.stream_parms = TEXT(
 "host=www.myhost.com;proxy_host=www.myproxy.com;
 custom_header=MyProxyHdr:ProxyUser");

e2ee_type

Specify the asymmetric algorithm to use for key exchange for end-to-end encryption.

Syntax
e2ee_type= { rsa | ecc }

Available protocols
TCPIP, TLS, HTTP, HTTPS

Default
RSA

Remarks
Must be either rsa or ecc and must match the value specified on the server.

See also
● “e2ee_public_key” on page 36
● “-x mlsrv12 option” [MobiLink - Server Administration]
● “Key Pair Generator utility (createkey)” [SQL Anywhere Server - Database Administration]

Example
The following example shows end-to-end encryption for an UltraLite client:

info.stream = "https";
info.stream_parms =
"tls_type=rsa;trusted_certificates=rsaroot.crt;e2ee_type=rsa;e2ee_public_key=
rsapublic.pem"

MobiLink client network protocol options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 35

e2ee_public_key
Specify the file containing the server's PEM-encoded public key for end-to-end encryption.

Syntax
e2ee_public_key=file

Available protocols
TCPIP, TLS, HTTP, HTTPS

Default
None

Remarks
The key type must match the type specified in the e2ee_type parameter.

This option is required for end-to-end encryption to take effect.

End-to-end encryption can also be used the with TLS/HTTPS protocol option fips. This option is not
supported when using ECC. See “fips” on page 36.

See also
● “e2ee_type” on page 35
● “-x mlsrv12 option” [MobiLink - Server Administration]
● “Key Pair Generator utility (createkey)” [SQL Anywhere Server - Database Administration]

Example
The following example shows end-to-end encryption for an UltraLite client:

info.stream = "https";
info.stream_parms =
"tls_type=rsa;trusted_certificates=rsaroot.crt;e2ee_type=rsa;e2ee_public_key=
rsapublic.pem"

fips
Use FIPS-approved encryption implementations for TLS encryption and end-to-end encryption.

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption
technologies are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 12 - Introduction].

Syntax
fips={ y | n }

Introduction to MobiLink clients

36 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Available protocols
HTTPS, TLS

Default
No

Remarks
FIPS is only supported for RSA encryption.

Non-FIPS clients can connect to FIPS servers and vice versa.

This option can be used with end-to-end encryption. If fips is set to y, MobiLink clients use FIPS 140-2
certified implementations of RSA and AES. This option is not supported when using ECC. See
“e2ee_type” on page 35 and “e2ee_public_key” on page 36.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 128.

See also
● “tls_type” on page 51
● “e2ee_type” on page 35

Example
The following example sets up FIPS-approved RSA encryption for a TCP/IP protocol. This requires setup
on the server and client. Each command must be written on one line.

On the server, the implementation is:

mlsrv12
 -c "dsn=SQL Anywhere 12 Demo;uid=DBA;pwd=sql"
 -x tls(
 port=9999;
 tls_type=rsa;
 fips=y;
 identity=c:\sa12\bin32\rsaserver.id;
 identity_password=test)

On a SQL Anywhere client, the implementation is:

dbmlsync -e
 "CommunicationType=tls;
 CommunicationAddress=
 'tls_type=rsa;
 fips=y;
 trusted_certificates=\rsaroot.crt;
 certificate_name=RSA Server'"

In an UltraLite application written in embedded SQL in C or C++, the implementation is:

 info.stream = "tls";
 info.stream_parms = TEXT(
 "tls_type=rsa;
 fips=y;

MobiLink client network protocol options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 37

 trusted_certificates=\rsaroot.crt;
 certificate_name=RSA Server");

host
Specify the host name or IP number for the computer on which the MobiLink server is running, or, if you
are synchronizing through a web server, the computer where the web server is running.

Syntax
host=hostname-or-ip

Available protocols
● TCPIP, TLS, HTTP, HTTPS

Default
● Windows Mobile - the default value is the IP address of the desktop computer the device has an

Microsoft ActiveSync partnership with.
● All other devices - the default is localhost.

Remarks
On Windows Mobile, do not use localhost, which refers to the remote device itself. The default value
allows a Windows Mobile device to connect to a MobiLink server on the desktop computer to which the
Windows Mobile device has an Microsoft ActiveSync partnership.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 128.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

Example
In the following example, the client connects to a computer called myhost at port 1234.

On a SQL Anywhere client, the implementation is:

dbmlsync -e "adr='host=myhost;port=1234'"

In an UltraLite application written in embedded SQL or C++, the implementation is:

synch_info.stream_parms = TEXT("host=myhost;port=1234");

http_buffer_responses
When on, this option streams HTTP packets from MobiLink into a buffer before processing them, instead
of processing the bytes immediately as they are received.

Introduction to MobiLink clients

38 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
http_buffer_responses={ off | on }

Available protocols
● HTTP, HTTPS

Default
Off

Remarks
Because of the extra memory overhead required, this feature should only be used to work around HTTP
synchronization stability issues. In particular, the Microsoft ActiveSync proxy server for Windows
Mobile devices throws away data that is not read within 15 seconds after the server has closed its side of
the connection. Because MobiLink clients process the download as they receive it from MobiLink, there
is a chance they will fail to finish reading an HTTP packet within the allotted 15 seconds, causing
synchronization to fail with a stream error code when synchronizing using non-persistent HTTP. By
specifying http_buffer_responses=on the client reads each HTTP packet in its entirety into a buffer
before processing any of it, thereby working around the 15 second timeout.

http_password
Authenticate to third-party HTTP servers and gateways using RFC 2617 Basic or Digest authentication.

Syntax
http_password=password

Available protocols
● HTTP, HTTPS

Default
None

Remarks
This feature supports Basic and Digest authentication as described in RFC 2617.

With Basic authentication, passwords are included in HTTP headers in clear text; however, you can use
HTTPS to encrypt the headers and protect this password. With Digest authentication, headers are not sent
in clear text but are hashed.

You must use http_userid with this option.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 128.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

MobiLink client network protocol options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 39

See also
● “http_userid” on page 42
● “http_proxy_password” on page 40
● “http_proxy_userid” on page 41

Example
The following example of an embedded SQL or C++ UltraLite application provides a user ID and
password for basic authentication to a web server.

synch_info.stream = "https";
synch_info.stream_parms = TEXT("http_userid=user;http_password=pwd");

http_proxy_password
Authenticate to third-party HTTP proxies using RFC 2617 Basic or Digest authentication.

Syntax
http_proxy_password=password

Available protocols
● HTTP, HTTPS

Default
None

Remarks
This feature supports Basic and Digest authentication as described in RFC 2617.

With Basic authentication, passwords are included in HTTP headers in clear text; you can use HTTPS, but
the initial connection to the proxy is through HTTP, so this password is clear text. With Digest
authentication, headers are not sent in clear text but are hashed.

You must use http_proxy_userid with this option.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 128.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

See also
● “http_password” on page 39
● “http_userid” on page 42
● “http_proxy_userid” on page 41

Introduction to MobiLink clients

40 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example
The following example of an embedded SQL or C++ UltraLite application provides a user ID and
password for basic authentication to a web proxy.

synch_info.stream = "https";
synch_info.stream_parms =
TEXT("http_proxy_userid=user;http_proxy_password=pwd");

http_proxy_userid
Authenticate to third-party HTTP proxies using RFC 2617 Basic or Digest authentication.

Syntax
http_proxy_userid=userid

Available protocols
● HTTP, HTTPS

Default
None

Remarks
This feature supports Basic and Digest authentication as described in RFC 2617.

With Basic authentication, passwords are included in HTTP headers in clear text; you can use HTTPS, but
the initial connection to the proxy is through HTTP, so the password is clear text. With Digest
authentication, headers are not sent in clear text but are hashed.

You must use http_proxy_password with this option.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 128.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

See also
● “http_password” on page 39
● “http_userid” on page 42
● “http_proxy_password” on page 40

Example
The following example of an embedded SQL or C++ UltraLite application provides a user ID and
password for basic authentication to a web proxy.

synch_info.stream = "https";
synch_info.stream_parms =
TEXT("http_proxy_userid=user;http_proxy_password=pwd");

MobiLink client network protocol options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 41

http_userid

Authenticate to third-party HTTP servers and gateways using RFC 2617 Basic or Digest authentication.

Syntax
http_userid=userid

Available protocols
● HTTP, HTTPS

Default
None

Remarks
This feature supports Basic and Digest authentication as described in RFC 2617.

With Basic authentication, passwords are included in HTTP headers in clear text; however, you can use
HTTPS to encrypt the headers and protect the password. With Digest authentication, headers are not sent
in clear text but are hashed.

You must use http_password with this option.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 128.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

See also
● “http_password” on page 39
● “http_proxy_password” on page 40
● “http_proxy_userid” on page 41

Example
The following example of an embedded SQL or C++ UltraLite application provides a user ID and
password for basic authentication to a web server.

synch_info.stream = "https";
synch_info.stream_parms = TEXT("http_userid=user;http_password=pwd");

identity

Use this option to enable the use of client-side certificates to authenticate MobiLink clients to third party
servers and proxies.

Introduction to MobiLink clients

42 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
identity=filename

Available protocols
RSA TLS, HTTPS

Default
None

Remarks
The filename indicates the file that contains the client's identity. An identity consists of the client
certificate, the corresponding private key, and, optionally, the certificates of the intermediary certificate
authorities.

If the private key is encrypted, use the identity_password option to specify a password. See
“identity_password” on page 44.

MobiLink clients cannot authenticate directly to MobiLink using client-side certificates. They can only be
used to authenticate to third-party servers and proxies that have been configured to accept client-side
certificate authentication, and are sitting between the client and MobiLink server.

This option is not available with ECC TLS.

This option is not supported in UltraLiteJ.

identity_name

This feature supports authentication using client identities (a certificate plus a private key) from Common
Access Cards (CACs). This feature is only supported for Windows Mobile.

This parameter is used to specify the common name of the public certificate.

Separately licensed component required
This feature is part of the CAC Authentication Add-on and requires a separate license. See “Separately
licensed components” [SQL Anywhere 12 - Introduction].

Syntax
identity_name=name

Available protocols
● TLS, HTTPS

Default
None.

MobiLink client network protocol options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 43

Remarks
This parameter can only be used with FIPS-approved RSA encryption.

The public certificate must be installed in the device's certificate store.

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption
technologies are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 12 - Introduction].

identity_password

The password used to encrypt the private key found in the identity file.

Syntax
identity_password=password

Available protocols
● RSA TLS, HTTPS

Default
None.

Remarks
This option is only required if the private key in the identity file is encrypted. See “identity” on page 42.

This option is not available with ECC TLS.

network_adapter_name

Allows MobiLink clients (with the exception of UltraLiteJ) to explicitly specify the name of the network
adapter to use to connect to MobiLink.

Syntax
network_adapter_name=name

Available protocols
● TCPIP, TLS, HTTP, HTTPS

Default
None

Introduction to MobiLink clients

44 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
This option is valid only for Windows Mobile and Windows desktop.

network_leave_open
When you specify network_name, you can optionally specify that the network connectivity should be left
open after the synchronization finishes.

Syntax
network_leave_open={ off | on }

Available protocols
● TCPIP, TLS, HTTP, HTTPS

Default
The default is off.

Remarks
You must specify network_name to use this option.

When this option is set to on, network connectivity is left open after the synchronization finishes.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 128.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

See also
● “network_name” on page 45

Example
In the following example, the client uses the network name MyNetwork and specifies that the connection
should be left open after the synchronization finishes.

On a SQL Anywhere client, the implementation is:

dbmlsync -e "adr='network_name=MyNetwork;network_leave_open=on'"

In an UltraLite application written in embedded SQL or C++, the implementation is:

synch_info.stream_parms =
TEXT("network_name=MyNetwork;network_leave_open=on");

network_name

MobiLink client network protocol options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 45

Specify the network name to start if an attempt to connect to the network fails.

Syntax
network_name=name

Available protocols
● TCPIP, TLS, HTTP, HTTPS

Default
None

Remarks
Specify the network name so that you can use the MobiLink auto-dial feature. This allows you to connect
from a Windows Mobile device or Windows desktop computer without manually dialing. Auto-dial is a
secondary attempt to connect to the MobiLink server; first, the client attempts to connect without dialing,
and if that fails and a network_name is specified, auto-dial is activated. When used with scheduling, your
remote can synchronize unattended. When used without scheduling, this allows you to run dbmlsync
without manually dialing a connection.

On Windows Mobile, the name should be one of the network profiles from the dropdown list in Settings »
Connections » Connections. To use whatever you have set as your default for the internet network or
work network, set the name to the keyword default_internet or default_work, respectively.

On Windows desktop platforms, the name should be one of the network profiles from Network & Dialup
Connections.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 128.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

See also
● “Scheduling synchronization” on page 87
● “network_leave_open” on page 45

Example
In the following example, the client uses the network name MyNetwork and specifies that the connection
should be left open after the synchronization finishes.

On a SQL Anywhere client, the implementation is:

dbmlsync -e "adr='network_name=MyNetwork;network_leave_open=on'"

In an UltraLite application written in embedded SQL or C++, the implementation is:

synch_info.stream_parms =
TEXT("network_name=MyNetwork;network_leave_open=on");

Introduction to MobiLink clients

46 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

persistent
Use a single TCP/IP connection for all HTTP requests in a synchronization.

Syntax
persistent={ off | on }

Available protocols
● HTTP, HTTPS

Default
Off

Remarks
The On value means that the client attempts to use the same TCP/IP connection for all HTTP requests in a
synchronization. A setting of off is usually more compatible with intermediate agents.

You should only set persistent to on if you are connecting directly to MobiLink. If you are connecting
through an intermediate agent such as a proxy, a persistent connection may cause problems.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 128.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

port
Specify the socket port number of the MobiLink server.

Syntax
port=port-number

Available protocols
● TCPIP, TLS, HTTP, HTTPS

Default
For TCP/IP, the default is 2439, which is the IANA-registered port number for the MobiLink server.

For HTTP, the default is 80.

For HTTPS, the default is 443.

Remarks
The port number must be a decimal number that matches the port the MobiLink server is set up to listen on.

MobiLink client network protocol options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 47

If you are synchronizing through a web server, specify the web server port accepting HTTP or HTTPS
requests.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 128.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

Example
In the following example, the client connects to a computer called myhost at port 1234.

On a SQL Anywhere client, the implementation is:

dbmlsync -e "adr='host=myhost;port=1234'"

In an UltraLite application written in embedded SQL or C++, the implementation is:

synch_info.stream_parms = TEXT("host=myhost;port=1234");

proxy_host
Specify the host name or IP address of the proxy server.

Syntax
proxy_host=proxy-hostname-or-ip

Available protocols
● HTTP, HTTPS

Default
None

Remarks
Use only if going through an HTTP proxy.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 128.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

Example
In the following example, the client connects to a proxy server running on a computer called myproxyhost
at port 1234.

On a SQL Anywhere Client, the implementation is:

Introduction to MobiLink clients

48 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

dbmlsync -e "adr='proxy_host=myproxyhost;proxy_port=1234'"

In an UltraLite application written in embedded SQL or C++, the implementation is:

synch_info.stream_parms = TEXT("proxy_host=myproxyhost;proxy_port=1234");

proxy_port
Specify the port number of the proxy server.

Syntax
proxy_port=proxy-port-number

Available protocols
● HTTP, HTTPS

Default
None

Remarks
Use only if going through an HTTP proxy.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 128.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

Example
In the following example, the client connects to a proxy server running on a computer called myproxyhost
at port 1234.

On a SQL Anywhere Client, the implementation is:

dbmlsync -e "adr='proxy_host=myproxyhost;proxy_port=1234'"

In an UltraLite application written in embedded SQL or C++, the implementation is:

synch_info.stream_parms = TEXT("proxy_host=myproxyhost;proxy_port=1234");

set_cookie
Specify custom HTTP cookies to set in the HTTP requests used during synchronization.

Syntax
set_cookie=cookie-name=cookie-value,...

MobiLink client network protocol options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 49

Available protocols
● HTTP, HTTPS

Default
None

Remarks
Custom HTTP cookies are useful when your synchronization client interacts with a third-party tool, such
as an authentication tool, that uses cookies to identify sessions. For example, you have a system where a
user agent connects to a web server, proxy, or gateway and authenticates itself. If successful, the agent
receives one or more cookies from the server. The agent then starts a synchronization and hands over its
session cookies through the set_cookie option.

If you have multiple name-value pairs, separate them with commas.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 128.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

Example
The following example sets a custom HTTP cookie in an embedded SQL or C++ UltraLite application.

info.stream = "http";
info.stream_parms = TEXT(
 "host=www.myhost.com;
 set_cookie=MySessionID=12345, enabled=yes;");

timeout
Specify the amount of time, in seconds, that the client waits for network operations to succeed before
giving up.

Syntax
timeout=seconds

Available protocols
● TCPIP, TLS, HTTP, HTTPS

Default
240 seconds

Remarks
If any connect, read, or write attempt fails to complete within the specified time, the client fails the
synchronization.

Introduction to MobiLink clients

50 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Throughout the synchronization, the client sends liveness updates within the specified interval to let the
MobiLink server know that it is still alive, and MobiLink sends back liveness updates to let the client
know that it is still alive. To prevent slow networks from delaying the timeout past the specified time,
MobiLink clients send keep-alive bytes to the MobiLink server at an interval of half the timeout value.
When this value is set to 240 seconds, the keep-alive message is sent every 120 seconds.

You should be careful about setting the timeout to too low a value. Liveness checking increases network
traffic because the MobiLink server and the client must communicate within each timeout period to
ensure that the connection is still active. If the network or server load is very heavy and the timeout period
is very short, a live connection could be abandoned because the MobiLink server and dbmlsync were
unable to confirm that the connection is still active. The liveness timeout should generally not be less than
30 seconds.

The maximum timeout is 10 minutes. You can specify a larger number than 600 seconds, but it is
interpreted as 600 seconds.

The value 0 means that the timeout is 10 minutes.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 128.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

Example
The following example sets the timeout to 300 seconds.

On a SQL Anywhere client, the implementation is:

dbmlsync -e "adr=timeout=300"

In an UltraLite application written in embedded SQL or C++, the implementation is:

synch_info.stream_parms = TEXT("timeout=300");

tls_type
Specify the encryption cipher to use for synchronization.

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption
technologies are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 12 - Introduction].

Syntax
tls_type=cipher

MobiLink client network protocol options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 51

Available protocols
● TLS, HTTPS

Default
RSA

Remarks
All communication for this synchronization is to be encrypted using the specified cipher. The cipher can
be one of:

● ecc for elliptic-curve encryption.

● rsa for RSA encryption.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 128.

See also
● “Configuring MobiLink clients to use transport-layer security” [SQL Anywhere Server - Database

Administration]
● “fips” on page 36
● “Encrypting MobiLink client/server communications” [SQL Anywhere Server - Database

Administration]
● “-x mlsrv12 option” [MobiLink - Server Administration]
● “certificate_company” on page 29
● “certificate_name” on page 30
● “certificate_unit” on page 32
● “trusted_certificates” on page 53

Example
The following example sets up RSA encryption for a TCP/IP protocol. This requires setup on the server
and client. Each command must be written on one line.

On the server, the implementation is:

mlsrv12
 -c "dsn=SQL Anywhere 12 Demo;uid=DBA;pwd=sql"
 -x tls(
 port=9999;
 tls_type=rsa;
 identity=c:\sa12\bin32\rsaserver.id;
 identity_password=test)

On a SQL Anywhere client, the implementation is:

dbmlsync -e
 "CommunicationType=tls;
 CommunicationAddress=
 'tls_type=rsa;
 trusted_certificates=\rsaroot.crt;
 certificate_name=RSA Server'"

Introduction to MobiLink clients

52 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

In an UltraLite application written in embedded SQL in C or C++, the implementation is:

 info.stream = "tls";
 info.stream_parms = TEXT(
 "tls_type=rsa;
 trusted_certificates=\rsaroot.crt;
 certificate_name=RSA Server");

trusted_certificates
Specify a file containing a list of trusted root certificates used for secure synchronization.

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption
technologies are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 12 - Introduction].

Syntax
trusted_certificates=filename

Available protocols
● TLS, HTTPS

Default
None

Remarks
When synchronization occurs through a Certicom TLS synchronization stream, the MobiLink server
sends its certificate to the client, and the certificate of the entity that signed it, and so on up to a self-
signed root.

The client checks that the chain is valid and that it trusts the root certificate in the chain. This feature
allows you to specify which root certificates to trust.

For UltraLite clients, trusted roots can be provided to ulinit and ulload when creating the database. If the
trusted_certificates parameter is provided, the trusted certificates found in the file replace those stored in
the database.

For Windows and Windows Mobile, if no trusted certificates are specified, the client loads the certificates
from the operating system's trusted certificate store. This certificate store is used by web browsers when
they connect to secure web servers via HTTPS.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 128.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

MobiLink client network protocol options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 53

See also
● “Specifying file paths in an UltraLite connection parameter” [UltraLite - Database Management and

Reference]
● “Encrypting MobiLink client/server communications” [SQL Anywhere Server - Database

Administration]
● “-x mlsrv12 option” [MobiLink - Server Administration]
● “tls_type” on page 51
● “certificate_company” on page 29
● “certificate_name” on page 30
● “certificate_unit” on page 32

Example
The following example sets up RSA encryption for an HTTPS protocol. This requires setup on the server
and client. Each command must be written on one line.

The server implementation is:

mlsrv12
 -c "dsn=SQL Anywhere 12 Demo;uid=DBA;pwd=sql"
 -x https(
 port=9999;
 identity=c:\sa12\bin32\rsaserver.id;
 identity_password=test)

On a SQL Anywhere client, the implementation is:

dbmlsync
 -c "dsn=mydb;uid=DBA;pwd=sql"
 -e "ctp=https;
 adr='port=9999;
 trusted_certificates=c:\sa12\bin32\rsaroot.crt;
 certificate_name=RSA Server'"

On an UltraLite client, the implementation is:

 info.stream = "https";
 info.stream_parms = TEXT(
 "port=9999;
 trusted_certificates=\rsaroot.crt;
 certificate_name=RSA Server");

url_suffix

Specify the suffix to add to the URL on the first line of each HTTP request sent during synchronization.

Syntax
url_suffix=suffix

The syntax of suffix depends on whether you are using Microsoft IIS on Windows or Apache on Linux:

Introduction to MobiLink clients

54 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Redirector Syntax of suffix

IIS The default for Windows is /ias_relay_server/server/
rs_server.dll.

Apache The default for Linux is /srv/iarelayserver.

Available protocols
● HTTP, HTTPS

Default
The default is /.

Remarks
When synchronizing through a proxy or web server, the url_suffix may be necessary to find the MobiLink
server.

For information about how to set this option when using the Relay Server, see “Relay Server
configuration file” [Relay Server].

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 128.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

See also
● “Relay Server configuration file” [Relay Server]

version
Specify the version of HTTP to use for synchronization.

Syntax
version=HTTP-version-number

Available protocols
● HTTP, HTTPS

Default
The default value is 1.1.

MobiLink client network protocol options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 55

Remarks
This option is useful if your HTTP infrastructure requires a specific version of HTTP. Values can be 1.0
or 1.1.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 128.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

Example
The following example sets the HTTP version to 1.0.

On a SQL Anywhere client, the implementation is:

dbmlsync -e "adr=version=1.0"

In an UltraLite application written in embedded SQL or C++, the implementation is:

synch_info.stream_parms = TEXT("version=1.0");

zlib_download_window_size

If you set the compression option to zlib, you can use this option to specify the compression window size
for download.

Syntax
zlib_download_window_size=window-bits

Available protocols
● TCPIP, TLS, HTTP, HTTPS

Default
12 on Windows Mobile, otherwise 15

Remarks
To turn off compression for downloads, set window-bits to 0. Otherwise, the window size can be a value
between 9 and 15 inclusive. In general, better compression rates can be achieved with a higher window
size, but more memory is required.

window-bits is the base two logarithm of the window size (the size of the history buffer). The following
formulas can be used to determine how much memory is used on the client for each window-bits:

upload (compress): memory = 2(window-bits + 3)

download (decompress): memory = 2(window-bits)

Introduction to MobiLink clients

56 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

To support zlib compression in UltraLite, an application must call
ULEnableZlibSyncCompression(sqlca) and mlczlib12.dll must be deployed.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 128.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

See also
● “compression” on page 33
● “zlib_upload_window_size” on page 57

Example
The following option sets compression for upload only:

"compression=zlib;zlib_download_window_size=0"

zlib_upload_window_size
If you set the compression option to zlib, you can use this option to specify the compression window size
for upload.

Syntax
zlib_upload_window_size=window-bits

Available protocols
● TCPIP, TLS, HTTP, HTTPS

Default
12 on Windows Mobile, otherwise 15

Remarks
To turn off compression for uploads, set the window size to 0. Otherwise, the window size can be a value
between 9 and 15 inclusive. In general, better compression rates can be achieved with a higher window
size, but more memory is required.

window-bits is the base two logarithm of the window size (the size of the history buffer). The following
formulas can be used to determine how much memory is used on the client for each window-bits:

upload (compress): memory = 2(window-size + 3)

download (decompress): memory = 2(window-size)

To support zlib compression in UltraLite, an application must call
ULEnableZlibSyncCompression(sqlca) and mlczlib12.dll must be deployed.

MobiLink client network protocol options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 57

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 128.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

See also
● “compression” on page 33
● “zlib_download_window_size” on page 56

Example
The following option sets compression for download only:

"compression=zlib;zlib_upload_window_size=0"

Schema changes in remote clients

Introduction to MobiLink client schema changes
As your needs evolve, deployed remote databases may require schema changes. The most common
schema changes are adding a new column to an existing table or adding a new table to the database.

Previously, schema changes that affected synchronization required a successful synchronization
immediately before making the schema change. This is no longer required. In order to do this, you must
use new SQL syntax to store the script version on the synchronization subscription instead of using the
ScriptVersion extended option.

The SQL syntax to support this feature is as follows:

● CREATE SYNCHRONIZATION SUBSCRIPTION statement Use the SCRIPT VERSION clause
to specify the script version to use during synchronization. See “CREATE SYNCHRONIZATION
SUBSCRIPTION statement [MobiLink]” [SQL Anywhere Server - SQL Reference].

● ALTER SYNCHRONIZATION SUBSCRIPTION statement Use the SET SCRIPT VERSION
clause to specify the script version to use during synchronization. See “ALTER
SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” [SQL Anywhere Server - SQL
Reference].

Associating script versions with subscriptions
Starting in version 12.0.0, new functionality greatly simplifies the process of performing schema changes
to remote databases. To use this functionality, you must stop using the dbmlsync ScriptVersion extended
option. Instead, you should associate your script version directly with your synchronization subscription
using new clauses that have been added to the CREATE SYNCHRONIZATION SUBSCRIPTION and
ALTER SYNCHRONIZATION SUBSCRIPTION statements.

Introduction to MobiLink clients

58 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

When you use the new syntax, each database transaction is uploaded using the script version that was
associated with the subscription at the time the transaction occurred. This makes it possible to perform a
schema change that requires a script version change without synchronizing.

When using the older ScriptVersion extended option, the script version is associated with the transaction
at synchronization time. As a result, you must synchronize before any schema change.

A few existing synchronization systems depend on changing the script version used by a subscription
between synchronizations for reasons other than schema changes. It may not be possible to update these
systems to use the new functionality.

Going forward, it is recommended that you always specify the SCRIPT VERSION clause when you
create a synchronization subscription. Existing subscriptions can be upgraded by following the
instructions below.

If you have an existing subscription named my_sub that you synchronize using the dbmlsync
ScriptVersion extended option, here are the steps to associate your script version directly with your
subscription.

To associate a script version with a subscription

1. Determine the script version currently being used to synchronize my_sub. The easiest way to do this
is as follows:

a. Add the -v+ option to your existing dbmlsync command line and synchronize.

b. Look in your dbmlsync output file for a line that identifies the script version being used. Look for
something similar to the following:

Script version: my_script_ver_1

2. Associate the current script version with the subscription:

ALTER SYNCHRONIZATION SUBSCRIPTION <sub_name>
SET SCRIPT VERSION = <ver>

where <sub_name> is the name of the subscription, in this case my_sub and <ver> is the current
script version, determined in step 1.

All transactions that occur after this point are associated with the script version.

3. Synchronize one last time using your old options. This ensures that any transactions that occurred
before you completed step 2 are uploaded with the correct script version.

4. Remove the ScriptVersion extended option wherever it is specified for this subscription. The extended
option may be specified on the dbmlsync command line, in a synchronization profile or associated
with a subscription, publication or MobiLink user in the remote database.

For databases that contain more than one subscription, repeat the previous procedure for each subscription.

Schema changes in remote clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 59

Schema upgrades for SQL Anywhere remote databases
You can change the schema of remote SQL Anywhere databases after they are deployed.

Note
If you can ensure that there are no other connections to the remote database, you can use the ALTER
PUBLICATION statement manually to add new or altered tables to your publications. Otherwise, you
must use the sp_hook_dbmlsync_schema_upgrade hook to upgrade your schema.

See “sp_hook_dbmlsync_schema_upgrade” on page 217.

To add tables to SQL Anywhere remote databases

1. Add the associated table scripts in the consolidated database.

The same script version may be used for the remote database without the new table and the remote
database with the new table. However, if the presence of the new table changes how existing tables
are synchronized, then you must create a new script version, and create new scripts for all tables being
synchronized with the new script version.

2. Perform a normal synchronization. Ensure that the synchronization is successful before proceeding.

3. Use the ALTER PUBLICATION statement to add the table. For example,

ALTER PUBLICATION your_pub
 ADD TABLE table_name;

You can use this statement inside a sp_hook_dbmlsync_schema_upgrade hook. See
“sp_hook_dbmlsync_schema_upgrade” on page 217.

For more information, see “ALTER PUBLICATION statement [MobiLink] [SQL Remote]” [SQL
Anywhere Server - SQL Reference].

4. Synchronize. Use the new script version, if required.

Changing table definitions in remote databases
Changing the number or type of columns in an existing table must be done carefully. When a MobiLink
client synchronizes with a new schema, it expects scripts, such as upload_update or download_cursor,
which have parameters for all columns in the remote table. An older remote database expects scripts that
have only the original columns.

To alter a published table in a deployed SQL Anywhere remote database

1. At the consolidated database, create a new script version.

For more information, see “Script versions” [MobiLink - Server Administration].

2. For your new script version, create scripts for all tables in the publication(s) that contain the table that
you want to alter and that are synchronized with the old script version.

Introduction to MobiLink clients

60 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

3. Perform a normal synchronization of the remote database using the old script version. Ensure that the
synchronization is successful before proceeding.

4. At the remote database, use the ALTER PUBLICATION statement to temporarily drop the table from
the publication. For example,

ALTER PUBLICATION your_pub
 DROP TABLE table_name;

For more information, see “ALTER PUBLICATION statement [MobiLink] [SQL Remote]” [SQL
Anywhere Server - SQL Reference].

You can use this statement inside a sp_hook_dbmlsync_schema_upgrade hook. See
“sp_hook_dbmlsync_schema_upgrade” on page 217.

5. At the remote database, use the ALTER TABLE statement to alter the table.

For more information, see “ALTER TABLE statement” [SQL Anywhere Server - SQL Reference].

6. At the remote database, use the ALTER PUBLICATION statement to add the table back into the
publication.

For more information, see “ALTER PUBLICATION statement [MobiLink] [SQL Remote]” [SQL
Anywhere Server - SQL Reference].

You can use this statement inside a sp_hook_dbmlsync_schema_upgrade hook. See
“sp_hook_dbmlsync_schema_upgrade” on page 217.

7. Synchronize with the new script version.

Schema upgrades for UltraLite remote databases
You can change the schema of a remote UltraLite database by having your existing application execute DDL.

● If you deploy a new application with a new database, you need to repopulate the UltraLite database by
synchronizing with the MobiLink server.

● If you deploy a new application that contains DDL to upgrade the database, your data is preserved.

● If your existing application has a generic way to receive DDL statements, it can apply DDL to your
database and your data is preserved.

It is usually impractical to have all users upgrade to the new version of the application at the same time.
Therefore, you need to be able to have both versions co-existing in the field and synchronizing with a
single consolidated database. You can create two or more versions of the synchronization scripts that are
stored in the consolidated database and control the actions of the MobiLink server. Each version of your
application can then select the appropriate set of synchronization scripts by specifying the correct version
name when it initiates synchronization.

Schema changes in remote clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 61

For information about UltraLite DDL, see “UltraLite SQL statements” [UltraLite - Database
Management and Reference].

See also
● “Deploying UltraLite schema upgrades” [UltraLite - Database Management and Reference]

Introduction to MobiLink clients

62 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SQL Anywhere clients for MobiLink
This section contains material that describes how to set up and run SQL Anywhere clients for MobiLink
synchronization.

SQL Anywhere clients
The following sections contain topics related to using SQL Anywhere clients with MobiLink.

Creating a remote database
Any SQL Anywhere database can be used as a remote database in a MobiLink system. All you need to do
is create a publication, create a MobiLink user, create a synchronization subscription, and register the user
with the consolidated database.

Note
A database that does not have a transaction log can only be used as a remote database for scripted upload
and for download-only publications.

If you use the Create Synchronization Model Wizard to create your MobiLink client application, these
objects are created for you when you deploy the model. Even then, you should understand the concepts.

To use a SQL Anywhere database as a remote database

1. Start with an existing SQL Anywhere database, or create a new one and add your tables.

2. Create one or more publications in the remote database.

See “Publishing data” on page 67.

3. Create MobiLink users in the remote database.

See “Creating MobiLink users” on page 74.

4. Register users with the consolidated database.

See “Adding MobiLink user names to the consolidated database” on page 5.

5. Create synchronization subscriptions in the remote database.

See “Creating synchronization subscriptions” on page 77.

Deploying remote databases

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 63

To deploy SQL Anywhere remote databases, you need to create the databases and add the appropriate
publications. To do this, you can customize a prototype remote database.

When deploying a starter database to multiple locations, it is safest to deploy databases that have a null
remote ID. If you have synchronized the databases to prepopulate them, you can set the remote ID back to
null before deployment. This method ensures that the remote ID is unique because the first time the
remote database synchronizes, a unique remote ID is assigned. Alternatively, the remote ID can be set as a
remote setup step, but it must be unique.

See “Setting remote IDs” on page 65.

To deploy MobiLink remote databases by customizing a prototype

1. Create a prototype remote database.

The prototype database should have all the tables and publications that are needed, but not the data
that is specific to each database. This information typically includes the following:

● The MobiLink user name.

● Synchronization subscriptions.

● The global_database_id option that provides the starting point for global autoincrement key values.

2. For each remote database, perform the following operations:

● Create a directory to hold the remote database.

● Copy the prototype remote database into the directory.

If the transaction log is held in the same directory as the remote database, the log file name does
not need to be changed.

● Run a SQL script that adds the individual information to the database.

The SQL script can be a parameterized script. For information about parameterized scripts, see
“PARAMETERS statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference], and
“Using SQL command files” [SQL Anywhere Server - SQL Usage].

When you use the Create Synchronization Model Wizard to create your MobiLink client application,
you can deploy your database using a wizard. See “Deploying synchronization models” [MobiLink -
Getting Started].

See also
● “Deploying SQL Anywhere MobiLink clients” [MobiLink - Server Administration]
● “First synchronization always works” on page 66

Example
The following SQL script is taken from the Contact sample. It can be found in samples-dir\MobiLink\Contact
\customize.sql. (For information about samples-dir, see “Samples directory” [SQL Anywhere Server -
Database Administration].)

PARAMETERS ml_userid, db_id;
go

SQL Anywhere clients for MobiLink

64 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SET OPTION PUBLIC.global_database_id = {db_id}
go
CREATE SYNCHRONIZATION USER {ml_userid}
 TYPE 'TCPIP'
 ADDRESS 'host=localhost;port=2439'
go
CREATE SYNCHRONIZATION SUBSCRIPTION TO "DBA"."Product"
 FOR {ml_userid}
go
CREATE SYNCHRONIZATION SUBSCRIPTION TO "DBA"."Contact"
 FOR {ml_userid}
go
commit work
go

The following command executes the script for a remote database with data source dsn_remote_1:

dbisql -c "dsn=dsn_remote_1" read customize.sql [SSinger] [2]

Setting remote IDs

The remote ID uniquely identifies a remote database in a MobiLink synchronization system. When a SQL
Anywhere database is created, the remote ID is null. When the database synchronizes with MobiLink,
MobiLink checks for a null remote ID and if it finds one, it assigns a GUID as the remote ID. Once set,
the database maintains the same remote ID unless it is manually changed.

If you are going to reference remote IDs in MobiLink event scripts or elsewhere, you may want to change
the remote ID to a more meaningful name. To do this, you set the ml_remote_id database option for the
remote database. The ml_remote_id option is a user-defined option that is stored in the SYSOPTION
system table. You can change it using the SET OPTION statement or using the SQL Anywhere 12 plug-in
to Sybase Central.

The remote ID must be unique within your synchronization system.

If you set the remote ID manually and you subsequently recreate the remote database, you must either
give the recreated remote database a different name from the old one or use the ml_reset_sync_state
stored procedure to reset the state information in the consolidated database for the remote database. See
“ml_reset_sync_state system procedure” [MobiLink - Server Administration].

For more information about changing database options, see:

● “SET OPTION statement” [SQL Anywhere Server - SQL Reference]
● “Setting database options” [SQL Anywhere Server - Database Administration]
● “SYSOPTION system view” [SQL Anywhere Server - SQL Reference]

Caution
The safest time to change the remote ID is before the first synchronization. If you change it later, be sure
you have performed a complete, successful synchronization just before changing the remote ID.
Otherwise you may lose data and put your database into an inconsistent state.

SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 65

See also
● “Remote IDs” on page 9

Example
The following SQL statement sets the remote ID to the value HR001:

SET OPTION PUBLIC.ml_remote_id = 'HR001'

Upgrading remote databases

If you install a new SQL Anywhere remote database over an older version, the synchronization progress
information in the consolidated database is incorrect. You can correct this problem using the
ml_reset_sync_state stored procedure to reset the state information for the remote database in the
consolidated database. See “ml_reset_sync_state system procedure” [MobiLink - Server Administration].

For more information about upgrading, see “Upgrading SQL Anywhere MobiLink clients” [SQL
Anywhere 12 - Changes and Upgrading].

Progress offsets

The progress offset is an integer value that indicates the point in time up to which all operations for the
subscription have been uploaded and acknowledged. The dbmlsync utility uses the offset to decide what
data to upload. On the remote database, the offset is stored in the progress column of the SYS.ISYSSYNC
system table. On the consolidated database, the offset is stored in the progress column of the
ml_subscription table.

For each remote, the remote and consolidated databases maintain an offset for every subscription. When a
MobiLink user synchronizes, the offsets are confirmed for all subscriptions that are associated with the
MobiLink user, even if they are not being synchronized at the time. This is required because more than
one publication can contain the same data. The only exception is that dbmlsync does not check the
progress offset of a subscription until it has attempted an upload.

If there is any disagreement between the remote and consolidated database offsets, the default behavior is
to update the offsets on the remote database with values from the consolidated database and then send a
new upload based on those offsets. Usually this default is appropriate. For example, it is generally
appropriate when the consolidated database is restored from backup and the remote transaction log is
intact, or when an upload is successful but communication failure prevented an upload acknowledgement
from being sent.

Most progress offset mismatches are resolved automatically using the consolidated progress values. In the
rare case that you must intervene to fix a problem with progress offsets, you can use the dbmlsync -r option.

For more information, see “-r dbmlsync option” on page 116.

First synchronization always works

SQL Anywhere clients for MobiLink

66 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The first time you attempt to synchronize a newly created subscription, the progress offsets for the
subscription are not checked against those on the consolidated database. This feature allows a remote
database to be recreated and synchronized without having to delete its state information, which is
maintained in the consolidated database.

The dbmlsync utility detects a first synchronization when the columns in the remote database system table
SYS.ISYSSYNC are as follows: the value for the progress column is the same as the value for the
created column, and the value for the log_sent column is null.

However, when you synchronize two or more subscriptions in the same upload, and one of the
subscriptions is not synchronizing for the first time, then progress offsets are checked for all subscriptions
being synchronized, including the ones that are being synchronized for the first time. For example, if you
specify the dbmlsync -s option with two subscriptions (-s sub1,pub2), and sub1 has synchronized before
but sub2 has not, then the progress offsets of both subscriptions are checked against the consolidated
database values.

For more information, see:

● “ISYSSYNC system table” [SQL Anywhere Server - SQL Reference]
● “Transaction log files” on page 81

Publishing data
A publication is a database object that identifies the data that is to be synchronized. It defines the data to
be uploaded, and it limits the tables that can be downloaded to. (The download is defined in the
download_cursor script.)

A publication consists of one or more articles. Each article specifies a subset of a table that is to be
synchronized. The subset may be the entire table or a subset of its rows and/or columns. Each article in a
publication must refer to a different table.

You create a subscription to link a publication to a user.

You create publications using Sybase Central or with the CREATE PUBLICATION statement.

In Sybase Central, all publications and articles appear in the Publications folder.

Notes about publications
● DBA authority is required to create and drop publications.

● You cannot create two publications containing different column subsets of the same table.

● The publication determines which columns are selected, but it does not determine the order in which
they are sent. Columns are always sent in the order in which they were defined in the CREATE
TABLE statement.

● Each article must include all the columns in the primary key of the table that it references.

SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 67

● An article can limit the columns of a table that are synchronized. Using a WHERE clause, it can also
limit the rows.

● Views and stored procedures cannot be included in publications.

● Publications and subscriptions are also used by the Sybase message-based replication technology,
SQL Remote. SQL Remote requires publications and subscriptions in both the consolidated and
remote databases. In contrast, MobiLink publications appear only in SQL Anywhere remote
databases. MobiLink consolidated databases are configured using synchronization scripts.

See also
● “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]

Publishing whole tables

The simplest publication you can make consists of a set of articles, each of which contains all the rows
and columns in one table. These tables must already exist.

To publish one or more entire tables (Sybase Central)

1. Connect to the remote database as a user with DBA authority, using the SQL Anywhere 12 plug-in.

2. Open the Publications folder.

3. Choose File » New » Publication.

4. In the What Do You Want To Name The New Publication field, enter a name for the new
publication. Click Next.

5. Click Next.

6. On the Available Tables list, select a table. Click Add.

7. Click Finish.

To publish one or more entire tables (SQL)

1. Connect to the remote database as a user with DBA authority.

2. Execute a CREATE PUBLICATION statement that specifies the name of the new publication and the
table you want to publish.

See “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL
Reference].

Example
The following statement creates a publication that publishes the whole Customers table:

SQL Anywhere clients for MobiLink

68 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

CREATE PUBLICATION pub_customer (
 TABLE Customers
)

The following statement creates a publication including all columns and rows in each of a set of tables
from the SQL Anywhere sample database:

CREATE PUBLICATION sales (
 TABLE Customers,
 TABLE SalesOrders,
 TABLE SalesOrderItems,
 TABLE Products
)

Publishing only some columns in a table

You can create a publication that contains all the rows, but only some of the columns of a table from
Sybase Central or by listing the columns in the CREATE PUBLICATION statement.

Note

● If you create two publications that include the same table with different column subsets, then you may
only create a synchronization subscription for one of them.

● An article must include all the primary key columns in the table.

To publish only some columns in a table (Sybase Central)

1. Connect to the remote database as a user with DBA authority using the SQL Anywhere 12 plug-in.

2. Open the Publications folder.

3. Choose File » New » Publication.

4. In the What Do You Want To Name The New Publication field, enter a name for the new
publication. Click Next.

5. Click Next.

6. On the Available Tables list, select a table. Click Add.

7. Click Next.

8. In the Available Columns list, expand the list of available columns. Select a column and click Add.

9. Click Finish.

SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 69

To publish only some columns in a table (SQL)

1. Connect to the remote database as a user with DBA authority.

2. Execute a CREATE PUBLICATION statement that specifies the publication name and the table
name. List the published columns in parenthesis following the table name.

See “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL
Reference].

Example
The following statement creates a publication that publishes all rows of the id, company_name, and city
columns of the Customers table:

CREATE PUBLICATION pub_customer (
 TABLE Customers (id, company_name,
 city)
)

Publishing only some rows in a table

When no WHERE clause is specified in an article definition, all changed rows in the table are uploaded.
You can add WHERE clauses to articles in the publication to limit the rows to be uploaded to those that
have changed and that satisfy the search condition in the WHERE clause.

The search condition in the WHERE clause can only reference columns that are included in the article. In
addition, you cannot use any of the following in the WHERE clause:

● subqueries

● variables

● non-deterministic functions

These conditions are not enforced, but breaking them can lead to unexpected results. Any errors relating
to the WHERE clause are generated when the DML is run against the table referred to by the WHERE
clause, and not when the publication is defined.

To create a publication using a WHERE clause (Sybase Central)

1. Connect to the remote database as a user with DBA authority using the SQL Anywhere 12 plug-in.

2. Open the Publications folder.

3. Choose File » New » Publication.

4. In the What Do You Want To Name The New Publication field, enter a name for the new
publication. Click Next.

SQL Anywhere clients for MobiLink

70 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

5. Click Next.

6. On the Available Tables list, select a table. Click Add.

7. Click Next.

8. Click Next.

9. In the Articles List, select a table and enter the search condition in the The Selected Article Has the
following WHERE clause pane.

10. Click Finish.

To create a publication using a WHERE clause (SQL)

1. Connect to the remote database as a user with DBA authority.

2. Execute a CREATE PUBLICATION statement that includes the tables you want to include in the
publication and a WHERE condition.

See “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL
Reference].

Example
The following example creates a publication that includes the entire Employees table and all rows in the
SalesOrders table that have not been marked as archived.

CREATE PUBLICATION main_publication (
TABLE Employees,
TABLE SalesOrders
WHERE archived = 'N'
);

By changing the archived column in the table from any other value to an N, a delete is sent to the
MobiLink server during the next synchronization. Conversely, by changing the archived column from N
to any other value, an insert is sent. The update to the archived column is not sent to the MobiLink server.

Download-only publications

You can create a publication that only downloads data to remote databases, and never uploads data.
Download-only publications do not use a transaction log on the client.

Differences between download-only methods
There are two ways to specify that only a download (and not an upload) should occur:

● Download-only synchronization Use the dbmlsync options -e DownloadOnly or -ds.

● Download-only publication Create the publication with the FOR DOWNLOAD ONLY keyword.

The two approaches are quite different:

SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 71

Download-only synchronizations Download-only publications

If the download attempts to change rows that have
been modified on the remote database and not yet
uploaded, the download fails.

The download can overwrite rows that have been
modified on the remote database and not yet uploa-
ded.

Uses a normal publication that can be uploaded and/
or downloaded. Download-only synchronization
is specified using dbmlsync command line op-
tions or extended options.

Uses a download-only publication. All synchroni-
zations on these publications are download-only.
You cannot alter a normal publication to make it
download-only.

Requires a log file. Does not require a log file.

The log file is not truncated when these subscrip-
tions are not uploaded for a long time, and can con-
sume significant amounts of storage.

If there is a log file, the synchronization does not
affect the synchronization truncation point. This
means that the log file can still be truncated even
if the publication is not synchronized for a long
time. Download-only publications do not affect
log file truncation.

You need to do an upload occasionally to reduce
the amount of log that is scanned by the download-
only synchronization. Otherwise, the download-
only synchronization takes an increasingly long
time to complete.

There is no need to ever do an upload.

See also
● “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “Upload-only and download-only synchronizations” [MobiLink - Server Administration]

Altering existing publications

After you have created a publication, you can alter it by adding, modifying, or deleting articles, or by
renaming the publication. If an article is modified, the entire specification of the modified article must be
entered.

You can perform these tasks using Sybase Central or with the ALTER PUBLICATION statement.

Notes
● Publications can be altered only by the DBA or the publication's owner.

● Be careful. In a running MobiLink setup, altering publications may cause errors and can lead to loss of
data. If the publication you are altering has any subscriptions, then you must treat this change as a
schema upgrade. See “Schema changes in remote clients” on page 58.

SQL Anywhere clients for MobiLink

72 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

To modify the properties of existing publications or articles (Sybase Central)

1. Connect to the remote database as a user who owns the publication or as a user with DBA authority.

2. In the left pane, click the publication or article. The properties appears in the right pane.

3. Configure the properties.

To add articles (Sybase Central)

1. Connect to the remote database as a user who owns the publication or as a user with DBA authority
using the SQL Anywhere 12 plug-in.

2. Expand the Publications folder.

3. Select a publication.

4. Choose File » New » Article.

5. In the Create Article Wizard, do the following:

● In the Which Table Do You Want To Use For This Article list, select a table. Click Next.

● Click Selected Columns and select the columns. Click Next.

● In the You Can Specify a WHERE Clause For This Article pane, enter an optional WHERE
clause. Click Finish.

To remove articles (Sybase Central)

1. Connect to the database as a user who owns the publication or as a user with DBA authority using the
SQL Anywhere 12 plug-in.

2. Expand the Publications folder.

3. Right-click the publication and choose Delete.

4. Click Yes.

To modify an existing publication (SQL)

1. Connect to the remote database as a user who owns the publication or as a user with DBA authority.

2. Execute an ALTER PUBLICATION statement.

See “ALTER PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL
Reference].

Example
● The following statement adds the Customers table to the pub_contact publication.

SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 73

ALTER PUBLICATION pub_contact
 ADD TABLE Customers

See also the “ALTER PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server -
SQL Reference].

Dropping publications

You can drop a publication using either Sybase Central or the DROP PUBLICATION statement.

You must have DBA authority to drop a publication or be the owner of the publication.

To delete a publication (Sybase Central)

1. Connect to the remote database as a user with DBA authority using the SQL Anywhere 12 plug-in.

2. Open the Publications folder.

3. Right-click a publication and choose Delete.

To delete a publication (SQL)

1. Connect to the remote database as a user with DBA authority.

2. Execute a DROP PUBLICATION statement.

See “DROP PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL
Reference].

Example
The following statement drops the publication named pub_orders.

DROP PUBLICATION pub_orders

Creating MobiLink users
A MobiLink user name is used to authenticate when you connect to the MobiLink server. You must create
MobiLink users in the remote database, and then register them on the consolidated database.

MobiLink users are not the same as database users. You can create a MobiLink user name that matches
the name of a database user, but neither MobiLink nor SQL Anywhere is affected by this coincidence.

To add a MobiLink user to a remote database (Sybase Central)

1. Connect to the database from the SQL Anywhere 12 plug-in as a user with DBA authority.

2. Click the MobiLink Users folder.

SQL Anywhere clients for MobiLink

74 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

3. Choose File » New » MobiLink User.

4. In the What Do You Want To Name The New MobiLink User field, enter a name for the MobiLink
user.

5. Click Finish.

To add a MobiLink user to a remote database (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a CREATE SYNCHRONIZATION USER statement. The MobiLink user name uniquely
identifies a remote database and so must be unique within your synchronization system.

The following example adds a MobiLink user named SSinger:

CREATE SYNCHRONIZATION USER SSinger

You can specify properties for the MobiLink user as part of the CREATE SYNCHRONIZATION
USER statement, or you can specify them separately with an ALTER SYNCHRONIZATION USER
statement.

For more information, see “CREATE SYNCHRONIZATION USER statement [MobiLink]” [SQL
Anywhere Server - SQL Reference].

For information about setting MobiLink user properties, including the password, see “Storing
extended options for MobiLink users” on page 75.

For information about registering MobiLink users, see “Adding MobiLink user names to the consolidated
database” on page 5.

Storing extended options for MobiLink users

You can specify options for each MobiLink user in the remote database by using extended options.
Extended options can be specified on the command line, stored in the database, or specified with the
sp_hook_dbmlsync_set_extended_options event hook.

For a list of extended options, see “MobiLink SQL Anywhere client extended options” on page 126.

To store MobiLink extended options in the database (Sybase Central)

1. Connect to the database from the SQL Anywhere 12 plug-in as a user with DBA authority.

2. Open the MobiLink Users folder.

3. Right-click the MobiLink user name and choose Properties.

4. Change the properties as needed.

SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 75

To store MobiLink extended options in the database (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute an ALTER SYNCHRONIZATION USER statement.

The following example changes the extended options for MobiLink user named SSinger to their
default values:

ALTER SYNCHRONIZATION USER SSinger
DELETE ALL OPTION

For more information, see “ALTER SYNCHRONIZATION USER statement [MobiLink]” [SQL
Anywhere Server - SQL Reference].

You can also specify properties when you create the MobiLink user name.

For more information, see “CREATE SYNCHRONIZATION USER statement [MobiLink]” [SQL
Anywhere Server - SQL Reference].

To specify MobiLink user properties with a client event hook

● You can programmatically customize the behavior of an upcoming synchronization.

For more information, see “sp_hook_dbmlsync_set_extended_options” on page 219.

See also
● “Using dbmlsync extended options” on page 80

Dropping MobiLink users

To drop a MobiLink user from a remote database (Sybase Central)

1. Connect to the database from the SQL Anywhere 12 plug-in as a user with DBA authority.

2. Locate the MobiLink user in the MobiLink Users folder.

3. Right click the MobiLink user and choose Delete.

To drop a MobiLink user from a remote database (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a DROP SYNCHRONIZATION USER statement.

The following example removes the MobiLink user named SSinger from the database:

DROP SYNCHRONIZATION USER SSinger

SQL Anywhere clients for MobiLink

76 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

For more information, see “DROP SYNCHRONIZATION USER statement [MobiLink]” [SQL
Anywhere Server - SQL Reference].

Creating synchronization subscriptions
After creating MobiLink users and publications, you must subscribe at least one MobiLink user to one or
more pre-existing publications. You do this by creating synchronization subscriptions.

For information about creating publications, see “Publishing data” on page 67. For information about
creating MobiLink users, see “Creating MobiLink users” on page 74.

Note
You must ensure that all subscriptions for a MobiLink user are synchronized to only one consolidated
database. Otherwise, you may experience data loss and unpredictable behavior.

A synchronization subscription links a particular MobiLink user with a publication. It can also contain
other information needed for synchronization. For example, you can specify the address of the MobiLink
server and options for a synchronization subscription. Values for a specific synchronization subscription
override those set for MobiLink users.

Synchronization subscriptions are required only in MobiLink SQL Anywhere remote databases. Server
logic is implemented through synchronization scripts, stored in the MobiLink system tables in the
consolidated database.

A single SQL Anywhere database can synchronize with more than one MobiLink server. To allow
synchronization with multiple servers, create different MobiLink users for each server.

See “CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” [SQL Anywhere Server
- SQL Reference].

Example
To synchronize the Customers and SalesOrders tables in the SQL Anywhere sample database, you could
use the following statements.

1. First, create a publication containing the Customers and SalesOrders tables. Give the publication the
name testpub.

CREATE PUBLICATION testpub
 (TABLE Customers, TABLE SalesOrders)

2. Next, create a MobiLink user. In this case, the MobiLink user is demo_ml_user.

CREATE SYNCHRONIZATION USER demo_ml_user

3. To complete the process, create a synchronization subscription named my_sub that links the user and
the publication.

CREATE SYNCHRONIZATION SUBSCRIPTION my_sub TO testpub
 FOR demo_ml_user

SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 77

 TYPE tcpip
 ADDRESS 'host=localhost;port=2439;'
 SCRIPT VERSION 'version1'

Altering MobiLink subscriptions

Synchronization subscriptions can be altered using Sybase Central or the ALTER SYNCHRONIZATION
SUBSCRIPTION statement. The syntax is similar to that of the CREATE SYNCHRONIZATION
SUBSCRIPTION statement, but provides an extension to more conveniently add, modify, and delete options.

To alter a synchronization subscription (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. Open the MobiLink Users folder.

3. Click a user. The properties appear in the right pane.

4. In the right pane, click the Subscriptions tab. Right-click the subscription you want to change and
select Properties.

5. Change the properties as needed.

To alter a synchronization subscription (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute an ALTER SYNCHRONIZATION SUBSCRIPTION statement.

See “ALTER SYNCHRONIZATION USER statement [MobiLink]” [SQL Anywhere Server - SQL
Reference].

Dropping MobiLink subscriptions

You can delete a synchronization subscription using either Sybase Central or the DROP
SYNCHRONIZATION SUBSCRIPTION statement.

You must have DBA authority to drop a synchronization subscription.

To delete a synchronization subscription (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. Open the MobiLink Users folder.

3. Select a MobiLink user.

SQL Anywhere clients for MobiLink

78 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

4. Right-click a subscription and choose Delete.

To delete a synchronization subscription (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a DROP SYNCHRONIZATION SUBSCRIPTION statement.

Example
The following statement drops the synchronization subscription named my_sub.

DROP SYNCHRONIZATION SUBSCRIPTION my_sub

See “DROP SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” [SQL Anywhere Server -
SQL Reference].

Initiating synchronization
The client always initiates MobiLink synchronization. For SQL Anywhere clients, synchronization can be
initiated using the dbmlsync utility, the dbmlsync API or the SQL SYNCHRONIZE statement. All share
similar semantics but offer different interfaces to synchronization and different abilities to integrate
synchronization with your own applications.

See: .

● “MobiLink SQL Anywhere client utility (dbmlsync)” on page 93
● “Dbmlsync API” on page 90
● “SYNCHRONIZE statement [MobiLink]” [SQL Anywhere Server - SQL Reference]

There are many options available to customize synchronization behavior, however, a few stand out
because they are required for virtually any synchronization. These are discussed below.

The -c option lets you specify connection parameters that control how dbmlsync will connect to the
remote database. This information is not required when using the SQL synchronize statement because the
connection information is taken from the database connection that is executing the statement. See “-c
dbmlsync option” on page 101.

The -s or Subscription option allows you to specify which subscription defined in the remote database
will be synchronized. See “-s dbmlsync option” on page 117.

The CommunicaionAddress and CommunicationType extended options let you specify network protocol
options that determine how dbmlsync will connect with the MobiLink server during synchronization. See
“CommunicationAddress (adr) extended option” on page 128 and “CommunicationType (ctp) extended
option” on page 129.

The Script Version clause on the CREATE SYNCHRONIZATION SUBSCRIPTION SQL statement lets
you specify they script version to be used when synchronizing a subscription. The script version
determines which scripts will be used by the MobiLink Server to control and process the synchronization.

SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 79

See “CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” [SQL Anywhere Server
- SQL Reference].

Permissions for dbmlsync
To synchronize, dbmlsync must connect to the remote database with a user ID and password that gives it
DBA authority.

You may wish to give an individual the ability to synchronize but not want to give them DBA authority
over the database. You can do this by granting REMOTE DBA authority to a user ID that does not have
DBA authority. A user ID with REMOTE DBA authority has DBA authority only when the connection is
made from the dbmlsync utility. Any other connection using the same user ID is granted no special authority.

You can give the REMOTE DBA user ID and password to whoever you wish to synchronize the
database. It will allow them to synchronize but not give them any other special authority over the database.

See “GRANT REMOTE DBA statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL
Reference].

Customizing synchronization
See “Customizing dbmlsync synchronization” on page 89.

Using dbmlsync extended options

MobiLink provides several extended options to customize the synchronization process. Extended options
can be set for publications, users, and subscriptions. In addition, extended option values can be overridden
using options on the dbmlsync command line or the sp_hook_dbmlsync_set_extended_options hook
procedure. See “sp_hook_dbmlsync_set_extended_options” on page 219

For a complete list of extended options, see “MobiLink SQL Anywhere client extended
options” on page 126.

To override an extended option on the dbmlsync command line

● Supply the extended option values in the -e or -eu dbmlsync options for dbmlsync, in the form option-
name=value. For example:

dbmlsync -e "v=on;sc=low"

To set an extended option for a subscription, publication or user

● Add the option to the CREATE SYNCHRONIZATION SUBSCRIPTION statement or CREATE
SYNCHRONIZATION USER statement in the SQL Anywhere remote database.

Adding an extended option for a publication is a little different. To add an extended option for a
publication, use the ALTER/CREATE SYNCHRONIZATION SUBSCRIPTION statement and omit
the FOR clause.

SQL Anywhere clients for MobiLink

80 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example
The following statement creates a synchronization subscription that uses extended options to set the cache
size for preparing the upload to 3 MB and the upload increment size to 3 KB.

CREATE SYNCHRONIZATION SUBSCRIPTION TO my_pub
FOR ml_user
ADDRESS 'host=test.internal;port=2439;'
OPTION memory='3m',increment='3k'

Note that the option values must be enclosed in single quotes, but the option names must remain unquoted.

Dbmlsync network protocol options

Dbmlsync connection information includes the protocol to use for communications with the server, the
address for the MobiLink server, and other connection parameters.

For more information, see:

● “CommunicationType (ctp) extended option” on page 129
● “CommunicationAddress (adr) extended option” on page 128

Transaction log files

Usually, dbmlsync determines what to upload by using the SQL Anywhere transaction log.

SQL Anywhere databases maintain transaction logs by default. You can determine where the transaction
log is located, or whether to have one, when you create the database or afterwards using the dblog utility.

The transaction log is not be required to synchronize scripted upload publications or only use download-
only publications.

To prepare the upload, the dbmlsync utility requires access to all transaction logs written since the last
successful synchronization of all subscriptions for the MobiLink user who is synchronizing. However,
SQL Anywhere log files are typically truncated and renamed as part of regular database maintenance. In
such a case, old log files must be renamed and saved in a separate directory until all changes they describe
have been synchronized successfully.

You can specify the directory that contains the renamed log files on the dbmlsync command line. You
may omit this parameter if the working log file has not been truncated and renamed since you last
synchronized, or if you run dbmlsync from the directory that contains the renamed log files.

See also
● “Backup and data recovery” [SQL Anywhere Server - Database Administration]
● “Progress offsets” on page 66
● “The transaction log” [SQL Anywhere Server - Database Administration]
● “Initialization utility (dbinit)” [SQL Anywhere Server - Database Administration]
● “Scripted upload” on page 310

SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 81

Example
Suppose that the old log files are stored in the directory c:\oldlogs. You could use the following command
to synchronize the remote database.

dbmlsync -c "dbn=remote;uid=syncuser" c:\oldlogs

The path to the old logs directory must be the final argument on the command line.

Concurrency during synchronization

To ensure the integrity of synchronizations, dbmlsync must ensure that no changes downloaded from the
server modify rows in the remote that have been changed since the last upload was sent. By default, it
usually does this without locking any tables so the impact on other concurrent users of the database is
minimized. Tables are locked IN SHARE MODE when synchronizing a publication that uses scripted
upload or when the sp_hook_dbmlsync_schema_upgrade hook is defined.

When tables are not locked, dbmlsync tracks all rows that are modified after the upload is built. If the
download contains a change for one of these rows that is considered a conflict.

If a conflict is detected, the download phase is canceled and the download operations rolled back to avoid
overwriting the new change. The dbmlsync utility then retries the synchronization, including the upload
step. This time, because the row is present at the beginning of the synchronization process, it is included
in the upload and therefore not lost.

