
SQL Anywhere® Server
Spatial Data Support

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Copyright © 2010 iAnywhere Solutions, Inc. Portions copyright © 2010 Sybase, Inc. All rights reserved.

This documentation is provided AS IS, without warranty or liability of any kind (unless provided by a separate written agreement between
you and iAnywhere).

You may use, print, reproduce, and distribute this documentation (in whole or in part) subject to the following conditions: 1) you must
retain this and all other proprietary notices, on all copies of the documentation or portions thereof, 2) you may not modify the
documentation, 3) you may not do anything to indicate that you or anyone other than iAnywhere is the author or source of the documentation.

iAnywhere®, Sybase®, and the marks listed at http://www.sybase.com/detail?id=1011207 are trademarks of Sybase, Inc. or its subsidiaries.
® indicates registration in the United States of America.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

http://www.sybase.com/detail?id=1011207

Contents

About this book ... v

About the SQL Anywhere documentation ... v

Getting started with spatial data .. 1

Introduction to spatial data ... 1
Compliance and support ... 17
Spatial data usage topics .. 26
Tutorial: Experimenting with the spatial features .. 47

Accessing and manipulating spatial data ... 59

ST_CircularString type .. 59
ST_CompoundCurve type ... 64
ST_Curve type .. 69
ST_CurvePolygon type ... 74
ST_GeomCollection type .. 82
ST_Geometry type ... 88
ST_LineString type .. 223
ST_MultiCurve type ... 229
ST_MultiLineString type .. 235
ST_MultiPoint type .. 240
ST_MultiPolygon type ... 244
ST_MultiSurface type .. 250
ST_Point type ... 259
ST_Polygon type .. 273
ST_SpatialRefSys type .. 281
ST_Surface type ... 288
Spatial compatibility functions ... 292
List of all supported methods .. 325
List of all supported constructors ... 328
List of static methods .. 328
List of aggregate methods .. 329

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 iii

List of set operation methods .. 330
List of spatial predicates ... 330

Index ... 333

SQL Anywhere® Server - Spatial Data Support

iv Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

About this book
This book describes the SQL Anywhere spatial data support and how the spatial features can be used to
generate and analyze spatial data.

The following image represents the distributions of cities and towns across the United States and is one
example of the interesting operations you can perform on spatial data.

About the SQL Anywhere documentation
The complete SQL Anywhere documentation is available in four formats:

● DocCommentXchange DocCommentXchange is a community for accessing and discussing SQL
Anywhere documentation on the web.

To access the documentation, go to http://dcx.sybase.com.

● HTML Help On Windows platforms, the HTML Help contains the complete SQL Anywhere
documentation, including the books and the context-sensitive help for SQL Anywhere tools.

To access the documentation, choose Start » Programs » SQL Anywhere 12 » Documentation »
HTML Help (English).

● Eclipse On Unix platforms, the complete Help is provided in Eclipse format. To access the
documentation, run sadoc from the bin32 or bin64 directory of your SQL Anywhere installation.

● PDF The complete set of SQL Anywhere books is provided as a set of Portable Document Format
(PDF) files. You must have a PDF reader to view information.

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 v

http://dcx.sybase.com/

To access the PDF documentation on Windows operating systems, choose Start » Programs » SQL
Anywhere 12 » Documentation » PDF (English).

To access the PDF documentation on Unix operating systems, use a web browser to open /documentation/
en/pdf/index.html under the SQL Anywhere installation directory.

Documentation conventions
This section lists the conventions used in this documentation.

Operating systems
SQL Anywhere runs on a variety of platforms. Typically, the behavior of the software is the same on all
platforms, but there are variations or limitations. These are commonly based on the underlying operating
system (Windows, Unix), and seldom on the particular variant (IBM AIX, Windows Mobile) or version.

To simplify references to operating systems, the documentation groups the supported operating systems
as follows:

● Windows The Microsoft Windows family includes platforms that are used primarily on server,
desktop, and laptop computers, as well as platforms used on mobile devices. Unless otherwise
specified, when the documentation refers to Windows, it refers to all supported Windows-based
platforms, including Windows Mobile.

Windows Mobile is based on the Windows CE operating system, which is also used to build a variety
of platforms other than Windows Mobile. Unless otherwise specified, when the documentation refers
to Windows Mobile, it refers to all supported platforms built using Windows CE.

● Unix Unless otherwise specified, when the documentation refers to Unix, it refers to all supported
Unix-based platforms, including Linux and Mac OS X.

For the complete list of platforms supported by SQL Anywhere, see “Supported platforms” [SQL
Anywhere 12 - Introduction].

Directory and file names
Usually references to directory and file names are similar on all supported platforms, with simple
transformations between the various forms. In these cases, Windows conventions are used. Where the
details are more complex, the documentation shows all relevant forms.

These are the conventions used to simplify the documentation of directory and file names:

● Uppercase and lowercase directory names On Windows and Unix, directory and file names
may contain uppercase and lowercase letters. When directories and files are created, the file system
preserves letter case.

On Windows, references to directories and files are not case sensitive. Mixed case directory and file
names are common, but it is common to refer to them using all lowercase letters. The SQL Anywhere
installation contains directories such as Bin32 and Documentation.

About this book

vi Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

On Unix, references to directories and files are case sensitive. Mixed case directory and file names are
not common. Most use all lowercase letters. The SQL Anywhere installation contains directories such
as bin32 and documentation.

The documentation uses the Windows forms of directory names. You can usually convert a mixed
case directory name to lowercase for the equivalent directory name on Unix.

● Slashes separating directory and file names The documentation uses backslashes as the
directory separator. For example, the PDF form of the documentation is found in install-dir
\Documentation\en\PDF (Windows form).

On Unix, replace the backslash with the forward slash. The PDF documentation is found in install-dir/
documentation/en/pdf.

● Executable files The documentation shows executable file names using Windows conventions,
with a suffix such as .exe or .bat. On Unix, executable file names have no suffix.

For example, on Windows, the network database server is dbsrv12.exe. On Unix, it is dbsrv12.

● install-dir During the installation process, you choose where to install SQL Anywhere. The
environment variable SQLANY12 is created and refers to this location. The documentation refers to
this location as install-dir.

For example, the documentation may refer to the file install-dir/readme.txt. On Windows, this is
equivalent to %SQLANY12%\readme.txt. On Unix, this is equivalent to $SQLANY12/readme.txt or $
{SQLANY12}/readme.txt.

For more information about the default location of install-dir, see “SQLANY12 environment
variable” [SQL Anywhere Server - Database Administration].

● samples-dir During the installation process, you choose where to install the samples included with
SQL Anywhere. The environment variable SQLANYSAMP12 is created and refers to this location.
The documentation refers to this location as samples-dir.

To open a Windows Explorer window in samples-dir, choose Start » Programs » SQL Anywhere
12 » Sample Applications And Projects.

For more information about the default location of samples-dir, see “SQLANYSAMP12 environment
variable” [SQL Anywhere Server - Database Administration].

Command prompts and command shell syntax
Most operating systems provide one or more methods of entering commands and parameters using a
command shell or command prompt. Windows command prompts include Command Prompt (DOS
prompt) and 4NT. Unix command shells include Korn shell and bash. Each shell has features that extend
its capabilities beyond simple commands. These features are driven by special characters. The special
characters and features vary from one shell to another. Incorrect use of these special characters often
results in syntax errors or unexpected behavior.

The documentation provides command line examples in a generic form. If these examples contain
characters that the shell considers special, the command may require modification for the specific shell.

About the SQL Anywhere documentation

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 vii

The modifications are beyond the scope of this documentation, but generally, use quotes around the
parameters containing those characters or use an escape character before the special characters.

These are some examples of command line syntax that may vary between platforms:

● Parentheses and curly braces Some command line options require a parameter that accepts
detailed value specifications in a list. The list is usually enclosed with parentheses or curly braces. The
documentation uses parentheses. For example:

-x tcpip(host=127.0.0.1)

Where parentheses cause syntax problems, substitute curly braces:

-x tcpip{host=127.0.0.1}

If both forms result in syntax problems, the entire parameter should be enclosed in quotes as required
by the shell:

-x "tcpip(host=127.0.0.1)"

● Semicolons On Unix, semicolons should be enclosed in quotes.

● Quotes If you must specify quotes in a parameter value, the quotes may conflict with the
traditional use of quotes to enclose the parameter. For example, to specify an encryption key whose
value contains double-quotes, you might have to enclose the key in quotes and then escape the
embedded quote:

-ek "my \"secret\" key"

In many shells, the value of the key would be my "secret" key.

● Environment variables The documentation refers to setting environment variables. In Windows
shells, environment variables are specified using the syntax %ENVVAR%. In Unix shells, environment
variables are specified using the syntax $ENVVAR or ${ENVVAR}.

Contacting the documentation team
We would like to receive your opinions, suggestions, and feedback on this Help.

You can leave comments directly on help topics using DocCommentXchange. DocCommentXchange
(DCX) is a community for accessing and discussing SQL Anywhere documentation. Use
DocCommentXchange to:

● View documentation

● Check for clarifications users have made to sections of documentation

● Provide suggestions and corrections to improve documentation for all users in future releases

Go to http://dcx.sybase.com.

About this book

viii Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

http://dcx.sybase.com/

Finding out more and requesting technical support

Newsgroups
If you have questions or need help, you can post messages to the Sybase iAnywhere newsgroups listed below.

When you write to one of these newsgroups, always provide details about your problem, including the
build number of your version of SQL Anywhere. You can find this information by running the following
command: dbeng12 -v.

The newsgroups are located on the forums.sybase.com news server.

The newsgroups include the following:

● sybase.public.sqlanywhere.general
● sybase.public.sqlanywhere.linux
● sybase.public.sqlanywhere.mobilink
● sybase.public.sqlanywhere.product_futures_discussion
● sybase.public.sqlanywhere.replication
● sybase.public.sqlanywhere.ultralite
● ianywhere.public.sqlanywhere.qanywhere

For web development issues, see http://groups.google.com/group/sql-anywhere-web-development.

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information, or ideas on its newsgroups, nor
is iAnywhere Solutions obliged to provide anything other than a systems operator to monitor the service
and ensure its operation and availability.

iAnywhere Technical Advisors, and other staff, assist on the newsgroup service when they have time.
They offer their help on a volunteer basis and may not be available regularly to provide solutions and
information. Their ability to help is based on their workload.

Developer Centers
The SQL Anywhere Tech Corner gives developers easy access to product technical documentation. You
can browse technical white papers, FAQs, tech notes, downloads, techcasts and more to find answers to
your questions as well as solutions to many common issues. See http://www.sybase.com/developer/library/
sql-anywhere-techcorner.

The following table contains a list of the developer centers available for use on the SQL Anywhere Tech
Corner:

About the SQL Anywhere documentation

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 ix

news://forums.sybase.com/sybase.public.sqlanywhere.general
news://forums.sybase.com/sybase.public.sqlanywhere.linux
news://forums.sybase.com/sybase.public.sqlanywhere.mobilink
news://forums.sybase.com/sybase.public.sqlanywhere.product_futures_discussion
news://forums.sybase.com/sybase.public.sqlanywhere.replication
news://forums.sybase.com/sybase.public.sqlanywhere.ultralite
news://forums.sybase.com/ianywhere.public.sqlanywhere.qanywhere
http://groups.google.com/group/sql-anywhere-web-development
http://www.sybase.com/developer/library/sql-anywhere-techcorner
http://www.sybase.com/developer/library/sql-anywhere-techcorner

Name URL Description

SQL Anywhere .NET Developer Center www.sybase.com/de-
veloper/library/sql-
anywhere-techcorner/
microsoft-net

Get started and get
answers to specific
questions regarding
SQL Anywhere
and .NET develop-
ment.

PHP Developer Center www.sybase.com/de-
veloper/library/sql-
anywhere-techcorner/
php

An introduction to us-
ing the PHP (PHP
Hypertext Preproces-
sor) scripting lan-
guage to query your
SQL Anywhere data-
base.

SQL Anywhere Windows Mobile Developer Center www.sybase.com/de-
veloper/library/sql-
anywhere-techcorner/
windows-mobile

Get started and get
answers to specific
questions regarding
SQL Anywhere and
Windows Mobile de-
velopment.

About this book

x Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

http://www.sybase.com/developer/library/sql-anywhere-techcorner/microsoft-net
http://www.sybase.com/developer/library/sql-anywhere-techcorner/microsoft-net
http://www.sybase.com/developer/library/sql-anywhere-techcorner/microsoft-net
http://www.sybase.com/developer/library/sql-anywhere-techcorner/microsoft-net
http://www.sybase.com/developer/library/sql-anywhere-techcorner/php
http://www.sybase.com/developer/library/sql-anywhere-techcorner/php
http://www.sybase.com/developer/library/sql-anywhere-techcorner/php
http://www.sybase.com/developer/library/sql-anywhere-techcorner/php
http://www.sybase.com/developer/library/sql-anywhere-techcorner/windows-mobile
http://www.sybase.com/developer/library/sql-anywhere-techcorner/windows-mobile
http://www.sybase.com/developer/library/sql-anywhere-techcorner/windows-mobile
http://www.sybase.com/developer/library/sql-anywhere-techcorner/windows-mobile

Getting started with spatial data
This section introduces SQL Anywhere spatial support and explains its purpose, describes the supported
data types, and explains how to generate and analyze spatial data.

The spatial data documentation assumes you already have some familiarity with spatial reference systems
and with the spatial data you intend to work with. If you do not, links to additional reading material can
be found here: “Recommended reading on spatial topics” on page 17.

Note
Spatial data support for 32-bit Windows and 32-bit Linux requires a CPU that supports SSE2 instructions.
This support is available with Intel Pentium 4 or later (released in 2001) and AMD Opteron or later
(released in 2003).

Introduction to spatial data
Spatial data is data that describes the position, shape, and orientation of objects in a defined space.
Spatial data in SQL Anywhere is represented as 2D geometries in the form of points, curves (line strings
and strings of circular arcs), and polygons. For example, the following image shows the state of
Massachusetts, representing the union of polygons representing zip code regions.

Two common operations performed on spatial data are calculating the distance between geometries, and
determining the union or intersection of multiple objects. These calculations are performed using
predicates such as intersects, contains, and crosses.

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1

Example of how spatial data might be used
Spatial data support in SQL Anywhere lets application developers associate spatial information with their
data. For example, a table representing companies could store the location of the company as a point, or
store the delivery area for the company as a polygon. This could be represented in SQL as:

CREATE TABLE Locations(
 ID INT,
 ManagerName CHAR(16),
 StoreName CHAR(16),
 Address ST_Point,
 DeliveryArea ST_Polygon)

The spatial data type ST_Point in the example represents a single point, and ST_Polygon represents an
arbitrary polygon. With this schema, the application could show all company locations on a map, or find
out if a company delivers to a particular address using a query similar to the following:

CREATE VARIABLE @pt ST_Point;
SET @pt = ST_Geometry::ST_GeomFromText('POINT(1 1)');
SELECT * FROM Locations
WHERE DeliveryArea.ST_Contains(@pt) = 1

SQL Anywhere provides storage and data management features for spatial data, allowing you to store
information such as geographic locations, routing information, and shape data.

These information pieces are stored as points and various forms of polygons and lines in columns defined
with a corresponding spatial data type (such as ST_Point and ST_Polygon). You use methods and
constructors to access and manipulate the spatial data. SQL Anywhere also provides a set of SQL spatial
functions designed for compatibility with other products.

Object-oriented properties of spatial data types
● Sub-types are more specific than parent type.

● Sub-types inherit methods of parent type.

● Sub-types can be automatically converted to parent type.

● Columns or variables can store sub-types. For example, a column of type ST_Geometry(SRID=4326)
can store spatial values of any type.

● Column or variable typed with a parent type can be cast to, or treated as, a sub-type.

See also
● “Supported spatial data types and their hierarchy” on page 18
● “Spatial compatibility functions” on page 292

Spatial reference systems (SRS) and Spatial reference
identifiers (SRID)

Getting started with spatial data

2 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

In the context of spatial databases, the defined space in which geometries are described is called a spatial
reference system (SRS). A spatial reference system defines, at minimum:

● Units of measure of the underlying coordinate system (degrees, meters, and so on)

● Maximum and minimum coordinates (also referred to as the bounds)

● Default linear unit of measure

● Whether the data is planar or spheroid data

● Projection information for transforming the data to other SRSs

Every spatial reference system has an identifier called a Spatial Reference Identifier (SRID). When
SQL Anywhere performs operations like finding out if a geometry touches another geometry, it uses the
SRID to look up the spatial reference system definition so that it can perform the calculations properly for
that spatial reference system. In a SQL Anywhere database, each SRID must be unique.

By default, SQL Anywhere adds the following spatial reference systems to a new database:

● Default - SRID 0 This is the default spatial reference system used when constructing a geometry
and the SRID is not specified in the SQL and is not present in the value being loaded.

Default is a Cartesian spatial reference system that works with data on a flat, two dimensional plane.
Any point on the plane can be defined using a single pair of x, y coordinates where x and y have the
bounds -1,000,000 to 1,000,000. Distances are measured using perpendicular coordinate axis. This
spatial reference system is assigned SRID of 0.

Cartesian is a planar type of spatial reference system.

● WGS 84 - SRID 4326 The WGS 84 standard provides a spheroidal reference surface for the Earth.
It is the spatial reference system used by the Global Positioning System (GPS). The coordinate origin
of WGS 84 is the Earth's center, and is considered accurate up to ±1 meter. WGS stands for World
Geodetic System.

WGS 84 Coordinates are in degrees, where the first coordinate is longitude with bounds -180 to 180,
and the second coordinate is latitude with bounds -90 to 90.

The default unit of measure for WGS 84 is METRE, and it is a round-Earth type of spatial reference
system.

● WGS 84 (planar) - SRID 1000004326 WGS 84 (planar) is similar to WGS 84 except that it uses
equi-rectangular projection, which distorts length, area and other computations. For example, at the

Introduction to spatial data

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 3

equator in SRID 1000004326, 1 degree longitude is approximately 111 km. At 80 degrees north, 1
degree of longitude is approximately 19 km. But SRID 1000004326 treats 1 degree of longitude as
approximately 111 km at all latitudes. The amount of distortion of lengths in the 1000004326 is
considerable—off by a factor of 10 or more—and the distortion factor varies depending on the
location of the geometries relative to the center of the spatial reference system as well. Consequently,
1000004326 should not be used for distance and area calculations. It should only be used for
relationship predicates such as ST_Contains, ST_Touches, ST_Covers, and so on.

The default unit of measure for WGS 84 (planar) is DEGREE, and it is a flat-Earth type of spatial
reference system.

See also: “Limitations of flat-Earth spatial reference systems” on page 7, and “Supported spatial
predicates” on page 23.

● sa_planar_unbounded - SRID 2,147,483,646 For internal use only.

● sa_octahedral_gnomonic - SRID 2,147,483,647 For internal use only.

Since you can define a spatial reference system however you want and can assign any SRID number, the
spatial reference system definition (projection, coordinate system, and so on) must accompany the data as
it moves between databases or is converted to other SRSs. For example, when you unload spatial data to
WKT, the definition for the spatial reference system is included at the beginning of the file.

Installing additional spatial reference systems using the sa_install_feature system procedure
SQL Anywhere also provides thousands of predefined SRSs for use. However, these SRSs are not
installed in the database by default when you create a new database. You use the sa_install_feature system
procedure to add them. See “sa_install_feature system procedure” [SQL Anywhere Server - SQL
Reference].

You can find descriptions of these additional spatial reference systems at spatialreference.org and www.epsg-
registry.org/.

Determining the list of spatial reference systems currently in the database
Spatial reference system information is stored in the ISYSSPATIALREFERENCESYSTEM system table.
The SRIDs for the SRSs are used as primary key values in this table. The database server uses SRID
values to look up the configuration information for a spatial reference system so that it can interpret the
otherwise abstract spatial coordinates as real positions on the Earth. See
“SYSSPATIALREFERENCESYSTEM system view” [SQL Anywhere Server - SQL Reference].

You can find the list of spatial reference systems by querying the SYSSPATIALREFERENCESYSTEM
system view. Each row in this view defines a spatial reference system.

You can also look in the Spatial Reference Systems folder in Sybase Central to see the list of spatial
reference systems installed in the database:

Getting started with spatial data

4 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

http://spatialreference.org
http://www.epsg-registry.org/
http://www.epsg-registry.org/

Compatibility with popular mapping applications
Some popular web mapping and visualization applications such as Google Earth, Bing Maps, and ArcGIS
Online, use a spatial reference system with a Mercator projection that is based on a spherical model of the
Earth. This spherical model ignores the flattening at the Earth's poles and can lead to errors of up to 800m
in position and up to 0.7 percent in scale, but it also allows applications to perform projection more efficiently.

In the past, applications assigned SRID 900913 to this spatial reference system. However, EPSG has since
released this projection as SRID 3857. For compatibility with applications requiring 900913, you can use
the sa_install_feature to install the additional predefined spatial reference systems provided by SQL
Anywhere, and then manually copy SRID 3857 to 900913.

See also
● “sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference]
● “SYSSPATIALREFERENCESYSTEM system view” [SQL Anywhere Server - SQL Reference]
● “CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL Reference]
● “Flat-Earth and round-Earth representations” on page 6

Units of measure

Geographic features can be measured in degrees of latitude, radians, or other angular units of measure.
Every spatial reference system must explicitly state the name of the unit in which geographic coordinates
are measured, and must include the conversion from the specified unit to a radian.

If you are using a projected coordinate system, the individual coordinate values represent a linear distance
along the surface of the Earth to a point. Coordinate values can be measured by the meter, foot, mile, or
yard. The projected coordinate system must explicitly state the linear unit of measure in which the
coordinate values are expressed.

The following units of measure are automatically installed in any new SQL Anywhere database:

Introduction to spatial data

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 5

● meter A linear unit of measure. Also known as International metre. SI standard unit. Defined by
ISO 1000.

● metre A linear unit of measure. An alias for meter. SI standard unit. Defined by ISO 1000.

● radian An angular unit of measure. SI standard unit. Defined by ISO 1000:1992.

● degree An angular unit of measure (pi()/180.0 radians).

● planar degree A linear unit of measure. Defined as 60 nautical miles. A linear unit of measure
used for geographic spatial reference systems with PLANAR line interpretation.

Installing more predefined units of measure using the sa_install_feature system procedure
SQL Anywhere also provides dozens more predefined units of measure for use. However, these units of
measure are not installed in the database by default when you create a new database. You use the
sa_install_feature system procedure to add them. See “sa_install_feature system procedure” [SQL
Anywhere Server - SQL Reference].

You can find descriptions of these additional units of measure at www.epsg-registry.org/. On the
webpage, type the name of the unit of measure in the Name field, pick Unit of Measure (UOM) from the
Type field, and then click Search.

See also
● “sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference]
● “CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL Reference]
● “LINEAR UNIT OF MEASURE clause, CREATE SPATIAL REFERENCE SYSTEM statement”

[SQL Anywhere Server - SQL Reference]
● “ANGULAR UNIT OF MEASURE clause, CREATE SPATIAL REFERENCE SYSTEM statement”

[SQL Anywhere Server - SQL Reference]
● “SYSUNITOFMEASURE system view” [SQL Anywhere Server - SQL Reference]

Flat-Earth and round-Earth representations

SQL Anywhere supports both flat-Earth and round-Earth representations. Flat-Earth spatial reference
systems represent the entire Earth on a flat, two dimensional plane (planar), and use a simple 2D
Euclidean geometry. Lines between points are straight (except for circular strings), and geometries cannot
wrap over the edge (cross the dateline).

Round-Earth spatial reference systems use an ellipsoid to represent the Earth. Points are mapped to the
ellipsoid for computations, all lines follow the shortest path and arc toward the pole, and geometries can
cross the date line.

Both flat-Earth and round-Earth representations have their limitations. There is not a single ideal map
projection that best represents all features of the Earth, and depending on the location of an object on the
Earth, distortions may affect its area, shape, distance, or direction.

Getting started with spatial data

6 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

http://www.epsg-registry.org/

Limitations of round-Earth spatial reference systems
When working with a round-Earth spatial reference system such as WGS 84, many operations are not
available. For example, computing distance is restricted to points or collections of points.

Some predicates and set operations are also not available.

Circularstrings are not allowed in round-Earth spatial reference systems.

Computations in round-Earth spatial reference systems are more expensive than the corresponding
computation in a flat-Earth spatial reference system.

Limitations of flat-Earth spatial reference systems
A flat-Earth spatial reference system is a planar spatial reference system that has a projection defined for
it. Projection resolves distortion issues that occur when using a flat-Earth spatial reference system to
operate on round-Earth data. For example of the distortion that occurs if projection is not used, the next
two images show the same group of zip code regions in Massachusetts. The first image shows the data in
a SRID 3586, which is a projected planar spatial reference system specifically for Massachusetts data.
The second image shows the data in a planar spatial reference system without projection (SRID
1000004326). The distortion manifests itself in the second image as larger-than-actual distances, lengths,
and areas that cause the image to appear horizontally stretched.

Introduction to spatial data

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 7

While more calculations are possible in flat-Earth spatial reference systems, calculations are only accurate
for areas of bounded size, due to the effect of projection.

You can project round-Earth data to a flat-Earth spatial reference system to perform distance
computations with reasonable accuracy provided you are working within distances of a few hundred
kilometers. To project the data to a planar projected spatial reference system, you use the ST_Transform
method. See “ST_Transform method for type ST_Geometry” on page 208.

How snap-to-grid and tolerance impact spatial calculations
Snap-to-grid is the action of positioning a geometry so it aligns with intersection points on a grid. In the
context of spatial data, a grid is a framework of lines that is laid down over a two-dimensional
representation of a spatial reference system. SQL Anywhere uses a square grid.

By default, SQL Anywhere automatically sets the grid size so that 12 significant digits can be stored for
every point within the X and Y bounds of a spatial reference system. For example, if the range of X
values is from -180 to 180, and the range of Y values is from -90 to 90, the database server sets the grid
size to 1e-9 (0.000000001). That is, the distance between both horizontal and vertical grid lines is 1e-9.
The intersection points of the grid line represents all the points that can be represented in the spatial
reference system. When a geometry is created or loaded, each point's X and Y coordinates are snapped to
the nearest points on the grid.

Tolerance defines the distance within which two points or parts of geometries are considered equal. This
can be thought of as all geometries being represented by points and lines drawn by a marker with a thick
tip, where the thickness is equal to the tolerance. Any parts that touch when drawn by this thick marker
are considered equal within tolerance. If two points are exactly equal to tolerance apart, they are
considered not equal within tolerance.

Note that tolerance can cause extremely small geometries to become invalid. Lines which have length less
than tolerance are invalid (because the points are equivalent), and similarly polygons where all points are
equal within tolerance are considered invalid.

Snap-to-grid and tolerance are set on the spatial reference system. They are always specified in the linear
unit of measure for the spatial reference system. Snap-to-grid and tolerance work together to overcome
issues with inexact arithmetic and imprecise data. However, you should be aware of how their behavior
can impact the results of spatial operations.

Note
For planar spatial reference systems, setting grid size to 0 is never recommended as it can result in
incorrect results from spatial operations. For round-Earth spatial reference systems, grid size and
tolerance must be set to 0. SQL Anywhere uses fixed grid size and tolerance on an internal projection
when performing round-Earth operations.

The following examples illustrate the impact of grid size and tolerance settings on spatial calculations.

Getting started with spatial data

8 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example 1: Snap-to-grid impacts intersection results
Two triangles (shown in black) are loaded into a spatial reference system where tolerance is set to grid
size, and the grid in the diagram is based on the grid size. The red triangles represent the black triangles
after the triangle vertexes are snapped to the grid. Notice how the original triangles (black) are well within
tolerance of each other, whereas the snapped versions in red do not. ST_Intersects returns 0 for these two
geometries. If tolerance was larger than the grid size, ST_Intersects would return 1 for these two geometries.

Example 2: Tolerance impacts intersection results
In the following example, two lines lie in a spatial reference system where tolerance is set to 0. The
intersection point of the two lines is snapped to the nearest vertex in the grid. Since tolerance is set to 0, a
test to determine if the intersection point of the two lines intersects the diagonal line returns false.

In other words, the following expression returns 0 when tolerance is 0:

vertical_line.ST_Intersection(diagonal_line).ST_Intersects(diagonal_line)

Introduction to spatial data

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 9

Setting the tolerance to grid size (the default), however, causes the intersection point to be inside the thick
diagonal line. So a test of whether the intersection point intersects the diagonal line within tolerance
would pass:

Example 3: Tolerance and transitivity
In spatial calculations when tolerance is in use, transitivity does not necessary hold. For example, suppose
you have the following three lines in a spatial reference system where the tolerance is equal to the grid size:

The ST_Equals method considers the black and red lines to be equivalent within tolerance, and the red
and blue lines to be equivalent within tolerance but black line and the blue line are not equivalent within
tolerance. ST_Equals is not transitive.

Note that ST_OrderingEquals considers each of these lines to be different, and ST_OrderingEquals is
transitive.

Getting started with spatial data

10 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example 4: Impact of grid and tolerance settings on imprecise data
Suppose you have data in a projected planar spatial reference system which is mostly accurate to within
10 centimeters, and always accurate to within 10 meters. You have three choices:

1. Use the default grid size and tolerance that SQL Anywhere selects, which is normally greater than the
precision of your data. Although this provides maximum precision, predicates such as ST_Intersects,
ST_Touches, and ST_Equals may give results that are different than expected for some geometries,
depending on the accuracy of the geometry values. For example, two adjacent polygons that share a
border with each other may not return true for ST_Intersect if the leftmost polygon has border data a
few meters to the left of the rightmost polygon.

2. Set the grid size to be small enough to represent the most accuracy in any of your data (10
centimeters, in this case) and at least four times smaller than the tolerance, and set tolerance to
represent the distance to which your data is always accurate to (10 meters, in this case). This strategy
means your data is stored without losing any precision, and that predicates will give the expected
result even though the data is only accurate within 10 meters.

3. Set grid size and tolerance to the precision of your data (10 meters, in this case). This way your data is
snapped to within the precision of your data, but for data that is more accurate than 10 meters the
additional accuracy is lost.

In many cases predicates will give the expected results but in some cases they will not. For example, if
two points are within 10 centimeters of each other but near the midway point of the grid intersections,
one point will snap one way and the other point will snap the other way, resulting in the points being
about 10 meters apart. For this reason, setting grid size and tolerance to match the precision of your
data is not recommended in this case.

See also
● “SNAP TO GRID clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere

Server - SQL Reference]
● “TOLERANCE clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere

Server - SQL Reference]
● “ST_Equals method for type ST_Geometry” on page 154
● “ST_SnapToGrid method for type ST_Geometry” on page 187
● “ST_OrderingEquals method for type ST_Geometry” on page 178
● “Supported spatial predicates” on page 23
● “CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL Reference]
● “ALTER SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL Reference]

Indexes on spatial columns
Indexes on spatial data can reduce the cost of evaluating relationships between geometries. For example,
suppose that you are considering changing the boundaries of your sales regions and want to determine the
impact on existing customers. To determine which customers are located within a proposed sales region,
you could use the ST_Within method to compare a point representing each customer address to a polygon
representing the sales region. Without any index, the database server must test every address point in the

Introduction to spatial data

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 11

Customer table against the sales region polygon to determine if it should be returned in the result, which
could be expensive if the Customer table is large, and inefficient if the sales region is small. An index
including the address point of each customer may help to return results faster. If a predicate can be added
to the query relating the sales region to the states which it overlaps, results might be obtained even faster
using an index that includes both the state code and the address point.

There is no special procedure required when creating an index on spatial data (for example, CREATE
INDEX statement, Create Index wizard, and so on). However, when creating indexes on spatial data, it
is recommended that you do not include more than one spatial column in the index, and that you position
the spatial column last in the index definition.

Also, in order to include a spatial column in an index, the column must have a SRID constraint. See
“Using a SRID as column constraint” on page 32.

Spatial queries may benefit from a clustered index, but other uses of the table need to be considered
before deciding to use a clustered index. You should consider, and test, the types of queries that are likely
to be performed to see whether performance improves with clustered indexes.

While you can create text indexes on a spatial column, they offer no advantage over regular indexes;
regular indexes are recommended instead.

See also
● “Working with indexes” [SQL Anywhere Server - SQL Usage]
● “Using clustered indexes” [SQL Anywhere Server - SQL Usage]
● “CREATE INDEX statement” [SQL Anywhere Server - SQL Reference]
● “ALTER INDEX statement” [SQL Anywhere Server - SQL Reference]

Spatial data type syntax based on ANSI SQL UDTs

The SQL/MM standard defines spatial data support in terms of user-defined extended types (UDTs) built
on the ANSI/SQL CREATE TYPE statement. Although SQL Anywhere does not support user-defined
types, the SQL Anywhere spatial data support has been implemented as though they are supported.

Instantiating instances of a UDT
You can instantiate a user-defined type to define a constructor as follows:

NEW type-name(argument-list)

For example, a query could contain the following to instantiate two ST_Point values:

SELECT NEW ST_Point(), NEW ST_Point(3,4)

SQL Anywhere matches argument-list against defined constructors using the normal overload resolution
rules. An error is returned in the following situations:

● If NEW is used with a type that is not a user-defined type

Getting started with spatial data

12 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● If the user-defined type is not instantiable (for example, ST_Geometry is not an instantiable type).

● If there is no overload that matches the supplied argument types

See also:

● “Accessing and manipulating spatial data” on page 59
● “ST_Point type” on page 259

Using instance methods
User defined types can have instance methods defined. Instance methods are invoked on a value of the
type as follows:

value-expression.method-name(argument-list)

For example, the following selects the X coordinate of the myTable.centerpoint column:

SELECT centerpoint.ST_X() FROM myTable;

Note that if there was a user ID called centerpoint, the database server would find the construct
centerpoint.ST_X() to be ambiguous. This is because the statement could mean "call the user-
defined function ST_X owned by user centerpoint"--the incorrect intention of the statement--or it could
mean "call the ST_X method on the myTable.centerpoint column" (the correct meaning). The database
server resolves such ambiguity by first performing a case-insensitive search for a user named centerpoint.
If a user named centerpoint is found, the database server proceeds as though a user-defined function
called ST_X and owned by user centerpoint is being called. If no user called centerpoint is found, the
database server treats the construct as a method call and calls the ST_X method on the
myTable.centerpoint column.

An instance method invocation gives an error in the following cases:

● If the declared type of the value-expression is not a user-defined type

● If the named method is not defined in the declared type of value-expression or one of its supertypes

● If argument-list does not match one of the defined overloads for the named method.

See also:

● “ST_X() method for type ST_Point” on page 269

Using static methods
In addition to instance methods, the ANSI/SQL standard allows user-defined types to have static methods
associated with them. These are invoked using the following syntax:

type-name::method-name(argument-list)

For example, the following instantiates an ST_Point by parsing text:

SELECT ST_Geometry::ST_GeomFromText('POINT(5 6)')

A static method invocation gives an error in the following cases:

Introduction to spatial data

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 13

● If the declared type of value-expression is not a user-defined type

● If the named method is not defined in the declared type of value expression or one of its supertypes

● If argument-list does not match one of the defined overloads for the named method

See also:

● “ST_Point type” on page 259
● “ST_GeomFromText method for type ST_Geometry” on page 158

Using static aggregate methods (SQL Anywhere extension)
As an extension to ANSI/SQL, SQL Anywhere supports static methods that implement user-defined
aggregates. For example:

SELECT ST_Geometry::ST_AsSVGAggr(T.geo) FROM table T

All of the overloads for a static method must be aggregate or none of them may be aggregate.

A static aggregate method invocation gives an error in the following cases:

● If a static method invocation would give an error

● If a built-in aggregate function would give an error

● If a WINDOW clause is specified

See also:

● “ST_AsSVGAggr method for type ST_Geometry” on page 107

Using type predicates
The ANSI/SQL standard defines type predicates that allow a statement to examine the dynamic type of a
value. The syntax is as follows:

value IS [NOT] OF ([ONLY] type-name,...)

If value is NULL, the predicate returns UNKNOWN. Otherwise, the dynamic type of value is compared
to each of the elements in the type-name list. If ONLY is specified, there is a match if the dynamic type is
exactly the specified type. Otherwise, there is a match if the dynamic type is the specified type or any
derived type (sub-type).

If the dynamic type of value matches one of the elements in the list, TRUE is returned, otherwise FALSE.

For example, the following returns T:

SELECT IF DT.x IS OF (ST_Point) THEN 'T' ENDIF
FROM (SELECT ST_Geometry::ST_GeomFromText('POINT(5 6)') x) DT

Getting started with spatial data

14 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also:

● “Search conditions” [SQL Anywhere Server - SQL Reference]
● “ST_Point type” on page 259
● “ST_GeomFromText method for type ST_Geometry” on page 158

Using the TREAT expression for subtypes
The ANSI/SQL standard defines a sub-type treatment expression that allows a cast from a base type to a
sub-type (derived type). The syntax is as follows:

TREAT(value-expression AS target-subtype)

The following example casts ST_Geometry to sub-type ST_Point:

SELECT TREAT(DT.x AS ST_Point)
FROM (SELECT ST_Geometry::ST_GeomFromText('POINT(5 6)') x) DT

If no error condition is raised, the result is the value-expression with declared type of target-subtype.

The sub-type treatment expression gives an error in the following cases:

● If value-expression is not a user-defined type

● If target-subtype is not a sub-type of the declared type of value-expression

● If the dynamic type of value-expression is not a sub-type of target-subtype

See also:

● “TREAT function [Data type conversion]” [SQL Anywhere Server - SQL Reference]
● “ST_Point type” on page 259
● “ST_GeomFromText method for type ST_Geometry” on page 158

Comparing geometries using ST_Equals and
ST_OrderingEquals

There are two methods you can use to test whether a geometry is equal to another geometry: ST_Equals,
and ST_OrderingEquals. These methods perform the comparison differently, and return a different result.

● ST_Equals The order in which points are specified does not matter, and point comparison takes
tolerance into account. Geometries are also considered equal if they occupy the same space, within
tolerance. This means that if two linestrings occupy the same space, yet one is defined with more
points, they are still considered equal.

● ST_OrderingEquals With ST_OrderingEquals, the order in which points are specified matters,
and point comparisons do not take tolerance into account. That is, points must be exactly the same,
including being specified in the exact same order, for the geometries to be considered equal.

Introduction to spatial data

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 15

To illustrate the difference in results when comparisons are made using ST_Equals versus
ST_OrderingEquals, consider the following lines. ST_Equals considers them all equal (assuming line C is
within tolerance). However, ST_OrderingEquals does not consider any of them equal.

How SQL Anywhere performs comparisons of geometries
The database server uses ST_OrderingEquals to perform operations such as GROUP BY and DISTINCT.

For example, when processing the following query the server considers two rows to be equal if the two
shape expressions have ST_OrderingEquals() = 1:

SELECT DISTINCT Shape FROM SpatialShapes;

SQL statements can compare two geometries using the equal to operator (=), or not equal to operator (<>
or !=), including search conditions with a subquery and the ANY or ALL keyword.. Geometries can also
be used in an IN search condition. For example, geom1 IN (geom-expr1, geom-expr2, geom-
expr3). For all of these search conditions, equality is evaluated using the ST_OrderingEquals semantics.

You cannot use other comparison operators to determine if one geometry is less than or greater than
another (for example, geom1 < geom2 is not accepted). This means you cannot include geometry
expressions in an ORDER BY clause. However, you can test for membership in a set.

Spatial permissions
To create, alter, or drop spatial reference systems and units of measure, you must be a user with DBA
permissions or belong to the SYS_SPATIAL_ADMIN_ROLE group. See “Granting group membership
to existing users or groups” [SQL Anywhere Server - Database Administration].

Getting started with spatial data

16 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Recommended reading on spatial topics
● For a good primer on the different approaches that are used to map and measure the earth's surface

(geodesy), and the major concepts surrounding coordinate (or spatial) reference systems, go to
www.epsg.org/guides/index.html and select Geodetic Awareness.

● OGC OpenGIS Implementation Specification for Geographic information - Simple feature access:
www.opengeospatial.org/standards/sfs

● International Standard ISO/IEC 13249-3:2006: www.iso.org/iso/catalogue_detail.htm?
csnumber=38651

● Scalable Vector Graphics (SVG) 1.1 Specification: www.w3.org/TR/SVG11/index.html
● Geographic Markup Language (GML) specification: www.opengeospatial.org/standards/gml
● KML specification: www.opengeospatial.org/standards/kml
● JavaScript Object Notation (JSON): json.org
● GeoJSON specification: geojson.org/geojson-spec.html

Compliance and support
This section describes SQL Anywhere's compliance with existing standards and provides a high level
view of the supported features.

Compliance with spatial standards
SQL Anywhere spatial complies with the following standards:

● International Organization for Standardization (ISO) SQL Anywhere geometries conform to
the ISO standards for defining spatial user-types, routines, schemas, and for processing spatial data.
SQL Anywhere conforms to the specific recommendations made by the International Standard ISO/
IEC 13249-3:2006. See http://www.iso.org/iso/catalogue_detail.htm?csnumber=38651.

● Open Geospatial Consortium (OGC) Geometry Model SQL Anywhere geometries conform to
the OGC OpenGIS Implementation Specification for Geographic information - Simple feature access -
Part 2: SQL option version 1.2.0 (OGC 06-104r3). See http://www.opengeospatial.org/standards/sfs.

SQL Anywhere uses the standards recommended by the OGC to ensure that spatial information can be
shared between different vendors and applications.

To ensure compatibility with SQL Anywhere spatial geometries, it is recommended that you adhere to
the standards specified by the OGC.

● SQL Multimedia (SQL/MM) SQL Anywhere follows the SQL/MM standard, and uses the prefix
ST_ for all method and function names.

SQL/MM is an international standard that defines how to store, retrieve, and process spatial data using
SQL. Spatial data type hierarchies such as ST_Geometry are one of the methods used to retrieve
spatial data. The ST_Geometry hierarchy includes a number of subtypes such as ST_Point, ST_Curve,

Compliance and support

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 17

http://www.epsg.org/guides/index.html
http://www.opengeospatial.org/standards/sfs
http://www.iso.org/iso/catalogue_detail.htm?csnumber=38651
http://www.iso.org/iso/catalogue_detail.htm?csnumber=38651
http://www.w3.org/TR/SVG11/index.html
http://www.opengeospatial.org/standards/gml
http://www.opengeospatial.org/standards/kml
http://json.org
http://geojson.org/geojson-spec.html
http://www.iso.org/iso/catalogue_detail.htm?csnumber=38651
http://www.opengeospatial.org/standards/sfs

and ST_Polygon. With the SQL/MM standard, every spatial value included in a query must be defined
in the same spatial reference system.

Supported spatial data types and their hierarchy

SQL Anywhere follows the SQL Multimedia (SQL/MM) standard for storing and accessing geospatial
data. A key component of this standard is the use of the ST_Geometry hierarchy to define how geospatial
data is created. Within the hierarchy, the prefix ST is used for all data types (also referred to as classes or
just types).

When a column is identified as a specific type, the values of the type and its sub-classes can be stored in
the column. For example, a column identified as ST_GeomCollection can also store the ST_MultiPoint,
ST_MultiSurface, ST_MultiCurve, ST_MultiPolygon, and ST_MultiLineString values.

The following diagram illustrates the hierarchy of the ST_Geometry data type and its subtypes:

Descriptions of supported spatial data types
SQL Anywhere supports the following spatial data types:

● Circular strings A circular string is a collection of at least three points that typically make a
curved line, although the points can be collinear. For more information, see “ST_CircularString
type” on page 59

● Compound curves A compound curve is a collection of one or more linestrings, circular strings,
or compound curves. For more information, see “ST_CompoundCurve type” on page 64.

Getting started with spatial data

18 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● Curve polygons A curve polygon is similar to a polygon in that it has an exterior bounding ring
and zero or more interior rings. However, more spatial data types are supported for the interior rings
than for polygons (any ST_Curve value, for example). For more information, see “ST_CurvePolygon
type” on page 74.

● Geometries The term geometry means the overarching type for objects such as points, linestrings,
and polygons. The geometry type is the supertype for all supported spatial data types. For more
information, see “ST_Geometry type” on page 88.

● Geometry collections A geometry collection is a collection of one or more geometries (such as
points, lines, polygons, and so on). For more information, see “ST_GeomCollection
type” on page 82.

● Linestrings A linestring is a line that connects two or more points in space. A linestring is a one-
dimensional geometry with a specified length, but without any area. Linestrings can be characterized
by whether they are simple or not simple, closed or not closed, where:

○ Simple means a linestring drawn between two points that does not cross itself.
○ Closed means a linestring that starts and ends at the same point.

For example, a ring is an example of simple, closed linestring.

For more information, see “ST_LineString type” on page 223.

In GIS data, linestrings are typically used to represent rivers, roads, or delivery routes.

● Multipoints A multipoint is a collection of individual points. The boundary around these points is
empty. For more information, see “ST_MultiPoint type” on page 240.

In GIS data, multipoints are typically used to represent a set of locations.

● Multipolygons A multipolygon is one or more polygons defined together as a set.

In SQL Anywhere, multipolygons are specified using the ST_MultiPolygon type. See
“ST_MultiPolygon type” on page 244

In GIS data, multipolygons are often used to represent geographic features such as a system of lakes
or forestry reserves within a specific region.

● Multilinestrings A multilinestring is a collection of linestrings that connect two or more points in
space.

In GIS data, multilinestrings are often used to represent geographic features like rivers or a highway
network.

In SQL Anywhere, multilinestrings are specified using the ST_MultilineString type. See
“ST_MultiLineString type” on page 235.

● Points A point defines a single location in space. A point geometry does not have length or area. A
point always has an X and Y coordinate.

Compliance and support

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 19

In GIS data, points are typically used to represent locations such as addresses, or geographic features
such as a mountain.

In SQL Anywhere, points are specified using the ST_Point type. See “ST_Point type” on page 259.

● Polygons A polygon is a collection of points that represent a two dimensional surface. A polygons
is constructed of one or more rings (boundaries)—an exterior bounding ring, and zero or more interior
rings—and has an associated length and area.

In GIS data, polygons are typically used to represent territories (counties, towns, states, and so on),
lakes, and large geographic features such as parks.

In SQL Anywhere, polygons are specified using the ST_Polygon type. See “ST_Polygon
type” on page 273.

See also: “Polygon ring orientation” on page 20

● Multisurfaces In SQL Anywhere, multisurfaces are specified using the ST_MultiSurface type. See
“ST_MultiSurface type” on page 250.

Polygon ring orientation

In SQL Anywhere, internal spatial operations assume outer rings of polygons are in counter-clockwise
orientation and interior rings are in the opposite (clockwise) orientation.

Polygons are automatically reoriented if created with a different ring orientation than what is defined for
the spatial reference system. You control polygon ring orientation by specifying a polygon format when
you create the spatial reference system (for example, the POLYGON FORMAT clause of the CREATE
SPATIAL REFERENCE SYSTEM statement).

For example, suppose your spatial reference system defines the polygon format as counter-clockwise (the
default). If you create a polygon and specify the points in a clockwise order Polygon((0 0, 5 10,
10 0, 0 0), (4 2, 4 4, 6 4, 6 2, 4 2)), the database server automatically rearranges the
points to be in counter-clockwise rotation, as follows: Polygon((0 0, 10 0, 5 10, 0 0), (4
2, 4 4, 6 4, 6 2, 4 2)).

Getting started with spatial data

20 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

If the inner ring was specified before the outer ring, the outer ring would appear as the first ring

In order for polygon reorientation to work in round-Earth spatial reference systems, polygons are limited
to 160° in diameter.

See also
● See “POLYGON FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL

Anywhere Server - SQL Reference].

Supported import and export formats for spatial data
The following table lists the data and file formats supported by SQL Anywhere for importing and
exporting spatial data:

Data for-
mat

Im-
port

Ex-
port

Description

Well
Known
Text
(WKT)

Yes Yes Geographic data expressed in ASCII text. This format is maintained by the
Open Geospatial Consortium (OGC) as part of the Simple Features defined
for the OpenGIS Implementation Specification for Geographic Information.
See www.opengeospatial.org/standards/sfa.

Here is an example of how a point might be represented in WKT:

'POINT(1 1)'

Compliance and support

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 21

http://www.opengeospatial.org/standards/sfa

Data for-
mat

Im-
port

Ex-
port

Description

Well
Known
Binary
(WKB)

Yes Yes Geographic data expressed as binary streams. This format is maintained by
the OGC as part of the Simple Features defined for the OpenGIS Implemen-
tation Specification for Geographic Information. See www.opengeospa-
tial.org/standards/sfa.

Here is an example of how a point might be represented in WKB:

'0101000000000000000000F03F000000000000F03F'

Extended
Well
Known
Text
(EWKT)

Yes Yes WKT format, but with SRID information embedded. This format is main-
tained as part of PostGIS, the spatial database extension for PostgreSQL. See
postgis.refractions.net/.

Here is an example of how a point might be represented in EWKT:

'srid=101;POINT(1 1)'

Extended
Well
Known
Binary
(EWKB)

Yes Yes WKB format, but with SRID information embedded. This format is main-
tained as part of PostGIS, the spatial database extension for PostgreSQL. See
postgis.refractions.net/.

Here is an example of how a point might be represented in EWKB:

'010100000200400000000000000000F03F000000000000F03F'

Geo-
graphic
Markup
Lan-
guage
(GML)

No Yes XML grammar used to represent geographic spatial data. This standard is
maintained by the Open Geospatial Consortium (OGC), and is intended for
the exchange of geographic data over the internet. See www.opengeospa-
tial.org/standards/gml.

Here is an example of how a point might be represented in GML:

<gml:Point> <gml:coordinates>1,1</gml:coordinates> </
gml:Point>

KML No Yes Formerly Google's Keyhole Markup Language, this XML grammar is used
to represent geographic data including visualization and navigation aids and
the ability to annotate maps and images. Google proposed this standard to
the OGC. The OGC accepted it as an open standard which it now calls KML.
See www.opengeospatial.org/standards/kml.

Here is an example of how a point might be represented in KML:

<Point> <coordinates>1,0</coordinates> </Point>

Getting started with spatial data

22 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

http://www.opengeospatial.org/standards/sfa
http://www.opengeospatial.org/standards/sfa
http://postgis.refractions.net/
http://postgis.refractions.net/
http://www.opengeospatial.org/standards/gml
http://www.opengeospatial.org/standards/gml
http://www.opengeospatial.org/standards/kml

Data for-
mat

Im-
port

Ex-
port

Description

ESRI
shape-
files

Yes No A popular geospatial vector data format for representing spatial objects in the
form of shapefiles (several files that are used together to define the shape).
For more information about ESRI shapefile support, see “Support for ESRI
shapefiles” on page 25.

Geo-
JSON

No Yes Text format that uses name/value pairs, ordered lists of values, and conven-
tions similar to those used in common programming languages such as C, C+
+, C#, Java, JavaScript, Perl, and Python.

GeoJSON is a subset of the JSON standard and is used to encode geographic
information. SQL Anywhere supports the GeoJSON standard and provides
the ST_AsGEOJSON method for converting SQL output to the GeoJSON for-
mat. See “ST_AsGeoJSON method for type ST_Geometry” on page 100.

Here is an example of how a point might be represented in GeoJSON:

{"x" : 1, "y" : 1, "spatialReference" : {"wkid" : 4326}}

For more information about the GeoJSON specification, see geojson.org/geo-
json-spec.html.

Scalable
Vector
Graphic
(SVG)
files

No Yes XML-based format used to represent two-dimensional geometries. The SVG
format is maintained by the World Wide Web Consortium (W3C). See
www.w3.org/Graphics/SVG/.

Here is an example of how a point might be represented in SVG:

<rect width="1" height="1" fill="deepskyblue"
stroke="black" stroke-width="1" x="1" y="-1"/>

Supported spatial predicates

A predicate is a conditional expression that, combined with the logical operators AND and OR, makes up
the set of conditions in a WHERE, HAVING, or ON clause, or in an IF or CASE expression, or in a
CHECK constraint. In SQL, a predicate may evaluate to TRUE, FALSE. In many contexts, a predicate
that evaluates to UNKNOWN is interpreted as FALSE.

Spatial predicates are implemented as member functions that return 0 or 1. In order to test a spatial
predicate, your query should compare the result of the function to 1 or 0 using the = or <> operator. For
example:

SELECT * FROM SpatialShapes WHERE geometry.ST_IsEmpty() <> 1;

You use predicates when querying spatial data to answer such questions as: how close together are two or
more geometries? Do they intersect or overlap? Is one geometry contained within another? If you are a

Compliance and support

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 23

http://geojson.org/geojson-spec.html
http://geojson.org/geojson-spec.html
http://www.w3.org/Graphics/SVG/

delivery company, for example, you may use predicates to determine if a customer is within a specific
delivery area.

SQL Anywhere supports the following spatial predicates to help answer questions about the spatial
relationship between geometries:

● “ST_Contains method for type ST_Geometry” on page 135
● “ST_Covers method for type ST_Geometry” on page 144
● “ST_CoveredBy method for type ST_Geometry” on page 142
● “ST_Crosses method for type ST_Geometry” on page 146
● “ST_Disjoint method for type ST_Geometry” on page 150
● “ST_IsEmpty method for type ST_Geometry” on page 169
● “ST_Equals method for type ST_Geometry” on page 154
● “ST_Intersects method for type ST_Geometry” on page 165
● “ST_Overlaps method for type ST_Geometry” on page 180
● “ST_Relate method for type ST_Geometry” on page 181
● “ST_Touches method for type ST_Geometry” on page 207
● “ST_Within method for type ST_Geometry” on page 211

Intuitiveness of spatial predicates
Sometimes the outcome of a predicate is not intuitive, so you should test special cases to make sure you
are getting the results you want. For example, in order for a geometry to contain another geometry
(a.ST_Contains(b)=1), or for a geometry to be within another geometry (b.ST_Within(a)=1),
the interior of a and the interior of b must intersect, and no part of b can intersect the exterior of a.
However, there are some cases where you would expect a geometry to be considered contained or within
another geometry, but it is not.

For example, the following return 0 (a is red) for a.ST_Contains(b) and b.ST_Within(a):

Case one and two are obvious; the purple geometries are not completely within the red squares. Case three
and four, however, are not as obvious. In both of these cases, the purple geometries are only on the
boundary of the red squares. ST_Contains does not consider the purple geometries to be within the red
squares, even though they appear to be within them.

If your predicate tests return a different result for cases than desired, consider using the ST_Relate method
to specify the exact relationship you are testing for. See “Test custom relationships using the ST_Relate
method” on page 44.

Getting started with spatial data

24 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Support for ESRI shapefiles
SQL Anywhere supports the Environmental System Research Institute, Inc. (ESRI) shapefile format.
ESRI shapefiles are used to store geometry data and attribute information for the spatial features in a data
set.

An ESRI shapefile includes three different files: .shp, .shx, and .dbf. The suffix for the main file is .shp,
the suffix for the index file is .shx, and the suffix for the attribute columns is .dbf. All files share the same
base name and are frequently combined in a single compressed file. SQL Anywhere can read all ESRI
shapefiles with all shape types except MultiPatch. This includes shape types that include Z and M data.

The data in an ESRI shapefile usually contains multiple rows and columns. For example, the spatial
tutorial loads a shapefile that contains zip code regions for Massachusetts. The shapefile contains one row
for each zip code region, including the polygon information for the region. It also contains additional
attributes (columns) for each zip code region, including the zip code name (for example, the string
'02633') and other attributes.

To determine the types of the columns stored in a shapefile, use the sa_describe_shapefile system
procedure. From the information returned by sa_describe_shapefile, you can create a table with the
appropriate column names and types for the shapefile, or you can determine the rowset-schema to use
with an OPENSTRING clause. You can then use LOAD TABLE USING FILE FORMAT SHAPEFILE
to load the shapefile into a table, or use ... FROM OPENSTRING(FILE) WITH(rowset-
schema) OPTION(FORMAT SHAPEFILE) to retrieve the result set.

See also
● “sa_describe_shapefile system procedure” [SQL Anywhere Server - SQL Reference]
● “LOAD TABLE statement” [SQL Anywhere Server - SQL Reference]
● “Openstring expressions in a FROM clause” [SQL Anywhere Server - SQL Reference]
● “Tutorial: Experimenting with the spatial features” on page 47

For more information about ESRI shapefiles, see http://www.esri.com/library/whitepapers/pdfs/
shapefile.pdf.

Special notes on support and compliance
This section describes any special notes about SQL Anywhere support of spatial data including
unsupported features and notable behavioral differences with other database products.

● Geographies and geometries Some vendors distinguish spatial objects by whether they are
geographies (pertaining to objects on a round-Earth) or geometries (objects on a plane or a flat-
Earth). In SQL Anywhere, all spatial objects are considered to be geometries, and the object's SRID
indicates whether it is being operated on in a round-Earth or flat-Earth (planar) spatial reference system.

Compliance and support

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 25

http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

● Unsupported methods

○ ST_Buffer method
○ ST_LocateAlong method
○ ST_LocateBetween method
○ ST_Segmentize method
○ ST_Simplify method
○ ST_Distance_Spheroid method
○ ST_Length_Spheroid method

Spatial data usage topics
This section provides procedures for creating, accessing, and manipulating spatial data.

Create a spatial reference system
Use the following procedures to create a new spatial reference system using Sybase Central or Interactive
SQL.

To create a spatial reference system (Sybase Central)

1. In Sybase Central, connect to the database as a user with DBA authority, or as a member of the
SYS_SPATIAL_ADMIN_ROLE group.

2. In the left pane, right-click Spatial Reference Systems » New » Spatial Reference System.

3. When you create a spatial reference system, you use an existing one as a template on which to base
your settings. Therefore you should choose a spatial reference system that is similar to the one you
want to create. Later, you can edit the settings.

Select Let Me Choose From The List Of All Predefined Spatial Reference Systems, and then click
Next.

The Choose A Spatial Reference System window appears.

Getting started with spatial data

26 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

4. You will create a spatial reference system based on the NAD83 spatial reference system so type
NAD83. Note that as you type a name or ID in the Choose A Predefined Spatial Reference Systems
field, the list of spatial reference systems moves to display the spatial reference system you want to
use as a template.

5. Click NAD83 and then click Next.

The Choose A Line Interpretation window appears.

Spatial data usage topics

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 27

6. Select Round Earth as the line interpretation.

7. Specify NAD83custom in the Name field.

8. When you create a spatial reference system based on an existing spatial reference system, you set the
srs-id value to be 1000000000 plus the Well Known value. For example, change the value in the
Spatial Reference System ID field from 4269 to 1000004269.

Note
When assigning a SRID, review the recommendations provided for ranges of numbers to avoid. These
recommendations are found in the IDENTIFIED clause of the CREATE SPATIAL REFERENCE
SYSTEM statement. See “IDENTIFIED BY clause, CREATE SPATIAL REFERENCE SYSTEM
statement” [SQL Anywhere Server - SQL Reference].

9. Click Next.

The Specify A Comment window appears.

10. Optionally, specify a description for the spatial reference system, and then click Next.

11. Click Finish.

Getting started with spatial data

28 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The definition for the spatial reference system appears.

12. If you are satisfied with the definition for the spatial reference system, click Finish.

The new spatial reference system is added to the database.

To create a spatial reference system (SQL)

1. In Interactive SQL, connect to the database as a user with DBA authority, or as a member of the
SYS_SPATIAL_ADMIN_ROLE group.

2. Execute a CREATE SPATIAL REFERENCE SYSTEM statement. See “CREATE SPATIAL
REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL Reference].

See also
● “Spatial reference systems (SRS) and Spatial reference identifiers (SRID)” on page 2

Create a unit of measure
Use the following procedures to create a new unit of measure using Sybase Central or Interactive SQL.

To create a unit of measure (Sybase Central)

1. In Sybase Central, connect to the database as a user with DBA authority, or as a member of the
SYS_SPATIAL_ADMIN_ROLE group.

2. In the left pane, click Spatial Reference Systems.

3. In the right pane, click the Units of Measure tab.

4. Right-click the Units of Measure tab and click » New » Unit Of Measure.

5. Select Create A Custom Unit of Measure, and then click Next.

6. Specify a name in the What Do You Want To Name The New Unit Of Measure? field, and then
click Next.

7. Select Linear in the Which Type of Unit Of Measure Do You Want To Create? field.

Spatial data usage topics

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 29

8. Follow the instructions in the Create Unit Of Measure Wizard.

9. Click Finish.

To create a unit of measure (SQL)

1. In Interactive SQL, connect to the database as a user with DBA authority, or as a member of the
SYS_SPATIAL_ADMIN_ROLE group.

2. Execute a CREATE SPATIAL UNIT OF MEASURE statement. See “CREATE SPATIAL
REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL Reference]

See also
● “Units of measure” on page 5

Getting started with spatial data

30 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Create a spatial column
Use the following procedures to create a spatial column in an existing table. You can use Sybase Central
or SQL statements in Interactive SQL to add a new spatial column.

To add a new spatial column (Sybase Central)

1. In Sybase Central, connect to the database as a user with permissions to alter the table.

2. In the left pane, expand the Tables list.

3. Right-click a table and choose New » Column.

4. In the Data Type column, select a spatial data type. For example, choose ST_Point.

5. Set the spatial reference system.

a. Right-click the data-type name and choose Properties.

b. Click Data Type.

c. Select Set Spatial Reference System and choose a spatial reference system from the dropdown list.

d. Click OK.

6. Choose File » Save.

Spatial data usage topics

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 31

To add a new spatial column (SQL)

1. In Interactive SQL, connect to the database as a user with permissions to alter the table.

2. Execute an ALTER TABLE statement. See “ALTER TABLE statement” [SQL Anywhere Server -
SQL Reference].

Example
The following statement adds a spatial column named Location to the Customers table. The new column
is of spatial data type ST_Point, and has a declared SRID of 1000004326, which is a flat-Earth spatial
reference system.

ALTER TABLE Customers
ADD Location ST_Point(SRID=1000004326);

See also
● “Supported spatial data types and their hierarchy” on page 18
● “Spatial reference systems (SRS) and Spatial reference identifiers (SRID)” on page 2

Using a SRID as column constraint

SRID constraints allow you to place restrictions on the values that can be stored in a spatial column. For
example, execute the following statement to create a table named Test with a SRID constraint
(SRID=4326) on the Geometry_2 column:

CREATE TABLE Test (
 ID INTEGER PRIMARY KEY,
 Geometry_1 ST_Geometry,
 Geometry_2 ST_Geometry(SRID=4326),
);

This constraint means that only values associated with SRID 4326 can be stored in this column.

The column Geometry_1 is unconstrained and can store values associated with any SRID.

In order to include a spatial column in an index, the column must have a SRID constraint. For example,
you cannot create an index on the Geometry_1 column. However, you can create an index on the
Geometry_2 column.

If you have a table with an existing spatial column, you can use the ALTER TABLE statement to add a
SRID constraint to a spatial column. For example, execute a statement similar to the following to add a
constraint to the Geometry_1 column in the table named Test:

ALTER TABLE Test
 MODIFY Geometry_1 ST_Geometry(SRID=4326);

Note
If you add a spatial column to a table, you should make sure that the table has a primary key defined.
Update and delete operations are not supported for a table that contains a spatial column unless a primary
key is defined.

Getting started with spatial data

32 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Create geometries
There are several methods for creating geometries in a database:

● Load from Well Known Text (WKB) or Well Known Binary (WKB) formats You can load or
insert data in WKT or WKB formats. These formats are defined by the OGC, and all spatial database
vendors support them. SQL Anywhere performs automatic conversion from these formats to geometry
types. For an example of loading from WKT, see “Load spatial data from a Well Known Text (WKT)
file” on page 37.

