
SQL Anywhere® Server
SQL Reference

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Copyright © 2010 iAnywhere Solutions, Inc. Portions copyright © 2010 Sybase, Inc. All rights reserved.

This documentation is provided AS IS, without warranty or liability of any kind (unless provided by a separate written agreement between
you and iAnywhere).

You may use, print, reproduce, and distribute this documentation (in whole or in part) subject to the following conditions: 1) you must
retain this and all other proprietary notices, on all copies of the documentation or portions thereof, 2) you may not modify the
documentation, 3) you may not do anything to indicate that you or anyone other than iAnywhere is the author or source of the documentation.

iAnywhere®, Sybase®, and the marks listed at http://www.sybase.com/detail?id=1011207 are trademarks of Sybase, Inc. or its subsidiaries.
® indicates registration in the United States of America.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

http://www.sybase.com/detail?id=1011207

Contents

About this book ... v

About the SQL Anywhere documentation ... v

SQL language elements .. 1

Keywords .. 1
Identifiers .. 4
Strings .. 5
Constants ... 6
Operators .. 8
Expressions ... 12
Search conditions .. 32
Special values .. 58
Variables ... 67
Comments .. 74
NULL value ... 74

SQL data types ... 79

Character data types ... 79
Numeric data types .. 87
Money data types ... 96
Bit array data types ... 97
Date and time data types .. 99
Binary data types ... 108
Domains .. 111
Data type conversions .. 112
Spatial data types .. 125

SQL functions .. 127

Function types ... 127
Functions .. 139

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 iii

SQL statements ... 381

Common elements in SQL syntax .. 381
Syntax conventions ... 382
Statement applicability indicators ... 384
SQL statements ... 384

Tables ... 911

System tables ... 911
Diagnostic tracing tables .. 922
Other tables .. 938

System procedures ... 941

View system procedure details .. 941
Web services system procedures .. 941
MAPI and SMTP procedures ... 942
Adaptive Server Enterprise system and catalog procedures 944
Alphabetical list of system procedures ... 946

Views ... 1127

System views ... 1127
Consolidated views ... 1190
Compatibility views ... 1210

Index ... 1221

SQL Anywhere® Server - SQL Reference

iv Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

About this book
This book provides reference information for system procedures, and the catalog (system tables and
views). It also provides an explanation of the SQL Anywhere implementation of the SQL language
(search conditions, syntax, data types, and functions).

About the SQL Anywhere documentation
The complete SQL Anywhere documentation is available in four formats:

● DocCommentXchange DocCommentXchange is a community for accessing and discussing SQL
Anywhere documentation on the web.

To access the documentation, go to http://dcx.sybase.com.

● HTML Help On Windows platforms, the HTML Help contains the complete SQL Anywhere
documentation, including the books and the context-sensitive help for SQL Anywhere tools.

To access the documentation, choose Start » Programs » SQL Anywhere 12 » Documentation »
HTML Help (English).

● Eclipse On Unix platforms, the complete Help is provided in Eclipse format. To access the
documentation, run sadoc from the bin32 or bin64 directory of your SQL Anywhere installation.

● PDF The complete set of SQL Anywhere books is provided as a set of Portable Document Format
(PDF) files. You must have a PDF reader to view information.

To access the PDF documentation on Windows operating systems, choose Start » Programs » SQL
Anywhere 12 » Documentation » PDF (English).

To access the PDF documentation on Unix operating systems, use a web browser to open /documentation/
en/pdf/index.html under the SQL Anywhere installation directory.

Documentation conventions
This section lists the conventions used in this documentation.

Operating systems
SQL Anywhere runs on a variety of platforms. Typically, the behavior of the software is the same on all
platforms, but there are variations or limitations. These are commonly based on the underlying operating
system (Windows, Unix), and seldom on the particular variant (IBM AIX, Windows Mobile) or version.

To simplify references to operating systems, the documentation groups the supported operating systems
as follows:

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 v

http://dcx.sybase.com/

● Windows The Microsoft Windows family includes platforms that are used primarily on server,
desktop, and laptop computers, as well as platforms used on mobile devices. Unless otherwise
specified, when the documentation refers to Windows, it refers to all supported Windows-based
platforms, including Windows Mobile.

Windows Mobile is based on the Windows CE operating system, which is also used to build a variety
of platforms other than Windows Mobile. Unless otherwise specified, when the documentation refers
to Windows Mobile, it refers to all supported platforms built using Windows CE.

● Unix Unless otherwise specified, when the documentation refers to Unix, it refers to all supported
Unix-based platforms, including Linux and Mac OS X.

For the complete list of platforms supported by SQL Anywhere, see “Supported platforms” [SQL
Anywhere 12 - Introduction].

Directory and file names
Usually references to directory and file names are similar on all supported platforms, with simple
transformations between the various forms. In these cases, Windows conventions are used. Where the
details are more complex, the documentation shows all relevant forms.

These are the conventions used to simplify the documentation of directory and file names:

● Uppercase and lowercase directory names On Windows and Unix, directory and file names
may contain uppercase and lowercase letters. When directories and files are created, the file system
preserves letter case.

On Windows, references to directories and files are not case sensitive. Mixed case directory and file
names are common, but it is common to refer to them using all lowercase letters. The SQL Anywhere
installation contains directories such as Bin32 and Documentation.

On Unix, references to directories and files are case sensitive. Mixed case directory and file names are
not common. Most use all lowercase letters. The SQL Anywhere installation contains directories such
as bin32 and documentation.

The documentation uses the Windows forms of directory names. You can usually convert a mixed
case directory name to lowercase for the equivalent directory name on Unix.

● Slashes separating directory and file names The documentation uses backslashes as the
directory separator. For example, the PDF form of the documentation is found in install-dir
\Documentation\en\PDF (Windows form).

On Unix, replace the backslash with the forward slash. The PDF documentation is found in install-dir/
documentation/en/pdf.

● Executable files The documentation shows executable file names using Windows conventions,
with a suffix such as .exe or .bat. On Unix, executable file names have no suffix.

For example, on Windows, the network database server is dbsrv12.exe. On Unix, it is dbsrv12.

About this book

vi Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● install-dir During the installation process, you choose where to install SQL Anywhere. The
environment variable SQLANY12 is created and refers to this location. The documentation refers to
this location as install-dir.

For example, the documentation may refer to the file install-dir/readme.txt. On Windows, this is
equivalent to %SQLANY12%\readme.txt. On Unix, this is equivalent to $SQLANY12/readme.txt or $
{SQLANY12}/readme.txt.

For more information about the default location of install-dir, see “SQLANY12 environment
variable” [SQL Anywhere Server - Database Administration].

● samples-dir During the installation process, you choose where to install the samples included with
SQL Anywhere. The environment variable SQLANYSAMP12 is created and refers to this location.
The documentation refers to this location as samples-dir.

To open a Windows Explorer window in samples-dir, choose Start » Programs » SQL Anywhere
12 » Sample Applications And Projects.

For more information about the default location of samples-dir, see “SQLANYSAMP12 environment
variable” [SQL Anywhere Server - Database Administration].

Command prompts and command shell syntax
Most operating systems provide one or more methods of entering commands and parameters using a
command shell or command prompt. Windows command prompts include Command Prompt (DOS
prompt) and 4NT. Unix command shells include Korn shell and bash. Each shell has features that extend
its capabilities beyond simple commands. These features are driven by special characters. The special
characters and features vary from one shell to another. Incorrect use of these special characters often
results in syntax errors or unexpected behavior.

The documentation provides command line examples in a generic form. If these examples contain
characters that the shell considers special, the command may require modification for the specific shell.
The modifications are beyond the scope of this documentation, but generally, use quotes around the
parameters containing those characters or use an escape character before the special characters.

These are some examples of command line syntax that may vary between platforms:

● Parentheses and curly braces Some command line options require a parameter that accepts
detailed value specifications in a list. The list is usually enclosed with parentheses or curly braces. The
documentation uses parentheses. For example:

-x tcpip(host=127.0.0.1)

Where parentheses cause syntax problems, substitute curly braces:

-x tcpip{host=127.0.0.1}

If both forms result in syntax problems, the entire parameter should be enclosed in quotes as required
by the shell:

-x "tcpip(host=127.0.0.1)"

About the SQL Anywhere documentation

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 vii

● Semicolons On Unix, semicolons should be enclosed in quotes.

● Quotes If you must specify quotes in a parameter value, the quotes may conflict with the
traditional use of quotes to enclose the parameter. For example, to specify an encryption key whose
value contains double-quotes, you might have to enclose the key in quotes and then escape the
embedded quote:

-ek "my \"secret\" key"

In many shells, the value of the key would be my "secret" key.

● Environment variables The documentation refers to setting environment variables. In Windows
shells, environment variables are specified using the syntax %ENVVAR%. In Unix shells, environment
variables are specified using the syntax $ENVVAR or ${ENVVAR}.

Contacting the documentation team
We would like to receive your opinions, suggestions, and feedback on this Help.

You can leave comments directly on help topics using DocCommentXchange. DocCommentXchange
(DCX) is a community for accessing and discussing SQL Anywhere documentation. Use
DocCommentXchange to:

● View documentation

● Check for clarifications users have made to sections of documentation

● Provide suggestions and corrections to improve documentation for all users in future releases

Go to http://dcx.sybase.com.

Finding out more and requesting technical support

Newsgroups
If you have questions or need help, you can post messages to the Sybase iAnywhere newsgroups listed below.

When you write to one of these newsgroups, always provide details about your problem, including the
build number of your version of SQL Anywhere. You can find this information by running the following
command: dbeng12 -v.

The newsgroups are located on the forums.sybase.com news server.

About this book

viii Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

http://dcx.sybase.com/

The newsgroups include the following:

● sybase.public.sqlanywhere.general
● sybase.public.sqlanywhere.linux
● sybase.public.sqlanywhere.mobilink
● sybase.public.sqlanywhere.product_futures_discussion
● sybase.public.sqlanywhere.replication
● sybase.public.sqlanywhere.ultralite
● ianywhere.public.sqlanywhere.qanywhere

For web development issues, see http://groups.google.com/group/sql-anywhere-web-development.

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information, or ideas on its newsgroups, nor
is iAnywhere Solutions obliged to provide anything other than a systems operator to monitor the service
and ensure its operation and availability.

iAnywhere Technical Advisors, and other staff, assist on the newsgroup service when they have time.
They offer their help on a volunteer basis and may not be available regularly to provide solutions and
information. Their ability to help is based on their workload.

Developer Centers
The SQL Anywhere Tech Corner gives developers easy access to product technical documentation. You
can browse technical white papers, FAQs, tech notes, downloads, techcasts and more to find answers to
your questions as well as solutions to many common issues. See http://www.sybase.com/developer/library/
sql-anywhere-techcorner.

The following table contains a list of the developer centers available for use on the SQL Anywhere Tech
Corner:

Name URL Description

SQL Anywhere .NET Developer Center www.sybase.com/de-
veloper/library/sql-
anywhere-techcorner/
microsoft-net

Get started and get
answers to specific
questions regarding
SQL Anywhere
and .NET develop-
ment.

PHP Developer Center www.sybase.com/de-
veloper/library/sql-
anywhere-techcorner/
php

An introduction to us-
ing the PHP (PHP
Hypertext Preproces-
sor) scripting lan-
guage to query your
SQL Anywhere data-
base.

About the SQL Anywhere documentation

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 ix

news://forums.sybase.com/sybase.public.sqlanywhere.general
news://forums.sybase.com/sybase.public.sqlanywhere.linux
news://forums.sybase.com/sybase.public.sqlanywhere.mobilink
news://forums.sybase.com/sybase.public.sqlanywhere.product_futures_discussion
news://forums.sybase.com/sybase.public.sqlanywhere.replication
news://forums.sybase.com/sybase.public.sqlanywhere.ultralite
news://forums.sybase.com/ianywhere.public.sqlanywhere.qanywhere
http://groups.google.com/group/sql-anywhere-web-development
http://www.sybase.com/developer/library/sql-anywhere-techcorner
http://www.sybase.com/developer/library/sql-anywhere-techcorner
http://www.sybase.com/developer/library/sql-anywhere-techcorner/microsoft-net
http://www.sybase.com/developer/library/sql-anywhere-techcorner/microsoft-net
http://www.sybase.com/developer/library/sql-anywhere-techcorner/microsoft-net
http://www.sybase.com/developer/library/sql-anywhere-techcorner/microsoft-net
http://www.sybase.com/developer/library/sql-anywhere-techcorner/php
http://www.sybase.com/developer/library/sql-anywhere-techcorner/php
http://www.sybase.com/developer/library/sql-anywhere-techcorner/php
http://www.sybase.com/developer/library/sql-anywhere-techcorner/php

Name URL Description

SQL Anywhere Windows Mobile Developer Center www.sybase.com/de-
veloper/library/sql-
anywhere-techcorner/
windows-mobile

Get started and get
answers to specific
questions regarding
SQL Anywhere and
Windows Mobile de-
velopment.

About this book

x Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

http://www.sybase.com/developer/library/sql-anywhere-techcorner/windows-mobile
http://www.sybase.com/developer/library/sql-anywhere-techcorner/windows-mobile
http://www.sybase.com/developer/library/sql-anywhere-techcorner/windows-mobile
http://www.sybase.com/developer/library/sql-anywhere-techcorner/windows-mobile

SQL language elements

Keywords
Each SQL statement contains one or more keywords. SQL is case insensitive to keywords, but throughout
these manuals, keywords are indicated in uppercase.

For example, in the following statement, SELECT and FROM are keywords:

SELECT *
 FROM Employees;

The following statements are equivalent to the one above:

Select *
 From Employees;
select * from Employees;
sELECT * FRoM Employees;

Some keywords cannot be used as identifiers without surrounding them in double quotes. These are called
reserved words. Other keywords, such as DBA, do not require double quotes, and are not reserved words.

Reserved words
Some keywords in SQL are also reserved words. To use a reserved word in a SQL statement as an
identifier, you must enclose it in double quotes. Many, but not all, the keywords that appear in SQL
statements are reserved words. For example, you must use the following syntax to retrieve the contents of
a table named SELECT.

SELECT *
 FROM "SELECT"

SQL keywords are not case sensitive and the following words may appear in uppercase, lowercase, or any
combination of the two. All strings that differ only in capitalization from one of the following words are
reserved words.

You can also turn off keywords using the non_keywords option. See “non_keywords option” [SQL
Anywhere Server - Database Administration].

The reserved_keywords option turns on individual keywords that are disabled by default. See
“reserved_keywords option” [SQL Anywhere Server - Database Administration].

If you are using embedded SQL, you can use the sql_needs_quotes database library function to determine
whether a string requires quotation marks. A string requires quotes if it is a reserved word or if it contains
a character not ordinarily allowed in an identifier.

You can obtain a list of the reserved words using the sa_reserved_words system procedure. See
“sa_reserved_words system procedure” on page 1052.

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1

The reserved SQL keywords in SQL Anywhere are:

add all alter and

any as asc attach

backup begin between bigint

binary bit bottom break

by call capability cascade

case cast char char_convert

character check checkpoint close

comment commit compressed conflict

connect constraint contains continue

convert create cross cube

current current_timestamp current_user cursor

date datetimeoffset dbspace deallocate

dec decimal declare default

delete deleting desc detach

distinct do double drop

dynamic else elseif encrypted

end endif escape except

exception exec execute existing

exists externlogin fetch first

float for force foreign

forward from full goto

grant group having holdlock

identified if in index

inner inout insensitive insert

SQL language elements

2 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

inserting install instead int

integer integrated intersect into

is isolation join kerberos

key lateral left like

limit lock login long

match membership merge message

mode modify natural nchar

new no noholdlock not

notify null numeric nvarchar

of off on open

openstring openxml option options

or order others out

outer over passthrough precision

prepare primary print privileges

proc procedure publication raiserror

readtext real reference references

refresh release remote remove

rename reorganize resource restore

restrict return revoke right

rollback rollup save savepoint

scroll select sensitive session

set setuser share smallint

some spatial sqlcode sqlstate

start stop subtrans subtransaction

synchronize table temporary then

Keywords

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 3

time timestamp tinyint to

top tran treat trigger

truncate tsequal unbounded union

unique uniqueidentifier unknown unsigned

update updating user using

validate values varbinary varbit

varchar variable varying view

wait waitfor when where

while window with within

work writetext xml

See also
● “sql_needs_quotes function” [SQL Anywhere Server - Programming]

Identifiers
Identifiers are names of objects in the database, such as user IDs, tables, and columns.

Remarks
Identifiers have a maximum length of 128 bytes. They must be enclosed in double quotes, square
brackets, or back quotes (`...`) if any of the following conditions are true:

● The identifier contains spaces.

● The first character of the identifier is not an alphabetic character (as defined below).

● The identifier is a reserved word.

● The identifier contains characters other than alphabetic characters and digits.

Alphabetic characters includes the alphabet, the underscore character (_), at sign (@), number sign (#),
and dollar sign ($). The database collation sequence dictates which characters are considered alphabetic or
digit characters.

The following characters are not permitted in identifiers:

● Double quotes

SQL language elements

4 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● Control characters (any character less than 0x20)

● Backslashes

If the quoted_identifier database option is set to Off, double quotes are used to delimit SQL strings and
cannot be used for identifiers. However, you can use square brackets or back quotes to delimit identifiers,
regardless of the setting of quoted_identifier. The default setting for the quoted_identifier option is to Off
for Open Client and jConnect connections; otherwise the default is On.

Standards and compatibility
● SQL/2008 The ability to create identifiers of up to 128 characters is optional SQL language feature

F391 of the SQL/2008 standard.

See also
● For a complete list of the reserved words, see “Reserved words” on page 1.
● For information about the quoted_identifier option, see “quoted_identifier option” [SQL Anywhere

Server - Database Administration].

Examples
The following are all valid identifiers.

● Surname
● "Client Name"
● `Client Name`
● [Surname]
● SomeBigName

Strings
A string is a sequence of characters up to 2 GB in size. A string can occur in SQL:

● as a string literal. A string literal is a sequence of characters enclosed in single quotes (apostrophes).
A string literal represents a particular, constant value, and it may contain escape sequences for special
characters that cannot be easily typed as characters. See “String literals” on page 7.

● as the value of a column or variable with a CHAR or NCHAR data type.

● as the result of evaluating an expression.

The length of a string can be measured in two ways:

● Byte length The byte length is the number of bytes in the string.

● Character length The character length is the number of characters in the string, and is based on
the character set being used.

Strings

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 5

For single-byte character sets, such as cp1252, the byte-length and character-length are the same. For
multibyte character sets, a string's byte-length is greater than or equal to its character-length.

Constants
This section describes binary literals and string literals.

Binary literals
A binary literal is a sequence of hexadecimal characters consisting of digits 0-9 and uppercase and
lowercase letters A-F. When you enter binary data as literals, you must precede the data by 0x (a zero,
followed by an x), and there should be an even number of digits to the right of this prefix. For example,
the hexadecimal equivalent of 39 is 0027, and is expressed as 0x0027.

Hexadecimal constants in the form of 0x12345678 are treated as binary strings. An unlimited number of
digits can be added after the 0x.

A binary literal is sometimes referred to as a binary constant. In SQL Anywhere, the preferred term is
binary literal.

Converting to and from hexadecimal values
You can use the CAST, CONVERT, HEXTOINT, and INTTOHEX functions to convert a binary string to
an integer. The CAST and CONVERT functions convert hexadecimal constants to TINYINT, signed and
unsigned 32-bit integer, signed and unsigned 64-bit integer, NUMERIC, and so on. The HEXTOINT
function only converts a hexadecimal constant to a signed 32-bit-integer.

The value returned by the CAST function cannot exceed 8 digits. Values exceeding 8 digits return an
error. Zeros are added to the left of values less than 8 digits. For example, the following argument returns
the value -2,147,483,647:

SELECT CAST (0x0080000001 AS INT);

The following argument returns an error because the 10-digit value cannot be represented as a signed 32-
bit integer:

SELECT CAST (0xff80000001 AS INT);

The value returned by the HEXTOINT function can exceed 8 digits if the value can be represented as a
signed 32-bit integer. The HEXTOINT function accepts string literals or variables consisting only of
digits and the uppercase or lowercase letters A-F, with or without a 0x prefix. The hexadecimal value
represents a negative integer when the 8th digit from the right is one of the digits 8-9, the uppercase or
lowercase letters A-F, or the previous leading digits are all uppercase or lowercase letter F.

The following arguments return the value -2,147,483,647:

SELECT HEXTOINT('0xFF80000001');
SELECT HEXTOINT('0x80000001');

SQL language elements

6 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SELECT HEXTOINT ('0xFFFFFFFFFFFFFFFF80000001');

The following argument returns an error because the argument represents a positive integer value that
cannot be represented as a signed 32-bit integer:

SELECT HEXTOINT('0x0080000001');

See also
● “CAST function [Data type conversion]” on page 153
● “CONVERT function [Data type conversion]” on page 165
● “HEXTOINT function [Data type conversion]” on page 225
● “INTTOHEX function [Data type conversion]” on page 240

String literals

A string literal is a sequence of characters enclosed in single quotes. For example, 'Hello world' is a
string literal of type CHAR. Its byte length is 11, and its character length is also 11.

A string literal is sometimes referred to as a string constant, literal string, or just as a string. In SQL
Anywhere, the preferred term is string literal.

You can specify an NCHAR string literal by prefixing the quoted value with N. For example, N'Hello
world' is a string literal of type NCHAR. Its byte length is 11, and its character length is 11. The bytes
within an NCHAR string literal are interpreted using the database's CHAR character set, and then
converted to NCHAR. The syntax N'string' is a shortened form for CAST('string' AS
NCHAR).

Escape sequences
Sometimes you need to put characters into string literals that cannot be typed or entered normally.
Examples include control characters (such as a new line character), single quotes (which would otherwise
mark the end of the string literal), and hexadecimal byte values. For this purpose, you use an escape sequence.

The following examples show how to use escape sequences in string literals.

● A single quote is used to mark the beginning and end of a string literal, so a single quote in a string
must be escaped using an additional single quote, as follows: 'John''s database'

● A backslash followed by any character other than n, x, X, or \ is interpreted as two separate characters.
For example, \q inserts a backslash and the letter q.

Hexadecimal escape sequences can be used for any character or binary value. A hexadecimal escape
sequence is a backslash followed by an x followed by two hexadecimal digits. The hexadecimal value
is interpreted as a character in the CHAR character set for both CHAR and NCHAR string literals.
The value \x09 must be coded as \\x09 if you don't want the value stored as a single tab character, but
\xyy would be stored as \xyy. The following example, in code page 1252, represents the digits 1, 2,
and 3, followed by the euro currency symbol: '123\x80'.

Constants

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 7

● A backslash character in a string must be escaped using an additional backslash, as follows: 'c:\
\november'. For paths, you can also use the forward slash (/) instead of a backslash: 'c:/
november'.

● To represent a new line character, use a backslash followed by n (\n), specify: 'First line:
\nSecond line:'

You can use the same characters and escape sequences with NCHAR string literals as with CHAR string
literals.

If you need to use Unicode characters that cannot be typed directly into the string literal, use the UNISTR
function. See “UNISTR function [String]” on page 357.

Operators
This section describes arithmetic, string, and bitwise operators. For information about comparison
operators, see “Search conditions” on page 32.

The normal precedence of operations applies. Expressions in parentheses are evaluated first, then
multiplication and division before addition and subtraction. String concatenation happens after addition
and subtraction.

For more information, see “Operator precedence” on page 12.

Comparison operators
The syntax for comparison is as follows:

expression comparison-operator expression

where comparison-operator is one of the following:

Operator Description

= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

!= Not equal to

SQL language elements

8 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Operator Description

<> Not equal to

!> Not greater than

!< Not less than

Case sensitivity By default, SQL Anywhere databases are created as case insensitive. Comparisons
are carried out with the same attention to case as the database they are operating on. You can control the
case sensitivity of SQL Anywhere databases with the -c option when you create the database.

For more information about case sensitivity for string comparisons, see “Initialization utility (dbinit)”
[SQL Anywhere Server - Database Administration].

Note
All string comparisons are case insensitive unless the database was created as case sensitive.

Trailing blanks The behavior of SQL Anywhere when comparing strings is controlled by the -b
option that is set when creating the database.

For more information about blank padding, see “Initialization utility (dbinit)” [SQL Anywhere Server -
Database Administration].

Logical operators

Search conditions can be combined using the AND or OR operators. You can also negate them using the
NOT operator, or test whether an expression would evaluate to true, false, or unknown, using the IS operator.

● AND operator The AND operator is placed between search conditions as follows:

.. WHERE condition1 AND condition2

When using AND, the combined condition is TRUE if both conditions are TRUE, FALSE if either
condition is FALSE, and UNKNOWN otherwise.

● OR operator The OR operator is placed between search conditions as follows:

.. WHERE condition1 OR condition2

When using OR, the combined condition is TRUE if either condition is TRUE, FALSE if both
conditions are FALSE, and UNKNOWN otherwise.

● NOT operator The NOT operator is placed before a condition to negate the condition, as follows:

.. WHERE NOT condition

Operators

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 9

The NOT condition is TRUE if condition is FALSE, FALSE if condition is TRUE, and UNKNOWN
if condition is UNKNOWN.

● IS operator The IS operator is placed between an expression and the truth value you are testing
for. The syntax for the IS operator is as follows:

expression IS [NOT] truth-value

The IS condition is TRUE if the expression evaluates to the supplied truth-value, which must be one
of TRUE, FALSE, UNKNOWN, or NULL. Otherwise, the value is FALSE.

For example, 5*3=15 IS TRUE tests whether the expression 5*3=15 evaluates to TRUE.

See also: “Three-valued logic” on page 56.

Arithmetic operators
expression + expression Addition. If either expression is the NULL value, the result is NULL.

expression - expression Subtraction. If either expression is the NULL value, the result is NULL.

-expression Negation. If the expression is the NULL value, the result is NULL.

expression * expression Multiplication. If either expression is NULL, the result is NULL.

expression / expression Division. If either expression is NULL or if the second expression is 0, the
result is NULL.

expression % expression Modulo finds the integer remainder after a division involving two whole
numbers. For example, 21 % 11 = 10 because 21 divided by 11 equals 1 with a remainder of 10.

Standards and compatibility
● SQL/2008 The use of % as a modulus operator is a vendor extension.

String operators
expression || expression String concatenation (two vertical bars). If either string is NULL, it is
treated as the empty string for concatenation.

expression + expression Alternative string concatenation. When using the + concatenation
operator, you must ensure the operands are explicitly set to character data types rather than relying on
implicit data conversion.

For example, the following query returns the integer value 579:

SELECT 123 + 456;

whereas the following query returns the character string 123456:

SQL language elements

10 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SELECT '123' + '456';

You can use the CAST or CONVERT function to explicitly convert data types.

Standards and compatibility
● SQL/2008 The || operator is the SQL/2008 string concatenation operator. However, in the SQL

standard, if either operand of || is the NULL value the result of the concatenation is also NULL. With
SQL Anywhere, the || operator treats NULL as an empty string.

Bitwise operators

The following operators can be used on bit data types, integer data types (including all variants such as
bit, tinyint, smallint and so on), binary values, and bit array data types in SQL Anywhere.

Operator Description

& bitwise AND

| bitwise OR

^ bitwise exclusive OR

~ bitwise NOT

The bitwise operators &, | and ~ are not interchangeable with the logical operators AND, OR, and NOT.

Standards and compatibility
● SQL/2008 Vendor extension. Bitwise operators, along with the BIT VARYING and BIT datatypes,

were supported in the SQL/1999 standard as SQL language feature F511. This feature was eliminated
outright from the SQL/2003 standard.

Example
For example, the following statement selects rows in which the correct bits are set.

SELECT *
FROM tableA
WHERE (options & 0x0101) <> 0;

Join operators

SQL Anywhere supports two additional comparison operators, *= and =*, which are the Transact-SQL
outer join operators. When one of these operators is used in a comparison predicate, an implicit LEFT or
RIGHT OUTER JOIN is specified. See “Transact-SQL outer joins (*= or =*)” [SQL Anywhere Server -
SQL Usage].

Operators

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 11

Support for Transact-SQL outer join operators *= and =* is deprecated. To use Transact SQL outer joins,
the tsql_outer_joins database option must be set to On. See “tsql_outer_joins option” [SQL Anywhere
Server - Database Administration].

Operator precedence
The precedence of operators in expressions is as follows. The operators at the top of the list are evaluated
before those at the bottom of the list.

1. unary operators (operators that require a single operand)

2. &, |, ^, ~

3. *, /, %

4. +, -

5. ||

6. not

7. and

8. or

When you use more than one operator in an expression, it is recommended that you make the order of
operation explicit using parentheses.

Expressions
An expression is a statement that can be evaluated to return values.

Syntax
expression:
 case-expression
| constant
| [correlation-name.]column-name
| - expression
| expression operator expression
| (expression)
| function-name (expression, ...)
| if-expression
| special value
| (subquery)
| variable-name
| sequence-expression

case-expression :
CASE expression

SQL language elements

12 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

WHEN expression
THEN expression,...
[ELSE expression]
END

alternative form of case-expression :
CASE
WHEN search-condition
THEN expression, ...
[ELSE expression]
END

constant :
 integer | number | string | host-variable

special-value :
 CURRENT { DATE | TIME | TIMESTAMP }
| NULL
| SQLCODE
| SQLSTATE
| USER

if-expression :
IF condition
THEN expression
[ELSE expression]
ENDIF

sequence-expression :
sequence-name.[CURRVAL | NEXTVAL]
FROM table-name

operator:
{ + | - | * | / | || | % }

Remarks
Expressions are used in many different places.

Expressions are formed from several different kinds of elements. These are discussed in the sections on
functions and variables. See “SQL functions” on page 127, and “Variables” on page 67.

You must be connected to the database in order evaluate expressions.

Side effects
None.

Expressions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 13

See also
● “Constants in expressions” on page 14
● “Special values” on page 58
● “Column names in expressions” on page 14
● “SQL functions” on page 127
● “Subqueries in expressions” on page 14
● “Search conditions” on page 32
● “SQL data types” on page 79
● “Variables” on page 67
● “CASE expressions” on page 15

Standards and compatibility
● See the separate descriptions of each class of expression, in the following sections.

Constants in expressions
Constants are numbers or string literals. String constants are enclosed in apostrophes ('single quotes'). An
apostrophe is represented inside a string by two apostrophes in a row.

Column names in expressions
A column name is an identifier preceded by an optional correlation name. A correlation name is usually a
table name. For more information about correlation names, see “FROM clause” on page 696.

If a column name has characters other than letters, digits and underscore, it must be surrounded by
quotation marks (""). For example, the following are valid column names:

● Employees.Name
● address
● "date hired"
● "salary"."date paid"

See also: “Identifiers” on page 4.

Subqueries in expressions
A subquery is a SELECT statement that is nested inside another SELECT, INSERT, UPDATE, or
DELETE statement, or another subquery.

If a subquery matches no rows, it evaluates to NULL.

The SELECT statement must be enclosed in parentheses, and must contain one and only one select list
item. When used as an expression, a subquery is generally allowed to return only one value.

SQL language elements

14 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

A subquery can be used anywhere that a column name can be used. For example, a subquery can be used
in the select list of another SELECT statement.

For other uses of subqueries, see “Subqueries in search conditions” on page 34.

IF expressions
The syntax of the IF expression is as follows:

IF condition
THEN expression1
[ELSE expression2]
{ ENDIF | END IF }

This expression returns the following:

● If condition is TRUE, the IF expression returns expression1.

● If condition is FALSE, the IF expression returns expression2.

● If condition is FALSE, and there is no expression2, the IF expression returns NULL.

● If condition is UNKNOWN, the IF expression returns NULL.

expression1 is evaluated only if condition is TRUE. Similarly, expression2 is evaluated only if condition
is FALSE. Both expression1 and expression2 are arbitrary expressions; condition is any valid search
condition. See “Search conditions” on page 32.

For more information about TRUE, FALSE and UNKNOWN conditions, see “NULL
value” on page 74, and “Search conditions” on page 32.

IF statement is different from IF expression
The IF expression is not the same as the IF statement. For information about the IF statement, see “IF
statement” on page 727.

Standards and compatibility
● SQL/2008 Vendor extension. The SQL/2008 standard defines the NULLIF, COALESCE, and

CASE expressions which can substitute for an IF expression.

CASE expressions
The CASE expression provides conditional SQL expressions. Case expressions can be used anywhere an
expression can be used.

The syntax of the CASE expression is as follows:

Expressions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 15

CASE expression
WHEN expression
THEN expression, ...
[ELSE expression]
{ END | END CASE }

If the expression following the CASE statement is equal to the expression following the WHEN
statement, then the expression following the THEN statement is returned. Otherwise the expression
following the ELSE statement is returned, if it exists.

For example, the following code uses a case expression as the second clause in a SELECT statement.

SELECT ID,
 (CASE Name
 WHEN 'Tee Shirt' then 'Shirt'
 WHEN 'Sweatshirt' then 'Shirt'
 WHEN 'Baseball Cap' then 'Hat'
 ELSE 'Unknown'
 END) as Type
FROM Products;

An alternative syntax is as follows:

CASE
WHEN search-condition
THEN expression, ...
[ELSE expression]
END [CASE]

If the search-condition following the WHEN statement is satisfied, the expression following the THEN
statement is returned. Otherwise the expression following the ELSE statement is returned, if it exists.

For example, the following statement uses a case expression as the third clause of a SELECT statement to
associate a string with a search-condition.

SELECT ID, Name,
 (CASE
 WHEN Name='Tee Shirt' then 'Sale'
 WHEN Quantity >= 50 then 'Big Sale'
 ELSE 'Regular price'
 END) as Type
FROM Products;

NULLIF function for abbreviated CASE expressions
The NULLIF function provides a way to write some CASE statements in short form. The syntax for
NULLIF is as follows:

NULLIF (expression-1, expression-2)

NULLIF compares the values of the two expressions. If the first expression equals the second expression,
NULLIF returns NULL. If the first expression does not equal the second expression, NULLIF returns the
first expression.

SQL language elements

16 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

CASE statement is different from CASE expression
Do not confuse the syntax of the CASE expression with that of the CASE statement. For information
about the CASE statement, see “CASE statement” on page 462.

Standards and compatibility
● SQL/2008 The CASE expression is a core feature of the SQL/2008 standard. The standard permits

any expression referenced by the statement to be evaluated at any point during execution. With SQL
Anywhere, expression evaluation occurs when each WHEN clause is evaluated, in their syntactic
order, with the exception of constant values that can be determined at compile time.

Support for END CASE with CASE expressions, in addition to END, is a vendor extension. The SQL/
2008 standard defines END for use with CASE expressions and END CASE for use with CASE
statements.

Regular expressions overview
A regular expression is a sequence of characters, wildcards, or operators that defines a pattern to search
for within a string. SQL Anywhere supports regular expressions as part of a REGEXP or SIMILAR TO
search conditions in the WHERE clause of a SELECT statement, or as an argument to the
REGEXP_SUBSTR function. The LIKE search condition does not support regular expressions, although
some of the wildcards and operators you can specify with LIKE resemble the regular expression
wildcards and operators.

The following SELECT statement uses a regular expression ((K|C[^h])%) to search the Contacts table
and return contacts whose last name begins with K or C, but not Ch:

SELECT Surname, GivenName
 FROM Contacts
 WHERE Surname SIMILAR TO '(K|C[^h])%';

A regular expression can include additional syntax to specify grouping, quantification, assertions, and
alternation, as described below.

● Grouping Grouping allows you to group parts of a regular expression to apply some additional
matching criteria. For example, '(abc){2}' matches abcabc.

You can also use grouping to control the order in which the parts of the expression are evaluated. For
example, 'ab(cdcd)' looks first for an incidence of cdcd, and then evaluates whether the instance
of cdcd is preceded by ab.

● Quantification Quantification allows you to control the number of times the preceding part of the
expression can occur. For example, a question mark (?) is a quantifier that matches zero or one
instance of the previous character. So, 'honou?r' matches both honor and honour.

● Assertions Normally, searching for a pattern returns that pattern. Assertions allow you to test for
the presence of a pattern, without having that pattern become part of what is returned. For example,
'SQL(?= Anywhere)' matches SQL only if it is followed by a space and then Anywhere.

Expressions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 17

● Alternation Alternation allows you to specify alternative patterns to search for if the preceding
pattern cannot be found. Alternate patterns are evaluated from left to right, and searching stops at the
first match. For example, 'col(o|ou)r' looks for an instance of color. If no instance is found,
colour is searched for instead.

See also
● “Regular expressions syntax” on page 18
● “Search conditions” on page 32
● “LIKE, REGEXP, and SIMILAR TO search conditions” on page 37
● “REGEXP search condition” on page 43
● “SIMILAR TO search condition” on page 45
● “REGEXP_SUBSTR function [String]” on page 293

Regular expressions syntax
Regular expressions are supported with the SIMILAR TO, and REGEXP search conditions, and the
REGEXP_SUBSTR function. For SIMILAR TO, regular expression syntax is consistent with the ANSI/
ISO SQL standard. For REGEXP and REGEXP_SUBSTR, regular expression syntax and support is
consistent with Perl 5.

Regular expressions are used by REGEXP and SIMILAR TO to match a string, whereas regular
expressions are used by REGEXP_SUBSTR to match a substring. To achieve substring matching
behavior for REGEXP and SIMILAR TO, you can specify wildcards on either side of the pattern you are
trying to match. For example, REGEXP '.*car.*' matches car, carwash, and vicar. Or, you can
rewrite your query to make use the REGEXP_SUBSTR function. See “REGEXP_SUBSTR function
[String]” on page 293.

Regular expression matching with SIMILAR TO is case- and accent-insensitive. REGEXP and
REGEXP_SUBSTR is not affected by the database accent and case sensitivity. See “LIKE, REGEXP, and
SIMILAR TO: Differences in character comparisons” on page 38.

Regular expressions: Metacharacters
Metacharacters are symbols or characters that have a special meaning within a regular expression.

The treatment of metacharacters can vary depending on:

● whether the regular expression is being used with the SIMILAR TO or REGEXP search conditions, or
the REGEXP_SUBSTR function

● whether the metacharacter is inside of a character class in the regular expression

Before continuing, you should understand the definition of a character class. A character class is a set of
characters enclosed in square brackets, against which characters in a string are matched. For example, in
the syntax SIMILAR TO 'ab[1-9]', [1-9] is a character class and matches one digit in the range of 1
to 9, inclusive. The treatment of metacharacters in a regular expression can vary depending on whether
the metacharacter is placed inside a character class. Specifically, most metacharacters are handled as
regular characters when positioned inside of a character class.

SQL language elements

18 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

For SIMILAR TO (only), the metacharacters *, ?, +, _, |, (,), { must be escaped within a character class.

To include a literal minus sign (-), caret (^), or right-angle bracket (]) character in a character class, it
must be escaped.

The list of supported regular expression metacharacters is provided below. Almost all metacharacters are
treated the same when used by SIMILAR TO, REGEXP, and REGEXP_SUBSTR:

Char-
acter

Additional information

[and] Left and right square brackets are used to specify a character class. A character class is a set
of characters to match against.

With the exception of the hyphen (-) and the caret (^), metacharacters and quantifiers (such
as * and {m}, respectively) specified within a character class have no special meaning and
are evaluated as actual characters.

SQL Anywhere also supports sub-character classes such as POSIX character classes. See
“Regular expressions: Special sub-character classes” on page 21.

* The asterisk can be used to match a character 0 or more times. For example, REGEXP
'.*abc' matches a string that ends with abc, and starts with any prefix. So, aabc, xyzabc,
and abc match, but bc and abcc do not.

? The question mark can be used to match a character 0 or 1 times. For example, 'colou?r'
matches color and colour.

+ The plus sign can be used to match a character 1 or more times. For example, 'bre+' match-
es bre and bree, but not br.

- A hyphen can be used within a character class to denote a range. For example, REGEXP '[a-
e]' matches a, b, c, d, and e.

For details on how ranges are evaluated by REGEXP and SIMILAR TO, see “LIKE, RE-
GEXP, and SIMILAR TO: Differences in character comparisons” on page 38.

% The percent sign can be used with SIMILAR TO to match any number of characters.

The percent sign is not considered a metacharacter for REGEXP and REGEXP_SUBSTR.
When specified, it matches a percent sign (%).

_ (un-
der-
score
charac-
ter)

The underscore can be used with SIMILAR TO to match a single character.

The underscore is not considered a metacharacter for REGEXP and REGEXP_SUBSTR.
When specified, it matches an underscore (_).

Expressions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 19

Char-
acter

Additional information

| The pipe symbol is used to specify alternative patterns to use for matching the string. In a
string of patterns separated by a vertical bar, the vertical bar is interpreted as an OR and match-
ing stops at the first match made starting from the leftmost pattern. So, you should list the
patterns in descending order of preference. You can specify an unlimited number of alterna-
tive patterns.

(and) Left and right parenthesis are metacharacters when used for grouping parts of the regular ex-
pression. For example, (ab)* matches zero or more repetitions of ab. As with mathematical
expressions, you use grouping to control the order in which the parts of a regular expression
are evaluated.

{ and } Left and right curly braces are metacharacters when used for specifying quantifiers. Quanti-
fiers specify the number of times a pattern must repeat to constitute a match. For example:

● {m} Matches a character exactly m times. For example, '519-[0-9]{3}-[0-9]
{4}' matches a phone number in the 519 area code (providing the data is formatted in
the manner defined in the syntax).

● {m,} Matches a character at least m times. For example, '[0-9]{5,}' matches any
string of five or more digits.

● {m,n} Matches a character at least m times, but not more than n times. For example,
SIMILAR TO '_{5,10}' matches any string with between 5 and 10 (inclusive) char-
acters.

\ The backslash is used as an escape character for metacharacters. It can also be used to escape
non-metacharacters.

^ For REGEXP and REGEXP_SUBSTR, when a caret is outside a character class, the caret
matches the start of a string. For example, '^[hc]at' matches hat and cat, but only at the
beginning of the string.

When used inside a character class, the following behavior applies:

● REGEXP and REGEXP_SUBSTR When the caret is the first character in a character
class, it matches anything other than the characters in the character set. For example, RE-
GEXP '[^abc]' matches any character other than a, b, or c.

If the caret is not the first character inside the square brackets, it matches a caret. For
example, REGEXP_SUBSTR '[a-e^c]' matches a, b, c, d, e, and ^.

● SIMILAR TO For SIMILAR TO, the caret is treated as a subtraction operator. For ex-
ample, SIMILAR TO '[a-e^c]' matches a, b, d, and e.

SQL language elements

20 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Char-
acter

Additional information

$ When used with REGEXP and REGEXP_SUBSTR, matches the end of a string. For exam-
ple, SIMILAR TO 'cat$' matches cat, but not catfish.

When used with SIMILAR TO, it matches a question mark.

. When used with REGEXP and REGEXP_SUBSTR, matches any single character. For exam-
ple, REGEXP 'a.cd' matches any string of four characters that starts with a and ends with
cd.

When used with SIMILAR TO, matches a period (.).

: The colon is used within a character set to specify a subcharacter class. For example, '[[:al-
num:]]'.

Regular expressions: Special sub-character classes
Sub-character classes are special character classes embedded within a larger character class. In addition
to custom character classes where you define the set of characters to match (for example, [abxq4]
limits the set of matching characters to a, b, x, q, and 4), SQL Anywhere supports sub-character classes
such as most of the POSIX character classes. For example, [[:alpha:]] represents the set of all
upper- and lower-case letters.

The REGEXP search condition and the REGEXP_SUBSTR function support all the syntax conventions
in the table below, but the SIMILAR TO search expression does not. Conventions supported by
SIMILAR TO have a Y in the SIMILAR TO column.

In REGEXP and when using the REGEXP_SUBSTR function, sub-character classes can be negated using
a caret. For example, [[:^alpha:]] matches the set of all characters except alpha characters.

Sub-char-
acter class

Additional information SIMI-
LAR
TO

[:alpha:] Matches upper- and lowercase alphabetic characters in the current collation.
For example, '[0-9]{3}[[:alpha:]]{2}' matches three digits, fol-
lowed by two letters.

Y

[:alnum:] Match digits, and upper- and lowercase alphabetic characters in the current col-
lation. For example, '[[:alnum:]]+' matches a string of one or more let-
ters and numbers.

Y

[:digit:] Match digits in the current collation. For example, '[[:digit:]-]+' match-
es a string of one or more digits or dashes. Likewise, '[^[:digit:]-]+'
matches a string of one or more characters that are not digits or dashes.

Y

Expressions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 21

Sub-char-
acter class

Additional information SIMI-
LAR
TO

[:lower:] Match lowercase alphabetic characters in the current collation. For example,
'[[:lower:]]' does not match A because A is uppercase.

Y

[:space:] Match a single blank (' '). For example, the following statement searches Con-
tacts.City for any city with a two word name:

SELECT City
FROM Contacts
WHERE City REGEXP '.*[[:space:]].*';

Y

[:upper:] Match uppercase alphabetic characters in the current collation. For example,
'[[:upper:]ab]' matches one of: any upper case letter, a, or b.

Y

[:white-
space:]

Match a whitespace character such as space, tab, formfeed, and carriage return. Y

[:ascii:] Match any seven-bit ASCII character (ordinal value between 0 and 127).

[:blank:] Match a blank space, or a horizontal tab.

[[:blank:]] is equivalent to [\t].

[:cntrl:] Match ASCII characters with an ordinal value of less than 32, or character val-
ue 127 (control characters). Control characters include newline, form feed, back-
space, and so on.

[:graph:] Match printed characters.

[[:graph:]] is equivalent to [[:alnum:][:punct:]].

[:print:] Match printed characters and spaces.

[[:print:]] is equivalent to [[:graph:][:whitespace:]].

[:punct:] Match one of: !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~.

The [:punct:] sub-character class may not include non-ASCII punctuation
characters available in the current collation.

[:word:] Match alphabetic, digit, or underscore characters in the current collation.

[[:word:]] is equivalent to [[:alnum:]_].

[:xdigit:] Match a character that is in the character class [0-9A-Fa-f].

SQL language elements

22 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Regular expressions: Other supported syntax conventions
The following syntax conventions are supported by the REGEXP search condition and the
REGEXP_SUBSTR function, and they assume that the backslash is the escape character. These
conventions are not supported by the SIMILAR TO search expression.

Regular expression syntax Name and meaning

\0 xxx Matches the character whose value is \0xxx,
where xxx is any sequence of octal digits, and 0 is
a zero. For example, \0134 matches a backslash.

\a Matches the bell character.

\A Used outside a character set to match the start of
a string.

Equivalent to ^ used outside a character set.

\b Matches a backspace character.

\B Matches the backslash character (\).

\c X Matches a named control character. For example,
\cZ for ctrl-Z.

\d Matches a digit in the current collation. For exam-
ple, the following statement searches Con-
tacts.Phone for all phone numbers that end with 00:

SELECT Surname, Surname, City, Phone
 FROM Contacts
 WHERE Phone REGEXP '\\d{8}00';

\d can be used both inside and outside character
classes, and is equivalent to [[:digit:]].

Expressions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 23

Regular expression syntax Name and meaning

\D Matches anything that is not a digit. This is the op-
posite of \d.

\D can be used both inside and outside character
classes, and is equivalent to [^[:digit:]].

Be careful when using the negated shorthands in-
side square brackets. [\D\S] is not the same as
[^\d\s]. The latter matches any character that
is not a digit or whitespace. So it matches x, but
not 8. The former, however, matches any charac-
ter that is either not a digit, or is not whitespace.
Because a digit is not whitespace, and whitespace
is not a digit, [\D\S] matches any character, dig-
it, whitespace or otherwise.

\e Matches the escape character.

\E Ends the treatment of metacharacters as non-met-
acharacters, initiated by a \Q.

For a list of regular expression metacharacters,
see “Regular expressions: Metacharact-
ers” on page 18.

\f Matches a form feed.

\n Matches a new line.

\Q Treat all metacharacters as non-metacharacters,
until \E is encountered. For example, \Q[$\E is
equivalent to \[\$.

For a list of regular expression metacharacters,
see “Regular expressions: Metacharact-
ers” on page 18.

\r Matches a carriage return.

SQL language elements

24 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Regular expression syntax Name and meaning

\s Matches a space or a character treated as white-
space. For example, the following statement re-
turns all product names from Products.Product-
Name that have at least one space in the name:

SELECT Name
FROM Products
WHERE Name REGEXP '.*\\s.*'

\s can be used both inside and outside character
classes, and is equivalent to [[:white-
space:]]. See “Regular expressions: Special
sub-character classes” on page 21.

\S Matches a non-whitespace character. This is the
opposite of \s, and is equivalent to [^[:white-
space:]].

\S can be used both inside and outside character
classes. See “Regular expressions: Special sub-
character classes” on page 21.

Be careful when using the negated shorthands in-
side square brackets. [\D\S] is not the same as
[^\d\s]. The latter matches any character that
is not a digit or whitespace. So it matches x, but
not 8. The former, however, matches any charac-
ter that is either not a digit, or is not whitespace.
Because a digit is not whitespace, and whitespace
is not a digit, [\D\S] matches any character, dig-
it, whitespace or otherwise.

\t Matches a horizontal tab.

\v Matches a vertical tab.

Expressions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 25

Regular expression syntax Name and meaning

\w Matches a alphabetic character, digit, or under-
score in the current collation. For example, the fol-
lowing statement returns all surnames from Con-
tacts.Surname that are exactly seven alpha-numer-
ic characters in length:

SELECT Surname
FROM Contacts
WHERE Surname REGEXP '\\w{7}';

\w can be used both inside and outside character
classes. See “Regular expressions: Special sub-
character classes” on page 21.

Equivalent to [[:alnum:]_]..

\W Matches anything that is not an alphabetic charac-
ter, digit, or underscore in the current collation.
This is the opposite of \w, and is equivalent to
[^[:alnum:]_].

This regular expression can be used both inside
and outside character classes. See “Regular ex-
pressions: Special sub-character
classes” on page 21.

\x hh Matches the character whose value is 0xhh,
where hh is, at most, two hex digits. For example,
\x2D is equivalent to a hyphen.

Equivalent to \x{hh}.

\x{ hhh } Matches the character whose value is 0xhhh,
where hhh is, at most, eight hex digits.

\z and \Z Matches the position (not character) at the end of
the string.

Equivalent to $.

Regular expressions: Assertions
Assertions test whether a condition is true, and affect the position in the string where matching begins.
Assertions do not return characters; the assertion pattern is not included in the final match. These
assertions are supported by the REGEXP search condition and the REGEXP_SUBSTR function. These
conventions are not supported by the SIMILAR TO search expression.

SQL language elements

26 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Lookahead and lookbehind assertions can be useful with REGEXP_SUBSTR when trying to split a string.
For example, you can return the list of street names (without the street numbers) in the Address column of
the Customers table by executing the following statement:

SELECT REGEXP_SUBSTR(Street, '(?<=^\\S+\\s+).*$')
FROM Customers;

Another example is if you want to use a regular expression to verify that a password conforms to certain
rules. You could use a zero width assertion similar to the following:

IF password REGEXP '(?=.*[[:digit:]])(?=.*[[:alpha:]].*[[:alpha:]])[[:word:]]
{4,12}'
 MESSAGE 'Password conforms' TO CLIENT;
ELSE
 MESSAGE 'Password does not conform' TO CLIENT;
END IF

The password is valid when the following are true:

● password has at least one digit (zero width positive assertion with [[:digit:]])

● password has at least two alphabetic characters (zero width positive assertion with
[[:alpha:]].*[[:alpha:]])

● password contains only alpha-numeric or underscore characters ([[:word:]])

● password is at least 4 characters, and at most 12 characters ({4,12})

The following table contains the assertions supported by SQL Anywhere:

Syntax Meaning

(?= pat-
tern)

Positive lookahead zero-width assertion Looks to see if the current position in the
string is immediately followed by an occurrence of pattern, without pattern becoming part
of the match string. 'A(?=B)' matches an A that is followed by a B, without making the B
part of the match.

For example, SELECT REGEXP_SUBSTR('in new york city', 'new(?=\
\syork)'); returns the substring new since it is immediately followed by ' york' (note
the space before york).

(?! pat-
tern)

Negative lookahead zero-width assertions Looks to see if the current position in the
string is not immediately followed by an occurrence of pattern, without pattern becoming
part of the match string. So, 'A(?!B)' matches an A that is not followed by a B.

For example,SELECT REGEXP_SUBSTR('new jersey', 'new(?!\\syork)');
returns the substring new.

Expressions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 27

Syntax Meaning

(?<=
pat-
tern)

Positive lookbehind zero-width assertions Looks to see if the current position in the
string is immediately preceded by an occurrence of pattern, without pattern becoming part
of the match string. So, '(?<=A)B' matches a B that is immediately preceded by an A,
without making A part of the match.

For example, SELECT REGEXP_SUBSTR('new york', '(?<=new\\s)york');
returns the substring york.

(?<!
pat-
tern)

Negative lookbehind zero-width assertions Looks to see if the current position in
the string is not immediately preceded by an occurrence of pattern, without pattern becom-
ing part of the match string.

For example, SELECT REGEXP_SUBSTR('about york', '(?<!new\
\s)york'); returns the substring york.

(?> pat-
tern)

Possessive local subexpression Matches only the largest prefix of the remaining
string that matches pattern.

For example, in 'aa' REGEXP '(?>a*)a', (?>a*) matches (and consumes) the aa,
and never just the leading a. As a result, 'aa' REGEXP '(?>a*)a' evaluates to false.

(?: pat-
tern)

Non-capturing block This is functionally equivalent to just pattern, and is provided for
compatibility.

For example, in 'bb' REGEXP '(?:b*)b', (?:b*) matches (and consumes) the bb.
However, unlike possessive local subexpression, the last b in bb is given up to allow the
whole match to succeed (that is, to allow the matching to the b found outside the non-captur-
ing block).

Likewise, 'a(?:bc|b)c' matches abcc, and abc. In matching abc, backtracking on the
final c in bc takes place so that the c outside the group can be used to make the match successful.

(?#
text)

Used for comments. The content of text is ignored.

See also
● “Regular expression examples” on page 28

Regular expression examples

The following table shows example uses of regular expressions. All examples work for REGEXP and
some also work for SIMILAR TO, as noted in the Example column. Results vary depending on the search
condition you use for searching. For those that work with SIMILAR TO, results can vary further
depending on case and accent sensitivity.

SQL language elements

28 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

For a comparison of how REGEXP and SIMILAR TO handle matches and evaluate ranges, see “LIKE,
REGEXP, and SIMILAR TO search conditions” on page 37.

Note that backslashes should be doubled if the examples are used in literal strings (for example, '.+@.+\
\..+')

Example Sample matches

Credit Card Numbers (REGEXP only):

Visa:

4[0-9]{3}\s[0-9]{4}\s[0-9]
{4}\s[0-9]{4}

MasterCard:

5[0-9]{3}\s[0-9]{4}\s[0-9]
{4}\s[0-9]{4}

American Express:

37[0-9]{2}\s[0-9]{4}\s[0-9]
{4}\s[0-9]{4}

Discover:

6011\s[0-9]{4}\s[0-9]{4}\s[0-9]{4}

Matches (Visa): 4123 6453 2222 1746

Non-Matches (Visa):

3124 5675 4400 4567, 4123-6453-2222-1746

Similarly, MasterCard matches a set of 16 num-
bers, starting with 5, with a space between each
subset of four numbers. American Express and
Discover are the same, but must start with 37
and 6011 respectively.

Dates (REGEXP and SIMILAR TO):

([0-2][0-9]|30|31)/(0[1-9]|
1[0-2])/[0-9]{4}

Matches: 31/04/1999, 15/12/4567

Non-Matches: 31/4/1999, 31/4/99, 1999/04/19,
42/67/25456

Windows absolute paths (REGEXP only):

([A-Za-z]:|\\)\\[[:alnum:][:white-
space:]!"#$%&'()+,-.\\;=@\
[\]^_`{}~.]*

Matches: \\server\share\file

Non-Matches: \directory\directory2, /directory2

Email Addresses (REGEXP only):

[[:word:]\-.]+@[[:word:]\-.]+\.
[[:alpha:]]{2,3}

Matches: abc.123@def456.com, _123@abc.ca

Non-Matches: abc@dummy, ab*cd@efg.hijkl

Email Addresses (REGEXP only):

.+@.+\..+

Matches: *@qrstuv@wxyz.12345.com, __1234^
%@@abc.def.ghijkl

Non-Matches: abc.123.*&ca, ^%abcdefg123

Expressions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 29

Example Sample matches

HTML Hexadecimal Color Codes (REGEXP
and SIMILAR TO):

[A-F0-9]{6}

Matches: AB1234, CCCCCC, 12AF3B

Non-Matches: 123G45, 12-44-CC

HTML Hexadecimal Color Codes (REGEXP on-
ly):

[A-F0-9]{2}\s[A-F0-9]{2}\s[A-F0-9]
{2}

Matches: AB 11 00, CC 12 D3

Non-Matches: SS AB CD, AA BB CC DD,
1223AB

IP Addresses (REGEXP only):

((2(5[0-5]|[0-4][0-9])|1([0-9]
[0-9])|([1-9][0-9])|[0-9])\.){3}
(2(5[0-5]|[0-4][0-9])|1([0-9]
[0-9])|([1-9][0-9])|[0-9])

Matches: 10.25.101.216

Non-Matches: 0.0.0, 256.89.457.02

Java Comments (REGEXP only):

/*.**/|//[^\n]*

Matches Java comments that are between /* and
*/, or one line comments prefaced by //.

Non-Matches: a=1

Money (REGEXP only):

(\+|-)?\$[0-9]*\.[0-9]{2}

Matches: $1.00, -$97.65

Non-Matches: $1, 1.00$, $-75.17

Positive, negative numbers, and decimal values
(REGEXP only):

(\+|-)?[0-9]+(\.[0-9]+)?

Matches: +41, -412, 2, 7968412, 41, +41.1,
-3.141592653

Non-Matches: ++41, 41.1.19, -+97.14

Passwords (REGEXP and SIMILAR TO):

[[:alnum:]]{4,10}

Matches: abcd, 1234, A1b2C3d4, 1a2B3

Non-Matches: abc, *ab12, abcdefghijkl

Passwords (REGEXP only):

[a-zA-Z]\w{3,7}

Matches: AB_cd, A1_b2c3, a123_

Non-Matches: *&^g, abc, 1bcd

Phone Numbers (REGEXP and SIMILAR TO):

([2-9][0-9]{2}-[2-9][0-9]{2}-[0-9]
{4})|([2-9][0-9]{2}\s[2-9][0-9]
{2}\s[0-9]{4})

Matches: 519-883-6898, 519 888 6898

Non-Matches: 888 6898, 5198886898, 519
883-6898

SQL language elements

30 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example Sample matches

Sentences (REGEXP only):

[A-Z0-9].*(\.|\?|!)

Matches: Hello, how are you?

Non-Matches: i am fine

Sentences (REGEXP only):

[[:upper:]0-9].*[.?!]

Matches: Hello, how are you?

Non-Matches: i am fine

Social Security Numbers (REGEXP and SIMI-
LAR TO):

[0-9]{3}-[0-9]{2}-[0-9]{4}

Matches: 123-45-6789

Non-Matches:123 45 6789, 123456789,
1234-56-7891

URLs (REGEXP only):

(http://)?www\.[a-zA-Z0-9]+\.[a-
zA-Z]{2,3}

Matches: http://www.sample.com, www.sam-
ple.com

Non-Matches: http://sample.com, http://
www.sample.comm

See also
● “Regular expressions syntax” on page 18

Compatibility of expressions

Default interpretation of delimited strings
SQL Anywhere employs the SQL/2008 convention, that strings enclosed in apostrophes are constant
expressions, and strings enclosed in quotation marks (double quotes) are delimited identifiers (names for
database objects).

The quoted_identifier option

SQL Anywhere provides a quoted_identifier option that allows the interpretation of delimited strings to
be changed. By default, the quoted_identifier option is set to On in SQL Anywhere. See
“quoted_identifier option” [SQL Anywhere Server - Database Administration].

You cannot use SQL reserved words as identifiers if the quoted_identifier option is Off.

For a complete list of reserved words, see “Reserved words” on page 1.

Setting the option
The following statement changes the setting of the quoted_identifier option to On:

SET quoted_identifier On;

Expressions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 31

The following statement changes the setting of the quoted_identifier option to Off:

SET quoted_identifier Off;

Compatible interpretation of delimited strings
You can choose to use either the SQL/2008 or the default Transact-SQL convention in SQL Anywhere as
long as the quoted_identifier option is set to the same value in each DBMS.

Examples
If you choose to operate with the quoted_identifier option On (the default setting), then the following
statements involving the SQL keyword user are valid for both DBMSs.

CREATE TABLE "user" (col1 char(5))
go
INSERT "user" (col1)
 VALUES ('abcde')
go

If you choose to operate with the quoted_identifier option off then the following statement is valid for
both DBMSs. In the following example, Chin is a string and not an identifier.

SELECT *
FROM Employees
WHERE Surname = "Chin"
go

Search conditions
A search condition is the criteria specified for a WHERE clause, a HAVING clause, a CHECK clause, an
ON phrase in a join, or an IF expression. A search condition is also known as a predicate.

Syntax
search-condition :
 expression comparison-operator expression
| expression comparison-operator { [ANY | SOME] | ALL } (subquery)
| expression IS [NOT] DISTINCT FROM expression
| expression IS [NOT] NULL
| expression [NOT] BETWEEN expression AND expression
| expression [NOT] LIKE pattern [ESCAPE expression]
| expression [NOT] SIMILAR TO pattern [ESCAPE escape-expression]
| expression [NOT] REGEXP pattern [ESCAPE escape-expression]
| expression [NOT] IN ({ expression
 | subquery
 | value-expression1 , ... })
| CONTAINS (column-name [,...] , query-string)
| EXISTS (subquery)
| NOT condition
| search-condition [{ AND | OR } search-condition] [...]
| (search-condition)
| (search-condition , estimate)
| search-condition IS [NOT] { TRUE | FALSE | UNKNOWN }

SQL language elements

32 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

| expression IS [NOT] OF ([ONLY type-name ,...)
| trigger-operation

comparison-operator :
 =
| >
| <
| >=
| <=
| <>
| !=
| !<
| !>

trigger-operation :
INSERTING
| DELETING
| UPDATING [(column-name-string)]
| UPDATE(column-name)

Parameters
● ALL search condition See “ALL search condition” on page 34.

● ANY and SOME search conditions See “ANY and SOME search conditions” on page 35.

● IS [NOT] DISTINCT FROM search condition See “IS DISTINCT FROM and IS NOT
DISTINCT FROM search conditions” on page 36.

● BETWEEN search condition See “BETWEEN search condition” on page 37.

● CONTAINS search condition See “CONTAINS search condition” on page 47.

● EXISTS search condition See “EXISTS search condition” on page 54.

● LIKE search condition See “LIKE search condition” on page 39.

● SIMILAR TO search condition See “SIMILAR TO search condition” on page 45.

● REGEXP search condition See “REGEXP search condition” on page 43.

● IS OF type-expression, and IS NOT OF type-expression This type predicate was added for
support of spatial geometries, but it can be used for any existing data type as well. See “Spatial data
type syntax based on ANSI SQL UDTs” [SQL Anywhere Server - Spatial Data Support].

Remarks
Search conditions are used to choose a subset of the rows from a table, or in a control statement such as an
IF statement to determine control of flow.

In SQL, every condition evaluates as one of TRUE, FALSE, or UNKNOWN. This is called three-valued
logic. The result of a comparison is UNKNOWN if either value being compared is the NULL value. For
tables displaying how logical operators combine in three-valued logic, see “Three-valued
logic” on page 56.

Search conditions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 33

Rows satisfy a search condition if and only if the result of the condition is TRUE. Rows for which the
condition is UNKNOWN or FALSE do not satisfy the search condition. For more information about
NULL, see “NULL value” on page 74.

Subqueries form an important class of expression that is used in many search conditions. For information
about using subqueries in search conditions, see “Subqueries in search conditions” on page 34.

The different types of search condition are discussed in the following sections.

The LIKE, SIMILAR TO, and REGEXP search conditions are very similar. To understand similarities
and differences between them, see “LIKE, REGEXP, and SIMILAR TO search conditions” on page 37.

Permissions
Must be connected to the database.

Side effects
None.

See also
● “Expressions” on page 12

Subqueries in search conditions

Subqueries that return exactly one column and either zero or one row can be used in any SQL statement
wherever a column name could be used, including in the middle of an expression.

For example, expressions can be compared to subqueries in comparison conditions as long as the
subquery does not return more than one row. If the subquery (which must have exactly one column)
returns one row, then the value of that row is compared to the expression. If a subquery returns no rows,
the value of the subquery is NULL.

Subqueries that return exactly one column and any number of rows can be used in IN, ANY, ALL, and
SOME search conditions. Subqueries that return any number of columns and rows can be used in EXISTS
search conditions. These search conditions are discussed in the following sections.

See also
● “Comparison operators” on page 8

Standards and compatibility
● SQL/2008 The use of a scalar subquery as an arbitrary expression is a core feature of the SQL/2008

standard.

ALL search condition

SQL language elements

34 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
expression comparison-operator ALL (subquery)

comparison-operator:
 =
| >
| <
| >=
| <=
| <>
| !=
| !<
| !>

Remarks
With the ALL search condition, if the value of subquery result set is the empty set, the search condition
evaluates to TRUE. Otherwise, the search condition evaluates to TRUE, FALSE, or UNKNOWN,
depending on the value of expression, and the result set returned by the subquery, as follows:

If the expression value is.. and the result set returned by
the subquery contains at least
one NULL, then..

or the result set returned by the
subquery contains no NULLs,
then..

NULL UNKNOWN UNKNOWN

not NULL If there exists at least one value in
the subquery result set for which
the comparison with the expression
value is FALSE, then the search
condition evaluates to FALSE. Oth-
erwise, the search condition evalu-
ates to UNKNOWN.

If there exists at least one value in
the subquery result set for which
the comparison with the expres-
sion value is FALSE, then the
search condition evaluates to
FALSE. Otherwise, the search con-
dition evaluates to TRUE.

Standards and compatibility
● SQL/2008 Core feature.

ANY and SOME search conditions

Syntax
expression comparison-operator { ANY | SOME }(subquery)

comparison-operator:
 =
| >
| <
| >=
| <=
| <>

Search conditions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 35

| !=
| !<
| !>

Remarks
The keywords ANY and SOME are synonymous.

With the ANY and SOME search conditions, if the subquery result set is the empty set, the search
condition evaluates to FALSE. Otherwise, the search condition evaluates to TRUE, FALSE, or
UNKNOWN, depending on the value of expression, and the result set returned by the subquery, as follows:

If the expression value is.. and the result set returned by
the subquery contains at least
one NULL, then..

or the result set returned by the
subquery contains no NULLs,
then..

NULL UNKNOWN UNKNOWN

not NULL If there exists at least one value in
the subquery result set for which
the comparison with the expression
value is TRUE, then the search con-
dition evaluates to TRUE. Other-
wise, the search condition evalu-
ates to UNKNOWN.

If there exists at least one value in
the subquery result set for which
the comparison with the expres-
sion value is TRUE, then the
search condition evaluates to
TRUE. Otherwise, the search con-
dition evaluates to FALSE.

An ANY or SOME search condition with an equality operator, evaluates to TRUE if expression is equal
to any of the values in the result of the subquery, and FALSE if the value of the expression is not NULL,
does not equal any of the values in the result of the subquery, and the result set doesn't contain NULLs.

Note
The usage of = ANY or = SOME is equivalent to using the IN keyword.

Standards and compatibility
● SQL/2008 Core feature.

IS DISTINCT FROM and IS NOT DISTINCT FROM search
conditions

Syntax
expression1 IS [NOT] DISTINCT FROM expression2

Remarks
The IS DISTINCT FROM and IS NOT DISTINCT FROM search conditions are sargable and evaluate to
TRUE or FALSE. See “Using predicates in queries” [SQL Anywhere Server - SQL Usage].

SQL language elements

36 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The IS NOT DISTINCT FROM search condition evaluates to TRUE if expression1 is equal to
expression2, or if both expressions are NULL. This is equivalent to a combination of two search
conditions, as follows:

expression1 = expression2 OR (expression1 IS NULL AND expression2 IS NULL)

The IS DISTINCT FROM syntax reverses the meaning. That is, IS DISTINCT FROM evaluates to TRUE
if expression1 is not equal to expression2, and at least one of the expressions is not NULL. This is
equivalent to the following:

NOT(expression1 = expression2 OR (expression1 IS NULL AND expression2 IS
NULL))

Standards and compatibility
● SQL/2008 The IS [NOT] DISTINCT FROM predicate is defined in SQL/2008 standard. The IS

DISTINCT FROM predicate is Feature T151, "DISTINCT predicate", of the SQL/2008 standard. The
IS NOT DISTINCT FROM predicate is Feature T152, "DISTINCT predicate with negation", of the SQL/
2008 standard.

BETWEEN search condition

Syntax
expression [NOT] BETWEEN start-expression AND end-expression

Remarks
The BETWEEN search condition can evaluate as TRUE, FALSE, or UNKNOWN. Without the NOT
keyword, the search condition evaluates as TRUE if expression is between start-expression and end-
expression. The NOT keyword reverses the meaning of the search condition but leaves UNKNOWN
unchanged.

The BETWEEN search condition is equivalent to a combination of two inequalities:

[NOT] (expression >= start-expression AND expression <= end-expression)

Standards and compatibility
● SQL/2008 Core feature.

LIKE, REGEXP, and SIMILAR TO search conditions

The REGEXP, LIKE, and SIMILAR TO search conditions are similar in that they all attempt to match a
pattern to a string. Also, all three attempt to match an entire string, not a substring within the string.

The basic syntax for all three search conditions is similar:

expression search-condition pattern

Search conditions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 37

LIKE, REGEXP, and SIMILAR TO: Differences in pattern definition
REGEXP, LIKE, and SIMILAR TO search conditions differ in how you define pattern:

● REGEXP supports a superset of regular expression syntax supported by SIMILAR TO. In addition,
for compatibility with other products, the REGEXP search condition supports several syntax
extensions. Also, REGEXP and SIMILAR TO have a different default escape character and process
the characters underscore (_), percent (%), and caret (^) differently. REGEXP behavior matches
closely with Perl 5 (except where Perl syntax and operators are not supported).

● LIKE syntax for pattern is simple and supports a small set of wildcards, but does not support the full
regular expression syntax.

● SIMILAR TO syntax for pattern allows a robust pattern matching using the regular expression syntax
defined in the ANSI/ISO SQL standard.

LIKE, REGEXP, and SIMILAR TO: Differences in character comparisons
When performing comparisons, REGEXP behavior is different from LIKE and SIMILAR TO. For
REGEXP comparisons, the database server uses code point values in the database character set for
comparisons. This is consistent with other regular expression implementations such as Perl.

For LIKE and SIMILAR TO, the database server uses the equivalence and sort order in the database
collation for comparisons. This is consistent with how the database evaluates comparison operators such
as > and =.

The difference in character comparison methods means that results for matching and range evaluation for
REGEXP and LIKE/SIMILAR differ as well.

● Differences in matching Since REGEXP uses code point values, it only matches a literal in a
pattern if it is the exact same character. REGEXP matching is therefore not impacted by such things as
database collation, case-sensitivity, or accent sensitivity. For example, 'A' could never be returned as a
match for 'a'.

Since LIKE and SIMILAR TO use the database collation, results are impacted by case- and accent-
sensitivity when determining character equivalence. For example, if the database collation is case- and
accent-insensitive, matches are case- and accent-insensitive. So, an 'A' could be returned as a match
for 'a'.

● Differences in range evaluation Since REGEXP uses code points for range evaluation, a
character is considered to be in the range if its code point value is equal to, or between, the code point
values for the start and end of the range. For example, the comparison x REGEXP '[A-C]', for the
single character x, is equivalent to CAST(x AS BINARY) >= CAST(A AS BINARY) AND
CAST(x AS BINARY) <= CAST(C AS BINARY) .

Since LIKE and SIMILAR TO use the collation sort order for range evaluation, a character is
considered to be in the range if its position in the collation is the same as, or between, the position of
the start and end characters for the range. For example, the comparison x SIMILAR TO '[A-C]'
(where x is a single character) is equivalent to x >= A AND x <= C, and the comparison operators
are evaluated using the collation sort ordering.

SQL language elements

38 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The following table shows the set of characters included in the range '[A-C]' as evaluated by
LIKE, SIMILAR TO, and REGEXP. Both databases use the 1252LATIN1 collation, but the first
database is case-insensitive, while the second one is case sensitive.

LIKE/SIMILAR TO '[A-C]' REGEXP '[A-
C]'

demo.db (case-insensitive) A,B,C,a,b,c,ª,À,Á,Â,Ã,Ä,Å,Æ,Ç,à,á,â,ã,ä,å,æ,ç A, B, C

charsensitive.db (case-sensitive) A,B,C,b,c,À,Á,Â,Ã,Ä,Å,Æ,Ç,ç A, B, C

The following can be observed in the results:

○ LIKE and SIMILAR TO include accented characters in the range.

○ LIKE and SIMILAR TO include different characters depending on database case-sensitivity.
Specifically, they include any lower case letters found within the range, which you may not have
anticipated when searching on a case-sensitive database.

Similarly, on a case-sensitive database, some characters included in the range might appear to be
inconsistent. For example, SIMILAR TO '[A-C]' on a case-sensitive database includes A, b,
B, c, C but not a because a occurs before the upper case A in the sort order.

○ REGEXP returns only A, B, C regardless of database case sensitivity. If you want the range to
include lower case letters, you must add them to the range definition. For example, REGEXP '[a-
cA-C]'.

○ the REGEXP set of characters does not change, regardless of database case-sensitivity.

Even though your database uses a different collation, or has different case- or accent-sensitivity
settings than the examples above, you can perform a similar test to see what is returned by LIKE,
SIMILAR TO, or REGEXP by connecting to the database and executing any of these statements:

SELECT CHAR(row_num) FROM RowGenerator WHERE CHAR(row_num) LIKE '[A-
C]';
SELECT CHAR(row_num) FROM RowGenerator WHERE CHAR(row_num) REGEXP '[A-
C]';
SELECT CHAR(row_num) FROM RowGenerator WHERE CHAR(row_num) SIMILAR TO
'[A-C]';

See also
● “Regular expressions overview” on page 17
● “Regular expressions syntax” on page 18
● “Regular expression examples” on page 28

LIKE search condition

Syntax
The syntax for the LIKE search condition is as follows:

Search conditions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 39

expression [NOT] LIKE pattern [ESCAPE escape-character]

Parameters
● expression The string to be searched.

● pattern The pattern to search for within expression.

● escape-character The character to use to escape special characters such as underscores and
percent signs. The default escape character is the null character, which can be specified in a string
literal as '\x00'.

Remarks
The LIKE search condition attempts to match expression with pattern and evaluates to TRUE, FALSE, or
UNKNOWN.

The search condition evaluates to TRUE if expression matches pattern (assuming NOT was not
specified). If either expression or pattern is the NULL value, the search condition evaluates to
UNKNOWN. The NOT keyword reverses the meaning of the search condition, but leaves UNKNOWN
unchanged.

expression is interpreted as a CHAR or NCHAR string. The entire contents of expression is used for
matching. Similarly, pattern is interpreted as a CHAR or NCHAR string and can contain any number of
the supported wildcards from the following table:

Wildcard Matches

_ (under-
score)

Any one character. For example, a_ matches ab and ac, but not a.

% (per-
cent)

Any string of zero or more characters. For example, bl% matches bl and bla.

[] Any single character in the specified range or set. For example, T[oi]m matches Tom
or Tim.

[^] Any single character not in the specified range or set. For example, M[^c] matches Mb
and Md, but not Mc.

All other characters must match exactly.

For example, the following search condition returns TRUE for any row where name starts with the letter a
and has the letter b as its second last character.

... name LIKE 'a%b_'

If escape-character is specified, it must evaluate to a single-byte CHAR or NCHAR character. The
escape character can precede a percent, an underscore, a left square bracket, or another escape character in
the pattern to prevent the special character from having its special meaning. When escaped in this
manner, a percent matches a percent, and an underscore matches an underscore.