By default, dbmlsync retries synchronization until success is achieved. You can limit the number of
retries using the extended option ConflictRetries. Setting ConflictRetries to -1 causes dbmlsync to retry
until success is achieved. Setting it to a non-negative integer causes dbmlsync to retry for not more than
the specified number of times.

For more information, see ConflictRetries (cr) extended option“ConflictRetries (cr) extended
option” on page 129. --

-d option
When using the locking mechanism, if other connections to the database exist and if these connections
have any locks on the synchronization tables, then synchronization fails. If you want to ensure that
synchronization proceeds immediately even if other locks exist, use the dbmlsync -d option. When this
option is specified, any connections with locks that would interfere with synchronization are dropped by
the database so that synchronization can proceed. Uncommitted changes on the dropped connections are
rolled back.

For more information, see “-d dbmlsync option” on page 103.

LockTables option
You can force dbmlsync to lock tables during synchronization using the LockTables extended option.
You may find it desirable to lock tables during synchronization to simplify logic that you write in hook
procedures.

For more information, see “LockTables (lt) extended option” on page 138.

SQL Anywhere clients for MobiLink

82 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Initiating synchronization from an application

You may want to include the features of dbmlsync in your application, rather than provide a separate
executable to your remote users.

There are three ways to do this:

● Dbmlsync API

For more information, see “Dbmlsync API” on page 90.

● SQL SYNCHRONIZE statement

For more information, see “SYNCHRONIZE statement [MobiLink]” [SQL Anywhere Server - SQL
Reference].

● If you are developing in any language that can call a DLL, then you can access dbmlsync through the
DBTools interface. If you are programming in C or C++, you can include the dbtools.h header file,
located in the SDK\Include subdirectory of your SQL Anywhere 12 directory. This file contains a
description of the a_sync_db structure and the DBSynchronizeLog function, which you use to add this
functionality to your application. This solution works on all supported platforms, including Windows
and Unix.

The Dbmlsync API and the SQL SYNCHRONIZE statement are both easier to use than the DBTools
interface and you are strongly encouraged to consider using them first.

For more information, see:

○ “DBTools interface for dbmlsync” on page 304
○ “DBSynchronizeLog function” [SQL Anywhere Server - Programming]
○ “a_sync_db structure” [SQL Anywhere Server - Programming]

Using Microsoft ActiveSync synchronization
Microsoft ActiveSync is synchronization software for Microsoft Windows Mobile handheld devices.
Microsoft ActiveSync governs synchronization between a Windows Mobile device and a desktop
computer. A MobiLink provider for Microsoft ActiveSync governs synchronization to the MobiLink server.

Setting up Microsoft ActiveSync synchronization for SQL Anywhere clients involves the following steps:

● Configure the SQL Anywhere remote database for Microsoft ActiveSync synchronization.

See “Configuring SQL Anywhere remote databases for Microsoft ActiveSync” on page 84.

● Install the MobiLink provider for Microsoft ActiveSync.

See “Installing the MobiLink provider for Microsoft ActiveSync” on page 84.

● Register the SQL Anywhere client for use with Microsoft ActiveSync.

See “Registering SQL Anywhere clients for Microsoft ActiveSync” on page 86.

SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 83

If you use Microsoft ActiveSync synchronization, synchronization must be initiated from the Microsoft
ActiveSync software. The MobiLink provider for Microsoft ActiveSync can start dbmlsync or it can wake
a dbmlsync that is sleeping as scheduled by a schedule string.

You can also put dbmlsync into a sleep mode using a delay hook in the remote database, but the
MobiLink provider for Microsoft ActiveSync cannot invoke synchronization from this state.

For information about scheduling synchronization, see “Scheduling synchronization” on page 87.

Configuring SQL Anywhere remote databases for Microsoft
ActiveSync

To configure your SQL Anywhere remote database for Microsoft ActiveSync

1. Select a synchronization type (TCP/IP, TLS, HTTP, or HTTPS).

The synchronization type can be set for a synchronization publication, for a synchronization user, or
for a synchronization subscription. It is set in a similar manner for each. Here is part of a typical
CREATE SYNCHRONIZATION USER statement:

CREATE SYNCHRONIZATION USER SSinger
TYPE tcpip
...

2. Supply an address clause to specify communication between the MobiLink provider for Microsoft
ActiveSync and the MobiLink server.

For HTTP or TCP/IP synchronization, the ADDRESS clause of the CREATE SYNCHRONIZATION
USER or CREATE SYNCHRONIZATION SUBSCRIPTION statement specifies communication
between the MobiLink client and server. For Microsoft ActiveSync, the communication takes place in
two stages: from the dbmlsync utility on the device to the MobiLink provider for Microsoft
ActiveSync on the desktop computer, and from the desktop computer to the MobiLink server. The
ADDRESS clause specifies the communication between MobiLink provider for Microsoft ActiveSync
and the MobiLink server.

The following statement specifies TCP/IP communication to a MobiLink server on a computer named
kangaroo:

CREATE SYNCHRONIZATION USER SSinger
TYPE tcpip
ADDRESS 'host=kangaroo;port=2439'

For more information, see “CREATE SYNCHRONIZATION USER statement [MobiLink]” [SQL
Anywhere Server - SQL Reference].

Installing the MobiLink provider for Microsoft ActiveSync

SQL Anywhere clients for MobiLink

84 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Before you register your SQL Anywhere MobiLink client for use with Microsoft ActiveSync, you must
install the MobiLink provider for Microsoft ActiveSync using the installation utility (mlasinst.exe).

The SQL Anywhere for Windows Mobile installer installs the MobiLink provider for Microsoft
ActiveSync. If you install SQL Anywhere for Windows Mobile you do not need to perform the steps in
this section.

When you have installed the MobiLink provider for Microsoft ActiveSync you must register each
application separately. For instructions, see “Registering SQL Anywhere clients for Microsoft
ActiveSync” on page 86.

To install the MobiLink provider for Microsoft ActiveSync

1. Ensure that you have the Microsoft ActiveSync software on your computer, and that the Windows
Mobile device is connected.

2. Run the following command to install the MobiLink provider:

mlasinst -k desk-path -v dev-path

where desk-path is the location of the desktop component of the provider (mlasdesk.dll) and dev-path
is the location of the device component (mlasdev.dll).

If you have SQL Anywhere installed on your computer, mlasdesk.dll is located in install-dir\bin32;
mlasdev.dll is located in install-dir\CE. If you omit -v or -k, these directories are searched by default.

If you receive a message telling you that the remote provider failed to open, perform a soft reset of the
device and repeat the command:

For more information, see “Microsoft ActiveSync Provider Installation utility (mlasinst)” on page 18.

3. Restart your computer.

Microsoft ActiveSync does not recognize new providers until the computer is restarted.

4. Enable the MobiLink provider.

For Windows versions before Vista:

● In the Microsoft ActiveSync window, click Options.

● Check the MobiLink item in the list and click OK to activate the provider.

● To see a list of registered applications, click Options again, choose the MobiLink provider, and
click Settings.

For more information about registering applications, see “Registering SQL Anywhere clients for
Microsoft ActiveSync” on page 86.

For Windows Vista:

● From the Windows Mobile Device Center window, click Mobile Device Settings and then click
Change Content Settings.

SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 85

● Select MobiLink Clients and click Save to activate the provider.

● To see a list of registered applications, click Change Content Settings, click MobiLink Clients,
and then click Sync Settings.

Registering SQL Anywhere clients for Microsoft ActiveSync

You can register your application for use with Microsoft ActiveSync either by using the Microsoft
ActiveSync provider install utility or using the Microsoft ActiveSync software itself. This section
describes how to use the Microsoft ActiveSync software.

For information about the alternative approach, see “Microsoft ActiveSync Provider Installation utility
(mlasinst)” on page 18.

To register the SQL Anywhere client for use with Microsoft ActiveSync

1. Ensure that the MobiLink provider for Microsoft ActiveSync is installed.

For information, see “Installing the MobiLink provider for Microsoft ActiveSync” on page 84.

2. Start the Microsoft ActiveSync software on your desktop computer.

3. For Windows versions before Vista:

● From the Microsoft ActiveSync window, choose Options.

● From the list of information types, choose MobiLink and click Settings.

● In the MobiLink Synchronization window, click New.

For Windows Vista:

● From the Windows Mobile Device Center window, click Mobile Device Settings and then click
Change Content Settings.

● Click Change Content Settings.

● Click MobiLink Clients.

● Click Sync Settings.

4. Enter the following information for your application:

● Application name A name identifying the application to be displayed in the Microsoft
ActiveSync user interface.

● Class name The class name for the dbmlsync client, as set using the -wc option.

For more information, see “-wc dbmlsync option” on page 124.

● Path The location of the dbmlsync application on the device.

● Arguments Any command line arguments to be used when Microsoft ActiveSync starts
dbmlsync.

SQL Anywhere clients for MobiLink

86 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

You start dbmlsync in one of two modes:

○ If you specify scheduling options, dbmlsync enters hover mode. In this case, use the dbmlsync -
wc option with a matching value in the class name setting.

For more information, see “-wc dbmlsync option” on page 124 and “Scheduling
synchronization” on page 87.

○ Otherwise, dbmlsync is not in hovering mode. In this case, use -k to shut down dbmlsync.

For more information, see “-k dbmlsync option (deprecated)” on page 109.

5. Click OK to register the application.

Scheduling synchronization
You can set up dbmlsync to synchronize periodically based on rules you define. There are two ways you
can set this up:

● Use the dbmlsync extended option SCHEDULE to initiate synchronization at specific times of the day
or week or at regular intervals. In this case, dbmlsync remains running until stopped by the user.

See “Setting up scheduling with dbmlsync options” on page 88.

● Use dbmlsync event hooks to initiate synchronization based on logic that you define. This is the best
way to implement synchronization at irregular intervals or in response to an event. In this case, you
can stop dbmlsync programmatically from your hook code.

See “Initiating synchronization with event hooks” on page 88.

This method is not available when the Dbmlsync API or the SQL SYNCHRONIZE statement is used.

Hovering
When hovering, dbmlsync scans the database transaction log and builds its upload during the delay
between synchronizations. This allows synchronization to proceed more quickly when it is triggered
because some of the work is already done.

When hovering, dbmlsync scans to the end of the transaction log then polls the log periodically for new
transactions. You can control the interval between polls using the PollingPeriod extended option of the -
pp option. See “PollingPeriod (pp) extended option” on page 142.

When you are hovering on two or more subscriptions at the same time, you can use the
HoverRescanThreshold extended option or the sp_hook_dbmlsync_log_rescan event hook to limit
memory usage by recovering otherwise lost memory.

Hovering can be disabled using the DisablePolling extended option or the -p option.

SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 87

For more information, see:

● “HoverRescanThreshold (hrt) extended option” on page 135
● “-p dbmlsync option” on page 112
● “DisablePolling (p) extended option” on page 131
● “sp_hook_dbmlsync_log_rescan” on page 205

Setting up scheduling with dbmlsync options
Instead of running dbmlsync in a batch fashion, where it synchronizes and then shuts down, you can set
up a SQL Anywhere client so that dbmlsync runs continuously, synchronizing at predetermined times.

You specify the synchronization schedule as an extended option. It can be specified either on the
dbmlsync command line or it can be stored in the database for the synchronization user, subscription, or
publication.

This method is not available when the Dbmlsync API or the SQL SYNCHRONIZE statement is used.

For more information about scheduling syntax, see “Schedule (sch) extended option” on page 143.

For more information about extended options, see:

● “MobiLink SQL Anywhere client extended options” on page 126
● “-eu dbmlsync option” on page 108

To add scheduling to the synchronization subscription

● Set the Schedule extended option in the synchronization subscription. For example,

CREATE SYNCHRONIZATION SUBSCRIPTION TO mypub
FOR mluser
ADDRESS 'host=localhost'
OPTION schedule='weekday@11:30am-12:30pm'

You can override scheduling and synchronize immediately using the dbmlsync -is option. The -is
option instructs dbmlsync to ignore scheduling that is specified with the scheduling extended option.
For more information, see “-is dbmlsync option” on page 108.

To add scheduling from the dbmlsync command line

● Set the schedule extended option. Extended options are set with -e or -eu. For example,

dbmlsync -e "sch=weekday@11:30am-12:30pm" ...

If scheduled synchronization is specified in either place, dbmlsync does not shut down after
synchronizing, but runs continuously.

Initiating synchronization with event hooks
There are dbmlsync event hooks that you can implement to control when synchronization occurs.

SQL Anywhere clients for MobiLink

88 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

With the sp_hook_dbmlsync_end hook, you can use the Restart row in the #hook_dict table to decide at
the end of each synchronization if dbmlsync should repeat the synchronization.

For more information, see “sp_hook_dbmlsync_end” on page 203.

With the sp_hook_dbmlsync_delay hook you can create a delay at the beginning of each synchronization
that allows you to choose the time to proceed with synchronization. With this hook it is possible to delay
for a fixed amount of time or to poll periodically, waiting for some condition to be satisfied.

For more information, see “sp_hook_dbmlsync_delay” on page 191.

This method is not available when the Dbmlsync API or the SQL SYNCHRONIZE statement is used.

Customizing dbmlsync synchronization

dbmlsync client event hooks
Event hooks allow you to use SQL stored procedures to manage the client-side synchronization process
for dbmlsync. You can use client event hooks with the dbmlsync command line utility or the dbmlsync
programming interfaces.

You can use event hooks to log and handle synchronization events. For example, you can schedule
synchronizations based on logical events, retry connection failures, or handle specific errors and
referential integrity violations.

For more information about client event hooks, see “Event hooks for SQL Anywhere
clients” on page 178.

dbmlsync programming interfaces
You can use the following programming interfaces to integrate MobiLink clients into your applications
and start synchronizations. These interfaces provide an alternative to the dbmlsync command line utility.

● dbmlsync API The Dbmlsync API provides a programming interface that allows MobiLink clients
written in C++ or .Net to launch synchronizations and receive feedback about the progress of the
synchronizations they request. This new programming interface enables you to access a lot more
information about synchronization results and it also enables you to queue synchronizations, making
them easier to manage.

See “Dbmlsync API” on page 90.

● DBTools interface for dbmlsync You can use the DBTools interface for dbmlsync to integrate
synchronization functionality into your SQL Anywhere synchronization client applications. All the
SQL Anywhere database management utilities are built on DBTools.

See “DBTools interface for dbmlsync” on page 304.

Scripted upload
You can also override the use of the client transaction log and define your own upload stream. See
“Scripted upload” on page 310.

SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 89

Dbmlsync API
The Dbmlsync API provides a programming interface that allows MobiLink client applications written in
C++ or .NET to launch synchronizations and receive feedback about the progress of the synchronizations
they request. The API is intended to integrate synchronization seamlessly into your applications.

This programming interface enables you to access a lot more information about synchronization results
and it also enables you to queue synchronizations, making them easier to manage.

For more information about Dbmlsync API, see:

● “Dbmlsync .NET API reference” on page 253
● “Dbmlsync C++ API reference” on page 231

SQL Anywhere client logging
When you create MobiLink applications with SQL Anywhere remote databases, there are two types of
client log file that you should be aware of:

● dbmlsync message log

● SQL Anywhere transaction log

dbmlsync message log
By default, dbmlsync messages are sent to the dbmlsync message window. In addition, you can send the
output to a message log file using the -o or -ot options. The following partial command line sends output
to a log file named dbmlsync.dbs.

dbmlsync -o dbmlsync.dbs ...

Logging dbmlsync activity is particularly useful during the development process and when troubleshooting.

You can control the size of log files, and specify what you want done when a file reaches its maximum size:

● Use the -o option to specify a log file and append output to it.

● Use the -ot option to specify a log file, but delete the contents the file before appending output to it.

● In addition to -o or -ot, use the -os option to specify the size at which the log file is renamed and a new
file is started with the original name.

For more information, see:

● “-o dbmlsync option” on page 111
● “-ot dbmlsync option” on page 112
● “-os dbmlsync option” on page 111

When no message log file is specified, all output is displayed in the dbmlsync messages window. When a
message log file is specified, less output is sent to the dbmlsync messages window.

SQL Anywhere clients for MobiLink

90 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

You can control what information is logged to the message log file and displayed in the dbmlsync
messages window using the -v option. Verbose output is not recommended for normal operation in a
production environment because it can slow performance.

For more information, see “-v dbmlsync option” on page 123.

SQL Anywhere transaction log
See “Transaction log files” on page 81.

Running MobiLink on Mac OS X
You can run the MobiLink server and the SQL Anywhere MobiLink client on Mac OS X. You cannot run
UltraLite on Mac OS X.

To synchronize a MobiLink consolidated database on Mac OS X, you can use the SQL Anywhere ODBC
driver as the driver manager. See “Create an ODBC data source on Mac OS X” [SQL Anywhere Server -
Database Administration].

To start the MobiLink server on Mac OS X

1. Start SyncConsole.

In the Finder, double-click SyncConsole. The SyncConsole application is located in /Applications/
SQLAnywhere12.

2. Choose File » New » MobiLink Server.

3. Configure the MobiLink server:

a. In the Connection Parameters field, enter the following string:

dsn=dsn-name

The dsn-name is a SQL Anywhere ODBC data source name. For information on creating ODBC
data sources, see “Creating ODBC data sources” [SQL Anywhere Server - Database
Administration].
If dsn-name has spaces, surround the string with double quotes. For example:

dsn="SQL Anywhere 12 Demo"
b. Set options in the Options field, if desired.

The Options field allows you to control many aspects of MobiLink server behavior. For a
complete list of options, see “mlsrv12 syntax” [MobiLink - Server Administration].

4. Click Start to start the MobiLink server.

The database server messages window appears and displays messages, showing that the server is
ready to accept synchronization requests.

SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 91

To start dbmlsync on Mac OS X

1. Start SyncConsole.

In the Finder, double-click SyncConsole. The SyncConsole application is located in /Applications/
SQLAnywhere12.

2. Choose File » New » MobiLink Client.

The client options window appears. It has many configuration options, which correspond to dbmlsync
command line options. For a complete listing, see “dbmlsync syntax” on page 93.

The options on the Login, Database, Network, and Advanced tabs all define the connection from the
MobiLink client to the SQL Anywhere remote database. Often, you only need to specify an ODBC
data source on the Login tab to connect.

The options on the DBMLSync tab define aspects of the connection to the MobiLink server. If these
features are defined in a remote database publication and subscription, then you can leave the options
on this tab empty.

To run the sample database on Mac OS X

1. Source the sa_config configuration script.

For more information, see “Setting environment variables on Unix and Mac OS X” [SQL Anywhere
Server - Database Administration].

2. Set up an ODBC data source. For example:

dbdsn -w "SQL Anywhere 12 Demo"
-c "uid=DBA;pwd=sql;dbf=/Applications/SQLAnywhere12/System/demo.db"

3. Run the MobiLink server. For example:

mlsrv12 -c "dsn=SQL Anywhere 12 Demo"

Version considerations
In order for dbmlsync to function properly, both the major and minor versions of dbmlsync.exe must
match those of the database server. In addition, the major version of the database file must match that of
dbmlsync.exe, and the minor version of the database file must be equal to or less than the minor version
of dbmlsync.exe. The database file's version is the latest version to which it has been upgraded.

For example, the 9.0.2 version of dbmlsync should only be used with the 9.0.2 version of the database
server (dbeng9.exe) and it can work with database files from versions 9.00, 9.01 and 9.02.

SQL Anywhere clients for MobiLink

92 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

MobiLink SQL Anywhere client utility (dbmlsync)
dbmlsync syntax

Use the dbmlsync utility to synchronize SQL Anywhere remote databases with a consolidated database.

Syntax
dbmlsync [options] [transaction-logs-directory]

Option Description

@data Read in options from the specified environment variable or configura-
tion file. See “@data dbmlsync option” on page 97.

-a Do not prompt for input again on error. See “-a dbmlsync op-
tion” on page 97.

-ap Specify authentication parameters. See “-ap dbmlsync op-
tion” on page 98.

-ba filename Apply a download file. See “-ba dbmlsync option” on page 98.

-bc filename Create a download file. See “-bc dbmlsync option” on page 99.

-be string When creating a download file, add a string. See “-be dbmlsync op-
tion” on page 99.

-bg When creating a download file, make it suitable for new remotes. See
“-bg dbmlsync option” on page 99.

-bk Enables background synchronization. See “-bk dbmlsync op-
tion” on page 100.

-bkr Controls dbmlsync behavior after a background synchronization is in-
terrupted. See “-bkr dbmlsync option” on page 101.

-c connection-string Supply database connection parameters in the form parm1=value1;
parm2=value2,... that are used to connect to the remote database. If
you do not supply this option, a window appears and you must supply
connection information. See “-c dbmlsync option” on page 101.

-ci size Sets the initial size of the dbmlsync cache. See “-ci dbmlsync op-
tion” on page 102.

-cl size Set the minimum size threshold for the dbmlsync cache file. See “-cl
dbmlsync option” on page 102.

MobiLink SQL Anywhere client utility (dbmlsync)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 93

Option Description

-cm size Set the maximum size limit for the dbmlsync cache file. See “-cm
dbmlsync option” on page 103.

-d Drop any other connections to the database whose locks conflict with
the articles to be synchronized. See “-d dbmlsync op-
tion” on page 103.

-dc Continue a previously failed download. See “-dc dbmlsync op-
tion” on page 103.

-dl Display log messages on the dbmlsync messages window. See “-dl
dbmlsync option” on page 104.

-do Disables scanning of offline transaction logs. See “-do dbmlsync op-
tion” on page 104.

-drs bytes For restartable downloads, specify the maximum amount of data that
may need to be resent after a communications failure. See “-drs
dbmlsync option” on page 105.

-ds Perform a download-only synchronization. See “-ds dbmlsync op-
tion” on page 106.

-e "option=value"... Specify extended options. See “MobiLink SQL Anywhere client exten-
ded options” on page 126.

-eh Ignore errors that occur in hook functions.

-ek key Specify the remote database encryption key. See “-ek dbmlsync op-
tion” on page 107.

-ep Prompt for the remote database encryption key. See “-ep dbmlsync op-
tion” on page 108.

-eu Specify extended options for upload defined by most recent -n option.
See “-eu dbmlsync option” on page 108.

-is Ignore schedule. See “-is dbmlsync option” on page 108.

-k Close window on completion. See “-k dbmlsync option (depreca-
ted)” on page 109.

-l List available extended options. See “-l dbmlsync op-
tion” on page 109.

-mn password Specify new MobiLink password. See “-mn dbmlsync op-
tion” on page 109.

SQL Anywhere clients for MobiLink

94 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Option Description

-mp password Specify MobiLink password. See “-mp dbmlsync op-
tion” on page 110.

-n name Specify synchronization publication name(s). See “-n dbmlsync op-
tion (deprecated)” on page 110.

-o logfile Log output messages to this file. See “-o dbmlsync op-
tion” on page 111.

-os size Specify a maximum size for the message log file, at which point the
log is renamed. See “-os dbmlsync option” on page 111.

-ot logfile Delete the contents of the message log file and then log output messag-
es to it. See “-ot dbmlsync option” on page 112.

-p Disable logscan polling. See “-p dbmlsync option” on page 112.

-pc+ Maintain an open connection to the MobiLink server between synchro-
nizations. See “-pc+ dbmlsync option” on page 113.

-pd dllname;... Preload specified DLLs for Windows Mobile. See “-pd dbmlsync op-
tion” on page 114.

-pi Test that you can connect to MobiLink. See “-pi dbmlsync op-
tion” on page 114.

-po Specifies the port on which dbmlsync listens. See “-po dbmlsync op-
tion” on page 115.

-pp number Set logscan polling period. See “-pp dbmlsync option” on page 115.

-q Run in minimized window. See “-q dbmlsync option” on page 116.

-qc Shut down dbmlsync when synchronization is finished. See “-qc
dbmlsync option” on page 116.

-r[a | b] Use client progress values for upload retry. See “-r dbmlsync op-
tion” on page 116.

-s name Specify synchronization subscription name(s). See “-s dbmlsync op-
tion” on page 117.

-sc Reload schema information before each synchronization. See “-sc
dbmlsync option” on page 118.

-sm Causes dbmlsync to start in server mode. See “-sm dbmlsync op-
tion” on page 118.

MobiLink SQL Anywhere client utility (dbmlsync)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 95

Option Description

-sp sync profile Add options from the synchronization profile to the synchronization
options specified on the command line. See “-sp dbmlsync op-
tion” on page 119.

-tu Perform transactional upload. See “-tu dbmlsync option” on page 119.

-u ml_username Specify the MobiLink user to synchronize. See “-u dbmlsync option
(deprecated)” on page 120.

-ud For Unix only. Run dbmlsync as a daemon. See “-ud dbmlsync op-
tion” on page 121.

-ui For Linux with X window, starts dbmlsync in shell mode if a usable
display isn't available. See “-ui dbmlsync option” on page 122.

-uo Perform upload-only synchronization. See “-uo dbmlsync op-
tion” on page 122.

-urc row-estimate Specify an estimate of the number of rows to upload. See “-urc
dbmlsync option” on page 123.

-ux For Solaris and Linux, open the dbmlsync messages window. See “-ux
dbmlsync option” on page 123.

-v[levels] Verbose operation. See “-v dbmlsync option” on page 123.

-wc classname Specify a window class name. See “-wc dbmlsync op-
tion” on page 124.

-x Rename and restart the transaction log. See “-x dbmlsync op-
tion” on page 125.

transaction-logs-directory Specify the location of the transaction log. See Transaction Log File,
below.

Remarks
Run dbmlsync to synchronize a SQL Anywhere remote database with a consolidated database.

To locate and connect to the MobiLink server, dbmlsync uses the information on the publication,
synchronization user, synchronization subscription, or the dbmlsync command line.

Transaction log file The transaction-logs-directory is the directory that contains the transaction log
for the SQL Anywhere remote database. There is an active transaction log and zero or more transaction
log archive files, all of which may be required by dbmlsync to determine what to upload. You must
specify this parameter if the following are all true:

SQL Anywhere clients for MobiLink

96 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● the contents of the working log file have been truncated and the file has been renamed since you last
synchronized

● you run the dbmlsync utility from a directory other than the one where the renamed log files are stored

For more information, see “Transaction log files” on page 81.

dbmlsync event hooks There are also dbmlsync client stored procedures that can help you
customize the synchronization process. For more information, see “Introduction to dbmlsync
hooks” on page 178 and “Event hooks for SQL Anywhere clients” on page 178.

Using dbmlsync For more information about using dbmlsync, see “Initiating
synchronization” on page 79.

See also
● “Initiating synchronization” on page 79
● “Event hooks for SQL Anywhere clients” on page 178
● “Dbmlsync API” on page 90
● “DBTools interface for dbmlsync” on page 304

@data dbmlsync option

Reads in options from the specified environment variable or configuration file.

Syntax
dbmlsync @data ...

Remarks
With this option, you can put command line options in an environment variable or configuration file. If
both exist with the name you specify, the environment variable is used.

For more information about configuration files, see “Using configuration files” [SQL Anywhere Server -
Database Administration].

If you want to protect passwords or other information in the configuration file, you can use the File
Hiding utility to obfuscate the contents of the configuration file.

See “File Hiding utility (dbfhide)” [SQL Anywhere Server - Database Administration].

-a dbmlsync option

Certain types of errors (such as an incorrect MobiLink password) normally cause dbmlsync to display a
dialog prompting the user to correct the values. The -a option prevents dbmlsync from prompting after
these errors occur.

MobiLink SQL Anywhere client utility (dbmlsync)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 97

Syntax
dbmlsync -a ...

-ap dbmlsync option
Supplies parameters passed to the authenticate_parameters script and to authentication parameters on the
MobiLink server.

Syntax
dbmlsync -ap "parameters,..." ...

Remarks
Use when you use the authenticate_parameters connection script or authentication parameters on the
server. For example,

dbmlsync -ap "parm1,parm2,parm3"

The parameters are sent to the MobiLink server and passed to the authenticate_parameters script or other
events on the consolidated database.

See also
● “Authentication parameters” [MobiLink - Server Administration]
● “authenticate_parameters connection event” [MobiLink - Server Administration]
● “AuthParms synchronization profile option” on page 161

-ba dbmlsync option
Applies a download file.

Syntax
dbmlsync -ba "filename" ...

Remarks
Specify the name of an existing download file to be applied to the remote database. You can optionally
specify a path. If you do not specify a path, the default location is the directory where dbmlsync was started.

See also
● “MobiLink file-based download” [MobiLink - Server Administration]
● “-bc dbmlsync option” on page 99
● “-be dbmlsync option” on page 99
● “-bg dbmlsync option” on page 99
● “ApplyDnldFile synchronization profile option” on page 162

SQL Anywhere clients for MobiLink

98 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

-bc dbmlsync option
Creates a download file.

Syntax
dbmlsync -bc "filename" ...

Remarks
Create a download file with the specified name. You should use the file extension .df for download files.

You can optionally specify a path. If you do not specify a path, the default location is the dbmlsync
current working directory, which is the directory where dbmlsync was started.

Optionally, when creating a download file, you can use the -be option to specify a string that can be
validated at the remote database, and the -bg option to create a download file for new remote databases.

See also
● “MobiLink file-based download” [MobiLink - Server Administration]
● “-ba dbmlsync option” on page 98
● “-be dbmlsync option” on page 99
● “-bg dbmlsync option” on page 99
● “CreateDnldFile synchronization profile option” on page 165

-be dbmlsync option
When creating a download file, this option specifies an extra string to be included in the file.

Syntax
dbmlsync -bc "filename" -be "string" ...

Remarks
The string can be used for authentication or other purposes. It is passed to the
sp_hook_dbmlsync_validate_download_file stored procedure on the remote database when the download
file is applied.

See also
● “sp_hook_dbmlsync_validate_download_file” on page 229
● “MobiLink file-based download” [MobiLink - Server Administration]
● “-bc dbmlsync option” on page 99
● “-ba dbmlsync option” on page 98
● “DnldFileExtra synchronization profile option” on page 166

-bg dbmlsync option

MobiLink SQL Anywhere client utility (dbmlsync)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 99

When creating a download file, this option creates a file that can be used by remote databases that have
not yet synchronized.

Syntax
dbmlsync -bc "filename" -bg ...

Remarks
The -bg option causes the download file to update the generation numbers on the remote database.

This option allows you to build a download file that can be applied to remote databases that have never
synchronized. Otherwise, you must perform a synchronization before you apply a download file.

Download files built with the -bg option should be snapshot downloads. Timestamp-based downloads do
not work with remote databases that have not synchronized because the last download timestamp on a
new remote is by default January 1, 1900, which is earlier than the last download timestamp in the
download file. For timestamp-based file-based downloads to work, the last download timestamp in the
download file must be the same or earlier than on the remote.

Do not apply -bg download files to remote databases that have already synchronized if your system
depends on functionality provided by generation numbers as this option circumvents that functionality.

See also
● “MobiLink file-based download” [MobiLink - Server Administration]
● “-ba dbmlsync option” on page 98
● “-bc dbmlsync option” on page 99
● “MobiLink generation numbers” [MobiLink - Server Administration]
● “Synchronizing new remotes” [MobiLink - Server Administration]
● “UpdateGenNum synchronization profile option” on page 175

-bk dbmlsync option
Enables background synchronization.

Syntax
dbmlsync -bk "connection-string" ...

Remarks
During a background synchronization, the database engine drops the dbmlsync connection to the remote
database and rolls back any uncommitted dbmlsync operations, if another connection is waiting for access
to any database resource that dbmlsync has locked. This allows the other connections to go forward
without waiting for the synchronization to complete. Depending on the operations dbmlsync had
outstanding when its connection is dropped, there may still be a significant delay for the waiting
connection as the database rolls back the dbmlsync uncommitted changes.

When the dbmlsync connection is dropped, the synchronization in progress will fail and report errors.

SQL Anywhere clients for MobiLink

100 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “-bkr dbmlsync option” on page 101
● “MobiLink synchronization profiles” on page 157
● “Background synchronization profile option” on page 162

-bkr dbmlsync option
Controls the behavior of dbmlsync after a background synchronization is interrupted.

Syntax
dbmlsync -bkr num...

Remarks
num is an integer greater than or equal to -1.

If num is -1 then dbmlsync retries an interrupted synchronization until it completes, successfully or
unsuccessfully, without being interrupted. If num is 0 then dbmlsync does not retry the interrupted
synchronization. If num is greater than 0 then dbmlsync retries the synchronization up to num times until
it completes. After num attempts, if the synchronization has not completed, then it is run as a foreground
synchronization so it will complete without interruption.

By default BackgroundRetry is 0. It is an error to set BackgroundRetry to a non-zero value when the
Background option has not been set to TRUE. See “-bk dbmlsync option” on page 100.

The BackgroundRetry is ignored when the dbmlsync API or the SQL SYNCHRONIZE statement is used.

See also
● “-bk dbmlsync option” on page 100
● “BackgroundRetry synchronization profile option” on page 162

-c dbmlsync option
Specifies connection parameters for the remote database.

Syntax
dbmlsync -c "connection-string" ...

Remarks
The connection string must give dbmlsync permission to connect to the SQL Anywhere remote database
with DBA or REMOTE DBA authority. It is recommended that you use a user ID with REMOTE DBA
authority.

Specify the connection string in the form keyword=value, with multiple parameters separated by
semicolons. If any of the parameter names contain spaces, you need to enclose the connection string in
double quotes.

MobiLink SQL Anywhere client utility (dbmlsync)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 101

If you do not specify -c, a dbmlsync Setup window appears. You can specify the remaining command line
options in the connection window fields.

For a complete list of connection parameters for connecting to SQL Anywhere databases, see
“Connection parameters” [SQL Anywhere Server - Database Administration].

-ci dbmlsync option
Sets the initial size of the dbmlsync cache.

Syntax
dbmlsync -ci size [K | M | P]...

Remarks
The size is the initial cache size, in bytes, used by dbmlsync to store synchronization data. You can
optionally use the suffix K or M to specify units of kilobytes or megabytes, respectively.

To specify the size as a percentage of the total physical memory in the system, specify a number between
0 and 100, followed by the letter p. For example, -ci 30p sets the initial cache size to 30% of the
physical memory.

See also
● “CacheInit synchronization profile option” on page 163

-cl dbmlsync option
Set the minimum size to which the dbmlsync cache file is reduced.

Syntax
dbmlsync -cl size [K | M | P]...

Remarks
The size is the smallest size, in bytes, that the dbmlsync cache can be reduced to. You can optionally use
the suffix K or M to specify units of kilobytes or megabytes, respectively.

To specify the size as a percentage of the total physical memory in the system, specify a number between
0 and 100, followed by the letter p. For example, -cl 5p ensures the cache size will not drop below 5%
of the physical memory.

See also
● “CacheMin synchronization profile option” on page 164

SQL Anywhere clients for MobiLink

102 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

-cm dbmlsync option
Set the maximum size limit for the dbmlsync cache.

Syntax
dbmlsync -cm size [K | M | P]...

Remarks
The size is the largest size, in bytes, that the dbmlsync cache can grow to. You can optionally use the
suffix K or M to specify units of kilobytes or megabytes, respectively.

To specify the size as a percentage of the total physical memory in the system, specify a number between
0 and 100, followed by the letter p. For example, -cm 60p limits the maximum size of the cache to 60%
of physical memory.

See also
● “CacheMax synchronization profile option” on page 164

-d dbmlsync option
Drops conflicting locks to the remote database.

Syntax
dbmlsync -d ...

Remarks
In cases where dbmlsync must obtain locks on the tables being synchronized, if another connection has a
lock on one of these tables, the synchronization may fail or be delayed. Specifying this option forces SQL
Anywhere to drop any other connections to the remote database that hold conflicting locks so that
synchronization can proceed immediately.

See also
● “Concurrency during synchronization” on page 82
● “KillConnections synchronization profile option” on page 169

-dc dbmlsync option
Restart a previously failed download.

Syntax
dbmlsync -dc ...

MobiLink SQL Anywhere client utility (dbmlsync)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 103

Remarks
By default, if dbmlsync fails during a download it doesn't apply any of the download data to the remote
database. However, it stores the part of the download it did receive in a temporary file on the remote
device, so that if you specify -dc the next time you synchronize, it can more quickly complete the
download. When you specify -dc, dbmlsync attempts to download the part of the previous download that
it did not receive. If it is able to download the remaining data, it applies the complete download to your
remote database, otherwise the synchronization fails.

If there is any new data to be uploaded when you use -dc, the restartable download fails.

You can also restart a failed download using the ContinueDownload extended option or the
sp_hook_dbmlsync_end hook.

See also
● “Resuming failed downloads” [MobiLink - Server Administration]
● “ContinueDownload (cd) extended option” on page 130
● “sp_hook_dbmlsync_end” on page 203
● “DownloadReadSize (drs) extended option” on page 133
● “ContinueDownload synchronization profile option” on page 165

-dl dbmlsync option

Displays messages in the dbmlsync messages window or command prompt, and the message log file.

Syntax
dbmlsync -dl ...

Remarks
Normally when output is logged to a file, more messages are written to the log file than to the dbmlsync
window. This option forces dbmlsync to write information normally only written to the file to the window
as well. Using this option may reduce the speed of synchronization.

-do dbmlsync option

Disables scanning of offline transaction logs.

Syntax
dbmlsync -do ...

Remarks
If transaction log files for multiple databases are stored in a single directory, dbmlsync might not be able
to sync from any of these databases, even if there is no offline transaction log file for any of these
databases. If the -d option is used with dbmlsync, dbmlsync does not attempt to scan any offline

SQL Anywhere clients for MobiLink

104 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

transaction logs and should be able to synchronize from a database that is stored with all the other
databases in a single directory.

If this option is used and if offline transaction logs are required, dbmlsync is not able to synchronize.

This option cannot be used with -x option.

-drs dbmlsync option
For restartable downloads, specifies the maximum number of bytes that may need to be resent after a
communications failure.

Syntax
dbmlsync -drs bytes ...

Remarks
The -drs option specifies a download read size that is only useful when doing restartable downloads.

Dbmlsync reads the download in chunks. The download read size defines the size of these chunks. When
a communication error occurs, dbmlsync loses the entire chunk that was being processed. Depending on
when the error occurs, the number of bytes lost ranges between 0 and the download read size -1. So for
example, if the DownloadReadSize is 100 bytes and an error occurs after reading 497 bytes, the last 97
bytes read are lost. Bytes that are lost in this way are resent when the download is restarted.

In general, larger download read size values result in better performance on successful synchronizations
but result in more data being resent when an error occurs.

The typical use of this option is to reduce the default size when communication is unreliable.

The default is 32767. If you set this option to a value larger than 32767, the value 32767 is used.

You can also specify the download read size using the DownloadReadSize extended option.

See also
● “DownloadReadSize (drs) extended option” on page 133
● “Resuming failed downloads” [MobiLink - Server Administration]
● “ContinueDownload (cd) extended option” on page 130
● “sp_hook_dbmlsync_end” on page 203
● “-dc dbmlsync option” on page 103

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -drs 100

MobiLink SQL Anywhere client utility (dbmlsync)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 105

-ds dbmlsync option
Performs a download-only synchronization.

Syntax
dbmlsync -ds ...

Remarks
When download-only synchronization occurs, dbmlsync does not upload any database changes. However,
it does upload information about the schema and progress offset.

In addition, dbmlsync ensures that changes on the remote are not overwritten during download-only
synchronization. It does this by scanning the log to detect rows with operations waiting to be uploaded. If
any of these rows is modified by the download, the download is rolled back and the synchronization fails.
If the synchronization fails for this reason, you must do a full synchronization to correct the problem.

When you have remotes that are synchronized by download-only synchronization, you should regularly
do a full bi-directional synchronization to reduce the amount of log that is scanned by the download-only
synchronization. Otherwise, the download-only synchronizations take an increasingly long time to complete.

When -ds is used, the ConflictRetries extended option is ignored. dbmlsync never retries a download-only
synchronization. When a download-only synchronization fails, it continues to fail until a normal
synchronization is performed.

For a list of the scripts that must be defined for download-only synchronization, see “Required scripts”
[MobiLink - Server Administration].

See also
● “Upload-only and download-only synchronizations” [MobiLink - Server Administration]
● “DownloadOnly (ds) extended option” on page 132
● “Download-only publications” on page 71
● “DownloadOnly synchronization profile option” on page 166

-e dbmlsync option
Specifies extended options.

Syntax
dbmlsync -e extended-option=value; ...

Remarks
Extended options can be specified by their long form or short form. For a list of extended options, see
“MobiLink SQL Anywhere client extended options” on page 126.

Use the dbmlsync -l option to get a list of all the extended options. See “-l dbmlsync option” on page 109.

SQL Anywhere clients for MobiLink

106 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Options specified on the command line with the -e option apply to all synchronizations requested on the
command line. For example, in the following command line the extended option drs=512 applies to the
synchronization of both sub1 and sub2.

dbmlsync -e "drs=512" -s sub1 -s sub2

You can review extended options in the dbmlsync message log and the SYSSYNC system view.

To specify extended options for a single upload, use the -eu option.

See also
● “-eu dbmlsync option” on page 108
● “SYSSYNC system view” [SQL Anywhere Server - SQL Reference]
● “sp_hook_dbmlsync_set_extended_options” on page 219
● “ExtOpt synchronization profile option” on page 168

Example
The following dbmlsync command line illustrates how you can set extended options when you start
dbmlsync:

dbmlsync -e "adr=host=localhost;dir=c:\db\logs"...

-eh dbmlsync option
Ignores errors that occur in hook functions.

Syntax
dbmlsync -eh ...

See also
● “IgnoreHookErrors synchronization profile option” on page 168

-ek dbmlsync option
Allows you to specify the encryption key for strongly encrypted remote databases directly on the
command line.

Syntax
dbmlsync -ek key ...

Remarks
If you have a strongly encrypted remote database, you must provide the encryption key to use the
database or transaction log in any way, including offline transactions. For strongly encrypted databases,
you must specify either -ek or -ep, but not both. The command fails if you do not specify a key for a
strongly encrypted database.

MobiLink SQL Anywhere client utility (dbmlsync)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 107

-ep dbmlsync option
Prompt for the encryption key for the remote database.

Syntax
dbmlsync -ep ...

Remarks
This option causes a window to appear, in which you enter the encryption key. It provides an extra
measure of security by never allowing the encryption key to be seen in clear text. For strongly encrypted
remote databases, you must specify either -ek or -ep, but not both. The command fails if you do not
specify a key for a strongly encrypted database.

-eu dbmlsync option
Specifies extended upload options.

Syntax
dbmlsync -s subscription-name -eu keyword=value;...

dbmlsync -n publication-name -eu keyword=value;...

Remarks
Extended options that are specified on the command line with the -eu option apply only to the
synchronization specified by the -n option or the -s option they follow. For example, on the following
command line, the extended option eh=on applies only to the synchronization of subscription sub2.

dbmlsync -s sub1 -s sub2 -eu eh=on

For an explanation of how extended options are processed when they are set in more than one place, see
“MobiLink SQL Anywhere client extended options” on page 126.

For a complete list of extended options, see “MobiLink SQL Anywhere client extended
options” on page 126.

-is dbmlsync option
Ignores the Schedule extended option.

Syntax
dbmlsync -is ...

Remarks
Ignore extended options that schedule synchronization.

SQL Anywhere clients for MobiLink

108 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

For information about scheduling, see “Scheduling synchronization” on page 87.

See also
● “IgnoreScheduling synchronization profile option” on page 169

-k dbmlsync option (deprecated)
Shuts down dbmlsync when synchronization is finished. Dbmlsync does not shut down if an error occurs
during the synchronization unless the -c or -ot option is also specified.

This option is deprecated. Use -qc instead.

Syntax
dbmlsync -k ...

See also
● “-qc dbmlsync option” on page 116

-l dbmlsync option
Lists available extended options.

Syntax
dbmlsync -l ...

See also
● “MobiLink SQL Anywhere client extended options” on page 126

-mn dbmlsync option
Supplies a new password for the MobiLink user being synchronized.

Syntax
dbmlsync -mn password ...

Remarks
Changes the MobiLink user's password.

For more information, see “MobiLink users” on page 4.

MobiLink SQL Anywhere client utility (dbmlsync)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 109

See also
● “MobiLinkPwd (mp) extended option” on page 140
● “NewMobiLinkPwd (mn) extended option” on page 140
● “-mp dbmlsync option” on page 110
● “NewMobiLinkPwd synchronization profile option” on page 171

-mp dbmlsync option

Supplies the password of the MobiLink user being synchronized.

Syntax
dbmlsync -mp password ...

Remarks
Supplies the password for MobiLink user authentication.

For more information, see “MobiLink users” on page 4.

See also
● “MobiLinkPwd (mp) extended option” on page 140
● “NewMobiLinkPwd (mn) extended option” on page 140
● “-mn dbmlsync option” on page 109

-n dbmlsync option (deprecated)

Note
This option has been deprecated. It is recommended that you use the -s dbmlsync option instead. See “-s
dbmlsync option” on page 117.

To use the dbmlsync -s option you need to determine the subscription name for the subscription you want
to synchronize. You can determine the subscription name using the following query:

SELECT subscription_name
FROM syssync JOIN sys.syspublication
WHERE site_name = <ml_user> AND publication_name = <pub_name>;

Replace <ml_user> with the MobiLink user you are synchronizing. This is the value specified by the -u
option on the dbmlsync command line. See “-u dbmlsync option (deprecated)” on page 120.

Replace <pub_name> with the name of the publication being synchronized. This is the value specified
with the -n option on the dbmlsync command line. See “-n dbmlsync option (deprecated)” on page 110.

Specifies the publication(s) to synchronize.

SQL Anywhere clients for MobiLink

110 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
dbmlsync -n pubname ...

Remarks
You can supply more than one -n option to synchronize more than one synchronization publication.

There are two ways to use -n to synchronize multiple publications:

● Specify -n pub1,pub2,pub3 to upload pub1, pub2, and pub3 in one upload followed by one
download.

In this case, if you have set extended options on the publications or subscriptions, only the options set
on the first publication in the list and its subscription are used. Extended options set on subsequent
publications and subscriptions are ignored.

● Specify -n pub1 -n pub2 -n pub3 to synchronize pub1, pub2, and pub3 in three separate
sequential synchronizations.

When successive synchronizations occur very quickly, such as when you specify -n pub1 -n
pub2, dbmlsync could start processing a synchronization when the server is still processing the
previous synchronization. In this case, the second synchronization fails with an error indicating that
concurrent synchronizations are not allowed. If you run into this situation, you can define an
sp_hook_dbmlsync_delay stored procedure to create a delay before each synchronization. Usually a
few seconds to a minute is a enough delay.

For more information, see “sp_hook_dbmlsync_delay” on page 191.

See also
● “Publication synchronization profile option” on page 172

-o dbmlsync option
Specifies the name of the dbmlsync message log file.

Syntax
dbmlsync -o filename ...

Remarks
Append output to a log file. Default is to send output to the screen.

See also
● “-os dbmlsync option” on page 111
● “-ot dbmlsync option” on page 112

-os dbmlsync option

MobiLink SQL Anywhere client utility (dbmlsync)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 111

Specifies a maximum size for the dbmlsync message log file, at which point the log is renamed.

Syntax
dbmlsync -os size [K | M | G]...

Remarks
The size is the maximum file size for the dbmlsync message logs, specified in units of bytes. Use the
suffix k, m or g to specify units of kilobytes, megabytes or gigabytes, respectively. By default, there is no
size limit. The minimum size limit is 10K.

Before the dbmlsync utility logs output messages to a file, it checks the current file size. If the log
message makes the file size exceed the specified size, the dbmlsync utility renames the output file to
yymmddxx.dbs, where yymmdd represents the year, month, and day, and xx are sequential characters
ranging from AA to ZZ.

This option allows you to manually delete old log files and free up disk space.

See also
● “-o dbmlsync option” on page 111
● “-ot dbmlsync option” on page 112

-ot dbmlsync option
Deletes the contents of the specified file and then logs output messages to it.

Syntax
dbmlsync -ot logfile ...

Remarks
The functionality is the same as the -o option except the contents of the message log file are deleted when
dbmlsync starts up, before any messages are written to it.

See also
● “-o dbmlsync option” on page 111
● “-os dbmlsync option” on page 111

-p dbmlsync option
Disables logscan polling.

Syntax
dbmlsync -p ...

SQL Anywhere clients for MobiLink

112 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
To build an upload, dbmlsync must scan the transaction log. Usually it does this at the beginning of
synchronization. However, when synchronizations are scheduled or when the sp_hook_dbmlsync_delay
hook is used, dbmlsync by default scans the log in the pause that occurs before synchronization. This
behavior is more efficient because when synchronization begins the log is already at least partially
scanned. This default behavior is called logscan polling.

Logscan polling is on by default but only has an effect when synchronizations are scheduled using the
Schedule extended option or when sp_hook_dbmlsync_delay hook is used. When in effect, polling occurs
at set intervals. The default interval is 1 minute, but it can be changed with the dbmlsync -pp option.

This option is identical to the extended option DisablePolling=on.

See also
● “DisablePolling (p) extended option” on page 131
● “PollingPeriod (pp) extended option” on page 142
● “-pp dbmlsync option” on page 115

-pc+ dbmlsync option

Maintain a persistent connection to the MobiLink server between synchronizations.

Syntax
dbmlsync -pc+ ...

Remarks
When this option is specified, dbmlsync connects to the MobiLink server as usual, but it then keeps that
connection open for use during subsequent synchronizations. A persistent connection is closed when any
of the following occur:

● An error occurs that causes a synchronization to fail.

● Liveness checking has timed out.

See “timeout” on page 50.

● A synchronization is initiated in which the communication type or address are different. This could
mean that the settings are different (for example, a different host is specified), or that they are
specified in a different way (for example, the same host and port are specified, but in a different order).

When a persistent connection is closed, a new connection is opened that is also persistent.

This option is most useful when the client synchronizes frequently and the cost of establishing a
connection to the server is high.

By default, persistent connections are not maintained.

MobiLink SQL Anywhere client utility (dbmlsync)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 113

-pd dbmlsync option
Preload specified DLLs for Windows Mobile.

Syntax
dbmlsync -pd dllname;...

Remarks
When running dbmlsync on Windows Mobile, if you are using encrypted communication streams you
must use the -pd option to ensure that the appropriate DLLs are loaded at startup. Otherwise, dbmlsync
does not attempt to load the DLLs until they are needed. Loading these DLLs late is prone to failure due
to resource limitations on Windows Mobile.

The following are the DLLs that need to be loaded for each communication protocol:

Protocol DLL

ECC mlcecc12.dll

RSA mlcrsa12.dll

FIPS mlcrsafips12.dll

You should specify multiple DLLs as a semicolon-separated list. For example:

-pd mlcrsafips12.dll;mlcrsa12.dll

-pi dbmlsync option
Pings a MobiLink server.

Syntax
dbmlsync -pi -c connection_string ...

Remarks
When you use -pi, dbmlsync connects to the remote database, retrieves information required to connect to
the MobiLink server, connects to the server, and authenticates the specified MobiLink user. When the
MobiLink server receives a ping, it connects to the consolidated database, authenticates the user, and then
sends the authenticating user status and value back to the client. If the MobiLink user name cannot be
found in the ml_user system table and the MobiLink server is running with the command line option -zu+,
the MobiLink server adds the user to the ml_user MobiLink system table.

To adequately test your connection, you should use the-pi option with all the synchronization options you
want to use to synchronize with dbmlsync. When -pi is included, dbmlsync does not perform a
synchronization.

SQL Anywhere clients for MobiLink

114 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

If the ping succeeds, the MobiLink server issues an information message. If the ping does not succeed, it
issues an error message.

When you start dbmlsync with -pi, the MobiLink server can execute only the following scripts, if they exist:

● begin_connection

● authenticate_user

● authenticate_user_hashed

● authenticate_parameters

● end_connection

See also
● “Ping synchronization profile option” on page 172

-po dbmlsync option
When dbmlsync is in server mode, this option specifies the port on which dbmlsync listens for
connections from clients.

Syntax
dbmlsync -po port number ...

Remarks
This option can only be used with the -sm option.

See also
● “-sm dbmlsync option” on page 118

-pp dbmlsync option
Specifies the frequency of log scans.

Syntax
dbmlsync -pp number [h | m | s]...

Remarks
To build an upload, dbmlsync must scan the transaction log. Usually it does this at the beginning of
synchronization. However, when synchronizations are scheduled or when the sp_hook_dbmlsync_delay
hook is used, dbmlsync by default scans the log in the pause that occurs before synchronization. This
behavior is more efficient because when synchronization begins the log is already at least partially
scanned. This default behavior is called logscan polling.

MobiLink SQL Anywhere client utility (dbmlsync)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 115

This option specifies the interval between log scans. Use the suffix s, m, h, or d to specify seconds,
minutes, hours or days, respectively. The default is 1 minute. If you do not specify a suffix, the default
unit of time is minutes.

See also
● “PollingPeriod (pp) extended option” on page 142
● “DisablePolling (p) extended option” on page 131
● “-p dbmlsync option” on page 112

-q dbmlsync option

Starts the MobiLink synchronization client in a minimized window.

Syntax
dbmlsync -q ...

-qc dbmlsync option

Shuts down dbmlsync when synchronization is finished.

Syntax
dbmlsync -qc ...

Remarks
When used, dbmlsync exits after synchronization is completed if the synchronization was successful or if
a message log file was specified using the -o or -ot options.

See also
● “-o dbmlsync option” on page 111
● “-ot dbmlsync option” on page 112

-r dbmlsync option

Specifies that the remote offset should be used when there is disagreement between the offsets in the
remote and consolidated databases.

The -rb option indicates that the remote offset should be used if it is less than the consolidated offset (such
as when the remote database has been restored from backup). The -r option is provided for backward
compatibility and is identical to -rb. The -ra option indicates that the remote offset should be used if it is
greater than the consolidated offset. This option is provided only for very rare circumstances and may
cause data loss.

SQL Anywhere clients for MobiLink

116 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
dbmlsync { -r | -ra | -rb } ...

Remarks
For information about progress offsets, see “Progress offsets” on page 66.

-rb If the remote database is restored from backup, the default behavior may cause data to be lost. In
this case, the first time you run dbmlsync after the remote database is restored, you should specify -rb.
When you use -rb, the upload continues from the offset recorded in the remote database if the offset
recorded in the remote is less than that obtained from the consolidated database. If you use -rb and the
offset in the remote is not less than the offset from the consolidated database, an error is reported and the
synchronization is aborted.

The -rb option may result in some data being uploaded that has already been uploaded. This can result in
conflicts in the consolidated database and should be handled with appropriate conflict resolution scripts.

-ra The -ra option should be used only in very rare cases. If you use -ra, the upload is retried starting
from the offset obtained from the remote database if the remote offset is greater than the offset obtained
from the consolidated database. If you use -ra and the offset in the remote is not greater than the offset
from the consolidated database, an error is reported and the synchronization is aborted.

The -ra option should be used with care. If the offset mismatch is the result of a restore of the
consolidated database, changes that happened in the remote database in the gap between the two offsets
are lost. The -ra option may be useful when the consolidated database has been restored from backup and
the remote database transaction log has been truncated at the same point as the remote offset. In this case,
all data that was uploaded from the remote database is lost from the point of the consolidated offset to the
point of the remote offset.

See also
● “RemoteProgressGreater synchronization profile option” on page 173
● “RemoteProgressLess synchronization profile option” on page 174

-s dbmlsync option
Specifies the subscription(s) to be synchronized.

Syntax
dbmlsync -s subname ...

Remarks
This option replaces the -n dbmlsync option.

There are two ways to use -s to synchronize multiple subscriptions:

● Specify -s sub1,sub2,sub3 to synchronize sub1, sub2, and sub3 in one upload followed by one
download.

MobiLink SQL Anywhere client utility (dbmlsync)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 117

In this case, if you have set extended options on the subscriptions, only the options set on the first
subscription in the list are used. Extended options set on subsequent subscriptions ignored.

● Specify -s sub1 -s sub2 -s sub3 to synchronize sub1, sub2, and sub3 in three separate
sequential synchronizations, each with its own upload and download.

When successive synchronizations occur very quickly, such as when you specify -s sub1 -s
sub2, dbmlsync could start processing a synchronization when the server is still processing the
previous synchronization. In this case, the second synchronization fails with an error indicating that
concurrent synchronizations are not allowed. If you run into this situation, you can define an
sp_hook_dbmlsync_delay stored procedure to create a delay before each synchronization. Usually a
few seconds to a minute is a enough delay.

For more information, see “sp_hook_dbmlsync_delay” on page 191.

See also
● “Subscription synchronization profile option” on page 174

-sc dbmlsync option
Specifies that dbmlsync should reload schema information before each synchronization.

Syntax
dbmlsync -sc ...

Remarks
Before version 9.0, dbmlsync reloaded schema information from the database before each
synchronization. The information that was reloaded includes foreign key relationships, publication
definitions, extended options stored in the database, and information about database settings. Loading this
information is time-consuming and often the information does not change between synchronizations.

Starting with version 9.0, by default dbmlsync loads schema information only at startup. Specify -sc if
you want the information to be loaded before every synchronization.

-sm dbmlsync option
Causes dbmlsync to start in server mode.

Syntax
dbmlsync -sm ...

Remarks
When in server mode, dbmlsync starts up and waits for connections from applications using the
Dbmlsync API or the SQL SYNCHRONIZE statement.

This option should only be used when starting a dbmlsync server from the command line.

SQL Anywhere clients for MobiLink

118 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Normally dbmlsync servers are started directly using the Dbmlsync API or the SQL SYNCHRONIZE
statement. This option should not be used when either of those methods is used.

See also
● “-po dbmlsync option” on page 115

-sp dbmlsync option

When -sp is used, the options in the specified synchronization profile are added to those specified on the
command line for the synchronization.

Syntax
dbmlsync -sp sync profile ...

Remarks
If equivalent options are specified on the command line and in the synchronization profile, then the
options on the command line override those specified in the profile.

See also
● “CREATE SYNCHRONIZATION PROFILE statement [MobiLink]” [SQL Anywhere Server - SQL

Reference]
● “ALTER SYNCHRONIZATION PROFILE statement [MobiLink]” [SQL Anywhere Server - SQL

Reference]
● “DROP SYNCHRONIZATION PROFILE statement [MobiLink]” [SQL Anywhere Server - SQL

Reference]
● “MobiLink synchronization profiles” on page 157

-tu dbmlsync option

Specifies that each transaction on the remote database should be uploaded as a separate transaction within
one synchronization.

Syntax
dbmlsync -tu ...

Remarks
When you use -tu, you create a transactional upload: dbmlsync uploads each transaction on the remote
database as a distinct transaction. The MobiLink server applies and commits each transaction separately
when it is received.

When you use -tu, the order of transactions on the remote database is always preserved on the
consolidated database. However, the order of operations in a transaction may not be preserved, for two
reasons:

MobiLink SQL Anywhere client utility (dbmlsync)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 119

● MobiLink always applies updates based on foreign key relationships. For example, when data is
changed in child and parent tables, MobiLink inserts data into the parent table before the child table,
but deletes data from the child before the parent. If your remote operations do not follow this order,
the order of operations differ on the consolidated database.

● Operations within a transaction are coalesced. This means that if you change the same row three times
in one transaction, only the final form of the row is uploaded.

If a transactional upload is interrupted, the data that was not sent is sent in the next synchronization.
Typically, only the transactions that were not successfully completed are sent at that time. Sometimes,
such as when the upload failure occurs during the first synchronization of a subscription, dbmlsync
resends all transactions.

When you do not use -tu, MobiLink coalesces all changes on the remote database into one transaction in
the upload. This means that if you change the same row three times between synchronizations, regardless
of the number of remote transactions, only the final form of the row is uploaded. This default behavior is
efficient and is optimal in many situations.

However, in certain situations you may want to preserve remote transactions on the consolidated database.
For example, you may want to define triggers on the consolidated database that act on transactions as they
occur in the remote database.

In addition, there are advantages to breaking up the upload into smaller transactions. Many consolidated
databases are optimized for small transactions, so sending a very large transaction is not efficient or may
cause too much contention. Also, when you use -tu you may not lose the entire upload if there are
communications errors during the upload. When you use -tu and there is an upload error, all successfully
uploaded transactions are applied.

The -tu option makes MobiLink behave in a manner that is very close to SQL Remote. The main
difference is that SQL Remote replicates all changes to the remote database in the order they occur,
without coalescing. To mimic this behavior, you must commit after each database operation on the remote
database.

You cannot use -tu with the Increment extended option or with scripted uploads.

See also
● “-tx mlsrv12 option” [MobiLink - Server Administration]
● “Uploading data from self-referencing tables” [MobiLink - Server Administration]
● “TransactionalUpload synchronization profile option” on page 175

-u dbmlsync option (deprecated)

SQL Anywhere clients for MobiLink

120 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Note
This option has been deprecated. It is recommended that you use the -s dbmlsync option instead. See “-s
dbmlsync option” on page 117.

To use the dbmlsync -s option you need to determine the subscription name for the subscription you want
to synchronize. You can determine the subscription name using the following query:

SELECT subscription_name
FROM syssync JOIN sys.syspublication
WHERE site_name = <ml_user> AND publication_name = <pub_name>;

Replace <ml_user> with the MobiLink user you are synchronizing. This is the value specified by the -u
option on the dbmlsync command line. See “-u dbmlsync option (deprecated)” on page 120.

Replace <pub_name> with the name of the publication being synchronized. This is the value specified
with the -n option on the dbmlsync command line. See “-n dbmlsync option (deprecated)” on page 110.

Specifies the MobiLink user name.

Syntax
dbmlsync -u ml_username ...

Remarks
You can specify only one user on the dbmlsync command line, where ml_username is the name used in
the FOR clause of the CREATE SYNCHRONIZATION SUBSCRIPTION statement corresponding to the
subscription to be processed.

This option should be used in conjunction with -n publication to identify the subscription on which
dbmlsync should operate. Each subscription is uniquely identified by an ml_username, publication pair.

You can only specify one user name on the command line. All subscriptions to be synchronized in a
single run must involve the same user. The -u option can be omitted if each publication that is specified
on the command line with the -n option has only one subscription.

See also
● “MLUser synchronization profile option (deprecated)” on page 171

-ud dbmlsync option
For Unix platforms only, instructs dbmlsync to run as a daemon.

Syntax
dbmlsync -ud ...

Remarks
Unix platforms only.

MobiLink SQL Anywhere client utility (dbmlsync)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 121

If you run dbmlsync as a daemon, you should also supply either the -o or -ot option to log output information.

When you start dbmlsync as a daemon, its permissions are controlled by the current user's umask setting.
It is recommended that you set the umask value before starting dbmlsync to ensure that dbmlsync has the
appropriate permissions.

See also
● “-o dbmlsync option” on page 111
● “-ot dbmlsync option” on page 112

-ui dbmlsync option

For Linux with X Windows server support, starts dbmlsync in shell mode if a usable display is not available.