● Load from ESRI shapefiles You can load data in ESRI shapefile format. Following this method,
you use the sa_describe_shapefile system procedure to determine the columns and spatial data types
contained in the shapefile. Then, you can use the LOAD TABLE statement See “Tutorial:
Experimenting with the spatial features” on page 47.

● Use a SELECT...FROM OPENSTRING statement You can execute a SELECT...OPENSTRING
FORMAT SHAPEFILE statement on a file containing the spatial data. For example:

INSERT INTO world_cities(country, city, point)
 SELECT country, city, NEW ST_Point(longitude, latitude, 4326)
 FROM OPENSTRING(FILE 'capitalcities.csv')
 WITH(
 country CHAR(100),
 city CHAR(100),
 latitude DOUBLE,
 longitude DOUBLE)

See “Openstring expressions in a FROM clause” [SQL Anywhere Server - SQL Reference].

● Create coordinate points by combining latitude and longitude values You can combine
latitude and longitude data to create a coordinate of spatial data type ST_Point. For example, if you
had a table that already has latitude and longitude columns, you can create an ST_Point column that
holds the values as a point using a statement similar to the following:

ALTER TABLE my_table
 ADD point AS ST_Point(SRID=4326)
 COMPUTE(NEW ST_Point(longitude, latitude, 4326));

● Create geometries using constructors and static methods You can create geometries using
constructors and static methods. See “Instantiating instances of a UDT” on page 12 and “Using static
methods” on page 13.

View spatial data as images
When working with spatial data, you may want to view a geometry as an image to understand what the
data represents. SQL Anywhere offers two ways of viewing geometries:

● Spatial Preview tab The Spatial Preview tab is available from the Results pane in Interactive
SQL. It allows you to look at geometry values one at a time in the results.

Spatial data usage topics

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 33

● Spatial Viewer The Spatial Viewer is available from the Tools menu in Interactive SQL. It
combines all geometries reflected in the results of a query into one image.

Each instance of Interactive SQL is associated with a different connection to a database. When you
open an instance of the Spatial Viewer from within Interactive SQL, that instance of Spatial Viewer
remains associated with that instance of Interactive SQL, and shares the connection to the database.

This means that when you execute a query in the Spatial Viewer, if you attempt to execute a query in
the associated instance of Interactive SQL, you will get an error. Likewise, if you have multiple
instances of the Spatial Viewer open that were created by the same instance of Interactive SQL, only
one of those instances can execute a query at a time; the rest have to wait for the query to finish.

To view a geometry in Interactive SQL

1. Execute the following query in Interactive SQL:

SELECT * FROM SpatialShapes;

2. Double-click the any value in the Shapes column in the Results pane to open the value in the Value
window.

The value is displayed as text on the Text tab of the Value window.

Note
By default, Interactive SQL truncates values in the Results pane to 256 characters. If Interactive SQL
returns an error indicating that the full column value could not be read, increase the truncation value.
To do this, choose Tools » Options and pick SQL Anywhere in the left pane. On the Results tab,
change Truncation Length to a high value such as 5000. Click OK to save your changes, and
execute the query again.

3. Click the Spatial Preview tab to see the geometry as a Scalable Vector Graphic (SVG).

Getting started with spatial data

34 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

4. Use the Previous Row and Next Row buttons to view other rows in the result set.

To view a geometry using the Spatial Viewer

1. In Interactive SQL, select Tools » Spatial Viewer.

2. In the Spatial Viewer, execute the following query in the SQL pane and then click Execute:

SELECT * FROM SpatialShapes;

Spatial data usage topics

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 35

The image displayed in the Results area reflects all of the geometries in the result set. This is different
from viewing geometries in the Spatial Preview tab in Interactive SQL, where you only see a preview
of the geometry you selected from the results.

The order of rows in a result matter to how the image appears in the Spatial Viewer because the
image is drawn in the order in which the rows are processed, with the most recent appearing on the
top. This means that shapes that occur later in a result set can obscure ones that occur earlier in the
result set.

You can use the Draw Outlined Polygons tool to remove the coloring from the polygons in a
drawing to reveal the outline of all shapes. This tool is located beneath the image, near the controls for
saving, zooming, and panning. Here is an example of how the image appears as outlines:

Getting started with spatial data

36 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Load spatial data from a Well Known Text (WKT) file
This section provides you with an overview of loading spatial data from a WKT file.

To load spatial data from a WKT file

1. First you create a file that contains spatial data in WKT format that you will later load into the
database as follows:

a. Open a text editor such as Notepad.

b. The following snippet contains a group of geometries, defined in WKT. Copy the contents of the
snipped to your clipboard and paste it into your text editor:

Spatial data usage topics

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 37

head,"CircularString(1.1 1.9, 1.1 2.5, 1.1 1.9)"
left iris,"Point(0.96 2.32)"
right iris,"Point(1.24 2.32)"
left eye,"MultiCurve(CircularString(0.9 2.32, 0.95 2.3, 1.0
2.32),CircularString(0.9 2.32, 0.95 2.34, 1.0 2.32))"
right eye,"MultiCurve(CircularString(1.2 2.32, 1.25 2.3, 1.3
2.32),CircularString(1.2 2.32, 1.25 2.34, 1.3 2.32))"
nose,"CircularString(1.1 2.16, 1.1 2.24, 1.1 2.16)"
mouth,"CircularString(0.9 2.10, 1.1 2.00, 1.3 2.10)"
hair,"MultiCurve(CircularString(1.1 2.5, 1.0 2.48, 0.8
2.4),CircularString(1.1 2.5, 1.0 2.52, 0.7 2.5),CircularString(1.1 2.5,
1.0 2.56, 0.9 2.6),CircularString(1.1 2.5, 1.05 2.57, 1.0 2.6))"
neck,"LineString(1.1 1.9, 1.1 1.8)"
clothes and box,"MultiSurface(((1.6 1.9, 1.9 1.9, 1.9 2.2, 1.6 2.2, 1.6
1.9)),((1.1 1.8, 0.7 1.2, 1.5 1.2, 1.1 1.8)))"
L,"MultiCurve(CircularString(1.05 1.56, 1.03 1.53, 1.05
1.50),CircularString(1.05 1.50, 1.10 1.48, 1.15
1.52),CircularString(1.15 1.52, 1.14 1.54, 1.12
1.53),CircularString(1.12 1.53, 1.06 1.42, 0.95
1.28),CircularString(0.95 1.28, 0.92 1.31, 0.95
1.34),CircularString(0.95 1.34, 1.06 1.28, 1.17 1.32))"
holes in box,"MultiPoint((1.65 1.95),(1.75 1.95),(1.85 1.95),(1.65
2.05),(1.75 2.05),(1.85 2.05),(1.65 2.15),(1.75 2.15),(1.85 2.15))"
arms and legs,"MultiLineString((0.9 1.2, 0.9 0.8),(1.3 1.2, 1.3 0.8),
(0.97 1.6, 1.6 1.9),(1.23 1.6, 1.7 1.9))"
left cart wheel,"CircularString(2.05 0.8, 2.05 0.9, 2.05 0.8)"
right cart wheel,"CircularString(2.95 0.8, 2.95 0.9, 2.95 0.8)"
cart body,"Polygon((1.9 0.9, 1.9 1.0, 3.1 1.0, 3.1 0.9, 1.9 0.9))"
angular shapes on cart,"MultiPolygon(((2.18 1.0, 2.1 1.2, 2.3 1.4, 2.5
1.2, 2.35 1.0, 2.18 1.0)),((2.3 1.4, 2.57 1.6, 2.7 1.3, 2.3 1.4)))"
round shape on cart,"CurvePolygon(CompoundCurve(CircularString(2.6 1.0,
2.7 1.3, 2.8 1.0),(2.8 1.0, 2.6 1.0)))"
cart handle,"GeometryCollection(MultiCurve((2.0 1.0, 2.1
1.0),CircularString(2.0 1.0, 1.98 1.1, 1.9 1.2),CircularString(2.1 1.0,
2.08 1.1, 2.0 1.2),(1.9 1.2, 1.85 1.3),(2.0 1.2, 1.9 1.35),(1.85 1.3,
1.9 1.35)),CircularString(1.85 1.3, 1.835 1.29, 1.825
1.315),CircularString(1.9 1.35, 1.895 1.38, 1.88
1.365),LineString(1.825 1.315, 1.88 1.365))"

c. Save the file as wktgeometries.csv.

2. In Interactive SQL, connect to the sample database (demo.db) as user DBA, or as a member of the
SYS_SPATIAL_ADMIN_ROLE group.

3. Create a table called SA_WKT and load the data from wktgeometries.csv into it as follows. Be sure to
replace the path to the .csv file with the path where you saved the file:

DROP TABLE IF EXISTS SA_WKT;
CREATE TABLE SA_WKT (
 description CHAR(24),
 sample_geometry ST_Geometry(SRID=1000004326)
);
LOAD TABLE SA_WKT FROM 'C:\\Documents and Settings\\All Users\\Documents\
\SQL Anywhere 12\\Samples\\wktgeometries.csv' DELIMITED BY ',';

The data is loaded into the table.

4. In Interactive SQL, select Tools » Spatial Viewer.

5. In the Spatial Viewer, execute the following command to see the geometries:

Getting started with spatial data

38 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SELECT * FROM SA_WKT;

6. Your data may have several columns of spatial data. In this next example, you create a file of WKT
data containing one of each supported spatial data type, stored in individual columns.

Copy the following code snippet to your text editor and save the file as wktgeometries2.csv:

Spatial data usage topics

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 39

"Point(0 0)",,,,,,,,,,,,,,
,"LineString(0 0, 1 1)",,,,,,,,,,,,,
,,"CircularString(0 0, 1 1, 0 0)",,,,,,,,,,,,
,,,"CompoundCurve(CircularString(0 0, 1 1, 1 0),(1 0, 0 1))",,,,,,,,,,,
,,,,"CompoundCurve(CircularString(0 0, 1 1, 1 0),(1 0, 0 1),(0 1, 0
0))",,,,,,,,,,
,,,,,"Polygon((-1 0, 1 0, 2 1, 0 3, -2 1, -1 0))",,,,,,,,,
,,,,,,"CurvePolygon(CompoundCurve(CircularString(0 0, 1 1, 1 0),(1 0, 0
0)))",,,,,,,,
,,,,,,,"CurvePolygon(CompoundCurve(CircularString(0 0, 2 1, 2 0),(2 0, 0
0)))",,,,,,,
,,,,,,,,"MultiPoint((2 0),(0 0),(3 0),(1 0))",,,,,,
,,,,,,,,,"MultiPolygon(((4 0, 4 1, 5 1, 5 0, 4 0)),((-1 0, 1 0, 2 1, 0 3,
-2 1, -1 0)))",,,,,
,,,,,,,,,,"MultiSurface(((4 0, 4 1, 5 1, 5 0, 4
0)),CurvePolygon(CompoundCurve(CircularString(0 0, 2 1, 2 0),(2 0, 0
0))))",,,,
,,,,,,,,,,,"MultiLineString((2 0, 0 0),(3 0, 1 0),(-2 1, 0 4))",,,
,,,,,,,,,,,,"MultiCurve((3 2, 4 3),CircularString(0 0, 1 1, 0 0))",,
,,,,,,,,,,,,,"GeometryCollection(MultiPoint((2 0),(0 0),(3 0),(1
0)),MultiSurface(((4 0, 4 1, 5 1, 5 0, 4
0)),CurvePolygon(CompoundCurve(CircularString(0 0, 2 1, 2 0),(2 0, 0
0)))),MultiCurve((3 2, 4 3),CircularString(0 0, 1 1, 0 0)))",
,,,,,,,,,,,,,,"GeometryCollection(Point(0
0),CompoundCurve(CircularString(0 0, 1 1, 1 0),(1 0, 0 1),(0 1, 0
0)),CurvePolygon(CompoundCurve(CircularString(0 0, 2 1, 2 0),(2 0, 0
0))),MultiPoint((2 0),(0 0),(3 0),(1 0)),MultiSurface(((4 0, 4 1, 5 1, 5
0, 4 0)),CurvePolygon(CompoundCurve(CircularString(0 0, 2 1, 2 0),(2 0, 0
0)))),MultiCurve((3 2, 4 3),CircularString(0 0, 1 1, 0 0)))"

7. Create a table called SA_WKT2 and load the data from wktgeometries2.csv into it as follows. Be sure
to replace the path to the csv file with the path where you saved the file:

DROP TABLE IF EXISTS SA_WKT2;
CREATE TABLE SA_WKT2 (
 point ST_Point,
 line ST_LineString,
 circle ST_CircularString,
 compoundcurve ST_CompoundCurve,
 curve ST_Curve,
 polygon1 ST_Polygon,
 curvepolygon ST_CurvePolygon,
 surface ST_Surface,
 multipoint ST_MultiPoint,
 multipolygon ST_MultiPolygon,
 multisurface ST_MultiSurface,
 multiline ST_MultiLineString,
 multicurve ST_MultiCurve,
 geomcollection ST_GeomCollection,
 geometry ST_Geometry
);
LOAD TABLE SA_WKT2 FROM 'C:\\Documents and Settings\\All Users\\Documents\
\SQL Anywhere 12\\Samples\\wktgeometries2.csv' DELIMITED BY ',';

The data is loaded into the table.

8. In the Spatial Viewer, execute the following command to see the geometries.

Note that you can only see one column of data at a time; you must use the Column dropdown in the
Results area to view the geometries for the other columns. For example, this is the view of the
geometry in the curvepolygon column:

Getting started with spatial data

40 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

9. To view the geometries from all of the columns at once, you can execute a SELECT statement for
each column and UNION ALL the results, as follows:

SELECT point FROM SA_WKT2
UNION ALL SELECT line FROM SA_WKT2
UNION ALL SELECT circle FROM SA_WKT2
UNION ALL SELECT compoundcurve FROM SA_WKT2
UNION ALL SELECT curve FROM SA_WKT2
UNION ALL SELECT polygon1 FROM SA_WKT2
UNION ALL SELECT curvepolygon FROM SA_WKT2
UNION ALL SELECT surface FROM SA_WKT2
UNION ALL SELECT multipoint FROM SA_WKT2
UNION ALL SELECT multipolygon FROM SA_WKT2
UNION ALL SELECT multisurface FROM SA_WKT2
UNION ALL SELECT multiline FROM SA_WKT2
UNION ALL SELECT multicurve FROM SA_WKT2

Spatial data usage topics

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 41

UNION ALL SELECT geomcollection FROM SA_WKT2
UNION ALL SELECT geometry FROM SA_WKT2

Geometry interiors, exteriors, and boundaries

The interior of a geometry is all points that are part of the geometry except the boundary.

The exterior of a geometry is all points that are not part of the geometry. This can include the space
inside an interior ring, for example in the case of a polygon with a hole. Similarly, the space both inside
and outside a linestring ring is considered the exterior.

The boundary of a geometry is what is returned by the ST_Boundary method.

Getting started with spatial data

42 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Knowing the boundary of a geometry helps when comparing to another geometry to determine how the
two geometries are related. However, while all geometries have an interior and an exterior, not all
geometries have a boundary, nor are their boundaries always intuitive.

Here are some cases of geometries where the boundary may not be intuitive:

● Point A point (such as A) has no boundary.

● Lines and curves The boundary for lines and curves (B, C, D, E, F) are their endpoints.
Geometries B, C, and E have two end points for a boundary. Geometry D has four end points for a
boundary, and geometry F has four.

● Polygon The boundary for a polygon (such as G) is its outer ring and any inner rings.

● Rings A ring—a curve where the start point is the same as the end point and there are no self-
intersections (such as H)—has no boundary.

See also
● “ST_Boundary method for type ST_Geometry” on page 134

Additional information on the ST_Dimension method
As well as having distinct properties of its own, each of the geometry sub-classes inherits properties from
the ST_Geometry supertype. A geometry subtype has one of the following dimensional values:

● -1 A value of -1 indicates that the geometry is empty (it does not contain any points).

● 0 A value of 0 indicates the geometry has no length or area. The subtypes ST_Point and
ST_MultiPoint have dimensional values of 0. A point represents a geometric feature that can be
represented by a single pair of coordinates, and a cluster of unconnected points represents a multipoint
feature.

● 1 A value of 1 indicates the geometry has length but no area. The set of subtypes that have a
dimension of 1 are subtypes of ST_Curve (ST_LineString, ST_CircularString, and
ST_CompoundCurve), or collection types containing these types, but no surfaces. In GIS data, these
geometries of dimension 1 are used to define linear features such as streams, branching river systems,
and road segments.

● 2 A value of 2 indicates the geometry has area. The set of subtypes that have a dimension of 2 are
subtypes of ST_Surface (ST_Polygon and ST_CurvePolygon), or collection types containing these

Spatial data usage topics

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 43

types. Polygons and multipolygons represent geometric features with perimeters that enclose a defined
area such as lakes or parks.

Note
A single ST_GeomCollection can contain geometries of different dimensions, and the highest dimension
geometry is returned

Test custom relationships using the ST_Relate method
For best performance, you should always use methods like ST_Within, or ST_Touches to test single,
specific relationships between geometries. However, if you have more than one relationship to test,
ST_Relate can be a better method, since you can test for several relationships at once. ST_Relate is also
good when you want to test for a different interpretation of a predicate such as within (ST_Within). For
example, when testing if a point is within another geometry, ST_Within returns false if the point falls on
the boundary of the other geometry. The interpretation of within you want to test for, however, may
include having a point on a boundary. In this case, you perform a custom relationship test using
ST_Relate to test for the condition.

The most common use of ST_Relate is as a predicate, where you specify the exact relationship(s) to test
for. However, you can also use ST_Relate to determine all possible relationships between two geometries.

Predicate use of ST_Relate
ST_Relate assesses how geometries are related by performing intersection tests of their interiors,
boundaries, and exteriors. The relationship between the geometries is then described in a 9-character
string in DE-9IM (Dimensionally Extended 9 Intersection Model) format, where each character of the
string represents the result of an intersection test.

When you use ST_Relate as a predicate, you pass a DE-9IM string reflecting intersection results to test
for. If the geometries satisfy the conditions in the DE-9IM string you specified, then ST_Relate returns a
1. If the conditions are not satisfied, then 0 is returned. If either or both of the geometries is NULL, then
NULL is returned.

The 9-character DE-9IM string is a flattened representation of a pair-wise matrix of the intersection tests
between interiors, boundaries, and exteriors. The next table shows the 9 intersection tests in the order they
are performed: left to right, top to bottom:

g2 interior g2 boundary g2 exterior

g1 interi-
or

Interior(g1) ∩ In-
terior(g2)

Interior(g1) ∩
Boundary(g2)

Interior(g1) ∩ Ex-
terior(g2)

g1 boun-
dary

Boundary(g1) ∩ In-
terior(g2)

Boundary(g1) ∩
Boundary(g2)

Boundary(g1) ∩ Ex-
terior(g2)

Getting started with spatial data

44 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

g1 exte-
rior

Exterior(g1) ∩ In-
terior(g2)

Exterior(g1) ∩
Boundary(g2)

Exterior(g1) ∩ Ex-
terior(g2)

When you specify the DE-9IM string, you can specify *, 0, 1, 2, T, or F for any of the 9 characters. These
values refer to the number of dimensions of the geometry created by the intersection.

When you specify: The intersection test result must return:

T one of: 0, 1, 2 (an intersection of any dimension)

F -1

* -1, 0, 1, 2 (any value)

0 0

1 1

2 2

Suppose you want to test whether a geometry is within another geometry using ST_Relate and a custom
DE-9IM string for the within predicate:

SELECT new ST_Polygon('Polygon((2 3, 8 3, 4 8, 2 3))').ST_Relate(new
ST_Polygon('Polygon((-3 3, 3 3, 3 6, -3 6, -3 3))'), 'T*F**F***');

This is equivalent to asking ST_Relate to look for the following conditions when performing the
intersection tests:

g2 interior g2 boundary g2 exterior

g1 interior one of: 0, 1, 2 one of: 0, 1, 2, -1 -1

g1 boundary one of: 0, 1, 2, -1 one of: 0, 1, 2, -1 -1

g1 exterior one of: 0, 1, 2, -1 one of: 0, 1, 2, -1 one of: 0, 1, 2, -1

When you execute the query, however, ST_Relate returns 0 indicating that the first geometry is not within
the second geometry.

To view the two geometries and compare their appearance to what is being tested, execute the following
statement in the Interactive SQL Spatial Viewer (Tools » Spatial Viewer):

SELECT NEW ST_Polygon('Polygon((2 3, 8 3, 4 8, 2 3))')
UNION ALL
SELECT NEW ST_Polygon('Polygon((-3 3, 3 3, 3 6, -3 6, -3 3))');

Spatial data usage topics

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 45

See also: “ST_Relate(ST_Geometry,CHAR(9)) method for type ST_Geometry” on page 182

Non-predicate use of ST_Relate
The non-predicate use of ST_Relate returns the full relationship between two geometries.

For example, suppose you have the same two geometries used in the previous example and you want to
know how they are related. You would execute the following statement in Interactive SQL to return the
DE-9IM string defining their relationship.

SELECT new ST_Polygon('Polygon((2 3, 8 3, 4 8, 2 3))').ST_Relate(new
ST_Polygon('Polygon((-3 3, 3 3, 3 6, -3 6, -3 3))'));

ST_Relate returns the DE-9IM string, 212111212.

The matrix view of this value shows that there are many points of intersection:

g2 interior g2 boundary g2 exterior

Getting started with spatial data

46 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

g1 interior 2 1 2

g1 boundary 1 1 1

g1 exterior 2 1 2

See also: “ST_Relate(ST_Geometry) method for type ST_Geometry” on page 183

See also
● “ST_Intersects method for type ST_Geometry” on page 165
● “ST_Overlaps method for type ST_Geometry” on page 180
● “ST_Within method for type ST_Geometry” on page 211
● “ST_Disjoint method for type ST_Geometry” on page 150
● “ST_Touches method for type ST_Geometry” on page 207
● “ST_Crosses method for type ST_Geometry” on page 146
● “ST_Contains method for type ST_Geometry” on page 135
● “ST_Relate method for type ST_Geometry” on page 181

Tutorial: Experimenting with the spatial features
This tutorial shows allows you to experiment with some of the spatial features in SQL Anywhere. To do
so, you will first load an ESRI shapefile into your sample database (demo.db) to give you some valid
spatial data to experiment with.

The tutorial is broken into the following parts:

● “Part 1: Install additional units of measure and spatial reference systems” on page 47

● “Part 2: Download the ESRI shapefile data” on page 48

● “Part 3: Load the ESRI shapefile data” on page 49

● “Part 4: Query spatial data” on page 52

● “Part 5: Output spatial data to SVG” on page 54

● “Part 6: Project spatial data” on page 56

● “(optional) Restore the sample database (demo.db)” on page 58

Part 1: Install additional units of measure and spatial reference systems
This part of the tutorial shows you how to use the sa_install_feature system procedure to install many
predefined units of measure and spatial reference systems you will need later in this tutorial.

Tutorial: Experimenting with the spatial features

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 47

To install the predefined units of measure and spatial reference systems

1. Using Interactive SQL, start and connect to the sample database (demo.db) as user DBA, or as a
member of the SYS_SPATIAL_ADMIN_ROLE group.

The sample database is located in your /samples directory. For the default location of your /samples
directory, see “SQLANYSAMP12 environment variable” [SQL Anywhere Server - Database
Administration].

2. Execute the following statement:

CALL sa_install_feature('st_geometry_predefined_srs');

When the statement finishes, the additional units of measure and spatial reference systems have been
installed.

See also: “sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference] and
“CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL Reference].

3. To determine the units of measure installed in your database, you can execute the following query:

SELECT * FROM SYSUNITOFMEASURE;

See also: “SYSUNITOFMEASURE system view” [SQL Anywhere Server - SQL Reference].

4. To determine the spatial reference systems installed in your database, you can look in the Spatial
Reference Systems folder in Sybase Central, or execute the following query:

SELECT * FROM SYSSPATIALREFERENCESYSTEM;

See also: “SYSSPATIALREFERENCESYSTEM system view” [SQL Anywhere Server - SQL
Reference].

Part 2: Download the ESRI shapefile data
In this part of the tutorial, you will download an ESRI shapefile from the US Census website
(www2.census.gov). The shapefile you download represents the Massachusetts 5-digit code zip code
information used during the 2002 census tabulation. Each zip code area is treated as either a polygon or
multipolygon.

To download sample spatial data

1. Create a local directory called c:\temp\massdata.

2. Go to the following URL: http://www2.census.gov/cgi-bin/shapefiles2009/national-files

3. On the right-hand side of the page, in the State- and County-based Shapefiles dropdown, select
Massachusetts, and then click Submit.

4. On the left-hand side of the page, select 5-Digit ZIP Code Tabulation Area (2002), and then click
Download Selected Files.

Getting started with spatial data

48 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

http://www2.census.gov
http://www2.census.gov/cgi-bin/shapefiles2009/national-files

5. When prompted, save the zip file, multiple_tiger_files.zip, to c:\temp\massdata, and extract its
contents. This creates a subdirectory called 25_MASSACHUSETTS containing another zip file called
tl_2009_25_zcta5.zip.

6. Extract the contents of tl_2009_25_zcta5.zip to C:\temp\massdata.

This unpacks five files, including an ESRI shape file (.shp) you will use to load the spatial data into
the database.

Part 3: Load the ESRI shapefile data
This part of the tutorial shows you how to find out the columns in the ESRI shapefile and use that
information to create a table that you will load the data into.

To load the spatial data from the ESRI shapefile into the database

1. Since spatial data is associated with a specific spatial reference system, when you load data into the
database, you must load it into the same spatial reference system, or at least one with an equivalent
definition. To find out the spatial reference system information for the ESRI shapefile, open the
project file, c:\temp\massdata\tl_2009_25_zcta5.prj, in a text editor. This file contains the spatial
reference system information you need.

GEOGCS["GCS_North_American_1983",DATUM["D_North_American_1983",
SPHEROID["GRS_1980",6378137,298.257222101]],PRIMEM["Greenwich",
0],UNIT["Degree",0.017453292519943295]]

The string GCS_North_American_1983 is the name of the spatial reference system associated with
the data.

2. A quick query of the SYSSPATIALREFERENCESYSTEM view, SELECT * FROM
SYSSPATIALREFERENCESYSTEM WHERE srs_name='GCS_North_American_1983';,
reveals that this name is not present in the list of predefined SRSs. However, you can query for a
spatial reference system with the same definition and use it instead:

SELECT *
FROM SYSSPATIALREFERENCESYSTEM
WHERE definition LIKE '%1983%'
AND definition LIKE 'GEOGCS%';

The query returns a single spatial reference system, NAD83 with SRID 4269, that has the same
definition and will be suitable for loading the data into.

3. Next, you need to create a table to load the spatial data into. To do this, you must first determine the
columns in your ESRI shapefile. The following statement returns a description of the columns. It also
adds some formatting to the output that will help prepare the result set for inclusion in a CREATE
TABLE statement. Note the use of the SRID you found in the previous step when calling the
sa_describe_shapefile system procedure:

SELECT name || ' ' || domain_name_with_size || ', '
FROM sa_describe_shapefile('C:\temp\massdata\tl_2009_25_zcta5.shp', 4269)
ORDER BY column_number;

4. Select all rows in the result set, then right-click and select Copy Data » Cells.

Tutorial: Experimenting with the spatial features

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 49

5. In the top pane in Interactive SQL, remove the SELECT statement you executed and type CREATE
TABLE Massdata(, and then paste the cells you copied.

6. Change the definition for the record_number column to be a PRIMARY KEY (that is, change
record_number int, to record_number int PRIMARY KEY,).

7. Change column name ZCTA5CE to be ZIP.

8. For the last column in the list, remove the trailing comma and add a closing bracket followed by a
semicolon.

Your CREATE TABLE statement should look as follows:

CREATE TABLE Massdata(
record_number int PRIMARY KEY,
geometry ST_Geometry(SRID=4269),
ZIP varchar(5),
CLASSFP varchar(2),
MTFCC varchar(5),
FUNCSTAT varchar(1),
ALAND bigint,
AWATER bigint,
INTPTLAT varchar(11),
INTPTLON varchar(12)
);

9. Execute the CREATE TABLE statement to create the table.

10. Load the spatial data in the ESRI shapefile into Massdata using the following statement. This may
take several minutes to complete.

LOAD TABLE Massdata
USING FILE 'C:\temp\massdata\tl_2009_25_zcta5.shp'
FORMAT SHAPEFILE;

11. In the Massdata table, the two columns INTPTLON and INTPTLAT represent the X and Y
coordinates for the center of the zip code region. In this step, you combine the values into an ST_Point
column called CenterPoint. Each value in the CenterPoint column (in WKT) is the center point of the
zip code region represented in the geometry column. This column will be useful in some of the tutorial
examples later on.

To create the column, execute the following statement:

ALTER TABLE Massdata
ADD CenterPoint AS ST_Point(SRID=4269)
COMPUTE(new ST_Point(CAST(INTPTLON AS DOUBLE), CAST(INTPTLAT AS
DOUBLE), 4269));

12. You can view the data by executing the following statement in Interactive SQL:

SELECT * FROM Massdata;

Each row in the results represents a zip code region. Massdata.geometry holds the shape information
of the zip code region as either a polygon (one area) or multipolygon (two or more incontiguous areas).

Getting started with spatial data

50 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

13. To view an individual geometry (a zip code region) as a shape, double-click any value in
Massdata.geometry and click the Spatial Preview tab of the Value Of Column window.

If you receive an error saying the value is to large, or suggesting you include a primary key in the
results, it is because the value has been truncated for display purposes in Interactive SQL. To fix this,
you can either modify the query to include the primary key column in the results, or adjust the
Truncation Length setting for Interactive SQL. Changing the setting is recommended if you don't
want to have to include the primary key each time you query for geometries with the intent to view
them in Interactive SQL.

To change the Truncation Length setting for Interactive SQL, click Tools » Options » SQL
Anywhere, set Truncation Length to a high number such as 100000.

14. To view the entire data set as one shape, click Tools » Spatial Viewer to open the SQL Anywhere
Spatial Viewer and execute the following query:

SELECT geometry FROM Massdata
UNION ALL SELECT centerpoint FROM Massdata;

Tutorial: Experimenting with the spatial features

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 51

Part 4: Query spatial data
This part of the tutorial shows you how to use some of the spatial methods to query the data in a
meaningful context.

The queries are performed on one or both of the SpatialContacts table, which holds names and contact
information for people--many of whom live in Massachusetts, and on the Massdata table you created. You
will also learn how to calculate distances, which requires you to add units of measurement to your database.

To query the spatial data

1. In the following steps, you will work with the zip code area 01775.

Create a variable named @Mass_01775 to hold the associated geometry.

CREATE VARIABLE @Mass_01775 ST_Geometry;
SELECT geometry INTO @Mass_01775

Getting started with spatial data

52 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

FROM Massdata
WHERE ZIP = '01775';

2. Suppose you want to find all contacts in SpatialContacts in the zip code area 01775 and surrounding
zip code areas. For this, you can use the ST_Intersects method, which returns geometries that
intersects with, or are the same as, the specified geometry. You would execute the following statement:

SELECT c.Surname, c.GivenName, c.Street, c.City, c.PostalCode, z.geometry
FROM Massdata z, SpatialContacts c
WHERE
c.PostalCode = z.ZIP
AND z.geometry.ST_Intersects(@Mass_01775) = 1;

See also: “ST_Intersects method for type ST_Geometry” on page 165

3. All rows in Massdata.geometry are associated with the same spatial reference system (SRID 4269)
because you assigned SRID 4269 when you created the geometry column and loaded data into it.

However, it is also possible to create an undeclared ST_Geometry column (that is, without assigning
a SRID to it). This may be necessary if you intend store spatial values that have different SRSs
associated to them in a single column. When operations are performed on these values, the spatial
reference system associated with each value is used.

One danger of having an undeclared column, is that the database server does not prevent you from
changing an spatial reference system that is associated with data in an undeclared column.

If the column has a declared SRID, however, the database server does not allow you to modify the
spatial reference system associated with the data. You must first unload and then truncate the data in
the declared column, change the spatial reference system, and then reload the data.

You can use the ST_SRID method to determine the SRID associated with values in a column,
regardless of whether it is declared or not. For example, the following statement shows the SRID
assigned to each row in the Massdata.geometry column:

SELECT geometry.ST_SRID()
FROM Massdata;

See also: “ST_SRID method for type ST_Geometry” on page 185

4. You can use the ST_CoveredBy method to check that a geometry is completely contained within
another geometry. For example, Massdata.CenterPoint (ST_Point type) contains the latitude/longitude
coordinates of the center of the zipcode area, while Massdata.geometry contains the polygon
reflecting the zip code area. You can do a quick check to make sure that no CenterPoint value has
been set outside its zip code area by executing the following query:

SELECT * FROM Massdata
WHERE NOT(CenterPoint.ST_CoveredBy(geometry) = 1);

No rows are returned, indicating that all CenterPoint values are contained within their associated
geometries in Massdata.geometry. This check does not validate that they are the true center, of course.
You would need to project the data to a flat-Earth spatial reference system and check the CenterPoint
values using the ST_Centroid method. For information on how to project data to another spatial
reference system, see “Part 6: Project spatial data” on page 56.

Tutorial: Experimenting with the spatial features

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 53

See also: “ST_CoveredBy method for type ST_Geometry” on page 142

5. You can use the ST_Distance method to measure the distance between the center point of the zip code
areas. For example, suppose you want the list of zip code within 100 miles of zip code area 01775.
You could execute the following query:

SELECT c.PostalCode, c.City,
 z.CenterPoint.ST_Distance((SELECT CenterPoint
 FROM Massdata WHERE ZIP = '01775'),
 'Statute mile') dist,
 z.CenterPoint
FROM Massdata z, SpatialContacts c
WHERE c.PostalCode = z.ZIP
 AND dist <= 100
ORDER BY dist;

See also: “ST_Distance method for type ST_Geometry” on page 151

6. If knowing the exact distance is not important, you could construct the query using the
ST_WithinDistance method instead, which can offer better performance for certain datasets (in
particular, for large geometries):

SELECT c.PostalCode, c.City, z.CenterPoint
FROM Massdata z, SpatialContacts c
WHERE c.PostalCode = z.ZIP
 AND z.CenterPoint.ST_WithinDistance((SELECT CenterPoint
 FROM Massdata WHERE ZIP = '01775'),
 100, 'Statute mile') = 1
ORDER BY c.PostalCode;

See also: “ST_WithinDistance method for type ST_Geometry” on page 212.

Part 5: Output spatial data to SVG
You can export geometries to SVG format for viewing in Interactive SQL or in an SVG-compatible
application. In the following procedure, you create an SVG document to view a multipolygon expressed
in WKT.

Output a geometry as SVG for viewing

1. In Interactive SQL, execute the following statement to create a variable with an example geometry:

CREATE OR REPLACE VARIABLE @svg_geom
ST_Polygon = (NEW ST_Polygon('Polygon ((1 1, 5 1, 5 5, 1 5, 1 1), (2 2, 2
3, 3 3, 3 2, 2 2))'));

2. In Interactive SQL, execute the following SELECT statement to call the ST_AsSVG method:

SELECT @svg_geom.ST_AsSVG() AS svg;

The result set has a single row that is an SVG image. You can view the image using the SVG Preview
feature in Interactive SQL. To do this, double-click the result row, and select the SVG Preview tab.

If you receive an error saying that the full value could not be read from the database, you need to
change the Truncation Length setting for Interactive SQL. To do this, in Interactive SQL click Tools »

Getting started with spatial data

54 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Options » SQL Anywhere, and set Truncation Length to a high number such as 100000. Execute
your query again and view the geometry.

3. The previous step described how to preview an SVG image within Interactive SQL. However, it may
be more useful to write the resulting SVG to a file so that it can be read by an external application.
You could use the xp_write_file system procedure or the WRITE_CLIENT_FILE function [String] to
write to a file relative to either the database server or the client computer. In this example, you will
use the OUTPUT statement [Interactive SQL].

In Interactive SQL, execute the following SELECT statement to call the ST_AsSVG method and
output the geometry to a file named myPolygon.svg:

SELECT @svg_geom.ST_AsSVG();
OUTPUT TO 'c:\\myPolygon.svg'
QUOTE ''
ESCAPES OFF
FORMAT TEXT

You must include the QUOTE '' and ESCAPES OFFclauses, otherwise line return characters and
single quotes are inserted in the XML to preserve whitespace, causing the output to be an invalid SVG
file.

4. Open the SVG in a web browser or application that supports viewing SVG images. Alternatively, you
can open the SVG in a text editor to view the XML for the geometry.

5. The ST_AsSVG method generates an SVG image from a single geometry. In some cases, you want to
generate an SVG image including all of the shapes in a group. The ST_AsSVGAggr method is an
aggregate function that combines multiple geometries into a single SVG image. First, create a variable
to hold the SVG image and generate it using the ST_AsSVGAggr method.

CREATE OR REPLACE VARIABLE @svg XML;
SELECT ST_Geometry::ST_AsSVGAggr(geometry, 'attribute=fill="black"')
INTO @svg
FROM Massdata;

The @svg variable now holds an SVG image representing all of the zip code regions in the Massdata
table. The 'attribute=fill="black"' specifies the fill color that is used for the generated
image. If not specified, the database server chooses a random fill color. Now that you have a variable
containing the SVG image you are interested in, you can write it to a file for viewing by other
applications. Execute the following statement to write the SVG image to a file relative to the database
server.

CALL xp_write_file('c:\\temp\\Massdata.svg', @svg);

The WRITE_CLIENT_FILE function could also be used to write a file relative to the client
application, but additional steps may be required to ensure appropriate permissions are enabled. If you
open the SVG image in an application that supports SVG data, you should see an image like the following:

Tutorial: Experimenting with the spatial features

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 55

You will notice that the image is not uniformly black; there are small gaps between the borders of
adjacent zip code regions. These are actually white lines between the geometries and is characteristic
of the way the SVG is rendered. There are not really any gaps in the data. Larger white lines are rivers
and lakes.

See also:

● “OUTPUT statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference]
● “ST_AsSVG method for type ST_Geometry” on page 104
● “ST_AsSVGAggr method for type ST_Geometry” on page 107
● “xp_write_file system procedure” [SQL Anywhere Server - SQL Reference]
● “WRITE_CLIENT_FILE function [String]” [SQL Anywhere Server - SQL Reference]

Part 6: Project spatial data
This part of the tutorial shows you how to project data into an spatial reference system that uses the flat-
Earth model so that you can calculate area and distance measurements.

The spatial values in Massdata were assigned SRID 4269 (NAD83 spatial reference system) when you
loaded the data into the database from the ESRI shapefile. SRID 4269 is a round-Earth spatial reference
system. However, calculations such as the area of geometries and some spatial predicates are not
supported in the round-Earth model. If your data is currently associated with a round-Earth spatial
reference system, you can create a new spatial column that projects the values into a flat-Earth spatial
reference system, and then perform your calculations on that column.

To project data

1. To measure the area of polygons representing the zip code areas, you must project the data in
Massdata.geometry to a flat-Earth spatial reference system.

To select an appropriate SRID to project the data in Massdata.geometry into, query the
SYSSPATIALREFERENCESYSTEM system view for a SRID containing the word Massachusetts, as
follows:

Getting started with spatial data

56 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SELECT * FROM SYSSPATIALREFERENCESYSTEM WHERE srs_name LIKE '%massachusetts
%';

This returns several SRIDs suitable for use with the Massachusetts data. For the purpose of this
tutorial, 3586 will be used.

2. You must now create a column, Massdata.geometry_flat, into which you will project the geometries
into 3586 using the ST_Transform method:

ALTER TABLE Massdata
ADD proj_geometry
 AS ST_Geometry(SRID=3586)
 COMPUTE(geometry.ST_Transform(3586));

See also: “ST_Transform method for type ST_Geometry” on page 208

3. You can compute the area using the Massdata.proj_geometry. For example, execute the following
statement:

SELECT zip, proj_geometry.ST_ToMultiPolygon().ST_Area('Statute Mile') AS
area
FROM Massdata
ORDER BY area DESC;

Note
ST_Area is not supported on round-Earth spatial reference systems and ST_Distance is supported but
only between point geometries.

4. To see the impact that projecting to another spatial reference system has on calculations of distance,
you can use the following query to compute the distance between the center points of the zip codes
using the round-Earth model (more precise) or the projected flat-Earth model. Both models agree
fairly well for this data because the projection selected is suitable for the data set.

SELECT M1.zip, M2.zip,
 M1.CenterPoint.ST_Distance(M2.CenterPoint, 'Statute Mile')
dist_round_earth,

M1.CenterPoint.ST_Transform(3586).ST_Distance(M2.CenterPoint.ST_Transfo
rm(3586), 'Statute Mile') dist_flat_earth
FROM Massdata M1, Massdata M2
WHERE M1.ZIP = '01775'
ORDER BY dist_round_earth DESC;

5. Suppose you want to find neighboring zip code areas that border the zip code area 01775. To do this,
you would use the ST_Touches method. The ST_Touches method compares geometries to see if one
geometry touches another geometry without overlapping in any way. Note that the results for
ST_Touches do not include the row for zip code 01775 (unlike the ST_Intersects method).

DROP VARIABLE @Mass_01775;
CREATE VARIABLE @Mass_01775 ST_Geometry;
SELECT geometry INTO @Mass_01775
FROM Massdata
WHERE ZIP = '01775';
SELECT record_number, proj_geometry
FROM Massdata
WHERE proj_geometry.ST_Touches(@Mass_01775.ST_Transform(3586)) = 1;

Tutorial: Experimenting with the spatial features

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 57

See also: “ST_Touches method for type ST_Geometry” on page 207

6. You can use the ST_UnionAggr method to return a geometry that represents the union of a group of
zip code areas. For example, suppose you want a geometry reflecting the union of the zip code areas
neighboring, but not including, 01775.

In Interactive SQL, click Tools » Spatial Viewer and execute the following query:

SELECT ST_Geometry::ST_UnionAggr(proj_geometry)
FROM Massdata
WHERE proj_geometry.ST_Touches(@Mass_01775.ST_Transform(3586)) = 1;

Double-click the result to view it.

If you receive an error saying the full column could not be read from the database, increase the
Truncation Length setting for Interactive SQL. To do this, in Interactive SQL click Tools » Options »
SQL Anywhere, and set Truncation Length to a higher number. Execute your query again and view
the geometry.

See also: “ST_UnionAggr method for type ST_Geometry” on page 210.

(optional) Restore the sample database (demo.db)
Restore the sample database (demo.db) to its original state by following the steps found here: “Recreate
the sample database (demo.db)” [SQL Anywhere 12 - Introduction].

Getting started with spatial data

58 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Accessing and manipulating spatial data
This section describes the types, methods, and constructors you can use to access, manipulate, and
analyze spatial data. The spatial data types can be considered like data types or classes. Each spatial data
type has associated methods and constructors you use to access the data.

For compatibility with other products, SQL Anywhere also supports some SQL functions for working
with spatial data. In almost all cases, these compatibility functions use one of the spatial methods to
perform the operation, so a link to the underlying method is provided. See “Spatial compatibility
functions” on page 292.

ST_CircularString type
The ST_CircularString type is a subtype of ST_Curve that uses circular line segments between control points.

Direct supertype
● “ST_Curve type” on page 69

Constructor
● “ST_CircularString constructor” on page 60

Methods
● “ST_NumPoints method for type ST_CircularString” on page 63
● “ST_PointN method for type ST_CircularString” on page 64
● All methods of “ST_Curve type” on page 69 can also be called on a ST_CircularString type.
● All methods of “ST_Geometry type” on page 88 can also be called on a ST_CircularString type.

Remarks
The ST_CircularString type is a subtype of ST_Curve that uses circular line segments between control
points. The first three points define an arc as follows. The first point is the start point of the arc. The
second point is any point on the arc other than the start and end point. The third point is the end point of
the arc. Subsequent segments are defined by two points only (intermediate and end point). The start point
is taken to be the end point of the preceding segment.

A circularstring can be a complete circle with three points if the start and end points are coincident. In this
case, the intermediate point is the midpoint of the segment.

If the start, intermediate and end points are collinear, the arc segment is a straight line segment between
the start and end point.

A circularstring with exactly three points is a circular arc. A circular ring is a circularstring that is both
closed and simple.

Circularstrings are not allowed in round-Earth spatial reference systems. For example, attempting to
create one for SRID 4326 returns an error.

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 59

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 7.3

ST_CircularString constructor
Constructs a circular string

Overload list

Name Description

“ST_CircularString() constructor” on page 60 Constructs a circular string representing
the empty set.

“ST_CircularString(LONG VARCHAR[, INT]) construc-
tor” on page 60

Constructs a circular string from a text rep-
resentation.

“ST_CircularString(LONG BINARY[, INT]) construc-
tor” on page 61

Constructs a circular string from WKB.

“ST_CircularString(ST_Point,ST_Point,ST_Point,...) con-
structor” on page 62

Constructs a circular string value from a
list of points in a specified spatial refer-
ence system.

ST_CircularString() constructor
Constructs a circular string representing the empty set.

Syntax
NEW ST_CircularString()

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Standard feature

Example
The following returns 1, indicating the value is empty.

SELECT new ST_CircularString().ST_IsEmpty()

ST_CircularString(LONG VARCHAR[, INT]) constructor
Constructs a circular string from a text representation.

Syntax
NEW ST_CircularString(text-representation[, srid])

Accessing and manipulating spatial data

60 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters

Name Type Description

text-represen-
tation

LONG
VARCHAR

A string containing the text representation of a circular string. The in-
put can be in any supported text input format, including WKT or EWKT.

srid INT The SRID of the result. If not specified, the default is 0.

Remarks
Constructs a circular string from a character string representation. The database server determines the
input format by inspecting the provided string.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 7.3.2

Example
The following returns CircularString (5 10, 10 12, 15 10)

SELECT NEW ST_CircularString('CircularString (5 10, 10 12, 15 10)')

The following example shows a circularstring with two semi-circle segments.

SELECT NEW ST_CircularString('CircularString (0 4, 2.5 6.5, 5 4, 7.5 1.5, 10
4)') CS

ST_CircularString(LONG BINARY[, INT]) constructor
Constructs a circular string from WKB.

Syntax
NEW ST_CircularString(wkb[, srid])

ST_CircularString type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 61

Parameters

Name Type Description

wkb LONG BI-
NARY

A string containing the binary representation of an circular string. The input
can be in any supported binary input format, including WKB or EWKB.

srid INT The SRID of the result. If not specified, the default is 0.

Remarks
Constructs a circular string from a binary string representation. The database server determines the input
format by inspecting the provided string.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 7.3.2

Example
The following returns CircularString (5 10, 10 12, 15 10)

SELECT NEW
ST_CircularString(0x010800000003000000000000000000144000000000000024400000000
00000244000000000000028400000000000002e400000000000002440)

ST_CircularString(ST_Point,ST_Point,ST_Point,...) constructor
Constructs a circular string value from a list of points in a specified spatial reference system.

Syntax
NEW ST_CircularString(pt1,pt2,pt3,[pt4,...,ptN])

Parameters

Name Type Description

pt1 ST_Point The first point of an arc.

pt2 ST_Point Any point on the arc between the first and last point.

pt3 ST_Point The last point of an arc.

pt4,...,ptN ST_Point Additional points defining further arcs, each starting with the previous end
point, passing through the first additional point and ending with the second ad-
ditional point.

Remarks
Constructs a circular string value from a list of points. At least three points must be provided. The first of
these three is the start of an arc, the third point is the end of the arc, and the second point is any point on
the arc between the first and third point. Additional points can be specified in pairs to add more arcs to the

Accessing and manipulating spatial data

62 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

circular string. All of the specified points must have the same SRID. The circular string is constructed
with this common SRID. All of the supplied points must be non-empty and have the same answer for
Is3D and IsMeasured. The circular string is 3D if all of the points are 3D, and the circular string is
measured if all of the points are measured.

Note
By default, ST_CircularString uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following returns an error: at least three points must be specified.

SELECT NEW ST_CircularString(NEW ST_Point(0, 0), NEW ST_Point(1, 1))

The following example returns the result CircularString (0 0, 1 1, 2 0).

SELECT NEW ST_CircularString(NEW ST_Point(0, 0), NEW ST_Point(1, 1), NEW
ST_Point(2,0))

The following returns an error: the first circular arc takes three points, and subsequent arcs take two points.

SELECT NEW ST_CircularString(NEW ST_Point(0, 0), NEW ST_Point(1, 1), NEW
ST_Point(2,0), NEW ST_Point(1,-1))

The following example returns the result CircularString (0 0, 1 1, 2 0, 1 -1, 0 0).

SELECT NEW ST_CircularString(NEW ST_Point(0, 0), NEW ST_Point(1, 1), NEW
ST_Point(2,0), NEW ST_Point(1,-1), NEW ST_Point(0, 0))

ST_NumPoints method for type ST_CircularString

Returns the number of points defining the circular string.

Note
By default, ST_NumPoints uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Syntax
circularstring-expression.ST_NumPoints()

ST_CircularString type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 63

Returns
● INT Returns NULL if the circular string value is empty, otherwise the number of points in the value.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 7.3.4

ST_PointN method for type ST_CircularString
Returns the nth point in the circular string.

Note
By default, ST_PointN uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Syntax
circularstring-expression.ST_PointN(n)

Parameters

Name Type Description

n INT The position of the element to return, from 1 to circularstring-expression.ST_Num-
Points().

Returns
● ST_Point If the linestring value is the empty set, returns NULL. If the specified position n is less

than 1 or greater than the number of points, raises a warning and returns NULL. Otherwise, returns the
ST_Point value at position n.

The spatial reference system identifier of the result is the same as the spatial reference system of the
circularstring-expression.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 7.3.5

ST_CompoundCurve type
A compound curve is a sequence of ST_Curve values such that adjacent curves are joined at their
endpoints. The contributing curves are limited to ST_LineString and ST_CircularString. The start point of
each curve after the first is coincident with the end point of the previous curve.

Accessing and manipulating spatial data

64 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Direct supertype
● “ST_Curve type” on page 69

Constructor
● “ST_CompoundCurve constructor” on page 65

Methods
● “ST_CurveN method for type ST_CompoundCurve” on page 68
● “ST_NumCurves method for type ST_CompoundCurve” on page 69
● All methods of “ST_Curve type” on page 69 can also be called on a ST_CompoundCurve type.
● All methods of “ST_Geometry type” on page 88 can also be called on a ST_CompoundCurve type.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 7.4

ST_CompoundCurve constructor
Constructs a compound curve

Overload list

Name Description

“ST_CompoundCurve() construc-
tor” on page 65

Constructs a compound curve representing the emp-
ty set.

“ST_CompoundCurve(LONG VARCHAR[,
INT]) constructor” on page 66

Constructs a compound curve from a text represen-
tation.

“ST_CompoundCurve(LONG BINARY[, INT])
constructor” on page 66

Constructs a compound curve from WKB.

“ST_CompoundCurve(ST_Curve,...) construc-
tor” on page 67

Constructs a compound curve from a list of curves.

ST_CompoundCurve() constructor
Constructs a compound curve representing the empty set.

Syntax
NEW ST_CompoundCurve()

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Standard feature

ST_CompoundCurve type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 65

Example
The following returns 1, indicating the value is empty.

SELECT new ST_CompoundCurve().ST_IsEmpty()

ST_CompoundCurve(LONG VARCHAR[, INT]) constructor
Constructs a compound curve from a text representation.

Syntax
NEW ST_CompoundCurve(text-representation[, srid])

Parameters

Name Type Description

text-represen-
tation

LONG
VARCHAR

A string containing the text representation of a compound curve. The
input can be in any supported text input format, including WKT or
EWKT.

srid INT The SRID of the result. If not specified, the default is 0.

Remarks
Constructs a compound curve from a character string representation. The database server determines the
input format by inspecting the provided string.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 7.4.2

Example
The following returns CompoundCurve ((0 0, 5 10), CircularString (5 10, 10 12, 15 10))

SELECT NEW ST_CompoundCurve('CompoundCurve ((0 0, 5 10), CircularString (5
10, 10 12, 15 10))')

ST_CompoundCurve(LONG BINARY[, INT]) constructor
Constructs a compound curve from WKB.

Syntax
NEW ST_CompoundCurve(wkb[, srid])

Accessing and manipulating spatial data

66 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters

Name Type Description

wkb LONG BI-
NARY

A string containing the binary representation of an compound curve. The input
can be in any supported binary input format, including WKB or EWKB.

srid INT The SRID of the result. If not specified, the default is 0.

Remarks
Constructs a compound curve from a binary string representation. The database server determines the
input format by inspecting the provided string.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 7.4.2

Example
The following returns CompoundCurve ((0 0, 5 10))

SELECT NEW
ST_CompoundCurve(0x0109000000010000000102000000020000000000000000000000000000
000000000000000000000014400000000000002440)

ST_CompoundCurve(ST_Curve,...) constructor
Constructs a compound curve from a list of curves.

Syntax
NEW ST_CompoundCurve(curve1,[curve2,...,curveN])

Parameters

Name Type Description

curve1 ST_Curve The first curve to include in the compound curve.

curve2,...,curveN ST_Curve Additional curves to include in the compound curve.

Remarks
Constructs a compound curve from a list of constituent curves. The start point of each curve after the first
must be coincident with the end point of the previous curve. All of the supplied curves must have the
same SRID. The compound curve is constructed with this common SRID. All of the supplied curves must
be non-empty and have the same answer for Is3D and IsMeasured. The compound curve is 3D if all of the
points are 3D, and the compound curve is measured if all of the points are measured.

ST_CompoundCurve type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 67

Note
By default, ST_CompoundCurve uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following returns CompoundCurve ((0 0, 5 10), CircularString (5 10, 10 12, 15 10))

SELECT NEW ST_CompoundCurve(NEW ST_LineString('LineString(0 0, 5 10)'),NEW
ST_CircularString('CircularString (5 10, 10 12, 15 10)'))

ST_CurveN method for type ST_CompoundCurve
Returns the nth curve in the compound curve.

Note
By default, ST_CurveN uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Syntax
compoundcurve-expression.ST_CurveN(n)

Parameters

Name Type Description

n INT The position of the element to return, from 1 to compoundcurve-expression.ST_Num-
Curves().

Returns
● ST_Curve Returns the nth curve in the compound curve.

The spatial reference system identifier of the result is the same as the spatial reference system of the
compoundcurve-expression.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 7.4.5

Accessing and manipulating spatial data

68 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ST_NumCurves method for type ST_CompoundCurve

Returns the number of curves defining the compound curve.

Note
By default, ST_NumCurves uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Syntax
compoundcurve-expression.ST_NumCurves()

Returns
● INT Returns the number of curves contained in this compound curve.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 7.4.4

ST_Curve type
The ST_Curve type is a supertype for types representing lines using a sequence of points.

Direct supertype
● “ST_Geometry type” on page 88

Direct subtypes
● “ST_CircularString type” on page 59
● “ST_CompoundCurve type” on page 64
● “ST_LineString type” on page 223

Methods
● “ST_CurveToLine method for type ST_Curve” on page 70
● “ST_EndPoint method for type ST_Curve” on page 70
● “ST_IsClosed method for type ST_Curve” on page 71
● “ST_IsRing method for type ST_Curve” on page 71
● “ST_Length method for type ST_Curve” on page 72
● “ST_StartPoint method for type ST_Curve” on page 73
● All methods of “ST_Geometry type” on page 88 can also be called on a ST_Curve type.

Remarks
The ST_Curve type is a supertype for types representing lines using a sequence of points. Subtypes
specify whether the control points are joined using straight segments (ST_LineString), circular segments

ST_Curve type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 69

(ST_CircularString) or a combination (ST_CompoundCurve). The ST_Curve type is not instantiable. An
ST_Curve value is simple if it does not intersect itself (except possibly at the end points). If an ST_Curve
value does intersect at its endpoints, it is closed. An ST_Curve value that is both simple and closed is
called a ring.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 7.1

ST_CurveToLine method for type ST_Curve
Returns the ST_LineString approximation of an ST_Curve value.

Note
By default, ST_CurveToLine uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Syntax
curve-expression.ST_CurveToLine()

Returns
● ST_LineString If the curve value is empty, returns an empty set of type ST_LineString. Otherwise,

returns an approximation of the curve as a linestring

The spatial reference system identifier of the result is the same as the spatial reference system of the
curve-expression.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 7.1.7

ST_EndPoint method for type ST_Curve
Returns an ST_Point value that is the end point of the ST_Curve value.

Note
By default, ST_EndPoint uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Syntax
curve-expression.ST_EndPoint()

Accessing and manipulating spatial data

70 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns
● ST_Point If the curve is an empty set, returns NULL. Otherwise, returns the end point of the curve.

The spatial reference system identifier of the result is the same as the spatial reference system of the
curve-expression.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 7.1.4

ST_IsClosed method for type ST_Curve
Test if the ST_Curve value is closed. A curve is closed if the start and end points are coincident.

Note
By default, ST_IsClosed uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Syntax
curve-expression.ST_IsClosed()

Returns
● BIT Returns 1 if the curve is closed (and non empty). Otherwise, returns 0.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 7.1.5

ST_IsRing method for type ST_Curve
Tests if the ST_Curve value is a ring. A curve is a ring if it is closed and simple (no self intersections).

Syntax
curve-expression.ST_IsRing()

Returns
● BIT Returns 1 if the curve is a ring (and non empty). Otherwise, returns 0.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 7.1.6

ST_Curve type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 71

ST_Length method for type ST_Curve
Returns the length measurement of the ST_Curve value. The result is measured in the units specified by
the unit-name parameter.

Syntax
curve-expression.ST_Length([unit-name])

Parameters

Name Type Description

unit-
name

VAR-
CHAR(128)

The units in which the length should be computed. Defaults to the unit of
the spatial reference system. The unit name must match the
UNIT_NAME column of a row in the ST_UNITS_OF_MEASURE view
where UNIT_TYPE is 'LINEAR'.

Returns
● DOUBLE If the curve is an empty set, returns NULL. Otherwise, returns the length of the curve in

the specified units.

Remarks
The ST_Length method returns the length of a curve in the units identified by the unit-name parameter. If
the curve is empty, then NULL is returned.

If the curve contains Z values, these are not considered when computing the length of the geometry.

Note
If the curve-expression is an empty geometry (ST_IsEmpty()=1), then this method returns NULL.

Note
By default, ST_Length uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

See also
● “ST_Length method for type ST_MultiCurve” on page 233

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 7.1.2

Example
The following example returns the result 2.

SELECT NEW ST_LineString('LineString(1 0, 1 1, 2 1)').ST_Length()

Accessing and manipulating spatial data

72 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The following example creates a circularstring representing a half-circle and uses ST_Length to find the
length of the geometry, returning the value PI.

SELECT NEW ST_CircularString('CircularString(0 0, 1 1, 2 0)').ST_Length()

The following example creates a linestring representing a path from Halifax, NS to Waterloo, ON, Canada
and uses ST_Length to find the length of the path in metres, returning the result 1361967.76789.

SELECT NEW ST_LineString('LineString(-63.573566 44.646244, -80.522372
43.465187)', 4326)
 .ST_Length()

The following example creates an empty linestring and uses ST_Length to find the length of the
geometry. The example returns NULL.

begin
 declare @curve ST_Curve;
 set @curve = NEW ST_LineString('LineString EMPTY');
 SELECT @curve.ST_Length('metre');
end

The following example creates a linestring and an example unit of measure (example_unit_halfmetre).
The ST_Length method finds the length of the geometry in this unit of measure, returning the value 4.0.

begin
 declare @curve ST_Curve;
 CREATE SPATIAL UNIT OF MEASURE IF NOT EXISTS "example_unit_halfmetre"
TYPE LINEAR CONVERT USING .5;
 set @curve = NEW ST_LineString('LineString(1 0, 1 1, 2 1)') ;
 SELECT @curve.ST_Length('example_unit_halfmetre');
end

ST_StartPoint method for type ST_Curve

Returns an ST_Point value that is the start point of the ST_Curve value.

Note
By default, ST_StartPoint uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Syntax
curve-expression.ST_StartPoint()

Returns
● ST_Point If the curve is an empty set, returns NULL. Otherwise, returns the start point of the curve.

The spatial reference system identifier of the result is the same as the spatial reference system of the
curve-expression.

ST_Curve type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 73

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 7.1.3

ST_CurvePolygon type
An ST_CurvePolygon represents a planar surface defined by one exterior ring and zero or more interior rings

Direct supertype
● “ST_Surface type” on page 288

Direct subtypes
● “ST_Polygon type” on page 273

Constructor
● “ST_CurvePolygon constructor” on page 74

Methods
● “ST_CurvePolyToPoly method for type ST_CurvePolygon” on page 79
● “ST_ExteriorRing method for type ST_CurvePolygon” on page 79
● “ST_InteriorRingN method for type ST_CurvePolygon” on page 81
● “ST_NumInteriorRing method for type ST_CurvePolygon” on page 82
● All methods of “ST_Surface type” on page 288 can also be called on a ST_CurvePolygon type.
● All methods of “ST_Geometry type” on page 88 can also be called on a ST_CurvePolygon type.

Remarks
An ST_CurvePolygon represents a planar surface defined by one exterior ring and zero or more interior
rings that represent holes in the surface. The exterior and interior rings of an ST_CurvePolygon can be
any ST_Curve value. For example, a circle is an ST_CurvePolygon with an ST_CircularString exterior
ring representing the boundary. No two rings in an ST_CurvePolygon can intersect except possibly at a
single point. Further, an ST_CurvePolygon cannot have cut lines, spikes, or punctures.

The interior of every ST_CurvePolygon is a connected point set.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 8.2

ST_CurvePolygon constructor
Constructs a curve polygon

Accessing and manipulating spatial data

74 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Overload list

Name Description

“ST_CurvePolygon() construc-
tor” on page 75

Constructs a curve polygon representing the empty set.

“ST_CurvePolygon(LONG VAR-
CHAR[, INT]) constructor” on page 75

Constructs a curve polygon from a text representation.

“ST_CurvePolygon(LONG BINARY[,
INT]) constructor” on page 76

Constructs a curve polygon from WKB.

“ST_CurvePolygon(ST_Curve,...) con-
structor” on page 77

Creates a curve polygon from a curve representing the exte-
rior ring and a list of curves representing interior rings, all
in a specified spatial reference system.

“ST_CurvePolygon(ST_MultiCurve[,
VARCHAR(128)]) construc-
tor” on page 78

Creates a curve polygon from a multi curve containing an
exterior ring and an optional list of interior rings.

ST_CurvePolygon() constructor
Constructs a curve polygon representing the empty set.

Syntax
NEW ST_CurvePolygon()

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Standard feature

Example
The following returns 1, indicating the value is empty.

SELECT new ST_CurvePolygon().ST_IsEmpty()

ST_CurvePolygon(LONG VARCHAR[, INT]) constructor
Constructs a curve polygon from a text representation.

Syntax
NEW ST_CurvePolygon(text-representation[, srid])

ST_CurvePolygon type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 75

Parameters

Name Type Description

text-represen-
tation

LONG
VARCHAR

A string containing the text representation of a curve polygon. The in-
put can be in any supported text input format, including WKT or EWKT.

srid INT The SRID of the result. If not specified, the default is 0.