SQL language elements

40 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

All patterns of 126 bytes or less are supported. Patterns of greater than 126 bytes that do not contains
wildcards are not supported. Patterns containing wildcard characters that are longer than 126 bytes are
supported, depending on the contents of the pattern. The number of bytes used to represent the pattern
depends on whether the pattern is CHAR or NCHAR.

Different ways to use the LIKE search condition

To
search
for

Example Additional information

One of
a set of
charac-
ters

LIKE
'sm[iy]th'

A set of characters to look for is specified by listing the characters inside
square brackets. In this example, the search condition matches smith and
smyth.

One of
a range
of char-
acters

LIKE '[a-
r]ough'

A range of characters to look for is specified by giving the ends of the
range inside square brackets, separated by a hyphen. In this example, the
search condition matches bough and rough, but not tough.

The range of characters [a-z] is interpreted as "greater than or equal to a,
and less than or equal to z", where the greater than and less than opera-
tions are carried out within the collation of the database. For information
about matching ranges, see “LIKE, REGEXP, and SIMILAR TO: Differ-
ences in character comparisons” on page 38.

The lower end of the range must precede the higher end of the range. For
example, [z-a] does not match anything because no character matches
the [z-a] range.

Ranges
and sets
com-
bined

... LIKE
'[a-
rt]ough'

You can combine ranges and sets within square brackets. In this exam-
ple, ... LIKE '[a-rt]ough' matches bough, rough, and tough.

The pattern [a-rt] is interpreted as exactly one character that is either in
the range a to r inclusive, or is t.

One
charac-
ter not
in a
range

... LIKE
'[^a-
r]ough'

The caret character (^) is used to specify a range of characters that is ex-
cluded from a search. In this example, LIKE '[^a-r]ough' matches
the string tough, but not the strings rough or bough.

The caret negates the rest of the contents of the brackets. For example,
the bracket [^a-rt] is interpreted as exactly one character that is not in the
range a to r inclusive, and is not t.

Search conditions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 41

To
search
for

Example Additional information

Search
patterns
with
trailing
blanks

'90 ',
'90[]' and
'90_'

When your search pattern includes trailing blanks, the database server
matches the pattern only to values that contain blanks—it does not blank
pad strings. For example, the patterns '90 ', '90[]', and '90_' match the ex-
pression '90 ', but do not match the expression '90', even if the value be-
ing tested is in a CHAR or VARCHAR column that is three or more char-
acters in width.

Special cases of ranges and sets
Any single character in square brackets means that character. For example, [a] matches just the
character a. [^] matches just the caret character, [%] matches just the percent character (the percent
character does not act as a wildcard in this context), and [_] matches just the underscore character. Also,
[[] matches just the character [.

Other special cases are as follows:

● The pattern [a-] matches either of the characters a or -.

● The pattern [] is never matched and always returns no rows.

● The patterns [or [abp-q return syntax errors because they are missing the closing bracket.

● You cannot use wildcards inside square brackets. The pattern [a%b] finds one of a, %, or b.

● You cannot use the caret character to negate ranges except as the first character in the bracket. The
pattern [a^b] finds one of a, ^, or b.

Case sensitivity and how comparisons are performed
If the database collation is case sensitive, the search condition is also case sensitive. To perform a case
insensitive search with a case sensitive collation, you must include upper and lower characters. For
example, the following search condition evaluates to true for the strings Bough, rough, and TOUGH:

LIKE '[a-zA-Z][oO][uU][gG][hH]'

Comparisons are performed character-by-character, unlike the equivalence (=) operator and other
operators where the comparison is done string-by-string. For example, when a comparison is done in a
UCA collation (CHAR or NCHAR with the collation set to UCA), 'Æ'='AE' is true, but 'Æ' LIKE
'AE' is false.

For a character-by-character comparison to match, each single character in the expression being searched
must match a single character (using the collation's character equivalence), or a wildcard in the LIKE
expression.

For a comparison of how matching and range evaluations are handled for LIKE, SIMILAR TO, and
REGEXP, see “LIKE, REGEXP, and SIMILAR TO search conditions” on page 37.

SQL language elements

42 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

National character (NCHAR) support
LIKE search conditions can be used to compare CHAR and NCHAR strings. In this case, character set
conversion is performed so that the comparison is done using a common data type. Then, a character-by-
character comparison is performed. See “Comparisons between CHAR and NCHAR” on page 114.

You can specify expression or pattern as an NCHAR string literal by prefixing the quoted value with N
(for example, expression LIKE N'pattern'). You can also use the CAST function to cast the
pattern to CHAR or NCHAR (for example, expression LIKE CAST(pattern AS datatype).

See “String literals” on page 7, and “CAST function [Data type conversion]” on page 153.

Blank padded databases
The semantics of a LIKE pattern does not change if the database is blank-padded since matching
expression to pattern involves a character-by-character comparison in a left-to-right fashion. No
additional blank padding is performed on the value of either expression or pattern during the evaluation.
Therefore, the expression a1 matches the pattern a1, but not the patterns 'a1 ' (a1, with a space after it) or
a1_.

See also
● “LIKE, REGEXP, and SIMILAR TO search conditions” on page 37
● “The WHERE clause: Specifying rows” [SQL Anywhere Server - SQL Usage]
● “Optimization of LIKE predicates” [SQL Anywhere Server - SQL Usage]
● “REGEXP search condition” on page 43
● “SIMILAR TO search condition” on page 45

Standards and compatibility
● SQL/2008 The LIKE search condition is a core feature of the SQL/2008 standard. However, there

are subtle differences in behavior from that of the standard due to SQL Anywhere's support of case-
insensitive collations and blank-padding.

SQL Anywhere supports optional SQL language feature F281, which permits the pattern and escape-
expressions to be arbitrary expressions evaluated at execution time. Feature F281 also permits
expression to be an expression more complex than a simple column reference.

The use of character ranges and sets contained in square brackets [] is a vendor extension.

SQL Anywhere supports SQL/2008 feature T042, which permits LIKE search conditions to reference
string-expressions that are LONG VARCHAR values.

LIKE search conditions that specify NCHAR string expressions or patterns is optional SQL language
feature F421 of the ANSI SQL/2008 standard.

REGEXP search condition

Match a pattern against a string.

Search conditions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 43

Syntax
expression [NOT] REGEXP pattern [ESCAPE escape-expression]

Parameters
● expression The string to be searched.

● pattern The regular expression to search for within expression.

For more information about the syntax for regular expressions, see “Regular expressions
overview” on page 17.

● escape-expression The escape character to be used in the match. The default is the backslash
character (\).

Remarks
The REGEXP search condition matches a whole string, not a substring. To match on a substring with the
string, enclose the string in wildcards that match the rest of the string (.*pattern.*). For example,
SELECT ... WHERE Description REGEXP 'car' matches only car, not sportscar. However,
SELECT ... WHERE Description REGEXP '.*car' matches car, sportscar, and any string
that ends with car. Alternatively, you can rewrite your query to make use the REGEXP_SUBSTR
function, which is designed to search for substrings within a string.

When matching against only a sub-character class, you must include the outer square brackets and the
square brackets for the sub-character class. For example, expression REGEXP '[[:digit:]]'.
For more on sub-character class matching, see “Regular expressions: Special sub-character
classes” on page 21.

Database collation and matching
REGEXP only matches a literal in a pattern if it is the exact same character (that is, they have the same
code point value). Ranges in character classes (for example, '[A-F]') only match characters that code
point values greater than or equal to the code point value of the first character in the range (A) and less
than or equal to the code point value of the second character in the range (F).

For a comparison of how matching and range evaluations are handled for LIKE, SIMILAR TO, and
REGEXP, see “LIKE, REGEXP, and SIMILAR TO search conditions” on page 37.

Comparisons are performed character-by-character, unlike the equivalence (=) operator and other
operators where the comparison is done string-by-string. For example, when a comparison is done in a
UCA collation (CHAR or NCHAR with the collation set to UCA), 'Æ'='AE' is true, but 'Æ' REGEXP
'AE' is false.

National character (NCHAR) support
REGEXP search conditions can be used to compare CHAR and NCHAR strings. In this case, character
set conversion is performed so that the comparison is done using a common data type. Then, a code point
by code point comparison is performed. See “Comparisons between CHAR and NCHAR” on page 114.

You can specify expression or pattern as an NCHAR string literal by prefixing the quoted value with N
(for example, expression REGEXP N'pattern'). You can also use the CAST function to cast the

SQL language elements

44 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

pattern to CHAR or NCHAR (for example, expression REGEXP CAST(pattern AS
datatype).

See “String literals” on page 7, and “CAST function [Data type conversion]” on page 153.

See also
● “Regular expressions overview” on page 17
● “SIMILAR TO search condition” on page 45
● “LIKE search condition” on page 39
● “REGEXP_SUBSTR function [String]” on page 293
● “LIKE, REGEXP, and SIMILAR TO search conditions” on page 37

Standards and compatibility
● SQL/2008 The REGEXP search condition is a vendor extension, but is roughly compatible with the

LIKE_REGEX search condition of the SQL/2008 standard, which is SQL language feature F841.

SQL Anywhere supports ANSI SQL/2008 feature F281, which permits the pattern and escape-
expressions to be arbitrary expressions evaluated at execution time. Feature F281 also permits
expression to be an expression more complex than a simple column reference.

SQL Anywhere supports ANSI SQL/2008 feature T042, which permits REGEXP search conditions to
reference string-expressions that are LONG VARCHAR values.

REGEXP search conditions that specify NCHAR string expressions or patterns is feature F421 of the
ANSI SQL/2008 standard.

SIMILAR TO search condition

Match a pattern against a string.

Syntax
expression [NOT] SIMILAR TO pattern [ESCAPE escape-expression]

Parameters
● expression The expression to be searched.

● pattern The regular expression to search for within expression.

For more information about the supported syntax for regular expressions, see “Regular expressions
overview” on page 17.

● escape-expression The escape character to use in the match. The default escape character is the
null character, which can be specified in a string literal as '\x00'.

Search conditions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 45

Regular
expression
syntax

Meaning

\ x Match anything that compares equal to x, where the escape character is assumed to
be the backslash character (\). For example, \[matches '['.

x Any character (other than a meta-character) matches itself. For example, A matches 'A'.

Remarks
To match a substring with the string, use the percentage sign wildcard (%expression). For example,
SELECT ... WHERE Description SIMILAR TO 'car' matches only car, not sportscar.
However, SELECT ... WHERE Description SIMILAR TO '%car' matches car, sportscar,
and any string that ends with car.

When matching against only a sub-character class, you must include the outer square brackets, and the
square brackets for the sub-character class. For example, expression SIMILAR TO '[[:digit:]]'). For more
on sub-character class matching, see “Regular expressions: Special sub-character classes” on page 21.

Comparisons are performed character-by-character, unlike the equivalence (=) operator and other
operators where the comparison is done string-by-string. For example, when a comparison is done in a
UCA collation (CHAR or NCHAR with the collation set to UCA), 'Æ'='AE' is true, but 'Æ'
SIMILAR TO 'AE' is false.

For a character-by-character comparison to match, each single character in the expression being searched
must match a single character or a wildcard in the SIMILAR TO pattern.

Database collation and matching
SIMILAR TO use the collation to determine character equivalence and evaluate character class ranges.
For example, if the database is case- and accent-insensitive, matches are case- and accent-insensitive.
Ranges are also evaluated using the collation sort order.

For a comparison of how matching and range evaluations are handled for LIKE, SIMILAR TO, and
REGEXP, see “LIKE, REGEXP, and SIMILAR TO search conditions” on page 37.

National character (NCHAR) support
SIMILAR TO search conditions can be used to compare CHAR and NCHAR strings. In this case,
character set conversion is performed so that the comparison is done using a common data type. Then, a
character-by-character comparison is performed. See “Comparisons between CHAR and
NCHAR” on page 114.

You can specify expression or pattern as an NCHAR string literal by prefixing the quoted value with N
(for example, expression SIMILAR TO N'pattern'). You can also use the CAST function to
cast the pattern to CHAR or NCHAR (for example, expression SIMILAR TO CAST(pattern
AS datatype).

See “String literals” on page 7, and “CAST function [Data type conversion]” on page 153.

SQL language elements

46 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “Regular expressions overview” on page 17
● “REGEXP search condition” on page 43
● “LIKE search condition” on page 39
● “REGEXP_SUBSTR function [String]” on page 293
● “LIKE, REGEXP, and SIMILAR TO search conditions” on page 37

Standards and compatibility
● SQL/2008 The SIMILAR TO predicate is optional SQL language feature T141 of the SQL/2008

standard.

IN search condition

Syntax
expression [NOT] IN { (subquery) | (expression2) | (value-expression1, ...) }

Remarks
An IN search condition, without the NOT keyword, evaluates according to the following rules:

● TRUE if expression is not NULL and equals at least one of the values.

● UNKNOWN if expression is NULL and the values list is not empty, or if at least one of the values is
NULL and expression does not equal any of the other values.

● FALSE if expression is NULL and subquery returns no values; or if expression is not NULL, none of
the values are NULL, and expression does not equal any of the values.

The NOT keyword interchanges TRUE and FALSE.

The search condition expression IN (values) is equivalent to expression = ANY (values).

The search condition expression NOT IN (values) is equivalent to expression <> ALL (values).

The value-expression arguments are expressions that take on a single value, which may be a string, a
number, a date, or any other SQL data type.

Standards and compatibility
● SQL/2008 Core feature.

CONTAINS search condition

Syntax
CONTAINS (column-name [,...], contains-query-string)

Search conditions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 47

contains-query-string :
simple-expression
| or-expression

simple-expression :
primary-expression
| and-expression

or-expression :
simple-expression { OR | | } contains-query-string

primary-expression :
basic-expression
| FUZZY " fuzzy-expression "
| and-not-expression

and-expression :
primary-expression [AND | &] simple-expression

and-not-expression :
primary-expression [AND | &] { NOT | - } basic-expression

basic-expression :
term
| phrase
| (contains-query-string)
| near-expression

fuzzy-expression :
term
| fuzzy-expression term

term :
simple-term
| prefix-term

prefix-term :
simple-term*

phrase :
" phrase-string "

near-expression :
term NEAR[distance] term
| term { NEAR | ~ } term

phrase-string :
term
| phrase-string term

simple-term : A string separated by whitespace and special characters that
represents a single indexed term (word) to search for.

distance : a positive integer

SQL language elements

48 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters
● and-expression Use and-expression to specify that both primary-expression and simple-

expression must be found in the text index.

By default, if no operator is specified between terms or expressions, an and-expression is assumed.
For example, 'a b' is interpreted as 'a AND b'.

An ampersand (&) can be used instead of AND, and can abut the expressions or terms on either side
(for example, 'a &b').

See “Allowed syntax for special characters” on page 52.

● and-not-expression Use and-not-expression to specify that primary-expression must be present
in the text index, but that basic-expression must not be found in the text index. This is also known as a
negation.

If you use a hyphen for negation, the hyphen must have a space to the left of it, and must abut the term
to the right; otherwise, the hyphen is not interpreted as a negation. For example, 'a -b' is
equivalent to 'a AND NOT b'; whereas for 'a - b', the hyphen is ignored and the string is
equivalent to 'a AND b'. 'a-b' is equivalent to the phrase '"a b"'. See “Allowed syntax for
hyphen (-)” on page 52.

● or-expression Use or-expression to specify that at least one of simple-expression or contains-query-
string must be present in the text index. For example, 'a|b' is interpreted as 'a OR b'. See
“Allowed syntax for special characters” on page 52.

● fuzzy-expression Use fuzzy-expression to find terms that are similar to what you specify. Fuzzy
matching is only supported on NGRAM text indexes. See “Fuzzy searching” [SQL Anywhere Server -
SQL Usage].

● near-expression Use near-expression to search for terms that are near each other. This is also
known as a proximity search. For example, 'b NEAR[5] c' searches for instances of b and c that
are five or less terms away from each other. The order of terms is not significant; 'b NEAR c' is
equivalent to 'c NEAR b'.

If NEAR is specified without distance, a default of 10 terms is applied.

You can specify a tilde (~) instead of NEAR. This is equivalent to specifying NEAR without a
distance so a default of 10 terms is applied.

NEAR expressions cannot be chained together (for example, 'a NEAR[1] b NEAR[1] c').

See “Allowed syntax for special characters” on page 52, and “Proximity searching” [SQL Anywhere
Server - SQL Usage].

● prefix-term Use prefix-term to search for terms that start with the specified prefix. For example,
'datab*' searches for any term beginning with datab. This is also known as a prefix search. In a
prefix search, matching is performed for the portion of the term to the left of the asterisk. See

Search conditions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 49

“Allowed syntax for asterisk (*)” on page 51, and “Prefix searching” [SQL Anywhere Server - SQL
Usage].

Remarks
The CONTAINS search condition takes a column list and contains-query-string as arguments. It can be
used anywhere a search condition (also referred to as predicate) can be specified, and returns TRUE or
FALSE. contains-query-string must be a constant string, or a variable, with a value that is known at query
time. The contains-query-string cannot be NULL, an empty string, or exceed 300 valid terms. A valid
term is a term that is within the permitted term length and is not included in the STOPLIST. An error is
returned when the contains-query-string exceeds 300 valid terms.

If the text configuration settings cause all of the terms in the contains-query-string to be dropped, the
result of the CONTAINS search condition is FALSE. For additional information on text configuration
object settings, see “Text configuration object settings” [SQL Anywhere Server - SQL Usage]. For more
information about how the contains-query-string is interpreted, see “Example text configuration objects”
[SQL Anywhere Server - SQL Usage].

If multiple columns are specified, then they must all refer to a single base table; a text index cannot span
multiple base tables. The base table can be referenced directly in the FROM clause, or it can be used in a
view or derived table if the view or derived table does not use DISTINCT, GROUP BY, ORDER BY,
UNION, INTERSECT, EXCEPT, or a row limitation.

The following warnings apply to the use of non-alphanumeric characters in query strings:

● An asterisk in the middle of a term returns an error.

● You should not use non-alphanumerics (including special characters) in fuzzy-expression because they
are treated as whitespace and serve as term breakers.

● If possible, do not include non-alphanumeric characters that are not special characters in your query
string. Any non-alphanumeric character that is not a special character causes the term containing it to
be treated as a phrase, breaking the term at the location of the character. For example, 'things
we've done' is interpreted as 'things "we ve" done'.

Within phrases, the asterisk is the only special character that continues to be interpreted as a special
character. All other special characters within phrases are treated as whitespace and serve as term breakers.

Interpretation of contains-query-string takes place in two main steps:

● Step 1: Interpreting operators and precedence During this step, keywords are interpreted as
operators, and rules of precedence are applied. See “Operator precedence in a CONTAINS search
condition” on page 51.

● Step 2: Applying text configuration object settings During this step, the text configuration
object settings are applied to terms. For example, on an NGRAM text index, terms are broken down
into their n-gram representation. During this step, the query terms that exceed the term length settings,
or that are in the stoplist, are dropped. For more information about how a query string is interpreted
when terms are dropped, see “Example text configuration objects” [SQL Anywhere Server - SQL
Usage].

SQL language elements

50 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Operator precedence in a CONTAINS search condition
During query evaluation, expressions are evaluated using the following order of precedence:

1. FUZZY, NEAR

2. AND NOT

3. AND

4. OR

Treatment of BEFORE as a keyword
SQL Anywhere does not currently support the BEFORE keyword as an operator. For example, if you
specify CONTAINS(column-name, 'a before b'), an error is returned. Construct your query
using the NEAR keyword instead.

You can search for the word "before", providing it is part of a phrase query. For example,
CONTAINS(column-name, '"a before b"'). This searches for the phrase "a before b".

Allowed syntax for asterisk (*)
The asterisk is used for prefix searching. An asterisk can occur at the end of the query string, or be
followed by a space, ampersand, vertical bar, closing bracket, or closing quotation mark. Any other usage
of asterisk returns an error.

The following table shows allowable asterisk usage:

Query string Equivalent to: Interpreted as:

'th*' Find any term beginning with th.

'th*&best' 'th* AND
best' and 'th*
best'

Find any term beginning with th, and the term best.

'th*|best' 'th* OR
best'

Find either any term beginning with th, or the term best.

'very&(best|
th*)'

'very AND
(best OR
th*)'

Find the term very, and the term best or any term be-
ginning with th.

'"fast auto*"' Find the term fast, immediately followed by a term be-
ginning with auto.

'"auto* price"' Find a term beginning with auto, immediately fol-
lowed by the term price.

Search conditions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 51

Note
Interpretation of query strings containing asterisks can vary depending on the text configuration object
settings. See “Prefix searching” [SQL Anywhere Server - SQL Usage].

Allowed syntax for hyphen (-)
The hyphen can be used for term or expression negation, and is equivalent to NOT. Whether a hyphen is
interpreted as a negation depends on its location in the query string. For example, when a hyphen
immediately precedes a term or expression it is interpreted as a negation. If the hyphen is embedded
within a term, it is interpreted as a hyphen.

A hyphen used for negation must be preceded by a whitespace, and followed immediately by an expression.

When used in a phrase of a fuzzy expression, the hyphen is treated as whitespace and used as a term breaker.

The following table shows the allowed syntax for hyphen:

Query string Equivalent to: Interpreted as:

'the -best' 'the AND NOT best',
'the AND -best', 'the
& -best', 'the NOT
best'

Find the term the, and not the term best.

'the -(very
best)'

'the AND NOT (very
AND best)'

Find the term the, and not the terms very and
best.

'the -"very
best"'

'the AND NOT "very
best"'

Find the term the, and not the phrase very best.

'alpha-numer-
ics'

'"alpha numerics"' Find the term alpha, immediately followed by
the term numerics.

'wild - west' 'wild west', and 'wild
AND west'

Find the term wild, and the term west.

Allowed syntax for special characters
The following table shows the allowed syntax for all special characters except asterisk and hyphen.

For information about the asterisk and hyphen, see “Allowed syntax for asterisk (*)” on page 51, and
“Allowed syntax for hyphen (-)” on page 52.

These characters are not considered special characters if they are found in a phrase, and are dropped.

Note
The same restrictions with regards to specifying string literals also apply to the query string. For example,
apostrophes must be escaped, and so on. For more information on formatting string literals, see “String
literals” on page 7.

SQL language elements

52 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Character or syntax Usage Examples and remarks

ampersand (&) The ampersand is equivalent to AND, and can
be specified as follows:

● 'a & b'
● 'a &b'
● 'a&b'
● 'a& b'

vertical bar (|) The vertical bar is equivalent to OR, and can be
specified as follows:

● 'a|b'
● 'a |b'
● 'a | b'
● 'a| b'

double-quotes (") Double-quotes are used to contain a sequence
of terms where order and relative distance are
important. For example, in the query string
'learn "full text search"', "full
text search" is a phrase. In this example, learn
can come before or after the phrase, or exist in
another column (if the text index is built on
more than one column), but the exact phrase
must be found in a single column.

parentheses () Parentheses are used to specify the order of eval-
uation of expressions if different from the de-
fault order. For example 'a AND (b|c)' is
interpreted as a, and b or c.

For more information about the default order of
evaluation, see “Operator precedence in a CON-
TAINS search condition” on page 51.

tilde (~) The tilde is equivalent to NEAR, and has no spe-
cial syntax rules. The query string
'full~text' is equivalent to 'full
NEAR text', and is interpreted as: the term
full within ten terms of the term text.

square brackets [] Square brackets are used in conjunction with
the keyword NEAR to contain distance. Other
uses of square brackets returns an error.

Search conditions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 53

See also
● “Full text search” [SQL Anywhere Server - SQL Usage]
● “Text configuration object settings” [SQL Anywhere Server - SQL Usage]
● “Example text configuration objects” [SQL Anywhere Server - SQL Usage]
● “FROM clause” on page 696
● “sa_char_terms system procedure” on page 954
● “sa_nchar_terms system procedure” on page 1037

Standards and compatibility
● SQL/2008 The CONTAINS predicate is a vendor extension.

EXISTS search condition

Syntax
EXISTS (subquery)

Remarks
The EXISTS search condition is TRUE if the subquery result contains at least one row, and FALSE if the
subquery result does not contain any rows. The EXISTS search condition cannot be UNKNOWN.

Standards and compatibility
● SQL/2008 Core feature.

IS NULL and IS NOT NULL search conditions

Syntax
expression IS [NOT] NULL

Remarks
Without the NOT keyword, the IS NULL search condition is TRUE if the expression is the NULL value,
and FALSE otherwise. The NOT keyword reverses the meaning of the search condition.

Standards and compatibility
● SQL/2008 Core feature.

Truth value search conditions

Syntax
IS [NOT] truth-value

SQL language elements

54 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
Without the NOT keyword, the search condition is TRUE if the condition evaluates to the supplied truth-
value, which must be one of TRUE, FALSE, or UNKNOWN. Otherwise, the value is FALSE. The NOT
keyword reverses the meaning of the search condition, but leaves UNKNOWN unchanged.

Standards and compatibility
● SQL/2008 Truth value search conditions comprise optional SQL language feature F571 of the SQL/

2008 standard.

Trigger operation conditions

Syntax
trigger-operation:
INSERTING
| DELETING
| UPDATING [(column-name-string)]
| UPDATE (column-name)

Remarks
Trigger-operation conditions can be used only in triggers, to carry out actions depending on the kind of
action that caused the trigger to fire.

The argument for UPDATING is a quoted string (for example, UPDATING('mycolumn')). The
argument for UPDATE is an identifier (for example, UPDATE(mycolumn)). The two versions are
interoperable, and are included for compatibility with SQL dialects of other vendors' DBMS.

If you supply an UPDATING or UPDATE function, you must also supply a REFERENCING clause in
the CREATE TRIGGER statement to avoid syntax errors.

Example
The following trigger displays a message in the Messages tab of the Interactive SQL Results pane
showing which action caused the trigger to fire.

CREATE TRIGGER tr BEFORE INSERT, UPDATE, DELETE
ON sample_table
REFERENCING OLD AS t1old
FOR EACH ROW
BEGIN
 DECLARE msg varchar(255);
 SET msg = 'This trigger was fired by an ';
 IF INSERTING THEN
 SET msg = msg || 'insert'
 ELSEIF DELETING THEN
 set msg = msg || 'delete'
 ELSEIF UPDATING THEN
 set msg = msg || 'update'
 END IF;
 MESSAGE msg TO CLIENT
END;

Search conditions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 55

See also
● “BEGIN statement” on page 454
● “Using procedures, triggers, and batches” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 Vendor extension.

Three-valued logic
The following tables display how the AND, OR, NOT, and IS logical operators of SQL work in three-
valued logic. See “NULL value” on page 74.

AND operator

AND TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

UNKNOWN UNKNOWN FALSE UNKNOWN

OR operator

OR TRUE FALSE UNKNOWN

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN UNKNOWN

NOT operator

TRUE FALSE UNKNOWN

FALSE TRUE UNKNOWN

IS operator

IS TRUE FALSE UNKNOWN

TRUE TRUE FALSE FALSE

FALSE FALSE TRUE FALSE

SQL language elements

56 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

IS TRUE FALSE UNKNOWN

UNKNOWN FALSE FALSE TRUE

Standards and compatibility
● SQL/2008 Core feature. Truth value tests, such as IS UNKNOWN, comprise SQL language feature

F571.

Explicit selectivity estimates

SQL Anywhere uses statistical information to determine the most efficient strategy for executing each
statement. SQL Anywhere automatically gathers and updates these statistics. These statistics are stored
permanently in the database in the system table ISYSCOLSTAT. Statistics gathered while processing one
statement are available when searching for efficient ways to execute subsequent statements.

Occasionally, the statistics may become inaccurate or relevant statistics may be unavailable. This
condition is most likely to arise when few queries have been executed since a large amount of data was
added, updated, or deleted. In this situation, you may want to execute a CREATE STATISTICS
statement. See “CREATE STATISTICS statement” on page 588.

If there are problems with a particular execution plan, you can use optimizer hints to require that a
particular index be used. For more information, see “FROM clause” on page 696.

In unusual circumstances, however, these measures may prove ineffective. In such cases, you can
sometimes improve performance by supplying explicit selectivity estimates.

For each table in a potential execution plan, the optimizer must estimate the number of rows that will be
part of the result set. If you know that a condition has a success rate that differs from the optimizer's
estimate, you can explicitly supply a user estimate in the search condition.

The estimate is a percentage. It can be a positive integer or can contain fractional values.

Caution
Whenever possible, avoid supplying explicit estimates in statements that are to be used on an ongoing
basis. Should the data change, the explicit estimate may become inaccurate and may force the optimizer to
select poor plans. If you do use explicit selectivity estimates, ensure that the number is accurate. Do not,
for example, supply values of 0% or 100% to force the use of an index.

You can disable user estimates by setting the database option user_estimates to Off. The default value for
user_estimates is Override-Magic, which means that user-supplied selectivity estimates are used only
when the optimizer would use a MAGIC (default) selectivity value for the condition. The optimizer uses
MAGIC values as a last resort when it is unable to accurately predict the selectivity of a predicate.

For more information about disabling user-defined selectivity estimates, see “user_estimates option”
[SQL Anywhere Server - Database Administration].

Search conditions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 57

For more information about statistics, see “Optimizer estimates and column statistics” [SQL Anywhere
Server - SQL Usage].

Examples
The following query provides an estimate that one percent of the ShipDate values are later than 2001/06/30:

SELECT ShipDate
 FROM SalesOrderItems
WHERE (ShipDate > '2001/06/30', 1)
ORDER BY ShipDate DESC;

The following query estimates that half a percent of the rows satisfy the condition:

SELECT *
 FROM Customers c, SalesOrders o
WHERE (c.ID = o.CustomerID, 0.5);

Fractional values enable more accurate user estimates for joins and large tables.

Standards and compatibility
● SQL/2008 Vendor extension.

Special values
Special values can be used in expressions, and as column defaults when creating tables.

While some special values can be queried, some can only be used as default values for columns. For
example, USER, LAST USER, TIMESTAMP and UTC TIMESTAMP can only be used as default values.

CURRENT DATABASE special value
CURRENT DATABASE returns the name of the current database.

Data type
STRING

See also
● “Expressions” on page 12

Standards and compatibility
● SQL/2008 Vendor extension.

CURRENT DATE special value
CURRENT DATE returns the current year, month, and day.

SQL language elements

58 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Data type
DATE

See also
● “Expressions” on page 12
● “TIME data type” on page 105

Standards and compatibility
● SQL/2008 Vendor extension. In the ANSI SQL/2008 standard, the special register that defines the

current date is called CURRENT_DATE.

CURRENT PUBLISHER special value
CURRENT PUBLISHER returns a string that contains the publisher user ID of the database for SQL
Remote replications.

Data type
STRING

Remarks
CURRENT PUBLISHER can be used as a default value in columns with character data types.

Standards and compatibility
● SQL/2008 Vendor extension.

CURRENT REMOTE USER special value
If the current connection belongs to the receive phase of SQL Remote, then CURRENT REMOTE USER
returns the user ID of the remote user that created the messages that are currently being applied on this
connection. In all other circumstances, CURRENT REMOTE USER is a NULL value.

Data type
STRING

Remarks
The CURRENT REMOTE USER special value is set by the receive phase of SQL Remote when it is
applying messages to the database. The CURRENT REMOTE USER special value is most useful in
triggers to determine whether the operations being applied are being applied by the receive phase of SQL
Remote, and if they are, which remote user generated the operations being applied.

Special values

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 59

See also
● “Using the CURRENT REMOTE USER special value” [SQL Remote]
● “-t option, SQL Remote Message Agent utility (dbremote)” [SQL Remote]

Standards and compatibility
Vendor extension.

CURRENT TIME special value
The current hour, minute, second, and fraction of a second.

Data type
TIME

Remarks
The fraction of a second is stored to 6 decimal places. The accuracy of the current time is limited by the
accuracy of the system clock.

See also
● “Expressions” on page 12
● “TIME data type” on page 105

Standards and compatibility
● SQL/2008 Vendor extension. In the ANSI SQL/2008 standard, the special register that defines the

current time is called CURRENT_TIME.

CURRENT TIMESTAMP special value
CURRENT TIMESTAMP combines CURRENT DATE and CURRENT TIME to form a TIMESTAMP
value containing the year, month, day, hour, minute, second and fraction of a second. The fraction of a
second is stored to 3 decimal places. The accuracy is limited by the accuracy of the system clock.

Unlike DEFAULT TIMESTAMP, columns declared with DEFAULT CURRENT TIMESTAMP do not
necessarily contain unique values. If uniqueness is required, consider using DEFAULT TIMESTAMP
instead.

The information CURRENT TIMESTAMP returns is equivalent to the information returned by the
GETDATE and NOW functions.

CURRENT_TIMESTAMP is equivalent to CURRENT TIMESTAMP.

SQL language elements

60 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Note
The main difference between DEFAULT CURRENT TIMESTAMP and DEFAULT TIMESTAMP is
that DEFAULT CURRENT TIMESTAMP is set only at INSERT, while DEFAULT TIMESTAMP is set
at both INSERT and UPDATE.

Data type
TIMESTAMP

See also
● “CURRENT TIME special value” on page 60
● “TIMESTAMP special value” on page 65
● “Expressions” on page 12
● “TIMESTAMP data type” on page 105
● “GETDATE function [Date and time]” on page 220
● “NOW function [Date and time]” on page 276

Standards and compatibility
● SQL/2008 Vendor extension. In the SQL/2008 standard, the special register that defines the current

timestamp is called CURRENT_TIMESTAMP.

CURRENT USER special value
CURRENT USER returns a string that contains the user ID of the current connection.

Data type
STRING

Remarks
CURRENT USER can be used as a default value in columns with character data types.

On UPDATE, columns with a default value of CURRENT USER are not changed. CURRENT_USER is
equivalent to CURRENT USER.

See also
● “Expressions” on page 12

Standards and compatibility
● SQL/2008 Vendor extension. In the SQL/2008 standard, the special register that defines the current

user is called CURRENT_USER.

CURRENT UTC TIMESTAMP special value

Special values

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 61

CURRENT UTC TIMESTAMP combines CURRENT DATE and CURRENT TIME, adjusted by the
server's time zone adjustment value, to form a Coordinated Universal Time (UTC) TIMESTAMP value
containing the year, month, day, hour, minute, second and fraction of a second. This feature allows data to
be entered with a consistent time reference, regardless of the time zone in which the data was entered.

Data type
TIMESTAMP WITH TIME ZONE

See also
● “TIMESTAMP WITH TIME ZONE data type” on page 106
● “UTC TIMESTAMP special value” on page 66
● “CURRENT TIMESTAMP special value” on page 60
● “truncate_timestamp_values option” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension. The TIMESTAMP WITH TIME ZONE data type is optional SQL

language feature F411 in the SQL/2008 standard.

LAST USER special value
LAST USER is the name of the user who last modified the row.

Data type
String

Remarks
LAST USER can be used as a default value in columns with character data types.

On INSERT, this constant has the same effect as CURRENT USER. On UPDATE, if a column with a
default value of LAST USER is not explicitly modified, it is changed to the name of the current user.

When combined with the DEFAULT TIMESTAMP, a default value of LAST USER can be used to
record (in separate columns) both the user and the date and time a row was last changed.

See also
● “CURRENT USER special value” on page 61
● “CURRENT TIMESTAMP special value” on page 60
● “CREATE TABLE statement” on page 596

Standards and compatibility
● SQL/2008 Vendor extension.

SQLCODE special value

SQL language elements

62 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SQLCODE indicates the disposition of the most recently executed SQL statement.

Data type
Signed INTEGER

Remarks
The database server sets a SQLSTATE and SQLCODE for each SQL statement it executes. SQLCODEs
are product-specific (for example, MobiLink has its own SQLCODEs), and can be used to learn
additional information about the SQLSTATE. For example, positive values other than 100 indicate product-
specific warning conditions. Negative values indicate product-specific exception conditions. The value
100 indicates "no data" (for example, at the end of a result set fetched via a cursor).

SQLSTATE and SQLCODE are related in that each SQLCODE corresponds to a SQLSTATE, and each
SQLSTATE can correspond to one or more SQLCODEs.

To return the error condition associated with a SQLCODE, you can use the ERRORMSG function. See
“ERRORMSG function [Miscellaneous]” on page 203.

Note
SQLSTATE is the preferred status indicator for the outcome of a SQL statement. See “SQLSTATE
special value” on page 63.

See also
● “SQLSTATE special value” on page 63
● “SQL Anywhere error messages sorted by SQLCODE” [Error Messages]
● “Expressions” on page 12

Standards and compatibility
● SQL/2008 SQLCODE was deprecated in the ANSI SQL/1992 standard, and was eliminated

entirely from SQL/1999. SQLCODE values continue to be maintained in SQL Anywhere for
backward compatibility for applications. SQLSTATE is the preferred status indicator.

SQLSTATE special value

SQLSTATE indicates whether the most recently executed SQL statement resulted in a success, error, or
warning condition.

Data type
String

Remarks
The database server sets a SQLSTATE and SQLCODE for each SQL statement it executes. A
SQLSTATE is a string that indicates the whether the most recently executed SQL statement resulted in a
success, warning, or error condition.

Special values

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 63

Each SQLSTATE represents errors that are common to all platforms, and usually contain non-product-
specific wording. The format of a SQLSTATE value is a two-character class value, followed by a three-
character subclass value. Guidelines for SQLSTATE conformance with regard to class and subclass
values are outlined in the ISO/ANSI SQL standard.

SQL Anywhere conforms to the ISO/ANSI SQLSTATE conventions with the following additions and
exceptions:

Class and subclass Condition

01WCx Warnings related to character set conversion

38xxx External function exception

42Xxx Syntax error: expressions

42Rxx Syntax error: referential integrity (for example, attempt to create second pri-
mary key)

42Wxx Syntax error: generic

42Uxx Syntax error: duplicate, undefined, or ambiguous object reference

42Zxx Access violation

54Wxx Product limit exceeded

55Wxx Object not in required state for operation to succeed

57xxx Resource not available or operator intervention

5Rxxx SQL Remote errors

WBxxx Online backup errors

WIxxx Internal database errors

WPxxx Errors in procedures, variables, and so on

WLxxx Errors loading and/or unloading

WWxxx Miscellaneous SQL Anywhere-specific errors/warnings (including system fail-
ures)

WOxxx Remote data access feature-related errors

WJxxx JCS and JDBC related errors

WCxxx Character translation errors

SQL language elements

64 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Class and subclass Condition

WXxxx XML-related errors

WTxxx Text-related errors

The successful completion class is '00xxx' (for example, '00000').

SQLSTATE and SQLCODE are related in that each SQLCODE corresponds to a SQLSTATE, and each
SQLSTATE can correspond to one or more SQLCODEs.

To return the error condition associated with a SQLSTATE, you can use the ERRORMSG function. See
“ERRORMSG function [Miscellaneous]” on page 203.

To see the SQLSTATE values used by SQL Anywhere, see “SQL Anywhere error messages sorted by
SQLSTATE” [Error Messages].

See also
● “SQLCODE special value” on page 62
● “Expressions” on page 12

Standards and compatibility
● SQL/2008 SQLSTATE classes (the first two characters) beginning with the values '0'-'4', and

'A'-'H' are defined by the ANSI standard. Other classes are implementation-defined. Similarly,
subclass values that begin with values '0'-'4', and 'A'-'H' are defined by the ANSI standard. Subclass
values outside these ranges are implementation-defined.

TIMESTAMP special value

TIMESTAMP indicates when each row in the table was last modified. When a column is declared with
DEFAULT TIMESTAMP, a default value is provided for inserts, and the value is updated with the
current date and time whenever the row is updated.

Data type
TIMESTAMP

Remarks
Columns declared with DEFAULT TIMESTAMP contain unique values so that applications can detect near-
simultaneous updates to the same row. If the current timestamp value is the same as the last value, it is
incremented by the value of the default_timestamp_increment option.

You can automatically truncate timestamp values in SQL Anywhere based on the
default_timestamp_increment option. This is useful for maintaining compatibility with other database
software that records less precise timestamp values.

Special values

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 65

The global variable @@dbts returns a TIMESTAMP value representing the last value generated for a
column using DEFAULT TIMESTAMP.

Note
The main difference between DEFAULT TIMESTAMP and DEFAULT CURRENT TIMESTAMP is
that DEFAULT CURRENT TIMESTAMP is set only at INSERT, while DEFAULT TIMESTAMP is set
at both INSERT and UPDATE.

See also
● “TIMESTAMP data type” on page 105
● “CURRENT TIMESTAMP special value” on page 60
● “CURRENT UTC TIMESTAMP special value” on page 61
● “default_timestamp_increment option” [SQL Anywhere Server - Database Administration]
● “truncate_timestamp_values option” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

USER special value

USER returns a string that contains the user ID of the current connection.

Data type
STRING

Remarks
USER can be used as a default value in columns with character data types.

On UPDATE, columns with a default value of USER are not changed.

See also
● “Expressions” on page 12
● “CURRENT USER special value” on page 61
● “LAST USER special value” on page 62

Standards and compatibility
● SQL/2008 Vendor extension.

UTC TIMESTAMP special value

UTC TIMESTAMP indicates the Coordinated Universal (UTC) time when each row in the table was last
modified.

SQL language elements

66 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

When a column is declared with DEFAULT UTC TIMESTAMP, a default value is provided for inserts,
and the value is updated with the current UTC date and time whenever the row is updated.

Data type
TIMESTAMP WITH TIME ZONE

Remarks
Columns declared with DEFAULT UTC TIMESTAMP contain unique values so that applications can
detect near-simultaneous updates to the same row. If the current UTC timestamp value is the same as the
last value, it is incremented by the value of the default_timestamp_increment option.

You can automatically truncate UTC timestamp values in SQL Anywhere with the
default_timestamp_increment option. This is useful for maintaining compatibility with other database
software that records less precise timestamp values.

Note
DEFAULT UTC TIMESTAMP is set at both INSERT and UPDATE and DEFAULT CURRENT UTC
TIMESTAMP is set at INSERT.

See also
● “TIMESTAMP WITH TIME ZONE data type” on page 106
● “CURRENT UTC TIMESTAMP special value” on page 61
● “TIMESTAMP special value” on page 65
● “default_timestamp_increment option” [SQL Anywhere Server - Database Administration]
● “truncate_timestamp_values option” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Variables
SQL Anywhere supports three levels of variables:

● Local variables These are defined inside a compound statement in a procedure or batch using the
DECLARE statement. They exist only inside the compound statement.

● Connection-level variables These are defined with a CREATE VARIABLE statement. They
belong to the current connection, and disappear when you disconnect from the database or when you
use the DROP VARIABLE statement.

● Global variables These are system-supplied variables that have system-supplied values. All global
variables have names beginning with two @ signs. For example, the global variable @@version has a
value that is the current version number of the database server. Users cannot define global variables.

Variables

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 67

Local and connection-level variables are declared by the user, and can be used in procedures or in batches
of SQL statements to hold information. Global variables are system-supplied variables that provide system-
supplied values.

See also
● “TIMESTAMP data type” on page 105
● “CREATE VARIABLE statement” on page 622

Standards and compatibility
● SQL/2008 Variables declared within SQL stored procedures or functions using the DECLARE

statement is supported in the ANSI SQL/2008 standard as SQL language feature P002,
"Computational completeness". CREATE VARIABLE, DROP VARIABLE, and global variables are
all vendor extensions.

Local variables
SQL Anywhere supports local variables. Local variables are declared using the DECLARE statement,
which can be used only within a compound statement (that is, bracketed by the BEGIN and END
keywords). Only one variable can be declared for each DECLARE statement in SQL Anywhere.

If the DECLARE is executed within a compound statement, the scope is limited to the compound statement.

The variable is initially set as NULL. The value of the variable can be set using the SET statement, or can
be assigned using a SELECT statement with an INTO clause.

The syntax of the DECLARE statement is as follows:

DECLARE variable-name data-type

Local variables can be passed as arguments to procedures, as long as the procedure is called from within
the compound statement.

Examples
The following batch illustrates the use of local variables.

BEGIN
 DECLARE local_var INT;
 SET local_var = 10;
 MESSAGE 'local_var = ', local_var TO CLIENT;
END

Running this batch from Interactive SQL displays the message local_var = 10 in the Messages tab
of the Interactive SQL Results pane.

The variable local_var does not exist outside the compound statement in which it is declared. The
following batch is invalid, and gives a column not found error.

-- This batch is invalid.
BEGIN

SQL language elements

68 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 DECLARE local_var INT;
 SET local_var = 10;
END;
MESSAGE 'local_var = ', local_var TO CLIENT;

The following example illustrates the use of SELECT with an INTO clause to set the value of a local variable:

BEGIN
 DECLARE local_var INT;
 SELECT 10 INTO local_var;
 MESSAGE 'local_var = ', local_var TO CLIENT;
END

Running this batch from Interactive SQL displays the message local_var = 10 in the Messages tab
of the Interactive SQL Results pane.

For more information about batches and local variable scope, see “Variables in Transact-SQL procedures”
[SQL Anywhere Server - SQL Usage].

Standards and compatibility
● SQL/2008 The DECLARE statement is supported in the ANSI SQL/2008 standard as SQL

language feature P002, "Computational completeness".

Connection-level variables
Connection-level variables are declared with the CREATE VARIABLE statement. Connection-level
variables can be passed as parameters to procedures.

The syntax for the CREATE VARIABLE statement is as follows:

CREATE VARIABLE variable-name data-type

When a variable is created, it is initially set to NULL. The value of connection-level variables can be set
in the same way as local variables, using the SET statement or using a SELECT statement with an INTO
clause.

Connection-level variables exist until the connection is terminated, or until the variable is explicitly
dropped using the DROP VARIABLE statement. The following statement drops the variable con_var:

DROP VARIABLE con_var;

Example
The following batch of SQL statements illustrates the use of connection-level variables.

CREATE VARIABLE con_var INT;
SET con_var = 10;
MESSAGE 'con_var = ', con_var TO CLIENT;

Running this batch from Interactive SQL displays the message con_var = 10 in the Messages tab of
the Interactive SQL Results pane.

Variables

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 69

Standards and compatibility
● SQL/2008 Vendor extension.

Global variables

Global variables have values set by the database server. For example, the global variable @@version has
a value that is the current version number of the database server.

Global variables are distinguished from local and connection-level variables by having two @ signs
preceding their names. For example, @@error and @@rowcount are global variables. Users cannot
create global variables, and cannot update the values of global variables directly.

Some global variables, such as @@identity, hold connection-specific information, and so have connection-
specific values. Other variables, such as @@connections, have values that are common to all connections.

Global variable and special constants
The special constants (for example, CURRENT DATE, CURRENT TIME, USER, and SQLSTATE) are
similar to global variables.

The following statement retrieves a value of the version global variable.

SELECT @@version;

In procedures and triggers, global variables can be selected into a variable list. The following procedure
returns the server version number in the ver parameter.

CREATE PROCEDURE VersionProc (OUT ver VARCHAR(100))
 BEGIN
 SELECT @@version
 INTO ver;
 END;

In Embedded SQL, global variables can be selected into a host variable list.

List of global variables
The following table lists the global variables available in SQL Anywhere. Some global variables are
supplied for compatibility with Transact-SQL, and return a fixed value of either 0, -1, or NULL, as noted.

Variable name Meaning

@@char_convert 0 (Provided for compatibility with Transact-SQL.)

@@client_csid -1 (Provided for compatibility with Transact-SQL.)

@@client_csname NULL (Provided for compatibility with Transact-SQL.)

@@connections The number of logins since the server was last started.

SQL language elements

70 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Variable name Meaning

@@cpu_busy 0 (Provided for compatibility with Transact-SQL.)

@@dbts A value of type TIMESTAMP representing the last generated value used for all
columns defined with DEFAULT TIMESTAMP.

@@error A Transact-SQL error code that checks the success or failure of the most recent-
ly executed statement. If the previous transaction succeeded, 0 is returned. If
the previous transaction was unsuccessful, the last error number generated by
the system is returned. To view descriptions of the values returned by @@er-
ror, see “Error handling in Transact-SQL procedures” [SQL Anywhere Server -
SQL Usage].

A statement such as if @@error != 0 return causes an exit if an error
occurs. Every statement resets @@error, including PRINT statements or IF
tests, so the status check must immediately follow the statement whose success
you want verified.

@@fetch_status Contains status information resulting from the last fetch statement. This feature
is the same as @@sqlstatus, except that it returns different values. It is for Mi-
crosoft SQL Server compatibility. @@fetch_status may contain the following
values:

● 0 The fetch statement completed successfully.

● -1 The fetch statement resulted in an error.

● -2 There is no more data in the result set.

@@identity Last value inserted into any IDENTITY or DEFAULT AUTOINCREMENT col-
umn by an INSERT or SELECT INTO statement. See “@@identity global var-
iable” on page 73.

@@idle 0 (Provided for compatibility with Transact-SQL.)

@@io_busy 0 (Provided for compatibility with Transact-SQL.)

@@isolation Current isolation level of the connection. @@isolation takes the value of the
active level.

@@langid Unique language ID for the language in use by the current connection.

@@language Name of the language in use by the connection.

@@max_connec-
tions

For the personal server, the maximum number of simultaneous connections that
can be made to the server, which is 10. For the network server, the maximum
number of active clients (not database connections, as each client can support
multiple connections).

Variables

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 71

Variable name Meaning

@@maxcharlen Maximum length, in bytes, of a character in the CHAR character set.

@@ncharsize Maximum length, in bytes, of a character in the NCHAR character set.

@@nestlevel -1 (Provided for compatibility with Transact-SQL.)

@@pack_received 0 (Provided for compatibility with Transact-SQL.)

@@pack_sent 0 (Provided for compatibility with Transact-SQL.)

@@packet_errors 0 (Provided for compatibility with Transact-SQL.)

@@procid Stored procedure ID of the currently executing procedure.

@@rowcount Number of rows affected by the last statement. The value of @@rowcount
should be checked immediately after the statement.

Inserts, updates, and deletes set @@rowcount to the number of rows affected.

With cursors, @@rowcount represents the cumulative number of rows returned
from the cursor result set to the client, up to the last fetch request.

The @@rowcount is not reset to zero by any statement which does not affect
rows, such as an IF statement.

@@servername Name of the current database server.

@@spid The connection handle for the current connection. This is the same value as that
displayed by the sa_conn_info procedure.

@@sqlstatus Contains status information resulting from the last fetch statement. @@sqlsta-
tus may contain the following values:

● 0 The fetch statement completed successfully.

● 1 The fetch statement resulted in an error.

● 2 There is no more data in the result set.

@@textsize Current value of the SET TEXTSIZE option, which specifies the maximum
length, in bytes, of text or image data to be returned with a select statement.
The default setting is 32765, which is the largest byte string that can be re-
turned using READTEXT. The value can be set using the SET statement.

@@thresh_hystere-
sis

0 (Provided for compatibility with Transact-SQL.)

SQL language elements

72 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Variable name Meaning

@@timeticks 0 (Provided for compatibility with Transact-SQL.)

@@total_errors 0 (Provided for compatibility with Transact-SQL.)

@@total_read 0 (Provided for compatibility with Transact-SQL.)

@@total_write 0 (Provided for compatibility with Transact-SQL.)

@@tranchained Current transaction mode; 0 for unchained or 1 for chained.

@@trancount Nesting level of transactions. Each BEGIN TRANSACTION in a batch incre-
ments the transaction count.

@@transtate -1 (Provided for compatibility with Transact-SQL.)

@@version Version number of the current version of SQL Anywhere.

@@identity global variable

The @@identity variable holds the most recent value inserted by the current connection into an
IDENTITY column, a DEFAULT AUTOINCREMENT column, or a DEFAULT GLOBAL
AUTOINCREMENT column, or zero if the most recent insert was into a table that had no such column.

The value of @@identity is connection specific. If a statement inserts multiple rows, @@identity reflects
the IDENTITY value for the last row inserted. If the affected table does not contain an IDENTITY
column, @@ identity is set to zero.

The value of @@identity is not affected by the failure of an INSERT or SELECT INTO statement, or the
rollback of the transaction that contained it. @@identity retains the last value inserted into an IDENTITY
column, even if the statement that inserted it fails to commit.

@@identity and triggers
When an insert causes referential integrity actions or fires a trigger, @@identity behaves like a stack. For
example, if an insert into a table T1 (with an identity or autoincrement column) fires a trigger that inserts
a row into table T2 (also with an identity or autoincrement column), then the value returned to the
application or procedure which carried out the insert is the value inserted into T1. Within the trigger,
@@identity has the T1 value before the insert into T2 and the T2 value after. The trigger can copy the
values to local variables if it needs to access both.

Standards and compatibility
● SQL/2008 Global variables are a vendor extension.

Variables

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 73

Comments
Comments are used to attach explanatory text to SQL statements or statement blocks. The database server
does not execute comments.

The following comment indicators are supported in SQL Anywhere:

● -- (Double hyphen) The database server ignores any remaining characters on the line. This is the
SQL/2008 comment indicator. You can add and remove this comment indicator by pressing Ctrl
+minus sign in Interactive SQL and in the Stored Procedure window of Sybase Central. See
“Interactive SQL keyboard shortcuts” [SQL Anywhere Server - Database Administration].

● // (Double slash) The double slash has the same meaning as the double hyphen. You can add and
remove this comment indicator by pressing Ctrl+forward slash in Interactive SQL and in the Stored
Procedure window of Sybase Central. See “Interactive SQL keyboard shortcuts” [SQL Anywhere
Server - Database Administration].

● /* ... */ (Slash-asterisk) Any characters between the two comment markers are ignored. The two
comment markers can be on the same or different lines. Comments indicated in this style can be
nested. This style of commenting is also called C-style comments.

Examples
The following example illustrates the use of double-hyphen comments:

CREATE FUNCTION fullname (firstname CHAR(30),
 lastname CHAR(30))
RETURNS CHAR(61)
-- fullname concatenates the firstname and lastname
-- arguments with a single space between.
BEGIN
 DECLARE name CHAR(61);
 SET name = firstname || ' ' || lastname;
 RETURN (name);
END;

The following example illustrates the use of C-style comments:

/* Lists the names and employee IDs of employees
 who work in the sales department. */
CREATE VIEW SalesEmployees AS
 SELECT EmployeeID, Surname, GivenName
 FROM Employees
 WHERE DepartmentID = 200;

Standards and compatibility
● SQL/2008 The use of double-minus signs for a comment is a core feature of the ANSI SQL/2008

standard. The use of C-style, bracketed comments (/* ... */) is SQL language feature T351 of the SQL/
2008 standard. Double-slash comments (//) are supported as a vendor extension.

NULL value

SQL language elements

74 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The NULL value specifies a value that is unknown or not applicable.

Syntax
NULL

Remarks
NULL is a special value that is different from any valid value for any data type. However, the NULL
value is a legal value in any data type. NULL is used to represent missing or inapplicable information.
There are two separate and distinct cases where NULL is used:

Situation Description

missing The field does have a value, but that value is unknown.

inapplicable The field does not apply for this particular row.

SQL allows columns to be created with the NOT NULL restriction. This means that those particular
columns cannot contain NULL.

The NULL value introduces the concept of three valued logic to SQL. The NULL value compared using
any comparison operator with any value (including the NULL value) is "UNKNOWN." The only search
condition that returns TRUE is the IS NULL predicate. In SQL, rows are selected only if the search
condition in the WHERE clause evaluates to TRUE; rows that evaluate to UNKNOWN or FALSE are not
selected.

Column space utilization for NULL values is 1 bit per column and space is allocated in multiples of 8
bits. The NULL bit usage is fixed based on the number of columns in the table that allow NULL values.

The IS [NOT] truth-value clause, where truth-value is one of TRUE, FALSE or UNKNOWN can be
used to select rows where the NULL value is involved. For a description of this clause, see “Search
conditions” on page 32.

In the following examples, the column Salary contains NULL.

Condition Truth value Selected?

Salary = NULL UNKNOWN NO

Salary <> NULL UNKNOWN NO

NOT (Salary = NULL) UNKNOWN NO

NOT (Salary <> NULL) UNKNOWN NO

Salary = 1000 UNKNOWN NO

Salary IS NULL TRUE YES

NULL value

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 75

Condition Truth value Selected?

Salary IS NOT NULL FALSE NO

Salary = expression IS UNKNOWN TRUE YES

The same rules apply when comparing columns from two different tables. Therefore, joining two tables
together does not select rows where any of the columns compared contain the NULL value.

NULL also has an interesting property when used in numeric expressions. The result of any numeric
expression involving the NULL value is NULL. This means that if NULL is added to a number, the result
is NULL—not a number. If you want NULL to be treated as 0, you must use the ISNULL(expression, 0)
function.

Many common errors in formulating SQL queries are caused by the behavior of NULL. You have to be
careful to avoid these problem areas. For a description of the effect of three-valued logic when combining
search conditions, see “Search conditions” on page 32.

Set operators and DISTINCT clause
In SQL, comparisons to NULL within search conditions yield UNKNOWN as the result. However, when
determining whether or not two rows are duplicates of each other, SQL treats NULL as equivalent to
NULL. These semantics apply to the set operators (UNION, INTERSECT, EXCEPT), GROUP BY,
PARTITION within a WINDOW clause, and SELECT DISTINCT.

For example, if a column called redundant contained NULL for every row in a table T1, then the
following statement would return a single row:

SELECT DISTINCT redundant FROM T1;

Permissions
Must be connected to the database.

Side effects
None.

See also
● “ansinull option” [SQL Anywhere Server - Database Administration]
● “tds_empty_string_is_null option” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Core feature.

● Transact-SQL In some contexts, Adaptive Server Enterprise treats comparisons to NULL values
differently. If an expression is compared to a variable or NULL literal using equality or inequality,
and if expression is a simple expression that refers to the column of a base table or view, then the
comparison is performed using two-valued logic, with NULL = NULL yielding TRUE rather than

SQL language elements

76 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

UNKNOWN. The list of possible comparisons with these semantics, and their SQL/2008 equivalents,
are as follows:

Transact-SQL comparison SQL/2008 equivalent

expression = NULL expression IS NULL

expression != NULL NOT (expression IS NULL)

expression = variable expression = variable IS TRUE OR (expression IS
NULL AND variable IS NULL)

expression != variable expression != variable IS TRUE AND (NOT ex-
pression IS NULL OR NOT variable IS NULL)

SQL Anywhere will implement these semantics to match Adaptive Server Enterprise behavior if the
ansinull option is set to OFF. The ansinull option is set to OFF by default for Open Client and
jConnect connections. To ensure SQL/2008 semantics, you can either reset the ansinull option to ON,
or use an IS [NOT] NULL predicate instead of an equality comparison.

Unique indexes in SQL Anywhere can hold rows that hold NULL and are otherwise identical.
Adaptive Server Enterprise does not permit such entries in unique indexes.

If you use jConnect, the tds_empty_string_is_null option controls whether empty strings are returned
as NULL strings or as a string containing one blank character.

For more information, see “tds_empty_string_is_null option” [SQL Anywhere Server - Database
Administration].

See also
● “Expressions” on page 12
● “Search conditions” on page 32

Example
The following INSERT statement inserts a NULL into the date_returned column of the Borrowed_book
table.

INSERT INTO Borrowed_book (date_borrowed, date_returned, book)
VALUES (CURRENT DATE, NULL, '1234');

NULL value

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 77

78

SQL data types

Character data types
Character data types are used to store strings of letters, numbers, and other symbols.

SQL Anywhere provides two classes of character data types and some domains defined using those types.

● CHAR, VARCHAR, LONG VARCHAR Character data stored in a single- or multibyte character
set, often chosen to correspond most closely to the primary language or languages stored in the database.

● NCHAR, NVARCHAR, LONG NVARCHAR Character data stored in Unicode's UTF-8 encoding.
All Unicode code points can be stored using these types, regardless of the primary language or
languages stored in the database.

● TEXT, UNIQUEIDENTIFIERSTR, XML Domains based on other character data types.

Storage
All character data values are stored in the same manner. By default, values up to 128 bytes are stored in a
single piece. Values longer than 128 bytes are stored with a 4-byte prefix kept locally on the database
page and the full value stored in one or more other database pages. These default sizes are controlled by
the INLINE and PREFIX clauses of the CREATE TABLE statement.

See also
● “CREATE TABLE statement” on page 596
● “string_rtruncation option” [SQL Anywhere Server - Database Administration]

CHAR data type
The CHAR data type stores character data, up to 32767 bytes.

Syntax
CHAR [(max-length [CHAR | CHARACTER])]

Parameters
● max-length The maximum length of the string. If byte-length semantics are used (CHAR or

CHARACTER is not specified as part of the length), then the length is in bytes, and the length must
be in the range 1 to 32767. If the length is not specified, then it is 1.

If character-length semantics are used (CHAR or CHARACTER is specified as part of the length),
then the length is in characters, and you must specify max-length. max-length can be a maximum of
32767 characters.

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 79

Remarks
Multibyte characters can be stored as CHAR, but the declared length refers to bytes, not characters, unless
character-length semantics are used.

CHAR can also be specified as CHARACTER. Regardless of which syntax is used, the data type is
described as CHAR.

CHAR is semantically equivalent to VARCHAR, although they are different types. In SQL Anywhere,
CHAR is a variable-length type. In other relational database management systems, CHAR is a fixed-
length type, and data is padded with blanks to max-length bytes of storage. SQL Anywhere does not blank-
pad stored character data.

How CHAR columns are described depends on the client interface, the character sets used, and if character-
length semantics are used. For example, in embedded SQL the described length is the maximum number
of bytes in the client character set. If the described length would be more than 32767 bytes, the column is
described as type DT_LONGVARCHAR. The following table shows some embedded SQL examples and
the results returned when a DESCRIBE is performed:

Type being described Database character set Client character set Result of DESCRIBE

CHAR(10) Windows-1252 Windows-1252 DT_FIXCHAR length 10

CHAR(10) UTF-8 UTF-8 DT_FIXCHAR length 10

CHAR(10) Windows-1252 UTF-8 DT_FIXCHAR length 30

CHAR(20000) Windows-31J UTF-8 DT_LONGVARCHAR

CHAR(10 CHAR) Windows-1252 Windows-1252 DT_FIXCHAR length 10

CHAR(10 CHAR) UTF-8 UTF-8 DT_FIXCHAR length 40

For ODBC, CHAR is described as either SQL_CHAR or SQL_VARCHAR depending on the
odbc_distinguish_char_and_varchar option. See “odbc_distinguish_char_and_varchar option” [SQL
Anywhere Server - Database Administration].

See also
● “VARCHAR data type” on page 85
● “LONG VARCHAR data type” on page 81
● “NCHAR data type” on page 82

Standards and compatibility
● SQL/2008 Compatible with SQL/2008. In the standard, character-length semantics are the default,

whereas in SQL Anywhere byte-length semantics are the default. There are minor inconsistencies with
the SQL standard due to case-insensitive collation support and SQL Anywhere's support of blank-
padding.

SQL data types

80 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The SQL/2008 standard supports explicit character- or byte-length semantics as SQL language feature
T061.

LONG NVARCHAR data type

The LONG NVARCHAR data type stores Unicode character data of arbitrary length.

Syntax
LONG NVARCHAR

Remarks
The maximum size is 2 GB.

Characters are stored in UTF-8. Each character requires from one to four bytes. The maximum number of
characters that can be stored in a LONG NVARCHAR is over 500 million and possibly over 2 billion,
depending on the lengths of the characters stored.

When an embedded SQL client performs a DESCRIBE on a LONG NVARCHAR column, the data type
returned is either DT_LONGVARCHAR or DT_LONGNVARCHAR, depending on whether the
db_change_nchar_charset function has been called. See “db_change_nchar_charset function” [SQL
Anywhere Server - Programming].

For ODBC, a LONG NVARCHAR expression is described as SQL_WLONGVARCHAR.

See also
● “NCHAR data type” on page 82
● “NVARCHAR data type” on page 83
● “LONG VARCHAR data type” on page 81

Standards and compatibility
● SQL/2008 Vendor extension.

LONG VARCHAR data type

The LONG VARCHAR data type stores character data of arbitrary length.

Syntax
LONG VARCHAR

Remarks
The maximum size is 2 GB.

Multibyte characters can be stored as LONG VARCHAR, but the length is in bytes, not characters.

Character data types

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 81

See also
● “CHAR data type” on page 79
● “VARCHAR data type” on page 85
● “LONG NVARCHAR data type” on page 81

Standards and compatibility
● SQL/2008 Large object support is SQL language feature T041 of the SQL/2008 standard. The use

of LONG NVARCHAR to declare a national character string of up to 2GB in SQL Anywhere is a
vendor extension.

NCHAR data type
The NCHAR data type stores Unicode character data, up to 32767 characters.

Syntax
NCHAR [(max-length)]

Parameters
● max-length The maximum length of the string, in characters. The length must be in the range 1 to

32767. If the length is not specified, then it is 1.

Remarks
Characters are stored using UTF-8 encoding. The maximum number of bytes of storage required is four
multiplied by max-length. However, the actual number of bytes of storage required is usually much less.

NCHAR can also be specified as NATIONAL CHAR or NATIONAL CHARACTER. Regardless of
which syntax is used, the data type is described as NCHAR.

When an embedded SQL client performs a DESCRIBE on an NCHAR column, the data type returned is
either DT_FIXCHAR or DT_NFIXCHAR, depending on whether the db_change_nchar_charset function
has been called. See “db_change_nchar_charset function” [SQL Anywhere Server - Programming].

Also, when an embedded SQL client performs a DESCRIBE on an NCHAR column, the length returned
is the maximum byte length in the client's NCHAR character set. For example, for an embedded SQL
client using the Western European character set cp1252 as the NCHAR character set, an NCHAR(10)
column is described as type DT_NFIXCHAR of length 10 (10 characters multiplied by a maximum one
byte per character). For an embedded SQL client using the Japanese character set cp932, the same column
is described as type DT_NFIXCHAR of length 20 (10 characters multiplied by a maximum two bytes per
character). If the described length would return more then 32767 bytes, the column is described as type
DT_LONGNVARCHAR.

NCHAR is semantically equivalent to NVARCHAR, although they are different types. In SQL
Anywhere, NCHAR is a variable-length type. In other relational database management systems, NCHAR
is a fixed-length type, and data is padded with blanks to max-length characters of storage. SQL Anywhere
does not blank-pad stored character data.

For ODBC, NCHAR is described as SQL_WCHAR.

SQL data types

82 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “CHAR data type” on page 79
● “NVARCHAR data type” on page 83
● “LONG NVARCHAR data type” on page 81

Standards and compatibility
● SQL/2008 National character support is feature F421 of the SQL/2008 standard.

NTEXT data type
The NTEXT data type stores Unicode character data of arbitrary length.

Syntax
NTEXT

Remarks
NTEXT is a domain, implemented as a LONG NVARCHAR.

See also
● “LONG NVARCHAR data type” on page 81
● “TEXT data type” on page 84

Standards and compatibility
● SQL/2008 Vendor extension.

NVARCHAR data type
The NVARCHAR data type stores Unicode character data, up to 32767 characters.

Syntax
NVARCHAR [(max-length)]

Parameters
● max-length The maximum length of the string, in characters. The length must be in the range 1 to

32767. If the length is not specified, then it is 1.

Remarks
Characters are stored in UTF-8 encoding. The maximum storage number of bytes required is four
multiplied by max-length, although the actual storage required is usually much less.

NVARCHAR can also be specified as NCHAR VARYING, NATIONAL CHAR VARYING, or
NATIONAL CHARACTER VARYING. Regardless of which syntax is used, the data type is described as
NVARCHAR.

Character data types

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 83

When an embedded SQL client performs a DESCRIBE on a NVARCHAR column, the data type returned
is either DT_VARCHAR or DT_NVARCHAR, depending on whether the db_change_nchar_charset
function has been called. See “db_change_nchar_charset function” [SQL Anywhere Server -
Programming].

Also, when an embedded SQL client performs a DESCRIBE on an NVARCHAR column, the length
returned is the maximum byte length in the client's NCHAR character set. For example, for an embedded
SQL client using the Western European character set cp1252 as the NCHAR character set, an
NVARCHAR(10) column is described as type DT_NVARCHAR of length 10 (10 characters multiplied
by a maximum of one byte per character). For an embedded SQL client using the Japanese character set
cp932, the same column is described as type DT_NVARCHAR of length 20 (10 characters multiplied by
a maximum two bytes per character). If the describe length would return more than 32767 bytes, the
column is described as type DT_LONGNVARCHAR.

For ODBC, NVARCHAR is described as SQL_WVARCHAR.

See also
● “NCHAR data type” on page 82
● “LONG NVARCHAR data type” on page 81
● “VARCHAR data type” on page 85

Standards and compatibility
● SQL/2008 National character support is SQL language feature F421 in the SQL/2008 standard.

TEXT data type
The TEXT data type stores character data of arbitrary length.

Syntax
TEXT

Remarks
TEXT is a domain, implemented as a LONG VARCHAR.

See also
● “LONG VARCHAR data type” on page 81
● “NTEXT data type” on page 83

Standards and compatibility
● SQL/2008 Vendor extension.

UNIQUEIDENTIFIERSTR data type
UNIQUEIDENTIFIERSTR is a domain, implemented as CHAR(36).

SQL data types

84 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
UNIQUEIDENTIFIERSTR

Remarks
Used for remote data access, when mapping Microsoft SQL Server uniqueidentifier columns.

See also
● “Data type conversions: Microsoft SQL Server” [SQL Anywhere Server - SQL Usage]
● “STRTOUUID function [String]” on page 338

Standards and compatibility
● SQL/2008 Vendor extension.

VARCHAR data type
The VARCHAR data type stores character data, up to 32767 bytes.

Syntax
VARCHAR [(max-length [CHAR | CHARACTER])]

Parameters
● max-length The maximum length of the string. If byte-length semantics are used (CHAR or

CHARACTER is not specified as part of the length), then the length is in bytes, and the length must
be in the range of 1 to 32767. If the length is not specified, then it is 1.

If character-length semantics are used (CHAR or CHARACTER is specified as part of the length),
then the length is in characters, and you must specify max-length. max-length can be a maximum of
32767 characters.

Remarks
Multibyte characters can be stored as VARCHAR, but the declared length refers to bytes, not characters.

VARCHAR can also be specified as CHAR VARYING or CHARACTER VARYING. Regardless of
which syntax is used, the data type is described as VARCHAR.

How VARCHAR columns are described depends on the client interface, the character sets used, and if
character-length semantics are used. For example, in embedded SQL the described length is the maximum
number of bytes in the client character set. If the described length would be more than 32767 bytes, the
column is described as type DT_LONGVARCHAR. The following table shows some embedded SQL
examples and the results returned when a DESCRIBE is performed:

Type being described Database character set Client character set Result of DESCRIBE

VARCHAR(10) Windows-1252 Windows-1252 DT_VARCHAR length
10

Character data types

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 85

Type being described Database character set Client character set Result of DESCRIBE

VARCHAR(10) UTF-8 UTF-8 DT_VARCHAR length
10

VARCHAR(10) Windows-1252 UTF-8 DT_VARCHAR length
30

VARCHAR(20000) Windows-31J UTF-8 DT_LONGVARCHAR

VARCHAR(10 CHAR) Windows-1252 Windows-1252 DT_VARCHAR length
10

VARCHAR(10 CHAR) UTF-8 UTF-8 DT_VARCHAR length
40

For ODBC, VARCHAR is described as SQL_VARCHAR.

See also
● “CHAR data type” on page 79
● “LONG VARCHAR data type” on page 81
● “NVARCHAR data type” on page 83

Standards and compatibility
● SQL/2008 Compatible with SQL/2008. In the standard, character-length semantics are the default,

whereas in SQL Anywhere byte-length semantics are the default. There are minor inconsistencies with
the SQL standard due to case-insensitive collation support and SQL Anywhere's support of blank-
padding.

The SQL/2008 standard supports explicit character- or byte-length semantics as SQL language feature
T061.

XML data type
The XML data type stores character data of arbitrary length, and is used to store XML documents.

Syntax
XML

Remarks
The maximum size is 2 GB.

Data of type XML is not quoted when generating element content from relational data.

You can cast between the XML data type and any other data type that can be cast to or from a string. Note
that there is no checking that the string is well-formed when it is cast to XML.

SQL data types

86 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

For information about using the XML data type when generating XML elements, see “Storing XML
documents in relational databases” [SQL Anywhere Server - SQL Usage].

When an embedded SQL client application performs a DESCRIBE on an XML column, it is described as
LONG VARCHAR.

See also
● “Using XML in the database” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 The XML data type is SQL language feature X010 in the SQL/2008 standard.

Numeric data types
The numeric data types are used for storing numerical data.

The NUMERIC and DECIMAL data types, and the various kinds of INTEGER data types, are sometimes
called exact numeric data types, in contrast to the approximate numeric data types FLOAT, DOUBLE,
and REAL.

The exact numeric data types are those for which precision and scale values can be specified, while
approximate numeric data types are stored in a predefined manner. Only exact numeric data is guaranteed
accurate to the least significant digit specified after an arithmetic operation.

Data type lengths and precision of less than one are not allowed.

Compatibility
Only the NUMERIC data type with scale = 0 can be used for the Transact-SQL identity column.

Be careful using default precision and scale settings for NUMERIC and DECIMAL data types, because
these settings could be different in other database solutions. In SQL Anywhere, the default precision is 30
and the default scale is 6.

You should avoid default precision and scale settings for NUMERIC and DECIMAL data types, because
these are different between SQL Anywhere and Adaptive Server Enterprise. In SQL Anywhere, the
default precision is 30 and the default scale is 6. In Adaptive Server Enterprise, the default precision is 18
and the default scale is 0.

The FLOAT (p) data type is a synonym for REAL or DOUBLE, depending on the value of p. For SQL
Anywhere, the cutoff is platform-dependent, but on all platforms the cutoff value is greater than 15.

For information about changing the defaults by setting database options, see “precision option” [SQL
Anywhere Server - Database Administration] and “scale option” [SQL Anywhere Server - Database
Administration].

Numeric data types

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 87

BIGINT data type
The BIGINT data type is used to store BIGINTs, which are integers requiring 8 bytes of storage.

Syntax
[UNSIGNED] BIGINT

Remarks
The BIGINT data type is an exact numeric data type: its accuracy is preserved after arithmetic operations.

A BIGINT value requires 8 bytes of storage.

The range for signed BIGINT values is -263 to 263 - 1, or -9223372036854775808 to 9223372036854775807.

The range for unsigned BIGINT values is 0 to 264 - 1, or 0 to 18446744073709551615.

By default, the data type is signed.

When converting a string to a BIGINT, leading and trailing spaces are removed. If the leading character is
'+' it is ignored. If the leading character is '-' the remaining digits are interpreted as a negative number.
Leading '0' characters are skipped, and the remaining characters are converted to an integer value. An
error is returned if the value is out of the valid range for the destination data type, if the string contains
illegal characters, or if the string cannot be decoded as an integer value.

See also
● “BIT data type” on page 88
● “INTEGER data type” on page 92
● “SMALLINT data type” on page 95
● “TINYINT data type” on page 96
● “Numeric functions” on page 134
● “Aggregate functions” on page 127

Standards and compatibility
● SQL/2008 The BIGINT data type is SQL language feature T071 of the SQL/2008 standard.

BIT data type
The BIT data type is used to store a bit (0 or 1).

Syntax
BIT

Remarks
BIT is an integer type that can store the values 0 or 1.

By default, the BIT data type does not allow NULL.

SQL data types

88 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

When converting a string to a BIT, leading and trailing spaces are removed. If the leading character is '+'
it is ignored. If the leading character is '-' the remaining digits are interpreted as a negative number.
Leading '0' characters are skipped, and the remaining characters are converted to an integer value. An
error is returned if the value is out of the valid range for the destination data type, if the string contains
illegal characters, or if the string cannot be decoded as an integer value.

See also
● “BIGINT data type” on page 88
● “INTEGER data type” on page 92
● “SMALLINT data type” on page 95
● “TINYINT data type” on page 96
● “Numeric functions” on page 134
● “Aggregate functions” on page 127

Standards and compatibility
● SQL/1999 The BIT data type is SQL language feature F511 of the SQL/1999 standard.

● SQL/2008 The BIT and BIT VARYING data types were dropped from the SQL/2003 standard.
Hence with respect to the SQL/2008 standard, the BIT data type is a vendor extension.

DECIMAL data type
The DECIMAL data type is a decimal number with precision total digits and with scale digits after the
decimal point.