Syntax
dbmlsync -ui ...

Remarks
When this option is used, dbmlsync tries to start with X Windows. If this fails, it starts in shell mode.

When -ui is specified, dbmlsync attempts to find a usable display. If it cannot find one, for example
because the X Windows server isn't running, then dbmlsync starts in shell mode.

-uo dbmlsync option

Specifies that synchronization only includes an upload.

Syntax
dbmlsync -uo...

Remarks
During upload-only synchronization, dbmlsync prepares and sends an upload to MobiLink exactly as it
would in a normal full synchronization. However, instead of sending a download back down, MobiLink
sends only an acknowledgement indicating if the upload was successfully committed.

For a list of the scripts that must be defined for upload-only synchronization, see “Required scripts”
[MobiLink - Server Administration].

See also
● “Upload-only and download-only synchronizations” [MobiLink - Server Administration]
● “DownloadOnly (ds) extended option” on page 132
● “UploadOnly (uo) extended option” on page 150
● “UploadOnly synchronization profile option” on page 176

SQL Anywhere clients for MobiLink

122 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

-urc dbmlsync option

Specifies an estimate of the number of rows to be uploaded in a synchronization.

Syntax
dbmlsync -urc row-estimate ...

Remarks
To improve performance, you can specify an estimate of the number of rows to upload in a
synchronization. This setting is especially useful when you are uploading a large number of rows. A
higher estimate results in faster uploads but more memory usage.

Synchronization proceeds correctly regardless of the specified estimate.

See also
● “For large uploads, estimate the number of rows” [MobiLink - Server Administration]
● “UploadRowCnt synchronization profile option” on page 176

-ux dbmlsync option

On Linux, opens a dbmlsync messages window where messages are displayed.

Syntax
dbmlsync -ux...

Remarks
When -ux is specified, dbmlsync must be able to find a usable display. If it cannot find one, for example
because the DISPLAY environment variable is not set or because the X window server is not running,
dbmlsync fails to start.

To run the dbmlsync messages window in quiet mode, use -q.

On Windows, the dbmlsync messages window appears automatically.

See also
● “-q dbmlsync option” on page 116

-v dbmlsync option

Allows you to specify what information is logged to the message log file and displayed in the
synchronization window. A high level of verbosity may affect performance and should normally be used
in the development phase only.

MobiLink SQL Anywhere client utility (dbmlsync)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 123

Syntax
dbmlsync -v [levels] ...

Remarks
The -v options affect the message log file and synchronization window. You only have a message log if
you specify -o or -ot on the dbmlsync command line.

If you specify -v alone, a small amount of information is logged but more information than if -v is omitted.

The values of levels are as follows. You can use one or more of these options at once; for example, -vnrsu
or -v+cp.

● + Turn on all logging options except for c and p.

● c Expose the connect string in the log.

● p Expose the MobiLink password in the log.

● n Log the number of rows that were uploaded and downloaded.

● o Log information about the command line options and extended options that you have specified.

● r Log the values of rows that were uploaded and downloaded.

● s Log messages related to hook scripts.

● u Log information about the upload.

There are extended options that have similar functionality to the -v options. If you specify both -v and the
extended options and there are conflicts, the -v option overrides the extended option. If there is no
conflict, the verbosity logging options are additive—all options that you specify are used. When logging
verbosity is set by extended option, the logging does not take effect immediately, so startup information is
not logged. By the time of the first synchronization, the logging behavior is identical between the -v
options and the extended options.

See also
● “Verbose (v) extended option” on page 150
● “VerboseHooks (vs) extended option” on page 151
● “VerboseMin (vm) extended option” on page 152
● “VerboseOptions (vo) extended option” on page 153
● “VerboseRowCounts (vn) extended option” on page 154
● “VerboseRowValues (vr) extended option” on page 155
● “-o dbmlsync option” on page 111
● “-ot dbmlsync option” on page 112
● “Verbosity synchronization profile option” on page 177

-wc dbmlsync option

SQL Anywhere clients for MobiLink

124 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Specifies a window class name.

Syntax
dbmlsync -wc class-name ...

Remarks
This option specifies a window class name that can be used to wake up dbmlsync whenever it is in hover
mode, such as when scheduling is enabled or when you are using server-initiated synchronization.

In addition, the window class name identifies the application for Microsoft ActiveSync synchronization.
The class name must be given when registering the application for use with Microsoft ActiveSync
synchronization.

This option applies only to Windows.

See also
● “Registering SQL Anywhere clients for Microsoft ActiveSync” on page 86
● “Using Microsoft ActiveSync synchronization” on page 83
● INFINITE keyword in “Schedule (sch) extended option” on page 143
● “Scheduling synchronization” on page 87

Example
dbmlsync -wc dbmlsync_$message_end...

-x dbmlsync option
Renames and restarts the transaction log.

Syntax
dbmlsync -x [size [K | M | G] ...

Remarks
When the optional size is specified the log is renamed if it is larger than that size in bytes. Use the suffix
k, m or g to specify units of kilobytes, megabytes or gigabytes, respectively. The default size is 0.

If backups are not routinely performed at the remote database, the transaction log continues to grow. As
an alternative to using the -x option to control transaction log size, you can use a SQL Anywhere event
handler to control the size of the transaction log.

See also
● “Automating tasks using schedules and events” [SQL Anywhere Server - Database Administration]
● “delete_old_logs option [SQL Remote]” [SQL Anywhere Server - Database Administration]
● “CREATE EVENT statement” [SQL Anywhere Server - SQL Reference]

MobiLink SQL Anywhere client utility (dbmlsync)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 125

MobiLink SQL Anywhere client extended options
Introduction to dbmlsync extended options

Extended options can be specified on the dbmlsync command line using the -e or -eu options, or they can
be stored in the database. You store extended options in the database by using Sybase Central, by using
the sp_hook_dbmlsync_set_extended_options event hook, or by using the OPTION clause in any of the
following statements:

● CREATE SYNCHRONIZATION SUBSCRIPTION

● ALTER SYNCHRONIZATION SUBSCRIPTION

● CREATE SYNCHRONIZATION USER

● ALTER SYNCHRONIZATION USER

● CREATE SYNCHRONIZATION SUBSCRIPTION without specifying a synchronization user (which
associates extended options with a publication)

Priority order
Dbmlsync combines options stored in the database with those specified on the command line. If
conflicting options are specified, dbmlsync resolves them as follows. In the following list, options
specified by methods occurring earlier in the list take precedence over those occurring later in the list.

1. Options specified in the sp_hook_dbmlsync_set_extended_options event hook.

2. Options specified in the command line that aren't extended options. (For example, -ds overrides -e
"ds=off".

3. Options specified in the command line with the -eu option.

4. Options specified in the command line with the -e option.

5. Options specified for the subscription, whether by a SQL statement or in Sybase Central. When you
use the Deploy Synchronization Model Wizard to deploy a MobiLink model, extended options are
set for you and are specified in the subscription.

6. Options specified for the MobiLink user, whether by a SQL statement or in Sybase Central.

7. Options specified for the publication, whether by a SQL statement or in Sybase Central.

Note
This priority order also affects connection parameters, such as those specified with the TYPE and
ADDRESS options in the SQL statements mentioned above.

You can review extended options in the log and the SYSSYNC system view.

SQL Anywhere clients for MobiLink

126 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

For information about how extended options can be used to tune synchronization, see “Using dbmlsync
extended options” on page 80.

See also
● “-e dbmlsync option” on page 106
● “-eu dbmlsync option” on page 108
● “CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” [SQL Anywhere Server -

SQL Reference]
● “ALTER SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” [SQL Anywhere Server -

SQL Reference]
● “CREATE SYNCHRONIZATION USER statement [MobiLink]” [SQL Anywhere Server - SQL

Reference]
● “ALTER SYNCHRONIZATION USER statement [MobiLink]” [SQL Anywhere Server - SQL

Reference]
● “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “ALTER PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “SYSSYNC system view” [SQL Anywhere Server - SQL Reference]
● “sp_hook_dbmlsync_set_extended_options” on page 219

Example
The following dbmlsync command line illustrates how you can set extended options when you start
dbmlsync:

dbmlsync -e "adr=host=localhost;dir=c:\db\logs"...

The following SQL statement illustrates how you can store extended options in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION TO mypub
 FOR mluser
 ADDRESS 'host=localhost'
 OPTION schedule='weekday@11:30am-12:30pm', dir='c:\db\logs'

The following dbmlsync command line opens the usage screen that lists options and their syntax:

dbmlsync -l

BufferDownload (bd) extended option
Specifies whether the entire download from the MobiLink server should be read into the cache before
applying it to the remote database.

Syntax
bd={ON | OFF}; ...

BufferDownload={ON | OFF}; ...

MobiLink SQL Anywhere client extended options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 127

Remarks
The default is ON. The default results in lower load on the MobiLink server and using it should improve
server side throughput.

When BufferDownload is set to off, dbmlsync applies the download as it is read.

CommunicationAddress (adr) extended option

Specifies network protocol options for connecting to the MobiLink server.

Syntax
adr=protocol-option; ...

CommunicationAddress=protocol-option; ...

Remarks
For parameters, see “MobiLink client network protocol option summary” on page 23.

You must ensure that all subscriptions for a MobiLink user are synchronized to only one consolidated
database. Otherwise, you may experience data loss and unpredictable behavior.

Use the CommunicationType extended option to specify the type of network protocol.

See “CommunicationType (ctp) extended option” on page 129.

See also
● “MobiLink client network protocol options” on page 23
● “Relay Server configuration file” [Relay Server]

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "adr=host=localhost"

To specify multiple network protocol options on the command line, enclose them in single quotes. For
example,

dbmlsync -e "adr='host=somehost;port=5001'"

To store the Address or CommunicationType in the database, you can use an extended option or you can
use the ADDRESS clause. For example,

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 ADDRESS 'host=localhost;port=2439'

SQL Anywhere clients for MobiLink

128 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

CommunicationType (ctp) extended option
Specifies the type of network protocol to use for connecting to the MobiLink server.

Syntax
ctp=network-protocol; ...

CommunicationType=network-protocol; ...

Remarks
network-protocol can be one of tcpip, tls, http, or https. The default is tcpip.

You must ensure that all subscriptions for a MobiLink user are synchronized to only one consolidated
database. Otherwise, you may experience data loss and unpredictable behavior.

See also
● “Encrypting MobiLink client/server communications” [SQL Anywhere Server - Database

Administration]
● “CommunicationAddress (adr) extended option” on page 128

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "ctp=https"

The following SQL illustrates how to store this option in the database.

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION ctp='tcpip'

ConflictRetries (cr) extended option
Specifies the number of retries if the download fails because of conflicts.

Syntax
cr=number; ...

ConflictRetries=number; ...

Remarks
When tables are not locked during synchronization, it is possible for operations to be applied to the
database between the time the upload is built and the time that the download is applied. If these changes
affect rows that are also changed by the download, dbmlsync considers this to be a conflict and does not
apply the download stream. When this occurs dbmlsync retries the entire synchronization. Normally the
synchronization succeeds on the next attempt but it is possible for a new conflict to force a new retry. This
option controls the maximum number of retries that are performed.

MobiLink SQL Anywhere client extended options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 129

This option is useful only if the LockTables option is OFF, which is the default.

The default is -1 (retries should continue indefinitely).

See also
● “Handling conflicts” [MobiLink - Server Administration]

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "cr=5"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION cr='5';

ContinueDownload (cd) extended option

Restarts a previously failed download.

Syntax
cd={ ON | OFF }; ...

ContinueDownload={ ON | OFF }; ...

Remarks
If dbmlsync does not receive the entire download from the server, dbmlsync does not apply any of the
download data to the remote database. However, it stores the part of the download it did receive in a
temporary file on the remote device, so that it can be restarted later. When you set the extended option
cd=on, dbmlsync restarts the download and attempts to download the part of the previous download that it
did not receive. If it is able to download the remaining data, it applies the complete download to your
remote database.

If there is any new data to be uploaded when you set cd=on, the synchronization fails without restarting
the download. If the download cannot be restarted, synchronization fails.

You can also restart a download with the -dc option or with the sp_hook_dbmlsync_end hook.

See also
● “Resuming failed downloads” [MobiLink - Server Administration]
● “sp_hook_dbmlsync_set_extended_options” on page 219
● “-dc dbmlsync option” on page 103
● “sp_hook_dbmlsync_end” on page 203

SQL Anywhere clients for MobiLink

130 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "cd=on"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION cd='on';

DisablePolling (p) extended option
Disables automatic logscan polling.

Syntax
p={ON | OFF}; ...

DisablePolling={ON | OFF}; ...

Remarks
To build an upload, dbmlsync must scan the transaction log. Usually it does this just before
synchronization. However, when synchronizations are scheduled or the sp_hook_dbmlsync_delay hook is
used, dbmlsync by default scans the log in the time between synchronizations. This behavior is more
efficient because the log is already at least partially scanned when synchronization begins. This default
behavior is called logscan polling.

Logscan polling is on by default but only has an effect when synchronizations are scheduled or when
sp_hook_dbmlsync_delay hook is used. When in effect, polling occurs at set intervals: dbmlsync scans to
the end of the log, waits for the polling period, and then scans any new transactions in the log. By default,
the polling period is 1 minute, but it can be changed with the dbmlsync -pp option or the PollingPeriod
extended option.

The default is to not disable logscan polling (OFF).

This option is identical to dbmlsync -p.

See also
● “PollingPeriod (pp) extended option” on page 142
● “-p dbmlsync option” on page 112
● “-pp dbmlsync option” on page 115

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "p=on"

The following SQL statement illustrates how you can store this option in the database:

MobiLink SQL Anywhere client extended options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 131

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION p='on';

DownloadOnly (ds) extended option
Specifies that synchronization should be download-only.

Syntax
ds={ ON | OFF }; ...

DownloadOnly={ ON | OFF }; ...

Remarks
When download-only synchronization occurs, dbmlsync does not upload any row operations or data.
However, it does upload information about the schema and progress offset.

In addition, dbmlsync ensures that changes on the remote that have not been uploaded are not overwritten
during download-only synchronization. It does this by scanning the log to detect rows with operations
waiting to be uploaded. If any of these rows is modified by the download, the download is rolled back and
the synchronization fails. If the synchronization fails for this reason, you must do a full synchronization to
correct the problem.

When you have remotes that are synchronized by download-only synchronization, you should regularly
do a full synchronization to reduce the amount of log that is scanned by the download-only
synchronization. Otherwise, the download-only synchronizations take an increasingly long time to
complete. If this is a problem, you can alternatively use a download-only publication to avoid log issues
during synchronization.

For a list of the scripts that must be defined for download-only synchronization, see “Required scripts”
[MobiLink - Server Administration].

The default is OFF (perform both upload and download).

See also
● “-ds dbmlsync option” on page 106
● “Download-only publications” on page 71
● “Upload-only and download-only synchronizations” [MobiLink - Server Administration]

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "ds=on"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication

SQL Anywhere clients for MobiLink

132 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 FOR ml_user1
 OPTION ds='ON';

DownloadReadSize (drs) extended option
For restartable downloads, specifies the maximum amount of data that may need to be resent after a
communications failure.

Syntax
drs=number[K]; ...

DownloadReadSize=number[K]; ...

Remarks
The DownloadReadSize option is only useful when doing restartable downloads.

The download read size is specified in units of bytes. Use the suffix k to optionally specify units of kilobytes.

Dbmlsync reads the download in chunks. The DownloadReadSize defines the size of these chunks. When
a communication error occurs, dbmlsync loses the entire chunk that was being processed. Depending on
when the error occurs, the number of bytes lost ranges between 0 and the DownloadReadSize -1. So for
example, if the DownloadReadSize is 100 bytes and an error occurs after reading 497 bytes, the last 97
bytes read are lost. Bytes that are lost in this way are resent when the download is restarted.

In general, larger DownloadReadSize values result in better performance on successful synchronizations
but result in more data being resent when an error occurs.

The typical use of this option is to reduce the default size when communication is unreliable.

The default is 32767. If you set this option to a value larger than 32767, the value 32767 is used.

See also
● “-drs dbmlsync option” on page 105
● “Resuming failed downloads” [MobiLink - Server Administration]
● “ContinueDownload (cd) extended option” on page 130
● “sp_hook_dbmlsync_end” on page 203
● “-dc dbmlsync option” on page 103

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "drs=100"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION drs='100';

MobiLink SQL Anywhere client extended options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 133

ErrorLogSendLimit (el) extended option
Specifies how much of the remote message log file dbmlsync should send to the server when
synchronization error occurs.

Syntax
el=number[K | M]; ...

ErrorLogSendLimit=number[K | M]; ...

Remarks
This option is specified in units of bytes. Use the suffix k or m to specify units of kilobytes or megabytes,
respectively.

This option specifies the number of bytes of the message log that dbmlsync sends to the MobiLink server
when errors occur during synchronization. Set this option to 0 if you don't want any dbmlsync message
log to be sent.

The default is 32K.

When this option is non-zero, the error log is uploaded when a client-side error occurs. Not all client-side
errors cause the log to be sent: the log is not sent for communication errors or errors that occur when
dbmlsync is not connected to the MobiLink server. If the error occurs after the upload is sent, the error log
is uploaded only if the SendDownloadAck extended option is set to ON.

If ErrorLogSendLimit is set to be large enough, dbmlsync sends the entire message log from the current
session to the MobiLink server. For example, if the message log messages were appended to an old
message log file, dbmlsync only sends the new messages generated in the current session. If the total
length of new messages is greater than ErrorLogSendLimit, dbmlsync only uploads the messages log up
to the specified size.

Note: The size of the message log is influenced by your verbosity settings. You can adjust these using the
dbmlsync -v option, or by using dbmlsync extended options starting with "verbose". For more
information, see “-v dbmlsync option” on page 123 and the -e verbose options:

● “Verbose (v) extended option” on page 150
● “VerboseHooks (vs) extended option” on page 151
● “VerboseMin (vm) extended option” on page 152
● “VerboseOptions (vo) extended option” on page 153
● “VerboseRowCounts (vn) extended option” on page 154
● “VerboseRowValues (vr) extended option” on page 155
● “VerboseUpload (vu) extended option” on page 156

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "el=32k"

The following SQL statement illustrates how you can store this option in the database:

SQL Anywhere clients for MobiLink

134 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION el='32k';

FireTriggers (ft) extended option
Specifies that triggers should be fired on the remote database when the download is applied.

Syntax
ft={ ON | OFF }; ...

FireTriggers={ ON | OFF }; ...

Remarks
The default is ON.

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "ft=off"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION ft='off';

HoverRescanThreshold (hrt) extended option
When you are using scheduling, this limits the amount of discarded memory that is allowed to accumulate
before a rescan is performed.

Syntax
hrt=number[K | M]; ...

HoverRescanThreshold=number[K | M]; ...

Remarks
Specifies memory in units of bytes. Use the suffix k or m to specify units of kilobytes or megabytes,
respectively. The default is 1m.

When more than one -n option or -s option is specified in the command line, dbmlsync may experience
fragmentation which results in discarded memory. The discarded memory can only be recovered by
rescanning the database transaction log. This option lets you specify a limit on the amount of discarded
memory that is allowed to accumulate before the log is rescanned and the memory recovered. Another

MobiLink SQL Anywhere client extended options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 135

way to control the recovery of discarded memory is to implement the sp_hook_dbmlsync_log_rescan
stored procedure.

See also
● “sp_hook_dbmlsync_log_rescan” on page 205

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "hrt=2m"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION hrt='2m';

IgnoreHookErrors (eh) extended option
Specifies that errors that occur in hook functions should be ignored.

Syntax
eh={ ON | OFF }; ...

IgnoreHookErrors={ ON | OFF }; ...

Remarks
The default is OFF.

This option is equivalent to the dbmlsync -eh option.

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "eh=off"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION eh='off';

IgnoreScheduling (isc) extended option
Specifies that the Schedule extended option should be ignored.

SQL Anywhere clients for MobiLink

136 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
isc={ ON | OFF }; ...

IgnoreScheduling={ ON | OFF }; ...

Remarks
If set to ON, dbmlsync ignores the Schedule extended option and synchronizes immediately. The default
is OFF.

This option is equivalent to the dbmlsync -is option.

See also
● “Scheduling synchronization” on page 87
● “Schedule (sch) extended option” on page 143

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "isc=off"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION isc='off';

Increment (inc) extended option
Enables incremental uploads and controls the size of upload increments.

Syntax
inc=number[K | M]; ...

Increment=number[K | M]; ...

Remarks
The value of this option specifies, very approximately, the size of each upload part in bytes. Use the suffix
k or m to specify units of kilobytes or megabytes, respectively.

When this option is set to a non-zero value, uploads are sent to MobiLink in one or more parts. This could
be useful if dbmlsync has difficulty maintaining a connection to the MobiLink server for long enough to
complete the full upload. the default is 0.

The value of the option controls the size of each upload part as follows. Dbmlsync builds the upload by
scanning the database transaction log. When this option is set, dbmlsync scans the number of bytes that
are set in the option, and then continues scanning to the first point at which there are no outstanding
partial transactions—the next point at which all transactions have either been committed or rolled back. It
then sends what it has scanned as an upload part and resumes scanning the log from where it left off.

MobiLink SQL Anywhere client extended options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 137

You cannot use the Increment extended option with scripted upload or transactional upload.

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "inc=32000"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION inc='32k';

LockTables (lt) extended option
Specifies that tables in the publications being synchronized should be locked before synchronizing.

Syntax
lt={ ON | OFF | SHARE | EXCLUSIVE }; ...

LockTables={ ON | OFF | SHARE | EXCLUSIVE }; ...

Remarks
SHARE means that dbmlsync locks all synchronization tables in shared mode. EXCLUSIVE means that
dbmlsync locks all synchronization tables in exclusive mode. For all platforms except Windows Mobile,
ON is the same as SHARE. For Windows Mobile devices, ON is the same as EXCLUSIVE.

The default is OFF. This means that by default, dbmlsync does not lock any synchronization tables except
for the following situations:

● If there is a publication that uses script-based upload in the current synchronization or if there is an
sp_hook_dbmlsync_schema_upgrade hook defined in the remote database, dbmlsync locks the
synchronization tables with SHARE.

Set to ON to prevent modifications during synchronization.

For more information about shared and exclusive locks, see “How locking works” [SQL Anywhere Server
- SQL Usage] and “LOCK TABLE statement” [SQL Anywhere Server - SQL Reference].

For more information about locking tables in MobiLink applications, see “Concurrency during
synchronization” on page 82.

When synchronization tables are locked in exclusive mode (the default for Windows Mobile devices), no
other connections can access the tables, and so dbmlsync stored procedures that execute on a separate
connection are not able to execute if they require access to any of the synchronization tables.

For information about hooks that execute on separate connections, see “Event hooks for SQL Anywhere
clients” on page 178.

SQL Anywhere clients for MobiLink

138 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "lt=on"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION lt='on';

MirrorLogDirectory (mld) extended option
Specifies the location of old transaction log mirror files so that they can be deleted.

Syntax
mld=dir; ...

MirrorLogDirectory=dir; ...

Remarks
This option makes it possible for dbmlsync to delete old transaction log mirror files when either of the
following two circumstances occur:

● the offline transaction log mirror is located in a different directory from the transaction log mirror

or

● dbmlsync is run on a different computer from the remote database server

In a normal setup, the active transaction log mirror and renamed transaction log mirror files are located in
the same directory, and dbmlsync is run on the same computer as the remote database, so this option is
not required and old transaction log mirror files are automatically deleted.

Transaction logs in this directory are only affected if the delete_old_logs database option is set to On,
Delay, or n days.

See also
● “delete_old_logs option [SQL Remote]” [SQL Anywhere Server - Database Administration]

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "mld=c:\tmp\file"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication

MobiLink SQL Anywhere client extended options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 139

 FOR ml_user1
 OPTION mld='c:\tmp\file';

MobiLinkPwd (mp) extended option
Specifies the MobiLink password.

Syntax
mp=password; ...

MobiLinkPwd=password; ...

Remarks
Specifies the password used to connect to the MobiLink server. This password should be the correct
password for the MobiLink user whose subscriptions are being synchronized. The default is null.

If the MobiLink user already has a password, use the extended option -e mn to change it.

See also
● “NewMobiLinkPwd (mn) extended option” on page 140
● “-mn dbmlsync option” on page 109
● “-mp dbmlsync option” on page 110

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "mp=password"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION mp='password';

NewMobiLinkPwd (mn) extended option
Specifies a new MobiLink password.

Syntax
mn=new-password; ...

NewMobiLinkPwd=new-password; ...

Remarks
Specifies a new password for the MobiLink user whose subscriptions are being synchronized. Use this
option when you want to change an existing password. The default is not to change the password.

SQL Anywhere clients for MobiLink

140 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “MobiLinkPwd (mp) extended option” on page 140
● “-mn dbmlsync option” on page 109
● “-mp dbmlsync option” on page 110

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "mp=oldpassword;mn=newpassword"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION mp='oldpassword';mn='newpassword'

NoSyncOnStartup (nss) extended option
Prevents dbmlsync from synchronizing on startup when a scheduling option would otherwise cause that to
happen.

Syntax
nss={ on | off }; ...

NoSyncOnStartup={ on | off }; ...

Remarks
This option has an effect only when the schedule extended option is used with the EVERY or INFINITE
clause. These scheduling options cause dbmlsync to automatically synchronize on startup.

The default is off.

When you set NoSyncOnStartup to on and use a schedule with the INFINITE clause, a synchronization
does not occur until a window message is received.

When you set NoSyncOnStartup to on and use a schedule with the EVERY clause, the first
synchronization after startup occurs after the amount of time specified in the EVERY clause.

This setting does not affect the behavior of the schedule in any way other than at dbmlsync startup.

See also
● “Schedule (sch) extended option” on page 143
● “Scheduling synchronization” on page 87

Example
The following partial dbmlsync command line illustrates how you can set this option when you start
dbmlsync:

MobiLink SQL Anywhere client extended options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 141

dbmlsync -e "schedule=EVERY:01:00;nss=off"...

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION nss='off', schedule='EVERY:01:00';

OfflineDirectory (dir) extended option

Specifies the path containing offline transaction logs.

Syntax
dir=path; ...

OfflineDirectory=path; ...

Remarks
By default, dbmlsync checks for renamed logs in the same directory as the online transaction log. This
option only needs to be specified if the renamed offline transaction logs are located in a different directory.

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "dir=c:\db\logs"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION dir='c:\db\logs';

PollingPeriod (pp) extended option

Specifies the logscan polling period.

Syntax
pp=number[S | M | H | D]; ...

PollingPeriod=number[S | M | H | D]; ...

Remarks
This option specifies the interval between log scans. Use the suffix s, m, h, or d to specify seconds,
minutes, hours or days, respectively. The default is 1 minute. If you do not specify a suffix, the default
unit of time is minutes.

SQL Anywhere clients for MobiLink

142 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Logscan polling occurs only when you are scheduling synchronizations or using the
sp_hook_dbmlsync_delay hook.

For an explanation of logscan polling, see “DisablePolling (p) extended option” on page 131.

This option is identical to dbmlsync -pp.

See also
● “DisablePolling (p) extended option” on page 131
● “-pp dbmlsync option” on page 115
● “-p dbmlsync option” on page 112
● “sp_hook_dbmlsync_delay” on page 191
● “Schedule (sch) extended option” on page 143

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "pp=5"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION pp='5';

Schedule (sch) extended option
Specifies a schedule for synchronization.

Syntax
sch=schedule; ...

Schedule=schedule; ...

schedule : { EVERY:hhhh:mm | INFINITE | singleSchedule }

hhhh : 00 ... 9999

mm : 00 ... 59

singleSchedule : day @hh:mm[AM | PM] [-hh:mm[AM | PM]] ,...

hh : 00 ... 24

mm : 00 ... 59

day :
 EVERYDAY | WEEKDAY | MON | TUE | WED | THU | FRI | SAT | SUN | dayOfMonth

dayOfMonth : 0... 31

MobiLink SQL Anywhere client extended options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 143

Remarks
EVERY The EVERY keyword causes synchronization to occur on startup, and then repeat indefinitely
after the specified time period. If the synchronization process takes longer than the specified period,
synchronization starts again immediately.

To avoid having a synchronization occur when dbmlsync starts, use the extended option
NoSyncOnStartup. See “NoSyncOnStartup (nss) extended option” on page 141.

singleSchedule Given one or more single schedules, synchronization occurs only at the specified
days and times.

An interval is specified as @hh:mm-hh:mm (with optional specification of AM or PM). If AM or PM is
not specified, a 24-hour clock is assumed. 24:00 is interpreted as 00:00 on the next day. When an interval
is specified, synchronization occurs, starting at a random time within the interval. The interval provides a
window of time for synchronization so that multiple remote databases with the same schedule do not
cause congestion at the MobiLink server by synchronizing at exactly the same time.

The interval end time is always interpreted as following the start time. When the time interval includes
midnight, it ends on the next day. If dbmlsync is started midway through the interval, synchronization
occurs at a random time before the end time.

EVERYDAY EVERYDAY is all seven days of the week.

WEEKDAY WEEKDAY is Monday through Friday.

Days of the week are Mon, Tue, and so on. You may also use the full forms of the day, such as Monday.
You must use the full forms of the day names if the language you are using is not English, is not the
language requested by the client in the connection string, and is not the language which appears in the
server messages window.

dayOfMonth To specify the last day of the month regardless of the length of the month, set the
dayOfMonth to 0.

INFINITE The INFINITE keyword causes dbmlsync to synchronize on startup, and then not to
synchronize again until synchronization is initiated by another program sending a window message to
dbmlsync. You can use the dbmlsync extended option NoSyncOnStartup to avoid the initial
synchronization. For more information, see “NoSyncOnStartup (nss) extended option” on page 141.

You can use this option in conjunction with the dbmlsync -wc option to wake up dbmlsync and perform a
synchronization. For more information, see “-wc dbmlsync option” on page 124.

If a previous synchronization is still incomplete at a scheduled time, the scheduled synchronization
commences when the previous synchronization completes.

The default is no schedule.

The Schedule option is ignored when the Dbmlsync API is used or when the SQL SYNCHRONIZE
statement is used.

SQL Anywhere clients for MobiLink

144 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The IgnoreScheduling extended option and the -is option instruct dbmlsync to ignore scheduling, so that
synchronization is immediate. For more information, see “IgnoreScheduling (isc) extended
option” on page 136.

For more information about scheduling, see “Scheduling synchronization” on page 87.

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "sch=WEEKDAY@8:00am,SUN@9:00pm"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION sch='WEEKDAY@8:00am,SUN@9:00pm';

ScriptVersion (sv) extended option
Specifies a script version.

Caution
It is strongly recommended that you specify the script version using the SCRIPT VERSION clause on the
CREATE SYNCHRONIZATION SUBSCRIPTION and ALTER SYNCHRONIZATION
SUBSCRIPTION statements instead of using the ScriptVersion extended option because using the
SCRIPT VERSION clause greatly simplifies the problem of doing schema upgrades.

The ScriptVersion (sv) extended option overrides the value stored using the SCRIPT VERSION clause
and should only be used for backward compatibility purposes or for the rare case where you need to
explicitly specify the script version used for a synchronization.

See “CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” [SQL Anywhere Server
- SQL Reference] and “ALTER SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” [SQL
Anywhere Server - SQL Reference].

Syntax
sv=version-name; ...

ScriptVersion=version-name; ...

Remarks
The script version determines which scripts are run by MobiLink on the consolidated database during
synchronization. The default script version name is default.

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

MobiLink SQL Anywhere client extended options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 145

dbmlsync -e "sv=SysAd001"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION sv='SysAd001';

SendColumnNames (scn) extended option
Specifies that column names should be sent in the upload for use by direct row handling and by mlreplay.

Syntax
scn={ ON | OFF }; ...

SendColumnNames={ ON | OFF }; ...

Remarks
The default is ON.

Because column name are sent by default, the ml_add_column stored procedure is not required for most
deployments. If you want ml_add_column names to be used, this option must be set to OFF. This
approach is required if you want to refer to remote column names using aliases, or if the column
information added using ml_add_column is preferred over the information automatically sent up from the
remote. See “ml_add_column system procedure” [MobiLink - Server Administration].

The column names are used by the MobiLink server for direct row handling. When using the row
handling API to refer to columns by name rather than by index, this option should be set to ON. See
“Direct row handling” [MobiLink - Server Administration].

If you are using the mlreplay utility, this option should be set to ON so the replay API has meaningful
column names.

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "scn=on"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION scn='on';

SendDownloadAck (sa) extended option
Specifies that a download acknowledgement should be sent from the client to the server.

SQL Anywhere clients for MobiLink

146 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
sa={ ON | OFF }; ...

SendDownloadAck={ ON | OFF }; ...

Remarks
A download acknowledgement lets MobiLink server know for sure that a download has been applied to a
remote database. You can write synchronization scripts in your consolidated database to handle the
acknowledgement and perform business logic at the time of the acknowledgement. A download
acknowledgement may not be sent if the network session is dropped after the client applies the download,
so your scripts should allow for this possibility. See “nonblocking_download_ack connection event”
[MobiLink - Server Administration].

Note: When SendDownloadAck is set to ON and you are in verbose mode, an acknowledgement line is
written to the client log.

The default is OFF.

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "sa=on"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION sa='on';

SendTriggers (st) extended option

Specifies that trigger actions should be sent on upload.

Syntax
st={ ON | OFF }; ...

SendTriggers={ ON | OFF }; ...

Remarks
Cascaded deletes are also considered trigger actions.

The default is OFF.

If two subscriptions both contain one or more of the same tables, then both subscriptions must be
synchronized using the same setting for the SendTriggers option.

MobiLink SQL Anywhere client extended options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 147

Note
Trigger actions that occur as a result of database changes made as part of the download phase of
synchronization are never synchronized, regardless of the value of the SendTriggers option.

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "st=on"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION st='on';

TableOrder (tor) extended option
Specifies the order of tables in the upload.

Syntax
tor=tables; ...

TableOrder=tables; ...

tables = table-name [,table-name], ...

Remarks
This option allows you to specify the order in which tables are uploaded. You must specify all tables that
are to be uploaded. If you include tables that are not included in the synchronization, they are ignored.

The table order that you specify must ensure referential integrity. This means that if Table1 has a foreign
key reference to Table2, then Table2 must be uploaded before Table1. If you do not specify tables in the
appropriate order, an error occurs, except in the two following cases:

● You set TableOrderChecking=OFF.

● Your tables have a cyclical foreign key relationship. (In this case, there is no order that satisfies the
rule and so the tables involved in the cycle can be uploaded in any order.)

If you do not specify TableOrder, then dbmlsync chooses an order that satisfies referential integrity.

The order of tables on the download is the same as the upload. Control of the upload table order may
make writing server side scripts simpler, especially if the remote and consolidated databases have
different foreign key constraints.

SQL Anywhere clients for MobiLink

148 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “TableOrderChecking (toc) extended option” on page 149
● “How the upload is processed” [MobiLink - Getting Started]
● “Referential integrity and synchronization” [MobiLink - Getting Started]

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "tor=admin,parent,child"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION tor='admin,parent,child';

TableOrderChecking (toc) extended option
Lets you disable referential integrity checking on the table order specified by the TableOrder extended option.

Syntax
toc={ OFF | ON }; ...

TableOrderChecking={ OFF | ON }; ...

Remarks
In most applications, tables on the remote and consolidated databases have the same foreign key
relationships. In these cases, you should leave TableOrderChecking at its default value of ON, and
dbmlsync ensures that no table is uploaded before another table on which it has a foreign key. This
ensures referential integrity.

This option is useful when the consolidated and remote databases have different foreign key relationships.
Use it with the TableOrder extended option to specify an order of tables that satisfies the referential
integrity constraints on the server even though it may violate those present on the remote.

This option is only useful when the TableOrder extended option is specified.

The default is ON.

See also
● “TableOrder (tor) extended option” on page 148
● “How the upload is processed” [MobiLink - Getting Started]
● “Referential integrity and synchronization” [MobiLink - Getting Started]

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

MobiLink SQL Anywhere client extended options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 149

dbmlsync -e "toc=OFF"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION toc='Off';

UploadOnly (uo) extended option

Specifies that synchronization should only include an upload.

Syntax
uo={ ON | OFF }; ...

UploadOnly={ ON | OFF }; ...

Remarks
During upload-only synchronization, dbmlsync prepares and sends an upload to the MobiLink server
exactly as in a normal full synchronization. However, instead of sending a download back down, the
MobiLink server sends only an acknowledgement indicating if the upload was successfully committed.

For a list of the scripts that must be defined for upload-only synchronization, see “Required scripts”
[MobiLink - Server Administration].

The default is OFF.

See also
● “Upload-only and download-only synchronizations” [MobiLink - Server Administration]
● “DownloadOnly (ds) extended option” on page 132

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "uo=on"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION uo='on';

Verbose (v) extended option

Specifies full verbosity.

SQL Anywhere clients for MobiLink

150 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
v={ ON | OFF }; ...

Verbose={ ON | OFF }; ...

Remarks
This option specifies a high level of verbosity, which may affect performance and should normally be
used in the development phase only.

This option is identical to dbmlsync -v+. If you specify both -v and the extended options and there are
conflicts, the -v option overrides the extended option. If there is no conflict, the verbosity logging options
are additive—all options that you specify are used. When logging verbosity is set by extended option, the
logging does not take effect immediately, so startup information is not logged. By the time of the first
synchronization, the logging behavior is identical between the -v options and the extended options.

For more information, see “-v dbmlsync option” on page 123.

The default is OFF.

See also
● “VerboseHooks (vs) extended option” on page 151
● “VerboseMin (vm) extended option” on page 152
● “VerboseOptions (vo) extended option” on page 153
● “VerboseRowCounts (vn) extended option” on page 154
● “VerboseRowValues (vr) extended option” on page 155
● “VerboseUpload (vu) extended option” on page 156

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "v=on"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION v='on';

VerboseHooks (vs) extended option

Specifies that messages related to hook scripts should be logged.

Syntax
vs={ ON | OFF }; ...

VerboseHooks={ ON | OFF }; ...

MobiLink SQL Anywhere client extended options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 151

Remarks
This option is identical to dbmlsync -vs. If you specify both -v and the extended options and there are
conflicts, the -v option overrides the extended option. If there is no conflict, the verbosity logging options
are additive—all options that you specify are used. When logging verbosity is set by extended option, the
logging does not take effect immediately, so startup information is not logged. By the time of the first
synchronization, the logging behavior is identical between the -v options and the extended options.

For more information, see “-v dbmlsync option” on page 123.

The default is OFF.

See also
● “Event hooks for SQL Anywhere clients” on page 178
● “Verbose (v) extended option” on page 150
● “VerboseMin (vm) extended option” on page 152
● “VerboseOptions (vo) extended option” on page 153
● “VerboseRowCounts (vn) extended option” on page 154
● “VerboseRowValues (vr) extended option” on page 155
● “VerboseUpload (vu) extended option” on page 156

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "vs=on"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION vs='on';

VerboseMin (vm) extended option

Specifies that a small amount of information should be logged.

Syntax
vm={ ON | OFF }; ...

VerboseMin={ ON | OFF }; ...

Remarks
This option is identical to dbmlsync -v. If you specify both -v and the extended options and there are
conflicts, the -v option overrides the extended option. If there is no conflict, the verbosity logging options
are additive—all options that you specify are used. When logging verbosity is set by extended option, the
logging does not take effect immediately, so startup information is not logged. By the time of the first
synchronization, the logging behavior is identical between the -v options and the extended options.

SQL Anywhere clients for MobiLink

152 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

For more information, see “-v dbmlsync option” on page 123.

The default is OFF.

See also
● “Verbose (v) extended option” on page 150
● “VerboseOptions (vo) extended option” on page 153
● “VerboseRowCounts (vn) extended option” on page 154
● “VerboseRowValues (vr) extended option” on page 155
● “VerboseUpload (vu) extended option” on page 156

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "vm=on"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION vm='on';

VerboseOptions (vo) extended option
Specifies that information should be logged about the command line options (including extended options)
that you have specified.

Syntax
vo={ ON | OFF }; ...

VerboseOptions={ ON | OFF }; ...

Remarks
This option is identical to dbmlsync -vo. If you specify both -v and the extended options and there are
conflicts, the -v option overrides the extended option. If there is no conflict, the verbosity logging options
are additive—all options that you specify are used. When logging verbosity is set by extended option, the
logging does not take effect immediately, so startup information is not logged. By the time of the first
synchronization, the logging behavior is identical between the -v options and the extended options.

For more information, see “-v dbmlsync option” on page 123.

The default is OFF.

MobiLink SQL Anywhere client extended options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 153

See also
● “Verbose (v) extended option” on page 150
● “VerboseMin (vm) extended option” on page 152
● “VerboseRowCounts (vn) extended option” on page 154
● “VerboseRowValues (vr) extended option” on page 155
● “VerboseUpload (vu) extended option” on page 156

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "vo=on"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION vo='on';

VerboseRowCounts (vn) extended option

Specifies that the number of rows that are uploaded and downloaded should be logged.

Syntax
vn={ ON | OFF }; ...

VerboseRowCounts={ ON | OFF }; ...

Remarks
This option is identical to dbmlsync -vn. If you specify both -v and the extended options and there are
conflicts, the -v option overrides the extended option. If there is no conflict, the verbosity logging options
are additive—all options that you specify are used. When logging verbosity is set by extended option, the
logging does not take effect immediately, so startup information is not logged. By the time of the first
synchronization, the logging behavior is identical between the -v options and the extended options.

For more information, see “-v dbmlsync option” on page 123.

The default is OFF.

See also
● “Verbose (v) extended option” on page 150
● “Verbose (v) extended option” on page 150
● “VerboseMin (vm) extended option” on page 152
● “VerboseOptions (vo) extended option” on page 153
● “VerboseRowValues (vr) extended option” on page 155
● “VerboseUpload (vu) extended option” on page 156

SQL Anywhere clients for MobiLink

154 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "vn=on"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION vn='on';

VerboseRowValues (vr) extended option
Specifies that the values of rows that are uploaded and downloaded should be logged.

Syntax
vr={ ON | OFF }; ...

VerboseRowValues={ ON | OFF }; ...

Remarks
This option is identical to dbmlsync -vr. If you specify both -v and the extended options and there are
conflicts, the -v option overrides the extended option. If there is no conflict, the verbosity logging options
are additive—all options that you specify are used. When logging verbosity is set by extended option, the
logging does not take effect immediately, so startup information is not logged. By the time of the first
synchronization, the logging behavior is identical between the -v options and the extended options.

For more information, see “-v dbmlsync option” on page 123.

The default is OFF.

See also
● “Verbose (v) extended option” on page 150
● “Verbose (v) extended option” on page 150
● “VerboseMin (vm) extended option” on page 152
● “VerboseOptions (vo) extended option” on page 153
● “VerboseRowCounts (vn) extended option” on page 154
● “VerboseUpload (vu) extended option” on page 156

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "vr=on"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication

MobiLink SQL Anywhere client extended options

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 155

 FOR ml_user1
 OPTION vr='on';

VerboseUpload (vu) extended option
Specifies that information about the upload steam should be logged.

Syntax
vu={ ON | OFF }; ...

VerboseUpload={ ON | OFF }; ...

Remarks
This option is identical to dbmlsync -vu. If you specify both -v and the extended options and there are
conflicts, the -v option overrides the extended option. If there is no conflict, the verbosity logging options
are additive—all options that you specify are used. When logging verbosity is set by extended option, the
logging does not take effect immediately, so startup information is not logged. By the time of the first
synchronization, the logging behavior is identical between the -v options and the extended options.

For more information, see “-v dbmlsync option” on page 123.

The default is OFF.

See also
● “Verbose (v) extended option” on page 150
● “Verbose (v) extended option” on page 150
● “VerboseMin (vm) extended option” on page 152
● “VerboseOptions (vo) extended option” on page 153
● “VerboseRowCounts (vn) extended option” on page 154
● “VerboseRowValues (vr) extended option” on page 155

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "vu=on"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION vu='on';

MobiLink SQL statements
MobiLink statements

SQL Anywhere clients for MobiLink

156 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The following are the SQL statements used for configuring and running MobiLink SQL Anywhere clients:

● “ALTER PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL
Reference]

● “ALTER SYNCHRONIZATION PROFILE statement [MobiLink]” [SQL Anywhere Server - SQL
Reference]

● “ALTER SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” [SQL Anywhere Server -
SQL Reference]

● “ALTER SYNCHRONIZATION USER statement [MobiLink]” [SQL Anywhere Server - SQL
Reference]

● “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL
Reference]

● “CREATE SYNCHRONIZATION PROFILE statement [MobiLink]” [SQL Anywhere Server - SQL
Reference]

● “CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” [SQL Anywhere Server -
SQL Reference]

● “CREATE SYNCHRONIZATION USER statement [MobiLink]” [SQL Anywhere Server - SQL
Reference]

● “DROP PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL
Reference]

● “DROP SYNCHRONIZATION PROFILE statement [MobiLink]” [SQL Anywhere Server - SQL
Reference]

● “DROP SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” [SQL Anywhere Server -
SQL Reference]

● “DROP SYNCHRONIZATION USER statement [MobiLink]” [SQL Anywhere Server - SQL
Reference]

● “GRANT REMOTE DBA statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL
Reference]

● “START SYNCHRONIZATION DELETE statement [MobiLink]” [SQL Anywhere Server - SQL
Reference]

● “START SYNCHRONIZATION SCHEMA CHANGE statement [MobiLink]” [SQL Anywhere
Server - SQL Reference]

● “STOP SYNCHRONIZATION DELETE statement [MobiLink]” [SQL Anywhere Server - SQL
Reference]

● “STOP SYNCHRONIZATION SCHEMA CHANGE statement [MobiLink]” [SQL Anywhere Server -
SQL Reference]

● “SYNCHRONIZE statement [MobiLink]” [SQL Anywhere Server - SQL Reference]

UltraLite clients
See “UltraLite SQL statements” [UltraLite - Database Management and Reference].

MobiLink synchronization profiles
Synchronization profiles allow you to place some dbmlsync options in the database. The synchronization
profile you create can contain a variety of synchronizations options.

MobiLink synchronization profiles

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 157

Synchronization profiles can be created, altered and dropped using the following statements:

● “CREATE SYNCHRONIZATION PROFILE statement [MobiLink]” [SQL Anywhere Server - SQL
Reference]

● “ALTER SYNCHRONIZATION PROFILE statement [MobiLink]” [SQL Anywhere Server - SQL
Reference]

● “DROP SYNCHRONIZATION PROFILE statement [MobiLink]” [SQL Anywhere Server - SQL
Reference]

Synchronization profiles can be accessed using the dbmlsync -sp option, the Sync method in the
Dbmlsync API, the SQL SYNCHRONIZE statement and the remote tasks created from central
administration of remote databases. In all cases there is the ability to specify additional options that are
merged with the options in the synchronization profiles. If any of the extra option specified conflicts with
an option specified in the synchronization profile, the value specified by the extra options is used.

When using the dbmlsync -sp options, all the other option on the command line are treated as extra
options. The other interfaces provide a specific parameter or clause for specifying extra options.

For information about using synchronization profiles in UltraLite, see “Synchronization profile options”
[UltraLite - Database Management and Reference].

The following options can be specified in a synchronization profile:

Long option
name

Short
name

Allowed val-
ues

Description

AuthParms ap String Supplies parameters to the authenticate_parameters
script and to authentication parameters. See “AuthParms
synchronization profile option” on page 161.

ApplyDnldFile ba String Applies a download file. See “ApplyDnldFile synchroni-
zation profile option” on page 162.

Background bk String Enables background synchronization when set to TRUE.
See “Background synchronization profile op-
tion” on page 162.

BackgroundRet-
ry

bkr Integer Controls how dbmlsync behaves after a background syn-
chronization is interrupted. See “BackgroundRetry syn-
chronization profile option” on page 162.

CacheInit ci Integer Sets the initial size of the dbmlsync cache. See “CacheI-
nit synchronization profile option” on page 163.

CacheMax cm Integer Sets the maximum size threshold for the dbmlsync
cache. See “CacheMax synchronization profile op-
tion” on page 164.

SQL Anywhere clients for MobiLink

158 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Long option
name

Short
name

Allowed val-
ues

Description

CacheMin cl Integer Sets the minimum size to which the dbmlsync cache can
be reduced. See “CacheMin synchronization profile op-
tion” on page 164.

ContinueDown-
load

dc Boolean Restarts a previously failed download. See “Continue-
Download synchronization profile option” on page 165.

CreateDnldFile bc String Creates a download file. See “CreateDnldFile synchroni-
zation profile option” on page 165.

DnldFileExtra be String When creating a download file, this option specifies an
extra string to be included in the file. See “DnldFileEx-
tra synchronization profile option” on page 166.

DownloadOnly ds Boolean Performs a download-only synchronization. See “Down-
loadOnly synchronization profile option” on page 166.

DownloadRead-
Size

drs Integer For restartable downloads, specifies the maximum
amount of data that may need to be resent after a commu-
nications failure. See “DownloadReadSize synchroniza-
tion profile option” on page 167.

ExtOpt e String Specifies extended options. See “ExtOpt synchroniza-
tion profile option” on page 168.

IgnoreHookEr-
rors

eh Boolean Ignores errors that occur in hook functions. See “Ignore-
HookErrors synchronization profile op-
tion” on page 168.

IgnoreSchedul-
ing

is Boolean Ignores scheduling instructions so that synchronization
is immediate. See “IgnoreScheduling synchronization
profile option” on page 169.

KillConnections d Boolean Drops conflicting locks to the remote database. See “Kill-
Connections synchronization profile op-
tion” on page 169.

LogRenameSize x An integer op-
tionally fol-
lowed by K
or M.

Renames and restarts the transaction log after it has been
scanned for upload data. See “LogRenameSize synchro-
nization profile option” on page 170.

MobiLinkPwd mp String Supplies the password of the MobiLink user. See “Mobi-
LinkPwd synchronization profile option” on page 170.

MobiLink synchronization profiles

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 159

Long option
name

Short
name

Allowed val-
ues

Description

MLUser u String Specifies the MobiLink user name. See “MLUser syn-
chronization profile option (deprecated)” on page 171.

NewMobi-
LinkPwd

mn String Supplies a new password for the MobiLink user. Use
this option when you want to change an existing pass-
word. See “NewMobiLinkPwd synchronization profile
option” on page 171.

Ping pi Boolean Pings a MobiLink server to confirm communications be-
tween the client and MobiLink. See “Ping synchroniza-
tion profile option” on page 172.

Publication n String This option is deprecated. Specifies the publications(s)
to synchronize. Note that publication can only be speci-
fied once in a synchronization profile but the command
line option can be specified multiple times. See “Publica-
tion synchronization profile option” on page 172.

RemoteProgress-
Greater

ra Boolean Specifies that the remote offset should be used if it is
greater than the consolidated offset. This is equivalent to
the -ra option. See “RemoteProgressGreater synchroniza-
tion profile option” on page 173.

RemoteProgress-
Less

rb Boolean Specifies that the remote offset should be used if it is
less than the consolidated offset (such as when the re-
mote database has been restored from backup). This is
equivalent to the -rb option. See “RemoteProgressLess
synchronization profile option” on page 174.

Subscription s String Specifies the subscription(s) to synchronize. Note that
subscription can only be specified once in a synchroniza-
tion profile. See “Subscription synchronization profile
option” on page 174.

Transactiona-
lUpload

tu Boolean Specifies that each transaction on the remote database
should be uploaded as a separate transaction within one
synchronization. See “TransactionalUpload synchroniza-
tion profile option” on page 175.

UpdateGenNum bg Boolean When creating a download file, this option creates a file
that can be used with remote databases that have not yet
synchronized. See “UpdateGenNum synchronization pro-
file option” on page 175.

SQL Anywhere clients for MobiLink

160 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Long option
name

Short
name

Allowed val-
ues

Description

UploadOnly uo Boolean Specifies that synchronization only includes an upload,
and that no downloads occur. See “UploadOnly synchro-
nization profile option” on page 176.

UploadRowCnt urc Integer Specifies an estimate of the number of rows to be uploa-
ded in a synchronization. See “UploadRowCnt synchro-
nization profile option” on page 176.

Verbosity String (a com-
ma separated
list of options)

Controls dbmlsync verbosity. Similar to the “Verbosity
synchronization profile option” on page 177.

The value must be a comma separated list of one or
more of the following options, each of which corre-
sponds to an existing -v option as described below:

● BASIC - equivalent to -v
● HIGH - equivalent to -v+
● CONNECT_STR - equivalent to -vc
● ROW_CNT - equivalent to -vn
● OPTIONS - equivalent to -vo
● ML_PASSWORD - equivalent to -vp
● ROW_DATA - equivalent to -vr

AuthParms synchronization profile option
Supplies parameters to the authenticate_parameters script and to authentication parameters.

Syntax
ap=parameters

Authparms=parameters

Remarks
Use when you use the authenticate_parameters connection script or authentication parameters.

The parameters are sent to the MobiLink server and passed to the authenticate_parameters script or other
events on the consolidated database.

See also
● “-ap dbmlsync option” on page 98

Example
AuthParms=p1,p2,p3

MobiLink synchronization profiles

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 161

ApplyDnldFile synchronization profile option
Applies a download file.

Syntax
ba=filename

ApplyDnldFile=filename

Remarks
Specify the name of an existing download file to be applied to the remote database.

See also
● “-ba dbmlsync option” on page 98

Example
ApplyDnldFile=filename

Background synchronization profile option
Enables background synchronization when set to ON.

Syntax
bk={ON|OFF}

Background={ON|OFF}

Remarks
During a background synchronization, the database engine drops the dbmlsync connection to the remote
database and rolls back any uncommitted dbmlsync operations if another connection is waiting for access
to any database resource that dbmlsync has locked. This allows the other connections to go forward
without waiting for the synchronization to complete. Depending on the operations dbmlsync had
outstanding when its connection is dropped, there may still be a significant delay for the waiting
connection as the database rolls back the dbmlsync uncommitted changes.

See also
● “-bk dbmlsync option” on page 100

Example
The following example shows how to use the Background synchronization profile option:

Background=on

BackgroundRetry synchronization profile option
Integer. Controls how dbmlsync behaves after a background synchronization is interrupted.

SQL Anywhere clients for MobiLink

162 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
bkr=integer

BackgroundRetry=integer

Remarks
This option has a short form and long form: you can use bkr or BackgroundRetry.

Set this value as an integer greater than or equal to -1. If the value is -1 then dbmlsync retries an
interrupted synchronization until it completes, successfully or unsuccessfully, without being interrupted.
If the value is 0 then dbmlsync does not retry the interrupted synchronization. If the value is greater than 0
then dbmlsync retries the synchronization up to the number of times specified until it completes. After the
specified number of attempts, if the synchronization has not completed, then it is run as a foreground
synchronization so it will complete without interruption.

By default BackgroundRetry is 0.

It is an error to set BackgroundRetry to a non-zero value when the Background option has not been set to
ON.

This option is ignored when synchronization is initiated using the Dbmlsync API or the SQL
SYNCHRONIZE statement.

See also
● “-bkr dbmlsync option” on page 101

Example
The following example shows how to use the BackgroundRetry synchronization profile option:

BackgroundRetry=4

CacheInit synchronization profile option
Sets the initial size of the dbmlsync cache.

Syntax
ci=size[K | M | P]

CacheInit=size[K | M | P]

Remarks
Sets the initial size of the dbmlsync cache. You can optionally use the suffix K or M to specify units of
kilobytes or megabytes, respectively.

To specify the size as a percentage of the total physical memory in the system, specify a number between
0 and 100, followed by the letter p.

MobiLink synchronization profiles

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 163

See also
● “-ci dbmlsync option” on page 102

Example
CacheInit=10k

CacheMin synchronization profile option
Sets the minimum size to which the dbmlsync cache can be reduced.

Syntax
cl=size[K | M | P]

CacheMin=size[K | M | P]

Remarks
Set the smallest size, in bytes, that the dbmlsync cache can be reduced to. You can optionally use the
suffix K or M to specify units of kilobytes or megabytes, respectively.

To specify the size as a percentage of the total physical memory in the system, specify a number between
0 and 100, followed by the letter p.

See also
● “-cl dbmlsync option” on page 102

Example
CacheMin=10k

CacheMax synchronization profile option
Sets the maximum size threshold for the dbmlsync cache.

Syntax
cm=size[K | M | P]

CacheMax=size[K | M | P]

Remarks
Sets the largest size, in bytes, that the dbmlsync cache can grow to. You can optionally use the suffix K or
M to specify units of kilobytes or megabytes, respectively.

To specify the size as a percentage of the total physical memory in the system, specify a number between
0 and 100, followed by the letter p.

SQL Anywhere clients for MobiLink

164 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “-cm dbmlsync option” on page 103

Example
CacheMax=1m

ContinueDownload synchronization profile option
Restarts a previously failed download.

Syntax
dc={ON|OFF}

ContinueDownload={ON|OFF}

Remarks
By default, if dbmlsync fails during a download it does not apply any of the download data to the remote
database. However, it stores the part of the download it did receive in a temporary file on the remote
device, so that if you specify ContinueDownload=on the next time you synchronize, it can more quickly
complete the download.

When you specify ContinueDownload=on, dbmlsync attempts to download the part of the previous
download that it did not receive. If it is able to download the remaining data, it applies the complete
download to your remote database, otherwise synchronization fails.

If there is any new data to be uploaded when you set ContinueDownload=on, the restartable download
fails. You can also restart a failed download using the ContinueDownload extended option or the
sp_hook_dbmlsync_end hook.

See also
● “-dc dbmlsync option” on page 103
● “sp_hook_dbmlsync_end” on page 203
● “ContinueDownload (cd) extended option” on page 130

Example
The following example shows how to use the ContinueDownload synchronization profile option:

ContinueDownload=on

CreateDnldFile synchronization profile option
Creates a download file with the specified name.

Syntax
bc=filename

MobiLink synchronization profiles

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 165

CreateDnldFile=filename

Remarks
You should use the file extension .df for download files.

You can optionally specify a path. If you do not specify a path, the default location is the dbmlsync
current working directory, which is the directory where dbmlsync was started.

Optionally, when creating a download file, you can use the -be option to specify a string that can be
validated at the remote database, and the -bg option to create a download file for new remote databases.

See also
● “-bc dbmlsync option” on page 99
● “MobiLink file-based download” [MobiLink - Server Administration]

Example
CreateDnldFile=dnldl.df

DnldFileExtra synchronization profile option
When creating a download file, this option specifies an extra string to be included in the file.

Syntax
be=string

DnldFileExtra=string

Remarks
The string can be used for authentication or other purposes. It is passed to the
sp_hook_dbmlsync_validate_download_file stored procedure on the remote database when the download
file is applied.

The string may not contain any semicolons.

See also
● “-be dbmlsync option” on page 99
● “sp_hook_dbmlsync_validate_download_file” on page 229

Example
The following example shows how to use the DnldFileExtra synchronization profile option:

DnldFileExtra=val1,val2,val3

DownloadOnly synchronization profile option
Perform a download-only synchronization when set to on.

SQL Anywhere clients for MobiLink

166 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
ds={ON|OFF}

DownloadOnly={ON|OFF}

Remarks
When download-only synchronization occurs, dbmlsync does not upload any database changes. However,
it does upload information about the schema and progress offset.

In addition, dbmlsync ensures that changes on the remote are not overwritten during download-only
synchronization. It does this by scanning the log to detect rows with operations waiting to be uploaded. If
any of these rows is modified by the download, the download is rolled back and the synchronization fails.
If the synchronization fails for this reason, you must do a full synchronization to correct the problem.

When you have remotes that are synchronized by download-only synchronization, you should regularly
do a full bi-directional synchronization to reduce the amount of log that is scanned by the download-only
synchronization. Otherwise, the download-only synchronizations take an increasingly long time to complete.

See also
● “-ds dbmlsync option” on page 106
● “DownloadOnly (ds) extended option” on page 132

Example
The following example shows how to use the DownloadOnly synchronization profile option:

DownloadOnly=on

DownloadReadSize synchronization profile option
For restartable downloads, specifies the maximum number of bytes that may need to be resent after a
communications failure.

Syntax
drs=size

DownloadReadSize=size

Remarks
Dbmlsync reads the download in chunks. The download read size defines the size of these chunks. When
a communication error occurs, dbmlsync loses the entire chunk that was being processed. Depending on
when the error occurs, the number of bytes lost ranges between 0 and the download read size -1. So for
example, if the DownloadReadSize is 100 bytes and an error occurs after reading 497 bytes, the last 97
bytes read are lost. Bytes that are lost in this way are resent when the download is restarted.

In general, larger download read size values result in better performance on successful synchronizations
but result in more data being resent when an error occurs. The typical use of this option is to reduce the
default size when communication is unreliable.

MobiLink synchronization profiles

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 167

The default is 32767. If you set this option to a value larger than 32767, the value 32767 is used.

You can also specify the download read size using the DownloadReadSize extended option.

See also
● “-drs dbmlsync option” on page 105
● “DownloadReadSize (drs) extended option” on page 133

Example
The following example shows how to use the DownloadReadSize synchronization profile option:

DownloadReadSize=100

ExtOpt synchronization profile option
Specifies extended options.

Syntax
e={option=value; ...}

ExtOpt={option=value; ...}

Remarks
Extended options can be specified by their long form or short form. See “MobiLink SQL Anywhere client
extended options” on page 126.

Extended options are specified in option=value pairs. The list of extended options being set must be
enclosed in curly braces {}.

See also
● “-e dbmlsync option” on page 106

Example
The following example shows how to use the ExtOpt synchronization profile option:

ExtOpt={lt=exclusive;tableorder=t1,t2,t3}

IgnoreHookErrors synchronization profile option
Ignore errors that occur in hook functions when set to on.

Syntax
eh={ON|OFF}

IgnoreHookErrors={ON|OFF}

SQL Anywhere clients for MobiLink

168 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “-eh dbmlsync option” on page 107

Example
The following example shows how to use the IgnoreHookErrors synchronization profile option:

IgnoreHookErrors=on

IgnoreScheduling synchronization profile option
Ignores the Schedule extended option so that synchronization is immediate.

Syntax
is={ON|OFF}

IgnoreScheduling={ON|OFF}

Remarks
This option has a short form and long form: you can use is or IgnoreScheduling.

For information about scheduling, see “Scheduling synchronization” on page 87.

See also
● “-is dbmlsync option” on page 108

Example
The following example shows how to use the IgnoreScheduling synchronization profile option:

IgnoreScheduling=on

KillConnections synchronization profile option
Drops conflicting locks to the remote database.

Syntax
d={ON|OFF}

KillConnections={ON|OFF}

Remarks
In cases where dbmlsync must obtain locks on the tables being synchronized, if another connection has a
lock on one of these tables, the synchronization may fail or be delayed. Specifying this option forces SQL
Anywhere to drop any other connections to the remote database that hold conflicting locks so that
synchronization can proceed immediately.