Remarks
Constructs a curve polygon from a character string representation. The database server determines the
input format by inspecting the provided string.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 8.2.2

Example
The following returns CurvePolygon (CompoundCurve (CircularString (-5 -5, 0 -5, 5 -5), (5 -5, 0 5, -5 -5)))

SELECT NEW ST_CurvePolygon('CurvePolygon (CompoundCurve (CircularString (-5
-5, 0 -5, 5 -5), (5 -5, 0 5, -5 -5)))')

The following example shows a curvepolygon with a circle as an outer ring and a triangle inner ring.

SELECT NEW ST_CurvePolygon('CurvePolygon (CircularString (2 0, 5 3, 2 0), (3
1, 4 2, 5 1, 3 1))') cpoly

ST_CurvePolygon(LONG BINARY[, INT]) constructor
Constructs a curve polygon from WKB.

Accessing and manipulating spatial data

76 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
NEW ST_CurvePolygon(wkb[, srid])

Parameters

Name Type Description

wkb LONG BI-
NARY

A string containing the binary representation of an curve polygon. The input
can be in any supported binary input format, including WKB or EWKB.

srid INT The SRID of the result. If not specified, the default is 0.

Remarks
Constructs a curve polygon from a binary string representation. The database server determines the input
format by inspecting the provided string.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 8.2.2

Example
The following returns CurvePolygon (CircularString (0 0, 10 0, 10 10, 0 10, 0 0))

SELECT NEW
ST_CurvePolygon(0x010a0000000100000001080000000500000000000000000000000000000
00000000000000000000024400000000000000000000000000000244000000000000024400000
000000000000000000000000244000000000000000000000000000000000)

ST_CurvePolygon(ST_Curve,...) constructor
Creates a curve polygon from a curve representing the exterior ring and a list of curves representing
interior rings, all in a specified spatial reference system.

Syntax
NEW ST_CurvePolygon(exterior-ring,[interior-ring1,...,interior-ringN])

Parameters

Name Type Description

exterior-ring ST_Curve The exterior ring of the curve polygon

interior-ring1,...,interior-ringN ST_Curve Interior rings of the curve polygon

Remarks
Creates a curve polygon from a curve representing the exterior ring and a list (possibly empty) of curves
representing interior rings. All of the specified rings must have the same SRID. The polygon is created
with this common SRID. All of the supplied rings must be non-empty and have the same answer for Is3D

ST_CurvePolygon type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 77

and IsMeasured. The polygon is 3D if all of the points are 3D, and the polygon is measured if all of the
points are measured.

Note
By default, ST_CurvePolygon uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
The ability to specify a varying length list of interior rings is a vendor extension.

● SQL/MM (ISO/IEC 13249-3: 2006) 8.2.2

Example
The following returns CurvePolygon ((-5 -1, 5 -1, 0 9, -5 -1), CircularString (-2 2, -2 4, 2 4, 2 2, -2 2)) (a
triangle with a circular hole).

SELECT NEW ST_CurvePolygon(
 NEW ST_LineString ('LineString (-5 -1, 5 -1, 0 9, -5 -1)'),
 NEW ST_CircularString ('CircularString (-2 2, -2 4, 2 4, 2 2, -2 2)'))

ST_CurvePolygon(ST_MultiCurve[, VARCHAR(128)]) constructor
Creates a curve polygon from a multi curve containing an exterior ring and an optional list of interior rings.

Syntax
NEW ST_CurvePolygon(multi-curve[, polygon-format])

Parameters

Name Type Description

multi-curve ST_MultiCurve A multicurve value containing an exterior ring and (optionally) a
set of interior rings.

polygon-for-
mat

VARCHAR(128) A string with the polygon format to use when interpreting the pro-
vided curves. Valid formats are 'CounterClockwise', 'Clockwise',
and 'EvenOdd'

Remarks
Creates a curve polygon from a multi curve containing an exterior ring and an optional list of interior rings.

If specified, the polygon-format parameter selects the algorithm the server uses to determine whether a
ring is an exterior or interior ring. If not specified, the polygon format of the spatial reference system is used.

For additional information on polygon-format, see “POLYGON FORMAT clause, CREATE SPATIAL
REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL Reference].

Accessing and manipulating spatial data

78 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Note
By default, ST_CurvePolygon uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following returns the result CurvePolygon (CircularString (-2 0, 1 -3, 4 0, 1
3, -2 0), (0 0, 1 1, 2 0, 0 0)) (a circular curve polygon with a triangular hole).

SELECT NEW ST_CurvePolygon(NEW ST_MultiCurve(
 'MultiCurve(CircularString(-2 0, 4 0, -2 0),(0 0, 2 0, 1 1, 0 0))'))

ST_CurvePolyToPoly method for type ST_CurvePolygon
Returns the approximation of the curve polygon as a polygon.

Note
By default, ST_CurvePolyToPoly uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Syntax
curvepolygon-expression.ST_CurvePolyToPoly()

Returns
● ST_Polygon Returns the approximation of the curve polygon as a polygon.

The spatial reference system identifier of the result is the same as the spatial reference system of the
curvepolygon-expression.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 8.2.7

ST_ExteriorRing method for type ST_CurvePolygon
Retrieves or modifies the exterior ring.

ST_CurvePolygon type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 79

Overload list

Name Description

“ST_ExteriorRing() method for type ST_CurvePoly-
gon” on page 80

Returns the exterior ring of the curve poly-
gon.

“ST_ExteriorRing(ST_Curve) method for type ST_Cur-
vePolygon” on page 80

Changes the exterior ring of the curve poly-
gon.

ST_ExteriorRing() method for type ST_CurvePolygon
Returns the exterior ring of the curve polygon.

Note
By default, ST_ExteriorRing uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Syntax
curvepolygon-expression.ST_ExteriorRing()

Returns
● ST_Curve Returns the exterior ring.

The spatial reference system identifier of the result is the same as the spatial reference system of the
curvepolygon-expression.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 8.2.3

ST_ExteriorRing(ST_Curve) method for type ST_CurvePolygon
Changes the exterior ring of the curve polygon.

Note
By default, ST_ExteriorRing uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Syntax
curvepolygon-expression.ST_ExteriorRing(exterior-ring)

Accessing and manipulating spatial data

80 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters

Name Type Description

exterior-ring ST_Curve The new exterior ring value.

Returns
● ST_CurvePolygon Returns a copy of the curve polygon value with the exterior ring modified to

be the specified value.

The spatial reference system identifier of the result is the same as the spatial reference system of the
curvepolygon-expression.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 8.2.3

ST_InteriorRingN method for type ST_CurvePolygon
Returns the nth interior ring in the curve polygon.

Note
By default, ST_InteriorRingN uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Syntax
curvepolygon-expression.ST_InteriorRingN(n)

Parameters

Name Type Description

n INT The position of the element to return, from 1 to curvepolygon-expression.ST_NumIn-
teriorRing().

Returns
● ST_Curve Returns the nth interior ring in the curve polygon.

The spatial reference system identifier of the result is the same as the spatial reference system of the
curvepolygon-expression.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 8.2.6

ST_CurvePolygon type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 81

ST_NumInteriorRing method for type ST_CurvePolygon
Returns the number of interior rings in the curve polygon.

Note
By default, ST_NumInteriorRing uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Syntax
curvepolygon-expression.ST_NumInteriorRing()

Returns
● INT Returns the number of interior rings in the curve polygon.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 8.2.5

ST_GeomCollection type
An ST_GeomCollection is a collection of zero or more ST_Geometry values.

Direct supertype
● “ST_Geometry type” on page 88

Direct subtypes
● “ST_MultiCurve type” on page 229
● “ST_MultiPoint type” on page 240
● “ST_MultiSurface type” on page 250

Constructor
● “ST_GeomCollection constructor” on page 83

Methods
● “ST_GeomCollectionAggr method for type ST_GeomCollection” on page 86
● “ST_GeometryN method for type ST_GeomCollection” on page 87
● “ST_NumGeometries method for type ST_GeomCollection” on page 87
● All methods of “ST_Geometry type” on page 88 can also be called on a ST_GeomCollection type.

Remarks
An ST_GeomCollection is a collection of zero or more ST_Geometry values. All of the values are in the
same spatial reference system as the collection value. The ST_GeomCollection type can contain a

Accessing and manipulating spatial data

82 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

heterogeneous collection of objects (for example, points, lines, and polygons). Sub-types of
ST_GeomCollection can be used to restrict the collection to certain geometry types.

The dimension of the geometry collection value is the largest dimension of its constituents.

A geometry collection is simple if all of the constituents are simple and no two constituent geometries
intersect except possibly at their boundaries.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.1

ST_GeomCollection constructor

Constructs a geometry collection

Overload list

Name Description

“ST_GeomCollection() construc-
tor” on page 83

Constructs a geometry collection representing the emp-
ty set.

“ST_GeomCollection(LONG VARCHAR[,
INT]) constructor” on page 84

Constructs a geometry collection from a text represen-
tation.

“ST_GeomCollection(LONG BINARY[,
INT]) constructor” on page 84

Constructs a geometry collection from WKB.

“ST_GeomCollection(ST_Geometry,...) con-
structor” on page 85

Constructs a geometry collection from a list of geom-
etry values.

ST_GeomCollection() constructor
Constructs a geometry collection representing the empty set.

Syntax
NEW ST_GeomCollection()

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Standard feature

Example
The following returns 1, indicating the value is empty.

SELECT new ST_GeomCollection().ST_IsEmpty()

ST_GeomCollection type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 83

ST_GeomCollection(LONG VARCHAR[, INT]) constructor
Constructs a geometry collection from a text representation.

Syntax
NEW ST_GeomCollection(text-representation[, srid])

Parameters

Name Type Description

text-represen-
tation

LONG
VARCHAR

A string containing the text representation of a geometry collection.
The input can be in any supported text input format, including WKT or
EWKT.

srid INT The SRID of the result. If not specified, the default is 0.

Remarks
Constructs a geometry collection from a character string representation. The database server determines
the input format by inspecting the provided string.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.1.2

Example
The following returns GeometryCollection (CircularString (5 10, 10 12, 15 10), Polygon ((10 -5, 15 5, 5
5, 10 -5)))

SELECT NEW ST_GeomCollection('GeometryCollection (CircularString (5 10, 10
12, 15 10), Polygon ((10 -5, 15 5, 5 5, 10 -5)))')

ST_GeomCollection(LONG BINARY[, INT]) constructor
Constructs a geometry collection from WKB.

Syntax
NEW ST_GeomCollection(wkb[, srid])

Parameters

Name Type Description

wkb LONG BI-
NARY

A string containing the binary representation of an geometry collection. The in-
put can be in any supported binary input format, including WKB or EWKB.

srid INT The SRID of the result. If not specified, the default is 0.

Accessing and manipulating spatial data

84 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
Constructs a geometry collection from a binary string representation. The database server determines the
input format by inspecting the provided string.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.1.2

Example
The following returns GeometryCollection (Point (10 20))

SELECT NEW
ST_GeomCollection(0x010700000001000000010100000000000000000024400000000000003
440)

ST_GeomCollection(ST_Geometry,...) constructor
Constructs a geometry collection from a list of geometry values.

Syntax
NEW ST_GeomCollection(geo1,[geo2,...,geoN])

Parameters

Name Type Description

geo1 ST_Geometry The first geometry value of the geometry collection.

geo2,...,geoN ST_Geometry Additional geometry values of the geometry collection.

Remarks
Constructs a geometry collection from a list of geometry values. All of the supplied geometry values must
have the same SRID, and the geometry collection is constructed with this common SRID.

All of the supplied geometry values must have the same answer for Is3D and IsMeasured. The geometry
collection is 3D if all of the geometry values are 3D, and the geometry collection is measured if all of the
geometry values are measured.

Note
By default, ST_GeomCollection uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_GeomCollection type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 85

Example
The following returns a geometry collection containing the single point 'Point (1 2)'

SELECT NEW ST_GeomCollection(NEW ST_Point(1.0, 2.0))

The following returns a geometry collection containing two points 'Point (1 2)' and 'Point (3 4)'

SELECT NEW ST_GeomCollection(NEW ST_Point(1.0, 2.0), NEW ST_Point(3.0,
4.0))

ST_GeomCollectionAggr method for type
ST_GeomCollection

Returns a geometry collection containing all of the geometries in a group

Syntax
ST_GeomCollection::ST_GeomCollectionAggr(geometry-column[ORDER BY order-by-expression
[ASC | DESC], ...])

Parameters

Name Type Description

geometry-column ST_Geometry The geometry values to generate the collection. Typically this is a
column.

Returns
● ST_GeomCollection Returns a geometry collection that contains all of the geometries in a group.

The spatial reference system identifier of the result is the same as that for the first parameter.

Remarks
The ST_GeomCollectionAggr aggregate function can be used to combine a group of geometries into a
single collection. All of the geometries to be combined must have both the same SRID and the same
coordinate dimension.

Rows where the argument is NULL are not included.

Returns NULL for an empty group or a group containing no non-NULL values.

The resulting ST_GeomCollection has the same coordinate dimension as each geometries.

The optional ORDER BY clause can be used to arrange the elements in a particular order so that
ST_GeometryN returns them in the desired order. If this ordering is not relevant, it is more efficient to not
specify an ordering. In that case, the ordering of elements depends on the access plan selected by the
query optimizer.

Accessing and manipulating spatial data

86 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Note
By default, ST_GeomCollectionAggr uses the original format for a geometry, if it is available. Otherwise,
the internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_GeometryN method for type ST_GeomCollection
Returns the nth geometry in the geometry collection.

Note
By default, ST_GeometryN uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Syntax
geomcollection-expression.ST_GeometryN(n)

Parameters

Name Type Description

n INT The position of the element to return, from 1 to geomcollection-expression.ST_Num-
Geometries().

Returns
● ST_Geometry Returns the nth geometry in the geometry collection.

The spatial reference system identifier of the result is the same as the spatial reference system of the
geomcollection-expression.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.1.5

ST_NumGeometries method for type ST_GeomCollection
Returns the number of geometries contained in the geometry collection.

ST_GeomCollection type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 87

Note
By default, ST_NumGeometries uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Syntax
geomcollection-expression.ST_NumGeometries()

Returns
● INT Returns the number of geometries stored in this collection.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.1.4

ST_Geometry type
The ST_Geometry type is the maximal supertype of the geometry type hierarchy.

Direct subtypes
● “ST_Curve type” on page 69
● “ST_GeomCollection type” on page 82
● “ST_Point type” on page 259
● “ST_Surface type” on page 288

Accessing and manipulating spatial data

88 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Methods
● “ST_Affine method for type ST_Geometry” on page 91
● “ST_AsBinary method for type ST_Geometry” on page 92
● “ST_AsGML method for type ST_Geometry” on page 95
● “ST_AsGeoJSON method for type ST_Geometry” on page 100
● “ST_AsKML method for type ST_Geometry” on page 101
● “ST_AsSVG method for type ST_Geometry” on page 104
● “ST_AsSVGAggr method for type ST_Geometry” on page 107
● “ST_AsText method for type ST_Geometry” on page 111
● “ST_AsWKB method for type ST_Geometry” on page 121
● “ST_AsWKT method for type ST_Geometry” on page 123
● “ST_AsXML method for type ST_Geometry” on page 125
● “ST_Boundary method for type ST_Geometry” on page 134
● “ST_Contains method for type ST_Geometry” on page 135
● “ST_ContainsFilter method for type ST_Geometry” on page 137
● “ST_ConvexHull method for type ST_Geometry” on page 138
● “ST_ConvexHullAggr method for type ST_Geometry” on page 139
● “ST_CoordDim method for type ST_Geometry” on page 140
● “ST_CoveredBy method for type ST_Geometry” on page 142
● “ST_CoveredByFilter method for type ST_Geometry” on page 143
● “ST_Covers method for type ST_Geometry” on page 144
● “ST_CoversFilter method for type ST_Geometry” on page 145
● “ST_Crosses method for type ST_Geometry” on page 146
● “ST_Difference method for type ST_Geometry” on page 147
● “ST_Dimension method for type ST_Geometry” on page 149
● “ST_Disjoint method for type ST_Geometry” on page 150
● “ST_Distance method for type ST_Geometry” on page 151
● “ST_Envelope method for type ST_Geometry” on page 153
● “ST_EnvelopeAggr method for type ST_Geometry” on page 154
● “ST_Equals method for type ST_Geometry” on page 154
● “ST_EqualsFilter method for type ST_Geometry” on page 156
● “ST_GeomFromBinary method for type ST_Geometry” on page 157
● “ST_GeomFromShape method for type ST_Geometry” on page 158
● “ST_GeomFromText method for type ST_Geometry” on page 158
● “ST_GeomFromWKB method for type ST_Geometry” on page 159
● “ST_GeomFromWKT method for type ST_Geometry” on page 160
● “ST_GeometryType method for type ST_Geometry” on page 161
● “ST_GeometryTypeFromBaseType method for type ST_Geometry” on page 162
● “ST_Intersection method for type ST_Geometry” on page 163
● “ST_IntersectionAggr method for type ST_Geometry” on page 164
● “ST_Intersects method for type ST_Geometry” on page 165
● “ST_IntersectsFilter method for type ST_Geometry” on page 166
● “ST_IntersectsRect method for type ST_Geometry” on page 167
● “ST_Is3D method for type ST_Geometry” on page 168
● “ST_IsEmpty method for type ST_Geometry” on page 169
● “ST_IsMeasured method for type ST_Geometry” on page 169
● “ST_IsSimple method for type ST_Geometry” on page 170

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 89

● “ST_IsValid method for type ST_Geometry” on page 170
● “ST_LatNorth method for type ST_Geometry” on page 171
● “ST_LatSouth method for type ST_Geometry” on page 172
● “ST_LinearHash method for type ST_Geometry” on page 173
● “ST_LinearUnHash method for type ST_Geometry” on page 173
● “ST_LoadConfigurationData method for type ST_Geometry” on page 174
● “ST_LongEast method for type ST_Geometry” on page 175
● “ST_LongWest method for type ST_Geometry” on page 176
● “ST_MMax method for type ST_Geometry” on page 177
● “ST_MMin method for type ST_Geometry” on page 177
● “ST_OrderingEquals method for type ST_Geometry” on page 178
● “ST_Overlaps method for type ST_Geometry” on page 180
● “ST_Relate method for type ST_Geometry” on page 181
● “ST_Reverse method for type ST_Geometry” on page 184
● “ST_SRID method for type ST_Geometry” on page 185
● “ST_SRIDFromBaseType method for type ST_Geometry” on page 187
● “ST_SnapToGrid method for type ST_Geometry” on page 187
● “ST_SymDifference method for type ST_Geometry” on page 190
● “ST_ToCircular method for type ST_Geometry” on page 192
● “ST_ToCompound method for type ST_Geometry” on page 193
● “ST_ToCurve method for type ST_Geometry” on page 194
● “ST_ToCurvePoly method for type ST_Geometry” on page 195
● “ST_ToGeomColl method for type ST_Geometry” on page 196
● “ST_ToLineString method for type ST_Geometry” on page 197
● “ST_ToMultiCurve method for type ST_Geometry” on page 198
● “ST_ToMultiLine method for type ST_Geometry” on page 199
● “ST_ToMultiPoint method for type ST_Geometry” on page 200
● “ST_ToMultiPolygon method for type ST_Geometry” on page 201
● “ST_ToMultiSurface method for type ST_Geometry” on page 202
● “ST_ToPoint method for type ST_Geometry” on page 203
● “ST_ToPolygon method for type ST_Geometry” on page 204
● “ST_ToSurface method for type ST_Geometry” on page 206
● “ST_Touches method for type ST_Geometry” on page 207
● “ST_Transform method for type ST_Geometry” on page 208
● “ST_Union method for type ST_Geometry” on page 209
● “ST_UnionAggr method for type ST_Geometry” on page 210
● “ST_Within method for type ST_Geometry” on page 211
● “ST_WithinDistance method for type ST_Geometry” on page 212
● “ST_WithinDistanceFilter method for type ST_Geometry” on page 214
● “ST_WithinFilter method for type ST_Geometry” on page 216
● “ST_XMax method for type ST_Geometry” on page 217
● “ST_XMin method for type ST_Geometry” on page 218
● “ST_YMax method for type ST_Geometry” on page 219
● “ST_YMin method for type ST_Geometry” on page 220
● “ST_ZMax method for type ST_Geometry” on page 221
● “ST_ZMin method for type ST_Geometry” on page 222

Accessing and manipulating spatial data

90 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
The ST_Geometry type is the maximal supertype of the geometry type hierarchy. The ST_Geometry type
supports methods that can be applied to any spatial value. The ST_Geometry type cannot be instantiated;
instead, a subtype should be instantiated. When working with original formats (WKT or WKB), you can
use methods such as ST_GeomFromText/ST_GeomFromWKB to instantiate the appropriate concrete
type representing the value in the original format.

All of the values in an ST_Geometry value are in the same spatial reference system. The ST_SRID
method can be used to retrieve or change the spatial reference system associated with the value.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1

ST_Affine method for type ST_Geometry

Returns a new geometry that is the result of applying the specified 3-D affine transformation.

Syntax
geometry-expression.ST_Affine(a00,a01,a02,a10,a11,a12,a20,a21,a22,xoff,yoff,zoff)

Parameters

Name Type Description

a00 DOUBLE The affine matrix element in row 0, column 0

a01 DOUBLE The affine matrix element in row 0, column 1

a02 DOUBLE The affine matrix element in row 0, column 2

a10 DOUBLE The affine matrix element in row 1, column 0

a11 DOUBLE The affine matrix element in row 1, column 1

a12 DOUBLE The affine matrix element in row 1, column 2

a20 DOUBLE The affine matrix element in row 2, column 0

a21 DOUBLE The affine matrix element in row 2, column 1

a22 DOUBLE The affine matrix element in row 2, column 2

xoff DOUBLE The x offset for translation

yoff DOUBLE The y offset for translation

zoff DOUBLE The z offset for translation

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 91

Returns
● ST_Geometry Returns a new geometry that is the result of the specified transformation.

The spatial reference system identifier of the result is the same as the spatial reference system of the
geometry-expression.

Remarks
An affine transformation combines rotation, translation and scaling into a single method call. The affine
transform is defined using matrix multiplication.

For a point (x,y,z), the result (x',y',z') is computed as follows:

/ x' \ / a00 a01 a02 xoff \ / x \
| y' | = | a10 a11 a12 yoff | * | y |
| z' | | a20 a21 a22 yoff | | z |
\ w' / \ 0 0 0 1 / \ 1 /

Note
This method can not be used with geometries in round-Earth spatial reference system.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following returns the result LineString (5 6, 5 3, 9 3). The X values are translated by 5
and the Y values are translated by -1.

SELECT Shape.ST_Affine(1,0,0, 0,1,0, 0,0,1, 5,-1,0)
FROM SpatialShapes WHERE ShapeID = 5

The following returns the result LineString (.698833 6.965029, .399334 3.980017,
4.379351 3.580683). The Shape is rotated around the Z axis by 0.1 radians (about 5.7 degrees).

SELECT Shape.ST_Affine(cos(0.1),sin(0.1),0, -sin(0.1),cos(0.1),0, 0,0,1,
0,0,0)
FROM SpatialShapes WHERE ShapeID = 5

ST_AsBinary method for type ST_Geometry
Returns the WKB representation of an ST_Geometry value.

Syntax
geometry-expression.ST_AsBinary([format])

Accessing and manipulating spatial data

92 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters

Name Type Description

format VAR-
CHAR(128)

A string defining the output binary format to use when converting the geom-
etry-expression to a binary representation. If not specified, the value of the
st_geometry_asbinary_format option is used to choose the binary representa-
tion. See “st_geometry_asbinary_format option” [SQL Anywhere Server - Da-
tabase Administration].

Returns
● LONG BINARY Returns the WKB representation of the geometry-expression.

Remarks
The ST_AsBinary method returns a binary string representing the geometry. A number of different binary
formats are supported (with associated options) and the desired format is selected using the optional
format parameter. If the format parameter is not specified, the st_geometry_asbinary_format option is
used to select the output format to use. See “st_geometry_asbinary_format option” [SQL Anywhere Server
- Database Administration].

The format string defines an output format and parameters to the format. The format string has one of the
following formats:

format-name

format-name(parameter1=value1;parameter2=value2;...)
parameter1=value1;parameter2=value2;...

The first format specifies the format name and no parameters. All format parameters use their default
values. The second format specifies the format name and a list of named parameter values. Parameters
that are not supplied use their default values. The last format specifies only parameter values, and the
format name defaults to 'WKB'.

The following format names may be used:

● WKB The Well-Known Binary format defined by SQL/MM and the OGC.

● EWKB The Extended Well-Known Binary format defined by PostGIS. This format includes the
geometry's SRID and it differs from WKB in the way it represents Z and M values.

The following format parameters can be specified:

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 93

For-
mat
Name

Pa-
rame-
ter
Name

De-
fault
Value

Allowed Values De-
scrip-
tion

WKB Ver-
sion

1.2 ● 1.1 The WKB defined by OGC SFS 1.1. This format does
not contain Z and M values. If the geometry contains Z or M
values, they are removed in the output.

● 1.2 The WKB defined by OGC SFS 1.2. This matches ver-
sion 1.1 on 2D data and extends the format to support Z and
M values.

The
version
param-
eter
con-
trols
the
version
of the
WKB
speci-
fica-
tion
used.

Note
When converting a geometry value to BINARY, the server uses the ST_AsBinary method. The
st_geometry_asbinary_format option defines the format that is used for the conversion. See
“st_geometry_asbinary_format option” [SQL Anywhere Server - Database Administration].

Note
By default, ST_AsBinary uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.37

Example
If the st_geometry_asbinary_format option has its default value of 'WKB', the following returns the result
0x01b90b0000000000000000f03f000000000000004000000000000008400000000000
001040.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0, 4326).ST_AsBinary()

If the st_geometry_asbinary_format option has its default value of 'WKB', the following returns the result
0x01b90b0000000000000000f03f000000000000004000000000000008400000000000
001040. The server implicitly invokes the ST_AsBinary method when converting geometries to BINARY.

SELECT CAST(NEW ST_Point(1.0, 2.0, 3.0, 4.0, 4326) AS LONG BINARY)

Accessing and manipulating spatial data

94 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The following returns the result 0x0101000000000000000000f03f0000000000000040. The Z
and M values are omitted because version 1.1 of the OGC specification for WKB does not support these.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0,
4326).ST_AsBinary('WKB(Version=1.1)')

The following returns the result
0x01010000e0e6100000000000000000f03f0000000000000040000000000000084000
00000000001040. The extended WKB contains the SRID.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0, 4326).ST_AsBinary('EWKB')

ST_AsGML method for type ST_Geometry
Returns the GML representation of an ST_Geometry value.

Syntax
geometry-expression.ST_AsGML([format])

Parameters

Name Type Description

format VAR-
CHAR(128)

A string defining the parameters to use when converting the geometry-ex-
pression to a GML representation. If not specified, the default is 'GML'.

Returns
● LONG VARCHAR Returns the GML representation of the geometry-expression.

Remarks
The ST_AsGML method returns a GML string representing the geometry. A number of different formats
are supported (with associated options) and the desired format is selected using the optional format
parameter. If the format parameter is not specified, the default is 'GML'.

The format string defines an output format and parameters to the format. The format string has one of the
following formats:

format-name

format-name(parameter1=value1;parameter2=value2;...)
parameter1=value1;parameter2=value2;...

The first format specifies the format name and no parameters. All format parameters use their default
values. The second format specifies the format name and a list of named parameter values. Parameters
that are not supplied use their default values. The last format specifies only parameter values, and the
format name defaults to 'GML'.

The following format names may be used:

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 95

● GML The Geography Markup Language format defined by ISO 19136 and the OGC.

The following format parameters can be specified:

For-
mat
Name

Parame-
ter Name

Default
Value

Allowed Values Descrip-
tion

GML Name-
space

none ● local Provides a default namespace attribute for
the given element (in this case Point) and its sub el-
ements.

● global Provides a dedicated ("gml") prefix for
the given element and its sub elements. This is use-
ful when the query is used within an aggregate op-
eration, such that, some top level element defines
the namespace for the "gml" prefix.

● none Provides no namespace or prefix for the
given element (in this case Point) and its sub ele-
ments

The name-
space pa-
rameter
specifies
the output
format con-
vention for
namespace.

GML SRSNa-
meFor-
mat

short ● short Uses a short format for the spatial refer-
ence system name, for example EPSG:4326

● long Uses a long format for the spatial reference
system name, for example urn:x-ogc:def:crs:EPSG:
4326.

● none Spatial reference system name attribute is
not included for the geometry.

The
SRSName-
Format pa-
rameter
specifies
the format
for the
srsName at-
tribute.

GML SRSDi-
mension

No Yes or No The
SRSDi-
mension
parameter
specifies
the number
of coordi-
nate values
for the giv-
en geome-
try. This
only ap-
plies to
GML(ver-
sion=3).

Accessing and manipulating spatial data

96 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

For-
mat
Name

Parame-
ter Name

Default
Value

Allowed Values Descrip-
tion

GML SRSFil-
lAll

No Yes or No The
SRSFillAll
parameter
specifies
whether or
not SRS at-
tributes
should be
propagated
to child ge-
ometry ele-
ments. As
an example
a MultiGe-
ometry or
MultiPoly-
gon would
propagate
the attrib-
utes to its
child geo-
metries.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 97

For-
mat
Name

Parame-
ter Name

Default
Value

Allowed Values Descrip-
tion

GML UseDe-
precated

No Yes or No The Use-
Deprecated
parameter
only ap-
plies to
GML(ver-
sion=3). It
is used to
output old-
er GML
representa-
tions where
possible.
As an ex-
ample a
Surface
may be out-
put as a Pol-
ygon if the
geometry
contains no
Circular-
Strings.

GML Attribute Auto-
matical-
ly gen-
erated
optional
attrib-
utes

One or more attributes may be specified for the top lev-
el geometry element only

Any legal
XML at-
tributes
may be
specified.

GML SubEle-
ment

Auto-
matical-
ly gen-
erated
GML
sub ele-
ments

One or more sub elements may be specified for the top
level geometry element only

Any legal
XML ele-
ments may
be speci-
fied.

Accessing and manipulating spatial data

98 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Note
By default, ST_AsGML uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.39

Example
The following example returns the result <Point srsName="EPSG:4326"><pos>1 2 3 4</
pos></Point>.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0, 4326).ST_AsGML()

The following example returns the result <Point srsName="EPSG:
4326"><coordinates>1,2</coordinates></Point>.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0, 4326).ST_AsGML('GML(Version=2)')

The following returns the result <gml:Point srsName="EPSG:
4326"><gml:coordinates>1,2</gml:coordinates></gml:Point>. The
Namespace=global parameter provides a dedicated ("gml") prefix for the given element and its sub
elements. This is useful when the query is used within an aggregate operation, such that, some top level
element defines the namespace for the "gml" prefix.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0,
4326).ST_AsGML('GML(Version=2;Namespace=global)')

The following returns the result <Point srsName="EPSG:4326"><coordinates>1,2</
coordinates></Point>. No namespace information is included in the output.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0,
4326).ST_AsGML('GML(Version=2;Namespace=none)')

The following returns the result <Point srsName="http://www.opengis.net/gml/srs/
epsg.xml#4326"><coordinates>1,2</coordinates></Point>. The long format of the
srsName attribute is used.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0,
4326).ST_AsGML('GML(Version=2;Namespace=none;SRSNameFormat=long)')

The following returns the result <Point srsName="urn:x-ogc:def:crs:EPSG:
4326"><pos>1 2 3 4</pos></Point>. The long format of the srsName attribute is used and the
format differs in version 3 from the version 2 format.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0,
4326).ST_AsGML('GML(Version=3;Namespace=none;SRSNameFormat=long)')

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 99

ST_AsGeoJSON method for type ST_Geometry
Returns a string representing a geometry in JSON format.

Syntax
geometry-expression.ST_AsGeoJSON([format])

Parameters

Name Type Description

format VARCHAR(128) A string defining parameters controlling how the GeoJSON result is gen-
erated. If not specified, the default is 'GeoJSON'.

Returns
● LONG VARCHAR Returns the GeoJSON representation of the geometry-expression.

Remarks
The GeoJSON standard defines a geospatial interchange format based on the JavaScript Object Notation
(JSON). This format is suited to web-based applications and it can provide a format that is more concise
and easier to interpret than WKT or WKB. See http://geojson.org/geojson-spec.html.

The ST_AsGeoJSON method returns a text string representing the geometry. A number of different text
formats are supported (with associated options) and the desired format is selected using the optional
format parameter. If the format parameter is not specified, the default is 'GeoJSON'.

The format string defines an output format and parameters to the format. The format string has one of the
following formats:

format-name

format-name(parameter1=value1;parameter2=value2;...)
parameter1=value1;parameter2=value2;...

The first format specifies the format name and no parameters. All format parameters use their default
values. The second format specifies the format name and a list of named parameter values. Parameters
that are not supplied use their default values. The last format specifies only parameter values, and the
format name defaults to 'GeoJSON'.

The following format names may be used:

● GeoJSON The GeoJSON format uses JavaScript Object Notation (JSON) as defined by http://
geojson.org/geojson-spec.html.

Accessing and manipulating spatial data

100 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

http://geojson.org/geojson-spec.html
http://geojson.org/geojson-spec.html
http://geojson.org/geojson-spec.html

Format Name Parameter Name Default Value Allowed Values Description

GeoJSON Version 1.0 1.0 The version of the GeoJSON
specification to follow. At
present, only 1.0 is supported.

Note
By default, ST_AsGeoJSON uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns the result {"type":"Point", "coordinates":[1,2]} .

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0, 4326).ST_AsGeoJSON()

ST_AsKML method for type ST_Geometry

Returns the KML representation of an ST_Geometry value.

Syntax
geometry-expression.ST_AsKML([format])

Parameters

Name Type Description

format VAR-
CHAR(128)

A string defining the parameters to use when converting the geometry-ex-
pression to a KML representation. If not specified, the default is 'KML'.

Returns
● LONG VARCHAR Returns the KML representation of the geometry-expression.

Remarks
The ST_AsKML method returns a KML string representing the geometry. A number of different formats
are supported (with associated options) and the desired format is selected using the optional format
parameter. If the format parameter is not specified, the default is 'KML'.

The format string defines an output format and parameters to the format. The format string has one of the
following formats:

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 101

format-name

format-name(parameter1=value1;parameter2=value2;...)
parameter1=value1;parameter2=value2;...

The first format specifies the format name and no parameters. All format parameters use their default
values. The second format specifies the format name and a list of named parameter values. Parameters
that are not supplied use their default values. The last format specifies only parameter values, and the
format name defaults to 'KML'.

The following format names may be used:

● KML The Keyhole Markup Language format defined by the OGC.

The following format parameters can be specified:

Format
Name

Param-
eter
Name

Default
Value

Allowed Values De-
scrip-
tion

KML Version 2 2 KML
version
2.2 is
suppor-
ted.

KML Attrib-
ute

Auto-
matical-
ly gener-
ated op-
tional at-
tributes

One or more attributes may be specified for the top level
geometry element only

Any le-
gal
XML at-
tributes
may be
speci-
fied.

KML Name-
space

none ● local Provides the default namespace attribute http://
www.opengis.net/kml/2.2 for the given geometry ele-
ment (in this case Point) and its sub elements.

● global Provides a dedicated ("kml") prefix for the
given element and its sub elements. This is useful
when the query is used within an aggregate operation,
such that, some top level element defines the name-
space for the "kml" prefix.

● none Provides no namespace or prefix for the given
element (in this case Point) and its sub elements

The
name-
space
parame-
ter
specifies
the out-
put for-
mat con-
vention
for
name-
space.

Accessing and manipulating spatial data

102 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Format
Name

Param-
eter
Name

Default
Value

Allowed Values De-
scrip-
tion

KML SubEle-
ment

Auto-
matical-
ly gener-
ated
KML
sub ele-
ments

One or more sub elements may be specified for the top lev-
el geometry element only

Any le-
gal
XML el-
ements
may be
speci-
fied. As
an ex-
ample
extrude,
tessel-
late and
altitude-
Mode
ele-
ments
may be
speci-
fied.

Note
By default, ST_AsKML uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.39

Example
The following example returns the result <Point><coordinates>1,2,3,4</coordinates></
Point>.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0, 4326).ST_AsKML()

The following example returns the result <Point><coordinates>1,2,3,4</coordinates></
Point>.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0, 4326).ST_AsKML('KML(Version=2)')

The following returns the result <kml:Point><kml:coordinates>1,2,3,4</
kml:coordinates></kml:Point>. The Namespace=global parameter provides a dedicated
("kml") prefix for the given element and its sub elements. This is useful when the query is used within an
aggregate operation, such that, some top level element defines the namespace for the "kml" prefix.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 103

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0,
4326).ST_AskML('KML(Version=2;Namespace=global)')

The following returns the result <Point><coordinates>1,2,3,4</coordinates></Point>.
No namespace information is included in the output.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0,
4326).ST_AsKML('KML(Version=2;Namespace=none)')

The following returns the result <Point xmlns="http://www.opengis.net/kml/
2.2"><coordinates>1,2,3,4</coordinates></Point>. The default xml namespace is used.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0,
4326).ST_AsKML('KML(Version=2;Namespace=default)')

The following returns the result <Point><altitudeMode>absolute</
altitudeMode><coordinates>1,2,3,4</coordinates></Point>. An AltitudeMode sub
element is included in the output.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0,
4326).ST_AsKML('SubElement=<altitudeMode>absolute</altitudeMode>')

ST_AsSVG method for type ST_Geometry
Returns an SVG figure representing a geometry value.

Syntax
geometry-expression.ST_AsSVG([format])

Parameters

Name Type Description

format VAR-
CHAR(128)

A string defining the parameters to use when converting the geometry-ex-
pression to a SVG representation. If not specified, the default is 'SVG'.

Returns
● LONG VARCHAR Returns a complete or partial SVG document which renders the geometry-

expression.

Remarks
The ST_AsSVG method returns a complete or partial SVG document that can be used to graphically
display geometries using an SVG viewer. Most major web browsers with the exception of Microsoft
Internet Explorer include built-in SVG viewers.

A number of different options are supported and the desired format is selected using the optional format
parameter. If the format parameter is not specified, the default is 'SVG'.

The format string defines an output format and parameters to the format. The format string has one of the
following formats:

Accessing and manipulating spatial data

104 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

format-name

format-name(parameter1=value1;parameter2=value2;...)
parameter1=value1;parameter2=value2;...

The first format specifies the format name and no parameters. All format parameters use their default
values. The second format specifies the format name and a list of named parameter values. Parameters
that are not supplied use their default values. The last format specifies only parameter values, and the
format name defaults to 'SVG'.

The following format names may be used:

● SVG The Scalable Vector Graphics (SVG) 1.1 format defined by the World Wide Web Consortium
(W3C).

The following format parameters can be specified:

Format
Name

Parame-
ter Name

Default
Value

Allowed Val-
ues

Description

SVG Approxi-
mate

Yes Yes or No The Approximate parameter specifies whether
or not to reduce the size of the output SVG docu-
ment with a slight reduction in visible detail.
The SVG data is approximated by not including
points which are within the line width of the last
point. With multiple megabyte geometries this
can result in compression rates of 80% or more.

SVG Attribute Automati-
cally gen-
erated op-
tional at-
tributes

One or more
SVG attrib-
utes that can
be applied to
SVG shape
elements

By default, optional SVG shape attributes such
as fill, stroke and stroke-width are generated. If
the Attributes parameter is specified, then no op-
tional SVG shape attributes are generated, and
the Attribute value is used instead. Ignored if
PathDataOnly=Yes is specified.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 105

Format
Name

Parame-
ter Name

Default
Value

Allowed Val-
ues

Description

SVG Decimal-
Digits

Based on
the num-
ber of dec-
imal dig-
its in the
spatial ref-
erence
system's
snap to
grid grid-
size. The
maximum
default
value is 5
and the
minimum
is 0.

integer The DecimalDigits parameter limits the number
of digits after the decimal place for coordinates
generated in the SVG output. Specifying a nega-
tive number of digits indicates that the full preci-
sion of coordinates should be included in the
SVG output.

SVG PathDa-
taOnly

No (a
complete
SVG
document
is gener-
ated)

Yes or No The PathDataOnly parameter specifies whether
or not only data for the SVG Path Element
should be generated. The PathDataOnly exam-
ple below demonstrates how PathDataOnly=Yes
can be used to build a complete SVG document
that can be displayed. By default a complete
SVG document is generated. The path data re-
turned by PathDataOnly=Yes can be used to
build more flexible SVG documents containing
other elements, such as text.

SVG Random-
Fill

Yes Yes or No The RandomFill parameter specifies whether or
not polygons should be filled by a randomly gen-
erated color. The sequence of colors used does
not follow a well-defined sequence, and typical-
ly changes each time SVG output is generated.
No indicates that only an outline of each poly-
gon is drawn. The RandomFill parameter is ig-
nored if the Attribute or PathDataOnly=Yes pa-
rameter is specified.

SVG Relative Yes Yes or No The Relative parameter specifies if coordinates
should be output in relative (offset) or absolute
formats. Relative coordinate data is typically
more compact than absolute coordinate data.

Accessing and manipulating spatial data

106 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Note
By default, ST_AsSVG uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

See also
● “ST_AsSVGAggr method for type ST_Geometry” on page 107

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following returns a complete SVG document with polygons filled with random colors.

SELECT NEW ST_Polygon('Polygon((0 0, 0 20, 60 10, 0 0))')
 .ST_AsSVG()

The following returns a complete SVG document with outlined polygons and limits coordinates to 3 digits
after the decimal place.

SELECT NEW ST_Polygon('Polygon((0 0, 0 20, 60 10, 0 0))')
 .ST_AsSVG('RandomFill=No;DecimalDigits=3')

The following returns a complete SVG documents with polygons filled with blue and coordinates with
maximum precision. Any Shapes containing curves will contain invalid SVG because both fill="none"
and fill="blue" are generated.

SELECT Shape.ST_AsSVG('Attribute=fill="blue";DecimalDigits=-1')
FROM SpatialShapes

The following returns a complete SVG document from SVG path data with relative coordinates limited to
5 digits after the decimal place.

SELECT '<?xml version="1.0" standalone="no"?>
 <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
 <svg viewBox="-180 -90 360 180" xmlns="http://www.w3.org/2000/svg"
 version="1.1">
 <path fill="lightblue" stroke="black" stroke-width="0.1%" d="' ||
 NEW ST_Polygon('Polygon((0 0, 0 20, 60 10, 0 0))')
 .ST_AsSVG('PathDataOnly=Yes') ||
 '"/></svg>'

The following returns SVG path data using absolute coordinates limited to 7 digits after the decimal place.

SELECT NEW ST_Polygon('Polygon((0 0, 0 20, 60 10, 0 0))')
 .ST_AsSVG('PathDataOnly=Yes;Relative=No;DecimalDigits=7')

ST_AsSVGAggr method for type ST_Geometry

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 107

Returns a complete or partial SVG document which renders the geometries in a group.

Syntax
ST_Geometry::ST_AsSVGAggr(geometry-column[ORDER BY order-by-expression [ASC | DESC], ...]
[, format])

Parameters

Name Type Description

geometry-
column

ST_Geometry The geometry value to contribute to the SVG figure. Typically this
is a column.

format VARCHAR(128) A string defining the parameters to use when converting each ge-
ometry value to a SVG representation. If not specified, the default
is 'SVG'.

Returns
● LONG VARCHAR Returns a complete or partial SVG document which renders the geometries in a

group.

Remarks
The ST_AsSVGAggr method returns a complete or partial SVG document that can be used to graphically
display the union of a group of geometries using an SVG viewer. Most major web browsers with the
exception of Microsoft Internet Explorer include built-in SVG viewers.

A number of different options are supported and the desired format is selected using the optional format
parameter. If the format parameter is not specified, the default is 'SVG'.

The format string defines an output format and parameters to the format. The format string has one of the
following formats:

format-name

format-name(parameter1=value1;parameter2=value2;...)

parameter1=value1;parameter2=value2;...

The first format specifies the format name and no parameters. All format parameters use their default
values. The second format specifies the format name and a list of named parameter values. Parameters
that are not supplied use their default values. The last format specifies only parameter values, and the
format name defaults to 'SVG'.

The following format names may be used:

● SVG The Scalable Vector Graphics (SVG) 1.1 format defined by the World Wide Web Consortium
(W3C).

The following format parameters can be specified:

Accessing and manipulating spatial data

108 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Format
Name

Parame-
ter Name

Default
Value

Allowed Val-
ues

Description

SVG Approxi-
mate

Yes Yes or No The Approximate parameter specifies whether
or not to reduce the size of the output SVG docu-
ment with a slight reduction in visible detail.
The SVG data is approximated by not including
points which are within the line width of the last
point. With multiple megabyte geometries this
can result in compression rates of 80% or more.

SVG Attribute Automati-
cally gen-
erated op-
tional at-
tributes

One or more
SVG attrib-
utes that can
be applied to
SVG shape
elements

By default, optional SVG shape attributes such
as fill, stroke and stroke-width are generated. If
the Attributes parameter is specified, then no op-
tional SVG shape attributes are generated, and
the Attribute value is used instead. Ignored if
PathDataOnly=Yes is specified.

SVG Decimal-
Digits

Based on
the num-
ber of dec-
imal dig-
its in the
spatial ref-
erence
system's
snap to
grid grid-
size. The
maximum
default
value is 5
and the
minimum
is 0.

integer The DecimalDigits parameter limits the number
of digits after the decimal place for coordinates
generated in the SVG output. Specifying a nega-
tive number of digits indicates that the full preci-
sion of coordinates should be included in the
SVG output.

SVG PathDa-
taOnly

No (a
complete
SVG
document
is gener-
ated)

Yes or No The PathDataOnly parameter specifies whether
or not only data for the SVG Path Element
should be generated. The PathDataOnly exam-
ple below demonstrates how PathDataOnly=Yes
can be used to build a complete SVG document
that can be displayed. By default a complete
SVG document is generated. The path data re-
turned by PathDataOnly=Yes can be used to
build more flexible SVG documents containing
other elements, such as text.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 109

Format
Name

Parame-
ter Name

Default
Value

Allowed Val-
ues

Description

SVG Random-
Fill

Yes Yes or No The RandomFill parameter specifies whether or
not polygons should be filled by a randomly gen-
erated color. The sequence of colors used does
not follow a well-defined sequence, and typical-
ly changes each time SVG output is generated.
No indicates that only an outline of each poly-
gon is drawn. The RandomFill parameter is ig-
nored if the Attribute or PathDataOnly=Yes pa-
rameter is specified.

SVG Relative Yes Yes or No The Relative parameter specifies if coordinates
should be output in relative (offset) or absolute
formats. Relative coordinate data is typically
more compact than absolute coordinate data.

The ORDER BY clause can be specified to control how overlapping geometries are displayed, with
geometries displayed in order from back to front. If not specified, the geometries are displayed in an order
that depends on the execution plan selected by the query optimizer, and this may vary between executions.

Note
By default, ST_AsSVGAggr uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

See also
● “ST_AsSVG method for type ST_Geometry” on page 104

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following returns a complete SVG document with polygons filled with random colors.

SELECT ST_Geometry::ST_AsSVGAggr(Shape) FROM SpatialShapes

The following returns a complete SVG document from SVG path data with relative coordinates limited to
5 digits after the decimal place.

SELECT '<?xml version="1.0" standalone="no"?>
 <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
 <svg viewBox="-10 -10 20 12" xmlns="http://www.w3.org/2000/svg"
 version="1.1">
 <path fill="lightblue" stroke="black" stroke-width="0.1%" d="' ||
 ST_Geometry::ST_AsSVGAggr(Shape, 'PathDataOnly=Yes') ||

Accessing and manipulating spatial data

110 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 '"/></svg>'
FROM SpatialShapes

ST_AsText method for type ST_Geometry

Returns the text representation of an ST_Geometry value.

Syntax
geometry-expression.ST_AsText([format])

Parameters

Name Type Description

format VAR-
CHAR(128)

A string defining the output text format to use when converting the geometry-
expression to a text representation. If not specified, the st_geometry_as-
text_format option is used to choose the text representation. See “st_geome-
try_astext_format option” [SQL Anywhere Server - Database Administra-
tion].

Returns
● LONG VARCHAR Returns the text representation of the geometry-expression.

Remarks
The ST_AsText method returns a text string representing the geometry. A number of different text
formats are supported (with associated options) and the desired format is selected using the optional
format parameter. If the format parameter is not specified, the st_geometry_astext_format option is used
to select the output format to use. See “st_geometry_astext_format option” [SQL Anywhere Server -
Database Administration].

The format string defines an output format and parameters to the format. The format string has one of the
following formats:

format-name

format-name(parameter1=value1;parameter2=value2;...)

parameter1=value1;parameter2=value2;...

The first format specifies the format name and no parameters. All format parameters use their default
values. The second format specifies the format name and a list of named parameter values. Parameters
that are not supplied use their default values. The last format specifies only parameter values, and the
format name defaults to 'WKT'.

The following format names may be used:

● WKT The Well-Known Text format defined by SQL/MM and the OGC.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 111

● EWKT The Extended Well Known Text format. This format includes the geometry's SRID as a prefix.

● GML The Geography Markup Language format defined by ISO 19136 and the OGC.

● KML Keyhole Markup Language format defined by OGC.

● GeoJSON The GeoJSON format uses JavaScript Object Notation (JSON) as defined by http://
geojson.org/geojson-spec.html.

● SVG The Scalable Vector Graphics (SVG) 1.1 format defined by the World Wide Web Consortium
(W3C).

The following format parameters can be specified:

For-
mat
Name

Parame-
ter Name

Default
Value

Allowed Values Description

WKT Version 1.2 ● 1.1 The WKT defined by OGC SFS 1.1.
This format does not contain Z and M values.
If the geometry contains Z or M values, they
are removed in the output.

● 1.2 The WKT defined by OGC SFS 1.2.
This matches version 1.1 on 2D data and ex-
tends the format to support Z and M values.

● PostGIS The WKT format used by some oth-
er vendors; Z and M values are included in a
fashion that does not match OGC 1.2.

The version pa-
rameter con-
trols the ver-
sion of the
WKT specifica-
tion used.

GML Version 3 ● 2 Version 2 of the GML specification.

● 3 Version 3.2 of the GML specification

The version pa-
rameter con-
trols the ver-
sion of the
GML specifica-
tion used.

Accessing and manipulating spatial data

112 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

http://geojson.org/geojson-spec.html
http://geojson.org/geojson-spec.html

For-
mat
Name

Parame-
ter Name

Default
Value

Allowed Values Description

GML Name-
space

none ● local Provides a default namespace attribute
for the given element (in this case Point) and its
sub elements.

● global Provides a dedicated ("gml") prefix
for the given element and its sub elements. This
is useful when the query is used within an ag-
gregate operation, such that, some top level ele-
ment defines the namespace for the "gml" prefix.

● none Provides no namespace or prefix for
the given element (in this case Point) and its
sub elements

The namespace
parameter
specifies the
output format
convention for
namespace.

GML SRSNa-
meFor-
mat

short ● short Uses a short format for the spatial ref-
erence system name, for example EPSG:4326

● long Uses a long format for the spatial refer-
ence system name, for example urn:x-
ogc:def:crs:EPSG:4326.

● none Spatial reference system name attrib-
ute is not included for the geometry.

The SRSName-
Format parame-
ter specifies the
format for the
srsName attrib-
ute.

GML SRSDi-
mension

No Yes or No The SRSDi-
mension param-
eter specifies
the number of
coordinate val-
ues for the giv-
en geometry.
This only ap-
plies to
GML(ver-
sion=3).

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 113

For-
mat
Name

Parame-
ter Name

Default
Value

Allowed Values Description

GML SRSFil-
lAll

No Yes or No The SRSFillAll
parameter
specifies
whether or not
SRS attributes
should be
propagated to
child geometry
elements. As an
example a Mul-
tiGeometry or
MultiPolygon
would propa-
gate the attrib-
utes to its child
geometries.

GML UseDe-
precated

No Yes or No The UseDepre-
cated parameter
only applies to
GML(ver-
sion=3). It is
used to output
older GML rep-
resentations
where possible.
As an example
a Surface may
be output as a
Polygon if the
geometry con-
tains no Circu-
larStrings.

GML Attribute Auto-
matical-
ly gen-
erated
optional
attrib-
utes

One or more attributes may be specified for the top
level geometry element only

Any legal XML
attributes may
be specified.

Accessing and manipulating spatial data

114 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

For-
mat
Name

Parame-
ter Name

Default
Value

Allowed Values Description

GML SubEle-
ment

Auto-
matical-
ly gen-
erated
GML
sub ele-
ments

One or more sub elements may be specified for the
top level geometry element only

Any legal XML
elements may
be specified.

KML Version 2 2 KML version
2.2 is suppor-
ted.

KML Attribute Auto-
matical-
ly gen-
erated
optional
attrib-
utes

One or more attributes may be specified for the top
level geometry element only

Any legal XML
attributes may
be specified.

KML Name-
space

none ● local Provides the default namespace attrib-
ute http://www.opengis.net/kml/2.2 for the
given geometry element (in this case Point) and
its sub elements.

● global Provides a dedicated ("kml") prefix
for the given element and its sub elements. This
is useful when the query is used within an ag-
gregate operation, such that, some top level ele-
ment defines the namespace for the "kml" prefix.

● none Provides no namespace or prefix for
the given element (in this case Point) and its
sub elements

The namespace
parameter
specifies the
output format
convention for
namespace.

KML SubEle-
ment

Auto-
matical-
ly gen-
erated
KML
sub ele-
ments

One or more sub elements may be specified for the
top level geometry element only

Any legal XML
elements may
be specified.
As an example
extrude, tessel-
late and altitu-
deMode ele-
ments may be
specified.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 115

For-
mat
Name

Parame-
ter Name

Default
Value

Allowed Values Description

Geo-
JSON

Version 1 1 The version of
the GeoJSON
specification to
follow. At
present, only
1.0 is suppor-
ted.

SVG Approxi-
mate

Yes Yes or No The Approxi-
mate parameter
specifies
whether or not
to reduce the
size of the out-
put SVG docu-
ment with a
slight reduction
in visible de-
tail. The SVG
data is approxi-
mated by not in-
cluding points
which are with-
in the line
width of the
last point. With
multiple mega-
byte geometries
this can result
in compression
rates of 80% or
more.

Accessing and manipulating spatial data

116 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

For-
mat
Name

Parame-
ter Name

Default
Value

Allowed Values Description

SVG Attribute Auto-
matical-
ly gen-
erated
optional
attrib-
utes

One or more SVG attributes that can be applied to
SVG shape elements

By default, op-
tional SVG
shape attributes
such as fill,
stroke and
stroke-width
are generated.
If the Attributes
parameter is
specified, then
no optional
SVG shape at-
tributes are gen-
erated, and the
Attribute value
is used instead.
Ignored if Path-
DataOnly=Yes
is specified.

SVG Decimal-
Digits

Based
on the
number
of deci-
mal dig-
its in
the spa-
tial ref-
erence
system's
snap to
grid
grid-
size.
The
maxi-
mum
default
value is
5 and
the min-
imum is
0.

integer The Decimal-
Digits parame-
ter limits the
number of dig-
its after the dec-
imal place for
coordinates
generated in the
SVG output.
Specifying a
negative num-
ber of digits in-
dicates that the
full precision of
coordinates
should be inclu-
ded in the SVG
output.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 117

For-
mat
Name

Parame-
ter Name

Default
Value

Allowed Values Description

SVG PathDa-
taOnly

No (a
com-
plete
SVG
docu-
ment is
gener-
ated)

Yes or No The PathDa-
taOnly parame-
ter specifies
whether or not
only data for
the SVG Path
Element should
be generated.
The PathDa-
taOnly example
below demon-
strates how
PathDataOn-
ly=Yes can be
used to build a
complete SVG
document that
can be dis-
played. By de-
fault a com-
plete SVG
document is
generated. The
path data re-
turned by Path-
DataOnly=Yes
can be used to
build more flex-
ible SVG docu-
ments contain-
ing other ele-
ments, such as
text.

Accessing and manipulating spatial data

118 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

For-
mat
Name

Parame-
ter Name

Default
Value

Allowed Values Description

SVG Random-
Fill

Yes Yes or No The Random-
Fill parameter
specifies
whether or not
polygons
should be filled
by a randomly
generated col-
or. The se-
quence of col-
ors used does
not follow a
well-defined se-
quence, and
typically
changes each
time SVG out-
put is gener-
ated. No indi-
cates that only
an outline of
each polygon is
drawn. The
RandomFill pa-
rameter is ig-
nored if the At-
tribute or Path-
DataOnly=Yes
parameter is
specified.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 119

For-
mat
Name

Parame-
ter Name

Default
Value

Allowed Values Description

SVG Relative Yes Yes or No The Relative
parameter
specifies if co-
ordinates
should be out-
put in relative
(offset) or abso-
lute formats.
Relative coordi-
nate data is typ-
ically more
compact than
absolute coordi-
nate data.

Note
When converting a geometry value to VARCHAR or NVARCHAR, the server uses the ST_AsText
method. The st_geometry_astext_format option defines the format that is used for the conversion. See
“st_geometry_astext_format option” [SQL Anywhere Server - Database Administration].

Note
By default, ST_AsText uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

See also
● “ST_AsGeoJSON method for type ST_Geometry” on page 100
● “ST_AsGML method for type ST_Geometry” on page 95
● “ST_AsKML method for type ST_Geometry” on page 101
● “ST_AsSVG method for type ST_Geometry” on page 104
● “ST_AsWKT method for type ST_Geometry” on page 123

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.35

Example
Assuming that the st_geometry_astext_format option has the value 'WKT' (see
“st_geometry_astext_format option” [SQL Anywhere Server - Database Administration]) the following
returns the result Point ZM (1 2 3 4).

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0, 4326).ST_AsText()

Accessing and manipulating spatial data

120 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Assuming that the st_geometry_astext_format option has the value 'WKT'(see
“st_geometry_astext_format option” [SQL Anywhere Server - Database Administration]), the following
returns the result Point ZM (1 2 3 4). The ST_AsText method is implicitly invoked when
converting geometries to VARCHAR or NVARCHAR types.

SELECT CAST(NEW ST_Point(1.0, 2.0, 3.0, 4.0, 4326) as long varchar)

The following returns the result Point (1 2). The Z and M values are not output because they are not
supported in version 1.1.0 of the OGC specification for WKT.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0, 4326).ST_AsText('WKT(Version=1.1)')

The following returns the result SRID=4326;Point ZM (1 2 3 4). The SRID is included in the
result as a prefix.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0, 4326).ST_AsText('EWKT')

The following example returns the result <Point srsName="EPSG:4326"><pos>1 2 3 4</
pos></Point>.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0, 4326).ST_AsText('GML')

The following returns '{"type":"Point", "coordinates":[1,2]} '.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0, 4326).ST_AsText('GeoJSON')

The following returns a complete SVG document with polygons filled with random colors.

SELECT NEW ST_Polygon('Polygon((0 0, 0 20, 60 10, 0 0))')
 .ST_AsText('SVG')

ST_AsWKB method for type ST_Geometry

Returns the WKB representation of an ST_Geometry value.

Syntax
geometry-expression.ST_AsWKB([format])

Parameters

Name Type Description

format VARCHAR(128) A string defining the WKB format to use when converting the geometry-
expression to binary. If not specified, the default is 'WKB'.

Returns
● LONG BINARY Returns the WKB representation of the geometry-expression.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 121

Remarks
The ST_AsWKB method returns a binary string representing the geometry in WKB format. A number of
different formats are supported (with associated options) and the desired format is selected using the
optional format parameter. If the format parameter is not specified, the default is 'WKB'.

The format string defines an output format and parameters to the format. The format string has one of the
following formats:

format-name

format-name(parameter1=value1;parameter2=value2;...)

parameter1=value1;parameter2=value2;...

The first format specifies the format name and no parameters. All format parameters use their default
values. The second format specifies the format name and a list of named parameter values. Parameters
that are not supplied use their default values. The last format specifies only parameter values, and the
format name defaults to 'WKB'.

The following format names may be used:

● WKB The Well-Known Binary format defined by SQL/MM and the OGC.

● EWKB The Extended Well-Known Binary format defined by PostGIS. This format includes the
geometry's SRID and it differs from WKB in the way it represents Z and M values.

The following format parameters can be specified:

For-
mat
Name

Pa-
rame-
ter
Name

De-
fault
Value

Allowed Values De-
scrip-
tion

WKB Ver-
sion

1.2 ● 1.1 The WKB defined by OGC SFS 1.1. This format does
not contain Z and M values. If the geometry contains Z or M
values, they are removed in the output.

● 1.2 The WKB defined by OGC SFS 1.2. This matches ver-
sion 1.1 on 2D data and extends the format to support Z and
M values.

The
Ver-
sion
param-
eter
con-
trols
the
version
of the
WKB
speci-
fica-
tion
used.

Accessing and manipulating spatial data

122 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Note
By default, ST_AsWKB uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns the result
0x01b90b0000000000000000f03f000000000000004000000000000008400000000000
001040.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0, 4326).ST_AsWKB()

The following returns the result 0x0101000000000000000000f03f0000000000000040. The Z
and M values are omitted because version 1.1 of the OGC specification for WKB does not support these.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0, 4326).ST_AsWKB('WKB(Version=1.1)')

The following returns the result
0x01010000e0e6100000000000000000f03f0000000000000040000000000000084000
00000000001040.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0, 4326).ST_AsWKB('EWKB')

ST_AsWKT method for type ST_Geometry
Returns the WKT representation of an ST_Geometry value.

Syntax
geometry-expression.ST_AsWKT([format])

Parameters

Name Type Description

format VAR-
CHAR(128)

A string defining the output text format to use when converting the geom-
etry-expression to WKT. If not specified, the format string defaults to
'WKT'.

Returns
● LONG VARCHAR Returns the WKT representation of the geometry-expression.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 123

Remarks
The ST_AsWKT method returns a text string representing the geometry. A number of different text
formats are supported (with associated options) and the desired format is selected using the optional
format parameter.

The format string defines an output format and parameters to the format. The format string has one of the
following formats:

format-name

format-name(parameter1=value1;parameter2=value2;...)
parameter1=value1;parameter2=value2;...

The first format specifies the format name and no parameters. All format parameters use their default
values. The second format specifies the format name and a list of named parameter values. Parameters
that are not supplied use their default values. The last format specifies only parameter values, and the
format name defaults to 'WKT'.

The following format names may be used:

● WKT The Well Known Text format defined by SQL/MM and the OGC.

● EWKT The Extended Well Known Text format defined by PostGIS. This format includes the
geometry's SRID and it differs from WKT in the way it represents Z and M values.

The following format parameters can be specified:

For-
mat
Name

Pa-
rame-
ter
Name

De-
fault
Val-
ue

Allowed Values De-
scrip-
tion

WKT Ver-
sion

1.2 ● 1.1 The WKT defined by OGC SFS 1.1. This format does
not contain Z and M values. If the geometry contains Z or M
values, they are removed in the output.

● 1.2 The WKT defined by OGC SFS 1.2. This matches ver-
sion 1.1 on 2D data and extends the format to support Z and
M values.

● PostGIS The WKT format used by some other vendors; Z
and M values are included in a fashion that does not match
OGC 1.2.

The
Ver-
sion
pa-
rame-
ter
con-
trols
the
ver-
sion of
the
WKT
speci-
fica-
tion
used.

Accessing and manipulating spatial data

124 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Note
By default, ST_AsWKT uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns the result SRID=0;Polygon ((3 3, 8 3, 4 8, 3 3)).