Syntax
DECIMAL [(precision [, scale])]

Parameters
● precision An integer expression between 1 and 127, inclusive, that specifies the number of digits

in the expression. The default setting is 30.

● scale An integer expression between 0 and 127, inclusive, that specifies the number of digits after
the decimal point. The scale value should always be less than, or equal to, the precision value. The
default setting is 6.

The defaults can be changed by setting database options. For information, see “precision option” [SQL
Anywhere Server - Database Administration] and “scale option” [SQL Anywhere Server - Database
Administration].

Remarks
The DECIMAL data type is an exact numeric data type; its accuracy is preserved to the least significant
digit after arithmetic operations.

The storage required for a decimal number can be estimated as

2 + int((before + 1)/2) + int((after + 1)/2)

Numeric data types

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 89

The function int takes the integer portion of its argument, and before and after are the number of
significant digits before and after the decimal point. The storage is based on the value being stored, not on
the maximum precision and scale allowed in the column.

DECIMAL can also be specified as DEC. Regardless of which syntax is used, the data type is described
as DECIMAL.

If you are using a precision of 20 or less and a scale of 0, it may be possible to use one of the integer data
types (BIGINT, INTEGER, SMALLINT, or TINYINT) instead. Integer values require less storage space
than NUMERIC and DECIMAL values with a similar number of significant digits. Operations on integer
values, such as fetching or inserting, and arithmetic operators, typically perform better than operations on
NUMERIC and DECIMAL values.

DECIMAL is semantically equivalent to NUMERIC.

Note
If you create a column or variable of a DECIMAL data type with a precision or scale that exceeds the
precision and scale settings for the database, values are truncated to the database settings. So, if you notice
truncated values in a column or variable defined as DECIMAL, check that precision and scale do not
exceed the database option settings. See “precision option” [SQL Anywhere Server - Database
Administration] and “scale option” [SQL Anywhere Server - Database Administration].

See also
● “FLOAT data type” on page 91
● “REAL data type” on page 94
● “DOUBLE data type” on page 90
● “NUMERIC data type” on page 93
● “Numeric functions” on page 134
● “Aggregate functions” on page 127

Standards and compatibility
● SQL/2008 DECIMAL and NUMERIC data types are core features of the SQL/2008 standard.

DOUBLE data type
The DOUBLE data type is used to store double-precision floating-point numbers.

Syntax
DOUBLE [PRECISION]

Remarks
The DOUBLE data type holds a double-precision floating-point number. An approximate numeric data
type, it is subject to rounding errors after arithmetic operations. The approximate nature of DOUBLE
values means that queries using equalities should generally be avoided when comparing DOUBLE values.

DOUBLE values require 8 bytes of storage.

SQL data types

90 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The range of values is -1.79769313486231e+308 to 1.79769313486231e+308, with numbers close to zero
as small as 2.22507385850721e-308. Values held as DOUBLE are accurate to 15 significant digits, but
may be subject to rounding error beyond the fifteenth digit.

See also
● “FLOAT data type” on page 91
● “REAL data type” on page 94
● “DECIMAL data type” on page 89
● “NUMERIC data type” on page 93
● “Numeric functions” on page 134
● “Aggregate functions” on page 127
● “Converting between numeric sets” on page 120

Standards and compatibility
● SQL/2008 The DOUBLE PRECISION type is a core feature of the SQL/2008 standard.

FLOAT data type

The FLOAT data type is used to store a floating-point number, which can be single or double precision.

Syntax
FLOAT [(precision)]

Parameters
● precision An integer expression that specifies the number of bits in the mantissa. A mantissa is the

decimal part of a logarithm. For example, in the logarithm 5.63428, the mantissa is 0.63428. The
IEEE standard 754 floating-point precision is as follows:

Supplied precision value Decimal precision Equivalent SQL data type Storage size

1-24 7 decimal digits REAL 4 bytes

25-53 15 decimal digits DOUBLE 8 bytes

Remarks
When a column is created using the FLOAT (precision) data type, columns on all platforms are
guaranteed to hold the values to at least the specified minimum precision. In contrast, REAL and
DOUBLE do not guarantee a platform-independent minimum precision.

If precision is not supplied, the FLOAT data type is a single-precision floating-point number, equivalent
to the REAL data type, and requires 4 bytes of storage.

If precision is supplied, the FLOAT data type is either single or double precision, depending on the value
of precision specified. The cutoff between REAL and DOUBLE is platform-dependent. Single-precision
FLOAT values require 4 bytes of storage, and double-precision FLOAT values require 8 bytes.

Numeric data types

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 91

The FLOAT data type is an approximate numeric data type. It is subject to rounding errors after
arithmetic operations. The approximate nature of FLOAT values means that queries using equalities
should generally be avoided when comparing FLOAT values.

See also
● “DOUBLE data type” on page 90
● “REAL data type” on page 94
● “DECIMAL data type” on page 89
● “NUMERIC data type” on page 93
● “Numeric functions” on page 134
● “Aggregate functions” on page 127

Standards and compatibility
● SQL/2008 The FLOAT type is a core feature of the SQL/2008 standard.

INTEGER data type
The INTEGER data type is used to store integers that require 4 bytes of storage.

Syntax
[UNSIGNED] INTEGER

Remarks
The INTEGER data type is an exact numeric data type; its accuracy is preserved after arithmetic operations.

If you specify UNSIGNED, the integer can never be assigned a negative number. By default, the data type
is signed.

The range for signed integers is -231 to 231 - 1, or -2147483648 to 2147483647.

The range for unsigned integers is 0 to 232 - 1, or 0 to 4294967295.

INTEGER can also be specified as INT. Regardless of which syntax is used, the data type is described as
INTEGER.

When converting a string to a INTEGER, leading and trailing spaces are removed. If the leading character
is '+' it is ignored. If the leading character is '-' the remaining digits are interpreted as a negative number.
Leading '0' characters are skipped, and the remaining characters are converted to an integer value. An
error is returned if the value is out of the valid range for the destination data type, if the string contains
illegal characters, or if the string cannot be decoded as an integer value.

SQL data types

92 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “BIGINT data type” on page 88
● “BIT data type” on page 88
● “SMALLINT data type” on page 95
● “TINYINT data type” on page 96
● “Numeric functions” on page 134
● “Aggregate functions” on page 127

Standards and compatibility
● SQL/2008 The INTEGER type is a core feature of the SQL/2008 standard. The UNSIGNED

keyword is a vendor extension.

NUMERIC data type
The NUMERIC data type is used to store decimal numbers with precision total digits and with scale
digits after the decimal point.

Syntax
NUMERIC [(precision [, scale])]

Parameters
● precision An integer expression between 1 and 127, inclusive, that specifies the number of digits

in the expression. The default setting is 30.

● scale An integer expression between 0 and 127, inclusive, that specifies the number of digits after
the decimal point. The scale value should always be less than or equal to the precision value. The
default setting is 6.

The defaults can be changed by setting database options. For information, see “precision option” [SQL
Anywhere Server - Database Administration] and “scale option” [SQL Anywhere Server - Database
Administration].

Remarks
The NUMERIC data type is an exact numeric data type; its accuracy is preserved to the least significant
digit after arithmetic operations.

The number of bytes required to store a decimal number can be estimated as

2 + INT((BEFORE+1)/2) + INT((AFTER+1)/2)

The INT function takes the integer portion of its argument, and BEFORE and AFTER are the number of
significant digits before and after the decimal point. The storage is based on the value being stored, not on
the maximum precision and scale allowed in the column.

If you are using a precision of 20 or less and a scale of 0, it may be possible to use one of the integer data
types (BIGINT, INTEGER, SMALLINT, or TINYINT) instead. Integer values require less storage space
than NUMERIC and DECIMAL values with a similar number of significant digits. Operations on integer

Numeric data types

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 93

values, such as fetching or inserting, and arithmetic operators, typically perform better than operations on
NUMERIC and DECIMAL values.

NUMERIC is semantically equivalent to DECIMAL.

Note
If you create a column or variable of a NUMERIC data type with a precision or scale that exceeds the
precision and scale settings for the database, values are truncated to the database settings. So, if you notice
truncated values in a column or variable defined as NUMERIC, check that precision and scale do not
exceed the database option settings. See “precision option” [SQL Anywhere Server - Database
Administration] and “scale option” [SQL Anywhere Server - Database Administration].

See also
● “FLOAT data type” on page 91
● “REAL data type” on page 94
● “DOUBLE data type” on page 90
● “DECIMAL data type” on page 89
● “Numeric functions” on page 134
● “Aggregate functions” on page 127
● “Converting between numeric sets” on page 120

Standards and compatibility
● SQL/2008 Compatible with SQL/2008 if the scale option is set to zero.

REAL data type
The REAL data type is used to store single-precision floating-point numbers stored in 4 bytes.

Syntax
REAL

Remarks
The REAL data type holds a single-precision floating-point number. An approximate numeric data type, it
is subject to rounding errors after arithmetic operations. The approximate nature of REAL values means
that queries using equalities should generally be avoided when comparing REAL values.

REAL values require 4 bytes of storage.

The range of values is -3.402823e+38 to 3.402823e+38, with numbers close to zero as small as
1.175494351e-38. Values held as REAL are accurate to 7 significant digits, but may be subject to
rounding error beyond the sixth digit.

SQL data types

94 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “DOUBLE data type” on page 90
● “FLOAT data type” on page 91
● “DECIMAL data type” on page 89
● “NUMERIC data type” on page 93
● “Numeric functions” on page 134
● “Aggregate functions” on page 127

Standards and compatibility
● SQL/2008 The REAL data type is a core feature of the SQL/2008 standard.

SMALLINT data type
The SMALLINT data type is used to store integers that require 2 bytes of storage.

Syntax
[UNSIGNED] SMALLINT

Remarks
The SMALLINT data type is an exact numeric data type; its accuracy is preserved after arithmetic
operations. It requires 2 bytes of storage.

The range for signed SMALLINT values is -215 to 215 - 1, or -32768 to 32767.

The range for unsigned SMALLINT values is 0 to 216 - 1, or 0 to 65535.

When converting a string to a SMALLINT, leading and trailing spaces are removed. If the leading
character is '+' it is ignored. If the leading character is '-' the remaining digits are interpreted as a negative
number. Leading '0' characters are skipped, and the remaining characters are converted to an integer
value. An error is returned if the value is out of the valid range for the destination data type, if the string
contains illegal characters, or if the string cannot be decoded as an integer value.

See also
● “BIGINT data type” on page 88
● “BIT data type” on page 88
● “INTEGER data type” on page 92
● “TINYINT data type” on page 96
● “Numeric functions” on page 134
● “Aggregate functions” on page 127

Standards and compatibility
● SQL/2008 Compatible with SQL/2008. The UNSIGNED keyword is a vendor extension.

Numeric data types

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 95

TINYINT data type
The TINYINT data type is used to store unsigned integers requiring 1 byte of storage.

Syntax
[UNSIGNED] TINYINT

Remarks
The TINYINT data type is an exact numeric data type; its accuracy is preserved after arithmetic operations.

You can explicitly specify TINYINT as UNSIGNED, but the UNSIGNED modifier has no effect as the
type is always unsigned.

The range for TINYINT values is 0 to 28 - 1, or 0 to 255.

In embedded SQL, TINYINT columns should not be fetched into variables defined as char or unsigned
char, since the result is an attempt to convert the value of the column to a string and then assign the first
byte to the variable in the program. Instead, TINYINT columns should be fetched into 2-byte or 4-byte
integer columns. Also, to send a TINYINT value to a database from an application written in C, the type
of the C variable should be integer.

When converting a string to a TINYINT, leading and trailing spaces are removed. If the leading character
is '+' it is ignored. If the leading character is '-' the remaining digits are interpreted as a negative number.
Leading '0' characters are skipped, and the remaining characters are converted to an integer value. An
error is returned if the value is out of the valid range for the destination data type, if the string contains
illegal characters, or if the string cannot be decoded as an integer value.

See also
● “BIGINT data type” on page 88
● “BIT data type” on page 88
● “INTEGER data type” on page 92
● “SMALLINT data type” on page 95
● “Numeric functions” on page 134
● “Aggregate functions” on page 127

Standards and compatibility
● SQL/2008 Vendor extension.

Money data types
Money data types are used for storing monetary data.

MONEY data type

SQL data types

96 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The MONEY data type stores monetary data.

Syntax
MONEY

Remarks
MONEY is a domain, implemented as NUMERIC(19,4).

See also
● “SMALLMONEY data type” on page 97
● “Numeric functions” on page 134
● “Aggregate functions” on page 127

Standards and compatibility
● SQL/2008 Vendor extension.

SMALLMONEY data type

The SMALLMONEY data type is used to store monetary data that is less than one million currency units.

Syntax
SMALLMONEY

Remarks
SMALLMONEY is a domain, implemented as NUMERIC(10,4).

See also
● “MONEY data type” on page 96
● “Numeric functions” on page 134
● “Aggregate functions” on page 127

Standards and compatibility
● SQL/2008 Vendor extension.

Bit array data types
Bit arrays are used for storing bit data (0s and 1s). A bit array is a type of array data structure that is used
for efficient storage of an array of bits. A bit array is similar to a character string, except that the
individual pieces are 0s (zeros) and 1s (ones) instead of characters. Typically, bit arrays are used to hold a
string of Boolean values.

The bit array data types supported by SQL Anywhere include VARBIT and LONG VARBIT.

Bit array data types

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 97

LONG VARBIT data type
The LONG VARBIT data type is used to store arbitrary length bit arrays.

Syntax
LONG VARBIT

Remarks
Used to store arbitrary length array of bits (1s and 0s), or bit arrays longer than 32767 bits.

LONG VARBIT can also be specified as LONG BIT VARYING. Regardless of which syntax is used, the
data type is described as LONG VARBIT.

See also
● “BIT data type” on page 88
● “VARBIT data type” on page 98
● “Converting bit arrays” on page 119
● “Bit array functions” on page 128
● “Aggregate functions” on page 127

Standards and compatibility
● SQL/2008 Vendor extension.

VARBIT data type
The VARBIT data type is used for storing bit arrays that are under 32767 bits in length.

Syntax
VARBIT [(max-length)]

Parameters
● max-length The maximum length of the bit array, in bits. The length must be in the range 1 to

32767. If the length is not specified, then it is 1.

Remarks
VARBIT can also be specified as BIT VARYING. Regardless of which syntax is used, the data type is
described as VARBIT.

SQL data types

98 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “BIT data type” on page 88
● “LONG VARBIT data type” on page 98
● “Converting bit arrays” on page 119
● “Bit array functions” on page 128
● “Aggregate functions” on page 127
● “Bitwise operators” on page 11

Standards and compatibility
● SQL/1999 The BIT VARYING data type is SQL language feature F511 of the SQL/1999 standard.

● SQL/2008 Both the BIT and BIT VARYING data types were dropped from the SQL/2003
standard. Hence with respect to the SQL/2008 standard, the BIT VARYING data type is a vendor
extension.

Date and time data types
The following list provides a quick overview of how dates are handled:

● SQL Anywhere always returns correct values for any legal arithmetic and logical operations on dates,
regardless of whether the calculated values span different centuries.

● The internal storage of dates by SQL Anywhere always explicitly includes the century portion of a
year value.

● The operation of SQL Anywhere is unaffected by any return value, including the current date.

● Date values can always be output in full century format.

How dates are stored

Dates containing year values are used internally and stored in SQL Anywhere databases using either of
the following data types:

Data type Contains Stored in Range of possible values

DATE Calendar date (year, month, day) 4-bytes 0001-01-01 to 9999-12-31

TIMESTAMP Time stamp (year, month, day,
hour minute, second, and frac-
tion of second accurate to 6 deci-
mal places)

8-bytes 0001-01-01 to 9999-12-31 (precision
of the time portion of TIMESTAMP
is dropped before 1600-02-28
23:59:59 and after 7911-01-01
00:00:00)

Date and time data types

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 99

Note
When the precision of the TIMESTAMP is dropped, builtin functions that pertain to minutes or seconds
will produce meaningless results.

For more information about SQL Anywhere date and time data types see “Date and time data
types” on page 99.

Sending dates and times to the database
Date and times may be sent to the database in one of the following ways:

● Using any interface, as a string

● Using ODBC, as a TIMESTAMP structure

● Using embedded SQL, as a SQLDATETIME structure

Date and times with time zone offsets may be sent to the database as a string only.

When a time is sent to the database as a string (for the TIME data type) or as part of a string (for DATE,
TIMESTAMP or TIMESTAMP WITH TIME ZONE data types), the hours, minutes, and seconds must be
separated by colons in the format hh:mm:ss.ssssss, but can appear anywhere in the string. The following
are valid and unambiguous strings for specifying times:

21:35 -- 24 hour clock if no am or pm specified
10:00pm -- pm specified, so interpreted as 12 hour clock
10:00 -- 10:00am in the absence of pm
10:23:32.234 -- seconds and fractions of a second included

When a date is sent to the database as a string (for the DATE data type) or as part of a string (for
TIMESTAMP or TIMESTAMP WITH TIME ZONE data types), the string can be supplied in one of two
ways:

● As a string of format yyyy/mm/dd or yyyy-mm-dd, which is interpreted unambiguously by the database.

● As a string interpreted according to the date_order database option. See “date_order option” [SQL
Anywhere Server - Database Administration].

Retrieving dates and times from the database
Dates and times may be retrieved from the database in one of the following ways:

● Using any interface, as a string

● Using ODBC, as a TIMESTAMP structure

● Using embedded SQL, as a SQLDATETIME structure

SQL data types

100 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Date and times with time zone offsets may be retrieved from the database as a string only.

When a date or time, with or without a time zone offset, is retrieved as a string, it is retrieved in the
format specified by the database options date_format, time_format, timestamp_format, and
timestamp_with_time_zone_format. For descriptions of these options, see “SET OPTION
statement” on page 840.

For information about functions that deal with dates and times, see “Date and time
functions” on page 129. The following arithmetic operators are allowed on dates:

● timestamp + integer Add the specified number of days to a date or timestamp.

● timestamp - integer Subtract the specified number of days from a date or timestamp.

● date - date Compute the number of days between two dates or timestamps.

● date + time Create a timestamp combining the given date and time.

Leap Years
SQL Anywhere uses a globally accepted algorithm for determining which years are leap years. Using this
algorithm, a year is considered a leap year if it is divisible by four, unless the year is a century date (such
as the year 1900), in which case it is a leap year only if it is divisible by 400.

SQL Anywhere handles all leap years correctly. For example, the following SQL statement results in a
return value of "Tuesday":

SELECT DAYNAME('2000-02-29');

SQL Anywhere accepts February 29, 2000—a leap year—as a date, and using this date determines the
day of the week.

However, the following statement is rejected by SQL Anywhere:

SELECT DAYNAME('2001-02-29');

This statement results in an error (cannot convert '2001-02-29' to a date) because February 29th does not
exist in the year 2001.

DATE data type

The DATE data type is used to store calendar dates, such as a year, month and day.

Syntax
DATE

Remarks
The year can be from the year 0001 to 9999. The minimum date in SQL Anywhere is 0001-01-01 00:00:00.

Date and time data types

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 101

For historical reasons, a DATE column can also contain an hour and minute. The TIMESTAMP data type
is recommended for anything with hours and minutes.

The format in which DATE values are retrieved by applications is controlled by the date_format setting.
For example, a date value representing the 19th of July, 2010 may be returned to an application as
2010/07/19, or as Jul 19, 2010.

The way in which a string is interpreted by the database server as a date is controlled by the date_order
option. For example, depending on the date_order setting, a value of 02/05/2002 supplied by an
application for a DATE value may be interpreted in the database as the 2nd of May or the 5th of February.

A DATE value requires 4 bytes of storage.

See also
● “date_format option” [SQL Anywhere Server - Database Administration]
● “date_order option” [SQL Anywhere Server - Database Administration]
● “DATETIME data type” on page 102
● “SMALLDATETIME data type” on page 104
● “TIME data type” on page 105
● “TIMESTAMP data type” on page 105
● “TIMESTAMP WITH TIME ZONE data type” on page 106
● “Date and time functions” on page 129

Standards and compatibility
● SQL/2008 Compatible with SQL/2008.

● Transact-SQL Supported by Adaptive Server Enterprise.

DATETIME data type
DATETIME is a domain, implemented as TIMESTAMP, used to store date and time information.
DATETIME is a Transact-SQL type.

Syntax
DATETIME

See also
● “timestamp_format option” [SQL Anywhere Server - Database Administration]
● “DATE data type” on page 101
● “SMALLDATETIME data type” on page 104
● “TIMESTAMP data type” on page 105
● “TIMESTAMP WITH TIME ZONE data type” on page 106
● “Date and time functions” on page 129

SQL data types

102 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Standards and compatibility
● SQL/2008 Vendor extension.

● Transact-SQL DATETIME, rather than TIMESTAMP, is used by Adaptive Server Enterprise. The
DATETIME type in Adaptive Server Enterprise supports dates between January 1, 1753 and
December 31, 9999 and supports less precision with the time portion of the value. In SQL Anywhere,
DATETIME is implemented as a TIMESTAMP without these restrictions. You should be aware of
these differences when migrating data between SQL Anywhere and Adaptive Server Enterprise.

DATETIMEOFFSET data type

The DATETIMEOFFSET data type is an alias for TIMESTAMP WITH TIME ZONE, used to store date,
time, and time zone information.

Syntax
DATETIMEOFFSET

Remarks
The DATETIMEOFFSET value contains the year, month, day, hour, minute, second, fraction of a second,
and number of minutes before or after Coordinated Universal (UTC) time.

The fraction is stored to 6 decimal places. A DATETIMEOFFSET value requires 10 bytes of storage.

You can use a T between the date and time. You can use a Z to indicate a time zone offset of +00:00 (UTC).

Although the range of possible dates for the DATETIMEOFFSET data type is the same as the DATE type
(covering years 0001 to 9999), the useful range of DATETIMEOFFSET date types is from 1600-02-28
23:59:59 to 7911-01-01 00:00:00. Before and after this range the time portion of the
DATETIMEOFFSET may be incomplete.

Two DATETIMEOFFSET values are considered identical when they represent the same instant in UTC,
regardless of the TIME ZONE offset applied. For example, the following statement returns Yes because
the results are considered identical:

IF CAST('2009-07-15 08:00:00 -08:00' AS DATETIMEOFFSET) =
CAST('2009-07-15 11:00:00 -05:00' AS DATETIMEOFFSET) THEN
SELECT 'Yes'
ELSE
SELECT 'No'
END IF;

If you omit the time zone offset from a DATETIMEOFFSET value, it defaults to the current UTC offset
of the client regardless of whether the timestamp represents a date and time in standard time or daylight
time. For example, if the client is located in the Eastern Standard time zone and executes the following
statement while daylight time is in effect, then a timestamp with a time zone appropriate for the Atlantic
Standard time zone (-4 hours from UTC) will be returned.

SELECT CAST('2009/01/30 12:34:55' AS DATETIMEOFFSET);

Date and time data types

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 103

The comparison of DATETIMEOFFSET values with timestamps without time zones is not recommended
because the default time zone offset of the client varies with the geographic location of the client and with
the time of the year.

Execute the following statement to determine the current time zone offset in minutes for a client:

SELECT CONNECTION_PROPERTY('TimeZoneAdjustment');

Note
The TimeZoneAdjustment connection property is not supported in UltraLite databases.

See also
● “timestamp_with_time_zone_format option” [SQL Anywhere Server - Database Administration]
● “DATE data type” on page 101
● “TIME data type” on page 105
● “TIMESTAMP data type” on page 105
● “TIMESTAMP WITH TIME ZONE data type” on page 106
● “Date and time functions” on page 129

Standards and compatibility
● SQL/2008 The specific use of DATETIMEOFFSET is a vendor extension. To be compatible with

SQL/2008, use TIMESTAMP WITH TIME ZONE. The TIMESTAMP WITH TIME ZONE type is
optional SQL language feature F411 of the SQL/2008 standard.

SMALLDATETIME data type

SMALLDATETIME is a domain, implemented as TIMESTAMP, used to store date and time
information. SMALLDATETIME is a Transact-SQL type.

Syntax
SMALLDATETIME

See also
● “timestamp_format option” [SQL Anywhere Server - Database Administration]
● “DATE data type” on page 101
● “DATETIME data type” on page 102
● “TIMESTAMP data type” on page 105
● “Date and time functions” on page 129

Standards and compatibility
● SQL/2008 Vendor extension.

● Transact-SQL SMALLDATETIME is supported by Adaptive Server Enterprise. In Adaptive
Server Enterprise, the SMALLDATETIME type supports dates between January 1, 1900 and June 6,
2079 and supports less precision with the time portion of the value. In SQL Anywhere,

SQL data types

104 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SMALLDATETIME is implemented as a TIMESTAMP without these restrictions. You should be
aware of these differences when migrating data between SQL Anywhere and Adaptive Server Enterprise.

TIME data type

The TIME data type is used to store the time of day, containing hour, minute, second and fraction of a second.

Syntax
TIME

Remarks
The fraction is stored to 6 decimal places. A TIME value requires 8 bytes of storage. (ODBC standards
restrict TIME data type to an accuracy of seconds. For this reason you should not use TIME data types in
WHERE clause comparisons that rely on a higher accuracy than seconds.)

See also
● “time_format option” [SQL Anywhere Server - Database Administration]
● “DATE data type” on page 101
● “TIMESTAMP data type” on page 105
● “TIMESTAMP WITH TIME ZONE data type” on page 106
● “Date and time functions” on page 129

Standards and compatibility
● SQL/2008 Compatible with SQL/2008.

● Transact-SQL The TIME data type is supported by Adaptive Server Enterprise. However,
Adaptive Server Enterprise supports millisecond resolution (three digits) rather than microsecond
resolution (six digits). You should be aware of these differences when migrating data between SQL
Anywhere and Adaptive Server Enterprise.

TIMESTAMP data type

Stores a point in time containing the year, month, day, hour, minute, second and fraction of a second.

Syntax
TIMESTAMP

Remarks
The fraction is stored to 6 decimal places. A TIMESTAMP value requires 8 bytes of storage.

Although the range of possible dates for the TIMESTAMP data type is the same as the DATE type
(covering years 0001 to 9999), the useful range of TIMESTAMP date types is from 1600-02-28 23:59:59
to 7911-01-01 00:00:00. Before and after this range the time portion of the TIMESTAMP may be incomplete.

Date and time data types

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 105

When a TIMESTAMP value is converted to TIMESTAMP WITH TIME ZONE, the connection's
time_zone_adjustment setting is used for the time zone offset in the result. In other words, the value is
considered to be "local" to the connection. When a TIMESTAMP WITH TIME ZONE value is converted
to TIMESTAMP, the offset is discarded.

Note
When the precision of the TIMESTAMP is dropped, built-in functions that pertain to minutes or seconds
will produce meaningless results.

See also
● “timestamp_format option” [SQL Anywhere Server - Database Administration]
● “DATE data type” on page 101
● “TIME data type” on page 105
● “TIMESTAMP WITH TIME ZONE data type” on page 106
● “Date and time functions” on page 129

Standards and compatibility
● SQL/2008 Compatible with SQL/2008.

● Transact-SQL Adaptive Server Enterprise uses the DATETIME type for timestamp values.

TIMESTAMP WITH TIME ZONE data type

Stores a point in time with a time zone offset.

Syntax
TIMESTAMP WITH TIME ZONE

Remarks
The TIMESTAMP WITH TIME ZONE value contains the year, month, day, hour, minute, second,
fraction of a second, and number of minutes before or after Coordinated Universal (UTC) time.

The fraction is stored to 6 decimal places. A TIMESTAMP WITH TIME ZONE value requires 10 bytes
of storage.

You can use a T between the date and time. You can use a Z to indicate a time zone offset of +00:00 (UTC).

Although the range of possible dates for the TIMESTAMP WITH TIME ZONE data type is the same as
the DATE type (covering years 0001 to 9999), the useful range of TIMESTAMP WITH TIME ZONE
date types is from 1600-02-28 23:59:59 to 7911-01-01 00:00:00. Before and after this range the time
portion of the TIMESTAMP WITH TIME ZONE may be incomplete.

Do not use TIMESTAMP WITH TIME ZONE for computed columns or in materialized views because
the value of the governing time_zone_adjustment option will vary between connections based on their
location and the time of year.

SQL data types

106 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Two TIMESTAMP WITH TIME ZONE values are considered identical when they represent the same
instant in UTC, regardless of the TIME ZONE offset applied. For example, the following statement
returns Yes because the results are considered identical:

IF CAST('2009-07-15 08:00:00 -08:00' AS TIMESTAMP WITH TIME ZONE) =
CAST('2009-07-15 11:00:00 -05:00' AS TIMESTAMP WITH TIME ZONE) THEN
SELECT 'Yes'
ELSE
SELECT 'No'
END IF;

If you omit the time zone offset from a TIMESTAMP WITH TIME ZONE value, it defaults to the current
UTC offset of the client regardless of whether the timestamp represents a date and time in standard time
or daylight time. For example, if the client is located in the Eastern Standard time zone and executes the
following statement while daylight time is in effect, then a timestamp with a time zone appropriate for the
Atlantic Standard time zone (-4 hours from UTC) will be returned.

SELECT CAST('2009/01/30 12:34:55' AS TIMESTAMP WITH TIME ZONE);

● Comparing TIMESTAMP WITH TIME ZONE with other data types The comparison of
TIMESTAMP WITH TIME ZONE values with timestamps without time zones is not recommended
because the default time zone offset of the client varies with the geographic location of the client and
with the time of the year.

Execute the following statement to determine the current time zone offset in minutes for a client:

SELECT CONNECTION_PROPERTY('TimeZoneAdjustment');

Note
The TimeZoneAdjustment connection property is not supported in UltraLite databases.

● Converting to or from TIMESTAMP WITH TIME ZONE When a TIMESTAMP value is
converted to TIMESTAMP WITH TIME ZONE, the connection's time_zone_adjustment setting is
used for the time zone offset in the result. In other words, the value is considered to be "local" to the
connection. When a TIMESTAMP WITH TIME ZONE value is converted to TIMESTAMP, the
offset is discarded. Conversions to or from types other than strings, date, or time types is not supported.

See also
● “timestamp_with_time_zone_format option” [SQL Anywhere Server - Database Administration]
● “DATE data type” on page 101
● “DATETIMEOFFSET data type” on page 103
● “TIME data type” on page 105
● “TIMESTAMP data type” on page 105
● “Date and time functions” on page 129
● “Comparing dates and times” on page 116

Standards and compatibility
● SQL/2008 Support for TIMESTAMP WITH TIME ZONE is optional SQL language feature F411

of the SQL/2008 standard.

Date and time data types

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 107

Binary data types
Binary data types are used for storing binary data, including images and other types of information that
are not interpreted by the database.

BINARY data type
The BINARY data type is used to store binary data of a specified maximum length (in bytes).

Syntax
BINARY [(max-length)]

Parameters
● max-length The maximum length of the value, in bytes. The length must be in the range 1 to

32767. If the length is not specified, then it is 1.

Remarks
During comparisons, BINARY values are compared exactly byte for byte. This differs from the CHAR
data type, where values are compared using the collation sequence of the database. If one binary string is
a prefix of the other, the shorter string is considered to be less than the longer string.

Unlike CHAR values, BINARY values are not transformed during character set conversion.

BINARY is semantically equivalent to VARBINARY. It is a variable-length type. In other database
management systems, BINARY is a fixed-length type.

See also
● “VARBINARY data type” on page 110
● “LONG BINARY data type” on page 109
● “String functions” on page 136
● “Bitwise operators” on page 11

Standards and compatibility
● SQL/2008 The BINARY data type is SQL language feature T021 of the SQL/2008 standard.

IMAGE data type
The IMAGE data type is used to store binary data of arbitrary length.

Syntax
IMAGE

SQL data types

108 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
IMAGE is a domain, implemented as LONG BINARY.

See also
● “LONG BINARY data type” on page 109
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension.

LONG BINARY data type
The LONG BINARY data type is used to store binary data of arbitrary length.

Syntax
LONG BINARY

Remarks
The maximum size is 2 GB.

See also
● “BINARY data type” on page 108
● “VARBINARY data type” on page 110
● “String functions” on page 136

Standards and compatibility
● SQL/2008 The LONG BINARY data type comprises SQL language features T021, "BINARY and

VARBINARY data types", and T041, "Basic LOB data type support" in the SQL/2008 standard.

UNIQUEIDENTIFIER data type
The UNIQUEIDENTIFIER data type is used to store UUID (also known as GUID) values.

Syntax
UNIQUEIDENTIFIER

Remarks
The UNIQUEIDENTIFIER data type is typically used for a primary key or other unique column to hold
UUID (Universally Unique Identifier) values that uniquely identify rows. The NEWID function generates
UUID values in such a way that a value produced on one computer will not match a UUID produced on
another computer. UNIQUEIDENTIFIER values generated using NEWID can therefore be used as keys
in a synchronization environment.

Binary data types

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 109

For example:

CREATE TABLE T1 (
 pk UNIQUEIDENTIFIER PRIMARY KEY DEFAULT NEWID(),
 c1 INT);

UUID values are also referred to as GUIDs (Globally Unique Identifier). UUID values contain hyphens so
they are compatible with other RDBMSs. You can change this by setting the uuid_has_hyphens option to
Off.

SQL Anywhere automatically converts UNIQUEIDENTIFIER values between string and binary values as
needed.

UNIQUEIDENTIFIER values are stored as BINARY(16), but are described to client applications as
BINARY(36). This description ensures that if the client fetches the value as a string, it has allocated
enough space for the result. For ODBC client applications, uniqueidentifier values appear as a
SQL_GUID type.

See also
● “The NEWID default” [SQL Anywhere Server - SQL Usage]
● “NEWID function [Miscellaneous]” on page 268
● “UUIDTOSTR function [String]” on page 361
● “STRTOUUID function [String]” on page 338
● “uuid_has_hyphens option” [SQL Anywhere Server - Database Administration]
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension.

VARBINARY data type

The VARBINARY data type is used to store binary data of a specified maximum length (in bytes).

Syntax
VARBINARY [(max-length)]

Parameters
● max-length The maximum length of the value, in bytes. The length must be in the range 1 to

32767. If the length is not specified, then it is 1.

Remarks
During comparisons, VARBINARY values are compared exactly byte for byte. This differs from the
CHAR data type, where values are compared using the collation sequence of the database. If one binary
string is a prefix of the other, the shorter string is considered to be less than the longer string.

Unlike CHAR values, VARBINARY values are not transformed during character set conversion.

SQL data types

110 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

VARBINARY can also be specified as BINARY VARYING. Regardless of which syntax is used, the
data type is described as VARBINARY.

See also
● “BINARY data type” on page 108
● “LONG BINARY data type” on page 109
● “String functions” on page 136

Standards and compatibility
● SQL/2008 The VARBINARY data type comprises SQL language feature T021, "BINARY and

VARBINARY data types" in the SQL/2008 standard.

Domains
Domains are aliases for built-in data types, including precision and scale values where applicable, and
optionally including DEFAULT values and CHECK conditions. Some domains, such as the monetary
data types, are predefined in SQL Anywhere, but you can add more of your own.

Domains, also called user-defined data types, allow columns throughout a database to be automatically
defined on the same data type, with the same NULL or NOT NULL condition, with the same DEFAULT
setting, and with the same CHECK condition. Domains encourage consistency throughout the database
and can eliminate some types of errors.

Simple domains
Domains are created using the CREATE DOMAIN statement. For a full description of the syntax, see
“CREATE DOMAIN statement” on page 488.

The following statement creates a data type named street_address, which is a 35-character string.

CREATE DOMAIN street_address CHAR(35);

CREATE DATATYPE can be used as an alternative to CREATE DOMAIN, but is not recommended.

Resource authority is required to create data types. Once a data type is created, the user ID that executed
the CREATE DOMAIN statement is the owner of that data type. Any user can use the data type. Unlike
with other database objects, the owner name is never used to prefix the data type name.

The street_address data type may be used in exactly the same way as any other data type when defining
columns. For example, the following table with two columns has the second column as a street_address
column:

CREATE TABLE twocol (
 id INT,
 street street_address
);

Domains can be dropped by their owner or by a user with DBA authority, using the DROP DOMAIN
statement:

Domains

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 111

DROP DOMAIN street_address;

This statement can be executed only if the data type is not used in any table in the database. If you attempt
to drop a domain that is in use, an error message appears.

Constraints and defaults with domains
Many of the attributes associated with columns, such as allowing NULL values, having a DEFAULT
value, and so on, can be built into a domain. Any column that is defined on the data type automatically
inherits the NULL setting, CHECK condition, and DEFAULT values. This allows uniformity to be built
into columns with a similar meaning throughout a database.

For example, many primary key columns in the SQL Anywhere sample database are integer columns
holding ID numbers. The following statement creates a data type that may be useful for such columns:

CREATE DOMAIN id INT
NOT NULL
DEFAULT AUTOINCREMENT
CHECK(@col > 0);

By default, a column created using the id data type does not allow NULLs, defaults to an auto-
incremented value, and must hold a positive number. Any identifier could be used instead of col in the
@col variable.

The attributes of a data type can be overridden by explicitly providing attributes for the column. A column
created using the id data type with NULL values explicitly allowed does allow NULLs, regardless of the
setting in the id data type.

Compatibility
● Named constraints and defaults In SQL Anywhere, domains are created with a base data type,

and optionally a NULL or NOT NULL condition, a default value, and a CHECK condition. Named
constraints and named defaults are not supported.

● Creating data types In SQL Anywhere, you can use the sp_addtype system procedure to add a
domain, or you can use the CREATE DOMAIN statement.

Data type conversions
Type conversions can happen automatically, or they can be explicitly requested using the CAST or
CONVERT function. The following functions can also be used to force type conversions :

● DATE function Converts the expression into a date, and removes any hours, minutes or seconds.
Conversion errors may be reported.

● STRING function This function is equivalent to CAST(value AS LONG VARCHAR).

● VALUE+0.0 Equivalent to CAST(value AS DECIMAL).

The following list is a high-level view of automatic data type conversions:

SQL data types

112 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● If a string is used in a numeric expression or as an argument to a function that expects a numeric
argument, the string is converted to a number.

● If a number is used in a string expression or as a string function argument, it is converted to a string
before being used.

● All date constants are specified as strings. The string is automatically converted to a date before use.

There are certain cases where the automatic database conversions are not appropriate. For example, the
automatic data type conversion fails in the example below.

'12/31/90' + 5
'a' > 0

See also
● “Data type conversion functions” on page 129
● “DATE function [Date and time]” on page 180
● “STRING function [String]” on page 337
● “CAST function [Data type conversion]” on page 153

Comparisons between data types
When a comparison (such as =) is performed between arguments with different data types, one or more
arguments must be converted so that the comparison operation is done using one data type.

Some rules may lead to conversions that fail, or lead to unexpected results from the comparison. In these
cases, you should explicitly convert one of the arguments using CAST or CONVERT.

You can override these conversion rules by explicitly casting arguments to another type. For example, if
you want to compare a DATE and a CHAR as a CHAR, then you need to explicitly cast the DATE to a
CHAR. See “CAST function [Data type conversion]” on page 153.

Lossy conversion and substitution characters

When a character cannot be represented in the character set into which it is being converted, a substitution
character is used instead. Conversions of this type are considered lossy; the original character is lost if it
cannot be represented in the destination character set.

Also, not only may different character sets have a different substitution character, but the substitution
character for one character set may be a non-substitution character in another character set. This is
important to understand when multiple conversions are performed on a character because the final
character may not appear as the expected substitution character of the destination character set.

For example, suppose that the client character set is Windows-1252, and the database character set is
ISO_8859-1:1987, the U.S. default for some versions of Unix. Then, suppose a non-Unicode client
application (for example, embedded SQL) attempts to insert the euro symbol into a CHAR, VARCHAR,

Data type conversions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 113

or LONG VARCHAR column. Since the character does not exist in the CHAR character set, the
substitution character for ISO_8859-1:1987, 0x1A, is inserted.

Now, if this same ISO_8859-1:1987 substitution character is then fetched as Unicode (for example, by
doing a SELECT * FROM t into a SQL_C_WCHAR bound column in ODBC), this character becomes
the Unicode code point U+001A. (In Unicode the code point U+001A is the record separator control
character.) However, the substitution character for Unicode is the code point U+FFFD. This example
illustrates that even if your data contains substitution characters, those characters, due to multiple
conversions, may not be converted to the substitution character of the destination character set.

Therefore, it is important to understand and test how substitution characters are used when converting
between multiple character sets.

The on_charset_conversion_failure option can help determine the behavior during conversion when a
character cannot be represented in the destination character set. See “on_charset_conversion_failure
option” [SQL Anywhere Server - Database Administration].

See also
● “Data type conversions” on page 112
● “Comparisons between CHAR and NCHAR” on page 114
● “on_charset_conversion_failure option” [SQL Anywhere Server - Database Administration]

Comparisons between CHAR and NCHAR

When a comparison is performed between a value of CHAR type (CHAR, VARCHAR, LONG
VARCHAR) and a value of NCHAR type (NCHAR, NVARCHAR, LONG NVARCHAR), SQL
Anywhere uses inference rules to determine the type in which the comparison should be performed.
Generally, if one value is based on a column reference and the other is not, the comparison is performed
in the type of the value containing the column reference.

The inference rules revolve around whether a value is based on a column reference. In the case where one
value is a variable, a host variable, a literal constant, or a complex expression not based on a column
reference and the other value is based on a column reference, then the constant-based value is implicitly
cast to the type of the column-based value.

Following are the inference rules, in the order in which they are applied:

● If the NCHAR value is based on a column reference, the CHAR value is implicitly cast to NCHAR,
and the comparison is done as NCHAR. This includes the case where both the NCHAR and CHAR
value are based on column references.

● Else if the NCHAR value is not based on a column reference, and the CHAR value is based on a
column reference, the NCHAR value is implicitly cast to CHAR, and the comparison is done as CHAR.

It is important to consider the setting for the on_charset_conversion_failure option if you anticipate
NCHAR to CHAR conversions since this option controls behavior if an NCHAR character cannot be

SQL data types

114 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

represented in the CHAR character set. For further explanation, see “Converting NCHAR to
CHAR” on page 117.

● Else if neither value is based on a column reference, then the CHAR value is implicitly cast to
NCHAR and the comparison is done as NCHAR.

Examples
The condition Employees.GivenName = N'Susan' compares a CHAR column
(Employees.GivenName) to the literal N'Susan'. The value N'Susan' is cast to CHAR, and the comparison
is performed as if it had been written as:

Employees.GivenName = CAST(N'Susan' AS CHAR)

Alternatively, the condition Employees.GivenName = T.nchar_column would find that the
value T.nchar_column can not be cast to CHAR. The comparison would be performed as if it were written
as follows, and an index on Employees.GivenName can not be used:

CAST(Employees.GivenName AS NCHAR) = T.nchar_column;

See also
● “Converting NCHAR to CHAR” on page 117
● “Lossy conversion and substitution characters” on page 113
● “CAST function [Data type conversion]” on page 153
● “CONVERT function [Data type conversion]” on page 165
● “CAST function [Data type conversion]” on page 153
● “on_charset_conversion_failure option” [SQL Anywhere Server - Database Administration]

Comparisons between numeric data types

SQL Anywhere uses the following rules when comparing numeric data types. The rules are examined in
the order listed, and the first rule that applies is used:

1. If one argument is TINYINT and the other is INTEGER, convert both to INTEGER and compare.

2. If one argument is TINYINT and the other is SMALLINT, convert both to SMALLINT and compare.

3. If one argument is UNSIGNED SMALLINT and the other is INTEGER, convert both to INTEGER
and compare.

4. If the data types of the arguments have a common super type, convert to the common super type and
compare. The super types are the final data type in each of the following lists:

● BIT » TINYINT » UNSIGNED SMALLINT » UNSIGNED INTEGER » UNSIGNED BIGINT »
NUMERIC

● SMALLINT » INTEGER » BIGINT » NUMERIC

● REAL » DOUBLE

Data type conversions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 115

● CHAR » LONG VARCHAR

● BINARY » LONG BINARY

For example, if the two arguments are of types BIT and TINYINT, they are converted to NUMERIC.

Comparing dates and times

By default, values stored as DATE do not have any hour or minute values, and so comparison of dates is
straightforward.

The DATE data type can also contain a time, which introduces complications when comparing dates. If
the time is not specified when a date is entered into the database, the time defaults to 0:00 or 12:00am
(midnight). Any date comparisons with this option setting compare the times and the date. A database
date value of 1999-05-23 10:00 is not equal to the constant 1999-05-23. The DATEFORMAT function or
one of the other date functions can be used to compare parts of a date and time field. For example,

DATEFORMAT(invoice_date,'yyyy/mm/dd') = '1999/05/23';

If a database column requires only a date, client applications should ensure that times are not specified
when data is entered into the database. This way, comparisons with date-only strings will work as expected.

If you want to compare a date to a string as a string, you must use the DATEFORMAT function or CAST
function to convert the date to a string before comparing.

SQL Anywhere uses the following rules when comparing time and date data types. The rules are
examined in the order listed, and the first rule that applies is used:

1. If the data type of either argument is TIME, convert both to TIME and compare.

2. If either data type has the type DATE or TIMESTAMP, convert to both to TIMESTAMP and compare.

For example, if the two arguments are of type REAL and DATE, they are both converted to
TIMESTAMP.

3. If one argument has NUMERIC data type and the other has FLOAT, convert both to DOUBLE and
compare.

See also
● “TIMESTAMP WITH TIME ZONE data type” on page 106

Transact-SQL string-to-date/time conversions

Converting strings to date and time data types.

If a string containing only a time value (no date) is converted to a date/time data type, SQL Anywhere
uses the current date.

SQL data types

116 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

If the fraction portion of a time is less than 3 digits, SQL Anywhere interprets the value the same way
regardless of the whether it is preceded by a period or a colon: one digit means tenths, two digits mean
hundredths, and three digits mean thousandths.

Examples
SQL Anywhere converts the milliseconds value in the same manner regardless of the separator.

12:34:56.7 to 12:34:56.700
12:34:56:7 to 12:34:56.700
12.34.56.78 to 12:34:56.780
12.34.56:78 to 12:34:56.780
12:34:56.789 to 12:34:56.789
12:34:56:789 to 12:34:56.789

Other comparisons
1. If the data types are a mixture of CHAR (such as CHAR, VARCHAR, LONG VARCHAR, and so on,

but not NCHAR types), convert to LONG VARCHAR and compare.

2. If the data type of any argument is UNIQUEIDENTIFIER, convert to UNIQUEIDENTIFIER and
compare.

3. If the data type of any argument is a bit array (VARBIT or LONG VARBIT), convert to LONG
VARBIT and compare.

4. If one argument has CHARACTER data type and the other has BINARY data type, convert to
BINARY and compare.

5. If one argument is a CHAR type, and the other argument is an NCHAR type, use predefined inference
rules. See “Comparisons between CHAR and NCHAR” on page 114.

6. If no rule exists, convert to NUMERIC and compare.

For example, if the two arguments have REAL and CHAR data types, they are both converted to
NUMERIC.

Converting NCHAR to CHAR
NCHAR to CHAR conversions can occur as part of a comparison of CHAR and NCHAR data, or when
specifically requested. This type of conversion is lossy because depending on the CHAR character set,
there may be some NCHAR characters that can not be represented in the CHAR type. When an NCHAR
character cannot be converted to CHAR, a substitution character from the CHAR character set is used
instead. For single-byte character sets, this is usually hex 1A.

Depending on the setting of the on_charset_conversion_failure option, when a character cannot be
converted, one of the following can happen:

● a substitute character is used, and no warning is issued

Data type conversions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 117

● a substitute character is used, and a warning is issued

● an error is returned

Therefore, it is important to consider this option when converting from NCHAR to CHAR. See
“on_charset_conversion_failure option” [SQL Anywhere Server - Database Administration].

See also
● “Comparisons between CHAR and NCHAR” on page 114
● “on_charset_conversion_failure option” [SQL Anywhere Server - Database Administration]

Converting NULL constants to NUMERIC and string types

When converting a NULL constant to a NUMERIC, or to a string type such as CHAR, VARCHAR,
LONG VARCHAR, BINARY, VARBINARY, and LONG BINARY the size is set to 0. For example:

SELECT CAST(NULL AS CHAR) returns CHAR(0)

SELECT CAST(NULL AS NUMERIC) returns NUMERIC(1,0)

Converting dates to strings

SQL Anywhere provides several functions for converting SQL Anywhere date and time values into a
wide variety of strings and other expressions. It is possible in converting a date value into a string to
reduce the year portion into a two-digit number representing the year, thereby losing the century portion
of the date.

Wrong century values
Consider the following statement, which incorrectly converts a string representing the date January 1,
2000 into a string representing the date January 1, 1900 even though no database error occurs.

SELECT DATEFORMAT (
 DATEFORMAT('2000-01-01', 'Mmm dd/yy'),
 'yyyy-Mmm-dd')
 AS Wrong_year;

SQL Anywhere automatically and correctly converts the unambiguous date string 2000-01-01 into a date
value. However, the 'Mmm dd/yy' formatting of the inner, or nested, DATEFORMAT function drops the
century portion of the date when it is converted back to a string and passed to the outer DATEFORMAT
function.

Because the database option nearest_century in this case is set to 0, the outer DATEFORMAT function
converts the string representing a date with a two-digit year value into a year between 1900 and 1999.

For more information about date and time functions, see “Date and time functions” on page 129.

SQL data types

118 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Converting bit arrays

Converting integers to bit arrays
When converting an integer to a bit array, the length of the bit array is the number of bits in the integer
type, and the bit array's value is the integer's binary representation. The most significant bit of the integer
becomes the first bit of the array.

Examples
SELECT CAST(CAST(1 AS BIT) AS VARBIT) returns a VARBIT(1) containing 1.

SELECT CAST(CAST(8 AS TINYINT) AS VARBIT) returns a VARBIT(8) containing
00001000.

SELECT CAST(CAST(194 AS INTEGER) AS VARBIT) returns a VARBIT(32) containing
00000000000000000000000011000010.

Converting binary to bit arrays
When converting a binary type of length n to a bit array, the length of the array is n * 8 bits. The first 8
bits of the bit array become the first byte of the binary value. The most significant bit of the binary value
becomes the first bit in the array. The next 8 bits of the bit array become the second byte of the binary
value, and so on.

Examples
SELECT CAST(0x8181 AS VARBIT) returns a VARBIT(16) containing 1000000110000001.

Converting characters to bit arrays
When converting a character data type of length n to a bit array, the length of the array is n bits. Each
character must be either '0' or '1' and the corresponding bit of the array is assigned the value 0 or 1.

Example
SELECT CAST('001100' AS VARBIT) returns a VARBIT(6) containing 001100.

Converting bit arrays to integers
When converting a bit array to an integer data type, the bit array's binary value is interpreted according to
the storage format of the integer type, using the most significant bit first.

Example
SELECT CAST(CAST('11000010' AS VARBIT) AS INTEGER) returns 194 (110000102
= 0xC2 = 194).

Converting bit arrays to binary
When converting a bit array to a binary, the first 8 bits of the array become the first byte of the binary
value. The first bit of the array becomes the most significant bit of the binary value. The next 8 bits are
used as the second byte, and so on. If the length of the bit array is not a multiple of 8, then extra zeroes are
used to fill the least significant bits of the last byte of the binary value.

Data type conversions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 119

Examples
SELECT CAST(CAST('1111' AS VARBIT) AS BINARY) returns 0xF0 (11112 becomes
111100002 = 0xF0).

SELECT CAST(CAST('0011000000110001' AS VARBIT) AS BINARY) returns
0x3031 (00110000001100012 = 0x3031).

Converting bit arrays to characters
When converting a bit array of length n bits to a character data type, the length of the result is n
characters. Each character in the result is either '0' or '1', corresponding to the bit in the array.

Example
SELECT CAST(CAST('01110' AS VARBIT) AS VARCHAR) returns the character string
'01110'.

Converting between numeric sets
When converting a DOUBLE type to a NUMERIC type, precision is maintained for the first 15
significant digits.

See also
● “CAST function [Data type conversion]” on page 153
● “CONVERT function [Data type conversion]” on page 165
● “CAST function [Data type conversion]” on page 153

Ambiguous date and time conversions
Dates in the format yyyy/mm/dd or yyyy-mm-dd are always recognized unambiguously as dates, regardless
of the date_order setting. Other characters can be used as separators instead of a forward slash (/) or a
hyphen (-); for example, a question mark (?), a space character, or a comma (,). You should use this
format in any context where different users may be employing different date_order settings. For example,
in stored procedures, use of the unambiguous date format prevents misinterpretation of dates according to
the user's date_order setting.

Also, a string of the form hh:mm:ss.ssssss is interpreted unambiguously as a time.

For combinations of dates and times, any unambiguous date and any unambiguous time yield an
unambiguous date-time value. The form yyyy-mm-ddThh:mm:ss.ssssss is an unambiguous date-time
value. The date-time separator, T, can be omitted giving the unambiguous form yyyy-mm-dd
hh:mm:ss.ssssss. Periods can be used instead of colons giving the unambiguous form yyyy-mm-dd
hh.mm.ss.ssssss. Periods can be used in the time but only in combination with a date or the date-time
separator, T (Thh.mm.ss.ssssss).

In other contexts, a more flexible date format can be used. SQL Anywhere can interpret a wide range of
strings as dates. The interpretation depends on the setting of the database option date_order. The

SQL data types

120 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

date_order database option can have the value MDY, YMD, or DMY See “SET OPTION
statement” on page 840.

For example, the following statement sets the date_order option to DMY:

SET OPTION date_order = 'DMY' ;

The default date_order setting is YMD. The ODBC driver sets the date_order option to YMD whenever a
connection is made. The value can still be changed using the SET TEMPORARY OPTION statement.

The database option date_order determines whether the string 10/11/12 is interpreted by the database as
November 12, 2010; October 11, 2012; or November 10, 2012. The year, month, and day of a date string
should be separated by some character (/, -, or space) and appear in the order specified by the date_order
option.

The year can be supplied as either 2 or 4 digits. The value of the nearest_century option affects the
interpretation of 2-digit years: 2000 is added to values less than nearest_century and 1900 is added to all
other values. The default value of this option is 50. So, by default, 50 is interpreted as 1950 and 49 is
interpreted 2049.

The month can be the name or number of the month. The hours and minutes are separated by a colon, but
can appear anywhere in the string.

Notes
● It is recommended that you always specify the year using the four-digit format.

● With an appropriate setting of date_order, the following strings are all valid dates:

99-05-23 21:35
99/5/23
1999/05/23
May 23 1999
23-May-1999
Tuesday May 23, 1999 10:00pm

● If a string contains only a partial date specification, default values are used to fill out the date. The
following defaults are used:

○ year This year

○ month No default

○ day 1 (useful for month fields; for example, May 1999 will be the date 1999-05-01 00:00)

○ hour, minute, second, fraction 0

Handling of two-digit years

SQL Anywhere automatically converts a string into a date when a date value is expected, even if the year
is represented in the string by only two digits.

Data type conversions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 121

If the century portion of a year value is omitted, the method of conversion is determined by the
nearest_century database option.

The nearest_century database option is a numeric value that acts as a break point between 19YY date
values and 20YY date values.

Two-digit years less than the nearest_century value are converted to 20yy, while years greater than or
equal to the value are converted to 19yy.

If this option is not set, the default setting of 50 is assumed. So, two-digit year strings are understood to
refer to years between 1950 and 2049.

This nearest_century option was introduced in SQL Anywhere Version 5.5. In version 5.5, the default
setting was 0.

Example
The following statement creates a table that can be used to illustrate the conversion of ambiguous date
information in SQL Anywhere (Note that the date order is assumed to be YMD):

CREATE TABLE T1 (C1 DATE);

The table T1 contains one column, C1, of the type DATE.

The following statement inserts a date value into the column C1:

INSERT INTO T1 VALUES('00-01-01');

SQL Anywhere automatically converts a string that contains an ambiguous year value, one with two
digits representing the year but nothing to indicate the century. By default, the nearest_century option is
set to 50, so SQL Anywhere converts the above string into the date 2000-01-01. The following statement
verifies the result of this insert:

SELECT * FROM T1;

To change the default behavior for handling the year value when it doesn't contain the century, you can
change the nearest_century option. For example:

SET OPTION nearest_century = 0;

Now, when you execute the INSERT statement again, the date inserted is 1900-01-01.

Java and SQL data type conversion
Data type conversion between Java types and SQL types is required for both Java stored procedures and
JDBC applications. Java to SQL and SQL to Java data type conversions are carried out according to the
JDBC standard. The conversions are described in the following tables.

Java to SQL data type conversion

SQL data types

122 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Java type SQL type

String CHAR

String VARCHAR

String TEXT

java.math.BigDecimal NUMERIC

java.math.BigDecimal MONEY

java.math.BigDecimal SMALLMONEY

boolean BIT

byte TINYINT

short SMALLINT

int INTEGER

long BIGINT

float REAL

double DOUBLE

byte[] VARBINARY

byte[] IMAGE

java.sql.Date DATE

java.sql.Time TIME

java.sql.Timestamp TIMESTAMP

java.lang.Double DOUBLE

java.lang.Float REAL

java.lang.Integer INTEGER

java.lang.Long BIGINT

SQL to Java data type conversion

Data type conversions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 123

SQL type Java type

CHAR String

VARCHAR String

TEXT String

NUMERIC java.math.BigDecimal

DECIMAL java.math.BigDecimal

MONEY java.math.BigDecimal

SMALLMONEY java.math.BigDecimal

BIT boolean

TINYINT byte

SMALLINT short

INTEGER int

BIGINT long

REAL float

FLOAT double

DOUBLE double

BINARY byte[]

VARBINARY byte[]

LONG VARBINARY byte[]

IMAGE byte[]

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

SQL data types

124 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Spatial data types
SQL Anywhere supports many spatial data types. The documentation for these data types are located with
the spatial SQL API documentation. See “Supported spatial data types and their hierarchy” [SQL
Anywhere Server - Spatial Data Support]

Spatial data types

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 125

126

SQL functions
Functions are used to return information from the database. They are allowed anywhere an expression is
allowed.

Unless otherwise specified in the documentation, NULL is returned for a function if any argument is NULL.

Functions use the same syntax conventions used by SQL statements. For a complete list of syntax
conventions, see “Syntax conventions” on page 382.

Function types
This section groups the available function by type.

Aggregate functions
Aggregate functions summarize data over a group of rows from the database. The groups are formed
using the GROUP BY clause of the SELECT statement. Aggregate functions are allowed only in the
select list and in the HAVING and ORDER BY clauses of a SELECT statement.

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 127

List of functions
The following aggregate functions are available:

● “AVG function [Aggregate]” on page 144
● “BIT_AND function [Aggregate]” on page 147
● “BIT_OR function [Aggregate]” on page 149
● “BIT_XOR function [Aggregate]” on page 151
● “COVAR_POP function [Aggregate]” on page 173
● “COVAR_SAMP function [Aggregate]” on page 175
● “COUNT function [Aggregate]” on page 170
● “COUNT_BIG function [Aggregate]” on page 172
● “CORR function [Aggregate]” on page 168
● “FIRST_VALUE function [Aggregate]” on page 215
● “GROUPING function [Aggregate]” on page 223
● “LAST_VALUE function [Aggregate]” on page 244
● “LIST function [Aggregate]” on page 250
● “MAX function [Aggregate]” on page 257
● “MEDIAN function [Aggregate]” on page 259
● “MIN function [Aggregate]” on page 261
● “REGR_AVGX function [Aggregate]” on page 295
● “REGR_AVGY function [Aggregate]” on page 296
● “REGR_COUNT function [Aggregate]” on page 298
● “REGR_INTERCEPT function [Aggregate]” on page 299
● “REGR_R2 function [Aggregate]” on page 300
● “REGR_SLOPE function [Aggregate]” on page 302
● “REGR_SXX function [Aggregate]” on page 303
● “REGR_SXY function [Aggregate]” on page 304
● “REGR_SYY function [Aggregate]” on page 306
● “SET_BITS function [Aggregate]” on page 321
● “STDDEV function [Aggregate]” on page 332
● “STDDEV_POP function [Aggregate]” on page 333
● “STDDEV_SAMP function [Aggregate]” on page 334
● “SUM function [Aggregate]” on page 342
● “VAR_POP function [Aggregate]” on page 362
● “VAR_SAMP function [Aggregate]” on page 364
● “VARIANCE function [Aggregate]” on page 366
● “XMLAGG function [Aggregate]” on page 370

Bit array functions

SQL functions

128 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Bit array functions allow you to perform tasks on bit arrays. The following bit array functions are available:

● “BIT_AND function [Aggregate]” on page 147
● “BIT_OR function [Aggregate]” on page 149
● “BIT_XOR function [Aggregate]” on page 151
● “BIT_LENGTH function [Bit array]” on page 148
● “BIT_SUBSTR function [Bit array]” on page 150
● “COUNT_SET_BITS function [Bit array]” on page 173
● “GET_BIT function [Bit array]” on page 218
● “SET_BIT function [Bit array]” on page 320
● “SET_BITS function [Aggregate]” on page 321

For information about bitwise operators, see “Bitwise operators” on page 11.

See also “sa_get_bits system procedure” on page 991.

Ranking functions
Ranking functions let you compute a rank value for each row in a result set based on an ordering specified
in the query.

● “CUME_DIST function [Ranking]” on page 178
● “DENSE_RANK function [Ranking]” on page 198
● “PERCENT_RANK function [Ranking]” on page 280
● “RANK function [Ranking]” on page 290

Data type conversion functions
Data type conversion functions are used to convert arguments from one data type to another, or to test
whether they can be converted.

List of functions
The following data type conversion functions are available:

● “CAST function [Data type conversion]” on page 153
● “CONVERT function [Data type conversion]” on page 165
● “HEXTOINT function [Data type conversion]” on page 225
● “INTTOHEX function [Data type conversion]” on page 240
● “ISDATE function [Data type conversion]” on page 241
● “ISNUMERIC function [Miscellaneous]” on page 243
● “TREAT function [Data type conversion]” on page 352

Date and time functions

Function types

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 129

Date and time functions perform operations on DATE, TIME, TIMESTAMP, and TIMESTAMP WITH
TIME ZONE data types.

SQL Anywhere includes compatibility support for Transact-SQL date and time types, including
DATETIME and SMALLDATETIME. These Transact-SQL data types are implemented as domains over
the native SQL Anywhere TIMESTAMP data type.

For more information about datetime data types, see “Date and time data types” on page 99.

Specifying date parts
Many of the date functions use dates built from date parts. The following table displays allowed values
of date parts.

When using date and time functions, you can specify a minus sign to subtract from a date or time. For
example, to get a timestamp from 31 days ago, you can execute the following:

SELECT DATEADD(day, -31, NOW());

Date part Abbreviation Values

Year yy 1-9999

Quarter qq 1-4

Month mm 1-12

Week wk 1-54. Weeks begin on Sunday.

Day dd 1-31

Dayofyear dy 1-366

Weekday dw 1-7 (Sunday = 1, ..., Saturday = 7)

Hour hh 0-23

Minute mi 0-59

Second ss 0-59

Millisecond ms 0-999

Microsecond mcs or us 0-999999

SQL functions

130 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Date part Abbreviation Values

Calyearofweek cyr Integer. The year in which the week begins. The week containing the
first few days of the year may have started in the previous year, de-
pending on the weekday on which the year started. Years starting on
Monday through Thursday have no days that are part of the previous
year, but years starting on Friday through Sunday start their first
week on the first Monday of the year.

Calweekofyear cwk 1-53. The week number within the year that contains the specified date.

For more information about the ISO week system and the ISO 8601
date and time standard, see http://en.wikipedia.org/wiki/
ISO_week_date.

Caldayofweek cdw 1-7. (Monday = 1, ..., Sunday = 7)

TZ Offset tz -840 to 840

Function types

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 131

http://en.wikipedia.org/wiki/ISO_week_date
http://en.wikipedia.org/wiki/ISO_week_date

List of date and time functions
The following date and time functions are available:

● “DATE function [Date and time]” on page 180
● “DATEADD function [Date and time]” on page 181
● “DATEDIFF function [Date and time]” on page 182
● “DATEFORMAT function [Date and time]” on page 183
● “DATENAME function [Date and time]” on page 184
● “DATEPART function [Date and time]” on page 185
● “DATETIME function [Date and time]” on page 186
● “DAY function [Date and time]” on page 187
● “DAYNAME function [Date and time]” on page 187
● “DAYS function [Date and time]” on page 188
● “DOW function [Date and time]” on page 201
● “GETDATE function [Date and time]” on page 220
● “HOUR function [Date and time]” on page 226
● “HOURS function [Date and time]” on page 227
● “MINUTE function [Date and time]” on page 262
● “MINUTES function [Date and time]” on page 262
● “MONTH function [Date and time]” on page 265
● “MONTHNAME function [Date and time]” on page 266
● “MONTHS function [Date and time]” on page 266
● “NOW function [Date and time]” on page 276
● “QUARTER function [Date and time]” on page 288
● “SECOND function [Date and time]” on page 318
● “SECONDS function [Date and time]” on page 319
● “SWITCHOFFSET function [Date and time]” on page 344
● “SYSDATETIMEOFFSET function [Date and time]” on page 345
● “TODAY function [Date and time]” on page 350
● “TODATETIMEOFFSET function [Date and time]” on page 349
● “WEEKS function [Date and time]” on page 367
● “YEAR function [Date and time]” on page 377
● “YEARS function [Date and time]” on page 377
● “YMD function [Date and time]” on page 378

User-defined functions
A user-defined function, or UDF, is a function created by the user of a program or environment. User-
defined functions are in contrast to functions that are built in to the program or environment.

There are two mechanisms for creating user-defined functions in SQL Anywhere. You can use the SQL
language to write the function, or you can use Java.

SQL functions

132 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

User-defined functions in SQL
You can implement your own functions in SQL using the “CREATE FUNCTION
statement” on page 516. The RETURN statement inside the CREATE FUNCTION statement determines
the data type of the function.

Once a SQL user-defined function is created, it can be used anywhere a built-in function of the same data
type is used.

For more information about creating SQL functions, see “Using procedures, triggers, and batches” [SQL
Anywhere Server - SQL Usage].

User-defined functions in Java
Java classes provide a more powerful and flexible way of implementing user-defined functions, with the
additional advantage that they can be moved from the database server to a client application if desired.

Any class method of an installed Java class can be used as a user-defined function anywhere a built-in
function of the same data type is used.

Instance methods are tied to particular instances of a class, and so have different behavior from standard
user-defined functions.

For more information about creating Java classes, and on class methods, see “Creating a class” [SQL
Anywhere Server - Programming].

Deciding whether to create a user-defined functions or a procedure
Functions are similar to procedures. Deciding whether to create a function or a procedure depends on
what you want returned, and the object will be called. When deciding whether to create a UDF or a
procedure, consider their unique characteristics listed below.

Functions:

● can return a single value of arbitrary type, and allow you to declare the returned type using the
RETURNS clause

● can be used in most places an expression can be used

● allow you to define only IN parameters

Procedures:

● can return multiple values using INOUT or OUT parameters

● can return result sets

● can be referenced in the FROM clause of a query, or using a CALL statement, or using a Transact-
SQL EXECUTE statement

● can be called using named parameters

Function types

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 133

Miscellaneous functions
Miscellaneous functions perform operations on arithmetic, string, or date/time expressions, including the
return values of other functions.

List of functions
The following miscellaneous functions are available:

● “ARGN function [Miscellaneous]” on page 141
● “COALESCE function [Miscellaneous]” on page 158
● “CONFLICT function [Miscellaneous]” on page 161
● “ERRORMSG function [Miscellaneous]” on page 203
● “ESTIMATE function [Miscellaneous]” on page 204
● “ESTIMATE_SOURCE function [Miscellaneous]” on page 205
● “EXPERIENCE_ESTIMATE function [Miscellaneous]” on page 212
● “EXPLANATION function [Miscellaneous]” on page 213
● “EXPRTYPE function [Miscellaneous]” on page 214
● “GET_IDENTITY function [Miscellaneous]” on page 219
● “GRAPHICAL_PLAN function [Miscellaneous]” on page 221
● “GREATER function [Miscellaneous]” on page 222
● “IDENTITY function [Miscellaneous]” on page 237
● “IFNULL function [Miscellaneous]” on page 238
● “INDEX_ESTIMATE function [Miscellaneous]” on page 239
● “ISNULL function [Miscellaneous]” on page 243
● “LESSER function [Miscellaneous]” on page 249
● “NEWID function [Miscellaneous]” on page 268
● “NULLIF function [Miscellaneous]” on page 276
● “NUMBER function [Miscellaneous]” on page 277
● “PLAN function [Miscellaneous]” on page 282
● “REWRITE function [Miscellaneous]” on page 311
● “ROW_NUMBER function [Miscellaneous]” on page 315
● “SQLDIALECT function [Miscellaneous]” on page 330
● “SQLFLAGGER function [Miscellaneous]” on page 331
● “TRACEBACK function [Miscellaneous]” on page 350
● “TRANSACTSQL function [Miscellaneous]” on page 351
● “VAREXISTS function [Miscellaneous]” on page 365
● “WATCOMSQL function [Miscellaneous]” on page 366

Numeric functions
Numeric functions perform mathematical operations on numerical data types or return numeric information.

SQL functions

134 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

List of functions
The following numeric functions are available:

● “ABS function [Numeric]” on page 139
● “ACOS function [Numeric]” on page 140
● “ASIN function [Numeric]” on page 142
● “ATAN function [Numeric]” on page 143
● “ATAN2 function [Numeric]” on page 144
● “CEILING function [Numeric]” on page 154
● “COS function [Numeric]” on page 169
● “COT function [Numeric]” on page 170
● “DEGREES function [Numeric]” on page 198
● “EXP function [Numeric]” on page 211
● “FLOOR function [Numeric]” on page 217
● “LOG function [Numeric]” on page 254
● “LOG10 function [Numeric]” on page 255
● “MOD function [Numeric]” on page 264
● “PI function [Numeric]” on page 281
● “POWER function [Numeric]” on page 283
● “RADIANS function [Numeric]” on page 288
● “RAND function [Numeric]” on page 289
● “REMAINDER function [Numeric]” on page 307
● “ROUND function [Numeric]” on page 314
● “SIGN function [Numeric]” on page 322
● “SIN function [Numeric]” on page 324
● “SQRT function [Numeric]” on page 332
● “TAN function [Numeric]” on page 346
● “TRUNCNUM function [Numeric]” on page 354

Web services functions
HTTP functions assist the handling of HTTP requests within web services. Likewise, SOAP functions
assist the handling of SOAP requests within web services.

Function types

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 135

The following functions are available:

● “HTML_DECODE function [Miscellaneous]” on page 228
● “HTML_ENCODE function [Miscellaneous]” on page 229
● “HTTP_BODY function [HTTP]” on page 230
● “HTTP_DECODE function [HTTP]” on page 231
● “HTTP_ENCODE function [HTTP]” on page 232
● “HTTP_HEADER function [HTTP]” on page 233
● “HTTP_RESPONSE_HEADER function [HTTP]” on page 235
● “HTTP_VARIABLE function [HTTP]” on page 236
● “NEXT_HTTP_HEADER function [HTTP]” on page 272
● “NEXT_HTTP_RESPONSE_HEADER function [HTTP]” on page 273
● “NEXT_HTTP_VARIABLE function [HTTP]” on page 274
● “NEXT_SOAP_HEADER function [SOAP]” on page 275
● “SOAP_HEADER function [SOAP]” on page 325

There are also many system procedures available for web services. See “Web services system
procedures” on page 941.

See also
● “Using SQL Anywhere as an HTTP web server” [SQL Anywhere Server - Programming]
● “-xs dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]

String functions
String functions perform conversion, extraction, or manipulation operations on strings, or return
information about strings.

When working in a multibyte character set, check carefully whether the function being used returns
information concerning characters or bytes.

SQL functions

136 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

List of functions
The following string functions are available:

● “ASCII function [String]” on page 141
● “BASE64_DECODE function [String]” on page 146
● “BASE64_ENCODE function [String]” on page 147
● “BYTE_LENGTH function [String]” on page 152
● “BYTE_SUBSTR function [String]” on page 152
● “CHAR function [String]” on page 155
● “CHARINDEX function [String]” on page 157
● “CHAR_LENGTH function [String]” on page 156
● “COMPARE function [String]” on page 159
● “COMPRESS function [String]” on page 160
● “CSCONVERT function [String]” on page 176
● “DECOMPRESS function [String]” on page 195
● “DECRYPT function [String]” on page 196
● “DIFFERENCE function [String]” on page 200
● “ENCRYPT function [String]” on page 202
● “HASH function [String]” on page 224
● “INSERTSTR function [String]” on page 240
● “LCASE function [String]” on page 247
● “LEFT function [String]” on page 247
● “LENGTH function [String]” on page 248
● “LOCATE function [String]” on page 253
● “LOWER function [String]” on page 256
● “LTRIM function [String]” on page 256
● “NCHAR function [String]” on page 268
● “PATINDEX function [String]” on page 279
● “READ_CLIENT_FILE function [String]” on page 292
● “REGEXP_SUBSTR function [String]” on page 293
● “REPEAT function [String]” on page 308
● “REPLACE function [String]” on page 309
● “REPLICATE function [String]” on page 310
● “REVERSE function [String]” on page 311
● “RIGHT function [String]” on page 313
● “RTRIM function [String]” on page 317
● “SIMILAR function [String]” on page 323
● “SORTKEY function [String]” on page 326
● “SOUNDEX function [String]” on page 329
● “SPACE function [String]” on page 329
● “STR function [String]” on page 336
● “STRING function [String]” on page 337
● “STRTOUUID function [String]” on page 338
● “STUFF function [String]” on page 339
● “SUBSTRING function [String]” on page 340
● “TO_CHAR function [String]” on page 347
● “TO_NCHAR function [String]” on page 348

Function types

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 137

● “TRIM function [String]” on page 353
● “UCASE function [String]” on page 356
● “UNICODE function [String]” on page 357
● “UNISTR function [String]” on page 357
● “UPPER function [String]” on page 359
● “UUIDTOSTR function [String]” on page 361
● “XMLCONCAT function [String]” on page 371
● “XMLELEMENT function [String]” on page 372
● “XMLFOREST function [String]” on page 374
● “XMLGEN function [String]” on page 375

System functions
System functions return system information.

List of functions
The following system functions are available:

● “CONNECTION_EXTENDED_PROPERTY function [String]” on page 163
● “CONNECTION_PROPERTY function [System]” on page 164
● “DATALENGTH function [System]” on page 179
● “DB_ID function [System]” on page 193
● “DB_NAME function [System]” on page 193
● “DB_EXTENDED_PROPERTY function [System]” on page 189
● “DB_PROPERTY function [System]” on page 194
● “EVENT_CONDITION function [System]” on page 207
● “EVENT_CONDITION_NAME function [System]” on page 208
● “EVENT_PARAMETER function [System]” on page 209
● “NEXT_CONNECTION function [System]” on page 270
● “NEXT_DATABASE function [System]” on page 271
● “PROPERTY function [System]” on page 284
● “PROPERTY_DESCRIPTION function [System]” on page 283
● “PROPERTY_NAME function [System]” on page 286
● “PROPERTY_NUMBER function [System]” on page 287
● “SUSER_ID function [System]” on page 343
● “SUSER_NAME function [System]” on page 344
● “TSEQUAL function [System] (deprecated)” on page 355
● “USER_ID function [System]” on page 359
● “USER_NAME function [System]” on page 360

Notes

● Some of the system functions are implemented in SQL Anywhere as stored procedures.

● The db_id, db_name, and datalength functions are implemented as built-in functions.

The implemented system functions are described in the following table.

SQL functions

138 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

System function Description

COL_LENGTH(table-name, column-name) Returns the defined length of column

COL_NAME(table-id, column-id [, database-id]) Returns the column name

INDEX_COL (table-name, index-id, key_# [, userid]) Returns the name of the indexed column

OBJECT_ID (object-name) Returns the object ID

OBJECT_NAME (object-id [, database-id]) Returns the object name

Text and image functions
Text and image functions operate on text and image data types. SQL Anywhere supports only the textptr
text and image function.