MobiLink synchronization profiles

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 169

See also
● “-d dbmlsync option” on page 103
● “Concurrency during synchronization” on page 82

Example
The following example shows how to use the KillConnections synchronization profile option:

KillConnections=on

LogRenameSize synchronization profile option
Renames and restarts the transaction log.

Syntax
x=size[K | M]

LogRenameSize=size[K | M]

Remarks
When this option is set, the transaction log is renamed and restarted during synchronization if it is larger
than the specified size in bytes. Use the suffix K or M to specify units of kilobytes or megabytes, respectively.

Set the size to 0 to rename the transaction log regardless of its size.

See also
● “-x dbmlsync option” on page 125

Example
The following example shows how to use the LogRenameSize synchronization profile option:

LogRenameSize=512k

MobiLinkPwd synchronization profile option
Supplies the password of the MobiLink user.

Syntax
mp=password

MobiLinkPwd=password

See also
● “-mp dbmlsync option” on page 110
● “MobiLinkPwd (mp) extended option” on page 140
● “NewMobiLinkPwd (mn) extended option” on page 140
● “-mn dbmlsync option” on page 109

SQL Anywhere clients for MobiLink

170 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example
The following example shows how to use the MobiLinkPwd synchronization profile option:

MobiLinkPwd=mypassword

MLUser synchronization profile option (deprecated)
Specifies the MobiLink user name.

Syntax
u=username

MLUser=username

Remarks
This option is deprecated. Use the Subscription synchronization profile option instead.

See also
● “Subscription synchronization profile option” on page 174
● “MobiLink users” on page 4
● “-u dbmlsync option (deprecated)” on page 120

Example
The following example shows how to use the MobiLinkPwd synchronization profile option:

MLUser=my_user_name

NewMobiLinkPwd synchronization profile option
Supplies a new password for the MobiLink user. Use this option when you want to change the existing
password.

Syntax
mn=new_password

NewMobiLinkPwd=new_password

See also
● “-mp dbmlsync option” on page 110
● “-mn dbmlsync option” on page 109
● “Introduction to MobiLink users” on page 4

Example
The following example shows how to use the NewMobiLinkPwd synchronization profile option:

NewMobiLinkPwd=new_password

MobiLink synchronization profiles

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 171

Ping synchronization profile option
Pings a MobiLink server.

Syntax
pi={ON|OFF}

Ping={ON|OFF}

Remarks
When you set the ping synchronization profile option to on, dbmlsync connects to the remote database,
retrieves information required to connect to the MobiLink server, connects to the server, and authenticates
the specified MobiLink user.

When the MobiLink server receives a ping, it connects to the consolidated database, authenticates the
user, and then sends the authenticating user status and value back to the client. If the MobiLink user name
cannot be found in the ml_user system table and the MobiLink server is running with the command line
option -zu+, the MobiLink server adds the user to the ml_user MobiLink system table.

To adequately test your connection, you should use the ping synchronization profile option with all the
synchronization options you want to use to synchronize with dbmlsync. When the ping synchronization
profile option is included, dbmlsync does not perform a synchronization.

If the ping succeeds, the MobiLink server issues an information message. If the ping does not succeed, it
issues an error message.

See also
● “-pi dbmlsync option” on page 114

Example
The following example shows how to use the Ping synchronization profile option:

Ping=on

Publication synchronization profile option
Specifies the publications(s) to synchronize.

Syntax
n=pubname, ...

Publication=pubname, ...

Remarks
The publication synchronization profile option can be specified only once in a synchronization profile.

This option is deprecated. Use the Subscription synchronization profile option instead.

SQL Anywhere clients for MobiLink

172 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Note
This option has been deprecated. It is recommended that you use the -s dbmlsync option instead. See “-s
dbmlsync option” on page 117.

To use the dbmlsync -s option you need to determine the subscription name for the subscription you want
to synchronize. You can determine the subscription name using the following query:

SELECT subscription_name
FROM syssync JOIN sys.syspublication
WHERE site_name = <ml_user> AND publication_name = <pub_name>;

Replace <ml_user> with the MobiLink user you are synchronizing. This is the value specified by the -u
option on the dbmlsync command line. See “-u dbmlsync option (deprecated)” on page 120.

Replace <pub_name> with the name of the publication being synchronized. This is the value specified
with the -n option on the dbmlsync command line. See “-n dbmlsync option (deprecated)” on page 110.

See also
● “-n dbmlsync option (deprecated)” on page 110

Example
Publication=overnight

RemoteProgressGreater synchronization profile option
Specifies that the remote offset should be used if it is greater than the consolidated offset. This is
equivalent to the -ra option.

Syntax
ra={ON|OFF}

RemoteProgressGreater={ON|OFF}

Remarks
This option should be used only in very rare cases. If you use this option, the upload is retried starting
from the offset obtained from the remote database if the remote offset is greater than the offset obtained
from the consolidated database. If you use this option and the offset in the remote is not greater than the
offset from the consolidated database, an error is reported and the synchronization is aborted.

This option should be used with care. If the offset mismatch is the result of a restore of the consolidated
database, changes that happened in the remote database in the gap between the two offsets are lost. This
option may be useful when the consolidated database has been restored from backup and the remote
database transaction log has been truncated at the same point as the remote offset. In this case, all data
that was uploaded from the remote database is lost from the point of the consolidated offset to the point of
the remote offset.

MobiLink synchronization profiles

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 173

See also
● “-r dbmlsync option” on page 116

Example
RemoteProgressGreater=on

RemoteProgressLess synchronization profile option
Specifies that the remote offset should be used if it is less than the consolidated offset (such as when the
remote database has been restored from backup). This is equivalent to the -rb option.

Syntax
rb={ON|OFF}

RemoteProgressLess={ON|OFF}

Remarks
If the remote database is restored from backup, the default behavior may cause data to be lost. When you
use this option, the upload continues from the offset recorded in the remote database if the offset recorded
in the remote is less than that obtained from the consolidated database. If you use this option and the
offset in the remote is not less than the offset from the consolidated database, an error is reported and the
synchronization is aborted.

This option may result in some data being uploaded that has already been uploaded. This can result in
conflicts in the consolidated database and should be handled with appropriate conflict resolution scripts.

See also
● “-r dbmlsync option” on page 116

Example
RemoteProgressLess=on

Subscription synchronization profile option
Specifies the subscription(s) to synchronize.

Syntax
s=pubname, ...

Subscription=subname, ...

Remarks
Subscription can only be specified once in a synchronization profile but the command line option can be
specified multiple times.

SQL Anywhere clients for MobiLink

174 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “-s dbmlsync option” on page 117

Example
Subscription=mySubscription

TransactionalUpload synchronization profile option
Boolean. Specifies that each transaction on the remote database should be uploaded as a separate
transaction within one synchronization.

Syntax
tu={ON|OFF}

TransactionalUpload={ON|OFF}

Remarks
When you use the TransactionalUpload synchronization profile option, you create a transactional upload:
dbmlsync uploads each transaction on the remote database as a distinct transaction. The MobiLink server
applies and commits each transaction separately when it is received.

See also
● “-tu dbmlsync option” on page 119

Example
TransactionalUpload=on

UpdateGenNum synchronization profile option
When creating a download file, this option creates a file that can be used with remote databases that have
not yet synchronize. Otherwise, you must perform a synchronization before you apply a download file.

Syntax
bg={ON|OFF}

UpdateGenNum={ON|OFF}

Remarks
This option causes the download file to update the generation numbers on the remote database.

Download files built with this option should be snapshot downloads. Timestamp-based downloads do not
work with remote databases that have not synchronized because the last download timestamp on a new
remote is by default January 1, 1900, which is earlier than the last download timestamp in the download
file. For timestamp-based file-based downloads to work, the last download timestamp in the download
file must be the same or earlier than on the remote.

MobiLink synchronization profiles

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 175

Do not apply UpdateGenNum download files to remote databases that have already synchronized if your
system depends on functionality provided by generation numbers as this option circumvents that
functionality.

See also
● “-bg dbmlsync option” on page 99
● “MobiLink generation numbers” [MobiLink - Server Administration]
● “Synchronizing new remotes” [MobiLink - Server Administration]

Example
UpdateGenNum=on

UploadOnly synchronization profile option
Specifies that synchronization only includes an upload, and that no download should occur.

Syntax
uo={ON|OFF}

UploadOnly={ON|OFF}

Remarks
During upload-only synchronization, dbmlsync prepares and sends an upload to MobiLink exactly as it
would in a normal full synchronization. However, instead of sending a download back down, MobiLink
sends only an acknowledgement indicating if the upload was successfully committed.

For a list of the scripts that must be defined for upload-only synchronization, see “Required scripts”
[MobiLink - Server Administration].

See also
● “-uo dbmlsync option” on page 122
● “UploadOnly (uo) extended option” on page 150

Example
UploadOnly=on

UploadRowCnt synchronization profile option
Integer. Specifies an estimate of the number of rows to be uploaded in a synchronization.

Syntax
urc=rowcount

UploadRowCnt=rowcount

SQL Anywhere clients for MobiLink

176 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
To improve performance, you can specify an estimate of the number of rows to upload in a
synchronization. This setting is especially useful when you are uploading a large number of rows. A
higher estimate results in faster uploads but more memory usage.

Synchronization proceeds correctly regardless of the specified estimate.

See also
● “-urc dbmlsync option” on page 123

Example
UploadRowCnt=100

Verbosity synchronization profile option
Controls dbmlsync verbosity.

Syntax
v={BASIC|HIGH|CONNECT_STR|ROW_CNT|OPTIONS|ML_PASSWORD|ROW_DATA|HOOK}, ...

Verbosity={BASIC|HIGH|CONNECT_STR|ROW_CNT|OPTIONS|ML_PASSWORD|ROW_DATA|
HOOK}, ...

Allowed values
The value must be a comma separated list of one or more of the following options, each of which enables
a different type of verbosity:

● BASIC Generate limited verbosity.

● HIGH Generate the maximum possible level of verbosity.

● CONNECT_STR Expose the connection strong in the log.

● ROW_CNT Log the number of rows that were uploaded and downloaded.

● OPTIONS Log the options used to specify synchronization.

● ML_PASSWORD Expose the MobiLink password in the log.

● ROW_DATA Log rows that were uploaded and downloaded.

● HOOK Log messages related to hook scripts.

Remarks
If you specify both -v and a verbosity extended option and there are conflicts, the -v option overrides the
extended option. If there is no conflict, the verbosity logging options are additive—all options that you
specify are used. When logging verbosity is set by extended option, the logging does not take effect
immediately, so startup information is not logged. By the time of the first synchronization, the logging
behavior is identical between the -v options and the extended options.

MobiLink synchronization profiles

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 177

See also
● “-v dbmlsync option” on page 123

Example
Verbosity=OPTIONS, ML_PASSWORD

Event hooks for SQL Anywhere clients

Introduction to dbmlsync hooks

The SQL Anywhere synchronization client, dbmlsync, provides an optional set of event hooks that you
can use to customize the synchronization process. When a hook is implemented, it is called at a specific
point in the synchronization process.

You implement an event hook by creating a SQL stored procedure with a specific name. Most event-hook
stored procedures are executed on the same connection as the synchronization itself.

You can use event hooks to log and handle synchronization events. For example, you can schedule
synchronizations based on logical events, retry connection failures, or handle errors and referential
integrity violations.

In addition, you can use event hooks to synchronize subsets of data that cannot be easily defined in a
publication. For example, you can synchronize data in a temporary table by writing one event hook
procedure to copy data from the temporary table to a permanent table before the synchronization and
another to copy the data back afterward.

Caution
The integrity of the synchronization process relies on a sequence of built-in transactions. You must not
perform an implicit or explicit commit or rollback within your event-hook procedures.

If you change any connection setting in a hook you must restore the setting to its previous value before
the hook ends. Failing to restore the setting may produce unexpected results.

dbmlsync interfaces
You can use client event hooks with the dbmlsync command line utility or any programming interface
used to synchronize SQL Anywhere clients, including the dbmlsync API and the DBTools interface for
dbmlsync.

See “Customizing dbmlsync synchronization” on page 89.

Synchronization event hook sequence

SQL Anywhere clients for MobiLink

178 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The following pseudo-code shows the available events and the point at which each is called during the
synchronization process. For example, sp_hook_dbmlsync_abort is the first event hook to be invoked.

sp_hook_dbmlsync_abort //not called when Dbmlsync API or the SQL SYNCHRONIZE
STATEMENT is used
sp_hook_dbmlsync_set_extended_options
loop until return codes direct otherwise (
 sp_hook_dbmlsync_abort
 sp_hook_dbmlsync_delay
)
sp_hook_dbmlsync_abort
// start synchronization
sp_hook_dbmlsync_begin
// upload events
for each upload segment
// a normal synchronization has one upload segment
// a transactional upload has one segment per transaction
// an incremental upload has one segment per upload piece
 sp_hook_dbmlsync_logscan_begin //not called for scripted upload
 sp_hook_dbmlsync_logscan_end //not called for scripted upload
 sp_hook_dbmlsync_set_ml_connect_info //only called during first upload
 sp_hook_dbmlsync_upload_begin
 sp_hook_dbmlsync_set_upload_end_progress //only called for scripted upload
 sp_hook_dbmlsync_upload_end
next upload segment
// download events
sp_hook_dbmlsync_validate_download_file (only called
 when -ba option is used)
sp_hook_dbmlsync_download_begin
for each table
 sp_hook_dbmlsync_download_table_begin
 sp_hook_dbmlsync_download_table_end
next table
sp_hook_dbmlsync_download_end
sp_hook_dbmlsync_schema_upgrade
// end synchronization
sp_hook_dbmlsync_end
sp_hook_dbmlsync_process_exit_code
sp_hook_dbmlsync_log_rescan

Event hooks
Each hook is provided with parameter values that you can use when you implement the procedure.
Sometimes, you can modify the value to return a new value; others are read-only. These parameters are
not stored procedure arguments. No arguments are passed to any of the event-hook stored procedures.
Instead, arguments are exchanged by reading and modifying rows in the #hook_dict table.

For example, the sp_hook_dbmlsync_begin procedure has a MobiLink user parameter, which is the
MobiLink user being synchronized. You can retrieve this value from the #hook_dict table.

Although the sequence has similarities to the event sequence at the MobiLink server, there is little overlap
in the kind of logic you would want to add to the consolidated and remote databases. The two interfaces
are therefore separate and distinct.

If a *_begin hook executes successfully, the corresponding *_end hook is called regardless of any error
that occurred after the *_begin hook. If the *_begin hook is not defined, but you have defined an *_end
hook, then the *_end hook is called unless an error occurs before the point in time where the *_begin
hook would normally be called.

Event hooks for SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 179

If the hooks change data in your database, all changes up to and including
sp_hook_dbmlsync_logscan_begin are synchronized in the current synchronization session; after that
point, changes are synchronized in the next session.

Using event-hook procedures

This section describes some considerations for designing and using event-hook procedures.

Notes
● Do not perform any COMMIT or ROLLBACK operations in event-hook procedures. The procedures

are executed on the same connection as the synchronization, and a COMMIT or ROLLBACK may
interfere with synchronization.

● If you change any connection setting in a hook you must restore the setting to its previous value
before the hook ends. Failing to restore the setting may produce unexpected results.

● Dbmlsync calls the stored procedures without qualifying them by owner. The stored procedures must
therefore be owned by either the user name employed on the dbmlsync connection, or a group of
which that user is a member.

● Hook procedures must be created by a user with DBA authority.

#hook_dict table

Immediately before a hook is called, dbmlsync creates the #hook_dict table in the remote database, using
the following CREATE statement. The # before the table name means that the table is temporary.

CREATE TABLE #hook_dict(
name VARCHAR(128) NOT NULL UNIQUE,
value VARCHAR(10240) NOT NULL)

The dbmlsync utility uses the #hook_dict table to pass values to hook functions, and hook functions use
the #hook_dict table to pass values back to dbmlsync.

Each hook receives parameter values. Sometimes, you can modify the value to return a new value; others
are read-only. Each row in the table contains the value for one parameter.

For example, suppose two subscriptions are defined as follows:

CREATE SYNCHRONIZATION SUBSCRIPTION sub1
TO pub1
FOR MyUser;
SCRIPT VERSION 'v1'
CREATE SYNCHRONIZATION SUBSCRIPTION sub2
TO pub2
FOR MyUser;
SCRIPT VERSION 'v1'

When the sp_hook_dbmlsync_begin hook is called for the following dbmlsync command line

SQL Anywhere clients for MobiLink

180 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

dbmlsync -c 'dsn=MyDsn' -s sub1,sub2

the #hook_dict table contains the following rows:

#hook_dict row Value

subscription_0 sub1

subscription_1 sub2

publication_0 pub1

publication_1 pub2

MobiLink user MyUser

Script version v1

Note
The publication_n rows are deprecated and may be removed in a future release.

A hook can retrieve values from the #hook_dict table and use them to customize behavior. For example,
to retrieve the MobiLink user you would use a SELECT statement like this:

SELECT value
FROM #hook_dict
WHERE name = 'MobiLink user'

In/out parameters can be updated by your hook to modify the behavior of dbmlsync. For example, in the
sp_hook_dbmlsync_abort hook you could instruct dbmlsync to abort synchronization by updating the
abort synchronization row of the table using a statement like this:

UPDATE #hook_dict
SET value='true'
WHERE name='abort synchronization'

The description of each hook lists the rows in the #hook_dict table.

Examples
The following sample sp_hook_dbmlsync_delay procedure illustrates the use of in/out parameters in the
#hook_dict table. The procedure allows synchronization only outside a scheduled down time of the
MobiLink system between 18:00 and 19:00.

CREATE PROCEDURE sp_hook_dbmlsync_delay()
BEGIN
 DECLARE delay_val integer;
 SET delay_val=DATEDIFF(
 second, CURRENT TIME, '19:00');
 IF (delay_val>0 AND
 delay_val<3600)
 THEN
 UPDATE #hook_dict SET value=delay_val
 WHERE name='delay duration';

Event hooks for SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 181

 END IF;
END

The following procedure is executed in the remote database at the beginning of synchronization. It
retrieves the current MobiLink user name (one of the parameters available for the
sp_hook_dbmlsync_begin event), and displays it on the SQL Anywhere messages window.

CREATE PROCEDURE sp_hook_dbmlsync_begin()
BEGIN
 DECLARE MLuser VARCHAR(150);
 SELECT '>>>MLuser = ' || value INTO MLuser
 FROM #hook_dict
 WHERE name ='MobiLink user name';
 MESSAGE syncdef TYPE INFO TO CONSOLE;
END

Connections for event-hook procedures

Each event-hook procedure is executed on the same connection as the synchronization itself. The
following are exceptions:

● sp_hook_dbmlsync_all_error

● sp_hook_dbmlsync_communication_error

● sp_hook_dbmlsync_download_log_ri_violation

● sp_hook_dbmlsync_misc_error

● sp_hook_dbmlsync_sql_error

These procedures are called before a synchronization fails. On failure, synchronization actions are rolled
back. By executing on a separate connection, you can use these procedures to log information about the
failure, without the logging actions being rolled back along with the synchronization actions.

Handling errors and warnings in event hook procedures

You can create event hook stored procedures to handle synchronization errors, MobiLink connection
failures, and referential integrity violations. This section describes event hook procedures that are used to
handle errors and warnings. Once implemented, each procedure is automatically executed whenever an
error of the named type occurs.

Handling RI violations
Referential integrity violations occur when rows in the download violate foreign key relationships on the
remote database. Use the following event hooks to log and handle referential integrity violations:

● “sp_hook_dbmlsync_download_log_ri_violation” on page 196
● “sp_hook_dbmlsync_download_ri_violation” on page 198

SQL Anywhere clients for MobiLink

182 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Handling MobiLink connection failures
The sp_hook_dbmlsync_ml_connect_failed event hook allows you to retry failed attempts to connect to
the MobiLink server using a different communication type or address. If connection ultimately fails,
dbmlsync calls the sp_hook_dbmlsync_communication_error and sp_hook_dbmlsync_all_error hooks.

See “sp_hook_dbmlsync_ml_connect_failed” on page 213.

Handling dbmlsync errors
Each time a dbmlsync error message is generated, the following hooks are called:

● First, depending on the type of error, one of the following hooks is called:
sp_hook_dbmlsync_communication_error, sp_hook_dbmlsync_misc_error, or
sp_hook_dbmlsync_sql_error. These hooks contain information specific to the type of error; for
example, sqlcode and sqlstate are provided for SQL errors.

● Next, sp_hook_dbmlsync_all_error is called. This hook is useful for logging all errors that occur.

See:

● “sp_hook_dbmlsync_communication_error” on page 189
● “sp_hook_dbmlsync_sql_error” on page 224
● “sp_hook_dbmlsync_misc_error” on page 210
● “sp_hook_dbmlsync_all_error” on page 185

If you want to restart a synchronization in response to an error, you can use the user state parameter in
sp_hook_dbmlsync_end.

See “sp_hook_dbmlsync_end” on page 203.

Ignoring errors
By default, synchronization stops when an unhandled error is encountered in an event hook procedure.
You can instruct the dbmlsync utility to ignore these errors by supplying the -eh option.

See “IgnoreHookErrors (eh) extended option” on page 136.

sp_hook_dbmlsync_abort

Use this stored procedure to cancel the synchronization process.

Rows in #hook_dict table

Name Value Description

abort synchronization (in|out) true | false If you set the abort synchronization row of
the #hook_dict table to true, then synchroni-
zation terminates immediately after the event.

Event hooks for SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 183

Name Value Description

publication_n (in) publication Deprecated. Use subscription_n instead. The
publications being synchronized, where n is
an integer. There is one publication_n entry
for each publication being synchronized. The
numbering of n starts at zero.

MobiLink user (in) MobiLink user
name

The MobiLink user for which you are synchro-
nizing.

exit code (in|out) number When abort synchronization is set to TRUE,
you can use this value to set the exit code for
the aborted synchronization. 0 indicates a suc-
cessful synchronization. Any other number in-
dicates that the synchronization failed.

script version (in|out) script version name The MobiLink script version to be used for
the synchronization.

subscription_n (in) subscription
name(s)

The names of subscriptions being synchron-
ized where n is an integer. There is one sub-
scription_n entry for each subscription being
synchronized. The numbering of n starts at
zero.

Remarks
If a procedure of this name exists, it is called at dbmlsync startup, and then again after each
synchronization delay that is caused by the sp_hook_dbmlsync_delay hook.

When dbmlsync is run from the command line, setting the abort synchronization to true causes all
remaining synchronizations (including scheduled synchronizations) to be canceled. When the dbmlsync
API or the SQL SYNCHRONIZE statement is used, setting abort synchronization to true only causes the
current synchronization to be aborted.

Actions of this procedure are committed immediately after execution.

See also
● “Synchronization event hook sequence” on page 178
● “sp_hook_dbmlsync_process_exit_code” on page 216

Examples
The following procedure prevents synchronization during a scheduled maintenance hour between 19:00
and 20:00 each day.

CREATE PROCEDURE sp_hook_dbmlsync_abort()
BEGIN
 DECLARE down_time_start TIME;
 DECLARE is_down_time VARCHAR(128);

SQL Anywhere clients for MobiLink

184 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 SET down_time_start='19:00';
 IF datediff(hour,down_time_start,now(*)) < 1
 THEN
 set is_down_time='true';
 ELSE
 SET is_down_time='false';
 END IF;
 UPDATE #hook_dict
 SET value = is_down_time
 WHERE name = 'abort synchronization'
END;

Suppose you have an abort hook that may abort synchronization for one of two reasons. One of the
reasons indicates normal completion of synchronization, so you want dbmlsync to have an exit code of 0.
The other reason indicates an error condition, so you want dbmlsync to have a non-zero exit code. You
could achieve this with an sp_hook_dbmlsync_abort hook defined as follows.

BEGIN
 IF [condition that defines the normal abort case] THEN
 UPDATE #hook_dict SET value = '0'
 WHERE name = 'exit code';
 UPDATE #hook_dict SET value = 'TRUE'
 WHERE name = 'abort synchronization';
 ELSEIF [condition that defines the error abort case] THEN
 UPDATE #hook_dict SET value = '1'
 WHERE name = 'exit code';
 UPDATE #hook_dict SET value = 'TRUE'
 WHERE name = 'abort synchronization';
 END IF;
END;

sp_hook_dbmlsync_all_error

Use this stored procedure to process dbmlsync error messages of all types. For example, you can
implement the sp_hook_dbmlsync_all_error hook to log errors or perform a specific action when a
specific error occurs.

Rows in #hook_dict table

Name Value Description

publication_n (in) publication Deprecated. Use subscription_n instead. The
publications being synchronized, where n is
an integer. There is one publication_n entry
for each publication being synchronized. The
numbering of n starts at zero.

MobiLink user (in) MobiLink user name The MobiLink user for which you are synchro-
nizing.

script version (in) script version name The MobiLink script version that is used for
the synchronization.

Event hooks for SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 185

Name Value Description

error message (in) error message text This is the same text that is displayed in the
dbmlsync log.

error id (in) integer An ID that uniquely identifies the message.
Use this row to identify the error message, as
the error message text may change.

error hook user state (in|out) integer This value can be set by the hook to pass state
information to future calls to the
sp_hook_dbmlsync_all_error,
sp_hook_dbmlsync_communication_error,
sp_hook_dbmlsync_misc_error,
sp_hook_dbmlsync_sql_error, or
sp_hook_dbmlsync_end hooks. The first time
one of these hooks is called, the value of the
row is 0. If a hook changes the value of the
row, the new value is used in the next hook call.

subscription_n (in) subscription name(s) The names of subscriptions being synchron-
ized where n is an integer. This is one subscrip-
tion_n entry for each subscription being
synchronized. The numbering of n starts at
zero.

Remarks
Each time a dbmlsync error message is generated, the following hooks are called:

● First, depending on the type of error, one of the following hooks is called:
sp_hook_dbmlsync_communication_error, sp_hook_dbmlsync_misc_error, or
sp_hook_dbmlsync_sql_error. These hooks contain information specific to the type of error; for
example, sqlcode and sqlstate are provided for SQL errors.

● Next, the sp_hook_dbmlsync_all_error is called. This hook is useful for logging all errors that occurred.

If an error occurs during startup before a synchronization has been initiated, the #hook_dict entries for
MobiLink user and Script version are set to an empty string, and no publication_n or subscription_n rows
are set in the #hook_dict table.

The error hook user state row provides a useful mechanism for you to pass information about the nature of
the error to the sp_hook_dbmlsync_end hook, where you might use that information to decide whether to
retry the synchronization.

This procedure executes on a separate connection to ensure that operations it performs are not lost if a
rollback is performed on the synchronization connection. If dbmlsync cannot establish a separate
connection, the procedure is not called.

SQL Anywhere clients for MobiLink

186 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Since this hook executes on a separate connection you should use care when accessing tables that are
being synchronized in your hook procedure because dbmlsync may have locks on these tables. These
locks could cause operations in your hook to fail or to wait indefinitely.

Actions of this procedure are committed immediately after the hook completes.

See also
● “Handling errors and warnings in event hook procedures” on page 182
● “sp_hook_dbmlsync_communication_error” on page 189
● “sp_hook_dbmlsync_misc_error” on page 210
● “sp_hook_dbmlsync_sql_error” on page 224

Example
Assume you use the following table to log errors in the remote database.

CREATE TABLE error_log
(
 pk INTEGER DEFAULT AUTOINCREMENT PRIMARY KEY,
 err_id INTEGER,
 err_msg VARCHAR(10240),
);

The following example sets up sp_hook_dbmlsync_all_error to log errors.

CREATE PROCEDURE sp_hook_dbmlsync_all_error()
BEGIN
 DECLARE msg VARCHAR(10240);
 DECLARE id INTEGER;
 // get the error message text
 SELECT value INTO msg
 FROM #hook_dict
 WHERE name ='error message';
 // get the error id
 SELECT value INTO id
 FROM #hook_dict
 WHERE name = 'error id';
 // log the error information
 INSERT INTO error_log(err_msg, err_id)
 VALUES (msg, id);
END;

To see possible error id values, test run dbmlsync. For example, if dbmlsync returns the error "Unable to
connect to MobiLink server", sp_hook_dbmlsync_all_error inserts the following row in error_log.

1,14173,
 'Unable to connect to MobiLink server'

Now, you can associate the error "Unable to connect to MobiLink server" with the error id 14173.

The following example sets up hooks to retry the synchronization whenever error 14173 occurs.

CREATE PROCEDURE sp_hook_dbmlsync_all_error()
BEGIN
 IF EXISTS(SELECT value FROM #hook_dict

Event hooks for SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 187

 WHERE name = 'error id' AND value = '14173')
 THEN
 UPDATE #hook_dict SET value = '1'
 WHERE name = 'error hook user state';
 END IF;
END;
CREATE PROCEDURE sp_hook_dbmlsync_end()
BEGIN
 IF EXISTS(SELECT value FROM #hook_dict
 WHERE name='error hook user state' AND value='1')
 THEN
 UPDATE #hook_dict SET value = 'sync'
 WHERE name='restart';
 END IF;
END;

See “sp_hook_dbmlsync_end” on page 203.

sp_hook_dbmlsync_begin
Use this stored procedure to add custom actions at the beginning of the synchronization process.

Rows in #hook_dict table

Name Value Description

publication_n (in) publication Deprecated. Use subscription_n instead. The
publications being synchronized, where n is
an integer. There is one publication_n entry
for each publication being synchronized. The
numbering of n starts at zero.

MobiLink user (in) MobiLink user name The MobiLink user for which you are synchro-
nizing.

script version (in) script version name The MobiLink script version to be used for
the synchronization.

subscription_n (in) subscription name(s) The names of subscriptions being synchron-
ized where n is an integer. This is one subscrip-
tion_n entry for each subscription being
synchronized. The numbering of n starts at
zero.

Remarks
If a procedure of this name exists, it is called at the beginning of the synchronization process.

Actions of this procedure are committed immediately after execution.

SQL Anywhere clients for MobiLink

188 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “Synchronization event hook sequence” on page 178

Examples
Assume you use the following table to log synchronization events on the remote database.

CREATE TABLE SyncLog
(
 "event_id" integer NOT NULL DEFAULT autoincrement ,
 "event_time" timestamp NULL,
 "event_name" varchar(128) NOT NULL ,
 "subs" varchar(1024) NULL ,
 PRIMARY KEY ("event_id")
)

The following logs the beginning of each synchronization in the table.

CREATE PROCEDURE sp_hook_dbmlsync_begin ()
BEGIN

 DECLARE subs_list VARCHAR(1024);
-- build a list of subscriptions being synchronized
 SELECT LIST(value) INTO subs_list
 FROM #hook_dict
 WHERE name LIKE 'subscription_%';
-- log the event
 INSERT INTO SyncLog(event_time, event_name, subs)
 VALUES(CURRENT TIMESTAMP, 'sp_hook_dbmlsync_begin', subs_list);
END

sp_hook_dbmlsync_communication_error
Use this stored procedure to process communications errors.

Rows in #hook_dict table

Name Value Description

publication_n (in) publication Deprecated. Use subscription_n instead. The
publications being synchronized, where n is
an integer. There is one publication_n entry
for each publication being synchronized. The
numbering of n starts at zero.

MobiLink user (in) MobiLink user name The MobiLink user for which you are synchro-
nizing.

script version (in) script version name The MobiLink script version that is used for
the synchronization.

Event hooks for SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 189

Name Value Description

error message (in) error message text This is the same text that is displayed in the
dbmlsync log.

error id (in) numeric An ID that uniquely identifies the message.
Use this row to identify the error message, as
the error message text may change.

error hook user state (in|out) integer This value can be set by the hook to pass state
information to future calls to the
sp_hook_dbmlsync_all_error,
sp_hook_dbmlsync_communication_error,
sp_hook_dbmlsync_misc_error,
sp_hook_dbmlsync_sql_error, or
sp_hook_dbmlsync_end hooks. The first time
one of these hooks is called, the value of the
row is 0. If a hook changes the value of the
row, the new value is used in the next hook call.

stream error code (in) integer The error reported by the stream.

system error code (in) integer A system-specific error code.

sunscription_n (in) subscription name(s) The names of subscriptions being synchron-
ized where n is an integer. This is one subscrip-
tion_n entry for each subscription being
synchronized. The numbering of n starts at
zero.

Remarks
If an error occurs during startup before a synchronization has been initiated, the #hook_dict entries for
MobiLink user and Script version are set to an empty string, and no publication_n or subscription_nrows
are set in the #hook_dict table.

When communication errors occur between dbmlsync and the MobiLink server, this hook allows you to
access stream-specific error information.

The stream error code parameter is an integer indicating the type of communication error.

For a listing of possible error code values, see “MobiLink communication error messages” [Error
Messages].

The error hook user state row provides a useful mechanism for you to pass information about the nature of
the error to the sp_hook_dbmlsync_end hook, where you might use that information to decide whether to
retry the synchronization.

SQL Anywhere clients for MobiLink

190 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

This procedure executes on a separate connection to ensure that operations it performs are not lost if a
rollback is performed on the synchronization connection. If dbmlsync cannot establish a separate
connection, the procedure is not called.

Since this hook executes on a separate connection you should use care when accessing tables that are
being synchronized in your hook procedure because dbmlsync may have locks on these tables. These
locks could cause operations in your hook to fail or to wait indefinitely.

Actions of this procedure are committed immediately after execution.

See also
● “Handling errors and warnings in event hook procedures” on page 182
● “sp_hook_dbmlsync_all_error” on page 185
● “sp_hook_dbmlsync_misc_error” on page 210
● “sp_hook_dbmlsync_sql_error” on page 224

Example
Assume you use the following table to log communication errors in the remote database.

CREATE TABLE communication_error_log
(
 error_msg VARCHAR(10240),
 error_code VARCHAR(128)
);

The following example sets up sp_hook_dbmlsync_communication_error to log communication errors.

CREATE PROCEDURE sp_hook_dbmlsync_communication_error()
BEGIN
 DECLARE msg VARCHAR(255);
 DECLARE code INTEGER;
 // get the error message text
 SELECT value INTO msg
 FROM #hook_dict
 WHERE name ='error message';
 // get the error code
 SELECT value INTO code
 FROM #hook_dict
 WHERE name = 'stream error code';
 // log the error information
 INSERT INTO communication_error_log(error_code,error_msg)
 VALUES (code,msg);
END

sp_hook_dbmlsync_delay
Use this stored procedure to control when synchronization takes place.

Event hooks for SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 191

Rows in #hook_dict table

Name Value Description

delay duration (in|out) number of seconds If the procedure sets the delay duration value
to zero, then dbmlsync synchronization pro-
ceeds immediately. A non-zero delay duration
value specifies the number of seconds before
the delay hook is called again.

maximum accumulated delay
(in|out)

number of seconds The maximum accumulated delay specifies
the maximum number of seconds delay be-
fore each synchronization. Dbmlsync keeps
track of the total delay created by all calls to
the delay hook since the last synchronization.
If no synchronization has occurred since
dbmlsync started running, the total delay is cal-
culated from the time dbmlsync started up.
When the total delay exceeds the value of max-
imum accumulated delay, synchronization be-
gins without any further calls to the delay hook.

publication_n (in) publication Deprecated. Use subscription_n instead. The
publications being synchronized, where n is
an integer. There is one publication_n entry
for each publication being synchronized. The
numbering of n starts at zero.

MobiLink user (in) MobiLink user
name

The MobiLink user for which you are synchro-
nizing.

script version (in) script version name The MobiLink script version to be used for
the synchronization.

subscription_n (in) subscription
name(s)

The names of subscriptions being synchron-
ized where n is an integer. This is one subscrip-
tion_n entry for each subscription being
synchronized. The numbering of n starts at
zero.

Remarks
If a procedure of this name exists, it is called before sp_hook_dbmlsync_begin at the beginning of the
synchronization process.

This hook is not called when synchronization is initiated using the Dbmlsync API or the SQL
SYNCHRONIZE statement.

Actions of this procedure are committed immediately after execution.

SQL Anywhere clients for MobiLink

192 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “Synchronization event hook sequence” on page 178
● “Initiating synchronization with event hooks” on page 88
● “sp_hook_dbmlsync_download_end” on page 195

Example
Assume you have the following table to log orders on the remote database.

CREATE TABLE OrdersTable(
 "id" INTEGER PRIMARY KEY DEFAULT AUTOINCREMENT,
 "priority" VARCHAR(128)
);

The following example delays synchronization for a maximum accumulated delay of one hour. Every ten
seconds the hook is called again and checks for a high priority row in the OrdersTable. If a high priority
row exists, the delay duration is set to zero to start the synchronization process.

CREATE PROCEDURE sp_hook_dbmlsync_delay()
BEGIN
 -- Set the maximum delay between synchronizations
 -- or before the first synchronization starts to 1 hour
 UPDATE #hook_dict SET value = '3600' // 3600 seconds
 WHERE name = 'maximum accumulated delay';
 -- check if a high priority order exists in OrdersTable
 IF EXISTS (SELECT * FROM OrdersTable where priority='high') THEN
 -- start the synchronization to process the high priority row
 UPDATE #hook_dict
 SET value = '0'
 WHERE name='delay duration';
 ELSE
 -- set the delay duration to call this procedure again
 -- following a 10 second delay
 UPDATE #hook_dict
 SET value = '10'
 WHERE name='delay duration';
 END IF;
END;

In the sp_hook_dbmlsync_end hook you can mark the high priority row as processed:

CREATE PROCEDURE sp_hook_dbmlsync_upload_end()
 BEGIN
 IF EXISTS(SELECT value FROM #hook_dict
 WHERE name = 'Upload status'
 AND value = 'committed') THEN
 UPDATE OrderTable SET priority = 'high-processed'
 WHERE priority = 'high';
 END IF;
 END;

This example assumes that you have used LockTables extended option to ensure that the tables are locked
during synchronization. If the tables are not locked, it is possible for a high priority row to be inserted
after the upload is built but before the sp_hook_dbmlsync_end hook is executed. If that happened the
row's priority would be changed to "high-processed" even though it was never uploaded.

See “sp_hook_dbmlsync_end” on page 203.

Event hooks for SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 193

sp_hook_dbmlsync_download_begin
Use this stored procedure to add custom actions at the beginning of the download stage of the
synchronization process.

Rows in #hook_dict table

Name Value Description

publication_n (in) publication Deprecated. Use subscription_n instead. The publi-
cations being synchronized, where n is an integer.
There is one publication_n entry for each publica-
tion being synchronized. The numbering of n starts
at zero.

MobiLink user (in) MobiLink user name The MobiLink user for which you are synchronizing.

script version (in) script version name The MobiLink script version to be used for the syn-
chronization.

subscription_n (in) subscription name(s) The names of subscriptions being synchronized
where n is an integer. This is one subscription_n en-
try for each subscription being synchronized. The
numbering of n starts at zero.

Remarks
If a procedure of this name exists, it is called at the beginning of the download stage of the
synchronization process.

Actions of this procedure are committed or rolled back when the download is committed or rolled back.

See also
● “Synchronization event hook sequence” on page 178

Example
Assume you use the following table to log synchronization events on the remote database.

CREATE TABLE SyncLog
(
 "event_id" integer NOT NULL DEFAULT autoincrement ,
 "event_time" timestamp NULL,
 "event_name" varchar(128) NOT NULL ,
 "subs" varchar(1024) NULL ,
 PRIMARY KEY ("event_id")
)

The following logs the beginning of the download for each synchronization.

CREATE PROCEDURE sp_hook_dbmlsync_download_begin ()
BEGIN

SQL Anywhere clients for MobiLink

194 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 DECLARE subs_list VARCHAR(1024);
-- build a list of subscriptions being synchronized
 SELECT LIST(value) INTO subs_list
 FROM #hook_dict
 WHERE name LIKE 'subscription_%';
-- log the event
 INSERT INTO SyncLog(event_time, event_name, subs)
 VALUES(CURRENT TIMESTAMP, 'sp_hook_dbmlsync_download_begin',
subs_list);
END

sp_hook_dbmlsync_download_end
Use this stored procedure to add custom actions at the end of the download stage of the synchronization
process.

Rows in #hook_dict table

Name Value Description

publication_n (in) publication Deprecated. Use subscription_n instead. The
publications being synchronized, where n is
an integer. There is one publication_n entry
for each publication being synchronized. The
numbering of n starts at zero.

MobiLink user (in) MobiLink user
name

The MobiLink user for which you are synchro-
nizing.

script version (in) script version name The MobiLink script version to be used for
the synchronization.

subscription_n (in) subscription
name(s)

The names of subscriptions being synchron-
ized where n is an integer. This is one subscrip-
tion_n entry for each subscription being
synchronized. The numbering of n starts at
zero.

Remarks
If a procedure of this name exists, it is called at the end of the download stage of the synchronization process.

Actions of this procedure are committed or rolled back when the download is committed or rolled back.

Event hooks for SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 195

See also
● “Synchronization event hook sequence” on page 178
● “Initiating synchronization with event hooks” on page 88
● “sp_hook_dbmlsync_delay” on page 191

Examples
Assume you use the following table to log synchronization events on the remote database.

CREATE TABLE SyncLog
(
 "event_id" integer NOT NULL DEFAULT autoincrement ,
 "event_time" timestamp NULL,
 "event_name" varchar(128) NOT NULL ,
 "subs" varchar(1024) NULL ,
 PRIMARY KEY ("event_id")
)

The following logs the end of the download for each synchronization.

CREATE PROCEDURE sp_hook_dbmlsync_download_end ()
BEGIN

 DECLARE subs_list VARCHAR(1024);
-- build a list of subscriptions being synchronized
 SELECT LIST(value) INTO subs_list
 FROM #hook_dict
 WHERE name LIKE 'subscription_%';
-- log the event
 INSERT INTO SyncLog(event_time, event_name, subs)
 VALUES(CURRENT TIMESTAMP, 'sp_hook_dbmlsync_download_end', subs_list);
END

sp_hook_dbmlsync_download_log_ri_violation
Logs referential integrity violations in the download process.

Rows in #hook_dict table

Name Value Description

publication_n (in) publication Deprecated. Use subscription_n instead. The
publications being synchronized, where n is
an integer. There is one publication_n entry
for each publication being synchronized. The
numbering of n starts at zero.

MobiLink user (in) MobiLink user
name

The MobiLink user for which you are synchro-
nizing.

SQL Anywhere clients for MobiLink

196 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Value Description

foreign key table (in) table name The table containing the foreign key column
for which the hook is being called.

primary key table (in) table name The table referenced by the foreign key for
which the hook is being called.

role name (in) role name The role name of the foreign key for which
the hook is being called.

script version (in) script version name The MobiLink script version to be used for
the synchronization.

subscription_n (in) subscription
name(s)

The names of subscriptions being synchron-
ized where n is an integer. This is one subscrip-
tion_n entry for each subscription being
synchronized. The numbering of n starts at
zero.

Remarks
A download RI violation occurs when rows in the download violate foreign key relationships on the
remote database. This hook allows you to log RI violations as they occur so that you can investigate their
cause later.

After the download is complete, but before it is committed, dbmlsync checks for RI violations. If it finds
any, it identifies a foreign key that has an RI violation and calls
sp_hook_dbmlsync_download_log_ri_violation (if it is implemented). It then calls
sp_hook_dbmlsync_download_ri_violation (if it is implemented). If there is still a conflict, dbmlsync
deletes the rows that violate the foreign key constraint. This process is repeated for remaining foreign
keys that have RI violations.

This hook is called only when there are RI violations involving tables that are currently being
synchronized. If there are RI violations involving tables that are not being synchronized, this hook is not
called and the synchronization fails.

This hook is called on a separate connection from the one that dbmlsync uses for the download. The
connection used by the hook has an isolation level of 0 so that the hook can see the rows that have been
applied from the download that are not yet committed. The actions of the hook are committed
immediately after it completes so that changes made by this hook are preserved regardless of whether the
download is committed or rolled back.

Since this hook executes on a separate connection you should use care when accessing tables that are
being synchronized in your hook procedure because dbmlsync may have locks on these tables. These
locks could cause operations in your hook to fail or to wait indefinitely.

Do not attempt to use this hook to correct RI violation problems. It should be used for logging only. Use
sp_hook_dbmlsync_download_ri_violation to resolve RI violations.

Event hooks for SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 197

See also
● “sp_hook_dbmlsync_download_ri_violation” on page 198
● “Synchronization event hook sequence” on page 178

Examples
Assume you use the following table to log referential integrity violations.

CREATE TABLE DBA.LogRIViolationTable
(
 entry_time TIMESTAMP,
 pk_table VARCHAR(255),
 fk_table VARCHAR(255),
 role_name VARCHAR(255)
);

The following example logs the foreign key table name, primary key table name, and role name when a
referential integrity violation is detected on the remote database. The information is stored in
LogRIViolationTable on the remote database.

CREATE PROCEDURE sp_hook_dbmlsync_download_log_ri_violation()
BEGIN
 INSERT INTO DBA.LogRIViolationTable VALUES(
 CURRENT_TIMESTAMP,
 (SELECT value FROM #hook_dict WHERE name = 'Primary key table'),
 (SELECT value FROM #hook_dict WHERE name = 'Foreign key table'),
 (SELECT value FROM #hook_dict WHERE name = 'Role name'));
END;

sp_hook_dbmlsync_download_ri_violation

Allows you to resolve referential integrity violations in the download process.

Rows in #hook_dict table

Name Value Description

publication_n (in) publication Deprecated. Use subscription_n instead. The
publications being synchronized, where n is
an integer. There is one publication_n entry
for each publication being synchronized. The
numbering of n starts at zero.

MobiLink user (in) MobiLink user
name

The MobiLink user for which you are synchro-
nizing.

foreign key table (in) table name The table containing the foreign key column
for which the hook is being called.

primary key table (in) table name The table referenced by the foreign key for
which the hook is being called.

SQL Anywhere clients for MobiLink

198 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Value Description

role name (in) role name The role name of the foreign key for which
the hook is being called.

script version (in) script version name The MobiLink script version to be used for
the synchronization.

subscription_n (in) subscription
name(s)

The names of subscriptions being synchron-
ized where n is an integer. This is one subscrip-
tion_n entry for each subscription being
synchronized. The numbering of n starts at
zero.

Remarks
A download RI violation occurs when rows in the download violate foreign key relationships on the
remote database. This hook allows you to attempt to resolve RI violations before dbmlsync deletes the
rows that are causing the conflict.

After the download is complete, but before it is committed, dbmlsync checks for RI violations. If it finds
any, it identifies a foreign key that has an RI violation and calls
sp_hook_dbmlsync_download_log_ri_violation (if it is implemented). It then calls
sp_hook_dbmlsync_download_ri_violation (if it is implemented). If there is still a conflict, dbmlsync
deletes the rows. This process is repeated for remaining foreign keys that have RI violations.

This hook is called only when there are RI violations involving tables that are currently being
synchronized. If there are RI violations involving tables that are not being synchronized, this hook is not
called and the synchronization fails.

This hook is called on the same connection that dbmlsync uses for the download. This hook should not
contain any explicit or implicit commits, because they may lead to inconsistent data in the database. The
actions of this hook are committed or rolled back when the download is committed or rolled back.

Unlike other hook actions, the operations performed during this hook are not uploaded during the next
synchronization.

See also
● “sp_hook_dbmlsync_download_log_ri_violation” on page 196

Example
This example uses the Department and Employee tables shown below:

CREATE TABLE Department(
 "department_id" INTEGER primary key
);
CREATE TABLE Employee(
 "employee_id" INTEGER PRIMARY KEY,
 "department_id" INTEGER,

Event hooks for SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 199

 FOREIGN KEY EMPLOYEE_FK1 (department_id) REFERENCES Department
);

The following sp_hook_dbmlsync_download_ri_violation definition cleans up referential integrity
violations between the Department and Employee tables. It verifies the role name for the foreign key and
inserts missing department_id values into the Department table.

CREATE PROCEDURE sp_hook_dbmlsync_download_ri_violation()
BEGIN
IF EXISTS (SELECT * FROM #hook_dict WHERE name = 'role name'
 AND value = 'EMPLOYEE_FK1') THEN
 -- update the Department table with missing department_id values
 INSERT INTO Department
 SELECT distinct department_id FROM Employee
 WHERE department_id NOT IN (SELECT department_id FROM Department)
END IF;
END;

sp_hook_dbmlsync_download_table_begin

Use this stored procedure to add custom actions immediately before each table is downloaded.

Rows in #hook_dict table

Name Value Description

table name (in) table name The table to which operations are about to be applied.

publication_n (in) publication Deprecated. Use subscription_n instead. The publica-
tions being synchronized, where n is an integer.
There is one publication_n entry for each publication
being synchronized. The numbering of n starts at zero.

MobiLink user (in) MobiLink user name The MobiLink user for which you are synchronizing.

script version (in) script version name The MobiLink script version to be used for the syn-
chronization.

subscription_n (in) subscription name(s) The names of subscriptions being synchronized
where n is an integer. This is one subscription_n en-
try for each subscription being synchronized. The
numbering of n starts at zero.

Remarks
If a procedure of this name exists, it is called for each table immediately before downloaded operations
are applied to that table. Actions of this procedure are committed or rolled back when the download is
committed or rolled back.

SQL Anywhere clients for MobiLink

200 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “Synchronization event hook sequence” on page 178

Examples
Assume you use the following table to log synchronization events on the remote database.

CREATE TABLE SyncLog
(
 "event_id" integer NOT NULL DEFAULT autoincrement ,
 "event_time" timestamp NULL,
 "event_name" varchar(128) NOT NULL ,
 "subs" varchar(1024) NULL ,
 PRIMARY KEY ("event_id")
)

The following logs the beginning of each table's download for each synchronization.

CREATE PROCEDURE sp_hook_dbmlsync_download_table_begin ()
BEGIN

 DECLARE subs_list VARCHAR(1024);
-- build a list of subscriptions being synchronized
 SELECT LIST(value) INTO subs_list
 FROM #hook_dict
 WHERE name LIKE 'subscription_%';
-- log the event
 INSERT INTO SyncLog(event_time, event_name, subs)
 VALUES(CURRENT TIMESTAMP, 'sp_hook_dbmlsync_download_table_begin,
subs_list);
END

sp_hook_dbmlsync_download_table_end
Use this stored procedure to add custom actions immediately after each table is downloaded.

Rows in #hook_dict table

Name Value Description

table name (in) table name The table to which operations have just been
applied.

delete count (in) number of rows The number of rows in this table deleted by
the download.

upsert count (in) number of rows The number of rows in this table updated or
inserted by the download.

Event hooks for SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 201

Name Value Description

publication_n (in) publication Deprecated. Use subscription_n instead. The
publications being synchronized, where n is
an integer. There is one publication_n entry
for each publication being synchronization.
The numbering of n starts at zero.

MobiLink user (in) MobiLink user
name

The MobiLink user for which you are synchro-
nizing.

script version (in) script version name The MobiLink script version to be used for
the synchronization.

subscription_n (in) subscription
name(s)

The names of subscriptions being synchron-
ized where n is an integer. This is one subscrip-
tion_n entry for each subscription being
synchronized. The numbering of n starts at
zero.

Remarks
If a procedure of this name exists, it is called immediately after all operations in the download for a table
have been applied.

Actions of this procedure are committed or rolled back when the download is committed or rolled back.

See also
● “Synchronization event hook sequence” on page 178

Examples
Assume you use the following table to log synchronization events on the remote database.

CREATE TABLE SyncLog
(
 "event_id" integer NOT NULL DEFAULT autoincrement ,
 "event_time" timestamp NULL,
 "event_name" varchar(128) NOT NULL ,
 "subs" varchar(1024) NULL ,
 PRIMARY KEY ("event_id")
)

The following logs the end of the download for each table for each synchronization.

CREATE PROCEDURE sp_hook_dbmlsync_download_table_end ()
BEGIN

 DECLARE subs_list VARCHAR(1024);
-- build a list of subscriptions being synchronized
 SELECT LIST(value) INTO subs_list
 FROM #hook_dict
 WHERE name LIKE 'subscription_%';

SQL Anywhere clients for MobiLink

202 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

-- log the event
 INSERT INTO SyncLog(event_time, event_name, subs)
 VALUES(CURRENT TIMESTAMP, 'sp_hook_dbmlsync_download_table_end,
subs_list);
END

sp_hook_dbmlsync_end
Use this stored procedure to add custom actions immediately before synchronization is complete.

Rows in #hook_dict table

Name Value Description

restart (out) sync | download |
none

If set to sync, then dbmlsync retries the syn-
chronization it just completed. The value
sync replaces true, which is identical but is
deprecated.

If set to none (the default), then dbmlsync
shuts down or restarts according to its com-
mand line arguments. The value none repla-
ces false, which is identical but is deprecated.

If set to download and the restartable down-
load parameter is true, then dbmlsync at-
tempts to restart the download that just failed.

exit code (in) number The exit code for the synchronization just com-
pleted. A value other than zero represents a
synchronization error.

publication_n (in) publication Deprecated. Use subscription_n instead. The
publications being synchronized, where n is
an integer. There is one publication_n entry
for each publication being synchronized. The
numbering of n starts at zero.

MobiLink user (in) MobiLink user
name

The MobiLink user for which you are synchro-
nizing.

Event hooks for SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 203

Name Value Description

upload status (in) not sent | commit-
ted | failed | un-
known

Specifies the status returned by the MobiLink
server when dbmlsync attempted to verify re-
ceipt of the upload. The status can be:

● not sent - No upload was sent to the Mo-
biLink server, either because an error pre-
vented it or because the requested synchro-
nization did not require it. This can occur
during a download-only synchronization,
a restarted download, or a file-based down-
load.

● committed - The upload was received by
the MobiLink server, and committed.

● failed - The MobiLink server did not com-
mit the upload. For a transactional upload,
the upload status is 'failed' when some but
not all the transactions were successfully
uploaded and acknowledged by the server.

● unknown - The upload was not acknowl-
edged by the MobiLink server. There is
no way to know if it was committed or not.

script version (in) script version name The MobiLink script version to be used for
the synchronization.

restartable download (in) true|false If true, the download for the current synchro-
nization failed and can be restarted. If false,
the download was successful or it cannot be re-
started.

restartable download size (in) integer When the restartable download parameter is
true, this parameter indicates the number of
bytes that were received before the download
failed. When restartable download is false,
this value is meaningless.

error hook user state (in) integer This value contains information about errors
and can be sent from the hooks
sp_hook_dbmlsync_all_error,
sp_hook_dbmlsync_communication_error,
sp_hook_dbmlsync_misc_error, or
sp_hook_dbmlsync_sql_error.

SQL Anywhere clients for MobiLink

204 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Value Description

subscription_n (in) subscription
name(s)

The names of subscriptions being synchron-
ized where n is an integer. This is one subscrip-
tion_n entry for each subscription being
synchronized. The numbering of n starts at
zero.

Remarks
If a procedure of this name exists, it is called at the end of each synchronization.

If an sp_hook_dbmlsync_end hook is defined so that the hook always sets the restart parameter to sync,
and you specify multiple subscriptions on the dbmlsync command line in the form -s sub1, -s sub2, and so
on, then dbmlsync repeatedly synchronizes the first publication and never synchronizes the second.

Actions of this procedure are committed immediately after execution.

See also
● “Introduction to dbmlsync hooks” on page 178
● “Synchronization event hook sequence” on page 178
● “Resuming failed downloads” [MobiLink - Server Administration]
● “Handling errors and warnings in event hook procedures” on page 182

Examples
In the following example the download is manually restarted if the download for the current
synchronization failed and can be restarted.

CREATE PROCEDURE sp_hook_dbmlsync_end()
BEGIN
 -- Restart the download if the download for the current sync
 -- failed and can be restarted
 IF EXISTS (SELECT * FROM #hook_dict
 WHERE name = 'restartable download' AND value='true')
 THEN
 UPDATE #hook_dict SET value ='download' WHERE name='restart';
 END IF;
END;

sp_hook_dbmlsync_log_rescan
Use this stored procedure to programmatically decide when a rescan is required.

Event hooks for SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 205

Rows in #hook_dict table

Name Value Description

publication_n (in) publication Deprecated. Use subscription_n instead. The
publications being synchronized, where n is
an integer. There is one publication_n entry
for each publication being synchronized. The
numbering of n starts at zero.

MobiLink user (in) MobiLink user
name

The MobiLink user for which you are synchro-
nizing.

discarded storage (in) number The number of bytes of discarded memory af-
ter the last synchronization.

rescan (in|out) true | false If set to True by the hook, dbmlsync performs
a complete rescan before the next synchroni-
zation. On entry, this value is set to False.

script version (in) script version name The MobiLink script version to be used for
the synchronization.

subscription_n (in) subscription
name(s)

The names of subscriptions being synchron-
ized where n is an integer. This is one subscrip-
tion_n entry for each subscription being
synchronized. The numbering of n starts at
zero.

Remarks
When more than one -n option or -s option is specified in the command line, dbmlsync may experience
fragmentation which results in discarded memory. The discarded memory can be recovered by rescanning
the database transaction log. This hook allows you to decide if dbmlsync should rescan the database
transaction log to recover memory.

When no other condition has been met that would force a rescan, this hook is called immediately after the
sp_hook_dbmlsync_process_exit_code hook.

See also
● “HoverRescanThreshold (hrt) extended option” on page 135

Examples
The following example cause a log scan if the discarded storage is greater than 1000 bytes.

CREATE PROCEDURE sp_hook_dbmlsync_log_rescan ()
BEGIN
 IF EXISTS(SELECT * FROM #hook_dict
 WHERE name = 'Discarded storage' AND value>1000)
 THEN
 UPDATE #hook_dict SET value ='true' WHERE name='Rescan';

SQL Anywhere clients for MobiLink

206 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 END IF;
END;

sp_hook_dbmlsync_logscan_begin
Use this stored procedure to add custom actions immediately before the transaction log is scanned for upload.

Rows in #hook_dict table

Name Value Description

starting log offset_n (in) number The progress value for each subscription be-
ing synchronized. The progress value is the
offset in the transaction log up to which all da-
ta for the subscription has been uploaded.
There is one value for each subscription being
synchronized. The numbering of n starts at
zero. This value matches subscription_n. For
example, log offset_0 is the offset for subscrip-
tion_0.

log scan retry (in) true | false If this is the first time the transaction log has
been scanned for this synchronization, the val-
ue is false; otherwise it is true. The log is scan-
ned twice when the MobiLink server and
dbmlsync have different information about
where the scanning should begin.

publication_n (in) publication Deprecated. Use subscription_n instead. The
publications being synchronized, where n is
an integer. There is one publication_n entry
for each publication being synchronized. The
numbering of n starts at zero.

MobiLink user (in) MobiLink user
name

The MobiLink user for which you are synchro-
nizing.

script version (in) script version name The MobiLink script version to be used for
the synchronization.

subscription_n (in) subscription
name(s)

The names of subscriptions being synchron-
ized where n is an integer. This is one subscrip-
tion_n entry for each subscription being
synchronized. The numbering of n starts at
zero.

Event hooks for SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 207

Remarks
If a procedure of this name exists, it is called immediately before dbmlsync scans the transaction log to
assemble the upload.

This hook is ideal for making any last minute changes to the tables being synchronized that you want to
include in the upload.

Actions of this procedure are committed immediately after execution.

See also
● “Synchronization event hook sequence” on page 178

Examples
Assume you use the following table to log synchronization events on the remote database.

CREATE TABLE SyncLog
(
 "event_id" integer NOT NULL DEFAULT autoincrement ,
 "event_time" timestamp NULL,
 "event_name" varchar(128) NOT NULL ,
 "subs" varchar(1024) NULL ,
 PRIMARY KEY ("event_id")
)

The following logs the beginning of the log scan for each synchronization.

CREATE PROCEDURE sp_hook_dbmlsync_logscan_begin ()
BEGIN

 DECLARE subs_list VARCHAR(1024);
-- build a list of subscriptions being synchronized
 SELECT LIST(value) INTO subs_list
 FROM #hook_dict
 WHERE name LIKE 'subscription_%';
-- log the event
 INSERT INTO SyncLog(event_time, event_name, subs)
 VALUES(CURRENT TIMESTAMP, 'sp_hook_dbmlsync_logscan_begin', subs_list);
END

sp_hook_dbmlsync_logscan_end
Use this stored procedure to add custom actions immediately after the transaction log is scanned.

Rows in #hook_dict table

Name Value Description

ending log offset (in) number The log offset value where scanning ended.

SQL Anywhere clients for MobiLink

208 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Value Description

starting log offset_n (in) number The initial progress value for each subscrip-
tion you synchronize. The n values corre-
spond to those in publication_n. For example,
Starting log offset_1 is the offset for publica-
tion_1.

log scan retry (in) true | false If this is the first time the transaction log has
been scanned for this synchronization, the val-
ue is false; otherwise it is true. The log is scan-
ned twice when the MobiLink server and
dbmlsync have different information about
where the scanning should begin.

publication_n (in) publication Deprecated. Use subscription_n instead. The
publications being synchronized, where n is
an integer. There is one publication_n entry
for each publication being synchronized. The
numbering of n starts at zero.

MobiLink user (in) MobiLink user
name

The MobiLink user for which you are synchro-
nizing.

script version (in) script version name The MobiLink script version to be used for
the synchronization.

subscription_n (in) subscription
name(s)

The names of subscriptions being synchron-
ized where n is an integer. This is one subscrip-
tion_n entry for each subscription being
synchronized. The numbering of n starts at
zero.

Remarks
If a procedure of this name exists, it is called immediately after dbmlsync has scanned the transaction log.

Actions of this procedure are committed immediately after execution.

See also
● “Synchronization event hook sequence” on page 178

Examples
Assume you use the following table to log synchronization events on the remote database.

CREATE TABLE SyncLog
(
 "event_id" integer NOT NULL DEFAULT autoincrement ,
 "event_time" timestamp NULL,
 "event_name" varchar(128) NOT NULL ,

Event hooks for SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 209

 "subs" varchar(1024) NULL ,
 PRIMARY KEY ("event_id")
)

The following logs the end of log scanning for each synchronization.

CREATE PROCEDURE sp_hook_dbmlsync_logscan_end ()
BEGIN

 DECLARE subs_list VARCHAR(1024);
-- build a list of subscriptions being synchronized
 SELECT LIST(value) INTO subs_list
 FROM #hook_dict
 WHERE name LIKE 'subscription_%';
-- log the event
 INSERT INTO SyncLog(event_time, event_name, subs)
 VALUES(CURRENT TIMESTAMP, 'sp_hook_dbmlsync_logscan_end', subs_list);
END

sp_hook_dbmlsync_misc_error
Use this stored procedure to process dbmlsync errors which are not categorized as database or
communication errors. For example, you can implement the sp_hook_dbmlsync_misc_error hook to log
errors or perform a specific action when a specific error occurs.

Rows in #hook_dict table

Name Value Description

publication_n (in) publication Deprecated. Use subscription_n instead. The
publications being synchronized, where n is
an integer. There is one publication_n entry
for each publication being synchronized. The
numbering of n starts at zero.