SELECT Shape.ST_AsWKT('EWKT') FROM SpatialShapes WHERE ShapeID = 22

ST_AsXML method for type ST_Geometry
Returns the XML representation of an ST_Geometry value.

Syntax
geometry-expression.ST_AsXML([format])

Parameters

Name Type Description

format VAR-
CHAR(128)

A string defining the output text format to use when converting the geometry-
expression to an XML representation. If not specified, the st_geome-
try_asxml_format option is used to choose the XML representation. See
“st_geometry_asxml_format option” [SQL Anywhere Server - Database Ad-
ministration].

Returns
● LONG VARCHAR Returns the XML representation of the geometry-expression.

Remarks
The ST_AsXML method returns an XML string representing the geometry. GML, KML and SVG are the
supported XML formats. The format parameter specifies parameters that control the conversion to XML.
If format is not specified, the value of the st_geometry_asxml_format option is used to select the output
format. See “st_geometry_asxml_format option” [SQL Anywhere Server - Database Administration].

The format string defines an output format and parameters to the format. The format string has one of the
following formats:

format-name

format-name(parameter1=value1;parameter2=value2;...)

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 125

parameter1=value1;parameter2=value2;...

The first format specifies the format name and no parameters. All format parameters use their default
values. The second format specifies the format name and a list of named parameter values. Parameters
that are not supplied use their default values. The last format specifies only parameter values, and the
format name defaults to 'GML'.

The following format names may be used:

● GML The Geography Markup Language format defined by ISO 19136 and the OGC.

● KML The Keyhole Markup Language format defined by the OGC.

● SVG The Scalable Vector Graphics (SVG) 1.1 format defined by the World Wide Web Consortium
(W3C).

The following format parameters can be specified:

Format
Name

Parame-
ter Name

Default
Value

Allowed Values Description

GML Version 3 ● 2 Version 2 of the GML specification.

● 3 Version 3.2 of the GML specification

The version pa-
rameter controls
the version of
the GML specifi-
cation used.

GML Name-
space

none ● local Provides a default namespace attrib-
ute for the given element (in this case Point)
and its sub elements.

● global Provides a dedicated ("gml") prefix
for the given element and its sub elements.
This is useful when the query is used within
an aggregate operation, such that, some top
level element defines the namespace for the
"gml" prefix.

● none Provides no namespace or prefix for
the given element (in this case Point) and its
sub elements

The namespace
parameter speci-
fies the output
format conven-
tion for name-
space.

Accessing and manipulating spatial data

126 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Format
Name

Parame-
ter Name

Default
Value

Allowed Values Description

GML SRSNa-
meFor-
mat

short ● short Uses a short format for the spatial ref-
erence system name, for example EPSG:4326

● long Uses a long format for the spatial ref-
erence system name, for example urn:x-
ogc:def:crs:EPSG:4326.

● none Spatial reference system name attrib-
ute is not included for the geometry.

The SRSName-
Format parame-
ter specifies the
format for the
srsName attrib-
ute.

GML SRSDi-
mension

No Yes or No The SRSDimen-
sion parameter
specifies the
number of coor-
dinate values for
the given geome-
try. This only ap-
plies to
GML(ver-
sion=3).

GML SRSFil-
lAll

No Yes or No The SRSFillAll
parameter speci-
fies whether or
not SRS attrib-
utes should be
propagated to
child geometry
elements. As an
example a Multi-
Geometry or
MultiPolygon
would propagate
the attributes to
its child geome-
tries.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 127

Format
Name

Parame-
ter Name

Default
Value

Allowed Values Description

GML UseDe-
precated

No Yes or No The UseDepre-
cated parameter
only applies to
GML(ver-
sion=3). It is
used to output
older GML rep-
resentations
where possible.
As an example a
Surface may be
output as a Poly-
gon if the geom-
etry contains no
CircularStrings.

GML Attribute Auto-
matical-
ly gen-
erated
optional
attrib-
utes

One or more attributes may be specified for the
top level geometry element only

Any legal XML
attributes may
be specified.

GML SubEle-
ment

Auto-
matical-
ly gen-
erated
GML
sub ele-
ments

One or more sub elements may be specified for
the top level geometry element only

Any legal XML
elements may be
specified.

KML Version 2 2 KML version
2.2 is supported.

KML Attribute Auto-
matical-
ly gen-
erated
optional
attrib-
utes

One or more attributes may be specified for the
top level geometry element only

Any legal XML
attributes may
be specified.

Accessing and manipulating spatial data

128 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Format
Name

Parame-
ter Name

Default
Value

Allowed Values Description

KML Name-
space

none ● local Provides the default namespace attrib-
ute http://www.opengis.net/kml/2.2 for the
given geometry element (in this case Point)
and its sub elements.

● global Provides a dedicated ("kml") prefix
for the given element and its sub elements.
This is useful when the query is used within
an aggregate operation, such that, some top
level element defines the namespace for the
"kml" prefix.

● none Provides no namespace or prefix for
the given element (in this case Point) and its
sub elements

The namespace
parameter speci-
fies the output
format conven-
tion for name-
space.

KML SubEle-
ment

Auto-
matical-
ly gen-
erated
KML
sub ele-
ments

One or more sub elements may be specified for
the top level geometry element only

Any legal XML
elements may be
specified. As an
example ex-
trude, tessellate
and altitude-
Mode elements
may be specified.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 129

Format
Name

Parame-
ter Name

Default
Value

Allowed Values Description

SVG Approxi-
mate

Yes Yes or No The Approxi-
mate parameter
specifies wheth-
er or not to re-
duce the size of
the output SVG
document with a
slight reduction
in visible detail.
The SVG data is
approximated by
not including
points which are
within the line
width of the last
point. With mul-
tiple megabyte
geometries this
can result in
compression
rates of 80% or
more.

SVG Attribute Auto-
matical-
ly gen-
erated
optional
attrib-
utes

One or more SVG attributes that can be applied
to SVG shape elements

By default, op-
tional SVG
shape attributes
such as fill,
stroke and
stroke-width are
generated. If the
Attributes pa-
rameter is speci-
fied, then no op-
tional SVG
shape attributes
are generated,
and the Attribute
value is used in-
stead. Ignored if
PathDataOn-
ly=Yes is speci-
fied.

Accessing and manipulating spatial data

130 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Format
Name

Parame-
ter Name

Default
Value

Allowed Values Description

SVG Decimal-
Digits

Based
on the
number
of deci-
mal dig-
its in the
spatial
refer-
ence
system's
snap to
grid
grid-
size.
The
maxi-
mum
default
value is
5 and
the min-
imum is
0.

integer The DecimalDi-
gits parameter
limits the num-
ber of digits af-
ter the decimal
place for coordi-
nates generated
in the SVG out-
put. Specifying a
negative number
of digits indi-
cates that the full
precision of co-
ordinates should
be included in
the SVG output.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 131

Format
Name

Parame-
ter Name

Default
Value

Allowed Values Description

SVG PathDa-
taOnly

No (a
com-
plete
SVG
docu-
ment is
gener-
ated)

Yes or No The PathDa-
taOnly parame-
ter specifies
whether or not
only data for the
SVG Path Ele-
ment should be
generated. The
PathDataOnly
example below
demonstrates
how PathDa-
taOnly=Yes can
be used to build
a complete SVG
document that
can be dis-
played. By de-
fault a complete
SVG document
is generated. The
path data re-
turned by Path-
DataOnly=Yes
can be used to
build more flexi-
ble SVG docu-
ments containing
other elements,
such as text.

Accessing and manipulating spatial data

132 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Format
Name

Parame-
ter Name

Default
Value

Allowed Values Description

SVG Random-
Fill

Yes Yes or No The RandomFill
parameter speci-
fies whether or
not polygons
should be filled
by a randomly
generated color.
The sequence of
colors used does
not follow a well-
defined se-
quence, and typi-
cally changes
each time SVG
output is gener-
ated. No indi-
cates that only
an outline of
each polygon is
drawn. The Ran-
domFill parame-
ter is ignored if
the Attribute or
PathDataOn-
ly=Yes parame-
ter is specified.

SVG Relative Yes Yes or No The Relative pa-
rameter specifies
if coordinates
should be output
in relative (off-
set) or absolute
formats. Rela-
tive coordinate
data is typically
more compact
than absolute co-
ordinate data.

Note
When converting a geometry value to XML, the server uses the ST_AsXML method. The
st_geometry_asxml_format option defines the format that is used for the conversion. See
“st_geometry_asxml_format option” [SQL Anywhere Server - Database Administration].

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 133

Note
By default, ST_AsXML uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

See also
● “ST_AsGML method for type ST_Geometry” on page 95
● “ST_AsKML method for type ST_Geometry” on page 101
● “ST_AsSVG method for type ST_Geometry” on page 104

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
If the st_geometry_asxml_format option has its default value of 'GML', then the following returns the
result <Point srsName="EPSG:4326"><pos>1 2 3 4</pos></Point>.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0, 4326).ST_AsXML()

If the st_geometry_asxml_format option has its default value of 'GML', then the following returns the
result <Point srsName="EPSG:4326"><pos>1 2 3 4</pos></Point>.

SELECT CAST(NEW ST_Point(1.0, 2.0, 3.0, 4.0, 4326) AS XML)

The following example returns the result <Point srsName="EPSG:
4326"><coordinates>1,2</coordinates></Point>.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0, 4326).ST_AsXML('GML(Version=2)')

The following returns a complete SVG document with polygons filled with random colors.

SELECT NEW ST_Polygon('Polygon((0 0, 0 20, 60 10, 0 0))')
 .ST_AsXML('SVG')

ST_Boundary method for type ST_Geometry
Returns the boundary of the geometry value.

Syntax
geometry-expression.ST_Boundary()

Returns
● ST_Geometry Returns a geometry value representing the boundary of the geometry-expression.

The spatial reference system identifier of the result is the same as the spatial reference system of the
geometry-expression.

Accessing and manipulating spatial data

134 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
The ST_Boundary method returns the spatial boundary of the geometry-expression. Geometries are
characterized by their interior, boundary, and exterior. All geometry values are defined to be topologically
closed, that is the boundary is considered to be part of the geometry.

Point geometries have an empty boundary. Curve geometries may be closed, in which case they have an
empty boundary. If a curve is not closed, the start and end point of the curve form the boundary. For a
surface geometry, the boundary is the set of curves that delineate the edge of the surface. For example, for
a polygon the boundary of the geometry consists of the exterior ring and any interior rings.

See also: “Geometry interiors, exteriors, and boundaries” on page 42.

Note
If the geometry-expression is an empty geometry (ST_IsEmpty()=1), then this method returns NULL.

Note
This method can not be used with geometries in round-Earth spatial reference system.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.14

Example
The following example construct a geometry collection containing a polygon and a linestring and returns
the boundary for the collection. The returned boundary is a collection containing the exterior ring of the
polygon and the two end points of the linestring. It is equivalent to the following collection:
'GeometryCollection (LineString (0 0, 3 0, 3 3, 0 3, 0 0), MultiPoint
((0 7), (4 4)))'
SELECT NEW ST_GeomCollection('GeometryCollection (Polygon ((0 0, 3 0, 3 3, 0
3, 0 0)), LineString (0 7, 0 4, 4 4))').ST_Boundary()

ST_Contains method for type ST_Geometry
Tests if a geometry value spatially contains another geometry value.

Syntax
geometry-expression.ST_Contains(geo2)

Parameters

Name Type Description

geo2 ST_Geometry The other geometry value that is to be compared to the geometry-expression.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 135

Returns
● BIT Returns 1 if the geometry-expression contains geo2, otherwise 0.

Remarks
The ST_Contains method tests if the geometry-expression completely contains geo2 and there is one or
more interior points of geo2 that lies in the interior of the geometry-expression.

geometry-expression.ST_Contains(geo2) is equivalent to geo2.ST_Within(geometry-expression).

The ST_Contains and ST_Covers methods are similar. The difference is that ST_Covers does not require
intersecting interior points.

Note
If the geometry-expression contains circular strings, then these are interpolated to line strings.

Note
This method can not be used with geometries in round-Earth spatial reference system.

See also
● “ST_Within method for type ST_Geometry” on page 211
● “ST_Covers method for type ST_Geometry” on page 144
● “ST_Intersects method for type ST_Geometry” on page 165
● “ST_ContainsFilter method for type ST_Geometry” on page 137

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.31

Example
The following example tests if a polygon contains a point. The polygon completely contains the point,
and the interior of the point (the point itself) intersects the interior of the polygon, so the example returns 1.

SELECT NEW ST_Polygon('Polygon((0 0, 2 0, 1 2, 0 0))')
 .ST_Contains(NEW ST_Point(1, 1))

The following example tests if a polygon contains a line. The polygon completely contains the line, but
the interior of the line and the interior of the polygon do not intersect (the line only intersects the polygon
on the polygon's boundary, and the boundary is not part of the interior), so the example returns 0. If
ST_Covers was used in place of ST_Contains, ST_Covers would return 1.

SELECT NEW ST_Polygon('Polygon((0 0, 2 0, 1 2, 0 0))')
 .ST_Contains(NEW ST_LineString('LineString(0 0, 1 0)'))

The following example lists the ShapeIDs where the given polygon contains each Shape geometry. This
example returns the result 16,17,19. Note that ShapeID 1 is not listed because the polygon intersects
that row's Shape point at the polygon's boundary.

SELECT LIST(ShapeID ORDER BY ShapeID)
FROM SpatialShapes

Accessing and manipulating spatial data

136 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

WHERE NEW ST_Polygon(NEW ST_Point(0, 0),
 NEW ST_Point(8, 2)).ST_Contains(Shape) = 1

ST_ContainsFilter method for type ST_Geometry
A cheap test if a geometry might possibly contain another.

Syntax
geometry-expression.ST_ContainsFilter(geo2)

Parameters

Name Type Description

geo2 ST_Geometry The other geometry value that is to be compared to the geometry-expression.

Returns
● BIT Returns 1 if the geometry-expression might contain geo2, otherwise 0.

Remarks
The ST_ContainsFilter method provides an efficient test to determine if one geometry might contain the
other. Returns 1 if the geometry-expression might contain geo2, otherwise 0.

This test is cheaper than ST_Contains, but may return 1 in some cases where the geometry-expression
does not actually contain geo2.

Therefore, this method can be useful as a primary filter when further processing will determine whether
geometries interact in the desired way.

The implementation of ST_ContainsFilter relies upon meta-data associated with the stored geometries.
Because the available meta-data may change between server versions, depending upon how the data is
loaded, or where ST_ContainsFilter is used within a query, the expression geometry-
expression.ST_ContainsFilter(geo2) can return different results when geometry-expression does not
contain geo2. Whenever geometry-expression contains geo2, ST_ContainsFilter will always return 1.

Note
This method can not be used with geometries in round-Earth spatial reference system.

See also
● “ST_Contains method for type ST_Geometry” on page 135

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 137

ST_ConvexHull method for type ST_Geometry
Returns the convex hull of the geometry value.

Syntax
geometry-expression.ST_ConvexHull()

Returns
● ST_Geometry If the geometry value is NULL or an empty value, then NULL is returned.

Otherwise, the convex hull of the geometry value is returned.

The spatial reference system identifier of the result is the same as the spatial reference system of the
geometry-expression.

Remarks
The convex hull of a geometry is the smallest convex geometry that contains all of the points in the geometry.

The convex hull may be visualized by imagining an elastic band stretched to enclose all of the points in
the geometry. When released, the elastic band takes the shape of the convex hull.

If the geometry consists of a single point, the point is returned. If all of the points of the geometry lie on a
single straight line segment, a linestring is returned. Otherwise, a convex polygon is returned.

The convex hull can serve as an approximation of the original geometry. When testing a spatial
relationship, the convex hull can serve as a quick pre-filter because if there is no spatial intersection with
the convex hull then there can be no intersection with the original geometry.

Note
If the geometry-expression is an empty geometry (ST_IsEmpty()=1), then this method returns NULL.

Note
ST_ConvexHull is not supported on geometries which contain circular strings.

Note
This method can not be used with geometries in round-Earth spatial reference system.

See also
● “ST_ConvexHullAggr method for type ST_Geometry” on page 139

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.16

Example
The following example shows the convex hull computed from 10 points. The resulting hull is the result
Polygon ((1 1, 7 2, 9 3, 6 9, 4 9, 1 5, 1 1)).

Accessing and manipulating spatial data

138 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SELECT NEW ST_MultiPoint('MultiPoint((1 1), (2 2), (5 3), (7 2), (9 3), (8
4), (6 6), (6 9), (4 9), (1 5))').ST_ConvexHull()

The following example returns the single point (0,0). The convex hull of a single point is a point.

SELECT NEW ST_Point(0,0).ST_ConvexHull()

The following example returns the result LineString (0 0, 3 3). The convex hull of a single
straight line is a linestring with a single segment.

SELECT NEW ST_LineString('LineString(0 0,1 1,2 2,3 3)').ST_ConvexHull()

ST_ConvexHullAggr method for type ST_Geometry
Returns the convex hull for all of the geometries in a group

Syntax
ST_Geometry::ST_ConvexHullAggr(geometry-column)

Parameters

Name Type Description

geometry-column ST_Geometry The geometry values to generate the convex hull. Typically this is
a column.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 139

Returns
● ST_Geometry Returns the convex hull for all the geometries in a group.

The spatial reference system identifier of the result is the same as that for the first parameter.

Remarks
The ST_ConvexHullAggr considers all of the points in the group of geometries it is computed over and
returns the convex hull of all these points. The convex hull of a geometry is the smallest convex geometry
that contains all of the points in the geometry.

The convex hull may be visualized by imagining an elastic band stretched to enclose all of the points in
the geometry. When released, the elastic band takes the shape of the convex hull.

If the geometries in the group consist of a single point, the point is returned. If all of the points of the
group of geometries lie on a single straight line segment, a linestring is returned. Otherwise, a convex
polygon is returned.

The convex hull can serve as an approximation of the original geometry. When testing a spatial
relationship, the convex hull can serve as a quick pre-filter because if there is no spatial intersection with
the convex hull then there can be no intersection with the original geometry.

Note
ST_ConvexHullAggr is not supported on geometries which contain circular strings.

Note
This method can not be used with geometries in round-Earth spatial reference system.

See also
● “ST_ConvexHull method for type ST_Geometry” on page 138

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns the result Polygon ((3 0, 7 2, 3 6, 0 7, -3 6, -3 3, 0
0, 3 0)).

SELECT ST_Geometry::ST_ConvexHullAggr(Shape)
FROM SpatialShapes WHERE ShapeID <= 16

ST_CoordDim method for type ST_Geometry
Returns the number of coordinate dimensions stored with each point of the ST_Geometry value.

Syntax
geometry-expression.ST_CoordDim()

Accessing and manipulating spatial data

140 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns
● SMALLINT Returns a value between 2 and 4 indicating the number of coordinate dimensions stored

with each point of the ST_Geometry value.

Remarks
The ST_CoordDim method returns the number of coordinates stored within each point in the geometry.
All geometries have at least two coordinate dimensions. For geographic spatial reference systems, these
are the latitude and longitude of the point. For other spatial reference system, these coordinates are the X
and Y positions of the point.

Geometries can optionally have Z and M values associated with each of the points in the geometry. These
additional coordinate values are not considered when computing spatial relations or set operations, but
they can be used to record additional information. For example, the measure value (M) can be used to
record the pollution at various points within a geometry. The Z value usually is used to indicate elevation,
but that interpretation is not imposed by the database server.

The following values may be returned by the ST_CoordDim method:

● 2 The geometry contains only two coordinates (either latitude/longitude or X/Y).

● 3 The geometry contains one additional coordinate (either Z or M) for each point.

● 4 The geometry contains two additional coordinate (both Z and M) for each point.

Note
Spatial operations that combine geometries using set operations do not preserve any Z or M values
associated with the points of the geometry.

Note
By default, ST_CoordDim uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

See also
● “ST_Is3D method for type ST_Geometry” on page 168
● “ST_IsMeasured method for type ST_Geometry” on page 169

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.3

Example
The following example returns the result 2.

SELECT NEW ST_Point(1.0, 1.0).ST_CoordDim()

The following example returns the result 3.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 141

SELECT NEW ST_Point(1.0, 1.0, 1.0, 0).ST_CoordDim()

The following example returns the result 3.

SELECT NEW ST_Point('Point M (1 1 1)').ST_CoordDim()

The following example returns the result 4.

SELECT NEW ST_Point('Point ZM (1 1 1 1)').ST_CoordDim()

ST_CoveredBy method for type ST_Geometry

Tests if a geometry value is spatially covered by another geometry value.

Syntax
geometry-expression.ST_CoveredBy(geo2)

Parameters

Name Type Description

geo2 ST_Geometry The other geometry value that is to be compared to the geometry-expression.

Returns
● BIT Returns 1 if the geometry-expression covers geo2, otherwise 0.

Remarks
The ST_CoveredBy method tests if the geometry-expression is completely covered by geo2.

geometry-expression.ST_CoveredBy(geo2) is equivalent to geo2.ST_Covers(geometry-expression).

This predicate is similar to ST_Within except for one subtle difference. The ST_Within predicate requires
that one or more interior points of the geometry-expression lie in the interior of geo2. For
ST_CoveredBy(), the method returns 1 if no point of the geometry-expression lies outside of geo2,
regardless of whether interior points of the two geometries intersect. ST_CoveredBy can be used with
geometries in round-Earth spatial reference systems.

Note
If the geometry-expression contains circular strings, then these are interpolated to line strings.

See also
● “ST_Covers method for type ST_Geometry” on page 144
● “ST_Within method for type ST_Geometry” on page 211
● “ST_Intersects method for type ST_Geometry” on page 165
● “ST_CoveredByFilter method for type ST_Geometry” on page 143

Accessing and manipulating spatial data

142 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example tests if a point is covered by a polygon. The point is completely covered by the
polygon so the example returns 1.

SELECT NEW ST_Point(1, 1)
 .ST_CoveredBy(NEW ST_Polygon('Polygon((0 0, 2 0, 1 2, 0 0))'))

The following example tests if a line is covered by a polygon. The line is completely covered by the
polygon so the example returns 1. If ST_Within was used in place of ST_CoveredBy, ST_Within would
return 0.

SELECT NEW ST_LineString('LineString(0 0, 1 0)')
 .ST_CoveredBy(NEW ST_Polygon('Polygon((0 0, 2 0, 1 2, 0 0))'))

The following example lists the ShapeIDs where the given point is within the Shape geometry. This
example returns the result 3,5,6. Note that ShapeID 6 is listed even though the point intersects that
row's Shape polygon only at the polygon's boundary.

SELECT LIST(ShapeID ORDER BY ShapeID)
FROM SpatialShapes
WHERE NEW ST_Point(1, 4).ST_CoveredBy(Shape) = 1

ST_CoveredByFilter method for type ST_Geometry

A cheap test if a geometry might possibly be covered by another.

Syntax
geometry-expression.ST_CoveredByFilter(geo2)

Parameters

Name Type Description

geo2 ST_Geometry The other geometry value that is to be compared to the geometry-expression.

Returns
● BIT Returns 1 if the geometry-expression might be covered by geo2, otherwise 0.

Remarks
The ST_CoveredByFilter method provides an efficient test to determine if one geometry might be covered
by the other. Returns 1 if the geometry-expression might cover geo2, otherwise 0.

This test is cheaper than ST_CoveredBy, but may return 1 in some cases where the geometry-expression
is not actually covered by geo2.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 143

Therefore, this method can be useful as a primary filter when further processing will determine whether
geometries interact in the desired way.

The implementation of ST_CoveredByFilter relies upon meta-data associated with the stored geometries.
Because the available meta-data may change between server versions, depending upon how the data is
loaded, or where ST_CoveredByFilter is used within a query, the expression geometry-
expression.ST_CoveredByFilter(geo2) can return different results when geometry-expression is not
covered by geo2. Whenever geometry-expression is covered by geo2, ST_CoveredByFilter will always
return 1.

See also
● “ST_CoveredBy method for type ST_Geometry” on page 142

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_Covers method for type ST_Geometry
Tests if a geometry value spatially covers another geometry value.

Syntax
geometry-expression.ST_Covers(geo2)

Parameters

Name Type Description

geo2 ST_Geometry The other geometry value that is to be compared to the geometry-expression.

Returns
● BIT Returns 1 if the geometry-expression covers geo2, otherwise 0.

Remarks
The ST_Covers method tests if the geometry-expression completely covers geo2. geometry-
expression.ST_Covers(geo2) is equivalent to geo2.ST_CoveredBy(geometry-expression).

This predicate is similar to ST_Contains except for one subtle difference. The ST_Contains predicate
requires that one or more interior points of geo2 lie in the interior of the geometry-expression. For
ST_Covers(), the method returns 1 if no point of geo2 lies outside of the geometry-expression. Also,
ST_Covers can be used with geometries in round-Earth spatial reference systems, while ST_Contains can
not.

Note
If the geometry-expression contains circular strings, then these are interpolated to line strings.

Accessing and manipulating spatial data

144 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “ST_CoveredBy method for type ST_Geometry” on page 142
● “ST_Contains method for type ST_Geometry” on page 135
● “ST_Intersects method for type ST_Geometry” on page 165
● “ST_CoversFilter method for type ST_Geometry” on page 145

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example tests if a polygon covers a point. The polygon completely covers the point so the
example returns 1.

SELECT NEW ST_Polygon('Polygon((0 0, 2 0, 1 2, 0 0))')
 .ST_Covers(NEW ST_Point(1, 1))

The following example tests if a polygon covers a line. The polygon completely covers the line so the
example returns 1. If ST_Contains was used in place of ST_Covers, ST_Contains would return 0.

SELECT NEW ST_Polygon('Polygon((0 0, 2 0, 1 2, 0 0))')
 .ST_Covers(NEW ST_LineString('LineString(0 0, 1 0)'))

The following example lists the ShapeIDs where the given polygon covers each Shape geometry. This
example returns the result 1,16,17,19,26. Note that ShapeID 1 is listed even though the polygon
intersects that row's Shape point only at the polygon's boundary.

SELECT LIST(ShapeID ORDER BY ShapeID)
FROM SpatialShapes
WHERE NEW ST_Polygon(NEW ST_Point(0, 0),
 NEW ST_Point(8, 2)).ST_Covers(Shape) = 1

ST_CoversFilter method for type ST_Geometry
A cheap test if a geometry might possibly cover another.

Syntax
geometry-expression.ST_CoversFilter(geo2)

Parameters

Name Type Description

geo2 ST_Geometry The other geometry value that is to be compared to the geometry-expression.

Returns
● BIT Returns 1 if the geometry-expression might cover geo2, otherwise 0.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 145

Remarks
The ST_CoversFilter method provides an efficient test to determine if one geometry might cover the
other. Returns 1 if the geometry-expression might cover geo2, otherwise 0.

This test is cheaper than ST_Covers, but may return 1 in some cases where the geometry-expression does
not actually cover geo2.

Therefore, this method can be useful as a primary filter when further processing will determine whether
geometries interact in the desired way.

The implementation of ST_CoversFilter relies upon meta-data associated with the stored geometries.
Because the available meta-data may change between server versions, depending upon how the data is
loaded, or where ST_CoversFilter is used within a query, the expression geometry-
expression.ST_CoversFilter(geo2) can return different results when geometry-expression does not cover
geo2. Whenever geometry-expression covers geo2, ST_CoversFilter will always return 1.

See also
● “ST_Covers method for type ST_Geometry” on page 144

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_Crosses method for type ST_Geometry

Tests if a geometry value crosses another geometry value.

Syntax
geometry-expression.ST_Crosses(geo2)

Parameters

Name Type Description

geo2 ST_Geometry The other geometry value that is to be compared to the geometry-expression.

Returns
● BIT Returns 1 if the geometry-expression crosses geo2, otherwise 0. Returns NULL if geometry-

expression is a surface or multisurface if or geo2 is a point or multipoint.

Remarks
Tests if a geometry value crosses another geometry value.

When both geometry-expression and geo2 are curves or multicurves, they cross each other if their
interiors intersect at one or more points. If the intersection results in a curve or multicurve, the geometries
do not cross. If all of the intersecting points are boundary points, the geometries do not cross.

Accessing and manipulating spatial data

146 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

When geometry-expression has lower dimension than geo2, then geometry-expression crosses geo2 if part
of geometry-expression is on the interior of geo2 and part of geometry-expression is on the exterior of
geo2.

More precisely, geometry-expression.ST_Crosses(geo2) returns 1 when the following is TRUE:

(geometry-expression.ST_Dimension() = 1
 AND geo2.ST_Dimension() = 1
 AND geometry-expression.ST_Relate(geo2, '0********') = 1)
OR(geometry-expression.ST_Dimension() < geo2.ST_Dimension()
 AND geometry-expression.ST_Relate(geo2, 'T*T******') = 1)

Note
If the geometry-expression contains circular strings, then these are interpolated to line strings.

Note
This method can not be used with geometries in round-Earth spatial reference system.

See also
● “ST_Intersects method for type ST_Geometry” on page 165
● “ST_Dimension method for type ST_Geometry” on page 149
● “ST_Relate method for type ST_Geometry” on page 181
● “ST_Overlaps method for type ST_Geometry” on page 180

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.29

Example
The following example returns the result 1.

SELECT NEW ST_LineString('LineString(0 0, 2 2)')
 .ST_Crosses(NEW ST_LineString('LineString(0 2, 2 0)'))

The following examples returns the result 0 because the interiors of the two lines do not intersect (the
only intersection is at the first linestring boundary).

SELECT NEW ST_LineString('LineString(0 1, 2 1)')
 .ST_Crosses(NEW ST_LineString('LineString(0 0, 2 0)'))

The following example returns NULL because the first geometry is a surface.

SELECT NEW ST_Polygon('Polygon((0 0, 0 1, 1 0, 0 0))')
 .ST_Crosses(NEW ST_LineString('LineString(0 0, 2 0)'))

ST_Difference method for type ST_Geometry

Returns the geometry value that represents the point set difference of two geometries.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 147

Syntax
geometry-expression.ST_Difference(geo2)

Parameters

Name Type Description

geo2 ST_Geometry The other geometry value that is to be subtracted from the geometry-expres-
sion.

Returns
● ST_Geometry Returns the geometry value that represents the point set difference of two geometries.

The spatial reference system identifier of the result is the same as the spatial reference system of the
geometry-expression.

Remarks
The ST_Difference method finds the spatial difference of two geometries. A point is included in the result
if it is present in the geometry-expression but not present in geo2.

Unlike other spatial set operations (ST_Union, ST_Intersection, ST_SymDifference), the ST_Difference()
method is not symmetric: the method can give a different answer for A.ST_Difference(B) and
B.ST_Difference(A).

Note
If the geometry-expression contains circular strings, then these are interpolated to line strings.

See also
● “ST_Intersection method for type ST_Geometry” on page 163
● “ST_SymDifference method for type ST_Geometry” on page 190
● “ST_Union method for type ST_Geometry” on page 209

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.20

Example
The following example shows the difference (C) of a square (A) with a circle (B) removed and the
difference (D) of a circle (B) with a square (A) removed.

SELECT NEW ST_Polygon('Polygon((-1 -0.25, 1 -0.25, 1 2.25, -1 2.25, -1
-0.25))') AS A
 , NEW ST_CurvePolygon('CurvePolygon(CircularString(0 1, 1 2, 2 1, 1 0,
0 1))') AS B
 , A.ST_Difference(B) AS C
 , B.ST_Difference(A) AS D

The following picture shows the difference C=A-B and D=B-A as the shaded portion of the picture. Each
difference is a single surface that contains all of the points that are in the geometry on the left hand side of
the difference and not in the geometry on the right hand side.

Accessing and manipulating spatial data

148 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ST_Dimension method for type ST_Geometry
Returns the dimension of the ST_Geometry value. Points have dimension 0, lines have dimension 1, and
surfaces have dimension 2. Any empty geometry has dimension -1.

Syntax
geometry-expression.ST_Dimension()

Returns
● SMALLINT Returns the dimension of the geometry-expression as a SMALLINT between -1 and 2.

Remarks
The ST_Dimension method returns the spatial dimension occupied by a geometry. The following values
may be returned:

● -1 The geometry corresponds to the empty set.

● 0 The geometry consists only of individual points (for example, an ST_Point or ST_MultiPoint).

● 1 The geometry contains at least one curve and no surfaces (for example, an ST_LineString or
ST_MultiCurve).

● 2 The geometry consists of at least one surface (for example, an ST_Polygon or ST_MultiPolygon).

When computing the dimension of a collection, the largest dimension of any element is returned. For
example, if a geometry collection contains a curve and a point, ST_Dimension returns 1 for the collection.

See “Additional information on the ST_Dimension method” on page 43.

Note
By default, ST_Dimension uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 149

See also
● “ST_CoordDim method for type ST_Geometry” on page 140
● “ST_Relate method for type ST_Geometry” on page 181
● “ST_Relate method for type ST_Geometry” on page 181

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.2

Example
The following example returns the result 0.

SELECT NEW ST_Point(1.0,1.0).ST_Dimension()

The following example returns the result 1.

SELECT NEW ST_LineString('LineString(0 0, 1 1)').ST_Dimension()

ST_Disjoint method for type ST_Geometry
Test if a geometry value is spatially disjoint from another value.

Syntax
geometry-expression.ST_Disjoint(geo2)

Parameters

Name Type Description

geo2 ST_Geometry The other geometry value that is to be compared to the geometry-expression.

Returns
● BIT Returns 1 if the geometry-expression is spatially disjoint from geo2, otherwise 0.

Remarks
Tests if a geometry value is spatially disjoint from another value. Two geometries are disjoint if their
intersection is empty. In other words, they are disjoint if there is no point anywhere in geometry-
expression that is also in geo2."

geometry-expression.ST_Disjoint(geo2) = 1 is equivalent to geometry-expression.ST_Intersects(geo2)
= 0.

Note
If the geometry-expression contains circular strings, then these are interpolated to line strings.

Accessing and manipulating spatial data

150 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “ST_Intersects method for type ST_Geometry” on page 165

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.26

Example
The following example returns a result with one row for each shape that has no points in common with
the specified triangle.

SELECT ShapeID, "Description"
FROM SpatialShapes
WHERE NEW ST_Polygon('Polygon((0 0, 5 0, 0 5, 0 0))').ST_Disjoint(Shape)
= 1
ORDER BY ShapeID

The example returns the following result set:

ShapeID Description

1 Point

22 Triangle

ST_Distance method for type ST_Geometry

Returns the smallest distance between the geometry-expression and the specified geometry value.

Syntax
geometry-expression.ST_Distance(geo2[, unit-name])

Parameters

Name Type Description

geo2 ST_Geometry The other geometry value whose distance is to be measured from the ge-
ometry-expression.

unit-
name

VAR-
CHAR(128)

The units in which the distance should be computed. Defaults to the unit
of the spatial reference system. The unit name must match the
UNIT_NAME column of a row in the ST_UNITS_OF_MEASURE view
where UNIT_TYPE is 'LINEAR'.

Returns
● DOUBLE Returns the smallest distance between the geometry-expression and geo2 in the specified

linear units of measure. If either geometry-expression or geo2 is empty, then NULL is returned.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 151

Remarks
The ST_Distance method computes the shortest distance between two geometries. For planar spatial
reference systems, the distance is calculated as the Cartesian distance within the plane, computed in the
linear units of measure for the associated spatial reference system. For round-Earth spatial reference
systems, the distance is computed taking the curvature of the Earth's surface into account using the
ellipsoid parameters in the spatial reference system definition.

Note
For round-Earth spatial reference systems, the ST_Distance method is only supported if geometry-
expression and geo2 contain only points.

Note
By default, ST_Distance uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

See also
● “ST_Area method for type ST_Surface” on page 289
● “ST_Length method for type ST_Curve” on page 72
● “ST_Perimeter method for type ST_Surface” on page 290
● “ST_WithinDistance method for type ST_Geometry” on page 212
● “ST_WithinDistanceFilter method for type ST_Geometry” on page 214

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.23

Example
The following example returns an ordered result set with one row for each shape and the corresponding
distance from the point (2,3).

SELECT ShapeID, ROUND(Shape.ST_Distance(NEW ST_Point(2, 3)), 2) AS dist
FROM SpatialShapes
WHERE ShapeID < 17
ORDER BY dist

The example returns the following result set:

ShapeID dist

2 0.0

3 0.0

5 1.0

6 1.21

Accessing and manipulating spatial data

152 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ShapeID dist

16 1.41

1 5.1

The following example creates points representing Halifax, NS and Waterloo, ON, Canada and uses
ST_Distance to find the distance between the two points in miles, returning the result 846. This example
assumes that the 'st_geometry_predefined_uom' feature has been installed by the “sa_install_feature
system procedure” [SQL Anywhere Server - SQL Reference].

SELECT ROUND(NEW ST_Point(-63.573566, 44.646244, 4326)
 .ST_Distance(NEW ST_Point(-80.522372, 43.465187, 4326)
 , 'Statute mile'), 0)

ST_Envelope method for type ST_Geometry

Returns the bounding rectangle for the geometry value.

Syntax
geometry-expression.ST_Envelope()

Returns
● ST_Polygon Returns a polygon that is the bounding rectangle for the geometry-expression.

The spatial reference system identifier of the result is the same as the spatial reference system of the
geometry-expression.

Remarks
The ST_Envelope method constructs a polygon that is an axis-aligned bounding rectangle for the geometry-
expression. The envelope covers the entire geometry, and it can be used as a simple approximation for the
geometry.

Note
If the geometry-expression is an empty geometry (ST_IsEmpty()=1), then this method returns NULL.

Note
This method can not be used with geometries in round-Earth spatial reference system.

See also
● “ST_EnvelopeAggr method for type ST_Geometry” on page 154

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.15

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 153

Example
The following example returns the result Polygon ((0 0, 1 0, 1 4, 0 4, 0 0)).

SELECT Shape.ST_Envelope()
FROM SpatialShapes WHERE ShapeID = 6

ST_EnvelopeAggr method for type ST_Geometry
Returns the bounding rectangle for all of the geometries in a group

Note
This method can not be used with geometries in round-Earth spatial reference system.

Syntax
ST_Geometry::ST_EnvelopeAggr(geometry-column)

Parameters

Name Type Description

geometry-column ST_Geometry The geometry values to generate the bounding rectangle. Typical-
ly this is a column.

Returns
● ST_Polygon Returns a polygon that is the bounding rectangle for all the geometries in a group.

The spatial reference system identifier of the result is the same as that for the first parameter.

See also
● “ST_Envelope method for type ST_Geometry” on page 153

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns the result Polygon ((-3 -1, 8 -1, 8 8, -3 8, -3 -1)).

SELECT ST_Geometry::ST_EnvelopeAggr(Shape) FROM SpatialShapes

ST_Equals method for type ST_Geometry
Tests if an ST_Geometry value is spatially equal to another ST_Geometry value.

Accessing and manipulating spatial data

154 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
geometry-expression.ST_Equals(geo2)

Parameters

Name Type Description

geo2 ST_Geometry The other geometry value that is to be compared to the geometry-expression.

Returns
● BIT Returns 1 if the two geometry values are spatially equal, otherwise 0.

Remarks
Tests if an ST_Geometry value is equal to another ST_Geometry value.

The test for spatial equality is performed by first comparing the bounding rectangles of the two
geometries. If they are not equal within tolerance, the two geometries are considered not to be equal, and
0 is returned. Otherwise, the database server returns 1 if geometry-
expression.ST_SymDifference(geo2) is the empty set, otherwise it returns 0.

Note that the SQL/MM standard defines ST_Equals only in terms of ST_SymDifference, without an
additional bounding box comparison. There are some geometries that generate an empty result with
ST_SymDifference while their bounding boxes are not equal. These geometries would be considered
equal by the SQL/MM standard but are not considered equal by SQL Anywhere. This difference can arise
if the one or both geometries contain spikes or punctures.

Two geometry values can be considered equal even though they have different representations. For
example, two linestrings may be have opposite orientations but contain the same set of points in space.
These two linestrings are considered equal by ST_Equals but not by ST_OrderingEquals. See
“Comparing geometries using ST_Equals and ST_OrderingEquals” on page 15.

ST_Equals may be limited by the resolution of the spatial reference system or the accuracy of the data.

Note
If the geometry-expression contains circular strings, then these are interpolated to line strings.

See also
● “ST_OrderingEquals method for type ST_Geometry” on page 178
● “ST_EqualsFilter method for type ST_Geometry” on page 156

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.24

Example
The following example returns the result 16. The Shape corresponding to ShapeID the result 16 contains
the same points but in a different order as the specified polygon.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 155

SELECT ShapeID FROM SpatialShapes
WHERE Shape.ST_Equals(NEW ST_Polygon('Polygon ((2 0, 1 2, 0 0, 2 0))')) =
1

The following example returns the result 1, indicating that the two linestrings are equal even though they
contain a different number of points specified in a different order, and the intermediate point is not exactly
on the line. The intermediate point is about 3.33e-7 away from the line with only two points, but that
distance less than the tolerance 1e-6 for the "Default" spatial reference system (SRID 0).

SELECT NEW ST_LineString('LineString(0 0, 0.333333 1, 1 3)')
 .ST_Equals(NEW ST_LineString('LineString(1 3, 0 0)'))

ST_EqualsFilter method for type ST_Geometry
A cheap test if a geometry is equal to another.

Syntax
geometry-expression.ST_EqualsFilter(geo2)

Parameters

Name Type Description

geo2 ST_Geometry The other geometry value that is to be compared to geometry-expression.

Returns
● BIT Returns 1 if the bounding box for geometry-expression is equal, within tolerance, to the

bounding box for geo2, otherwise 0.

Remarks
The ST_EqualsFilter method provides an efficient test to determine if a geometry might be equal to
another. ST_EqualsFilter returns 1 if geometry-expression might be equal to geo2; otherwise
ST_EqualsFilter returns 0.

This test is cheaper than ST_Equals, but can return 1 in some cases where the geometry-expression is not
actually equal to geo2.

Therefore, This method can be useful as a primary filter when further processing will determine whether
geometries interact in the desired way.

The implementation of ST_EqualsFilter relies upon meta-data associated with the stored geometries.
Because the available meta-data may change between server versions, depending upon how the data is
loaded, or where ST_EqualsFilter is used within a query, the expression geometry-
expression.ST_EqualsFilter(geo2) can return different results when geometry-expression does not equal
geo2. Whenever geometry-expression equals geo2, ST_EqualsFilter will always return 1.

Accessing and manipulating spatial data

156 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “ST_Equals method for type ST_Geometry” on page 154
● “ST_OrderingEquals method for type ST_Geometry” on page 178

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_GeomFromBinary method for type ST_Geometry
Constructs a geometry from a binary string representation.

Syntax
ST_Geometry::ST_GeomFromBinary(binary-string[, srid])

Parameters

Name Type Description

binary-
string

LONG BI-
NARY

A string containing the binary representation of a geometry. The input can
be in any supported binary format, including WKB or EWKB.

srid INT The SRID of the result. If not specified and the input string does not pro-
vide a SRID, the default is 0.

Returns
● ST_Geometry Returns a geometry value of the appropriate type based on the source string.

The spatial reference system identifier of the result is the given by parameter srid.

Remarks
Parses a string containing one of the supported formats and creates a geometry value of the appropriate
type. This method is used by the server when evaluating a cast from a binary string to a geometry type.

Some input formats contain an SRID definition. If provided, the srid parameter must match any value
taken from the input string.

See also
● “ST_GeomFromWKB method for type ST_Geometry” on page 159
● “ST_GeomFromText method for type ST_Geometry” on page 158

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns the result Point (10 20).

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 157

SELECT
ST_Geometry::ST_GeomFromBinary(0x010100000000000000000024400000000000003440
)

ST_GeomFromShape method for type ST_Geometry
Parses a string containing an ESRI shape record and creates a geometry value of the appropriate type.

Syntax
ST_Geometry::ST_GeomFromShape(shape[, srid])

Parameters

Name Type Description

shape LONG BINARY A string containing a geometry in the ESRI shape format.

srid INT The SRID of the result. If not specified, the default is 0.

Returns
● ST_Geometry Returns a geometry value of the appropriate type based on the source string.

The spatial reference system identifier of the result is the given by parameter srid.

Remarks
Parses a string containing a single ESRI shape and creates a geometry value of the appropriate type. The
record is a single record from the .shp file of an ESRI shapefile or it could be a single string value from a
geodatabase.

The Shape representation is widely used to represent spatial data. For a full description of the shape
definition, see the ESRI website, http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf.

In most cases it is easier to load an ESRI shapefile using the SHAPEFILE format with the FORMAT
clause of the LOAD TABLE statement, or an OPENSTRING expression in a FROM clause instead of
using the ST_GeomFromShape method. See “LOAD TABLE statement” [SQL Anywhere Server - SQL
Reference], and “FROM clause” [SQL Anywhere Server - SQL Reference].

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_GeomFromText method for type ST_Geometry
Constructs a geometry from a character string representation.

Accessing and manipulating spatial data

158 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

Syntax
ST_Geometry::ST_GeomFromText(character-string[, srid])

Parameters

Name Type Description

character-
string

LONG
VAR-
CHAR

A string containing the text representation of a geometry. The input can
be in any supported text input format, including WKT or EWKT.

srid INT The SRID of the result. If not specified and the input string does not con-
tain a SRID, the default is 0.

Returns
● ST_Geometry Returns a geometry value of the appropriate type based on the source string.

The spatial reference system identifier of the result is the given by parameter srid.

Remarks
Parses a text string representing a geometry and creates a geometry value of the appropriate type. This
method is used by the server when evaluating a cast from a character string to a geometry type.

The server detects the format of the input string. Some input formats contain an SRID definition. If
provided, the srid parameter must match any value taken from the input string.

See also
● “ST_GeomFromBinary method for type ST_Geometry” on page 157
● “ST_GeomFromWKT method for type ST_Geometry” on page 160

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.40

Example
The following example returns the result LineString (1 2, 5 7).

SELECT ST_Geometry::ST_GeomFromText('LineString(1 2, 5 7)', 4326)

ST_GeomFromWKB method for type ST_Geometry

Parse a string containing a WKB or EWKB representation of a geometry and creates a geometry value of
the appropriate type.

Syntax
ST_Geometry::ST_GeomFromWKB(wkb[, srid])

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 159

Parameters

Name Type Description

wkb LONG BINA-
RY

A string containing the WKB or EWKB representation of a geometry value.

srid INT The SRID of the result. If not specified, the default is 0.

Returns
● ST_Geometry Returns a geometry value of the appropriate type based on the source string.

The spatial reference system identifier of the result is the given by parameter srid.

Remarks
Parses a string containing the WKB or EWKB representation of a geometry value and creates a geometry
value of the appropriate type.

See also
● “ST_GeomFromBinary method for type ST_Geometry” on page 157
● “ST_GeomFromWKT method for type ST_Geometry” on page 160

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.41

ST_GeomFromWKT method for type ST_Geometry
Parses a string containing the WKT or EWKT representation of a geometry and create a geometry value
of the appropriate type.

Syntax
ST_Geometry::ST_GeomFromWKT(wkt[, srid])

Parameters

Name Type Description

wkt LONG VAR-
CHAR

A string containing the WKT or EWKT representation of a geometry value.

srid INT The SRID of the result. If not specified, the default is 0.

Returns
● ST_Geometry Returns a geometry value of the appropriate type based on the source string.

Accessing and manipulating spatial data

160 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The spatial reference system identifier of the result is the given by parameter srid.

Remarks
Parses a string containing the WKT or EWKT representation of a geometry value and creates a geometry
value of the appropriate type.

See also
● “ST_GeomFromText method for type ST_Geometry” on page 158
● “ST_GeomFromWKB method for type ST_Geometry” on page 159

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_GeometryType method for type ST_Geometry
Returns the name of the type of the ST_Geometry value.

Syntax
geometry-expression.ST_GeometryType()

Returns
● VARCHAR(128) Returns the data type of the geometry value as a text string. This method can be

used to determine the dynamic type of a value.

Remarks
The ST_GeometryType method returns a string containing the specific type name of geometry-expression.

The value IS OF(type) syntax can also be used to determined the specific type of a value.

Note
By default, ST_GeometryType uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.4

Example
The following returns the result 2,3,6,16,22,24,25, which is the list of ShapeIDs whose
corresponding Shape is one of the specified types.

SELECT LIST(ShapeID ORDER BY ShapeID)
FROM SpatialShapes
WHERE Shape.ST_GeometryType() IN('ST_Polygon', 'ST_CurvePolygon')

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 161

ST_GeometryTypeFromBaseType method for type
ST_Geometry

Parses a string defining the type string.

Syntax
ST_Geometry::ST_GeometryTypeFromBaseType(base-type-str)

Parameters

Name Type Description

base-type-str VARCHAR(128) A string containing the base type string

Returns
● VARCHAR(128) Returns the geometry type from a base type string (which may include an SRID

definition). If the type string is not a valid geometry type string, an error is returned.

Remarks
The ST_Geometry::ST_GeometryTypeFromBaseType method can be used to parse the geometry type
name out of a type string definition.

See also
● “ST_SRIDFromBaseType method for type ST_Geometry” on page 187

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns the result ST_Geometry.

SELECT ST_Geometry::ST_GeometryTypeFromBaseType('ST_Geometry')

The following example returns the result ST_Point.

SELECT ST_Geometry::ST_GeometryTypeFromBaseType('ST_Point(SRID=4326)')

The following example finds the geometry type (ST_Point) accepted by a stored procedure parameter.

CREATE PROCEDURE myprocedure(parm1 ST_Point(SRID=0))
BEGIN
 -- ...
END;
SELECT parm_name nm, base_type_str,
ST_Geometry::ST_GeometryTypeFromBaseType(base_type_str) geom_type
FROM sysprocedure KEY JOIN sysprocparm
WHERE proc_name='myprocedure' and parm_name='parm1'

Accessing and manipulating spatial data

162 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ST_Intersection method for type ST_Geometry
Returns the geometry value that represents the point set intersection of two geometries.

Syntax
geometry-expression.ST_Intersection(geo2)

Parameters

Name Type Description

geo2 ST_Geometry The other geometry value that is to be intersected with the geometry-expres-
sion.

Returns
● ST_Geometry Returns the geometry value that represents the point set intersection of two geometries.

The spatial reference system identifier of the result is the same as the spatial reference system of the
geometry-expression.

Remarks
The ST_Intersection method finds the spatial intersection of two geometries. A point is included in the
intersection if it is present in both of the input geometries. If the two geometries don't share any common
points, the result is an empty geometry.

Note
If the geometry-expression contains circular strings, then these are interpolated to line strings.

See also
● “ST_Difference method for type ST_Geometry” on page 147
● “ST_IntersectionAggr method for type ST_Geometry” on page 164
● “ST_SymDifference method for type ST_Geometry” on page 190
● “ST_Union method for type ST_Geometry” on page 209

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.18

Example
The following example shows the intersection (C) of a square (A) and a circle (B).

SELECT NEW ST_Polygon('Polygon((-1 -0.25, 1 -0.25, 1 2.25, -1 2.25, -1
-0.25))') AS A
 , NEW ST_CurvePolygon('CurvePolygon(CircularString(0 1, 1 2, 2 1, 1 0,
0 1))') AS B
 , A.ST_Intersection(B) AS C

The intersection is shaded in the following picture. It is a single surface that includes all of the points that
are in the square and also in the circle.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 163

ST_IntersectionAggr method for type ST_Geometry

Returns the spatial intersection of all of the geometries in a group

Syntax
ST_Geometry::ST_IntersectionAggr(geometry-column)

Parameters

Name Type Description

geometry-column ST_Geometry The geometry values to generate the spatial intersection. Typical-
ly this is a column.

Returns
● ST_Geometry Returns a geometry that is the spatial intersection for all the geometries in a group.

The spatial reference system identifier of the result is the same as that for the first parameter.

Remarks
Rows where the argument is NULL are not included.

Returns NULL for an empty group or a group containing no non-NULL values.

If the group contains a single non-NULL geometry, it is returned. Otherwise, the intersection is logically
computed by repeatedly applying the ST_Intersection method to combine two geometries at a time. See
“ST_Intersection method for type ST_Geometry” on page 163.

See also
● “ST_Intersection method for type ST_Geometry” on page 163

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Accessing and manipulating spatial data

164 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example
The following example returns the result Polygon ((0 0, 1 2, .5 2, .75 3, .555555 3,
0 1.75, .5 1.75, 0 0)).

SELECT ST_Geometry::ST_IntersectionAggr(Shape)
FROM SpatialShapes WHERE ShapeID IN (2, 6)

ST_Intersects method for type ST_Geometry
Test if a geometry value spatially intersects another value.

Syntax
geometry-expression.ST_Intersects(geo2)

Parameters

Name Type Description

geo2 ST_Geometry The other geometry value that is to be compared to the geometry-expression.

Returns
● BIT Returns 1 if the geometry-expression spatially intersects with geo2, otherwise 0.

Remarks
Tests if a geometry value spatially intersects another value. Two geometries intersect if they share one or
more common points.

geometry-expression.ST_Intersects(geo2) = 1 is equivalent to geometry-expression.ST_Disjoint(geo2)
= 0.

Note
If the geometry-expression contains circular strings, then these are interpolated to line strings.

See also
● “ST_IntersectsRect method for type ST_Geometry” on page 167
● “ST_Disjoint method for type ST_Geometry” on page 150
● “ST_IntersectsFilter method for type ST_Geometry” on page 166

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.27

Example
The following example returns a result with one row for each shape that intersects the specified line.

SELECT ShapeID, "Description"
FROM SpatialShapes

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 165

WHERE NEW ST_LineString('LineString(2 2, 4 4)').ST_Intersects(Shape) =
1
ORDER BY ShapeID

The example returns the following result set:

ShapeID Description

2 Square

3 Rectangle

5 L shape line

18 CircularString

22 Triangle

To visualize how the geometries in the SpatialShapes table intersect the line in the above example,
execute the following query in the Interactive SQL Spatial Viewer.

SELECT Shape
FROM SpatialShapes
WHERE NEW ST_LineString('LineString(2 2, 4 4)').ST_Intersects(Shape) =
1
UNION ALL SELECT NEW ST_LineString('LineString(2 2, 4 4)')

ST_IntersectsFilter method for type ST_Geometry
A cheap test if the two geometries might possibly intersect.

Syntax
geometry-expression.ST_IntersectsFilter(geo2)

Parameters

Name Type Description

geo2 ST_Geometry The other geometry value that is to be compared to the geometry-expression.

Returns
● BIT Returns 1 if the geometry-expression might intersect with geo2, otherwise 0.

Remarks
The ST_IntersectsFilter method provides an efficient test to determine if two geometries might possibly
intersect. Returns 1 if the geometry-expression might intersect with geo2, otherwise 0.

Accessing and manipulating spatial data

166 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

This test is cheaper than ST_Intersects, but may return 1 in some cases where the geometries do not
actually intersect. Therefore, this method can be useful as a primary filter when further processing will
determine if geometries truly intersect.

The implementation of ST_IntersectsFilter relies upon meta-data associated with the stored geometries.
Because the available meta-data may change between server versions, depending upon how the data is
loaded, or where ST_IntersectsFilter is used within a query, the expression geometry-
expression.ST_IntersectsFilter(geo2) can return different results when geometry-expression does not
intersect geo2. Whenever geometry-expression intersects geo2, ST_IntersectsFilter will always return 1.

See also
● “ST_Intersects method for type ST_Geometry” on page 165
● “ST_IntersectsRect method for type ST_Geometry” on page 167

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_IntersectsRect method for type ST_Geometry
Test if a geometry intersects a rectangle.

Syntax
geometry-expression.ST_IntersectsRect(pmin,pmax)

Parameters

Name Type Description

pmin ST_Point The minimum point value that is to be compared to the geometry-expression.

pmax ST_Point The maximum point value that is to be compared to the geometry-expression.

Returns
● BIT Returns 1 if the geometry-expression intersects with the specified rectangle, otherwise 0.

Remarks
The ST_IntersectsRect method tests if a geometry intersects with a specified axis-aligned bounding
rectangle.

The method is equivalent to the following: geometry-expression.ST_Intersects(NEW ST_Polygon(pmin,
pmax))

Therefore, this method can be useful for writing window queries to find all geometries that intersect a
given axis-aligned rectangle.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 167

Note
If the geometry-expression contains circular strings, then these are interpolated to line strings.

See also
● “ST_Intersects method for type ST_Geometry” on page 165
● “ST_IntersectsFilter method for type ST_Geometry” on page 166

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example lists the ShapeIDs where the rectangle specified by the envelope of the two points
intersects the corresponding Shape geometry. This example returns the result 3,5,6,18.

SELECT LIST(ShapeID ORDER BY ShapeID)
FROM SpatialShapes
WHERE Shape.ST_IntersectsRect(NEW ST_Point(0, 4), NEW ST_Point(2, 5)) =
1

The following example tests if a linestring intersects a rectangle. The provided linestring does not
intersect the rectangle identified by the two points (even though the envelope of the linestring does
intersect the envelope of the two points).

SELECT NEW ST_LineString('LineString(0 0, 10 0, 10 10)')
 .ST_IntersectsRect(NEW ST_Point(4, 4) , NEW ST_Point(6, 6))

ST_Is3D method for type ST_Geometry

Determines if the geometry value has Z coordinate values.

Note
By default, ST_Is3D uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Syntax
geometry-expression.ST_Is3D()

Returns
● BIT Returns 1 if the geometry value has Z coordinate values, otherwise 0.

See also
● “ST_CoordDim method for type ST_Geometry” on page 140
● “ST_IsMeasured method for type ST_Geometry” on page 169

Accessing and manipulating spatial data

168 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.10

Example
The following example returns the result 1.

SELECT ShapeID FROM SpatialShapes WHERE Shape.ST_Is3D() = 1

ST_IsEmpty method for type ST_Geometry
Determines whether the geometry value represents an empty set.

Syntax
geometry-expression.ST_IsEmpty()

Returns
● BIT Returns 1 if the geometry value is empty, otherwise 0.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.7

Example
The following example returns the result 1.

SELECT NEW ST_LineString().ST_IsEmpty()

ST_IsMeasured method for type ST_Geometry
Determines if the geometry value has associated measure values.

Note
By default, ST_IsMeasured uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Syntax
geometry-expression.ST_IsMeasured()

Returns
● BIT Returns 1 if the geometry value has measure values, otherwise 0.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 169

See also
● “ST_CoordDim method for type ST_Geometry” on page 140
● “ST_Is3D method for type ST_Geometry” on page 168

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.11

Example
The following example returns the result 1.

SELECT ST_Geometry::ST_GeomFromText('LineString M(1 2 4, 5 7
3)').ST_IsMeasured()

The following example returns the result 0.

SELECT count(*) FROM SpatialShapes WHERE Shape.ST_IsMeasured() = 1

ST_IsSimple method for type ST_Geometry
Determines whether the geometry value is simple (containing no self intersections or other irregularities).

Syntax
geometry-expression.ST_IsSimple()

Returns
● BIT Returns 1 if the geometry value is simple, otherwise 0.

See also
● “ST_IsValid method for type ST_Geometry” on page 170

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.8

Example
The following returns the result 29 because the corresponding multi linestring contains two lines which
cross.

SELECT ShapeID FROM SpatialShapes WHERE Shape.ST_IsSimple() = 0

ST_IsValid method for type ST_Geometry
Determines whether the geometry is a valid spatial object.

Syntax
geometry-expression.ST_IsValid()

Accessing and manipulating spatial data

170 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns
● BIT Returns 1 if the geometry value is valid, otherwise 0.

Remarks
By default, the server does not validate spatial data as it is created or imported from other formats. The
ST_IsValid method can be used to verify that the imported data represents a geometry that is valid.
Operations on invalid geometries return undefined results.

See also
● “ST_IsSimple method for type ST_Geometry” on page 170

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.9

Example
The following returns the result 0 because the polygon contains a bow tie (the ring has a self-intersection).

SELECT ST_Geometry::ST_GeomFromText('Polygon((0 0, 4 0, 4 5, 0 -1, 0
0))')
 .ST_IsValid()

The following returns the result 0 because the polygons within the geometry self-intersect at a surface.
Note that self-intersections of a geometry collection at finite number of points is considered valid.

SELECT ST_Geometry::ST_GeomFromText(
 'MultiPolygon(((0 0, 2 0, 1 2, 0 0)),((0 2, 1 0, 2 2, 0 2)))')
 .ST_IsValid()

ST_LatNorth method for type ST_Geometry
Retrieves the northernmost latitude of a geometry.

Syntax
geometry-expression.ST_LatNorth()

Returns
● DOUBLE Returns the northernmost latitude of the geometry-expression.

Remarks
Returns the northernmost latitude value of the geometry-expression. Note that in the round-Earth model,
the northernmost latitude may not correspond to the latitude of any of the points defining the geometry.

Note
If the geometry-expression is an empty geometry (ST_IsEmpty()=1), then this method returns NULL.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 171

Note
By default, ST_LatNorth uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

See also
● “ST_LatSouth method for type ST_Geometry” on page 172
● “ST_LongEast method for type ST_Geometry” on page 175
● “ST_LongWest method for type ST_Geometry” on page 176
● “ST_YMax method for type ST_Geometry” on page 219

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns the result 49.74.

SELECT ROUND(NEW ST_LineString('LineString(-122 49, -96 49)', 4326)
 .ST_LatNorth(), 2)

ST_LatSouth method for type ST_Geometry
Retrieves the southernmost latitude of a geometry.

Syntax
geometry-expression.ST_LatSouth()

Returns
● DOUBLE Returns the southernmost latitude of the geometry-expression.

Remarks
Returns the southernmost latitude value of the geometry-expression. Note that in the round-Earth model,
the southernmost latitude may not correspond to the latitude of any of the points defining the geometry.

Note
If the geometry-expression is an empty geometry (ST_IsEmpty()=1), then this method returns NULL.

Note
By default, ST_LatSouth uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Accessing and manipulating spatial data

172 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “ST_LatNorth method for type ST_Geometry” on page 171
● “ST_LongEast method for type ST_Geometry” on page 175
● “ST_LongWest method for type ST_Geometry” on page 176
● “ST_YMin method for type ST_Geometry” on page 220

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns the result 49.

SELECT ROUND(NEW ST_LineString('LineString(-122 49, -96 49)', 4326)
 .ST_LatSouth(), 2)

ST_LinearHash method for type ST_Geometry

Returns a binary string that is a linear hash of the geometry.

Syntax
geometry-expression.ST_LinearHash()

Returns
● BINARY(32) Returns a binary string that is a linear hash of the geometry.

Remarks
The spatial index support uses a linear hash for geometries that maps the geometries in a table into a
linear order in a B-Tree index. The ST_LinearHash method exposes this mapping by returning a binary
string that gives the ordering of the rows in the B-Tree index. The hash string provides the following
property: if geometry A covers geometry B, then A.ST_LinearHash() >= B.ST_LinearHash().

The linear hash can be used in an ORDER BY clause. For example, when unloading data from a SELECT
statement, ST_LinearHash can be used to generate a data file that matches the clustering of a spatial index.

See also
● “ST_LinearUnHash method for type ST_Geometry” on page 173

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_LinearUnHash method for type ST_Geometry

Returns a geometry representing the index hash.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 173

Syntax
ST_Geometry::ST_LinearUnHash(index-hash[, srid])

Parameters

Name Type Description

index-hash BINARY(32) The index hash string.

srid INT The SRID of the index hash. If not specified, the default is 0.

Returns
● ST_Geometry Returns a representative geometry for the given linear hash.