List of functions
The following text and image function is available:

● “TEXTPTR function [Text and image]” on page 346

Functions
Each function is listed, and the function type (numeric, character, and so on) is indicated next to it.

For links to all functions of a given type, see “Function types” on page 127.

ABS function [Numeric]
Returns the absolute value of a numeric expression.

Syntax
ABS(numeric-expression)

Parameters
● numeric-expression The number whose absolute value is to be returned.

Returns
An absolute value of the numeric expression.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 139

Numeric-expression data type Returns

INT INT

FLOAT FLOAT

DOUBLE DOUBLE

NUMERIC NUMERIC

Standards and compatibility
● SQL/2008 The ABS function is part of optional SQL/2008 language feature T441.

Example
The following statement returns the value 66.

SELECT ABS(-66);

ACOS function [Numeric]
Returns the arc-cosine, in radians, of a numeric expression.

Syntax
ACOS(numeric-expression)

Parameters
● numeric-expression The cosine of the angle.

Returns
DOUBLE

Remarks
This function converts its argument to DOUBLE, and performs the computation in double-precision floating-
point arithmetic.

See also
● “ASIN function [Numeric]” on page 142
● “ATAN function [Numeric]” on page 143
● “ATAN2 function [Numeric]” on page 144
● “COS function [Numeric]” on page 169

Standards and compatibility
● SQL/2008 Vendor extension.

SQL functions

140 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example
The following statement returns the arc-cosine value for 0.52.

SELECT ACOS(0.52);

ARGN function [Miscellaneous]
Returns a selected argument from a list of arguments.

Syntax
ARGN(integer-expression, expression [, ...])

Parameters
● integer-expression The position of an argument within the list of expressions.

● expression An expression of any data type passed into the function. All supplied expressions must
be of the same data type.

Returns
Using the value of the integer-expression as n, returns the nth argument (starting at 1) from the remaining
list of arguments.

Remarks
While the expressions can be of any data type, they must all be of the same data type. The integer
expression must be from one to the number of expressions in the list or NULL is returned. Multiple
expressions are separated by a comma.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 6.

SELECT ARGN(6, 1,2,3,4,5,6);

ASCII function [String]
Returns the integer ASCII value of the first byte in a string-expression.

Syntax
ASCII(string-expression)

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 141

Parameters
● string-expression The string.

Returns
SMALLINT

Remarks
If the string is empty, then ASCII returns zero. Literal strings must be enclosed in quotes. If the database
character set is multibyte and the first character of the parameter string consists of more than one byte, the
result is NULL.

See also
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 90.

SELECT ASCII('Z');

ASIN function [Numeric]
Returns the arc-sine, in radians, of a number.

Syntax
ASIN(numeric-expression)

Parameters
● numeric-expression The sine of the angle.

Returns
DOUBLE

Remarks
The SIN and ASIN functions are inverse operations.

This function converts its argument to DOUBLE, and performs the computation in double-precision floating-
point arithmetic.

SQL functions

142 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “ACOS function [Numeric]” on page 140
● “ATAN function [Numeric]” on page 143
● “ATAN2 function [Numeric]” on page 144
● “SIN function [Numeric]” on page 324

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the arc-sine value for 0.52.

SELECT ASIN(0.52);

ATAN function [Numeric]
Returns the arc-tangent, in radians, of a number.

Syntax
ATAN(numeric-expression)

Remarks
The ATAN and TAN functions are inverse operations.

Parameters
● numeric-expression The tangent of the angle.

Returns
DOUBLE

Remarks
This function converts its argument to DOUBLE, and performs the computation in double-precision floating-
point arithmetic.

See also
● “ACOS function [Numeric]” on page 140
● “ASIN function [Numeric]” on page 142
● “ATAN2 function [Numeric]” on page 144
● “TAN function [Numeric]” on page 346

Standards and compatibility
● SQL/2008 Vendor extension.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 143

Example
The following statement returns the arc-tangent value for 0.52.

SELECT ATAN(0.52);

ATAN2 function [Numeric]
Returns the arc-tangent, in radians, of the ratio of two numbers.

Syntax
{ ATN2 | ATAN2 }(numeric-expression-1, numeric-expression-2)

Parameters
● numeric-expression-1 The numerator in the ratio whose arc-tangent is calculated.

● numeric-expression-2 The denominator in the ratio whose arc-tangent is calculated.

Returns
DOUBLE

Remarks
This function converts its arguments to DOUBLE, and performs the computation in double-precision
floating-point arithmetic.

See also
● “ACOS function [Numeric]” on page 140
● “ASIN function [Numeric]” on page 142
● “ATAN function [Numeric]” on page 143
● “TAN function [Numeric]” on page 346

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the arc-tangent value for the ratio 0.52 to 0.60.

SELECT ATAN2(0.52, 0.60);

AVG function [Aggregate]
Computes the average, for a set of rows, of a numeric expression or of a set of unique values.

Syntax 1
AVG([ALL | DISTINCT] numeric-expression)

SQL functions

144 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax 2
AVG([ALL] numeric-expression) OVER (window-spec)

window-spec : see Syntax 2 instructions in the Remarks section below

Parameters
● [ALL] numeric-expression The expression whose average is calculated over the rows in each

group.

● DISTINCT clause Computes the average of the unique numeric values in each group.

Returns
Returns the NULL value for a group containing no rows.

Returns DOUBLE if the argument is DOUBLE, otherwise NUMERIC.

Remarks
This average does not include rows where the numeric-expression is the NULL value.

Syntax 2 represents usage as a window function in a SELECT statement. As such, elements of window-
spec can be specified either in the function syntax (inline), or in conjunction with a WINDOW clause in
the SELECT statement. See the window-spec definition provided in “WINDOW clause” on page 907.

For more information about using window functions in SELECT statements, including working examples,
see “Window functions” [SQL Anywhere Server - SQL Usage].

For more information about specifying a window specification in an OVER clause, see “Window
definition: inlining using the OVER clause and WINDOW clause” [SQL Anywhere Server - SQL Usage].

This function can generate an overflow error, resulting in an error being returned. You can use the CAST
function on numeric-expression to avoid the overflow error. See “CAST function [Data type
conversion]” on page 153.

See also
● “SUM function [Aggregate]” on page 342
● “COUNT function [Aggregate]” on page 170

Standards and compatibility
● SQL/2008 Syntax 1 is a core feature of the SQL/2008 standard, while Syntax 2 comprises part of

optional SQL/2008 language feature T611, "Basic OLAP operations". The ability to specify
DISTINCT over an expression that is not a column reference comprises part of optional SQL
language feature F561, "Full value expressions". SQL Anywhere also supports SQL/2008 language
feature F441, "Extended set function support", which permits operands of aggregate functions to be
arbitrary expressions possibly including outer references to expressions in other query blocks that are
not column references.

SQL Anywhere does not support optional SQL/2008 feature F442, "Mixed column references in set
functions". SQL Anywhere does not permit the arguments of an aggregate function to include both a

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 145

column reference from the query block containing the AVG function, combined with an outer
reference. See “Aggregate functions and outer references” [SQL Anywhere Server - SQL Usage].

Example
The following statement returns the value 49988.623200.

SELECT AVG(Salary) FROM Employees;

The following statement returns the average product price from the Products table:

SELECT AVG(DISTINCT UnitPrice) FROM Products;

The following statement returns an error with SQLSTATE 42W68 because the arguments of AVG
contain both a quantified expression from the subquery, and an outer reference (p.Quantity) from the
outer SELECT block:

select * from Products as p
where p.Quantity > (select avg(0.5 * p.Quantity + 0.5 * s.Quantity)
 from SalesOrderItems as s
 where s.ProductID = p.ProductID)

BASE64_DECODE function [String]

Decodes data using the MIME base64 format and returns the string as a LONG VARCHAR.

Syntax
BASE64_DECODE(string-expression)

Parameters
● string-expression The string that is to be decoded. Note that the string must be base64-encoded.

Returns
LONG VARCHAR

See also
● “BASE64_ENCODE function [String]” on page 147
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following inserts an image into an image table from an embedded SQL program. The input data (host
variable) must be base64 encoded.

EXEC SQL INSERT INTO images (image_data) VALUES (BASE64_DECODE (:img));

SQL functions

146 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

BASE64_ENCODE function [String]
Encodes data using the MIME base64 format and returns it as a 7-bit ASCII string.

Syntax
BASE64_ENCODE(string-expression)

Parameters
● string-expression The string that is to be encoded.

Returns
LONG VARCHAR

See also
● “BASE64_DECODE function [String]” on page 146
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following retrieves data from a table containing images and returns it in ASCII format. The resulting
string can be embedded into an email message, and then decoded by the recipient to retrieve the original
image.

SELECT BASE64_ENCODE(image_data) FROM IMAGES;

BIT_AND function [Aggregate]
Returns the bit-wise AND of the specified expression for each group of rows.

Syntax
BIT_AND(bit-expression)

Parameters
● bit-expression The object to be aggregated. The expression can be a VARBIT array, a BINARY

value, or an INTEGER (including all integer variants such as BIT and TINYINT).

Returns
The same data type as the argument. For each bit position compared, if every row has a 1 in the bit
position, return 1; otherwise, return 0.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 147

See also
● “BIT_OR function [Aggregate]” on page 149
● “BIT_XOR function [Aggregate]” on page 151
● “Bitwise operators” on page 11

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example generates four rows containing a CHAR column, then converts the values to
VARBIT.

SELECT BIT_AND(CAST(row_value AS VARBIT))
FROM dbo.sa_split_list('0001,0111,0100,0011')

The result 0000 is determined as follows:

1. A bitwise AND is performed between row 1 (0001) and row 2 (0111), resulting in 0001 (both values
had a 1 in the fourth bit).

2. A bitwise AND is performed between the result from the previous comparison (0001) and row 3
(0100), resulting in 0000 (neither value had a 1 in the same bit).

3. A bitwise AND is performed between the result from the previous comparison (0000) and row 4
(0011), resulting in 0000 (neither value had a 1 in the same bit).

BIT_LENGTH function [Bit array]

Returns the number of bits stored in the array.

Syntax
BIT_LENGTH(bit-expression)

Parameters
● bit-expression The bit expression for which the length is to be determined.

Returns
INT

See also
● “CHAR_LENGTH function [String]” on page 156

Standards and compatibility
● SQL/2008 Vendor extension.

SQL functions

148 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● SQL/1999 The BIT_LENGTH function was a core feature of the SQL/1999 standard. The BIT
VARYING data type was optional language feature F511 of the SQL/1999 standard. Support for
BIT_LENGTH and the BIT VARYING data type were removed in the SQL/2003 standard.

Example
The following statement returns the value 8:

SELECT BIT_LENGTH('01101011');

BIT_OR function [Aggregate]

Returns the bit-wise OR of the specified expression for each group of rows.

Syntax
BIT_OR(bit-expression)

Parameters
● bit-expression The object to be aggregated. The expression can be a VARBIT array, a BINARY

value, or an INTEGER (including all integer variants such as BIT and TINYINT).

Returns
The same data type as the argument. For each bit position compared, if any row has a 1 in the bit position,
this function returns 1; otherwise, it returns 0.

See also
● “BIT_AND function [Aggregate]” on page 147
● “BIT_XOR function [Aggregate]” on page 151
● “Bitwise operators” on page 11

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example generates four rows containing a CHAR column, then converts the values to
VARBIT.

SELECT BIT_OR(CAST(row_value AS VARBIT))
FROM dbo.sa_split_list('0001,0111,0100,0011')

The result 0111 is determined as follows:

1. A bitwise OR is performed between row 1 (0001) and row 2 (0111), resulting in 0111.

2. A bitwise OR is performed between the result from the previous comparison (0111) and row 3 (0100),
resulting in 0111.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 149

3. A bitwise OR is performed between the result from the previous comparison (0111) and row 4 (0011),
resulting in 0111.

BIT_SUBSTR function [Bit array]
Returns a sub-array of a bit array.

Syntax
BIT_SUBSTR(bit-expression [, start [, length]])

Parameters
● bit-expression The bit array from which the sub-array is to be extracted.

● start The start position of the sub-array to return. A negative starting position specifies the number
of bits from the end of the array instead of the beginning. The first bit in the array is at position 1.

● length The length of the sub-array to return. A positive length specifies that the sub-array ends
length bits to the right of the starting position, while a negative length returns, at most, length bits up
to, and including, the starting position, from the left of the starting position.

Returns
LONG VARBIT

Remarks
Both start and length can be either positive or negative. Using appropriate combinations of negative and
positive numbers, you can get a sub-array from either the beginning or end of the string. Using a negative
number for length does not impact the order of the bits returned in the sub-array.

If length is specified, the sub-array is restricted to that length. If start is zero and length is non-negative, a
start value of 1 is used. If start is zero and length is negative, a start value of -1 is used.

If length is not specified, selection continues to the end of the array.

The BIT_SUBSTR function is equivalent to, but faster than, the following:

CAST(SUBSTR(CAST(bit-expression AS VARCHAR),
start [, length])
AS VARBIT)

See also
● “SUBSTRING function [String]” on page 340

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns 1101:

SQL functions

150 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SELECT BIT_SUBSTR('001101', 3);

The following statement returns 10110:

SELECT BIT_SUBSTR('01011011101111011111', 2, 5);

The following statement returns 11111:

SELECT BIT_SUBSTR('01011011101111011111', -5, 5);

BIT_XOR function [Aggregate]

Returns the bit-wise XOR of the specified expression for each group of rows.

Syntax
BIT_XOR(bit-expression)

Parameters
● bit-expression The object to be aggregated. The expression can be a VARBIT array, a BINARY

value, or an INTEGER (including all integer variants such as BIT and TINYINT).

Returns
The same data type as the argument. For each bit position compared, if an odd number of rows have a 1 in
the bit position, return 1; otherwise, return 0.

See also
● “BIT_AND function [Aggregate]” on page 147
● “BIT_OR function [Aggregate]” on page 149
● “Bitwise operators” on page 11

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example generates four rows containing a CHAR column, then converts the values to
VARBIT.

SELECT BIT_XOR(CAST(row_value AS VARBIT))
FROM dbo.sa_split_list('0001,0111,0100,0011')

The result 0001 is determined as follows:

1. A bitwise exclusive OR (XOR) is performed between row 1 (0001) and row 2 (0111), resulting in 0110.

2. A bitwise XOR is performed between the result from the previous comparison (0110) and row 3
(0100), resulting in 0010.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 151

3. A bitwise XOR is performed between the result from the previous comparison (0010) and row 4
(0011), resulting in 0001.

BYTE_LENGTH function [String]
Returns the number of bytes in a string.

Syntax
BYTE_LENGTH(string-expression)

Parameters
● string-expression The string whose length is to be calculated.

Returns
INT

Remarks
Trailing white space characters in the string-expression are included in the length returned.

The return value of a NULL string is NULL.

If the string is in a multibyte character set, the BYTE_LENGTH value may differ from the number of
characters returned by CHAR_LENGTH.

This function supports NCHAR inputs and/or outputs.

See also
● “CHAR_LENGTH function [String]” on page 156
● “DATALENGTH function [System]” on page 179
● “LENGTH function [String]” on page 248
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension. The equivalent function in the SQL/2008 standard is the

OCTET_LENGTH function.

Example
The following statement returns the value 12.

SELECT BYTE_LENGTH('Test Message');

BYTE_SUBSTR function [String]
Returns a substring of a string. The substring is calculated using bytes, not characters.

SQL functions

152 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
BYTE_SUBSTR(string-expression, start [, length])

Parameters
● string-expression The string from which the substring is taken.

● start An integer expression indicating the start of the substring. A positive integer starts from the
beginning of the string, with the first character being position 1. A negative integer specifies a
substring starting from the end of the string, the final character being at position -1.

● length An integer expression indicating the length of the substring. A positive length specifies the
number of bytes to be taken starting at the start position. A negative length returns at most length
bytes up to, and including, the starting position, from the left of the starting position.

Returns
BINARY, VARCHAR, or NVARCHAR. The value returned depends on the type of string-expression.
Also, the arguments you specify determine if the returned value is LONG. For example, LONG is not
returned when you specify a constant < 32K for length.

Remarks
If length is specified, the substring is restricted to that number of bytes. Both start and length can be either
positive or negative. Using appropriate combinations of negative and positive numbers, you can get a
substring from either the beginning or end of the string.

If start is zero and length is non-negative, a start value of 1 is used. If start is zero and length is negative,
a start value of -1 is used.

See also
● “SUBSTRING function [String]” on page 340
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value Test.

SELECT BYTE_SUBSTR('Test Message', 1, 4);

CAST function [Data type conversion]
Returns the value of an expression converted to a supplied data type.

The CAST, CONVERT, HEXTOINT, and INTTOHEX functions can be used to convert to and from
hexadecimal values. For more information on using these functions, see “Converting to and from
hexadecimal values” on page 6.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 153

Syntax
CAST(expression AS datatype)

Parameters
● expression The expression to be converted.

● data type The target data type.

Returns
Depends on the data type requested.

Remarks
If you do not indicate a length for character string types, the database server chooses an appropriate
length. If neither precision nor scale is specified for a DECIMAL conversion, the database server selects
appropriate values.

If you use the CAST function to truncate strings, the string_rtruncation database option must be set to
OFF; otherwise, there will be an error. It is recommended that you use the LEFT function to truncate strings.

See also
● “Data type conversions” on page 112
● “CONVERT function [Data type conversion]” on page 165
● “LEFT function [String]” on page 247

Standards and compatibility
● SQL/2008 The CAST function is a core feature of the SQL/2008 standard. However, in SQL

Anywhere CAST supports a number of data type conversions that are not permitted by the SQL
standard. For example, in SQL Anywhere you can CAST an integer value to a DATE type, whereas in
the SQL standard this type conversion is not permitted. For more information, see “Data type
conversions” on page 112.

Example
The following function ensures a string is used as a date:

SELECT CAST('2000-10-31' AS DATE);

The value of the expression 1 + 2 is calculated, and the result is then cast into a single-character string.

SELECT CAST(1 + 2 AS CHAR);

CEILING function [Numeric]
Returns the first integer that is greater or equal to a given value. For positive numbers, this is known as
rounding up.

SQL functions

154 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
{ CEILING | CEIL } (numeric-expression)

Parameters
● numeric-expression The number whose ceiling is to be calculated.

Returns
DOUBLE

Remarks
This function converts its argument to DOUBLE, and performs the computation in double-precision floating-
point arithmetic.

See also
● “FLOOR function [Numeric]” on page 217

Standards and compatibility
● SQL/2008 The CEILING function comprises part of optional SQL/2008 language feature T621,

"Enhanced numeric functions".

Example
The following statement returns the value 60.

SELECT CEILING(59.84567);

CHAR function [String]

Returns the character with the ASCII value of a number.

Syntax
CHAR(integer-expression)

Parameters
● integer-expression The number to be converted to an ASCII character. The number must be in

the range 0 to 255, inclusive.

Returns
VARCHAR

Remarks
The character returned corresponds to the supplied numeric expression in the current database character
set, according to a binary sort order.

CHAR returns NULL for integer expressions with values greater than 255 or less than zero.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 155

See also
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value Y.

SELECT CHAR(89);

CHAR_LENGTH function [String]
Returns the number of characters in a string.

Syntax
CHAR_LENGTH (string-expression)

Parameters
● string-expression The string whose length is to be calculated.

Returns
INT

Remarks
Trailing white space characters are included in the length returned.

The return value of a NULL string is NULL.

If the string is in a multibyte character set, the value returned by the CHAR_LENGTH function may
differ from the number of bytes returned by the BYTE_LENGTH function.

Note
You can use the CHAR_LENGTH function and the LENGTH function interchangeably for CHAR,
VARCHAR, LONG VARCHAR, and NCHAR data types. However, you must use the LENGTH function
for BINARY and bit array data types.

This function supports NCHAR inputs and/or outputs.

See also
● “BYTE_LENGTH function [String]” on page 152
● “String functions” on page 136

SQL functions

156 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Standards and compatibility
● SQL/2008 CHAR_LENGTH is a core feature of the SQL/2008 standard. Using CHAR_LENGTH

over an expression of type NCHAR comprises part of optional SQL/2008 language feature F421.

Example
The following statement returns the value 8.

SELECT CHAR_LENGTH('Chemical');

CHARINDEX function [String]
Returns the position of one string in another.

Syntax
CHARINDEX(string-expression-1, string-expression-2)

Parameters
● string-expression-1 The string for which you are searching.

● string-expression-2 The string to be searched.

Returns
INT

Remarks
The first character of string-expression-1 is identified as 1. If the string being searched contains more than
one instance of the other string, then the CHARINDEX function returns the position of the first instance.

If the string being searched does not contain the other string, then the CHARINDEX function returns 0.

If any of the arguments are NULL, the result is NULL.

This function supports NCHAR inputs and/or outputs.

See also
● “SUBSTRING function [String]” on page 340
● “REPLACE function [String]” on page 309
● “LOCATE function [String]” on page 253
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns last and first names from the Surname and GivenName columns of the
Employees table, but only when the last name includes the letter K:

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 157

SELECT Surname, GivenName
FROM Employees
WHERE CHARINDEX('K', Surname) = 1;

Results returned:

Surname GivenName

Klobucher James

Kuo Felicia

Kelly Moira

COALESCE function [Miscellaneous]
Returns the first non-NULL expression from a list. This function is identical to the ISNULL function.

Syntax
COALESCE(expression, expression [, ...])

Parameters
● expression Any expression.

At least two expressions must be passed into the function, and all expressions must be comparable.

Returns
ANY

Remarks
The result is NULL only if all the arguments are NULL.

The parameters can be of any scalar type, but not necessarily same type.

For a more detailed description of how the database server processes this function, see “ISNULL function
[Miscellaneous]” on page 243.

See also
● “ISNULL function [Miscellaneous]” on page 243

Standards and compatibility
● SQL/2008 Core feature.

Example
The following statement returns the value 34.

SELECT COALESCE(NULL, 34, 13, 0);

SQL functions

158 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

COMPARE function [String]
Allows you to compare two character strings based on alternate collation rules.

Syntax
COMPARE(
string-expression-1,
string-expression-2
[, { collation-id
| collation-name[(collation-tailoring-string)] }]
)

Parameters
● string-expression-1 The first string expression.

● string-expression-2 The second string expression.

The string expression can only contain characters that are encoded in the database's character set.

● collation-id A variable or integer constant that specifies the sort order to use. You can only use a
collation-id for built-in collations. See “SORTKEY function [String]” on page 326.

If you do not specify a collation name or ID, the default is Default Unicode multilingual.

● collation-name A string or a character variable that specifies the name of the collation to use. You
can also specify char_collation or db_collation (for example, COMPARE('abc', 'ABC',
'char_collation');) to use the database's CHAR collation. Similarly, you can specify
nchar_collation to use the database's NCHAR collation. For a list of valid collation names, see
“SORTKEY function [String]” on page 326.

● collation-tailoring-string Optionally, you can specify collation tailoring options (collation-
tailoring-string) for additional control over the character comparison. These options take the form of
keyword=value pairs in parentheses, following the collation name. For example,
'UCA(locale=es;case=LowerFirst;accent=respect)'. The syntax for specifying
these options is identical to the syntax defined for the COLLATION clause of the CREATE
DATABASE statement. See “Collation tailoring options” [SQL Anywhere Server - Database
Administration].

Note
All the collation tailoring options are supported when specifying the UCA collation. For all other
collations, only case sensitivity tailoring option is supported.

Returns
An INTEGER, based on the collation rules that you choose:

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 159

Value Meaning

1 string-expression-1 is greater than string-expression-2

0 string-expression-1 is equal to string-expression-2

-1 string-expression-1 is less than string-expression-2

Remarks
The COMPARE function does not equate empty strings and strings containing only spaces, even if the
database has blank-padding enabled. The COMPARE function uses the SORTKEY function to generate
collation keys for comparison. Therefore, an empty string, a string with one space, and a string with two
spaces do not compare equally.

If either string-expression-1 or string-expression-2 is NULL, the result is NULL.

See also
● “SORTKEY function [String]” on page 326
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example performs three comparisons using the COMPARE function:

SELECT COMPARE('abc','ABC','UCA(case=LowerFirst)'),
 COMPARE('abc','ABC','UCA(case=Ignore)'),
 COMPARE('abc','ABC','UCA(case=UpperFirst)');

The values returned are -1, 0, 1, indicating the result of each comparison. The first comparison results in
-1, indicating that string-expression-2 ('ABC') is less than string-expresssion-1 ('abc'). This is because
case sensitivity is set to LowerFirst in the first COMPARE statement.

COMPRESS function [String]

Compresses the string and returns a value of type LONG BINARY.

Syntax
COMPRESS(string-expression [, 'compression-algorithm-alias'])

Parameters

● string-expression The string to be compressed. Binary values can be passed to this function. This
parameter is case sensitive, even in case-insensitive databases.

SQL functions

160 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● compression-algorithm-alias Alias for the algorithm to use for compression. The supported
values are zip and gzip (both are based on the same algorithm, but use different headers and trailers).

Zip is a widely supported compression algorithm. Gzip is compatible with the gzip utility on Unix,
whereas the zip algorithm is not.

Decompression must be performed with the same algorithm.

For more information, see “DECOMPRESS function [String]” on page 195.

Returns
LONG BINARY

Remarks
The value returned by the COMPRESS is not human-readable. If the value returned is longer than the
original string, its maximum size will not be larger than a 0.1% increase over the original string + 12
bytes. You can decompress a compressed string-expression using the DECOMPRESS function.

If you are storing compressed values in a table, the column should be BINARY or LONG BINARY so
that character set conversion is not performed on the data.

See also
● “DECOMPRESS function [String]” on page 195
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example returns the length of the binary string created by compressing the string 'Hello
World' using the gzip algorithm. This example can be useful when you want to determine whether a value
has a shorter length when compressed.

SELECT LENGTH(COMPRESS('Hello world', 'gzip'));

CONFLICT function [Miscellaneous]

Indicates if a column is a source of conflict for an UPDATE being performed against a consolidated
database in a SQL Remote environment.

Syntax
CONFLICT(column-name)

Parameters
● column-name The name of the column being tested for conflicts.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 161

Returns
Returns TRUE if the column appears in the VERIFY list of an UPDATE statement executed by the SQL
Remote Message Agent and if the value provided in the VALUES list of that statement does not match
the original value of the column in the row being updated. Otherwise, returns FALSE.

See also
● “CREATE TRIGGER statement” on page 614
● “Default resolution for update conflicts” [SQL Remote]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The CONFLICT function is intended for use in SQL Remote RESOLVE UPDATE triggers to avoid error
messages. To illustrate the use of the CONFLICT function, consider the following table:

CREATE TABLE Admin (
 PKey bigint NOT NULL DEFAULT GLOBAL AUTOINCREMENT,
 TextCol CHAR(20) NULL, PRIMARY KEY (PKey));

Assume that consolidated and remote databases both have the following row in the Admin table:

1, 'Initial'

Now, at the consolidated database, update the row as follows:

UPDATE Admin SET TextCol = 'Consolidated Update' WHERE PKey = 1;

At the remote database, update the row to a different value as follows:

UPDATE Admin SET TextCol = 'Remote Update' WHERE PKey = 1;

Next, run dbremote on the remote database. It generates a message file with the following statements in it,
to be executed at the consolidated database:

UPDATE Admin SET TextCol='Remote Update'
VERIFY (TextCol)
VALUES ('Initial')
WHERE PKey=1;

When the SQL Remote Message Agent runs at the consolidated database and applies this UPDATE
statement, SQL Anywhere uses the VERIFY and VALUES clause to determine whether a RESOLVE
UPDATE trigger will fire. A RESOLVE UPDATE trigger fires only when the update is executed from
the SQL Remote Message Agent against a consolidated database. Here is a RESOLVE UPDATE trigger:

CREATE TRIGGER ResolveUpdateAdmin
RESOLVE UPDATE ON Admin
REFERENCING OLD AS OldConsolidated
 NEW AS NewRemote
 REMOTE as OldRemote
FOR EACH ROW BEGIN
 MESSAGE 'OLD';
 MESSAGE OldConsolidated.PKey || ',' || OldConsolidated.TextCol;
 MESSAGE 'NEW';

SQL functions

162 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 MESSAGE NewRemote.PKey || ',' || NewRemote.TextCol;
 MESSAGE 'REMOTE';
 MESSAGE OldRemote.PKey || ',' || OldRemote.TextCol;
END;

The RESOLVE UPDATE trigger fires because the current value of the TextCol column at the
consolidated database ('Consolidated Update') does not match the value in the VALUES clause
for the associated column ('Initial').

This trigger results in a failure because the PKey column was not modified in the UPDATE statement
executed on the remote, so there is no OldRemote.PKey value accessible from this trigger.

The CONFLICT function helps to avoid this error by returning the following values:

● If there is no OldRemote.PKey value, return FALSE.

● If there is an OldRemote.PKey value, but it matches OldConsolidated.PKey, return FALSE.

● If there is an OldRemote.PKey value, and it is different than OldConsolidated.PKey, return TRUE.

You can use the CONFLICT function to rewrite the trigger as follows and avoid the error:

CREATE TRIGGER ResolveUpdateAdmin
RESOLVE UPDATE ON Admin
REFERENCING OLD AS OldConsolidated
 NEW AS NewRemote
 REMOTE as OldRemote
FOR EACH ROW BEGIN
 message 'OLD';
 message OldConsolidated.PKey || ',' || OldConsolidated.TextCol;
 message 'NEW';
 message NewRemote.PKey || ',' || NewRemote.TextCol;
 message 'REMOTE';
 if CONFLICT(PKey) then
 message OldRemote.PKey;
 end if;
 if CONFLICT(TextCol) then
 message OldRemote.TextCol;
 end if;
END;

CONNECTION_EXTENDED_PROPERTY function [String]
Returns the value of the given property. Allows an optional property-specific string parameter to be specified.

Syntax
CONNECTION_EXTENDED_PROPERTY(
{ property-id | property-name }
[, property-specific-argument [, connection-id]]
)

Parameters
● property-id The connection property ID.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 163

● property-name The connection property name. Possible property names are CharSet and
NcharCharSet.

● property-specific-argument Optional property-specific string parameter associated with the
following connection properties.

○ CharSet Returns the CHAR character set label for the connection as it is known by the
specified standard. The possible values include: ASE, IANA, MIME, JAVA, WINDOWS,
UTR22, IBM, and ICU. The default is IANA unless the database connection was made through
TDS in which case ASE is the default.

○ NcharCharSet Returns the NCHAR character set label for the connection as it is known by the
specified standard. The possible values are the same as listed above for CharSet.

● connection-id The connection ID number of a database connection. The ID number for the current
connection is used if a value is not specified.

Returns
Returns extended connection properties. The returned value is a VARCHAR.

Remarks
The CONNECTION_EXTENDED_PROPERTY function is similar to the CONNECTION_PROPERTY
function except that it allows an optional property-specific string parameter to be specified. The
interpretation of the property-specific argument depends on the property ID or name specified in the first
argument.

You can use the CONNECTION_EXTENDED_PROPERTY function to return the value for any
connection property. However, extended information is only available for the extended properties.

See also
● “Connection properties” [SQL Anywhere Server - Database Administration]
● “CONNECTION_PROPERTY function [System]” on page 164
● “DB_EXTENDED_PROPERTY function [System]” on page 189
● “DB_PROPERTY function [System]” on page 194

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example returns the CHAR character set of the current connection as it is known by the
Java standard:

SELECT CONNECTION_EXTENDED_PROPERTY('charset', 'Java');

CONNECTION_PROPERTY function [System]
Returns the value of a given connection property as a string.

SQL functions

164 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
CONNECTION_PROPERTY(
{ integer-expression-1 | string-expression }
[, integer-expression-2])

Parameters
● integer-expression-1 It is usually more convenient to supply a string expression as the first

argument. If you do supply an integer-expression, it is the connection property ID. You can determine
this using the PROPERTY_NUMBER function.

● string-expression The connection property Name. Either the property ID or the property name
must be specified.

For a list of connection properties, see “Connection properties” [SQL Anywhere Server - Database
Administration].

● integer-expression-2 The connection ID of the current database connection. The current
connection is used if this argument is omitted.

Returns
VARCHAR, LONG VARCHAR

Remarks
The current connection is used if the second argument is omitted.

See also
● “Connection properties” [SQL Anywhere Server - Database Administration]
● “PROPERTY_NUMBER function [System]” on page 287

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the number of prepared statements being maintained.

SELECT CONNECTION_PROPERTY('PrepStmt');

CONVERT function [Data type conversion]
Returns an expression converted to a supplied data type.

The CAST, CONVERT, HEXTOINT, and INTTOHEX functions can be used to convert to and from
hexadecimal values. For more information on using these functions, see “Converting to and from
hexadecimal values” on page 6.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 165

Syntax
CONVERT(datatype, expression [, format-style])

Parameters
● datatype The data type to which the expression is converted.

● expression The expression to be converted.

● format-style The style code to apply to the outputted value. Use this parameter when converting
strings to date or time data types, and vice versa. The table below shows the supported style codes,
followed by a representation of the output format produced by that style code. The style codes are
separated into two columns, depending on whether the century is included in the output format (for
example, 06 versus 2006).

Without century (yy) style
codes

With century (yyyy) style co-
des

Output format

- 0 or 100 Mmm dd yyyy hh:nnAA

1 101 mm/dd/yy[yy]

2 102 [yy]yy.mm.dd

3 103 dd/mm/yy[yy]

4 104 dd.mm.yy[yy]

5 105 dd-mm-yy[yy]

6 106 dd Mmm yy[yy]

7 107 Mmm dd, yy[yy]

8 108 hh:nn:ss

- 9 or 109 Mmm dd yyyy hh:nn:ss:sssAA

10 110 mm-dd-yy[yy]

11 111 [yy]yy/mm/dd

12 112 [yy]yymmdd

- 13 or 113 dd Mmm yyyy hh:nn:ss:sss (24 hour
clock, Europe default + milliseconds, 4-
digit year)

- 14 or 114 hh:nn:ss:sss (24 hour clock)

SQL functions

166 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Without century (yy) style
codes

With century (yyyy) style co-
des

Output format

- 20 or 120 yyyy-mm-dd hh:nn:ss (24-hour clock,
ODBC canonical, 4-digit year)

- 21 or 121 yyyy-mm-dd hh:nn:ss.sss (24 hour
clock, ODBC canonical with millisec-
onds, 4-digit year)

Returns
Depends on the data type specified.

Remarks
If no format-style argument is provided, style code 0 is used.

For a description of the styles produced by each output symbol (such as Mmm), see “date_format option”
[SQL Anywhere Server - Database Administration].

See also
● “CAST function [Data type conversion]” on page 153
● “CSCONVERT function [String]” on page 176

Standards and compatibility
● SQL/2008 Vendor extension. The CONVERT function is defined in the SQL/2008 standard.

However, in the SQL standard the purpose of CONVERT is to perform a transcoding of the input
string expression to a different character set, which is implemented in SQL Anywhere as the
CSCONVERT function.

Example
The following statements illustrate the use of format style.

SELECT CONVERT(CHAR(20), OrderDate, 104) FROM SalesOrders;

OrderDate

16.03.2000

20.03.2000

23.03.2000

25.03.2000

...

SELECT CONVERT(CHAR(20), OrderDate, 7) FROM SalesOrders;

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 167

OrderDate

Mar 16, 00

Mar 20, 00

Mar 23, 00

Mar 25, 00

...

The following statement illustrates conversion to an integer, and returns the value 5.

SELECT CONVERT(integer, 5.2);

CORR function [Aggregate]
Returns the correlation coefficient of a set of number pairs.

Syntax
CORR(dependent-expression, independent-expression)

Parameters
● dependent-expression The variable that is affected by the independent variable.

● independent-expression The variable that influences the outcome.

Returns
DOUBLE

Remarks
This function converts its arguments to DOUBLE, and performs the computation in double-precision
floating-point arithmetic. If the function is applied to an empty set, then it returns NULL.

Both dependent-expression and independent-expression are numeric. The function is applied to the set of
(dependent-expression, independent-expression) after eliminating the pairs for which either dependent-
expression or independent-expression is NULL. The following computation is made:

COVAR_POP (y, x) / STDDEV_POP (y) * STDDEV_POP (x)

where y represents the dependent-expression and x represents the independent-expression.

SQL functions

168 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “Aggregate functions” on page 127
● “COVAR_POP function [Aggregate]” on page 173
● “STDDEV_POP function [Aggregate]” on page 333

Standards and compatibility
● SQL/2008 The CORR function comprises part of optional SQL/2008 language feature T621,

"Enhanced numeric functions".

Example
The following example performs a correlation to discover whether age is associated with income level.
This function returns the value 0.44022675645996.

SELECT CORR(Salary, (YEAR(NOW()) - YEAR(BirthDate))) FROM Employees;

COS function [Numeric]
Returns the cosine of the angle in radians given by its argument.

Syntax
COS(numeric-expression)

Parameters
● numeric-expression The angle, in radians.

Returns
This function converts its argument to DOUBLE, performs the computation in double-precision floating-
point arithmetic, and returns a DOUBLE as the result. If the parameter is NULL, the result is NULL.

See also
● “ACOS function [Numeric]” on page 140
● “COT function [Numeric]” on page 170
● “SIN function [Numeric]” on page 324
● “TAN function [Numeric]” on page 346

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value of the cosine of an angle 0.52 radians.

SELECT COS(0.52);

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 169

COT function [Numeric]

Returns the cotangent of the angle in radians given by its argument.

Syntax
COT(numeric-expression)

Parameters
● numeric-expression The angle, in radians.

Returns
This function converts its argument to DOUBLE, performs the computation in double-precision floating-
point arithmetic, and returns a DOUBLE as the result. If the parameter is NULL, the result is NULL.

See also
● “COS function [Numeric]” on page 169
● “SIN function [Numeric]” on page 324
● “TAN function [Numeric]” on page 346

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the cotangent value of 0.52.

SELECT COT(0.52);

COUNT function [Aggregate]

Counts the number of rows in a group depending on the specified parameters.

Syntax 1
COUNT([* | [ALL | DISTINCT] expression])

Syntax 2
COUNT([* | [ALL]expression]) OVER (window-spec)

window-spec : see Syntax 2 instructions in the Remarks section below

Parameters
● * Return the number of rows in each group. COUNT(*) and COUNT() are semantically equivalent.

● [ALL] expression Return the number of rows in each group where the value of expression is not
null.

SQL functions

170 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● DISTINCT expression Return the number of distinct values of expression for all of the rows in
each group where expression is not null.

Returns
The COUNT function returns a value of type INT.

COUNT never returns the value NULL. If a group contains no rows, or if there are no non-null values of
expression in a group, then COUNT returns 0.

Remarks
The COUNT function returns a maximum value of 2147483647. Use the COUNT_BIG function when
counting large result sets, the result might have more rows, or there is a possibility of overflow.

Syntax 2 represents usage as a window function in a SELECT statement. As such, elements of window-
spec can be specified either in the function syntax (inline), or in conjunction with a WINDOW clause in
the SELECT statement. See the window-spec definition in “WINDOW clause” on page 907.

For more information about using window functions in SELECT statements, including working examples,
see “Window functions” [SQL Anywhere Server - SQL Usage].

For more information about specifying a window specification in an OVER clause, see “Window
definition: inlining using the OVER clause and WINDOW clause” [SQL Anywhere Server - SQL Usage].

See also
● “AVG function [Aggregate]” on page 144
● “SUM function [Aggregate]” on page 342
● “COUNT_BIG function [Aggregate]” on page 172

Standards and compatibility
● SQL/2008 Core feature. When used as a window function (Syntax 2), COUNT comprises part of

optional SQL/2008 language feature T611, "Basic OLAP operations".

The ability to specify DISTINCT over an expression that is not a column reference comprises part of
optional SQL language feature F561, "Full value expressions". SQL Anywhere also supports SQL/
2008 language feature F441, "Extended set function support", which permits operands of aggregate
functions to be arbitrary expressions possibly including outer references to expressions in other query
blocks that are not column references.

SQL Anywhere does not support optional SQL/2008 feature F442, "Mixed column references in set
functions". SQL Anywhere does not permit the arguments of an aggregate function to include both a
column reference from the query block containing the COUNT function, combined with an outer
reference. See “Aggregate functions and outer references” [SQL Anywhere Server - SQL Usage]. For
an example, see the “AVG function [Aggregate]” [UltraLite - Database Management and Reference]

Example
The following statement returns each unique city, and the number of employees working in that city.

SELECT City, COUNT(*) FROM Employees GROUP BY City;

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 171

COUNT_BIG function [Aggregate]
Counts the number of rows in a group depending on the specified parameters.

Syntax 1
COUNT_BIG([* | [ALL | DISTINCT] expression])

Syntax 2
COUNT_BIG([* | [ALL] expression]) OVER (window-spec)

window-spec : see Syntax 2 instructions in the Remarks section below

Parameters
● * Return the number of rows in each group. COUNT_BIG(*) and COUNT_BIG() are semantically

equivalent.

● [ALL] expression Return the number of rows in each group where the value of expression is not
null.

● DISTINCT expression Return the number of distinct values of expression for all of the rows in
each group where expression is not null.

Returns
COUNT_BIG returns a value of type BIGINT.

COUNT_BIG never returns the value NULL. If a group contains no rows, or if there are no non-null
values of expression in a group, then COUNT_BIG returns 0.

Remarks
It is recommended that you use the COUNT_BIG function when counting large result sets, the result
might have more rows, or there is a possibility of overflow. Otherwise, use the COUNT function, which
has a maximum value of 2147483647.

Syntax 2 represents usage as a window function in a SELECT statement. As such, elements of window-
spec can be specified either in the function syntax (inline), or in conjunction with a WINDOW clause in
the SELECT statement. See the window-spec definition in “WINDOW clause” on page 907.

For more information about using window functions in SELECT statements, including working examples,
see “Window functions” [SQL Anywhere Server - SQL Usage].

For more information about specifying a window specification in an OVER clause, see “Window
definition: inlining using the OVER clause and WINDOW clause” [SQL Anywhere Server - SQL Usage].

See also
● “AVG function [Aggregate]” on page 144
● “SUM function [Aggregate]” on page 342
● “COUNT function [Aggregate]” on page 170

SQL functions

172 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Standards and compatibility
● SQL/2008 Vendor extension.

SQL Anywhere does not support optional SQL/2008 feature F442, "Mixed column references in set
functions". SQL Anywhere does not permit the arguments of an aggregate function to include both a
column reference from the query block containing the COUNT_BIG function, combined with an outer
reference. See “Aggregate functions and outer references” [SQL Anywhere Server - SQL Usage]. For
an example, see the “AVG function [Aggregate]” [UltraLite - Database Management and Reference]

Example
The following statement returns each unique city, and the number of employees working in that city.

SELECT City, COUNT_BIG(*) FROM Employees GROUP BY City;

COUNT_SET_BITS function [Bit array]
Returns a count of the number of bits set to 1 (TRUE) in the array.

Syntax
COUNT_SET_BITS(bit-expression)

Parameters
● bit-expression The bit array for which to determine the set bits.

Returns
UNSIGNED INT

Remarks
Returns NULL if bit-expression is NULL.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 4:

SELECT COUNT_SET_BITS('00110011');

The following statement returns the value 12:

SELECT COUNT_SET_BITS('0011001111111111');

COVAR_POP function [Aggregate]
Returns the population covariance of a set of number pairs.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 173

Syntax 1
COVAR_POP(dependent-expression, independent-expression)

Syntax 2
COVAR_POP(dependent-expression, independent-expression)
OVER (window-spec)

window-spec : see Syntax 2 instructions in the Remarks section below

Parameters
● dependent-expression The variable that is affected by the independent variable.

● independent-expression The variable that influences the outcome.

Returns
DOUBLE

Remarks
This function converts its arguments to DOUBLE, and performs the computation in double-precision
floating-point arithmetic. If the function is applied to an empty set, then it returns NULL.

Both dependent-expression and independent-expression are numeric. The function is applied to the set of
(dependent-expression, independent-expression) pairs after eliminating all pairs for which either dependent-
expression or independent-expression is NULL. The following computation is then made:

(SUM(y * x) - SUM(x) * SUM(y) / n) / n

where y represents the dependent-expression and x represents the independent-expression.

For more information about the statistical computation performed, see “Mathematical formulas for the
aggregate functions” [SQL Anywhere Server - SQL Usage].

Syntax 2 represents usage as a window function in a SELECT statement. As such, elements of window-
spec can be specified either in the function syntax (inline), or in conjunction with a WINDOW clause in
the SELECT statement. See the window-spec definition provided in “WINDOW clause” on page 907.

For more information about using window functions in SELECT statements, including working examples,
see “Window functions” [SQL Anywhere Server - SQL Usage].

For more information about specifying a window specification in an OVER clause, see “Window
definition: inlining using the OVER clause and WINDOW clause” [SQL Anywhere Server - SQL Usage].

See also
● “COVAR_SAMP function [Aggregate]” on page 175
● “SUM function [Aggregate]” on page 342

SQL functions

174 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Standards and compatibility
● SQL/2008 The COVAR_POP function comprises part of optional SQL/2008 language feature

T621, "Enhanced numeric functions".

Example
The following example measures the strength of association between employees' age and salary. This
function returns the value 73785.84005866687.

SELECT COVAR_POP(Salary, (YEAR(NOW()) - YEAR(BirthDate)))
FROM Employees;

COVAR_SAMP function [Aggregate]

Returns the sample covariance of a set of number pairs.

Syntax 1
COVAR_SAMP(dependent-expression, independent-expression)

Syntax 2
COVAR_SAMP(dependent-expression, independent-expression)
OVER (window-spec)

window-spec : see Syntax 2 instructions in the Remarks section below

Parameters
● dependent-expression The variable that is affected by the independent variable.

● independent-expression The variable that influences the outcome.

Returns
DOUBLE

Remarks
This function converts its arguments to DOUBLE, and performs the computation in double-precision
floating-point arithmetic. If the function is applied to an empty set, then it returns NULL.

Both dependent-expression and independent-expression are numeric. The function is applied to the set of
(dependent-expression, independent-expression) pairs after eliminating all pairs for which either dependent-
expression or independent-expression is NULL.

For more information about the statistical computation performed, see “Mathematical formulas for the
aggregate functions” [SQL Anywhere Server - SQL Usage].

Syntax 2 represents usage as a window function in a SELECT statement. As such, elements of window-
spec can be specified either in the function syntax (inline), or in conjunction with a WINDOW clause in
the SELECT statement. See the window-spec definition provided in “WINDOW clause” on page 907.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 175

For more information about using window functions in SELECT statements, including working examples,
see “Window functions” [SQL Anywhere Server - SQL Usage].

For more information about specifying a window specification in an OVER clause, see “Window
definition: inlining using the OVER clause and WINDOW clause” [SQL Anywhere Server - SQL Usage].

See also
● “COVAR_POP function [Aggregate]” on page 173
● “SUM function [Aggregate]” on page 342

Standards and compatibility
● SQL/2008 The COVAR_SAMP function comprises part of optional SQL/2008 language feature

T621, "Enhanced numeric functions".

Example
The following example returns the value 74782.9460054052.

SELECT COVAR_SAMP(Salary, (2008 - YEAR(BirthDate)))
FROM Employees;

CSCONVERT function [String]

Converts strings between character sets.

Syntax
CSCONVERT(
string-expression,
target-charset-string [, source-charset-string [, options]])

Parameters
● string-expression The string.

● target-charset-string The destination character set. target-charset-string can be one of the
following:

○ os_charset Alias for the character set used by the operating system hosting the database server.

○ char_charset Alias for the CHAR character set used by the database.

○ nchar_charset Alias for the NCHAR character set used by the database.

○ any other supported character set label You can specify any of the SQL Anywhere
supported character set labels.

○ source-charset-string The character set used by the original string-expression. The default is
db_charset (the database character set). source-charset-string can be one of the following:

SQL functions

176 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● os_charset Alias for the character set used by the operating system.

● char_charset Alias for the CHAR character set used by the database.

● nchar_charset Alias for the NCHAR character set used by the database.

● any other supported character set label You can specify any of the SQL Anywhere
supported character set labels.

○ options You can specify one of the following options:

● Read or write a BOM By default, the values are set to read_bom=on and write_bom=off.
You can change the values to read_bom=off and write_bom=on.

Returns
LONG BINARY

Remarks
You can view the list of character sets supported by SQL Anywhere by executing the following command:

dbinit -le

For more information about the character set labels you can use with this function, see “Supported
character sets” [SQL Anywhere Server - Database Administration].

See also
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension. In the SQL/2008 standard, conversion of string data from one charset

to another is accomplished with the CONVERT function (not to be confused with SQL Anywhere's
CONVERT function) which has different arguments than CSCONVERT.

Examples
This fragment converts the mytext column from the Traditional Chinese character set to the Simplified
Chinese character set:

SELECT CSCONVERT(mytext, 'cp936', 'cp950')
FROM mytable;

This fragment converts the mytext column from the database character set to the Simplified Chinese
character set:

SELECT CSCONVERT(mytext, 'cp936')
FROM mytable;

If a file name is stored in the database, it is stored in the database character set. If the server is going to
read from or write to a file whose name is stored in a database (for example, in an external stored
procedure), the file name must be explicitly converted to the operating system character set before the file
can be accessed. File names stored in the database and retrieved by the client are converted automatically
to the client character set, so explicit conversion is not necessary.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 177

This fragment converts the value in the filename column from the database character set to the operating
system character set:

SELECT CSCONVERT(filename, 'os_charset')
FROM mytable;

A table contains a list of file names. An external stored procedure takes a file name from this table as a
parameter and reads information directly out of that file. The following statement works when character
set conversion is not required:

SELECT MYFUNC(filename)
FROM mytable;

The mytable clause indicates a table with a filename column. However, if you need to convert the file
name to the character set of the operating system, you would use the following statement.

SELECT MYFUNC(csconvert(filename, 'os_charset'))
FROM mytable;

CUME_DIST function [Ranking]
Computes the relative position of one value among a group of rows.

Syntax
CUME_DIST() OVER (window-spec)

window-spec : see the Remarks section below

Returns
A DOUBLE value between 0 and 1

Remarks
Composite sort keys are not currently allowed in the CUME_DIST function. You can use composite sort
keys with any of the other rank functions.

Elements of window-spec can be specified either in the function syntax (inline), or in conjunction with a
WINDOW clause in the SELECT statement. When used as a window function, you must specify an
ORDER BY clause, you may specify a PARTITION BY clause, however, you can not specify a ROWS
or RANGE clause. See the window-spec definition provided in “WINDOW clause” on page 907.

For more information about using window functions in SELECT statements, including working examples,
see “Window functions” [SQL Anywhere Server - SQL Usage].

For more information about specifying a window specification in an OVER clause, see “Window
definition: inlining using the OVER clause and WINDOW clause” [SQL Anywhere Server - SQL Usage].

SQL functions

178 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “DENSE_RANK function [Ranking]” on page 198
● “PERCENT_RANK function [Ranking]” on page 280
● “RANK function [Ranking]” on page 290

Standards and compatibility
● SQL/2008 The CUME_DIST function comprises part of optional SQL/2008 language feature

T612, "Advanced OLAP operations".

Example
The following example returns a result set that provides a cumulative distribution of the salaries of
employees who live in California.

SELECT DepartmentID, Surname, Salary,
CUME_DIST() OVER (PARTITION BY DepartmentID
ORDER BY Salary DESC) "Rank"
FROM Employees
WHERE State IN ('CA');

Here is the result set:

DepartmentID Surname Salary Rank

200 Savarino 72300.000 0.333333333333333

200 Clark 45000.000 0.666666666666667

200 Overbey 39300.000 1

DATALENGTH function [System]
Returns the length, in bytes, of the underlying storage for the result of an expression.

Syntax
DATALENGTH(expression)

Parameters
● expression Usually a column name. If expression is a string constant, you must enclose it in quotes.

Returns
UNSIGNED INT

Remarks
The return values of the DATALENGTH function are as follows:

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 179

Data type DATALENGTH

SMALLINT 2

INTEGER 4

DOUBLE 8

CHAR Length of the data

BINARY Length of the data

This function supports NCHAR inputs and outputs.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the length of the longest string in the CompanyName column.

SELECT MAX(DATALENGTH(CompanyName))
FROM Customers;

The following statement returns the length of the string '8sdofinsv8s7a7s7gehe4h':

SELECT DATALENGTH('8sdofinsv8s7a7s7gehe4h');

DATE function [Date and time]

Converts the expression into a date, and removes any hours, minutes, or seconds.

For information about controlling the interpretation of date formats, see “date_order option” [SQL
Anywhere Server - Database Administration].

Syntax
DATE(expression)

Returns
DATE

Parameters
● expression The value to be converted to date format, typically a string.

Standards and compatibility
● SQL/2008 Vendor extension.

SQL functions

180 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example
The following statement returns the value 1999-01-02 as a date.

SELECT DATE('1999-01-02 21:20:53');

The following statement returns the create dates of all the objects listed in the SYSOBJECT system view:

SELECT DATE(creation_time) FROM SYSOBJECT;

DATEADD function [Date and time]

Returns a TIMESTAMP or TIMESTAMP WITH TIME ZONE value produced by adding a date part to
its argument.

Syntax
DATEADD(date-part, integer-expression, timestamp-expression)

date-part :
year
| quarter
| month
| week
| day
| dayofyear
| hour
| minute
| second
| millisecond
| microsecond

Parameters
● date-part The date part that integer-expression represents.

For a complete listing of allowed date parts, see “Specifying date parts” on page 130.

● integer-expression The number of date-part values to be added to timestamp-expression. Note
that integer-expression can be any numeric type, but its value is truncated to an INTEGER.

● timestamp-expression The TIMESTAMP or TIMESTAMP WITH TIME ZONE value to be
modified.

Returns
TIMESTAMP WITH TIME ZONE if timestamp-expression is a TIMESTAMP WITH TIME ZONE;
otherwise TIMESTAMP.

Standards and compatibility
● SQL/2008 Vendor extension.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 181

Example
The following statement returns the TIMESTAMP value 1995-11-02 00:00:00.000.

SELECT DATEADD(month, 102, '1987/05/02');

The following statement returns the TIMESTAMP value 1987-05-02 04:00:00.000.

SELECT DATEADD(hour, 4, '1987/05/02');

The following statement returns the TIMESTAMP WITH TIME ZONE value 1987-05-06
11:33:00.000+04:00

SELECT DATEADD(day, 4, CAST('1987/05/02 11:33:00.000000+04:00' as TIMESTAMP
WITH TIME ZONE));

DATEDIFF function [Date and time]

Returns the interval between two dates.

Syntax
DATEDIFF(date-part, date-expression-1, date-expression-2)

date-part :
year
| quarter
| month
| week
| day
| dayofyear
| hour
| minute
| second
| millisecond
| microsecond

Parameters
● date-part Specifies the date part in which the interval is to be measured.

Choose one of the date objects listed above. For a complete list of date parts, see “Specifying date
parts” on page 130.

● date-expression-1 The starting date for the interval. This value is subtracted from date-
expression-2 to return the number of date-parts between the two arguments.

● date-expression-2 The ending date for the interval. Date-expression-1 is subtracted from this
value to return the number of date-parts between the two arguments.

Returns
INT

SQL functions

182 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
This function calculates the number of date parts between two specified dates. The result is a signed
integer value equal to (date2 - date1), in date parts.

The DATEDIFF function results are truncated, not rounded, when the result is not an even multiple of the
date part.

When you use day as the date part, the DATEDIFF function returns the number of midnights between the
two times specified, including the second date but not the first.

When you use month as the date part, the DATEDIFF function returns the number of first-of-the-months
between two dates, including the second date but not the first.

When you use week as the date part, the DATEDIFF function returns the number of Sundays between the
two dates, including the second date but not the first.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns 1.

SELECT DATEDIFF(hour, '4:00AM', '5:50AM');

The following statement returns 102.

SELECT DATEDIFF(month, '1987/05/02', '1995/11/15');

The following statement returns 0.

SELECT DATEDIFF(day, '00:00', '23:59');

The following statement returns 4.

SELECT DATEDIFF(day,
 '1999/07/19 00:00',
 '1999/07/23 23:59');

The following statement returns 0.

SELECT DATEDIFF(month, '1999/07/19', '1999/07/23');

The following statement returns 1.

SELECT DATEDIFF(month, '1999/07/19', '1999/08/23');

DATEFORMAT function [Date and time]
Returns a string representing a date expression in the specified format.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 183

Syntax
DATEFORMAT(datetime-expression, string-expression)

Parameters
● datetime-expression The datetime to be converted.

● string-expression The format of the converted date.

For information about date format descriptions, see “timestamp_format option” [SQL Anywhere
Server - Database Administration].

This function supports NCHAR inputs and/or outputs.

Returns
VARCHAR

Remarks
Any allowable date format can be used for the string-expression.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value Jan 01, 1989.

SELECT DATEFORMAT('1989-01-01', 'Mmm dd, yyyy');

DATENAME function [Date and time]
Returns the name of the specified part (such as the month June) of a TIMESTAMP or TIMESTAMP
WITH TIME ZONE value, as a character string.

Syntax
DATENAME(date-part, timestamp-expression)

Parameters
● date-part The date part to be named.

For a complete listing of allowed date parts, see “Specifying date parts” on page 130.

● timestamp-expression The TIMESTAMP or TIMESTAMP WITH TIME ZONE value for which
the date part name is to be returned. For meaningful results, timestamp-expression should contain the
requested date-part.

Returns
VARCHAR

SQL functions

184 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
The DATENAME function returns a string, even if the result is numeric, such as 23 for the day. When the
date part TZ OFFSET is specified, DATENAME returns the offset as a string of the form: +HH:NN.

See also
● “DATEPART function [Date and time]” on page 185

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value May.

SELECT DATENAME(month, '1987/05/02');

DATEPART function [Date and time]
Returns a portion of a TIMESTAMP or TIMESTAMP WITH TIME ZONE value.

Syntax
DATEPART(date-part, timestamp-expression)

Parameters
● date-part The date part to be returned.

For a complete listing of allowed date parts, see “Specifying date parts” on page 130.

● timestamp-expression The TIMESTAMP or TIMESTAMP WITH TIME ZONE value for which
the part is to be returned.

Returns
INT

Remarks
For meaningful results timestamp-expression should contain the required date-part portion.

The numbers that correspond to week days depend on the setting of the first_day_of_week option. By
default Sunday=7.

See also
● “first_day_of_week option” [SQL Anywhere Server - Database Administration]
● “SET statement [T-SQL]” on page 851

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 185

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 5.

SELECT DATEPART(month , '1987/05/02');

The following example creates a table, TableStatistics, and inserts into it the total number of sales orders
per year as stored in the SalesOrders table:

CREATE TABLE TableStatistics (
 ID INTEGER NOT NULL DEFAULT AUTOINCREMENT,
 Year INT,
 NumberOrders INT);
INSERT INTO TableStatistics (Year, NumberOrders)
 SELECT DATEPART(Year, OrderDate), COUNT(*)
 FROM SalesOrders
 GROUP BY DATEPART(Year, OrderDate);

DATETIME function [Date and time]
Converts an expression into a TIMESTAMP value.

Syntax
DATETIME(expression)

Parameters
● expression The expression to be converted. It is generally a string.

Returns
TIMESTAMP

Remarks
Attempts to convert numerical values return an error.

See also
● “CAST function [Data type conversion]” on page 153

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns a timestamp with value 1998-09-09 12:12:12.000.

SELECT DATETIME('1998-09-09 12:12:12.000');

SQL functions

186 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

DAY function [Date and time]

Returns the day of the month of its argument as an integer between 1 and 31.

Syntax
DAY(date-expression)

Parameters
● date-expression The date as a DATE data type.

Returns
SMALLINT

Remarks
The DAY function returns an integer between 1 and 31, corresponding to the day of the month in the
argument.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 12.

SELECT DAY('2001-09-12');

DAYNAME function [Date and time]

Returns the name of the day of the week from a date.

Syntax
DAYNAME(date-expression)

Parameters
● date-expression The date.

Returns
VARCHAR

Remarks
The English names are returned as: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday.

Standards and compatibility
● SQL/2008 Vendor extension.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 187

Example
The following statement returns the value Saturday.

SELECT DAYNAME ('1987/05/02');

DAYS function [Date and time]
The DAYS function manipulates a TIMESTAMP, or returns the number of days between two
TIMESTAMP values. For specific details, see the Remarks section below.

Syntax 1
DAYS(timestamp-expression)

Syntax 2
DAYS(timestamp-expression, timestamp-expression)

Syntax 3
DAYS(timestamp-expression, integer-expression)

Parameters
● timestamp-expression A TIMESTAMP value.

● integer-expression The number of days to be added to the timestamp-expression. If the integer-
expression is negative, the appropriate number of days is subtracted from timestamp-expression.. If
you supply an integer expression, the timestamp-expression must be explicitly cast as a TIME, DATE
or TIMESTAMP. If timestamp-expression is a TIME value, the current date is assumed.

For information about casting data types, see “CAST function [Data type conversion]” on page 153.

Returns
INTEGER with Syntax 1 or Syntax 2.

TIMESTAMP with Syntax 3.

Remarks
The result of the DAYS function depends on its arguments. The DAYS function ignores hours, minutes,
and seconds in its arguments.

● Syntax 1 If you pass a single timestamp-expression to the DAYS function, it will return the
number of days between 0000-02-29 and timestamp-expression as an INTEGER.

Note
0000-02-29 is not meant to imply an actual date; it is the default date used by the DAYS function.

SQL functions

188 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● Syntax 2 If you pass two TIMESTAMP values to the DAYS function, the function returns the
integer number of days between them.

● Syntax 3 If you pass a TIMESTAMP value and an integer to the DAYS function, the function
returns the TIMESTAMP result of adding the integer number of days to the timestamp-expression
argument.

Instead of Syntax 2, use the DATEDIFF function. Instead of Syntax 3, use the DATEADD function.

See also
● “DATEDIFF function [Date and time]” on page 182
● “DATEADD function [Date and time]” on page 181

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the integer 729889.

SELECT DAYS('1998-07-13 06:07:12');

The following statements return the integer value -366, indicating that the second DATE value is 366
days before the first. It is recommended that you use the second example (DATEDIFF).

SELECT DAYS('1998-07-13 06:07:12',
 '1997-07-12 10:07:12');

SELECT DATEDIFF(day,
 '1998-07-13 06:07:12',
 '1997-07-12 10:07:12');

The following statements return the TIMESTAMP value 1999-07-14 00:00:00.000. It is recommended
that you use the second example (DATEADD).

SELECT DAYS(CAST('1998-07-13' AS DATE), 366);

SELECT DATEADD(day, 366, '1998-07-13');

DB_EXTENDED_PROPERTY function [System]

Returns the value of the given property. Allows an optional property-specific string parameter to be specified.

Syntax
DB_EXTENDED_PROPERTY(
{ property-id | property-name }
[, property-specific-argument
[, database-id | database-name]]
)

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 189

Parameters
● property-id The database property ID to query.

● property-name The database property name to query.

For a complete list of database properties, see “Database properties” [SQL Anywhere Server -
Database Administration].

● property-specific-argument The following database properties allow you to specify additional
arguments, as noted below, to return specific information about the property.

○ CharSet property Specify the name of a standard to obtain the default CHAR character set
label for the standard. Possible values you can specify are: ASE, IANA, MIME, JAVA,
WINDOWS, UTR22, IBM, and ICU. If no standard is specified, IANA is used as the default,
unless the database connection was made through TDS, in which case ASE is the default.

○ CatalogCollation, Collation, and NcharCollation properties When querying these
properties, the following values can be specified as a property-specific-argument to return
information specific to the collation:

● AccentSensitive Specify AccentSensitive to obtain the accent sensitivity setting for the
collation. For example, the following statement returns the accent sensitivity setting for the
NCHAR collation:

SELECT DB_EXTENDED_PROPERTY('NcharCollation', 'AccentSensitive');

Possible return values are: Ignore, Respect, and French. For a description of these values, see
“Collation tailoring options” [SQL Anywhere Server - Database Administration].

● CaseSensitivity Specify CaseSensitivity to obtain the case sensitivity setting for the
collation. Possible return values are: Ignore, Respect, UpperFirst, and LowerFirst. For a
description of these values, see “Collation tailoring options” [SQL Anywhere Server -
Database Administration].

● PunctuationSensitivity Specify PunctuationSensitivity to obtain the punctuation
sensitivity setting for the collation. Possible return values are: Ignore, Primary, and
Quaternary. For a description of these values, see “Collation tailoring options” [SQL Anywhere
Server - Database Administration].

● Properties Specify Properties to obtain a string containing all the tailoring options
specified for the collation. For a description of the keywords and values in the returned string,
see “Collation tailoring options” [SQL Anywhere Server - Database Administration].

● Specification Specify Specification to obtain a string containing the full collation
specification used for the collation. For a description of the keywords and values in the
returned string, see “Collation tailoring options” [SQL Anywhere Server - Database
Administration].

○ DriveType property Specify the name of a dbspace, or the file ID for the dbspace, to obtain its
drive type. The value returned is one of the following: CD, FIXED, RAMDISK, REMOTE,

SQL functions

190 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

REMOVABLE, or UNKNOWN. If nothing is specified, the drive type of the system dbspace is
returned. If the specified dbspace doesn't exist, the property function returns NULL. If the name of
a dbspace is specified and the ID of a database that isn't the database of the current connection is
also specified, the function also returns NULL.

○ File property Specify a dbspace name to obtain the file name of the database root file,
including the path. If nothing is specified, information for the system dbspace is returned. If the
specified file doesn't exist, the function returns NULL.

○ FileSize property Specify the name of a dbspace, or the file ID for the dbspace, to obtain the
size of the specified file in pages. You can also specify temporary to return the size of the
temporary dbspace, or translog to return the size of the log file. If nothing is specified, the size of
the system dbspace is returned. If the specified file doesn't exist, the function returns NULL.

○ FreePages property Specify the name of a dbspace, or the file ID for the dbspace, to obtain
the number of free pages. You can also specify temporary to return the number of free pages in the
temporary dbspace, or translog to return the number of free pages in the log file. If nothing is
specified, the number of free pages in the system dbspace is returned. If the specified file doesn't
exist, the function returns NULL.

○ IOParallelism property Specify a dbspace name to obtain the estimated number of
simultaneous I/O operations supported by the dbspace. If a dbspace is not specified, the current
system dbspace is used.

○ MirrorServerState property Specify a server name to determine the connection status of the
mirror server. Returns CONNECTED, DISCONNECTED, or NULL.

○ MirrorState property Specify a server name to determine the synchronization status of the
mirror server. Returns SYNCHRONIZING, SYNCHRONIZED, or NULL.

○ NextScheduleTime property Specify an event name to obtain its next scheduled execution time.

● database-id The database ID number, as returned by the DB_ID function. Typically, the database
name is used.

● database-name The name of the database, as returned by the DB_NAME function.

Returns
VARCHAR

Remarks
The DB_EXTENDED_PROPERTY function is similar to the DB_PROPERTY function except that it
allows an optional property-specific-argument string parameter to be specified. The interpretation of
property-specific-argument depends on the property ID or name specified in the first argument.

The current database is used if the third argument is omitted.

When comparing catalog strings such as table names and procedure names, the database server uses the
CHAR collation. For the UCA collation, the catalog collation is the same as the CHAR collation but with

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 191

the tailoring changed to be case-insensitive, accent-insensitive and with punctuation sorted in the primary
level. For legacy collations, the catalog collation is the same as the CHAR collation but with the tailoring
changed to be case-insensitive. While you cannot explicitly specify the tailoring used for the catalog
collation, you can query the Specification property to obtain the full collation specification used by the
database server for comparing catalog strings. Querying the Specification property can be useful if you
need to exploit the difference between the CHAR and catalog collations. For example, suppose you have a
punctuation-insensitive CHAR collation and you want to execute an upgrade script that defines a
procedure called my_procedure, and that also attempts to delete an old version named myprocedure. The
following statements cannot achieve the desired results because my_procedure is equivalent to
myprocedure, using the CHAR collation:

CREATE PROCEDURE my_procedure() ...;
IF EXISTS (SELECT * FROM SYS.SYSPROCEDURE WHERE proc_name = 'myprocedure')
THEN DROP PROCEDURE myprocedure
END IF;

Instead, you could execute the following statements to achieve the desired results:

CREATE PROCEDURE my_procedure() ...;
IF EXISTS (SELECT * FROM SYS.SYSPROCEDURE
 WHERE COMPARE(proc_name, 'myprocedure',
DB_EXTENDED_PROPERTY('CatalogCollation', 'Specification')) = 0)
THEN DROP PROCEDURE myprocedure
END IF;

See also
● “DB_ID function [System]” on page 193
● “DB_NAME function [System]” on page 193
● “Database properties” [SQL Anywhere Server - Database Administration]
● “CONNECTION_PROPERTY function [System]” on page 164
● “CONNECTION_EXTENDED_PROPERTY function [String]” on page 163

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the location of the current database:

SELECT DB_EXTENDED_PROPERTY('File');

The following statement returns the file size of the system dbspace, in pages.

SELECT DB_EXTENDED_PROPERTY('FileSize');

The following statement returns the file size of the transaction log, in pages.

SELECT DB_EXTENDED_PROPERTY('FileSize', 'translog');

The following statement returns the case sensitivity setting for the NCHAR collation:

SELECT DB_EXTENDED_PROPERTY('NcharCollation',' CaseSensitivity');

The following statement returns the tailoring options specified for the database CHAR collation:

SQL functions

192 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SELECT DB_EXTENDED_PROPERTY ('Collation', 'Properties');

The following statement returns the full collation specification for the database NCHAR collation:

SELECT DB_EXTENDED_PROPERTY('NcharCollation', 'Specification');

The following statement returns the connection status of the mirror server Test:

SELECT DB_EXTENDED_PROPERTY('MirrorServerState', 'Test');

The following statement returns the synchronization status of the mirror server Test:

SELECT DB_EXTENDED_PROPERTY('MirrorState', 'Test');

DB_ID function [System]
Returns the database ID number.

Syntax
DB_ID([database-name])

Parameters
● database-name A string containing the database name. If no database-name is supplied, the ID

number of the current database is returned.

Returns
INT

See also
● “global_database_id option” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The statement returns the value 0, when executed against the SQL Anywhere sample database as the sole
database on the server.

SELECT DB_ID('demo');

The following statement returns the value 0 if executed against the only running database.

SELECT DB_ID();

DB_NAME function [System]
Returns the name of a database with a given ID number.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 193

Syntax
DB_NAME([database-id])

Parameters
● database-id The ID of the database. The database-id must be a numeric expression.

Returns
VARCHAR

Remarks
If no database ID is supplied, the name of the current database is returned.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The statement returns the database name demo, when executed against the SQL Anywhere sample
database as the sole database on the server.

SELECT DB_NAME(0);

DB_PROPERTY function [System]
Returns the value of the given property.

Syntax
DB_PROPERTY(
{ property-id | property-name }
[, database-id | database-name]
)

Parameters
● property-id The database property ID.

● property-name The database property name.

● database-id The database ID number, as returned by the DB_ID function. Typically, the database
name is used.

● database-name The name of the database, as returned by the DB_NAME function.

Returns
VARCHAR, LONG VARCHAR

Remarks
Returns a string. The current database is used if the second argument is omitted.

SQL functions

194 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “DB_ID function [System]” on page 193
● “DB_NAME function [System]” on page 193
● “Database properties” [SQL Anywhere Server - Database Administration]
● “PROPERTY function [System]” on page 284

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the page size of the current database, in bytes.

SELECT DB_PROPERTY('PageSize');

DECOMPRESS function [String]

Decompresses the string and returns a LONG BINARY value.

Syntax
DECOMPRESS(string-expression [, compression-algorithm-alias])

Parameters

● string-expression The string to decompress. Binary values can also be passed to this function.
This parameter is case sensitive, even in case-insensitive databases.

● compression-algorithm-alias Alias (string) for the algorithm to use for decompression. The
supported values are zip and gzip (both are based on the same algorithm, but use different headers and
trailers).

Zip is a widely supported compression algorithm. Gzip is compatible with the gzip utility on Unix,
whereas the zip algorithm is not.

If no algorithm is specified, the function attempts to detect which algorithm was used to compress the
string. If the incorrect algorithm is specified, or the correct algorithm cannot be detected, the string is
not decompressed.

For more information about compression, see “COMPRESS function [String]” on page 160.

Returns
LONG BINARY

Remarks
This function can be used to decompress a value that was compressed using the COMPRESS function.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 195

You do not need to use the DECOMPRESS function on values that are stored in a compressed column.
Compression and decompression of values in a compressed column are handled automatically by the
database server. See “Choosing column compression” [SQL Anywhere Server - Database Administration].

See also
● “COMPRESS function [String]” on page 160
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example uses the DECOMPRESS function to decompress values from the Attachment
column of a fictitious table, TableA:

SELECT DECOMPRESS (Attachment, 'gzip')
FROM TableA;

Since DECOMPRESS returns binary values, if the original values were of a character type, such as
LONG VARCHAR, a CAST can be applied to return human-readable values:

SELECT CAST (DECOMPRESS (Attachment, 'gzip')
AS LONG VARCHAR) FROM TableA;

DECRYPT function [String]
Decrypts the string using the supplied key and returns a LONG BINARY value.

Syntax
DECRYPT(string-expression, key
[, algorithm]
)

algorithm :
'AES'
| 'AES256'
| 'AES_FIPS'
| 'AES256_FIPS'

Parameters
● string-expression The string to be decrypted. Binary values can also be passed to this function.

This parameter is case sensitive, even in case-insensitive databases.

● key The encryption key (string) required to decrypt the string-expression. This must be the same
encryption key that was used to encrypt the string-expression to obtain the original value that was
encrypted. This parameter is case sensitive, even in case-insensitive databases.

SQL functions

196 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Caution
For strongly encrypted databases, be sure to store a copy of the key in a safe location. If you lose the
encryption key there is no way to access the data, even with the assistance of technical support. The
database must be discarded and you must create a new database.

● algorithm This optional parameter specifies the algorithm originally used to encrypt the string-
expression.

Returns
LONG BINARY

Remarks
For more information about the supported encryption algorithms, see “ENCRYPT function
[String]” on page 202.

You can use the DECRYPT function to decrypt a string-expression that was encrypted with the
ENCRYPT function. This function returns a LONG BINARY value with the same number of bytes as the
input string.

To successfully decrypt a string-expression, you must use the same encryption key that was used to
encrypt the data. If you specify an incorrect encryption key, an error is generated. A lost key will result in
inaccessible data, from which there is no recovery.

Note
FIPS is not available on all platforms. For a list of supported platforms, see http://www.sybase.com/detail?
id=1061806.

See also
● “ENCRYPT function [String]” on page 202
● “ISENCRYPTED function [System]” on page 242
● “Encrypting portions of a database” [SQL Anywhere Server - Database Administration]
● “String functions” on page 136
● “-fips dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example decrypts a user's password from the user_info table. The CAST function is used to
convert the password back to a CHAR data type because the DECRYPT function converts values to the
LONG BINARY data type, which is unreadable.

SELECT CAST(DECRYPT(user_pwd, '8U3dkA') AS CHAR(100)) FROM user_info;

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 197

http://www.sybase.com/detail?id=1061806
http://www.sybase.com/detail?id=1061806

DEGREES function [Numeric]

Converts a number from radians to degrees.

Syntax
DEGREES(numeric-expression)

Parameters
● numeric-expression An angle in radians.

Returns
DOUBLE

Remarks
This function converts its argument to DOUBLE, performs the computation in double-precision floating-
point arithmetic, and returns the degrees of the angle given by numeric-expression. If the parameter is
NULL, the result is NULL.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 29.79380534680281.

SELECT DEGREES(0.52);

DENSE_RANK function [Ranking]

Calculates the rank of a value in a partition. For tied values, the DENSE_RANK function does not leave
gaps in the ranking sequence.

Syntax
DENSE_RANK() OVER (window-spec)

window-spec : see the Remarks section below

Returns
INTEGER

Remarks
Elements of window-spec can be specified either in the function syntax (inline), or in conjunction with a
WINDOW clause in the SELECT statement. When used as a window function, you must specify an
ORDER BY clause, you may specify a PARTITION BY clause, however, you can not specify a ROWS
or RANGE clause. See the window-spec definition provided in “WINDOW clause” on page 907.

SQL functions

198 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

For more information about using window functions in SELECT statements, including working examples,
see “Window functions” [SQL Anywhere Server - SQL Usage].