MobiLink user (in) MobiLink user name The MobiLink user for which you are synchro-
nizing.

script version (in) script version name The MobiLink script version to be used for
the synchronization.

error message (in) error message text This is the same text that is displayed in the
dbmlsync log.

error id (in) integer An ID that uniquely identifies the message.
Use this row to identify the error message, as
the error message text may change.

SQL Anywhere clients for MobiLink

210 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Value Description

error hook user state (in|out) integer This value can be set by the hook to pass state
information to future calls to the
sp_hook_dbmlsync_all_error,
sp_hook_dbmlsync_communication_error,
sp_hook_dbmlsync_misc_error,
sp_hook_dbmlsync_sql_error, or
sp_hook_dbmlsync_end hooks. The first time
one of these hooks is called, the value of the
row is 0. If a hook changes the value of the
row, the new value is used in the next hook call.

subscription_n (in) subscription name(s) The names of subscriptions being synchron-
ized where n is an integer. This is one subscrip-
tion_n entry for each subscription being
synchronized. The numbering of n starts at
zero.

Remarks
If an error occurs during startup before a synchronization has been initiated, the #hook_dict entries for
MobiLink user and Script version are set to an empty string, and no publication_n or subscription_n rows
are set in the #hook_dict table.

The error hook user state row provides a useful mechanism for you to pass information about the nature of
the error to the sp_hook_dbmlsync_end hook where you might use that information to decide whether to
retry the synchronization.

This procedure executes on a separate connection to ensure that operations it performs are not lost if a
rollback is performed on the synchronization connection. If dbmlsync cannot establish a separate
connection, the procedure is not called.

Since this hook executes on a separate connection you should use care when accessing tables that are
being synchronized in your hook procedure because dbmlsync may have locks on these tables. These
locks could cause operations in your hook to fail or to wait indefinitely.

Actions of this procedure are committed immediately after execution.

See also
● “Handling errors and warnings in event hook procedures” on page 182
● “sp_hook_dbmlsync_communication_error” on page 189
● “sp_hook_dbmlsync_all_error” on page 185
● “sp_hook_dbmlsync_sql_error” on page 224

Examples
Assume you use the following table to log errors in the remote database.

Event hooks for SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 211

CREATE TABLE error_log
(
 pk INTEGER DEFAULT AUTOINCREMENT PRIMARY KEY,
 err_id INTEGER,
 err_msg VARCHAR(10240),
);

The following example sets up sp_hook_dbmlsync_misc_error to log all types of error messages.

CREATE PROCEDURE sp_hook_dbmlsync_misc_error()
BEGIN
 DECLARE msg VARCHAR(10240);
 DECLARE id INTEGER;
 // get the error message text
 SELECT value INTO msg
 FROM #hook_dict
 WHERE name ='error message';
 // get the error id
 SELECT value INTO id
 FROM #hook_dict
 WHERE name = 'error id';
 // log the error information
 INSERT INTO error_log(err_msg,err_id)
 VALUES (msg,id);
END;

To see possible error id values, test run dbmlsync. For example, the following dbmlsync command line
references an invalid subscription.

dbmlsync -c server=custdb;uid=DBA;pwd=sql -s test

Now, the error_log table contains the following row, associating the error with the error id 9931.

1,19912,
 'Subscription ''test'' not found.'

To provide custom error handling, check for the error id 19912 in sp_hook_dbmlsync_misc_error.

ALTER PROCEDURE sp_hook_dbmlsync_misc_error()
BEGIN
 DECLARE msg VARCHAR(10240);
 DECLARE id INTEGER;
 // get the error message text
 SELECT value INTO msg
 FROM #hook_dict
 WHERE name ='error message';
 // get the error id
 SELECT value INTO id
 FROM #hook_dict
 WHERE name = 'error id';
 // log the error information
 INSERT INTO error_log(err_msg,err_id)
 VALUES (msg,id);
 IF id = 19912 THEN
 // handle invalid subscription

SQL Anywhere clients for MobiLink

212 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 END IF;
END;

sp_hook_dbmlsync_ml_connect_failed
Use this stored procedure to retry failed attempts to connect to the MobiLink server using a different
communication type or address.

Rows in #hook_dict table

Name Value Description

publication_n (in) publication Deprecated. Use subscription_n instead. The
publications being synchronized, where n is
an integer. There is one publication_n entry
for each publication being synchronized. The
numbering of n starts at zero.

MobiLink user (in) MobiLink user name The MobiLink user for which you are synchro-
nizing.

script version (in) script version name The MobiLink script version to be used for
the synchronization.

connection address (in|out) connection address When the hook is invoked, this is the address
used in the most recent failed attempt to con-
nect. You can set this value to a new connec-
tion address that you want to try. If retry is set
to true, this value is used for the next attempt
to connect. For a list of protocol options, see
“MobiLink client network protocol option
summary” on page 23.

connection type (in|out) network protocol When the hook is invoked, this is the network
protocol (such as TCPIP) that was used in the
most recent failed attempt to connect. You
can set this value to a new network protocol
that you want to try. If retry is set to true, this
value is used for the next attempt to connect.
For a list of network protocols, see “Commu-
nicationType (ctp) extended op-
tion” on page 129.

Event hooks for SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 213

Name Value Description

user data (in|out) user-defined data State information to be used if the next con-
nection attempt fails. For example, you might
find it useful to store the number of retries
that have occurred. The default is an empty
string.

allow remote ahead (in|out) true | false This is true only if the dbmsync -ra option or
the RemoteProgressGreater=on synchroniza-
tion profile option was specified for this syn-
chronization. By changing the value of this
row, you can change the value of the option
for the current synchronization only. See “-r
dbmlsync option” on page 116.

allow remote behind (in|out) true | false This is true only if 23. the dbmsync -ra option
or the RemoteProgressLess=on synchroniza-
tion profile option was specified for this syn-
chronization. By changing the value of this
row, you can change the value of the option
for the current synchronization only. See “-r
dbmlsync option” on page 116.

retry (in|out) true | false Set this value to true if you want to retry a
failed connection attempt. The default is
FALSE.

subscription_n (in) subscription name(s) The names of subscriptions being synchron-
ized where n is an integer. This is one subscrip-
tion_n entry for each subscription being
synchronized. The numbering of n starts at
zero.

Remarks
If a procedure of this name exists, it is called if dbmlsync fails to connect to the MobiLink server.

This hook only applies to connection attempts to the MobiLink server, not the database.

When a progress offset mismatch occurs, dbmlsync disconnects from the MobiLink server and reconnects
later. In this kind of reconnection, this hook is not called, and failure to reconnect causes the
synchronization to fail.

Actions of this procedure are committed immediately after execution.

Examples
This example uses the sp_hook_dbmlsync_ml_connect_failed hook to retry the connection up to five times.

SQL Anywhere clients for MobiLink

214 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

CREATE PROCEDURE sp_hook_dbmlsync_ml_connect_failed ()
BEGIN
 DECLARE idx integer;

 SELECT IF value = ''then 0 else cast(value as integer)endif
 INTO idx
 FROM #hook_dict
 WHERE name = 'user data';

 IF idx < 5 THEN
 UPDATE #hook_dict
 SET value = idx +1
 WHERE name = 'user data';

 UPDATE #hook_dict
 SET value = 'TRUE'
 WHERE name = 'retry';
 END IF;
END;

The next example uses a table containing connection information. When an attempt to connect fails, the
hook tries the next server in the list.

CREATE TABLE conn_list (
 label INTEGER PRIMARY KEY,
 addr VARCHAR(128),
 type VARCHAR(64)
);
INSERT INTO conn_list
 VALUES (1, 'host=server1;port=91', 'tcpip');
INSERT INTO conn_list
 VALUES (2, 'host=server2;port=92', 'http');
INSERT INTO conn_list
 VALUES (3, 'host=server3;port=93', 'tcpip');
COMMIT;
CREATE PROCEDURE sp_hook_dbmlsync_ml_connect_failed ()
BEGIN
 DECLARE idx INTEGER;
 DECLARE cnt INTEGER;
 SELECT if value = ''then | else cast(value as integer)endif
 INTO idx
 FROM #hook_dict
 WHERE name = 'user data';

 SELECT COUNT(label) INTO cnt FROM conn_list;

 IF idx <= cnt THEN
 UPDATE #hook_dict
 SET value = (SELECT addr FROM conn_list WHERE label = idx)
 WHERE name = 'connection address';
 UPDATE #hook_dict
 SET value = (SELECT type FROM conn_list WHERE label=idx)
 WHERE name = 'connection type';

 UPDATE #hook_dict
 SET value = idx +1
 WHERE name = 'user data';

 UPDATE #hook_dict
 SET value = 'TRUE'
 WHERE name = 'retry';

Event hooks for SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 215

 END IF;
END;

sp_hook_dbmlsync_process_exit_code
Use this stored procedure to manage exit codes.

Rows in #hook_dict table

Name Value Description

publication_n (in) publication Deprecated. Use subscription_n instead. The
publications being synchronized, where n is
an integer. There is one publication_n entry
for each publication being synchronized. The
numbering of n starts at zero.

MobiLink user (in) MobiLink user
name

The MobiLink user for which you are synchro-
nizing.

fatal error (in) true | false True when the hook is called because of an er-
ror that causes dbmlsync to terminate.

aborted synchronization (in) true | false True when the hook is called because of an
abort request from the
sp_hook_dbmlsync_abort hook.

exit code (in) number The exit code from the most recent synchroni-
zation attempt. 0 indicates a successful syn-
chronization. Any other value indicates that
the synchronization failed. This value can be
set by sp_hook_dbmlsync_abort when that
hook is used to abort synchronization.

last exit code (in) number The value stored in the new exit code row of
the #hook_dict table the last time this hook
was called, or 0 if this is the first call to the
hook.

new exit code (in|out) number The exit code you choose for the process.
When dbmlsync exits, its exit code is the val-
ue stored in this row by the last call to the
hook. The value must be -32768 to 32767.

script version (in) script version name The MobiLink script version to be used for
the synchronization.

SQL Anywhere clients for MobiLink

216 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Value Description

subscription_n (in) subscription
name(s)

The names of subscriptions being synchron-
ized where n is an integer. This is one subscrip-
tion_n entry for each subscription being
synchronized. The numbering of n starts at
zero.

Remarks
A dbmlsync session can run multiple synchronizations when you specify the -n option or -s option more
than once in the command line, when you use scheduling, or when you use the restart parameter in
sp_hook_dbmlsync_end. In these cases, if one or more of the synchronizations fail, the default exit code
does not indicate which failed. Use this hook to define the exit code for the dbmlsync process based on
the exit codes from the synchronizations. This hook can also be used to log exit codes.

If an error occurs during startup before a synchronization has been initiated, the #hook_dict entries for
MobiLink user and Script version are set to an empty string, and no publication_n or subscription_n rows
are set in the #hook_dict table.

Example
Suppose that you run dbmlsync to perform five synchronizations and you want the exit code to indicate
how many of the synchronizations failed, with an exit code of 0 indicating that there were no failures, an
exit code of 1 indicating that one synchronization failed, and so on. You can achieve this by defining the
sp_hook_dbmlsync_process_exit_code hook as follows. In this case, if three synchronizations fail, the
new exit code is 3.

CREATE PROCEDURE sp_hook_dbmlsync_process_exit_code()
BEGIN
 DECLARE rc INTEGER;
 SELECT value INTO rc FROM #hook_dict WHERE name = 'exit code';
 IF rc <> 0 THEN
 SELECT value INTO rc FROM #hook_dict WHERE name = 'last exit code';
 UPDATE #hook_dict SET value = rc + 1 WHERE name = 'new exit code';
 END IF;
END;

See also
● “Synchronization event hook sequence” on page 178
● “sp_hook_dbmlsync_abort” on page 183

sp_hook_dbmlsync_schema_upgrade
Use this stored procedure to run a SQL script that revises your schema.

Event hooks for SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 217

Rows in #hook_dict table

Name Value Description

publication_n (in) publication Deprecated. Use subscription_n instead. The
publications being synchronized, where n is
an integer. There is one publication_n entry
for each publication being synchronized. The
numbering of n starts at zero.

MobiLink user (in) MobiLink user name The MobiLink user for which you are synchro-
nizing.

script version (in) name of script version The script version used for the synchronization.

drop hook (out) never | always | on success The values can be:

never - (the default) Do not drop the
sp_hook_dbmlsync_schema_upgrade hook
from the database.

always - After attempting to run the
hook, ,drop the sp_hook_dbmlsync_sche-
ma_upgrade hook from the database.

on success - If the hook runs successfully,
drop the sp_hook_dbmlsync_schema_upgrade
hook from the database. On success is identi-
cal to always if the dbmlsync -eh option is
used, or the dbmlsync extended option Ignore-
HookErrors is set to true, or the IgnoreHookEr-
rors synchronization profile option is set to on.

subscription_n (in) subscription name(s) The names of subscriptions being synchron-
ized where n is an integer. This is one subscrip-
tion_n entry for each subscription being
synchronized. The numbering of n starts at zero.

Remarks
This hook is primarily provided for backward compatibility purposes. Unless you are using the
ScriptVersion extended option you can safely perform schema changes without using this hook by using
the START SYNCHRONIZATION SCHEMA CHANGE statement. See “START
SYNCHRONIZATION SCHEMA CHANGE statement [MobiLink]” [SQL Anywhere Server - SQL
Reference].

When this hook is implemented, dbmlsync locks the tables being synchronized by default.

This stored procedure is intended for making schema changes to deployed remote databases. Using this
hook for schema upgrades ensures that all changes on the remote database are synchronized before the

SQL Anywhere clients for MobiLink

218 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

schema is upgraded, which ensures that the database continues to synchronize. When this hook is being
used you should not set the dbmlsync extended option LockTables to off.

During any synchronization where the upload was applied successfully and acknowledged by MobiLink,
this hook is called after the sp_hook_dbmlsync_download_end hook and before the
sp_hook_dbmlsync_end hook. This hook is not called during download-only synchronization or when a file-
based download is being created or applied.

Actions performed in this hook are committed immediately after the hook completes. It is safe to commit
or rollback in this hook.

See also
● “Schema changes in remote clients” on page 58

Examples
The following example uses the sp_hook_dbmlsync_schema_upgrade procedure to add a column to the
Dealer table on the remote database. If the upgrade is successful the sp_hook_dbmlsync_schema_upgrade
hook is dropped.

CREATE PROCEDURE sp_hook_dbmlsync_schema_upgrade()
BEGIN
 -- Upgrade the schema of the Dealer table. Add a column:
 ALTER TABLE Dealer
 ADD dealer_description VARCHAR(128);
 -- Change the script version used to synchronize
 ALTER SYNCHRONIZATION SUBSCRIPTION sub1
 SET SCRIPT VERSION='v2';

 -- If the schema upgrade is successful, drop this hook:
 UPDATE #hook_dict
 SET value = 'on success'
 WHERE name = 'drop hook';
END;

sp_hook_dbmlsync_set_extended_options

Use this stored procedure to programmatically customize the behavior of an upcoming synchronization by
specifying extended options to be applied to that synchronization.

Rows in #hook_dict table

Name Value Description

publication_n (in) publication Deprecated. Use subscription_n instead. The
publications being synchronized, where n is
an integer. There is one publication_n entry
for each publication being synchronized. The
numbering of n starts at zero.

Event hooks for SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 219

Name Value Description

MobiLink user (in) MobiLink user name The MobiLink user for which you are synchro-
nizing.

extended options (out) opt=val;... Extended options to add for the next synchro-
nization.

subscription_n (in) subscription name(s) The names of subscriptions being synchron-
ized where n is an integer. This is one subscrip-
tion_n entry for each subscription being
synchronized. The numbering of n starts at zero.

Remarks
If a procedure of this name exists, it is called one or more times before each synchronization.

Extended options specified by this hook apply only to the synchronization identified by the subscription
and MobiLink user entries, and they apply only until the next time the hook is called for the same
synchronization.

The Schedule extended option may not be specified using this hook.

Actions of this procedure are committed immediately after execution.

See also
● “Synchronization event hook sequence” on page 178
● “MobiLink SQL Anywhere client extended options” on page 126
● “Priority order” on page 126

Examples
The following example uses sp_hook_dbmlsync_set_extended_options to specify the SendColumnNames
extended option. The extended option is only applied if sub1 is synchronizing.

CREATE PROCEDURE sp_hook_dbmlsync_set_extended_options ()
BEGIN
 IF exists(SELECT * FROM #hook_dict
 WHERE name LIKE 'subscription_%' AND value='sub1')
 THEN
 -- specify the SendColumnNames=on extended option
 UPDATE #hook_dict
 SET value = 'SendColumnNames=on'
 WHERE name = 'extended options';
 END IF;
END;

sp_hook_dbmlsync_set_ml_connect_info
Use this stored procedure to set the network protocol and network protocol option used to connect to the
MobiLink server.

SQL Anywhere clients for MobiLink

220 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Value Description

publication_n (in) publication Deprecated. Use subscription_n instead. The
publications being synchronized, where n is
an integer. There is one publication_n entry
for each publication being synchronized. The
numbering of n starts at zero.

MobiLink user (in) MobiLink user
name

The MobiLink user for which you are synchro-
nizing.

script version (in) script version name The MobiLink script version to be used for
the synchronization.

connection type (in/out) tcpip, tls, http, or
https

The network protocol that is used to connect
to the MobiLink server.

connection address (in/out) protocol options The communication address that is used to con-
nect to the MobiLink server. See “MobiLink
client network protocol option summa-
ry” on page 23.

subscription_n (in) subscription
name(s)

The names of subscriptions being synchron-
ized where n is an integer. This is one subscrip-
tion_n entry for each subscription being
synchronized. The numbering of n starts at
zero.

Remarks
You can use this hook to set the network protocol and network protocol options used to connect to the
MobiLink server by changing the value in the connection type and/or connection address rows.

The protocol and options can also be set in the sp_hook_dbmlsync_set_extended_options, a hook that is
called at the beginning of a synchronization. sp_hook_dbmlsync_set_ml_connect_info is called
immediately before dbmlsync attempts to connect to the MobiLink server.

This hook is useful when you want to set options in a hook, but want to do so later in the synchronization
process than the sp_hook_dbmlsync_set_extended_options. For example, if the options should be set
based on the availability of signal strength of the network that is being used.

See also
● “Introduction to dbmlsync hooks” on page 178
● “Synchronization event hook sequence” on page 178
● “CommunicationType (ctp) extended option” on page 129
● “MobiLink client network protocol option summary” on page 23
● “sp_hook_dbmlsync_set_extended_options” on page 219

Event hooks for SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 221

Example
CREATE PROCEDURE sp_hook_dbmlsync_set_ml_connect_info()
begin
 UPDATE #hook_dict
 SET VALUE = 'tcpip'
 WHERE name = 'connection type';
 UPDATE #hook_dict
 SET VALUE = 'host=localhost'
 WHERE name = 'connection address';
end

sp_hook_dbmlsync_set_upload_end_progress

This stored procedure can be used to define an ending progress when a scripted upload subscription is
synchronized. This procedure is called only when a scripted upload publication is being synchronized.

Rows in #hook_dict table

Name Value Description

generating download
exclusion list (in)

TRUE | FALSE TRUE if no upload will be sent during the syn-
chronization (for example, in a download-only
synchronization or when a file-based down-
load is applied). In these cases, the upload
scripts are still called and the operations gener-
ated are used to identify download operations
that change rows that need to be uploaded.
When such an operation is found, the down-
load is not applied.

publication_n (in) publication Deprecated. Use subscription_n instead. The
publications being synchronized, where n is
an integer. There is one publication_n entry
for each publication being synchronized. The
numbering of n starts at zero.

start progress as time-
stamp_n

progress as timestamp The starting progress for each subscription be-
ing synchronized expressed as a timestamp,
where n is the same integer used to identify
the subscription.

start progress as bi-
gint_n

progress as bigint The starting progress for each subscription be-
ing synchronized expressed as a bigint, where
n is the same integer used to identify the sub-
scription.

script version (n) script version name The MobiLink script version to be used for the
synchronization.

SQL Anywhere clients for MobiLink

222 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Value Description

MobiLink user (in) MobiLink user name The MobiLink user for which you are synchro-
nizing.

end progress is bigint
(in|out)

TRUE | FALSE When this row is set to TRUE, the end pro-
gress value is assumed to be an unsigned bi-
gint that is represented as a string (for exam-
ple, '12345').

When this row is set to FALSE, the end pro-
gress value is assumed to be a timestamp that
is represented as a string (for example,
'1900/01/01 12:00:00.000').

The default is FALSE.

end progress (in|out) timestamp The hook can modify this row to change the
"end progress as bigint" and "end progress as
timestamp" values passed to the upload
scripts. These values define the point in time
up to which all operations are included in the
upload that is being generated.

The value of this row can be set as either an
unsigned bigint or as a timestamp according to
the setting of the "progress is bigint" row. The
default value for this row is the current time-
stamp.

subscription_n (in) subscription name(s) The names of subscriptions being synchron-
ized where n is an integer. This is one subscrip-
tion_n entry for each subscription being
synchronized. The numbering of n starts at zero.

Remarks
For a scripted upload, each time an upload procedure is called it is passed a start progress value and an
end progress value. The procedure must return all appropriate operations that occurred during the period
defined by those two values. The begin progress value is always the same as the end progress value from
the last successful synchronization, unless this is a first synchronization, in which case the begin progress
is January 1, 1900, 00:00:00.000. By default, the end progress value is the time when dbmlsync began
building the upload.

This hook lets you override the default end progress value. You could define a shorter period for the
upload or you could implement a progress tracking scheme based on something other than timestamps
(for example, generation numbers).

Event hooks for SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 223

If "end progress is bigint" is set to true, the end progress must be an integer less than or equal to the
number of milliseconds from 1900-01-01 00:00:00 to 9999-12-31 23:59:59:9999, which is
255,611,203,259,999.

See also
● “Custom progress values in scripted upload” on page 319
● “Synchronization event hook sequence” on page 178
● “Scripted upload” on page 310

sp_hook_dbmlsync_sql_error
Use this stored procedure to handle database errors that occur during synchronization. For example, you
can implement the sp_hook_dbmlsync_sql_error hook to perform a specific action when a specific SQL
error occurs.

Rows in #hook_dict table

Name Value Description

publication_n (in) publication Deprecated. Use subscription_n instead. The
publications being synchronized, where n is
an integer. There is one publication_n entry
for each publication being synchronized. The
numbering of n starts at zero.

MobiLink user (in) MobiLink user name The MobiLink user for which you are synchro-
nizing.

script version (in) script version name The MobiLink script version to be used for
the synchronization.

error message (in) error message text This is the same text that is displayed in the
dbmlsync log.

error id (in) numeric An ID that uniquely identifies the message.

error hook user state (in|out) integer This value can be set by the hook to pass state
information to future calls to the
sp_hook_dbmlsync_all_error,
sp_hook_dbmlsync_communication_error,
sp_hook_dbmlsync_misc_error,
sp_hook_dbmlsync_sql_error, or
sp_hook_dbmlsync_end hooks. The first time
one of these hooks is called, the value of the
row is 0. If a hook changes the value of the
row, the new value is used in the next hook call.

SQL Anywhere clients for MobiLink

224 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Value Description

SQLCODE (in) SQLCODE The SQLCODE returned by the database
when the operation failed. See “SQL Any-
where error messages sorted by SQLCODE”
[Error Messages].

SQLSTATE (in) SQLSTATE value The SQLSTATE returned by the database
when the operation failed.

subscription_n (in) subscription name(s) The names of subscriptions being synchron-
ized where n is an integer. This is one subscrip-
tion_n entry for each subscription being
synchronized. The numbering of n starts at
zero.

Remarks
If an error occurs during startup before a synchronization has been initiated, the #hook_dict entries for
MobiLink user and Script version are set to an empty string, and no publication_n or subscription_n rows
are set in the #hook_dict table.

You can identify SQL errors using the SQL Anywhere SQLCODE or the ANSI SQL standard
SQLSTATE. For a list of SQLCODE or SQLSTATE values, see “SQL Anywhere error messages” [Error
Messages].

The error hook user state row provides a useful mechanism for you to pass information about the nature of
the error to the sp_hook_dbmlsync_end hook where you might use that information to decide whether to
retry the synchronization.

This procedure executes on a separate connection to ensure that operations it performs are not lost if a
rollback is performed on the synchronization connection. If dbmlsync cannot establish a separate
connection, the procedure is not called.

Since this hook executes on a separate connection you should use care when accessing tables that are
being synchronized in your hook procedure because dbmlsync may have locks on these tables. These
locks could cause operations in your hook to fail or to wait indefinitely.

Actions of this procedure are committed immediately after execution.

See also
● “Handling errors and warnings in event hook procedures” on page 182
● “sp_hook_dbmlsync_all_error” on page 185
● “sp_hook_dbmlsync_communication_error” on page 189
● “sp_hook_dbmlsync_misc_error” on page 210
● “SQL Anywhere error messages” [Error Messages]

Event hooks for SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 225

sp_hook_dbmlsync_upload_begin
Use this stored procedure to add custom actions immediately before the transmission of the upload.

Rows in #hook_dict table

Name Value Description

Publication_n (in) publication Deprecated. Use subscription_n instead. The
publications being synchronized, where n is
an integer. There is one publication_n entry
for each publication being synchronized. The
numbering of n starts at zero.

MobiLink user (in) MobiLink user name The MobiLink user for which you are synchro-
nizing.

Script version (in) script version name The MobiLink script version to be used for the
synchronization.

subscription_n (in) subscription name(s) The names of subscriptions being synchron-
ized where n is an integer. This is one subscrip-
tion_n entry for each subscription being
synchronized. The numbering of n starts at zero.

Remarks
If a procedure of this name exists, it is called immediately before dbmlsync sends the upload.

Actions of this procedure are committed immediately after execution.

See also
● “Synchronization event hook sequence” on page 178

Examples
Assume you use the following table to log synchronization events on the remote database.

CREATE TABLE SyncLog
(
 "event_id" integer NOT NULL DEFAULT autoincrement ,
 "event_time" timestamp NULL,
 "event_name" varchar(128) NOT NULL ,
 "subs" varchar(1024) NULL ,
 PRIMARY KEY ("event_id")
)

The following logs the beginning of the upload for each synchronization.

CREATE PROCEDURE sp_hook_dbmlsync_upload_begin ()
BEGIN

 DECLARE subs_list VARCHAR(1024);

SQL Anywhere clients for MobiLink

226 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

-- build a list of subscriptions being synchronized
 SELECT LIST(value) INTO subs_list
 FROM #hook_dict
 WHERE name LIKE 'subscription_%';
-- log the event
 INSERT INTO SyncLog(event_time, event_name, subs)
 VALUES(CURRENT TIMESTAMP, 'sp_hook_dbmlsync_upload_begin', subs_list);
END

sp_hook_dbmlsync_upload_end
Use this stored procedure to add custom actions after dbmlsync has verified receipt of the upload by the
MobiLink server.

Rows in #hook_dict table

Name Value Description

failure cause (in) See range of values in Re-
marks, below

The cause of failure of an upload. For more in-
formation, see Remarks.

upload status (in) retry | committed | failed |
unknown

Specifies the status returned by the MobiLink
server when dbmlsync attempted to verify re-
ceipt of the upload.

retry - The MobiLink server and dbmlsync
had different values for the log offset from
which the upload should start. The upload was
not committed by the MobiLink server. The
dbmlsync utility attempts to send another up-
load starting from a new log offset.

committed - The upload was received by the
MobiLink server and committed.

failed - The MobiLink server did not commit
the upload.

unknown - The upload was not acknowl-
edged by the MobiLink server. There is no
way to know if it was committed or not.

publication_n (in) publication Deprecated. Use subscription_n instead. The
publications being synchronized, where n is
an integer. There is one publication_n entry
for each publication being synchronized. The
numbering of n starts at zero.

Event hooks for SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 227

Name Value Description

MobiLink user (in) MobiLink user name The MobiLink user for which you are synchro-
nizing.

script version (in) script version name The MobiLink script version to be used for the
synchronization.

authentication value (in) value This value indicates the results of dbmlsync's
attempt to authenticate to the MobiLink serv-
er. It is generated by the authenticate_user, au-
thenticate_user_hashed, or authenticate_pa-
rameters script on the server. The value is an
empty string when the upload status is un-
known or when the upload_end hook is called
after an upload is resent because of a conflict
between the log offsets stored in the remote
and consolidated databases.

subscription_n (in) subscription name(s) The names of subscriptions being synchron-
ized where n is an integer. This is one subscrip-
tion_n entry for each subscription being
synchronized. The numbering of n starts at zero.

Remarks
If a procedure of this name exists, it is called immediately after dbmlsync has sent the upload and
received confirmation of it from the MobiLink server.

When performing a transactional upload or an incremental upload this hook is called after each segment
of the upload is sent. In these cases, the upload status will be "unknown" each time the hook is called
except for the last time.

Actions of this procedure are committed immediately after execution.

The range of possible parameter values for the failure cause row in the #hook_dict table includes:

● UPLD_ERR_INVALID_USERID_OR_PASSWORD The user ID or password was incorrect.

● UPLD_ERR_USERID_OR_PASSWORD_EXPIRED The user ID or password expired.

● UPLD_ERR_REMOTE_ID_ALREADY_IN_USE The remote ID was already in use.

● UPLD_ERR_SQLCODE_n Here, n is an integer. A SQL error occurred in the consolidated
database. The integer specified is the SQLCODE for the error encountered.

● UPLD_ERR_USER_ABORT_REQUEST The upload was aborted at the user's request.

SQL Anywhere clients for MobiLink

228 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “Synchronization event hook sequence” on page 178

Examples
Assume you use the following table to log synchronization events on the remote database.

CREATE TABLE SyncLog
(
 "event_id" integer NOT NULL DEFAULT autoincrement ,
 "event_time" timestamp NULL,
 "event_name" varchar(128) NOT NULL ,
 "subs" varchar(1024) NULL ,
 PRIMARY KEY ("event_id")
)

The following logs the end up the upload for each synchronization.

CREATE PROCEDURE sp_hook_dbmlsync_upload_end ()
BEGIN

 DECLARE subs_list VARCHAR(1024);
-- build a list of subscriptions being synchronized
 SELECT LIST(value) INTO subs_list
 FROM #hook_dict
 WHERE name LIKE 'subscription_%';
-- log the event
 INSERT INTO SyncLog(event_time, event_name, subs)
 VALUES(CURRENT TIMESTAMP, 'sp_hook_dbmlsync_upload_end', subs_list);
END

sp_hook_dbmlsync_validate_download_file
Use this hook to implement custom logic to decide if a download file can be applied to the remote
database. This hook is called only when a file-based download is applied.

Rows in #hook_dict table

Name Value Description

publication_n (in) publication Deprecated. Use subscription_n instead. The
publications being synchronized, where n is
an integer. There is one publication_n entry
for each publication being synchronized. The
n in publication_n and generation number_n
match. The numbering of n starts at zero.

MobiLink user (in) MobiLink user name The MobiLink user for which you are synchro-
nizing.

Event hooks for SQL Anywhere clients

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 229

Name Value Description

file last download time
(in)

The download file's last download time. (The
download file contains all rows that were
changed between its last download time and
its next last download time.)

file next last download
time (in)

The download file's next last download time.
(The download file contains all rows that were
changed between its last download time and
its next last download time.)

file creation time (in) The time when the download file was created.

file generation num-
ber_n (in)

number The generation numbers from the download
file. There is one file generation number_n for
each subscription_n entry. The n in subscrip-
tion_n and generation number_n match. The
numbering of n starts at zero.

user data (in) string The string specified with the dbmlsync -be op-
tion when the download file was created or the
DnldFileExtra synchronization profile option.

apply file (in|out) True|False If true (the default), the download file is ap-
plied only if it passes dbmlsync's other valida-
tion checks. If false, the download file is not
applied to the remote database.

check generation num-
ber (in|out)

True|False If true (the default), dbmlsync validates gener-
ation numbers. If the generation numbers in
the download file do not match those in the re-
mote database, dbmlsync does not apply the
download file. If false, dbmlsync does not
check generation numbers.

setting generation num-
ber (in)

true | false True if the -bg option or UpdateGenNum syn-
chronization profile option was used when the
download file was created. When true, the gen-
eration numbers on the remote database are up-
dated from the download file and normal gen-
eration number checks are not performed.

subscription_n (in) subscription name(s) The names of subscriptions being synchron-
ized where n is an integer. This is one subscrip-
tion_n entry for each subscription being
synchronized. The numbering of n starts at zero.

SQL Anywhere clients for MobiLink

230 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
Use this stored procedure to implement custom checks to decide if a download file can be applied.

If you want to compare the generation numbers or timestamps contained in the file with those stored in
the remote database, they can be queried from the SYSSYNC system view.

This hook before the a file-based download is applied to the remote database.

The actions of this hook are committed immediately after it completes.

See also
● “-be dbmlsync option” on page 99
● “-bg dbmlsync option” on page 99
● “MobiLink file-based download” [MobiLink - Server Administration]

Examples
The following example prevents application of download files that don't contain the user string 'sales
manager data'.

CREATE PROCEDURE sp_hook_dbmlsync_validate_download_file ()
BEGIN
 IF NOT exists(SELECT * FROM #hook_dict
 WHERE name = 'User data' AND value='sales manager data')
 THEN
 UPDATE #hook_dict
 SET value = 'false' WHERE name = 'Apply file';
 END IF;
END;

Dbmlsync C++ API reference
Header file

dbmlsynccli.hpp

Example
The sample below shows a typical application using the C++ version of the Dbmlsync API to perform a
synchronization and receive output events. The sample omits error handling for clarity. It is always good
practice to check the return value from each API call.

#include <stdio.h>
#include "dbmlsynccli.hpp"

int main(void) {
 DbmlsyncClient *client;
 DBSC_SyncHdl syncHdl;
 DBSC_Event *ev1;
 client = DbmlsyncClient::InstantiateClient();
 if(client == NULL) return(1);
 client->Init();

Dbmlsync C++ API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 231

 // Setting the "server path" is usually required on Windows Mobile/CE.
 // In other environments the server path is usually not required unless
 // you SA install is not in your path or you have multiple versions of
 // the product installed
 client->SetProperty("server path", "C:\\SQLAnywhere\\bin32");
 client->StartServer(3426,
 "-c server=remote;dbn=rem1;uid=dba;pwd=sql -v+ -ot c:\
\dbsync1.txt",
 5000, NULL);
 client->Connect(NULL, 3426, "dba", "sql");
 syncHdl = client->Sync("my_sync_profile", "");
 while(client->GetEvent(&ev1, 5000) == DBSC_GETEVENT_OK) {
 if(ev1->hdl == syncHdl) {
 //
 // Process events that interest you here
 //
 if(ev1->type == DBSC_EVENTTYPE_SYNC_DONE) {
 client->FreeEventInfo(ev1);
 break;
 }
 client->FreeEventInfo(ev1);
 }
 }
 client->ShutdownServer(DBSC_SHUTDOWN_ON_EMPTY_QUEUE);
 client->WaitForServerShutdown(10000);
 client->Disconnect();
 client->Fini();
 delete client;
 return(0);
}

DbmlsyncClient class
Communicates using TCP/IP with a separate process, dbmlsync server, which performs a synchronization
by connecting to the MobiLink server and the remote database.

Syntax
public class DbmlsyncClient

Members
All members of DbmlsyncClient class, including all inherited members.

Name Description

“CancelSync method” Cancels a synchronization request.

“Connect method” Opens a connection to a Dbmlsync server that is already running
on this computer.

SQL Anywhere clients for MobiLink

232 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“Disconnect method” Breaks the Dbmlsync server connection that was established with
the Connect method.

“Fini method” Frees all resources used by this class instance.

“FreeEventInfo method” Frees memory associated with a DBSC_Event structure returned
by the GetEvent method.

“GetErrorInfo method” Retrieves additional information about the failure after a
DbmlsyncClient class method returns a failed return code.

“GetEvent method” Retrieves the next feedback event for synchronizations requested
by the client.

“GetProperty method” Retrieves the current value of a property.

“Init method” Initializes a DbmlsyncClient class instance.

“InstantiateClient method” Creates an instance of the dbmlsync client class that can be used
to control synchronizations.

“Ping method” Sends a ping request to the dbmlsync server to check if the server
is active and responding to requests.

“SetProperty method” Sets various properties to modify the behavior of the class instance.

“ShutdownServer method” Shuts down the dbmlsync server to which the client is connected.

“StartServer method” Starts a new dbmlsync server if one is not already listening on
the specified port.

“Sync method” Requests that the dbmlsync server perform a synchronization.

“WaitForServerShutdown method” Returns when the server has shutdown or when the timeout ex-
pires, whichever comes first.

Remarks
Multiple clients can share the same dbmlsync server. However, each dbmlsync server can only
synchronize a single remote database. Each remote database can have only one dbmlsync server
synchronizing it.

The dbmlsync server performs one synchronization at a time. If the server receives a synchronization
request while performing a synchronization, it queues that request and satisfies it later.

Status information generated by synchronizations is communicated back to the client application through
the GetEvent method.

Dbmlsync C++ API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 233

See also
● “GetEvent method” on page 238

CancelSync method

Cancels a synchronization request.

Overload list

Name Description

“CancelSync(DBSC_SyncHdl) method
(deprecated)”

Allows a client to cancel a synchronization request previous-
ly made using the Sync method.

“CancelSync(DBSC_SyncHdl, bool)
method”

Allows a client to cancels a synchronization request previous-
ly made using the Sync method.

CancelSync(DBSC_SyncHdl) method (deprecated)
Allows a client to cancel a synchronization request previously made using the Sync method.

Syntax
public virtual bool CancelSync(DBSC_SyncHdl hdl)

Parameters
● hdl The synchronization handle returned by the Sync method when the synchronization was requested.

Returns
True when the synchronization request was successfully canceled; otherwise, returns false. When false is
returned, you can call the GetErrorInfo method for more information about the failure.

Remarks
Only synchronization requests waiting to be serviced can be canceled. To stop a synchronization that has
already begun, use the CancelSync(UInt32, Boolean) method.

You can use the ShutdownServer method and pass the DBSC_SHUTDOWN_CLEANLY type to cancel
an active synchronization. Dbmlsync attempts to cancel the synchronization before shutting down. This
task is equivalent of cancelling a synchronization using the DBTools interface.

A connection must be established to the server before this method can be used. This method cannot be
used if the client has disconnected from the server since the Sync method was called.

SQL Anywhere clients for MobiLink

234 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “GetErrorInfo method” on page 238
● “CancelSync method” on page 234
● “ShutdownServer method” on page 242

CancelSync(DBSC_SyncHdl, bool) method
Allows a client to cancels a synchronization request previously made using the Sync method.

Syntax
public virtual DBSC_CancelRet CancelSync(
 DBSC_SyncHdl hdl,
 bool cancel_active
)

Parameters
● hdl The synchronization handle returned by the Sync method when the synchronization was requested.

● cancel_active When set to true, the request is cancelled even if the synchronization has already
begun. When set to false, the quests is only cancelled if synchronization has not begun.

Returns
A value from the DBSC_CancelRet enumeration. When DBSC_CANCEL_FAILED is returned, you can
call the GetErrorInfo method for more information about the failure.

Remarks
You can use the ShutdownServer method and pass the DBSC_SHUTDOWN_CLEANLY type to cancel
an active synchronization. Dbmlsync attempts to cancel the synchronization before shutting down. This
task is equivalent of cancelling a synchronization using the DBTools interface.

A connection must be established to the server before this method can be used. This method cannot be
used if the client has disconnected from the server since the Sync method was called.

See also
● “DBSC_CancelRet enumeration” on page 245
● “GetErrorInfo method” on page 238
● “ShutdownServer method” on page 242

Connect method

Opens a connection to a Dbmlsync server that is already running on this computer.

Syntax
public virtual bool Connect(
 const char * host,
 unsigned port,

Dbmlsync C++ API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 235

 const char * uid,
 const char * pwd
)

Parameters
● host This value is reserved. Use NULL.

● port The TCP port on which the dbmlsync server is listening. Use the same port value that you
specified with the StartServer method.

● uid A valid database user id with DBA or REMOTE DBA authority on the remote database that is
to be synchronized.

● pwd The database password for the user specified by uid.

Returns
True when a connection to the server was established; otherwise, returns false. When false is returned,
you can call the GetErrorInfo method for more information about the failure.

Remarks
The database user id and password are used to validate whether this client has enough permissions to
synchronize the database. When synchronizations are performed, the user id that was specified with the -c
option when the dbmlsync server started is used.

See also
● “StartServer method” on page 243
● “GetErrorInfo method” on page 238

Disconnect method

Breaks the Dbmlsync server connection that was established with the Connect method.

Syntax
public virtual bool Disconnect(void)

Returns
True when the connection to the server has been broken; otherwise, returns false. When false is returned,
you can call the GetErrorInfo method for more information about the failure.

Remarks
You should always call Disconnect when you are finished with a connection.

See also
● “Connect method” on page 235
● “GetErrorInfo method” on page 238

SQL Anywhere clients for MobiLink

236 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Fini method

Frees all resources used by this class instance.

Syntax
public virtual bool Fini(void)

Returns
True when the class instance is successfully finalized; otherwise, returns false. When false is returned,
you can call the GetErrorInfo method for more information about the failure.

Remarks
This method must be called before you can delete the DbmlSyncClient class instance.

Note
You should use the Disconnect method to disconnect from any connected servers before finalizing the
class instance.

See also
● “Disconnect method” on page 236
● “GetErrorInfo method” on page 238

FreeEventInfo method

Frees memory associated with a DBSC_Event structure returned by the GetEvent method.

Syntax
public virtual bool FreeEventInfo(DBSC_Event * event)

Parameters
● event A pointer to the DBSC_Event structure to be freed.

Returns
True when the memory was successfully freed; otherwise, returns false. When false is returned, you can
call the GetErrorInfo method for more information about the failure.

Remarks
FreeEventInfo must be called on each DBSC_Event structure returned by the GetEvent method.

See also
● “DBSC_Event structure” on page 252
● “GetEvent method” on page 238
● “GetErrorInfo method” on page 238

Dbmlsync C++ API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 237

GetErrorInfo method

Retrieves additional information about the failure after a DbmlsyncClient class method returns a failed
return code.

Syntax
public virtual const DBSC_ErrorInfo * GetErrorInfo(void)

Returns
A pointer to a DBSC_ErrorInfo structure that contains information about the failure. The contents of this
structure may be overwritten the next time any class method is called.

See also
● “DBSC_ErrorType enumeration” on page 246
● “DBSC_ErrorInfo structure” on page 251
● “GetErrorInfo method” on page 238

GetEvent method

Retrieves the next feedback event for synchronizations requested by the client.

Syntax
public virtual DBSC_GetEventRet GetEvent(
 DBSC_Event ** event,
 unsigned timeout
)

Parameters
● event If the return value is DBSC_GETEVENT_OK then the event parameter is filled in with a

pointer to a DBSC_Event structure containing information about the event that has been retrieved.
When you are finished with the event structure you must call the FreeEventInfo method to free
memory associated with it.

● timeout Indicates the maximum time in milliseconds to wait if no event is immediately available to
return. Use DBSC_INFINITY to wait indefinitely for a response.

Returns
A value from the DBSC_GetEventRet enumeration. When DBSC_GETEVENT_FAILED is returned,
you can call the GetErrorInfo method for more information about the failure.

Remarks
Feedback events contain information such as messages generated from the sync, data for updating a
progress bar, and synchornization cycle notifications.

As the dbmlsync server runs a synchronization it generates a series of events that contain information
about the progress of the synchronization. These events are sent from the server to the DbmlsyncClient

SQL Anywhere clients for MobiLink

238 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

class, which queues them. When the GetEvent method is called, the next event in the queue is returned if
there is one waiting.

If there are no events waiting in the queue, this method waits until an event is available or until the
specified timeout has expired before returning.

The types of events that are generated for a synchronization can be controlled using properties.

See also
● “DBSC_GetEventRet enumeration” on page 249
● “DBSC_Event structure” on page 252
● “FreeEventInfo method” on page 237
● “SetProperty method” on page 241
● “GetErrorInfo method” on page 238

GetProperty method

Retrieves the current value of a property.

Syntax
public virtual bool GetProperty(const char * name, char * value)

Parameters
● name The name of the property to retreive. For a list of valid property names, see SetProperty.

● value A buffer of at least DBSC_MAX_PROPERTY_LEN bytes where the value of the property is
stored.

Returns
True when the property was successfully received; otherwise, returns false. When false is returned, you
can call the GetErrorInfo method for more information about the failure.

See also
● “SetProperty method” on page 241
● “GetErrorInfo method” on page 238

Init method

Initializes a DbmlsyncClient class instance.

Syntax
public virtual bool Init(void)

Dbmlsync C++ API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 239

Returns
True when the class instance is successfully initialized; otherwise, returns false. When false is returned,
you can call the GetErrorInfo method for more information about the failure.

Remarks
This method must be called after instantiating the DbmlSyncClient class instance. Other DbmlSyncClient
methods cannot be called until you have successfully initialized the instance.

See also
● “InstantiateClient method” on page 240
● “GetErrorInfo method” on page 238

InstantiateClient method

Creates an instance of the dbmlsync client class that can be used to control synchronizations.

Syntax
public static DbmlsyncClient * InstantiateClient(void)

Returns
A pointer to the new instance that has been created. Returns null when an error occurs.

Remarks
The pointer returned by this method can be used to call the remaining methods in the class. You can
destroy the instance by calling the standard delete operator on the pointer.

Ping method

Sends a ping request to the dbmlsync server to check if the server is active and responding to requests.

Syntax
public virtual bool Ping(unsigned timeout)

Parameters
● timeout The maximum number of milliseconds to wait for the server to respond to the ping

request. Use DBSC_INFINITY to wait indefinitely for a response.

Returns
True when a response to the ping request was received from the server; otherwise, returns false. When
false is returned, you can call the GetErrorInfo method for more information about the failure.

Remarks
You must be connected to the server before calling this method.

SQL Anywhere clients for MobiLink

240 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “GetErrorInfo method” on page 238

SetProperty method

Sets various properties to modify the behavior of the class instance.

Syntax
public virtual bool SetProperty(const char * name, const char * value)

Parameters
● name The name of the property to set. For a list of valid property names, see table.

● value The value to set for the property. The string specified must contain less than
DBCS_MAX_PROPERTY_LEN bytes.

Returns
True when the property was successfully set; otherwise, returns false. When false is returned, you can call
the GetErrorInfo method for more information about the failure.

Remarks
Changes to property values only affect synchronization requests made after the property value was changed.

The server path property can be set to specify the directory from which the client should start
dbmlsync.exe when the StartServer method is called. When this property is not set, dbmlsync.exe is found
using the PATH environment variable. If there are multiple versions of SQL Anywhere installed on your
computer, it is recommended that you specify the location of dbmlsync.exe using the server path
property because the PATH environment variable may locate a dbmlsync executable from another
installed version of SQL Anywhere. For example,

ret = cli->SetProperty("server path", "c:\\sa12\\bin32");

The properties control the types of events that are returned by the GetEvent method. By disabling events
that you do not require you may be able to improve performance. An event type is enabled by setting the
corresponding property to "1" and disabled by setting the property to "0".

The following is a table of available property names and the event types that each name controls:

Property name Event types controlled Default value

enable errors DBSC_EVENTTYPE_ERROR_MSG 1

enable warnings DBSC_EVENTTYPE_WARNING_MSG 1

enable info msgs DBSC_EVENTTYPE_INFO_MSG 1

Dbmlsync C++ API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 241

Property name Event types controlled Default value

enable progress DBSC_EVENTTYPE_PROGRESS_INDEX 0

enable progress text DBSC_EVENTTYPE_PROGRESS_TEXT 0

enable title DBSC_EVENTTYPE_TITLE 0

enable sync start and done DBSC_EVENTTYPE_SYNC_START

DBSC_EVENTTYPE_SYNC_DONE

1

enable status DBSC_EVENTTYPE_ML_CONNECT

DBSC_EVENTTYPE_UPLOAD_COMMITTED

DBSC_EVENTTYPE_DOWNLOAD_COMMITTED

1

See also
● “StartServer method” on page 243
● “GetEvent method” on page 238
● “GetProperty method” on page 239
● “GetErrorInfo method” on page 238

ShutdownServer method

Shuts down the dbmlsync server to which the client is connected.

Syntax
public virtual bool ShutdownServer(DBSC_ShutdownType how)

Parameters
● how Indicates the urgency of the server shutdown. Supported values are listed in the

DBSC_ShutdownType enumeration.

Returns
True when a shutdown request was successfully sent to the server; otherwise, returns false. When false is
returned, you can call the GetErrorInfo method for more information about the failure.

Remarks
The Shutdown method returns immediately but there may be some delay before the server actually shuts
down.

The WaitForServerShutdown method can be used to wait until the server actually shuts down.

SQL Anywhere clients for MobiLink

242 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Note
You should still use the Disconnect method after calling ShutdownServer.

See also
● “DBSC_ShutdownType enumeration” on page 250
● “Disconnect method” on page 236
● “WaitForServerShutdown method” on page 245
● “GetErrorInfo method” on page 238

StartServer method

Starts a new dbmlsync server if one is not already listening on the specified port.

Syntax
public virtual bool StartServer(
 unsigned port,
 const char * cmdline,
 unsigned timeout,
 DBSC_StartType * starttype
)

Parameters
● port The TCP port to check for an existing dbmlsync server. If a new server is started, it is set to

listen on this port.

● cmdline A valid command line for starting a dbmlsync server. The command line may contain only
the following options which have the same meaning that they do for the dbmlsync utility: -a, -c, -dl, -
do, -ek, -ep, -k, -l, -o, -os, -ot, -p, -pc+, -pc-, -pd, -pp, -q, -qi, -qc, -sc, -sp, -uc, -ud, -ui, -um, -un, -ux, -
v[cnoprsut], -wc, -wh. The -c option must be specified.

● timeout The maximum time in milliseconds to wait after a dbmlsync server is started for it to be
ready to accept requests. Use DBSC_INFINITY to wait indefinitely for a response.

● starttype An out parameter set to indicate if the server has been located or started. If starttype is non-
null on entry and StartServer returns true, then, on exit, the variable pointed to by starttype is set to a
value from the DBSC_StartType enumeration.

Returns
True when the server was already running or successfully started; otherwise, returns false. When false is
returned, you can call the GetErrorInfo method for more information about the failure.

Remarks
If a server is present, this method sets the starttype parameter to DBSC_SS_ALREADY_RUNNING and
returns without further action. If no server is found, the method starts a new server using the options
specified by the cmdline argument and waits for it to start accepting requests before returning.

Dbmlsync C++ API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 243

On Windows Mobile devices, it is usually necessary to set the server path property before StartServer
can be successfully called. The server path property does not need to be set in the following instances:

● Your application is in the same directory as dbmlsync.exe.

● dbmlsync.exe is in the Windows directory.

See also
● “GetErrorInfo method” on page 238

Sync method

Requests that the dbmlsync server perform a synchronization.

Syntax
public virtual DBSC_SyncHdl Sync(
 const char * profile_name,
 const char * extra_opts
)

Parameters
● profile_name The name of a synchronization profile defined in the remote database that contains

the options for the synchronization. If profile_name is null then no profile is used and the extra_opts
parameter should contain all the options for the synchronization.

● extra_opts A string formed according to the same rules used to define an option string for a
synchronization profile, which is a string specified as a semicolon delimited list of elements of the
form <option name>="">=<option value>="">. If profile_name is non-null then the options specified
by extra_opts are added to those already in the synchronization profile specified by profile_name. If
an option in the string already exists in the profile, then the value from the string replaces the value
already stored in the profile. If profile_name is null then extra_opts should specify all the options for
the synchronization. See “CREATE SYNCHRONIZATION PROFILE statement [MobiLink]” [SQL
Anywhere Server - SQL Reference].

Returns
A DBSC_SyncHdl value which uniquely identifies this synchronization request and is only valid until the
client disconnects from the server. Returns NULL_SYNCHDL if an error prevents the synchronization
request from being created. When NULL_SYNCHDL is returned, you can call the GetErrorInfo method
for more information about the failure.

Remarks
You must be connected to the server before calling this method. At least one of profile_name and
extra_opts must be non-null.

The return value identifies the synchronization request and can be used to cancel the request or to process
events returned by the synchronization

SQL Anywhere clients for MobiLink

244 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “GetErrorInfo method” on page 238

WaitForServerShutdown method

Returns when the server has shutdown or when the timeout expires, whichever comes first.

Syntax
public virtual bool WaitForServerShutdown(unsigned timeout)

Parameters
● timeout Indicates the maximum time in milliseconds to wait for the server to shutdown. Use

DBSC_INFINITY to wait indefinitely for a response.

Returns
True when the method returned due to the server shutdown; otherwise, returns false. When false is
returned, you can call the GetErrorInfo method for more information about the failure.

Remarks
WaitForServerShutdown can only be called after the ShutdownServer method is called.

See also
● “GetErrorInfo method” on page 238

DBSC_CancelRet enumeration

Indicates the result of a synchronization cancellation attempt.

Syntax
public enum DBSC_CancelRet

Members

Member name Description Value

DBSC_CANCEL_OK_QUEUED Canceled a synchronization that was in the wait queue. 1

DBSC_CANCEL_OK_ACTIVE Canceled an active synchronization. 2

DBSC_CANCEL_FAILED Failed to cancel the synchronization. 3

See also
● “CancelSync method” on page 234

Dbmlsync C++ API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 245

DBSC_ErrorType enumeration
Indicates the reason for a method call failure.

Syntax
public enum DBSC_ErrorType

Members

Member name Description Val-
ue

DBSC_ERR_OK No error occurred. 1

DBSC_ERR_NOT_INITIALIZED The class has not been initialized by calling the
Init method.

2

DBSC_ERR_ALREADY_INITIALIZED The Init method was called on a class that was
already initialized.

3

DBSC_ERR_NOT_CONNECTED No connection to a dbmlsync server is in place. 4

DBSC_ERR_CANT_RESOLVE_HOST Cannot resolve host information. 5

DBSC_ERR_CONNECT_FAILED Connection to the dbmlsync server has failed. 6

DBSC_ERR_INITIALIZING_TCP_LAYER Error initializing TCP layer. 7

DBSC_ERR_ALREADY_CONNECTED Connect method failed because a connection
was already in place.

8

DBSC_ERR_PROTOCOL_ERROR This is an internal error. 9

DBSC_ERR_CONNECTION_REJECTED The connection was rejected by the dbmlsync
server. str1 points to a string returned by the
server which may provide more information
about why the connection attempt was rejected.

10

DBSC_ERR_TIMED_OUT The timeout expired while waiting for a re-
sponse from the server.

11

DBSC_ERR_STILL_CONNECTED Could not Fini the class because it is still con-
nected to the server.

12

DBSC_ERR_SYNC_NOT_CANCELED The server could not cancel the synchroniza-
tion request, likely because the synchroniza-
tion was already in progress.

14

SQL Anywhere clients for MobiLink

246 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Member name Description Val-
ue

DBSC_ERR_INVALID_VALUE An invalid property value was passed to the Set-
Property method.

15

DBSC_ERR_INVALID_PROP_NAME The specified property name is not valid. 16

DBSC_ERR_VALUE_TOO_LONG The property value is too long; properties must
be less than DBCS_MAX_PROPERTY_LEN
bytes long.

17

DBSC_ERR_SERVER_SIDE_ERROR A server-side error occurred while cancelling
or adding a sync. str1 points to a string re-
turned by the server which may provide more
information about the error.

18

DBSC_ERR_CREATE_PROC-
ESS_FAILED

Unable to start a new dbmlsync server. 20

DBSC_ERR_READ_FAILED TCP error occurred while reading data from
the dbmlsync server.

21

DBSC_ERR_WRITE_FAILED TCP error occurred while sending data to the
dbmlsync server.

22

DBSC_ERR_NO_SERVER_RESPONSE Failed to receive a response from the server
that is required to complete the requested action.

23

DBSC_ERR_UID_OR_PWD_TOO_LONG The UID or PWD specified is too long. 24

DBSC_ERR_UID_OR_PWD_NOT_VALID The UID or PWD specified is not valid. 25

DBSC_ERR_INVALID_PARAMETER One of the parameters passed to the function
was not valid.

26

DBSC_ERR_WAIT_FAILED An error occurred while waiting for the server
to shutdown.

27

DBSC_ERR_SHUTDOWN_NOT_CALLED WaitForServerShutdown method was called
without first calling the ShutdownServer meth-
od.

28

Dbmlsync C++ API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 247

Member name Description Val-
ue

DBSC_ERR_NO_SYNC_ACK A synchronization request was sent to the serv-
er but no acknowledgement was received;
There is no way to know if the server received
the request. hdl1 is the handle for the sync re-
quest that was sent. If the server received the
request, this handle can be used to identify
events for the synchronization retrieved using
the GetEvent method.

29

DBSC_ERR_ACTIVE_SYNC_NOT_CAN-
CELED

The server could not cancel the synchroniza-
tion request because the synchronization was
active.

30

DBSC_ERR_DEAD_SERVER The dbmlsync server has encountered an error
while starting up. The server is now shutting
down. Use the dbmlsync -o option to log the er-
ror message to a file.

31

DBSC_EventType enumeration
Indicates the type of event generated by a synchronization.

Syntax
public enum DBSC_EventType

Members

Member name Description Value

DBSC_EVEN-
TTYPE_ERROR_MSG

An error was generated by the synchronization; str1 points to the
text of the error.

1

DBSC_EVEN-
TTYPE_WARN-
ING_MSG

A warning was generated by the synchronization; str1 points to
the text of the warning.

2

DBSC_EVEN-
TTYPE_INFO_MSG

An information message was generated by the synchronization;
str1 points to the text of the message.

3

DBSC_EVEN-
TTYPE_PROGRESS_IN-
DEX

Provides information for updating a progress bar; val1 contains
the new progress value. The percent done can be calculated by
dividing val1 by 1000.

4

SQL Anywhere clients for MobiLink

248 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Member name Description Value

DBSC_EVEN-
TTYPE_PRO-
GRESS_TEXT

The text associated with the progress bar has been updated; the
new value is pointed to by str1.

6

DBSC_EVENTTYPE_TI-
TLE

The title for the synchronization window/control has changed;
the new title is pointed to by str1.

7

DBSC_EVEN-
TTYPE_SYNC_START

The synchronization has begun; there is no additional informa-
tion associated with this event.

8

DBSC_EVEN-
TTYPE_SYNC_DONE

The synchronization is complete; val1 contains the exit code
from the synchronization. A 0 value indicates success. A non-
zero value indicates that the synchronization failed.

9

DBSC_EVEN-
TTYPE_ML_CONNECT

A connection to the MobiLink Server was established; str1 indi-
cates the communication protocol being used and str2 contains
the network protocol options used.

10

DBSC_EVEN-
TTYPE_UPLOAD_COM-
MITTED

The MobiLink server confirmed that it successfully committed
the upload to the consolidated database.

11

DBSC_EVEN-
TTYPE_DOWN-
LOAD_COMMITTED

The download has been successfully committed in the remote da-
tabase.

12

See also
● “DBSC_Event structure” on page 252
● “GetEvent method” on page 238

DBSC_GetEventRet enumeration
Indicates the result of an attempt to retrieve an event.

Syntax
public enum DBSC_GetEventRet

Members

Member name Description Value

DBSC_GETEVENT_OK Indicates that an event was successfully retrieved. 1

Dbmlsync C++ API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 249

Member name Description Value

DBSC_GETE-
VENT_TIMED_OUT

Indicates that the timeout expired without any event being availa-
ble to return.

2

DBSC_GETE-
VENT_FAILED

Indicates that no event was returned because of an error condition. 3

See also
● “GetEvent method” on page 238

DBSC_ShutdownType enumeration
Indicates how urgently the server should be shut down.

Syntax
public enum DBSC_ShutdownType

Members

Member name Description Val-
ue

DBSC_SHUT-
DOWN_ON_EMP-
TY_QUEUE

Indicates that the server should complete any outstanding synchroniza-
tion requests and then shutdown. Once the server receives the shut-
down request, it does not accept any more synchronization requests.

1

DBSC_SHUT-
DOWN_CLEANLY

Indicates that the server should shutdown cleanly, as quickly as possi-
ble. If there are outstanding synchronization requests, they are not per-
formed and if there is a running synchronization it may be interrupted.

2

See also
● “ShutdownServer method” on page 242

DBSC_StartType enumeration
Indicates the action taken during a dbmlsync server startup attempt.

Syntax
public enum DBSC_StartType

SQL Anywhere clients for MobiLink

250 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Members

Member name Description Value

DBSC_SS_STARTED Indicates that a new dbmlsync server was started. 1

DBSC_SS_AL-
READY_RUNNING

Indicates that an existing dbmlsync server was found, so no new serv-
er was started.

2

See also
● “StartServer method” on page 243

DBSC_ErrorInfo structure
Contains information about the failure of a previous method call.

Syntax
public struct DBSC_ErrorInfo

Members

Mem-
ber
name

Type Description

hdl1 DBSC_SyncHdl Contains additional information about the failure. The meaning of this
information depends on the value of the type variable.

str1 const char * Contains additional information about the failure. The meaning of this
information depends on the value of the type variable.

str2 const char * Contains additional information about the failure. The meaning of this
information depends on the value of the type variable.

type DBSC_ErrorType Contains a value that indicates the reason for failure. Supported values
are listed in the DBSC_ErrorType enumeration.

val1 long int Contains additional information about the failure. The meaning of this
information depends on the value of the type variable.

val2 long int Contains additional information about the failure. The meaning of this
information depends on the value of the type variable.

Remarks
str1, str2, val1, val2 and hdl1 contain additional information about the failure, and their meanings depend
on the error type. The following error types use fields in this structure to store additional information:

Dbmlsync C++ API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 251

● DBSC_ERR_CONNECTION_REJECTED

● DBSC_ERR_SERVER_SIDE_ERROR

● DBSC_ERR_NO_SYNC_ACK

See also
● “DBSC_ErrorType enumeration” on page 246

DBSC_Event structure
Contains information about an event generated by a synchronization.

Syntax
public struct DBSC_Event

Members

Mem-
ber
name

Type Description

data void * Contains additional information about the failure. The meaning of this
information depends on the value of the type variable.

hdl DBSC_SyncHdl Indicates the synchronization that generated the event. This value match-
es the value returned by the Sync method.

str1 const char * Contains additional information about the failure. The meaning of this
information depends on the value of the type variable.

str2 const char * Contains additional information about the failure. The meaning of this
information depends on the value of the type variable.

type DBSC_EventType Indicates the type of event being reported.

val1 long int Contains additional information about the failure. The meaning of this
information depends on the value of the type variable.

val2 long int Contains additional information about the failure. The meaning of this
information depends on the value of the type variable.