The spatial reference system identifier of the result is the given by parameter srid.

Remarks
The ST_LinearUnHash method generates a representative geometry for a linear hash string generated by
ST_LinearHash(). The server maps geometries to a linear order for spatial indexes, and the
ST_LinearHash method gives a binary string that defines this linear ordering. The ST_LinearUnHash
reverses this operation to give a geometry that represents a particular hash string. The hash operation is
lossy in the sense that multiple distinct geometries may hash to the same binary string. The
ST_LinearUnHash method returns a geometry that covers any geometry that maps to the given linear hash.

The graphical plan for a query that uses a spatial index shows the linear hash values used to probe the
spatial index. The ST_LinearUnHash method can be used to generate a geometry that represents these hashes.

See also
● “ST_LinearHash method for type ST_Geometry” on page 173

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_LoadConfigurationData method for type ST_Geometry

Returns binary configuration data. For internal use only.

Syntax
ST_Geometry::ST_LoadConfigurationData(configuration-name)

Parameters

Name Type Description

configuration-name VARCHAR(128) The name of the configuration data item to load.

Accessing and manipulating spatial data

174 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns
● LONG BINARY Returns binary configuration data. For internal use only.

Remarks
This method is used by the server to load configuration data from installed files. If the configuration files
are not installed with the server, NULL is returned. For internal use only.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_LongEast method for type ST_Geometry
Retrieves the longitude of the eastern boundary of a geometry.

Syntax
geometry-expression.ST_LongEast()

Returns
● DOUBLE Retrieves the longitude of the eastern boundary of the geometry-expression.

Remarks
Returns the longitude of the eastern boundary of the geometry-expression. If the geometry crosses the date
line in the round-Earth model, ST_LongWest will be higher than the ST_LongEast value.

Note
If the geometry-expression is an empty geometry (ST_IsEmpty()=1), then this method returns NULL.

Note
By default, ST_LongEast uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

See also
● “ST_LongWest method for type ST_Geometry” on page 176
● “ST_LatNorth method for type ST_Geometry” on page 171
● “ST_LatSouth method for type ST_Geometry” on page 172
● “ST_XMax method for type ST_Geometry” on page 217

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 175

Example
The following example returns the result -157.8.

SELECT NEW ST_LineString('LineString(-157.8 21.3, 144.5 13)', 4326)
 .ST_LongEast()

ST_LongWest method for type ST_Geometry
Retrieves the longitude of the western boundary of a geometry.

Syntax
geometry-expression.ST_LongWest()

Returns
● DOUBLE Retrieves the longitude of the western boundary of the geometry-expression.

Remarks
Returns the longitude of the western boundary of the geometry-expression. If the geometry crosses the
date line in the round-Earth model, ST_LongWest will be higher than the ST_LongEast value.

Note
If the geometry-expression is an empty geometry (ST_IsEmpty()=1), then this method returns NULL.

Note
By default, ST_LongWest uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

See also
● “ST_LongEast method for type ST_Geometry” on page 175
● “ST_LatNorth method for type ST_Geometry” on page 171
● “ST_LatSouth method for type ST_Geometry” on page 172
● “ST_XMin method for type ST_Geometry” on page 218

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns the result 144.5.

SELECT NEW ST_LineString('LineString(-157.8 21.3, 144.5 13)', 4326)
 .ST_LongWest()

Accessing and manipulating spatial data

176 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ST_MMax method for type ST_Geometry

Retrieves the maximum M coordinate value of a geometry.

Syntax
geometry-expression.ST_MMax()

Returns
● DOUBLE Returns the maximum M coordinate value of the geometry-expression.

Remarks
Returns the maximum M coordinate value of the geometry-expression. This is computed by comparing
the M attribute of all points in the geometry.

Note
If the geometry-expression is an empty geometry (ST_IsEmpty()=1), then this method returns NULL.

Note
By default, ST_MMax uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

See also
● “ST_XMin method for type ST_Geometry” on page 218
● “ST_XMax method for type ST_Geometry” on page 217
● “ST_YMin method for type ST_Geometry” on page 220
● “ST_YMax method for type ST_Geometry” on page 219
● “ST_ZMin method for type ST_Geometry” on page 222
● “ST_ZMax method for type ST_Geometry” on page 221
● “ST_MMin method for type ST_Geometry” on page 177

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns the result 8.

SELECT NEW ST_LineString('LineString ZM(1 2 3 4, 5 6 7 8)').ST_MMax()

ST_MMin method for type ST_Geometry

Retrieves the minimum M coordinate value of a geometry.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 177

Syntax
geometry-expression.ST_MMin()

Returns
● DOUBLE Returns the minimum M coordinate value of the geometry-expression.

Remarks
Returns the minimum M coordinate value of the geometry-expression. This is computed by comparing the
M attribute of all points in the geometry.

Note
If the geometry-expression is an empty geometry (ST_IsEmpty()=1), then this method returns NULL.

Note
By default, ST_MMin uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

See also
● “ST_XMin method for type ST_Geometry” on page 218
● “ST_XMax method for type ST_Geometry” on page 217
● “ST_YMin method for type ST_Geometry” on page 220
● “ST_YMax method for type ST_Geometry” on page 219
● “ST_ZMin method for type ST_Geometry” on page 222
● “ST_ZMax method for type ST_Geometry” on page 221
● “ST_MMax method for type ST_Geometry” on page 177

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns the result 4.

SELECT NEW ST_LineString('LineString ZM(1 2 3 4, 5 6 7 8)').ST_MMin()

ST_OrderingEquals method for type ST_Geometry
Tests if a geometry is identical to another geometry.

Syntax
geometry-expression.ST_OrderingEquals(geo2)

Accessing and manipulating spatial data

178 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters

Name Type Description

geo2 ST_Geometry The other geometry value that is to be compared to the geometry-expression.

Returns
● BIT Returns 1 if the two geometry values are exactly equal, otherwise 0.

Remarks
Tests if an ST_Geometry value is identical to another ST_Geometry value. The two geometries must
contain the same hierarchy of objects with the exact same points in the same order to be considered equal
under ST_OrderingEquals.

The ST_OrderingEquals method differs from ST_Equals in that it considers the orientation of curves.
Two curves can contain exactly the same points but in opposite orders. These two curves are considered
equal with ST_Equals but unequal with ST_OrderingEquals. Additionally, ST_OrderingEquals requires
that each point in both geometries is exactly equal, not just equal within the tolerance-distance specified
by the spatial reference system.

The ST_OrderingEquals method defines the semantics used for comparison predicates (= and <>), IN list
predicates, DISTINCT, and GROUP BY. If you wish to compare if two spatial values are spatially equal
(contain the same set of points in set), you can use the ST_Equals method.

For more information, see “Comparing geometries using ST_Equals and ST_OrderingEquals” on page 15.

Note
The SQL/MM standard defines ST_OrderingEquals to return a relative ordering, with 0 returned if two
geometries are spatially equal (according to ST_Equals) and 1 if they are not equal. The SQL Anywhere
implementation follows industry practice and differs from SQL/MM in that it returns a boolean with 1
indicating the geometries are equal and 0 indicating they are different. Further, the ST_OrderingEquals
implementation differs from SQL/MM because it tests that values are identical (same hierarchy of objects
in the same order) instead of spatially equal (same set of points in space).

See also
● “ST_Equals method for type ST_Geometry” on page 154

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.43

Example
The following example returns the result 16. The Shape corresponding to ShapeID the result 16 contains
the exact same points in the exact same order as the specified polygon.

SELECT ShapeID FROM SpatialShapes
WHERE Shape.ST_OrderingEquals(NEW ST_Polygon('Polygon ((0 0, 2 0, 1 2, 0
0))')) = 1

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 179

ST_Overlaps method for type ST_Geometry

Tests if a geometry value overlaps another geometry value.

Syntax
geometry-expression.ST_Overlaps(geo2)

Parameters

Name Type Description

geo2 ST_Geometry The other geometry value that is to be compared to the geometry-expression.

Returns
● BIT Returns 1 if the geometry-expression overlaps geo2, otherwise 0. Returns NULL if geometry-

expression and geo2 have different dimensions.

Remarks
Two geometries overlap if the following conditions are all true:

● Both geometries have the same dimension.

● The intersection of geometry-expression and geo2 geometries has the same dimension as geometry-
expression.

● Neither of the original geometries is a subset of the other.

More precisely, geometry-expression.ST_Overlaps(geo2) returns 1 when the following is TRUE:

geometry-expression.ST_Dimension() = geo2.ST_Dimension()
AND geometry-expression.ST_Intersection(geo2).ST_Dimension() = geometry-
expression.ST_Dimension()
AND geometry-expression.ST_Covers(geo2) = 0
AND geo2.ST_Covers(geometry-expression) = 0

Note
If the geometry-expression contains circular strings, then these are interpolated to line strings.

Note
This method can not be used with geometries in round-Earth spatial reference system.

See also
● “ST_Dimension method for type ST_Geometry” on page 149
● “ST_Intersects method for type ST_Geometry” on page 165
● “ST_Covers method for type ST_Geometry” on page 144
● “ST_Crosses method for type ST_Geometry” on page 146

Accessing and manipulating spatial data

180 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.32

Example
The following returns the result 1 since the intersection of the two linestrings is also a linestring, and
neither geometry is a subset of the other.

SELECT NEW ST_LineString('LineString(0 0, 5 0)')
 .ST_Overlaps(NEW ST_LineString('LineString(2 0, 3 0, 3 3)'))

The following returns the result NULL since the linestring and point have different dimension.

SELECT NEW ST_LineString('LineString(0 0, 5 0)')
 .ST_Overlaps(NEW ST_Point(1, 0))

The following returns the result 0 since the point is a subset of the multipoint.

SELECT NEW ST_MultiPoint('MultiPoint((2 3), (1 0))')
 .ST_Overlaps(NEW ST_Point(1, 0))

The following returns the result 24,25,28,31, which is the list of ShapeIDs that overlap the specified
polygon.

SELECT LIST(ShapeID ORDER BY ShapeID) FROM SpatialShapes
WHERE Shape.ST_Overlaps(NEW ST_Polygon('Polygon((-1 0, 0 0, 0 1, -1 1, -1
0))')
) = 1

ST_Relate method for type ST_Geometry
Tests if a geometry value is spatially related to another geometry value as specified by the intersection
matrix. The ST_Relate method uses a 9-character string from the Dimensionally Extended 9 Intersection
Model (DE-9IM) to describe the pair-wise relationship between two spatial data items. For example, the
ST_Relate method determines if an intersection occurs between the geometries, and the geometry of the
resulting intersection, if it exists. See also: “Test custom relationships using the ST_Relate
method” on page 44.

Overload list

Name Description

“ST_Relate(ST_Ge-
ometry,CHAR(9))
method for type
ST_Geome-
try” on page 182

Tests if a geometry value is spatially related to another geometry value as speci-
fied by the intersection matrix. The ST_Relate method uses a 9-character
string from the Dimensionally Extended 9 Intersection Model (DE-9IM) to de-
scribe the pair-wise relationship between two spatial data items. For example,
the ST_Relate method determines if an intersection occurs between the geome-
tries, and the geometry of the resulting intersection, if it exists.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 181

Name Description

“ST_Relate(ST_Ge-
ometry) method for
type ST_Geome-
try” on page 183

Determines how a geometry value is spatially related to another geometry val-
ue by returning an intersection matrix. The ST_Relate method returns a 9-char-
acter string from the Dimensionally Extended 9 Intersection Model (DE-9IM)
to describe the pair-wise relationship between two spatial data items. For ex-
ample, the ST_Relate method determines if an intersection occurs between
the geometries, and the geometry of the resulting intersection, if it exists.

ST_Relate(ST_Geometry,CHAR(9)) method for type ST_Geometry
Tests if a geometry value is spatially related to another geometry value as specified by the intersection
matrix. The ST_Relate method uses a 9-character string from the Dimensionally Extended 9 Intersection
Model (DE-9IM) to describe the pair-wise relationship between two spatial data items. For example, the
ST_Relate method determines if an intersection occurs between the geometries, and the geometry of the
resulting intersection, if it exists.

Syntax
geometry-expression.ST_Relate(geo2,relate-matrix)

Parameters

Name Type Description

geo2 ST_Geome-
try

The second geometry value that is to be compared to the geometry-expres-
sion.

relate-
matrix

CHAR(9) A 9-character string representing a matrix in the dimensionally-extended 9
intersection model. Each character defined in the 9-character string repre-
sents the type of intersection allowed at one of the nine possible intersec-
tions between the interior, boundary, and exterior of the two geometries.

Returns
● BIT Returns 1 if the two geometries have the specified relationship; otherwise 0.

Remarks
Tests if a geometry value is spatially related to another geometry value by testing for intersection between
the interior, boundary, and exterior of two geometries, as specified by the intersection matrix. See also:
“Test custom relationships using the ST_Relate method” on page 44.

Note
If the geometry-expression contains circular strings, then these are interpolated to line strings.

Note
This method can not be used with geometries in round-Earth spatial reference system.

Accessing and manipulating spatial data

182 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.25

Example
The following example returns a result with one row for each shape that has the '0F***T***' relationship
with the specified line. The '0' means the interiors of both geometries must intersect and result in a point
or multipoint. The 'F' means the interior of the line and the boundary of Shape must not intersect. The 'T'
means the exterior of the line and the interior of the Shape must intersect.

SELECT ShapeID, "Description" From SpatialShapes
WHERE NEW ST_LineString('LineString(0 0, 10 0)')
 .ST_Relate(Shape, '0F****T**') = 1
ORDER BY ShapeID

The example returns the following result set:

ShapeID Description

18 CircularString

30 Multicurve

ST_Relate(ST_Geometry) method for type ST_Geometry
Determines how a geometry value is spatially related to another geometry value by returning an
intersection matrix. The ST_Relate method returns a 9-character string from the Dimensionally Extended
9 Intersection Model (DE-9IM) to describe the pair-wise relationship between two spatial data items. For
example, the ST_Relate method determines if an intersection occurs between the geometries, and the
geometry of the resulting intersection, if it exists.

Syntax
geometry-expression.ST_Relate(geo2)

Parameters

Name Type Description

geo2 ST_Geometry The second geometry value that is to be compared to the geometry-expression.

Returns
● CHAR(9) Returns A 9-character string representing a matrix in the dimensionally-extended 9

intersection model. Each character in the 9-character string represents the type of intersection at one of
the nine possible intersections between the interior, boundary, and exterior of the two geometries.

Remarks
Tests if a geometry value is spatially related to another geometry value by testing for intersection between
the interior, boundary, and exterior of two geometries, as specified by the intersection matrix.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 183

The intersection matrix is returned as a string. While it is possible to use this method variant to test a
spatial relationship by examining the returned string, it is more efficient to test relationships by passing a
pattern string as second parameter or by using specific spatial predicates such as ST_Contains or
ST_Intersects. See also: “Test custom relationships using the ST_Relate method” on page 44.

Note
If the geometry-expression contains circular strings, then these are interpolated to line strings.

Note
This method can not be used with geometries in round-Earth spatial reference system.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns the result 1F2001102.

SELECT NEW ST_Polygon('Polygon((0 0, 2 0, 0 2, 0 0))')
 .ST_Relate(NEW ST_LineString('LineString(0 1, 5 1)'))

ST_Reverse method for type ST_Geometry
Returns the geometry with the element order reversed.

Syntax
geometry-expression.ST_Reverse()

Returns
● ST_Geometry Returns the geometry with the element order reversed.

The spatial reference system identifier of the result is the same as the spatial reference system of the
geometry-expression.

Remarks
Returns the geometry with the order of its elements reversed. For a curve, a curve is returned with the
vertices in the opposite order. For a collection, a collection is returned with the child geometries in the
reversed order.

Note
By default, ST_Reverse uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Accessing and manipulating spatial data

184 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns the result LineString (3 4, 1 2). It shows how the order of points
in a linestring is reversed by ST_Reverse.

SELECT NEW ST_LineString(NEW ST_Point(1,2), NEW ST_Point(3,4)).ST_Reverse()

ST_SRID method for type ST_Geometry

Retrieves or modifies the spatial reference system associated with the geometry value.

Overload list

Name Description

“ST_SRID() method for type ST_Geom-
etry” on page 185

Returns the SRID of the geometry.

“ST_SRID(INT) method for type
ST_Geometry” on page 186

Changes the spatial reference system associated with the ge-
ometry without modifying any of the values.

ST_SRID() method for type ST_Geometry
Returns the SRID of the geometry.

Syntax
geometry-expression.ST_SRID()

Returns
● INT Returns the SRID of the geometry.

Remarks
Returns the SRID of the geometry. Every geometry is associated with a spatial reference system.

Note
By default, ST_SRID uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.5

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 185

Example
The following returns the result 0, indicating all Shapes in the table have the SRID 0, corresponding to
the 'Default' spatial reference system.

SELECT DISTINCT Shape.ST_SRID() FROM SpatialShapes

ST_SRID(INT) method for type ST_Geometry
Changes the spatial reference system associated with the geometry without modifying any of the values.

Syntax
geometry-expression.ST_SRID(srid)

Parameters

Name Type Description

srid INT The SRID to use for the result.

Returns
● ST_Geometry Returns a copy of the geometry value with the specified spatial reference system.

The spatial reference system identifier of the result is the given by parameter srid.

Remarks
The ST_SRID method creates a copy of a geometry-expression with the SRID specified by srid
parameter. ST_SRID can be used when both the source and destination spatial reference systems have the
same coordinate system.

If you are transforming a geometry between two spatial reference systems that have different coordinate
systems, you should use the ST_Transform method.

Note
By default, ST_SRID uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

See also
● “ST_Transform method for type ST_Geometry” on page 208

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.5

Example
The following example returns the result SRID=1000004326;Point (-118 34).

Accessing and manipulating spatial data

186 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SELECT NEW ST_Point(-118, 34,
4326).ST_SRID(1000004326).ST_AsText('EWKT')

ST_SRIDFromBaseType method for type ST_Geometry
Parses a string defining the type string.

Syntax
ST_Geometry::ST_SRIDFromBaseType(base-type-str)

Parameters

Name Type Description

base-type-str VARCHAR(128) A string containing the base type string

Returns
● INT Returns the SRID from a type string. If no SRID is specified by the string, returns NULL. If the

type string is not a valid geometry type string, an error is returned.

Remarks
The ST_Geometry::ST_SRIDFromBaseType method can be used to parse the SRID out of a type string
definition.

See also
● “ST_GeometryTypeFromBaseType method for type ST_Geometry” on page 162

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns the result NULL.

SELECT ST_Geometry::ST_SRIDFromBaseType('ST_Geometry')

The following example returns the result 4326.

SELECT ST_Geometry::ST_SRIDFromBaseType('ST_Geometry(SRID=4326)')

ST_SnapToGrid method for type ST_Geometry
Returns a copy of the geometry with all points snapped to the specified grid.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 187

Overload list

Name Description

“ST_SnapToGrid(DOUBLE) method for type
ST_Geometry” on page 188

Returns a copy of the geometry with all points snap-
ped to the specified grid.

“ST_SnapToGrid(ST_Point,DOUBLE,DOU-
BLE,DOUBLE,DOUBLE) method for type
ST_Geometry” on page 189

Returns a copy of the geometry with all points snap-
ped to the specified grid.

ST_SnapToGrid(DOUBLE) method for type ST_Geometry
Returns a copy of the geometry with all points snapped to the specified grid.

Syntax
geometry-expression.ST_SnapToGrid(cell-size)

Parameters

Name Type Description

cell-size DOUBLE The cell size for the grid.

Returns
● ST_Geometry Returns the geometry with all points snapped to the grid.

The spatial reference system identifier of the result is the same as the spatial reference system of the
geometry-expression.

Remarks
The ST_SnapToGrid method can be used to reduce the precision of data by snapping all points in a
geometry to a grid defined by the origin and cell size.

The X and Y coordinates are snapped to the grid; any Z and M values are unchanged.

Note
Reducing precision may cause the resulting geometry to have different properties. For example, it may
cause a simple linestring to cross itself, or it may generate an invalid geometry.

Note
Each spatial reference system defines a grid that all geometries are automatically snapped to. You can not
store more precision than this predefined grid.

Accessing and manipulating spatial data

188 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Note
By default, ST_SnapToGrid uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_SnapToGrid(ST_Point,DOUBLE,DOUBLE,DOUBLE,DOUBLE)
method for type ST_Geometry

Returns a copy of the geometry with all points snapped to the specified grid.

Syntax
geometry-expression.ST_SnapToGrid(origin,cell-size-x,cell-size-y,cell-size-z,cell-size-m)

Parameters

Name Type Description

origin ST_Point The origin of the grid.

cell-size-x DOUBLE The cell size for the grid in the X dimension.

cell-size-y DOUBLE The cell size for the grid in the Y dimension.

cell-size-z DOUBLE The cell size for the grid in the Z dimension.

cell-size-m DOUBLE The cell size for the grid in the M dimension.

Returns
● ST_Geometry Returns the geometry with all points snapped to the grid.

The spatial reference system identifier of the result is the same as the spatial reference system of the
geometry-expression.

Remarks
The ST_SnapToGrid method can be used to reduce the precision of data by snapping all points in a
geometry to a grid defined by an origin and cell size.

You can specify a different cell size for each dimension. If you do not wish to snap the points of one
dimension, you can use a cell size of zero.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 189

Note
Reducing precision may cause the resulting geometry to have different properties. For example, it may
cause a simple linestring to cross itself, or it may generate an invalid geometry.

Note
Each spatial reference system defines a grid that all geometries are automatically snapped to. You can not
store more precision than this predefined grid.

Note
By default, ST_SnapToGrid uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

See also
● “How snap-to-grid and tolerance impact spatial calculations” on page 8

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns the result LineString(1.010101 20.20202, 1.015625
20.203125, 1.01 20.2).

SELECT NEW ST_LineString(
 NEW ST_Point(1.010101, 20.202020),
 TREAT(NEW ST_Point(1.010101, 20.202020).ST_SnapToGrid(NEW
ST_Point(0.0, 0.0), POWER(2, -6), POWER(2, -7), 0.0, 0.0) AS
ST_Point),
 TREAT(NEW ST_Point(1.010101, 20.202020).ST_SnapToGrid(NEW
ST_Point(1.01, 20.2), POWER(2, -6), POWER(2, -7), 0.0, 0.0) AS
ST_Point))

The first point of the linestring is the point ST_Point(1.010101, 20.202020), snapped to the grid defined
for SRID 0.

The second point of the linestring is the same point snapped to a grid defined with its origin at point (0.0
0.0), where cell size x is POWER(2, -6) and cell size y is POWER(2, -7).

The third point of the linestring is the same point snapped to a grid defined with its origin at point (1.01,
20.2), where cell size x is POWER(2, -6) and cell size y is POWER(2, -7).

ST_SymDifference method for type ST_Geometry

Returns the geometry value that represents the point set symmetric difference of two geometries.

Accessing and manipulating spatial data

190 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
geometry-expression.ST_SymDifference(geo2)

Parameters

Name Type Description

geo2 ST_Geometry The other geometry value that is to be subtracted from the geometry-expres-
sion to find the symmetric difference.

Returns
● ST_Geometry Returns the geometry value that represents the point set symmetric difference of

two geometries.

The spatial reference system identifier of the result is the same as the spatial reference system of the
geometry-expression.

Remarks
The ST_SymDifference method finds the symmetric difference of two geometries. The symmetric
difference consists of all of those points that are in only one of the two geometries. If the two geometry
values consist of the same points, the ST_SymDifference method returns an empty geometry.

Note
If the geometry-expression contains circular strings, then these are interpolated to line strings.

See also
● “ST_Difference method for type ST_Geometry” on page 147
● “ST_Intersection method for type ST_Geometry” on page 163
● “ST_Union method for type ST_Geometry” on page 209

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.21

Example
The following example shows the symmetric difference (C) of a square (A) and a circle (B).

SELECT NEW ST_Polygon('Polygon((-1 -0.25, 1 -0.25, 1 2.25, -1 2.25, -1
-0.25))') AS A
 , NEW ST_CurvePolygon('CurvePolygon(CircularString(0 1, 1 2, 2 1, 1 0,
0 1))') AS B
 , A.ST_SymDifference(B) AS C

The following picture shows the result of the symmetric difference as the shaded portion of the picture.
The symmetric difference is a multisurface that includes two surfaces: one surface contains all of the
points from the square that are not in the circle, and the other surface contains all of the points of the
circle that are not in the square.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 191

ST_ToCircular method for type ST_Geometry
Convert the geometry to a circular string

Syntax
geometry-expression.ST_ToCircular()

Returns
● ST_CircularString If the geometry-expression is of type ST_CircularString, return the geometry-

expression. If the geometry-expression is of type ST_CompoundCurve with a single element which is
of type ST_CircularString, return that element. If the geometry-expression is a geometry collection
with a single element of type ST_CircularString, return that element. If the geometry-expression is the
empty set, return an empty set of type ST_CircularString. Otherwise, raise an exception condition.

The spatial reference system identifier of the result is the same as the spatial reference system of the
geometry-expression.

Remarks
Convert this geometry to a circular string. The logic is equivalent to that used for CAST(geometry-
expression AS ST_CircularString).

If geometry-expression is already known to be an ST_CircularString value, it is more efficient to use
TREAT(geometry-expression AS ST_CircularString) than the ST_ToCircular method.

Note
By default, ST_ToCircular uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Accessing and manipulating spatial data

192 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “ST_ToCompound method for type ST_Geometry” on page 193
● “ST_ToCurve method for type ST_Geometry” on page 194
● “ST_ToLineString method for type ST_Geometry” on page 197
● “ST_ToMultiCurve method for type ST_Geometry” on page 198

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.33

Example
The following example returns the result CircularString (0 0, 1 1, 2 0).

SELECT NEW ST_CompoundCurve('CompoundCurve(CircularString(0 0, 1 1, 2
0))').ST_ToCircular()

ST_ToCompound method for type ST_Geometry

Converts the geometry to a compound curve.

Syntax
geometry-expression.ST_ToCompound()

Returns
● ST_CompoundCurve If the geometry-expression is of type ST_CompoundCurve, return the

geometry-expression. If the geometry-expression is of type ST_LineString or ST_CircularString,
return a compound curve containing one element, the geometry-expression. If the geometry-
expression is a geometry collection with a single element of type ST_Curve, return that element cast
as ST_CompoundCurve. If the geometry-expression is the empty set, return an empty set of type
ST_CompoundCurve. Otherwise, raise an exception condition.

The spatial reference system identifier of the result is the same as the spatial reference system of the
geometry-expression.

Remarks
Converts the geometry to a circular string. The logic is equivalent to that used for CAST(geometry-
expression AS ST_CompoundCurve).

If geometry-expression is already known to be an ST_CompoundCurve value, it is more efficient to use
TREAT(geometry-expression AS ST_CompoundCurve) than the ST_ToCompound method.

Note
By default, ST_ToCompound uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 193

See also
● “ST_ToCircular method for type ST_Geometry” on page 192
● “ST_ToCurve method for type ST_Geometry” on page 194
● “ST_ToLineString method for type ST_Geometry” on page 197
● “ST_ToMultiCurve method for type ST_Geometry” on page 198

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.33

Example
The following example returns the result CompoundCurve ((0 0, 2 1)).

SELECT NEW ST_LineString('LineString(0 0, 2 1)').ST_ToCompound()

ST_ToCurve method for type ST_Geometry
Converts the geometry to a curve.

Syntax
geometry-expression.ST_ToCurve()

Returns
● ST_Curve If the geometry-expression is of type ST_Curve, return the geometry-expression. If the

geometry-expression is a geometry collection with a single element of type ST_Curve, return that
element. If the geometry-expression is the empty set, return an empty set of type ST_LineString.
Otherwise, raise an exception condition.

The spatial reference system identifier of the result is the same as the spatial reference system of the
geometry-expression.

Remarks
Converts the geometry to a curve. The logic is equivalent to that used for CAST(geometry-expression AS
ST_Curve).

If geometry-expression is already known to be an ST_Curve value, it is more efficient to use
TREAT(geometry-expression AS ST_Curve) than the ST_ToCurve method.

Note
By default, ST_ToCurve uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Accessing and manipulating spatial data

194 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “ST_ToCircular method for type ST_Geometry” on page 192
● “ST_ToCompound method for type ST_Geometry” on page 193
● “ST_ToLineString method for type ST_Geometry” on page 197
● “ST_ToMultiCurve method for type ST_Geometry” on page 198

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns the result LineString (0 0, 1 1, 2 0).

SELECT NEW ST_GeomCollection('GeometryCollection(LineString(0 0, 1 1, 2
0))').ST_ToCurve()

ST_ToCurvePoly method for type ST_Geometry
Converts the geometry to a curve polygon.

Syntax
geometry-expression.ST_ToCurvePoly()

Returns
● ST_CurvePolygon If the geometry-expression is of type ST_CurvePolygon, return the geometry-

expression. If the geometry-expression is a geometry collection with a single element of type
ST_CurvePolygon, return that element. If the geometry-expression is the empty set, return an empty
set of type ST_CurvePolygon. Otherwise, raise an exception condition.

The spatial reference system identifier of the result is the same as the spatial reference system of the
geometry-expression.

Remarks
If geometry-expression is already known to be an ST_CurvePolygon value, it is more efficient to use
TREAT(geometry-expression AS ST_CurvePolygon) than the ST_ToCurvePoly method.

Note
By default, ST_ToCurvePoly uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

See also
● “ST_ToPolygon method for type ST_Geometry” on page 204
● “ST_ToSurface method for type ST_Geometry” on page 206
● “ST_ToMultiSurface method for type ST_Geometry” on page 202

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 195

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.33

Example
The following example returns the result Polygon ((0 0, 2 0, 1 2, 0 0)).

SELECT NEW ST_MultiPolygon('MultiPolygon(((0 0, 2 0, 1 2, 0
0)))').ST_ToCurvePoly()

ST_ToGeomColl method for type ST_Geometry
Converts the geometry to a geometry collection.

Syntax
geometry-expression.ST_ToGeomColl()

Returns
● ST_GeomCollection If the geometry-expression is of type ST_GeomCollection, returns the

geometry-expression. If the geometry-expression is of type ST_Point, ST_Curve, or ST_Surface, then
return a geometry collection containing one element, the geometry-expression. If the geometry-
expression is the empty set, returns an empty set of type ST_GeomCollection. Otherwise, raises an
exception condition.

The spatial reference system identifier of the result is the same as the spatial reference system of the
geometry-expression.

Remarks
If geometry-expression is already known to be an ST_GeomCollection value, it is more efficient to use
TREAT(geometry-expression AS ST_GeomCollection) than the ST_ToGeomColl method.

Note
By default, ST_ToGeomColl uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

See also
● “ST_ToMultiCurve method for type ST_Geometry” on page 198
● “ST_ToMultiPoint method for type ST_Geometry” on page 200
● “ST_ToMultiSurface method for type ST_Geometry” on page 202

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.33

Accessing and manipulating spatial data

196 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example
The following example returns the result GeometryCollection (Point (0 1)).

SELECT NEW ST_Point(0, 1).ST_ToGeomColl()

ST_ToLineString method for type ST_Geometry
Converts the geometry to a linestring.

Syntax
geometry-expression.ST_ToLineString()

Returns
● ST_LineString If the geometry-expression is of type ST_LineString, return the geometry-

expression. If the geometry-expression is of type ST_CircularString or ST_CompoundCurve, return
geometry-expression.ST_CurveToLine(). If the geometry-expression is a geometry collection with a
single element of type ST_Curve, return that element cast as ST_LineString. If the geometry-
expression is the empty set, return an empty set of type ST_LineString. Otherwise, raise an exception
condition.

The spatial reference system identifier of the result is the same as the spatial reference system of the
geometry-expression.

Remarks
Converts the geometry to a linestring. The logic is equivalent to that used for CAST(geometry-expression
AS ST_LineString). If the geometry-expression is a circular string or compound curve, it is approximated
using ST_CurveToLine().

If geometry-expression is already known to be an ST_LineString value, it is more efficient to use
TREAT(geometry-expression AS ST_LineString) than the ST_ToLineString method.

Note
By default, ST_ToLineString uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

See also
● “ST_ToMultiLine method for type ST_Geometry” on page 199
● “ST_ToCircular method for type ST_Geometry” on page 192
● “ST_ToCompound method for type ST_Geometry” on page 193
● “ST_ToCurve method for type ST_Geometry” on page 194
● “ST_CurveToLine method for type ST_Curve” on page 70

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 197

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.33

Example
The following returns an error because the Shape column is of type ST_Geometry and ST_Geometry does
not support the ST_Length method.

SELECT Shape.ST_Length()
FROM SpatialShapes WHERE ShapeID = 5

The following uses ST_ToLineString to change the type of the Shape column expression to
ST_LineString. ST_Length returns the result 7.

SELECT Shape.ST_ToLineString().ST_Length()
FROM SpatialShapes WHERE ShapeID = 5

In this case, the value of the Shape column is known be of type ST_LineString, so TREAT can be used to
efficiently change the type of the expression. ST_Length returns the result 7.

SELECT TREAT(Shape AS ST_LineString).ST_Length()
FROM SpatialShapes WHERE ShapeID = 5

ST_ToMultiCurve method for type ST_Geometry
Converts the geometry to a multicurve value.

Syntax
geometry-expression.ST_ToMultiCurve()

Returns
● ST_MultiCurve If the geometry-expression is of type ST_MultiCurve, returns the geometry-

expression. If the geometry-expression is a geometry collection containing only curves, returns a
multicurve object containing the elements of the geometry-expression. If the geometry-expression is
of type ST_Curve then return a multicurve value containing one element, the geometry-expression. If
the geometry-expression is the empty set, returns an empty set of type ST_MultiCurve. Otherwise,
raises an exception condition.

The spatial reference system identifier of the result is the same as the spatial reference system of the
geometry-expression.

Remarks
If geometry-expression is already known to be an ST_MultiCurve value, it is more efficient to use
TREAT(geometry-expression AS ST_MultiCurve) than the ST_ToMultiCurve method.

Accessing and manipulating spatial data

198 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Note
By default, ST_ToMultiCurve uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

See also
● “ST_ToMultiLine method for type ST_Geometry” on page 199
● “ST_ToGeomColl method for type ST_Geometry” on page 196
● “ST_ToCurve method for type ST_Geometry” on page 194

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.33

Example
The following example returns the result MultiCurve ((0 7, 0 4, 4 4)).

SELECT Shape.ST_ToMultiCurve()
FROM SpatialShapes WHERE ShapeID = 5

ST_ToMultiLine method for type ST_Geometry
Converts the geometry to a multilinestring value.

Syntax
geometry-expression.ST_ToMultiLine()

Returns
● ST_MultiLineString If the geometry-expression is of type ST_MultiLineString, returns the

geometry-expression. If the geometry-expression is a geometry collection containing only lines,
returns a multilinestring object containing the elements of the geometry-expression. If the geometry-
expression is of type ST_LineString then return a multilinestring value containing one element, the
geometry-expression. If the geometry-expression is the empty set, returns an empty set of type
ST_MultiCurve. Otherwise, raises an exception condition.

The spatial reference system identifier of the result is the same as the spatial reference system of the
geometry-expression.

Remarks
If geometry-expression is already known to be an ST_MultiLineString value, it is more efficient to use
TREAT(geometry-expression AS ST_MultiLineString) than the ST_ToMultiLine method.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 199

Note
By default, ST_ToMultiLine uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

See also
● “ST_ToMultiCurve method for type ST_Geometry” on page 198
● “ST_ToGeomColl method for type ST_Geometry” on page 196
● “ST_ToLineString method for type ST_Geometry” on page 197

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.33

Example
The following returns an error because the Shape column is of type ST_Geometry and ST_Geometry does
not support the ST_Length method.

SELECT Shape.ST_Length()
FROM SpatialShapes WHERE ShapeID = 29

The following uses ST_ToMultiLine to change the type of the Shape column expression to
ST_MultiLineString. This example would also work with ShapeID 5, where the Shape value is of type
ST_LineString. ST_Length returns the result 4.236068.

SELECT Shape.ST_ToMultiLine().ST_Length()
FROM SpatialShapes WHERE ShapeID = 29

In this case, the value of the Shape column is known be of type ST_MultiLineString, so TREAT can be
used to efficiently change the type of the expression. This example would not work with ShapeID 5,
where the Shape value is of type ST_LineString. ST_Length returns the result 4.236068.

SELECT TREAT(Shape AS ST_MultiLineString).ST_Length()
FROM SpatialShapes WHERE ShapeID = 29

ST_ToMultiPoint method for type ST_Geometry
Converts the geometry to a multi-point value.

Syntax
geometry-expression.ST_ToMultiPoint()

Returns
● ST_MultiPoint If the geometry-expression is of type ST_MultiPoint, returns the geometry-

expression. If the geometry-expression is a geometry collection containing only points, returns a
multipoint object containing the elements of the geometry-expression. If the geometry-expression is of
type ST_Point then return a multi-point value containing one element, the geometry-expression. If the

Accessing and manipulating spatial data

200 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

geometry-expression is the empty set, returns an empty set of type ST_MultiPoint. Otherwise, raises
an exception condition.

The spatial reference system identifier of the result is the same as the spatial reference system of the
geometry-expression.

Remarks
If geometry-expression is already known to be an ST_MultiPoint value, it is more efficient to use
TREAT(geometry-expression AS ST_MultiPoint) than the ST_ToMultiPoint method.

Note
By default, ST_ToMultiPoint uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

See also
● “ST_ToGeomColl method for type ST_Geometry” on page 196
● “ST_ToPoint method for type ST_Geometry” on page 203

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.33

Example
The following example returns the result MultiPoint EMPTY.

SELECT NEW ST_GeomCollection().ST_ToMultiPoint().ST_AsText()

ST_ToMultiPolygon method for type ST_Geometry
Converts the geometry to a multi-polygon value.

Syntax
geometry-expression.ST_ToMultiPolygon()

Returns
● ST_MultiPolygon If the geometry-expression is of type ST_MultiPolygon, returns the geometry-

expression. If the geometry-expression is a geometry collection containing only polygons, returns a
multi-polygon object containing the elements of the geometry-expression. If the geometry-expression
is of type ST_Polygon then return a multi-polygon value containing one element, the geometry-
expression. If the geometry-expression is the empty set, returns an empty set of type ST_MultiSurface.
Otherwise, raises an exception condition.

The spatial reference system identifier of the result is the same as the spatial reference system of the
geometry-expression.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 201

Remarks
If geometry-expression is already known to be an ST_MultiPolygon value, it is more efficient to use
TREAT(geometry-expression AS ST_MultiPolygon) than the ST_ToMultiPolygon method.

Note
By default, ST_ToMultiPolygon uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

See also
● “ST_ToMultiSurface method for type ST_Geometry” on page 202
● “ST_ToGeomColl method for type ST_Geometry” on page 196
● “ST_ToPolygon method for type ST_Geometry” on page 204

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.33

Example
The following example returns the result MultiPolygon EMPTY.

SELECT NEW ST_GeomCollection().ST_ToMultiPolygon().ST_AsText()

The following returns an error because the Shape column is of type ST_Geometry and ST_Geometry does
not support the ST_Area method.

SELECT Shape.ST_Area()
FROM SpatialShapes WHERE ShapeID = 27

The following uses ST_ToMultiPolygon to change the type of the Shape column expression to
ST_MultiPolygon. This example would also work with ShapeID 22, where the Shape value is of type
ST_LineString. ST_Area returns the result 8.

SELECT Shape.ST_ToMultiPolygon().ST_Area()
FROM SpatialShapes WHERE ShapeID = 27

In this case, the value of the Shape column is known be of type ST_MultiPolygon, so TREAT can be used
to efficiently change the type of the expression. This example would not work with ShapeID 22, where
the Shape value is of type ST_Polygon. ST_Area returns the result 8.

SELECT TREAT(Shape AS ST_MultiPolygon).ST_Area()
FROM SpatialShapes WHERE ShapeID = 27

ST_ToMultiSurface method for type ST_Geometry

Converts the geometry to a multi-surface value.

Accessing and manipulating spatial data

202 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
geometry-expression.ST_ToMultiSurface()

Returns
● ST_MultiSurface If the geometry-expression is of type ST_MultiSurface, returns the geometry-

expression. If the geometry-expression is a geometry collection containing only surfaces, returns a multi-
surface object containing the elements of the geometry-expression. If the geometry-expression is of
type ST_Surface then return a multi-surface value containing one element, the geometry-expression. If
the geometry-expression is the empty set, returns an empty set of type ST_MultiSurface. Otherwise,
raises an exception condition.

The spatial reference system identifier of the result is the same as the spatial reference system of the
geometry-expression.

Remarks
If geometry-expression is already known to be an ST_MultiSurface value, it is more efficient to use
TREAT(geometry-expression AS ST_MultiSurface) than the ST_ToMultiSurface method.

Note
By default, ST_ToMultiSurface uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

See also
● “ST_ToMultiPolygon method for type ST_Geometry” on page 201
● “ST_ToGeomColl method for type ST_Geometry” on page 196
● “ST_ToSurface method for type ST_Geometry” on page 206

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.33

Example
The following example returns the result MultiSurface EMPTY.

SELECT NEW ST_GeomCollection().ST_ToMultiSurface()

The following example returns the result MultiSurface (((3 3, 8 3, 4 8, 3 3))).

SELECT Shape.ST_ToMultiSurface()
FROM SpatialShapes WHERE ShapeID = 22

ST_ToPoint method for type ST_Geometry

Converts the geometry to a point.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 203

Syntax
geometry-expression.ST_ToPoint()

Returns
● ST_Point If the geometry-expression is of type ST_Point, return the geometry-expression. If the

geometry-expression is a geometry collection with a single element of type ST_Point, return that
element. If the geometry-expression is the empty set, return an empty set of type ST_Point. Otherwise,
raise an exception condition.

The spatial reference system identifier of the result is the same as the spatial reference system of the
geometry-expression.

Remarks
Converts the geometry to a point. The logic is equivalent to that used for CAST(geometry-expression AS
ST_Point).

If geometry-expression is already known to be an ST_Point value, it is more efficient to use
TREAT(geometry-expression AS ST_Point) than the ST_ToPoint method.

Note
By default, ST_ToPoint uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

See also
● “ST_ToMultiPoint method for type ST_Geometry” on page 200

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.33

Example
The following example returns the result Point (1 2).

SELECT NEW ST_GeomCollection(NEW ST_Point(1,2)).ST_ToPoint().ST_AsText()

ST_ToPolygon method for type ST_Geometry
Converts the geometry to a polygon.

Syntax
geometry-expression.ST_ToPolygon()

Accessing and manipulating spatial data

204 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns
● ST_Polygon If the geometry-expression is of type ST_Polygon, returns the geometry-expression.

If the geometry-expression is of type ST_CurvePolygon, returns geometry-
expression.ST_CurvePolyToPoly(). If the geometry-expression is a geometry collection with a single
element of type ST_CurvePolygon, returns that element. If the geometry-expression is the empty set,
returns an empty set of type ST_Polygon. Otherwise, raises an exception condition.

The spatial reference system identifier of the result is the same as the spatial reference system of the
geometry-expression.

Remarks
Convert the geometry to a polygon. The logic is equivalent to that used for CAST(geometry-expression
AS ST_Polygon). If the geometry-expression is a curve polygon, it is approximated using
ST_CurvePolyToPoly().

If geometry-expression is already known to be an ST_Polygon value, it is more efficient to use
TREAT(geometry-expression AS ST_Polygon) than the ST_ToPolygon method.

Note
By default, ST_ToPolygon uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

See also
● “ST_ToCurvePoly method for type ST_Geometry” on page 195
● “ST_ToSurface method for type ST_Geometry” on page 206
● “ST_ToMultiPolygon method for type ST_Geometry” on page 201
● “ST_CurvePolyToPoly method for type ST_CurvePolygon” on page 79

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.33

Example
The following example returns the result Polygon EMPTY.

SELECT NEW ST_GeomCollection().ST_ToPolygon().ST_AsText()

The following returns an error because the Shape column is of type ST_Geometry and ST_Geometry does
not support the ST_Area method.

SELECT Shape.ST_Area()
FROM SpatialShapes WHERE ShapeID = 22

The following uses ST_ToPolygon to change the type of the Shape column expression to ST_Polygon.
ST_Area returns the result 12.5.

SELECT Shape.ST_ToPolygon().ST_Area()
FROM SpatialShapes WHERE ShapeID = 22

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 205

In this case, the value of the Shape column is known be of type ST_Polygon, so TREAT can be used to
efficiently change the type of the expression. ST_Area returns the result 12.5.

SELECT TREAT(Shape AS ST_Polygon).ST_Area()
FROM SpatialShapes WHERE ShapeID = 22

ST_ToSurface method for type ST_Geometry

Converts the geometry to a surface.

Syntax
geometry-expression.ST_ToSurface()

Returns
● ST_Surface If the geometry-expression is of type ST_Surface, return the geometry-expression. If

the geometry-expression is a geometry collection with a single element of type ST_Surface, return that
element. If the geometry-expression is the empty set, return an empty set of type ST_Polygon.
Otherwise, raise an exception condition.

The spatial reference system identifier of the result is the same as the spatial reference system of the
geometry-expression.

Remarks
Converts the geometry to a surface. The logic is equivalent to that used for CAST(geometry-expression
AS ST_Surface).

If geometry-expression is already known to be an ST_Surface value, it is more efficient to use
TREAT(geometry-expression AS ST_Surface) than the ST_ToSurface method.

Note
By default, ST_ToSurface uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

See also
● “ST_ToCurvePoly method for type ST_Geometry” on page 195
● “ST_ToPolygon method for type ST_Geometry” on page 204
● “ST_ToMultiSurface method for type ST_Geometry” on page 202

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns the result Polygon EMPTY.

Accessing and manipulating spatial data

206 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SELECT NEW ST_GeomCollection().ST_ToSurface()

ST_Touches method for type ST_Geometry
Tests if a geometry value spatially touches another geometry value.

Syntax
geometry-expression.ST_Touches(geo2)

Parameters

Name Type Description

geo2 ST_Geometry The other geometry value that is to be compared to the geometry-expression.

Returns
● BIT Returns 1 if the geometry-expression touches geo2, otherwise 0. Returns NULL if both geometry-

expression and geo2 have dimension 0.

Remarks
Tests if a geometry value spatially touches another geometry value. Two geometries spatially touch if
their interiors do not intersect but one or more boundary points from one value intersects the interior or
boundary of the other value.

Note
If the geometry-expression contains circular strings, then these are interpolated to line strings.

Note
This method can not be used with geometries in round-Earth spatial reference system.

See also
● “ST_Intersects method for type ST_Geometry” on page 165
● “ST_Boundary method for type ST_Geometry” on page 134
● “ST_Dimension method for type ST_Geometry” on page 149

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.28

Example
The following example returns NULL because both inputs are points and have no boundary.

SELECT NEW ST_Point(1,1).ST_Touches(NEW ST_Point(1,1))

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 207

The following example lists the ShapeIDs of the geometries that touch the "Lighting Bolt" shape, which
has ShapeID 6. This example returns the result 5,16,26. Each of the three touching geometries intersect
the Lighting Bolt only at its boundary.

SELECT List(ShapeID ORDER BY ShapeID)
FROM SpatialShapes
WHERE Shape.ST_Touches((SELECT Shape FROM SpatialShapes WHERE ShapeID =
6)) = 1

ST_Transform method for type ST_Geometry

Creates a copy of the geometry value transformed into the specified spatial reference system.

Syntax
geometry-expression.ST_Transform(srid)

Parameters

Name Type Description

srid INT The SRID of the result.

Returns
● ST_Geometry Returns a copy of the geometry value transformed into the specified spatial

reference system.

The spatial reference system identifier of the result is the given by parameter srid.

Remarks
The ST_Transform method transforms geometry-expression from its spatial reference system to the
specified spatial reference system using the transform definition of both spatial reference systems. The
transformation is performed using the PROJ.4 library.

ST_Transform is required to move between different coordinate systems. For example, use can use
ST_Transform to transform a geometry which uses latitude and longitude to a geometry with the SRID
3310 "NAD83 / California Albers". The "NAD83 / California Albers" spatial reference system is a planar
projection for California data which uses the Albers projection algorithm and metres for its linear unit of
measure.

Transformations from a lat/long system to a Cartesian system can be problematic for polar points. If the
database server is unable to transform a point close to the North or South pole, the latitude value of the
point is shifted a small distance (slightly more than 1e-10 radians) away from the pole, and along the
same longitude, so that the transformation can succeed.

If you are transforming a geometry between two spatial reference systems that have the same coordinate
system, you can use the ST_SRID method instead of ST_Transform.

Accessing and manipulating spatial data

208 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The spatial tutorial includes steps showing you how to transforming data between spatial reference
systems. See “Tutorial: Experimenting with the spatial features” on page 47.

See also
● “ST_SRID method for type ST_Geometry” on page 185

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.6

Example
The following example returns the result Point (184755.86861 -444218.175691). It
transforms a point in Los Angeles which is specified in longitude and latitude to the projected planar
SRID 3310 ("NAD83 / California Albers"). This example assumes that the 'st_geometry_predefined_srs'
feature has been installed by the “sa_install_feature system procedure” [SQL Anywhere Server - SQL
Reference].

SELECT NEW ST_Point(-118, 34, 4326).ST_Transform(3310)

ST_Union method for type ST_Geometry
Returns the geometry value that represents the point set union of two geometries.

Syntax
geometry-expression.ST_Union(geo2)

Parameters

Name Type Description

geo2 ST_Geometry The other geometry value that is to be unioned with the geometry-expression.

Returns
● ST_Geometry Returns the geometry value that represents the point set union of two geometries.

The spatial reference system identifier of the result is the same as the spatial reference system of the
geometry-expression.

Remarks
The ST_Union method finds the spatial union of two geometries. A point is included in the union if it is
present in either of the two input geometries.

Note
If the geometry-expression contains circular strings, then these are interpolated to line strings.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 209

See also
● “ST_Difference method for type ST_Geometry” on page 147
● “ST_Intersection method for type ST_Geometry” on page 163
● “ST_SymDifference method for type ST_Geometry” on page 190
● “ST_UnionAggr method for type ST_Geometry” on page 210

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.19

Example
The following example shows the union (C) of a square (A) and a circle (B).

SELECT NEW ST_Polygon('Polygon((-1 -0.25, 1 -0.25, 1 2.25, -1 2.25, -1
-0.25))') AS A
 , NEW ST_CurvePolygon('CurvePolygon(CircularString(0 1, 1 2, 2 1, 1 0,
0 1))') AS B
 , A.ST_Union(B) AS C

The union is shaded in the following picture. The union is a single surface that includes all of the points
that are in A or in B.

ST_UnionAggr method for type ST_Geometry
Returns the spatial union of all of the geometries in a group

Syntax
ST_Geometry::ST_UnionAggr(geometry-column)

Parameters

Name Type Description

geometry-column ST_Geometry The geometry values to generate the spatial union. Typically this
is a column.

Accessing and manipulating spatial data

210 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns
● ST_Geometry Returns a geometry that is the spatial union for all the geometries in a group.

The spatial reference system identifier of the result is the same as that for the first parameter.

Remarks
Rows where the argument is NULL are not included.

Returns NULL for an empty group or a group containing no non-NULL values.

If the group contains a single non-NULL geometry, it is returned. Otherwise, the union is logically
computed by repeatedly applying the ST_Union method to combine two geometries at a time. See
“ST_Union method for type ST_Geometry” on page 209.

See also
● “ST_Union method for type ST_Geometry” on page 209

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns the result Polygon ((.555555 3, 0 3, 0 1.75, 0 0, 3 0,
3 3, .75 3, 1 4, .555555 3)).

SELECT ST_Geometry::ST_UnionAggr(Shape)
FROM SpatialShapes WHERE ShapeID IN (2, 6)

ST_Within method for type ST_Geometry
Tests if a geometry value is spatially contained within another geometry value.

Syntax
geometry-expression.ST_Within(geo2)

Parameters

Name Type Description

geo2 ST_Geometry The other geometry value that is to be compared to the geometry-expression.

Returns
● BIT Returns 1 if the geometry-expression is within geo2, otherwise 0.

Remarks
The ST_Within method tests if the geometry-expression is completely within geo2 and there is one or
more interior points of geo2 that lies in the interior of the geometry-expression.

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 211

geometry-expression.ST_Within(geo2) is equivalent to geo2.ST_Contains(geometry-expression).

The ST_Within and ST_CoveredBy methods are similar. The difference is that ST_CoveredBy does not
require intersecting interior points.

Note
If the geometry-expression contains circular strings, then these are interpolated to line strings.

Note
This method can not be used with geometries in round-Earth spatial reference system.

See also
● “ST_Contains method for type ST_Geometry” on page 135
● “ST_CoveredBy method for type ST_Geometry” on page 142
● “ST_Intersects method for type ST_Geometry” on page 165
● “ST_WithinFilter method for type ST_Geometry” on page 216

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.30

Example
The following example tests if a point is within a polygon. The point is completely within the polygon,
and the interior of the point (the point itself) intersects the interior of the polygon, so the example returns 1.

SELECT NEW ST_Point(1, 1)
 .ST_Within(NEW ST_Polygon('Polygon((0 0, 2 0, 1 2, 0 0))'))

The following example tests if a line is within a polygon. The line is completely within the polygon, but
the interior of the line and the interior of the polygon do not intersect (the line only intersects the polygon
on the polygon's boundary, and the boundary is not part of the interior), so the example returns 0. If
ST_CoveredBy was used in place of ST_Within, ST_CoveredBy would return 1.

SELECT NEW ST_LineString('LineString(0 0, 1 0)')
 .ST_Within(NEW ST_Polygon('Polygon((0 0, 2 0, 1 2, 0 0))'))

The following example lists the ShapeIDs where the given point is within the Shape geometry. This
example returns the result 3,5. Note that ShapeID 6 is not listed because the point intersects that row's
Shape polygon at the polygon's boundary.

SELECT LIST(ShapeID ORDER BY ShapeID)
FROM SpatialShapes
WHERE NEW ST_Point(1, 4).ST_Within(Shape) = 1

ST_WithinDistance method for type ST_Geometry

Test if two geometries are within a specified distance of each other.

Accessing and manipulating spatial data

212 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
geometry-expression.ST_WithinDistance(geo2,distance[, unit-name])

Parameters

Name Type Description

geo2 ST_Geometry The other geometry value whose distance is to be measured from the
geometry-expression.

distance DOUBLE The distance the two geometries should be within.

unit-
name

VAR-
CHAR(128)

The units in which the distance parameter should be interpreted. De-
faults to the unit of the spatial reference system. The unit name must
match the UNIT_NAME column of a row in the ST_UNITS_OF_MEAS-
URE view where UNIT_TYPE is 'LINEAR'.

Returns
● BIT Returns 1 if geometry-expression and geo2 are within the specified distance of each other,

otherwise 0.

Remarks
The ST_WithinDistance method tests if the smallest distance between two geometries does not exceed a
specified distance, taking tolerance into consideration.

More precisely, let d denote the smallest distance between geometry-expression and geo2. The expression
geometry-expression.ST_WithinDistance(geo2, distance[, unit_name])
evaluates to 1 if either d <= distance or if d exceeds distance by a length that is less than the tolerance of
the associated spatial reference system.

For planar spatial reference systems, the distance is calculated as the Cartesian distance within the plane,
computed in the linear units of measure for the associated spatial reference system. For round-Earth
spatial reference systems, the distance is computed taking the curvature of the Earth's surface into account
using the ellipsoid parameters in the spatial reference system definition.

Note
If the geometry-expression contains circular strings, then these are interpolated to line strings.

Note
For round-Earth spatial reference systems, the ST_WithinDistance method is only supported if geometry-
expression and geo2 contain only points.

See also
● “ST_Distance method for type ST_Geometry” on page 151
● “ST_WithinDistanceFilter method for type ST_Geometry” on page 214
● “ST_Intersects method for type ST_Geometry” on page 165

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 213

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns an ordered result set with one row for each shape that is within distance
1.4 of the point (2,3).

SELECT ShapeID, ROUND(Shape.ST_Distance(NEW ST_Point(2, 3)), 2) AS dist
FROM SpatialShapes
WHERE ShapeID < 17
AND Shape.ST_WithinDistance(NEW ST_Point(2, 3), 1.4) = 1
ORDER BY dist

The example returns the following result set:

ShapeID dist

2 0.0

3 0.0

5 1.0

6 1.21

The following example creates points representing Halifax, NS and Waterloo, ON, Canada and uses
ST_WithinDistance to demonstrate that the distance between the two points is within 850 miles, but not
within 840 miles. This example assumes that the 'st_geometry_predefined_uom' feature has been installed
by the “sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference].

SELECT NEW ST_Point(-63.573566, 44.646244, 4326)
 .ST_WithinDistance(NEW ST_Point(-80.522372, 43.465187, 4326)
 , 850, 'Statute mile') within850,
 NEW ST_Point(-63.573566, 44.646244, 4326)
 .ST_WithinDistance(NEW ST_Point(-80.522372, 43.465187, 4326)
 , 840, 'Statute mile') within840

The example returns the following result set:

within850 within840

1 0

ST_WithinDistanceFilter method for type ST_Geometry
A cheap test if two geometries might possibly be within a specified distance of each other.

Syntax
geometry-expression.ST_WithinDistanceFilter(geo2,distance[, unit-name])

Accessing and manipulating spatial data

214 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters

Name Type Description

geo2 ST_Geometry The other geometry value whose distance is to be measured from the
geometry-expression.

distance DOUBLE The distance the two geometries should be within.

unit-
name

VAR-
CHAR(128)

The units in which the distance parameter should be interpreted. De-
faults to the unit of the spatial reference system. The unit name must
match the UNIT_NAME column of a row in the ST_UNITS_OF_MEAS-
URE view where UNIT_TYPE is 'LINEAR'.

Returns
● BIT Returns 1 if geometry-expression and geo2 might be within the specified distance of each other,

otherwise 0.

Remarks
The ST_WithinDistanceFilter method provides an efficient test to determine if two geometries might
possibly be within a specified distance of each other (as determined by method ST_WithinDistance).
Returns 1 if the geometry-expression might be within the given distance of geo2, otherwise 0.

This test is cheaper than ST_WithinDistance, but may return 1 in some cases where the smallest distance
between the two geometries is actually larger than the specified distance. Therefore, this method can be
useful as a primary filter when further processing will determine the true distance between the geometries.

The implementation of ST_WithinDistanceFilter relies upon meta-data associated with the stored
geometries. Because the available meta-data may change between server versions, depending upon how
the data is loaded, or where ST_WithinDistanceFilter is used within a query, the expression geometry-
expression.ST_WithinDistanceFilter(geo2, distance [, unit_name]) can return different results when
geometry-expression is not within the specified distance of geo2. Whenever geometry-expression is
within the specified distance of geo2, ST_WithinDistanceFilter will always return 1.

Note
This method can not be used with geometries in round-Earth spatial reference system.

See also
● “ST_Distance method for type ST_Geometry” on page 151
● “ST_WithinDistance method for type ST_Geometry” on page 212
● “ST_IntersectsFilter method for type ST_Geometry” on page 166

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 215

Example
The following example returns an ordered result set with one row for each shape that might possibly be
within distance 1.4 of the point (2,3). Observe that the result contains a shape that is not actually within
the specified distance.

SELECT ShapeID, ROUND(Shape.ST_Distance(NEW ST_Point(2, 3)), 2) AS dist
FROM SpatialShapes
WHERE ShapeID < 17
AND Shape.ST_WithinDistanceFilter(NEW ST_Point(2, 3), 1.4) = 1
ORDER BY dist

The example returns the following result set:

ShapeID dist

2 0.0

3 0.0

5 1.0

6 1.21

16 1.41

ST_WithinFilter method for type ST_Geometry

A cheap test if a geometry might possibly be within another.

Syntax
geometry-expression.ST_WithinFilter(geo2)

Parameters

Name Type Description

geo2 ST_Geometry The other geometry value that is to be compared to the geometry-expression.

Returns
● BIT Returns 1 if the geometry-expression might be within geo2, otherwise 0.

Remarks
The ST_WithinFilter method provides an efficient test to determine if one geometry might be within the
other. Returns 1 if the geometry-expression might be within geo2, otherwise 0.

This test is cheaper than ST_Within, but may return 1 in some cases where the geometry-expression is not
actually spatially within geo2.

Accessing and manipulating spatial data

216 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Therefore, this method can be useful as a primary filter when further processing will determine if
geometries interact in the desired way.

The implementation of ST_WithinFilter relies upon meta-data associated with the stored geometries.
Because the available meta-data may change between server versions, depending upon how the data is
loaded, or where ST_WithinFilter is used within a query, the expression geometry-
expression.ST_WithinFilter(geo2) can return different results when geometry-expression is not within
geo2. Whenever geometry-expression is within geo2, ST_WithinFilter will always return 1.

Note
This method can not be used with geometries in round-Earth spatial reference system.

See also
● “ST_Within method for type ST_Geometry” on page 211

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_XMax method for type ST_Geometry
Retrieves the maximum X coordinate value of a geometry.

Syntax
geometry-expression.ST_XMax()

Returns
● DOUBLE Returns the maximum X coordinate value of the geometry-expression.

Remarks
Returns the maximum X coordinate value of the geometry-expression. This is computed by comparing the
X attribute of all points in the geometry.

Note that in round-Earth model, minimum corresponds to eastern boundary of the geometry-expression
and maximum corresponds to the western boundary of the geometry-expression. This means that if the
geometry-expression crosses date line, minimum value will be higher than maximum value.

Note
If the geometry-expression is an empty geometry (ST_IsEmpty()=1), then this method returns NULL.

Note
By default, ST_XMax uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 217

See also
● “ST_XMin method for type ST_Geometry” on page 218
● “ST_YMin method for type ST_Geometry” on page 220
● “ST_YMax method for type ST_Geometry” on page 219
● “ST_ZMin method for type ST_Geometry” on page 222
● “ST_ZMax method for type ST_Geometry” on page 221
● “ST_MMin method for type ST_Geometry” on page 177
● “ST_MMax method for type ST_Geometry” on page 177
● “ST_LongEast method for type ST_Geometry” on page 175

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns the result 5.

SELECT NEW ST_LineString('LineString ZM(1 2 3 4, 5 6 7 8)').ST_XMax()

ST_XMin method for type ST_Geometry

Retrieves the minimum X coordinate value of a geometry.

Syntax
geometry-expression.ST_XMin()

Returns
● DOUBLE Returns the minimum X coordinate value of the geometry-expression.

Remarks
Returns the minimum X coordinate value of the geometry-expression. This is computed by comparing the
X attribute of all points in the geometry.

Note that in round-Earth model, minimum corresponds to eastern boundary of the geometry-expression
and maximum corresponds to the western boundary of the geometry-expression. This means that if the
geometry-expression crosses date line, minimum value will be higher than maximum value.

Note
If the geometry-expression is an empty geometry (ST_IsEmpty()=1), then this method returns NULL.

Note
By default, ST_XMin uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Accessing and manipulating spatial data

218 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “ST_XMax method for type ST_Geometry” on page 217
● “ST_YMin method for type ST_Geometry” on page 220
● “ST_YMax method for type ST_Geometry” on page 219
● “ST_ZMin method for type ST_Geometry” on page 222
● “ST_ZMax method for type ST_Geometry” on page 221
● “ST_MMin method for type ST_Geometry” on page 177
● “ST_MMax method for type ST_Geometry” on page 177
● “ST_LongWest method for type ST_Geometry” on page 176

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns the result 1.