For more information about specifying a window specification in an OVER clause, see “Window
definition: inlining using the OVER clause and WINDOW clause” [SQL Anywhere Server - SQL Usage].

See also
● “CUME_DIST function [Ranking]” on page 178
● “PERCENT_RANK function [Ranking]” on page 280
● “RANK function [Ranking]” on page 290

Standards and compatibility
● SQL/2008 The DENSE_RANK function comprises part of optional SQL/2008 language feature

T612, "Advanced OLAP operations".

SQL Anywhere supports SQL/2008 language feature F441, "Extended set function support", which
permits operands of window functions to be arbitrary expressions that are not column references.

SQL Anywhere does not support optional SQL/2008 feature F442, "Mixed column references in set
functions". SQL Anywhere does not permit the arguments of an aggregate function to include both a
column reference from the query block containing the DENSE_RANK function, combined with an
outer reference. For an example, see the “AVG function [Aggregate]” [UltraLite - Database
Management and Reference]

Example
The following example returns a result set that provides a ranking of the employees' salaries in Utah and
New York. Although 19 records are returned in the result set, only 18 rankings are listed because of a 7th-
place tie between the 7th and 8th employee in the list, who have identical salaries. Instead of ranking the
9th employee as '9', the employee is listed as '8' because the DENSE_RANK function does not leave gaps
in the ranks.

SELECT DepartmentID, Surname, Salary, State,
DENSE_RANK() OVER (ORDER BY Salary DESC) AS SalaryRank
FROM Employees
WHERE State IN ('NY','UT');

Here is the result set:

DepartmentID Surname Salary State SalaryRank

100 Shishov 72995.000 UT 1

100 Wang 68400.000 UT 2

100 Cobb 62000.000 UT 3

400 Morris 61300.000 UT 4

300 Davidson 57090.000 NY 5

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 199

DepartmentID Surname Salary State SalaryRank

200 Martel 55700.000 NY 6

400 Blaikie 54900.000 NY 7

100 Diaz 54900.000 UT 7

100 Driscoll 48023.000 UT 8

400 Hildebrand 45829.000 UT 9

100 Whitney 45700.000 NY 10

100 Guevara 42998.000 NY 11

100 Soo 39075.000 NY 12

200 Goggin 37900.000 UT 13

400 Wetherby 35745.000 NY 14

400 Ahmed 34992.000 NY 15

500 Rebeiro 34576.000 UT 16

300 Bigelow 31200.000 UT 17

500 Lynch 24903.000 UT 18

DIFFERENCE function [String]
Returns the difference in the SOUNDEX values between the two string expressions.

Syntax
DIFFERENCE (string-expression-1, string-expression-2)

Parameters
● string-expression-1 The first SOUNDEX argument.

● string-expression-2 The second SOUNDEX argument.

Returns
SMALLINT

SQL functions

200 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
The DIFFERENCE function compares the SOUNDEX values of two strings and evaluates the similarity
between them, returning a value from 0 through 4, where 4 is the best match.

This function always returns some value. The result is NULL only if one of the arguments are NULL.

See also
● “SOUNDEX function [String]” on page 329
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns similarity between the words test and chest:

SELECT DIFFERENCE('test', 'chest');

DOW function [Date and time]
Returns a number from 1 to 7 representing the day of the week of a date, where Sunday=1, Monday=2,
and so on.

Syntax
DOW(date-expression)

Parameters
● date-expression The value (of type DATE) to be evaluated.

Returns
SMALLINT

Remarks
The DOW function is not affected by the value specified for the first_day_of_week database option. For
example, even if first_day_of_week is set to Monday, the DOW function returns a 2 for Monday.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 5.

SELECT DOW('1998-07-09');

The following statement returns the value 1.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 201

SELECT DOW(CAST('2010/05/30 11:33:00.000000+04:00' as TIMESTAMP WITH TIME
ZONE));

The following statement queries the Employees table and returns the employees StartDate, expressed as
the number of the day of the week:

SELECT DOW(StartDate) FROM Employees;

ENCRYPT function [String]

Encrypts the specified values using the supplied encryption key and returns a LONG BINARY value.

Syntax
ENCRYPT(string-expression, key
[, algorithm]
)

algorithm :
'AES'
| 'AES256'
| 'AES_FIPS'
| 'AES256_FIPS'

Parameters
● string-expression The data to be encrypted. Binary values can also be passed to this function.

This parameter is case sensitive, even in case-insensitive databases.

● key The encryption key used to encrypt the string-expression. This same key must be used to
decrypt the value to obtain the original value. This parameter is case sensitive, even in case-insensitive
databases.

As with most passwords, it is best to choose a key value that cannot be easily guessed. It is
recommended that you choose a value for your key that is at least 16 characters long, contains a mix
of uppercase and lowercase, and includes numbers, letters and special characters. You will require this
key each time you want to decrypt the data.

Caution
For strongly encrypted databases, be sure to store a copy of the key in a safe location. If you lose the
encryption key there is no way to access the data, even with the assistance of technical support. The
database must be discarded and you must create a new database.

● algorithm This optional parameter specifies the algorithm to use when encrypting string-
expression. The algorithm used for strong encryption is Rijndael: a block encryption algorithm chosen
as the new Advanced Encryption Standard (AES) for block ciphers by the National Institute of
Standards and Technology (NIST).

You can specify one of the FIPS algorithms for algorithm on any platform that supports FIPS.

SQL functions

202 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

If algorithm is not specified, AES is used by default. If the database server was started using the -fips
server option, AES_FIPS is used as the default instead.

Returns
LONG BINARY

Remarks
The LONG BINARY value returned by this function is at most 31 bytes longer than the input string-
expression. The value returned by this function is not human-readable. You can use the DECRYPT
function to decrypt a string-expression that was encrypted with the ENCRYPT function. To successfully
decrypt a string-expression, you must use the same encryption key and algorithm that were used to
encrypt the data. If you specify an incorrect encryption key, an error is generated. A lost key will result in
inaccessible data, from which there is no recovery.

If you are storing encrypted values in a table, the column should be BINARY or LONG BINARY so that
character set conversion is not performed on the data.

Note
FIPS is not available on all platforms. For a list of supported platforms, see http://www.sybase.com/detail?
id=1061806.

See also
● “DECRYPT function [String]” on page 196
● “ISENCRYPTED function [System]” on page 242
● “Encrypting portions of a database” [SQL Anywhere Server - Database Administration]
● “-fips dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following trigger encrypts the user_pwd column of the user_info table. This column contains users'
passwords, and the trigger fires whenever the password value is changed.

CREATE TRIGGER encrypt_updated_pwd
BEFORE UPDATE OF user_pwd
ON user_info
REFERENCING NEW AS new_pwd
FOR EACH ROW
BEGIN
 SET new_pwd.user_pwd=ENCRYPT(new_pwd.user_pwd, '8U3dkA');
END;

ERRORMSG function [Miscellaneous]
Provides the error message for the current error, or for a specified SQLSTATE or SQLCODE value.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 203

http://www.sybase.com/detail?id=1061806
http://www.sybase.com/detail?id=1061806

Syntax
ERRORMSG([sqlstate | sqlcode])

sqlstate: string

sqlcode: integer

Parameters
● sqlstate The SQLSTATE value for which the error message is to be returned.

● sqlcode The SQLCODE value for which the error message is to be returned.

Returns
VARCHAR containing the error message.

Remarks
If no argument is supplied, the error message for the current state is supplied. Any substitutions (such as
table names and column names) are made.

If an argument is supplied, the error message for the supplied SQLSTATE or SQLCODE is returned, with
no substitutions. Table names and column names are supplied as placeholders (%1).

See also
● “SQL Anywhere error messages sorted by SQLSTATE” [Error Messages]
● “SQL Anywhere error messages sorted by SQLCODE” [Error Messages]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the error message for SQLCODE -813.

SELECT ERRORMSG(-813);

ESTIMATE function [Miscellaneous]
Returns selectivity estimates as a percentage calculated by the query optimizer, based on specified
parameters.

Syntax
ESTIMATE(column-name [, value [, relation-string]])

Parameters
● column-name The column used in the estimate.

SQL functions

204 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● value The value to which the column is compared. The default is NULL.

● relation-string The comparison operator used for the comparison, enclosed in single quotes.
Possible values for this parameter are: '=' , '>' , '<' , '>=' , '<=' , '<>' , '!=' , '!<' , and '!>'. The default is '='.

Returns
REAL

Remarks
This function returns selectivity estimates for the predicate column-name relation-string
value. If value is NULL and the relation string is '=', the selectivity is for the predicate column-name
IS NULL. If value is NULL and the relation string is '!=' or '<>', the selectivity is for the predicate column-
name IS NOT NULL.

See also
● “Selectivity estimate sources” [SQL Anywhere Server - SQL Usage]
● “Viewing selectivity in the graphical plan” [SQL Anywhere Server - SQL Usage]
● “INDEX_ESTIMATE function [Miscellaneous]” on page 239
● “ESTIMATE_SOURCE function [Miscellaneous]” on page 205
● “EXPERIENCE_ESTIMATE function [Miscellaneous]” on page 212

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the percentage of EmployeeID values estimated to be greater than 200.
The precise value depends on the actions you have carried out on the database.

SELECT FIRST ESTIMATE(EmployeeID, 200, '>')
 FROM Employees
 ORDER BY 1;

ESTIMATE_SOURCE function [Miscellaneous]
Provides the source for selectivity estimates used by the query optimizer.

Syntax
ESTIMATE_SOURCE(
column-name
[, value
[, relation-string]]
)

Parameters
● column-name The name of the column that is being investigated.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 205

● value The value to which the column is compared. The default is NULL.

● relation-string The comparison operator used for the comparison, enclosed in single quotes.
Possible values for this parameter are: '=' , '>' , '<' , '>=' , '<=' , '<>' , '!=' , '!<' , and '!>'. The default is '='.

Returns
The following list shows the selectivity estimate sources that ESTIMATE_SOURCE returns. For more
information about the sources, see “Selectivity estimate sources” [SQL Anywhere Server - SQL Usage].

Value Selectivity estimate source

Statistics Stored column statistics

Column Average of all values stored in the column statistics

Index Index probes

Guess Built-in guesses that are defined for each type of predicate. This is returned only when
there is no relevant index to use, no statistics have been collected for the referenced col-
umns, or the predicate is a complex predicate.

Computed Other sources than the ones described above

Always Returned when the specified predicate is always true

Combined One or more of the above sources

Bounded Returned when there are upper and/or lower bounds placed on the selectivity estimate

Remarks
This function returns the source of the selectivity estimate for the predicate column-name relation-
string value. If value is NULL and the relation string is '=', the selectivity source is for the predicate
column-name IS NULL. If value is NULL and the relation string is '!=' or '<>', the selectivity source
is for the predicate column-name IS NOT NULL.

See also
● “Selectivity estimate sources” [SQL Anywhere Server - SQL Usage]
● “ESTIMATE function [Miscellaneous]” on page 204
● “INDEX_ESTIMATE function [Miscellaneous]” on page 239

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the selectivity source Index for evaluating whether the first value in the
EmployeeID column is greater than 200. Returning Index means that the query optimizer used an index to
estimate the selectivity.

SQL functions

206 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SELECT FIRST ESTIMATE_SOURCE(EmployeeID, 200, '>')
 FROM Employees
 ORDER BY 1;

EVENT_CONDITION function [System]
Specifies when an event handler is triggered.

Syntax
EVENT_CONDITION(condition-name)

Parameters
● condition-name The condition triggering the event. The possible values are preset in the database,

and are case insensitive. Each condition is valid only for certain event types. The conditions and the
events for which they are valid are as follows:

Condition name Units Valid for... Comments

DBFreePercent n/a DBDiskSpace

DBFreeSpace MB DBDiskSpace

DBSize MB GrowDB

ErrorNumber n/a RAISERROR

IdleTime seconds ServerIdle

Interval seconds All Time since handler last executed

LogFreePercent n/a LogDiskSpace

LogFreeSpace MB LogDiskSpace

LogSize MB GrowLog

RemainingValues integer GlobalAutoincrement The number of remaining values

TempFreePercent n/a TempDiskSpace

TempFreeSpace MB TempDiskSpace

TempSize MB GrowTemp

Returns
INT

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 207

Remarks
The EVENT_CONDITION function returns NULL when not called from an event.

See also
● “CREATE EVENT statement” on page 495

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following event definition uses the EVENT_CONDITION function:

CREATE EVENT LogNotifier
TYPE LogDiskSpace
WHERE event_condition('LogFreePercent') < 50
HANDLER
BEGIN
 MESSAGE 'LogNotifier message'
END;

EVENT_CONDITION_NAME function [System]
Lists the possible parameters for EVENT_CONDITION.

Syntax
EVENT_CONDITION_NAME(integer)

Parameters
● integer Must be greater than or equal to zero.

Returns
VARCHAR

Remarks
You can use the EVENT_CONDITION_NAME function to obtain a list of all arguments for the
EVENT_CONDITION function by looping over integers until the function returns NULL.

The EVENT_CONDITION_NAME function returns NULL when not called from an event.

See also
● “CREATE EVENT statement” on page 495

Standards and compatibility
● SQL/2008 Vendor extension.

SQL functions

208 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

EVENT_PARAMETER function [System]

Provides context information for event handlers.

Syntax
EVENT_PARAMETER(context-name)

context-name:
 AppInfo
| ConnectionID
| DisconnectReason
| EventName
| Executions
| MirrorServerName
| NumActive
| ScheduleName
| SQLCODE
| TableName
| User
| condition-name

Parameters
● context-name One of the preset strings. The strings must be quoted, are case insensitive, and carry

the following information:

○ AppInfo The value of the AppInfo connection property for the connection that caused the event
to be triggered. Use the following statement to see the value of the property outside the context of
the event:

SELECT CONNECTION_PROPERTY('AppInfo');

This parameter is valid for Connect, Disconnect, ConnectFailed, BackupEnd, and RAISERROR
events. The AppInfo string contains the computer name and application name of the client
connection for embedded SQL, ODBC, OLE DB, ADO.NET, and SQL Anywhere JDBC driver
connections.

○ ConnectionID The connection ID of the connection that caused the event to be triggered.

○ DisconnectReason A string indicating the reason the connect was terminated. This parameter
is valid only for Disconnect events. Possible results include:

● abnormal A disconnect occurred as a result of the client application terminating
abnormally before disconnecting from the database, or as a result of a communication failure
between the client and server computers.

● connect failed A connection attempt failed.

● drop connection A DROP CONNECTION statement was executed.

● from client The client application disconnected.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 209

● inactive No requests were received for the period specified by the -ti server option.

● liveness No liveness packets were received for the period specified by the -tl server option.

○ EventName The name of the event that has been triggered.

○ Executions The number of times the event handler has been executed.

○ MirrorServerName The name of the mirror or arbiter server that lost its connection to the
primary server in a database mirroring system.

○ NumActive The number of active instances of an event handler. This is useful if you want to
limit an event handler so that only one instance executes at any given time.

○ ScheduleName The name of the schedule which caused an event to be fired. If the event was
fired manually using TRIGGER EVENT or as a system event, the result will be an empty string. If
the schedule was not assigned a name explicitly when it was created, its name will be the name of
the event.

○ SQLCODE The SQLCODE of the error that occurred during a failed connection. This
parameter is valid only for ConnectFailed events.

○ TableName The name of the table, for use with RemainingValues.

○ User The user ID for the user that caused the event to be triggered.

In addition, you can access any of the valid condition-name arguments to the EVENT_CONDITION
function from the EVENT_PARAMETER function.

The following table indicates which context-name values are valid for which system event types.

Context-name value Valid system event types

AppInfo BackupEnd, "Connect", ConnectFailed, "Disconnect", "RAISERROR",
user events

ConnectionID BackupEnd, "Connect", "Disconnect", Global Autoincrement, "RAISER-
ROR", user events

DisconnectReason "Disconnect"

EventName all

Executions all

NumActive all

SQLCODE ConnectFailed

TableName GlobalAutoincrement

SQL functions

210 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Context-name value Valid system event types

User BackupEnd, "Connect", ConnectFailed, "Disconnect", GlobalAutoincre-
ment, "RAISERROR", user events

Returns
VARCHAR

Remarks
The maximum size of values passed to an event is limited by the maximum page size for the server (-gp
server option). Values that are longer are truncated to be less than the maximum page size.

See also
● “EVENT_CONDITION function [System]” on page 207
● “CREATE EVENT statement” on page 495
● “TRIGGER EVENT statement” on page 880
● “-gp dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example shows how to pass a string parameter to an event. The event displays the time it
was triggered in the database server messages window.

CREATE EVENT ev_PassedParameter
HANDLER
BEGIN
 MESSAGE 'ev_PassedParameter - was triggered at ' ||
event_parameter('time');
END;
TRIGGER EVENT ev_PassedParameter("Time"=string(current timestamp));

EXP function [Numeric]
Returns the result of the base of natural logarithms e raised to the power of the given argument.

Syntax
EXP(numeric-expression)

Parameters
● numeric-expression The exponent.

Returns
DOUBLE

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 211

Remarks
The EXP function returns the result of raising the base of natural logarithms e by the value specified by
numeric-expression.

This function converts its argument to DOUBLE, performs the computation in double-precision floating-
point arithmetic, and returns a DOUBLE as the result. If the parameter is NULL, the result is NULL.

Standards and compatibility
● SQL/2008 The EXP function comprises part of optional SQL/2008 language feature T621,

"Enhanced numeric functions".

Example
The statement returns the value 3269017.3724721107.

SELECT EXP(15);

EXPERIENCE_ESTIMATE function [Miscellaneous]
Returns selectivity estimates as a percentage calculated by the query optimizer, based on specified
parameters.

Syntax
EXPERIENCE_ESTIMATE(
column-name
[, value
[, relation-string]]
)

Parameters
● column-name The name of the column that is being investigated.

● value The value to which the column is compared.

● relation-string The comparison operator used for the comparison. Possible values for this
parameter are: '=' , '>' , '<' , '>=' , '<=' , '<>' , '!=' , '!<' , and '!>'. The default is '='.

Returns
REAL

Remarks
If value is NULL then the relation strings = and != are interpreted as the IS NULL and IS NOT NULL
conditions, respectively.

SQL functions

212 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “ESTIMATE function [Miscellaneous]” on page 204
● “INDEX_ESTIMATE function [Miscellaneous]” on page 239
● “ESTIMATE_SOURCE function [Miscellaneous]” on page 205

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns NULL.

SELECT DISTINCT EXPERIENCE_ESTIMATE(EmployeeID, 200, '>')
FROM Employees;

EXPLANATION function [Miscellaneous]
Returns the optimization strategy of an SQL statement as a plain text string.

Syntax
EXPLANATION(
string-expression
[, cursor-type]
[, update-status]
)

Parameters
● string-expression The SQL statement, which is commonly a SELECT statement, but can also be

an UPDATE, MERGE, or DELETE statement.

● cursor-type A cursor type, expressed as a string. Possible values are asensitive, insensitive,
sensitive, or keyset-driven. If cursor-type is not specified, asensitive is used by default.

● update-status A string parameter accepting one of the following values indicating how the
optimizer should treat the given cursor:

Value Description

READ-ONLY The cursor is read-only.

READ-WRITE (default) The cursor can be read or written to.

FOR UPDATE The cursor can be read or written to. This is the same as READ-WRITE.

Returns
LONG VARCHAR

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 213

Remarks
The statement's access plan is returned as a string. To interpret the result, see “Reading execution plans”
[SQL Anywhere Server - SQL Usage]. The GRAPHICAL_PLAN function offers significantly greater
information about access plans, including system properties that may have affected how the statement was
optimized.

This information can help you decide which indexes to add or how to structure your database for better
performance.

See also
● “Execution plans in UltraLite” [UltraLite - Database Management and Reference]
● “Reading execution plans” [SQL Anywhere Server - SQL Usage]
● “PLAN function [Miscellaneous]” on page 282
● “GRAPHICAL_PLAN function [Miscellaneous]” on page 221

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement passes a SELECT statement as a string parameter and returns the plan for
executing the query.

SELECT EXPLANATION('SELECT * FROM Departments WHERE DepartmentID > 100');

The following statement returns a string containing the short form of the text plan for an INSENSITIVE
cursor over the query 'select * from Departments where'.

SELECT EXPLANATION('SELECT * FROM Departments WHERE DepartmentID > 100',
 'insensitive', 'read-only');

EXPRTYPE function [Miscellaneous]
Returns a string that identifies the data type of an expression.

Syntax
EXPRTYPE(string-expression, integer-expression)

Parameters
● string-expression A SELECT statement. The expression whose data type is to be queried must

appear in the select list. If the string is not a valid SELECT statement, NULL is returned.

● integer-expression The position in the select list of the desired expression. The first item in the
select list is numbered 1. If the integer-expression value does not correspond to a SELECT list item,
NULL is returned.

Returns
LONG VARCHAR

SQL functions

214 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “SQL data types” on page 79
● “sa_describe_query system procedure” on page 980

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns smallint when executed against the SQL Anywhere sample database.

SELECT EXPRTYPE('SELECT LineID FROM SalesOrderItems', 1);

FIRST_VALUE function [Aggregate]

Returns values from the first row of a window.

Syntax
FIRST_VALUE([ALL] expression [{ RESPECT | IGNORE } NULLS])
OVER (window-spec)

window-spec : see the Remarks section below

Parameters
● expression The expression to evaluate. For example, a column name.

Returns
Data type of the values from the first row of a window.

Remarks
The FIRST_VALUE function allows you to select the first value (according to some ordering) in a table,
without having to use a self-join. This is valuable when you want to use the first value as the baseline in
calculations.

The FIRST_VALUE function takes the first record from the window. Then, the expression is computed
against the first record and results are returned.

If IGNORE NULLS is specified, the first non-NULL value of expression is returned. If RESPECT
NULLS is specified (the default), the first value is returned whether or not it is NULL.

The FIRST_VALUE function is different from most other aggregate functions in that it can only be used
with a window specification.

Elements of window-spec can be specified either in the function syntax (inline), or in conjunction with a
WINDOW clause in the SELECT statement. See the window-spec definition provided in “WINDOW
clause” on page 907.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 215

For more information about using window functions in SELECT statements, including working examples,
see “Window functions” [SQL Anywhere Server - SQL Usage].

For more information about specifying a window specification in an OVER clause, see “Window
definition: inlining using the OVER clause and WINDOW clause” [SQL Anywhere Server - SQL Usage].

See also
● “Window aggregate functions” [SQL Anywhere Server - SQL Usage]
● “LAST_VALUE function [Aggregate]” on page 244

Standards and compatibility
● SQL/2008 Vendor extension.

SQL Anywhere supports SQL/2008 language feature F441, "Extended set function support", which
permits operands of window functions to be arbitrary expressions that are not column references.

SQL Anywhere does not support optional SQL/2008 feature F442, "Mixed column references in set
functions". SQL Anywhere does not permit the arguments of an aggregate function to include both a
column reference from the query block containing the FIRST_VALUE function, combined with an
outer reference. For an example, see the “AVG function [Aggregate]” [UltraLite - Database
Management and Reference]

Example
The following example returns the relationship, as a percentage, between each employee's salary and that
of the most recently hired employee in the same department:

SELECT DepartmentID, EmployeeID,
 100 * Salary / (FIRST_VALUE(Salary) OVER (
 PARTITION BY DepartmentID ORDER BY StartDate
DESC))
 AS percentage
 FROM Employees;

DepartmentID EmployeeID percentage

500 1658 100

500 1615 110.4284624

500 1570 138.8427097

500 1013 109.5851905

500 921 167.4497049

500 868 113.2393688

500 750 137.7344095

500 703 222.8679276

SQL functions

216 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

DepartmentID EmployeeID percentage

500 191 119.6642975

400 1751 100

400 1740 99.705647

400 1684 130.969936

400 1643 83.9734797

400 1607 175.1828989

400 1576 197.0164609

...

Employee 1658 is the first row for department 500, indicating that they are the most recent hire in that
department and their percentage is 100%. Percentages for the remaining department 500 employees are
calculated relative to that of employee 1658. For example, employee 1570 earns approximately 139% of
what employee 1658 earns.

If another employee in the same department makes the same salary as the most recent hire, they will have
a percentage of 100 as well.

FLOOR function [Numeric]
Returns the largest integer not greater than the given number.

Syntax
FLOOR(numeric-expression)

Parameters
● numeric-expression The value to be truncated, typically a fixed numeric type with non-zero scale

or an approximate numeric type (DOUBLE, REAL, or FLOAT).

Returns
DOUBLE

Remarks
This function converts its arguments to DOUBLE, and performs the computation in double-precision
floating-point arithmetic.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 217

See also
● “CEILING function [Numeric]” on page 154

Standards and compatibility
● SQL/2008 The FLOOR function comprises part of optional SQL/2008 language feature T621,

"Enhanced numeric functions".

Example
The following statement returns a Floor value of 123:

SELECT FLOOR (123);

The following statement returns a value of 123:

SELECT FLOOR (123.45);

The following statement returns a value of -124:

SELECT FLOOR (-123.45);

GET_BIT function [Bit array]

Returns the value (1 or 0) of a specified bit in a bit array.

Syntax
GET_BIT(bit-expression, position)

Parameters
● bit-expression The bit array containing the bit.

● position The position of the bit for which to return the status.

Returns
BIT

Remarks
The positions in the array are counted from the left side, starting at 1.

If position exceeds the length of the array, 0 (false) is returned.

See also
● “Bitwise operators” on page 11
● “SET_BIT function [Bit array]” on page 320
● “SET_BITS function [Aggregate]” on page 321
● “sa_get_bits system procedure” on page 991

SQL functions

218 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 1:

SELECT GET_BIT('00110011' , 4);

The following statement returns the value 0:

SELECT GET_BIT('00110011' , 5);

GET_IDENTITY function [Miscellaneous]
Allocates values to an autoincrement column. This is an alternative to using autoincrement to generate
numbers.

Syntax
GET_IDENTITY(table_name [, number_to_allocate])

Parameters
● table_name A string indicating the name of the table, including, optionally, the owner name.

● number_to_allocate The number of values to reserve. The default is 1.

Returns
UNSIGNED BIGINT

Remarks
Using autoincrement or global autoincrement is still the most efficient way to generate IDs, but this
function is provided as an alternative. The function assumes that the table has an autoincrement column
defined. It returns the next available value that would be generated for the table's autoincrement column,
and reserves that value so that no other connection will use it by default.

The function returns an error if the table is not found, and returns NULL if the table has no autoincrement
column. If there is more than one autoincrement column, it uses the first one it finds.

number_to_allocate is the number of values to reserve. If number_to_allocate is greater than 1, the
function also reserves the remaining values. The next allocation uses the current number plus the value of
number_to_allocate. This allows the application to execute the GET_IDENTITY function less frequently.
If number_to_allocate is 0, the next available value is returned without reserving any values.

No COMMIT is required after executing the GET_IDENTITY function, and so it can be called using the
same connection that is used to insert rows. If ID values are required for several tables, they can be
obtained using a single SELECT that includes multiple calls to the GET_IDENTITY function, as in the
example.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 219

The GET_IDENTITY function is non-deterministic function; successive calls to it may return different
values. The optimizer does not cache the results of the GET_IDENTITY function.

For more information about non-deterministic functions, see “Function caching” [SQL Anywhere Server -
SQL Usage].

See also
● “CREATE TABLE statement” on page 596
● “ALTER TABLE statement” on page 426
● “NUMBER function [Miscellaneous]” on page 277

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the next available value for the Customers table autoincrement column
(ID). The number returned and the following nine values are reserved:

SELECT GET_IDENTITY('Customers', 10);

GETDATE function [Date and time]
Returns the current year, month, day, hour, minute, second and fraction of a second.

Syntax
GETDATE()

Returns
TIMESTAMP

Remarks
The accuracy is limited by the accuracy of the system clock.

The information the GETDATE function returns is equivalent to the information returned by the NOW
function and the CURRENT TIMESTAMP special value.

See also
● “NOW function [Date and time]” on page 276
● “CURRENT TIMESTAMP special value” on page 60

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the system date and time.

SQL functions

220 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SELECT GETDATE();

GRAPHICAL_PLAN function [Miscellaneous]
Returns the plan optimization strategy of a SQL statement in XML format, as a string.

Syntax
GRAPHICAL_PLAN(
string-expression
[, statistics-level
[, cursor-type
[, update-status]]])

Parameters
● string-expression The SQL statement, which is commonly a SELECT statement but which may

also be an UPDATE or DELETE statement.

● statistics-level An integer. Statistics-level can be one of the following values:

Value Description

0 Optimizer estimates only (default).

2 Detailed statistics including node statistics.

3 Detailed statistics.

● cursor-type A cursor type, expressed as a string. Possible values are: asensitive, insensitive,
sensitive, or keyset-driven. If cursor-type is not specified, asensitive is used by default.

● update-status A string parameter accepting one of the following values indicating how the
optimizer should treat the given cursor:

Value Description

READ-ONLY The cursor is read-only.

READ-WRITE (default) The cursor can be read or written to.

FOR UPDATE The cursor can be read or written to. This is exactly the same as READ-
WRITE.

Returns
LONG VARCHAR

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 221

See also
● “Reading execution plans” [SQL Anywhere Server - SQL Usage]
● “PLAN function [Miscellaneous]” on page 282
● “EXPLANATION function [Miscellaneous]” on page 213

Standards and compatibility
● SQL/2008 Vendor extension.

Examples
The following Interactive SQL example passes a SELECT statement as a string parameter and returns the
plan for executing the query. It saves the plan in the file plan.saplan which can be opened and read using
Interactive SQL.

SELECT GRAPHICAL_PLAN('SELECT * FROM Departments WHERE DepartmentID >
100');
OUTPUT TO 'plan.saplan' FORMAT TEXT QUOTE '' HEXADECIMAL ASIS;

The following statement returns a string containing the graphical plan for a keyset-driven, updatable
cursor over the query SELECT * FROM Departments WHERE DepartmentID > 100. It also
causes the server to annotate the plan with actual execution statistics, in addition to the estimated statistics
that were used by the optimizer.

SELECT GRAPHICAL_PLAN(
 'SELECT * FROM Departments WHERE DepartmentID > 100',
 2,
 'keyset-driven', 'for update');

GREATER function [Miscellaneous]
Returns the greater of two parameter values.

Syntax
GREATER(expression-1, expression-2)

Parameters
● expression-1 The first parameter value to be compared.

● expression-2 The second parameter value to be compared.

Returns
Depends on the parameters that are compared.

Remarks
If the parameters are equal, the first is returned.

SQL functions

222 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “LESSER function [Miscellaneous]” on page 249

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 10.

SELECT GREATER(10, 5) FROM dummy;

GROUPING function [Aggregate]

Identifies whether a column in a GROUP BY operation result set is NULL because it is part of a subtotal
row, or NULL because of the underlying data.

Syntax
GROUPING(group-by-expression)

Parameters
● group-by-expression An expression appearing as a grouping column in the result set of a query

that uses a GROUP BY clause. This function can be used to identify subtotal rows added to the result
set by a ROLLUP or CUBE operation.

Returns
● 1 Indicates that group-by-expression is NULL because it is part of a subtotal row. The column is

not a prefix column for that row.

● 0 Indicates that group-by-expression is a prefix column of a subtotal row.

See also
● “Using ROLLUP” [SQL Anywhere Server - SQL Usage]
● “Using CUBE” [SQL Anywhere Server - SQL Usage]
● “GROUP BY GROUPING SETS” [SQL Anywhere Server - SQL Usage]
● “SELECT statement” on page 825
● “Detecting placeholder NULLs using the GROUPING function” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 The GROUPING function is part of optional SQL/2008 language feature T431,

"Extended grouping capabilities".

Example
For examples of this function, see “Detecting placeholder NULLs using the GROUPING function” [SQL
Anywhere Server - SQL Usage].

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 223

HASH function [String]
Returns the specified value in hashed form.

Syntax
HASH(string-expression[, algorithm])

Parameters
● string-expression The value to be hashed. This parameter is case sensitive, even in case-

insensitive databases.

● algorithm The algorithm to use for the hash. Possible values include: CRC32, MD5, SHA1,
SHA1_FIPS, SHA256, SHA256_FIPS. By default, the MD5 algorithm is used. ECC encryption and
FIPS-certified encryption require a separate license. See “SQL Anywhere security option” [SQL
Anywhere 12 - Introduction].

Returns
Following are the return types, depending on the algorithm used:

● CRC32 returns a hexadecimal string. Use the HEXTOINT function to convert the hexadecimal string
to a 32-bit integer. See “HEXTOINT function [Data type conversion]” on page 225.

● MD5 returns a VARCHAR(32)

● SHA1 returns a VARCHAR(40)

● SHA1_FIPS returns a VARCHAR(40)

● SHA256 returns a VARCHAR(40)

● SHA256_FIPS returns a VARCHAR(40)

Remarks
Using a hash converts the value to a byte sequence that is unique to each value passed to the function.

If the database server was started with the -fips option, the algorithm used, or the behavior, may be
different, as follows:

● SHA1_FIPS is used if SHA1 is specified

● SHA256_FIPS is used if SHA256 is specified

● an error is returned if MD5 is specified

● the CRC32 algorithm is allowed in FIPS mode because it is not considered a cryptographic algorithm

Caution
All the algorithms are one-way hashes. It is not possible to re-create the original string from the hash.

SQL functions

224 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “String functions” on page 136
● “-fips dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example creates a table called user_info to store information about the users of an
application, including their user ID and password. One row is also inserted into the table. The password is
hashed using the HASH function and the SHA256 algorithm. Storing hashed passwords in this way can
be useful if you do not want to store passwords in clear text, yet you have an external application that
needs to compare passwords.

CREATE TABLE user_info (
 employee_id INTEGER NOT NULL PRIMARY KEY,
 user_name CHAR(80),
 user_pwd CHAR(80));
INSERT INTO user_info
 VALUES ('1', 's_phillips', HASH('mypass', 'SHA256'));

HEXTOINT function [Data type conversion]
Returns the decimal integer equivalent of a hexadecimal string.

The CAST, CONVERT, HEXTOINT, and INTTOHEX functions can be used to convert to and from
hexadecimal values. For more information on using these functions, see “Converting to and from
hexadecimal values” on page 6.

Syntax
HEXTOINT(hexadecimal-string)

Parameters
● hexadecimal-string The string to be converted to an integer.

Returns
The HEXTOINT function returns as INT the platform-independent SQL INTEGER equivalent of the
hexadecimal string. The hexadecimal value represents a negative integer if the 8th digit from the right is
one of the digits 8-9 and the uppercase or lowercase letters A-F and the previous leading digits are all
uppercase or lowercase letter F. The following is not a valid use of HEXTOINT since the argument
represents a positive integer value that cannot be represented as a signed 32-bit integer:

SELECT HEXTOINT('0x0080000001');

Remarks
The HEXTOINT function accepts string literals or variables consisting only of digits and the uppercase or
lowercase letters A-F, with or without a 0x prefix. The following are all valid uses of HEXTOINT:

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 225

SELECT HEXTOINT('0xFFFFFFFF');
SELECT HEXTOINT('0x00000100');
SELECT HEXTOINT('100');
SELECT HEXTOINT('0xffffffff80000001');

The HEXTOINT function removes the 0x prefix, if present. If the data exceeds 8 digits, it must represent
a value that can be represented as a signed 32-bit integer value.

This function supports NCHAR inputs and/or outputs.

See also
● “INTTOHEX function [Data type conversion]” on page 240

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 420.

SELECT HEXTOINT('1A4');

HOUR function [Date and time]

Returns the hour component of a TIMESTAMP value.

Syntax
HOUR(timestamp-expression)

Parameters
● timestamp-expression A TIMESTAMP value.

Returns
SMALLINT

Remarks
The value returned is the hour portion of the TIMESTAMP expression, a SMALLINT value between 0
and 23.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 21:

SELECT HOUR('1998-07-09 21:12:13');

SQL functions

226 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

HOURS function [Date and time]
The HOURS function manipulates a TIMESTAMP, or returns the number of hours between two
TIMESTAMP values. For specific details, see this function's usage.

Syntax 1
HOURS (timestamp-expression)

Syntax 2
HOURS (timestamp-expression, timestamp-expression)

Syntax 3
HOURS (time-or-timestamp-expression, integer-expression)

Parameters
● time-or-timestamp-expression A value of type TIME or TIMESTAMP.

● timestamp-expression A value of type TIMESTAMP.

● integer-expression The number of hours to be added to time-or-timestamp-expression. If integer-
expression is negative, the appropriate number of hours is subtracted from time-or-timestamp-
expression..

For information about casting data types, see “CAST function [Data type conversion]” on page 153.

Returns
INTEGER with Syntax 1 or Syntax 2.

TIME or TIMESTAMP with Syntax 3.

Remarks
The result of the HOURS function depends on its arguments.

● Syntax 1 If you pass a single timestamp-expression to the HOURS function, it will return the
number of hours between midnight 0000-02-29 and timestamp-expression as an INTEGER.

Note
0000-02-29 is not meant to imply an actual date; it is the default TIMESTAMP value used by the
HOURS function.

● Syntax 2 If you pass two TIMESTAMP values to the HOURS function, the function returns the
integer number of hours between them.

● Syntax 3 If you pass a TIMESTAMP value and an INTEGER value to the HOURS function, the
function returns the TIMESTAMP result of adding the integer number of hours to time-or-timestamp-
expression argument. Similarly, if you pass a TIME value as the first argument, a TIME value is
returned as the result. Syntax 3 does not support implicit conversion of the first argument. It may be

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 227

necessary to explicitly cast the first argument to a DATE, TIME or TIMESTAMP value. If the first
argument is a DATE, midnight is assumed for the time portion.

Instead of Syntax 2, use the DATEDIFF function. Instead of Syntax 3, use the DATEADD function.

See also
● “DATEDIFF function [Date and time]” on page 182
● “DATEADD function [Date and time]” on page 181

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statements return the value 4, signifying that the second TIMESTAMP value is four hours
after the first. It is recommended that you use the second example (DATEDIFF).

SELECT HOURS('1999-07-13 06:07:12', '1999-07-13 10:07:12');
SELECT DATEDIFF(hour, '1999-07-13 06:07:12', '1999-07-13 10:07:12');

The following statement returns the value 17517342.

SELECT HOURS('1998-07-13 06:07:12');

The following statements return the datetime 1999-05-13 02:05:07.000. It is recommended that you use
the second example (DATEADD).

SELECT HOURS(CAST('1999-05-12 21:05:07' AS DATETIME), 5);
SELECT DATEADD(hour, 5, '1999-05-12 21:05:07');

HTML_DECODE function [Miscellaneous]

Decodes special character entities that appear in HTML literal strings.

Syntax
HTML_DECODE(string)

Parameters
● string Arbitrary literal string used in an HTML document.

Returns
LONG VARCHAR or LONG NVARCHAR

Remarks
This function returns the string argument after making the appropriate substitutions. The following table
contains a sampling of the acceptable character entities.

SQL functions

228 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Characters Substitution

" "

' '

& &

< <

> >

&#xhexadecimal-number; Unicode codepoint, specified as a hexadecimal number. For example,
' returns a single apostrophe.

&#decimal-number; Unicode codepoint, specified as a decimal number. For example, ™
returns the trademark symbol.

When a Unicode codepoint is specified, if the value can be converted to a character in the database
character set, it is converted to a character. Otherwise, it is returned uninterpreted.

SQL Anywhere supports all character entity references specified in the HTML 4.01 Specification. See http://
www.w3.org/TR/html4/ and http://www.w3.org/TR/html4/sgml/entities.html#h-24.2.

See also
● “HTML_ENCODE function [Miscellaneous]” on page 229
● “Web services functions” on page 135
● “Web services system procedures” on page 941

Standards and compatibility
● SQL/2008 Vendor extension.

Examples
SELECT HTML_DECODE('<p>The piano was made ' ||
 'by ‘Steinway & Sons’.</p>')
SELECT HTML_DECODE('<p>It cost €85.000,00.</p>')

HTML_ENCODE function [Miscellaneous]
Encodes special characters within strings to be inserted into HTML documents.

Syntax
HTML_ENCODE(string)

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 229

http://www.w3.org/TR/html4/
http://www.w3.org/TR/html4/
http://www.w3.org/TR/html4/sgml/entities.html#h-24.2

Parameters
● string Arbitrary string to be used in an HTML document.

Returns
LONG VARCHAR or LONG NVARCHAR

Remarks
This function returns the string argument after making the following set of substitutions:

Characters Substitution

" "

' '

& &

< <

> >

codes nn less than 0x20 &#xnn;

This function supports NCHAR inputs and/or outputs.

See also
● “HTML_DECODE function [Miscellaneous]” on page 228
● “Web services functions” on page 135
● “Web services system procedures” on page 941

Standards and compatibility
● SQL/2008 Vendor extension.

Examples
The following example returns the string '<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML
4.01//EN"> '.

SELECT HTML_ENCODE('<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">')

HTTP_BODY function [HTTP]
Returns the body of the HTTP request in binary form. For example, in a POST request, this is the raw
POST data.

Syntax
HTTP_BODY()

SQL functions

230 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters
None

Returns
LONG VARCHAR containing the body of the HTTP request in binary form; no character set conversion
is performed on it.

Remarks
If the request body does not exist, or if the function is not called from a web service, a NULL value is returned.

This function is useful within the PHP external environment.

See also
● “sa_http_php_page system procedure” on page 1003
● “sa_http_php_page_interpreted system procedure” on page 1003
● “Web services functions” on page 135
● “Web services system procedures” on page 941

Standards and compatibility
● SQL/2008 Vendor extension.

HTTP_DECODE function [HTTP]
Decodes HTTP encoded strings. This is also known as URL decoding.

Syntax
HTTP_DECODE(string)

Parameters
● string Arbitrary string taken from a URL or URL encoded request body.

Returns
LONG VARCHAR or LONG NVARCHAR

Remarks
This function returns the string argument after replacing all character sequences of the form %nn, where
nn is a hexadecimal value, with the character with code nn. In addition, all plus signs (+) are replaced
with spaces.

See also
● “HTTP_ENCODE function [HTTP]” on page 232
● “Web services functions” on page 135
● “Web services system procedures” on page 941

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 231

Standards and compatibility
● SQL/2008 Vendor extension.

Examples
SELECT HTTP_DECODE('http%3A%2F%2Fdcx.sybase.com')

HTTP_ENCODE function [HTTP]
Encodes strings for use with HTTP. This is also known as URL encoding.

Syntax
HTTP_ENCODE(string)

Parameters
● string Arbitrary string to be encoded for HTTP transport.

Returns
LONG VARCHAR or LONG NVARCHAR

Remarks
This function returns the string argument after making the following set of substitutions. In addition, all
characters with hexadecimal codes less than 20 or greater than 7E are replaced with %nn, where nn is the
character code.

Character Substitution

space %20

" %22

%23

% %25

& %26

, %2C

; %3B

< %3C

> %3E

[%5B

SQL functions

232 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Character Substitution

\ %5C

] %5D

` %60

{ %7B

| %7C

} %7D

character codes nn that are less than 0x20 and greater than 0x7f %nn

This function supports NCHAR inputs and/or outputs.

See also
● “HTTP_DECODE function [HTTP]” on page 231
● “Web services functions” on page 135
● “Web services system procedures” on page 941

Standards and compatibility
● SQL/2008 Vendor extension.

Examples
SELECT HTTP_ENCODE('/opt&id=123&text=''oid:c\x09d ef''')

HTTP_HEADER function [HTTP]
Returns the value of an HTTP request header.

Syntax
HTTP_HEADER(header-field-name)

Parameters
● header-field-name The name of an HTTP request header field.

Returns
LONG VARCHAR

Remarks
This function returns the value of the named HTTP request header field, or NULL if it does not exist or if
it is not called from an HTTP service. It is used when processing an HTTP request via a web service.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 233

Some headers that may be of interest when processing an HTTP web service request include the following:

● Cookie The cookie value(s), if any, stored by the client, that are associated with the requested URI.

● Referer The URL of the page that contained the link to the requested URI.

● Host The name or IP of the host that submitted the request.

● User-Agent The name of the client application.

● Accept-Encoding A list of encodings for the response that are acceptable to the client application.

More information about these headers is available at http://www.w3.org/Protocols/rfc2616/rfc2616-
sec14.html.

The following special headers allow access to the elements within the request line of a client request.

● @HttpMethod Returns the type of request being processed. Possible values include DELETE,
HEAD, GET, PUT, or POST.

● @HttpURI The full URI of the request, as it was specified in the HTTP request (for example, /
myservice?&id=-123&version=109&lang=en).

● @HttpVersion The HTTP version of the request (for example, HTTP/1.0, or HTTP/1.1).

● @HttpQueryString Returns the query portion of the requested URI if it exists (for example,
&id=-123&version=109&lang=en).

See also
● “NEXT_HTTP_HEADER function [HTTP]” on page 272
● “sa_set_http_header system procedure” on page 1074
● “sa_http_header_info system procedure” on page 1002
● “Accessing client-supplied HTTP variables and headers” [SQL Anywhere Server - Programming]
● “Web services functions” on page 135
● “Web services system procedures” on page 941

Standards and compatibility
● SQL/2008 Vendor extension.

Example
When used within a stored procedure that is called by an HTTP web service, the following example gets
the Cookie header value:

SET cookie_value = HTTP_HEADER('Cookie');

When used within a stored procedure that is called by an HTTP web service, the following example
displays the name and values of the HTTP request headers in the database server messages window.

BEGIN

SQL functions

234 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

 declare header_name long varchar;
 declare header_value long varchar;
 set header_name = NULL;
header_loop:
 LOOP
 SET header_name = NEXT_HTTP_HEADER(header_name);
 IF header_name IS NULL THEN
 LEAVE header_loop
 END IF;
 SET header_value = HTTP_HEADER(header_name);
 MESSAGE 'HEADER: ', header_name, '=',
 header_value TO CONSOLE;
 END LOOP;
END;

HTTP_RESPONSE_HEADER function [HTTP]

Returns the value of an HTTP response header.

Syntax
HTTP_RESPONSE_HEADER(header-field-name)

Parameters
● header-field-name The name of an HTTP response header field.

Returns
LONG VARCHAR

Remarks
This function returns the value of the named HTTP response header field, or NULL if a header for the
given header-field-name does not exist or if it is not called from an HTTP service.

See also
● “NEXT_HTTP_RESPONSE_HEADER function [HTTP]” on page 273
● “sa_set_http_header system procedure” on page 1074
● “Accessing client-supplied HTTP variables and headers” [SQL Anywhere Server - Programming]
● “Web services functions” on page 135
● “Web services system procedures” on page 941

Standards and compatibility
● SQL/2008 Vendor extension.

Example
When used within a stored procedure that is called by an HTTP web service, the following example
displays the name and values of the HTTP response headers in the database server messages window.

BEGIN
 declare header_name long varchar;
 declare header_value long varchar;

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 235

 set header_name = NULL;
header_loop:
 LOOP
 SET header_name = NEXT_HTTP_RESPONSE_HEADER(header_name);
 IF header_name IS NULL THEN
 LEAVE header_loop
 END IF;
 SET header_value = HTTP_RESPONSE_HEADER(header_name);
 MESSAGE 'RESPONSE HEADER: ', header_name, '=', header_value TO CONSOLE;
 END LOOP;

HTTP_VARIABLE function [HTTP]

Returns the value of an HTTP variable.

Syntax
HTTP_VARIABLE(var-name [, instance [, attribute]])

Parameters
● var-name The name of an HTTP variable.

● instance If more than one variable has the same name, the instance number of the field instance, or
NULL to get the first one. Useful for select lists that permit multiple selections.

● attribute In a multi-part request, the attribute can specify a header field name which returns the
value of the header for the multi-part name.

When an attribute is not specified, the returned value is %-decoded and the character set is translated
to the database character set encoding. UTF %-encoded data is supported in this mode.

The attribute can also be one of the following modes:

○ '@BINARY' Returns a x-www-form-urlencoded binary data value. This mode indicates that the
returned value is %-decoded and should not be character set encoded. UTF %-encoded data is not
supported in this mode.

○ '@TRANSPORT' Returns the raw HTTP transport form of the value, where %-encodings are
preserved.

Returns
LONG VARCHAR

Remarks
This function returns the value of the named HTTP variable. It is used when processing an HTTP request
within a web service.

If var-name or a header for the given var-name specifying an HTTP header field attribute does not exist,
the return value is NULL.

SQL functions

236 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

When the web service request is a POST, and the variable data is posted as multipart/form-data, the HTTP
server receives HTTP headers for each individual variable. When the attribute parameter is specified, the
HTTP_VARIABLE function returns the associated multipart/form-data header value from the POST
request for the particular variable.

All input data goes through character set translation between the client (for example, a browser) character
set, and the character set of the database. However, if @BINARY is specified for attribute, the variable
input value is returned without going through character set translation. This may be useful when receiving
binary data, such as image data, from a client.

This function returns NULL when the specified instance does not exist or when the function is called
from outside of an execution of a web service.

See also
● “NEXT_HTTP_VARIABLE function [HTTP]” on page 274
● “sa_http_variable_info system procedure” on page 1005
● “Accessing client-supplied HTTP variables and headers” [SQL Anywhere Server - Programming]
● “Web services functions” on page 135
● “Web services system procedures” on page 941

Standards and compatibility
● SQL/2008 Vendor extension.

Examples
When used within a stored procedure that is called by an HTTP web service, the following example
retrieves the values of the HTTP variables indicated in the sample URL.

-- http://sample.com/demo/ShowDetail?product_id=300&customer_id=101
BEGIN
 DECLARE v_customer_id LONG VARCHAR;
 DECLARE v_product_id LONG VARCHAR;
 SET v_customer_id = HTTP_VARIABLE('customer_id');
 SET v_product_id = HTTP_VARIABLE('product_id');
 CALL ShowSalesOrderDetail(v_customer_id, v_product_id);
END;

When used within a stored procedure that is called by an HTTP web service, the following statements
request the Content-Disposition and Content-Type headers of the image variable:

SET v_name = HTTP_VARIABLE('image', NULL, 'Content-Disposition');
SET v_type = HTTP_VARIABLE('image', NULL, 'Content-Type');

When used within a stored procedure that is called by an HTTP web service, the following statement
requests the value of the image variable in its current character set, that is, without going through
character set translation:

SET v_image = HTTP_VARIABLE('image', NULL, '@BINARY');

IDENTITY function [Miscellaneous]

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 237

Generates integer values, starting at 1, for each successive row in a query. Its implementation is identical
to that of the NUMBER function.

Syntax
IDENTITY(expression)

Parameters
● expression An expression. The expression is parsed, but is ignored during the execution of the

function.

Returns
INT

Remarks
For a description of how to use the IDENTITY function, see “NUMBER function
[Miscellaneous]” on page 277.

See also
● “NUMBER function [Miscellaneous]” on page 277

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns a sequentially-numbered list of employees.

SELECT IDENTITY(10), Surname FROM Employees;

IFNULL function [Miscellaneous]

If the first expression is the NULL value, then the value of the second expression is returned. If the first
expression is not NULL, the value of the third expression is returned. If the first expression is not NULL
and there is no third expression, NULL is returned.

Syntax
IFNULL(expression-1, expression-2 [, expression-3])

Parameters
● expression-1 The expression to be evaluated. Its value determines whether expression-2 or

expression-3 is returned.

● expression-2 The return value if expression-1 is NULL.

● expression-3 The return value if expression-1 is not NULL.

SQL functions

238 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns
The data type returned depends on the data type of expression-2 and expression-3.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value -66.

SELECT IFNULL(NULL, -66);

The following statement returns NULL, because the first expression is not NULL and there is no third
expression.

SELECT IFNULL(-66, -66);

INDEX_ESTIMATE function [Miscellaneous]

Returns selectivity estimates from the index as a percentage calculated by the query optimizer, based on
specified parameters.

Syntax
INDEX_ESTIMATE(column-name [, value [, relation-string]])

Parameters
● column-name The column used in the estimate.

● value The value to which the column is compared. The default is NULL.

● relation-string The comparison operator used for the comparison, enclosed in single quotes.
Possible values for this parameter are: '=' , '>' , '<' , '>=' , '<=' , '<>' , '!=' , '!<' , and '!>'. The default is '='.

Returns
REAL

Remarks
This function returns selectivity estimates from the index for the predicate column-name relation-
string value. If value is NULL and the relation string is '=', the selectivity is for the predicate column-
name IS NULL. If value is NULL and the relation string is '!=' or '<>', the selectivity is for the
predicate column-name IS NOT NULL.

See also
● “ESTIMATE function [Miscellaneous]” on page 204
● “ESTIMATE_SOURCE function [Miscellaneous]” on page 205
● “EXPERIENCE_ESTIMATE function [Miscellaneous]” on page 212

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 239

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the percentage of EmployeeID values estimated to be greater than 200.

SELECT INDEX_ESTIMATE(EmployeeID, 200, '>')
FROM Employees;

INSERTSTR function [String]
Inserts a string into another string at a specified position.

Syntax
INSERTSTR(integer-expression, string-expression-1, string-expression-2)

Parameters
● integer-expression The position after which the string is to be inserted. Use zero to insert a string

at the beginning.

● string-expression-1 The string into which the other string is to be inserted.

● string-expression-2 The string to be inserted.

Returns
LONG VARCHAR

Remarks
This function supports NCHAR inputs and/or outputs.

See also
● “STUFF function [String]” on page 339
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value backoffice.

SELECT INSERTSTR(0, 'office ', 'back');

INTTOHEX function [Data type conversion]
Returns a string containing the hexadecimal equivalent of an integer.

SQL functions

240 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
INTTOHEX(integer-expression)

Parameters
● integer-expression The integer to be converted to hexadecimal.

Returns
VARCHAR

Remarks
The CAST, CONVERT, HEXTOINT, and INTTOHEX functions can be used to convert to and from
hexadecimal values. For more information, see “Converting to and from hexadecimal values” on page 6.

See also
● “HEXTOINT function [Data type conversion]” on page 225

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 0000009c.

SELECT INTTOHEX(156);

ISDATE function [Data type conversion]
Tests if a string argument can be converted to a date.

Syntax
ISDATE(string)

Parameters
● string The string to be analyzed to determine if the string represents a valid date.

Returns
INT

Remarks
If a conversion is possible, the function returns 1; otherwise, 0 is returned. If the argument is NULL, 0 is
returned.

This function supports NCHAR inputs and/or outputs.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 241

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example imports data from an external file, exports rows which contain invalid values, and
copies the remaining rows to a permanent table.

CREATE GLOBAL TEMPORARY TABLE MyData(
 person VARCHAR(100),
 birth_date VARCHAR(30),
 height_in_cms VARCHAR(10)
) ON COMMIT PRESERVE ROWS;
 LOAD TABLE MyData FROM 'exported.dat';
 UNLOAD
 SELECT * FROM MyData
 WHERE ISDATE(birth_date) = 0
 OR ISNUMERIC(height_in_cms) = 0
 TO 'badrows.dat';
 INSERT INTO PermData
 SELECT person, birth_date, height_in_cms
 FROM MyData
 WHERE ISDATE(birth_date) = 1
 AND ISNUMERIC(height_in_cms) = 1;
 COMMIT;
 DROP TABLE MyData;

ISENCRYPTED function [System]
Determines if a string is encrypted using the ENCRYPT function and the specified key.

Syntax
ISENCRYPTED(string, key[, algorithm])

Returns
INT

Parameters
● string The string to be analyzed to determine if it is encrypted. This parameter is case sensitive,

even in case-insensitive databases.

● key The encryption key used to encrypt the string. This parameter is case sensitive, even in case-
insensitive databases.

● algorithm This optional parameter specifies the algorithm used when the string was encrypted.
Supported algorithms include: AES, AES256, AES_FIPS, and AES256_FIPS.

You can specify one of the FIPS algorithms for algorithm on any platform that supports FIPS.

Remarks
ISENCRYPTED returns 1 when the input string is encrypted with the specified key; otherwise it returns 0.

SQL functions

242 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “ENCRYPT function [String]” on page 202
● “DECRYPT function [String]” on page 196

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following fragment illustrates the use of the ISENCRYPTED function:

SELECT ISENCRYPTED(ENCRYPT ('test_string', 'key'), 'key');

ISNULL function [Miscellaneous]
Returns the first non-NULL expression from a list. This function is identical to the COALESCE function.

Syntax
ISNULL(expression, expression [, ...])

Parameters
● expression An expression to be tested against NULL.

At least two expressions must be passed into the function, and all expressions must be comparable.

Returns
The return type for this function depends on the expressions specified. That is, when the database server
evaluates the function, it first searches for a data type in which all the expressions can be compared. When
found, the database server compares the expressions and then returns the result in the type used for the
comparison. If the database server cannot find a common comparison type, an error is returned.

See also
● “COALESCE function [Miscellaneous]” on page 158

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value -66.

SELECT ISNULL(NULL ,-66, 55, 45, NULL, 16);

ISNUMERIC function [Miscellaneous]
Determines if a string argument is a valid number.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 243

Syntax
ISNUMERIC(string)

Parameters
● string The string to be analyzed to determine if the string represents a valid number.

Returns
INT

Remarks
ISNUMERIC returns 1 when the input string evaluates to a valid integer or floating-point number;
otherwise it returns 0. The function also returns 0 if the string contains only blanks or is NULL.

Following are values that also cause the ISNUMERIC function to return 0:

● Values that use the letter d or D as the exponent separator. For example, 1d2.

● Special values such as NAN, 0x12, INF, and INFINITY.

● NULL (for example, SELECT ISNUMERIC(NULL);)

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example imports data from an external file, exports rows that contain invalid values, and
copies the remaining rows to a permanent table. In this example, the ISNUMERIC statement validates
that the values in height_in_cms values are numeric.

CREATE GLOBAL TEMPORARY TABLE MyData(
 person VARCHAR(100),
 birth_date VARCHAR(30),
 height_in_cms VARCHAR(10)
) ON COMMIT PRESERVE ROWS;
 LOAD TABLE MyData FROM 'exported.dat';
 UNLOAD
 SELECT *
 FROM MyData
 WHERE ISDATE(birth_date) = 0
 OR ISNUMERIC(height_in_cms) = 0
 TO 'badrows.dat';
 INSERT INTO PermData
 SELECT person, birth_date, height_in_cms
 FROM MyData
 WHERE ISDATE(birth_date) = 1
 AND ISNUMERIC(height_in_cms) = 1;
 COMMIT;
 DROP TABLE MyData;

LAST_VALUE function [Aggregate]

SQL functions

244 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns values from the last row of a window.

Syntax
LAST_VALUE([ALL] expression[{ RESPECT | IGNORE } NULLS])
OVER (window-spec)

window-spec : see the Remarks section below

Parameters
● expression The expression to evaluate. For example, a column name.

Returns
Data type of the argument.

Remarks
The LAST_VALUE function allows you to select the last value (according to some ordering) in a table,
without having to use a self-join. This is valuable when you want to use the last value as the baseline in
calculations.

The LAST_VALUE function takes the last record from the partition after doing the ORDER BY. Then,
the expression is computed against the last record and results are returned.

If IGNORE NULLS is specified, the last non-NULL value of expression is returned. If RESPECT
NULLS is specified (the default), the last value is returned whether or not it is NULL.

The LAST_VALUE function is different from most other aggregate functions in that it can only be used
with a window specification.

Elements of window-spec can be specified either in the function syntax (inline), or in conjunction with a
WINDOW clause in the SELECT statement. See the window-spec definition provided in “WINDOW
clause” on page 907.

For more information about using window functions in SELECT statements, including working examples,
see “Window functions” [SQL Anywhere Server - SQL Usage].

For more information about specifying a window specification in an OVER clause, see “Window
definition: inlining using the OVER clause and WINDOW clause” [SQL Anywhere Server - SQL Usage].

See also
● “Window aggregate functions” [SQL Anywhere Server - SQL Usage]
● “FIRST_VALUE function [Aggregate]” on page 215

Standards and compatibility
● SQL/2008 Vendor extension.

SQL Anywhere supports SQL/2008 language feature F441, "Extended set function support", which
permits operands of window functions to be arbitrary expressions that are not column references.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 245

SQL Anywhere does not support optional SQL/2008 feature F442, "Mixed column references in set
functions". SQL Anywhere does not permit the arguments of an aggregate function to include both a
column reference from the query block containing the LAST_VALUE function, combined with an
outer reference. For an example, see the “AVG function [Aggregate]” [UltraLite - Database
Management and Reference]

Example
The following example returns the salary of each employee, plus the name of the employee with the
highest salary in the same department:

SELECT GivenName + ' ' + Surname AS employee_name,
 Salary, DepartmentID,
 LAST_VALUE(employee_name) OVER Salary_Window AS highest_paid
FROM Employees
WINDOW Salary_Window AS (PARTITION BY DepartmentID ORDER BY Salary
 RANGE BETWEEN UNBOUNDED PRECEDING
 AND UNBOUNDED FOLLOWING);

employee_name Salary DepartmentID highest_paid

Michael Lynch 24903 500 Jose Martinez

Joseph Barker 27290 500 Jose Martinez

Sheila Romero 27500 500 Jose Martinez

Felicia Kuo 28200 500 Jose Martinez

Jeannette Bertrand 29800 500 Jose Martinez

Jane Braun 34300 500 Jose Martinez

Anthony Rebeiro 34576 500 Jose Martinez

Charles Crowley 41700 500 Jose Martinez

Jose Martinez 55500.8 500 Jose Martinez

Doug Charlton 28300 400 Scott Evans

Elizabeth Lambert 29384 400 Scott Evans

Joyce Butterfield 34011 400 Scott Evans

Robert Nielsen 34889 400 Scott Evans

Alex Ahmed 34992 400 Scott Evans

Ruth Wetherby 35745 400 Scott Evans

...

SQL functions

246 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Jose Martinez makes the highest salary in department 500, and Scott Evans makes the highest salary in
department 400.

LCASE function [String]
Converts all characters in a string to lowercase.

Syntax
LCASE(string-expression)

Parameters
● string-expression The string to be converted to lowercase.

Returns
● CHAR
● NCHAR
● LONG VARCHAR
● VARCHAR
● NVARCHAR

Remarks
The LCASE function is identical to the LOWER function.

See also
● “LOWER function [String]” on page 256
● “UCASE function [String]” on page 356
● “UPPER function [String]” on page 359
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension. The equivalent function LOWER is a core feature of the SQL/2008

standard.

Example
The following statement returns the value chocolate.

SELECT LCASE('ChoCOlatE');

LEFT function [String]
Returns multiple characters from the beginning of a string.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 247

Syntax
LEFT(string-expression, integer-expression)

Parameters
● string-expression The string.

● integer-expression The number of characters to return.

Returns
● LONG VARCHAR
● LONG NVARCHAR

Remarks
If the string contains multibyte characters, and the proper collation is being used, the number of bytes
returned may be greater than the specified number of characters.

You can specify an integer-expression that is larger than the value in the argument string expression. In
this case, the entire value is returned.

This function supports NCHAR inputs and/or outputs. Whenever possible, if the input string uses character-
length semantics, the return value is described in character-length semantics.

See also
● “RIGHT function [String]” on page 313
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the first 5 characters of each Surname value in the Customers table.

SELECT LEFT(Surname, 5) FROM Customers;

LENGTH function [String]
Returns the number of characters in the specified string.

Syntax
LENGTH(string-expression)

Parameters
● string-expression The string.

SQL functions

248 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns
INT

Remarks
Use this function to determine the length of a string. For example, specify a column name for string-
expression to determine the length of values in the column.

If the string contains multibyte characters, and the proper collation is being used, LENGTH returns the
number of characters, not the number of bytes. If the string is of data type BINARY, the LENGTH
function behaves as the BYTE_LENGTH function.

Note
You can use the LENGTH function and the CHAR_LENGTH function interchangeably for CHAR,
VARCHAR, LONG VARCHAR, and NCHAR data types. However, you must use the LENGTH function
for BINARY and bit array data types.

This function supports NCHAR inputs and/or outputs.

See also
● “BYTE_LENGTH function [String]” on page 152
● “International languages and character sets” [SQL Anywhere Server - Database Administration]
● “String functions” on page 136

Standards and compatibility
● SQL/2008 The LENGTH function is a vendor extension; however, its semantics are identical to

that of the CHAR_LENGTH function in the SQL/2008 standard. Using LENGTH over a string
expression of type NCHAR comprises part of optional SQL/2008 language feature F421.

Example
The following statement returns the value 9.

SELECT LENGTH('chocolate');

LESSER function [Miscellaneous]

Returns the lesser of two parameter values.

Syntax
LESSER(expression-1, expression-2)

Parameters
● expression-1 The first parameter value to be compared.

● expression-2 The second parameter value to be compared.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 249

Returns
The return type for this function depends on the expressions specified. That is, when the database server
evaluates the function, it first searches for a data type in which all the expressions can be compared. When
found, the database server compares the expressions and then returns the result in the type used for the
comparison. If the database server cannot find a common comparison type, an error is returned.

Remarks
If the parameters are equal, the first value is returned.

See also
● “GREATER function [Miscellaneous]” on page 222

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 5.

SELECT LESSER(10, 5) FROM dummy;

LIST function [Aggregate]
Returns a delimited list of values for every row in a group.

Syntax
LIST(
[ALL | DISTINCT] string-expression
[, delimiter-string]
[ORDER BY order-by-expression [ASC | DESC], ...])

Parameters
● string-expression A string expression, usually a column name. When ALL is specified (the

default), for each row in the group, the value of string-expression is added to the result string, with
values separated by delimiter-string. When DISTINCT is specified, only unique string-expression
values are added.

● delimiter-string A delimiter string for the list items. The default setting is a comma. There is no
delimiter if a value of NULL or an empty string is supplied. The delimiter-string must be a constant.

● order-by-expression Order the items returned by the function. There is no comma preceding this
argument, which makes it easy to use in the case where no delimiter-string is supplied.

order-by-expression cannot be an integer literal. However, it can be a variable that contains an integer
literal.

SQL functions

250 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

When an ORDER BY clause contains constants, they are interpreted by the optimizer and then
replaced by an equivalent ORDER BY clause. For example, the optimizer interprets ORDER BY 'a' as
ORDER BY expression.

A query block containing more than one aggregate function with valid ORDER BY clauses can be
executed if the ORDER BY clauses can be logically combined into a single ORDER BY clause. For
example, the following clauses:

ORDER BY expression1, 'a', expression2

ORDER BY expression1, 'b', expression2, 'c', expression3

are subsumed by the clause:

ORDER BY expression1, expression2, expression3

Returns
● LONG VARCHAR
● LONG NVARCHAR

Remarks
The LIST function returns the concatenation (with delimiters) of all the non-NULL values of X for each
row in the group. If there does not exist at least one row in the group with a definite X-value, then
LIST(X) returns the empty string.

NULL values and empty strings are ignored by the LIST function.

A LIST function cannot be used as a window function, but it can be used as input to a window function.

This function supports NCHAR inputs and/or outputs.

Standards and compatibility
● SQL/2008 Vendor extension.

SQL Anywhere supports SQL/2008 language feature F441, "Extended set function support", which
permits operands of aggregate functions to be arbitrary expressions that are not column references.

SQL Anywhere does not support optional SQL/2008 feature F442, "Mixed column references in set
functions". SQL Anywhere does not permit the arguments of an aggregate function to include both a
column reference from the query block containing the LIST function, combined with an outer
reference. See “Aggregate functions and outer references” [SQL Anywhere Server - SQL Usage]. For
an example, see the “AVG function [Aggregate]” [UltraLite - Database Management and Reference]

See also
● “sa_split_list system procedure” on page 1082

Examples
The following statement returns the value 487 Kennedy Court, 547 School Street.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 251

SELECT LIST(Street) FROM Employees
WHERE GivenName = 'Thomas';

The following statement lists employee IDs. Each row in the result set contains a comma-delimited list of
employee IDs for a single department.

SELECT LIST(EmployeeID)
FROM Employees
GROUP BY DepartmentID;

LIST(EmployeeID)

102,105,160,243,247,249,266,278,...

129,195,299,467,641,667,690,856,...

148,390,586,757,879,1293,1336,...

184,207,318,409,591,888,992,1062,...

191,703,750,868,921,1013,1570,...

The following statement sorts the employee IDs by the last name of the employee:

SELECT LIST(EmployeeID ORDER BY Surname) AS "Sorted IDs"
FROM Employees
GROUP BY DepartmentID;

Sorted IDs '1751,591,1062,1191,992,888,318,184,1576,207,1684,1643,1607,1740,409,1507'

Sorted IDs

1013,191,750,921,868,1658,...

1751,591,1062,1191,992,888,318,...

1336,879,586,390,757,148,1483,...

1039,129,1142,195,667,1162,902,...

160,105,1250,247,266,249,445,...

The following statement returns semicolon-separated lists. Note the position of the ORDER BY clause
and the list separator:

SELECT LIST(EmployeeID, ';' ORDER BY Surname) AS "Sorted IDs"
FROM Employees
GROUP BY DepartmentID;

Sorted IDs

1013;191;750;921;868;1658;703;...

SQL functions

252 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Sorted IDs

1751;591;1062;1191;992;888;318;...

1336;879;586;390;757;148;1483;...

1039;129;1142;195;667;1162;902; ...

160;105;1250;247;266;249;445;...

Be sure to distinguish the previous statement from the following statement, which returns comma-
separated lists of employee IDs sorted by a compound sort-key of (Surname, ';'):

SELECT LIST(EmployeeID ORDER BY Surname, ';') AS "Sorted IDs"
FROM Employees
GROUP BY DepartmentID;

LOCATE function [String]
Returns the position of one string within another.

Syntax
LOCATE(string-expression-1, string-expression-2 [, integer-expression])

Parameters
● string-expression-1 The string to be searched.

● string-expression-2 The string to be searched for. This string is limited to 255 bytes.

● integer-expression The character position in the string to begin the search. The first character is
position 1. If the starting offset is negative, the locate function returns the last matching string offset
rather than the first. A negative offset indicates how much of the end of the string is to be excluded
from the search. The number of bytes excluded is calculated as (-1 * offset) -1.

Returns
INT

Remarks
If integer-expression is specified, the search starts at that offset into the string.

The first string can be a long string (longer than 255 bytes), but the second is limited to 255 bytes. If a
long string is given as the second argument, the function returns a NULL value. If the string is not found,
0 is returned. Searching for a zero-length string will return 1. If any of the arguments are NULL, the result
is NULL.

If multibyte characters are used, with the appropriate collation, then the starting position and the return
value may be different from the byte positions.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 253

This function supports NCHAR inputs and/or outputs.

See also
● “String functions” on page 136
● “CHARINDEX function [String]” on page 157

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 8.

SELECT LOCATE(
 'office party this week - rsvp as soon as possible',
 'party',
 2);

The following statement:

BEGIN
 DECLARE STR LONG VARCHAR;
 DECLARE POS INT;
 SET str = 'c:\test\functions\locate.sql';
 SET pos = LOCATE(str, '\', -1);
 select str, pos,
 SUBSTR(str, 1, pos -1) AS path,
 SUBSTR(str, pos +1) AS filename;
END;

returns the following output:

str pos path filename

c:\test\functions\locate.sql 18 c:\test\functions locate.sql

LOG function [Numeric]

Returns the natural logarithm of a number.

Syntax
LOG(numeric-expression)

Parameters
● numeric-expression The number.

Returns
This function converts its argument to DOUBLE, performs the computation in double-precision floating-
point arithmetic, and returns a DOUBLE as the result. If the parameter is NULL, the result is NULL.

SQL functions

254 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
The argument is an expression that returns the value of any built-in numeric data type.

See also
● “LOG10 function [Numeric]” on page 255

Standards and compatibility
● SQL/2008 The SQL/2008 standard defines the natural logarithm function using the keyword LN.

The natural logarithm function comprises part of optional SQL/2008 language feature T621,
"Enhanced numeric functions".

Example
The following statement returns the natural logarithm of 50.

SELECT LOG(50);

LOG10 function [Numeric]
Returns the base 10 logarithm of a number.

Syntax
LOG10(numeric-expression)

Parameters
● numeric-expression The number.

Returns
This function converts its argument to DOUBLE, and performs the computation in double-precision floating-
point arithmetic. If the parameter is NULL, the result is NULL.

Remarks
The argument is an expression that returns the value of any built-in numeric data type.

See also
● “LOG function [Numeric]” on page 254

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the base 10 logarithm for 50.

SELECT LOG10(50);

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 255

LOWER function [String]
Converts all characters in a string to lowercase. This function is identical to the LCASE function.

Syntax
LOWER(string-expression)

Parameters
● string-expression The string to be converted to lowercase.

Returns
CHAR, VARCHAR, LONG VARCHAR, NCHAR, NVARCHAR, or LONG NVARCHAR
corresponding to the data type of the argument.

Remarks
The LCASE function is identical to the LOWER function.

See also
● “LCASE function [String]” on page 247
● “UCASE function [String]” on page 356
● “UPPER function [String]” on page 359
● “String functions” on page 136

Standards and compatibility
● SQL/2008 The LOWER function is a core feature of the SQL/2008 standard. Using LOWER over

an expression of type NCHAR comprises part of optional SQL/2008 language feature F421.

Example
The following statement returns the value chocolate.

SELECT LOWER('chOCOLate');

LTRIM function [String]
Removes leading blanks from the string.

Syntax
LTRIM(string-expression)

Parameters
● string-expression The string to be trimmed.

SQL functions

256 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns
● VARCHAR
● NVARCHAR
● LONG VARCHAR
● LONG NVARCHAR

Remarks
The actual length of the result is the length of the expression minus the number of characters removed. If
all the characters are removed, the result is an empty string.

If the parameter can be null, the result can be null.

If the parameter is null, the result is the null value.

This function supports NCHAR inputs and/or outputs.

See also
● “RTRIM function [String]” on page 317
● “TRIM function [String]” on page 353
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension.

The TRIM specifications defined by the SQL/2008 standard (LEADING and TRAILING) are
supplied by the SQL Anywhere LTRIM and RTRIM functions respectively.

Example
The following statement returns the value Test Message with all leading blanks removed.

SELECT LTRIM(' Test Message');

MAX function [Aggregate]
Returns the maximum expression value found in each group of rows.

Syntax 1
MAX([ALL | DISTINCT] expression)

Syntax 2
MAX([ALL] expression) OVER (window-spec)

window-spec : see Syntax 2 instructions in the Remarks section below

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 257

Parameters
● [ALL] expression The expression for which the maximum value is to be calculated. This is

commonly a column name.

● DISTINCT expression Returns the same as MAX(expression), and is included for completeness.

Returns
The same data type as the argument.

Remarks
Rows where expression is NULL are ignored. Returns NULL for a group containing no rows.

Syntax 2 represents usage as a window function in a SELECT statement. As such, elements of window-
spec can be specified either in the function syntax (inline), or in conjunction with a WINDOW clause in
the SELECT statement. See the window-spec definition provided in “WINDOW clause” on page 907.

For more information about using window functions in SELECT statements, including working examples,
see “Window functions” [SQL Anywhere Server - SQL Usage].

For more information about specifying a window specification in an OVER clause, see “Window
definition: inlining using the OVER clause and WINDOW clause” [SQL Anywhere Server - SQL Usage].

This function supports NCHAR inputs and/or outputs.

For simple comparisons of two expressions, you can also use the GREATER function. See “GREATER
function [Miscellaneous]” on page 222.

See also
● “MIN function [Aggregate]” on page 261

Standards and compatibility
● SQL/2008 Core feature. When used as a window function (Syntax 2), MAX comprises part of

optional SQL/2008 language feature T611, "Basic OLAP operations".

The ability to specify DISTINCT over an expression that is not a column reference comprises part of
optional SQL language feature F561, "Full value expressions". SQL Anywhere also supports SQL/
2008 language feature F441, "Extended set function support", which permits operands of aggregate
functions to be arbitrary expressions possibly including outer references to expressions in other query
blocks that are not column references.

SQL Anywhere does not support optional SQL/2008 feature F442, "Mixed column references in set
functions". SQL Anywhere does not permit the arguments of an aggregate function to include both a
column reference from the query block containing the MAX function, combined with an outer
reference. See “Aggregate functions and outer references” [SQL Anywhere Server - SQL Usage]. For
an example, see the “AVG function [Aggregate]” [UltraLite - Database Management and Reference]

SQL functions

258 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example
The following statement returns the value 138948.000, representing the maximum salary in the
Employees table.