See also
● “DBSC_EventType enumeration” on page 248

SQL Anywhere clients for MobiLink

252 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Dbmlsync .NET API reference
Namespace

iAnywhere.MobiLink.Client

Example
The sample below shows a typical application using the .NET version of the Dbmlsync API to perform a
synchronization and receive output events. The sample omits error handling for clarity. It is always good
practice to check the return value from each API call.

using System;
using System.Collections.Generic;
using System.Text;
using iAnywhere.MobiLink.Client;
namespace ConsoleApplication6
{
 class Program
 {
 static void Main(string[] args)
 {
 DbmlsyncClient cli1;
 DBSC_StartType st1;
 DBSC_Event ev1;
 UInt32 syncHdl;
 cli1 = DbmlsyncClient.InstantiateClient();
 cli1.Init();
 // Setting the "server path" is usually required on Windows
 // Mobile/CE. In other environments the server path is usually
 // not required unless you SA install is not in your path or
 // you have multiple versions of the product installed
 cli1.SetProperty("server path", "d:\\sybase\\asa12\\bin32");
 cli1.StartServer(3426,
 "-c server=cons;dbn=rem1;uid=dba;pwd=sql -ve+ -ot c:\
\dbsync1.txt",
 5000, out st1);
 cli1.Connect(null, 3426, "dba", "sql");
 syncHdl = cli1.Sync("sp1", "");
 while (cli1.GetEvent(out ev1, 5000)
 == DBSC_GetEventRet.DBSC_GETEVENT_OK)
 {
 if (ev1.hdl == syncHdl)
 {
 Console.WriteLine("Event Type : {0}", ev1.type);
 if (ev1.type == DBSC_EventType.DBSC_EVENTTYPE_INFO_MSG)
 {
 Console.WriteLine("Info : {0}", ev1.str1);
 }
 if (ev1.type == DBSC_EventType.DBSC_EVENTTYPE_SYNC_DONE)
 {
 break;
 }
 }
 }

cli1.ShutdownServer(DBSC_ShutdownType.DBSC_SHUTDOWN_ON_EMPTY_QUEUE);

Dbmlsync .NET API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 253

 cli1.WaitForServerShutdown(10000);
 cli1.Disconnect();
 cli1.Fini();
 Console.ReadLine();
 }
 }
}

DbmlsyncClient class
Communicates using TCP/IP with a separate process, dbmlsync server, which performs a synchronization
by connecting to the MobiLink server and the remote database.

Visual Basic syntax
Public Class DbmlsyncClient

C# syntax
public class DbmlsyncClient

Members
All members of DbmlsyncClient class, including all inherited members.

Name Description

“CancelSync method” Cancels a synchronization request.

“Connect method” Opens a connection to a Dbmlsync server that is already running
on this computer.

“Disconnect method” Breaks the Dbmlsync server connection that was established with
the Connect method.

“Fini method” Frees all resources used by this class instance.

“GetErrorInfo method” Retrieves additional information about the failure after a
DbmlsyncClient class method returns a failed return code.

“GetEvent method” Retrieves the next feedback event for synchronizations requested
by the client.

“GetProperty method” Retrieves the current value of a property.

“Init method” Initializes a DbmlsyncClient class instance.

“InstantiateClient method” Creates an instance of the dbmlsync client class that can be used
to control synchronizations.

SQL Anywhere clients for MobiLink

254 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“Ping method” Sends a ping request to the dbmlsync server to check if the server
is active and responding to requests.

“SetProperty method” Sets various properties to modify the behavior of the class instance.

“ShutdownServer method” Shuts down the dbmlsync server to which the client is connected.

“StartServer method” Starts a new dbmlsync server if one is not already listening on
the specified port.

“Sync method” Requests that the dbmlsync server perform a synchronization.

“WaitForServerShutdown method” Returns when the server has shutdown or when the timeout ex-
pires, whichever comes first.

Remarks
Multiple clients can share the same dbmlsync server. However, each dbmlsync server can only
synchronize a single remote database. Each remote database can have only one dbmlsync server
synchronizing it.

The dbmlsync server performs one synchronization at a time. If the server receives a synchronization
request while performing a synchronization, it queues that request and satisfies it later.

Status information generated by synchronizations is communicated back to the client application through
the GetEvent method.

See also
● “GetEvent method” on page 259

CancelSync method

Cancels a synchronization request.

Overload list

Name Description

“CancelSync(UInt32) method
(deprecated)”

Allows a client to cancel a synchronization request previously
made using the Sync method.

“CancelSync(UInt32, Boolean)
method”

Allows a client to cancel a synchronization request previously
made using the Sync method.

Dbmlsync .NET API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 255

CancelSync(UInt32) method (deprecated)
Allows a client to cancel a synchronization request previously made using the Sync method.

Visual Basic syntax
Public Function CancelSync(ByVal hdl As UInt32) As Boolean

C# syntax
public Boolean CancelSync(UInt32 hdl)

Parameters
● hdl The synchronization handle returned by the Sync method when the synchronization was requested.

Returns
True when the synchronization request was successfully canceled; otherwise, returns false. When false is
returned, you can call the GetErrorInfo method for more information about the failure.

Remarks
Only synchronization requests waiting to be serviced can be canceled. To stop a synchronization that has
already begun, use the CancelSync(UInt32, Boolean) method.

You can use the ShutdownServer method and pass the DBSC_SHUTDOWN_CLEANLY type to cancel
an active synchronization. Dbmlsync attempts to cancel the synchronization before shutting down. This
task is equivalent of cancelling a synchronization using the DBTools interface.

A connection must be established to the server before this method can be used. This method cannot be
used if the client has disconnected from the server since the Sync method was called.

See also
● “GetErrorInfo method” on page 259
● “CancelSync method” on page 255
● “ShutdownServer method” on page 264

CancelSync(UInt32, Boolean) method
Allows a client to cancel a synchronization request previously made using the Sync method.

Visual Basic syntax
Public Function CancelSync(
 ByVal hdl As UInt32,
 ByVal cancel_active As Boolean
) As DBSC_CancelRet

C# syntax
public DBSC_CancelRet CancelSync(UInt32 hdl, Boolean cancel_active)

SQL Anywhere clients for MobiLink

256 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters
● hdl The synchronization handle returned by the Sync method when the synchronization was requested.

● cancel_active When set to true, the request is cancelled if the synchronization has already begun.
When set to false, the quests is only cancelled if synchronization has not yet begun

Returns
A value from the DBSC_CancelRet enumeration. When DBSC_CANCEL_FAILED is returned, you can
call the GetErrorInfo method for more information about the failure.

Remarks
Only synchronization requests waiting to be serviced can be canceled.

You can use the ShutdownServer method and pass the DBSC_SHUTDOWN_CLEANLY type to cancel
an active synchronization. Dbmlsync attempts to cancel the synchronization before shutting down. This
task is equivalent of cancelling a synchronization using the DBTools interface.

A connection must be established to the server before this method can be used. This method cannot be
used if the client has disconnected from the server since the Sync method was called.

See also
● “DBSC_CancelRet enumeration” on page 268
● “GetErrorInfo method” on page 259
● “ShutdownServer method” on page 264

Connect method

Opens a connection to a Dbmlsync server that is already running on this computer.

Visual Basic syntax
Public Function Connect(
 ByVal host As String,
 ByVal port As Int32,
 ByVal uid As String,
 ByVal pwd As String
) As Boolean

C# syntax
public Boolean Connect(String host, Int32 port, String uid, String pwd)

Parameters
● host This value is reserved. Specify null when using C#. Do not specify anything when using

Visual Basic.

● port The TCP port on which the dbmlsync server is listening. Use the same port value that you
specified with the StartServer method.

Dbmlsync .NET API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 257

● uid A valid database user id with DBA or REMOTE DBA authority on the remote database that is
to be synchronized.

● pwd The database password for the user specified by uid.

Returns
True when a connection to the server was established; otherwise, returns false. When false is returned,
you can call the GetErrorInfo method for more information about the failure.

Remarks
The database user id and password are used to validate whether this client has enough permissions to
synchronize the database. When synchronizations are performed, the user id that was specified with the -c
option when the dbmlsync server started is used.

See also
● “StartServer method” on page 265
● “GetErrorInfo method” on page 259

Disconnect method

Breaks the Dbmlsync server connection that was established with the Connect method.

Visual Basic syntax
Public Function Disconnect() As Boolean

C# syntax
public Boolean Disconnect()

Returns
True when the connection to the server has been broken; otherwise, returns false. When false is returned,
you can call the GetErrorInfo method for more information about the failure.

Remarks
You should always call Disconnect when you are finished with a connection.

See also
● “Connect method” on page 257
● “GetErrorInfo method” on page 259

Fini method

Frees all resources used by this class instance.

SQL Anywhere clients for MobiLink

258 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Visual Basic syntax
Public Function Fini() As Boolean

C# syntax
public Boolean Fini()

Returns
True when the class instance is successfully finalized; otherwise, returns false. When false is returned,
you can call the GetErrorInfo method for more information about the failure.

Remarks
This method must be called before you can delete the DbmlSyncClient class instance.

Note
You should use the Disconnect method to disconnect from any connected servers before finalizing the
class instance.

See also
● “Disconnect method” on page 258
● “GetErrorInfo method” on page 259

GetErrorInfo method

Retrieves additional information about the failure after a DbmlsyncClient class method returns a failed
return code.

Visual Basic syntax
Public Function GetErrorInfo() As DBSC_ErrorInfo

C# syntax
public DBSC_ErrorInfo GetErrorInfo()

Returns
A pointer to a DBSC_ErrorInfo structure that contains information about the failure. The contents of this
structure may be overwritten the next time any class method is called.

See also
● “DBSC_ErrorType enumeration” on page 268
● “DBSC_ErrorInfo structure” on page 274
● “GetErrorInfo method” on page 259

GetEvent method

Dbmlsync .NET API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 259

Retrieves the next feedback event for synchronizations requested by the client.

Visual Basic syntax
Public Function GetEvent(
 ByVal ev As DBSC_Event,
 ByVal timeout As UInt32
) As DBSC_GetEventRet

C# syntax
public DBSC_GetEventRet GetEvent(out DBSC_Event ev, UInt32 timeout)

Parameters
● ev If the return value is DBSC_GETEVENT_OK then the ev parameter is filled with information

about the event that has been retrieved.

● timeout Indicates the maximum time in milliseconds to wait if no event is immediately available to
return. Use DbmlsyncClient.DBSC_INFINITY to wait indefinitely for a response.

Returns
A value from the DBSC_GetEventRet enumeration. When DBSC_GETEVENT_FAILED is returned,
you can call the GetErrorInfo method for more information about the failure.

Remarks
Feedback events contain information such as messages generated from the sync, data for updating a
progress bar, and synchornization cycle notifications.

As the dbmlsync server runs a synchronization it generates a series of events that contain information
about the progress of the synchronization. These events are sent from the server to the DbmlsyncClient
class, which queues them. When the GetEvent method is called, the next event in the queue is returned if
there is one waiting.

If there are no events waiting in the queue, this method waits until an event is available or until the
specified timeout has expired before returning.

The types of events that are generated for a synchronization can be controlled using properties.

See also
● “DBSC_GetEventRet enumeration” on page 272
● “DBSC_Event structure” on page 275
● “SetProperty method” on page 262
● “GetErrorInfo method” on page 259

GetProperty method

Retrieves the current value of a property.

SQL Anywhere clients for MobiLink

260 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Visual Basic syntax
Public Function GetProperty(
 ByVal name As String,
 ByVal value As String
) As Boolean

C# syntax
public Boolean GetProperty(String name, out String value)

Parameters
● name The name of the property to retreive. For a list of valid property names, see SetProperty.

● value On exit, the value of the property is stored in this variable.

Returns
True when the property was successfully received; otherwise, returns false. When false is returned, you
can call the GetErrorInfo method for more information about the failure.

See also
● “SetProperty method” on page 262
● “GetErrorInfo method” on page 259

Init method

Initializes a DbmlsyncClient class instance.

Visual Basic syntax
Public Function Init() As Boolean

C# syntax
public Boolean Init()

Returns
True when the class instance is successfully initialized; otherwise, returns false. When false is returned,
you can call the GetErrorInfo method for more information about the failure.

Remarks
This method must be called after instantiating the DbmlSyncClient class instance. Other DbmlSyncClient
methods cannot be called until you have successfully initialized the instance.

See also
● “InstantiateClient method” on page 262
● “GetErrorInfo method” on page 259

Dbmlsync .NET API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 261

InstantiateClient method

Creates an instance of the dbmlsync client class that can be used to control synchronizations.

Visual Basic syntax
Public Shared Function InstantiateClient() As DbmlsyncClient

C# syntax
public static DbmlsyncClient InstantiateClient()

Returns
The created DbmlsyncClient instance. Returns null when an error occurs.

Remarks
The object returned by this method can be used to call the remaining methods in the class.

Ping method

Sends a ping request to the dbmlsync server to check if the server is active and responding to requests.

Visual Basic syntax
Public Function Ping(ByVal timeout As UInt32) As Boolean

C# syntax
public Boolean Ping(UInt32 timeout)

Parameters
● timeout The maximum number of milliseconds to wait for the server to respond to the ping

request. Use DbmlsyncClient.DBSC_INFINITY to wait indefinitely for a response.

Returns
True when a response to the ping request was received from the server; otherwise, returns false. When
false is returned, you can call the GetErrorInfo method for more information about the failure.

Remarks
You must be connected to the server before calling this method.

See also
● “GetErrorInfo method” on page 259

SetProperty method

Sets various properties to modify the behavior of the class instance.

SQL Anywhere clients for MobiLink

262 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Visual Basic syntax
Public Function SetProperty(
 ByVal name As String,
 ByVal value As String
) As Boolean

C# syntax
public Boolean SetProperty(String name, String value)

Parameters
● name The name of the property to set. For a list of valid property names, see table.

● value The value to set for the property.

Returns
True when the property was successfully set; otherwise, returns false. When false is returned, you can call
the GetErrorInfo method for more information about the failure.

Remarks
Changes to property values only affect synchronization requests made after the property value was changed.

The server path property can be set to specify the directory from which the client should start
dbmlsync.exe when the StartServer method is called. When this property is not set, dbmlsync.exe is found
using the PATH environment variable. If there are multiple versions of SQL Anywhere installed on your
computer, it is recommended that you specify the location of dbmlsync.exe using the server path
property because the PATH environment variable may locate a dbmlsync executable from another
installed version of SQL Anywhere. For example,

ret = cli->SetProperty("server path", "c:\\sa12\\bin32");

The properties control the types of events that are returned by the GetEvent method. By disabling events
that you do not require you may be able to improve performance. An event type is enabled by setting the
corresponding property to "1" and disabled by setting the property to "0".

The following is a table of available property names and the event types that each name controls:

Property name Event types controlled Default value

enable errors DBSC_EVENTTYPE_ERROR_MSG 1

enable warnings DBSC_EVENTTYPE_WARNING_MSG 1

enable info msgs DBSC_EVENTTYPE_INFO_MSG 1

enable progress DBSC_EVENTTYPE_PROGRESS_INDEX 0

enable progress text DBSC_EVENTTYPE_PROGRESS_TEXT 0

enable title DBSC_EVENTTYPE_TITLE 0

Dbmlsync .NET API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 263

Property name Event types controlled Default value

enable sync start DBSC_EVENTTYPE_SYNC_START 1

enable sync done DBSC_EVENTTYPE_SYNC_DONE 1

enable sync start and done DBSC_EVENTTYPE_SYNC_START

DBSC_EVENTTYPE_SYNC_DONE

1

enable status DBSC_EVENTTYPE_ML_CONNECT

DBSC_EVENTTYPE_UPLOAD_COMMITTED

DBSC_EVENTTYPE_DOWNLOAD_COMMITTED

1

See also
● “StartServer method” on page 265
● “GetEvent method” on page 259
● “GetProperty method” on page 260
● “GetErrorInfo method” on page 259

ShutdownServer method

Shuts down the dbmlsync server to which the client is connected.

Visual Basic syntax
Public Function ShutdownServer(
 ByVal how As DBSC_ShutdownType
) As Boolean

C# syntax
public Boolean ShutdownServer(DBSC_ShutdownType how)

Parameters
● how Indicates the urgency of the server shutdown. Supported values are listed in the

DBSC_ShutdownType enumeration.

Returns
True when a shutdown request was successfully sent to the server; otherwise, returns false. When false is
returned, you can call the GetErrorInfo method for more information about the failure.

Remarks
The Shutdown method returns immediately but there may be some delay before the server actually shuts
down.

SQL Anywhere clients for MobiLink

264 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The WaitForServerShutdown method can be used to wait until the server actually shuts down.

Note
You should still use the Disconnect method after calling ShutdownServer.

See also
● “DBSC_ShutdownType enumeration” on page 273
● “Disconnect method” on page 258
● “WaitForServerShutdown method” on page 267
● “GetErrorInfo method” on page 259

StartServer method

Starts a new dbmlsync server if one is not already listening on the specified port.

Visual Basic syntax
Public Function StartServer(
 ByVal port As Int32,
 ByVal cmdline As String,
 ByVal timeout As UInt32,
 ByVal starttype As DBSC_StartType
) As Boolean

C# syntax
public Boolean StartServer(
 Int32 port,
 String cmdline,
 UInt32 timeout,
 out DBSC_StartType starttype
)

Parameters
● port The TCP port to check for an existing dbmlsync server. If a new server is started, it is set to

listen on this port.

● cmdline A valid command line for starting a dbmlsync server. The command line may contain only
the following options which have the same meaning that they do for the dbmlsync utility: -a, -c, -dl, -
do, -ek, -ep, -k, -l, -o, -os, -ot, -p, -pc+, -pc-, -pd, -pp, -q, -qi, -qc, -sc, -sp, -uc, -ud, -ui, -um, -un, -ux, -
v[cnoprsut], -wc, -wh. The -c option must be specified.

● timeout The maximum time in milliseconds to wait after a dbmlsync server is started for it to be
ready to accept requests. Use DbmlsyncClient.DBSC_INFINITY to wait indefinitely for a response.

● starttype An out parameter set to indicate if the server has been located or started. If starttype is non-
null on entry and StartServer returns true, then, on exit, the variable pointed to by starttype is set to a
value from the DBSC_StartType enumeration.

Dbmlsync .NET API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 265

Returns
True when the server was already running or successfully started; otherwise, returns false. When false is
returned, you can call the GetErrorInfo method for more information about the failure.

Remarks
If a server is present, this method sets the starttype parameter to DBSC_SS_ALREADY_RUNNING and
returns without further action. If no server is found, the method starts a new server using the options
specified by the cmdline argument and waits for it to start accepting requests before returning.

On Windows Mobile devices, it is usually necessary to set the server path property before StartServer
can be successfully called. The server path property does not need to be set in the following instances:

● Your application is in the same directory as dbmlsync.exe.

● dbmlsync.exe is in the Windows directory.

See also
● “GetErrorInfo method” on page 259

Sync method

Requests that the dbmlsync server perform a synchronization.

Visual Basic syntax
Public Function Sync(
 ByVal syncName As String,
 ByVal opts As String
) As UInt32

C# syntax
public UInt32 Sync(String syncName, String opts)

Parameters
● syncName The name of a synchronization profile defined in the remote database that contains the

options for the synchronization. If syncName is null then no profile is used and the opts parameter
should contain all the options for the synchronization.

● opts A string formed according to the same rules used to define an option string for a
synchronization profile, which is a string specified as a semicolon delimited list of elements of the
form <option name>="">=<option value>="">. If syncName is non-null then the options specified by
opts are added to those already in the synchronization profile specified by syncName. If an option in
the string already exists in the profile, then the value from the string replaces the value already stored
in the profile. If the syncName is null then opts should specify all the options for the synchronization.
See “CREATE SYNCHRONIZATION PROFILE statement [MobiLink]” [SQL Anywhere Server -
SQL Reference].

SQL Anywhere clients for MobiLink

266 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns
An integer value which uniquely identifies this synchronization request and is only valid until the client
disconnects from the server. Returns NULL_SYNCHDL if an error prevents the synchronization request
from being created. When NULL_SYNCHDL is returned, you can call the GetErrorInfo method for more
information about the failure.

Remarks
You must be connected to the server before calling this method. At least one of syncName and opts must
be non-null.

The return value identifies the synchronization request and can be used to cancel the request or to process
events returned by the synchronization.

The following C# example demonstrates how to display error codes after invoking the Sync method.

// Insert code to initialize the syncronization client.
UInt32 request = syncClient.Sync("syncName", null);
if (request == DbmlsyncClient.NULL_SYNCHDL) {
 string error_code = syncClient.GetErrorInfo().type.ToString();
 MessageBox.Show(error_code, "Sync Error");
}

See also
● “GetErrorInfo method” on page 259

WaitForServerShutdown method

Returns when the server has shutdown or when the timeout expires, whichever comes first.

Visual Basic syntax
Public Function WaitForServerShutdown(
 ByVal timeout As UInt32
) As Boolean

C# syntax
public Boolean WaitForServerShutdown(UInt32 timeout)

Parameters
● timeout Indicates the maximum time in milliseconds to wait for the server to shutdown. Use

DbmlsyncClient.DBSC_INFINITY to wait indefinitely for a response.

Returns
True when the method returned due to the server shutdown; otherwise, returns false. When false is
returned, you can call the GetErrorInfo method for more information about the failure.

Remarks
WaitForServerShutdown can only be called after the ShutdownServer method is called.

Dbmlsync .NET API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 267

See also
● “GetErrorInfo method” on page 259

DBSC_CancelRet enumeration
Indicates the result of a synchronization cancellation attempt.

Visual Basic syntax
Public Enum DBSC_CancelRet

C# syntax
public enum DBSC_CancelRet

Members

Member name Description Value

DBSC_CANCEL_OK_QUEUED Canceled a synchronization that was in the wait queue. 1

DBSC_CANCEL_OK_ACTIVE Canceled an active synchronization. 2

DBSC_CANCEL_FAILED Failed to cancel the synchronization. 3

See also
● “CancelSync method” on page 255

DBSC_ErrorType enumeration
Indicates the reason for a method call failure.

Visual Basic syntax
Public Enum DBSC_ErrorType

C# syntax
public enum DBSC_ErrorType

Members

Member name Description Val-
ue

DBSC_ERR_OK No error occurred. 1

SQL Anywhere clients for MobiLink

268 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Member name Description Val-
ue

DBSC_ERR_NOT_INITIALIZED The class has not been initialized by calling the
Init method.

2

DBSC_ERR_ALREADY_INITIALIZED The Init method was called on a class that was
already initialized.

3

DBSC_ERR_NOT_CONNECTED No connection to a dbmlsync server is in place. 4

DBSC_ERR_CANT_RESOLVE_HOST Cannot resolve host information. 5

DBSC_ERR_CONNECT_FAILED Connection to the dbmlsync server has failed. 6

DBSC_ERR_INITIALIZING_TCP_LAYER Error initializing TCP layer. 7

DBSC_ERR_ALREADY_CONNECTED Connect method failed because a connection
was already in place.

8

DBSC_ERR_PROTOCOL_ERROR This is an internal error. 9

DBSC_ERR_CONNECTION_REJECTED The connection was rejected by the dbmlsync
server.

str1 points to a string returned by the server
which may provide more information about
why the connection attempt was rejected.

10

DBSC_ERR_TIMED_OUT The timeout expired while waiting for a re-
sponse from the server.

11

DBSC_ERR_STILL_CONNECTED Could not Fini the class because it is still con-
nected to the server.

12

DBSC_ERR_SYNC_NOT_CANCELED The server could not cancel the synchroniza-
tion request, likely because the synchroniza-
tion was already in progress.

14

DBSC_ERR_INVALID_VALUE An invalid property value was passed to the Set-
Property method.

15

DBSC_ERR_INVALID_PROP_NAME The specified property name is not valid. 16

DBSC_ERR_VALUE_TOO_LONG The property value is too long; properties must
be less than DBCS_MAX_PROPERTY_LEN
bytes long.

17

Dbmlsync .NET API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 269

Member name Description Val-
ue

DBSC_ERR_SERVER_SIDE_ERROR A server-side error occurred while cancelling
or adding a sync.

str1 points to a string returned by the server
which may provide more information about the
error.

18

DBSC_ERR_CREATE_PROC-
ESS_FAILED

Unable to start a new dbmlsync server. 20

DBSC_ERR_READ_FAILED TCP error occurred while reading data from
the dbmlsync server.

21

DBSC_ERR_WRITE_FAILED TCP error occurred while sending data to the
dbmlsync server.

22

DBSC_ERR_NO_SERVER_RESPONSE Failed to receive a response from the server
that is required to complete the requested action.

23

DBSC_ERR_UID_OR_PWD_TOO_LONG The UID or PWD specified is too long. 24

DBSC_ERR_UID_OR_PWD_NOT_VALID The UID or PWD specified is not valid. 25

DBSC_ERR_INVALID_PARAMETER One of the parameters passed to the function
was not valid.

26

DBSC_ERR_WAIT_FAILED An error occurred while waiting for the server
to shutdown.

27

DBSC_ERR_SHUTDOWN_NOT_CALLED WaitForServerShutdown method was called
without first calling the ShutdownServer meth-
od.

28

DBSC_ERR_NO_SYNC_ACK A synchronization request was sent to the serv-
er but no acknowledgement was received;
There is no way to indicate that the server re-
ceived the request.

hdl1 is the handle for the sync request that was
sent. If the server received the request, this han-
dle can be used to identify events for the syn-
chronization retrieved using the GetEvent meth-
od.

29

SQL Anywhere clients for MobiLink

270 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Member name Description Val-
ue

DBSC_ERR_ACTIVE_SYNC_NOT_CAN-
CELED

The server could not cancel the synchroniza-
tion request because the synchronization was
active.

30

DBSC_ERR_DEAD_SERVER The dbmlsync server has encountered an error
while starting up.

The server is now shutting down.

Use the dbmlsync -o option to log the error mes-
sage to a file.

31

DBSC_EventType enumeration
Indicates the type of event generated by a synchronization.

Visual Basic syntax
Public Enum DBSC_EventType

C# syntax
public enum DBSC_EventType

Members

Member name Description Value

DBSC_EVEN-
TTYPE_ERROR_MSG

An error was generated by the synchronization; str1 contains the
text of the error.

1

DBSC_EVEN-
TTYPE_WARN-
ING_MSG

A warning was generated by the synchronization; str1 contains
the text of the warning.

2

DBSC_EVENTTYPE_IN-
FO_MSG

An information message was generated by the synchronization;
str1 contains the text of the message.

3

DBSC_EVEN-
TTYPE_PROGRESS_IN-
DEX

Provides information for updating a progress bar; val1 contains
the new progress value.

The percent done can be calculated by dividing val1 by 1000.

4

Dbmlsync .NET API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 271

Member name Description Value

DBSC_EVEN-
TTYPE_PRO-
GRESS_TEXT

The text associated with the progress bar has been updated and
str1 contains the new value.

5

DBSC_EVENTTYPE_TI-
TLE

The title for the synchronization window/control has changed
and str1 contains the new title.

6

DBSC_EVEN-
TTYPE_SYNC_START

The synchronization has begun; there is no additional informa-
tion associated with this event.

7

DBSC_EVEN-
TTYPE_SYNC_DONE

The synchronization is complete; val1 contains the exit code
from the synchronization.

A 0 value indicates success. A non-zero value indicates that the
synchronization failed.

8

DBSC_EVEN-
TTYPE_ML_CONNECT

A connection to the MobiLink Server was established; str1 indi-
cates the communication protocol being used and str2 contains
the network protocol options used.

10

DBSC_EVEN-
TTYPE_UPLOAD_COM-
MITTED

The MobiLink server confirmed that it successfully committed
the upload to the consolidated database.

11

DBSC_EVEN-
TTYPE_DOWN-
LOAD_COMMITTED

The download has been successfully committed in the remote da-
tabase.

12

See also
● “DBSC_Event structure” on page 275
● “GetEvent method” on page 259

DBSC_GetEventRet enumeration
Indicates the result of an attempt to retrieve an event.

Visual Basic syntax
Public Enum DBSC_GetEventRet

C# syntax
public enum DBSC_GetEventRet

SQL Anywhere clients for MobiLink

272 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Members

Member name Description Value

DBSC_GETEVENT_OK Indicates that an event was successfully retrieved. 1

DBSC_GETE-
VENT_TIMED_OUT

Indicates that the timeout expired without any event being availa-
ble to return.

2

DBSC_GETE-
VENT_FAILED

Indicates that no event was returned because of an error condition. 3

See also
● “GetEvent method” on page 259

DBSC_ShutdownType enumeration
Indicates how urgently the server should be shut down.

Visual Basic syntax
Public Enum DBSC_ShutdownType

C# syntax
public enum DBSC_ShutdownType

Members

Member name Description Val-
ue

DBSC_SHUT-
DOWN_ON_EMP-
TY_QUEUE

Indicates that the server should complete any outstanding synchroniza-
tion requests and then shutdown.

Once the server receives the shutdown request, it does not accept any
more synchronization requests.

1

DBSC_SHUT-
DOWN_CLEANLY

Indicates that the server should shutdown cleanly, as quickly as possible.

If there are outstanding synchronization requests, they are not per-
formed and if there is a running synchronization it may be interrupted.

2

See also
● “ShutdownServer method” on page 264

Dbmlsync .NET API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 273

DBSC_StartType enumeration
Indicates the action taken during a dbmlsync server startup attempt.

Visual Basic syntax
Public Enum DBSC_StartType

C# syntax
public enum DBSC_StartType

Members

Member name Description Value

DBSC_SS_STARTED Indicates that a new dbmlsync server was started. 1

DBSC_SS_AL-
READY_RUNNING

Indicates that an existing dbmlsync server was found, so no new serv-
er was started.

2

See also
● “StartServer method” on page 265

DBSC_ErrorInfo structure
Contains information about the failure of a previous method call.

Visual Basic syntax
Structure DBSC_ErrorInfo

C# syntax
public struct DBSC_ErrorInfo

Members

Member
name

Type Description

hdl1 UInt32 Contains additional information about the failure.

The meaning of this information depends on the value of the type variable.

str1 String Contains additional information about the failure.

The meaning of this information depends on the value of the type variable.

SQL Anywhere clients for MobiLink

274 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Member
name

Type Description

str2 String Contains additional information about the failure.

The meaning of this information depends on the value of the type variable.

type DBSC_Error-
Type

Contains a value that indicates the reason for failure.

Supported values are listed in the DBSC_ErrorType enumeration.

val1 Int32 Contains additional information about the failure.

The meaning of this information depends on the value of the type variable.

val2 Int32 Contains additional information about the failure.

The meaning of this information depends on the value of the type variable.

Remarks
str1, str2, val1, val2 and hdl1 contain additional information about the failure, and their meanings depend
on the error type. The following error types use fields in this structure to store additional information:

● DBSC_ERR_CONNECTION_REJECTED

● DBSC_ERR_SERVER_SIDE_ERROR

● DBSC_ERR_NO_SYNC_ACK

See also
● “DBSC_ErrorType enumeration” on page 268

DBSC_Event structure
Contains information about an event generated by a synchronization.

Visual Basic syntax
Structure DBSC_Event

C# syntax
public struct DBSC_Event

Dbmlsync .NET API reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 275

Members

Mem-
ber
name

Type Description

hdl UInt32 Indicates the synchronization that generated the event.

This value matches the value returned by the Sync method.

str1 String Contains additional information about the failure.

The meaning of this information depends on the value of the type variable.

str2 String Contains additional information about the failure.

The meaning of this information depends on the value of the type variable.

type DBSC_Even-
tType

Indicates the type of event being reported.

val1 Int32 Contains additional information about the failure.

The meaning of this information depends on the value of the type variable.

val2 Int32 Contains additional information about the failure.

The meaning of this information depends on the value of the type variable.

See also
● “DBSC_EventType enumeration” on page 271

Dbmlsync integration component (removed)
Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

Introduction to Dbmlsync integration component (removed)
Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

SQL Anywhere clients for MobiLink

276 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The Dbmlsync integration component is an ActiveX that you can use to add synchronization to your
applications. It provides a set of properties, events, and methods to regulate the behavior of SQL
Anywhere clients.

The Dbmlsync integration component is available in two forms, both of which expose the same
properties, events and methods:

● A visual component that provides an easy way to integrate the standard dbmlsync user interface into
your applications.

● A non-visual component that allows you to access the component's functionality with no user
interface or with a custom user interface that you create yourself.

Using the Dbmlsync integration component, your application can initiate synchronization, receive
information about the progress of a synchronization, and implement special processing based on
synchronization events.

DBTools interface for dbmlsync
As an alternative to the Dbmlsync integration component, you can use DBTools interface for dbmlsync.

See “Database tools interface (DBTools)” [SQL Anywhere Server - Programming].

Supported platforms (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

You can use the Dbmlsync integration component on all MobiLink supported Windows operating
systems, including Windows Mobile versions supporting ActiveX.

Supported development environments include Microsoft Visual Basic 6.0, eMbedded Visual Basic, and
Visual Studio.

For a list of supported platforms, see http://www.sybase.com/detail?id=1002288.

Setting up the Dbmlsync integration component (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

The Dbmlsync integration component is an ActiveX and can be used in a wide variety of programming
environments. You should consult the documentation for your programming environment for information
about how to set it up.

Dbmlsync integration component (removed)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 277

http://www.sybase.com/detail?id=1002288

Dbmlsync integration component methods (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

The following are methods implemented by the DbmlsyncCOM.Dbmlsync class.

Run method (removed)
Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

Begins one or more synchronizations using dbmlsync command line options.

Syntax
Run(ByVal cmdLine As String)
Member of DbmlsyncCOM.Dbmlsync

Parameters
cmdLine A string specifying dbmlsync options.

Remarks
For a list of options, see “dbmlsync syntax” on page 93.

The run method returns immediately and does not wait for the synchronization to complete. You can use
the DoneExecution event to determine when your synchronization is complete.

The cmdLine parameter should contain the same options you would use if you were performing a
synchronization with the dbmlsync command line utility. For example, the following command line and
Run method invocation are equivalent:

dbmlsync -c uid=DBA;pwd=sql

dbmlsync1.Run "-c uid=DBA;pwd=sql"

Example
The following example initiates a synchronization for a remote database called remote1.

dbmlsync1.Run "-c server=remote1;uid=DBA;pwd=sql"

Stop method (removed)

SQL Anywhere clients for MobiLink

278 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

Requests active synchronizations to terminate.

Syntax
Stop()
Member of DbmlsyncCOM.Dbmlsync

Remarks
The Stop method issues a request to terminate any active synchronizations. It returns immediately.

The stop button built into the visual Dbmlsync integration component automatically invokes this method.

Example
The following example stops synchronizations being run by the Dbmlsync integration component
instance dbmlsync1.

dbmlsync1.Stop

Dbmlsync integration component properties (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

Dbmlsync integration component properties let you customize the behavior of the component and
examine the state of a running synchronization.

Path property (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

Specifies the location of dbmlsync.exe.

Syntax
Public Property Path() As String
Member of DbmlsyncCOM.Dbmlsync

Dbmlsync integration component (removed)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 279

Remarks
You do not need to set this property if dbmlsync.exe is located in a directory specified by the Windows
PATH environment variable.

Example
The following example sets the path of a Dbmlsync integration component instance.

dbmlsync1.Path = "C:\Program Files\SQL Anywhere 12\bin32"

UploadEventsEnabled property (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

Enables the UploadRow event.

Syntax
Public Property UploadEventsEnabled() As Boolean
Member of DbmlsyncCOM.Dbmlsync

Remarks
If you handle the UploadRow event, you should set this property to true. The default is false, which
disables the UploadRow event. Setting the property to true reduces performance.

See “UploadRow event (removed)” on page 299.

Example
The following example sets UploadEventsEnabled to true:

dbmlsync1.UploadEventsEnabled = True

DownloadEventsEnabled property (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

Enables the DownloadRow event.

Syntax
Public Property DownloadEventsEnabled() As Boolean
Member of DbmlsyncCOM.Dbmlsync

SQL Anywhere clients for MobiLink

280 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
If you handle the DownloadRow event, you should set this property to true. The default is false, which
disables the DownloadRow event. Setting the property to true reduces performance.

See “DownloadRow event (removed)” on page 290.

Example
The following example sets DownloadEventsEnabled to true:

dbmlsync1.DownloadEventsEnabled = True

ErrorMessageEnabled property (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

Prevents the Message event from being called for messages of type MsgError.

Syntax
Public Property ErrorMessageEnabled() As Boolean
Member of DbmlsyncCOM.Dbmlsync

Remarks
If you do not handle error information in the Message event, you should set this property to false to
improve performance. The default is true, which enables messages of type MsgError to trigger the
Message event.

See “Message event (removed)” on page 294.

Example
The following example sets ErrorMessageEnabled to false:

dbmlsync1.ErrorMessageEnabled = False

WarningMessageEnabled property (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

Prevents the Message event from being called for messages of type MsgWarning.

Dbmlsync integration component (removed)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 281

Syntax
Public Property WarningMessageEnabled() As Boolean
Member of DbmlsyncCOM.Dbmlsync

Remarks
If you do not handle warning information in the Message event, you should set this property to false to
improve performance. The default is true, which enables messages of type MsgWarning to trigger the
Message event.

See “Message event (removed)” on page 294.

Example
The following example sets WarningMessageEnabled to false:

dbmlsync1.WarningMessageEnabled = False

InfoMessageEnabled property (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

Prevents the Message event from being called for messages of type MsgInfo.

Syntax
Public Property InfoMessageEnabled() As Boolean
Member of DbmlsyncCOM.Dbmlsync

Remarks
If you do not handle general progress information in the Message event, you should set this property to
false to improve performance. The default is true, which enables messages of type MsgInfo to trigger the
Message event.

See “Message event (removed)” on page 294.

Example
The following example sets InfoMessageEnabled to false:

dbmlsync1.InfoMessageEnabled = False

DetailedInfoMessageEnabled property (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

SQL Anywhere clients for MobiLink

282 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Prevents the Message event from being called for messages of type MsgDetailedInfo.

Syntax
Public Property DetailedInfoMessageEnabled() As Boolean
Member of DbmlsyncCOM.Dbmlsync

Remarks
If you do not handle detailed progress information in the Message event, you should set this property to
false to improve performance. The default is true, which enables messages of type MsgDetailedInfo to
trigger the Message event.

See “Message event (removed)” on page 294.

Example
The following example sets DetailedInfoMessageEnabled to false:

dbmlsync1.DetailedInfoMessageEnabled = False

UseVB6Types property (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

If you are using Visual Basic 6, set this property to true to simplify handling of row data returned by the
UploadRow and DownloadRow events.

Syntax
Public Property DetailedInfoMessageEnabled() As Boolean
Member of DbmlsyncCOM.Dbmlsync

Remarks
Visual Basic 6 does not support unsigned 32 bit values and any 64 bit values. Data of these types may be
returned by the ColumnValue property of an IRowTransferData object. When UseVB6Types is set to
true, data of these types is converted to other types supported by Visual Basic 6 for easier processing.
Uint32 values are converted to double; 64 bit values are converted to strings.

See also
● “IRowTransferData interface (removed)” on page 300
● “UploadRow event (removed)” on page 299
● “DownloadRow event (removed)” on page 290

Example
The following example enables data type coercion for a Dbmlsync integration component instance used in
Visual Basic 6.0:

Dbmlsync integration component (removed)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 283

dbmlsync1.UseVB6Types = True

ExitCode property (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

Returns the exit code from synchronizations started by the most recent Run method invocation.

Syntax
Public Property ExitCode() As Integer
Member of DbmlsyncCOM.Dbmlsync

Remarks
The ExitCode property returns the exit code for the synchronizations started by the last Run method
invocation. 0 indicates successful synchronizations. Any other value indicates that a synchronization failed.

Note
Retrieving the value of this property before the DoneExecution event is triggered may result in a
meaningless exit code value.

Example
The following example displays the exit code from the most recent synchronization attempt when the
DoneExecution event is triggered.

Private Sub dbmlsync1_DoneExecution() Handles dbmlsync1.DoneExecution
 MsgBox(dbmlsync1.ExitCode)
 End Sub

EventChannelSize property (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

Specifies the size of an internal buffer used for processing method calls.

Syntax
Public Property EventChannelSize() As Integer
Member of DbmlsyncCOM.Dbmlsync

Remarks
Most users never have to change this property.

SQL Anywhere clients for MobiLink

284 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

DispatchChannelSize property (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

Specifies the size of an internal buffer used for processing event information.

Syntax
Public Property DispatchChannelSize() As Integer
Member of DbmlsyncCOM.Dbmlsync

Remarks
Most users never have to change this property.

Dbmlsync integration component events (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

Events provide a mechanism for client applications to receive and act on information about the progress
of a synchronization.

BeginDownload event (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

The BeginDownload event is triggered at the beginning of the download stage of a synchronization.

Syntax
Public Event BeginDownload()
Member of DbmlsyncCOM.Dbmlsync

Remarks
Use this event to add custom actions at the beginning of the download stage of a synchronization.

Example
The following Visual Basic .NET example outputs a message when the BeginDownload event is triggered.

Dbmlsync integration component (removed)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 285

Private Sub dbmlsync1_BeginDownload()
Handles dbmlsync1.BeginDownload
 MsgBox("Beginning Download")
End Sub

BeginLogScan event (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

The BeginLogScan event is triggered immediately before dbmlsync scans the transaction log to assemble
the upload. This event is not fired for scripted uploads.

Syntax
Public Event BeginLogScan(ByVal rescanLog As Boolean)
Member of DbmlsyncCOM.Dbmlsync

Parameters
rescanLog If this is the first time the transaction log has been scanned for this synchronization, the
value is false; otherwise it is true. The log is scanned twice when the MobiLink server and dbmlsync have
different information about where scanning should begin.

Remarks
Use this event to add custom actions immediately before the transaction log is scanned for upload.

Example
The following Visual Basic .NET example outputs a message when the BeginLogScan event is triggered.

Private Sub dbmlsync1_BeginLogScan(
 ByVal rescanLog As Boolean
)
Handles dbmlsync1.BeginLogScan
 MsgBox("Begin Log Scan")
End Sub

BeginSynchronization event (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

The BeginSynchronization event is triggered at the beginning of each synchronization.

SQL Anywhere clients for MobiLink

286 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
Public Event BeginSynchronization(_
 ByVal userName As String, _
 ByVal pubNames As String _
)
Member of DbmlsyncCOM.Dbmlsync

Parameters
userName The MobiLink user for which you are synchronizing.

pubNames The publication being synchronized. If there is more than one publication this is a comma-
separated list.

Remarks
Use this event to add custom actions at the beginning of a synchronization.

Example
The following Visual Basic .NET example outputs a message when the BeginSynchronization event is
triggered. The message outputs the user and publication names.

Private Sub dbmlsync1_BeginSynchronization(
 ByVal userName As String,
 ByVal pubNames As String
)
Handles dbmlsync1.BeginSynchronization
 MsgBox("Beginning synchronization for: " + userName _
 + " publication: " + pubNames)
End Sub

BeginUpload event (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

The BeginUpload event is triggered immediately before the transmission of the upload.

Syntax
Public Event BeginUpload()
Member of DbmlsyncCOM.Dbmlsync

Remarks
Use this event to add custom actions immediately before the transmission of the upload to the MobiLink
server.

Dbmlsync integration component (removed)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 287

Example
The following Visual Basic .NET example outputs a message when the BeginUpload event is triggered.

Private Sub dbmlsync1_BeginUpload()
Handles dbmlsync1.BeginUpload
 MsgBox("Begin Upload")
End Sub

ConnectMobilink event (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

The ConnectMobilink event is triggered immediately before the component connects to the MobiLink server.

Syntax
Public Event ConnectMobilink()
Member of DbmlsyncCOM.Dbmlsync

Remarks
Use this event to add custom actions immediately before the remote database connects to the MobiLink
server. At this stage, dbmlsync has generated the upload.

The ConnectMobiLink event occurs after the BeginSynchronization event.

Example
The following Visual Basic .NET example outputs a message when the ConnectMobilink event is triggered.

Private Sub dbmlsync1_ConnectMobilink()
Handles dbmlsync1.ConnectMobilink
 MsgBox("Connecting to the MobiLink server")
End Sub

DisconnectMobilink event (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

The DisconnectMobilink event is triggered immediately after the component disconnects from the
MobiLink server.

SQL Anywhere clients for MobiLink

288 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
Public Event DisconnectMobilink()
Member of DbmlsyncCOM.Dbmlsync

Remarks
Use this event to add custom actions immediately after the remote database disconnects from the
MobiLink server.

Example
The following Visual Basic .NET example outputs a message when the DisconnectMobilink event is
triggered.

Private Sub dbmlsync1_DisconnectMobilink()
Handles dbmlsync1.DisconnectMobilink
 MsgBox("Disconnected from the MobiLink server")
End Sub

DoneExecution event (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

The DoneExecution event is triggered when all synchronizations started by a Run method invocation have
completed.

Syntax
Public Event DoneExecution()
Member of DbmlsyncCOM.Dbmlsync

Remarks
Use this event to add custom actions when all synchronizations started by a Run method invocation have
completed.

Example
Using the ExitCode property, the following Visual Basic .NET example outputs the exit code from the
synchronizations started by the last Run method invocation:

Private Sub dbmlsync1_DoneExecution()
Handles dbmlsync1.DoneExecution
 MsgBox(dbmlsync1.ExitCode)
End Sub

Dbmlsync integration component (removed)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 289

DownloadRow event (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

The DownloadRow event is triggered when a row is downloaded from the MobiLink server.

Syntax
Public Event DownloadRow(
 ByVal rowData As DbmlsyncCOM.IRowTransferData
)
Member of DbmlsyncCOM.Dbmlsync

Parameters
rowData An IRowTransferData object containing details about the downloaded row.

For more information about the IRowTransferData interface, see “IRowTransferData interface
(removed)” on page 300.

Remarks
Use this event to examine rows being downloaded from the MobiLink server.

To enable the DownloadRow event, use the DownloadEventsEnabled property.

See “DownloadEventsEnabled property (removed)” on page 280.

When a delete operation is encountered in the download row event, only primary key column values are
available.

Example
The following Visual Basic .NET example iterates through all the columns for a row in the
DownloadRow event. It determines if a column value is null, and outputs column names and values.

Private Sub dbmlsync1_DownloadRow(
 ByVal rowData As DbmlsyncCOM.IRowTransferData
)
Handles dbmlsync1.DownloadRow
Dim liX As Integer
For liX = 0 To rowData.ColumnCount - 1
 If VarType(rowData.ColumnValue(liX)) <> VariantType.Null Then
 ' output the non-null column value
 MsgBox("Column " + CStr(liX) + ": " + rowData.ColumnName(liX) + _
 ", " + CStr(rowData.ColumnValue(liX)))
 Else
 ' output 'NULL' for the column value
 MsgBox("Column " + CStr(liX) + ": " + rowData.ColumnName(liX) + _
 ", " + "NULL")
 End If
Next liX
End Sub

SQL Anywhere clients for MobiLink

290 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

EndDownload event (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

The EndDownload event is triggered at the end of the download stage of the synchronization process.

Syntax
Public Event EndDownload(
 long upsertRows,
 long deleteRows
)
Member of DbmlsyncCOM.Dbmlsync

Parameters
upsertRows Indicates the number of rows updated or inserted by the download.

deleteRows Indicates the number of rows deleted by the download.

Remarks
Use this event to add custom actions at the end of the download stage of synchronization.

Example
The following Visual Basic .NET example outputs a message and the number of inserted, updated, and
deleted rows when the EndDownload event is triggered.

Private Sub dbmlsync1_EndDownload(
 ByVal upsertRows As Integer,
 ByVal deleteRows As Integer
)
Handles dbmlsync1.EndDownload
 MsgBox("Download complete." + _
 CStr(upsertRows) + "Rows updated or inserted" + _
 CStr(deleteRows) + "Rows deleted")
End Sub

EndLogScan event (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

The EndLogScan event is triggered immediately after the transaction log is scanned for upload. This event
is not fired for scripted uploads.

Dbmlsync integration component (removed)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 291

Syntax
Public Event EndLogScan()
Member of DbmlsyncCOM.Dbmlsync

Remarks
Use this event to add custom actions immediately after the transaction log is scanned for upload.

Example
The following Visual Basic .NET example outputs a message when the EndLogScan event is triggered.

Private Sub dbmlsync1_EndLogScan()
Handles dbmlsync1.EndLogScan
 MsgBox("Scan of transaction log complete...")
End Sub

EndSynchronization event (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

The EndSynchronization event is triggered when a synchronization is complete.

Syntax
Public Event EndSynchronization(
 ByVal exitCode As Integer,
 ByRef restart As Boolean
)
Member of DbmlsyncCOM.Dbmlsync

Parameters
exitCode If set to anything other than zero, this indicates that a synchronization error occurred.

restart This value is set to false when the event is called. If the event changes its value to true,
dbmlsync restarts the synchronization.

Remarks
Use this event to add custom actions when a synchronization is complete.

Example
The following Visual Basic .NET example uses the EndSynchronization event to restart up to five failed
synchronization attempts. If all restart attempts failed, the message "All restart attempts failed" is output,
along with the exit code. If a synchronization is successful, the message "Synchronization succeeded " is
output, along with the exit code.

SQL Anywhere clients for MobiLink

292 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

' Global variable for the number of restarts
Dim numberOfRestarts As Integer
Private Sub dbmlsync1_EndSynchronization(
 ByVal ExitCode As Integer,
 ByRef restart As Boolean
)
Handles dbmlsync1.EndSynchronization
 If numberOfRestarts < 5 Then
 MsgBox("Restart Number: " + CStr(numberOfRestarts + 1))
 If ExitCode <> 0 Then
 ' restart the failed synchronization
 restart = True
 numberOfRestarts = numberOfRestarts + 1
 Else
 ' the last synchronization succeeded
 MsgBox("Synchronization succeeded. " + _
 "Exit code: " + CStr(ExitCode))
 End If
 Else
 MsgBox("All restart attempts failed. " + _
 "Exit code: " + CStr(ExitCode))
 End If
End Sub

EndUpload event (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

The EndUpload event is triggered immediately after transmission of the upload to the MobiLink server.

Syntax
Public Event EndUpload()
Member of DbmlsyncCOM.Dbmlsync

Remarks
Use this event to add custom actions immediately after transmission of the upload from dbmlsync to the
MobiLink server.

Example
The following Visual Basic .NET example outputs a message when the EndUpload event is triggered.

Private Sub dbmlsync1_EndUpload()
Handles dbmlsync1.EndUpload
 MsgBox("End Upload")
End Sub

Dbmlsync integration component (removed)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 293

Message event (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

The Message event is triggered when dbmlsync logs information.

Syntax
Public Event Message(_
 ByVal msgClass As DbmlsyncCOM.MessageClass, _
 ByVal msgID As Integer, ByVal msg As String_
)
Member of DbmlsyncCOM.Dbmlsync

Parameters
msgClass indicates the severity of the message. Values can be:

● MsgInfo A message containing progress information about the synchronization.

● MsgDetailedInfo Like MsgInfo, but containing more details.

● MsgWarning A message indicating a potential problem but one that does not prevent successful
synchronization.

● MsgError A message indicating a problem that prevents successful synchronization.

msgID A unique identifier for the message. If msgID is zero, the message does not have a unique
identifier.

msg The text of the message.

Remarks
Use this event to receive information logged by dbmlsync. If you want to add special processing when a
specific message is generated, check for it by MsgID. That way, your code continues to work if the text of
the message changes.

Example
The following Visual Basic .NET example adds messages logged by dbmlsync to a listbox control.

Private Sub dbmlsync1_Message(
 ByVal msgClass As DbmlsyncCOM.MessageClass,
 ByVal msgId As Integer, ByVal msg As String
)
Handles dbmlsync1.Message

 Select Case msgClass
 Case DbmlsyncCOM.MessageClass.MsgError
 lstMessages.Items.Add("Error: " + msg)
 Case DbmlsyncCOM.MessageClass.MsgWarning
 lstMessages.Items.Add("Warning: " + msg)

SQL Anywhere clients for MobiLink

294 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 Case DbmlsyncCOM.MessageClass.MsgInfo
 lstMessages.Items.Add("Info: " + msg)
 Case DbmlsyncCOM.MessageClass.MsgDetailedInfo
 lstMessages.Items.Add("DetInfo: " + msg)
 End Select
End Sub

Example
The following Visual Basic .NET example sets up the Message event to handle errors. Error messages are
added to a ListBox control called lstMessages.

Private Sub dbmlsync1_Message(ByVal msgClass As DbmlsyncCOM.MessageClass,
ByVal msgId As Integer, ByVal msg As String) Handles dbmlsync1.Message
 If msgClass = DbmlsyncCOM.MessageClass.MsgError Then
 lstMessages.Items.Add("Error: " + msgId.ToString() + " " + msg)
 End If
End Sub

To see possible error id values, test run the Dbmlsync integration component. For example, if dbmlsync
returns the error "Unable to connect to MobiLink server", the Message event inserts the following entry in
lstMessages:

Error: 14173 Unable to connect to MobiLink server.

Now, you can associate the error "Unable to connect to MobiLink server" with the error id 14173. The
following example sets up the Dbmlsync integration component to retry a synchronization whenever error
14173 occurs. The Message event sets a variable called restartSynchronization and resets a variable called
numberOfRestarts in response to error 14173. The EndSynchronization event retries the synchronization
up to five times.

' variables for restarting synchronization
Dim numberOfRestarts As Integer = 0
Dim restartSynchronization As Integer = 0

Private Sub dbmlsync1_Message
(
 ByVal msgClass As DbmlsyncCOM.MessageClass,
 ByVal msgId As Integer, ByVal msg As String) Handles dbmlsync1.Message

 If msgClass = DbmlsyncCOM.MessageClass.MsgError Then
 lstMessages.Items.Add("Error: " + msgId.ToString() + " " + msg)
 If msgId = 14173 Then
 restartSynchronization = 1
 numberOfRestarts = 0
 End If
 End If
End Sub
Private Sub dbmlsync1_EndSynchronization(ByVal ExitCode As Integer, _
 ByRef restart As Boolean _
) Handles dbmlsync1.EndSynchronization

 If restartSynchronization = 1 Then
 If numberOfRestarts < 5 Then

Dbmlsync integration component (removed)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 295

 restart = True
 numberOfRestarts = numberOfRestarts + 1
 End If
 End If
End Sub

ProgressIndex event (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

The ProgressIndex event is triggered when dbmlsync updates its progress bar.

Syntax
Public Event ProgressIndex(_
 ByVal index As Integer, _
 ByVal max As Integer _
)
Member of DbmlsyncCOM.Dbmlsync

Parameters
index An integer representing the progress of the synchronization.

max The maximum progress value. The percentage done = index/max x 100. If this value is zero,
the maximum value has not changed since the last time the event was fired.

Remarks
Use this event to update a progress indicator such as a progress bar.

Example
The following Visual Basic .NET example updates a progress bar control based on the Index value. The
maximum index value is set at the beginning of the synchronization.

Private Sub dbmlsync1_ProgressIndex(
 ByVal index As Integer,
 ByVal max As Integer
)
Handles dbmlsync1.ProgressIndex
 If max <> 0 Then
 ProgressBar1.Maximum = max
 End If
 ProgressBar1.Value = index
End Sub

ProgressMessage event (removed)

SQL Anywhere clients for MobiLink

296 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

The ProgressMessage event is triggered when synchronization progress information changes.

Syntax
Public Event ProgressMessage(ByVal msg As String)
Member of DbmlsyncCOM.Dbmlsync

Parameters
msg The new progress string.

Remarks
Use this event to receive the string normally displayed with the dbmlsync progress bar.

Example
The following Visual Basic .NET example sets the value of a progress label when the ProgressMessage
event is triggered.

Private Sub dbmlsync1_ProgressMessage(
 ByVal msg As String
)
Handles dbmlsync1.ProgressMessage
 lblProgressMessage.Text = msg
End Sub

SetTitle event (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

The SetTitle event is triggered when status information changes. In the dbmlsync utility, this information
is displayed in the title bar.

Syntax
Public Event SetTitle(ByVal title) As String
)
Member of DbmlsyncCOM.Dbmlsync

Parameters
title The title in the dbmlsync window title bar.

Dbmlsync integration component (removed)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 297

Remarks
Use this event to receive the title normally seen on the dbmlsync window when its value changes.

Example
The following Visual Basic .NET example sets the title of a Windows form when the SetTitle event is
triggered.

Private Sub dbmlsync1_SetTitle(
 ByVal title As String
)
Handles dbmlsync1.SetTitle
 Me.Text = title
End Sub

UploadAck event (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

The UploadAck event is triggered after the component has received acknowledgement of the upload from
the MobiLink server.

Syntax
Public Event UploadAck(_
 ByVal status As DbmlsyncCOM.UploadAckStatus _
)
Member of DbmlsyncCOM.Dbmlsync

Parameters
status Indicates the status returned by MobiLink to the remote after the upload is processed. Its value
is one of:

● StatCommitted Indicates that the upload was received by the MobiLink server and committed.

● StatRetry Indicates that the MobiLink server and the remote database had different values for the
log offset from which the upload should start. The upload was not committed by the MobiLink server.
The component attempts to send another upload starting from the MobiLink server's log offset.

● StatFailed Indicates that the MobiLink server did not commit the upload.

Remarks
Use this event to add custom actions after dbmlsync has received acknowledgement of the upload from
the MobiLink server.

SQL Anywhere clients for MobiLink

298 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example
The following Visual Basic .NET example outputs a message if the upload has failed when the
UploadAck event is triggered.

Private Sub dbmlsync1_UploadAck(ByVal status As DbmlsyncCOM.UploadAckStatus)
Handles dbmlsync1.UploadAck
 If status = DbmlsyncCOM.UploadAckStatus.StatFailed Then
 MsgBox("Upload Failed")
 End If
End Sub

UploadRow event (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

The UploadRow event is triggered when a row is uploaded to the MobiLink server.

Syntax
Public Event UploadRow(
 ByVal rowData As DbmlsyncCOM.IRowTransferData
)
Member of DbmlsyncCOM.Dbmlsync

Parameters
rowData An IRowTransferData object containing details about the uploaded row.

See “IRowTransferData interface (removed)” on page 300.

Remarks
Use this event to examine rows being uploaded to the MobiLink server.

To enable the UploadRow event, use the UploadEventsEnabled property. See “UploadEventsEnabled
property (removed)” on page 280.

Example
The following Visual Basic .NET example iterates through all the columns for a row in the UploadRow
event. It determines if a column value is null and outputs column names and values.

Private Sub dbmlsync1_UploadRow(
 ByVal rowData As DbmlsyncCOM.IRowTransferData
)
Handles dbmlsync1.UploadRow
Dim liX As Integer
For liX = 0 To rowData.ColumnCount - 1
 If VarType(rowData.ColumnValue(liX)) <> VariantType.Null Then

Dbmlsync integration component (removed)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 299

 ' output the non-null column value
 MsgBox("Column " + CStr(liX) + ": " + rowData.ColumnName(liX) + _
 ", " + CStr(rowData.ColumnValue(liX)))
 Else
 ' output 'NULL' for the column value
 MsgBox("Column " + CStr(liX) + ": " + rowData.ColumnName(liX) + _
 ", " + "NULL")
 End If
Next liX
End Sub

WaitingForUploadAck event (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

The WaitingForUploadAck event is triggered when the component begins waiting for upload
acknowledgement from the MobiLink server.

Syntax
Public Event WaitingForUploadAck()
Member of DbmlsyncCOM.Dbmlsync

Remarks
Use this event to add custom actions when the component is waiting for upload acknowledgement from
the MobiLink server.

Example
The following Visual Basic .NET example outputs a message when the WaitingForUploadAck event is
triggered.

Private Sub dbmlsync1_WaitingForUploadAck()
Handles dbmlsync1.WaitingForUploadAck
 MsgBox("Waiting for Upload Acknowledgement")
End Sub

IRowTransferData interface (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

Public Interface IRowTransferData
Member of DbmlsyncCOM

SQL Anywhere clients for MobiLink

300 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The UploadRow and DownloadRow events accept DbmlsyncCOM.IRowTransferData objects as
parameters to examine uploaded and downloaded rows. This interface defines detailed row information
including the table name, row operation, and column names.

RowOperation property (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

Specifies the operation performed on the row.

Syntax
Public Property RowOperation() As DbmlsyncCOM.RowEventOp
Member of DbmlsyncCOM.IRowTransferData

Remarks
This property has one of the following values:

OpInsert The row was inserted.

OpUpdate The row was updated.

OpDelete The row was deleted.

OpTruncate The table was truncated (all the rows in the table were deleted). When the RowOperation
property has this value, the ColumnName and ColumnValue properties return invalid information.

Note: For the DownloadRow event, upsert (update or insert) operations are given the OpInsert value.

TableName property (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

The name of the table on which an upload or download operation occurred.

Syntax
Public Property TableName() As String
Member of DbmlsyncCOM.IRowTransferData

Remarks
The TableName property specifies the name of the table on which an upload or download operation
occurred. The following example illustrates the use of the TableName property in the UploadRow event.

Dbmlsync integration component (removed)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 301

See “UploadRow event (removed)” on page 299.

Example
The following is a Visual Basic .NET example.

Private Sub dbmlsync1_UploadRow(
 ByVal rowData As DbmlsyncCOM.IRowTransferData
)
Handles dbmlsync1.UploadRow
 MsgBox ("Table name:" + rowData.TableName)
End Sub

ColumnName property (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

Retrieves the column names for a row on which an upload or download operation occurred.

Syntax
Public Property ColumnName(ByVal index As Integer) As Object
Member of DbmlsyncCOM.IRowTransferData

Parameters
index A zero based integer specifying the column name to be retrieved. Index values range from zero
to one less than the ColumnCount property value.

See “ColumnCount property (removed)” on page 304.

Remarks
Associated column values can be retrieved using the ColumnValue property with the same index.

Example
The following Visual Basic .NET example iterates through all the columns for a row in the UploadRow
event. It determines if a column value is null and outputs column names and values.

See “UploadRow event (removed)” on page 299.

Private Sub dbmlsync1_UploadRow(
 ByVal rowData As DbmlsyncCOM.IRowTransferData
)
Handles dbmlsync1.UploadRow
Dim liX As Integer
For liX = 0 To rowData.ColumnCount - 1
 If VarType(rowData.ColumnValue(liX)) <> VariantType.Null Then
 ' output the non-null column value

SQL Anywhere clients for MobiLink

302 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 MsgBox("Column " + CStr(liX) + ": " + rowData.ColumnName(liX) + _
 ", " + CStr(rowData.ColumnValue(liX)))
 Else
 ' output 'NULL' for the column value
 MsgBox("Column " + CStr(liX) + ": " + rowData.ColumnName(liX) + _
 ", " + "NULL")
 End If
Next liX
End Sub

ColumnValue property (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

Retrieves the value of columns on which an upload or download operation occurred.