SELECT NEW ST_LineString('LineString ZM(1 2 3 4, 5 6 7 8)').ST_XMin()

ST_YMax method for type ST_Geometry

Retrieves the maximum Y coordinate value of a geometry.

Syntax
geometry-expression.ST_YMax()

Returns
● DOUBLE Returns the maximum Y coordinate value of the geometry-expression.

Remarks
Returns the maximum Y coordinate value of the geometry-expression. This is computed by comparing the
Y attribute of all points in the geometry.

Note that in round-Earth model, minimum corresponds to southernmost point of the geometry-expression
(which may not be one of the points defining the geometry) and maximum corresponds to the
northernmost point of the geometry-expression.

Note
If the geometry-expression is an empty geometry (ST_IsEmpty()=1), then this method returns NULL.

Note
By default, ST_YMax uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 219

See also
● “ST_XMin method for type ST_Geometry” on page 218
● “ST_XMax method for type ST_Geometry” on page 217
● “ST_YMin method for type ST_Geometry” on page 220
● “ST_ZMin method for type ST_Geometry” on page 222
● “ST_ZMax method for type ST_Geometry” on page 221
● “ST_MMin method for type ST_Geometry” on page 177
● “ST_MMax method for type ST_Geometry” on page 177
● “ST_LatNorth method for type ST_Geometry” on page 171

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns the result 6.

SELECT NEW ST_LineString('LineString ZM(1 2 3 4, 5 6 7 8)').ST_YMax()

ST_YMin method for type ST_Geometry

Retrieves the minimum Y coordinate value of a geometry.

Syntax
geometry-expression.ST_YMin()

Returns
● DOUBLE Returns the minimum Y coordinate value of the geometry-expression.

Remarks
Returns the minimum Y coordinate value of the geometry-expression. This is computed by comparing the
Y attribute of all points in the geometry.

Note that in round-Earth model, minimum corresponds to southernmost point of the geometry-expression
(which may not be one of the points defining the geometry) and maximum corresponds to the
northernmost point of the geometry-expression.

Note
If the geometry-expression is an empty geometry (ST_IsEmpty()=1), then this method returns NULL.

Note
By default, ST_YMin uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Accessing and manipulating spatial data

220 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “ST_XMin method for type ST_Geometry” on page 218
● “ST_XMax method for type ST_Geometry” on page 217
● “ST_YMax method for type ST_Geometry” on page 219
● “ST_ZMin method for type ST_Geometry” on page 222
● “ST_ZMax method for type ST_Geometry” on page 221
● “ST_MMin method for type ST_Geometry” on page 177
● “ST_MMax method for type ST_Geometry” on page 177
● “ST_LatSouth method for type ST_Geometry” on page 172

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns the result 2.

SELECT NEW ST_LineString('LineString ZM(1 2 3 4, 5 6 7 8)').ST_YMin()

ST_ZMax method for type ST_Geometry
Retrieves the maximum Z coordinate value of a geometry.

Syntax
geometry-expression.ST_ZMax()

Returns
● DOUBLE Returns the maximum Z coordinate value of the geometry-expression.

Remarks
Returns the maximum Z coordinate value of the geometry-expression. This is computed by comparing the
Z attribute of all points in the geometry.

Note
If the geometry-expression is an empty geometry (ST_IsEmpty()=1), then this method returns NULL.

Note
By default, ST_ZMax uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

ST_Geometry type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 221

See also
● “ST_XMin method for type ST_Geometry” on page 218
● “ST_XMax method for type ST_Geometry” on page 217
● “ST_YMin method for type ST_Geometry” on page 220
● “ST_YMax method for type ST_Geometry” on page 219
● “ST_ZMin method for type ST_Geometry” on page 222
● “ST_MMin method for type ST_Geometry” on page 177
● “ST_MMax method for type ST_Geometry” on page 177

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns the result 7.

SELECT NEW ST_LineString('LineString ZM(1 2 3 4, 5 6 7 8)').ST_ZMax()

ST_ZMin method for type ST_Geometry
Retrieves the minimum Z coordinate value of a geometry.

Syntax
geometry-expression.ST_ZMin()

Returns
● DOUBLE Returns the minimum Z coordinate value of the geometry-expression.

Remarks
Returns the minimum Z coordinate value of the geometry-expression. This is computed by comparing the
Z attribute of all points in the geometry.

Note
If the geometry-expression is an empty geometry (ST_IsEmpty()=1), then this method returns NULL.

Note
By default, ST_ZMin uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Accessing and manipulating spatial data

222 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “ST_XMin method for type ST_Geometry” on page 218
● “ST_XMax method for type ST_Geometry” on page 217
● “ST_YMin method for type ST_Geometry” on page 220
● “ST_YMax method for type ST_Geometry” on page 219
● “ST_ZMax method for type ST_Geometry” on page 221
● “ST_MMin method for type ST_Geometry” on page 177
● “ST_MMax method for type ST_Geometry” on page 177

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns the result 3.

SELECT NEW ST_LineString('LineString ZM(1 2 3 4, 5 6 7 8)').ST_ZMin()

ST_LineString type
The ST_LineString type is a subtype of ST_Curve that uses straight line segments between control points.

Direct supertype
● “ST_Curve type” on page 69

Constructor
● “ST_LineString constructor” on page 224

Methods
● “ST_LineStringAggr method for type ST_LineString” on page 227
● “ST_NumPoints method for type ST_LineString” on page 227
● “ST_PointN method for type ST_LineString” on page 228
● All methods of “ST_Curve type” on page 69 can also be called on a ST_LineString type.
● All methods of “ST_Geometry type” on page 88 can also be called on a ST_LineString type.

Remarks
The ST_LineString type is a subtype of ST_Curve that uses straight line segments between control points.
Each consecutive pair of points is joined with a straight line segment.

A line is an ST_LineString value with exactly two points. A linear ring is an ST_LineString value which
is closed and simple.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 7.2

ST_LineString type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 223

ST_LineString constructor
Constructs a linestring

Overload list

Name Description

“ST_LineString() constructor” on page 224 Constructs a linestring representing the empty set.

“ST_LineString(LONG VARCHAR[, INT]) con-
structor” on page 224

Constructs a linestring from a text representation.

“ST_LineString(LONG BINARY[, INT]) con-
structor” on page 225

Constructs a linestring from WKB.

“ST_LineString(ST_Point,ST_Point,...) construc-
tor” on page 226

Constructs a linestring value from a list of points
in a specified spatial reference system.

ST_LineString() constructor
Constructs a linestring representing the empty set.

Syntax
NEW ST_LineString()

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Standard feature

Example
The following returns 1, indicating the value is empty.

SELECT new ST_LineString().ST_IsEmpty()

ST_LineString(LONG VARCHAR[, INT]) constructor
Constructs a linestring from a text representation.

Syntax
NEW ST_LineString(text-representation[, srid])

Accessing and manipulating spatial data

224 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters

Name Type Description

text-represen-
tation

LONG
VARCHAR

A string containing the text representation of a linestring. The input
can be in any supported text input format, including WKT or EWKT.

srid INT The SRID of the result. If not specified, the default is 0.

Remarks
Constructs a linestring from a character string representation. The database server determines the input
format by inspecting the provided string.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 7.2.2

Example
The following returns LineString (0 0, 5 10)

SELECT NEW ST_LineString('LineString (0 0, 5 10)')

ST_LineString(LONG BINARY[, INT]) constructor
Constructs a linestring from WKB.

Syntax
NEW ST_LineString(wkb[, srid])

Parameters

Name Type Description

wkb LONG BI-
NARY

A string containing the binary representation of an linestring. The input can be
in any supported binary input format, including WKB or EWKB.

srid INT The SRID of the result. If not specified, the default is 0.

Remarks
Constructs a linestring from a binary string representation. The database server determines the input
format by inspecting the provided string.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 7.2.2

Example
The following returns LineString (0 0, 5 10)

ST_LineString type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 225

SELECT NEW
ST_LineString(0x010200000002000
014400000000000002440)

ST_LineString(ST_Point,ST_Point,...) constructor
Constructs a linestring value from a list of points in a specified spatial reference system.

Syntax
NEW ST_LineString(pt1,pt2,[pt3,...,ptN])

Parameters

Name Type Description

pt1 ST_Point The first point of the linestring.

pt2 ST_Point The second point of the linestring.

pt3,...,ptN ST_Point Additional points of the linestring.

Remarks
Constructs a linestring value from a list of points. All of the points must have the same SRID. The
resulting linestring is constructed with this common SRID. All of the supplied points must be non-empty
and have the same answer for Is3D and IsMeasured. The linestring is 3D if all of the points are 3D, and
the linestring is measured if all of the points are measured.

Note
By default, ST_LineString uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns the result LineString (0 0, 1 1).

SELECT NEW ST_LineString(NEW ST_Point(0, 0), NEW ST_Point(1, 1))

The following example returns the result LineString (0 0, 1 1, 2 0).

SELECT NEW ST_LineString(NEW ST_Point(0, 0), NEW ST_Point(1, 1), NEW
ST_Point(2,0))

Accessing and manipulating spatial data

226 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ST_LineStringAggr method for type ST_LineString
Returns a linestring built from the ordered points in a group.

Syntax
ST_LineString::ST_LineStringAggr(point[ORDER BY order-by-expression [ASC | DESC], ...])

Parameters

Name Type Description

point ST_Point The points to generate the linestring. Typically this is a column.

Returns
● ST_LineString Returns a linestring built from the points in a group.

The spatial reference system identifier of the result is the same as that for the first parameter.

Remarks
The ST_LineStringAggr aggregate function can be used to build a linestring out of a group of ordered
points. All of the geometry columns to be combined must have the same SRID. All of the points to be
combined must be non-empty with the same coordinate dimension.

Rows where the linestring-expression is NULL are not included.

Returns NULL for an empty group or a group containing no non-NULL values.

The resulting linestring has the same coordinate dimension as each point.

Note
The ORDER BY clause should be specified to control the order of points within the linestring. If not
present, the order of points in the linestring will vary depending on the access plan selected by the query
optimizer.

Note
By default, ST_LineStringAggr uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_NumPoints method for type ST_LineString

ST_LineString type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 227

Returns the number of points defining the linestring.

Note
By default, ST_NumPoints uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Syntax
linestring-expression.ST_NumPoints()

Returns
● INT Returns NULL if the linestring value is empty, otherwise the number of points in the value.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 7.2.4

Example
The following example returns the result NULL.

SELECT NEW ST_LineString().ST_NumPoints()

The following example returns the result 2.

SELECT NEW ST_LineString(NEW ST_Point(0, 0), NEW ST_Point(1,
1)).ST_NumPoints()

ST_PointN method for type ST_LineString

Returns the nth point in the linestring.

Note
By default, ST_PointN uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Syntax
linestring-expression.ST_PointN(n)

Parameters

Name Type Description

n INT The position of the element to return, from 1 to linestring-expression.ST_NumPoints().

Accessing and manipulating spatial data

228 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns
● ST_Point If the linestring value is the empty set, returns NULL. If the specified position n is less

than 1 or greater than the number of points, raises a warning and returns NULL. Otherwise, returns the
ST_Point value at position n.

The spatial reference system identifier of the result is the same as the spatial reference system of the
linestring-expression.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 7.2.5

ST_MultiCurve type
An ST_MultiCurve is a collection of zero or more ST_Curve values, and all of the curves are within the
spatial reference system. The length of a multicurve is the sum of the lengths of the contained curves. A
multicurve is closed if it is non-empty and has an empty boundary.

Direct supertype
● “ST_GeomCollection type” on page 82

Direct subtypes
● “ST_MultiLineString type” on page 235

Constructor
● “ST_MultiCurve constructor” on page 229

Methods
● “ST_IsClosed method for type ST_MultiCurve” on page 232
● “ST_Length method for type ST_MultiCurve” on page 233
● “ST_MultiCurveAggr method for type ST_MultiCurve” on page 234
● All methods of “ST_GeomCollection type” on page 82 can also be called on a ST_MultiCurve type.
● All methods of “ST_Geometry type” on page 88 can also be called on a ST_MultiCurve type.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.3

ST_MultiCurve constructor
Constructs a multi curve

ST_MultiCurve type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 229

Overload list

Name Description

“ST_MultiCurve() constructor” on page 230 Constructs a multi curve representing the empty set.

“ST_MultiCurve(LONG VARCHAR[, INT])
constructor” on page 230

Constructs a multi curve from a text representation.

“ST_MultiCurve(LONG BINARY[, INT]) con-
structor” on page 231

Constructs a multi curve from WKB.

“ST_MultiCurve(ST_Curve,...) construc-
tor” on page 231

Constructs a multi-curve from a list of curve values.

ST_MultiCurve() constructor
Constructs a multi curve representing the empty set.

Syntax
NEW ST_MultiCurve()

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Standard feature

Example
The following returns 1, indicating the value is empty.

SELECT new ST_MultiCurve().ST_IsEmpty()

ST_MultiCurve(LONG VARCHAR[, INT]) constructor
Constructs a multi curve from a text representation.

Syntax
NEW ST_MultiCurve(text-representation[, srid])

Parameters

Name Type Description

text-represen-
tation

LONG
VARCHAR

A string containing the text representation of a multi curve. The input
can be in any supported text input format, including WKT or EWKT.

srid INT The SRID of the result. If not specified, the default is 0.

Accessing and manipulating spatial data

230 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
Constructs a multi curve from a character string representation. The database server determines the input
format by inspecting the provided string.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.3.2

Example
The following returns MultiCurve ((10 10, 12 12), CircularString (5 10, 10 12, 15 10))

SELECT NEW ST_MultiCurve('MultiCurve ((10 10, 12 12), CircularString (5 10,
10 12, 15 10))')

ST_MultiCurve(LONG BINARY[, INT]) constructor
Constructs a multi curve from WKB.

Syntax
NEW ST_MultiCurve(wkb[, srid])

Parameters

Name Type Description

wkb LONG BI-
NARY

A string containing the binary representation of an multi curve. The input can
be in any supported binary input format, including WKB or EWKB.

srid INT The SRID of the result. If not specified, the default is 0.

Remarks
Constructs a multi curve from a binary string representation. The database server determines the input
format by inspecting the provided string.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.3.2

Example
The following returns MultiCurve (CircularString (5 10, 10 12, 15 10))

SELECT NEW
ST_MultiCurve(0x010b000000010000000108000000030000000000000000001440000000000
0002440000000000000244000000000000028400000000000002e400000000000002440)

ST_MultiCurve(ST_Curve,...) constructor
Constructs a multi-curve from a list of curve values.

ST_MultiCurve type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 231

Syntax
NEW ST_MultiCurve(curve1,[curve2,...,curveN])

Parameters

Name Type Description

curve1 ST_Curve The first curve value of the multi-curve.

curve2,...,curveN ST_Curve Additional curve values of the multi-curve.

Remarks
Constructs a multi-curve from a list of curve values. All of the supplied curve values must have the same
SRID, and the multi-curve is constructed with this common SRID.

All of the supplied curve values must have the same answer for Is3D and IsMeasured. The multi-curve is
3D if all of the curve values are 3D, and the multi-curve is measured if all of the curve values are measured.

Note
By default, ST_MultiCurve uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns the result MultiCurve ((0 0, 1 1)).

SELECT NEW ST_MultiCurve(NEW ST_LineString('LineString (0 0, 1 1)'))

The following example returns the result MultiCurve ((0 0, 1 1), CircularString (0
0, 1 1, 2 0)).

SELECT NEW ST_MultiCurve(
 NEW ST_LineString('LineString (0 0, 1 1)'),
 NEW ST_CircularString('CircularString(0 0, 1 1, 2 0)'))

ST_IsClosed method for type ST_MultiCurve
Tests if the ST_MultiCurve value is closed. A curve is closed if the start and end points are coincident.

Accessing and manipulating spatial data

232 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Note
By default, ST_IsClosed uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Syntax
multicurve-expression.ST_IsClosed()

Returns
● BIT Returns 1 if the multicurve is closed, otherwise 0.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.3.3

ST_Length method for type ST_MultiCurve
Returns the length measurement of the ST_MultiCurve value. The result is measured in the units specified
by the parameter.

Syntax
multicurve-expression.ST_Length([unit-name])

Parameters

Name Type Description

unit-
name

VAR-
CHAR(128)

The units in which the length should be computed. Defaults to the unit of
the spatial reference system. The unit name must match the
UNIT_NAME column of a row in the ST_UNITS_OF_MEASURE view
where UNIT_TYPE is 'LINEAR'.

Returns
● DOUBLE Returns the length measurement of the ST_MultiCurve value.

Remarks
The ST_Length method returns the length of a multicurve in the units identified by the unit-name
parameter. If the curve is empty, then NULL is returned.

If the curve contains Z values, these are not considered when computing the length of the geometry.

Note
If the multicurve-expression is an empty geometry (ST_IsEmpty()=1), then this method returns NULL.

ST_MultiCurve type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 233

Note
By default, ST_Length uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

See also
● “ST_Length method for type ST_Curve” on page 72

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.3.4

Example
The following example creates a multicurve and uses ST_Length to find the length of the geometry,
returning the value PI+1.

SELECT NEW ST_MultiCurve(
 NEW ST_LineString('LineString (0 0, 1 0)'),
 NEW ST_CircularString('CircularString(0 0, 1 1, 2 0)'))
 .ST_Length()

The following example creates a multicurve and an example unit of measure (example_unit_halfmetre).
The ST_Length method finds the length of the geometry in this unit of measure, returning the value 6.0.

begin
 declare @multi_curve ST_MultiCurve;
 CREATE SPATIAL UNIT OF MEASURE IF NOT EXISTS "example_unit_halfmetre"
TYPE LINEAR CONVERT USING .5;
 set @multi_curve = NEW ST_MultiCurve(
 NEW ST_LineString('LineString (0 0, 1 0)'),
 NEW ST_LineString('LineString (0 2, 2 2)'));
 SELECT @multi_curve.ST_Length('example_unit_halfmetre');
end

ST_MultiCurveAggr method for type ST_MultiCurve

Returns a multicurve containing all of the curves in a group

Syntax
ST_MultiCurve::ST_MultiCurveAggr(geometry-column[ORDER BY order-by-expression [ASC |
DESC], ...])

Parameters

Name Type Description

geometry-column ST_Curve The geometry values to generate the collection. Typically this is a col-
umn.

Accessing and manipulating spatial data

234 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns
● ST_MultiCurve Returns a multicurve that contains all of the geometries in a group.

The spatial reference system identifier of the result is the same as that for the first parameter.

Remarks
The ST_MultiCurveAggr aggregate function can be used to combine a group of curves into a single
collection. All of the geometries to be combined must have both the same SRID and the same coordinate
dimension.

Rows where the argument is NULL are not included.

Returns NULL for an empty group or a group containing no non-NULL values.

The resulting ST_MultiCurve has the same coordinate dimension as each curves.

The optional ORDER BY clause can be used to arrange the elements in a particular order so that
ST_GeometryN returns them in the desired order. If this ordering is not relevant, it is more efficient to not
specify an ordering. In that case, the ordering of elements depends on the access plan selected by the
query optimizer.

Note
By default, ST_MultiCurveAggr uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_MultiLineString type
An ST_MultiLineString is a collection of zero or more ST_LineString values, and all of the linestrings are
within the spatial reference system.

Direct supertype
● “ST_MultiCurve type” on page 229

Constructor
● “ST_MultiLineString constructor” on page 236

ST_MultiLineString type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 235

Methods
● “ST_MultiLineStringAggr method for type ST_MultiLineString” on page 239
● All methods of “ST_MultiCurve type” on page 229 can also be called on a ST_MultiLineString type.
● All methods of “ST_GeomCollection type” on page 82 can also be called on a ST_MultiLineString type.
● All methods of “ST_Geometry type” on page 88 can also be called on a ST_MultiLineString type.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.4

ST_MultiLineString constructor
Constructs a multi linestring

Overload list

Name Description

“ST_MultiLineString() construc-
tor” on page 236

Constructs a multi linestring representing the empty
set.

“ST_MultiLineString(LONG VARCHAR[,
INT]) constructor” on page 237

Constructs a multi linestring from a text representation.

“ST_MultiLineString(LONG BINARY[, INT])
constructor” on page 237

Constructs a multi linestring from WKB.

“ST_MultiLineString(ST_LineString,...) con-
structor” on page 238

Constructs a multi-linestring from a list of linestring
values.

ST_MultiLineString() constructor
Constructs a multi linestring representing the empty set.

Syntax
NEW ST_MultiLineString()

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Standard feature

Example
The following returns 1, indicating the value is empty.

SELECT new ST_MultiLineString().ST_IsEmpty()

Accessing and manipulating spatial data

236 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ST_MultiLineString(LONG VARCHAR[, INT]) constructor
Constructs a multi linestring from a text representation.

Syntax
NEW ST_MultiLineString(text-representation[, srid])

Parameters

Name Type Description

text-represen-
tation

LONG
VARCHAR

A string containing the text representation of a multi linestring. The in-
put can be in any supported text input format, including WKT or EWKT.

srid INT The SRID of the result. If not specified, the default is 0.

Remarks
Constructs a multi linestring from a character string representation. The database server determines the
input format by inspecting the provided string.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.4.2

Example
The following returns MultiLineString ((10 10, 12 12), (14 10, 16 12))

SELECT NEW ST_MultiLineString('MultiLineString ((10 10, 12 12), (14 10, 16
12))')

ST_MultiLineString(LONG BINARY[, INT]) constructor
Constructs a multi linestring from WKB.

Syntax
NEW ST_MultiLineString(wkb[, srid])

Parameters

Name Type Description

wkb LONG BI-
NARY

A string containing the binary representation of an multi linestring. The input
can be in any supported binary input format, including WKB or EWKB.

srid INT The SRID of the result. If not specified, the default is 0.

ST_MultiLineString type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 237

Remarks
Constructs a multi linestring from a binary string representation. The database server determines the input
format by inspecting the provided string.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.4.2

Example
The following returns MultiLineString ((10 10, 12 12))

SELECT NEW
ST_MultiLineString(0x01050000000100000001020000000200000000000000000024400000
00000000244000000000000028400000000000002840)

ST_MultiLineString(ST_LineString,...) constructor
Constructs a multi-linestring from a list of linestring values.

Syntax
NEW ST_MultiLineString(linestring1,[linestring2,...,linestringN])

Parameters

Name Type Description

linestring1 ST_LineString The first linestring value of the multi-linestring.

linestring2,...,linestringN ST_LineString Additional linestring values of the multi-linestring.

Remarks
Constructs a multi-linestring from a list of linestring values. All of the supplied linestring values must
have the same SRID, and the multi-linestring is constructed with this common SRID.

All of the supplied linestring values must have the same answer for Is3D and IsMeasured. The multi-
linestring is 3D if all of the linestring values are 3D, and the multi-linestring is measured if all of the
linestring values are measured.

Note
By default, ST_MultiLineString uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Accessing and manipulating spatial data

238 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example
The following returns a multilinestring containing a single linestring and is equivalent to the following
WKT: 'MultiLineString ((0 0, 1 1))'
SELECT NEW ST_MultiLineString(NEW ST_LineString('LineString (0 0, 1 1)'))

The following returns a multilinestring containing two linestrings equivalent to the following WKT:
'MultiLineString ((0 0, 1 1), (0 0, 1 1, 2 0))'.

SELECT NEW ST_MultiLineString(
 NEW ST_LineString('LineString (0 0, 1 1)'),
 NEW ST_LineString('LineString(0 0, 1 1, 2 0)'))

ST_MultiLineStringAggr method for type
ST_MultiLineString

Returns a multilinestring containing all of the linestrings in a group

Syntax
ST_MultiLineString::ST_MultiLineStringAggr(geometry-column[ORDER BY order-by-expression
[ASC | DESC], ...])

Parameters

Name Type Description

geometry-column ST_LineString The geometry values to generate the collection. Typically this is
a column.

Returns
● ST_MultiLineString Returns a multilinestring that contains all of the geometries in a group.

The spatial reference system identifier of the result is the same as that for the first parameter.

Remarks
The ST_MultiLineStringAggr aggregate function can be used to combine a group of linestrings into a
single collection. All of the geometries to be combined must have both the same SRID and the same
coordinate dimension.

Rows where the argument is NULL are not included.

Returns NULL for an empty group or a group containing no non-NULL values.

The resulting ST_MultiLineString has the same coordinate dimension as each linestrings.

The optional ORDER BY clause can be used to arrange the elements in a particular order so that
ST_GeometryN returns them in the desired order. If this ordering is not relevant, it is more efficient to not

ST_MultiLineString type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 239

specify an ordering. In that case, the ordering of elements depends on the access plan selected by the
query optimizer.

Note
By default, ST_MultiLineStringAggr uses the original format for a geometry, if it is available. Otherwise,
the internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_MultiPoint type
An ST_MultiPoint is a collection of zero or more ST_Point values, and all of the points are within the
spatial reference system.

Direct supertype
● “ST_GeomCollection type” on page 82

Constructor
● “ST_MultiPoint constructor” on page 240

Methods
● “ST_MultiPointAggr method for type ST_MultiPoint” on page 243
● All methods of “ST_GeomCollection type” on page 82 can also be called on a ST_MultiPoint type.
● All methods of “ST_Geometry type” on page 88 can also be called on a ST_MultiPoint type.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.2

ST_MultiPoint constructor
Constructs a multi point

Overload list

Name Description

“ST_MultiPoint() constructor” on page 241 Constructs a multi point representing the empty set.

Accessing and manipulating spatial data

240 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“ST_MultiPoint(LONG VARCHAR[, INT]) con-
structor” on page 241

Constructs a multi point from a text representation.

“ST_MultiPoint(LONG BINARY[, INT]) con-
structor” on page 242

Constructs a multi point from WKB.

“ST_MultiPoint(ST_Point,...) construc-
tor” on page 242

Constructs a multi-point from a list of point values.

ST_MultiPoint() constructor
Constructs a multi point representing the empty set.

Syntax
NEW ST_MultiPoint()

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Standard feature

Example
The following returns 1, indicating the value is empty.

SELECT new ST_MultiPoint().ST_IsEmpty()

ST_MultiPoint(LONG VARCHAR[, INT]) constructor
Constructs a multi point from a text representation.

Syntax
NEW ST_MultiPoint(text-representation[, srid])

Parameters

Name Type Description

text-represen-
tation

LONG
VARCHAR

A string containing the text representation of a multi point. The input
can be in any supported text input format, including WKT or EWKT.

srid INT The SRID of the result. If not specified, the default is 0.

Remarks
Constructs a multi point from a character string representation. The database server determines the input
format by inspecting the provided string.

ST_MultiPoint type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 241

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.2.2

Example
The following returns MultiPoint ((10 10), (12 12), (14 10))

SELECT NEW ST_MultiPoint('MultiPoint ((10 10), (12 12), (14 10))')

ST_MultiPoint(LONG BINARY[, INT]) constructor
Constructs a multi point from WKB.

Syntax
NEW ST_MultiPoint(wkb[, srid])

Parameters

Name Type Description

wkb LONG BI-
NARY

A string containing the binary representation of an multi point. The input can
be in any supported binary input format, including WKB or EWKB.

srid INT The SRID of the result. If not specified, the default is 0.

Remarks
Constructs a multi point from a binary string representation. The database server determines the input
format by inspecting the provided string.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.2.2

Example
The following returns MultiPoint ((10 10), (12 12), (14 10))

SELECT NEW
ST_MultiPoint(0x0104000000030000000101000000000000000000244000000000000024400
1010000000000000000002840000000000000284001010000000000000000002c400000000000
002440)

ST_MultiPoint(ST_Point,...) constructor
Constructs a multi-point from a list of point values.

Syntax
NEW ST_MultiPoint(point1,[point2,...,pointN])

Accessing and manipulating spatial data

242 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters

Name Type Description

point1 ST_Point The first point value of the multi-point.

point2,...,pointN ST_Point Additional point values of the multi-point.

Remarks
Constructs a multi-point from a list of point values. All of the supplied point values must have the same
SRID, and the multi-point is constructed with this common SRID.

All of the supplied point values must have the same answer for Is3D and IsMeasured. The multi-point is
3D if all of the point values are 3D, and the multi-point is measured if all of the point values are measured.

Note
By default, ST_MultiPoint uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following returns a multi-point containing the single point 'Point (1 2)'.

SELECT NEW ST_MultiPoint(NEW ST_Point(1.0, 2.0))

The following returns a multi-point containing two points 'Point (1 2)' and 'Point (3 4)'.

SELECT NEW ST_MultiPoint(NEW ST_Point(1.0, 2.0), NEW ST_Point(3.0, 4.0))

ST_MultiPointAggr method for type ST_MultiPoint
Returns a multipoint containing all of the points in a group

Syntax
ST_MultiPoint::ST_MultiPointAggr(geometry-column[ORDER BY order-by-expression [ASC |
DESC], ...])

ST_MultiPoint type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 243

Parameters

Name Type Description

geometry-column ST_Point The geometry values to generate the collection. Typically this is a col-
umn.

Returns
● ST_MultiPoint Returns a multipoint that contains all of the geometries in a group.

The spatial reference system identifier of the result is the same as that for the first parameter.

Remarks
The ST_MultiPointAggr aggregate function can be used to combine a group of points into a single
collection. All of the geometries to be combined must have both the same SRID and the same coordinate
dimension.

Rows where the argument is NULL are not included.

Returns NULL for an empty group or a group containing no non-NULL values.

The resulting ST_MultiPoint has the same coordinate dimension as each points.

The optional ORDER BY clause can be used to arrange the elements in a particular order so that
ST_GeometryN returns them in the desired order. If this ordering is not relevant, it is more efficient to not
specify an ordering. In that case, the ordering of elements depends on the access plan selected by the
query optimizer.

Note
By default, ST_MultiPointAggr uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_MultiPolygon type
An ST_MultiPolygon is a collection of zero or more ST_Polygon value, and all of the polygons are within
the spatial reference system.

Direct supertype
● “ST_MultiSurface type” on page 250

Accessing and manipulating spatial data

244 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Constructor
● “ST_MultiPolygon constructor” on page 245

Methods
● “ST_MultiPolygonAggr method for type ST_MultiPolygon” on page 249
● All methods of “ST_MultiSurface type” on page 250 can also be called on a ST_MultiPolygon type.
● All methods of “ST_GeomCollection type” on page 82 can also be called on a ST_MultiPolygon type.
● All methods of “ST_Geometry type” on page 88 can also be called on a ST_MultiPolygon type.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.6

ST_MultiPolygon constructor

Constructs a multi polygon

Overload list

Name Description

“ST_MultiPolygon() construc-
tor” on page 245

Constructs a multi polygon representing the empty set.

“ST_MultiPolygon(LONG VARCHAR[,
INT]) constructor” on page 246

Constructs a multi polygon from a text representation.

“ST_MultiPolygon(LONG BINARY[,
INT]) constructor” on page 246

Constructs a multi polygon from WKB.

“ST_MultiPolygon(ST_Polygon,...) con-
structor” on page 247

Constructs a multi-polygon from a list of polygon values.

“ST_MultiPolygon(ST_MultiLineString[,
VARCHAR(128)]) construc-
tor” on page 248

Creates a multi-polygon from a multilinestring contain-
ing exterior rings and an optional list of interior rings.

ST_MultiPolygon() constructor
Constructs a multi polygon representing the empty set.

Syntax
NEW ST_MultiPolygon()

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Standard feature

ST_MultiPolygon type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 245

Example
The following returns 1, indicating the value is empty.

SELECT new ST_MultiPolygon().ST_IsEmpty()

ST_MultiPolygon(LONG VARCHAR[, INT]) constructor
Constructs a multi polygon from a text representation.

Syntax
NEW ST_MultiPolygon(text-representation[, srid])

Parameters

Name Type Description

text-represen-
tation

LONG
VARCHAR

A string containing the text representation of a multi polygon. The in-
put can be in any supported text input format, including WKT or EWKT.

srid INT The SRID of the result. If not specified, the default is 0.

Remarks
Constructs a multi polygon from a character string representation. The database server determines the
input format by inspecting the provided string.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.6.2

Example
The following returns MultiPolygon (((-5 -5, 5 -5, 0 5, -5 -5), (-2 -2, -2 2, 2 2, 2 -2, -2 -2)), ((10 -5, 15 5, 5
5, 10 -5)))

SELECT NEW ST_MultiPolygon('MultiPolygon (((-5 -5, 5 -5, 0 5, -5 -5), (-2 -2,
-2 2, 2 2, 2 -2, -2 -2)), ((10 -5, 15 5, 5 5, 10 -5)))')

ST_MultiPolygon(LONG BINARY[, INT]) constructor
Constructs a multi polygon from WKB.

Syntax
NEW ST_MultiPolygon(wkb[, srid])

Accessing and manipulating spatial data

246 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters

Name Type Description

wkb LONG BI-
NARY

A string containing the binary representation of an multi polygon. The input
can be in any supported binary input format, including WKB or EWKB.

srid INT The SRID of the result. If not specified, the default is 0.

Remarks
Constructs a multi polygon from a binary string representation. The database server determines the input
format by inspecting the provided string.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.6.2

Example
The following returns MultiPolygon (((10 -5, 15 5, 5 5, 10 -5)))

SELECT NEW
ST_MultiPolygon(0x01060000000100000001030000000100000004000000000000000000244
000000000000014c00000000000002e4000000000000014400000000000001440000000000000
1440000000000000244000000000000014c0)

ST_MultiPolygon(ST_Polygon,...) constructor
Constructs a multi-polygon from a list of polygon values.

Syntax
NEW ST_MultiPolygon(polygon1,[polygon2,...,polygonN])

Parameters

Name Type Description

polygon1 ST_Polygon The first polygon value of the multi-polygon.

polygon2,...,polygonN ST_Polygon Additional polygon values of the multi-polygon.

Remarks
Constructs a multi-polygon from a list of polygon values. All of the supplied polygon values must have
the same SRID, and the multi-polygon is constructed with this common SRID.

All of the supplied polygon values must have the same answer for Is3D and IsMeasured. The multi-
polygon is 3D if all of the polygon values are 3D, and the multi-polygon is measured if all of the polygon
values are measured.

ST_MultiPolygon type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 247

Note
By default, ST_MultiPolygon uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns the result MultiPolygon (((0 0, 1 0, 1 1, 0 1, 0 0))).

SELECT NEW ST_MultiPolygon(NEW ST_Polygon('Polygon ((0 0, 0 1, 1 1, 1 0, 0
0))'))

The following returns a multi-surface equivalent to 'MultiPolygon (((0 0, 0 1, 1 1, 1 0,
0 0)), ((5 5, 5 10, 10 10, 10 5, 5 5)))'
SELECT NEW ST_MultiPolygon(
 NEW ST_Polygon('Polygon ((0 0, 0 1, 1 1, 1 0, 0 0))'),
 NEW ST_Polygon('Polygon ((5 5, 5 10, 10 10, 10 5, 5 5))'))

ST_MultiPolygon(ST_MultiLineString[, VARCHAR(128)]) constructor
Creates a multi-polygon from a multilinestring containing exterior rings and an optional list of interior rings.

Syntax
NEW ST_MultiPolygon(multi-linestring[, polygon-format])

Parameters

Name Type Description

multi-line-
string

ST_MultiLine-
String

A multilinestring value containing exterior rings and (optionally)
a set of interior rings.

polygon-for-
mat

VARCHAR(128) A string with the polygon format to use when interpreting the pro-
vided linestrings. Valid formats are 'CounterClockwise', 'Clock-
wise', and 'EvenOdd'

Remarks
Creates a multi-polygon from a multilinestring containing exterior rings and an optional list of interior
rings. The multilinestring must contain only linear rings.

If specified, the polygon-format parameter selects the algorithm the server uses to determine whether a
ring is an exterior or interior ring. If not specified, the polygon format of the spatial reference system is used.

Accessing and manipulating spatial data

248 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

For additional information on polygon-format, see “POLYGON FORMAT clause, CREATE SPATIAL
REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL Reference].

Note
By default, ST_MultiPolygon uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following returns MultiPolygon (((-4 -4, 4 -4, 4 4, -4 4, -4 -4), (-2 1, -3 3, -1 3, -2 1)), ((6 -4, 14 -4, 14
4, 6 4, 6 -4), (8 1, 7 3, 9 3, 8 1))) (two square polygons each with a triangular hole).

SELECT NEW ST_MultiPolygon(
 NEW ST_MultiLineString ('MultiLineString ((-4 -4, 4 -4, 4 4, -4 4, -4 -4),
(-2 1, -3 3, -1 3, -2 1), (6 -4, 14 -4, 14 4, 6 4, 6 -4), (8 1, 7 3, 9 3, 8
1))'))

ST_MultiPolygonAggr method for type ST_MultiPolygon
Returns a multipolygon containing all of the polygons in a group

Syntax
ST_MultiPolygon::ST_MultiPolygonAggr(geometry-column[ORDER BY order-by-expression [ASC |
DESC], ...])

Parameters

Name Type Description

geometry-column ST_Polygon The geometry values to generate the collection. Typically this is a
column.

Returns
● ST_MultiPolygon Returns a multipolygon that contains all of the geometries in a group.

The spatial reference system identifier of the result is the same as that for the first parameter.

Remarks
The ST_MultiPolygonAggr aggregate function can be used to combine a group of polygons into a single
collection. All of the geometries to be combined must have both the same SRID and the same coordinate
dimension.

Rows where the argument is NULL are not included.

ST_MultiPolygon type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 249

Returns NULL for an empty group or a group containing no non-NULL values.

The resulting ST_MultiPolygon has the same coordinate dimension as each polygons.

The optional ORDER BY clause can be used to arrange the elements in a particular order so that
ST_GeometryN returns them in the desired order. If this ordering is not relevant, it is more efficient to not
specify an ordering. In that case, the ordering of elements depends on the access plan selected by the
query optimizer.

Note
By default, ST_MultiPolygonAggr uses the original format for a geometry, if it is available. Otherwise,
the internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_MultiSurface type
An ST_MultiSurface is a collection of zero or more ST_Surface values, and all of the surfaces are within
the spatial reference system.

Direct supertype
● “ST_GeomCollection type” on page 82

Direct subtypes
● “ST_MultiPolygon type” on page 244

Constructor
● “ST_MultiSurface constructor” on page 251

Methods
● “ST_Area method for type ST_MultiSurface” on page 255
● “ST_Centroid method for type ST_MultiSurface” on page 255
● “ST_MultiSurfaceAggr method for type ST_MultiSurface” on page 256
● “ST_Perimeter method for type ST_MultiSurface” on page 257
● “ST_PointOnSurface method for type ST_MultiSurface” on page 258
● All methods of “ST_GeomCollection type” on page 82 can also be called on a ST_MultiSurface type.
● All methods of “ST_Geometry type” on page 88 can also be called on a ST_MultiSurface type.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.5

Accessing and manipulating spatial data

250 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ST_MultiSurface constructor
Constructs a multi surface

Overload list

Name Description

“ST_MultiSurface() construc-
tor” on page 251

Constructs a multi surface representing the empty set.

“ST_MultiSurface(LONG VARCHAR[,
INT]) constructor” on page 251

Constructs a multi surface from a text representation.

“ST_MultiSurface(LONG BINARY[,
INT]) constructor” on page 252

Constructs a multi surface from WKB.

“ST_MultiSurface(ST_Surface,...) construc-
tor” on page 253

Constructs a multi-surface from a list of surface values.

“ST_MultiSurface(ST_MultiCurve[, VAR-
CHAR(128)]) constructor” on page 254

Creates a multi-surface from a multicurve containing ex-
terior rings and an optional list of interior rings.

ST_MultiSurface() constructor
Constructs a multi surface representing the empty set.

Syntax
NEW ST_MultiSurface()

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Standard feature

Example
The following returns 1, indicating the value is empty.

SELECT new ST_MultiSurface().ST_IsEmpty()

ST_MultiSurface(LONG VARCHAR[, INT]) constructor
Constructs a multi surface from a text representation.

Syntax
NEW ST_MultiSurface(text-representation[, srid])

ST_MultiSurface type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 251

Parameters

Name Type Description

text-represen-
tation

LONG
VARCHAR

A string containing the text representation of a multi surface. The in-
put can be in any supported text input format, including WKT or EWKT.

srid INT The SRID of the result. If not specified, the default is 0.

Remarks
Constructs a multi surface from a character string representation. The database server determines the input
format by inspecting the provided string.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.5.2

Example
The following returns MultiSurface (((-5 -5, 5 -5, 0 5, -5 -5), (-2 -2, -2 2, 2 2, 2 -2, -2 -2)), ((10 -5, 15 5, 5
5, 10 -5)))

SELECT NEW ST_MultiSurface('MultiSurface (((-5 -5, 5 -5, 0 5, -5 -5), (-2 -2,
-2 2, 2 2, 2 -2, -2 -2)), ((10 -5, 15 5, 5 5, 10 -5)))')

ST_MultiSurface(LONG BINARY[, INT]) constructor
Constructs a multi surface from WKB.

Syntax
NEW ST_MultiSurface(wkb[, srid])

Parameters

Name Type Description

wkb LONG BI-
NARY

A string containing the binary representation of an multi surface. The input can
be in any supported binary input format, including WKB or EWKB.

srid INT The SRID of the result. If not specified, the default is 0.

Remarks
Constructs a multi surface from a binary string representation. The database server determines the input
format by inspecting the provided string.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.5.2

Accessing and manipulating spatial data

252 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example
The following returns MultiSurface (CurvePolygon (CircularString (0 0, 10 0, 10 10, 0 10, 0 0)))

SELECT NEW
ST_MultiSurface(0x010c00000001000000010a0000000100000001080000000500000000000
00000000000000000000000000000000000000024400000000000000000000000000000244000
00000000002440000000000000000000000000000024400000000000000000000000000000000
0)

ST_MultiSurface(ST_Surface,...) constructor
Constructs a multi-surface from a list of surface values.

Syntax
NEW ST_MultiSurface(surface1,[surface2,...,surfaceN])

Parameters

Name Type Description

surface1 ST_Surface The first surface value of the multi-surface.

surface2,...,surfaceN ST_Surface Additional surface values of the multi-surface.

Remarks
Constructs a multi-surface from a list of surface values. All of the supplied surface values must have the
same SRID, and the multi-surface is constructed with this common SRID.

All of the supplied surface values must have the same answer for Is3D and IsMeasured. The multi-surface
is 3D if all of the surface values are 3D, and the multi-surface is measured if all of the surface values are
measured.

Note
By default, ST_MultiSurface uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following returns a multi-surface equivalent to 'MultiSurface (((0 0, 0 1, 1 1, 1 0,
0 0)))'
SELECT NEW ST_MultiSurface(NEW ST_Polygon('Polygon ((0 0, 0 1, 1 1, 1 0, 0
0))'))

ST_MultiSurface type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 253

The following example returns the result MultiSurface (((0 0, 1 0, 1 1, 0 1, 0 0)),
((5 5, 10 5, 10 10, 5 10, 5 5))).

SELECT NEW ST_MultiSurface(
 NEW ST_Polygon('Polygon ((0 0, 0 1, 1 1, 1 0, 0 0))'),
 NEW ST_Polygon('Polygon ((5 5, 5 10, 10 10, 10 5, 5 5))'))

ST_MultiSurface(ST_MultiCurve[, VARCHAR(128)]) constructor
Creates a multi-surface from a multicurve containing exterior rings and an optional list of interior rings.

Syntax
NEW ST_MultiSurface(multi-curve[, polygon-format])

Parameters

Name Type Description

multi-curve ST_MultiCurve A multicurve value containing exterior rings and (optionally) a set
of interior rings.

polygon-for-
mat

VARCHAR(128) A string with the polygon format to use when interpreting the pro-
vided curves. Valid formats are 'CounterClockwise', 'Clockwise',
and 'EvenOdd'

Remarks
Creates a multi-surface from a multicurve containing exterior rings and an optional list of interior rings.
The multicurve may contain any curve type.

If specified, the polygon-format parameter selects the algorithm the server uses to determine whether a
ring is an exterior or interior ring. If not specified, the polygon format of the spatial reference system is used.

For additional information on polygon-format, see “POLYGON FORMAT clause, CREATE SPATIAL
REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL Reference].

Note
By default, ST_MultiSurface uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following returns MultiSurface (CurvePolygon ((-4 -4, 4 -4, 4 4, -4 4, -4 -4), (-2 1, -3 3, -1 3, -2 1)),
CurvePolygon ((6 -4, 14 -4, 14 4, 6 4, 6 -4), CircularString (9 -1, 9 1, 11 1, 11 -1, 9 -1)))

Accessing and manipulating spatial data

254 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SELECT NEW ST_MultiSurface(NEW ST_MultiCurve ('MultiCurve ((-4 -4, 4 -4, 4 4,
-4 4, -4 -4), (-2 1, -3 3, -1 3, -2 1), (6 -4, 14 -4, 14 4, 6 4, 6 -4),
CircularString (9 -1, 9 1, 11 1, 11 -1, 9 -1))'))

ST_Area method for type ST_MultiSurface
Computes the area of the multi-surface in the specified units.

Syntax
multisurface-expression.ST_Area([unit-name])

Parameters

Name Type Description

unit-
name

VAR-
CHAR(128)

The units in which the area should be computed. Defaults to the unit of
the spatial reference system. The unit name must match the
UNIT_NAME column of a row in the ST_UNITS_OF_MEASURE view
where UNIT_TYPE is 'LINEAR'.

Returns
● DOUBLE Returns the area of the multi-surface.

Remarks
Computes the area of the multi-surface in the specified units. The area of the multi-surface is the sum of
the areas of the contained surfaces.

Note
This method can not be used with geometries in round-Earth spatial reference system.

See also
● “ST_Area method for type ST_Surface” on page 289

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.5.3

ST_Centroid method for type ST_MultiSurface
Computes the ST_Point that is the mathematical centroid of the multi-surface.

Syntax
multisurface-expression.ST_Centroid()

ST_MultiSurface type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 255

Returns
● ST_Point If the multi-surface is the empty set, returns NULL. Otherwise, returns the mathematical

centroid of the surface.

The spatial reference system identifier of the result is the same as the spatial reference system of the
multisurface-expression.

Remarks
Computes the ST_Point that is the mathematical centroid of the multi-surface. Note that this point will not
necessarily be a point on the surface.

Note
This method can not be used with geometries in round-Earth spatial reference system.

See also
● “ST_Centroid method for type ST_Surface” on page 289
● “ST_PointOnSurface method for type ST_MultiSurface” on page 258

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.5.5

ST_MultiSurfaceAggr method for type ST_MultiSurface
Returns a multisurface containing all of the surfaces in a group

Syntax
ST_MultiSurface::ST_MultiSurfaceAggr(geometry-column[ORDER BY order-by-expression [ASC |
DESC], ...])

Parameters

Name Type Description

geometry-column ST_Surface The geometry values to generate the collection. Typically this is a
column.

Returns
● ST_MultiSurface Returns a multisurface that contains all of the geometries in a group.

The spatial reference system identifier of the result is the same as that for the first parameter.

Remarks
The ST_MultiSurfaceAggr aggregate function can be used to combine a group of surfaces into a single
collection. All of the geometries to be combined must have both the same SRID and the same coordinate
dimension.

Accessing and manipulating spatial data

256 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Rows where the argument is NULL are not included.

Returns NULL for an empty group or a group containing no non-NULL values.

The resulting ST_MultiSurface has the same coordinate dimension as each surfaces.

The optional ORDER BY clause can be used to arrange the elements in a particular order so that
ST_GeometryN returns them in the desired order. If this ordering is not relevant, it is more efficient to not
specify an ordering. In that case, the ordering of elements depends on the access plan selected by the
query optimizer.

Note
By default, ST_MultiSurfaceAggr uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_Perimeter method for type ST_MultiSurface

Computes the perimeter of the multi-surface in the specified units.

Syntax
multisurface-expression.ST_Perimeter([unit-name])

Parameters

Name Type Description

unit-
name

VAR-
CHAR(128)

The units in which the perimeter should be computed. Defaults to the unit
of the spatial reference system. The unit name must match the
UNIT_NAME column of a row in the ST_UNITS_OF_MEASURE view
where UNIT_TYPE is 'LINEAR'.

Returns
● DOUBLE Returns the perimeter of the multi-surface.

Remarks
The ST_Perimeter method returns the length of the perimeter of a multi-surface in the units identified by
the unit-name parameter. If the multi-surface is empty, then NULL is returned.

If the multi-surface contains Z values, these are not considered when computing the perimeter of the
geometry.

ST_MultiSurface type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 257

The perimeter of a polygon includes the length of all rings (exterior and interior).

Note
If the multisurface-expression is an empty geometry (ST_IsEmpty()=1), then this method returns NULL.

Note
By default, ST_Perimeter uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.5.4

Example
The following example creates a multi-surface containing two polygons and uses ST_Perimeter to find the
length of the perimeter, returning the result 44.

SELECT NEW ST_MultiSurface(NEW ST_Polygon('Polygon((0 0, 1 0, 1 1,0 1, 0
0))')
 , NEW ST_Polygon('Polygon((10 10, 20 10, 20 20,10 20, 10
10))'))
 .ST_Perimeter()

The following example creates a multi-surface containing two polygons and an example unit of measure
(example_unit_halfmetre). The ST_Perimeter finds the length of the perimeter, returning the value 88.0.

CREATE SPATIAL UNIT OF MEASURE IF NOT EXISTS "example_unit_halfmetre" TYPE
LINEAR CONVERT USING .5;
SELECT NEW ST_MultiSurface(NEW ST_Polygon('Polygon((0 0, 1 0, 1 1,0 1, 0
0))')
 , NEW ST_Polygon('Polygon((10 10, 20 10, 20 20,10 20, 10
10))'))
 .ST_Perimeter('example_unit_halfmetre');

ST_PointOnSurface method for type ST_MultiSurface
Returns a point that is guaranteed to be on a surface in the multi-surface

Syntax
multisurface-expression.ST_PointOnSurface()

Returns
● ST_Point If the multi-surface is the empty set, returns NULL. Otherwise, returns an ST_Point

value guaranteed to spatially intersect the ST_MultiSurface value.

The spatial reference system identifier of the result is the same as the spatial reference system of the
multisurface-expression.

Accessing and manipulating spatial data

258 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
Returns a point that is in the interior of one of the surfaces of a multi-surface.

Note
If the multisurface-expression contains circular strings, then these are interpolated to line strings.

See also
● “ST_PointOnSurface method for type ST_Surface” on page 291
● “ST_Centroid method for type ST_MultiSurface” on page 255

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.5.6

ST_Point type
The ST_Point type is a 0-dimensional geometry and represents a single location.

Direct supertype
● “ST_Geometry type” on page 88

Constructor
● “ST_Point constructor” on page 259

Methods
● “ST_Lat method for type ST_Point” on page 263
● “ST_Long method for type ST_Point” on page 265
● “ST_M method for type ST_Point” on page 267
● “ST_X method for type ST_Point” on page 268
● “ST_Y method for type ST_Point” on page 270
● “ST_Z method for type ST_Point” on page 272
● All methods of “ST_Geometry type” on page 88 can also be called on a ST_Point type.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 6.1

ST_Point constructor
Constructs a point

ST_Point type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 259

Note
When creating an ST_Point value from coordinates, the overload that is picked is not always predictable.
For example, the expression "NEW ST_Point(1,2,3)" creates a 2D point with x=1, y=2 and SRID=3. The
expression "NEW ST_Point(1,2,3.0)" creates a 3D point with z=3.0.

Overload list

Name Description

“ST_Point() constructor” on page 260 Constructs a point representing the empty set.

“ST_Point(LONG VARCHAR[, INT]) con-
structor” on page 260

Constructs a point from a text representation.

“ST_Point(LONG BINARY[, INT]) construc-
tor” on page 261

Constructs a point from WKB.

“ST_Point(DOUBLE,DOUBLE[, INT]) con-
structor” on page 262

Constructs a 2D point from x,y coordinates.

“ST_Point(DOUBLE,DOUBLE,DOUBLE[,
INT]) constructor” on page 262

Constructs a 3D point from x,y,z coordinates.

“ST_Point(DOUBLE,DOUBLE,DOU-
BLE,DOUBLE[, INT]) construc-
tor” on page 263

Constructs a 3D, measured point from x,y,z coordi-
nates and a measure value

ST_Point() constructor
Constructs a point representing the empty set.

Syntax
NEW ST_Point()

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Standard feature

Example
The following returns 1, indicating the value is empty.

SELECT new ST_Point().ST_IsEmpty()

ST_Point(LONG VARCHAR[, INT]) constructor
Constructs a point from a text representation.

Accessing and manipulating spatial data

260 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
NEW ST_Point(text-representation[, srid])

Parameters

Name Type Description

text-represen-
tation

LONG
VARCHAR

A string containing the text representation of a point. The input can
be in any supported text input format, including WKT or EWKT.

srid INT The SRID of the result. If not specified, the default is 0.

Remarks
Constructs a point from a character string representation. The database server determines the input format
by inspecting the provided string.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 6.1.2

Example
The following returns Point (10 20)

SELECT NEW ST_Point('Point (10 20)')

ST_Point(LONG BINARY[, INT]) constructor
Constructs a point from WKB.

Syntax
NEW ST_Point(wkb[, srid])

Parameters

Name Type Description

wkb LONG BI-
NARY

A string containing the binary representation of an point. The input can be in
any supported binary input format, including WKB or EWKB.

srid INT The SRID of the result. If not specified, the default is 0.

Remarks
Constructs a point from a binary string representation. The database server determines the input format by
inspecting the provided string.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 6.1.2

ST_Point type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 261

Example
The following returns Point (10 20)

SELECT NEW ST_Point(0x010100000000000000000024400000000000003440)

ST_Point(DOUBLE,DOUBLE[, INT]) constructor
Constructs a 2D point from x,y coordinates.

Syntax
NEW ST_Point(x,y[, srid])

Parameters

Name Type Description

x DOUBLE The x-coordinate value.

y DOUBLE The y-coordinate value.

srid INT The SRID of the result. If not specified, the default is 0.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 6.1.2

Example
The following returns Point (10 20)

SELECT NEW ST_Point(10.0,20.0,0)

ST_Point(DOUBLE,DOUBLE,DOUBLE[, INT]) constructor
Constructs a 3D point from x,y,z coordinates.

Syntax
NEW ST_Point(x,y,z[, srid])

Parameters

Name Type Description

x DOUBLE The x-coordinate value.

y DOUBLE The y-coordinate value.

z DOUBLE The z-coordinate value.

Accessing and manipulating spatial data

262 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Type Description

srid INT The SRID of the result. If not specified, the default is 0.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 6.1.2

Example
The following returns Point Z (10 20 100)

SELECT NEW ST_Point(10.0,20.0,100.0,0)

ST_Point(DOUBLE,DOUBLE,DOUBLE,DOUBLE[, INT]) constructor
Constructs a 3D, measured point from x,y,z coordinates and a measure value

Syntax
NEW ST_Point(x,y,z,m[, srid])

Parameters

Name Type Description

x DOUBLE The x-coordinate value.

y DOUBLE The y-coordinate value.

z DOUBLE The z-coordinate value.

m DOUBLE The measure value.

srid INT The SRID of the result. If not specified, the default is 0.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 6.1.2

Example
The following returns Point ZM (10 20 100 1224)

SELECT NEW ST_Point(10.0,20.0,100.0,1224.0,0)

ST_Lat method for type ST_Point
Returns the latitude coordinate of the ST_Point value.

ST_Point type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 263

Overload list

Name Description

“ST_Lat() method for type
ST_Point” on page 264

Returns the latitude coordinate of the ST_Point value.

“ST_Lat(DOUBLE) method for type
ST_Point” on page 264

Returns a copy of the point with the latitude coordinate set
to the specified latitude value.

ST_Lat() method for type ST_Point
Returns the latitude coordinate of the ST_Point value.

Note
If the point-expression is an empty geometry (ST_IsEmpty()=1), then this method returns NULL.

Note
By default, ST_Lat uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Syntax
point-expression.ST_Lat()

Returns
● DOUBLE Returns the latitude coordinate of the ST_Point value.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example gives an error because the spatial reference system identified by 0 is not a
geographic spatial reference system.

SELECT NEW ST_Point(10.0, 20.0, 0).ST_Lat()

The following example returns the result 20.0.

SELECT NEW ST_Point(10.0, 20.0, 4326).ST_Lat()

ST_Lat(DOUBLE) method for type ST_Point
Returns a copy of the point with the latitude coordinate set to the specified latitude value.

Accessing and manipulating spatial data

264 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Note
If the point-expression is an empty geometry (ST_IsEmpty()=1), then this method returns NULL.

Note
By default, ST_Lat uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Syntax
point-expression.ST_Lat(latitude-val)

Parameters

Name Type Description

latitude-val DOUBLE The new latitude value.

Returns
● ST_Point Returns a copy of the point with the latitude set to the specified value.

The spatial reference system identifier of the result is the same as the spatial reference system of the
point-expression.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_Long method for type ST_Point

Returns the longitude coordinate of the ST_Point value.

Overload list

Name Description

“ST_Long() method for type
ST_Point” on page 265

Returns the longitude coordinate of the ST_Point value.

“ST_Long(DOUBLE) method for type
ST_Point” on page 266

Returns a copy of the point with the longitude coordinate set
to the specified longitude value.

ST_Long() method for type ST_Point
Returns the longitude coordinate of the ST_Point value.

ST_Point type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 265

Note
If the point-expression is an empty geometry (ST_IsEmpty()=1), then this method returns NULL.

Note
By default, ST_Long uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Syntax
point-expression.ST_Long()

Returns
● DOUBLE Returns the longitude coordinate of the ST_Point value.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example gives an error because the spatial reference system identified by 0 is not a
geographic spatial reference system.

SELECT NEW ST_Point(10.0, 20.0, 0).ST_Lon()

The following example returns the result 10.0.

SELECT NEW ST_Point(10.0, 20.0, 4326).ST_Long()

ST_Long(DOUBLE) method for type ST_Point
Returns a copy of the point with the longitude coordinate set to the specified longitude value.

Note
If the point-expression is an empty geometry (ST_IsEmpty()=1), then this method returns NULL.

Note
By default, ST_Long uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Syntax
point-expression.ST_Long(longitude-val)

Accessing and manipulating spatial data

266 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters

Name Type Description

longitude-val DOUBLE The new longitude value.

Returns
● ST_Point Returns a copy of the point with the longitude set to the specified value.

The spatial reference system identifier of the result is the same as the spatial reference system of the
point-expression.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_M method for type ST_Point
Retrieves or modifies the m coordinate value of a point.

Overload list

Name Description

“ST_M() method for type
ST_Point” on page 267

Returns the m value of the ST_Point value.

“ST_M(DOUBLE) method for type
ST_Point” on page 268

Returns a copy of the point with the m coordinate set to
the specified mcoord value.

ST_M() method for type ST_Point
Returns the m value of the ST_Point value.

Note
If the point-expression is an empty geometry (ST_IsEmpty()=1), then this method returns NULL.

Note
By default, ST_M uses the original format for a geometry, if it is available. Otherwise, the internal format
is used. For more information about internal and original formats, see “STORAGE FORMAT clause,
CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL Reference].

Syntax
point-expression.ST_M()

ST_Point type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 267

Returns
● DOUBLE Returns the m value of the ST_Point value.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 6.1.6

Example
The following example returns the result 40.0.

SELECT NEW ST_Point(10.0, 20.0, 30.0, 40.0, 0).ST_M()

ST_M(DOUBLE) method for type ST_Point
Returns a copy of the point with the m coordinate set to the specified mcoord value.

Note
If the point-expression is an empty geometry (ST_IsEmpty()=1), then this method returns NULL.

Note
By default, ST_M uses the original format for a geometry, if it is available. Otherwise, the internal format
is used. For more information about internal and original formats, see “STORAGE FORMAT clause,
CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL Reference].

Syntax
point-expression.ST_M(mcoord)

Parameters

Name Type Description

mcoord DOUBLE The new m-coordinate value.

Returns
● ST_Point Returns a copy of the point with the m coordinate set to the specified mcoord value.

The spatial reference system identifier of the result is the same as the spatial reference system of the
point-expression.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 6.1.6

ST_X method for type ST_Point
Retrieves or modifies the x coordinate value of a point.

Accessing and manipulating spatial data

268 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Overload list

Name Description

“ST_X() method for type
ST_Point” on page 269

Returns the x coordinate of the ST_Point value.

“ST_X(DOUBLE) method for type
ST_Point” on page 269

Returns a copy of the point with the x coordinate set to the
specified xcoord value.

ST_X() method for type ST_Point
Returns the x coordinate of the ST_Point value.

Note
If the point-expression is an empty geometry (ST_IsEmpty()=1), then this method returns NULL.

Note
By default, ST_X uses the original format for a geometry, if it is available. Otherwise, the internal format
is used. For more information about internal and original formats, see “STORAGE FORMAT clause,
CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL Reference].

Syntax
point-expression.ST_X()

Returns
● DOUBLE Returns the x coordinate of the ST_Point value.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 6.1.3

Example
The following example returns the result 10.0.

SELECT NEW ST_Point(10.0, 20.0, 30.0, 40.0, 0).ST_X()

ST_X(DOUBLE) method for type ST_Point
Returns a copy of the point with the x coordinate set to the specified xcoord value.

Note
If the point-expression is an empty geometry (ST_IsEmpty()=1), then this method returns NULL.

ST_Point type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 269

Note
By default, ST_X uses the original format for a geometry, if it is available. Otherwise, the internal format
is used. For more information about internal and original formats, see “STORAGE FORMAT clause,
CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL Reference].

Syntax
point-expression.ST_X(xcoord)

Parameters

Name Type Description

xcoord DOUBLE The new x-coordinate value.

Returns
● ST_Point Returns a copy of the point with the x coordinate set to the specified xcoord value.

The spatial reference system identifier of the result is the same as the spatial reference system of the
point-expression.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 6.1.3

ST_Y method for type ST_Point
Retrieves or modifies the y coordinate value of a point.

Overload list

Name Description

“ST_Y() method for type
ST_Point” on page 270

Returns the y coordinate of the ST_Point value.

“ST_Y(DOUBLE) method for type
ST_Point” on page 271

Returns a copy of the point with the y coordinate set to the
specified ycoord value.

ST_Y() method for type ST_Point
Returns the y coordinate of the ST_Point value.

Note
If the point-expression is an empty geometry (ST_IsEmpty()=1), then this method returns NULL.

Accessing and manipulating spatial data

270 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Note
By default, ST_Y uses the original format for a geometry, if it is available. Otherwise, the internal format
is used. For more information about internal and original formats, see “STORAGE FORMAT clause,
CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL Reference].

Syntax
point-expression.ST_Y()

Returns
● DOUBLE Returns the y coordinate of the ST_Point value.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 6.1.4

Example
The following example returns the result 20.0.

SELECT NEW ST_Point(10.0, 20.0, 30.0, 40.0, 0).ST_Y()

ST_Y(DOUBLE) method for type ST_Point
Returns a copy of the point with the y coordinate set to the specified ycoord value.

Note
If the point-expression is an empty geometry (ST_IsEmpty()=1), then this method returns NULL.

Note
By default, ST_Y uses the original format for a geometry, if it is available. Otherwise, the internal format
is used. For more information about internal and original formats, see “STORAGE FORMAT clause,
CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL Reference].

Syntax
point-expression.ST_Y(ycoord)

Parameters

Name Type Description

ycoord DOUBLE The new y-coordinate value.

Returns
● ST_Point Returns a copy of the point with the y coordinate set to the specified ycoord value.

The spatial reference system identifier of the result is the same as the spatial reference system of the
point-expression.