SELECT MAX(Salary)
FROM Employees;

MEDIAN function [Aggregate]

Computes the median of a numeric expression for a set of rows.

Syntax 1
MEDIAN([ALL | DISTINCT] numeric-expression)

Syntax 2
MEDIAN([ALL] numeric-expression) OVER (window-spec)

window-spec : see Syntax 2 instructions in the Remarks section below

Parameters
● numeric-expression The expression whose median is calculated over a set of rows.

● DISTINCT clause Eliminates duplicate values before computing the median of the unique values
in the input.

● ALL clause Computes the median of all values (including duplicates) in the input. This is the
default behavior.

Returns
The data type of the returned value is the same as that of the input value.

NULLs are ignored in the calculation of the median value. However, a NULL value is returned for a
group that contains no rows.

Remarks
numeric-expression values can be of any numeric data type other than BIT. See “Numeric data
types” on page 87.

The median of a finite list of numbers can be found by arranging all the observations from lowest value to
highest value and picking the middle one. If there is an even number of observations, the median is not
unique so MEDIAN returns the mean of the two middle values. At most, half the population have values
less than the median, and half have values greater than the median. If both groups contain less than half
the population, then some of the population is exactly equal to the median. For example, if a < b < c,
then the median of the list {a, b, c} is b. If a < b < c < d, then the median of the list {a, b,
c, d} is the mean of b and c ((b + c)/2).

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 259

If the result of the mean of the two middle elements has digits after the decimal place, they are truncated
if the input data type can not represent them. To avoid this truncation, cast the input to a numeric type that
allows digits after the decimal place.

Syntax 2 represents usage as a window function in a SELECT statement. As such, elements of window-
spec can be specified either in the function syntax (inline), or in conjunction with a WINDOW clause in
the SELECT statement. See the window-spec definition provided in “WINDOW clause” on page 907.

window-spec can only be over a partition (it cannot contain a ROW or RANGE specification). DISTINCT
is not supported if a WINDOW clause is used. CUBE, ROLLUP, and GROUPING SETS are supported
with syntax 1.

For more information about using window functions in SELECT statements, including working examples,
see “Window functions” [SQL Anywhere Server - SQL Usage].

For more information about specifying a window specification in an OVER clause, see “Window
definition: inlining using the OVER clause and WINDOW clause” [SQL Anywhere Server - SQL Usage].

See also
● “SUM function [Aggregate]” on page 342
● “COUNT function [Aggregate]” on page 170

Standards and compatibility
● SQL/2008 Vendor extension. Window functions comprise optional SQL/2008 language feature

T611, "Basic OLAP operations".

SQL Anywhere supports SQL/2008 language feature F441, "Extended set function support", which
permits operands of window functions to be arbitrary expressions that are not column references.

SQL Anywhere does not support optional SQL/2008 feature F442, "Mixed column references in set
functions". SQL Anywhere does not permit the arguments of an aggregate function to include both a
column reference from the query block containing the MEDIAN function, combined with an outer
reference. For an example, see the “AVG function [Aggregate]” [UltraLite - Database Management
and Reference]

Example
The following statement returns the median salary from the Employees table.

SELECT MEDIAN(Salary) FROM Employees;

The following statement returns the median salary by state from the Employees table:

SELECT EmployeeID, Surname, Salary, State,
 MEDIAN(Salary) OVER Salary_Window
FROM Employees
WINDOW Salary_Window AS (PARTITION BY State)
ORDER BY State, Surname;

SQL functions

260 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

MIN function [Aggregate]
Returns the minimum expression value found in each group of rows.

Syntax 1
MIN([ALL | DISTINCT] expression)

Syntax 2
MIN([ALL] expression) OVER (window-spec)

window-spec : see Syntax 2 instructions in the Remarks section below

Parameters
● [ALL] expression The expression for which the minimum value is to be calculated. This is

commonly a column name.

● DISTINCT expression Returns the same as MIN(expression), and is included for completeness.

Returns
The same data type as the argument.

Remarks
Rows where expression is NULL are ignored. Returns NULL for a group containing no rows.

This function supports NCHAR inputs and/or outputs.

Syntax 2 represents usage as a window function in a SELECT statement. As such, elements of window-
spec can be specified either in the function syntax (inline), or in conjunction with a WINDOW clause in
the SELECT statement. See the window-spec definition provided in “WINDOW clause” on page 907.

For more information about using window functions in SELECT statements, including working examples,
see “Window functions” [SQL Anywhere Server - SQL Usage].

For more information about specifying a window specification in an OVER clause, see “Window
definition: inlining using the OVER clause and WINDOW clause” [SQL Anywhere Server - SQL Usage].

For simple comparisons of two expressions, you can also use the LESSER function. See “LESSER
function [Miscellaneous]” on page 249.

See also
● “MAX function [Aggregate]” on page 257

Standards and compatibility
● SQL/2008 Core feature. When used as a window function (Syntax 2), MIN comprises part of

optional SQL/2008 language feature T611, "Basic OLAP operations".

The ability to specify DISTINCT over an expression that is not a column reference comprises part of
optional SQL language feature F561, "Full value expressions". SQL Anywhere also supports SQL/

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 261

2008 language feature F441, "Extended set function support", which permits operands of aggregate
functions to be arbitrary expressions possibly including outer references to expressions in other query
blocks that are not column references.

SQL Anywhere does not support optional SQL/2008 feature F442, "Mixed column references in set
functions". SQL Anywhere does not permit the arguments of an aggregate function to include both a
column reference from the query block containing the MIN function, combined with an outer
reference. See “Aggregate functions and outer references” [SQL Anywhere Server - SQL Usage]. For
an example, see the “AVG function [Aggregate]” [UltraLite - Database Management and Reference]

Example
The following statement returns the value 24903.000, representing the minimum salary in the Employees
table.

SELECT MIN(Salary)
FROM Employees;

MINUTE function [Date and time]
Returns the minute component of a TIMESTAMP value.

Syntax
MINUTE(timestamp-expression)

Parameters
● timestamp-expression The TIMESTAMP value.

Returns
SMALLINT

Remarks
The value returned is the minute portion of the TIMESTAMP expression, a SMALLINT value between 0
and 59.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 22.

SELECT MINUTE('1998-07-13 12:22:34');

MINUTES function [Date and time]

SQL functions

262 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The MINUTES function manipulates a TIMESTAMP, or returns the number of minutes between two
TIMESTAMP values. See the Remarks section below.

Syntax 1
MINUTES(timestamp-expression)

Syntax 2
MINUTES(timestamp-expression, timestamp-expression)

Syntax 3
MINUTES(timestamp-or-time-expression, integer-expression)

Parameters
● timestamp-expression An expression of type TIMESTAMP.

● timestamp-or-time-expression An expression of type TIME or TIMESTAMP.

● integer-expression The number of minutes to be added to timestamp-or-time-expression. If integer-
expression is negative, the appropriate number of minutes is subtracted from timestamp-or-time-
expression.

Returns
INTEGER with Syntax 1 or Syntax 2.

TIME or TIMESTAMP with Syntax 3.

Remarks
The result of the MINUTES function depends on its arguments.

● Syntax 1 If you pass a single timestamp-expression to the MINUTES function, it will return the
number of minutes between midnight 0000-02-29 and timestamp-expression as an INTEGER.

Note
0000-02-29 is not meant to imply an actual date; it is the default date used by the MINUTES function.

● Syntax 2 If you pass two TIMESTAMP values to the MINUTES function, the function returns the
integer number of minutes between them.

● Syntax 3 If you pass a TIMESTAMP value and an INTEGER value to the MINUTES function, the
function returns the TIMESTAMP result of adding the integer number of minutes to timestamp-
expression argument. Similarly, if the first argument to MINUTES is a TIME value, then the result is
also a TIME value. Syntax 3 does not support implicit conversion of the first argument. It may be
necessary to explicitly cast the first argument to a DATE, TIME or TIMESTAMP value. If the first
argument is of type DATE, midnight is assumed for the time portion.

Since MINUTES returns an integer, overflow can occur when Syntax 1 is used with TIMESTAMP values
greater than or equal to 4083-03-23 02:08:00.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 263

Instead of Syntax 2, use the DATEDIFF function. Instead of Syntax 3, use the DATEADD function.

See also
● “DATEDIFF function [Date and time]” on page 182
● “DATEADD function [Date and time]” on page 181
● “CAST function [Data type conversion]” on page 153

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statements return the value 240, signifying that the second TIMESTAMP value is 240
minutes after the first. It is recommended that you use the second example (DATEDIFF).

SELECT MINUTES('1999-07-13 06:07:12',
 '1999-07-13 10:07:12');
SELECT DATEDIFF(minute,
 '1999-07-13 06:07:12',
 '1999-07-13 10:07:12');

The following statement returns the value 1051040527.

SELECT MINUTES('1998-07-13 06:07:12');

The following statements return the TIMESTAMP value 1999-05-12 21:10:07.000. Note that the first
statement requires an explicit cast of the literal string parameter. It is recommended that you use the
second example (DATEADD).

SELECT MINUTES(CAST('1999-05-12 21:05:07' AS TIMESTAMP), 5);
SELECT DATEADD(minute, 5, '1999-05-12 21:05:07');

The following statement returns 'TIME', illustrating that the MINUTES function returns a TIME value
when it is called with a TIME argument.

SELECT EXPRTYPE('SELECT MINUTES(CAST(''13:45:00.000'' AS TIME), 16)', 1);

MOD function [Numeric]
Returns the remainder when one whole number is divided by another.

Syntax
MOD(dividend, divisor)

Parameters
● dividend The dividend, or numerator of the division.

● divisor The divisor, or denominator of the division.

SQL functions

264 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns
● SMALLINT
● INT
● NUMERIC

Remarks
Division involving a negative dividend gives a negative or zero result. The sign of the divisor has no effect.

See also
● “REMAINDER function [Numeric]” on page 307

Standards and compatibility
● SQL/2008 The MOD function is part of optional SQL/2008 language feature T441.

Example
The following statement returns the value 2.

SELECT MOD(5, 3);

MONTH function [Date and time]
Returns the month of the given date.

Syntax
MONTH(date-expression)

Parameters
● date-expression A value of type DATE.

Returns
SMALLINT

Remarks
The value returned is a number between 1 and 12, corresponding to the month of the given date.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 7.

SELECT MONTH('1998-07-13');

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 265

MONTHNAME function [Date and time]
Returns the name of the month from a date.

Syntax
MONTHNAME(date-expression)

Parameters
● timestamp-expression A TIMESTAMP value.

Returns
VARCHAR

Remarks
The MONTHNAME function returns a string, even if the result is numeric, such as 2 for the month of
February.

See also
● “DATEPART function [Date and time]” on page 185

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value September.

SELECT MONTHNAME('1998-09-05');

MONTHS function [Date and time]
The MONTHS function manipulates a TIMESTAMP, or returns the number of months between two
TIMESTAMP values. See the Remarks section below.

Syntax 1
MONTHS(timestamp-expression)

Syntax 2
MONTHS(timestamp-expression, timestamp-expression)

Syntax 3
MONTHS(timestamp-expression, integer-expression)

Parameters
● timestamp-expression A date and time of type TIMESTAMP.

SQL functions

266 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● integer-expression The integer number of months (of type SMALLINT) to be added to the
timestamp-expression. If integer-expression is negative, the appropriate number of months is
subtracted from timestamp-expression. If you supply an integer-expression, the timestamp-expression
must be explicitly cast as a TIME, DATE or TIMESTAMP data type. If timestamp-expression is a
TIME value, the current month is assumed.

For information about casting data types, see “CAST function [Data type conversion]” on page 153.

Returns
INTEGER with Syntax 1 or Syntax 2.

TIMESTAMP with Syntax 3.

Remarks
The result of the MONTHS function depends on its arguments. The MONTHS function ignores hours,
minutes, and seconds in its arguments.

● Syntax 1 If you pass a single timestamp-expression to the MONTHS function, it will return the
number of months between 0000-02 and timestamp-expression as an INTEGER.

Note
0000-02 is not meant to imply an actual date; it is the default date used by the MONTHS function.

● Syntax 2 If you pass two TIMESTAMP values to the MONTHS function, the function returns the
integer number of months between them.

● Syntax 3 If you pass a TIMESTAMP value and a SMALLINT value to the MONTHS function, the
function returns the TIMESTAMP result of adding the integer number of months to timestamp-
expression.

Instead of Syntax 2, use the DATEDIFF function. Instead of Syntax 3, use the DATEADD function.

The value of MONTHS is calculated from the number of first days of the month between the two dates.

See also
● “DATEDIFF function [Date and time]” on page 182
● “DATEADD function [Date and time]” on page 181

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statements return the value 2, signifying that the second date is two months after the first. It
is recommended that you use the second example (DATEDIFF).

SELECT MONTHS('1999-07-13 06:07:12', '1999-09-13 10:07:12');
SELECT DATEDIFF(month,

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 267

 '1999-07-13 06:07:12',
 '1999-09-13 10:07:12');

The following statement returns the value 23981.

SELECT MONTHS('1998-07-13 06:07:12');

The following statements return the TIMESTAMP value 1999-10-12 21:05:07.000. It is recommended
that you use the second example (DATEADD).

SELECT MONTHS(CAST('1999-05-12 21:05:07' AS DATETIME), 5);
SELECT DATEADD(month, 5, '1999-05-12 21:05:07');

NCHAR function [String]
Returns an NCHAR string containing one character whose Unicode code point is given in the parameter,
or NULL if the value is not a valid code point value.

Syntax
NCHAR(integer)

Parameters
● integer The number to be converted to the corresponding Unicode code point.

Returns
NVARCHAR

See also
● “CONNECTION_EXTENDED_PROPERTY function [String]” on page 163
● “TO_NCHAR function [String]” on page 348
● “TO_CHAR function [String]” on page 347
● “UNICODE function [String]” on page 357
● “UNISTR function [String]” on page 357

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example returns the ALEF Arabic letter, which is Unicode code point U+627:

SELECT NCHAR(1575);

NEWID function [Miscellaneous]
Generates a UUID (Universally Unique Identifier) value. A UUID is the same as a GUID (Globally
Unique Identifier).

SQL functions

268 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
NEWID()

Parameters
There are no parameters associated with the NEWID function.

Returns
UNIQUEIDENTIFIER

Remarks
The NEWID function can be used in a DEFAULT clause for a column.

UUIDs can be used to uniquely identify rows in a table. A value produced on one computer does not
match a value produced on another computer, so they can be used as keys in synchronization and
replication environments.

UUIDs contain hyphens for compatibility with other RDBMSs. You change this by setting the
uuid_has_hyphens option to Off. For more information, see “uuid_has_hyphens option” [SQL Anywhere
Server - Database Administration].

The NEWID function is non-deterministic; successive calls may return different values. The query
optimizer does not cache the results of the NEWID function.

For more information about non-deterministic functions, see “Function caching” [SQL Anywhere Server -
SQL Usage].

See also
● “The NEWID default” [SQL Anywhere Server - SQL Usage]
● “STRTOUUID function [String]” on page 338
● “UUIDTOSTR function [String]” on page 361

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement creates a table named mytab with two columns. Column pk has a unique
identifier data type, and assigns the NEWID function as the default value. Column c1 has an integer data
type.

CREATE TABLE mytab(
 pk UNIQUEIDENTIFIER PRIMARY KEY DEFAULT NEWID(),
 c1 INT);

The following statement returns a unique identifier as a string:

SELECT NEWID();

For example, the value returned might be 96603324-6FF6-49DE-BF7D-F44C1C7E6856.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 269

NEXT_CONNECTION function [System]
Returns an identifying number for the next connection.

Syntax
NEXT_CONNECTION(connection-id [, database-id])

Returns
INT

Parameters
● connection-id An integer, usually returned from a previous call to NEXT_CONNECTION. If

connection-id is NULL, NEXT_CONNECTION returns the most recent connection ID.

● database-id An integer representing one of the databases on the current server. If you supply no
database-id, the current database is used. If you supply NULL, then NEXT_CONNECTION returns
the next connection regardless of database.

Remarks
NEXT_CONNECTION can be used to enumerate the connections to a database. Connection IDs are
generally created in monotonically increasing order. This function returns the next connection ID in
reverse order.

To get the connection ID value for the most recent connection, enter NULL as the connection-id. To get
the subsequent connection, enter the previous return value. The function returns NULL when there are no
more connections in the order.

NEXT_CONNECTION is useful if you want to disconnect all the connections created before a specific
time. However, because NEXT_CONNECTION returns the connection IDS in reverse order, connections
made after the function is started are not returned. If you want to ensure that all connections are
disconnected, prevent new connections from being created before you run NEXT_CONNECTION.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns an identifier for the first connection on the current database. The
identifier is an integer value like 10.

SELECT NEXT_CONNECTION(NULL);

The following statement returns a value like 5.

SELECT NEXT_CONNECTION(10);

The following call returns the next connection ID in reverse order from the specified connection-id on the
current database.

SELECT NEXT_CONNECTION(connection-id);

SQL functions

270 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The following call returns the next connection ID in reverse order from the specified connection-id
(regardless of database).

SELECT NEXT_CONNECTION(connection-id, NULL);

The following call returns the next connection ID in reverse order from the specified connection-id on the
specified database.

SELECT NEXT_CONNECTION(connection-id, database-id);

The following call returns the first (earliest) connection (regardless of database).

SELECT NEXT_CONNECTION(NULL, NULL);

The following call returns the first (earliest) connection on the specified database.

SELECT NEXT_CONNECTION(NULL, database-id);

NEXT_DATABASE function [System]
Returns an identifying number for a database.

Syntax
NEXT_DATABASE(database-id)

Parameters
● database-id An integer that specifies the ID number of the database.

Returns
INT

Remarks
The NEXT_DATABASE function is used to enumerate the databases running on a database server. To
get the first database pass NULL; to get each subsequent database, pass the previous return value. The
function returns NULL when there are no more databases. The database ID numbers are not returned in a
particular order, but you can tell the order in which databases were started on the server using the
database ID. The first database started on the server is assigned the value 0, and for subsequent databases
started on the server, the database IDs are incremented by 1.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 0, the first database value.

SELECT NEXT_DATABASE(NULL);

The following statement returns NULL, indicating that there are no more databases on the server.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 271

SELECT NEXT_DATABASE(0);

NEXT_HTTP_HEADER function [HTTP]
Returns the next HTTP header name.

Syntax
NEXT_HTTP_HEADER(header-name)

Parameters
● header-name The name of the previous request header. If header-name is NULL, this function

returns the name of the first HTTP request header.

Returns
LONG VARCHAR

Remarks
This function is used to iterate over the HTTP request headers returning the next HTTP header name.
Calling it with NULL causes it to return the name of the first header. Subsequent headers are retrieved by
passing the name of the previous header to the function. This function returns NULL when called with the
name of the last header, or when not called from a web service.

Calling this function repeatedly returns all the header fields exactly once, but not necessarily in the order
they appear in the HTTP request.

See also
● “HTTP_HEADER function [HTTP]” on page 233
● “sa_http_header_info system procedure” on page 1002
● “Accessing client-supplied HTTP variables and headers” [SQL Anywhere Server - Programming]
● “Web services functions” on page 135
● “Web services system procedures” on page 941

Standards and compatibility
● SQL/2008 Vendor extension.

Example
When used within a stored procedure that is called by an HTTP web service, the following example
displays the name and values of the HTTP request headers in the database server messages window.

BEGIN
 declare header_name long varchar;
 declare header_value long varchar;
 set header_name = NULL;
header_loop:
 LOOP
 SET header_name = NEXT_HTTP_HEADER(header_name);
 IF header_name IS NULL THEN

SQL functions

272 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 LEAVE header_loop
 END IF;
 SET header_value = HTTP_HEADER(header_name);
 MESSAGE 'HEADER: ', header_name, '=',
 header_value TO CONSOLE;
 END LOOP;
END;

NEXT_HTTP_RESPONSE_HEADER function [HTTP]
Returns the next HTTP response header name.

Syntax
NEXT_HTTP_RESPONSE_HEADER(header-name)

Parameters
● header-name The name of the previous response header. If header-name is NULL, this function

returns the name of the first HTTP response header.

Returns
LONG VARCHAR

Remarks
This function is used to iterate over the HTTP response headers returning the next HTTP response header
name. Calling it with NULL causes it to return the name of the first response header. Subsequent response
headers are retrieved by passing the name of the previous response header to the function. This function
returns NULL when called with the name of the last response header, or if it is not called from a web service.

Calling this function repeatedly returns all the response header fields exactly once, but not necessarily in
the order they appear in the HTTP response.

See also
● “HTTP_RESPONSE_HEADER function [HTTP]” on page 235
● “HTTP request header management” [SQL Anywhere Server - Programming]
● “Web services functions” on page 135
● “Web services system procedures” on page 941

Standards and compatibility
● SQL/2008 Vendor extension.

Example
When used within a stored procedure that is called by an HTTP web service, the following example
displays the name and values of the HTTP response headers in the database server messages window.

BEGIN
 declare header_name long varchar;
 declare header_value long varchar;
 set header_name = NULL;

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 273

header_loop:
 LOOP
 SET header_name = NEXT_HTTP_RESPONSE_HEADER(header_name);
 IF header_name IS NULL THEN
 LEAVE header_loop
 END IF;
 SET header_value = HTTP_RESPONSE_HEADER(header_name);
 MESSAGE 'RESPONSE HEADER: ', header_name, '=', header_value TO CONSOLE;
 END LOOP;

NEXT_HTTP_VARIABLE function [HTTP]
Returns the next HTTP variable name.

Syntax
NEXT_HTTP_VARIABLE(var-name)

Parameters
● var-name The name of the previous variable. If var-name is NULL, this function returns the name

of the first HTTP variable.

Returns
LONG VARCHAR

Remarks
This function iterates over the HTTP variables included within a request. Calling it with NULL causes it
to return the name of the first variable. Subsequent variables are retrieved by passing the function the
name of the previous variable. This function returns NULL when called with the name of the final
variable or when not called from a web service.

Calling this function repeatedly returns all the variables exactly once, but not necessarily in the order they
appear in the HTTP request. The variables url or url1, url2, ..., url10 are included if URL PATH is set to
ON or ELEMENTS, respectively.

See also
● “HTTP_VARIABLE function [HTTP]” on page 236
● “NEXT_HTTP_HEADER function [HTTP]” on page 272
● “sa_http_variable_info system procedure” on page 1005
● “Accessing client-supplied HTTP variables and headers” [SQL Anywhere Server - Programming]
● “Web services functions” on page 135
● “Web services system procedures” on page 941

Standards and compatibility
● SQL/2008 Vendor extension.

SQL functions

274 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example
When used within a stored procedure that is called by an HTTP web service, the following example
returns the name of the first HTTP variable.

BEGIN
DECLARE variable_name LONG VARCHAR;
DECLARE variable_value LONG VARCHAR;
SET variable_name = NULL;
SET variable_name = NEXT_HTTP_VARIABLE(variable_name);
SET variable_value = HTTP_VARIABLE(variable_name);
END;

NEXT_SOAP_HEADER function [SOAP]
Returns the next header key in a SOAP request header.

Syntax
NEXT_SOAP_HEADER(header-key)

Parameters
● header-key The XML local name of the top level XML element for the given header entry.

Returns
LONG VARCHAR

Remarks
If you specify NULL for the header-key, the function returns the header key for the first header entry
found in the SOAP header.

This function returns NULL if called with the last header-key.

See also
● “SOAP_HEADER function [SOAP]” on page 325
● “Tutorial: Using SQL Anywhere to access a SOAP/DISH service” [SQL Anywhere Server -

Programming]
● “Web services functions” on page 135
● “Web services system procedures” on page 941

Standards and compatibility
● SQL/2008 Vendor extension.

Example
When used within a stored procedure that is called by an HTTP web service, the following example
processes all the keys located in the SOAP request header. When it processes the Authentication key, it
also obtains the key's value.

BEGIN
 DECLARE hd_key LONG VARCHAR;

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 275

 DECLARE hd_entry LONG VARCHAR;
header_loop:
 LOOP
 SET hd_key = NEXT_SOAP_HEADER(hd_key);
 IF hd_key IS NULL THEN
 -- no more header entries
 LEAVE header_loop;
 END IF;
 IF hd_key = 'Authentication' THEN
 SET hd_entry = SOAP_HEADER(hd_key);
 END IF;
 END LOOP header_loop;
END;

NOW function [Date and time]
Returns the current date and time as a TIMESTAMP value. The accuracy is limited by the accuracy of the
system clock.

Syntax
NOW([*])

Returns
TIMESTAMP

Remarks
NOW is equivalent to the GETDATE function and the CURRENT TIMESTAMP special value. NOW(*)
and NOW() are equivalent constructions.

Each instance of the NOW function in a request is evaluated at most once. Multiple instances of NOW in
the same request may or may not share the identical TIMESTAMP value.

See also
● “GETDATE function [Date and time]” on page 220
● “CURRENT TIMESTAMP special value” on page 60

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the current date and time.

SELECT NOW(*);

NULLIF function [Miscellaneous]
Provides an abbreviated CASE expression by comparing expressions.

SQL functions

276 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
NULLIF(expression-1, expression-2)

Parameters
● expression-1 An expression to be compared.

● expression-2 An expression to be compared.

Returns
Data type of the first argument.

Remarks
NULLIF compares the values of the two expressions.

If the first expression equals the second expression, NULLIF returns NULL.

If the first expression does not equal the second expression, or if the second expression is NULL,
NULLIF returns the first expression.

The NULLIF function provides a short way to write some CASE expressions.

See also
● “CASE expressions” on page 15

Standards and compatibility
● SQL/2008 Core feature.

Example
The following statement returns the value a:

SELECT NULLIF('a', 'b');

The following statement returns NULL.

SELECT NULLIF('a', 'a');

NUMBER function [Miscellaneous]
Generates numbers starting at 1 for each successive row in the results of the query. The NUMBER
function is primarily intended for use in SELECT lists.

Due to limitations imposed by the NUMBER function (described in the Remarks section below), use the
“ROW_NUMBER function [Miscellaneous]” on page 315, instead. The ROW_NUMBER function
provides the same functionality, but without the limitations of the NUMBER function.

Syntax
NUMBER([*])

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 277

Returns
INT

Remarks
You can use NUMBER(*) in a select list to provide a sequential numbering of the rows in the result set.
NUMBER(*) returns the value of the ANSI row number of each result row. This means that the
NUMBER function can return positive or negative values, depending on how the application scrolls
through the result set. For insensitive cursors, the value of NUMBER(*) will always be positive because
the entire result set is materialized at OPEN.

In addition, the row number may be subject to change for some cursor types. The value is fixed for
insensitive cursors and scroll cursors. If there are concurrent updates, it may change for dynamic and
sensitive cursors.

A syntax error is generated if you use the NUMBER function in: a DELETE statement, a WHERE clause,
a HAVING clause, an ORDER BY clause, a subquery, a query involving aggregation, any constraint, a
GROUP BY clause, a DISTINCT clause, a set operator (UNION, EXCEPT, INTERSECT), or a derived
table.

NUMBER(*) can be used in a view (subject to the above restrictions), but the view column corresponding
to the expression involving NUMBER(*) can be referenced at most once in the query or outer view, and
the view cannot participate as a NULL-supplying table in a left outer join or full outer join.

In embedded SQL, care should be exercised when using a cursor that references a query containing a
NUMBER(*) function. In particular, this function returns negative numbers when a database cursor is
positioned using relative to the end of the cursor (an absolute position with a negative offset).

You can use NUMBER in the right-hand side of an assignment in the SET clause of an UPDATE
statement. For example, SET x = NUMBER(*).

The NUMBER function can also be used to generate primary keys when using the INSERT from
SELECT statement, although using an AUTOINCREMENT clause is a preferred mechanism for
generating sequential primary keys. See “INSERT statement” on page 737.

For information about the AUTOINCREMENT clause, see “CREATE TABLE statement” on page 596.

NUMBER(*) and NUMBER() are semantically equivalent.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns a sequentially-numbered list of departments.

SELECT NUMBER(*), DepartmentName
FROM Departments
WHERE DepartmentID > 5
ORDER BY DepartmentName;

SQL functions

278 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

PATINDEX function [String]
Returns an integer representing the starting position of the first occurrence of a pattern in a string.

Syntax
PATINDEX('%pattern%', string-expression)

Parameters
● pattern The pattern to be searched for. If the leading percent wildcard is omitted, the PATINDEX

function returns one (1) if the pattern occurs at the beginning of the string, and zero if not.

The pattern uses the same wildcards as the LIKE comparison. These are as follows:

Wildcard Matches

_ (underscore) Any one character

% (percent) Any string of zero or more characters

[] Any single character in the specified range or set

[^] Any single character not in the specified range or set

● string-expression The string to be searched for the pattern.

Returns
INT

Remarks
The PATINDEX function returns the starting position of the first occurrence of the pattern. If the pattern
is not found, it returns zero (0).

See also
● “LIKE search condition” on page 39
● “LOCATE function [String]” on page 253
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 2.

SELECT PATINDEX('%hoco%', 'chocolate');

The following statement returns the value 11.

SELECT PATINDEX('%4_5_', '0a1A 2a3A 4a5A');

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 279

The following statement returns 14 which is the first non-alphanumeric character in the string expression.
Note that the pattern '%[^a-z0-9]%' can be used instead of '%[^a-zA-Z0-9]%' if the database is
case insensitive.

SELECT PATINDEX('%[^a-zA-Z0-9]%', 'SQLAnywhere12 has many new features');

To get the first alphanumeric word in a string, you can use something like the following:

SELECT LEFT(@string, PATINDEX('%[^a-zA-Z0-9]%', @string));

PERCENT_RANK function [Ranking]
For any row X, defined by the function's arguments and ORDER BY specification, the
PERCENT_RANK function determines the rank of row X - 1, divided by the number of rows in the group.

Syntax
PERCENT_RANK() OVER (window-spec)

window-spec : see the Remarks section below

Returns
The PERCENT_RANK function returns a DOUBLE value between 0 and 1.

Remarks
Elements of window-spec can be specified either in the function syntax (inline), or in conjunction with a
WINDOW clause in the SELECT statement. When used as a window function, you must specify an
ORDER BY clause, you may specify a PARTITION BY clause, however, you can not specify a ROWS
or RANGE clause. See the window-spec definition provided in “WINDOW clause” on page 907.

For more information about using window functions in SELECT statements, including working examples,
see “Window functions” [SQL Anywhere Server - SQL Usage].

For more information about specifying a window specification in an OVER clause, see “Window
definition: inlining using the OVER clause and WINDOW clause” [SQL Anywhere Server - SQL Usage].

See also
● “CUME_DIST function [Ranking]” on page 178
● “DENSE_RANK function [Ranking]” on page 198
● “RANK function [Ranking]” on page 290

Standards and compatibility
● SQL/2008 PERCENT_RANK is part of optional SQL/2008 language feature T612, "Advanced

OLAP operations".

Example
The following example returns a result set that shows the ranking of New York employees' salaries by
gender. The results are ranked in descending order and are partitioned by gender.

SQL functions

280 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SELECT DepartmentID, Surname, Salary, Sex,
PERCENT_RANK() OVER (PARTITION BY Sex
ORDER BY Salary DESC) "Rank"
FROM Employees
WHERE State IN ('NY');

DepartmentID Surname Salary Sex Rank

200 Martel 55700.000 M 0

100 Guevara 42998.000 M 0.333333333

100 Soo 39075.000 M 0.666666667

400 Ahmed 34992.000 M 1

300 Davidson 57090.000 F 0

400 Blaikie 54900.000 F 0.333333333

100 Whitney 45700.000 F 0.666666667

400 Wetherby 35745.000 F 1

PI function [Numeric]
Returns the numeric value PI.

Syntax
PI([*])

Returns
DOUBLE

Standards and compatibility
● SQL/2008 Vendor extension.

Remarks
This function returns a DOUBLE value.

PI(*) and PI() are semantically equivalent.

Example
The following statement returns the value 3.141592653...

SELECT PI(*);

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 281

PLAN function [Miscellaneous]
Returns the long plan optimization strategy of a SQL statement, as a string.

Syntax
PLAN(string-expression, [cursor-type], [update-status])

Parameters
● string-expression The SQL statement, which is commonly a SELECT statement but which may

also be an UPDATE, MERGE, or DELETE statement.

● cursor-type A string. cursor-type can be asensitive (default), insensitive, sensitive, or keyset-driven.

● update-status A string parameter accepting one of the following values indicating how the
optimizer should treat the given cursor:

Value Description

READ-ONLY The cursor is read-only.

READ-WRITE (default) The cursor can be read or written to.

FOR UPDATE The cursor can be read or written to. This is exactly the same as READ-
WRITE.

Returns
LONG VARCHAR

See also
● “Reading execution plans” [SQL Anywhere Server - SQL Usage]
● “EXPLANATION function [Miscellaneous]” on page 213
● “GRAPHICAL_PLAN function [Miscellaneous]” on page 221

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement passes a SELECT statement as a string parameter and returns the plan for
executing the query.

SELECT PLAN(
 'SELECT * FROM Departments WHERE DepartmentID > 100');

This information can help with decisions about indexes to add or how to structure your database for better
performance.

The following statement returns a string containing the text plan for an INSENSITIVE cursor over the
query SELECT * FROM Departments WHERE DepartmentID > 100;.

SQL functions

282 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SELECT PLAN(
 'SELECT * FROM Departments WHERE DepartmentID > 100',
 'insensitive',
 'read-only');

POWER function [Numeric]

Calculates one number raised to the power of another.

Syntax
POWER(numeric-expression-1, numeric-expression-2)

Parameters
● numeric-expression-1 The base.

● numeric-expression-2 The exponent.

Returns
DOUBLE

Remarks
This function converts its arguments to DOUBLE, and performs the computation in double-precision
floating-point arithmetic. If any argument is NULL, the result is a NULL value.

Standards and compatibility
● SQL/2008 The POWER function comprises part of optional SQL/2008 language feature T621,

"Enhanced numeric functions".

Example
The following statement returns the value 64.

SELECT POWER(2, 6);

PROPERTY_DESCRIPTION function [System]

Returns a description of a property.

Syntax
PROPERTY_DESCRIPTION({ property-id | property-name })

Parameters
● property-id An integer that is the property-number of the database property. This number can be

determined from the PROPERTY_NUMBER function. The property-id is commonly used when
looping through a set of properties.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 283

● property-name A string giving the name of the database property.

Returns
VARCHAR

Remarks
Each property has both a number and a name, but the number is subject to change between releases, and
should not be used as a reliable identifier for a given property.

See also
● “Connection, database, and database server properties” [SQL Anywhere Server - Database

Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the description Number of index insertions.

SELECT PROPERTY_DESCRIPTION('IndAdd');

PROPERTY function [System]
Returns the value of the specified database server property as a string.

Syntax
PROPERTY({ property-id | property-name } [, second-parameter])

Parameters
● property-id An integer that is the property-number of the database server property. This number

can be determined from the PROPERTY_NUMBER function. The property-id is commonly used
when looping through a set of properties.

● property-name A string giving the name of the database property.

● second-parameter You can specify a second parameter for some properties, as follows:

SQL functions

284 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Prop-
erty

Sec-
ond
pa-
rame-
ter

Description

Even-
tType-
Desc

posi-
tive-
inte-
ger

Specify an event ID to return the event type description. See “EventTypeDesc
server property” [SQL Anywhere Server - Database Administration].

Even-
tType-
Name

posi-
tive-
inte-
ger

Specify an event ID to return the event type name. See “EventTypeName server
property” [SQL Anywhere Server - Database Administration].

Func-
tion-
Max-
Parms

posi-
tive-
inte-
ger

Specify a function number to return the maximum number of parameters that
can be specified for the function. See “FunctionMaxParms server property”
[SQL Anywhere Server - Database Administration].

Func-
tion-
Min-
Parms

posi-
tive-
inte-
ger

Specify a function number to return the minimum number of parameters that
must be specified for the function. See “FunctionMinParms server property”
[SQL Anywhere Server - Database Administration].

Func-
tion-
Name

posi-
tive-
inte-
ger

Specify a function number to return the function name. See “FunctionName serv-
er property” [SQL Anywhere Server - Database Administration].

Mes-
sage

posi-
tive-
inte-
ger

Specify a line number to return the contents of the corresponding line in the da-
tabase server messages window, prefixed by the date and time the message ap-
peared. See “Message server property” [SQL Anywhere Server - Database Ad-
ministration]

Messa-
geText

posi-
tive-
inte-
ger

Specify a line number to return the text associated with the specified line num-
ber in the database server messages window, without a date and time prefix.
See “MessageText server property” [SQL Anywhere Server - Database Adminis-
tration].

Messa-
geTime

posi-
tive-
inte-
ger

Specify a line number to return the date and time associated with the specified
line number in the database server messages window. See “MessageTime serv-
er property” [SQL Anywhere Server - Database Administration].

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 285

Prop-
erty

Sec-
ond
pa-
rame-
ter

Description

Remo-
teCapa-
bility

posi-
tive-
inte-
ger

Specify a remote capability ID to return the remote capability name associated
with the ID. See “RemoteCapability server property” [SQL Anywhere Server -
Database Administration].

Returns
VARCHAR, LONG VARCHAR

Remarks
Each property has both a number and a name, but the number is subject to change between releases, and
should not be used as a reliable identifier for a given property.

See also
● “Database server properties” [SQL Anywhere Server - Database Administration]
● “DB_PROPERTY function [System]” on page 194

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the name of the current database server:

SELECT PROPERTY('Name');

PROPERTY_NAME function [System]
Returns the name of the property with the supplied property ID for the specified connection level.

Syntax
PROPERTY_NAME(property-id [, property-scope])

property-scope:
NULL
| 'server'
| 'database'
| 'db'
| 'connection'
| 'conn'

SQL functions

286 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters
● property-id The property ID of the database property.

● property-scope The scope of the property, or NULL.

Returns
VARCHAR

See also
● “Connection properties” [SQL Anywhere Server - Database Administration]
● “Database server properties” [SQL Anywhere Server - Database Administration]
● “Database properties” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the server-level property associated with property ID 102.

SELECT PROPERTY_NAME(102, 'server');

PROPERTY_NUMBER function [System]
Returns the property number of the property with the supplied property-name.

Syntax
PROPERTY_NUMBER(property-name)

Parameters
● property-name A property name.

Returns
INT

Remarks
Each property has both a number and a name, but the number is subject to change between releases, and
should not be used as a reliable identifier for a given property. When either property number or property
name can be used, it is preferable to use the property name. Always use the PROPERTY_NUMBER
function to ensure that the property number is current for the server being used.

See also
● “Connection, database, and database server properties” [SQL Anywhere Server - Database

Administration]

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 287

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns an integer value. The actual value changes from release to release.

SELECT PROPERTY_NUMBER('PAGESIZE');

QUARTER function [Date and time]

Returns a number indicating the quarter of the year from the supplied TIMESTAMP expression.

Syntax
QUARTER(timestamp-expression)

Parameters
● timestamp-expression The date.

Returns
INTEGER

Remarks
The quarters are as follows:

Quarter Period (inclusive)

1 January 1 to March 31

2 April 1 to June 30

3 July 1 to September 30

4 October 1 to December 31

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 2.

SELECT QUARTER('1987/05/02');

RADIANS function [Numeric]

SQL functions

288 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Converts a number from degrees to radians.

Syntax
RADIANS(numeric-expression)

Parameters
● numeric-expression A number, in degrees. This angle is converted to radians.

Returns
DOUBLE

Remarks
This function converts its argument to DOUBLE, and performs the computation in double-precision floating-
point arithmetic.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns a value of approximately 0.5236.

SELECT RADIANS(30);

RAND function [Numeric]
Returns a random number in the interval 0 to 1, with an optional seed.

Syntax
RAND([integer-expression])

Parameters
● integer-expression An optional seed used to create a random number. This argument allows you

to create repeatable random number sequences.

Returns
DOUBLE

Remarks
The RAND function is a multiplicative linear congruential random number generator. See Park and Miller
(1988), CACM 31(10), pp. 1192-1201 and Press et al. (1992), Numerical Recipes in C (2nd edition,
Chapter 7, pp. 279). The result of calling the RAND function is a pseudo-random number n where 0 < n <
1 (neither 0.0 nor 1.0 can be the result).

When a connection is made to the server, the random number generator seeds an initial value. Each
connection is uniquely seeded so that it sees a different random sequence from other connections. You

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 289

can also specify a seed value (integer-expression) as an argument. Normally, you should only do this once
before requesting a sequence of random numbers through successive calls to the RAND function. If you
initialize the seed value more than once, the sequence is restarted. If you specify the same seed value, the
same sequence is generated. Seed values that are close in value generate similar initial sequences, with
divergence further out in the sequence.

Never combine the sequence generated from one seed value with the sequence generated from a second
seed value, in an attempt to obtain statistically random results. In other words, do not reset the seed value
at any time during the generation of a sequence of random values.

The RAND function is treated as a non-deterministic function. The query optimizer does not cache the
results of the RAND function.

For more information about non-deterministic functions, see “Function caching” [SQL Anywhere Server -
SQL Usage].

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statements produce eleven random results. Each subsequent call to the RAND function
where a seed is not specified continues to produce different results:

SELECT RAND(1);
SELECT RAND(), RAND(), RAND(), RAND(), RAND();
SELECT RAND(), RAND(), RAND(), RAND(), RAND();

The following example produces two sets of results with identical sequences, since the seed value is
specified twice:

SELECT RAND(1), RAND(), RAND(), RAND(), RAND();
SELECT RAND(1), RAND(), RAND(), RAND(), RAND();

The following example produces five results that are near each other in value, and do not have a random
distribution. For this reason, calling the RAND function more than once with similar seed values is not
recommended:

SELECT RAND(1), RAND(2), RAND(3), RAND(4), RAND(5);

The following example produces five identical results, and should be avoided:

SELECT RAND(1), RAND(1), RAND(1), RAND(1), RAND(1);

RANK function [Ranking]
Calculates the value of a rank in a group of values. For ties, the RANK function leaves a gap in the
ranking sequence.

Syntax
RANK() OVER (window-spec)

SQL functions

290 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

window-spec : see the Remarks section below

Returns
INTEGER

Remarks
Elements of window-spec can be specified either in the function syntax (inline), or in conjunction with a
WINDOW clause in the SELECT statement. When used as a window function, you must specify an
ORDER BY clause, you may specify a PARTITION BY clause, however, you can not specify a ROWS
or RANGE clause. See the window-spec definition provided in “WINDOW clause” on page 907.

For more information about using window functions in SELECT statements, including working examples,
see “Window functions” [SQL Anywhere Server - SQL Usage].

For more information about specifying a window specification in an OVER clause, see “Window
definition: inlining using the OVER clause and WINDOW clause” [SQL Anywhere Server - SQL Usage].

See also
● “CUME_DIST function [Ranking]” on page 178
● “DENSE_RANK function [Ranking]” on page 198
● “ROW_NUMBER function [Miscellaneous]” on page 315
● “PERCENT_RANK function [Ranking]” on page 280

Standards and compatibility
● SQL/2008 The RANK function is part of optional SQL/2008 language feature T612, "Advanced

OLAP operations".

Example
The following example provides a rank in descending order of employees' salaries in Utah and New York.
Notice that the 7th and 8th employees have an identical salary and therefore share the 7th place ranking.
The employee that follows receives the 9th place ranking, which leaves a gap in the ranking sequence (no
8th place ranking).

SELECT Surname, Salary, State,
RANK() OVER (ORDER BY Salary DESC) "Rank"
FROM Employees WHERE State IN ('NY','UT');

Surname Salary State Rank

Shishov 72995.000 UT 1

Wang 68400.000 UT 2

Cobb 62000.000 UT 3

Morris 61300.000 UT 4

Davidson 57090.000 NY 5

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 291

Surname Salary State Rank

Martel 55700.000 NY 6

Blaikie 54900.000 NY 7

Diaz 54900.000 NY 7

Driscoll 48023.690 UT 9

Hildebrand 45829.000 UT 10

Whitney 45700.000 NY 11

...

Lynch 24903.000 UT 19

READ_CLIENT_FILE function [String]
Reads data from the specified file on the client computer.

Syntax
READ_CLIENT_FILE(client-filename-expression)

Parameters
● client-filename-expression CHAR value indicating the name of the file on the client computer.

The path is resolved on the client computer relative to the current working directory of the client
application.

Returns
LONG BINARY

Remarks
The value returned by the READ_CLIENT_FILE function represents the contents of the specified client
file. You can use the function in syntax wherever a BINARY expression is allowed.

Since the data returns as a binary string, if the data is in another character set, or is compressed, or is
encrypted, you may also need to perform character set conversion, decompression, or decryption on it.

During evaluation of READ_CLIENT_FILE, the database server initiates the transfer of the specified file
from the client. The client, upon receiving the transfer request, obtains a shared lock on the client file, and
holds the lock until the database server requests the client to terminate the request.

Reading of the file is performed by the client software library, and the transfer of data is done using the
command sequence communication protocol.

SQL functions

292 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Permissions
When reading from a file on a client computer:

● READCLIENTFILE authority is required. See “READCLIENTFILE authority” [SQL Anywhere
Server - Database Administration].

● Read permissions are required on the directory being read from.

● The allow_read_client_file database option must be enabled. See “allow_read_client_file option”
[SQL Anywhere Server - Database Administration].

● The read_client_file secured feature must be enabled. See “-sf dbeng12/dbsrv12 server option” [SQL
Anywhere Server - Database Administration].

Standards and compatibility
● SQL/2008 Vendor extension.

See also
● “Accessing data on client computers” [SQL Anywhere Server - SQL Usage]
● “READCLIENTFILE authority” [SQL Anywhere Server - Database Administration]
● “DECOMPRESS function [String]” on page 195
● “DECRYPT function [String]” on page 196
● “CSCONVERT function [String]” on page 176

REGEXP_SUBSTR function [String]

Extracts substrings from strings using regular expressions.

Syntax
REGEXP_SUBSTR(expression,
regular-expression
[, start-offset [, occurrence-number [, escape-expression]]])

Parameters
● expression The string to be searched.

● regular-expression The pattern you are trying to match. For more information about regular
expression syntax, see “Regular expressions overview” on page 17.

● start-offset The offset into expression at which to start searching. start-offset is expressed as a
positive integer, and reflects the number of characters to count when starting from the left side of the
string. The default is 1 (the start of the string).

● occurrence-number For multiple matches within expression, specify an integer indicating the
occurrence to locate. For example, 3 finds the third occurrence. The default is 1.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 293

● escape-expression The escape character to use for regular-expression. The default is the
backslash character (\).

Returns
LONG VARCHAR

Remarks
REGEXP_SUBSTR returns NULL if regular-expression is not found.

Similar to the REGEXP search condition, the REGEXP_SUBSTR function uses code points for matching
and range evaluation. This means that database case sensitivity does not impact results. For more
information on how REGEXP_SUBSTR performs matching and set evaluation, see “LIKE, REGEXP,
and SIMILAR TO: Differences in character comparisons” on page 38.

When matching against a character class that contains only a sub-character class, include the outer square
brackets and the square brackets for the sub-character class (for example, REGEXP_SUBSTR
(expression, '[[:digit:]]')). For more on sub-character class matching, see “Regular
expressions: Special sub-character classes” on page 21.

If start-offset is specified, that offset specifies the start of the expression to be matched. In particular, ^
matches the beginning of the expression starting at start-offset.

See also
● “Regular expressions syntax” on page 18
● “REGEXP search condition” on page 43

Standards and compatibility
● SQL/2008 Vendor extension. The corresponding function in the SQL/2008 standard is the

SUBSTRING_REGEX function, which has similar parameters. SUBSTRING_REGEX is part of
optional SQL/2008 language feature F844.

Example
The following example breaks values in the Employees.Street column into street number and street name:

SELECT REGEXP_SUBSTR(Street, '^\S+') as street_num,
 REGEXP_SUBSTR(Street, '(?<=^\S+\s+).*$') AS street_name
 FROM Employees;

street_num street_name

9 East Washington Street

7 Pleasant Street

539 Pond Street

1244 Great Plain Avenue

SQL functions

294 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

street_num street_name

... ...

To determine whether the IP address of the current connection is in a range of IP addresses (in this case,
10.25.101.xxx or 10.25.102.xxx), you can execute the following statement:

IF REGEXP_SUBSTR(CONNECTION_PROPERTY('NodeAddress'), '\\d+\\.\\d+\\.\\d
+')
 IN ('10.25.101' , '10.25.102') THEN
 MESSAGE 'In range' TO CLIENT;
ELSE
 MESSAGE 'Out of range' TO CLIENT;
END IF;

REGR_AVGX function [Aggregate]
Computes the average of the independent variable of the regression line.

Syntax 1
REGR_AVGX(dependent-expression , independent-expression)

Syntax 2
REGR_AVGX(dependent-expression , independent-expression)
OVER (window-spec)

window-spec : see Syntax 2 instructions in the Remarks section below

Parameters
● dependent-expression The variable that is affected by the independent variable.

● independent-expression The variable that influences the outcome.

Returns
DOUBLE

Remarks
This function converts its arguments to DOUBLE, and performs the computation in double-precision
floating-point arithmetic. If the function is applied to an empty set, then it returns NULL.

The function is applied to the set of (dependent-expression and independent-expression) pairs after
eliminating all pairs for which either dependent-expression or independent-expression is NULL. The
function is computed simultaneously during a single pass through the data. After eliminating NULL
values, the following computation is then made, where x represents the independent-expression:

AVG(x)

For more information about the statistical computation performed, see “Mathematical formulas for the
aggregate functions” [SQL Anywhere Server - SQL Usage].

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 295

Syntax 2 represents usage as a window function in a SELECT statement. As such, elements of window-
spec can be specified either in the function syntax (inline), or in conjunction with a WINDOW clause in
the SELECT statement. See the window-spec definition provided in “WINDOW clause” on page 907.

For more information about using window functions in SELECT statements, including working examples,
see “Window functions” [SQL Anywhere Server - SQL Usage].

For more information about specifying a window specification in an OVER clause, see “Window
definition: inlining using the OVER clause and WINDOW clause” [SQL Anywhere Server - SQL Usage].

See also
● “AVG function [Aggregate]” on page 144
● “REGR_COUNT function [Aggregate]” on page 298
● “REGR_INTERCEPT function [Aggregate]” on page 299
● “REGR_COUNT function [Aggregate]” on page 298
● “REGR_SLOPE function [Aggregate]” on page 302
● “REGR_SXX function [Aggregate]” on page 303
● “REGR_SXY function [Aggregate]” on page 304
● “REGR_SYY function [Aggregate]” on page 306
● “REGR_AVGY function [Aggregate]” on page 296

Standards and compatibility
● SQL/2008 REGR_AVGX is part of optional SQL/2008 language feature T621, "Enhanced numeric

functions".

Example
The following example calculates the average of the dependent variable, employee age.

SELECT REGR_AVGX(Salary, (2008 - YEAR(BirthDate)))
FROM Employees;

REGR_AVGY function [Aggregate]

Computes the average of the dependent variable of the regression line.

Syntax 1
REGR_AVGY(dependent-expression , independent-expression)

Syntax 2
REGR_AVGY(dependent-expression , independent-expression)
OVER (window-spec)

window-spec : see Syntax 2 instructions in the Remarks section below

Parameters
● dependent-expression The variable that is affected by the independent variable.

SQL functions

296 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● independent-expression The variable that influences the outcome.

Returns
DOUBLE

Remarks
This function converts its arguments to DOUBLE, and performs the computation in double-precision
floating-point arithmetic. If the function is applied to an empty set, then it returns NULL.

The function is applied to the set of (dependent-expression and independent-expression) pairs after
eliminating all pairs for which either dependent-expression or independent-expression is NULL. The
function is computed simultaneously during a single pass through the data. After eliminating NULL
values, the following computation is then made, where y represents the dependent-expression:

AVG(y)

For more information about the statistical computation performed, see “Mathematical formulas for the
aggregate functions” [SQL Anywhere Server - SQL Usage].

Syntax 2 represents usage as a window function in a SELECT statement. As such, elements of window-
spec can be specified either in the function syntax (inline), or in conjunction with a WINDOW clause in
the SELECT statement. See the window-spec definition provided in “WINDOW clause” on page 907.

For more information about using window functions in SELECT statements, including working examples,
see “Window functions” [SQL Anywhere Server - SQL Usage].

For more information about specifying a window specification in an OVER clause, see “Window
definition: inlining using the OVER clause and WINDOW clause” [SQL Anywhere Server - SQL Usage].

See also
● “REGR_COUNT function [Aggregate]” on page 298
● “REGR_INTERCEPT function [Aggregate]” on page 299
● “REGR_COUNT function [Aggregate]” on page 298
● “REGR_SLOPE function [Aggregate]” on page 302
● “REGR_SXX function [Aggregate]” on page 303
● “REGR_SXY function [Aggregate]” on page 304
● “REGR_SYY function [Aggregate]” on page 306
● “REGR_AVGX function [Aggregate]” on page 295
● “AVG function [Aggregate]” on page 144

Standards and compatibility
● SQL/2008 REGR_AVGY is part of optional SQL/2008 language feature T621, "Enhanced numeric

functions".

Example
The following example calculates the average of the independent variable, employee salary.

SELECT REGR_AVGY(Salary, (YEAR(NOW()) - YEAR(BirthDate)))
FROM Employees;

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 297

REGR_COUNT function [Aggregate]
Returns an integer that represents the number of non-NULL number pairs used to fit the regression line.

Syntax 1
REGR_COUNT(dependent-expression , independent-expression)

Syntax 2
REGR_COUNT(dependent-expression , independent-expression)
OVER (window-spec)

window-spec : see Syntax 2 instructions in the Remarks section below

Parameters
● dependent-expression The variable that is affected by the independent variable.

● independent-expression The variable that influences the outcome.

Returns
INTEGER

Remarks
Syntax 2 represents usage as a window function in a SELECT statement. As such, elements of window-
spec can be specified either in the function syntax (inline), or in conjunction with a WINDOW clause in
the SELECT statement. See the window-spec definition provided in “WINDOW clause” on page 907.

For more information about using window functions in SELECT statements, including working examples,
see “Window functions” [SQL Anywhere Server - SQL Usage].

For more information about specifying a window specification in an OVER clause, see “Window
definition: inlining using the OVER clause and WINDOW clause” [SQL Anywhere Server - SQL Usage].

For more information about the statistical computation performed, see “Mathematical formulas for the
aggregate functions” [SQL Anywhere Server - SQL Usage].

See also
● “REGR_INTERCEPT function [Aggregate]” on page 299
● “REGR_COUNT function [Aggregate]” on page 298
● “REGR_SLOPE function [Aggregate]” on page 302
● “REGR_SXX function [Aggregate]” on page 303
● “REGR_SXY function [Aggregate]” on page 304
● “REGR_SYY function [Aggregate]” on page 306
● “REGR_AVGY function [Aggregate]” on page 296
● “REGR_AVGX function [Aggregate]” on page 295
● “COUNT function [Aggregate]” on page 170
● “AVG function [Aggregate]” on page 144
● “SUM function [Aggregate]” on page 342

SQL functions

298 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Standards and compatibility
● SQL/2008 REGR_COUNT is part of optional SQL/2008 language feature T621, "Enhanced

numeric functions".

Example
The following example returns the number of non-NULL pairs that were used to fit the regression line.

SELECT REGR_COUNT(Salary, (YEAR(NOW()) - YEAR(BirthDate)))
FROM Employees;

REGR_INTERCEPT function [Aggregate]
Computes the y-intercept of the linear regression line that best fits the dependent and independent variables.

Syntax 1
REGR_INTERCEPT(dependent-expression , independent-expression)

Syntax 2
REGR_INTERCEPT(dependent-expression , independent-expression)
OVER (window-spec)

window-spec : see Syntax 2 instructions in the Remarks section below

Parameters
● dependent-expression The variable that is affected by the independent variable.

● independent-expression The variable that influences the outcome.

Returns
DOUBLE

Remarks
This function converts its arguments to DOUBLE, and performs the computation in double-precision
floating-point arithmetic. If the function is applied to an empty set, then it returns NULL.

The function is applied to the set of (dependent-expression and independent-expression) pairs after
eliminating all pairs for which either dependent-expression or independent-expression is NULL. The
function is computed simultaneously during a single pass through the data. After eliminating NULL
values, the following computation is then made, where y represents the dependent-expression and x
represents the independent-expression:

AVG(y) - REGR_SLOPE(y, x) * AVG(x)

For more information about the statistical computation performed, see “Mathematical formulas for the
aggregate functions” [SQL Anywhere Server - SQL Usage].

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 299

Syntax 2 represents usage as a window function in a SELECT statement. As such, elements of window-
spec can be specified either in the function syntax (inline), or in conjunction with a WINDOW clause in
the SELECT statement. See the window-spec definition provided in “WINDOW clause” on page 907.

For more information about using window functions in SELECT statements, including working examples,
see “Window functions” [SQL Anywhere Server - SQL Usage].

For more information about specifying a window specification in an OVER clause, see “Window
definition: inlining using the OVER clause and WINDOW clause” [SQL Anywhere Server - SQL Usage].

See also
● “REGR_COUNT function [Aggregate]” on page 298
● “REGR_COUNT function [Aggregate]” on page 298
● “REGR_SLOPE function [Aggregate]” on page 302
● “REGR_SXX function [Aggregate]” on page 303
● “REGR_SXY function [Aggregate]” on page 304
● “REGR_SYY function [Aggregate]” on page 306
● “REGR_AVGY function [Aggregate]” on page 296
● “REGR_AVGX function [Aggregate]” on page 295
● “REGR_SLOPE function [Aggregate]” on page 302
● “AVG function [Aggregate]” on page 144

Standards and compatibility
● SQL/2008 REGR_INTERCEPT is part of optional SQL/2008 language feature T621, "Enhanced

numeric functions".

Example
The following example returns the y-intercept of the linear regression line.

SELECT REGR_INTERCEPT(Salary, (YEAR(NOW()) - YEAR(BirthDate)))
FROM Employees;

REGR_R2 function [Aggregate]
Computes the coefficient of determination (also referred to as R-squared or the goodness of fit statistic)
for the regression line.

Syntax 1
REGR_R2(dependent-expression , independent-expression)

Syntax 2
REGR_R2(dependent-expression , independent-expression)
OVER (window-spec)

window-spec : see Syntax 2 instructions in the Remarks section below

SQL functions

300 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters
● dependent-expression The variable that is affected by the independent variable.

● independent-expression The variable that influences the outcome.

Returns
DOUBLE

Remarks
This function converts its arguments to DOUBLE, and performs the computation in double-precision
floating-point arithmetic. If the function is applied to an empty set, then it returns NULL.

The function is applied to the set of (dependent-expression and independent-expression) pairs after
eliminating all pairs for which either dependent-expression or independent-expression is NULL.

For more information about the statistical computation performed, see “Mathematical formulas for the
aggregate functions” [SQL Anywhere Server - SQL Usage].

Syntax 2 represents usage as a window function in a SELECT statement. As such, elements of window-
spec can be specified either in the function syntax (inline), or in conjunction with a WINDOW clause in
the SELECT statement. See the window-spec definition provided in “WINDOW clause” on page 907.

For more information about using window functions in SELECT statements, including working examples,
see “Window functions” [SQL Anywhere Server - SQL Usage].

For more information about specifying a window specification in an OVER clause, see “Window
definition: inlining using the OVER clause and WINDOW clause” [SQL Anywhere Server - SQL Usage].

See also
● “REGR_COUNT function [Aggregate]” on page 298
● “REGR_INTERCEPT function [Aggregate]” on page 299
● “REGR_SLOPE function [Aggregate]” on page 302
● “REGR_SXX function [Aggregate]” on page 303
● “REGR_SXY function [Aggregate]” on page 304
● “REGR_SYY function [Aggregate]” on page 306
● “REGR_AVGX function [Aggregate]” on page 295
● “REGR_AVGY function [Aggregate]” on page 296

Standards and compatibility
● SQL/2008 REGR_R2 is part of optional SQL/2008 language feature T621, "Enhanced numeric

functions".

Example
The following example returns the coefficient of determination for the regression line.

SELECT REGR_R2(Salary, (YEAR(NOW()) - YEAR(BirthDate)))
FROM Employees;

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 301

REGR_SLOPE function [Aggregate]
Computes the slope of the linear regression line fitted to non-NULL pairs.

Syntax 1
REGR_SLOPE(dependent-expression , independent-expression)

Syntax 2
REGR_SLOPE(dependent-expression , independent-expression)
OVER (window-spec)

window-spec : see Syntax 2 instructions in the Remarks section below

Parameters
● dependent-expression The variable that is affected by the independent variable.

● independent-expression The variable that influences the outcome.

Returns
DOUBLE

Remarks
This function converts its arguments to DOUBLE, and performs the computation in double-precision
floating-point arithmetic. If the function is applied to an empty set, then it returns NULL.

The function is applied to the set of (dependent-expression and independent-expression) pairs after
eliminating all pairs for which either dependent-expression or independent-expression is NULL. The
function is computed simultaneously during a single pass through the data. After eliminating NULL
values, the following computation is then made, where y represents the dependent-expression and x
represents the independent-expression:

COVAR_POP(y, x) / VAR_POP(x)

For more information about the statistical computation performed, see “Mathematical formulas for the
aggregate functions” [SQL Anywhere Server - SQL Usage].

Syntax 2 represents usage as a window function in a SELECT statement. As such, elements of window-
spec can be specified either in the function syntax (inline), or in conjunction with a WINDOW clause in
the SELECT statement. See the window-spec definition provided in “WINDOW clause” on page 907.

For more information about using window functions in SELECT statements, including working examples,
see “Window functions” [SQL Anywhere Server - SQL Usage].

For more information about specifying a window specification in an OVER clause, see “Window
definition: inlining using the OVER clause and WINDOW clause” [SQL Anywhere Server - SQL Usage].

SQL functions

302 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “REGR_COUNT function [Aggregate]” on page 298
● “REGR_INTERCEPT function [Aggregate]” on page 299
● “REGR_COUNT function [Aggregate]” on page 298
● “REGR_SXX function [Aggregate]” on page 303
● “REGR_SXY function [Aggregate]” on page 304
● “REGR_SYY function [Aggregate]” on page 306
● “REGR_AVGX function [Aggregate]” on page 295
● “REGR_AVGY function [Aggregate]” on page 296
● “COVAR_POP function [Aggregate]” on page 173
● “VAR_POP function [Aggregate]” on page 362

Standards and compatibility
● SQL/2008 REGR_SLOPE is part of optional SQL/2008 language feature T621, "Enhanced

numeric functions".

Example
The following example returns the value 935.3429749445614.

SELECT REGR_SLOPE(Salary, (YEAR(NOW()) - YEAR(BirthDate)))
FROM Employees;

REGR_SXX function [Aggregate]
Returns the sum of squares of the independent expressions used in a linear regression model. The
REGR_SXX function can be used to evaluate the statistical validity of a regression model.

Syntax 1
REGR_SXX(dependent-expression , independent-expression)

Syntax 2
REGR_SXX(dependent-expression , independent-expression)
OVER (window-spec)

window-spec : see Syntax 2 instructions in the Remarks section below

Parameters
● dependent-expression The variable that is affected by the independent variable.

● independent-expression The variable that influences the outcome.

Returns
DOUBLE

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 303

Remarks
This function converts its arguments to DOUBLE, and performs the computation in double-precision
floating-point arithmetic. If the function is applied to an empty set, then it returns NULL.

The function is applied to the set of (dependent-expression and independent-expression) pairs after
eliminating all pairs for which either dependent-expression or independent-expression is NULL. The
function is computed simultaneously during a single pass through the data. After eliminating NULL
values, the following computation is then made, where y represents the dependent-expression and x
represents the independent-expression:

REGR_COUNT(y, x) * VAR_POP(x)

For more information about the statistical computation performed, see “Mathematical formulas for the
aggregate functions” [SQL Anywhere Server - SQL Usage].

Syntax 2 represents usage as a window function in a SELECT statement. As such, elements of window-
spec can be specified either in the function syntax (inline), or in conjunction with a WINDOW clause in
the SELECT statement. See the window-spec definition provided in “WINDOW clause” on page 907.

For more information about using window functions in SELECT statements, including working examples,
see “Window functions” [SQL Anywhere Server - SQL Usage].

For more information about specifying a window specification in an OVER clause, see “Window
definition: inlining using the OVER clause and WINDOW clause” [SQL Anywhere Server - SQL Usage].

See also
● “REGR_COUNT function [Aggregate]” on page 298
● “REGR_INTERCEPT function [Aggregate]” on page 299
● “REGR_COUNT function [Aggregate]” on page 298
● “REGR_AVGX function [Aggregate]” on page 295
● “REGR_AVGY function [Aggregate]” on page 296
● “REGR_SXY function [Aggregate]” on page 304
● “REGR_SYY function [Aggregate]” on page 306
● “VAR_POP function [Aggregate]” on page 362

Standards and compatibility
● SQL/2008 REGR_SXX is part of optional SQL/2008 language feature T621, "Enhanced numeric

functions".

Example
The following example returns the value 5916.4800000000105.

SELECT REGR_SXX(Salary, (YEAR(NOW()) - YEAR(BirthDate)))
FROM Employees;

REGR_SXY function [Aggregate]

SQL functions

304 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns the sum of products of the dependent and independent variables. The REGR_SXY function can
be used to evaluate the statistical validity of a regression model.

Syntax 1
REGR_SXY(dependent-expression , independent-expression)

Syntax 2
REGR_SXY(dependent-expression , independent-expression)
OVER (window-spec)

window-spec : see Syntax 2 instructions in the Remarks section below

Parameters
● dependent-expression The variable that is affected by the independent variable.

● independent-expression The variable that influences the outcome.

Returns
DOUBLE

Remarks
This function converts its arguments to DOUBLE, and performs the computation in double-precision
floating-point arithmetic, and returns a DOUBLE as the result. If the function is applied to an empty set,
then it returns NULL.

The function is applied to the set of (dependent-expression and independent-expression) pairs after
eliminating all pairs for which either dependent-expression or independent-expression is NULL. The
function is computed simultaneously during a single pass through the data. After eliminating NULL
values, the following computation is then made, where y represents the dependent-expression and x
represents the independent-expression:

REGR_COUNT(y, x) * COVAR_POP(y, x)

For more information about the statistical computation performed, see “Mathematical formulas for the
aggregate functions” [SQL Anywhere Server - SQL Usage].

Syntax 2 represents usage as a window function in a SELECT statement. As such, elements of window-
spec can be specified either in the function syntax (inline), or in conjunction with a WINDOW clause in
the SELECT statement. See the window-spec definition provided in “WINDOW clause” on page 907.

For more information about using window functions in SELECT statements, including working examples,
see “Window functions” [SQL Anywhere Server - SQL Usage].

For more information about specifying a window specification in an OVER clause, see “Window
definition: inlining using the OVER clause and WINDOW clause” [SQL Anywhere Server - SQL Usage].

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 305

See also
● “REGR_COUNT function [Aggregate]” on page 298
● “REGR_INTERCEPT function [Aggregate]” on page 299
● “REGR_COUNT function [Aggregate]” on page 298
● “REGR_SLOPE function [Aggregate]” on page 302
● “REGR_AVGX function [Aggregate]” on page 295
● “REGR_AVGY function [Aggregate]” on page 296
● “REGR_SXX function [Aggregate]” on page 303
● “REGR_SYY function [Aggregate]” on page 306

Standards and compatibility
● SQL/2008 REGR_SXY is part of optional SQL/2008 language feature T621, "Enhanced numeric

functions".

Example
The following example returns the sum of products of the dependent and independent variables.

SELECT REGR_SXY(Salary, (YEAR(NOW()) - YEAR(BirthDate)))
FROM Employees;

REGR_SYY function [Aggregate]
Returns values that can evaluate the statistical validity of a regression model.

Syntax 1
REGR_SYY(dependent-expression , independent-expression)

Syntax 2
REGR_SYY(dependent-expression , independent-expression)
OVER (window-spec)

window-spec : see Syntax 2 instructions in the Remarks section below

Parameters
● dependent-expression The variable that is affected by the independent variable.

● independent-expression The variable that influences the outcome.

Returns
DOUBLE

Remarks
This function converts its arguments to DOUBLE, and performs the computation in double-precision
floating-point arithmetic. If the function is applied to an empty set, then it returns NULL.

SQL functions

306 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The function is applied to the set of (dependent-expression and independent-expression) pairs after
eliminating all pairs for which either dependent-expression or independent-expression is NULL. The
function is computed simultaneously during a single pass through the data. After eliminating NULL
values, the following computation is then made, where y represents the dependent-expression and x
represents the independent-expression:

REGR_COUNT(y, x) * VAR_POP(y)

For more information about the statistical computation performed, see “Mathematical formulas for the
aggregate functions” [SQL Anywhere Server - SQL Usage].

Syntax 2 represents usage as a window function in a SELECT statement. As such, elements of window-
spec can be specified either in the function syntax (inline), or in conjunction with a WINDOW clause in
the SELECT statement. See the window-spec definition provided in “WINDOW clause” on page 907.

For more information about using window functions in SELECT statements, including working examples,
see “Window functions” [SQL Anywhere Server - SQL Usage].

For more information about specifying a window specification in an OVER clause, see “Window
definition: inlining using the OVER clause and WINDOW clause” [SQL Anywhere Server - SQL Usage].

See also
● “REGR_COUNT function [Aggregate]” on page 298
● “REGR_INTERCEPT function [Aggregate]” on page 299
● “REGR_COUNT function [Aggregate]” on page 298
● “REGR_AVGX function [Aggregate]” on page 295
● “REGR_AVGY function [Aggregate]” on page 296
● “REGR_SLOPE function [Aggregate]” on page 302
● “REGR_SXX function [Aggregate]” on page 303
● “REGR_SXY function [Aggregate]” on page 304

Standards and compatibility
● SQL/2008 REGR_SYY is part of optional SQL/2008 language feature T621, "Enhanced numeric

functions".

Example
The following example returns the value 26, 708, 672,843.3002.

SELECT REGR_SYY(Salary, (YEAR(NOW()) - YEAR(BirthDate)))
FROM Employees;

REMAINDER function [Numeric]
Returns the remainder when one whole number is divided by another.

Syntax
REMAINDER(dividend, divisor)

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 307

Parameters
● dividend The dividend, or numerator of the division.

● divisor The divisor, or denominator of the division.

Returns
● INTEGER
● NUMERIC

Remarks
You can also use the MOD function to return the remainder.

See also
● “MOD function [Numeric]” on page 264

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 2.

SELECT REMAINDER(5, 3);

REPEAT function [String]
Concatenates a string a specified number of times.

Syntax
REPEAT(string-expression, integer-expression)

Parameters
● string-expression The string to be repeated.

● integer-expression The number of times the string is to be repeated. If integer-expression is
negative, an empty string is returned.

Returns
● LONG VARCHAR
● LONG NVARCHAR

Remarks
If the actual length of the result string exceeds the maximum for the return type, an error occurs. The
result is truncated to the maximum string size allowed.

The behavior of this function is identical to that of the REPLICATE function.

SQL functions

308 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

This function supports NCHAR inputs and/or outputs.

See also
● “REPLICATE function [String]” on page 310
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value repeatrepeatrepeat.

SELECT REPEAT('repeat', 3);

REPLACE function [String]
Replaces a string with another string, and returns the new results.

Syntax
REPLACE(original-string, search-string, replace-string)

Parameters
If any argument is NULL, the function returns NULL.

● original-string The string to be searched. This can be any length.

● search-string The string to be searched for and replaced with replace-string. This string is limited
to 255 bytes. If search-string is an empty string, the original string is returned unchanged.

● replace-string The replacement string, which replaces search-string. This can be any length. If
replacement-string is an empty string, all occurrences of search-string are deleted.

Returns
● LONG VARCHAR
● LONG NVARCHAR

Remarks
This function replaces all occurrences.

Comparisons are case-sensitive on case-sensitive databases.

This function supports NCHAR inputs and/or outputs.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 309

See also
● “SUBSTRING function [String]” on page 340
● “CHARINDEX function [String]” on page 157
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value xx.def.xx.ghi.

SELECT REPLACE('abc.def.abc.ghi', 'abc', 'xx');

The following statement generates a result set containing ALTER PROCEDURE statements which, when
executed, would repair stored procedures that reference a table that has been renamed. (To be useful, the
table name must be unique.)

SELECT REPLACE(
 REPLACE(proc_defn, 'OldTableName', 'NewTableName'),
 'CREATE PROCEDURE',
 'ALTER PROCEDURE')
FROM SYS.SYSPROCEDURE
WHERE proc_defn LIKE '%OldTableName%';

REPLICATE function [String]
Concatenates a string a specified number of times.

Syntax
REPLICATE(string-expression, integer-expression)

Parameters
● string-expression The string to be repeated.

● integer-expression The number of times the string is to be repeated.

Returns
● LONG VARCHAR
● LONG NVARCHAR

Remarks
If the actual length of the result string exceeds the maximum for the return type, an error occurs. The
result is truncated to the maximum string size allowed.

The behavior of this function is identical to that of the REPEAT function.

This function supports NCHAR inputs and/or outputs.

SQL functions

310 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “REPEAT function [String]” on page 308
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value repeatrepeatrepeat.

SELECT REPLICATE('repeat', 3);

REVERSE function [String]
Returns the reverse of a character expression.

Syntax
REVERSE(string-expression)

Parameters
● string-expression The string to be reversed.

Returns
● LONG VARCHAR
● LONG NVARCHAR

Remarks
This function supports NCHAR inputs and/or outputs.

See also
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value cba.

SELECT REVERSE('abc');

REWRITE function [Miscellaneous]
Returns a rewritten SELECT, UPDATE, or DELETE statement.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 311

Syntax
REWRITE(select-statement [, 'ANSI'])

Parameters
● select-statement The SQL statement to which the rewrite optimizations are applied to generate

the function's results.

Returns
LONG VARCHAR

Remarks
You can use the REWRITE function without the ANSI argument to help understand how the optimizer
generated the access plan for a given query. In particular, you can find how SQL Anywhere has rewritten
the conditions in the statement's WHERE, ON, and HAVING clauses, and then determine if applicable
indexes exist that can be exploited to improve the request's execution time.

The statement that is returned by REWRITE may not match the semantics of the original statement. This
is because several rewrite optimizations introduce internal mechanisms that cannot be translated directly
into SQL. For example, the server's use of row identifiers to perform duplicate elimination cannot be
translated into SQL.

The rewritten query from the REWRITE function is not intended to be executable. It is a tool for
analyzing performance issues by showing what gets passed to the optimizer after the rewrite phase.

There are some rewrite optimizations that are not reflected in the output of REWRITE. They include
LIKE optimization, optimization for minimum or maximum functions, upper/lower elimination, and
predicate subsumption.

If ANSI is specified, REWRITE returns the ANSI equivalent to the statement. In this case, only the
following rewrite optimizations are applied:

● Transact-SQL outer joins are rewritten as ANSI SQL outer joins.

● Duplicate correlation names are eliminated.

● KEY and NATURAL joins are rewritten as ANSI SQL joins.

See also
● “Semantic query transformations” [SQL Anywhere Server - SQL Usage]
● “extended_join_syntax option” [SQL Anywhere Server - Database Administration]
● “Transact-SQL outer joins (*= or =*)” [SQL Anywhere Server - SQL Usage]
● “Key joins” [SQL Anywhere Server - SQL Usage]
● “Natural joins” [SQL Anywhere Server - SQL Usage]
● “Duplicate correlation names in joins (star joins)” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 Vendor extension.

SQL functions

312 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example
In the following example, two rewrite optimizations are performed on a query. The first is the un-nesting
of the subquery into a join between the Employees and SalesOrders tables. The second optimization
simplifies the query by eliminating the primary key - foreign key join between Employees and
SalesOrders. Part of this rewrite optimization is to replace the join predicate
e.EmployeeID=s.SalesRepresentative with the predicate s.SalesRepresentative IS NOT NULL.

SELECT REWRITE('SELECT s.ID, s.OrderDate
 FROM SalesOrders s
 WHERE EXISTS (SELECT *
 FROM Employees e
 WHERE e.EmployeeID = s.SalesRepresentative)') FROM dummy;

The query returns a single column result set containing the rewritten query:

'SELECT s.ID, s.OrderDate FROM SalesOrders s WHERE s.SalesRepresentative IS
NOT NULL'

The next example of REWRITE uses the ANSI argument.