Syntax
Public Property ColumnValue(ByVal index As Integer) As Object
Member of DbmlsyncCOM.IRowTransferData

Parameters
index The zero based integer specifying the column value to be retrieved. Index values range from
zero to one less than the ColumnCount property value.

See “ColumnCount property (removed)” on page 304.

Remarks
When an update operation is encountered, the column values given by this property are the values after
the update is applied.

Associated column names can be retrieved using the ColumnName property with the same index.

BLOB column values are not available through this property. When a BLOB column is encountered, the
ColumnValue is the string "(blob)".

Example
The following Visual Basic .NET example iterates through all the columns for a row in the UploadRow
event. It determines if a column value is null and outputs column names and values.

See “UploadRow event (removed)” on page 299.

Private Sub dbmlsync1_UploadRow(
 ByVal rowData As DbmlsyncCOM.IRowTransferData
)
Handles dbmlsync1.UploadRow
Dim liX As Integer

Dbmlsync integration component (removed)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 303

For liX = 0 To rowData.ColumnCount - 1
 If VarType(rowData.ColumnValue(liX)) <> VariantType.Null Then
 ' output the non-null column value
 MsgBox("Column " + CStr(liX) + ": " + rowData.ColumnName(liX) + _
 ", " + CStr(rowData.ColumnValue(liX)))
 Else
 ' output 'NULL' for the column value
 MsgBox("Column " + CStr(liX) + ": " + rowData.ColumnName(liX) + _
 ", " + "NULL")
 End If
Next liX
End Sub

ColumnCount property (removed)

Note
The Dbmlsync integration component has been removed in version 12. In its place, use the dbmlsync
programming interface. See “Dbmlsync API” on page 90.

The number of columns contained in a row on which an upload or download operation occurred.

Syntax
Public Property ColumnCount() As Integer
Member of DbmlsyncCOM.IRowTransferData

Remarks
The ColumnCount property specifies the number of columns for a row on which an upload or download
operation occurred. The following example illustrates the use of the ColumnCount property in the
UploadRow event.

See “UploadRow event (removed)” on page 299.

Example
The following is a Visual Basic .NET example.

Private Sub dbmlsync1_UploadRow(
 ByVal rowData As DbmlsyncCOM.IRowTransferData
)
Handles dbmlsync1.UploadRow
 MsgBox "Number of Columns:" + CStr(rowData.ColumnCount)
End Sub

DBTools interface for dbmlsync

SQL Anywhere clients for MobiLink

304 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Introduction to DBTools interface for dbmlsync
Database tools (DBTools) is a library you can use to integrate database management, including
synchronization, into your applications. All the database management utilities are built on DBTools.

See “Database tools interface (DBTools)” [SQL Anywhere Server - Programming].

Note
The Dbmlsync API is the preferred interface for integrating synchronization into your applications. It
provides functionality that is very similar to the DBTools interface and is easier to use.

See “Dbmlsync API” on page 90.

You can use the DBTools interface for dbmlsync to integrate synchronization functionality into your
MobiLink synchronization client applications. For example, you can use the interface launch
synchronizations and to display dbmlsync output messages in a custom user interface.

The DBTools interface for dbmlsync consists of the following elements that let you configure and run the
MobiLink synchronization client:

● a_sync_db structure This structure holds settings, corresponding to dbmlsync command line
options, that allow you to customize synchronization. This structure also contains pointers to callback
functions that receive synchronization and progress information.

See “a_sync_db structure” [SQL Anywhere Server - Programming].

● a_syncpub structure This structure holds publication or subscription information. You can
specify a linked list of publications or subscriptions for synchronization.

See “a_syncpub structure” [SQL Anywhere Server - Programming].

● DBSynchronizeLog function This function starts the synchronization process. Its only parameter
is a pointer to an a_sync_db instance.

See “DBSynchronizeLog function” [SQL Anywhere Server - Programming].

Setting up the DBTools interface for dbmlsync

This section guides you through the basic steps for using the DBTools interface for dbmlsync.

For more information about the DBTools library, see “Database tools interface (DBTools)” [SQL
Anywhere Server - Programming].

For more information about using import libraries for your development environment, see “Using the
database tools interface” [SQL Anywhere Server - Programming].

DBTools interface for dbmlsync

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 305

To configure and start dbmlsync using the DBTools interface in C or C++

1. Include the DBTools header file.

The DBTools header file, dbtools.h, lists the entry points to the DBTools library and defines required
data types.

#include "dbtools.h"

2. Start the DBTools interface.

● Declare and initialize the a_dbtools_info structure.

a_dbtools_info info;
short ret;
...
// clear a_dbtools_info fields
memset(&info, 0, sizeof(info));
info.errorrtn = dbsyncErrorCallBack;

The dbsyncErrorCallBack function handles error messages and is defined in step 4 of this procedure.

● Use the DBToolsInit function to initialize DBTools.

ret = DBToolsInit(&info);
if(ret != 0) {
 printf("dbtools initialization failure \n");
}

For more information about DBTools initialization, see:

○ “Using the database tools interface” [SQL Anywhere Server - Programming]
○ “a_dbtools_info structure” [SQL Anywhere Server - Programming]
○ “DBToolsInit function” [SQL Anywhere Server - Programming]

3. Initialize the a_sync_db structure.

● Declare an a_sync_db instance. For example, declare an instance called dbsync_info:

a_sync_db dbsync_info;
● Clear a_sync_db structure fields.

memset(&dbsync_info, 0, sizeof(dbsync_info));
● Set required a_sync_db fields.

dbsync_info.version = DB_TOOLS_VERSION_NUMBER;
dbsync_info.output_to_mobile_link = 1;
dbsync_info.default_window_title
 = "dbmlsync dbtools sample";

● Set the database connection string.

dbsync_info.connectparms = "uid=DBA;pwd=sql";

For more information about database connection parameters, see “-c dbmlsync
option” on page 101.

● Set other a_sync_db fields to customize synchronization.

SQL Anywhere clients for MobiLink

306 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Most fields correspond to dbmlsync command line options. For more information about this
correspondence, see dbtools.h.

In the example below, verbose operation is enabled.

dbsync_info.verbose_upload = 1;
dbsync_info.verbose_option_info = 1;
dbsync_info.verbose_row_data = 1;
dbsync_info.verbose_row_cnts = 1;

For more information about a_sync_db fields, see “a_sync_db structure” [SQL Anywhere Server -
Programming].

4. Create callback functions to receive feedback during synchronization and assign these functions to the
appropriate a_sync_db fields.

The following functions use the standard output stream to display dbmlsync error, log, and progress
information.

For more information about DBTools callback functions, see “Using callback functions” [SQL
Anywhere Server - Programming].

● For example, create a function called dbsyncErrorCallBack to handle generated error messages:

extern short _callback dbsyncErrorCallBack(char *str)
{
 if(str != NULL) {
 printf("Error Msg %s\n", str);
 }
 return 0;
}

● For example, create a function called dbsyncWarningCallBack to handle generated warning
messages:

extern short _callback dbsyncWarningCallBack(char *str)
{
 if(str != NULL) {
 printf("Warning Msg %s\n", str);
 }
 return 0;
}

● For example, create a function called dbsyncLogCallBack to receive verbose informational
messages that you might choose to log to a file instead of displaying in a window:

extern short _callback dbsyncLogCallBack(char *str)
{
 if(str != NULL) {
 printf("Log Msg %s\n", str);
 }
 return 0;
}

● For example, create a function called dbsyncMsgCallBack to receive informational messages
generated during synchronization.

extern short _callback dbsyncMsgCallBack(char *str)
{
 if(str != NULL) {

DBTools interface for dbmlsync

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 307

 printf("Display Msg %s\n", str);
 }
 return 0;
}

● For example, create a function called dbsyncProgressMessageCallBack to receive the progress
text. In the dbmlsync utility, this text is displayed directly above the progress bar.

extern short _callback dbsyncProgressMessageCallBack(
 char *str)
{
 if(str != NULL) {
 printf("ProgressText %s\n", str);
 }
 return 0;
}

● For example, create a function called dbsyncProgressIndexCallBack to receive information for
updating a progress indicator or progress bar. This function receives two parameters:

○ index An integer representing the current progress of a synchronization.

○ max The maximum progress value. If this value is zero, the maximum value has not
changed since the last time the event was fired.

extern short _callback dbsyncProgressIndexCallBack
(a_sql_uint32 index, a_sql_uint32 max)
{
 printf("ProgressIndex Index %d Max: %d\n",
 index, max);
 return 0;
}

A typical sequence of calls to this callback is shown below

// example calling sequence
dbsyncProgressIndexCallBack(0, 100);
dbsyncProgressIndexCallBack(25, 0);
dbsyncProgressIndexCallBack(50, 0);
dbsyncProgressIndexCallBack(75, 0);
dbsyncProgressIndexCallBack(100, 0);

This sequence should result in the progress bar being set to 0% done, 25% done, 50% done, 75%
done, and 100% done.

● For example, create a function called dbsyncWindowTitleCallBack to receive status information.
In the dbmlsync utility, this information is displayed in the title bar.

extern short _callback dbsyncWindowTitleCallBack(
 char *title)
{
 printf("Window Title %s\n", title);
 return 0;
}

● The dbsyncMsgQueueCallBack function is called when a delay or sleep is required. It must return
one of the following values, which are defined in dllapi.h.

○ MSGQ_SLEEP_THROUGH indicates that the routine slept for the requested number of
milliseconds.

SQL Anywhere clients for MobiLink

308 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

○ MSGQ_SHUTDOWN_REQUESTED indicates that you would like the synchronization to
terminate as soon as possible.

○ MSGQ_SYNC_REQUESTED indicates that the routine slept for less than the requested
number of milliseconds and that the next synchronization should begin immediately if a
synchronization is not currently in progress.

extern short _callback dbsyncMsgQueueCallBack(
 a_sql_uint32 sleep_period_in_milliseconds)
{
 printf("Sleep %d ms\n", sleep_period_in_milliseconds);
 Sleep(sleep_period_in_milliseconds);
 return MSGQ_SLEEP_THROUGH;
}

● Assign callback function pointers to the appropriate a_sync_db synchronization structure fields.

// set call back functions
dbsync_info.errorrtn = dbsyncErrorCallBack;
dbsync_info.warningrtn = dbsyncWarningCallBack;
dbsync_info.logrtn = dbsyncLogCallBack;
dbsync_info.msgrtn = dbsyncMsgCallBack;
dbsync_info.msgqueuertn = dbsyncMsgQueueCallBack;
dbsync_info.progress_index_rtn
 = dbsyncProgressIndexCallBack;
dbsync_info.progress_msg_rtn
 = dbsyncProgressMessageCallBack;
dbsync_info.set_window_title_rtn
 = dbsyncWindowTitleCallBack;

5. Create a linked list of a_syncpub structures to specify which subscriptions should be synchronized.

Each node in the linked list corresponds to one instance of the -s option on the dbmlsync command line.

● Declare an a_syncpub instance. For example, call it publication_info:

a_syncpub publication_info;
● Initialize a_syncpub fields, specifying subscriptions you want to synchronize.

For example, to synchronize the template_p1 and template_p2 subscriptions together in a single
synchronization session:

publication_info.next = NULL; // linked list terminates
publication_info.subscription = "template_p1,template_p2";
publication_info.ext_opt = "dir=c:\\logs";
publication_info.alloced_by_dbsync = 0;
publication_info.pub_name = NULL;

This is equivalent to specifying -s template_p1,template_p2 on the dbmlsync command
line.

Specifying extended options using the ext_opt field, provides the same functionality as the
dbmlsync -eu option.

See “-eu dbmlsync option” on page 108.

● Assign the publication structure to the upload_defs field of your a_sync_db instance.

dbsync_info.upload_defs = &publication_info;

DBTools interface for dbmlsync

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 309

You can create a linked list of a_syncpub structures. Each a_syncpub instance in the linked list is
equivalent to one specification of the -n or -s option on the dbmlsync command line.

See: and .

● “-s dbmlsync option” on page 117
● “-n dbmlsync option (deprecated)” on page 110
● “a_syncpub structure” [SQL Anywhere Server - Programming]

6. Run dbmlsync using the DBSynchronizeLog function.

In the following code listing, sync_ret_val contains the return value 0 for success or non-0 for failure.

short sync_ret_val;
printf("Running dbmlsync using dbtools interface...\n");
sync_ret_val = DBSynchronizeLog(&dbsync_info);
printf("\n Done... synchronization return value is: %I \n", sync_ret_val);

You can repeat step 6 multiple times with the same or different parameter values.

7. Shutdown the DBTools interface.

The DBToolsFini function frees DBTools resources.

DBToolsFini(&info);

See “DBToolsFini function” [SQL Anywhere Server - Programming].

Scripted upload

Introduction to scripted upload
Scripted upload applies only to MobiLink applications that use SQL Anywhere remote databases.

Warning
When you implement scripted upload, dbmlsync does not use the transaction log to determine what to
upload. As a result, if your scripts do not capture all changes, data on remote databases can be lost. For
these reasons, log-based synchronization is the recommended synchronization method for most applications.

In most MobiLink applications, the upload is determined by the database transaction log so that changes
made to the remote database since the last upload are synchronized. This is the appropriate design for
most applications and ensures that data on the remote is not lost.

However, in some cases you may want to ignore the transaction log and define the upload yourself. Using
scripted upload you can define exactly what data you want to upload. When doing scripted upload you do
not have to maintain a transaction log for your remote database. Transaction logs take up space that may
be at a premium on small devices. However, transaction logs are very important for database backup and
recovery, and improve database performance.

SQL Anywhere clients for MobiLink

310 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

To implement scripted upload, you create a special kind of publication that specifies the names of stored
procedures that you create. The stored procedures define an upload by returning result sets that contain
the rows to insert, update, or delete on the consolidated database.

Note: Do not confuse scripted upload with upload scripts. Upload scripts are MobiLink event scripts on
the consolidated database that you write to tell the MobiLink server what to do with the upload. When
you use scripted upload, you still need to write upload scripts to apply uploads to the consolidated
database and download scripts to determine what to download.

Scenarios
The following are some scenarios where scripted upload may be useful:

● Your remote database is running on a device with limited storage and there is not enough space for a
transaction log.

● You want to upload all the data from all your remote databases to create a new consolidated database.

● You want to write custom logic to determine which changes are uploaded to the consolidated database.

Warnings
Before implementing scripted upload, be sure to read this entire section. In particular, take note of the
following points:

● If you do not set up your scripted upload correctly, you can lose data.

● When you implement scripted upload, you need to maintain or reference things that dbmlsync
normally handles for you. These include pre- and post-images of data, and the progress of the
synchronization.

● You need to lock tables on the remote database while synchronizing via scripted upload. With log-
based synchronization, locking is not required.

● Transactional uploads are extremely difficult to implement with scripted upload.

Setting up scripted upload
The following steps provide an overview of the tasks required to set up scripted upload, assuming that
you already have MobiLink synchronization set up.

Overview of setting up scripted upload

1. Create stored procedures that identify the rows to upload. You can define three stored procedures per
table: one each for upload, insert, and delete.

See “Defining stored procedures for scripted upload” on page 318.

2. Create a publication that contains the keywords WITH SCRIPTED UPLOAD and that specifies the
names of the stored procedures.

Scripted upload

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 311

See “Creating publications for scripted upload” on page 322.

Caution
When using scripted upload, it is strongly recommended that you use the default setting for the dbmlsync
extended option LockTables.

You can avoid many problems with scripted uploads by using the default setting for LockTables, which
causes dbmlsync to obtain locks on all synchronization tables before the upload is built. This prevents
other connections from changing the synchronization tables while your scripts are building the upload. It
also ensures that there are no uncommitted transactions that affect synchronization tables open while your
scripts are building the upload.

Other resources for getting started
● “Scripted upload example” on page 323

Design considerations for scripted upload

One operation per row
The upload may not contain more than one operation (insert, update, or delete) for a single row. However,
you can combine multiple operations into a single upload operation; for example, if a row is inserted and
then updated you can replace the two operations with a single insert of the final values.

Order of operations
When the upload is applied to the consolidated database, insert and update operations are applied before
delete operations. You cannot make any other assumptions about the order of operations within a given table.

Handling conflicts
A conflict occurs when a row is updated on more than one database between synchronizations. The
MobiLink server can identify conflicts because each update operation in an upload contains the pre-image
of the row being updated. The pre-image is the value of all the columns in the row the last time it was
successfully uploaded or downloaded. The MobiLink server identifies a conflict when the pre-image does
not match the values in the consolidated database when the upload is applied.

If your application needs conflict detection and you are using scripted upload, then on the remote database
you need to keep track of the value of each row the last time it was successfully uploaded or downloaded.
This allows you to upload the correct pre-images.

One way to maintain pre-image data is to create a pre-image table that is identical to your synchronization
table. You can then create a trigger on your synchronization table that populates the pre-image table each
time an update executes. After a successful upload you can delete the rows in the pre-image table.

For an example that implements conflict resolution, see “Scripted upload example” on page 323.

SQL Anywhere clients for MobiLink

312 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Not handling conflicts
If you do not need to handle conflict detection, you can simplify your application considerably by not
tracking pre-images. Instead, you upload updates as insert operations. You can then write an
upload_insert script on the consolidated database that inserts a row if it does not already exist or updates
the row if it does exist. If you are using a SQL Anywhere consolidated database, you can achieve this
with the ON EXISTING clause in the INSERT statement in your upload_insert script.

See “INSERT statement” [SQL Anywhere Server - SQL Reference].

When you do not handle conflicts and two or more remote databases change the same row, the last one to
synchronize overrides the earlier changes.

Handling forced conflicts
For delete operations, it is essential that the primary key of a row that is uploaded is correct. However, it
does not matter if the values of the non-primary key columns match those in the consolidated database.
The only case where the value of non-primary key columns is important is when forced conflict mode is
used at the MobiLink server. In that case, all the column values are passed to the upload_old_row_insert
script on the consolidated database. Depending on how you have implemented this script, it may be
necessary for non-primary key column values to be correct.

See “Forced conflicts (Deprecated)” [MobiLink - Server Administration].

Locking
You can avoid many problems with scripted uploads by using the default setting for the dbmlsync
extended option LockTables, which causes dbmlsync to obtain exclusive locks on all synchronization
tables before the upload is built. This prevents other connections from changing the synchronization
tables while your scripts are building the upload. It also ensures that there are no uncommitted
transactions that affect synchronization tables open while your scripts are building the upload.

If you must turn off table locking, see “Scripted upload with no table locking” on page 315.

Redundant uploads
Typically, you want to upload each operation on the remote database exactly once. To help you with this,
MobiLink maintains a progress value for each subscription. By default the progress value is the time at
which dbmlsync began building the last successful upload. This progress value can be overridden with a
different value using the sp_hook_dbmlsync_set_upload_end_progress hook.

See “sp_hook_dbmlsync_set_upload_end_progress” on page 222.

Each time one of your upload procedures is called, values are passed to it through the #hook_dict table.
Among these are the 'start progress' and 'end progress' values. These define the period of time for which
the upload being built should include changes to the remote database. Operations that occurred before the
'start progress' have already been uploaded. Those that occur after the 'end progress' should be uploaded
during the next synchronization.

Scripted upload

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 313

Unknown Upload Status
A common mistake in the implementation of scripted upload is creating stored procedures that depend on
knowing whether an upload was successfully applied to the consolidated database in the
sp_hook_dbmlsync_upload_end or sp_hook_dbmlsync_end hooks. This approach is unreliable.

For example, the following example tries to handle inserts by using a bit on each row to keep track of
whether the row needs to be uploaded. The bit is set when a row is inserted, and it is cleared in the
sp_hook_dbmlsync_upload_end hook when the upload is successfully committed.

//
// DO NOT DO THIS!
//
CREATE TABLE t1 (
 pk integer primary key,
 val varchar(256),
 to_upload bit DEFAULT 1
);
CREATE PROCEDURE t1_ins()
RESULT(pk integer, val varchar(256))
BEGIN
 SELECT pk, val
 FROM t1
 WHERE to_upload = 1;
END;
CREATE PROCEDURE sp_hook_dbmlsync_upload_end()
BEGIN
 DECLARE upload_status varchar(256);
 SELECT value
 INTO upload_status
 FROM #hook_dict
 WHERE name = 'upload status';
 if upload_status = 'committed' THEN
 UPDATE t1 SET to_upload = 0;
 END IF
END;
CREATE PUBLICATION p1 WITH SCRIPTED UPLOAD (
 TABLE t1 USING (PROCEDURE t1_ins FOR UPLOAD INSERT)
);

This approach works most of the time. It fails when a hardware or software failure occurs that stops
dbmlsync after the upload has been sent but before it has been acknowledged by the server. In that case,
the upload may be applied to the consolidated database but the sp_hook_dbmlsync_upload_end hook is
not called and the to_upload bits are not cleared. As a result, in the next synchronization, inserts are
uploaded for rows that have already been uploaded. Usually this causes the synchronization to fail
because it generates a duplicate primary key error on the consolidated database.

The other case where problems can occur is when communication with the MobiLink server is lost after
the upload is sent but before it has been acknowledged. In this case dbmlsync cannot tell if the upload was
successfully applied. Dbmlsync calls the sp_hook_dbmlsync_upload_end hook and sets the upload status
to unknown. As the hook is written this prevents it from clearing the to_upload bits. If the upload was not
applied by the server, this is correct. However, if the upload was applied then the same problem occurs as

SQL Anywhere clients for MobiLink

314 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

in the previous paragraph. In both of these cases, the affected remote database is unable to synchronize
again until someone manually intervenes to resolve the problem.

Preventing data loss during download
When using scripted uploads, it is possible for data in the remote database that needs to be uploaded to be
overwritten by data being downloaded from the consolidated database. This results in the loss of changes
made to the remote database. To prevent this data loss your upload procedures must include all changes
that were committed in the remote database before the sp_hook_dbmlsync_set_upload_end_progress
hook was called in each upload they build.

The following example shows how data can be lost if you violate this rule:

Time

1:05:00 A row, R, that exists both in the consolidated and remote databases is updated with some
new values, R1, in the remote database and the change is committed.

1:06:00 The row R is updated in the consolidated database to some new values R2 and the
change is committed.

1:07:00 A synchronization occurs. The upload scripts are written so that the upload only contains
operations committed before 1:00:00. This violates our rule because it prevents all opera-
tions that occurred before the upload was built from being uploaded. The change to row
R is not included upload because it occurred after 1:00:00. The download received from
the server contains the row R2. When the download is applied, the row R2 replaces the
row R1 in the remote database. The update on the remote database is lost.

Scripted upload with no table locking
By default, dbmlsync locks the tables being synchronized before any upload scripts are called, and it
maintains these locks until the download is committed. You can prevent table locking by setting the
extended option LockTables to off.

When possible, it is recommended that you use the default table locking behavior. Doing scripted uploads
without table locking significantly increases the number of issues you must consider and the difficulty of
creating a correct and workable solution. This should only be attempted by advanced users with a good
understanding of database concurrency and synchronization concepts.

Using isolation levels with no table locks
When table locking is off, the isolation level at which your upload stored procedures run is very important
because it determines how uncommitted transactions are handled. This is not an issue when table locking
is on because table locks ensure that there are no uncommitted changes on the synchronized tables when
the upload is built.

Your upload stored procedures run at the default isolation level for the database user who is specified in
the dbmlsync command line unless you explicitly change the isolation level in your upload stored procedure.

Scripted upload

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 315

Isolation level 0 is the default isolation level for the database, but it is recommended that you do not run
your upload procedures at isolation level 0 when using scripted upload with no table locks. If you
implement scripted upload without table locks and use isolation level 0, you may upload changes that are
not committed, which could result in the following problems:

● The uncommitted changes could be rolled back, which would result in incorrect data being sent to the
consolidated database.

● The uncommitted transaction may not be complete, in which case you might upload only part of a
transaction and leave the consolidated database in an inconsistent state.

Your alternatives are to use isolation levels 1, 2, 3, or snapshot. All of these isolation levels ensure that
you do not upload uncommitted transactions.

Using isolation levels 1, 2, or 3 could result in your upload stored procedures blocking if there are
uncommitted changes on the table. Since your upload stored procedures are called while dbmlsync is
connected to the MobiLink server, this could tie up server connections. If you use isolation level 1, you
may be able to avoid blocking by using the READPAST table-hint clause in your select statements.

Snapshot isolation is a good choice since it prevents both blocking and reads of uncommitted changes.

Losing Uncommitted Changes
If you choose to forgo table locking, you must have a mechanism for handling operations that are not
committed when a synchronization occurs. To see why this is a problem, consider the following example.

Suppose a table is being synchronized by scripted upload. For simplicity, assume that only inserts are
being uploaded. The table contains an insert_time column that is a timestamp that indicates the time when
each row was inserted.

Each upload is built by selecting all the committed rows in the table whose insert_time is after the last
successful upload and before the time when you started to build the current upload (which is the time
when the sp_hook_dbmlsync_set_upload_end_progress hook was called). Suppose the following takes
place.

Time

1:00:00 A successful synchronization occurs.

1:04:00 Row R is inserted into the table but not committed. The insert_time column for R is
set to 1:04:00.

1:05:00 A synchronization occurs. Rows with insert times between 1:00:00 and 1:05:00 are
uploaded. Row R is not uploaded because it is uncommitted. The synchronization
progress is set to 1:05:00.

1:07:00 The row inserted at 1:04:00 is committed. The insert_time column for R continues
to contain 1:04:00.

SQL Anywhere clients for MobiLink

316 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Time

1:10:00 A synchronization occurs. Rows with insert times between 1:05:00 and 1:10:00 are
uploaded. Row R is not uploaded because its insert_time is not in the range. In fact,
row R is never uploaded.

In general, any operation that occurs before a synchronization but is committed after the synchronization
is susceptible to loss in this way.

Handling uncommitted transactions
The simplest way to handle uncommitted transactions is to use the
sp_hook_dbmlsync_set_upload_end_progress hook to set the end progress for each synchronization to the
start time of the oldest uncommitted transaction at the time the hook is called. You can determine this
time using the sa_transactions system procedure as follows:

SELECT min(start_time)
FROM sa_transactions()

In this case, your upload stored procedures must ignore the end progress that was calculated in the
sp_hook_dbmlsync_set_upload_end_progress hook using sa_transactions and passed in using the
#hook_dict table. The stored procedures should just upload all committed operations that occurred after
the start progress. This ensures that the download does not overwrite rows with changes that still need to
be uploaded. It also ensures that operations are uploaded in a timely manner even when there are
uncommitted transactions.

This solution ensures that no operations are lost, but some operations may be uploaded more than once.
Your scripts on the server side must be written to handle operations being uploaded more than once.
Below is an example that shows how a row can be uploaded more than once in this setup.

Time

1:00:00 A successful synchronization occurs.

2:00:00 Row R1 is inserted but not committed.

2:10:00 Row R2 is inserted and committed.

3:00:00 A synchronization occurs. Operations that occurred between 1:00 and 3:00 are uploa-
ded. Row R2 is uploaded and the progress is set to 2:00 because that is the start time
of the oldest uncommitted transaction.

4:00:00 Row R1 is committed.

5:00:00 A synchronization occurs. Operations that occurred between 2:00 and 5:00 are uploa-
ded and the progress is set to 5:00. The upload contains rows R1 and R2 because
they both have timestamps within the upload range. So, R2 has been uploaded twice.

Scripted upload

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 317

If your consolidated database is SQL Anywhere, you can handle redundantly uploaded insert operations
by using the INSERT ... ON EXISTING UPDATE statement in your upload_insert script in the
consolidated database.

For other consolidated databases, you can implement similar logic in a stored procedure that is called by
your upload_insert script. Just write a check to see if a row with the primary key of the row being inserted
already exists in the consolidated database. If the row exists update it, otherwise insert the new row.

Redundantly uploaded delete and update operations are a problem when you have conflict detection or
resolution logic on the server side. If you write conflict detection and resolution scripts on the server side,
they must be able to handle redundant uploads.

Redundantly uploaded deletes can be a major concern if primary key values can be reused by the
consolidated database. Consider the following sequence of events:

1. Row R with primary key 100 is inserted into a remote database and uploaded to the consolidated database.

2. Row R is deleted on the remote database and the delete operation is uploaded.

3. A new row R' with primary key 100 is inserted into the consolidated database.

4. The delete operation on row R from step 2 is uploaded again from the remote database. This could
easily result in R' being deleted inappropriately from the consolidated database.

See also
● “sa_transactions system procedure” [SQL Anywhere Server - SQL Reference]
● “Set the isolation level” [SQL Anywhere Server - SQL Usage]

Defining stored procedures for scripted upload

To implement scripted upload, you create stored procedures that define the upload by returning result sets
that contain the rows to update, insert, or delete on the consolidated database.

When the stored procedures are called, a temporary table called #hook_dict is created that has two
columns: name and value. The table is used to pass name-value pairs to your stored procedures. Your
stored procedures can retrieve useful information from this table.

The following name-value pairs are defined:

Name Value Description

start progress timestamp as string The time up to which all changes on the re-
mote database have been uploaded. Your up-
load should only reflect operations that occur
after this time.

SQL Anywhere clients for MobiLink

318 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Value Description

raw start progress 64-bit unsigned integer The start progress expressed as an unsigned in-
teger.

end progress timestamp as string The end of the upload period. Your upload
should only reflect operations that occur be-
fore this time.

raw end progress 64-bit unsigned integer The end progress expressed as an unsigned in-
teger.

generating download exclu-
sion list

true|false True if the synchronization is download-only
or file-based. In those cases no upload is sent,
and the download is not applied if it affects
any row selected by a scripted upload stored
procedure. (This ensures that changes made at
the remote that need to be uploaded are not
overwritten by the download.)

subscription_n subscription name(s) The names of subscriptions being synchron-
ized where n is an integer. This is one subscrip-
tion_n entry for each subscription being
synchronized. The numbering of n starts at
zero.

publication_n publication name Deprecated. Use subscription_n instead. The
publications being synchronized, where n is
an integer. The numbering of n starts at zero.

script version version name The MobiLink script version to be used for
the synchronization.

MobiLink user MobiLink user name The MobiLink user for which you are synchro-
nizing.

See “#hook_dict table” on page 180.

Custom progress values in scripted upload

By default, the start progress and end progress values passed to your scripted upload procedures represent
timestamps. By default the end progress is the time when dbmlsync starts to build the upload. The start
progress for a synchronization is always the end progress used for the most recent successful upload of
that subscription. This default behavior is appropriate for most implementations.

Scripted upload

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 319

The sp_hook_dbmlsync_set_upload_end_progress hook is provided for the rare cases where different
behavior is required. Using this hook, you can set the end progress to be used for an upload. The end
progress you choose must be greater than the start progress. You cannot alter the start progress.

In the sp_hook_dbmlsync_set_upload_end_progress hook you can specify the end progress either as a
timestamp or as an unsigned integer. The value is available in either form to the upload stored procedures.
For your convenience, the sa_convert_ml_progress_to_timestamp and
sa_convert_timestamp_to_ml_progress functions can be used to convert progress values between the two
forms.

See:

● “sp_hook_dbmlsync_set_upload_end_progress” on page 222
● “sa_convert_ml_progress_to_timestamp system procedure” [SQL Anywhere Server - SQL Reference]
● “sa_convert_timestamp_to_ml_progress system procedure” [SQL Anywhere Server - SQL Reference]

Defining stored procedures for inserts

The stored procedures for inserts must return result sets containing all the columns to be uploaded, as
defined in the CREATE PUBLICATION statement, in the same order that the columns were declared in
the CREATE TABLE statement.

Column order
You can find the creation order of columns in a table called T1 with the following query:

SELECT column_name
FROM SYSTAB JOIN SYSTABCOL
 WHERE table_name = 't1'
ORDER BY column_id

Example
For a detailed explanation of how to define stored procedures for inserts, see “Scripted upload
example” on page 323.

The following example creates a table called t1 and a publication called p1. The publication specifies
WITH SCRIPTED UPLOAD and registers the stored procedure t1_insert as the insert procedure. In the
definition of the t1_insert stored procedure, the result set includes all columns listed in the CREATE
PUBLICATION statement but in the order in which the columns were declared in the CREATE TABLE
statement.

CREATE TABLE t1(
 //The column ordering is taken from here
 pk integer primary key,
 c1 char(30),
 c2 float,
 c3 double);
CREATE PROCEDURE t1_insert ()
RESULT(pk integer, c1 char(30), c3 double)
begin
 ...

SQL Anywhere clients for MobiLink

320 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

end
CREATE PUBLICATION WITH SCRIPTED UPLOAD p1(
 // Order of columns here is ignored
 TABLE t1(c3, pk, c1) USING (
 PROCEDURE t1_insert FOR UPLOAD INSERT
)
)

Defining stored procedures for deletes

The stored procedures for deletes must return result sets containing all the columns to be uploaded, as
defined in the CREATE PUBLICATION statement, in the same order that the columns were declared in
the CREATE TABLE statement.

Column order
You can find the creation order of columns in a table called T1 with the following query:

SELECT column_name
FROM SYSTAB JOIN SYSTABCOL
 WHERE table_name = 't1'
ORDER BY column_id

Example
For a detailed explanation of how to define stored procedures for deletes, see “Scripted upload
example” on page 323.

The following example creates a table called t1 and a publication called p1. The publication specifies
WITH SCRIPTED UPLOAD and registers the stored procedure t1_delete as the delete procedure. In the
definition of the t1_delete stored procedure, the result set includes all columns listed in the CREATE
PUBLICATION statement but in the order in which the columns were declared in the CREATE TABLE
statement.

CREATE TABLE t1(
 //The column ordering is taken from here
 pk integer primary key,
 c1 char(30),
 c2, float,
 c3 double);
CREATE PROCEDURE t1_delete ()
RESULT(pk integer, c1 char(30), c3 double)
begin
 ...
end
CREATE PUBLICATION p1 WITH SCRIPTED UPLOAD(
 // Order of columns here is ignored
 TABLE t1(c3, pk, c1) USING (
 PROCEDURE t1_delete FOR UPLOAD DELETE
)
)

Scripted upload

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 321

Defining stored procedures for updates

The stored procedure for updates must return a result set that includes two sets of values:

● The first set of values specifies the pre-image for the update (the values in the row the last time it was
received from, or successfully uploaded to, the MobiLink server).

● The second set of values specifies the post-image of the update (the values the row should be updated
to in the consolidated database).

This means that the stored procedure for updates must return a result set with twice as many columns as
the insert or delete stored procedure.

Example
For a detailed explanation of how to define stored procedures for updates, see “Scripted upload
example” on page 323.

The following example creates a table called t1 and a publication called p1. The publication specifies
WITH SCRIPTED UPLOAD and registers the stored procedure t1_update as the update procedure. The
publication specifies three columns to be synchronized: pk, c1 and c3. The update procedure returns a
result set with six columns. The first three columns contain the pre-image of the pk, c1 and c3 columns;
the second three columns contain the post-image of the same columns. Note that in both cases the
columns are ordered as they were when the table was created, not as they are ordered in the CREATE
PUBLICATION statement.

CREATE TABLE t1(
 //Column ordering is taken from here
 pk integer primary key,
 c1 char(30),
 c2 float,
 c3 double);
CREATE PROCEDURE t1_update ()
RESULT(preimage_pk integer, preimage_c1 char(30), preimage_c3 double,
postimage_pk integer, postimage_c1 char(30), postimage_c3 double)
BEGIN
 ...
END
CREATE PUBLICATION WITH SCRIPTED UPLOAD p1 (
 // Order of columns here is ignored
 TABLE t1(c3, pk, c1) USING (
 PROCEDURE t1_update FOR UPLOAD UPDATE
)
)

Creating publications for scripted upload

To create a scripted upload publication, use the keywords WITH SCRIPTED UPLOAD and specify the
stored procedures in the USING clause.

SQL Anywhere clients for MobiLink

322 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

If you do not define a stored procedure for a table in the scripted upload publication, no operations are
uploaded for the table. You cannot use ALTER PUBLICATION to change a regular publication into a
scripted upload publication.

Example
The following publication uses stored procedures to upload data for two tables, called t1 and t2. Inserts,
deletes, and updates are uploaded for table t1. Only inserts are uploaded for table t2.

CREATE PUBLICATION pub WITH SCRIPTED UPLOAD (
 TABLE t1 (col1, col2, col3) USING (
 PROCEDURE my.t1_ui FOR UPLOAD INSERT,
 PROCEDURE my.t1_ud FOR UPLOAD DELETE,
 PROCEDURE my.t1_uu FOR UPLOAD UPDATE
),
 TABLE t2 USING (
 PROCEDURE my.t2_ui FOR UPLOAD INSERT
)
)

See also
● “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “ALTER PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]

Scripted upload example
This example shows you how to set up a scripted upload that provides conflict detection. The example
creates the consolidated and remote databases, stored procedures, publications and subscriptions that are
required by scripted upload. This example is presented in such a way that you can either just read through
it, or you can cut and paste the text to run the sample.

Create the consolidated database
Create a directory to hold the sample files. For example, call it scriptedupload. Open a command prompt
and navigate to that directory.

(This example specifies file names and assume they are in the current directory. In a real application, you
should specify the full path to the file.)

Run the following command to create a consolidated database:

dbinit consol.db

Next, run the following command to define an ODBC data source for the consolidated database:

dbdsn -w dsn_consol -y -c "uid=DBA;pwd=sql;dbf=consol.db;server=consol"

To use a database as a consolidated database, you must run a setup script that adds system tables, views,
and stored procedures that are used by MobiLink. The following command sets up consol.db as a
consolidated database:

Scripted upload

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 323

dbisql -c "dsn=dsn_consol" %SQLANY12%\MobiLink\setup\syncsa.sql

Open Interactive SQL and connect to consol.db using the dsn_consol DSN. Run the following SQL
statements. They create the employee table on the consolidated database, insert values into the table, and
create the required synchronization scripts.

CREATE TABLE employee (
 id unsigned integer primary key,
 name varchar(256),
 salary numeric(9, 2)
);
INSERT INTO employee VALUES(100, 'smith', 225000);
COMMIT;
CALL ml_add_table_script('default', 'employee', 'upload_insert',
 'INSERT INTO employee (id, name, salary) VALUES ({ml r.id}, {ml
r.name}, {ml r.salary})');
CALL ml_add_table_script('default', 'employee', 'upload_update',
 'UPDATE employee SET name = {ml r.name}, salary = {ml r.salary} WHERE
id = {ml r.id}');
CALL ml_add_table_script('default', 'employee', 'upload_delete',
 'DELETE FROM employee WHERE id = {ml r.id}');
CALL ml_add_table_script('default', 'employee', 'download_cursor',
 'SELECT * from employee');

Create the remote database
At a command prompt in your samples directory, run the following command to create a remote database:

dbinit remote.db

Next, run the following command to define an ODBC data source:

dbdsn -w dsn_remote -y -c "uid=dba;pwd=sql;dbf=remote.db;server=remote"

In Interactive SQL, connect to remote.db using the dsn_remote DSN. Run the following set of statements
to create objects in the remote database.

First, create the table to be synchronized. The insert_time and delete_time columns are not synchronized
but contain information used by the upload stored procedures to determine which rows to upload.

CREATE TABLE employee (
 id unsigned integer primary key,
 name varchar(256),
 salary numeric(9, 2),
 insert_time timestamp default '1900-01-01'
);

Next, you need to define stored procedures and other things to handle the upload. You do this separately
for inserts, deletes, and updates.

Handle inserts
First, create a trigger to set the insert_time on each row when it is inserted. This timestamp is used to
determine if a row has been inserted since the last synchronization. This trigger is not fired when

SQL Anywhere clients for MobiLink

324 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

dbmlsync is applying downloaded inserts from the consolidated database because later in this example
you set the FireTriggers extended option to off. Rows inserted by the download get an insert_time of
1900-01-01, the default value defined when the employee table was created. This value should always be
before the start progress so those rows are not treated as new inserts and are not uploaded during the next
synchronization.

CREATE TRIGGER emp_ins AFTER INSERT ON employee
REFERENCING NEW AS newrow
FOR EACH ROW
BEGIN
 UPDATE employee SET insert_time = CURRENT TIMESTAMP
 WHERE id = newrow.id
END;

Next, create a procedure to return as a result set all the inserted rows to be uploaded. This procedure
returns all rows that (based on the insert_time) have been inserted since the last successful upload but
were not subsequently deleted. The time of the last successful upload is determined from the start
progress value in the #hook_dict table. This example uses the default setting for the dbmlsync extended
option LockTables, which causes dbmlsync to lock the tables being synchronized. As a result, you do not
need to exclude rows inserted after the end progress: the table locks prevent any operations from
occurring after the end progress, while the upload is built.

CREATE PROCEDURE employee_insert()
RESULT(id unsigned integer,
 name varchar(256),
 salary numeric(9,2)
)
BEGIN
 DECLARE start_time timestamp;
 SELECT value
 INTO start_time
 FROM #hook_dict
 WHERE name = 'start progress as timestamp';
 // Upload as inserts all rows inserted after the start_time
 // that were not subsequently deleted
 SELECT id, name, salary
 FROM employee e
 WHERE insert_time > start_time AND
 NOT EXISTS(SELECT id FROM employee_delete ed WHERE ed.id = e.id);
END;

Handle updates
To handle uploads, you need to ensure that the correct pre-image is used based on the start progress when
the upload was built.

First, create a table that maintains pre-images of updated rows. The pre-images are used when generating
the scripted upload.

CREATE TABLE employee_preimages (
 id unsigned integer NOT NULL,
 name varchar(256),
 salary numeric(9, 2),
 img_time timestamp default CURRENT TIMESTAMP,
 primary key(id, img_time)
);

Scripted upload

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 325

Next, create a trigger to store a pre-image for each row when it is updated. As with the insert trigger, this
trigger is not fired on download.

Note that this trigger stores a pre-image row each time a row is updated (unless two updates come so
close together that they get the same timestamp). At first glance this looks wasteful. It would be tempting
to only store a pre-image for the row if there is not already one in the table, and then count on the
sp_hook_dbmlsync_upload_end hook to delete pre-images once they have been uploaded.

However, the sp_hook_dbmlsync_upload_end hook is not reliable for this purpose. The hook may not be
called if a hardware or software failure stops dbmlsync after the upload is sent but before it is
acknowledged, resulting in rows not being deleted from the pre-images table even though they have been
successfully uploaded. Also, when a communication failure occurs dbmlsync may not receive an
acknowledgement from the server for an upload. In this case, the upload status passed to the hook is
'unknown'. When this happens there is no way for the hook to tell if the pre-images table should be
cleaned or left intact. By storing multiple pre-images, the correct one can always be selected based on the
start progress when the upload is built.

CREATE TRIGGER emp_upd AFTER UPDATE OF name,salary ON employee
 REFERENCING OLD AS oldrow
 FOR EACH ROW
BEGIN
 INSERT INTO employee_preimages ON EXISTING SKIP VALUES(
 oldrow.id, oldrow.name, oldrow.salary, CURRENT TIMESTAMP);
END;

Next, create an upload procedure to handle updates. This stored procedure returns one result set that has
twice as many columns as the other scripts: it contains the pre-image (the values in the row the last time it
was received from, or successfully uploaded to, the MobiLink server), and the post-image (the values to
be entered into the consolidated database).

The pre-image is the earliest set of values in employee_preimages that was recorded after the
start_progress. Note that this example does not correctly handle existing rows that are deleted and then
reinserted. In a more complete solution, these would be uploaded as an update.

CREATE PROCEDURE employee_update()
RESULT(
 preimage_id unsigned integer,
 preimage_name varchar(256),
 preimage_salary numeric(9,2),
 postimage_id unsigned integer,
 postimage_name varchar(256),
 postimage_salary numeric(9,2)
)
BEGIN
 DECLARE start_time timestamp;
 SELECT value
 INTO start_time
 FROM #hook_dict
 WHERE name = 'start progress as timestamp';
 // Upload as an update all rows that have been updated since
 // start_time that were not newly inserted or deleted.
 SELECT ep.id, ep.name, ep.salary, e.id, e.name, e.salary
 FROM employee e JOIN employee_preimages ep
 ON (e.id = ep.id)
 // Do not select rows inserted since the start time. These should be

SQL Anywhere clients for MobiLink

326 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 // uploaded as inserts.
 WHERE insert_time <= start_time
 // Do not upload deleted rows.
 AND NOT EXISTS(SELECT id FROM employee_delete ed WHERE ed.id = e.id)
 // Select the earliest pre-image after the start time.
 AND ep.img_time = (SELECT MIN(img_time)
 FROM employee_preimages
 WHERE id = ep.id
 AND img_time > start_time);
END;

Handle deletes
First, create a table to maintain a list of deleted rows:

CREATE TABLE employee_delete (
 id unsigned integer primary key NOT NULL,
 name varchar(256),
 salary numeric(9, 2),
 delete_time timestamp
);

Next, create a trigger to populate the employee_delete table as rows are deleted from the employee table.
This trigger is not called during download because later you set the dbmlsync extended option
FireTriggers to false. Note that this trigger assumes that a deleted row is never reinserted; therefore it does
not deal with the same row being deleted more than once.

CREATE TRIGGER emp_del AFTER DELETE ON employee
REFERENCING OLD AS delrow
FOR EACH ROW
BEGIN
 INSERT INTO employee_delete
VALUES(delrow.id, delrow.name, delrow.salary, CURRENT TIMESTAMP);
END;

The next SQL statement creates an upload procedure to handle deletes. This stored procedure returns a
result set that contains the rows to delete on the consolidated database. The stored procedure uses the
employee_preimages table so that if a row is updated and then deleted, the image uploaded for the delete
is the last one that was successfully downloaded or uploaded.

CREATE PROCEDURE employee_delete()
RESULT(id unsigned integer,
 name varchar(256),
 salary numeric(9,2)
)
BEGIN
 DECLARE start_time timestamp;
 SELECT value
 INTO start_time
 FROM #hook_dict
 WHERE name = 'start progress as timestamp';
 // Upload as a delete all rows that were deleted after the
 // start_time that were not inserted after the start_time.
 // If a row was updated before it was deleted, then the row
 // to be deleted is the pre-image of the update.
 SELECT IF ep.id IS NULL THEN ed.id ELSE ep.id ENDIF,
 IF ep.id IS NULL THEN ed.name ELSE ep.name ENDIF,
 IF ep.id IS NULL THEN ed.salary ELSE ep.salary ENDIF
 FROM employee_delete ed LEFT OUTER JOIN employee_preimages ep

Scripted upload

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 327

 ON(ed.id = ep.id AND ep.img_time > start_time)
 WHERE
 // Only upload deletes that occurred since the last sync.
 ed.delete_time > start_time
 // Don't upload a delete for rows that were inserted since
 // the last upload and then deleted.
 AND NOT EXISTS (
 SELECT id
 FROM employee e
 WHERE e.id = ep.id AND e.insert_time > start_time)
 // Select the earliest preimage after the start time.
 AND (ep.id IS NULL OR ep.img_time = (SELECT MIN(img_time)
 FROM employee_preimages
 WHERE id = ep.id
 AND img_time > start_time));
END;

Clear out the pre-image table
Next, create an upload_end hook to clean up the employee_preimage and employee_delete tables when an
upload is successful. This example uses the default setting for the dbmlsync extended option LockTables,
so the tables are locked during synchronization. So, you do not have to worry about leaving rows in the
tables for operations that occurred after the end_progress. Locking prevents such operations from occurring.

CREATE PROCEDURE sp_hook_dbmlsync_upload_end()
BEGIN
 DECLARE val varchar(256);

 SELECT value
 INTO val
 FROM #hook_dict
 WHERE name = 'upload status';

 IF val = 'committed' THEN
 DELETE FROM employee_delete;
 DELETE FROM employee_preimages;
 END IF;
END;

Create a publication, MobiLink user, and subscription
The publication called pub1 uses the scripted upload syntax (WITH SCRIPTED UPLOAD). It creates an
article for the employee table, and registers the three stored procedures you just created for use in the
scripted upload. It creates a MobiLink user called u1, and a subscription between v1 and pub1. The
extended option FireTriggers is set to off to prevent triggers from being fired on the remote database
when the download is applied, which prevents downloaded changes from being uploaded during the next
synchronization.

CREATE PUBLICATION pub1 WITH SCRIPTED UPLOAD (
TABLE employee(id, name, salary) USING (
 PROCEDURE employee_insert FOR UPLOAD INSERT,
 PROCEDURE employee_update FOR UPLOAD UPDATE,
 PROCEDURE employee_delete FOR UPLOAD DELETE,
)
)
CREATE SYNCHRONIZATION USER u1;
CREATE SYNCHRONIZATION SUBSCRIPTION TO pub1 FOR u1
TYPE 'tcpip'
ADDRESS 'host=localhost'

SQL Anywhere clients for MobiLink

328 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

OPTION FireTriggers='off';
SCRIPT VERSION 'default'

Demonstrate the scripted upload
Connect to the remote database and insert data to synchronize using scripted upload. For example, run the
following SQL statements against the remote database in Interactive SQL:

INSERT INTO employee(id, name, salary) VALUES(7, 'black', 700);
INSERT INTO employee(id, name, salary) VALUES(8, 'anderson', 800);
INSERT INTO employee(id, name, salary) VALUES(9, 'dilon', 900);
INSERT INTO employee(id, name, salary) VALUES(10, 'dwit', 1000);
INSERT INTO employee(id, name, salary) VALUES(11, 'dwit', 1100);
COMMIT;

At a command prompt, start the MobiLink server:

mlsrv12 -c "dsn=dsn_consol" -o mlserver.mls -v+ -dl -zu+

Start a synchronization using dbmlsync:

dbmlsync -c "dsn=dsn_remote" -k -uo -o remote.mlc -v+

You can now verify that the inserts were uploaded.

Example cleanup
To clean up your computer after completing the example, perform the following steps:

mlstop -h -w
dbstop -y -c server=consol
dbstop -y -c server=remote
dberase -y consol.db
dberase -y remote.db
del remote.mlc mlserver.mls

Scripted upload

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 329

330

Index
Symbols
#hook_dict table

about MobiLink, 180
dbmlsync, 180
scripted upload, 318

-a option
MobiLink SQL Anywhere client utility
(dbmlsync), 97

-ap option
MobiLink file transfer utility (mlfiletransfer), 21
MobiLink SQL Anywhere client utility
(dbmlsync), 98

-ba option
MobiLink SQL Anywhere client utility
(dbmlsync), 98

-bc option
MobiLink SQL Anywhere client utility
(dbmlsync), 99

-be option
MobiLink SQL Anywhere client utility
(dbmlsync), 99

-bg option
MobiLink SQL Anywhere client utility
(dbmlsync), 99

-bk option
MobiLink SQL Anywhere client utility
(dbmlsync), 100

-bkr option
MobiLink SQL Anywhere client utility
(dbmlsync), 101

-c option
MobiLink SQL Anywhere client utility
(dbmlsync), 101

-ci option
MobiLink SQL Anywhere client utility
(dbmlsync), 102

-cl option
MobiLink SQL Anywhere client utility
(dbmlsync), 102

-cm option
MobiLink SQL Anywhere client utility
(dbmlsync), 103

-d option

MobiLink SQL Anywhere client utility
(dbmlsync), 103

-dc option
MobiLink SQL Anywhere client utility
(dbmlsync), 103

-dl option
MobiLink SQL Anywhere client utility
(dbmlsync), 104

-do option
MobiLink SQL Anywhere client utility
(dbmlsync), 104

-drs option
MobiLink SQL Anywhere client utility
(dbmlsync), 105

-ds option
MobiLink SQL Anywhere client utility
(dbmlsync), 106

-e adr
dbmlsync extended option, 128
options for, 23

-e cd
dbmlsync extended option, 130

-e CommunicationAddress
dbmlsync extended option, 128
options for, 23

-e CommunicationType
dbmlsync extended option, 129

-e ConflictRetries
dbmlsync extended option, 129

-e ContinueDownload
dbmlsync extended option, 130

-e cr
dbmlsync extended option, 129

-e ctp
dbmlsync extended option, 129

-e dir
dbmlsync extended option, 142

-e DisablePolling
dbmlsync extended option, 131

-e DownloadOnly
dbmlsync extended option, 132

-e DownloadReadSize
dbmlsync extended option, 133

-e drs
dbmlsync extended option, 133

-e ds
dbmlsync extended option, 132

-e eh

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 331

dbmlsync extended option, 136
-e el

dbmlsync extended option, 134
-e ErrorLogSendLimit

dbmlsync extended option, 134
-e FireTriggers

dbmlsync extended option, 135
-e ft

dbmlsync extended option, 135
-e HoverRescanThreshold

dbmlsync extended option, 135
-e hrt

dbmlsync extended option, 135
-e IgnoreHookErrors

dbmlsync extended option, 136
-e IgnoreScheduling

dbmlsync extended option, 136
-e inc

dbmlsync extended option, 137
-e Increment

dbmlsync extended option, 137
-e isc

dbmlsync extended option, 136
-e LockTables

dbmlsync extended option, 138
-e lt

dbmlsync extended option, 138
-e MirrorLogDirectory

dbmlsync extended option, 139
-e mld

dbmlsync extended option, 139
-e mn

dbmlsync extended option, 140
-e MobiLinkPwd

dbmlsync extended option, 140
-e mp

dbmlsync extended option, 140
-e NewMobiLinkPwd

dbmlsync extended option, 140
-e NoSyncOnStartup

dbmlsync extended option, 141
-e nss

dbmlsync extended option, 141
-e OfflineDirectory

dbmlsync extended option, 142
-e option

MobiLink SQL Anywhere client utility
(dbmlsync), 106

-e p
dbmlsync extended option, 131

-e PollingPeriod
dbmlsync extended option, 142

-e pp
dbmlsync extended option, 142

-e sa
dbmlsync extended option, 146

-e sch
dbmlsync extended option, 143

-e Schedule
dbmlsync extended option, 143

-e scn
dbmlsync extended option, 146

-e ScriptVersion
dbmlsync extended option, 145

-e SendColumnNames
dbmlsync extended option, 146

-e SendDownloadAck
dbmlsync extended option, 146

-e SendTriggers
dbmlsync extended option, 147

-e st
dbmlsync extended option, 147

-e sv
dbmlsync extended option, 145

-e TableOrder
dbmlsync extended option, 148

-e TableOrderChecking
dbmlsync extended option, 149

-e toc
dbmlsync extended option, 149

-e tor
dbmlsync extended option, 148

-e uo
dbmlsync extended option, 150

-e UploadOnly
dbmlsync extended option, 150

-e v
dbmlsync extended option, 150

-e Verbose
dbmlsync extended option, 150

-e VerboseHooks
dbmlsync extended option, 151

-e VerboseMin
dbmlsync extended option, 152

-e VerboseOptions
dbmlsync extended option, 153

Index

332 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

-e VerboseRowCounts
dbmlsync extended option, 154

-e VerboseRowValues
dbmlsync extended option, 155

-e VerboseUpload
dbmlsync extended option, 156

-e vm
dbmlsync extended option, 152

-e vn
dbmlsync extended option, 154

-e vo
dbmlsync extended option, 153

-e vr
dbmlsync extended option, 155

-e vs
dbmlsync extended option, 151

-e vu
dbmlsync extended option, 156

-eh option
MobiLink SQL Anywhere client utility
(dbmlsync), 107

-ek option
MobiLink SQL Anywhere client utility
(dbmlsync), 107

-ep option
MobiLink SQL Anywhere client utility
(dbmlsync), 108

-eu option
MobiLink SQL Anywhere client utility
(dbmlsync), 108

-f option
MobiLink file transfer utility (mlfiletransfer), 21

-g option
MobiLink file transfer utility (mlfiletransfer), 21

-is option
MobiLink SQL Anywhere client utility
(dbmlsync), 108

-k option
MobiLink Microsoft ActiveSync provider utility
(mlasinst), 18
MobiLink SQL Anywhere client utility (dbmlsync)
(deprecated), 109

-l option
MobiLink SQL Anywhere client utility
(dbmlsync), 109

-lf option
MobiLink file transfer utility (mlfiletransfer), 21

-lp option

MobiLink file transfer utility (mlfiletransfer), 21
-mn option

MobiLink SQL Anywhere client utility
(dbmlsync), 109

-mp option
MobiLink SQL Anywhere client utility
(dbmlsync), 110

-n option
MobiLink Microsoft ActiveSync provider utility
(mlasinst), 18
MobiLink SQL Anywhere client utility
(dbmlsync), 110

-o option
MobiLink SQL Anywhere client utility
(dbmlsync), 111

-os option
MobiLink SQL Anywhere client utility
(dbmlsync), 111

-ot option
MobiLink SQL Anywhere client utility
(dbmlsync), 112

-p option
MobiLink file transfer utility (mlfiletransfer), 21
MobiLink SQL Anywhere client utility
(dbmlsync), 112

-pc option
MobiLink SQL Anywhere client utility
(dbmlsync), 113

-pd option
MobiLink SQL Anywhere client utility
(dbmlsync), 114

-pi option
MobiLink SQL Anywhere client utility
(dbmlsync), 114

-po option
MobiLink SQL Anywhere client utility
(dbmlsync), 115

-pp option
MobiLink SQL Anywhere client utility
(dbmlsync), 115

-q option
MobiLink SQL Anywhere client utility
(dbmlsync), 116

-qc option
MobiLink SQL Anywhere client utility
(dbmlsync), 116

-r option
MobiLink file transfer utility (mlfiletransfer), 21

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 333

MobiLink SQL Anywhere client utility
(dbmlsync), 116

-ra option
MobiLink SQL Anywhere client utility
(dbmlsync), 116

-rb option
MobiLink SQL Anywhere client utility
(dbmlsync), 116

-s option
MobiLink file transfer utility (mlfiletransfer), 21
MobiLink SQL Anywhere client utility
(dbmlsync), 117

-sc option
MobiLink SQL Anywhere client utility
(dbmlsync), 118

-sm option
MobiLink SQL Anywhere client utility
(dbmlsync), 118

-sp option
MobiLink SQL Anywhere client utility
(dbmlsync), 119

-tu option
MobiLink SQL Anywhere client utility
(dbmlsync), 119

-u option
MobiLink file transfer utility (mlfiletransfer), 21
MobiLink Microsoft ActiveSync provider utility
(mlasinst), 18
MobiLink SQL Anywhere client utility
(dbmlsync), 120

-ud option
MobiLink SQL Anywhere client utility
(dbmlsync), 121

-ui option
MobiLink SQL Anywhere client utility
(dbmlsync), 122

-uo option
MobiLink SQL Anywhere client utility
(dbmlsync), 122

-urc option
MobiLink SQL Anywhere client utility
(dbmlsync), 123

-ux option
MobiLink SQL Anywhere client utility
(dbmlsync), 123

-v option
MobiLink file transfer utility (mlfiletransfer), 21

MobiLink Microsoft ActiveSync provider utility
(mlasinst), 18
MobiLink SQL Anywhere client utility
(dbmlsync), 123

-v+ option
MobiLink SQL Anywhere client utility
(dbmlsync), 123

-vc option
MobiLink SQL Anywhere client utility
(dbmlsync), 123

-vn option
MobiLink SQL Anywhere client utility
(dbmlsync), 123

-vo option
MobiLink SQL Anywhere client utility
(dbmlsync), 123

-vp option
MobiLink SQL Anywhere client utility
(dbmlsync), 123

-vr option
MobiLink SQL Anywhere client utility
(dbmlsync), 123

-vs option
MobiLink SQL Anywhere client utility
(dbmlsync), 123

-vu option
MobiLink SQL Anywhere client utility
(dbmlsync), 123

-wc option
MobiLink SQL Anywhere client utility
(dbmlsync), 124

-x option
MobiLink file transfer utility (mlfiletransfer), 21
MobiLink SQL Anywhere client utility
(dbmlsync), 125

.NET
MobiLink user authentication, 15

@data option
MobiLink SQL Anywhere client utility
(dbmlsync), 97

A
a_dbtools_info structure

initializing, 305
a_sync_db structure

initializing, 305
introduction, 305

Index

334 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

a_syncpub structure
introduction, 305

ActiveX
MobiLink dbmlsync integration component, 276

add user wizard
MobiLink plug-in, 6

adding
articles for MobiLink SQL Anywhere clients, 72
columns to remote MobiLink databases, 60
MobiLink users to a SQL Anywhere client, 74
MobiLink users to the consolidated database, 5
tables to remote MobiLink SQL Anywhere
databases, 60

adr dbmlsync extended option
about, 128
options for, 23

altering
articles for MobiLink SQL Anywhere clients, 72
MobiLink publications for SQL Anywhere clients,
72
subscriptions for SQL Anywhere clients, 78

altering existing publications
MobiLink SQL Anywhere clients, 72

altering MobiLink subscriptions
SQL Anywhere clients, 78

ApplyDnldFile
MobiLink synchronization profile option, 158

args option
MobiLink Microsoft ActiveSync provider utility
(mlasinst), 18

articles
adding for MobiLink SQL Anywhere clients, 72
altering for MobiLink SQL Anywhere clients, 72
creating for MobiLink SQL Anywhere clients, 67
MobiLink synchronization subscriptions, 77
removing from MobiLink SQL Anywhere clients,
72

authenticate_user
about, 14
authentication process, 12
using predefined scripts, 15

authenticating
MobiLink to external servers, 15

authenticating MobiLink users
about, 4

authentication
MobiLink authentication process, 12
MobiLink users, 4

authentication process
MobiLink, 12

AuthParms
MobiLink synchronization profile option, 158

auto-dial
MobiLink client connection option, 45

AUTOINCREMENT
(see also GLOBAL AUTOINCREMENT)

B
Background

MobiLink synchronization profile option, 158
BackgroundRetry

MobiLink synchronization profile option, 158
backups

restoring remote databases, 116
BeginDownload event

dbmlsync integration component, 285
BeginLogScan event

dbmlsync integration component, 286
BeginSynchronization event

dbmlsync integration component, 286
BeginUpload event

dbmlsync integration component, 287
buffer size

MobiLink client connection option, 28
buffer_size protocol option

MobiLink client connection option, 28
bugs

providing feedback, viii

C
cac authentication

MobiLink client connection option, 43
cac option

MobiLink clients, 43
CacheInit

MobiLink synchronization profile option, 158
CacheMax

MobiLink synchronization profile option, 158
CacheMin

MobiLink synchronization profile option, 158
CancelSync method

DbmlsyncClient class [Dbmlsync .NET API], 255
DbmlsyncClient class [Dbmlsync C++ API], 234

cd dbmlsync extended option
about, 130

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 335

certificate fields
MobiLink TLS certificate_company option, 29
MobiLink TLS certificate_name option, 30
MobiLink TLS certificate_unit option, 32

certificate option
MobiLink client connection option, 43

certificate_company protocol option
MobiLink client connection option, 29

certificate_name protocol option
MobiLink client connection option, 30

certificate_unit protocol option
MobiLink client connection option, 32

changing passwords
MobiLink, 8

checking table order
dbmlsync extended option, 149

class names
Microsoft ActiveSync, 124

class option
MobiLink Microsoft ActiveSync provider utility
(mlasinst), 18

client databases
MobiLink dbmlsync options, 93

client event-hook procedures
MobiLink SQL Anywhere clients, 178

client network protocol options
MobiLink, 23

client_port protocol option
MobiLink client connection option, 32

clients
MobiLink SQL Anywhere client (dbmlsync), 93
SQL Anywhere as MobiLink, 1
SQL Anywhere MobiLink clients, 63
UltraLite applications as MobiLink, 1

column-wise partitioning
MobiLink SQL Anywhere clients, 69

ColumnCount property
dbmlsync integration component, 304

ColumnName
dbmlsync integration component, 302

columns
adding to remote MobiLink databases, 60

ColumnValue property
dbmlsync integration component, 303

command line
starting dbmlsync, 93

command line utilities
MobiLink clients, 18

MobiLink file transfer (mlfiletransfer) syntax, 21
MobiLink Microsoft ActiveSync provider utility
(mlasinst) syntax, 18
MobiLink SQL Anywhere client utility (dbmlsync)
syntax, 93

command prompts
conventions, vii
curly braces, vii
environment variables, vii
parentheses, vii
quotes, vii
semicolons, vii

command shells
conventions, vii
curly braces, vii
environment variables, vii
parentheses, vii
quotes, vii