ST_Point type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 271

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 6.1.4

ST_Z method for type ST_Point
Retrieves or modifies the z coordinate value of a point.

Overload list

Name Description

“ST_Z() method for type
ST_Point” on page 272

Returns the z coordinate of the ST_Point value.

“ST_Z(DOUBLE) method for type
ST_Point” on page 273

Returns a copy of the point with the z coordinate set to the
specified zcoord value.

ST_Z() method for type ST_Point
Returns the z coordinate of the ST_Point value.

Note
If the point-expression is an empty geometry (ST_IsEmpty()=1), then this method returns NULL.

Note
By default, ST_Z uses the original format for a geometry, if it is available. Otherwise, the internal format
is used. For more information about internal and original formats, see “STORAGE FORMAT clause,
CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL Reference].

Syntax
point-expression.ST_Z()

Returns
● DOUBLE Returns the z coordinate of the ST_Point value.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 6.1.4

Example
The following example returns the result 30.0.

SELECT NEW ST_Point(10.0, 20.0, 30.0, 40.0, 0).ST_Z()

Accessing and manipulating spatial data

272 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ST_Z(DOUBLE) method for type ST_Point
Returns a copy of the point with the z coordinate set to the specified zcoord value.

Note
If the point-expression is an empty geometry (ST_IsEmpty()=1), then this method returns NULL.

Note
By default, ST_Z uses the original format for a geometry, if it is available. Otherwise, the internal format
is used. For more information about internal and original formats, see “STORAGE FORMAT clause,
CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL Reference].

Syntax
point-expression.ST_Z(zcoord)

Parameters

Name Type Description

zcoord DOUBLE The new z-coordinate value.

Returns
● ST_Point Returns a copy of the point with the z coordinate set to the specified zcoord value.

The spatial reference system identifier of the result is the same as the spatial reference system of the
point-expression.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 6.1.5

ST_Polygon type
An ST_Polygon is an ST_CurvePolygon that is formed with interior and exterior rings that are linear rings.

Direct supertype
● “ST_CurvePolygon type” on page 74

Constructor
● “ST_Polygon constructor” on page 274

ST_Polygon type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 273

Methods
● “ST_ExteriorRing method for type ST_Polygon” on page 279
● “ST_InteriorRingN method for type ST_Polygon” on page 280
● All methods of “ST_CurvePolygon type” on page 74 can also be called on a ST_Polygon type.
● All methods of “ST_Surface type” on page 288 can also be called on a ST_Polygon type.
● All methods of “ST_Geometry type” on page 88 can also be called on a ST_Polygon type.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 8.3

ST_Polygon constructor
Constructs a polygon

Overload list

Name Description

“ST_Polygon() constructor” on page 274 Constructs a polygon representing the empty set.

“ST_Polygon(LONG VARCHAR[, INT])
constructor” on page 275

Constructs a polygon from a text representation.

“ST_Polygon(LONG BINARY[, INT])
constructor” on page 275

Constructs a polygon from WKB.

“ST_Polygon(ST_Point,ST_Point) con-
structor” on page 276

Creates an axis-aligned rectangle from two points repre-
senting the lower-left and upper-right corners.

“ST_Polygon(ST_MultiLineString[, VAR-
CHAR(128)]) constructor” on page 277

Creates a polygon from a multilinestring containing an ex-
terior ring and an optional list of interior rings.

“ST_Polygon(ST_LineString,...) construc-
tor” on page 278

Creates a polygon from a linestring representing the exte-
rior ring and an optional list of linestrings representing in-
terior rings.

ST_Polygon() constructor
Constructs a polygon representing the empty set.

Syntax
NEW ST_Polygon()

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Standard feature

Accessing and manipulating spatial data

274 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example
The following returns 1, indicating the value is empty.

SELECT new ST_Polygon().ST_IsEmpty()

ST_Polygon(LONG VARCHAR[, INT]) constructor
Constructs a polygon from a text representation.

Syntax
NEW ST_Polygon(text-representation[, srid])

Parameters

Name Type Description

text-represen-
tation

LONG
VARCHAR

A string containing the text representation of a polygon. The input can
be in any supported text input format, including WKT or EWKT.

srid INT The SRID of the result. If not specified, the default is 0.

Remarks
Constructs a polygon from a character string representation. The database server determines the input
format by inspecting the provided string.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 8.3.2

Example
The following returns Polygon ((-5 -5, 5 -5, 0 5, -5 -5), (-2 -2, -2 2, 2 2, 2 -2, -2 -2))

SELECT NEW ST_Polygon('Polygon ((-5 -5, 5 -5, 0 5, -5 -5), (-2 -2, -2 2, 2 2,
2 -2, -2 -2))')

ST_Polygon(LONG BINARY[, INT]) constructor
Constructs a polygon from WKB.

Syntax
NEW ST_Polygon(wkb[, srid])

Parameters

Name Type Description

wkb LONG BI-
NARY

A string containing the binary representation of an polygon. The input can be
in any supported binary input format, including WKB or EWKB.

ST_Polygon type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 275

Name Type Description

srid INT The SRID of the result. If not specified, the default is 0.

Remarks
Constructs a polygon from a binary string representation. The database server determines the input format
by inspecting the provided string.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 8.3.2

Example
The following returns Polygon ((10 -5, 15 5, 5 5, 10 -5))

SELECT NEW
ST_Polygon(0x01030000000100000004000000000000000000244000000000000014c0000000
0000002e400000000000001440000000000000144000000000000014400000000000002440000
00000000014c0)

ST_Polygon(ST_Point,ST_Point) constructor
Creates an axis-aligned rectangle from two points representing the lower-left and upper-right corners.

Syntax
NEW ST_Polygon(pmin,pmax)

Parameters

Name Type Description

pmin ST_Point A point that is the lower-left corner of the rectangle.

pmax ST_Point A point that is the upper-right corner of the rectangle.

Remarks
Returns a rectangle defined as the envelope of two points.

The constructor is equivalent to the following: NEW ST_MultiPoint(pmin, pmax,
pmin.ST_SRID()).ST_Envelope()

Note
By default, ST_Polygon uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Accessing and manipulating spatial data

276 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following returns Polygon ((0 0, 4 0, 4 10, 0 10, 0 0))

SELECT NEW ST_Polygon(NEW ST_Point(0.0, 0.0), NEW ST_Point(4.0, 10.0))

ST_Polygon(ST_MultiLineString[, VARCHAR(128)]) constructor
Creates a polygon from a multilinestring containing an exterior ring and an optional list of interior rings.

Syntax
NEW ST_Polygon(multi-linestring[, polygon-format])

Parameters

Name Type Description

multi-line-
string

ST_MultiLine-
String

A multilinestring value containing an exterior ring and (optional-
ly) a set of interior rings.

polygon-for-
mat

VARCHAR(128) A string with the polygon format to use when interpreting the pro-
vided linestrings. Valid formats are 'CounterClockwise', 'Clock-
wise', and 'EvenOdd'

Remarks
Creates a polygon from a multilinestring containing an exterior ring and an optional list of interior rings.
The multilinestring must contain only linear rings.

If specified, the polygon-format parameter selects the algorithm the server uses to determine whether a
ring is an exterior or interior ring. If not specified, the polygon format of the spatial reference system is used.

For additional information on polygon-format, see “POLYGON FORMAT clause, CREATE SPATIAL
REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL Reference].

Note
By default, ST_Polygon uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 8.3.2

ST_Polygon type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 277

Example
The following returns Polygon ((-5 -1, 5 -1, 0 9, -5 -1), (-2 0, 0 4, 2 0, -2 0)) (a triangle with a triangular
hole).

SELECT NEW ST_Polygon(
 NEW ST_MultiLineString ('MultiLineString ((-5 -1, 5 -1, 0 9, -5 -1), (-2
0, 0 4, 2 0, -2 0))'))

ST_Polygon(ST_LineString,...) constructor
Creates a polygon from a linestring representing the exterior ring and an optional list of linestrings
representing interior rings.

Syntax
NEW ST_Polygon(exterior-ring,[interior-ring1,...,interior-ringN])

Parameters

Name Type Description

exterior-ring ST_LineString The exterior ring of the polygon

interior-ring1,...,interior-ringN ST_LineString Interior rings of the polygon

Remarks
Creates a polygon from a linestring representing the exterior ring and a list (possibly empty) of linestrings
representing interior rings. All of the specified linestring values must have the same SRID. The resulting
polygon is constructed with this common SRID.

All of the supplied linestrings must be non-empty and have the same answer for Is3D and IsMeasured.
The polygon is 3D if all of the linestrings are 3D, and the polygon is measured if all of the linestrings are
measured.

Note
By default, ST_Polygon uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
The ability to specify a varying length list of interior rings is a vendor extension.

● SQL/MM (ISO/IEC 13249-3: 2006) 8.3.2

Example
The following returns Polygon ((-5 -1, 5 -1, 0 9, -5 -1), (-2 0, 0 4, 2 0, -2 0)) (a triangle with a triangular
hole).

Accessing and manipulating spatial data

278 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SELECT NEW ST_Polygon(
 NEW ST_LineString ('LineString (-5 -1, 5 -1, 0 9, -5 -1)'),
 NEW ST_LineString ('LineString (-2 0, 0 4, 2 0, -2 0)'))

ST_ExteriorRing method for type ST_Polygon
Retrieve or modify the exterior ring.

Overload list

Name Description

“ST_ExteriorRing() method for type ST_Poly-
gon” on page 279

Returns the exterior ring of the polygon.

“ST_ExteriorRing(ST_Curve) method for type ST_Poly-
gon” on page 279

Changes the exterior ring of the polygon.

ST_ExteriorRing() method for type ST_Polygon
Returns the exterior ring of the polygon.

Note
By default, ST_ExteriorRing uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Syntax
polygon-expression.ST_ExteriorRing()

Returns
● ST_LineString Returns the exterior ring of the polygon.

The spatial reference system identifier of the result is the same as the spatial reference system of the
polygon-expression.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 8.3.3

ST_ExteriorRing(ST_Curve) method for type ST_Polygon
Changes the exterior ring of the polygon.

ST_Polygon type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 279

Note
By default, ST_ExteriorRing uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Syntax
polygon-expression.ST_ExteriorRing(curve)

Parameters

Name Type Description

curve ST_Curve The new exterior ring of the polygon. This must be a linear ring value.

Returns
● ST_Polygon Returns a copy of the polygon with specified exterior ring.

The spatial reference system identifier of the result is the same as the spatial reference system of the
polygon-expression.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 8.3.3

ST_InteriorRingN method for type ST_Polygon
Returns the nth interior ring in the polygon.

Note
By default, ST_InteriorRingN uses the original format for a geometry, if it is available. Otherwise, the
internal format is used. For more information about internal and original formats, see “STORAGE
FORMAT clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Syntax
polygon-expression.ST_InteriorRingN(n)

Parameters

Name Type Description

n INT The position of the element to return, from 1 to polygon-expression.ST_NumInterior-
Ring().

Accessing and manipulating spatial data

280 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns
● ST_LineString Returns the nth interior ring in the polygon.

The spatial reference system identifier of the result is the same as the spatial reference system of the
polygon-expression.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 8.3.5

ST_SpatialRefSys type
The ST_SpatialRefSys type defines routines for working with spatial reference systems.

Methods
● “ST_CompareWKT method for type ST_SpatialRefSys” on page 281
● “ST_FormatTransformDefinition method for type ST_SpatialRefSys” on page 282
● “ST_FormatWKT method for type ST_SpatialRefSys” on page 283
● “ST_GetUnProjectedTransformDefinition method for type ST_SpatialRefSys” on page 284
● “ST_ParseWKT method for type ST_SpatialRefSys” on page 285
● “ST_TransformGeom method for type ST_SpatialRefSys” on page 286
● “ST_World method for type ST_SpatialRefSys” on page 287

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 13.1

ST_CompareWKT method for type ST_SpatialRefSys
Compares two spatial reference system definitions.

Syntax
ST_SpatialRefSys::ST_CompareWKT(transform-definition-1,transform-definition-2)

Parameters

Name Type Description

transform-definition-1 LONG VARCHAR The first spatial reference system definition text

transform-definition-2 LONG VARCHAR The second spatial reference system definition text

Returns
● BIT Returns 1 if the two spatial reference systems are logically equivalent, otherwise 0.

ST_SpatialRefSys type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 281

Remarks
Determines if two spatial reference systems (defined by WKT) are logically equivalent. The systems are
considered logically equal if they are defined by the same authority with the same identifier or if the
strings are exactly equal.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example shows that two spatial reference systems are considered equal even though they
have different names:

SELECT ST_SpatialRefSys::ST_CompareWKT(
 'GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",
6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRI
MEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",
0.01745329251994328,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]]'
, 'GEOGCS["WGS 84 alternate name",DATUM["WGS_1984",SPHEROID["WGS 84",
6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRI
MEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",
0.01745329251994328,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]]'
) Considered_Equal

The following example shows two spatial reference systems that are considered non-equal because they
are defined by different authorities:

SELECT ST_SpatialRefSys::ST_CompareWKT(
 'GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",
6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRI
MEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",
0.01745329251994328,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]]'
, 'GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",
6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRI
MEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",
0.01745329251994328,AUTHORITY["EPSG","9122"]],AUTHORITY["AnotherAuthority","4
326"]]'
) Considered_NotEqual

ST_FormatTransformDefinition method for type
ST_SpatialRefSys

Returns a formatted copy of the transform definition.

Syntax
ST_SpatialRefSys::ST_FormatTransformDefinition(transform-definition)

Accessing and manipulating spatial data

282 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters

Name Type Description

transform-definition LONG VARCHAR The spatial reference system transform definition text

Returns
● LONG VARCHAR Returns a text string defining the transform definition

Remarks
Returns a formatted copy of the transform definition.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns the result +proj=longlat +ellps=WGS84 +datum=WGS84
+no_defs +towgs84=0,0,0 +no_defs.

SELECT ST_SpatialRefSys::ST_FormatTransformDefinition('+proj=longlat
+ellps=WGS84 +datum=WGS84 +no_defs')

ST_FormatWKT method for type ST_SpatialRefSys
Returns a formatted copy of the WKT definition.

Syntax
ST_SpatialRefSys::ST_FormatWKT(definition)

Parameters

Name Type Description

definition LONG VARCHAR The spatial reference system definition text

Returns
● LONG VARCHAR Returns a text string defining the spatial reference system in WKT.

Remarks
Returns a formatted copy of the WKT spatial reference system definition.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_SpatialRefSys type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 283

Example
The following example returns the result GEOGCS["WGS 84", DATUM["WGS_1984",
SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],
AUTHORITY["EPSG","6326"]], PRIMEM["Greenwich",
0,AUTHORITY["EPSG","8901"]], UNIT["degree",
0.01745329251994328,AUTHORITY["EPSG","9122"]],
AUTHORITY["EPSG","4326"]].

SELECT ST_SpatialRefSys::ST_FormatWKT('GEOGCS["WGS
84",DATUM["WGS_1984",SPHEROID["WGS 84",
6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRI
MEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",
0.01745329251994328,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]]')

ST_GetUnProjectedTransformDefinition method for type
ST_SpatialRefSys

Returns the transform definition of the spatial reference system that is the source of the projection.

Syntax
ST_SpatialRefSys::ST_GetUnProjectedTransformDefinition(transform-definition)

Parameters

Name Type Description

transform-definition LONG VARCHAR The spatial reference system transform definition text

Returns
● LONG VARCHAR Returns a text string defining the transform definition of the unprojected spatial

reference system.

Remarks
If the transform-definition parameter defines a projected spatial reference system, returns the definition of
the source spatial reference system.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns the result +proj=latlong +a=6371000 +b=6371000
+no_defs.

SELECT ST_SpatialRefSys::ST_GetUnProjectedTransformDefinition('+proj=robin
+lon_0=0 +x_0=0 +y_0=0 +a=6371000 +b=6371000 +units=m no_defs')

Accessing and manipulating spatial data

284 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ST_ParseWKT method for type ST_SpatialRefSys
Retrieves a named element from the WKT definition of a spatial reference system.

Syntax
ST_SpatialRefSys::ST_ParseWKT(element,srs-text)

Parameters

Name Type Description

element VAR-
CHAR(128)

The element to retrieve from the WKT. The following named elements
may be retrieved:

● srs_name The name of the spatial reference system

● srs_type The coordinate system type.

● organization The name of the organization that defined the spatial
reference system.

● organization_id The integer identifier assigned by the organization
that defined the spatial reference system.

● linear_unit_of_measure The name of the linear unit of measure.

● linear_unit_of_measure_factor The conversion factor for the lin-
ear unit of measure.

● angular_unit_of_measure The name of the angular unit of measure.

● angular_unit_of_measure_factor The conversion factor for the
angular unit of measure.

srs-text LONG VAR-
CHAR

The spatial reference system definition text

Returns
● LONG VARCHAR Retrieves a named element from the WKT definition of a spatial reference system.

Remarks
Retrieves a named element from the WKT definition of a spatial reference system. If the WKT does not
define the named element, NULL is returned.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_SpatialRefSys type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 285

Example
The following example returns a result with one row for each of the named elements.

with V(element,srs_text) as (
 SELECT row_value as element, 'GEOGCS["WGS
84",DATUM["WGS_1984",SPHEROID["WGS 84",
6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRI
MEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",
0.01745329251994328,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]]' as
srs_text
 FROM
sa_split_list('srs_name,srs_type,organization,organization_id,linear_unit_of_
measure,linear_unit_of_measure_factor,angular_unit_of_measure,angular_unit_of
_measure_factor') D
)
SELECT element, ST_SpatialRefSys::ST_ParseWKT(element, srs_text) parsed
FROM V

The example returns the following result set:

element parsed

srs_name WGS 84

srs_type GEOGRAPHIC

organization EPSG

organization_id 4326

linear_unit_of_measure NULL

linear_unit_of_measure_factor NULL

angular_unit_of_measure degree

angular_unit_of_measure_factor .017453292519943282

ST_TransformGeom method for type ST_SpatialRefSys

Returns the geometry transformed using the given transform definition.

Syntax
ST_SpatialRefSys::ST_TransformGeom(geom,target-transform-definition[, source-transform-definition])

Parameters

Name Type Description

geom ST_Geometry The geometry to be transformed

Accessing and manipulating spatial data

286 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Type Description

target-transform-
definition

LONG VAR-
CHAR

The target spatial reference system transform definition text

source-transform-
definition

LONG VAR-
CHAR

The source spatial reference system transform definition text.
If not specified, the transform definition from the spatial ref-
erence system of the geom parameter is used.

Returns
● ST_Geometry Returns the input geometry transformed using the given transform definition.

The spatial reference system identifier of the result is sa_planar_unbounded (with SRID 2147483646).

Remarks
The ST_TransformGeom method transforms a single geometry given the transform definition of the
destination. The transformation is performed using the PROJ.4 library. This method can be used in select
situations when the appropriate spatial reference systems have not yet been created in the database. If the
appropriate spatial reference systems are available, the ST_Transform method is often more appropriate.

Transformations from a lat/long system to a Cartesian system can be problematic for polar points. If the
database server is unable to transform a point close to the North or South pole, the latitude value of the
point is shifted a small distance (slightly more than 1e-10 radians) away from the pole, and along the
same longitude, so that the transformation can succeed.

See also
● “ST_Transform method for type ST_Geometry” on page 208

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns the result Point (-5387692.968586 4763459.253243).

SELECT ST_SpatialRefSys::ST_TransformGeom(NEW ST_Point(-63.57,44.65,4326),
'+proj=robin +lon_0=0 +x_0=0 +y_0=0 +a=6371000 +b=6371000 +units=m
no_defs').ST_AsText('DecimalDigits=6')

ST_World method for type ST_SpatialRefSys

Returns a geometry that represents all of the points in the spatial reference system.

Note
This method can not be used with geometries in round-Earth spatial reference system.

ST_SpatialRefSys type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 287

Syntax
ST_SpatialRefSys::ST_World(srid)

Parameters

Name Type Description

srid INT The SRID to use for the result.

Returns
● ST_Surface Returns a geometry that represents all of the points in the spatial reference system

identified by the srid parameter.

The spatial reference system identifier of the result is the given by parameter srid.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Example
The following example returns the result Polygon ((-1000000 -1000000, 1000000
-1000000, 1000000 1000000, -1000000 1000000, -1000000 -1000000)).

SELECT ST_SpatialRefSys::ST_World(0).ST_AsText()

ST_Surface type
The ST_Surface type is a supertype for 2-dimensional geometry types. The ST_Surface type is not
instantiable.

Direct supertype
● “ST_Geometry type” on page 88

Direct subtypes
● “ST_CurvePolygon type” on page 74

Methods
● “ST_Area method for type ST_Surface” on page 289
● “ST_Centroid method for type ST_Surface” on page 289
● “ST_IsWorld method for type ST_Surface” on page 290
● “ST_Perimeter method for type ST_Surface” on page 290
● “ST_PointOnSurface method for type ST_Surface” on page 291
● All methods of “ST_Geometry type” on page 88 can also be called on a ST_Surface type.

Accessing and manipulating spatial data

288 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 8.1

ST_Area method for type ST_Surface
Calculates the area of a surface in the specified units.

Syntax
surface-expression.ST_Area([unit-name])

Parameters

Name Type Description

unit-
name

VAR-
CHAR(128)

The units in which the length should be computed. Defaults to the unit of
the spatial reference system. The unit name must match the
UNIT_NAME column of a row in the ST_UNITS_OF_MEASURE view
where UNIT_TYPE is 'LINEAR'.

Returns
● DOUBLE Returns the area of the surface.

Remarks
The ST_Area method computes the area of a surface. The units used to represent the area are based on the
specified linear unit of measure. For example, if the specified linear unit of measure is feet, the unit used
for area is square feet.

Note
This method can not be used with geometries in round-Earth spatial reference system.

See also
● “ST_Area method for type ST_MultiSurface” on page 255

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 8.1.2

ST_Centroid method for type ST_Surface
Returns the ST_Point value that is the mathematical centroid of the surface value.

Syntax
surface-expression.ST_Centroid()

ST_Surface type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 289

Returns
● ST_Point If the surface is the empty set, returns NULL. Otherwise, returns the mathematical

centroid of the surface.

The spatial reference system identifier of the result is the same as the spatial reference system of the
surface-expression.

Remarks
Returns the ST_Point value that is the mathematical centroid of the surface value. Note that this point will
not necessarily be a point on the surface.

Note
This method can not be used with geometries in round-Earth spatial reference system.

See also
● “ST_PointOnSurface method for type ST_Surface” on page 291

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 8.1.4

ST_IsWorld method for type ST_Surface
Test if the ST_Surface covers the entire space.

Note
This method can not be used with geometries in round-Earth spatial reference system.

Syntax
surface-expression.ST_IsWorld()

Returns
● BIT Returns 1 if the surface covers the entire space, otherwise 0.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 8.1.6

ST_Perimeter method for type ST_Surface
Calculates the perimeter of a surface in the specified units.

Syntax
surface-expression.ST_Perimeter([unit-name])

Accessing and manipulating spatial data

290 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters

Name Type Description

unit-
name

VAR-
CHAR(128)

The units in which the length should be computed. Defaults to the unit of
the spatial reference system. The unit name must match the
UNIT_NAME column of a row in the ST_UNITS_OF_MEASURE view
where UNIT_TYPE is 'LINEAR'.

Returns
● DOUBLE Returns the perimeter of the surface in the specified unit of measure.

Remarks
The ST_Perimeter method returns the length of the perimeter of a surface in the units identified by the unit-
name parameter. If the surface is empty, then NULL is returned.

If the surface contains Z values, these are not considered when computing the perimeter of the geometry.

The perimeter of a polygon includes the length of all rings (exterior and interior).

Note
If the surface-expression is an empty geometry (ST_IsEmpty()=1), then this method returns NULL.

Note
By default, ST_Perimeter uses the original format for a geometry, if it is available. Otherwise, the internal
format is used. For more information about internal and original formats, see “STORAGE FORMAT
clause, CREATE SPATIAL REFERENCE SYSTEM statement” [SQL Anywhere Server - SQL
Reference].

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 8.1.3

Example
The following example creates a multicurve and an example unit of measure (example_unit_halfmetre).
The ST_Length method finds the length of the geometry in this unit of measure, returning the value 6.0.

CREATE SPATIAL UNIT OF MEASURE IF NOT EXISTS "example_unit_halfmetre" TYPE
LINEAR CONVERT USING .5;
SELECT NEW ST_MultiCurve(
 NEW ST_LineString('LineString (0 0, 1 0)'),
 NEW ST_LineString('LineString (0 2, 2 2)'))
 .ST_Length('example_unit_halfmetre');

ST_PointOnSurface method for type ST_Surface

Returns an ST_Point value that is guaranteed to spatially intersect the ST_Surface value.

ST_Surface type

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 291

Note
If the surface-expression contains circular strings, then these are interpolated to line strings.

Syntax
surface-expression.ST_PointOnSurface()

Returns
● ST_Point If the surface is the empty set, returns NULL. Otherwise, returns an ST_Point value

guaranteed to spatially intersect the ST_Surface value.

The spatial reference system identifier of the result is the same as the spatial reference system of the
surface-expression.

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 8.1.5

Spatial compatibility functions
The SQL/MM standard defines a number of functions that can be used to perform spatial operations. In
most cases, these functions duplicate functionality of methods or constructors of spatial data types.

Functions

Name Description

“ST_BdMPolyFromText func-
tion [Spatial]” on page 295

Returns an ST_MultiPolygon value built from the WKT representa-
tion of a multilinestring.

“ST_BdMPolyFromWKB
function [Spa-
tial]” on page 296

Returns an ST_MultiPolygon value built from the WKB representa-
tion of a multilinestring.

“ST_BdPolyFromText func-
tion [Spatial]” on page 297

Returns an ST_Polygon value built from the WKT representation of
a multilinestring.

“ST_BdPolyFromWKB func-
tion [Spatial]” on page 298

Returns an ST_Polygon value built from the WKB representation of
a multilinestring.

“ST_CPolyFromText function
[Spatial]” on page 298

Returns an ST_CurvePolygon value, which is transformed from a
LONG VARCHAR value containing the WKT representation of an
ST_CurvePolygon

“ST_CPolyFromWKB func-
tion [Spatial]” on page 299

Returns an ST_CurvePolygon value, which is transformed from a
LONG BINARY value containing the WKB representation of an
ST_CurvePolygon

Accessing and manipulating spatial data

292 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“ST_CircularFromTxt function
[Spatial]” on page 300

Returns an ST_CircularString value, which is transformed from a
LONG VARCHAR value containing the WKT representation of an
ST_CircularString

“ST_CircularFromWKB func-
tion [Spatial]” on page 301

Returns an ST_CircularString value, which is transformed from a
LONG BINARY value containing the WKB representation of an
ST_CircularString

“ST_CompoundFromTxt func-
tion [Spatial]” on page 302

Returns an ST_CompoundCurve value, which is transformed from a
LONG VARCHAR value containing the WKT representation of an
ST_CompoundCurve

“ST_CompoundFromWKB
function [Spa-
tial]” on page 303

Returns an ST_CompoundCurve value, which is transformed from a
LONG BINARY value containing the WKB representation of an
ST_CompoundCurve

“ST_GeomCollFromTxt func-
tion [Spatial]” on page 304

Returns an ST_GeomCollection value, which is transformed from a
LONG VARCHAR value containing the WKT representation of an
ST_GeomCollection

“ST_GeomCollFromWKB
function [Spa-
tial]” on page 305

Returns an ST_GeomCollection value, which is transformed from a
LONG BINARY value containing the WKB representation of an
ST_GeomCollection

“ST_GeomFromText function
[Spatial]” on page 306

Returns an ST_Geometry value, which is transformed from a LONG
VARCHAR value containing the WKT representation of an ST_Ge-
ometry

“ST_GeomFromWKB func-
tion [Spatial]” on page 307

Returns an ST_Geometry value, which is transformed from a LONG
BINARY value containing the WKB representation of an ST_Geom-
etry

“ST_LineFromText function
[Spatial]” on page 308

Returns an ST_LineString value, which is transformed from a LONG
VARCHAR value containing the WKT representation of an ST_Line-
String

“ST_LineFromWKB function
[Spatial]” on page 309

Returns an ST_LineString value, which is transformed from a LONG
BINARY value containing the WKB representation of an ST_Line-
String

“ST_MCurveFromText func-
tion [Spatial]” on page 310

Returns an ST_MultiCurve value, which is transformed from a
LONG VARCHAR value containing the WKT representation of an
ST_MultiCurve

Spatial compatibility functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 293

Name Description

“ST_MCurveFromWKB func-
tion [Spatial]” on page 311

Returns an ST_MultiCurve value, which is transformed from a
LONG BINARY value containing the WKB representation of an
ST_MultiCurve

“ST_MLineFromText function
[Spatial]” on page 312

Returns an ST_MultiLineString value, which is transformed from a
LONG VARCHAR value containing the WKT representation of an
ST_MultiLineString

“ST_MLineFromWKB func-
tion [Spatial]” on page 313

Returns an ST_MultiLineString value, which is transformed from a
LONG BINARY value containing the WKB representation of an
ST_MultiLineString

“ST_MPointFromText func-
tion [Spatial]” on page 314

Returns an ST_MultiPoint value, which is transformed from a LONG
VARCHAR value containing the WKT representation of an ST_Mul-
tiPoint

“ST_MPointFromWKB func-
tion [Spatial]” on page 315

Returns an ST_MultiPoint value, which is transformed from a LONG
BINARY value containing the WKB representation of an ST_Multi-
Point

“ST_MPolyFromText function
[Spatial]” on page 316

Returns an ST_MultiPolygon value, which is transformed from a
LONG VARCHAR value containing the WKT representation of an
ST_MultiPolygon

“ST_MPolyFromWKB func-
tion [Spatial]” on page 317

Returns an ST_MultiPolygon value, which is transformed from a
LONG BINARY value containing the WKB representation of an
ST_MultiPolygon

“ST_MSurfaceFromTxt func-
tion [Spatial]” on page 318

Returns an ST_MultiSurface value, which is transformed from a
LONG VARCHAR value containing the WKT representation of an
ST_MultiSurface

“ST_MSurfaceFromWKB
function [Spa-
tial]” on page 319

Returns an ST_MultiSurface value, which is transformed from a
LONG BINARY value containing the WKB representation of an
ST_MultiSurface

“ST_OrderingEquals function
[Spatial]” on page 320

Tests if a geometry is identical to another geometry.

“ST_PointFromText function
[Spatial]” on page 321

Returns an ST_Point value, which is transformed from a LONG VAR-
CHAR value containing the WKT representation of an ST_Point

“ST_PointFromWKB function
[Spatial]” on page 322

Returns an ST_Point value, which is transformed from a LONG BI-
NARY value containing the WKB representation of an ST_Point

Accessing and manipulating spatial data

294 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Name Description

“ST_PolyFromText function
[Spatial]” on page 323

Returns an ST_Polygon value, which is transformed from a LONG
VARCHAR value containing the WKT representation of an ST_Poly-
gon

“ST_PolyFromWKB function
[Spatial]” on page 324

Returns an ST_Polygon value, which is transformed from a LONG
BINARY value containing the WKB representation of an ST_Polygon

ST_BdMPolyFromText function [Spatial]
Returns an ST_MultiPolygon value built from the WKT representation of a multilinestring.

Syntax
[DBO.]ST_BdMPolyFromText(wkt[, srid])

Parameters

Name Type Description

wkt LONG VARCHAR The WKT representation of a multilinestring value.

srid INT The SRID of the result. If not specified, the default is 0.

Returns
● ST_MultiPolygon Returns an ST_MultiPolygon value built from the WKT representation of a

multilinestring.

The spatial reference system identifier of the result is the given by parameter srid.

Note
The ST_BdMPolyFromText function is not present by default in newly created databases. Use the
sa_install_feature system procedure to install the spatial SQL compatibility functions. See
“sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference].

Remarks
The ST_BdMPolyFromText function is equivalent to the following:

CREATE FUNCTION DBO.ST_BdMPolyFromText(awkt LONG VARCHAR, srid INT DEFAULT
0)
RETURNS ST_MultiPolygon
BEGIN
 DECLARE mls ST_MultiLineString;
 SET mls = NEW ST_MultiLineString(awkt, srid);
 RETURN NEW ST_MultiPolygon(mls);
END

Spatial compatibility functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 295

See also
● “ST_Polygon constructor” on page 274

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.6.7

ST_BdMPolyFromWKB function [Spatial]
Returns an ST_MultiPolygon value built from the WKB representation of a multilinestring.

Syntax
[DBO.]ST_BdMPolyFromWKB(wkb[, srid])

Parameters

Name Type Description

wkb LONG BINARY The WKB representation of a multilinestring value.

srid INT The SRID of the result. If not specified, the default is 0.

Returns
● ST_MultiPolygon Returns an ST_MultiPolygon value built from the WKB representation of a

multilinestring.

The spatial reference system identifier of the result is the given by parameter srid.

Note
The ST_BdMPolyFromWKB function is not present by default in newly created databases. Use the
sa_install_feature system procedure to install the spatial SQL compatibility functions. See
“sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference].

Remarks
The ST_BdMPolyFromWKB function is equivalent to the following:

CREATE FUNCTION DBO.ST_BdMPolyFromWKB(awkb LONG BINARY, srid INT DEFAULT 0)
RETURNS ST_MultiPolygon
BEGIN
 DECLARE mls ST_MultiLineString;
 SET mls = NEW ST_MultiLineString(awkb, srid);
 RETURN NEW ST_MultiPolygon(mls);
END

See also
● “ST_Polygon constructor” on page 274

Accessing and manipulating spatial data

296 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.6.8

ST_BdPolyFromText function [Spatial]
Returns an ST_Polygon value built from the WKT representation of a multilinestring.

Syntax
[DBO.]ST_BdPolyFromText(wkt[, srid])

Parameters

Name Type Description

wkt LONG VARCHAR The WKT representation of a multilinestring value.

srid INT The SRID of the result. If not specified, the default is 0.

Returns
● ST_Polygon Returns an ST_Polygon value built from the WKT representation of a multilinestring.

The spatial reference system identifier of the result is the given by parameter srid.

Note
The ST_BdPolyFromText function is not present by default in newly created databases. Use the
sa_install_feature system procedure to install the spatial SQL compatibility functions. See
“sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference].

Remarks
The ST_BdPolyFromText function is equivalent to the following:

CREATE FUNCTION DBO.ST_BdPolyFromText(awkt LONG VARCHAR, srid INT DEFAULT
0)
RETURNS ST_Polygon
BEGIN
 DECLARE mls ST_MultiLineString;
 SET mls = NEW ST_MultiLineString(awkt, srid);
 RETURN NEW ST_Polygon(mls);
END

See also
● “ST_Polygon constructor” on page 274

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 8.3.9

Spatial compatibility functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 297

ST_BdPolyFromWKB function [Spatial]
Returns an ST_Polygon value built from the WKB representation of a multilinestring.

Syntax
[DBO.]ST_BdPolyFromWKB(wkb[, srid])

Parameters

Name Type Description

wkb LONG BINARY The WKB representation of a multilinestring value.

srid INT The SRID of the result. If not specified, the default is 0.

Returns
● ST_Polygon Returns an ST_Polygon value built from the WKB representation of a multilinestring.

The spatial reference system identifier of the result is the given by parameter srid.

Note
The ST_BdPolyFromWKB function is not present by default in newly created databases. Use the
sa_install_feature system procedure to install the spatial SQL compatibility functions. See
“sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference].

Remarks
The ST_BdPolyFromWKB function is equivalent to the following:

CREATE FUNCTION DBO.ST_BdPolyFromWKB(awkb LONG BINARY, srid INT DEFAULT 0)
RETURNS ST_Polygon
BEGIN
 DECLARE mls ST_MultiLineString;
 SET mls = NEW ST_MultiLineString(awkb, srid);
 RETURN NEW ST_Polygon(mls);
END

See also
● “ST_Polygon constructor” on page 274

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 8.3.10

ST_CPolyFromText function [Spatial]
Returns an ST_CurvePolygon value, which is transformed from a LONG VARCHAR value containing
the WKT representation of an ST_CurvePolygon

Accessing and manipulating spatial data

298 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
[DBO.]ST_CPolyFromText(wkt[, srid])

Parameters

Name Type Description

wkt LONG VARCHAR The WKT representation.

srid INT The SRID of the result. If not specified, the default is 0.

Returns
● ST_CurvePolygon Returns an ST_CurvePolygon value created from the input string.

The spatial reference system identifier of the result is the given by parameter srid.

Note
The ST_CPolyFromText function is not present by default in newly created databases. Use the
sa_install_feature system procedure to install the spatial SQL compatibility functions. See
“sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference].

Remarks
The ST_CPolyFromText function is equivalent to the following:

CREATE FUNCTION DBO.ST_CPolyFromText(wkt LONG VARCHAR, srid INT DEFAULT 0)
RETURNS ST_CurvePolygon
BEGIN
 DECLARE geo ST_Geometry;

 set geo = ST_Geometry::ST_GeomFromText(wkt, srid);
 RETURN CAST(geo AS ST_CurvePolygon);
END

See also
● “ST_CurvePolygon constructor” on page 74
● “ST_GeomFromText method for type ST_Geometry” on page 158

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 8.2.8

ST_CPolyFromWKB function [Spatial]
Returns an ST_CurvePolygon value, which is transformed from a LONG BINARY value containing the
WKB representation of an ST_CurvePolygon

Syntax
[DBO.]ST_CPolyFromWKB(wkb[, srid])

Spatial compatibility functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 299

Parameters

Name Type Description

wkb LONG BINARY The WKB representation.

srid INT The SRID of the result. If not specified, the default is 0.

Returns
● ST_CurvePolygon Returns an ST_CurvePolygon value created from the input string.

The spatial reference system identifier of the result is the given by parameter srid.

Note
The ST_CPolyFromWKB function is not present by default in newly created databases. Use the
sa_install_feature system procedure to install the spatial SQL compatibility functions. See
“sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference].

Remarks
The ST_CPolyFromWKB function is equivalent to the following:

CREATE FUNCTION DBO.ST_CPolyFromWKB(wkb LONG BINARY, srid INT DEFAULT 0)
RETURNS ST_CurvePolygon
BEGIN
 DECLARE geo ST_Geometry;

 set geo = ST_Geometry::ST_GeomFromWKB(wkb, srid);
 RETURN CAST(geo AS ST_CurvePolygon);
END

See also
● “ST_CurvePolygon constructor” on page 74
● “ST_GeomFromWKB method for type ST_Geometry” on page 159

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 8.2.9

ST_CircularFromTxt function [Spatial]
Returns an ST_CircularString value, which is transformed from a LONG VARCHAR value containing
the WKT representation of an ST_CircularString

Syntax
[DBO.]ST_CircularFromTxt(wkt[, srid])

Accessing and manipulating spatial data

300 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters

Name Type Description

wkt LONG VARCHAR The WKT representation.

srid INT The SRID of the result. If not specified, the default is 0.

Returns
● ST_CircularString Returns an ST_CircularString value created from the input string.

The spatial reference system identifier of the result is the given by parameter srid.

Note
The ST_CircularFromTxt function is not present by default in newly created databases. Use the
sa_install_feature system procedure to install the spatial SQL compatibility functions. See
“sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference].

Remarks
The ST_CircularFromTxt function is equivalent to the following:

CREATE FUNCTION DBO.ST_CircularFromTxt(wkt LONG VARCHAR, srid INT DEFAULT
0)
RETURNS ST_CircularString
BEGIN
 DECLARE geo ST_Geometry;

 set geo = ST_Geometry::ST_GeomFromText(wkt, srid);
 RETURN CAST(geo AS ST_CircularString);
END

See also
● “ST_CircularString constructor” on page 60
● “ST_GeomFromText method for type ST_Geometry” on page 158

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 7.3.9

ST_CircularFromWKB function [Spatial]
Returns an ST_CircularString value, which is transformed from a LONG BINARY value containing the
WKB representation of an ST_CircularString

Syntax
[DBO.]ST_CircularFromWKB(wkb[, srid])

Spatial compatibility functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 301

Parameters

Name Type Description

wkb LONG BINARY The WKB representation.

srid INT The SRID of the result. If not specified, the default is 0.

Returns
● ST_CircularString Returns an ST_CircularString value created from the input string.

The spatial reference system identifier of the result is the given by parameter srid.

Note
The ST_CircularFromWKB function is not present by default in newly created databases. Use the
sa_install_feature system procedure to install the spatial SQL compatibility functions. See
“sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference].

Remarks
The ST_CircularFromWKB function is equivalent to the following:

CREATE FUNCTION DBO.ST_CircularFromWKB(wkb LONG BINARY, srid INT DEFAULT 0)
RETURNS ST_CircularString
BEGIN
 DECLARE geo ST_Geometry;

 set geo = ST_Geometry::ST_GeomFromWKB(wkb, srid);
 RETURN CAST(geo AS ST_CircularString);
END

See also
● “ST_CircularString constructor” on page 60
● “ST_GeomFromWKB method for type ST_Geometry” on page 159

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 7.3.10

ST_CompoundFromTxt function [Spatial]
Returns an ST_CompoundCurve value, which is transformed from a LONG VARCHAR value containing
the WKT representation of an ST_CompoundCurve

Syntax
[DBO.]ST_CompoundFromTxt(wkt[, srid])

Accessing and manipulating spatial data

302 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters

Name Type Description

wkt LONG VARCHAR The WKT representation.

srid INT The SRID of the result. If not specified, the default is 0.

Returns
● ST_CompoundCurve Returns an ST_CompoundCurve value created from the input string.

The spatial reference system identifier of the result is the given by parameter srid.

Note
The ST_CompoundFromTxt function is not present by default in newly created databases. Use the
sa_install_feature system procedure to install the spatial SQL compatibility functions. See
“sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference].

Remarks
The ST_CompoundFromTxt function is equivalent to the following:

CREATE FUNCTION DBO.ST_CompoundFromTxt(wkt LONG VARCHAR, srid INT DEFAULT
0)
RETURNS ST_CompoundCurve
BEGIN
 DECLARE geo ST_Geometry;

 set geo = ST_Geometry::ST_GeomFromText(wkt, srid);
 RETURN CAST(geo AS ST_CompoundCurve);
END

See also
● “ST_CompoundCurve constructor” on page 65
● “ST_GeomFromText method for type ST_Geometry” on page 158

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 7.4.8

ST_CompoundFromWKB function [Spatial]
Returns an ST_CompoundCurve value, which is transformed from a LONG BINARY value containing
the WKB representation of an ST_CompoundCurve

Syntax
[DBO.]ST_CompoundFromWKB(wkb[, srid])

Spatial compatibility functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 303

Parameters

Name Type Description

wkb LONG BINARY The WKB representation.

srid INT The SRID of the result. If not specified, the default is 0.

Returns
● ST_CompoundCurve Returns an ST_CompoundCurve value created from the input string.

The spatial reference system identifier of the result is the given by parameter srid.

Note
The ST_CompoundFromWKB function is not present by default in newly created databases. Use the
sa_install_feature system procedure to install the spatial SQL compatibility functions. See
“sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference].

Remarks
The ST_CompoundFromWKB function is equivalent to the following:

CREATE FUNCTION DBO.ST_CompoundFromWKB(wkb LONG BINARY, srid INT DEFAULT 0)
RETURNS ST_CompoundCurve
BEGIN
 DECLARE geo ST_Geometry;

 set geo = ST_Geometry::ST_GeomFromWKB(wkb, srid);
 RETURN CAST(geo AS ST_CompoundCurve);
END

See also
● “ST_CompoundCurve constructor” on page 65
● “ST_GeomFromWKB method for type ST_Geometry” on page 159

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 7.4.9

ST_GeomCollFromTxt function [Spatial]
Returns an ST_GeomCollection value, which is transformed from a LONG VARCHAR value containing
the WKT representation of an ST_GeomCollection

Syntax
[DBO.]ST_GeomCollFromTxt(wkt[, srid])

Accessing and manipulating spatial data

304 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters

Name Type Description

wkt LONG VARCHAR The WKT representation.

srid INT The SRID of the result. If not specified, the default is 0.

Returns
● ST_GeomCollection Returns an ST_GeomCollection value created from the input string.

The spatial reference system identifier of the result is the given by parameter srid.

Note
The ST_GeomCollFromTxt function is not present by default in newly created databases. Use the
sa_install_feature system procedure to install the spatial SQL compatibility functions. See
“sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference].

Remarks
The ST_GeomCollFromTxt function is equivalent to the following:

CREATE FUNCTION DBO.ST_GeomCollFromTxt(wkt LONG VARCHAR, srid INT DEFAULT
0)
RETURNS ST_GeomCollection
BEGIN
 DECLARE geo ST_Geometry;

 set geo = ST_Geometry::ST_GeomFromText(wkt, srid);
 RETURN CAST(geo AS ST_GeomCollection);
END

See also
● “ST_GeomCollection constructor” on page 83
● “ST_GeomFromText method for type ST_Geometry” on page 158

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.1.6

ST_GeomCollFromWKB function [Spatial]
Returns an ST_GeomCollection value, which is transformed from a LONG BINARY value containing the
WKB representation of an ST_GeomCollection

Syntax
[DBO.]ST_GeomCollFromWKB(wkb[, srid])

Spatial compatibility functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 305

Parameters

Name Type Description

wkb LONG BINARY The WKB representation.

srid INT The SRID of the result. If not specified, the default is 0.

Returns
● ST_GeomCollection Returns an ST_GeomCollection value created from the input string.

The spatial reference system identifier of the result is the given by parameter srid.

Note
The ST_GeomCollFromWKB function is not present by default in newly created databases. Use the
sa_install_feature system procedure to install the spatial SQL compatibility functions. See
“sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference].

Remarks
The ST_GeomCollFromWKB function is equivalent to the following:

CREATE FUNCTION DBO.ST_GeomCollFromWKB(wkb LONG BINARY, srid INT DEFAULT 0)
RETURNS ST_GeomCollection
BEGIN
 DECLARE geo ST_Geometry;

 set geo = ST_Geometry::ST_GeomFromWKB(wkb, srid);
 RETURN CAST(geo AS ST_GeomCollection);
END

See also
● “ST_GeomCollection constructor” on page 83
● “ST_GeomFromWKB method for type ST_Geometry” on page 159

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.1.7

ST_GeomFromText function [Spatial]
Returns an ST_Geometry value, which is transformed from a LONG VARCHAR value containing the
WKT representation of an ST_Geometry

Syntax
[DBO.]ST_GeomFromText(wkt[, srid])

Accessing and manipulating spatial data

306 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters

Name Type Description

wkt LONG VARCHAR The WKT representation.

srid INT The SRID of the result. If not specified, the default is 0.

Returns
● ST_Geometry Returns an ST_Geometry value created from the input string.

The spatial reference system identifier of the result is the given by parameter srid.

Note
The ST_GeomFromText function is not present by default in newly created databases. Use the
sa_install_feature system procedure to install the spatial SQL compatibility functions. See
“sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference].

Remarks
The ST_GeomFromText function is equivalent to the following:

CREATE FUNCTION DBO.ST_GeomFromText(wkt LONG VARCHAR, srid INT DEFAULT 0)
RETURNS ST_Geometry
BEGIN
 DECLARE geo ST_Geometry;

 set geo = ST_Geometry::ST_GeomFromText(wkt, srid);
 RETURN CAST(geo AS ST_Geometry);
END

See also
● “ST_GeomFromText method for type ST_Geometry” on page 158

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.40

ST_GeomFromWKB function [Spatial]
Returns an ST_Geometry value, which is transformed from a LONG BINARY value containing the WKB
representation of an ST_Geometry

Syntax
[DBO.]ST_GeomFromWKB(wkb[, srid])

Spatial compatibility functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 307

Parameters

Name Type Description

wkb LONG BINARY The WKB representation.

srid INT The SRID of the result. If not specified, the default is 0.

Returns
● ST_Geometry Returns an ST_Geometry value created from the input string.

The spatial reference system identifier of the result is the given by parameter srid.

Note
The ST_GeomFromWKB function is not present by default in newly created databases. Use the
sa_install_feature system procedure to install the spatial SQL compatibility functions. See
“sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference].

Remarks
The ST_GeomFromWKB function is equivalent to the following:

CREATE FUNCTION DBO.ST_GeomFromWKB(wkb LONG BINARY, srid INT DEFAULT 0)
RETURNS ST_Geometry
BEGIN
 DECLARE geo ST_Geometry;

 set geo = ST_Geometry::ST_GeomFromWKB(wkb, srid);
 RETURN CAST(geo AS ST_Geometry);
END

See also
● “ST_GeomFromWKB method for type ST_Geometry” on page 159

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.41

ST_LineFromText function [Spatial]
Returns an ST_LineString value, which is transformed from a LONG VARCHAR value containing the
WKT representation of an ST_LineString

Syntax
[DBO.]ST_LineFromText(wkt[, srid])

Accessing and manipulating spatial data

308 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters

Name Type Description

wkt LONG VARCHAR The WKT representation.

srid INT The SRID of the result. If not specified, the default is 0.

Returns
● ST_LineString Returns an ST_LineString value created from the input string.

The spatial reference system identifier of the result is the given by parameter srid.

Note
The ST_LineFromText function is not present by default in newly created databases. Use the
sa_install_feature system procedure to install the spatial SQL compatibility functions. See
“sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference].

Remarks
The ST_LineFromText function is equivalent to the following:

CREATE FUNCTION DBO.ST_LineFromText(wkt LONG VARCHAR, srid INT DEFAULT 0)
RETURNS ST_LineString
BEGIN
 DECLARE geo ST_Geometry;

 set geo = ST_Geometry::ST_GeomFromText(wkt, srid);
 RETURN CAST(geo AS ST_LineString);
END

See also
● “ST_LineString constructor” on page 224
● “ST_GeomFromText method for type ST_Geometry” on page 158

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 7.2.8

ST_LineFromWKB function [Spatial]
Returns an ST_LineString value, which is transformed from a LONG BINARY value containing the
WKB representation of an ST_LineString

Syntax
[DBO.]ST_LineFromWKB(wkb[, srid])

Spatial compatibility functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 309

Parameters

Name Type Description

wkb LONG BINARY The WKB representation.

srid INT The SRID of the result. If not specified, the default is 0.

Returns
● ST_LineString Returns an ST_LineString value created from the input string.

The spatial reference system identifier of the result is the given by parameter srid.

Note
The ST_LineFromWKB function is not present by default in newly created databases. Use the
sa_install_feature system procedure to install the spatial SQL compatibility functions. See
“sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference].

Remarks
The ST_LineFromWKB function is equivalent to the following:

CREATE FUNCTION DBO.ST_LineFromWKB(wkb LONG BINARY, srid INT DEFAULT 0)
RETURNS ST_LineString
BEGIN
 DECLARE geo ST_Geometry;

 set geo = ST_Geometry::ST_GeomFromWKB(wkb, srid);
 RETURN CAST(geo AS ST_LineString);
END

See also
● “ST_LineString constructor” on page 224
● “ST_GeomFromWKB method for type ST_Geometry” on page 159

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 7.2.9

ST_MCurveFromText function [Spatial]
Returns an ST_MultiCurve value, which is transformed from a LONG VARCHAR value containing the
WKT representation of an ST_MultiCurve

Syntax
[DBO.]ST_MCurveFromText(wkt[, srid])

Accessing and manipulating spatial data

310 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters

Name Type Description

wkt LONG VARCHAR The WKT representation.

srid INT The SRID of the result. If not specified, the default is 0.

Returns
● ST_MultiCurve Returns an ST_MultiCurve value created from the input string.

The spatial reference system identifier of the result is the given by parameter srid.

Note
The ST_MCurveFromText function is not present by default in newly created databases. Use the
sa_install_feature system procedure to install the spatial SQL compatibility functions. See
“sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference].

Remarks
The ST_MCurveFromText function is equivalent to the following:

CREATE FUNCTION DBO.ST_MCurveFromText(wkt LONG VARCHAR, srid INT DEFAULT 0)
RETURNS ST_MultiCurve
BEGIN
 DECLARE geo ST_Geometry;

 set geo = ST_Geometry::ST_GeomFromText(wkt, srid);
 RETURN CAST(geo AS ST_MultiCurve);
END

See also
● “ST_MultiCurve constructor” on page 229
● “ST_GeomFromText method for type ST_Geometry” on page 158

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.3.6

ST_MCurveFromWKB function [Spatial]
Returns an ST_MultiCurve value, which is transformed from a LONG BINARY value containing the
WKB representation of an ST_MultiCurve

Syntax
[DBO.]ST_MCurveFromWKB(wkb[, srid])

Spatial compatibility functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 311

Parameters

Name Type Description

wkb LONG BINARY The WKB representation.

srid INT The SRID of the result. If not specified, the default is 0.

Returns
● ST_MultiCurve Returns an ST_MultiCurve value created from the input string.

The spatial reference system identifier of the result is the given by parameter srid.

Note
The ST_MCurveFromWKB function is not present by default in newly created databases. Use the
sa_install_feature system procedure to install the spatial SQL compatibility functions. See
“sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference].

Remarks
The ST_MCurveFromWKB function is equivalent to the following:

CREATE FUNCTION DBO.ST_MCurveFromWKB(wkb LONG BINARY, srid INT DEFAULT 0)
RETURNS ST_MultiCurve
BEGIN
 DECLARE geo ST_Geometry;

 set geo = ST_Geometry::ST_GeomFromWKB(wkb, srid);
 RETURN CAST(geo AS ST_MultiCurve);
END

See also
● “ST_MultiCurve constructor” on page 229
● “ST_GeomFromWKB method for type ST_Geometry” on page 159

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.3.7

ST_MLineFromText function [Spatial]
Returns an ST_MultiLineString value, which is transformed from a LONG VARCHAR value containing
the WKT representation of an ST_MultiLineString

Syntax
[DBO.]ST_MLineFromText(wkt[, srid])

Accessing and manipulating spatial data

312 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters

Name Type Description

wkt LONG VARCHAR The WKT representation.

srid INT The SRID of the result. If not specified, the default is 0.

Returns
● ST_MultiLineString Returns an ST_MultiLineString value created from the input string.

The spatial reference system identifier of the result is the given by parameter srid.

Note
The ST_MLineFromText function is not present by default in newly created databases. Use the
sa_install_feature system procedure to install the spatial SQL compatibility functions. See
“sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference].

Remarks
The ST_MLineFromText function is equivalent to the following:

CREATE FUNCTION DBO.ST_MLineFromText(wkt LONG VARCHAR, srid INT DEFAULT 0)
RETURNS ST_MultiLineString
BEGIN
 DECLARE geo ST_Geometry;

 set geo = ST_Geometry::ST_GeomFromText(wkt, srid);
 RETURN CAST(geo AS ST_MultiLineString);
END

See also
● “ST_MultiLineString constructor” on page 236
● “ST_GeomFromText method for type ST_Geometry” on page 158

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.4.4

ST_MLineFromWKB function [Spatial]
Returns an ST_MultiLineString value, which is transformed from a LONG BINARY value containing the
WKB representation of an ST_MultiLineString

Syntax
[DBO.]ST_MLineFromWKB(wkb[, srid])

Spatial compatibility functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 313

Parameters

Name Type Description

wkb LONG BINARY The WKB representation.

srid INT The SRID of the result. If not specified, the default is 0.

Returns
● ST_MultiLineString Returns an ST_MultiLineString value created from the input string.

The spatial reference system identifier of the result is the given by parameter srid.

Note
The ST_MLineFromWKB function is not present by default in newly created databases. Use the
sa_install_feature system procedure to install the spatial SQL compatibility functions. See
“sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference].

Remarks
The ST_MLineFromWKB function is equivalent to the following:

CREATE FUNCTION DBO.ST_MLineFromWKB(wkb LONG BINARY, srid INT DEFAULT 0)
RETURNS ST_MultiLineString
BEGIN
 DECLARE geo ST_Geometry;

 set geo = ST_Geometry::ST_GeomFromWKB(wkb, srid);
 RETURN CAST(geo AS ST_MultiLineString);
END

See also
● “ST_MultiLineString constructor” on page 236
● “ST_GeomFromWKB method for type ST_Geometry” on page 159

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.4.5

ST_MPointFromText function [Spatial]
Returns an ST_MultiPoint value, which is transformed from a LONG VARCHAR value containing the
WKT representation of an ST_MultiPoint

Syntax
[DBO.]ST_MPointFromText(wkt[, srid])

Accessing and manipulating spatial data

314 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters

Name Type Description

wkt LONG VARCHAR The WKT representation.

srid INT The SRID of the result. If not specified, the default is 0.

Returns
● ST_MultiPoint Returns an ST_MultiPoint value created from the input string.

The spatial reference system identifier of the result is the given by parameter srid.

Note
The ST_MPointFromText function is not present by default in newly created databases. Use the
sa_install_feature system procedure to install the spatial SQL compatibility functions. See
“sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference].

Remarks
The ST_MPointFromText function is equivalent to the following:

CREATE FUNCTION DBO.ST_MPointFromText(wkt LONG VARCHAR, srid INT DEFAULT 0)
RETURNS ST_MultiPoint
BEGIN
 DECLARE geo ST_Geometry;

 set geo = ST_Geometry::ST_GeomFromText(wkt, srid);
 RETURN CAST(geo AS ST_MultiPoint);
END

See also
● “ST_MultiPoint constructor” on page 240
● “ST_GeomFromText method for type ST_Geometry” on page 158

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.2.4

ST_MPointFromWKB function [Spatial]
Returns an ST_MultiPoint value, which is transformed from a LONG BINARY value containing the
WKB representation of an ST_MultiPoint

Syntax
[DBO.]ST_MPointFromWKB(wkb[, srid])

Spatial compatibility functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 315

Parameters

Name Type Description

wkb LONG BINARY The WKB representation.

srid INT The SRID of the result. If not specified, the default is 0.

Returns
● ST_MultiPoint Returns an ST_MultiPoint value created from the input string.

The spatial reference system identifier of the result is the given by parameter srid.

Note
The ST_MPointFromWKB function is not present by default in newly created databases. Use the
sa_install_feature system procedure to install the spatial SQL compatibility functions. See
“sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference].

Remarks
The ST_MPointFromWKB function is equivalent to the following:

CREATE FUNCTION DBO.ST_MPointFromWKB(wkb LONG BINARY, srid INT DEFAULT 0)
RETURNS ST_MultiPoint
BEGIN
 DECLARE geo ST_Geometry;

 set geo = ST_Geometry::ST_GeomFromWKB(wkb, srid);
 RETURN CAST(geo AS ST_MultiPoint);
END

See also
● “ST_MultiPoint constructor” on page 240
● “ST_GeomFromWKB method for type ST_Geometry” on page 159

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.2.5

ST_MPolyFromText function [Spatial]
Returns an ST_MultiPolygon value, which is transformed from a LONG VARCHAR value containing the
WKT representation of an ST_MultiPolygon

Syntax
[DBO.]ST_MPolyFromText(wkt[, srid])

Accessing and manipulating spatial data

316 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters

Name Type Description

wkt LONG VARCHAR The WKT representation.

srid INT The SRID of the result. If not specified, the default is 0.

Returns
● ST_MultiPolygon Returns an ST_MultiPolygon value created from the input string.

The spatial reference system identifier of the result is the given by parameter srid.

Note
The ST_MPolyFromText function is not present by default in newly created databases. Use the
sa_install_feature system procedure to install the spatial SQL compatibility functions. See
“sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference].

Remarks
The ST_MPolyFromText function is equivalent to the following:

CREATE FUNCTION DBO.ST_MPolyFromText(wkt LONG VARCHAR, srid INT DEFAULT 0)
RETURNS ST_MultiPolygon
BEGIN
 DECLARE geo ST_Geometry;

 set geo = ST_Geometry::ST_GeomFromText(wkt, srid);
 RETURN CAST(geo AS ST_MultiPolygon);
END

See also
● “ST_MultiPolygon constructor” on page 245
● “ST_GeomFromText method for type ST_Geometry” on page 158

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.6.4

ST_MPolyFromWKB function [Spatial]
Returns an ST_MultiPolygon value, which is transformed from a LONG BINARY value containing the
WKB representation of an ST_MultiPolygon

Syntax
[DBO.]ST_MPolyFromWKB(wkb[, srid])

Spatial compatibility functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 317

Parameters

Name Type Description

wkb LONG BINARY The WKB representation.

srid INT The SRID of the result. If not specified, the default is 0.

Returns
● ST_MultiPolygon Returns an ST_MultiPolygon value created from the input string.

The spatial reference system identifier of the result is the given by parameter srid.

Note
The ST_MPolyFromWKB function is not present by default in newly created databases. Use the
sa_install_feature system procedure to install the spatial SQL compatibility functions. See
“sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference].

Remarks
The ST_MPolyFromWKB function is equivalent to the following:

CREATE FUNCTION DBO.ST_MPolyFromWKB(wkb LONG BINARY, srid INT DEFAULT 0)
RETURNS ST_MultiPolygon
BEGIN
 DECLARE geo ST_Geometry;

 set geo = ST_Geometry::ST_GeomFromWKB(wkb, srid);
 RETURN CAST(geo AS ST_MultiPolygon);
END

See also
● “ST_MultiPolygon constructor” on page 245
● “ST_GeomFromWKB method for type ST_Geometry” on page 159

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.6.5

ST_MSurfaceFromTxt function [Spatial]
Returns an ST_MultiSurface value, which is transformed from a LONG VARCHAR value containing the
WKT representation of an ST_MultiSurface

Syntax
[DBO.]ST_MSurfaceFromTxt(wkt[, srid])

Accessing and manipulating spatial data

318 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters

Name Type Description

wkt LONG VARCHAR The WKT representation.

srid INT The SRID of the result. If not specified, the default is 0.

Returns
● ST_MultiSurface Returns an ST_MultiSurface value created from the input string.

The spatial reference system identifier of the result is the given by parameter srid.

Note
The ST_MSurfaceFromTxt function is not present by default in newly created databases. Use the
sa_install_feature system procedure to install the spatial SQL compatibility functions. See
“sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference].

Remarks
The ST_MSurfaceFromTxt function is equivalent to the following:

CREATE FUNCTION DBO.ST_MSurfaceFromTxt(wkt LONG VARCHAR, srid INT DEFAULT
0)
RETURNS ST_MultiSurface
BEGIN
 DECLARE geo ST_Geometry;

 set geo = ST_Geometry::ST_GeomFromText(wkt, srid);
 RETURN CAST(geo AS ST_MultiSurface);
END

See also
● “ST_MultiSurface constructor” on page 251
● “ST_GeomFromText method for type ST_Geometry” on page 158

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.5.8

ST_MSurfaceFromWKB function [Spatial]
Returns an ST_MultiSurface value, which is transformed from a LONG BINARY value containing the
WKB representation of an ST_MultiSurface

Syntax
[DBO.]ST_MSurfaceFromWKB(wkb[, srid])

Spatial compatibility functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 319

Parameters

Name Type Description

wkb LONG BINARY The WKB representation.

srid INT The SRID of the result. If not specified, the default is 0.

Returns
● ST_MultiSurface Returns an ST_MultiSurface value created from the input string.

The spatial reference system identifier of the result is the given by parameter srid.

Note
The ST_MSurfaceFromWKB function is not present by default in newly created databases. Use the
sa_install_feature system procedure to install the spatial SQL compatibility functions. See
“sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference].