SELECT REWRITE('SELECT DISTINCT s.ID, s.OrderDate, e.GivenName, e.EmployeeID
 FROM SalesOrders s, Employees e
 WHERE e.EmployeeID *= s.SalesRepresentative', 'ANSI') FROM dummy;

The result is the ANSI equivalent of the statement. In this case, the Transact-SQL outer join is converted
to an ANSI outer join. The query returns a single column result set (broken into separate lines for readability):

'SELECT DISTINCT s.ID, s.OrderDate, e.GivenName, e.EmployeeID
 FROM Employees as e
 LEFT OUTER JOIN SalesOrders as s
 ON e.EmployeeID = s.SalesRepresentative';

RIGHT function [String]
Returns the rightmost characters of a string.

Syntax
RIGHT(string-expression, integer-expression)

Parameters
● string-expression The string to be left-truncated.

● integer-expression The number of characters at the end of the string to return.

Returns
● LONG VARCHAR
● LONG NVARCHAR

Remarks
If the string contains multibyte characters, and the proper collation is being used, the number of bytes
returned may be greater than the specified number of characters.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 313

You can specify an integer-expression that is larger than the value in the column. In this case, the entire
value is returned.

This function supports NCHAR inputs and/or outputs. Whenever possible, if the input string uses character-
length semantics, the return value is described in character-length semantics.

See also
● “LEFT function [String]” on page 247
● “International languages and character sets” [SQL Anywhere Server - Database Administration]
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the last 5 characters of each Surname value in the Customers table.

SELECT RIGHT(Surname, 5) FROM Customers;

ROUND function [Numeric]
Rounds the numeric-expression to the specified integer-expression amount of places after the decimal point.

Syntax
ROUND(numeric-expression, integer-expression)

Parameters
● numeric-expression The number, passed into the function, to be rounded.

● integer-expression A positive integer specifies the number of significant digits to the right of the
decimal point at which to round. A negative expression specifies the number of significant digits to
the left of the decimal point at which to round.

Returns
NUMERIC

Remarks
The result of this function is either numeric or double. When there is a numeric result and the integer integer-
expression is a negative value, the precision is increased by one.

See also
● “TRUNCNUM function [Numeric]” on page 354

Standards and compatibility
● SQL/2008 Vendor extension.

SQL functions

314 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example
The following statement returns the value 123.200.

SELECT ROUND(123.234, 1);

ROW_NUMBER function [Miscellaneous]
Assigns a unique number to each row. Use this function instead of the NUMBER function.

Syntax
ROW_NUMBER() OVER (window-spec)

window-spec : see the Remarks section below

Returns
INTEGER

Remarks
Elements of window-spec can be specified either in the function syntax (inline), or in conjunction with a
WINDOW clause in the SELECT statement. When used as a window function, you must specify an
ORDER BY clause, you may specify a PARTITION BY clause, however, you can not specify a ROWS
or RANGE clause. See the window-spec definition provided in “WINDOW clause” on page 907.

For more information about using window functions in SELECT statements, including working examples,
see “Window functions” [SQL Anywhere Server - SQL Usage].

For more information about specifying a window specification in an OVER clause, see “Window
definition: inlining using the OVER clause and WINDOW clause” [SQL Anywhere Server - SQL Usage].

See also
● “NUMBER function [Miscellaneous]” on page 277
● “RANK function [Ranking]” on page 290
● “ROWID function [Miscellaneous]” on page 316

Standards and compatibility
● SQL/2008 ROW_NUMBER is part of optional SQL/2008 language feature T611, "Elementary

OLAP operations".

Example
The following example returns a result set that provides unique row numbers for each employee in New
York and Utah. Because the query is ordered by Salary in descending order, the first row number is given
to the employee with the highest salary in the data set. Although two employees have identical salaries,
the tie is not resolved because the two employees are assigned unique row numbers.

SELECT Surname, Salary, State,
ROW_NUMBER() OVER (ORDER BY Salary DESC) "Rank"
FROM Employees WHERE State IN ('NY','UT');

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 315

Surname Salary State Rank

Shishov 72995.000 UT 1

Wang 68400.000 UT 2

Cobb 62000.000 UT 3

Morris 61300.000 UT 4

Davidson 57090.000 NY 5

Martel 55700.000 NY 6

Blaikie 54900.000 NY 7

Diaz 54900.000 NY 8

Driscoll 48023.690 UT 9

Hildebrand 45829.000 UT 10

...

Lynch 24903.000 UT 19

ROWID function [Miscellaneous]
Returns an UNSIGNED BIGINT value that uniquely identifies a row within a table.

Syntax
ROWID(correlation-name)

Parameters
● correlation-name The correlation name of a table used in the query. The correlation name should

refer to a base table, a temporary table, a global temporary table or a proxy table (permitted only when
the underlying proxy server supports a similar function). The argument of the ROWID function
should not refer to a view, derived table, common table expression or a procedure.

Returns
UNSIGNED BIGINT

Remarks
Returns the row identifier of the row in the table corresponding to the given correlation name.

SQL functions

316 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The value returned by the function is not necessarily constant between queries as various operations
performed on the database may result in changes to the row identifiers of a table. In particular, the
REORGANIZE TABLE statement is likely to result in changes to row identifiers. Additionally, row
identifiers may be reused after a row has been deleted. So, users should refrain from using the ROWID
function in ordinary situations; retrieval by primary key value should be used instead. It is recommended
that ROWID be used only in diagnostic situations.

Although the result of this function is an UNSIGNED BIGINT, the results of most arithmetic operations
on this value have no particular meaning. For example, you should not expect that adding one to a row
identifier will give you the row identifier of the next row. Also, only equality and IN predicates are
sargable if they involve the use of ROWID. If necessary, predicates involving ROWID, such as
ROWID(T) = literal, may be used to cast to a 64-bit UNSIGNED INTEGER value. If the
conversion cannot be performed a data exception will occur. If the value of literal is an invalid row
identifier then the comparison predicate evaluates to FALSE.

The ROWID function cannot be used inside a CHECK constraint on either a table or a column, nor can it
be used in the COMPUTE expression for a computed column.

See also
● “ROW_NUMBER function [Miscellaneous]” on page 315

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the row identifier of the row in Employee where id is equal to 105:

SELECT ROWID(Employees) FROM Employees WHERE Employees.EmployeeID = 105;

The following statement returns a list of the locks on rows in the Employees table along with the contents
of those rows:

SELECT *
 FROM sa_locks() S JOIN Employees WITH(NOLOCK)
 ON ROWID(Employees) = S.row_identifier
 WHERE S.table_name = 'Employees';

RTRIM function [String]

Removes trailing blanks from the string.

Syntax
RTRIM(string-expression)

Parameters
● string-expression The string to be trimmed.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 317

Returns
● VARCHAR
● NVARCHAR
● LONG VARCHAR
● LONG NVARCHAR

Remarks
The actual length of the result is the length of the expression minus the number of characters removed. If
all the characters are removed, the result is an empty string.

If the argument is null, the result is the null value.

This function supports NCHAR inputs and/or outputs.

See also
● “TRIM function [String]” on page 353
● “LTRIM function [String]” on page 256
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension.

The TRIM specifications defined by the SQL/2008 standard (LEADING and TRAILING) are
supplied by the SQL Anywhere LTRIM and RTRIM functions respectively.

Example
The following statement returns the string Test Message, with all trailing blanks removed.

SELECT RTRIM('Test Message ');

SECOND function [Date and time]
Returns the seconds value of the TIMESTAMP argument.

Syntax
SECOND(timestamp-expression)

Parameters
● timestamp-expression The TIMESTAMP value.

Returns
SMALLINT

Remarks
Returns a number from 0 to 59 corresponding to the seconds component of the given TIMESTAMP
argument value.

SQL functions

318 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 25.

SELECT SECOND('1998-07-13 21:21:25');

SECONDS function [Date and time]

The SECONDS function manipulates a TIMESTAMP, or returns the number of seconds between two
TIMESTAMP values. See the Remarks section below.

Syntax 1
SECONDS(timestamp-expression)

Syntax 2
SECONDS(timestamp-expression, timestamp-expression)

Syntax 3
SECONDS(time-or-timestamp-expression, integer-expression)

Parameters
● timestamp-expression A TIMESTAMP value.

● time-or-timestamp-expression A value of type TIME or TIMESTAMP.

● integer-expression The number of seconds to be added to the time-or-timestamp-expression. If
integer-expression is negative, the appropriate number of seconds is subtracted from time-or-timestamp-
expression.. If you supply an integer expression, the time-or-timestamp-expression must be explicitly
cast as a TIME, DATE, or TIMESTAMP data type. If time-or-timestamp-expression is a DATE type,
its time portion is assumed to be midnight.

Returns
UNSIGNED BIGINT with Syntax 1.

SIGNED BIGINT with Syntax 2.

TIME or TIMESTAMP with Syntax 3.

Remarks
The result of the SECONDS function depends on its arguments.

● Syntax 1 If you pass a single timestamp-expression to the SECONDS function, it will return the
number of seconds between midnight 0000-02-29 and timestamp-expression as an UNSIGNED BIGINT.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 319

Note
0000-02 is not meant to imply an actual date; it is the default date used by the SECONDS function.

● Syntax 2 If you pass two TIMESTAMP values to the SECONDS function, the function returns the
integer number of seconds between them as a SIGNED BIGINT value.

● Syntax 3 If you pass a TIMESTAMP value and a INTEGER value to the SECONDS function, the
function returns the TIMESTAMP result of adding the integer number of seconds to time-or-timestamp-
expression. Similarly, if you pass a TIME value to the SECONDS function, the function returns a
value of type TIME.

Instead of Syntax 2, use the DATEDIFF function. Instead of Syntax 3, use the DATEADD function.

See also
● “CAST function [Data type conversion]” on page 153
● “DATEADD function [Date and time]” on page 181
● “DATEDIFF function [Date and time]” on page 182

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statements return the value 14400, signifying that the second TIMESTAMP value is 14400
seconds after the first.

SELECT SECONDS('1999-07-13 06:07:12',
 '1999-07-13 10:07:12');
SELECT DATEDIFF(second,
 '1999-07-13 06:07:12',
 '1999-07-13 10:07:12');

The following statement returns the value 63062431632.

SELECT SECONDS('1998-07-13 06:07:12');

The following statements return the TIMESTAMP value 1999-05-12 21:05:12.000.

SELECT SECONDS(CAST('1999-05-12 21:05:07' AS TIMESTAMP), 5);
SELECT DATEADD(second, 5, '1999-05-12 21:05:07');

SET_BIT function [Bit array]

Set the value of a specific bit in a bit array.

Syntax
SET_BIT([bit-expression,]bit-position [, value])

SQL functions

320 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters
● bit-expression The bit array in which to change the bit.

● bit-position The position of the bit to be set. This must be an unsigned integer.

● value The value to which the bit is to be set.

Returns
LONG VARBIT

Remarks
The default value of bit-expression is a bit array of length bit-position, containing all bits set to 0 (FALSE).

The default value of value is 1 (TRUE).

The result is NULL if any parameter is NULL.

The positions in the array are counted from the left side, starting at 1.

See also
● “GET_BIT function [Bit array]” on page 218
● “SET_BITS function [Aggregate]” on page 321
● “INTEGER data type” on page 92
● “Bitwise operators” on page 11
● “sa_get_bits system procedure” on page 991

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 00100011:

SELECT SET_BIT('00110011', 4 , 0);

The following statement returns the value 00111011:

SELECT SET_BIT('00110011', 5 , 1);

The following statement returns the value 00111011:

SELECT SET_BIT('00110011', 5);

The following statement returns the value 00001:

SELECT SET_BIT(5);

SET_BITS function [Aggregate]
Creates a bit array where specific bits, corresponding to values from a set of rows, are set to 1 (TRUE).

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 321

Syntax
SET_BITS(expression)

Parameters
● expression The expression used to determine which bits to set to 1. This is typically a column name.

Returns
LONG VARBIT

Remarks
Rows where the specified values are NULL are ignored.

If there are no rows, NULL is returned.

The length of the result is the largest position that was set to 1.

The SET_BITS function is equivalent to, but faster than, the following statement:

SELECT BIT_OR(SET_BIT(expression))
FROM table;

See also
● “Bitwise operators” on page 11
● “GET_BIT function [Bit array]” on page 218
● “SET_BIT function [Bit array]” on page 320
● “sa_get_bits system procedure” on page 991

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statements return a bit array with the 2nd, 5th, and 10th bits set to 1 (or 0100100001):

CREATE TABLE t(r INTEGER);
INSERT INTO t values(2);
INSERT INTO t values(5);
INSERT INTO t values(10);
SELECT SET_BITS(r) FROM t;

SIGN function [Numeric]
Returns the sign (positive or negative) of the given number.

Syntax
SIGN(numeric-expression)

SQL functions

322 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters
● numeric-expression The number for which the sign is to be returned. numeric-expression may be

of type INTEGER, DOUBLE, or NUMERIC.

Returns
SMALLINT

Remarks
For negative numbers, the SIGN function returns -1.

For zero, the SIGN function returns 0.

For positive numbers, the SIGN function returns 1.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value -1

SELECT SIGN(-550);

SIMILAR function [String]
Returns a number indicating the similarity between two strings.

Syntax
SIMILAR(string-expression-1, string-expression-2)

Parameters
● string-expression-1 The first string to be compared.

● string-expression-2 The second string to be compared.

Returns
SMALL INT

Remarks
The function returns an integer between 0 and 100 representing the similarity between the two strings.
The result can be interpreted as the percentage of characters matched between the two strings. A value of
100 indicates that the two strings are identical.

This function can be used to correct a list of names (such as customers). Some customers may have been
added to the list more than once with slightly different names. You can use the SIMILAR function to find
similar customer names by joining the customer table to itself, producing a report of all similarities
greater than 90 percent, but less than 100 percent.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 323

The calculation performed for the SIMILAR function is more complex than just the number of characters
that match.

See also
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 75, indicating that the two values are 75% similar.

SELECT SIMILAR('toast', 'coast');

SIN function [Numeric]
Returns the sine of a number.

Syntax
SIN(numeric-expression)

Parameters
● numeric-expression The angle, in radians.

Returns
DOUBLE

Remarks
The SIN function returns the sine of the argument, where the argument is an angle expressed in radians.
The SIN and ASIN functions are inverse operations.

This function converts its argument to DOUBLE, performs the computation in double-precision floating-
point arithmetic, and returns a DOUBLE as the result.

See also
● “ASIN function [Numeric]” on page 142
● “COS function [Numeric]” on page 169
● “COT function [Numeric]” on page 170
● “TAN function [Numeric]” on page 346

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the SIN value of 0.52.

SQL functions

324 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SELECT SIN(0.52);

SOAP_HEADER function [SOAP]

Returns a SOAP header entry, or an attribute value for a header entry of the SOAP request.

Syntax
SOAP_HEADER(header-key [index, header-attribute])

Parameters
● header-key This VARCHAR parameter specifies the XML local name of the top level XML

element for a given SOAP header entry.

● index This optional INTEGER parameter differentiates between SOAP header fields that have
identical names. This can occur when multiple header entries have top level XML elements with the
same localname. Usually, such elements have unique namespaces.

● header-attribute This optional VARCHAR parameter can specify any attribute node within a
header entry element, including:

○ @namespace A special SQL Anywhere attribute used to access the namespace of the given
header entry.

○ mustUnderstand A SOAP 1.1 header entry attribute indicating whether a header entry is
mandatory or optional for the recipient to process.

○ encodingStyle A SOAP 1.1 header entry attribute indicating the encoding style. This attribute
may be accessed, but it is not used internally by SQL Anywhere.

○ actor A SOAP 1.1 header entry attribute indicating the intended recipient of a header entry by
specifying the recipient's URL.

Returns
LONG VARCHAR

Remarks
This function may be used with a single parameter header-key to return a header entry. A header entry is
an XML string representation of an element, and all its sub-elements, contained within a SOAP header.

This function may also be used to extract a header entry attribute by specifying the optional index and header-
attribute parameters.

This function returns the value of the named SOAP header field, or NULL if not called from a SOAP
service. It is used when processing a SOAP request via a web service.

If a header for the given header-key does not exist, the return value is NULL.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 325

See also
● “NEXT_SOAP_HEADER function [SOAP]” on page 275
● “sa_set_soap_header system procedure” on page 1079
● “Tutorial: Using SQL Anywhere to access a SOAP/DISH service” [SQL Anywhere Server -

Programming]
● “Web services functions” on page 135
● “Web services system procedures” on page 941

Standards and compatibility
● SQL/2008 Vendor extension.

Example
When used within a stored procedure that is called by an HTTP web service, the following example
processes all the keys located in the SOAP request header. When it processes the Authentication key, it
also obtains the key's value.

BEGIN
 DECLARE hd_key LONG VARCHAR;
 DECLARE hd_entry LONG VARCHAR;
header_loop:
 LOOP
 SET hd_key = NEXT_SOAP_HEADER(hd_key);
 IF hd_key IS NULL THEN
 -- no more header entries
 LEAVE header_loop;
 END IF;
 IF hd_key = 'Authentication' THEN
 SET hd_entry = SOAP_HEADER(hd_key);
 END IF;
 END LOOP header_loop;
END;

SORTKEY function [String]
Generates sort key values. That is, values that can be used to sort character strings based on alternate
collation rules.

Syntax
SORTKEY(string-expression
[, { collation-id
| collation-name[(collation-tailoring-string)] }]
)

Parameters
● string-expression The string expression must contain characters that are encoded in the database's

character set.

If string-expression is an empty string, the SORTKEY function returns a zero-length binary value. If
string-expression is NULL, the SORTKEY function returns a NULL value. An empty string has a
different sort order value than a NULL string from a database column.

SQL functions

326 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The maximum length of the string that the SORTKEY function can handle is 254 bytes. Any longer
part is ignored.

● collation-name A string or a character variable that specifies the name of the sort order to use.
You can also specify the alias char_collation, or, equivalently, db_collation, to generate sortkeys as
used by the CHAR collation in use by the database. Similarly, you can specify the alias
nchar_collation to generate sortkeys as used by the NCHAR collation in use by the database.

● collation-id A variable, integer constant, or string that specifies the ID number of the sort order to
use. If you do not specify collation-id, the default is Default Unicode multilingual. For a list of valid
collations, see “Supported and alternate collations” [SQL Anywhere Server - Database
Administration], and “Recommended character sets and collations” [SQL Anywhere Server - Database
Administration].

● collation-tailoring-string Optionally, you can specify collation tailoring options (collation-
tailoring-string) for additional control over the sorting and comparing of characters. These options
take the form of keyword=value pairs assembled in parentheses, following the collation name. For
example, 'UCA(locale=es;case=LowerFirst;accent=respect)'. The syntax for
specifying these options is identical to the syntax defined for the COLLATION clause of the
CREATE DATABASE statement. See “Collation tailoring options” [SQL Anywhere Server -
Database Administration].

Note
All the collation tailoring options are supported when specifying the UCA collation. For all other
collations, only case sensitivity tailoring is supported.

Returns
BINARY

Remarks
The SORTKEY function generates values that can be used to order results based on predefined sort order
behavior. This allows you to work with character sort order behaviors that may not be available from the
database collation. The returned value is a binary value that contains coded sort order information for the
input string that is retained from the SORTKEY function. For example, you can store the values returned
by the SORTKEY function in a column with the source character string. When you want to retrieve the
character data in the desired order, the SELECT statement only needs to include an ORDER BY clause on
the columns that contain the results of running the SORTKEY function.

The SORTKEY function guarantees that the values it returns for a given set of sort order criteria work for
the binary comparisons that are performed on VARBINARY data types.

Generating sortkeys for queries can be expensive. As an alternative for frequently requested sortkeys,
consider creating a computed column to hold the sortkey values, and then referencing that column in the
ORDER BY clause of the query.

The input of the SORTKEY function can generate up to six bytes of sort order information for each input
character. The output of the SORTKEY function is of type VARBINARY and has a maximum length of
1024 bytes.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 327

When specifying UCA for the collation during sort key generation, by default, collation tailorings are
accent and case sensitive. For example, when UCA is specified by itself, the default tailoring applied is
equivalent to 'UCA(case=UpperFirst;accent=Respect;punct=Primary)'.

If a different tailoring is provided in the second parameter to SORTKEY, those settings override the
default settings. For example, the following two statements are equivalent:

SELECT SORTKEY('abc', 'UCA(accent=Ignore)');
SELECT SORTKEY('abc', 'UCA(case=UpperFirst;accent=Ignore;punct=Primary)');

When specifying a non-UCA collation, by default, collation tailorings are also accent and case sensitive.
However, for non-UCA collations, only the case sensitivity can be overridden using a collation tailoring.
For example:

SELECT SORTKEY('abc', '1252LATIN1(case=Respect)');

If the database was created without specifying tailoring options (for example, dbinit -c -zn uca
mydb.db), the following two clauses may generate different sort orders, even if the database collation
name is specified for the SORTKEY function:

ORDER BY string-expression
ORDER BY SORTKEY(string-expression, database-collation-name)

This is because the default tailoring settings used for database creation and for the SORTKEY function
are different. To get the same behavior from SORTKEY as for the database collation, either provide a
tailoring syntax for collation-tailoring-string that matches the settings for the database collation, or
specify db_collation for collation-name. For example:

SORTKEY(expression, 'db_collation')

Note
Sort key values are generated differently depending on the version of SQL Anywhere. This can cause
sorting issues if sort key values created by one version of SQL Anywhere are used in a database created
by a different version of SQL Anywhere. You should regenerate sort key values if sorting issues occur.

You should also regenerate sort key values when upgrading your database using unload/reload.

See also
● “sort_collation option” [SQL Anywhere Server - Database Administration]
● “COMPARE function [String]” on page 159
● “International languages and character sets” [SQL Anywhere Server - Database Administration]
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statements queries the Employees table and returns the FirstName and Surname of all
employees, sorted by the sortkey values for the Surname column using the dict collation (Latin-1,
English, French, German dictionary).

SQL functions

328 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SELECT Surname, GivenName FROM Employees ORDER BY SORTKEY(Surname, 'dict');

The following example returns the sortkey value for abc, using the UCA collation and tailoring options.

SELECT SORTKEY('abc', 'UCA(locale=es;case=LowerFirst;accent=respect)');

SOUNDEX function [String]

Returns a number representing the sound of a string.

Syntax
SOUNDEX(string-expression)

Parameters
● string-expression The string to be evaluated.

Returns
SMALLINT

Remarks
The SOUNDEX function value for a string is based on the first letter and the next three consonants other
than H, Y, and W. Vowels in string-expression are ignored unless they are the first letter of the string.
Doubled letters are counted as one letter. For example, the word "apples" is based on the letters A, P, L,
and S.

Multibyte characters are ignored by the SOUNDEX function.

Although it is not perfect, the SOUNDEX function normally returns the same number for words that
sound similar and that start with the same letter.

The SOUNDEX function works best with English words. It is less useful for other languages.

See also
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns two identical numbers, 3827, representing the sound of each name.

SELECT SOUNDEX('Smith'), SOUNDEX('Smythe');

SPACE function [String]

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 329

Returns a specified number of spaces.

Syntax
SPACE(integer-expression)

Parameters
● integer-expression The number of spaces to return.

Returns
LONG VARCHAR

Remarks
If integer-expression is negative, a null string is returned.

See also
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns a string containing 10 spaces.

SELECT SPACE(10);

SQLDIALECT function [Miscellaneous]
Returns either Watcom SQL or Transact-SQL, to indicate the SQL dialect of a statement.

Syntax
SQLDIALECT(sql-statement-string)

Parameters
● sql-statement-string The SQL statement that the function uses to determine its dialect.

Returns
LONG VARCHAR

See also
● “TRANSACTSQL function [Miscellaneous]” on page 351
● “WATCOMSQL function [Miscellaneous]” on page 366

Standards and compatibility
● SQL/2008 Vendor extension.

SQL functions

330 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example
The following statement returns the string Transact-SQL.

SELECT
 SQLDIALECT('SELECT EmployeeName = Surname FROM Employees')
FROM dummy;

SQLFLAGGER function [Miscellaneous]
Returns the conformity of a given SQL statement to a specified standard.

Syntax
SQLFLAGGER(sql-standard-string, sql-statement-string)

Parameters
● sql-standard-string The standard level against which to test compliance. Possible values are the

same as for the sql_flagger_error_level database option:

○ SQL:2008/Core Test for conformance to core SQL/2008 syntax.

○ SQL:2008/Package Test for conformance to full SQL/2008 syntax.

○ SQL:2003/Core Test for conformance to core SQL/2003 syntax.

○ SQL:2003/Package Test for conformance to full SQL/2003 syntax.

○ SQL:1999/Core Test for conformance to core SQL/1999 syntax.

○ SQL:1999/Package Test for conformance to full SQL/1999 syntax.

○ SQL:1992/Entry Test for conformance to entry-level SQL/1992 syntax.

○ SQL:1992/Intermediate Test for conformance to intermediate-level SQL/1992 syntax.

○ SQL:1992/Full Test for conformance to full-SQL/1992 syntax.

○ UltraLite Test for conformance to UltraLite.

● sql-statement-string The SQL statement to check for conformance.

Returns
LONG VARCHAR

See also
● “sql_flagger_error_level option” [SQL Anywhere Server - Database Administration]
● “SQL preprocessor” [SQL Anywhere Server - Programming]
● “sa_ansi_standard_packages system procedure” on page 952
● “Testing SQL compliance using the SQL Flagger” [SQL Anywhere Server - SQL Usage]

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 331

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement shows an example of the message that is returned when a disallowed extension is
found:

SELECT SQLFLAGGER(
 'SQL:2003/Package', 'SELECT top 1 dummy_col FROM sys.dummy ORDER BY
dummy_col');

This statement returns the message '0AW03 Disallowed language extension detected
in syntax near 'top' on line 1'.

The following statement returns '00000' because it does not contain any disallowed extensions:

SELECT SQLFLAGGER('SQL:2003/Package', 'SELECT dummy_col FROM sys.dummy');

SQRT function [Numeric]
Returns the square root of a number.

Syntax
SQRT(numeric-expression)

Parameters
● numeric-expression The number for which the square root is to be calculated.

Returns
DOUBLE

Remarks
This function converts its argument to DOUBLE, performs the computation in double-precision floating-
point arithmetic, and returns a DOUBLE as the result.

Standards and compatibility
● SQL/2008 The SQRT function comprises part of optional SQL/2008 language feature T621,

"Enhanced numeric functions".

Example
The following statement returns the value 3.

SELECT SQRT(9);

STDDEV function [Aggregate]

SQL functions

332 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

An alias for STDDEV_SAMP. See “STDDEV_SAMP function [Aggregate]” on page 334.

STDDEV_POP function [Aggregate]

Computes the standard deviation of a population consisting of a numeric-expression, as a DOUBLE.

Syntax 1
STDDEV_POP(numeric-expression)

Syntax 2
STDDEV_POP(numeric-expression) OVER (window-spec)

window-spec : see Syntax 2 instructions in the Remarks section below

Parameters
● numeric-expression The expression whose population-based standard deviation is calculated

over a set of rows. The expression is commonly a column name.

Returns
DOUBLE

Remarks
This function converts its argument to DOUBLE, and performs the computation in double-precision floating-
point arithmetic.

The population-based standard deviation (s) is computed according to the following formula:

s = [(1/N) * SUM(xI - mean(x))2]½

This standard deviation does not include rows where numeric-expression is NULL. It returns NULL for a
group containing no rows.

For more information about the statistical computation performed, see “Mathematical formulas for the
aggregate functions” [SQL Anywhere Server - SQL Usage].

Syntax 2 represents usage as a window function in a SELECT statement. As such, elements of window-
spec can be specified either in the function syntax (inline), or in conjunction with a WINDOW clause in
the SELECT statement. See the window-spec definition provided in “WINDOW clause” on page 907.

For more information about using window functions in SELECT statements, including working examples,
see “Window functions” [SQL Anywhere Server - SQL Usage].

For more information about specifying a window specification in an OVER clause, see “Window
definition: inlining using the OVER clause and WINDOW clause” [SQL Anywhere Server - SQL Usage].

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 333

See also
● “Aggregate functions” on page 127

Standards and compatibility
● SQL/2008 The STDDEV_POP function comprises part of optional SQL /2008 language feature

T621, "Enhanced numeric functions". When used as window function, STDDEV_POP comprises part
of optional SQL foundation feature T611, "Elementary OLAP operations".

The ability to specify DISTINCT over an expression that is not a column reference comprises part of
optional SQL language feature F561, "Full value expressions". SQL Anywhere also supports SQL/
2008 language feature F441, "Extended set function support", which permits operands of aggregate
functions to be arbitrary expressions possibly including outer references to expressions in other query
blocks that are not column references.

SQL Anywhere does not support optional SQL/2008 feature F442, "Mixed column references in set
functions". SQL Anywhere does not permit the arguments of an aggregate function to include both a
column reference from the query block containing the STDDEV_POP function, combined with an
outer reference. For an example, see the “AVG function [Aggregate]” [UltraLite - Database
Management and Reference]

Example
The following statement lists the average and variance in the number of items per order in different time
periods:

SELECT YEAR(ShipDate) AS Year,
 QUARTER(ShipDate) AS Quarter,
 AVG(Quantity) AS Average,
 STDDEV_POP(quantity) AS Variance
FROM SalesOrderItems
GROUP BY Year, Quarter
ORDER BY Year, Quarter;

Year Quarter Average Variance

2000 1 25.775148 14.2794...

2000 2 27.050847 15.0270...

...

STDDEV_SAMP function [Aggregate]
Computes the standard deviation of a sample consisting of a numeric-expression, as a DOUBLE.

Syntax 1
STDDEV_SAMP(numeric-expression)

SQL functions

334 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax 2
STDDEV_SAMP(numeric-expression) OVER (window-spec)

window-spec : see Syntax 2 instructions in the Remarks section below

Parameters
● numeric-expression The expression whose sample-based standard deviation is calculated over a

set of rows. The expression is commonly a column name.

Returns
DOUBLE

Remarks
This function converts its argument to DOUBLE, and performs the computation in double-precision floating-
point arithmetic.

The standard deviation (s) is computed according to the following formula, which assumes a normal
distribution:

s = [(1/(N - 1)) * SUM(xI - mean(x))2]½

This standard deviation does not include rows where numeric-expression is NULL. It returns NULL for a
group containing either 0 or 1 rows.

For more information about the statistical computation performed, see “Mathematical formulas for the
aggregate functions” [SQL Anywhere Server - SQL Usage].

Syntax 2 represents usage as a window function in a SELECT statement. As such, elements of window-
spec can be specified either in the function syntax (inline), or in conjunction with a WINDOW clause in
the SELECT statement. See the window-spec definition provided in “WINDOW clause” on page 907.

For more information about using window functions in SELECT statements, including working examples,
see “Window functions” [SQL Anywhere Server - SQL Usage].

For more information about specifying a window specification in an OVER clause, see “Window
definition: inlining using the OVER clause and WINDOW clause” [SQL Anywhere Server - SQL Usage].

See also
● “Aggregate functions” on page 127

Standards and compatibility
● SQL/2008 The STDDEV_SAMP function comprises part of optional SQL /2008 language feature

T621, "Enhanced numeric functions". When used as window function, STDDEV_SAMP comprises
part of optional SQL foundation feature T611, "Elementary OLAP operations".

The ability to specify DISTINCT over an expression that is not a column reference comprises part of
optional SQL language feature F561, "Full value expressions". SQL Anywhere also supports SQL/
2008 language feature F441, "Extended set function support", which permits operands of aggregate

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 335

functions to be arbitrary expressions possibly including outer references to expressions in other query
blocks that are not column references.

SQL Anywhere does not support optional SQL/2008 feature F442, "Mixed column references in set
functions". SQL Anywhere does not permit the arguments of an aggregate function to include both a
column reference from the query block containing the STDDEV_SAMP function, combined with an
outer reference. For an example, see the “AVG function [Aggregate]” [UltraLite - Database
Management and Reference]

Example
The following statement lists the average and variance in the number of items per order in different time
periods:

SELECT YEAR(ShipDate) AS Year,
 QUARTER(ShipDate) AS Quarter,
 AVG(Quantity) AS Average,
 STDDEV_SAMP(quantity) AS Variance
FROM SalesOrderItems
GROUP BY Year, Quarter
ORDER BY Year, Quarter;

Year Quarter Average Variance

2000 1 25.775148 14.3218...

2000 2 27.050847 15.0696...

...

STR function [String]

Returns the string equivalent of a number.

Syntax
STR(numeric-expression [, length [, decimal]])

Parameters
● numeric-expression Any approximate numeric (float, real, or double precision) expression

between -1E126 and 1E127.

● length The number of characters to be returned (including the decimal point, all digits to the right
and left of the decimal point, and blanks). The default is 10.

● decimal The number of decimal digits to be returned. The default is 0.

Returns
VARCHAR

SQL functions

336 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
If the integer portion of the number cannot fit in the length specified, then the result is a string of the
specified length containing all asterisks. For example, the following statement returns ***.

SELECT STR(1234.56, 3);

Note
The maximum length that is supported is 128. Any length that is not between 1 and 128 yields a result of
NULL.

See also
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns a string of six spaces followed by 1235, for a total of ten characters.

SELECT STR(1234.56);

The following statement returns the result 1234.6.

SELECT STR(1234.56, 6, 1);

STRING function [String]
Concatenates one or more strings into one large string.

Syntax
STRING(string-expression [, ...])

Parameters
● string-expression The string to be evaluated.

If only one argument is supplied, it is converted into a single expression. If more than one argument is
supplied, they are concatenated into a single string.

Returns
● LONG VARCHAR
● LONG NVARCHAR
● LONG BINARY

Remarks
Numeric or date parameters are converted to strings before concatenation. The STRING function can also
be used to convert any single expression to a string by supplying that expression as the only parameter.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 337

If all parameters are NULL, STRING returns NULL. If any parameters are non-NULL, then any NULL
parameters are treated as empty strings.

See also
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value testing123.

SELECT STRING('testing', NULL, 123);

STRTOUUID function [String]
Converts a string value to a unique identifier (UUID or GUID) value.

Not needed in newer databases
In databases created before version 9.0.2, the UNIQUEIDENTIFIER data type was defined as a user-
defined data type and the STRTOUUID and UUIDTOSTR functions were needed to convert between
binary and string representations of UUID values.

In databases created using version 9.0.2 or later, the UNIQUEIDENTIFIER data type was changed to a
native data type and SQL Anywhere carries out conversions as needed. You do not need to use
STRTOUUID and UUIDTOSTR functions with these versions.

For more information, see “UNIQUEIDENTIFIER data type” on page 109.

Syntax
STRTOUUID(string-expression)

Parameters
● string-expression A string in the format xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx.

Returns
UNIQUEIDENTIFIER

Remarks
Converts a string in the format xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx, where x is a hexadecimal digit, to
a unique identifier value.

If the string is not a valid UUID string, a conversion error is returned unless the conversion_error option
is set to OFF, in which case it returns NULL.

This function is useful for inserting UUID values into a database.

SQL functions

338 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

This function supports NCHAR inputs and/or outputs.

Curly braces can be used as the first and last characters in the string-expression.

See also
● “UUIDTOSTR function [String]” on page 361
● “NEWID function [Miscellaneous]” on page 268
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statements are equivalent and return the result 0x6c2b64a93c6f47dc901536b9ed49fec2.

SELECT STRTOUUID('6c2b64a9-3c6f-47dc-9015-36b9ed49fec2');
SELECT STRTOUUID('{6c2b64a9-3c6f-47dc-9015-36b9ed49fec2}');

STUFF function [String]
Deletes multiple characters from one string and replaces them with another string.

Syntax
STUFF(string-expression-1, start, length, string-expression-2)

Parameters
● string-expression-1 The string to be modified by the STUFF function.

● start The character position at which to begin deleting characters. The first character in the string is
position 1.

● length The number of characters to delete.

● string-expression-2 The string to be inserted. To delete a portion of a string using the STUFF
function, use a replacement string of NULL.

Returns
LONG NVARCHAR

Remarks
This function supports NCHAR inputs and/or outputs.

See also
● “INSERTSTR function [String]” on page 240
● “String functions” on page 136

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 339

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value chocolate pie.

SELECT STUFF('chocolate cake', 11, 4, 'pie');

SUBSTRING function [String]

Returns a substring of a string.

Syntax
{ SUBSTRING | SUBSTR } (string-expression, start
[, length])

Parameters
● string-expression The string from which a substring is to be returned.

● start The start position of the substring to return, in characters.

● length The length of the substring to return, in characters. If length is specified, the substring is
restricted to that length.

Returns
● LONG BINARY
● LONG VARCHAR
● LONG NVARCHAR

Remarks
The behavior of this function depends on the setting of the ansi_substring database option. When the
ansi_substring option is set to On (the default), the behavior of the SUBSTRING function corresponds to
ANSI/ISO SQL/2008 behavior. The behavior is as follows:

an-
si_sub-
string
option
setting

start value length value

On The first character in the string is at posi-
tion 1. A negative or zero start offset is
treated as if the string were padded on
the left with non-characters.

A positive length specifies that the substring
ends length characters to the right of the starting
position.

A negative length returns an error.

SQL functions

340 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

an-
si_sub-
string
option
setting

start value length value

Off The first character in the string is at posi-
tion 1. A negative starting position speci-
fies a number of characters from the end
of the string instead of the beginning.

If start is zero and length is non-nega-
tive, a start value of 1 is used. If start is
zero and length is negative, a start value
of -1 is used.

A positive length specifies that the substring
ends length characters to the right of the starting
position.

A negative length returns at most length charac-
ters up to, and including, the starting position,
from the left of the starting position.

If string-expression is of binary data type, the SUBSTRING function behaves as BYTE_SUBSTR.

To obtain characters at the end of a string, use the RIGHT function.

This function supports NCHAR inputs and/or outputs. Whenever possible, if the input string uses character-
length semantics, the return value is described in character-length semantics.

See also
● “BYTE_SUBSTR function [String]” on page 152
● “LEFT function [String]” on page 247
● “RIGHT function [String]” on page 313
● “CHARINDEX function [String]” on page 157
● “String functions” on page 136

Standards and compatibility
● SQL/2008 SUBSTRING is a core feature of the SQL/2008 standard. The standard's

implementation differs slightly from the SQL Anywhere implementation: in the standard,
SUBSTRING is defined with three parameters using the keywords FROM and FOR, neither of which
are required by SQL Anywhere.

Example
The following table shows the values returned by the SUBSTRING function.

Example Result

SUBSTRING('front yard', 1, 4) fron

SUBSTRING('back yard', 6, 4) yard

SUBSTR('abcdefgh', 0, -2) Returns an error if ansi_substring is On

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 341

Example Result

SUBSTR('abcdefgh', -2, 2) Returns an empty string if ansi_substring is On

SUM function [Aggregate]

Returns the total of the specified expression for each group of rows.

Syntax 1
SUM([ALL | DISTINCT] expression)

Syntax 2
SUM([ALL] expression) OVER (window-spec)

window-spec : see Syntax 2 instructions in the Remarks section below

Parameters
● [ALL] expression The name of the expression to be summed. This is commonly a column name.

● DISTINCT expression Computes the sum of the unique values of expression within each group.

Returns
● INTEGER
● DOUBLE
● NUMERIC

Remarks
Rows where the specified expression is NULL are not included.

Returns NULL for a group containing no rows.

Syntax 2 represents usage as a window function in a SELECT statement. As such, elements of window-
spec can be specified either in the function syntax (inline), or in conjunction with a WINDOW clause in
the SELECT statement. See the window-spec definition provided in “WINDOW clause” on page 907.

For more information about using window functions in SELECT statements, including working examples,
see “Window functions” [SQL Anywhere Server - SQL Usage].

For more information about specifying a window specification in an OVER clause, see “Window
definition: inlining using the OVER clause and WINDOW clause” [SQL Anywhere Server - SQL Usage].

This function can generate an overflow error, resulting in an error being returned. You can use the CAST
function on numeric-expression to avoid the overflow error. See “CAST function [Data type
conversion]” on page 153.

SQL functions

342 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “COUNT function [Aggregate]” on page 170
● “AVG function [Aggregate]” on page 144

Standards and compatibility
● SQL/2008 Core feature. When used as a window function (Syntax 2), SUM comprises part of

optional SQL/2008 language feature T611, "Basic OLAP operations".

The ability to specify DISTINCT over an expression that is not a column reference comprises part of
optional SQL language feature F561, "Full value expressions". SQL Anywhere also supports SQL/
2008 language feature F441, "Extended set function support", which permits operands of aggregate
functions to be arbitrary expressions possibly including outer references to expressions in other query
blocks that are not column references.

SQL Anywhere does not support optional SQL/2008 feature F442, "Mixed column references in set
functions". SQL Anywhere does not permit the arguments of an aggregate function to include both a
column reference from the query block containing the SUM function, combined with an outer
reference. See “Aggregate functions and outer references” [SQL Anywhere Server - SQL Usage]. For
an example, see the “AVG function [Aggregate]” [UltraLite - Database Management and Reference]

Example
The following statement returns the value 3749146.740.

SELECT SUM(Salary)
FROM Employees;

SUSER_ID function [System]

Returns the numeric user ID for the specified user name.

Syntax
SUSER_ID([user-name])

Parameters
● user-name The user name for the user ID you are searching for.

Returns
INT

Remarks
If you do not specify user-name, the ID of the current user is returned.

See also
● “SUSER_NAME function [System]” on page 344
● “USER_ID function [System]” on page 359

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 343

Standards and compatibility
● SQL/2008 Transact-SQL extension.

Example
The following statement returns the ID for the GROUPO user.

SELECT SUSER_ID('GROUPO');

SUSER_NAME function [System]

Returns the user name for the specified user ID.

Syntax
SUSER_NAME([user-id])

Parameters
● user-id The user ID of the user you are searching for.

Returns
LONG VARCHAR

Remarks
If you do not specify user-id, the user name of the current user is returned.

See also
● “SUSER_ID function [System]” on page 343
● “USER_NAME function [System]” on page 360

Standards and compatibility
● SQL/2008 Transact-SQL extension.

Example
The following statement returns the user name for a user with ID 101.

SELECT SUSER_NAME(101);

SWITCHOFFSET function [Date and time]

Returns a TIMESTAMP WITH TIME ZONE value that is converted from its original time zone offset to
the specified time zone offset.

Syntax
SWITCHOFFSET(tmz-expression, time-zone-offset)

SQL functions

344 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters
● tmz-expression The TIMESTAMP WITH TIME ZONE value to be converted.

● time-zone-offset The time zone offset of the result. The value can be an integer representing the
minutes before or after Coordinated Universal Time (UTC), a string in the form { + | - } hh:nn, or Z
for the Zulu Time Zone. The Zulu Time Zone is the same time zone as UTC.

Returns
TIMESTAMP WITH TIME ZONE

See also
● “TIMESTAMP WITH TIME ZONE data type” on page 106
● “SYSDATETIMEOFFSET function [Date and time]” on page 345

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example changes a time zone offset value from -04:00 hours to -07:00 hours. The value
returned is 2009-04-03 11:45:12.123-07:00.

SELECT CAST ('2009-04-03 14:45:12.123-04:00' AS datetimeoffset) AS EDT,
SWITCHOFFSET(EDT,'-07:00') AS PDT;

SYSDATETIMEOFFSET function [Date and time]
Returns the current date, time, and time zone offset of the database server using the system clock.

Syntax
SYSDATETIMEOFFSET ()

Returns
TIMESTAMP WITH TIME ZONE

See also
● “TIMESTAMP WITH TIME ZONE data type” on page 106
● “SWITCHOFFSET function [Date and time]” on page 344

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example returns the current date and time and the time zone offset of the database server.

SELECT SYSDATETIMEOFFSET ();

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 345

The following example converts the SYSDATETIMEOFFSET value to the time zone of the client computer.

SELECT SWITCHOFFSET (SYSDATETIMEOFFSET (),
CAST(connection_property ('TimeZoneAdjustment') AS INT));

TAN function [Numeric]
Returns the tangent of a number.

Syntax
TAN(numeric-expression)

Parameters
● numeric-expression An angle, in radians.

Returns
DOUBLE

Remarks
The ATAN and TAN functions are inverse operations.

This function converts its argument to DOUBLE, performs the computation in double-precision floating-
point arithmetic, and returns a DOUBLE as the result.

See also
● “COS function [Numeric]” on page 169
● “SIN function [Numeric]” on page 324

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value of the tan of 0.52.

SELECT TAN(0.52);

TEXTPTR function [Text and image]
Returns the 16-byte binary pointer to the first page of the specified text column.

Syntax
TEXTPTR(column-name)

SQL functions

346 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters
● column-name The name of a text column.

Returns
BINARY

Remarks
This function is included for Transact-SQL compatibility.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
Use TEXTPTR to locate the text column, copy, associated with au_id 486-29-1786 in the author's blurbs
table.

The text pointer is put into a local variable @val and supplied as a parameter to the readtext command,
which returns 5 bytes, starting at the second byte (offset of 1).

DECLARE @val VARBINARY(16)
SELECT @val = TEXTPTR(copy)
FROM blurbs
WHERE au_id = "486-29-1786"
READTEXT blurbs.copy @val 1 5;

TO_CHAR function [String]
Converts character data from any supported character set into the CHAR character set for the database.

Syntax
TO_CHAR(string-expression [, source-charset-name])

Parameters
● string-expression The string to be converted.

● source-charset-name The character set of the string.

Returns
LONG VARCHAR

Remarks
If source-charset-name is specified, then this function is equivalent to:

CAST(CSCONVERT(CAST(string-expression AS BINARY),
 'db_charset', source-charset-name)
 AS CHAR);

For more information about db_charset, see “CSCONVERT function [String]” on page 176.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 347

If source-charset-name is not specified, then this function is equivalent to:

CAST(string-expression AS CHAR);

See also
● “Recommended character sets and collations” [SQL Anywhere Server - Database Administration]
● “CONNECTION_EXTENDED_PROPERTY function [String]” on page 163
● “CSCONVERT function [String]” on page 176
● “NCHAR function [String]” on page 268
● “TO_NCHAR function [String]” on page 348
● “UNICODE function [String]” on page 357
● “UNISTR function [String]” on page 357

Standards and compatibility
● SQL/2008 Vendor extension.

Example
If you have a BINARY value containing data in the cp850 character set, the following statement converts
the data to the CHAR character set and data type:

SELECT TO_CHAR('cp850_data', 'cp850');

TO_NCHAR function [String]
Converts character data from any supported character set into the NCHAR character set.

Syntax
TO_NCHAR(string-expression [, source-charset-name])

Parameters
● string-expression The string to be converted

● source-charset-name The character set of the string.

Returns
LONG NVARCHAR

Remarks
If source-charset-name is specified then this function is equivalent to:

CAST(CSCONVERT(CAST(string-expression AS BINARY),
 'nchar_charset', source-charset-name)
 AS NCHAR);

For more information about nchar_charset, see “CSCONVERT function [String]” on page 176.

If source-charset-name is not provided then this function is equivalent to:

SQL functions

348 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

CAST(string-expression AS NCHAR);

See also
● “Recommended character sets and collations” [SQL Anywhere Server - Database Administration]
● “CONNECTION_EXTENDED_PROPERTY function [String]” on page 163
● “CSCONVERT function [String]” on page 176
● “NCHAR function [String]” on page 268
● “TO_CHAR function [String]” on page 347
● “UNICODE function [String]” on page 357
● “UNISTR function [String]” on page 357

Standards and compatibility
● SQL/2008 Vendor extension.

Example
If you have a BINARY value containing data in the cp850 character set, the following example to
converts the data to the NCHAR character set and data type:

SELECT TO_NCHAR('cp850_data', 'cp850');

TODATETIMEOFFSET function [Date and time]
Converts a TIMESTAMP value to a TIME STAMP WITH TIME ZONE value using the specified time
zone offset.

Syntax
TODATETIMEOFFSET(timestamp-expression, time-zone-offset)

Parameters
● timestamp-expression The TIMESTAMP expression to be converted.

● time-zone-offset The time zone offset. The value can be an INTEGER representing minutes
before or after UTC, a VARCHAR string in the form of { + | - }hh:nn, or the string "Z" for the Zulu
Time Zone. The Zulu Time Zone is the same time zone as UTC.

Returns
TIMESTAMP WITH TIME ZONE

See also
● “TIMESTAMP WITH TIME ZONE data type” on page 106

Standards and compatibility
● SQL/2008 Vendor extension.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 349

Example
The following example changes a time zone offset value from -4.00 hours to +11.00 hours.

SELECT TODATETIMEOFFSET ('2009-04-03 14:45:12.123-04:00','+11:00');

TODAY function [Date and time]
Returns the current date as a DATE value.

Syntax
TODAY([*])

Returns
DATE

Remarks
TODAY(*) and TODAY() are semantically equivalent. TODAY is equivalent to the CURRENT DATE
special value.

Each instance of the TODAY function in a request is evaluated at most once. Multiple instances of
TODAY in the same request may or may not share the identical DATE value.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statements return the current day according to the system clock.

SELECT TODAY(*);
SELECT CURRENT DATE;

TRACEBACK function [Miscellaneous]
Returns a string containing a traceback of the procedures and triggers that were executing when the most
recent exception (error) occurred.

Syntax
TRACEBACK([*])

Returns
LONG VARCHAR

Remarks
TRACEBACK(*) and TRACEBACK() are semantically equivalent.

SQL functions

350 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

This function is useful for debugging procedures and triggers, particularly those that are written in the
Transact-SQL dialect.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
To use the traceback function, enter the following after an error occurs while executing a procedure:

SELECT TRACEBACK(*);

TRACED_PLAN function [Miscellaneous]
This function is used by Sybase Central to generate a graphical plan for a query using tracing data.

Syntax
TRACED_PLAN(logging_session_id, query_id)

Parameters
● logging_session_id Combined with query_id, this INTEGER parameter identifies a row from the

sa_diagnostic_query table for which to generate the plan.

● query_id Combined with logging_session_id, this INTEGER parameter identifies a row from the
sa_diagnostic_query table for which to generate the plan.

Returns
LONG VARCHAR

Remarks
This function is for use by Sybase Central.

See also
● “sa_diagnostic_query table” on page 930

Standards and compatibility
● SQL/2008 Vendor extension.

TRANSACTSQL function [Miscellaneous]
Takes a Watcom SQL statement and rewrites it in the Transact-SQL dialect.

Syntax
TRANSACTSQL(sql-statement-string)

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 351

Parameters
● sql-statement-string The SQL statement that is to be rewritten in Transact-SQL.

Returns
LONG VARCHAR

See also
● “SQLDIALECT function [Miscellaneous]” on page 330
● “WATCOMSQL function [Miscellaneous]” on page 366

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the string 'SELECT EmployeeName=empl_name FROM
Employees'.

SELECT TRANSACTSQL('SELECT empl_name as EmployeeName FROM Employees') FROM
dummy;

TREAT function [Data type conversion]
The TREAT function allows you to change the declared type of a geometry expression to a subtype. This
function is for use with spatial data.

Syntax
TREAT (geometry-expression AS subtype)

Parameters
● geometry-expression The expression to be converted.

● subtype The target subtype to convert geometry-expression into.

Returns
Depends on the data type requested.

Remarks
The TREAT function can only be used on geometries.

If the dynamic type of the expression is not a subtype of the target data type, an error is returned. The
CAST function can also be used to change the declared type of a geometry expression. However, the
CAST function allows changes outside of the subtype hierarchy. For example, CAST can be used to
convert a point to a multipoint. These types of conversions may change the dynamic type of an expression
in unexpected ways, so TREAT is preferable when moving from a supertype to a subtype. The TREAT
function also executes more efficiently than the CAST function.

SQL functions

352 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “Using the TREAT expression for subtypes” [SQL Anywhere Server - Spatial Data Support]
● “CAST function [Data type conversion]” on page 153

Standards and compatibility
● SQL/2008 Vendor extension.

Examples
Execute the following in Interactive SQL to create a table and load two values into it:

DROP TABLE IF EXISTS treatExample;
CREATE TABLE treatExample(pk INT PRIMARY KEY, geo ST_Geometry);
INSERT INTO treatExample VALUES(0, NEW ST_Point(3,4));
INSERT INTO treatExample VALUES(1, NEW ST_MultiPoint(new ST_Point(5,
6)));

The following query returns the error "Type 'ST_Geometry' has no method named 'ST_X' (near
'T.geo.ST_X()')".

SELECT TREAT(geo AS ST_Point).ST_X() FROM treatExample WHERE pk = 0;

The following query succeeds:

SELECT TREAT(geo AS ST_Point) FROM treatExample WHERE pk = 0;

The following query returns the error "Cannot treat value ''SRID=0;MultiPoint ((5 6))'' as type
ST_Point. The dynamic type is ST_MultiPoint".

SELECT TREAT(geo AS ST_Point) FROM treatExample WHERE pk = 1;

The following query succeeds:

SELECT CAST(geo AS ST_Point) FROM treatExample WHERE pk = 1;

TRIM function [String]
Removes leading and trailing blanks from a string.

Syntax
TRIM(string-expression)

Parameters
● string-expression The string to be trimmed.

Returns
● VARCHAR
● NVARCHAR
● LONG VARCHAR
● LONG NVARCHAR

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 353

Remarks
This function supports NCHAR inputs and/or outputs.

See also
● “LTRIM function [String]” on page 256
● “RTRIM function [String]” on page 317
● “String functions” on page 136

Standards and compatibility
● SQL/2008 The TRIM function is a SQL/2008 core feature.

SQL Anywhere does not support the additional parameters trim specification and trim character, as
defined in SQL/2008. The SQL Anywhere implementation of TRIM corresponds to a TRIM
specification of BOTH.

For the other TRIM specifications defined by the SQL/2008 standard (LEADING and TRAILING),
SQL Anywhere supplies the LTRIM and RTRIM functions respectively.

Example
The following statement returns the value chocolate with no leading or trailing blanks.

SELECT TRIM(' chocolate ');

TRUNCNUM function [Numeric]
Truncates a number at a specified number of places after the decimal point.

Syntax
{ TRUNCNUM | TRUNCATE }(numeric-expression, integer-expression)

Parameters
● numeric-expression The number to be truncated. This argument may be of type NUMERIC or

DOUBLE.

● integer-expression A positive integer specifies the number of significant digits to the right of the
decimal point at which to round. A negative value specifies the number of significant digits to the left
of the decimal point at which to round.

Returns
NUMERIC or DOUBLE

Remarks
You should use the TRUNCNUM function, not the TRUNCATE function, when truncating numbers.

SQL functions

354 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Use of the TRUNCATE function is not recommended because the word truncate is a keyword, and
therefore requires you to either set the quoted_identifier option to OFF, or put quotes around the word
TRUNCATE.

See also
● “ROUND function [Numeric]” on page 314
● “quoted_identifier option” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 600.

SELECT TRUNCNUM(655, -2);

The following statement: returns the value 655.340.

SELECT TRUNCNUM(655.348, 2);

TSEQUAL function [System] (deprecated)
Compares two TIMESTAMP values and returns whether they are the same.

Syntax
TSEQUAL (timestamp-expression-1, timestamp-expression-2)

Parameters
● timestamp-expression-1 A TIMESTAMP value.

● timestamp-expression-2 A TIMESTAMP value.

Returns
BIT

Remarks
The TSEQUAL function can only be used in a WHERE clause and is most commonly used as part of an
UPDATE statement.

Although the TSEQUAL function can be used to compare two ordinary TIMESTAMP values, the
purpose of TSEQUAL is to determine whether or not a row has been modified by another connection by
comparing two special Transact-SQL TIMESTAMP values.

In a single-row UPDATE statement using TSEQUAL, if timestamp-expression-1 is equal to timestamp-
expression-2 and one of these values refers to a column declared with DEFAULT TIMESTAMP and the
other refers to the value of the column when the row was last fetched, then the row has not changed since

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 355

it was fetched and TSEQUAL returns TRUE. If the row was changed by another user, its timestamp has
been modified and the TSEQUAL function returns FALSE. If the TSEQUAL function returns FALSE in
this situation, the UPDATE is not performed. The application can determine that no rows were updated by
examining the number of rows affected, for example by using @@rowcount. If no rows were affected, the
application can assume that the row was modified by another user and that it needs to be re-fetched.

See also
● “The data type of a timestamp column” [SQL Anywhere Server - SQL Usage]
● “TIMESTAMP special value” on page 65
● “The special Transact-SQL timestamp column and data type” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
Suppose you create a TIMESTAMP column Products.LastUpdated to store the timestamp for the last time
the row was updated. The following example uses the TSEQUAL function to change a row value. An
update is applied to the row only when the row has not been changed since it was last fetched.

SELECT LastUpdated into old_ts_value
FROM Products
WHERE ID = '300';
UPDATE Products
SET Color = 'Yellow'
WHERE ID = '300'
AND TSEQUAL(LastUpdated, old_ts_value);

UCASE function [String]
Converts all characters in a string to uppercase.

Syntax
UCASE(string-expression)

Parameters
● string-expression The string to be converted to uppercase.

Returns
CHAR, VARCHAR, LONG VARCHAR, NCHAR, NVARCHAR, or LONG NVARCHAR
corresponding on the type of the argument.

Remarks
This function is identical to the UPPER function.

SQL functions

356 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “UPPER function [String]” on page 359
● “LCASE function [String]” on page 247
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension. The UPPER function is SQL/2008 compliant.

Example
The following statement returns the value CHOCOLATE.

SELECT UCASE('ChocoLate');

UNICODE function [String]

Returns an integer containing the Unicode code point of the first character in the string, or NULL if the
first character is not a valid encoding.

Syntax
UNICODE(nchar-string-expression)

Parameters
● nchar-string-expression The NCHAR string whose first character is to be converted to an integer.

Returns
INT

See also
● “CONNECTION_EXTENDED_PROPERTY function [String]” on page 163
● “NCHAR function [String]” on page 268
● “TO_CHAR function [String]” on page 347
● “TO_NCHAR function [String]” on page 348
● “UNISTR function [String]” on page 357

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example returns the integer 65536:

SELECT UNICODE(UNISTR('\u010000data'));

UNISTR function [String]

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 357

Converts a string containing characters and Unicode escape sequences to an NCHAR string.

Syntax
UNISTR(string-expression)

Parameters
● string-expression The string to be converted.

Returns
● NVARCHAR
● LONG NVARCHAR

Remarks
The UNISTR function allows the use of Unicode characters that cannot be represented in the CHAR
character set used by the SQL statement. For example, in an English environment, the UNISTR function
could be used to include Chinese characters.

The UNISTR function offers similar functionality to the N'' constant, however the UNISTR function
allows Unicode characters and characters from the CHAR character set, whereas the N'' constant only
allows characters from the CHAR character set.

The string-expression contains characters and Unicode escape sequences. The Unicode escape sequences
are of the form \uXXXX or \uXXXXXX, where each X is a hexadecimal digit. The UNISTR function
converts each character and each Unicode escape sequence to the corresponding Unicode character.

If a 6-digit Unicode escape sequence is used, its value must not exceed 10FFFF, the largest Unicode code
point. A sequence such as \u234567 is not a 6-digit Unicode escape sequence. It is the 4-digit sequence
\u2345 followed by the characters 6 and 7.

If two adjacent Unicode escape sequences form a UTF-16 surrogate pair, they are combined into one
Unicode character in the output.

See also
● “CONNECTION_EXTENDED_PROPERTY function [String]” on page 163
● “NCHAR function [String]” on page 268
● “TO_CHAR function [String]” on page 347
● “TO_NCHAR function [String]” on page 348
● “UNICODE function [String]” on page 357
● “Strings” on page 5

Standards and compatibility
● SQL/2008 Vendor extension.

Examples
The following example returns the string Hello.

SELECT UNISTR('Hel\u006c\u006F');

SQL functions

358 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The following example combines the UTF-16 surrogate pair D800-DF02 into the Unicode code point 10302.

SELECT UNISTR('\uD800\uDF02');

The example is equivalent to the previous one.

SELECT UNISTR('\u010302');

UPPER function [String]
Converts all characters in a string to uppercase.

Syntax
UPPER(string-expression)

Parameters
● string-expression The string to be converted to uppercase.

Returns
CHAR, VARCHAR, LONG VARCHAR, NCHAR, NVARCHAR, or LONG NVARCHAR
corresponding to the data type of the argument.

Remarks
This function is identical to the UCASE function.

See also
● “UCASE function [String]” on page 356
● “LCASE function [String]” on page 247
● “LOWER function [String]” on page 256
● “String functions” on page 136

Standards and compatibility
● SQL/2008 The UPPER function is a core feature of the SQL/2008 standard.

Example
The following statement returns the value CHOCOLATE.

SELECT UPPER('ChocoLate');

USER_ID function [System]
Returns the numeric user ID for the specified user name.

Syntax
USER_ID([user-name])

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 359

Parameters
● user-name The user name for the user ID you are searching for.

Returns
INTEGER

Remarks
If you do not specify user-name, the ID of the current user is returned.

See also
● “USER_NAME function [System]” on page 360
● “SUSER_ID function [System]” on page 343

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the GROUPO user ID.

SELECT USER_ID('GROUPO');

USER_NAME function [System]
Returns the user name for the specified user ID.

Syntax
USER_NAME([user-id])

Parameters
● user-id The user ID of the user you are searching for.

Returns
LONG VARCHAR

Remarks
If you do not specify user-id, the user name of the current user is returned.

See also
● “USER_ID function [System]” on page 359
● “SUSER_NAME function [System]” on page 344

Standards and compatibility
● SQL/2008 Vendor extension.

SQL functions

360 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example
The following statement returns the user name for user ID 101.

SELECT USER_NAME(101);

UUIDTOSTR function [String]
Converts a unique identifier value (UUID, also known as GUID) to a string value.

Not needed in newer databases
In databases created before version 9.0.2, the UNIQUEIDENTIFIER data type was defined as a user-
defined data type and the STRTOUUID and UUIDTOSTR functions were needed to convert between
binary and string representations of UUID values.

In databases created using version 9.0.2 or later, the UNIQUEIDENTIFIER data type was changed to a
native data type and SQL Anywhere carries out conversions as needed. You do not need to use
STRTOUUID and UUIDTOSTR functions with these versions.

For more information, see “UNIQUEIDENTIFIER data type” on page 109.

Syntax
UUIDTOSTR(uuid-expression)

Parameters
● uuid-expression A unique identifier value.

Returns
VARCHAR

Remarks
Converts a unique identifier to a string value in the format xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx, where
x is a hexadecimal digit. If the binary value is not a valid uniqueidentifier, NULL is returned.

This function is useful if you want to view a UUID value.

See also
● “NEWID function [Miscellaneous]” on page 268
● “STRTOUUID function [String]” on page 338
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 361

Example
The following statement creates a table mytab with two columns. Column pk has a unique identifier data
type, and column c1 has an integer data type. It then inserts two rows with the values 1 and 2 respectively
into column c1.

CREATE TABLE mytab(
 pk UNIQUEIDENTIFIER PRIMARY KEY DEFAULT NEWID(),
 c1 INT);
INSERT INTO mytab(c1) values (1);
INSERT INTO mytab(c1) values (2);

Executing the following SELECT statement returns all the data in the newly created table.

SELECT * FROM mytab;

You will see a two-column, two-row table. The value displayed for column pk will be binary values.

To convert the unique identifier values into a readable format, execute the following command:

SELECT UUIDTOSTR(pk), c1 FROM mytab;

The UUIDTOSTR function is not needed for databases created with version 9.0.2 or later.

VAR_POP function [Aggregate]
Computes the statistical variance of a population consisting of a numeric-expression, as a DOUBLE.

Syntax 1
VAR_POP(numeric-expression)

Syntax 2
VAR_POP(numeric-expression) OVER (window-spec)

window-spec : see Syntax 2 instructions in the Remarks section below

Parameters
● numeric-expression The expression whose population-based variance is calculated over a set of

rows. The expression is commonly a column name.

Returns
DOUBLE

Remarks
This function converts its argument to DOUBLE, performs the computation in double-precision floating-
point arithmetic, and returns a DOUBLE as the result.

The population-based variance (s2) of numeric-expression (x) is computed according to the following
formula:

SQL functions

362 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

s2 = (1/N) * SUM(xI - mean(x))2

This variance does not include rows where numeric-expression is NULL. It returns NULL for a group
containing no rows.

Syntax 2 represents usage as a window function in a SELECT statement. As such, elements of window-
spec can be specified either in the function syntax (inline), or in conjunction with a WINDOW clause in
the SELECT statement. See the window-spec definition provided in “WINDOW clause” on page 907.

For more information about using window functions in SELECT statements, including working examples,
see “Window functions” [SQL Anywhere Server - SQL Usage].

For more information about specifying a window specification in an OVER clause, see “Window
definition: inlining using the OVER clause and WINDOW clause” [SQL Anywhere Server - SQL Usage].

See also
● “Aggregate functions” on page 127

Standards and compatibility
● SQL/2008 The VAR_POP function comprises part of optional SQL /2008 language feature T621,

"Enhanced numeric functions". When used as window function, VAR_POP comprises part of optional
SQL foundation feature T611, "Elementary OLAP operations".

The ability to specify DISTINCT over an expression that is not a column reference comprises part of
optional SQL language feature F561, "Full value expressions". SQL Anywhere also supports SQL/
2008 language feature F441, "Extended set function support", which permits operands of aggregate
functions to be arbitrary expressions possibly including outer references to expressions in other query
blocks that are not column references.

SQL Anywhere does not support optional SQL/2008 feature F442, "Mixed column references in set
functions". SQL Anywhere does not permit the arguments of an aggregate function to include both a
column reference from the query block containing the VAR_POP function, combined with an outer
reference. For an example, see the “AVG function [Aggregate]” [UltraLite - Database Management
and Reference]

Example
The following statement lists the average and variance in the number of items per order in different time
periods:

SELECT YEAR(ShipDate) AS Year,
 QUARTER(ShipDate) AS Quarter,
 AVG(Quantity) AS Average,
 VAR_POP(quantity) AS Variance
FROM SalesOrderItems
GROUP BY Year, Quarter
ORDER BY Year, Quarter;

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 363

Year Quarter Average Variance

2000 1 25.775148 203.9021...

2000 2 27.050847 225.8109...

...

VAR_SAMP function [Aggregate]

Computes the statistical variance of a sample consisting of a numeric-expression, as a DOUBLE.

Syntax 1
VAR_SAMP(numeric-expression)

Syntax 2
VAR_SAMP(numeric-expression) OVER (window-spec)

window-spec : see Syntax 2 instructions in the Remarks section below

Parameters
● numeric-expression The expression whose sample-based variance is calculated over a set of

rows. The expression is commonly a column name.

Returns
DOUBLE

Remarks
This function converts its argument to DOUBLE, performs the computation in double-precision floating-
point arithmetic, and returns a DOUBLE as the result.

The variance (s2) of numeric-expression (x) is computed according to the following formula, which
assumes a normal distribution:

s2 = (1/(N - 1)) * SUM(xI - mean(x))2

This variance does not include rows where numeric-expression is NULL. It returns NULL for a group
containing either 0 or 1 rows.

Syntax 2 represents usage as a window function in a SELECT statement. As such, elements of window-
spec can be specified either in the function syntax (inline), or in conjunction with a WINDOW clause in
the SELECT statement. See the window-spec definition provided in “WINDOW clause” on page 907.

For more information about using window functions in SELECT statements, including working examples,
see “Window functions” [SQL Anywhere Server - SQL Usage].

SQL functions

364 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

For more information about specifying a window specification in an OVER clause, see “Window
definition: inlining using the OVER clause and WINDOW clause” [SQL Anywhere Server - SQL Usage].

See also
● “Aggregate functions” on page 127
● “VARIANCE function [Aggregate]” on page 366

Standards and compatibility
● SQL/2008 The VAR_SAMP function comprises part of optional SQL /2008 language feature

T621, "Enhanced numeric functions". When used as window function, VAR_SAMP comprises part of
optional SQL foundation feature T611, "Elementary OLAP operations". The VARIANCE syntax is a
vendor extension.

The ability to specify DISTINCT over an expression that is not a column reference comprises part of
optional SQL language feature F561, "Full value expressions". SQL Anywhere also supports SQL/
2008 language feature F441, "Extended set function support", which permits operands of aggregate
functions to be arbitrary expressions possibly including outer references to expressions in other query
blocks that are not column references.

SQL Anywhere does not support optional SQL/2008 feature F442, "Mixed column references in set
functions". SQL Anywhere does not permit the arguments of an aggregate function to include both a
column reference from the query block containing the VAR_SAMP function, combined with an outer
reference. For an example, see the “AVG function [Aggregate]” [UltraLite - Database Management
and Reference]

Example
The following statement lists the average and variance in the number of items per order in different time
periods:

SELECT YEAR(ShipDate) AS Year,
 QUARTER(ShipDate) AS Quarter,
 AVG(Quantity) AS Average,
 VAR_SAMP(quantity) AS Variance
FROM SalesOrderItems
GROUP BY Year, Quarter
ORDER BY Year, Quarter;

Year Quarter Average Variance

2000 1 25.775148 205.1158...

2000 2 27.050847 227.0939...

...

VAREXISTS function [Miscellaneous]

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 365

Returns 1 if a user-defined variable has been created or declared with a given name. Returns 0 if no such
variable has been created.

Syntax
VAREXISTS(variable-name-string)

Parameters
● variable-name-string The variable name to be tested, as a string.

Returns
INT

See also
● “CREATE VARIABLE statement” on page 622
● “DECLARE statement” on page 635
● “IF statement” on page 727

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following IF statement creates a variable with a name start_time if one is not already created or
declared. The variable can then be used safely.

IF VAREXISTS('start_time') = 0 THEN
 CREATE VARIABLE start_time TIMESTAMP;
END IF;
SET start_time = current timestamp;

VARIANCE function [Aggregate]
An alias for VAR_SAMP. See “VAR_SAMP function [Aggregate]” on page 364.

WATCOMSQL function [Miscellaneous]
Takes a Transact-SQL statement and rewrites it in the Watcom SQL dialect. This can be useful when
converting existing Adaptive Server Enterprise stored procedures into Watcom SQL syntax.

Syntax
WATCOMSQL(sql-statement-string)

Parameters
● sql-statement-string The SQL statement that the function rewrites into the Watcom SQL dialect.

SQL functions

366 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns
LONG VARCHAR

See also
● “SQLDIALECT function [Miscellaneous]” on page 330
● “TRANSACTSQL function [Miscellaneous]” on page 351

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the string 'SELECT Surname as last_name FROM
Employees'.

SELECT WATCOMSQL('SELECT last_name = Surname FROM Employees') FROM dummy;

WEEKS function [Date and time]
The WEEKS function manipulates a TIMESTAMP, or returns the number of weeks between two
TIMESTAMP values. See the Remarks section below.

Syntax 1
WEEKS(timestamp-expression)

Syntax 2
WEEKS(timestamp-expression, timestamp-expression)

Syntax 3
WEEKS(timestamp-expression, integer-expression)

Parameters
● timestamp-expression A date and time value of type TIMESTAMP.

● integer-expression The number of weeks to be added to timestamp-expression. If integer-
expression is negative, the appropriate number of weeks is subtracted from timestamp-expression. If
you supply an integer-expression, timestamp-expression must be explicitly cast as a DATE or
TIMESTAMP.

Returns
INTEGER with Syntax 1 or Syntax 2.

TIMESTAMP with Syntax 3.

Remarks
Given a single date (Syntax 1), the WEEKS function returns the number of weeks since 0000-02-29.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 367

Given two dates (Syntax 2), the WEEKS function returns the number of weeks between them. The
WEEKS function is similar to the DATEDIFF function, however the method used to calculate the number
of weeks between two dates is not the same and can return a different result. The return value for WEEKS
is determined by dividing the number of days between the two dates by seven, and then rounding down.
However, DATEDIFF uses number of week boundaries in its computation. This can cause the values
returned from the two functions to be different. For example, if the first date is a Friday and the second
date is the following Monday, the WEEKS function returns a difference of 0, but the DATEDIFF function
returns a difference of 1. While neither method is better than the other, you should consider the difference
when choosing between WEEKS and DATEDIFF.

For more information about the DATEDIFF function, see “DATEDIFF function [Date and
time]” on page 182.

Given a date and an integer (Syntax 3), the WEEKS function adds the integer number of weeks to timestamp-
expression. With Syntax 3, you must explicitly cast timestamp-expression as a TIME, DATE, or
TIMESTAMP data type. If timestamp-expression is a TIME value, the current date is assumed. Instead of
Syntax 3, use the DATEADD function.

For more information about the DATEADD function, see “DATEADD function [Date and
time]” on page 181.

See also
For information about casting data types, see “CAST function [Data type conversion]” on page 153.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 8, signifying that 2008-09-13 10:07:12 is eight weeks after
2008-07-13 06:07:12.

SELECT WEEKS('2008-07-13 06:07:12', '2008-09-13 10:07:12');

The following statement returns the value 104792, signifying that the date is 104792 weeks after 0000-02-29.

SELECT WEEKS('2008-07-13 06:07:12');

The following statement returns the TIMESTAMP value 2008-06-16 21:05:07.0, indicating the date and
time five weeks after 2008-05-12 21:05:07.

SELECT WEEKS(CAST('2008-05-12 21:05:07' AS TIMESTAMP), 5);

WRITE_CLIENT_FILE function [String]
Creates and writes to a file on the client computer.

Syntax
WRITE_CLIENT_FILE(filename, blob-expression [, 'A'])

SQL functions

368 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters
● filename The name of the file on the client computer. The name is resolved on the client computer

relative to the current working directory of the client application.

● blob-expression A binary string to be written to filename on the client computer.

● A By default, if the file already exists, it is overwritten. If you want the data to be appended to
existing data, specify 'A'. If the file does not already exist, and you specify 'A', the file is still created.

Returns
INT

Remarks
The database server converts filename from the database character set to the client character set. On the
client computer, filename is then converted to the operating system character set.

Since the data is a binary string, if you want the data to be in a particular character set, or compressed, or
encrypted, you must perform these operations on the data before sending it to the WRITE_CLIENT_FILE
function.

Reading of the file is performed by the client software library and the transfer of data is done using the
command sequence communication protocol.

Permissions
When writing to a file on a client computer:

● WRITECLIENTFILE authority is required. See “WRITECLIENTFILE authority” [SQL Anywhere
Server - Database Administration].

● The client application must have write permissions on the computer being written to.

● The allow_write_client_file database option must be enabled. See “allow_write_client_file option”
[SQL Anywhere Server - Database Administration].

● The write_client_file secured feature must be enabled. See “-sf dbeng12/dbsrv12 server option” [SQL
Anywhere Server - Database Administration].

See also
● “Accessing data on client computers” [SQL Anywhere Server - SQL Usage]
● “WRITECLIENTFILE authority” [SQL Anywhere Server - Database Administration]
● “UNLOAD statement” on page 885
● “CSCONVERT function [String]” on page 176
● “DECOMPRESS function [String]” on page 195
● “DECRYPT function [String]” on page 196

Standards and compatibility
● SQL/2008 Vendor extension.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 369

XMLAGG function [Aggregate]

Generates a forest of XML elements from a collection of XML values.

Syntax
XMLAGG(expression [ORDER BY order-by-expression])

Parameters
● expression An XML value. The content is escaped unless the data type is XML. The order-by-

expression orders the elements returned by the function.

● order-by-expression An expression used to order the XML elements according to the value of
this expression.

When an ORDER BY clause contains constants, they are interpreted by the optimizer and then
replaced by an equivalent ORDER BY clause. For example, the optimizer interprets ORDER BY 'a' as
ORDER BY expression.

A query block containing more than one aggregate function with valid ORDER BY clauses can be
executed if the ORDER BY clauses can be logically combined into a single ORDER BY clause. For
example, the following clauses:

ORDER BY expression1, 'a', expression2

ORDER BY expression1, 'b', expression2, 'c', expression3

are subsumed by the clause:

ORDER BY expression1, expression2, expression3

Returns
XML

Remarks
Any values that are NULL are omitted from the result. If all inputs are NULL, or there are no rows, the
result is NULL. If you require a well-formed XML document, you must ensure that your query is written
so that the generated XML has a single root element.