COMMIT statement
event-hook procedures, 180

CommunicationAddress dbmlsync extended option
about, 128
options for, 23

communications
MobiLink clients, 23
MobiLink dbmlsync -c option, 101
MobiLink dbmlsync adr option, 128
MobiLink dbmlsync ctp option, 129
specifying for MobiLink, 2

CommunicationType dbmlsync extended option
about, 129

compression
MobiLink client connection option, 33

compression protocol option
MobiLink client connection option, 33
UltraLite deployment requirements for, 28

concurrency
MobiLink SQL Anywhere clients, 82

configuring
MobiLink user properties for SQL Anywhere
clients, 75
SQL Anywhere remote databases for Microsoft
ActiveSync, 84

ConflictRetries dbmlsync extended option
about, 129
concurrency during synchronization, 82

Connect method
DbmlsyncClient class [Dbmlsync .NET API], 257

Index

336 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

DbmlsyncClient class [Dbmlsync C++ API], 235
connecting

MobiLink clients, 23
MobiLink dbmlsync -c option, 101
MobiLink dbmlsync adr option, 128
MobiLink dbmlsync ctp option, 129

connection failures
MobiLink dbmlsync clients, 182

connection options
dbmlsync, 128

connection parameters
MobiLink clients, 23
MobiLink SQL Anywhere clients, 81
priority order for MobiLink SQL Anywhere
clients, 126

connection strings
MobiLink dbmlsync, 101

connections
MobiLink clients, 23
MobiLink dbmlsync -c option, 101
MobiLink dbmlsync adr option, 128
MobiLink dbmlsync ctp option, 129

connections for event-hook procedures
SQL Anywhere clients, 182

ConnectMobilink event
dbmlsync integration component, 288

consistency
(see also synchronization)

ContinueDownload
MobiLink synchronization profile option, 158

ContinueDownload dbmlsync extended option
about, 130

conventions
command prompts, vii
command shells, vii
documentation, v
file names in documentation, vi
operating systems, v
Unix , v
Windows, v
Windows CE, v
Windows Mobile, v

cr dbmlsync extended option
about, 129

create article wizard
using in MobiLink, 73

create MobiLink user wizard
using, 74

CREATE PUBLICATION statement
SQL Anywhere database usage, 67

create publication wizard
column-wise partitioning in MobiLink, 69
row-wise partitioning in MobiLink SQL Anywhere
clients, 70

CREATE SYNCHRONIZATION SUBSCRIPTION
statement

Microsoft ActiveSync for MobiLink SQL
Anywhere clients, 84

CREATE SYNCHRONIZATION USER statement
Microsoft ActiveSync for MobiLink SQL
Anywhere clients, 84

create user wizard
MobiLink plug-in, 6

CreateDnldFile
MobiLink synchronization profile option, 158

creating
articles for MobiLink SQL Anywhere clients, 67
MobiLink users, 5
MobiLink users in SQL Anywhere clients, 74
publications for MobiLink SQL Anywhere clients,
67
publications with column-wise partitioning for
MobiLink SQL Anywhere clients, 69
publications with row-wise partitioning for
MobiLink SQL Anywhere clients, 70
publications with whole tables for MobiLink SQL
Anywhere clients, 68
SQL Anywhere remote databases, 63

creating and registering MobiLink users
about, 5

creating MobiLink users
about, 5
about SQL Anywhere clients, 74

creating MobiLink users in the remote database
about, 74

creating publications for scripted upload
about, 322

creating remote databases
SQL Anywhere clients, 63

creating synchronization subscriptions
SQL Anywhere clients, 77

ctp dbmlsync extended option
about, 129

custom authentication
MobiLink clients, 14

custom headers

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 337

MobiLink client connection option, 34
custom user authentication

MobiLink clients, 14
custom_header protocol option

MobiLink client connection option, 34
customizing

SQL Anywhere client synchronization process, 178
customizing dbmlsync synchronization

MobiLink SQL Anywhere clients, 89
customizing the client synchronization process

SQL Anywhere clients, 178

D
data consistency

(see also synchronization)
database tools interface

(see also DBTools interface)
dbmlsync, 304
setting up for dbmlsync, 305

database tools interface for dbmlsync
about, 304

databases
MobiLink remote databases, 1

dbmlsync (see dbmlsync utility)
options, 93

Dbmlsync .NET API
DbmlsyncClient class, 254
DBSC_CancelRet enumeration, 268
DBSC_ErrorInfo structure, 274
DBSC_ErrorType enumeration, 268
DBSC_Event structure, 275
DBSC_EventType enumeration, 271
DBSC_GetEventRet enumeration, 272
DBSC_ShutdownType enumeration, 273
DBSC_StartType enumeration, 274

Dbmlsync .NET API reference
iAnywhere.MobiLink.Client namespace, 253

Dbmlsync API
architecture, 90
interfaces, 90
introduction, 90

Dbmlsync C++ API
DbmlsyncClient class, 232
DBSC_CancelRet enumeration, 245
DBSC_ErrorInfo structure, 251
DBSC_ErrorType enumeration, 246
DBSC_Event structure, 252

DBSC_EventType enumeration, 248
DBSC_GetEventRet enumeration, 249
DBSC_ShutdownType enumeration, 250
DBSC_StartType enumeration, 250

Dbmlsync C++ API reference
dbmlsynccli.h header file, 231

dbmlsync client event hooks
introducing, 89

dbmlsync error
handling, 182

dbmlsync extended options
about, 126
using, 80

dbmlsync integration component
about, 276
events, 285
IRowTransfer interface, 300
setup, 277
supported platforms, 277

dbmlsync integration component methods
about, 278

dbmlsync integration component properties
about, 279

dbmlsync message log
about, 90

dbmlsync network protocol options
about, 81

dbmlsync utility
#hook_dict table, 180
alphabetical list of options, 93
changing passwords, 8
concurrency, 82
connecting to the MobiLink server, 128
connecting to the remote database, 101
customizing MobiLink synchronization, 178
DBTools interface, 304
error handling event hooks, 182
event hooks, 178
extended options, 126
hooks, 178
initiating synchronization from an application, 83
integration component, 276
Mac OS X, 91
Microsoft ActiveSync for MobiLink SQL
Anywhere clients, 83
options, 93
passwords, 7
permissions, 80

Index

338 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

programming interface, 90
progress offsets, 66
sp_hook_dbmlsync_abort hook, 183
sp_hook_dbmlsync_all_error, 185
sp_hook_dbmlsync_begin, 188
sp_hook_dbmlsync_communication_error, 189
sp_hook_dbmlsync_delay, 191
sp_hook_dbmlsync_download_begin, 194
sp_hook_dbmlsync_download_end, 195
sp_hook_dbmlsync_download_log_ri_violation,
196
sp_hook_dbmlsync_download_ri_violation, 198
sp_hook_dbmlsync_download_table_begin, 200
sp_hook_dbmlsync_download_table_end, 201
sp_hook_dbmlsync_end, 203
sp_hook_dbmlsync_log_rescan, 205
sp_hook_dbmlsync_logscan_begin, 207
sp_hook_dbmlsync_logscan_end, 208
sp_hook_dbmlsync_misc_error, 210
sp_hook_dbmlsync_ml_connect_failed, 213
sp_hook_dbmlsync_process_exit_code, 216
sp_hook_dbmlsync_schema_upgrade, 217
sp_hook_dbmlsync_set_extended_options, 219
sp_hook_dbmlsync_set_ml_connect_info, 220
sp_hook_dbmlsync_set_upload_end_progress, 222
sp_hook_dbmlsync_sql_error, 224
sp_hook_dbmlsync_upload_begin, 226
sp_hook_dbmlsync_upload_end, 227
sp_hook_dbmlsync_validate_download_file, 229
syntax, 93
transaction logs, 81
using, 79

dbmlsynccli.h header file
Dbmlsync C++ API reference, 231

DbmlsyncClient class [Dbmlsync .NET API]
CancelSync method, 255
Connect method, 257
description, 254
Disconnect method, 258
Fini method, 258
GetErrorInfo method, 259
GetEvent method, 259
GetProperty method, 260
Init method, 261
InstantiateClient method, 262
Ping method, 262
SetProperty method, 262
ShutdownServer method, 264

StartServer method, 265
Sync method, 266
WaitForServerShutdown method, 267

DbmlsyncClient class [Dbmlsync C++ API]
CancelSync method, 234
Connect method, 235
description, 232
Disconnect method, 236
Fini method, 237
FreeEventInfo method, 237
GetErrorInfo method, 238
GetEvent method, 238
GetProperty method, 239
Init method, 239
InstantiateClient method, 240
Ping method, 240
SetProperty method, 241
ShutdownServer method, 242
StartServer method, 243
Sync method, 244
WaitForServerShutdown method, 245

dbmlsynccom.dll
dbmlsync integration component, 276

dbmlsynccomg.dll
dbmlsync integration component, 276

DBSC_CancelRet enumeration [Dbmlsync .NET API]
description, 268

DBSC_CancelRet enumeration [Dbmlsync C++ API]
description, 245

DBSC_ErrorInfo structure [Dbmlsync .NET API]
description, 274

DBSC_ErrorInfo structure [Dbmlsync C++ API]
description, 251

DBSC_ErrorType enumeration [Dbmlsync .NET API]
description, 268

DBSC_ErrorType enumeration [Dbmlsync C++ API]
description, 246

DBSC_Event structure [Dbmlsync .NET API]
description, 275

DBSC_Event structure [Dbmlsync C++ API]
description, 252

DBSC_EventType enumeration [Dbmlsync .NET API]
description, 271

DBSC_EventType enumeration [Dbmlsync C++ API]
description, 248

DBSC_GetEventRet enumeration [Dbmlsync .NET
API]

description, 272

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 339

DBSC_GetEventRet enumeration [Dbmlsync C++
API]

description, 249
DBSC_ShutdownType enumeration [Dbmlsync .NET
API]

description, 273
DBSC_ShutdownType enumeration [Dbmlsync C++
API]

description, 250
DBSC_StartType enumeration [Dbmlsync .NET API]

description, 274
DBSC_StartType enumeration [Dbmlsync C++ API]

description, 250
DBSynchronizeLog function

introduction, 305
DBTools interface

(see also database tools interface)
dbmlsync, 304
setting up for dbmlsync, 305
synchronizing SQL Anywhere clients, 83

DBTools interface for dbmlsync
about, 304

dbtools.h
synchronizing SQL Anywhere clients, 83

DBToolsFini function
using, 308

DBToolsInit function
starting dbtools, 305

DCX
about, v

DDL
remote MobiLink databases, 58

debugging
MobiLink dbmlsync log, 90

default_internet
network_name protocol option setting, 46

default_work
network_name protocol option setting, 46

deleting
articles from MobiLink SQL Anywhere clients, 72
MobiLink users from SQL Anywhere clients, 76
publications from MobiLink SQL Anywhere
clients, 74

deploying
MobiLink SQL Anywhere clients, 63
troubleshooting MobiLink deployment of SQL
Anywhere clients, 66

deploying remote databases

MobiLink SQL Anywhere clients, 63
DetailedInfoMessageEnabled property

dbmlsync integration component, 282
developer centers

finding out more and requesting technical support,
ix

developer community
newsgroups, viii

dial-up
dbmlsync connection, 128
MobiLink client protocol options, 23

dir dbmlsync extended option
about, 142

DisablePolling dbmlsync extended option
about, 131

Disconnect method
DbmlsyncClient class [Dbmlsync .NET API], 258
DbmlsyncClient class [Dbmlsync C++ API], 236

DisconnectMobilink event
dbmlsync integration component, 288

DispatchChannelSize property
dbmlsync integration component, 285

dllapi.h
DBTools interface for dbmlsync, 308

DnldFileExtra
MobiLink synchronization profile option, 158

DocCommentXchange (DCX)
about, v

documentation
conventions, v
SQL Anywhere, v

DoneExecution event
dbmlsync integration component, 289

download continues
dbmlsync -dc option, 103

download only
(see also download-only)

download only synchronization
(see also download-only synchronization)

download-only
dbmlsync -ds option, 106
dbmlsync DownloadOnly extended option, 132
differences between approaches, 71
publications, 71

download-only publications
about, 71

download-only synchronization
dbmlsync -ds option, 106

Index

340 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

dbmlsync DownloadOnly extended option, 132
DownloadEventsEnabled property

dbmlsync integration component, 280
downloading rows

resolving MobiLink RI violations, 196
DownloadOnly

MobiLink synchronization profile option, 158
DownloadOnly dbmlsync extended option

about, 132
DownloadReadSize

MobiLink synchronization profile option, 158
DownloadReadSize dbmlsync extended option

about, 133
DownloadRow event

dbmlsync integration component, 290
DROP PUBLICATION statement

MobiLink using, 74
DROP SYNCHRONIZATION SUBSCRIPTION
statement

using, 78
dropping

MobiLink subscriptions from SQL Anywhere
clients, 78
MobiLink users from SQL Anywhere clients, 76

dropping MobiLink subscriptions
SQL Anywhere clients, 78

dropping MobiLink users
SQL Anywhere clients, 76

dropping publications
MobiLink SQL Anywhere clients, 74

drs dbmlsync extended option
about, 133

ds dbmlsync extended option
about, 132

dst option
MobiLink Microsoft ActiveSync provider utility
(mlasinst), 18

E
e2ee_public_key protocol option

MobiLink client connection option, 36
e2ee_type protocol option

MobiLink client connection option, 35
ECC

MobiLink clients, 51
ECC protocol option

MobiLink clients, 51

eh dbmlsync extended option
about, 136

el dbmlsync extended option
about, 134

end-to-end encryption public key
MobiLink client connection option, 36

end-to-end encryption type
MobiLink client connection option, 35

EndDownload event
dbmlsync integration component, 291

EndLogScan event
dbmlsync integration component, 291

EndSynchronization event
dbmlsync integration component, 292

EndUpload event
dbmlsync integration component, 293

environment variables
command prompts, vii
command shells, vii

ErrorLogSendLimit dbmlsync extended option
about, 134

ErrorMessageEnabled property
dbmlsync integration component, 281

errors
MobiLink dbmlsync clients, 182

event arguments
SQL Anywhere clients, 180

event hook sequence
SQL Anywhere clients, 178

event hooks
#hook_dict table, 180
about, 178
commits not allowed, 180
connections, 182
customizing the SQL Anywhere client
synchronization process, 178
error handling, 182
event arguments, 180
event hook sequence, 178
fatal errors, 182
ignoring errors, 183
procedure owner, 180
rollbacks not allowed, 180
sp_hook_dbmlsync_abort, 183
sp_hook_dbmlsync_all_error, 185
sp_hook_dbmlsync_begin, 188
sp_hook_dbmlsync_communication_error, 189
sp_hook_dbmlsync_delay, 191

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 341

sp_hook_dbmlsync_download_begin, 194
sp_hook_dbmlsync_download_log_ri_violation,
196
sp_hook_dbmlsync_download_ri_violation, 198
sp_hook_dbmlsync_download_table_begin, 200
sp_hook_dbmlsync_download_table_end, 201
sp_hook_dbmlsync_end, 203
sp_hook_dbmlsync_log_rescan, 205
sp_hook_dbmlsync_logscan_begin, 207
sp_hook_dbmlsync_logscan_end, 208
sp_hook_dbmlsync_misc_error, 210
sp_hook_dbmlsync_ml_connect_failed, 213
sp_hook_dbmlsync_process_exit_code, 216
sp_hook_dbmlsync_schema_upgrade, 217
sp_hook_dbmlsync_set_extended_options, 219
sp_hook_dbmlsync_set_ml_connect_info, 220
sp_hook_dbmlsync_set_upload_end_progress, 222
sp_hook_dbmlsync_sql_error, 224
sp_hook_dbmlsync_upload_begin, 226
sp_hook_dbmlsync_upload_end, 227
sp_hook_dbmlsync_validate_download_file, 229
using, 180

event hooks for SQL Anywhere clients
about, 178

event-hook procedure owner
SQL Anywhere clients, 180

event-hooks
sp_hook_dbmlsync_begin, 194
sp_hook_dbmlsync_download_end, 195

EventChannelSize property
dbmlsync integration component, 284

events
dbmlsync integration component, 285

examples
MobiLink scripted upload, 323

exit codes
dbmlsync [sp_hook_dbmlsync_abort], 183
dbmlsync
[sp_hook_dbmlsync_process_exit_code], 216

ExitCode property
dbmlsync integration component, 284

extended options
configuring at SQL Anywhere clients, 75
dbmlsync, 126
priority order for SQL Anywhere clients, 126

external authenticator properties
MobiLink, 17

external servers

authenticating to in MobiLink applications, 15
ExtOpt

MobiLink synchronization profile option, 158

F
failover

MobiLink SQL Anywhere clients using
sp_hook_dbmlsync_ml_connect_failed, 213

feedback
documentation, viii
providing, viii
reporting an error, viii
requesting an update, viii

file transfers
MobiLink file transfer utility (mlfiletransfer), 21

file-based downloads
dbmlsync -bc option, 99
dbmlsync -be option, 99
dbmlsync -bg option, 100

finding out more and requesting technical assistance
technical support, viii

Fini method
DbmlsyncClient class [Dbmlsync .NET API], 258
DbmlsyncClient class [Dbmlsync C++ API], 237

FIPS
MobiLink client connection option, 36

FIPS protocol option
MobiLink client connection option, 36
MobiLink clients, 51

FireTriggers dbmlsync extended option
about, 135

first synchronization always works
dbmlsync, 66

FreeEventInfo method
DbmlsyncClient class [Dbmlsync C++ API], 237

ft dbmlsync extended option
about, 135

G
GetErrorInfo method

DbmlsyncClient class [Dbmlsync .NET API], 259
DbmlsyncClient class [Dbmlsync C++ API], 238

GetEvent method
DbmlsyncClient class [Dbmlsync .NET API], 259
DbmlsyncClient class [Dbmlsync C++ API], 238

GetProperty method
DbmlsyncClient class [Dbmlsync .NET API], 260

Index

342 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

DbmlsyncClient class [Dbmlsync C++ API], 239
getting help

technical support, viii
getting started

SyncConsole, 91
GLOBAL AUTOINCREMENT

(see also AUTOINCREMENT)

H
handling errors

MobiLink dbmlsync clients, 182
handling errors and warnings in event hook procedures

MobiLink dbmlsync clients, 182
help

technical support, viii
hooks

about dbmlsync event hooks, 178
error handling, 182
ignoring errors, 136
sp_hook_dbmlsync_abort, 183
sp_hook_dbmlsync_all_error, 185
sp_hook_dbmlsync_begin, 188
sp_hook_dbmlsync_communication_error, 189
sp_hook_dbmlsync_delay, 191
sp_hook_dbmlsync_download_begin, 194
sp_hook_dbmlsync_download_end, 195
sp_hook_dbmlsync_download_log_ri_violation,
196
sp_hook_dbmlsync_download_ri_violation, 198
sp_hook_dbmlsync_download_table_begin, 200
sp_hook_dbmlsync_download_table_end, 201
sp_hook_dbmlsync_end, 203
sp_hook_dbmlsync_log_rescan, 205
sp_hook_dbmlsync_logscan_begin, 207
sp_hook_dbmlsync_logscan_end, 208
sp_hook_dbmlsync_misc_error, 210
sp_hook_dbmlsync_ml_connect_failed, 213
sp_hook_dbmlsync_process_exit_code, 216
sp_hook_dbmlsync_schema_upgrade, 217
sp_hook_dbmlsync_set_extended_options, 219
sp_hook_dbmlsync_set_ml_connect_info, 220
sp_hook_dbmlsync_set_upload_end_progress, 222
sp_hook_dbmlsync_sql_error, 224
sp_hook_dbmlsync_upload_begin, 226
sp_hook_dbmlsync_upload_end, 227
sp_hook_dbmlsync_validate_download_file, 229
synchronization event hook sequence, 178

synchronization event hooks, 178
host protocol option

MobiLink client connection option, 38
hovering

dbmlsync, 87
HoverRescanThreshold dbmlsync extended option

about, 135
hrt dbmlsync extended option

about, 135
HTTP

MobiLink client options, 25
HTTP synchronization

MobiLink client options, 25
http_buffer_responses protocol option

MobiLink client connection option, 38
http_password protocol option

MobiLink client connection option, 39
http_proxy_password protocol option

MobiLink client connection option, 40
http_proxy_userid protocol option

MobiLink client connection option, 41
http_userid protocol option

MobiLink client connection option, 42
HTTPS

MobiLink client options, 26
HTTPS synchronization

MobiLink client options, 26

I
iAnywhere developer community

newsgroups, viii
iAnywhere.MobiLink.Client namespace

Dbmlsync .NET API reference, 253
identity option

MobiLink client connection option, 42
identity_password option

MobiLink client connection option, 44
IDs

MobiLink remote IDs, 9
IgnoreHookErrors

MobiLink synchronization profile option, 158
IgnoreHookErrors dbmlsync extended option

about, 136
IgnoreScheduling

MobiLink synchronization profile option, 158
IgnoreScheduling dbmlsync extended option

about, 136

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 343

ignoring errors in event-hook procedures
SQL Anywhere clients, 183

IMAP authentication
MobiLink scripts, 15

inc dbmlsync extended option
about, 137

Increment dbmlsync extended option
about, 137

incremental uploads
MobiLink synchronization, 137

InfoMessageEnabled property
dbmlsync integration component, 282

Init method
DbmlsyncClient class [Dbmlsync .NET API], 261
DbmlsyncClient class [Dbmlsync C++ API], 239

initiating
synchronization for SQL Anywhere clients, 79

initiating synchronization
SQL Anywhere clients, 79

initiating synchronization from an application
SQL Anywhere clients, 83

install-dir
documentation usage, vi

installing
MobiLink provider for Microsoft ActiveSync for
SQL Anywhere clients, 84

installing the MobiLink provider for Microsoft
ActiveSync

SQL Anywhere clients, 84
InstantiateClient method

DbmlsyncClient class [Dbmlsync .NET API], 262
DbmlsyncClient class [Dbmlsync C++ API], 240

integration component
dbmlsync, 276

interfaces
DBTools for dbmlsync, 304

IRowTransferData interface
dbmlsync integration component, 300

isc dbmlsync extended option
about, 136

J
Java

MobiLink user authentication, 15
Java and .NET user authentication

MobiLink, 15
java.naming.provider.url

MobiLink external authenticator properties, 17

K
KillConnections

MobiLink synchronization profile option, 158

L
LDAP authentication

MobiLink scripts, 15
locking

MobiLink SQL Anywhere clients, 82
LockTables dbmlsync extended option

about, 138
concurrency during synchronization, 82

log files
MobiLink SQL Anywhere client utility (dbmlsync)
transaction logs, 81
MobiLink SQL Anywhere clients, 90

log offsets
MobiLink SQL Anywhere clients, 66

logging
MobiLink RI violations, 196
MobiLink SQL Anywhere client utility (dbmlsync)
-v option, 123
MobiLink SQL Anywhere client utility (dbmlsync)
transaction logs, 81
MobiLink SQL Anywhere client utility
(dbmlsync)actions, 90

logging dbmlsync activity
about, 90

LogRenameSize
MobiLink synchronization profile option, 158

logscan polling
about, 131

lt dbmlsync extended option
about, 138

M
Mac OS X

MobiLink, 91
mail.imap.host

MobiLink external authenticator properties, 17
mail.imap.port

MobiLink external authenticator properties, 17
mail.pop3.host

MobiLink external authenticator properties, 17
mail.pop3.port

Index

344 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

MobiLink external authenticator properties, 17
Message event

dbmlsync integration component, 294
message log

MobiLink SQL Anywhere client utility (dbmlsync)
about, 90

message log file
MobiLink SQL Anywhere client utility (dbmlsync)
-o option, 111
MobiLink SQL Anywhere client utility (dbmlsync)
-os option, 111
MobiLink SQL Anywhere client utility (dbmlsync)
-ot option, 112

Microsoft ActiveSync
class name for dbmlsync, 124
CREATE SYNCHRONIZATION USER statement
for MobiLink SQL Anywhere clients, 84
installing the MobiLink provider, 18
installing the MobiLink provider for SQL
Anywhere clients, 84
MobiLink Microsoft ActiveSync provider
installation utility (mlasinst), 18
MobiLink SQL Anywhere clients, 83
registering applications for SQL Anywhere clients,
86

Microsoft ActiveSync provider installation utility
(mlasinst)

syntax, 18
mirror logs

deleting for dbmlsync, 139
MirrorLogDirectory dbmlsync extended option

about, 139
ml_remote_id option

SQL Anywhere clients, 65
ml_user

installing a SQL Anywhere client over an old one,
66

ml_username
about, 4
creating, 5

mlasdesk.dll
installing, 18

mlasdev.dll
installing, 18

mlasinst utility
dbmlsync usage, 83
installing the MobiLink provider for Microsoft
ActiveSync for SQL Anywhere clients, 84

options, 18
syntax, 18

mld dbmlsync extended option
about, 139

mlfiletransfer utility
options, 21
syntax, 21

MLUser
MobiLink synchronization profile option, 158

mluser utility
using, 6

mn dbmlsync extended option
about, 140

Mobile Device Center (see Microsoft ActiveSync)
MobiLink

connection parameters for clients, 23
dbmlsync event hooks, 178
dbmlsync options, 93
hooks, 178
logging RI violations, 196
scheduling SQL Anywhere clients, 87
scripted upload, 310
SQL Anywhere clients, 63
users, 4
utilities for clients, 18

MobiLink client network protocol options
about, 23

MobiLink client utilities
about, 18

MobiLink client utility (dbmlsync)
options, 93

MobiLink file transfer utility (mlfiletransfer)
syntax, 21

MobiLink Microsoft ActiveSync provider installation
utility (mlasinst)

syntax, 18
MobiLink performance

estimate number of upload rows, 123
MobiLink security

changing passwords, 8
choosing a user authentication mechanism, 11
custom user authentication, 14
new users, 7
passwords, 6
user authentication, 4
user authentication architecture, 12
user authentication passwords, 7

MobiLink server

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 345

Mac OS X, 91
MobiLink SQL statements

listed, 156
MobiLink synchronization

scheduling SQL Anywhere clients, 87
scripted upload, 310
SQL Anywhere clients, 63

MobiLink synchronization client
options, 93

MobiLink synchronization profiles
introduction, 157
options, 158

MobiLink synchronization subscriptions
SQL Anywhere clients, 77

MobiLink user names
about, 4
creating, 5
using in scripts, 10

MobiLink users
about, 4
configuring properties at SQL Anywhere clients,
75
creating, 5
creating in SQL Anywhere clients, 74
dropping from SQL Anywhere clients, 76

MobiLink utilities
client, 18
MobiLink file transfer (mlfiletransfer) syntax, 21
MobiLink Microsoft ActiveSync provider
(mlasinst) syntax, 18
MobiLink SQL Anywhere client (dbmlsync)
syntax, 93

MobiLinkPwd
MobiLink synchronization profile option, 158

MobiLinkPwd dbmlsync extended option
about, 140

monitoring
logging MobiLink RI violations, 196

mp dbmlsync extended option
about, 140

MSGQ_SHUTDOWN_REQUESTED
DBTools interface for dbmlsync, 308

MSGQ_SLEEP_THROUGH
DBTools interface for dbmlsync, 308

MSGQ_SYNC_REQUESTED
DBTools interface for dbmlsync, 308

N
name option

MobiLink Microsoft ActiveSync provider utility
(mlasinst), 18

named parameters
remote_id, 10
username, 10

network parameters
MobiLink clients, 23

network protocol options
dbmlsync, 128
MobiLink clients, 23

network protocols
MobiLink client options for HTTP, 25
MobiLink client options for HTTPS, 26
MobiLink client options for TCP/IP, 23
MobiLink client options for TLS, 24
specifying for dbmlsync, 129
specifying for MobiLink, 2
UltraLite support for, 28

network_adapter_name protocol option
MobiLink client connection option, 44

network_leave_open protocol option
MobiLink client connection option, 45

network_name protocol option
MobiLink client connection option, 46

new users
MobiLink user authentication, 7

NewMobiLinkPwd
MobiLink synchronization profile option, 158

NewMobiLinkPwd dbmlsync extended option
about, 140

newsgroups
technical support, viii

NoSyncOnStartup dbmlsync extended option
about, 141

nss dbmlsync extended option
about, 141

O
OfflineDirectory dbmlsync extended option

about, 142
offsets

MobiLink SQL Anywhere clients, 66
online books

PDF, v
operating systems

Index

346 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Unix, v
Windows, v
Windows CE, v
Windows Mobile, v

options
MobiLink dbmlsync extended options, 126
MobiLink file transfer utility (mlfiletransfer), 21
MobiLink Microsoft ActiveSync provider utility
(mlasinst), 18
MobiLink SQL Anywhere client utility
(dbmlsync), 93
UltraLite network protocols, 28

options for performance tuning
MobiLink SQL Anywhere clients, 80

order of tables
dbmlsync extended option, 148

P
p dbmlsync extended option

about, 131
Palm OS

version 12, deprecated feature, MobiLink, 1
parameters

MobiLink client connection, 23
partitioning

column-wise for MobiLink SQL Anywhere clients,
69
row-wise partitioning for MobiLink SQL
Anywhere clients, 70

passthrough mode
(see also SQL passthrough)

passwords
changing for MobiLink, 8
MobiLink authentication by end users, 7
MobiLink user authentication setup, 6

path property
dbmlsync integration component, 279

PDF
documentation, v

performance
MobiLink SQL Anywhere clients, 80

persistent connections
dbmlsync -pc option, 113

persistent protocol option
MobiLink client connection option, 47

ping
dbmlsync synchronization parameter, 114

MobiLink synchronization profile option, 158
Ping method

DbmlsyncClient class [Dbmlsync .NET API], 262
DbmlsyncClient class [Dbmlsync C++ API], 240

pinging
MobiLink server, 114

polling
dbmlsync logscan polling, 131

PollingPeriod dbmlsync extended option
about, 142

POP3 authentication
MobiLink scripts, 15

port protocol option
MobiLink client connection option, 47

pp dbmlsync extended option
about, 142

preparing
remote databases for MobiLink, 63

priority order for extended options and connection
parameters

SQL Anywhere clients, 126
procedures

MobiLink dbmlsync event hooks, 178
programming interfaces

dbmlsync, 89
progress

scripted upload, 318
progress offsets

MobiLink SQL Anywhere clients, 66
ProgressIndex event

dbmlsync integration component, 296
ProgressMessage event

dbmlsync integration component, 296
properties

dbmlsync integration component, 279
protocol options

dbmlsync, 128
MobiLink clients, 23

protocols
(see also network protocols)
MobiLink client options for HTTP, 25
MobiLink client options for HTTPS, 26
MobiLink client options for TCP/IP, 23
MobiLink client options for TLS, 24
specifying for dbmlsync, 129
UltraLite list, 28

proxy_host protocol option
MobiLink client connection option, 48

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 347

proxy_hostname option
MobiLink client connection option, 48

proxy_port protocol option
MobiLink client connection option, 49

proxy_portnumber option
MobiLink client connection option, 49

Publication
MobiLink synchronization profile option, 158

publications
about MobiLink SQL Anywhere clients, 67
altering for MobiLink SQL Anywhere clients, 72
column-wise partitioning for MobiLink SQL
Anywhere clients, 69
creating for MobiLink SQL Anywhere clients, 67
download-only, 71
dropping from MobiLink SQL Anywhere clients,
74
MobiLink SQL Anywhere client offsets, 66
row-wise partitioning for MobiLink SQL
Anywhere clients, 70
simple publications for MobiLink SQL Anywhere
clients, 68
using a WHERE clause in MobiLink, 70

publishing
MobiLink selected columns (SQL Anywhere
clients), 69
MobiLink selected rows (SQL Anywhere clients),
70
MobiLink whole tables (SQL Anywhere clients),
68
selected columns for MobiLink SQL Anywhere
clients, 69
selected rows in MobiLink, 70
SQL Anywhere client tables, 67
SQL Anywhere client whole tables, 68

publishing data
MobiLink SQL Anywhere clients, 67

R
reconciling data (see synchronization)
referential integrity

resolving MobiLink RI violations, 196
registering

MobiLink SQL Anywhere applications with
Microsoft ActiveSync, 86
MobiLink users, 5

registering MobiLink users

about, 5
remote databases

creating SQL Anywhere clients, 63
deploying SQL Anywhere clients, 63
MobiLink SQL Anywhere clients, 63
restoring from backup, 116
transferring files, 21

remote DBA permissions
MobiLink synchronization of SQL Anywhere
clients, 80

remote IDs
about, 9
setting in SQL Anywhere databases, 65

remote MobiLink databases
schema changes, 58

RemoteProgressGreater
MobiLink synchronization profile option, 158

RemoteProgressLess
MobiLink synchronization profile option, 158

removing
articles from MobiLink SQL Anywhere clients, 72

restartable downloads
dbmlsync -dc option, 103
sp_hook_dbmlsync_end, 203

restoring
remote databases from backup, 116

return codes
dbmlsync [sp_hook_dbmlsync_abort], 183
dbmlsync
[sp_hook_dbmlsync_process_exit_code], 216

RI violations
MobiLink dbmlsync clients, 182

ROLLBACK statement
event-hook procedures, 180

row-wise partitioning
MobiLink SQL Anywhere clients, 70

RowOperation property
dbmlsync integration component, 301

RSA
MobiLink clients, 51

RSA protocol option
MobiLink clients, 51

run method
dbmlsync integration component, 278

S
s.remote_id

Index

348 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

usage, 10
s.username

MobiLink use in scripts, 10
sa dbmlsync extended option

about, 146
samples-dir

documentation usage, vi
sch dbmlsync extended option

about, 143
Schedule dbmlsync extended option

about, 143
schedules

MobiLink SQL Anywhere clients, 87
scheduling

ignore for dbmlsync, 136
MobiLink SQL Anywhere client utility (dbmlsync)
Schedule extended option, 143
MobiLink SQL Anywhere clients, 87
MobiLink using sp_hook_dbmlsync_delay, 191
MobiLink using sp_hook_dbmlsync_end, 203

scheduling synchronization
SQL Anywhere clients, 87

schema changes
remote MobiLink databases, 58

schema upgrades
sp_hook_dbmlsync_schema_upgrade event hook,
217
SQL Anywhere remote databases, 60
UltraLite remote databases, 61

scn dbmlsync extended option
about, 146

script parameters
remote_id, 10
username, 10

script-based upload
about MobiLink, 310

scripted upload
about MobiLink, 310
MobiLink custom progress values, 319
MobiLink defining stored procedures for inserts,
320
MobiLink defining stored procedures for scripted
upload, 318
MobiLink design, 312
MobiLink example, 323

scripted uploads
MobiLink defining stored procedures for deletes,
321

MobiLink defining stored procedures for updates,
322

scripts
MobiLink remote_id parameter, 10

ScriptVersion dbmlsync extended option
about, 145

security
changing MobiLink passwords, 8
MobiLink custom user authentication, 14
MobiLink new users, 7
MobiLink synchronization of SQL Anywhere
clients, 80
MobiLink user authentication, 4
user authentication passwords, 7

selecting
UltraLite network protocols, 28

send column names
dbmlsync extended option, 146

send download acknowledgement
dbmlsync extended option, 146

SendColumnNames dbmlsync extended option
about, 146

SendDownloadAck dbmlsync extended option
about, 146

SendTriggers dbmlsync extended option
about, 147

sequences
synchronization event hooks, 178

server stored procedures
MobiLink dbmlsync event hooks, 178

set_cookie protocol option
MobiLink client connection option, 49

SetProperty method
DbmlsyncClient class [Dbmlsync .NET API], 262
DbmlsyncClient class [Dbmlsync C++ API], 241

setting remote IDs
SQL Anywhere databases, 65

setting up
MobiLink DBTools interface for dbmlsync, 305
MobiLink scripted upload, 311

setting up the dbmlsync integration component
about, 277

SetTitle event
dbmlsync integration component, 297

ShutdownServer method
DbmlsyncClient class [Dbmlsync .NET API], 264
DbmlsyncClient class [Dbmlsync C++ API], 242

shutting down

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 349

dbmlsync automatically, 116
sp_hook_dbmlsync_abort

syntax, 183
sp_hook_dbmlsync_all_error

syntax, 185
sp_hook_dbmlsync_begin

syntax, 188
sp_hook_dbmlsync_communication_error

syntax, 189
sp_hook_dbmlsync_delay

syntax, 191
sp_hook_dbmlsync_download_begin

syntax, 194
sp_hook_dbmlsync_download_end

syntax, 195
sp_hook_dbmlsync_download_log_ri_violation

syntax, 196
sp_hook_dbmlsync_download_ri_violation

syntax, 198
sp_hook_dbmlsync_download_table_begin

syntax, 200
sp_hook_dbmlsync_download_table_end

syntax, 201
sp_hook_dbmlsync_end

syntax, 203
sp_hook_dbmlsync_log_rescan

syntax, 205
sp_hook_dbmlsync_logscan_begin

syntax, 207
sp_hook_dbmlsync_logscan_end

syntax, 208
sp_hook_dbmlsync_misc_error

syntax, 210
sp_hook_dbmlsync_ml_connect_failed

syntax, 213
sp_hook_dbmlsync_process_exit_code

syntax, 216
sp_hook_dbmlsync_schema_upgrade

syntax, 217
sp_hook_dbmlsync_set_extended_options

syntax, 219
sp_hook_dbmlsync_set_ml_connect_info

syntax, 220
sp_hook_dbmlsync_set_upload_end_progress

syntax, 222
sp_hook_dbmlsync_sql_error

syntax, 224
sp_hook_dbmlsync_upload_begin

syntax, 226
sp_hook_dbmlsync_upload_end

syntax, 227
sp_hook_dbmlsync_validate_download_file

syntax, 229
specifying the network protocol for clients

MobiLink, 2
SQL Anywhere

as MobiLink clients, 1
documentation, v

SQL Anywhere client logging
about, 90

SQL Anywhere client utility (dbmlsync)
syntax, 93

SQL Anywhere clients
about MobiLink, 63
dbmlsync integration component, 276
introduction, 1
MobiLink SQL Anywhere client utility
(dbmlsync), 93
registering for Microsoft ActiveSync, 86

SQL Anywhere Developer Centers
finding out more and requesting technical support,
ix

SQL Anywhere remote databases
about MobiLink, 63

SQL Anywhere Tech Corner
finding out more and requesting technical support,
ix

SQL statements
MobiLink, 156

src option
MobiLink Microsoft ActiveSync provider utility
(mlasinst), 18

st dbmlsync extended option
about, 147

StartServer method
DbmlsyncClient class [Dbmlsync .NET API], 265
DbmlsyncClient class [Dbmlsync C++ API], 243

state
MobiLink SQL Anywhere clients, 66

statements
MobiLink, 156

stop method
dbmlsync integration component, 278

stored procedures
MobiLink client procedures, 178
MobiLink dbmlsync event hooks, 178

Index

350 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

sp_hook_dbmlsync_abort syntax, 183
sp_hook_dbmlsync_all_error syntax, 185
sp_hook_dbmlsync_begin syntax, 188
sp_hook_dbmlsync_communication_error syntax,
189
sp_hook_dbmlsync_delay syntax, 191
sp_hook_dbmlsync_download_begin syntax, 194
sp_hook_dbmlsync_download_end syntax, 195
sp_hook_dbmlsync_download_log_ri_violation,
196
sp_hook_dbmlsync_download_ri_violation, 198
sp_hook_dbmlsync_download_table_begin syntax,
200
sp_hook_dbmlsync_download_table_end syntax,
201
sp_hook_dbmlsync_end syntax, 203
sp_hook_dbmlsync_log_rescan syntax, 205
sp_hook_dbmlsync_logscan_begin syntax, 207
sp_hook_dbmlsync_logscan_end syntax, 208
sp_hook_dbmlsync_misc_error syntax, 210
sp_hook_dbmlsync_ml_connect_failed syntax, 213
sp_hook_dbmlsync_process_exit_code syntax, 216
sp_hook_dbmlsync_schema_upgrade syntax, 217
sp_hook_dbmlsync_set_extended_options syntax,
219
sp_hook_dbmlsync_set_ml_connect_info syntax,
220
sp_hook_dbmlsync_set_upload_end_progress
syntax, 222
sp_hook_dbmlsync_sql_error syntax, 224
sp_hook_dbmlsync_upload_begin syntax, 226
sp_hook_dbmlsync_upload_end syntax, 227
sp_hook_dbmlsync_validate_download_file
syntax, 229

stream parameters
(see also protocol options)
MobiLink clients, 23

Subscription
MobiLink synchronization profile option, 158

subscriptions
MobiLink SQL Anywhere clients, 77

support
newsgroups, viii

supported network protocols
UltraLite list, 28

supported platforms
dbmlsync integration component, 277

sv dbmlsync extended option

about, 145
switches

MobiLink file transfer utility (mlfiletransfer), 21
MobiLink Microsoft ActiveSync provider utility
(mlasinst), 18
MobiLink SQL Anywhere client utility
(dbmlsync), 93

Sync method
DbmlsyncClient class [Dbmlsync .NET API], 266
DbmlsyncClient class [Dbmlsync C++ API], 244

SyncConsole
getting started, 91

synchronization
changing passwords, 8
connection parameters for clients, 23
custom user authentication, 14
customizing, 178
dbmlsync first synchronization, 66
initiating for SQL Anywhere clients, 79
Microsoft ActiveSync for MobiLink SQL
Anywhere clients, 83
MobiLink client utilities, 18
MobiLink dbmlsync event hooks, 178
scheduling dbmlsync, 143
scheduling MobiLink SQL Anywhere clients, 87
SQL Anywhere clients, 63
transactions, 180

synchronization event hook sequence
SQL Anywhere clients, 178

synchronization profiles
-sp option, 119
SQL Anywhere clients, 157

synchronization subscriptions
(see also subscriptions)
altering for SQL Anywhere clients, 78
dropping from SQL Anywhere clients, 78
priority order for extended options and connection
parameters, 126
SQL Anywhere clients, 77

synchronization users
about, 4
configuring properties at SQL Anywhere clients,
75
creating, 5
creating in SQL Anywhere clients, 74
dropping from SQL Anywhere clients, 76

synchronizing
(see also synchronization)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 351

MobiLink new users, 7
syntax

MobiLink dbmlsync event hooks, 178
MobiLink file transfer utility (mlfiletransfer), 21
MobiLink Microsoft ActiveSync provider
installation utility (mlasinst), 18
MobiLink SQL Anywhere client utility
(dbmlsync), 93
MobiLink synchronization utilities for clients, 18

system procedures
MobiLink dbmlsync event hooks, 178

system tables
MobiLink clients, 3

T
table order

dbmlsync extended option, 148
TableName property

dbmlsync integration component, 301
TableOrder dbmlsync extended option

about, 148
TableOrderChecking dbmlsync extended option

about, 149
tables

adding to remote MobiLink SQL Anywhere
databases, 60
column-wise partitioning for MobiLink SQL
Anywhere clients, 69
publishing for MobiLink SQL Anywhere clients,
67
row-wise partitioning for MobiLink SQL
Anywhere clients, 70

TCP/IP
MobiLink client options, 23
MobiLink client options for TLS, 24

TCP/IP synchronization
MobiLink client options, 23
MobiLink client options for TLS, 24

tech corners
finding out more and requesting technical support,
ix

technical support
newsgroups, viii

timeout protocol option
MobiLink client connection option, 50

TLS
MobiLink client options, 24

TLS synchronization
MobiLink client options, 24

tls_type protocol option
MobiLink client connection option, 51

toc dbmlsync extended option
about, 149

tor dbmlsync extended option
about, 148

transaction log
mirror log deletion for dbmlsync, 139
MobiLink SQL Anywhere client utility
(dbmlsync), 81

transaction log files
MobiLink SQL Anywhere client utility
(dbmlsync), 81

transaction log mirror
deleting for dbmlsync, 139

transaction-level uploads
dbmlsync -tu option, 119

transactional uploads (see transaction-level uploads)
TransactionalUpload

MobiLink synchronization profile option, 158
transferring files

MobiLink file transfer utility (mlfiletransfer), 21
troubleshooting

MobiLink dbmlsync log, 90
MobiLink deployment of SQL Anywhere clients,
66
newsgroups, viii
restoring the remote database from backup, 116

trusted_certificates protocol option
MobiLink client connection option, 53

U
UltraLite

MobiLink clients, 1
UltraLite applications

as MobiLink clients, 1
UltraLite clients

introduction, 1
UltraLite network protocols

compression deployment requirements, 28
synchronization options for HTTP, 28
synchronization options for HTTPS, 28
synchronization options for TCP/IP, 28
synchronization options for TLS, 28

UltraLite protocols

Index

352 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

synchronization options for HTTP, 28
synchronization options for HTTPS, 28
synchronization options for TCP/IP, 28
synchronization options for TLS, 28

UltraLite synchronization
compressed synchronization deployment
requirements, 28
HTTP client options, 28
HTTPS client options, 28
TCP/IP client options, 28
TLS client options, 28

UltraLiteJ
MobiLink clients, 2

UltraLiteJ clients
introduction, 2

Unix
documentation conventions, v
operating systems, v

uo dbmlsync extended option
about, 150

UpdateGenNum
MobiLink synchronization profile option, 158

upgrading
schemas in MobiLink remote databases, 58

upgrading remote databases
MobiLink SQL Anywhere clients, 66

UPLD_ERR_INVALID_USERID_OR_PASSWORD
dbmlsync error message, 228

UPLD_ERR_REMOTE_ID_ALREADY_IN_USE
dbmlsync error message, 228

UPLD_ERR_SQLCODE_n
dbmlsync error message, 228

UPLD_ERR_USERID_OR_PASSWORD_EXPIRED
dbmlsync error message, 228

upload only synchronization
(see also upload-only synchronization)

upload-only synchronization
dbmlsync -uo option, 122
SQL Anywhere remote databases, 150

UploadAck event
dbmlsync integration component, 298

UploadEventsEnabled property
dbmlsync integration component, 280

uploading data
scripted upload in MobiLink, 310

UploadOnly
MobiLink synchronization profile option, 158

UploadOnly dbmlsync extended option

about, 150
UploadRow event

dbmlsync integration component, 299
UploadRowCnt

MobiLink synchronization profile option, 158
uploads

MobiLink scripted upload, 310
MobiLink SQL Anywhere client utility (dbmlsync)
-uo option for upload-only synchronization, 122

url_suffix protocol option
MobiLink client connection option, 54

UseNaturalTypes property
dbmlsync integration component, 283

user authentication
.NET synchronization logic, 15
changing MobiLink passwords, 8
choosing a mechanism in MobiLink, 11
Java synchronization logic, 15
MobiLink architecture, 12
MobiLink custom mechanism, 14
MobiLink new users, 7
MobiLink passwords, 6
MobiLink security, 4
passwords, 7

user authentication architecture
MobiLink, 12

user names
MobiLink about, 4
MobiLink creating, 5
MobiLink use in scripts, 10

username
MobiLink about, 4
MobiLink creating, 5
MobiLink use in scripts, 10

users
MobiLink about, 4
MobiLink creating, 5
MobiLink creation in SQL Anywhere clients, 74

utilities
MobiLink file transfer (mlfiletransfer) syntax, 21
MobiLink list of client utilities, 18
MobiLink Microsoft ActiveSync provider
(mlasinst) syntax, 18
MobiLink SQL Anywhere client (dbmlsync)
syntax, 93

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 353

V
v dbmlsync extended option

about, 150
Verbose dbmlsync extended option

about, 150
VerboseHooks dbmlsync extended option

about, 151
VerboseMin dbmlsync extended option

about, 152
VerboseOptions dbmlsync extended option

about, 153
VerboseRowCounts dbmlsync extended option

about, 154
VerboseRowValues dbmlsync extended option

about, 155
VerboseUpload dbmlsync extended option

about, 156
Verbosity

MobiLink synchronization profile option, 158
verbosity

MobiLink SQL Anywhere client utility (dbmlsync)
setting, 123

verbosity option
MobiLink SQL Anywhere client utility
(dbmlsync), 123

verifying certificate fields
MobiLink TLS certificate_company option, 29
MobiLink TLS certificate_name option, 30
MobiLink TLS certificate_unit option, 32

version protocol option
MobiLink client connection option, 55

vm dbmlsync extended option
about, 152

vn dbmlsync extended option
about, 154

vo dbmlsync extended option
about, 153

vr dbmlsync extended option
about, 155

vs dbmlsync extended option
about, 151

vu dbmlsync extended option
about, 156

W
WaitForServerShutdown method

DbmlsyncClient class [Dbmlsync .NET API], 267

DbmlsyncClient class [Dbmlsync C++ API], 245
WaitingForUploadAck event

dbmlsync integration component, 300
WarningMessageEnabled property

dbmlsync integration component, 281
WHERE clause

MobiLink publications, 70
Windows

documentation conventions, v
operating systems, v

Windows CE (see Windows Mobile)
Windows Mobile

dbmlsync preloading DLLs, 114
documentation conventions, v
operating systems, v
Windows CE, v

Windows Mobile Device Center (see Microsoft
ActiveSync)

Z
zlib compression

MobiLink synchronization, 33
zlib_download_window_size protocol option

MobiLink client connection option, 56
zlib_upload_window_size protocol option

MobiLink client connection option, 57

Index

354 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

	MobiLink™ - Client Administration
	Contents
	About this book
	About the SQL Anywhere documentation
	Documentation conventions
	Contacting the documentation team
	Finding out more and requesting technical support

	Introduction to MobiLink clients
	MobiLink clients
	SQL Anywhere clients
	UltraLite clients
	UltraLiteJ clients
	Specifying the network protocol for clients
	System tables in MobiLink

	MobiLink users
	Introduction to MobiLink users
	Creating and registering MobiLink users
	Providing initial passwords for users
	Synchronizations from new users
	Prompting end users to enter passwords
	Changing passwords

	Remote IDs
	Setting the MobiLink remote ID
	Using remote IDs and MobiLink user names in scripts

	Choosing a user authentication mechanism
	User authentication architecture
	Authentication process
	Custom user authentication
	Java and .NET user authentication
	Authenticating to external servers
	External authenticator properties

	MobiLink client utilities
	Introduction to MobiLink client utilities
	Microsoft ActiveSync Provider Installation utility (mlasinst)
	MobiLink File Transfer utility (mlfiletransfer)

	MobiLink client network protocol options
	MobiLink client network protocol option summary
	buffer_size
	certificate_company
	certificate_name
	certificate_unit
	client_port
	compression
	custom_header
	e2ee_type
	e2ee_public_key
	fips
	host
	http_buffer_responses
	http_password
	http_proxy_password
	http_proxy_userid
	http_userid
	identity
	identity_name
	identity_password
	network_adapter_name
	network_leave_open
	network_name
	persistent
	port
	proxy_host
	proxy_port
	set_cookie
	timeout
	tls_type
	trusted_certificates
	url_suffix
	version
	zlib_download_window_size
	zlib_upload_window_size

	Schema changes in remote clients
	Introduction to MobiLink client schema changes
	Associating script versions with subscriptions
	Schema upgrades for SQL Anywhere remote databases
	Schema upgrades for UltraLite remote databases

	SQL Anywhere clients for MobiLink
	SQL Anywhere clients
	Creating a remote database
	Deploying remote databases
	Setting remote IDs
	Upgrading remote databases
	Progress offsets

	Publishing data
	Publishing whole tables
	Publishing only some columns in a table
	Publishing only some rows in a table
	Download-only publications
	Altering existing publications
	Dropping publications

	Creating MobiLink users
	Storing extended options for MobiLink users
	Dropping MobiLink users

	Creating synchronization subscriptions
	Altering MobiLink subscriptions
	Dropping MobiLink subscriptions

	Initiating synchronization
	Using dbmlsync extended options
	Dbmlsync network protocol options

	Transaction log files
	Concurrency during synchronization
	Initiating synchronization from an application

	Using Microsoft ActiveSync synchronization
	Configuring SQL Anywhere remote databases for Microsoft ActiveSync
	Installing the MobiLink provider for Microsoft ActiveSync
	Registering SQL Anywhere clients for Microsoft ActiveSync

	Scheduling synchronization
	Setting up scheduling with dbmlsync options
	Initiating synchronization with event hooks

	Customizing dbmlsync synchronization
	Dbmlsync API
	SQL Anywhere client logging
	Running MobiLink on Mac OS X
	Version considerations

	MobiLink SQL Anywhere client utility (dbmlsync)
	dbmlsync syntax
	@data dbmlsync option
	-a dbmlsync option
	-ap dbmlsync option
	-ba dbmlsync option
	-bc dbmlsync option
	-be dbmlsync option
	-bg dbmlsync option
	-bk dbmlsync option
	-bkr dbmlsync option
	-c dbmlsync option
	-ci dbmlsync option
	-cl dbmlsync option
	-cm dbmlsync option
	-d dbmlsync option
	-dc dbmlsync option
	-dl dbmlsync option
	-do dbmlsync option
	-drs dbmlsync option
	-ds dbmlsync option
	-e dbmlsync option
	-eh dbmlsync option
	-ek dbmlsync option
	-ep dbmlsync option
	-eu dbmlsync option
	-is dbmlsync option
	-k dbmlsync option (deprecated)
	-l dbmlsync option
	-mn dbmlsync option
	-mp dbmlsync option
	-n dbmlsync option (deprecated)
	-o dbmlsync option
	-os dbmlsync option
	-ot dbmlsync option
	-p dbmlsync option
	-pc+ dbmlsync option
	-pd dbmlsync option
	-pi dbmlsync option
	-po dbmlsync option
	-pp dbmlsync option
	-q dbmlsync option
	-qc dbmlsync option
	-r dbmlsync option
	-s dbmlsync option
	-sc dbmlsync option
	-sm dbmlsync option
	-sp dbmlsync option
	-tu dbmlsync option
	-u dbmlsync option (deprecated)
	-ud dbmlsync option
	-ui dbmlsync option
	-uo dbmlsync option
	-urc dbmlsync option
	-ux dbmlsync option
	-v dbmlsync option
	-wc dbmlsync option
	-x dbmlsync option

	MobiLink SQL Anywhere client extended options
	Introduction to dbmlsync extended options
	BufferDownload (bd) extended option
	CommunicationAddress (adr) extended option
	CommunicationType (ctp) extended option
	ConflictRetries (cr) extended option
	ContinueDownload (cd) extended option
	DisablePolling (p) extended option
	DownloadOnly (ds) extended option
	DownloadReadSize (drs) extended option
	ErrorLogSendLimit (el) extended option
	FireTriggers (ft) extended option
	HoverRescanThreshold (hrt) extended option
	IgnoreHookErrors (eh) extended option
	IgnoreScheduling (isc) extended option
	Increment (inc) extended option
	LockTables (lt) extended option
	MirrorLogDirectory (mld) extended option
	MobiLinkPwd (mp) extended option
	NewMobiLinkPwd (mn) extended option
	NoSyncOnStartup (nss) extended option
	OfflineDirectory (dir) extended option
	PollingPeriod (pp) extended option
	Schedule (sch) extended option
	ScriptVersion (sv) extended option
	SendColumnNames (scn) extended option
	SendDownloadAck (sa) extended option
	SendTriggers (st) extended option
	TableOrder (tor) extended option
	TableOrderChecking (toc) extended option
	UploadOnly (uo) extended option
	Verbose (v) extended option
	VerboseHooks (vs) extended option
	VerboseMin (vm) extended option
	VerboseOptions (vo) extended option
	VerboseRowCounts (vn) extended option
	VerboseRowValues (vr) extended option
	VerboseUpload (vu) extended option

	MobiLink SQL statements
	MobiLink statements

	MobiLink synchronization profiles
	AuthParms synchronization profile option
	ApplyDnldFile synchronization profile option
	Background synchronization profile option
	BackgroundRetry synchronization profile option
	CacheInit synchronization profile option
	CacheMin synchronization profile option
	CacheMax synchronization profile option
	ContinueDownload synchronization profile option
	CreateDnldFile synchronization profile option
	DnldFileExtra synchronization profile option
	DownloadOnly synchronization profile option
	DownloadReadSize synchronization profile option
	ExtOpt synchronization profile option
	IgnoreHookErrors synchronization profile option
	IgnoreScheduling synchronization profile option
	KillConnections synchronization profile option
	LogRenameSize synchronization profile option
	MobiLinkPwd synchronization profile option
	MLUser synchronization profile option (deprecated)
	NewMobiLinkPwd synchronization profile option
	Ping synchronization profile option
	Publication synchronization profile option
	RemoteProgressGreater synchronization profile option
	RemoteProgressLess synchronization profile option
	Subscription synchronization profile option
	TransactionalUpload synchronization profile option
	UpdateGenNum synchronization profile option
	UploadOnly synchronization profile option
	UploadRowCnt synchronization profile option
	Verbosity synchronization profile option

	Event hooks for SQL Anywhere clients
	Introduction to dbmlsync hooks
	Synchronization event hook sequence
	Using event-hook procedures
	#hook_dict table
	Connections for event-hook procedures
	Handling errors and warnings in event hook procedures

	sp_hook_dbmlsync_abort
	sp_hook_dbmlsync_all_error
	sp_hook_dbmlsync_begin
	sp_hook_dbmlsync_communication_error
	sp_hook_dbmlsync_delay
	sp_hook_dbmlsync_download_begin
	sp_hook_dbmlsync_download_end
	sp_hook_dbmlsync_download_log_ri_violation
	sp_hook_dbmlsync_download_ri_violation
	sp_hook_dbmlsync_download_table_begin
	sp_hook_dbmlsync_download_table_end
	sp_hook_dbmlsync_end
	sp_hook_dbmlsync_log_rescan
	sp_hook_dbmlsync_logscan_begin
	sp_hook_dbmlsync_logscan_end
	sp_hook_dbmlsync_misc_error
	sp_hook_dbmlsync_ml_connect_failed
	sp_hook_dbmlsync_process_exit_code
	sp_hook_dbmlsync_schema_upgrade
	sp_hook_dbmlsync_set_extended_options
	sp_hook_dbmlsync_set_ml_connect_info
	sp_hook_dbmlsync_set_upload_end_progress
	sp_hook_dbmlsync_sql_error
	sp_hook_dbmlsync_upload_begin
	sp_hook_dbmlsync_upload_end
	sp_hook_dbmlsync_validate_download_file

	Dbmlsync C++ API reference
	DbmlsyncClient class
	CancelSync method
	CancelSync(DBSC_SyncHdl) method (deprecated)
	CancelSync(DBSC_SyncHdl, bool) method

	Connect method
	Disconnect method
	Fini method
	FreeEventInfo method
	GetErrorInfo method
	GetEvent method
	GetProperty method
	Init method
	InstantiateClient method
	Ping method
	SetProperty method
	ShutdownServer method
	StartServer method
	Sync method
	WaitForServerShutdown method

	DBSC_CancelRet enumeration
	DBSC_ErrorType enumeration
	DBSC_EventType enumeration
	DBSC_GetEventRet enumeration
	DBSC_ShutdownType enumeration
	DBSC_StartType enumeration
	DBSC_ErrorInfo structure
	DBSC_Event structure

	Dbmlsync .NET API reference
	DbmlsyncClient class
	CancelSync method
	CancelSync(UInt32) method (deprecated)
	CancelSync(UInt32, Boolean) method

	Connect method
	Disconnect method
	Fini method
	GetErrorInfo method
	GetEvent method
	GetProperty method
	Init method
	InstantiateClient method
	Ping method
	SetProperty method
	ShutdownServer method
	StartServer method
	Sync method
	WaitForServerShutdown method

	DBSC_CancelRet enumeration
	DBSC_ErrorType enumeration
	DBSC_EventType enumeration
	DBSC_GetEventRet enumeration
	DBSC_ShutdownType enumeration
	DBSC_StartType enumeration
	DBSC_ErrorInfo structure
	DBSC_Event structure

	Dbmlsync integration component (removed)
	Introduction to Dbmlsync integration component (removed)
	Supported platforms (removed)

	Setting up the Dbmlsync integration component (removed)
	Dbmlsync integration component methods (removed)
	Run method (removed)
	Stop method (removed)

	Dbmlsync integration component properties (removed)
	Path property (removed)
	UploadEventsEnabled property (removed)
	DownloadEventsEnabled property (removed)
	ErrorMessageEnabled property (removed)
	WarningMessageEnabled property (removed)
	InfoMessageEnabled property (removed)
	DetailedInfoMessageEnabled property (removed)
	UseVB6Types property (removed)
	ExitCode property (removed)
	EventChannelSize property (removed)
	DispatchChannelSize property (removed)

	Dbmlsync integration component events (removed)
	BeginDownload event (removed)
	BeginLogScan event (removed)
	BeginSynchronization event (removed)
	BeginUpload event (removed)
	ConnectMobilink event (removed)
	DisconnectMobilink event (removed)
	DoneExecution event (removed)
	DownloadRow event (removed)
	EndDownload event (removed)
	EndLogScan event (removed)
	EndSynchronization event (removed)
	EndUpload event (removed)
	Message event (removed)
	ProgressIndex event (removed)
	ProgressMessage event (removed)
	SetTitle event (removed)
	UploadAck event (removed)
	UploadRow event (removed)
	WaitingForUploadAck event (removed)

	IRowTransferData interface (removed)
	RowOperation property (removed)
	TableName property (removed)
	ColumnName property (removed)
	ColumnValue property (removed)
	ColumnCount property (removed)

	DBTools interface for dbmlsync
	Introduction to DBTools interface for dbmlsync
	Setting up the DBTools interface for dbmlsync

	Scripted upload
	Introduction to scripted upload
	Setting up scripted upload
	Design considerations for scripted upload
	Scripted upload with no table locking

	Defining stored procedures for scripted upload
	Custom progress values in scripted upload
	Defining stored procedures for inserts
	Defining stored procedures for deletes
	Defining stored procedures for updates
	Creating publications for scripted upload

	Scripted upload example

	Index