Remarks
The ST_MSurfaceFromWKB function is equivalent to the following:

CREATE FUNCTION DBO.ST_MSurfaceFromWKB(wkb LONG BINARY, srid INT DEFAULT 0)
RETURNS ST_MultiSurface
BEGIN
 DECLARE geo ST_Geometry;

 set geo = ST_Geometry::ST_GeomFromWKB(wkb, srid);
 RETURN CAST(geo AS ST_MultiSurface);
END

See also
● “ST_MultiSurface constructor” on page 251
● “ST_GeomFromWKB method for type ST_Geometry” on page 159

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 9.5.9

ST_OrderingEquals function [Spatial]
Tests if a geometry is identical to another geometry.

Syntax
[DBO.]ST_OrderingEquals(geo1,geo2)

Accessing and manipulating spatial data

320 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters

Name Type Description

geo1 ST_Geometry The first geometry value that is to be ordered.

geo2 ST_Geometry The second geometry value that is to be ordered.

Returns
● INT Returns 1 if geo1 is exactly equal to geo2, otherwise 0.

Note
The ST_OrderingEquals function is not present by default in newly created databases. Use the
sa_install_feature system procedure to install the spatial SQL compatibility functions. See
“sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference].

Remarks
The ST_OrderingEquals function is equivalent to the following:

CREATE FUNCTION DBO.ST_OrderingEquals(geo1 ST_Geometry, geo2 ST_Geometry)
RETURNS INT
BEGIN
 RETURN geo1.ST_OrderingEquals(geo2);
END

See also
● “ST_OrderingEquals method for type ST_Geometry” on page 178

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 5.1.43

ST_PointFromText function [Spatial]

Returns an ST_Point value, which is transformed from a LONG VARCHAR value containing the WKT
representation of an ST_Point

Syntax
[DBO.]ST_PointFromText(wkt[, srid])

Parameters

Name Type Description

wkt LONG VARCHAR The WKT representation.

srid INT The SRID of the result. If not specified, the default is 0.

Spatial compatibility functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 321

Returns
● ST_Point Returns an ST_Point value created from the input string.

The spatial reference system identifier of the result is the given by parameter srid.

Note
The ST_PointFromText function is not present by default in newly created databases. Use the
sa_install_feature system procedure to install the spatial SQL compatibility functions. See
“sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference].

Remarks
The ST_PointFromText function is equivalent to the following:

CREATE FUNCTION DBO.ST_PointFromText(wkt LONG VARCHAR, srid INT DEFAULT 0)
RETURNS ST_Point
BEGIN
 DECLARE geo ST_Geometry;

 set geo = ST_Geometry::ST_GeomFromText(wkt, srid);
 RETURN CAST(geo AS ST_Point);
END

See also
● “ST_Point constructor” on page 259
● “ST_GeomFromText method for type ST_Geometry” on page 158

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 6.1.8

ST_PointFromWKB function [Spatial]
Returns an ST_Point value, which is transformed from a LONG BINARY value containing the WKB
representation of an ST_Point

Syntax
[DBO.]ST_PointFromWKB(wkb[, srid])

Parameters

Name Type Description

wkb LONG BINARY The WKB representation.

srid INT The SRID of the result. If not specified, the default is 0.

Returns
● ST_Point Returns an ST_Point value created from the input string.

Accessing and manipulating spatial data

322 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The spatial reference system identifier of the result is the given by parameter srid.

Note
The ST_PointFromWKB function is not present by default in newly created databases. Use the
sa_install_feature system procedure to install the spatial SQL compatibility functions. See
“sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference].

Remarks
The ST_PointFromWKB function is equivalent to the following:

CREATE FUNCTION DBO.ST_PointFromWKB(wkb LONG BINARY, srid INT DEFAULT 0)
RETURNS ST_Point
BEGIN
 DECLARE geo ST_Geometry;

 set geo = ST_Geometry::ST_GeomFromWKB(wkb, srid);
 RETURN CAST(geo AS ST_Point);
END

See also
● “ST_Point constructor” on page 259
● “ST_GeomFromWKB method for type ST_Geometry” on page 159

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 6.1.9

ST_PolyFromText function [Spatial]
Returns an ST_Polygon value, which is transformed from a LONG VARCHAR value containing the
WKT representation of an ST_Polygon

Syntax
[DBO.]ST_PolyFromText(wkt[, srid])

Parameters

Name Type Description

wkt LONG VARCHAR The WKT representation.

srid INT The SRID of the result. If not specified, the default is 0.

Returns
● ST_Polygon Returns an ST_Polygon value created from the input string.

The spatial reference system identifier of the result is the given by parameter srid.

Spatial compatibility functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 323

Note
The ST_PolyFromText function is not present by default in newly created databases. Use the
sa_install_feature system procedure to install the spatial SQL compatibility functions. See
“sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference].

Remarks
The ST_PolyFromText function is equivalent to the following:

CREATE FUNCTION DBO.ST_PolyFromText(wkt LONG VARCHAR, srid INT DEFAULT 0)
RETURNS ST_Polygon
BEGIN
 DECLARE geo ST_Geometry;

 set geo = ST_Geometry::ST_GeomFromText(wkt, srid);
 RETURN CAST(geo AS ST_Polygon);
END

See also
● “ST_Polygon constructor” on page 274
● “ST_GeomFromText method for type ST_Geometry” on page 158

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 8.3.6

ST_PolyFromWKB function [Spatial]
Returns an ST_Polygon value, which is transformed from a LONG BINARY value containing the WKB
representation of an ST_Polygon

Syntax
[DBO.]ST_PolyFromWKB(wkb[, srid])

Parameters

Name Type Description

wkb LONG BINARY The WKB representation.

srid INT The SRID of the result. If not specified, the default is 0.

Returns
● ST_Polygon Returns an ST_Polygon value created from the input string.

The spatial reference system identifier of the result is the given by parameter srid.

Accessing and manipulating spatial data

324 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Note
The ST_PolyFromWKB function is not present by default in newly created databases. Use the
sa_install_feature system procedure to install the spatial SQL compatibility functions. See
“sa_install_feature system procedure” [SQL Anywhere Server - SQL Reference].

Remarks
The ST_PolyFromWKB function is equivalent to the following:

CREATE FUNCTION DBO.ST_PolyFromWKB(wkb LONG BINARY, srid INT DEFAULT 0)
RETURNS ST_Polygon
BEGIN
 DECLARE geo ST_Geometry;

 set geo = ST_Geometry::ST_GeomFromWKB(wkb, srid);
 RETURN CAST(geo AS ST_Polygon);
END

See also
● “ST_Polygon constructor” on page 274
● “ST_GeomFromWKB method for type ST_Geometry” on page 159

Standards and compatibility
● SQL/MM (ISO/IEC 13249-3: 2006) 8.3.7

List of all supported methods

List of all supported methods

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 325

The following is a list of all supported spatial methods:

● “ST_Affine method for type ST_Geometry” on page 91
● “ST_Area method for type ST_MultiSurface” on page 255
● “ST_Area method for type ST_Surface” on page 289
● “ST_AsBinary method for type ST_Geometry” on page 92
● “ST_AsGML method for type ST_Geometry” on page 95
● “ST_AsGeoJSON method for type ST_Geometry” on page 100
● “ST_AsKML method for type ST_Geometry” on page 101
● “ST_AsSVG method for type ST_Geometry” on page 104
● “ST_AsText method for type ST_Geometry” on page 111
● “ST_AsWKB method for type ST_Geometry” on page 121
● “ST_AsWKT method for type ST_Geometry” on page 123
● “ST_AsXML method for type ST_Geometry” on page 125
● “ST_Boundary method for type ST_Geometry” on page 134
● “ST_Centroid method for type ST_MultiSurface” on page 255
● “ST_Centroid method for type ST_Surface” on page 289
● “ST_Contains method for type ST_Geometry” on page 135
● “ST_ContainsFilter method for type ST_Geometry” on page 137
● “ST_ConvexHull method for type ST_Geometry” on page 138
● “ST_CoordDim method for type ST_Geometry” on page 140
● “ST_CoveredBy method for type ST_Geometry” on page 142
● “ST_CoveredByFilter method for type ST_Geometry” on page 143
● “ST_Covers method for type ST_Geometry” on page 144
● “ST_CoversFilter method for type ST_Geometry” on page 145
● “ST_Crosses method for type ST_Geometry” on page 146
● “ST_CurveN method for type ST_CompoundCurve” on page 68
● “ST_CurvePolyToPoly method for type ST_CurvePolygon” on page 79
● “ST_CurveToLine method for type ST_Curve” on page 70
● “ST_Difference method for type ST_Geometry” on page 147
● “ST_Dimension method for type ST_Geometry” on page 149
● “ST_Disjoint method for type ST_Geometry” on page 150
● “ST_Distance method for type ST_Geometry” on page 151
● “ST_EndPoint method for type ST_Curve” on page 70
● “ST_Envelope method for type ST_Geometry” on page 153
● “ST_Equals method for type ST_Geometry” on page 154
● “ST_EqualsFilter method for type ST_Geometry” on page 156
● “ST_ExteriorRing method for type ST_CurvePolygon” on page 79
● “ST_ExteriorRing method for type ST_Polygon” on page 279
● “ST_GeometryN method for type ST_GeomCollection” on page 87
● “ST_GeometryType method for type ST_Geometry” on page 161
● “ST_InteriorRingN method for type ST_CurvePolygon” on page 81
● “ST_InteriorRingN method for type ST_Polygon” on page 280
● “ST_Intersection method for type ST_Geometry” on page 163
● “ST_Intersects method for type ST_Geometry” on page 165
● “ST_IntersectsFilter method for type ST_Geometry” on page 166
● “ST_IntersectsRect method for type ST_Geometry” on page 167
● “ST_Is3D method for type ST_Geometry” on page 168

Accessing and manipulating spatial data

326 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● “ST_IsClosed method for type ST_Curve” on page 71
● “ST_IsClosed method for type ST_MultiCurve” on page 232
● “ST_IsEmpty method for type ST_Geometry” on page 169
● “ST_IsMeasured method for type ST_Geometry” on page 169
● “ST_IsRing method for type ST_Curve” on page 71
● “ST_IsSimple method for type ST_Geometry” on page 170
● “ST_IsValid method for type ST_Geometry” on page 170
● “ST_IsWorld method for type ST_Surface” on page 290
● “ST_Lat method for type ST_Point” on page 263
● “ST_LatNorth method for type ST_Geometry” on page 171
● “ST_LatSouth method for type ST_Geometry” on page 172
● “ST_Length method for type ST_Curve” on page 72
● “ST_Length method for type ST_MultiCurve” on page 233
● “ST_LinearHash method for type ST_Geometry” on page 173
● “ST_Long method for type ST_Point” on page 265
● “ST_LongEast method for type ST_Geometry” on page 175
● “ST_LongWest method for type ST_Geometry” on page 176
● “ST_M method for type ST_Point” on page 267
● “ST_MMax method for type ST_Geometry” on page 177
● “ST_MMin method for type ST_Geometry” on page 177
● “ST_NumCurves method for type ST_CompoundCurve” on page 69
● “ST_NumGeometries method for type ST_GeomCollection” on page 87
● “ST_NumInteriorRing method for type ST_CurvePolygon” on page 82
● “ST_NumPoints method for type ST_CircularString” on page 63
● “ST_NumPoints method for type ST_LineString” on page 227
● “ST_OrderingEquals method for type ST_Geometry” on page 178
● “ST_Overlaps method for type ST_Geometry” on page 180
● “ST_Perimeter method for type ST_MultiSurface” on page 257
● “ST_Perimeter method for type ST_Surface” on page 290
● “ST_PointN method for type ST_CircularString” on page 64
● “ST_PointN method for type ST_LineString” on page 228
● “ST_PointOnSurface method for type ST_MultiSurface” on page 258
● “ST_PointOnSurface method for type ST_Surface” on page 291
● “ST_Relate method for type ST_Geometry” on page 181
● “ST_Reverse method for type ST_Geometry” on page 184
● “ST_SRID method for type ST_Geometry” on page 185
● “ST_SnapToGrid method for type ST_Geometry” on page 187
● “ST_StartPoint method for type ST_Curve” on page 73
● “ST_SymDifference method for type ST_Geometry” on page 190
● “ST_ToCircular method for type ST_Geometry” on page 192
● “ST_ToCompound method for type ST_Geometry” on page 193
● “ST_ToCurve method for type ST_Geometry” on page 194
● “ST_ToCurvePoly method for type ST_Geometry” on page 195
● “ST_ToGeomColl method for type ST_Geometry” on page 196
● “ST_ToLineString method for type ST_Geometry” on page 197
● “ST_ToMultiCurve method for type ST_Geometry” on page 198
● “ST_ToMultiLine method for type ST_Geometry” on page 199
● “ST_ToMultiPoint method for type ST_Geometry” on page 200

List of all supported methods

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 327

● “ST_ToMultiPolygon method for type ST_Geometry” on page 201
● “ST_ToMultiSurface method for type ST_Geometry” on page 202
● “ST_ToPoint method for type ST_Geometry” on page 203
● “ST_ToPolygon method for type ST_Geometry” on page 204
● “ST_ToSurface method for type ST_Geometry” on page 206
● “ST_Touches method for type ST_Geometry” on page 207
● “ST_Transform method for type ST_Geometry” on page 208
● “ST_Union method for type ST_Geometry” on page 209
● “ST_Within method for type ST_Geometry” on page 211
● “ST_WithinDistance method for type ST_Geometry” on page 212
● “ST_WithinDistanceFilter method for type ST_Geometry” on page 214
● “ST_WithinFilter method for type ST_Geometry” on page 216
● “ST_X method for type ST_Point” on page 268
● “ST_XMax method for type ST_Geometry” on page 217
● “ST_XMin method for type ST_Geometry” on page 218
● “ST_Y method for type ST_Point” on page 270
● “ST_YMax method for type ST_Geometry” on page 219
● “ST_YMin method for type ST_Geometry” on page 220
● “ST_Z method for type ST_Point” on page 272
● “ST_ZMax method for type ST_Geometry” on page 221
● “ST_ZMin method for type ST_Geometry” on page 222

List of all supported constructors
The following is a list of all supported spatial constructors:

● “ST_CircularString constructor” on page 60
● “ST_CompoundCurve constructor” on page 65
● “ST_CurvePolygon constructor” on page 74
● “ST_GeomCollection constructor” on page 83
● “ST_LineString constructor” on page 224
● “ST_MultiCurve constructor” on page 229
● “ST_MultiLineString constructor” on page 236
● “ST_MultiPoint constructor” on page 240
● “ST_MultiPolygon constructor” on page 245
● “ST_MultiSurface constructor” on page 251
● “ST_Point constructor” on page 259
● “ST_Polygon constructor” on page 274

List of static methods

Accessing and manipulating spatial data

328 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The following is a list of static methods available for use with spatial data:

● “ST_AsSVGAggr method for type ST_Geometry” on page 107
● “ST_CompareWKT method for type ST_SpatialRefSys” on page 281
● “ST_ConvexHullAggr method for type ST_Geometry” on page 139
● “ST_EnvelopeAggr method for type ST_Geometry” on page 154
● “ST_FormatTransformDefinition method for type ST_SpatialRefSys” on page 282
● “ST_FormatWKT method for type ST_SpatialRefSys” on page 283
● “ST_GeomCollectionAggr method for type ST_GeomCollection” on page 86
● “ST_GeomFromBinary method for type ST_Geometry” on page 157
● “ST_GeomFromShape method for type ST_Geometry” on page 158
● “ST_GeomFromText method for type ST_Geometry” on page 158
● “ST_GeomFromWKB method for type ST_Geometry” on page 159
● “ST_GeomFromWKT method for type ST_Geometry” on page 160
● “ST_GeometryTypeFromBaseType method for type ST_Geometry” on page 162
● “ST_GetUnProjectedTransformDefinition method for type ST_SpatialRefSys” on page 284
● “ST_IntersectionAggr method for type ST_Geometry” on page 164
● “ST_LineStringAggr method for type ST_LineString” on page 227
● “ST_LinearUnHash method for type ST_Geometry” on page 173
● “ST_LoadConfigurationData method for type ST_Geometry” on page 174
● “ST_MultiCurveAggr method for type ST_MultiCurve” on page 234
● “ST_MultiLineStringAggr method for type ST_MultiLineString” on page 239
● “ST_MultiPointAggr method for type ST_MultiPoint” on page 243
● “ST_MultiPolygonAggr method for type ST_MultiPolygon” on page 249
● “ST_MultiSurfaceAggr method for type ST_MultiSurface” on page 256
● “ST_ParseWKT method for type ST_SpatialRefSys” on page 285
● “ST_SRIDFromBaseType method for type ST_Geometry” on page 187
● “ST_TransformGeom method for type ST_SpatialRefSys” on page 286
● “ST_UnionAggr method for type ST_Geometry” on page 210
● “ST_World method for type ST_SpatialRefSys” on page 287

List of aggregate methods

List of aggregate methods

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 329

The following is a list of aggregate methods available for use with spatial data:

● “ST_AsSVGAggr method for type ST_Geometry” on page 107
● “ST_ConvexHullAggr method for type ST_Geometry” on page 139
● “ST_EnvelopeAggr method for type ST_Geometry” on page 154
● “ST_GeomCollectionAggr method for type ST_GeomCollection” on page 86
● “ST_IntersectionAggr method for type ST_Geometry” on page 164
● “ST_LineStringAggr method for type ST_LineString” on page 227
● “ST_MultiCurveAggr method for type ST_MultiCurve” on page 234
● “ST_MultiLineStringAggr method for type ST_MultiLineString” on page 239
● “ST_MultiPointAggr method for type ST_MultiPoint” on page 243
● “ST_MultiPolygonAggr method for type ST_MultiPolygon” on page 249
● “ST_MultiSurfaceAggr method for type ST_MultiSurface” on page 256
● “ST_UnionAggr method for type ST_Geometry” on page 210

List of set operation methods
The following is a list of set operation methods available for use with spatial data:

● “ST_Difference method for type ST_Geometry” on page 147
● “ST_Intersection method for type ST_Geometry” on page 163
● “ST_IntersectionAggr method for type ST_Geometry” on page 164
● “ST_SymDifference method for type ST_Geometry” on page 190
● “ST_Union method for type ST_Geometry” on page 209
● “ST_UnionAggr method for type ST_Geometry” on page 210

List of spatial predicates

Accessing and manipulating spatial data

330 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The following is a list of predicate methods available for use with spatial data:

● “ST_Contains method for type ST_Geometry” on page 135
● “ST_ContainsFilter method for type ST_Geometry” on page 137
● “ST_CoveredBy method for type ST_Geometry” on page 142
● “ST_CoveredByFilter method for type ST_Geometry” on page 143
● “ST_Covers method for type ST_Geometry” on page 144
● “ST_CoversFilter method for type ST_Geometry” on page 145
● “ST_Crosses method for type ST_Geometry” on page 146
● “ST_Disjoint method for type ST_Geometry” on page 150
● “ST_Equals method for type ST_Geometry” on page 154
● “ST_EqualsFilter method for type ST_Geometry” on page 156
● “ST_Intersects method for type ST_Geometry” on page 165
● “ST_IntersectsFilter method for type ST_Geometry” on page 166
● “ST_IntersectsRect method for type ST_Geometry” on page 167
● “ST_OrderingEquals method for type ST_Geometry” on page 178
● “ST_Overlaps method for type ST_Geometry” on page 180
● “ST_Relate method for type ST_Geometry” on page 181
● “ST_Touches method for type ST_Geometry” on page 207
● “ST_Within method for type ST_Geometry” on page 211
● “ST_WithinDistance method for type ST_Geometry” on page 212
● “ST_WithinDistanceFilter method for type ST_Geometry” on page 214
● “ST_WithinFilter method for type ST_Geometry” on page 216

List of spatial predicates

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 331

332

Index
Symbols
1000004326, SRID

WGS 84 (planar), 3
3857 SRID

compatibility with popular mapping applications, 5
4326, SRID

WGS 84, 3
900913 SRID

compatibility with popular mapping applications, 5

A
accessing and analyzing spatial data

about, 59
ArcGis Online data

compatibility with popular mapping applications, 5

B
Bing Maps data

compatibility with popular mapping applications, 5
bugs

providing feedback, viii

C
circular strings

about, 18
classes

spatial data types, 59
clustered indexes

indexing spatial data, 11
columns

spatial, 31
command prompts

conventions, vii
curly braces, vii
environment variables, vii
parentheses, vii
quotes, vii
semicolons, vii

command shells
conventions, vii
curly braces, vii
environment variables, vii
parentheses, vii

quotes, vii
comparison operators

geometry comparisons in spatial data, 16
compatibility functions

spatial data, 292
compound curves

about, 18
constructors

spatial data, 12
conventions

command prompts, vii
command shells, vii
documentation, vi
file names in documentation, vi
operating systems, vi
Unix , vi
Windows, vi
Windows CE, vi
Windows Mobile, vi

curve polygons
about, 19

D
data types

spatial data types, 59
DCX

about, v
DE-9IM

about, 44
default spatial reference system

spatial data, 3
developer centers

finding out more and requesting technical support,
ix

developer community
newsgroups, ix

DISTINCT clause
geometry comparisons in spatial data, 16

DocCommentXchange (DCX)
about, v

documentation
conventions, vi
SQL Anywhere, v

E
environment variables

command prompts, vii

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 333

command shells, vii
ESRI shapefiles

example of how to load, 49
spatial data, supported format, 25
tutorial, 47

EWKB format
spatial data, supported formats, 21

EWKT format
spatial data, supported formats, 21

exporting
spatial data, supported formats, 21

Extended Well Known Binary (EWKB) format
spatial data, supported formats, 21

Extended Well Known Text (EWKT) format
spatial data, supported formats, 21

exteriors
spatial data, 42

F
feedback

documentation, viii
providing, viii
reporting an error, viii
requesting an update, viii

finding out more and requesting technical assistance
technical support, ix

flat-Earth
WGS 84 (planar), about, 3

flat-Earth model
spatial data, 6

G
Geographic Markup Language (GML) format

spatial data, supported formats, 21
geographies vs. geometries

spatial terminology differences in SQL Anywhere,
25

GeoJSON support
spatial data, supported formats, 21

geometries
about, 19
output to SVG, 54
viewing in the Spatial Viewer, 33

geometries vs. geographies
spatial terminology differences in SQL Anywhere,
25

geometry collections

about, 19
geometry geometry type

defined, 18
getting help

technical support, viii
GML format

spatial data, supported formats, 21
Google Earth data

compatibility with popular mapping applications, 5
GROUP BY clause

geometry comparisons in spatial data, 16

H
help

technical support, viii

I
iAnywhere developer community

newsgroups, ix
importing

spatial data, supported formats, 21
indexes

index restrictions for spatial columns, 11
spatial columns, 11

install-dir
documentation usage, vi

instance methods
spatial data types, 13

Interactive SQL
blocked when Spatial Viewer is running, 34
how to view spatial data, 33
viewing spatial data, 33

interiors
spatial data, 42

intersection tests
spatial data, 44

IS NOT OF expressions
using spatial predicates, 14

IS OF expressions
using spatial predicates, 14

J
JavaScript Object Notation (JSON) format

spatial data, supported formats, 21
JSON format

spatial data, supported formats, 21

Index

334 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

K
KML format

spatial data, supported formats, 21

L
linestring geometry type

defined, 18
linestrings

about, 19

M
multilinestring geometry type

defined, 18
multilinestrings

about, 19
multipoint geometry type

defined, 18
multipoints

about, 19
multipolygon geometry type

defined, 18
multipolygons

about, 19
multisurfaces

about, 20

N
NEW keyword

constructing spatial objects, 12
newsgroups

technical support, ix

O
online books

PDF, v
operating systems

Unix, vi
Windows, vi
Windows CE, vi
Windows Mobile, vi

ORDER BY clause
geometry comparisons in spatial data, 16

OUTPUT statement
output a geometry to SVG for viewing, 54

P
PDF

documentation, v
point geometry type

defined, 18
points

about, 19
polygon geometry type

defined, 18
polygons

about, 20
ring orientation, 20

predicates
spatial, 23

projection in flat-Earth spatial reference systems
about, 7

R
radians

spatial data, 5
relationships

spatial data, 44
ring orientation

polygons, 20
round-Earth

WGS 84, about, 3
round-Earth model

spatial data, 6

S
sa_octahedral_gnomonic

spatial reference systems, 4
sa_planar_unbounded

spatial reference systems, 4
samples-dir

documentation usage, vi
Scalable Vector Graphic (SVG) format

spatial data, supported formats, 21
shapefiles

see ESRI shapefiles, v
snap to grid

how snap-to-grid and tolerance impact spatial
calculations, 8

spatial
list of supported aggregate methods, 329
list of supported constructors, 328
list of supported methods, 325
list of supported predicates, 330
list of supported set operations, 330

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 335

list of supported static methods, 328
spatial data

about, 1
accessing, 59
column constraints, 32
compatibility functions, 292
compatibility with popular mapping applications, 5
creating a column to hold spatial data, 31
creating geometries in the database, 33
default spatial reference system, 3
ESRI shapefile support, 25
flat- and round-Earth representations, 6
geometry comparisons in spatial data, 16
index recommendations, 11
index restrictions, 11
instance methods, 13
introduction, 1
list of supported import and export formats, 21
relationships, 44
sa_octahedral_gnomonic spatial reference system,
4
sa_planar_unbounded spatial reference system, 4
spatial data type hierarchy, 18
spatial predicates, 23
spatial reference system identifiers, 2
special notes, 25
standards compliance, 17
static aggregate methods, 14
static methods, 13
suggested reading, 17
supported geometry types, 18
supported import formats, 21
supported spatial reference systems, 2
syntax for spatial data types, 12
testing relationships, 44
text indexes, 11
tutorial: experimenting with spatial features, 47
types, methods, and constructors, 59
units of measure, 5
unsupported methods, 25
unsupported methods in SQL Anywhere, 26
user-defined types, 12
using clustered indexes, 11
viewing geometries, 54
viewing geometries in Interactive SQL, 33
Well Known Text, examples of loading, 37
WGS 84 (planar) spatial reference system, 3
WGS 84 spatial reference system, 3

spatial data types
instance methods, 13
static aggregate methods, 14

Spatial Preview tab
(see also see also Spatial Viewer)
viewing geometries Interactive SQL, 33

spatial reference systems
about, 2
creating, 26
list of supported types, 2
query for a list of supported systems, 4

Spatial SQL API
ST_BdMPolyFromText function [Spatial], 295
ST_BdMPolyFromWKB function [Spatial], 296
ST_BdPolyFromText function [Spatial], 297
ST_BdPolyFromWKB function [Spatial], 298
ST_CircularFromTxt function [Spatial], 300
ST_CircularFromWKB function [Spatial], 301
ST_CircularString type, 59
ST_CompoundCurve type, 64
ST_CompoundFromTxt function [Spatial], 302
ST_CompoundFromWKB function [Spatial], 303
ST_CPolyFromText function [Spatial], 298
ST_CPolyFromWKB function [Spatial], 299
ST_Curve type, 69
ST_CurvePolygon type, 74
ST_GeomCollection type, 82
ST_GeomCollFromTxt function [Spatial], 304
ST_GeomCollFromWKB function [Spatial], 305
ST_Geometry type, 88
ST_GeomFromText function [Spatial], 306
ST_GeomFromWKB function [Spatial], 307
ST_LineFromText function [Spatial], 308
ST_LineFromWKB function [Spatial], 309
ST_LineString type, 223
ST_MCurveFromText function [Spatial], 310
ST_MCurveFromWKB function [Spatial], 311
ST_MLineFromText function [Spatial], 312
ST_MLineFromWKB function [Spatial], 313
ST_MPointFromText function [Spatial], 314
ST_MPointFromWKB function [Spatial], 315
ST_MPolyFromText function [Spatial], 316
ST_MPolyFromWKB function [Spatial], 317
ST_MSurfaceFromTxt function [Spatial], 318
ST_MSurfaceFromWKB function [Spatial], 319
ST_MultiCurve type, 229
ST_MultiLineString type, 235
ST_MultiPoint type, 240

Index

336 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ST_MultiPolygon type, 244
ST_MultiSurface type, 250
ST_OrderingEquals function [Spatial], 320
ST_Point type, 259
ST_PointFromText function [Spatial], 321
ST_PointFromWKB function [Spatial], 322
ST_PolyFromText function [Spatial], 323
ST_PolyFromWKB function [Spatial], 324
ST_Polygon type, 273
ST_SpatialRefSys type, 281
ST_Surface type, 288

Spatial Viewer
(see also see also Spatial Preview tab)
viewing geometries Interactive SQL, 33

special notes
spatial data, 25

SQL Anywhere
documentation, v

SQL Anywhere Developer Centers
finding out more and requesting technical support,
ix

SQL Anywhere Tech Corner
finding out more and requesting technical support,
ix

SQL standards
spatial data, 17

SQL/MM standard
about, 17
user-defined types, 12

SRIDs
about, 2
spatial reference identifiers, about, 2
using as constraints, 32

SRS
spatial reference systems, about, 2

ST_Affine method
ST_Geometry type, 91

ST_Area method
ST_MultiSurface type, 255
ST_Surface type, 289

ST_AsBinary method
ST_Geometry type, 92

ST_AsGeoJSON method
ST_Geometry type, 100

ST_AsGML method
ST_Geometry type, 95

ST_AsKML method
ST_Geometry type, 101

ST_AsSVG method
ST_Geometry type, 104

ST_AsSVGAggr method
ST_Geometry type, 107

ST_AsText method
ST_Geometry type, 111

ST_AsWKB method
ST_Geometry type, 121

ST_AsWKT method
ST_Geometry type, 123

ST_AsXML method
ST_Geometry type, 125

ST_BdMPolyFromText function [Spatial]
Spatial SQL API, 295

ST_BdMPolyFromWKB function [Spatial]
Spatial SQL API, 296

ST_BdPolyFromText function [Spatial]
Spatial SQL API, 297

ST_BdPolyFromWKB function [Spatial]
Spatial SQL API, 298

ST_Boundary method
additional information, 42
ST_Geometry type, 134

ST_Centroid method
ST_MultiSurface type, 255
ST_Surface type, 289

ST_CircularFromTxt function [Spatial]
Spatial SQL API, 300

ST_CircularFromWKB function [Spatial]
Spatial SQL API, 301

ST_CircularString constructor
ST_CircularString constructor [Spatial SQL API],
60

ST_CircularString constructor [Spatial SQL API]
ST_CircularString constructor, 60

ST_CircularString type
description, 59
ST_NumPoints method, 63
ST_PointN method, 64

ST_CompareWKT method
ST_SpatialRefSys type, 281

ST_CompoundCurve constructor
ST_CompoundCurve constructor [Spatial SQL
API], 65

ST_CompoundCurve constructor [Spatial SQL API]
ST_CompoundCurve constructor, 65

ST_CompoundCurve type
description, 64

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 337

ST_CurveN method, 68
ST_NumCurves method, 69

ST_CompoundFromTxt function [Spatial]
Spatial SQL API, 302

ST_CompoundFromWKB function [Spatial]
Spatial SQL API, 303

ST_Contains method
ST_Geometry type, 135

ST_ContainsFilter method
ST_Geometry type, 137

ST_ConvexHull method
ST_Geometry type, 138

ST_ConvexHullAggr method
ST_Geometry type, 139

ST_CoordDim method
ST_Geometry type, 140

ST_CoveredBy method
ST_Geometry type, 142

ST_CoveredByFilter method
ST_Geometry type, 143

ST_Covers method
ST_Geometry type, 144

ST_CoversFilter method
ST_Geometry type, 145

ST_CPolyFromText function [Spatial]
Spatial SQL API, 298

ST_CPolyFromWKB function [Spatial]
Spatial SQL API, 299

ST_Crosses method
ST_Geometry type, 146

ST_Curve type
description, 69
ST_CurveToLine method, 70
ST_EndPoint method, 70
ST_IsClosed method, 71
ST_IsRing method, 71
ST_Length method, 72
ST_StartPoint method, 73

ST_CurveN method
ST_CompoundCurve type, 68

ST_CurvePolygon constructor
ST_CurvePolygon constructor [Spatial SQL API],
74

ST_CurvePolygon constructor [Spatial SQL API]
ST_CurvePolygon constructor, 74

ST_CurvePolygon type
description, 74
ST_CurvePolyToPoly method, 79

ST_ExteriorRing method, 79
ST_InteriorRingN method, 81
ST_NumInteriorRing method, 82

ST_CurvePolyToPoly method
ST_CurvePolygon type, 79

ST_CurveToLine method
ST_Curve type, 70

ST_Difference method
ST_Geometry type, 147

ST_Dimension method
additional information, 43
ST_Geometry type, 149

ST_Disjoint method
ST_Geometry type, 150

ST_Distance method
ST_Geometry type, 151

ST_EndPoint method
ST_Curve type, 70

ST_Envelope method
ST_Geometry type, 153

ST_EnvelopeAggr method
ST_Geometry type, 154

ST_Equals method
geometry comparisons, 15
ST_Geometry type, 154

ST_EqualsFilter method
ST_Geometry type, 156

ST_ExteriorRing method
ST_CurvePolygon type, 79
ST_Polygon type, 279

ST_FormatTransformDefinition method
ST_SpatialRefSys type, 282

ST_FormatWKT method
ST_SpatialRefSys type, 283

ST_GeomCollection constructor
ST_GeomCollection constructor [Spatial SQL
API], 83

ST_GeomCollection constructor [Spatial SQL API]
ST_GeomCollection constructor, 83

ST_GeomCollection type
description, 82
ST_GeomCollectionAggr method, 86
ST_GeometryN method, 87
ST_NumGeometries method, 87

ST_GeomCollectionAggr method
ST_GeomCollection type, 86

ST_GeomCollFromTxt function [Spatial]
Spatial SQL API, 304

Index

338 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ST_GeomCollFromWKB function [Spatial]
Spatial SQL API, 305

ST_Geometry type
description, 88
ST_Affine method, 91
ST_AsBinary method, 92
ST_AsGeoJSON method, 100
ST_AsGML method, 95
ST_AsKML method, 101
ST_AsSVG method, 104
ST_AsSVGAggr method, 107
ST_AsText method, 111
ST_AsWKB method, 121
ST_AsWKT method, 123
ST_AsXML method, 125
ST_Boundary method, 134
ST_Contains method, 135
ST_ContainsFilter method, 137
ST_ConvexHull method, 138
ST_ConvexHullAggr method, 139
ST_CoordDim method, 140
ST_CoveredBy method, 142
ST_CoveredByFilter method, 143
ST_Covers method, 144
ST_CoversFilter method, 145
ST_Crosses method, 146
ST_Difference method, 147
ST_Dimension method, 149
ST_Disjoint method, 150
ST_Distance method, 151
ST_Envelope method, 153
ST_EnvelopeAggr method, 154
ST_Equals method, 154
ST_EqualsFilter method, 156
ST_GeometryType method, 161
ST_GeometryTypeFromBaseType method, 162
ST_GeomFromBinary method, 157
ST_GeomFromShape method, 158
ST_GeomFromText method, 158
ST_GeomFromWKB method, 159
ST_GeomFromWKT method, 160
ST_Intersection method, 163
ST_IntersectionAggr method, 164
ST_Intersects method, 165
ST_IntersectsFilter method, 166
ST_IntersectsRect method, 167
ST_Is3D method, 168
ST_IsEmpty method, 169

ST_IsMeasured method, 169
ST_IsSimple method, 170
ST_IsValid method, 170
ST_LatNorth method, 171
ST_LatSouth method, 172
ST_LinearHash method, 173
ST_LinearUnHash method, 173
ST_LoadConfigurationData method, 174
ST_LongEast method, 175
ST_LongWest method, 176
ST_MMax method, 177
ST_MMin method, 177
ST_OrderingEquals method, 178
ST_Overlaps method, 180
ST_Relate method, 181
ST_Reverse method, 184
ST_SnapToGrid method, 187
ST_SRID method, 185
ST_SRIDFromBaseType method, 187
ST_SymDifference method, 190
ST_ToCircular method, 192
ST_ToCompound method, 193
ST_ToCurve method, 194
ST_ToCurvePoly method, 195
ST_ToGeomColl method, 196
ST_ToLineString method, 197
ST_ToMultiCurve method, 198
ST_ToMultiLine method, 199
ST_ToMultiPoint method, 200
ST_ToMultiPolygon method, 201
ST_ToMultiSurface method, 202
ST_ToPoint method, 203
ST_ToPolygon method, 204
ST_ToSurface method, 206
ST_Touches method, 207
ST_Transform method, 208
ST_Union method, 209
ST_UnionAggr method, 210
ST_Within method, 211
ST_WithinDistance method, 212
ST_WithinDistanceFilter method, 214
ST_WithinFilter method, 216
ST_XMax method, 217
ST_XMin method, 218
ST_YMax method, 219
ST_YMin method, 220
ST_ZMax method, 221
ST_ZMin method, 222

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 339

ST_GeometryN method
ST_GeomCollection type, 87

ST_GeometryType method
ST_Geometry type, 161

ST_GeometryTypeFromBaseType method
ST_Geometry type, 162

ST_GeomFromBinary method
ST_Geometry type, 157

ST_GeomFromShape method
ST_Geometry type, 158

ST_GeomFromText function [Spatial]
Spatial SQL API, 306

ST_GeomFromText method
ST_Geometry type, 158

ST_GeomFromWKB function [Spatial]
Spatial SQL API, 307

ST_GeomFromWKB method
ST_Geometry type, 159

ST_GeomFromWKT method
ST_Geometry type, 160

ST_GetUnProjectedTransformDefinition method
ST_SpatialRefSys type, 284

ST_InteriorRingN method
ST_CurvePolygon type, 81
ST_Polygon type, 280

ST_Intersection method
ST_Geometry type, 163

ST_IntersectionAggr method
ST_Geometry type, 164

ST_Intersects method
example, 52
ST_Geometry type, 165

ST_IntersectsFilter method
ST_Geometry type, 166

ST_IntersectsRect method
ST_Geometry type, 167

ST_Is3D method
ST_Geometry type, 168

ST_IsClosed method
ST_Curve type, 71
ST_MultiCurve type, 232

ST_IsEmpty method
ST_Geometry type, 169

ST_IsMeasured method
ST_Geometry type, 169

ST_IsRing method
ST_Curve type, 71

ST_IsSimple method

ST_Geometry type, 170
ST_IsValid method

ST_Geometry type, 170
ST_IsWorld method

ST_Surface type, 290
ST_Lat method

ST_Point type, 263
ST_LatNorth method

ST_Geometry type, 171
ST_LatSouth method

ST_Geometry type, 172
ST_Length method

ST_Curve type, 72
ST_MultiCurve type, 233

ST_LinearHash method
ST_Geometry type, 173

ST_LinearUnHash method
ST_Geometry type, 173

ST_LineFromText function [Spatial]
Spatial SQL API, 308

ST_LineFromWKB function [Spatial]
Spatial SQL API, 309

ST_LineString constructor
ST_LineString constructor [Spatial SQL API], 224

ST_LineString constructor [Spatial SQL API]
ST_LineString constructor, 224

ST_LineString type
description, 223
ST_LineStringAggr method, 227
ST_NumPoints method, 227
ST_PointN method, 228

ST_LineStringAggr method
ST_LineString type, 227

ST_LoadConfigurationData method
ST_Geometry type, 174

ST_Long method
ST_Point type, 265

ST_LongEast method
ST_Geometry type, 175

ST_LongWest method
ST_Geometry type, 176

ST_M method
ST_Point type, 267

ST_MCurveFromText function [Spatial]
Spatial SQL API, 310

ST_MCurveFromWKB function [Spatial]
Spatial SQL API, 311

ST_MLineFromText function [Spatial]

Index

340 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Spatial SQL API, 312
ST_MLineFromWKB function [Spatial]

Spatial SQL API, 313
ST_MMax method

ST_Geometry type, 177
ST_MMin method

ST_Geometry type, 177
ST_MPointFromText function [Spatial]

Spatial SQL API, 314
ST_MPointFromWKB function [Spatial]

Spatial SQL API, 315
ST_MPolyFromText function [Spatial]

Spatial SQL API, 316
ST_MPolyFromWKB function [Spatial]

Spatial SQL API, 317
ST_MSurfaceFromTxt function [Spatial]

Spatial SQL API, 318
ST_MSurfaceFromWKB function [Spatial]

Spatial SQL API, 319
ST_MultiCurve constructor

ST_MultiCurve constructor [Spatial SQL API],
229

ST_MultiCurve constructor [Spatial SQL API]
ST_MultiCurve constructor, 229

ST_MultiCurve type
description, 229
ST_IsClosed method, 232
ST_Length method, 233
ST_MultiCurveAggr method, 234

ST_MultiCurveAggr method
ST_MultiCurve type, 234

ST_MultiLineString constructor
ST_MultiLineString constructor [Spatial SQL
API], 236

ST_MultiLineString constructor [Spatial SQL API]
ST_MultiLineString constructor, 236

ST_MultiLineString type
description, 235
ST_MultiLineStringAggr method, 239

ST_MultiLineStringAggr method
ST_MultiLineString type, 239

ST_MultiPoint constructor
ST_MultiPoint constructor [Spatial SQL API], 240

ST_MultiPoint constructor [Spatial SQL API]
ST_MultiPoint constructor, 240

ST_MultiPoint type
description, 240
ST_MultiPointAggr method, 243

ST_MultiPointAggr method
ST_MultiPoint type, 243

ST_MultiPolygon constructor
ST_MultiPolygon constructor [Spatial SQL API],
245

ST_MultiPolygon constructor [Spatial SQL API]
ST_MultiPolygon constructor, 245

ST_MultiPolygon type
description, 244
ST_MultiPolygonAggr method, 249

ST_MultiPolygonAggr method
ST_MultiPolygon type, 249

ST_MultiSurface constructor
ST_MultiSurface constructor [Spatial SQL API],
251

ST_MultiSurface constructor [Spatial SQL API]
ST_MultiSurface constructor, 251

ST_MultiSurface type
description, 250
ST_Area method, 255
ST_Centroid method, 255
ST_MultiSurfaceAggr method, 256
ST_Perimeter method, 257
ST_PointOnSurface method, 258

ST_MultiSurfaceAggr method
ST_MultiSurface type, 256

ST_NumCurves method
ST_CompoundCurve type, 69

ST_NumGeometries method
ST_GeomCollection type, 87

ST_NumInteriorRing method
ST_CurvePolygon type, 82

ST_NumPoints method
ST_CircularString type, 63
ST_LineString type, 227

ST_OrderingEquals function [Spatial]
Spatial SQL API, 320

ST_OrderingEquals method
geometry comparisons, 15
ST_Geometry type, 178

ST_Overlaps method
ST_Geometry type, 180

ST_ParseWKT method
ST_SpatialRefSys type, 285

ST_Perimeter method
ST_MultiSurface type, 257
ST_Surface type, 290

ST_Point constructor

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 341

ST_Point constructor [Spatial SQL API], 259
ST_Point constructor [Spatial SQL API]

ST_Point constructor, 259
ST_Point type

description, 259
ST_Lat method, 263
ST_Long method, 265
ST_M method, 267
ST_X method, 268
ST_Y method, 270
ST_Z method, 272

ST_PointFromText function [Spatial]
Spatial SQL API, 321

ST_PointFromWKB function [Spatial]
Spatial SQL API, 322

ST_PointN method
ST_CircularString type, 64
ST_LineString type, 228

ST_PointOnSurface method
ST_MultiSurface type, 258
ST_Surface type, 291

ST_PolyFromText function [Spatial]
Spatial SQL API, 323

ST_PolyFromWKB function [Spatial]
Spatial SQL API, 324

ST_Polygon constructor
ST_Polygon constructor [Spatial SQL API], 274

ST_Polygon constructor [Spatial SQL API]
ST_Polygon constructor, 274

ST_Polygon type
description, 273
ST_ExteriorRing method, 279
ST_InteriorRingN method, 280

ST_Relate method
additional information, 44
non-predicate use, 46
ST_Geometry type, 181
used as a predicate, 44

ST_Reverse method
ST_Geometry type, 184

ST_SnapToGrid method
ST_Geometry type, 187

ST_SpatialRefSys type
description, 281
ST_CompareWKT method, 281
ST_FormatTransformDefinition method, 282
ST_FormatWKT method, 283

ST_GetUnProjectedTransformDefinition method,
284
ST_ParseWKT method, 285
ST_TransformGeom method, 286
ST_World method, 287

ST_SRID method
ST_Geometry type, 185

ST_SRIDFromBaseType method
ST_Geometry type, 187

ST_StartPoint method
ST_Curve type, 73

ST_Surface type
description, 288
ST_Area method, 289
ST_Centroid method, 289
ST_IsWorld method, 290
ST_Perimeter method, 290
ST_PointOnSurface method, 291

ST_SymDifference method
ST_Geometry type, 190

ST_ToCircular method
ST_Geometry type, 192

ST_ToCompound method
ST_Geometry type, 193

ST_ToCurve method
ST_Geometry type, 194

ST_ToCurvePoly method
ST_Geometry type, 195

ST_ToGeomColl method
ST_Geometry type, 196

ST_ToLineString method
ST_Geometry type, 197

ST_ToMultiCurve method
ST_Geometry type, 198

ST_ToMultiLine method
ST_Geometry type, 199

ST_ToMultiPoint method
ST_Geometry type, 200

ST_ToMultiPolygon method
ST_Geometry type, 201

ST_ToMultiSurface method
ST_Geometry type, 202

ST_ToPoint method
ST_Geometry type, 203

ST_ToPolygon method
ST_Geometry type, 204

ST_ToSurface method
ST_Geometry type, 206

Index

342 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ST_Touches method
example, 56
ST_Geometry type, 207

ST_Transform method
ST_Geometry type, 208

ST_TransformGeom method
ST_SpatialRefSys type, 286

ST_Union method
ST_Geometry type, 209

ST_UnionAggr method
example, 52
ST_Geometry type, 210

ST_Within method
example, 52
ST_Geometry type, 211

ST_WithinDistance method
ST_Geometry type, 212

ST_WithinDistanceFilter method
ST_Geometry type, 214

ST_WithinFilter method
ST_Geometry type, 216

ST_World method
ST_SpatialRefSys type, 287

ST_X method
ST_Point type, 268

ST_XMax method
ST_Geometry type, 217

ST_XMin method
ST_Geometry type, 218

ST_Y method
ST_Point type, 270

ST_YMax method
ST_Geometry type, 219

ST_YMin method
ST_Geometry type, 220

ST_Z method
ST_Point type, 272

ST_ZMax method
ST_Geometry type, 221

ST_ZMin method
ST_Geometry type, 222

static aggregate methods
spatial data types, 14

static methods
spatial data types, 13

support
newsgroups, ix

supported geometry types

spatial data, 18
SVG format

output a geometry to SVG for viewing, 54
spatial data, supported formats, 21

SVGs
about, 21
viewing in Interactive SQL, 33

SYS_SPATIAL_ADMIN_ROLE group
about, 16

SYSSPATIALREFERENCESYSTEM
using, 4

T
tech corners

finding out more and requesting technical support,
ix

technical support
newsgroups, ix

text indexes
on spatial columns, 11

troubleshooting
newsgroups, ix

tutorials
experimenting with spatial features, 47
spatial features, 47

U
UDTs

spatial data type syntax, 12
units of measure

about, 5
creating, 29
installing, example, 47

Unix
documentation conventions, vi
operating systems, vi

W
Well Known Binary (WKB) format

spatial data, supported formats, 21
Well Known Text

example of loading, 37
Well Known Text (WKT)

spatial data, supported formats, 21
WGS 84

spatial reference system, 3
WGS 84 (planar)

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 343

spatial reference system, 3
Windows

documentation conventions, vi
operating systems, vi

Windows Mobile
documentation conventions, vi
operating systems, vi
Windows CE, vi

WKB format
spatial data, supported formats, 21

WKT
example of loading, 37

WKT format
spatial data, supported formats, 21

Index

344 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

	SQL Anywhere® Server - Spatial Data Support
	Contents
	About this book
	About the SQL Anywhere documentation
	Documentation conventions
	Contacting the documentation team
	Finding out more and requesting technical support

	Getting started with spatial data
	Introduction to spatial data
	Spatial reference systems (SRS) and Spatial reference identifiers (SRID)
	Units of measure
	Flat-Earth and round-Earth representations
	How snap-to-grid and tolerance impact spatial calculations
	Indexes on spatial columns
	Spatial data type syntax based on ANSI SQL UDTs
	Comparing geometries using ST_Equals and ST_OrderingEquals
	Spatial permissions
	Recommended reading on spatial topics

	Compliance and support
	Compliance with spatial standards
	Supported spatial data types and their hierarchy
	Polygon ring orientation

	Supported import and export formats for spatial data
	Supported spatial predicates
	Intuitiveness of spatial predicates

	Support for ESRI shapefiles
	Special notes on support and compliance

	Spatial data usage topics
	Create a spatial reference system
	Create a unit of measure
	Create a spatial column
	Using a SRID as column constraint

	Create geometries
	View spatial data as images
	Load spatial data from a Well Known Text (WKT) file
	Geometry interiors, exteriors, and boundaries
	Additional information on the ST_Dimension method
	Test custom relationships using the ST_Relate method

	Tutorial: Experimenting with the spatial features

	Accessing and manipulating spatial data
	ST_CircularString type
	ST_CircularString constructor
	ST_CircularString() constructor
	ST_CircularString(LONG VARCHAR[, INT]) constructor
	ST_CircularString(LONG BINARY[, INT]) constructor
	ST_CircularString(ST_Point,ST_Point,ST_Point,...) constructor

	ST_NumPoints method for type ST_CircularString
	ST_PointN method for type ST_CircularString

	ST_CompoundCurve type
	ST_CompoundCurve constructor
	ST_CompoundCurve() constructor
	ST_CompoundCurve(LONG VARCHAR[, INT]) constructor
	ST_CompoundCurve(LONG BINARY[, INT]) constructor
	ST_CompoundCurve(ST_Curve,...) constructor

	ST_CurveN method for type ST_CompoundCurve
	ST_NumCurves method for type ST_CompoundCurve

	ST_Curve type
	ST_CurveToLine method for type ST_Curve
	ST_EndPoint method for type ST_Curve
	ST_IsClosed method for type ST_Curve
	ST_IsRing method for type ST_Curve
	ST_Length method for type ST_Curve
	ST_StartPoint method for type ST_Curve

	ST_CurvePolygon type
	ST_CurvePolygon constructor
	ST_CurvePolygon() constructor
	ST_CurvePolygon(LONG VARCHAR[, INT]) constructor
	ST_CurvePolygon(LONG BINARY[, INT]) constructor
	ST_CurvePolygon(ST_Curve,...) constructor
	ST_CurvePolygon(ST_MultiCurve[, VARCHAR(128)]) constructor

	ST_CurvePolyToPoly method for type ST_CurvePolygon
	ST_ExteriorRing method for type ST_CurvePolygon
	ST_ExteriorRing() method for type ST_CurvePolygon
	ST_ExteriorRing(ST_Curve) method for type ST_CurvePolygon

	ST_InteriorRingN method for type ST_CurvePolygon
	ST_NumInteriorRing method for type ST_CurvePolygon

	ST_GeomCollection type
	ST_GeomCollection constructor
	ST_GeomCollection() constructor
	ST_GeomCollection(LONG VARCHAR[, INT]) constructor
	ST_GeomCollection(LONG BINARY[, INT]) constructor
	ST_GeomCollection(ST_Geometry,...) constructor

	ST_GeomCollectionAggr method for type ST_GeomCollection
	ST_GeometryN method for type ST_GeomCollection
	ST_NumGeometries method for type ST_GeomCollection

	ST_Geometry type
	ST_Affine method for type ST_Geometry
	ST_AsBinary method for type ST_Geometry
	ST_AsGML method for type ST_Geometry
	ST_AsGeoJSON method for type ST_Geometry
	ST_AsKML method for type ST_Geometry
	ST_AsSVG method for type ST_Geometry
	ST_AsSVGAggr method for type ST_Geometry
	ST_AsText method for type ST_Geometry
	ST_AsWKB method for type ST_Geometry
	ST_AsWKT method for type ST_Geometry
	ST_AsXML method for type ST_Geometry
	ST_Boundary method for type ST_Geometry
	ST_Contains method for type ST_Geometry
	ST_ContainsFilter method for type ST_Geometry
	ST_ConvexHull method for type ST_Geometry
	ST_ConvexHullAggr method for type ST_Geometry
	ST_CoordDim method for type ST_Geometry
	ST_CoveredBy method for type ST_Geometry
	ST_CoveredByFilter method for type ST_Geometry
	ST_Covers method for type ST_Geometry
	ST_CoversFilter method for type ST_Geometry
	ST_Crosses method for type ST_Geometry
	ST_Difference method for type ST_Geometry
	ST_Dimension method for type ST_Geometry
	ST_Disjoint method for type ST_Geometry
	ST_Distance method for type ST_Geometry
	ST_Envelope method for type ST_Geometry
	ST_EnvelopeAggr method for type ST_Geometry
	ST_Equals method for type ST_Geometry
	ST_EqualsFilter method for type ST_Geometry
	ST_GeomFromBinary method for type ST_Geometry
	ST_GeomFromShape method for type ST_Geometry
	ST_GeomFromText method for type ST_Geometry
	ST_GeomFromWKB method for type ST_Geometry
	ST_GeomFromWKT method for type ST_Geometry
	ST_GeometryType method for type ST_Geometry
	ST_GeometryTypeFromBaseType method for type ST_Geometry
	ST_Intersection method for type ST_Geometry
	ST_IntersectionAggr method for type ST_Geometry
	ST_Intersects method for type ST_Geometry
	ST_IntersectsFilter method for type ST_Geometry
	ST_IntersectsRect method for type ST_Geometry
	ST_Is3D method for type ST_Geometry
	ST_IsEmpty method for type ST_Geometry
	ST_IsMeasured method for type ST_Geometry
	ST_IsSimple method for type ST_Geometry
	ST_IsValid method for type ST_Geometry
	ST_LatNorth method for type ST_Geometry
	ST_LatSouth method for type ST_Geometry
	ST_LinearHash method for type ST_Geometry
	ST_LinearUnHash method for type ST_Geometry
	ST_LoadConfigurationData method for type ST_Geometry
	ST_LongEast method for type ST_Geometry
	ST_LongWest method for type ST_Geometry
	ST_MMax method for type ST_Geometry
	ST_MMin method for type ST_Geometry
	ST_OrderingEquals method for type ST_Geometry
	ST_Overlaps method for type ST_Geometry
	ST_Relate method for type ST_Geometry
	ST_Relate(ST_Geometry,CHAR(9)) method for type ST_Geometry
	ST_Relate(ST_Geometry) method for type ST_Geometry

	ST_Reverse method for type ST_Geometry
	ST_SRID method for type ST_Geometry
	ST_SRID() method for type ST_Geometry
	ST_SRID(INT) method for type ST_Geometry

	ST_SRIDFromBaseType method for type ST_Geometry
	ST_SnapToGrid method for type ST_Geometry
	ST_SnapToGrid(DOUBLE) method for type ST_Geometry
	ST_SnapToGrid(ST_Point,DOUBLE,DOUBLE,DOUBLE,DOUBLE) method for type ST_Geometry

	ST_SymDifference method for type ST_Geometry
	ST_ToCircular method for type ST_Geometry
	ST_ToCompound method for type ST_Geometry
	ST_ToCurve method for type ST_Geometry
	ST_ToCurvePoly method for type ST_Geometry
	ST_ToGeomColl method for type ST_Geometry
	ST_ToLineString method for type ST_Geometry
	ST_ToMultiCurve method for type ST_Geometry
	ST_ToMultiLine method for type ST_Geometry
	ST_ToMultiPoint method for type ST_Geometry
	ST_ToMultiPolygon method for type ST_Geometry
	ST_ToMultiSurface method for type ST_Geometry
	ST_ToPoint method for type ST_Geometry
	ST_ToPolygon method for type ST_Geometry
	ST_ToSurface method for type ST_Geometry
	ST_Touches method for type ST_Geometry
	ST_Transform method for type ST_Geometry
	ST_Union method for type ST_Geometry
	ST_UnionAggr method for type ST_Geometry
	ST_Within method for type ST_Geometry
	ST_WithinDistance method for type ST_Geometry
	ST_WithinDistanceFilter method for type ST_Geometry
	ST_WithinFilter method for type ST_Geometry
	ST_XMax method for type ST_Geometry
	ST_XMin method for type ST_Geometry
	ST_YMax method for type ST_Geometry
	ST_YMin method for type ST_Geometry
	ST_ZMax method for type ST_Geometry
	ST_ZMin method for type ST_Geometry

	ST_LineString type
	ST_LineString constructor
	ST_LineString() constructor
	ST_LineString(LONG VARCHAR[, INT]) constructor
	ST_LineString(LONG BINARY[, INT]) constructor
	ST_LineString(ST_Point,ST_Point,...) constructor

	ST_LineStringAggr method for type ST_LineString
	ST_NumPoints method for type ST_LineString
	ST_PointN method for type ST_LineString

	ST_MultiCurve type
	ST_MultiCurve constructor
	ST_MultiCurve() constructor
	ST_MultiCurve(LONG VARCHAR[, INT]) constructor
	ST_MultiCurve(LONG BINARY[, INT]) constructor
	ST_MultiCurve(ST_Curve,...) constructor

	ST_IsClosed method for type ST_MultiCurve
	ST_Length method for type ST_MultiCurve
	ST_MultiCurveAggr method for type ST_MultiCurve

	ST_MultiLineString type
	ST_MultiLineString constructor
	ST_MultiLineString() constructor
	ST_MultiLineString(LONG VARCHAR[, INT]) constructor
	ST_MultiLineString(LONG BINARY[, INT]) constructor
	ST_MultiLineString(ST_LineString,...) constructor

	ST_MultiLineStringAggr method for type ST_MultiLineString

	ST_MultiPoint type
	ST_MultiPoint constructor
	ST_MultiPoint() constructor
	ST_MultiPoint(LONG VARCHAR[, INT]) constructor
	ST_MultiPoint(LONG BINARY[, INT]) constructor
	ST_MultiPoint(ST_Point,...) constructor

	ST_MultiPointAggr method for type ST_MultiPoint

	ST_MultiPolygon type
	ST_MultiPolygon constructor
	ST_MultiPolygon() constructor
	ST_MultiPolygon(LONG VARCHAR[, INT]) constructor
	ST_MultiPolygon(LONG BINARY[, INT]) constructor
	ST_MultiPolygon(ST_Polygon,...) constructor
	ST_MultiPolygon(ST_MultiLineString[, VARCHAR(128)]) constructor

	ST_MultiPolygonAggr method for type ST_MultiPolygon

	ST_MultiSurface type
	ST_MultiSurface constructor
	ST_MultiSurface() constructor
	ST_MultiSurface(LONG VARCHAR[, INT]) constructor
	ST_MultiSurface(LONG BINARY[, INT]) constructor
	ST_MultiSurface(ST_Surface,...) constructor
	ST_MultiSurface(ST_MultiCurve[, VARCHAR(128)]) constructor

	ST_Area method for type ST_MultiSurface
	ST_Centroid method for type ST_MultiSurface
	ST_MultiSurfaceAggr method for type ST_MultiSurface
	ST_Perimeter method for type ST_MultiSurface
	ST_PointOnSurface method for type ST_MultiSurface

	ST_Point type
	ST_Point constructor
	ST_Point() constructor
	ST_Point(LONG VARCHAR[, INT]) constructor
	ST_Point(LONG BINARY[, INT]) constructor
	ST_Point(DOUBLE,DOUBLE[, INT]) constructor
	ST_Point(DOUBLE,DOUBLE,DOUBLE[, INT]) constructor
	ST_Point(DOUBLE,DOUBLE,DOUBLE,DOUBLE[, INT]) constructor

	ST_Lat method for type ST_Point
	ST_Lat() method for type ST_Point
	ST_Lat(DOUBLE) method for type ST_Point

	ST_Long method for type ST_Point
	ST_Long() method for type ST_Point
	ST_Long(DOUBLE) method for type ST_Point

	ST_M method for type ST_Point
	ST_M() method for type ST_Point
	ST_M(DOUBLE) method for type ST_Point

	ST_X method for type ST_Point
	ST_X() method for type ST_Point
	ST_X(DOUBLE) method for type ST_Point

	ST_Y method for type ST_Point
	ST_Y() method for type ST_Point
	ST_Y(DOUBLE) method for type ST_Point

	ST_Z method for type ST_Point
	ST_Z() method for type ST_Point
	ST_Z(DOUBLE) method for type ST_Point

	ST_Polygon type
	ST_Polygon constructor
	ST_Polygon() constructor
	ST_Polygon(LONG VARCHAR[, INT]) constructor
	ST_Polygon(LONG BINARY[, INT]) constructor
	ST_Polygon(ST_Point,ST_Point) constructor
	ST_Polygon(ST_MultiLineString[, VARCHAR(128)]) constructor
	ST_Polygon(ST_LineString,...) constructor

	ST_ExteriorRing method for type ST_Polygon
	ST_ExteriorRing() method for type ST_Polygon
	ST_ExteriorRing(ST_Curve) method for type ST_Polygon

	ST_InteriorRingN method for type ST_Polygon

	ST_SpatialRefSys type
	ST_CompareWKT method for type ST_SpatialRefSys
	ST_FormatTransformDefinition method for type ST_SpatialRefSys
	ST_FormatWKT method for type ST_SpatialRefSys
	ST_GetUnProjectedTransformDefinition method for type ST_SpatialRefSys
	ST_ParseWKT method for type ST_SpatialRefSys
	ST_TransformGeom method for type ST_SpatialRefSys
	ST_World method for type ST_SpatialRefSys

	ST_Surface type
	ST_Area method for type ST_Surface
	ST_Centroid method for type ST_Surface
	ST_IsWorld method for type ST_Surface
	ST_Perimeter method for type ST_Surface
	ST_PointOnSurface method for type ST_Surface

	Spatial compatibility functions
	ST_BdMPolyFromText function [Spatial]
	ST_BdMPolyFromWKB function [Spatial]
	ST_BdPolyFromText function [Spatial]
	ST_BdPolyFromWKB function [Spatial]
	ST_CPolyFromText function [Spatial]
	ST_CPolyFromWKB function [Spatial]
	ST_CircularFromTxt function [Spatial]
	ST_CircularFromWKB function [Spatial]
	ST_CompoundFromTxt function [Spatial]
	ST_CompoundFromWKB function [Spatial]
	ST_GeomCollFromTxt function [Spatial]
	ST_GeomCollFromWKB function [Spatial]
	ST_GeomFromText function [Spatial]
	ST_GeomFromWKB function [Spatial]
	ST_LineFromText function [Spatial]
	ST_LineFromWKB function [Spatial]
	ST_MCurveFromText function [Spatial]
	ST_MCurveFromWKB function [Spatial]
	ST_MLineFromText function [Spatial]
	ST_MLineFromWKB function [Spatial]
	ST_MPointFromText function [Spatial]
	ST_MPointFromWKB function [Spatial]
	ST_MPolyFromText function [Spatial]
	ST_MPolyFromWKB function [Spatial]
	ST_MSurfaceFromTxt function [Spatial]
	ST_MSurfaceFromWKB function [Spatial]
	ST_OrderingEquals function [Spatial]
	ST_PointFromText function [Spatial]
	ST_PointFromWKB function [Spatial]
	ST_PolyFromText function [Spatial]
	ST_PolyFromWKB function [Spatial]

	List of all supported methods
	List of all supported constructors
	List of static methods
	List of aggregate methods
	List of set operation methods
	List of spatial predicates

	Index