Data in BINARY, LONG BINARY, IMAGE, and VARBINARY columns is automatically returned in
base64-encoded format when you execute a query that contains XMLAGG.

For an example of a query that uses the XMLAGG function with an ORDER BY clause, see “Using the
XMLAGG function” [SQL Anywhere Server - SQL Usage].

See also
● “Using the XMLAGG function” [SQL Anywhere Server - SQL Usage]

SQL functions

370 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Standards and compatibility
● SQL/2008 XMLAGG is part of optional SQL/2008 language feature X034. The optional ORDER

BY clause for the XMLAGG function comprises optional SQL/2008 language feature X035.

Example
The following statement generates an XML document that shows the orders placed by each customer.

SELECT XMLELEMENT(NAME "order",
 XMLATTRIBUTES(ID AS order_id),
 (SELECT XMLAGG(
 XMLELEMENT(
 NAME "Products",
 XMLATTRIBUTES(ProductID, Quantity AS
"quantity_shipped")))
 FROM SalesOrderItems soi
 WHERE soi.ID = so.ID
)
) AS products_ordered
FROM SalesOrders so
ORDER BY so.ID;

XMLCONCAT function [String]
Produces a forest of XML elements.

Syntax
XMLCONCAT(xml-value [, ...])

Parameters
● xml-value The XML values to be concatenated.

Returns
XML

Remarks
Generates a forest of XML elements. In an unparsed XML document, a forest refers to the multiple root
nodes within the document. NULL values are omitted from the result. If all the values are NULL, then
NULL is returned. The XMLCONCAT function does not check whether the argument has a prolog. If you
require a well-formed XML document, you must ensure that your query is written so that a single root
element is generated.

Element content is always escaped unless the data type is XML. Data in BINARY, LONG BINARY,
IMAGE, and VARBINARY columns is automatically returned in base64-encoded format when you
execute a query that contains a XMLCONCAT function.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 371

See also
● “Using the XMLCONCAT function” [SQL Anywhere Server - SQL Usage]
● “XMLELEMENT function [String]” on page 372
● “XMLFOREST function [String]” on page 374
● “String functions” on page 136

Standards and Compatibility
● SQL/2008 XMLCONCAT comprises part of the optional SQL/2008 language feature X020.

Example
The following query generates <CustomerID>, <cust_fname>, and <cust_lname> elements for each
customer.

SELECT XMLCONCAT(XMLELEMENT (NAME CustomerID, ID),
 XMLELEMENT(NAME cust_fname, GivenName),
 XMLELEMENT(NAME cust_lname, Surname)
) AS "Customer Information"
FROM Customers
WHERE ID < 120;

XMLELEMENT function [String]

Produces an XML element within a query.

Syntax
XMLELEMENT({ NAME element-name-expression | string-expression }
 [, XMLATTRIBUTES (attribute-value-expression [AS attribute-name],...)]
 [, element-content-expression,...]
)

Parameters
● element-name-expression An identifier. For each row, an XML element with the same name as

the identifier is generated.

● attribute-value-expression An attribute of the element. This optional argument allows you to
specify an attribute value for the generated element. This argument specifies the attribute name and
content. If the attribute-value-expression is a column name, then the attribute name defaults to the
column name. You can change the attribute name by specifying the attribute-name argument.

● element-content-expression The content of the element. This can be any string expression. You
can specify an unlimited number of element-content-expression arguments and they are concatenated
together. For example, the following SELECT statement returns the value <x>abcdef</x>:

SELECT XMLELEMENT(NAME x, 'abc', 'def');

Returns
XML

SQL functions

372 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
NULL element values and NULL attribute values are omitted from the result. The letter case for both
element and attribute names is taken from the query.

Element content is always escaped unless the data type is XML. Invalid element and attribute names are
also quoted. For example, consider the following statement:

SELECT XMLELEMENT('H1', f_get_page_heading());

If the function f_get_page_heading is defined as RETURNS LONG VARCHAR or RETURNS
VARCHAR(1000), then the result is HTML encoded:

CREATE FUNCTION f_get_page_heading() RETURNS LONG VARCHAR
 BEGIN
 RETURN ('My Heading');
 END;

The above SELECT statement returns the following:

<H1>My Heading</H1>

If the function is declared as RETURNS XML, then the above SELECT statement returns the following:

<H1>My Heading</H1>

For more information about quoting and the XMLELEMENT function, see “Invalid names and SQL/
XML” [SQL Anywhere Server - SQL Usage].

XMLELEMENT functions can be nested to create a hierarchy. If you want to return different elements at
the same level of the document hierarchy, use the XMLFOREST function.

For more information, see “XMLFOREST function [String]” on page 374.

Data in BINARY, LONG BINARY, IMAGE, and VARBINARY columns is automatically returned in
base64-encoded format when you execute a query that contains the XMLELEMENT function.

See also
● “Using the XMLELEMENT function” [SQL Anywhere Server - SQL Usage]
● “XMLCONCAT function [String]” on page 371
● “XMLFOREST function [String]” on page 374
● “String functions” on page 136

Standards and compatibility
● SQL/2008 XMLELEMENT constitutes part of optional SQL/2008 language feature X031.

Omitting the NAME keyword and using a string expression as the first argument is a vendor
extension. SQL Anywhere does not support the optional OPTION clause with the XMLELEMENT
function.

Example
The following example produces an <item_name> element for each product in the result set, where the
product name is the content of the element.

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 373

SELECT ID, XMLELEMENT(NAME item_name, p.Name)
FROM Products p
WHERE ID > 400;

The following example returns <A HREF="http://www.ianywhere.com/"
TARGET="_top">iAnywhere web site:

SELECT XMLELEMENT(
 'A',
 XMLATTRIBUTES('http://www.ianywhere.com/'
 AS "HREF", '_top' AS "TARGET"),
 'iAnywhere web site'
);

The following example returns <table><tbody><tr align="center"
valign="top"><td>Cell 1 info</td><td>Cell 2 info</td></tr></tbody></
table>:

SELECT XMLELEMENT(name "table",
 XMLELEMENT(name "tbody",
 XMLELEMENT(name "tr",
 XMLATTRIBUTES('center' AS "align", 'top' AS "valign"),
 XMLELEMENT(name "td", 'Cell 1 info'),
 XMLELEMENT(name "td", 'Cell 2 info')
)
)
);

The following example returns'<x>abcdef</x>','<custom_element>abcdef</
custom_element>':

CREATE VARIABLE @my_element_name VARCHAR(200);
SET @my_element_name = 'custom_element';
SELECT XMLELEMENT(NAME x, 'abc', 'def'),
 XMLELEMENT(@my_element_name,'abc', 'def');

XMLFOREST function [String]
Generates a forest of XML elements.

Syntax
XMLFOREST(element-content-expression [AS element-name],...)

Parameters
● element-content-expression A string. An element is generated for each element-content-

expression argument that is specified. The element-content-expression value becomes the content of
the element. For example, if you specify the EmployeeID column from the Employees table for this
argument, then an <EmployeeID> element containing an EmployeeID value is generated for each
value in the table.

Specify the element-name argument if you want to assign a name other than the element-content-
expression to the element, otherwise the element name defaults to the element-content-expression name.

SQL functions

374 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns
XML

Remarks
Produces a forest of XML elements. In the unparsed XML document, a forest refers to the multiple root
nodes within the document. When all the arguments to the XMLFOREST function are NULL, a NULL
value is returned. If only some values are NULL, the NULL values are omitted from the result. Element
content is always quoted unless the data type is XML. You cannot specify attributes using the
XMLFOREST function. Use the XMLELEMENT function if you want to specify attributes for generated
elements.

For more information about the XMLELEMENT function, see “XMLELEMENT function
[String]” on page 372.

Element names are escaped unless the data type is XML.

If you require a well-formed XML document, you must ensure that your query is written so that a single
root element is generated.

Data in BINARY, LONG BINARY, IMAGE, and VARBINARY columns is automatically returned in
base64-encoded format when you execute a query that contains XMLFOREST.

See also
● “Using the XMLFOREST function” [SQL Anywhere Server - SQL Usage]
● “XMLELEMENT function [String]” on page 372
● “XMLCONCAT function [String]” on page 371
● “String functions” on page 136

Standards and compatibility
● SQL/2008 XMLFOREST constitutes part of optional SQL/2008 language feature X032. SQL

Anywhere does not support the optional XMLNAMESPACES clause, or the OPTION clause, with the
XMLFOREST function.

Example
The following statement produces an XML element for the first and last name of each employee.

SELECT EmployeeID,
 XMLFOREST(GivenName, Surname)
 AS "Employee Name"
FROM Employees;

XMLGEN function [String]
Generates an XML value based on an XQuery constructor.

Syntax
XMLGEN(xquery-constructor, content-expression [AS variable-name],...)

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 375

Parameters
● xquery-constructor An XQuery constructor. The XQuery constructor is an item defined in the

XQuery language. It gives a syntax for constructing XML elements based on XQuery expressions.
The xquery-constructor argument must be a well-formed XML document with one or more variable
references. A variable reference is enclosed in curly braces and must be prefixed with a $ and have no
surrounding white space. For example:

SELECT XMLGEN('<a>{$x}', 1 AS x);

● content-expression A variable. You can specify multiple content-expression arguments. The
optional variable-name argument is used to name the variable. For example,

SELECT XMLGEN('<emp EmployeeID="{$EmployeeID}"><StartDate>{$x}</
StartDate></emp>',
 EmployeeID, StartDate
 AS x)
FROM Employees;

Returns
XML

Remarks
Computed constructors as defined in the XQuery specification are not supported by the XMLGEN function.

When you execute a query that contains an XMLGEN function, data in BINARY, LONG BINARY,
IMAGE, and VARBINARY columns is automatically returned in base64-encoded format.

Element content is always escaped unless the data type is XML. Illegal XML element and attribute names
are also escaped.

For information about escaping and the XMLGEN function, see “Invalid names and SQL/XML” [SQL
Anywhere Server - SQL Usage].

See also
● “Using the XMLGEN function” [SQL Anywhere Server - SQL Usage]
● “String functions” on page 136

Standards and compatibility
● SQL/2008 Vendor extension. XMLGEN provides similar functionality to the SQL/2008

XMLDOCUMENT function.

Example
The following example generates <emp>, <Surname>, <GivenName>, and <StartDate> elements for each
employee.

SELECT XMLGEN('<emp EmployeeID="{$EmployeeID}">
 <Surname>="{$Surname}"</Surname>
 <GivenName>="{$GivenName}"</GivenName>
 <StartDate>="{$StartDate}"</StartDate>
 </emp>',
 EmployeeID,

SQL functions

376 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 Surname,
 GivenName,
 StartDate
) AS employee_list
FROM Employees;

YEAR function [Date and time]
Returns the year component of the TIMESTAMP argument.

Syntax
YEAR(timestamp-expression)

Parameters
● timestamp-expression A TIMESTAMP value.

Returns
SMALLINT

Remarks
The value returned is the years component of the given TIMESTAMP value, returned as a SMALLINT.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example returns the value 2001.

SELECT YEAR('2001-09-12');

YEARS function [Date and time]
The YEARS function manipulates a TIMESTAMP, or returns the number of years between two
TIMESTAMP values. See the Remarks section below.

Syntax 1
YEARS(timestamp-expression)

Syntax 2
YEARS(timestamp-expression, timestamp-expression)

Syntax 2
YEARS(timestamp-expression, integer-expression)

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 377

Parameters
● timestamp-expression A date and time value of type TIMESTAMP.

● integer-expression The number of years (as a SMALLINT value) to be added to timestamp-
expression. If integer-expression is negative, the appropriate number of years is subtracted from
timestamp-expression.. If you supply an integer-expression, the timestamp-expression must be
explicitly cast as a DATE, TIME, or TIMESTAMP value. If timestamp-expression is a TIME, the
current year is assumed.

For information about casting data types, see “CAST function [Data type conversion]” on page 153.

Returns
SMALLINT with Syntax 1 or Syntax 2.

TIMESTAMP with Syntax 3.

Remarks
The value of YEARS is computed by counting the number of first days of the year between the two dates.

See also
● “DATEDIFF function [Date and time]” on page 182
● “DATEADD function [Date and time]” on page 181

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statements both return -4.

SELECT YEARS('1998-07-13 06:07:12',
 '1994-03-13 08:07:13');

SELECT DATEDIFF(year,
 '1998-07-13 06:07:12',
 '1994-03-13 08:07:13');

The following statements return 1998.

SELECT YEARS('1998-07-13 06:07:12')
SELECT DATEPART(year, '1998-07-13 06:07:12');

The following statements return the given date advanced 300 years.

SELECT YEARS(CAST('1998-07-13 06:07:12' AS TIMESTAMP), 300)

SELECT DATEADD(year, 300, '1998-07-13 06:07:12');

YMD function [Date and time]

SQL functions

378 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns a date value corresponding to the given year, month, and day of the month. Arguments are
SMALLINT values from -32768 to 32767.

Syntax
YMD(smallint-expression1, smallint-expression2, smallint-expression3)

Parameters
● smallint-expression1 The year.

● smallint-expression2 The number of the month. The year is adjusted if the month is outside the
range 1-12.

● smallint-expression3 The day number. The day can be any integer; the date is adjusted accordingly.

Returns
DATE

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement returns the value 1998-06-12.

SELECT YMD(1998, 06, 12);

If the values are outside their normal range, the date is adjusted accordingly. For example, the following
statement returns the DATE value 2000-03-01.

SELECT YMD(1999, 15, 1);

Functions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 379

380

SQL statements
This section describes the conventions used in the SQL statement documentation.

Common elements in SQL syntax
This section lists language elements that are found in the syntax of many SQL statements.

For more information about the elements described here, see “Identifiers” on page 4, “SQL data
types” on page 79, “Search conditions” on page 32, “Expressions” on page 12, or “Strings” on page 5.

● column-name An identifier that represents the name of a column. See “Identifiers” on page 4.

● condition An expression that evaluates to TRUE, FALSE, or UNKNOWN. See “Truth value
search conditions” on page 54.

● connection-name A string representing the name of an active connection. See “SQL Anywhere
database connections” [SQL Anywhere Server - Database Administration].

● data-type A storage data type. See “SQL data types” on page 79.

● expression An expression. A common example of an expression in syntax is a column name. See
“Expressions” on page 12.

● filename A string containing a file name.

● hostvar A C language variable, declared as a host variable preceded by a colon. See “Using host
variables” [SQL Anywhere Server - Programming].

● indicator-variable A second host variable of type a_sql_len immediately following a normal host
variable. It must also be preceded by a colon. Indicator variables are used to pass NULL values to and
from the database. See “Using host variables” [SQL Anywhere Server - Programming].

● materialized-view-name An identifier that represents the name of a materialized view. See
“Working with materialized views” [SQL Anywhere Server - SQL Usage].

● number Any sequence of digits followed by an optional decimal part and preceded by an optional
negative sign. Optionally, the number can be followed by an E and then an exponent. For example,

42
-4.038
.001
3.4e10
1e-10

● owner An identifier representing the user ID who owns a database object. See “Permissions
acquired through ownership of an object” [SQL Anywhere Server - Database Administration].

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 381

● query-block A query block is a simple query expression, or a query expression with an ORDER
BY clause.

● query-expression A query expression can be a SELECT, UNION, INTERSECT, or EXCEPT
block (that is, a statement that does not contain an ORDER BY, WITH, FOR, FOR XML, or OPTION
clause), or any combination of such blocks.

● role-name An identifier representing the role name of a foreign key. In conceptual database
modeling, a verb or phrase that describes a relationship from one point of view. You can describe each
relationship with two roles. Examples of roles are "contains" and "is a member of."

● savepoint-name An identifier that represents the name of a savepoint. See “Savepoints within
transactions” [SQL Anywhere Server - SQL Usage].

● search-condition A condition that evaluates to TRUE, FALSE, or UNKNOWN. See “Search
conditions” on page 32.

● special-value One of the special values described in “Special values” on page 58.

● statement-label An identifier that represents the label of a loop or compound statement. See
“Control statements” [SQL Anywhere Server - SQL Usage].

● statement-list A list of SQL statements, each ending with a semicolon.

● string-expression An expression that resolves to a string. See “Expressions” on page 12.

● table-list A list of table names, which may include correlation names. See “FROM
clause” on page 696 and “Key joins” [SQL Anywhere Server - SQL Usage].

● table-name An identifier that represents the name of a table. See “Identifiers” on page 4.

● userid An identifier representing a user name. See “Identifiers” on page 4.

● variable-name An identifier that represents a variable name. See “Variables” on page 67.

● window-name An identifier that represents a window name. Used in syntax related to window
definition (for example, the WINDOW clause, and window functions such as RANK). See
“Identifiers” on page 4.

Syntax conventions
The following conventions are used in the SQL syntax descriptions:

● Keywords All SQL keywords appear in uppercase, like the SQL statement ALTER TABLE in the
following example:

ALTER TABLE [owner.]table-name

SQL statements

382 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● Placeholders Items that must be replaced with appropriate identifiers or expressions appear in
italics, like the words owner and table-name in the following example:

ALTER TABLE [owner.]table-name

● Clause order If the order of optional clauses is significant in SQL statement syntax, the clauses are
listed in the main body of the syntax in the order in which they should be listed, similar to the following:

CREATE SYNCHRONIZATION SUBSCRIPTION [subscription-name]
TO publication-name
[FOR ml-username, ...]
...

In the case where the order of optional clauses is not significant in SQL statement syntax, the clauses
are listed separately like a list of options, similar to the following:

CREATE [OR REPLACE] SPATIAL REFERENCE SYSTEM
srs-name
[srs-attribute [srs-attribute ...]

srs-attribute :
IDENTIFIED BY srs-id
| DEFINITION { definition-string | NULL }
...

● Optional portions Optional portions of a statement are enclosed by square brackets. For example:

RELEASE SAVEPOINT [savepoint-name]

These square brackets indicate that the savepoint-name is optional. The square brackets should not be
typed.

You might also see square brackets around a portions of keywords. For example, the following syntax
indicates that you can use either COMMIT TRAN or COMMIT TRANSACTION:

COMMIT TRAN[SACTION] ...

Likewise, the following syntax indicates that you can use either COMMIT or COMMIT WORK:

COMMIT [WORK]

● Repeating items An item that can be repeated is followed by the appropriate list separator and an
ellipsis (three dots), like column-constraint in the following example:

ADD column-definition [column-constraint, ...]

In this case, you can specify no column constraint, one, or more. If more than one is specified, they
must be separated by commas.

● Options When none or only one of a list of items can be chosen, vertical bars separate the items
and the list is enclosed in square brackets.

[ASC | DESC]

Syntax conventions

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 383

For example, you can choose one of ASC, DESC, or neither. The square brackets should not be typed.

● Alternatives When precisely one of the options must be chosen, the alternatives are enclosed in
curly braces.

[QUOTES { ON | OFF }]

In this case, if the QUOTES option is chosen, one of ON or OFF must be provided. The brackets and
braces should not be typed.

Statement applicability indicators
Some statement titles are followed by an indicator in square brackets that indicate where the statement can
be used. These indicators are as follows:

● [ESQL] The statement is for use in embedded SQL.

● [Interactive SQL] The statement can be used only in Interactive SQL.

● [SP] The statement is for use in stored procedures, triggers, or batches.

● [T-SQL] The statement is implemented for compatibility with Adaptive Server Enterprise.
Sometimes the statement cannot be used in stored procedures that are not in Transact-SQL format. In
other cases, an alternative statement closer to the SQL/2008 standard is recommended unless Transact-
SQL compatibility is an issue.

● [external procedures] The statement is for use in calling external functions and procedures.

● [MobiLink] The statement is for use only in MobiLink clients.

● [SQL Remote] The statement can be used only in SQL Remote.

● [web services] The statement is for use in web services clients.

If two sets of brackets are used, the statement can be used in both environments. For example, [ESQL]
[SP] means a statement can be used in both embedded SQL and stored procedures.

SQL statements
The following sections define the syntax information for all supported SQL statements.

ALLOCATE DESCRIPTOR statement [ESQL]
Allocates space for a SQL descriptor area (SQLDA).

SQL statements

384 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
ALLOCATE DESCRIPTOR descriptor-name
[WITH MAX { integer | hostvar }]

descriptor-name : identifier

Parameters
● WITH MAX clause Allows you to specify the number of variables within the descriptor area. The

default size is one. You must still call fill_sqlda to allocate space for the actual data items before
doing a fetch or any statement that accesses the data within a descriptor area.

Remarks
Allocates space for a descriptor area (SQLDA). You must declare the following in your C code before
using this statement:

struct sqlda * descriptor_name

Permissions
None.

Side effects
None.

See also
● “DEALLOCATE DESCRIPTOR statement [ESQL]” on page 627
● “The SQL descriptor area (SQLDA)” [SQL Anywhere Server - Programming]

Standards and compatibility
● SQL/2008 ALLOCATE DESCRIPTOR is part of optional SQL language feature B031 "Basic

dynamic SQL" of the SQL/2008 standard.

Example
The following sample program includes an example of ALLOCATE DESCRIPTOR statement usage.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
EXEC SQL INCLUDE SQLCA;
#include "sqldef.h"
EXEC SQL BEGIN DECLARE SECTION;
int x;
short type;
int numcols;
char string[100];
a_SQL_statement_number stmt = 0;
EXEC SQL END DECLARE SECTION;
int main(int argc, char * argv[]){
 struct sqlda * sqlda1;
 if(!db_init(&sqlca)) {
 return 1;
 }
 db_string_connect(&sqlca,

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 385

 "UID=dba;PWD=sql;DBF=d:\\DB Files\\sample.db");
 EXEC SQL ALLOCATE DESCRIPTOR sqlda1 WITH MAX 25;
 EXEC SQL PREPARE :stmt FROM
 'SELECT * FROM Employees';
 EXEC SQL DECLARE curs CURSOR FOR :stmt;
 EXEC SQL OPEN curs;
 EXEC SQL DESCRIBE :stmt into sqlda1;
 EXEC SQL GET DESCRIPTOR sqlda1 :numcols=COUNT;
 // how many columns?
 if(numcols > 25) {
 // reallocate if necessary
 EXEC SQL DEALLOCATE DESCRIPTOR sqlda1;
 EXEC SQL ALLOCATE DESCRIPTOR sqlda1
 WITH MAX :numcols;
 EXEC SQL DESCRIBE :stmt into sqlda1;
 }
 type = DT_STRING; // change the type to string
 EXEC SQL SET DESCRIPTOR sqlda1 VALUE 2 TYPE = :type;
 fill_sqlda(sqlda1);
 // allocate space for the variables
 EXEC SQL FETCH ABSOLUTE 1 curs
 USING DESCRIPTOR sqlda1;
 EXEC SQL GET DESCRIPTOR sqlda1
 VALUE 2 :string = DATA;
 printf("name = %s", string);
 EXEC SQL DEALLOCATE DESCRIPTOR sqlda1;
 EXEC SQL CLOSE curs;
 EXEC SQL DROP STATEMENT :stmt;
 db_string_disconnect(&sqlca, "");
 db_fini(&sqlca);
 return 0;
}

ALTER DATABASE statement
Upgrades the database, turns jConnect support for a database on or off, calibrates the database, changes
the transaction log and transaction log mirror file names, or forces a mirror server to take ownership of a
database.

Syntax 1 - Upgrading components or restoring objects
ALTER DATABASE UPGRADE
[PROCEDURE ON]
[JCONNECT { ON | OFF }]

Syntax 2 - Performing calibration
ALTER DATABASE {
 CALIBRATE [SERVER]
 | CALIBRATE DBSPACE dbspace-name
 | CALIBRATE DBSPACE TEMPORARY
 | CALIBRATE GROUP READ
 | CALIBRATE PARALLEL READ
 | RESTORE DEFAULT CALIBRATION
}

SQL statements

386 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax 3 - Changing transaction log and transaction log mirror names
ALTER DATABASE dbfile
ALTER [TRANSACTION] LOG {
{ ON [log-name] [MIRROR mirror-name] | OFF }
[KEY key]

Syntax 4 - Changing ownership of a database
ALTER DATABASE
{ dbname FORCE START
| SET PARTNER FAILOVER }

Syntax 5 - Changing checksum settings
ALTER DATABASE dbfile
CHECKSUM OFF

Parameters
PROCEDURE clause Drop and re-create all dbo- and sys-owned procedures in the database.

JCONNECT clause To allow the jConnect JDBC driver access to system catalog information, specify
JCONNECT ON. This installs the system objects that provide jConnect metadata support. Specify
JCONNECT OFF if you want to exclude the jConnect system objects. You can still use jConnect, as long
as you do not access system catalog information. JCONNECT is ON by default.

If you are altering a database for use on Windows Mobile, see “Using jConnect on Windows Mobile”
[SQL Anywhere Server - Database Administration].

CALIBRATE [SERVER] clause Calibrate all dbspaces except for the temporary dbspace. This
clause also performs the work done by CALIBRATE PARALLEL READ.

CALIBRATE DBSPACE clause Calibrate the specified dbspace.

CALIBRATE DBSPACE TEMPORARY clause Calibrate the temporary dbspace.

CALIBRATE GROUP READ clause Perform group read calibration on the temporary dbspace.
Writes large work tables to the temporary dbspace and uses different group read sizes to time the reading
of the files. If adding space to the temporary table exceeds the limit for the connection, or if the cache is
not large enough to allow calibration with the largest memory size, calibration fails and an error message
is returned.

CALIBRATE PARALLEL READ clause Calibrate the parallel I/O capabilities of devices for all
dbspace files. The CALIBRATE [SERVER] clause also performs this calibration.

RESTORE DEFAULT CALIBRATION clause Restore the Disk Transfer Time (DTT) model to the built-
in default values that are based on typical hardware and configuration settings.

ALTER [TRANSACTION] LOG clause Change the file name of the transaction log or transaction log
mirror file. If MIRROR mirror-name is not specified, the clause sets a file name for a new transaction log.
If the database is not currently using a transaction log, it starts using one. If the database is already using a
transaction log, it changes to using the new file as its transaction log.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 387

If MIRROR mirror-name is specified, the clause sets a file name for a new transaction log mirror. If the
database is not currently using a transaction log mirror, it starts using one. If the database is already using
a transaction log mirror, it changes to using the new file as its transaction log mirror.

You can also use this clause to turn off the transaction or transaction log mirror. For example, ALTER
DATABASE LOG OFF.

KEY clause Specify the encryption key to use for the transaction log or transaction log mirror. When
using the ALTER [TRANSACTION] clause on a strongly encrypted database, you must specify the
encryption key.

dbname FORCE START clause Force a database server that is currently acting as the mirror server
to take ownership of the database. This clause can be executed from within a procedure or event, and must
be executed while connected to the utility database on the mirror server. See “Forcing a database server to
become the primary server” [SQL Anywhere Server - Database Administration].

SET PARTNER FAILOVER clause Initiate a database mirroring failover from the primary server to
the mirror server. This statement must be executed while connected to the database on the primary server,
and can be executed from within a procedure or event. When executed, any existing connections to the
database are closed, including the connection that executed the statement. If the statement is contained in
a procedure or event, other statements that follow it may not be executed. See “Initiating failover on the
primary server” [SQL Anywhere Server - Database Administration].

CHECKSUM clause Disables global checksums for the database. By default, new databases have
global checksums enabled, while version 11 and earlier databases do not have global checksums enabled.

Regardless of the setting of this clause, the database server always enables write checksums for databases
running on storage devices such as removable drives, and databases running on Windows Mobile to help
provide early detection if the database file becomes corrupt. The database server also calculates
checksums for critical pages during validation activities. See “Validation utility (dbvalid)” [SQL
Anywhere Server - Database Administration], “sa_validate system procedure” on page 1095, or
“VALIDATE statement” on page 902.

For databases that do not have global checksums enabled, you can enable write checksums by using the -
wc options. See “-wc dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
and “-wc dbeng12/dbsrv12 database option” [SQL Anywhere Server - Database Administration].

For more information about checksums, see “Using checksums to detect corruption” [SQL Anywhere
Server - Database Administration].

Remarks
Syntax 1 You can use the ALTER DATABASE UPGRADE statement as an alternative to the Upgrade
utility to upgrade or update a database. This applies to maintenance releases as well. After running this
statement, you should restart the database. In general, changes in databases between minor versions are
limited to additional database options and minor system table and procedure changes. The ALTER
DATABASE UPGRADE statement upgrades the system tables to the current version and adds any new
database options. If necessary, it also drops and recreates all system procedures. You can force a rebuild
of the system procedures by specifying the PROCEDURE ON clause.

SQL statements

388 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

An error message is returned if you execute an ALTER DATABASE UPGRADE statement on a database
that is currently being mirrored. See “Upgrading databases in a database mirroring system” [SQL
Anywhere 12 - Changes and Upgrading].

You can also use the ALTER DATABASE UPGRADE statement to restore settings and system objects to
their original installed state.

Features that require a physical reorganization of the database file are not made available by executing an
ALTER DATABASE UPGRADE statement. Such features include index enhancements and changes in
data storage. To obtain the benefits of these enhancements, you must unload and reload your database.
See “Rebuilding databases” [SQL Anywhere Server - SQL Usage].

Caution
You should always back up your database files before upgrading. If you apply the upgrade to the existing
files, then these files become unusable if the upgrade fails. For information about backing up your
database, see “Backup and data recovery” [SQL Anywhere Server - Database Administration].

To use the jConnect JDBC driver to access system catalog information, specify JCONNECT ON (the
default). If you want to exclude the jConnect system objects, specify JCONNECT OFF. Setting
JCONNECT OFF does not remove jConnect support from a database. You can still use JDBC, as long as
you do not access system catalog information. If you subsequently download a more recent version of
jConnect, you can upgrade the version in the database by (re)executing the ALTER DATABASE
UPGRADE JCONNECT ON statement. See “Installing jConnect system objects into a database” [SQL
Anywhere Server - Programming].

Syntax 2 Use Syntax 2 to perform recalibration of the I/O cost model used by the optimizer. This
operation updates the Disk Transfer Time (DTT) model, which is a mathematical model of the disk I/O
used by the cost model. When you recalibrate the I/O cost model, the database server is unavailable for
other use. In addition, it is essential that all other activities on the computer are idle. Recalibrating the
database server is an expensive operation and may take some time to complete. It is recommended that
you leave the default in place.

When using the CALIBRATE PARALLEL READ clause, parallel calibration is not performed on
dbspace files with fewer than 10000 pages. Even though the database server automatically suspends all of
its activity during calibration operations, parallel calibration should be done when there are no processes
consuming significant resources on the same computer. After calibration, you can retrieve the maximum
estimated number of parallel I/O operations allowed on a dbspace file using the IOParallelism extended
database property. See “DB_EXTENDED_PROPERTY function [System]” on page 189.

To eliminate repetitive, time-consuming recalibration activities when there is a large number of similar
hardware installations, you can re-use a calibration by unloading it and then applying it (loading it) into
another database using the sa_unload_cost_model and sa_load_cost_model system procedures,
respectively. See “sa_unload_cost_model system procedure” on page 1094, and “sa_load_cost_model
system procedure” on page 1013.

Syntax 3 You can use the ALTER DATABASE statement to change the transaction log and
transaction log mirror names associated with a database file. These changes are the same as those made by
the Transaction Log (dblog) utility. You can execute this statement while connected to the utility database
or another database, depending on the setting of the -gu option. If you are changing the transaction log or

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 389

transaction log mirror of an encrypted database, you must specify a key. You cannot stop using the
transaction log if the database is using auditing. Once you turn off auditing, you can stop using the
transaction log. This syntax is not supported in procedures, triggers, events, or batches.

Syntax 4 ALTER DATABASE ... FORCE START must be run from the mirror server, not the
primary server. Attempting to execute an ALTER DATABASE ... FORCE START statement for a
database that is not being mirrored or is currently active and owned by this server results in an error. Also,
if the primary server is still connected to the mirror server, an error is given. See “Introduction to database
mirroring” [SQL Anywhere Server - Database Administration].

Syntax 5 This clause can only be used to disable checksums for a database.

Permissions
For Syntax 1 and 2, you must have DBA authority, and must be the only connection to the database.
ALTER DATABASE UPGRADE is not supported on Windows Mobile.

For Syntax 3, you must have file permissions on the directories where the transaction log is located, and
the database must not be running.

For Syntax 4, you must have the permissions specified by the -gk server option.

For Syntax 5, you must have DBA authority.

Side effects
Automatic commit

See also
● “CREATE DATABASE statement” on page 477
● “Upgrade utility (dbupgrad)” [SQL Anywhere Server - Database Administration]
● “CREATE STATISTICS statement” on page 588
● “Transaction Log utility (dblog)” [SQL Anywhere Server - Database Administration]
● “DB_EXTENDED_PROPERTY function [System]” on page 189
● “-gk dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “-gu dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “sa_unload_cost_model system procedure” on page 1094
● “sa_load_cost_model system procedure” on page 1013

Standards and compatibility
● SQL/2008 Vendor extension.

● Transact-SQL The ALTER DATABASE statement is supported by Adaptive Server Enterprise.
However, the statement's clauses supported by Adaptive Server Enterprise are disjoint from those
clauses supported by SQL Anywhere.

Example
The following example disables jConnect support:

ALTER DATABASE UPGRADE JCONNECT OFF;

SQL statements

390 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The following example sets the transaction log file name associated with demo.db to mynewdemo.log:

ALTER DATABASE 'demo.db'
 ALTER LOG ON 'mynewdemo.log';

ALTER DBSPACE statement
Pre-allocates space for a dbspace or for the transaction log, or updates the catalog when a dbspace file is
renamed or moved.

Syntax
ALTER DBSPACE { dbspace-name | TRANSLOG | TEMPORARY }
 { ADD number [add-unit]
 | RENAME filename }

add-unit :
PAGES
| KB
| MB
| GB
| TB

Parameters
TRANSLOG clause You supply the special dbspace name TRANSLOG to preallocate disk space for
the transaction log. Preallocation improves performance if the transaction log is expected to grow quickly.
You may want to use this feature if, for example, you are handling many binary large objects (BLOBs)
such as bitmaps.

TEMPORARY clause You supply the special dbspace name TEMPORARY to add space to temporary
dbspaces. When space is added to a temporary dbspace, the additional space materializes in the
corresponding temporary file immediately. Pre-allocating space to the temporary dbspace of a database
can improve performance during execution complex queries that use large work tables.

ADD clause An ALTER DBSPACE statement with the ADD clause preallocates disk space for a
dbspace. It extends the corresponding database file by the specified size, in units of pages, kilobytes (KB),
megabytes (MB), gigabytes (GB), or terabytes (TB). If you do not specify a unit, PAGES is the default.
The page size of a database is fixed when the database is created.

If space is not preallocated, database files are extended by about 256 KB at a time for page sizes of 2 KB,
4 KB, and 8 KB, and by about 32 pages for other page sizes, when the space is needed. Pre-allocating
space can improve performance for loading large amounts of data and also serves to keep the database
files more contiguous within the file system.

You can use this clause to add space to any of the predefined dbspaces (system, temporary, temp,
translog, and translogmirror). See “Predefined dbspaces” [SQL Anywhere Server - Database
Administration].

RENAME clause If you rename or move a database file other than the main file to a different directory
or device, you can use ALTER DBSPACE with the RENAME clause to ensure that SQL Anywhere finds
the new file when the database is started. The filename parameter can be a string literal, or a variable.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 391

The name change takes effect as follows:

○ If the dbspace was already open before the statement was executed (that is, you have not yet renamed
the actual file), it remains accessible; however, the name stored in the catalog is updated. After the
database is stopped, you must rename the file to match what you provided using the RENAME clause,
otherwise the file name won't match the dbspace name in the catalog and the database server is unable
to open the dbspace the next time the database is started.

○ If the dbspace was not open when the statement was executed, the database server attempts to open it
after updating the catalog. If the dbspace can be opened, it becomes accessible. No error is returned if
the dbspace cannot be opened.

To determine if a dbspace is open, execute the statement below. If the result is NULL, the dbspace is
not open.

SELECT DB_EXTENDED_PROPERTY('FileSize','dbspace-name');

Using ALTER DBSPACE with RENAME on the main dbspace, system, has no effect.

Remarks
Each database is held in one or more files. A dbspace is an additional file with a logical name associated
with each database file, and used to hold more data than can be held in the main database file alone.
ALTER DBSPACE modifies the main dbspace (also called the root file) or an additional dbspace. The
dbspace names for a database are held in the ISYSFILE system table. The main database file has a
dbspace name of system.

When a multi-file database is started, the start line or ODBC data source description tells SQL Anywhere
where to find the main database file. The main database file holds the system tables. SQL Anywhere
looks in these system tables to find the location of the other dbspaces, and then opens each of the other
dbspaces. You can specify which dbspace new tables are created in by setting the default_dbspace option.

Permissions
DBA authority and be the only connection to the database.

Side effects
Automatic commit.

See also
● “CREATE DBSPACE statement” on page 484
● “default_dbspace option” [SQL Anywhere Server - Database Administration]
● “Working with database files” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example increases the size of the system dbspace by 200 pages:

SQL statements

392 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ALTER DBSPACE system
ADD 200;

The following example increases the size of the system dbspace by 400 MB:

ALTER DBSPACE system
ADD 400 MB;

The following example changes the file name associated with the system_2 dbspace:

ALTER DBSPACE system_2
RENAME 'e:\db\dbspace2.db';

ALTER DOMAIN statement

Renames a user-defined domain or data type.

Syntax
ALTER { DOMAIN | DATATYPE } user-type
RENAME new-name

Remarks
When you execute this statement, the name of the user-defined domain or data type is updated in the
ISYSUSERTYPE system table.

Note
Any procedures, triggers, views, or events that refer to the user-defined domain or data type must be
recreated, or else they continue to refer to the old name.

Permissions
Must have DBA authority or be the database user who created the domain.

Side effects
Automatic commit.

See also
● “ISYSFILE system table” on page 914
● “CREATE DOMAIN statement” on page 488
● “Domains” on page 111
● “Using domains” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 Vendor extension. The ALTER DOMAIN statement is optional SQL feature F711 of the

SQL/2008 standard. However, in the standard, ALTER DOMAIN can specify modified DEFAULT or
CHECK constraint clauses for an existing domain. Neither of these operations are supported in SQL
Anywhere. Feature F711 does not support the renaming of a domain.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 393

Example
The following example renames the Address domain to MailingAddress:

ALTER DOMAIN Address RENAME MailingAddress;

ALTER EVENT statement
Changes the definition of an event or its associated handler for automating predefined actions, or alters
the definition of scheduled actions. You can also use this statement to hide the definition of an event handler.

Syntax 1 - Altering an event
ALTER EVENT [owner.]event-name
[AT { CONSOLIDATED | REMOTE | ALL }]
[{ DELETE TYPE
 | TYPE event-type
 | WHERE { trigger-condition | NULL }
 | { ADD | ALTER | DELETE } SCHEDULE schedule-spec }]
[ENABLE | DISABLE]
[[ALTER] HANDLER compound-statement | DELETE HANDLER]

event-type :
 BackupEnd
| Connect
| ConnectFailed
| DatabaseStart
| DBDiskSpace
| Deadlock
| "Disconnect"
| GlobalAutoincrement
| GrowDB
| GrowLog
| GrowTemp
| LogDiskSpace
| RAISERROR
| ServerIdle
| TempDiskSpace

trigger-condition :
event_condition(condition-name) { = | < | > | != | <= | >= } value

schedule-spec :
[schedule-name]
 { START TIME start-time | BETWEEN start-time AND end-time }
 [EVERY period { HOURS | MINUTES | SECONDS }]
 [ON { (day-of-week, ...) | (day-of-month, ...) }]
 [START DATE start-date]

event-name | schedule-name : identifier

day-of-week : string

value | period | day-of-month : integer

SQL statements

394 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

start-time | end-time : time

start-date : date

Syntax 2 - Hiding the definition of an event handler
ALTER EVENT event-name SET HIDDEN

Parameters
AT clause Use this clause to change the specification regarding the databases at which the event is
handled.

DELETE TYPE clause Use this clause to remove an association of the event with an event type. For a
description of event types, see “Understanding system events” [SQL Anywhere Server - Database
Administration].

ADD | ALTER | DELETE SCHEDULE clause Use this clause to change the definition of a schedule.
Only one schedule can be altered in any one ALTER EVENT statement.

WHERE clause Use this clause to change the trigger condition under which an event is fired. The
WHERE NULL option deletes a condition. For descriptions of most of the parameters, see “CREATE
EVENT statement” on page 495.

START TIME clause Use this clause to specify the start time and, optionally, the end time, for the
event. The start-time and end-time parameters are strings (for example, '12:34:56'). Variables and
expressions are not allowed (for example, NOW()).

START DATE clause Use this clause to specify the start date for the event. The start-date parameter
is a string. Variables and expressions are not allowed (for example, TODAY()).

SET HIDDEN clause Use this clause to hide the definition of an event handler. Specifying the SET
HIDDEN clause results in the permanent obfuscation of the event handler definition stored in the action
column of the ISYSEVENT system table.

Remarks
This statement allows you to alter an event definition created with CREATE EVENT. Possible uses
include the following:

● hiding the definition of an event handler

● defining and testing an event handler without a trigger condition or schedule during a development
phase, and then adding the conditions for execution using ALTER EVENT once the event handler is
completed

If you need to alter an event, you can disable it while it is running by executing an ALTER EVENT ...
DISABLE statement. To disable an event in Sybase Central, right-click the event and clear the Enabled
option. Disabling the event does not interrupt current event handler execution; the event handler continues
to execute until completion. When the event handler completes, it is not restarted until you re-enable it.
You can alter and then re-enable the definition. To determine what events are running, execute the
following statement:

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 395

SELECT *
FROM dbo.sa_conn_info()
WHERE CONNECTION_PROPERTY('EventName',Number) = 'event-name';

Permissions
DBA authority

Side effects
Automatic commit.

See also
● “Understanding system events” [SQL Anywhere Server - Database Administration]
● “SYSEVENT system view” on page 1135
● “BEGIN statement” on page 454
● “CREATE EVENT statement” on page 495

Standards and compatibility
● SQL/2008 Vendor extension.

ALTER EXTERNAL ENVIRONMENT statement
Specifies the location of an external environment such as Java, PHP, or Perl.

Syntax
ALTER EXTERNAL ENVIRONMENT environment-name
LOCATION location-string

environment-name :
JAVA
| PERL
| PHP
| CLR
| C_ESQL32
| C_ESQL64
| C_ODBC32
| C_ODBC64
| DBMLSYNC

Parameters
environment-name Use environment-name to specify the external environment you are altering.

LOCATION clause Use the LOCATION clause to specify the location on the database server
computer where the executable/binary for the external environment can be found. It includes the executable/
binary name. This path can either be fully qualified or relative. If the path is relative, then the executable/
binary must be in a location where the server can find it.

SQL statements

396 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
For more information about how to work with external environments, see “SQL Anywhere external
environment support” [SQL Anywhere Server - Programming].

Permissions
DBA authority.

Side effects
None

See also
● “SQL Anywhere external environment support” [SQL Anywhere Server - Programming]
● “START EXTERNAL ENVIRONMENT statement” on page 860
● “STOP EXTERNAL ENVIRONMENT statement” on page 868
● “INSTALL EXTERNAL OBJECT statement” on page 743
● “REMOVE EXTERNAL OBJECT statement” on page 806
● “SYSEXTERNENV system view” on page 1137
● “SYSEXTERNENVOBJECT system view” on page 1138

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example specifies the location of the Perl executable for use when using Perl as an external
environment.

ALTER EXTERNAL ENVIRONMENT PERL
LOCATION 'c:\\Perl64\\bin\\perl.exe';

ALTER FUNCTION statement
Modifies a function. You must include the entire new function in the ALTER FUNCTION statement.

Syntax 1 - Change the definition of a function
ALTER FUNCTION [owner.]function-name function-definition

function-definition : CREATE FUNCTION syntax

Syntax 2 - Obfuscate a function definition
ALTER FUNCTION [owner.]function-name
SET HIDDEN

Syntax 3 - Recompile a function
ALTER FUNCTION [owner.]function-name
RECOMPILE

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 397

Remarks
● Syntax 1 The ALTER FUNCTION statement is identical in syntax to the CREATE FUNCTION

statement except for the first word.

With ALTER FUNCTION, existing permissions on the function remain unmodified. Conversely, if
you execute DROP FUNCTION followed by CREATE FUNCTION, execute permissions are
reassigned.

● Syntax 2 Use SET HIDDEN to obfuscate the definition of the associated function and cause it to
become unreadable. The function can be unloaded and reloaded into other databases.

If SET HIDDEN is used, debugging using the debugger does not show the function definition, nor is it
available through procedure profiling.

Note
This setting is irreversible. It is strongly advised that you retain the original function definition outside
of the database.

● Syntax 3 Use the RECOMPILE syntax to recompile a user-defined SQL function. When you
recompile a function, the definition stored in the catalog is re-parsed and the syntax is verified. The
preserved source for a function is not changed by recompiling. When you recompile a function, the
definitions obfuscated by the SET HIDDEN clause remain obfuscated and unreadable.

Permissions
Must be the owner of the function or have DBA authority.

Side effects
Automatic commit.

See also
● “CREATE FUNCTION statement” on page 516
● “CREATE FUNCTION statement (external procedures)” on page 504
● “CREATE FUNCTION statement (web clients)” on page 510
● “ALTER PROCEDURE statement” on page 407
● “DROP FUNCTION statement” on page 654
● “Hiding the contents of procedures, functions, triggers and views” [SQL Anywhere Server - SQL

Usage]

Standards and compatibility
● SQL/2008 Vendor extension. ALTER FUNCTION is optional SQL language feature F381 of the

SQL/2008 standard. However, in the SQL standard, ALTER FUNCTION cannot be used to re-define
a PSM function definition. SQL/2008 does not include support for SET HIDDEN or RECOMPILE.

Example
In this example, MyFunction is created and altered. The SET HIDDEN clause obfuscates the function
definition and makes it unreadable.

SQL statements

398 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

CREATE FUNCTION MyFunction(
 firstname CHAR(30),
 lastname CHAR(30))
RETURNS CHAR(61)
BEGIN
 DECLARE name CHAR(61);
 SET name = firstname || ' ' || lastname;
 RETURN (name);
ALTER FUNCTION MyFunction SET HIDDEN;
END;

ALTER INDEX statement
Renames an index, primary key, or foreign key, or changes the clustered nature of an index.

Syntax
ALTER { INDEX index-name
| [INDEX] FOREIGN KEY role-name
| [INDEX] PRIMARY KEY }
ON [owner.]object-name { REBUILD | rename-clause | cluster-clause } }

object-name : table-name | materialized-view-name

rename-clause : RENAME { AS | TO } new-index-name

cluster-clause : CLUSTERED | NONCLUSTERED

Parameters
rename-clause Specify the new name for the index, primary key, or foreign key.

When you rename the underlying index for a foreign or primary key, the corresponding RI constraint
name for the index is not changed. However, the foreign key role name, if applicable, is the same as the
index name and is changed. Use the ALTER TABLE statement to rename the RI constraint name, if
necessary. See “ALTER TABLE statement” on page 426.

cluster-clause Specify whether the index should be changed to CLUSTERED or NONCLUSTERED.
Only one index on a table can be clustered.

REBUILD clause Use this clause to rebuild an index, instead of dropping and recreating it.

Remarks
The ALTER INDEX statement carries out two tasks:

● It can be used to rename an index, primary key, or foreign key.

● It can be used to change an index type from nonclustered to clustered, or vice versa.

The ALTER INDEX statement can be used to change the clustering specification of the index, but
does not reorganize the data. As well, only one index per table or materialized view can be clustered.

ALTER INDEX cannot be used to change an index on a local temporary table. An attempt to do so results
in an Index not found error.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 399

This statement cannot be executed when there are cursors opened with the WITH HOLD clause that use
either statement or transaction snapshots. See “Snapshot isolation” [SQL Anywhere Server - SQL Usage].

Permissions
Must own the table, or have REFERENCES permissions on the table or materialized view, or have DBA
authority.

Side effects
Automatic commit. Clears the Results tab in the Results pane in Interactive SQL. Closes all cursors for
the current connection. If ALTER INDEX REBUILD is specified, a checkpoint is performed.

See also
● “CREATE INDEX statement” on page 521

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement renames the index IX_product_name on the Products table to ixProductName:

ALTER INDEX IX_product_name ON Products
RENAME TO ixProductName;

The following statement changes IX_product_name to be a clustered index:

ALTER INDEX IX_product_name ON Products
CLUSTERED;

ALTER LOGIN POLICY statement
Alters an existing login policy.

Syntax
ALTER LOGIN POLICY policy-name policy-options

policy options :
policy-option [policy-option ...]

policy-option :
policy-option-name = policy-option-value

policy-option-value :
{ UNLIMITED
| DEFAULT
| legal-option-value }

Parameters
policy-name The name of the login policy. Specify root to modify the root login policy.

SQL statements

400 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

policy-option-name The name of the policy option. To view a list of default login policy option
names and descriptions, see the Remarks section of “CREATE LOGIN POLICY statement” on page 526.

policy-option-value The value assigned to the login policy option. If you specify UNLIMITED, no
limits are used. If you specify DEFAULT, the default limits are used. To view a list of default login
policy option values, see the Remarks section of “CREATE LOGIN POLICY statement” on page 526.

Remarks
When a login policy is altered, changes are immediately applied to all users.

Permissions
DBA authority

Side effects
None.

See also
● “Altering a login policy” [SQL Anywhere Server - Database Administration]
● “ALTER USER statement” on page 441
● “COMMENT statement” on page 468
● “CREATE LOGIN POLICY statement” on page 526
● “CREATE USER statement” on page 621
● “DROP LOGIN POLICY statement” on page 656
● “DROP USER statement” on page 674
● “Managing login policies” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Examples
The following example alters the Test1 login policy. This example changes the locked and
max_connections options. The locked value indicates that users with the policy cannot establish new
connections and the max_connections value limits the number of concurrent connections that are allowed.

ALTER LOGIN POLICY Test1
locked=ON
max_connections=5;

ALTER MATERIALIZED VIEW statement
Alters a materialized view.

Syntax
ALTER MATERIALIZED VIEW [owner.]materialized-view-name {
 SET HIDDEN
| { ENABLE | DISABLE }

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 401

| { ENABLE | DISABLE } USE IN OPTIMIZATION
| { ADD PCTFREE percent-free-space | DROP PCTFREE }
| [NOT] ENCRYPTED
| [{ IMMEDIATE | MANUAL } REFRESH]
}

percent-free-space : integer

Parameters
SET HIDDEN clause Use the SET HIDDEN clause to obfuscate the definition of a materialized view.
This setting is irreversible. For more information, see “Hide materialized views” [SQL Anywhere Server -
SQL Usage].

ENABLE clause Use the ENABLE clause to enable a disabled materialized view, making it available
for the database server to use. This clause has no effect on a view that is already enabled. After using this
clause, you must refresh the view to initialize it, and recreate any text indexes that were dropped when the
view was disabled.

DISABLE clause Use the DISABLE clause to disable use of the view by the database server. When
you disable a materialized view, the database server drops the data and indexes for the view.

{ ENABLE | DISABLE } USE IN OPTIMIZATION clause Use this clause to specify whether you
want the materialized view to be available for the optimizer to use. If you specify DISABLE USE IN
OPTIMIZATION, the materialized view is used only when executing queries that explicitly reference the
view. The default is ENABLE USE IN OPTIMIZATION. See “Enable and disable optimizer use of a
materialized view” [SQL Anywhere Server - SQL Usage].

ADD PCTFREE clause Specify the percentage of free space you want to reserve on each page. The
free space is used if rows increase in size when the data is updated. If there is no free space on a page,
every increase in the size of a row on that page requires the row to be split across multiple pages, causing
row fragmentation and possible performance degradation.

The value of percent-free-space is an integer between 0 and 100. The value 0 specifies that no free space
is to be left on each page—each page is to be fully packed. A high value causes each row to be inserted
into a page by itself. If PCTFREE is not set, or is dropped, the default PCTFREE setting is applied
according to the database page size (200 bytes for a 4 KB page size, and 100 bytes for a 2 KB page size).

DROP PCTFREE clause Removes the PCTFREE setting currently in effect for the materialized view,
and applies the default PCTFREE according to the database page size.

[NOT] ENCRYPTED clause Specify whether to encrypt the materialized view data. By default,
materialized view data is not encrypted at creation time. To encrypt a materialized view, specify
ENCRYPTED. To decrypt a materialized view, specify NOT ENCRYPTED.

REFRESH clause Use the REFRESH clause to change the refresh type for the materialized view:

○ IMMEDIATE REFRESH Use the IMMEDIATE REFRESH clause to change a manual view to an
immediate view. The manual view must be valid and uninitialized to change the refresh type to
IMMEDIATE REFRESH. If the view is in an initialized state, execute a TRUNCATE statement to
change the state to uninitialized before executing the ALTER MATERIALIZED VIEW ...
IMMEDIATE REFRESH. See “TRUNCATE statement” on page 881.

SQL statements

402 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

For information about conditions that must be met before you can alter the view to IMMEDIATE
REFRESH, see “Additional restrictions for immediate views” [SQL Anywhere Server - SQL Usage].

○ MANUAL REFRESH Use the MANUAL REFRESH clause to change an immediate view to a
manual view.

For more information about refresh types, see “Manual and immediate materialized views” [SQL
Anywhere Server - SQL Usage].

For more information about statuses, see “Materialized view statuses and properties” [SQL Anywhere
Server - SQL Usage].

Remarks
If you alter a materialized view owned by another user, you must qualify the name by including the owner
(for example, GROUPO.EmployeeConfidential). If you don't qualify the name, the database server looks
for a materialized view with that name owned by you and alters it. If there isn't one, it returns an error.

When you disable a materialized view (DISABLE clause), it is no longer available for the database server
to use for answering queries. As well, the data and indexes are dropped, and the refresh type changes to
manual. Any dependent regular views are also disabled.

The DISABLE clause requires exclusive access not only to the view being disabled, but to any dependent
views, since they are also disabled. See “Enable and disable materialized views” [SQL Anywhere Server -
SQL Usage].

Table encryption must already be enabled on the database to encrypt a materialized view (ENCRYPTED
clause). The materialized view is then encrypted using the encryption key and algorithm specified at
database creation time. See “Encrypt and decrypt materialized views” [SQL Anywhere Server - SQL
Usage].

Permissions
To execute the ALTER MATERIALIZED VIEW statement you must own the view or have DBA authority.

If you do not have DBA authority but want to alter a materialized view to be immediate (ALTER
MATERIALIZED VIEW ... IMMEDIATE REFRESH), you must own the view and all the tables it
references.

The only operations a user can perform on a materialized view to change its data are refreshing,
truncating, and disabling. However, immediate views are automatically updated by the database server.
That is, once an immediate view is enabled and initialized, the database server maintains it automatically,
without additional permissions checking.

Side effects
Automatic commit.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 403

See also
● “CREATE MATERIALIZED VIEW statement” on page 529
● “REFRESH MATERIALIZED VIEW statement” on page 798
● “sa_refresh_materialized_views system procedure” on page 1049
● “TRUNCATE statement” on page 881
● “DROP MATERIALIZED VIEW statement” on page 657
● “Working with materialized views” [SQL Anywhere Server - SQL Usage]
● “View dependencies” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statements creates the EmployeeConfid88 materialized view and then disables its use in
optimization:

CREATE MATERIALIZED VIEW EmployeeConfid88 AS
 SELECT EmployeeID, Employees.DepartmentID, SocialSecurityNumber, Salary,
ManagerID,
 Departments.DepartmentName, Departments.DepartmentHeadID
 FROM Employees, Departments
 WHERE Employees.DepartmentID=Departments.DepartmentID;
REFRESH MATERIALIZED VIEW EmployeeConfid88;
ALTER MATERIALIZED VIEW GROUPO.EmployeeConfid88 DISABLE USE IN OPTIMIZATION;

Caution
When you are done with this example, you should drop the materialized view you created. Otherwise, you
cannot make schema changes to its underlying tables, Employees and Departments, when trying out other
examples. You cannot alter the schema of a table that has enabled, dependent materialized view. See
“Drop materialized views” [SQL Anywhere Server - SQL Usage].

ALTER MIRROR SERVER statement

Separately licensed component required
Read-only scale-out and database mirroring each require a separate license. See “Separately licensed
components” [SQL Anywhere 12 - Introduction].

Modifies the attributes of a mirror server.

Syntax
ALTER MIRROR SERVER mirror-server-name
AS { PRIMARY | MIRROR | ARBITER | PARTNER | COPY }
[{ FROM SERVER parent-name [OR SERVER server-name] | USING AUTO PARENT } | ALTER PARENT
FROM mirror-server-name]
[server-option = { string | NULL } [...]]

parent-name :
server-name | PRIMARY

SQL statements

404 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

server-option :
connection_string
logfile
preferred
state_file

Parameters
● AS clause You can specify one of the following server types:

○ PRIMARY The mirror server with type PRIMARY defines a virtual or logical server, rather
than an actual database server. The name of this server is the alternate server name for the
database. The alternate server name can be used by applications to connect to the server currently
acting as the primary server. The server marked as PRIMARY also defines the connection string
used by mirror servers to connect to the server currently acting as primary, and it defines how new
copy nodes initially connect to the root server in a scale-out system. There can be only one
PRIMARY server for a database.

○ MIRROR The mirror server with type MIRROR defines a virtual or logical server, rather than
an actual database server. The name of this server is the alternate mirror server name for the
database. The alternate mirror server name can be used by applications to connect to the server
currently acting as the read-only mirror. There can be only one MIRROR server for a database.

○ ARBITER In a database mirroring system, the arbiter server assists in determining which of the
PARTNER servers takes ownership of the database. The arbiter server must be defined with a
connection string that can be used by the partner servers to connect to the arbiter. There can be
only one ARBITER server for a database.

○ PARTNER In a database mirroring system, servers defined as PARTNER are eligible to
become the primary server and take ownership of the database. You must define two PARTNER
servers for database mirroring, and both must have a connection string and a state file. The name
of the mirror server must correspond to the name of the database server, as specified by the -n
server option, and must match the value of the SERVER connection string parameter specified in
the connection_string mirror server option.

In a read-only scale-out system, you must define one PARTNER server. This server is the root
server, and runs the only copy of the database that allows both read and write operations.

○ COPY In a read-only scale-out system, this value specifies that the database server is a copy
node. All connections to the database on this server are read-only. The name of the mirror server
must correspond to the name of the database server, as specified by the -n server option, and must
match the value of the SERVER connection string parameter specified in the connection_string
mirror server option. You do not have to explicitly define copy nodes for the scale-out system; you
can choose to have the root node define the copy nodes when they connect. See “Adding copy
nodes” [SQL Anywhere Server - Database Administration].

● FROM SERVER clause You can only specify this clause for mirror servers of type COPY. This
clause constructs a tree of servers for a mirroring or scale-out system and indicates which servers the
non-participating nodes obtain transaction log pages from.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 405

The parent can be specified using the name of the mirror server or PRIMARY. An alternate parent for
the copy node can be specified using the OR SERVER clause.

In a database mirroring system that has only two levels (participating and non-participating nodes),
the non-participating nodes obtain transaction log pages from the current primary or mirror server.

A copy node determines which server to connect to by using its mirror server definition that is stored
in the database. From its definition, it can locate the definition of its parent, and from its parent's
definition, it can obtain the connection string to connect to the parent. See “SYSMIRRORSERVER
system view” on page 1149.

You do not have to explicitly define copy nodes for the scale-out system: you can choose to have the
root node define the copy nodes when they connect. See “Adding copy nodes” [SQL Anywhere Server
- Database Administration].

● USING AUTO PARENT clause This clause causes the primary server to assign a parent for this
server. See “Automatically assign the parent of a copy node” [SQL Anywhere Server - Database
Administration].

● ALTER PARENT FROM clause This clause changes the parent for this mirror server, and assigns
all its siblings to be its children. The server name specified by the ALTER PARENT FROM clause is
used to verify that the current parent for this server matches the value specified. This is used to ensure
that only one of a collection of siblings is able to replace its parent if they all request the change
simultaneously.

● server-option clause The following options are supported:

○ connection_string Specifies the connection string to be used to connect to the server. A user
ID and password are not required. The connection string for a mirror server should not include a
user ID or password because they are not used when one mirror server connects to another mirror
server.

For a complete list of connection parameters, see “Connection parameters” [SQL Anywhere Server
- Database Administration].

○ logfile Specifies the location of the file that contains one line per request that is sent between
mirror servers if database mirroring is used. This file is used only for debugging.

○ preferred Specifies whether the server is the preferred server in the mirroring system. You can
specify either YES or NO. The preferred server assumes the role of primary server whenever
possible. You specify this option when defining PARTNER servers. See “Specifying a preferred
database server” [SQL Anywhere Server - Database Administration].

○ state_file Specifies the location of the file used for maintaining state information about the
mirroring system. This option is required for database mirroring. A state file must be specified for
servers with type PARTNER. For arbiter servers, the location is specified as part of the command
to start the server. See “State information files” [SQL Anywhere Server - Database
Administration].

SQL statements

406 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
In a database mirroring system, the mirror server type can be PRIMARY, MIRROR, ARBITER, or
PARTNER.

In a read-only scale-out system, the mirror server type can be PRIMARY, PARTNER, or COPY.

Mirror server names for servers of type PARTNER, ARBITER, or COPY must match the names of the
database servers that will be part of the mirroring system (the name used with the -n server option). This
allows each database server to find its own definition and that of its parent.

Permissions
Must have DBA authority.

Side effects
Automatic commit.

See also
● “Introduction to database mirroring” [SQL Anywhere Server - Database Administration]
● “CREATE MIRROR SERVER statement” on page 532
● “COMMENT statement” on page 468
● “DROP MIRROR SERVER statement” on page 659

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example changes the parent of the scaleout_child copy node and assigns all its siblingsg to
be its children:

ALTER MIRROR SERVER "scaleout_child"
AS COPY
ALTER PARENT FROM scaleout_mirror
connection_string = 'server=scaleout_child;links=tcpip(host=winxp-2:6878';

ALTER PROCEDURE statement

Modifies a procedure.

Syntax 1
ALTER PROCEDURE [owner.]procedure-name procedure-definition

procedure-definition : CREATE PROCEDURE syntax

Syntax 2
ALTER PROCEDURE [owner.]procedure-name
SET HIDDEN

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 407

Syntax 3
ALTER PROCEDURE [owner.]procedure-name
RECOMPILE

Remarks
The ALTER PROCEDURE statement must include the entire new procedure. You can use PROC as a
synonym for PROCEDURE.

● Syntax 1 The ALTER PROCEDURE statement is identical in syntax to the CREATE
PROCEDURE statement except for the first word. Both Watcom and Transact-SQL dialect
procedures can be altered through the use of ALTER PROCEDURE.

With ALTER PROCEDURE, existing permissions on the function are not changed. If you execute
DROP PROCEDURE followed by CREATE PROCEDURE, execute permissions are reassigned.

● Syntax 2 Use SET HIDDEN to obfuscate the definition of the associated procedure and cause it to
become unreadable. The procedure can be unloaded and reloaded into other databases.

If SET HIDDEN is used, debugging using the debugger does not show the procedure definition, and
the definition is not available through procedure profiling.

You cannot combine Syntax 2 with Syntax 1.

Note
This setting is irreversible. It is recommended that you retain the original procedure definition outside
of the database.

● Syntax 3 Use the RECOMPILE syntax to recompile a stored procedure. When you recompile a
procedure, the definition stored in the catalog is re-parsed and the syntax is verified. For procedures
that generate a result set but do not include a RESULT clause, the database server attempts to
determine the result set characteristics for the procedure and stores the information in the catalog. This
can be useful if a table referenced by the procedure has been altered to add, remove, or rename
columns since the procedure was created.

The procedure definition is not changed by recompiling. You can recompile procedures with
definitions hidden with the SET HIDDEN clause, but their definitions remain hidden.

Permissions
Must be the owner of the procedure or have DBA authority.

Side effects
Automatic commit.

SQL statements

408 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “CREATE PROCEDURE statement” on page 552
● “CREATE PROCEDURE statement (web clients)” on page 543
● “ALTER FUNCTION statement” on page 397
● “DROP PROCEDURE statement” on page 659
● “Hiding the contents of procedures, functions, triggers and views” [SQL Anywhere Server - SQL

Usage]

Standards and compatibility
● SQL/2008 Vendor extension. ALTER PROCEDURE is optional SQL language feature F381 of the

SQL/2008 standard. However, in the SQL standard, ALTER PROCEDURE cannot be used to re-
define a stored procedure definition, and Transact-SQL dialect procedures are not supported. SQL/
2008 does not include support for SET HIDDEN or RECOMPILE.

ALTER PUBLICATION statement [MobiLink] [SQL Remote]
Alters a publication. In MobiLink, a publication identifies synchronized data in a SQL Anywhere remote
database. In SQL Remote, a publication identifies replicated data in both consolidated and remote databases.

Syntax
ALTER PUBLICATION [owner.]publication-name alterpub-clause, ...

alterpub-clause:
 ADD article-definition
| ALTER article-definition
| { DELETE | DROP } TABLE [owner.]table-name
| RENAME publication-name

article-definition :
TABLE table-name [(column-name, ...)]
[WHERE search-condition]
[SUBSCRIBE BY expression]
[USING ([PROCEDURE] [owner.][procedure-name]
 FOR UPLOAD { INSERT | DELETE | UPDATE }, ...)]

Remarks
This statement is applicable only to MobiLink and SQL Remote.

The contribution to a publication from one table is called an article. Changes can be made to a publication
by adding, modifying, or deleting articles, or by renaming the publication. If an article is modified, the
entire definition of the modified article must be entered.

It is recommended that you perform a successful synchronization of a publication immediately before you
alter it.

You cannot use the WHERE clause for publications that are defined as FOR DOWNLOAD ONLY or
WITH SCRIPTED UPLOAD.

The SUBSCRIBE BY clause applies to SQL Remote only.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 409

The USING clause is for scripted upload only.

You set options for a MobiLink publication with the ADD OPTION clause in the ALTER
SYNCHRONIZATION SUBSCRIPTION statement or CREATE SYNCHRONIZATION
SUBSCRIPTION statement.

When altering a MobiLink publication, an article can only be dropped after the execution of a START
SYNCHRONIZATION SCHEMA CHANGE statement.

Permissions
Must have DBA authority, or be the owner of the publication. Requires exclusive access to all tables
referred to in the statement.

Side effects
Automatic commit.

See also
● “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” on page 559
● “DROP PUBLICATION statement [MobiLink] [SQL Remote]” on page 660
● SQL Anywhere MobiLink clients: “Publishing data” [MobiLink - Client Administration]
● UltraLite MobiLink clients: “Designing synchronization in UltraLite” [UltraLite - Database

Management and Reference]
● “Publications and articles” [SQL Remote]
● “ALTER SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” on page 422
● “CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” on page 591
● “ISYSSYNC system table” on page 919
● “START SYNCHRONIZATION SCHEMA CHANGE statement [MobiLink]” on page 866

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement adds the Customers table to the pub_contact publication.

ALTER PUBLICATION pub_contact
 ADD TABLE Customers;

ALTER REMOTE MESSAGE TYPE statement [SQL Remote]
Changes the publisher's message system, or the publisher's address for a given message system, for a
message type that has been created.

Syntax
ALTER REMOTE MESSAGE TYPE message-system
ADDRESS address

message-system: FILE | FTP | SMTP

SQL statements

410 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

address: string

Parameters
message-system One of the message systems supported by SQL Remote. It must be one of the
following values: FILE, FTP, or SMTP.

address A string containing a valid address for the specified message system.

Remarks
The statement changes the publisher's address for a given message type.

The Message Agent sends outgoing messages from a database by one of the supported message links. The
Extraction utility uses this address when it executes the GRANT CONSOLIDATE statement in the
remote database.

The address is the publisher's address under the specified message system. If it is an email system, the
address string must be a valid email address. If it is a file-sharing system, the address string is a
subdirectory of the directory specified by the SQLREMOTE environment variable, or of the current
directory if that is not set. You can override this setting on the GRANT CONSOLIDATE statement at the
remote database.

Permissions
DBA authority

Side effects
Automatic commit.

See also
● “CREATE REMOTE MESSAGE TYPE statement [SQL Remote]” on page 562
● “GRANT CONSOLIDATE statement [SQL Remote]” on page 713
● “SQLREMOTE environment variable” [SQL Anywhere Server - Database Administration]
● “SQL Remote message systems” [SQL Remote]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement changes the publisher's address for the FILE message link to new_addr.

ALTER REMOTE MESSAGE TYPE file
ADDRESS 'new_addr';

ALTER SEQUENCE statement

Alters a sequence.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 411

Syntax
ALTER SEQUENCE [owner.] sequence-name
[RESTART WITH signed-integer]
[INCREMENT BY signed-integer]
[MINVALUE signed-integer | NO MINVALUE]
[MAXVALUE signed-integer | NO MAXVALUE]
[CACHE integer | NO CACHE]
[CYCLE | NO CYCLE]

Parameters
RESTART WITH Restarts the named sequence with the specified value.

INCREMENT BY Defines the amount the next sequence value is incremented from the last value
assigned. The default is 1. Specify a negative value to generate a descending sequence. An error is
returned if the INCREMENT BY value is 0.

MINVALUE Defines the smallest value generated by the sequence. The default is 1. An error is
returned if MINVALUE is greater than (2^63-1) or less than -(2^63-1). An error is also returned if
MINVALUE is greater than MAXVALUE.

MAXVALUE Defines the largest value generated by the sequence. The default is 1. An error is returned
if MAXVALUE is greater than (2^63-1) or less than -(2^63-1).

CACHE Specifies the number of preallocated sequence values that are kept in memory for faster access.

CYCLE Specifies whether values should continue to be generated after the maximum or minimum
value is reached.

Remarks
If the named sequence cannot be located, an error message is returned.

Permissions
Must have DBA authority or be the owner of the sequence and have RESOURCE authority.

Side effects
None

See also
● “Using a sequence to generate unique values” [SQL Anywhere Server - SQL Usage]
● “CREATE SEQUENCE statement” on page 565
● “DROP SEQUENCE statement” on page 662

Standards and compatibility
● SQL/2008 The ALTER SEQUENCE statement is part of optional SQL language feature T176 of

the SQL/2008 standard. The CACHE clause is a vendor extension.

Example
The following example sets a new maximum value for a sequence named Test:

SQL statements

412 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ALTER SEQUENCE Test
 MAXVALUE 1500;

ALTER SERVER statement
Modifies the attributes of a remote server.

Syntax
ALTER SERVER server-name
[CLASS server-class]
[USING connection-info]
[CAPABILITY cap-name { ON | OFF }]
[CONNECTION CLOSE [CURRENT | ALL | connection-id]]

server-class :
 SAODBC
| 'ASEODBC'
| 'DB2ODBC'
| 'IQODBC'
| 'MSSODBC'
| 'ORAODBC'
| 'MSACCESSODBC'
| 'MYSQLODBC'
| 'ULODBC'
| 'ADSODBC'
| 'ODBC'
| 'SAJDBC'
| 'ASEJDBC'
| 'IQJDBC'

connection-info :
computer-name:port-number[/dbname] | data-source-name

Parameters
CLASS clause The CLASS clause is specified to change the server class.

For more information about server classes and how to configure a server, see “Server classes for remote
data access” [SQL Anywhere Server - SQL Usage].

USING clause The USING clause is specified to change the server connection information. For
information about connection-info, see “CREATE SERVER statement” on page 567.

CAPABILITY clause The CAPABILITY clause turns a server capability ON or OFF. Server
capabilities are stored in the ISYSCAPABILITY system table. The names of these capabilities are
accessible via the SYSCAPABILITYNAME system view. The ISYSCAPABILITY system table and
SYSCAPABILITYNAME system view is not populated with data until the first connection to a remote
server is made. For subsequent connections, the database server's capabilities are obtained from the
ISYSCAPABILITY system table.

In general, you do not need to alter a server's capabilities. It may be necessary to alter capabilities of a
generic server of class ODBC.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 413

CONNECTION CLOSE clause When a user creates a connection to a remote server, the remote
connection is not closed until the user disconnects from the local database. The CONNECTION CLOSE
clause allows you to explicitly close connections to a remote server. You may find this useful when a
remote connection becomes inactive or is no longer needed.

The following SQL statements are equivalent and close the current connection to the remote server:

ALTER SERVER server-name CONNECTION CLOSE;
ALTER SERVER server-name CONNECTION CLOSE CURRENT;

You can close both ODBC and JDBC connections to a remote server using this syntax. You do not need
DBA authority to execute either of these statements.

You can also disconnect a specific remote ODBC connection by specifying a connection ID, or
disconnect all remote ODBC connections by specifying the ALL keyword. If you attempt to close a JDBC
connection by specifying the connection ID or the ALL keyword, an error occurs. When the connection
identified by connection-id is not the current local connection, the user must have DBA authority to be
able to close the connection.

Remarks
The ALTER SERVER statement modifies the attributes of a server. These changes do not take effect until
the next connection to the remote server.

Permissions
DBA authority.

Side effects
Automatic commit.

See also
● “Server classes for remote data access” [SQL Anywhere Server - SQL Usage]
● “CREATE SERVER statement” on page 567
● “DROP SERVER statement” on page 662
● “Troubleshooting remote data access” [SQL Anywhere Server - SQL Usage]
● “SYSCAPABILITY system view” on page 1128
● “SYSCAPABILITYNAME system view” on page 1129

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example changes the server class of the Adaptive Server Enterprise server named ase_prod
so its connection to SQL Anywhere is ODBC-based. Its data source name is ase_prod.

ALTER SERVER ase_prod
CLASS 'ASEODBC'
USING 'ase_prod';

The following example changes a capability of server infodc.

SQL statements

414 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ALTER SERVER infodc
CAPABILITY 'insert select' OFF;

The following example closes all connections to the remote server named rem_test.

ALTER SERVER rem_test
CONNECTION CLOSE ALL;

The following example closes the connection to the remote server named rem_test that has the connection
ID 142536.

ALTER SERVER rem_test
CONNECTION CLOSE 142536;

ALTER SERVICE statement
Alters an existing web service.

Syntax 1 - Simple web service
ALTER SERVICE service-name
[TYPE { 'RAW' | 'HTML' | 'JSON' | 'XML' }]
[URL [PATH] { ON | OFF | ELEMENTS }]
[common-attributes]
[AS { statement | NULL }]

common-attributes:
[AUTHORIZATION { ON | OFF }]
[ENABLE | DISABLE]
[METHODS 'method,...']
[SECURE { ON | OFF }]
[USER { user-name | NULL }]

method:
DEFAULT
| POST
| GET
| HEAD
| PUT
| DELETE
| NONE
| *

Syntax 2 - SOAP service
ALTER SERVICE service-name
[TYPE 'SOAP']
[DATATYPE { ON | OFF | IN | OUT }]
[FORMAT { 'DNET' | 'CONCRETE' [EXPLICIT { ON | OFF }] | 'XML' | NULL }]
[common-attributes]
[AS statement]

Syntax 3 - DISH service
ALTER SERVICE service-name
[TYPE 'DISH']

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 415

[GROUP { group-name | NULL }]
[FORMAT { 'DNET' | 'CONCRETE' [EXPLICIT { ON | OFF }]| 'XML' | NULL }]
[common-attributes]

Parameters
The descriptions of the ALTER SERVICE clauses are identical to those of the CREATE SERVICE
statement. See “CREATE SERVICE statement” on page 571.

Remarks
The ALTER SERVICE statement modifies the attributes of a web service.

Permissions
DBA authority

Side effects
None.

See also
● “CREATE SERVICE statement” on page 571
● “DROP SERVICE statement” on page 663
● “Tutorial: Using SQL Anywhere to access a SOAP/DISH service” [SQL Anywhere Server -

Programming]
● “SYSWEBSERVICE system view” on page 1189
● “-xs dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “Using SQL Anywhere as an HTTP web server” [SQL Anywhere Server - Programming]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example demonstrates how to disable an existing web service using the ALTER SERVICE
statement:

CREATE SERVICE WebServiceTable
 AUTHORIZATION OFF
 USER DBA
 AS SELECT *
 FROM SYS.SYSTAB;
ALTER SERVICE WebServiceTable DISABLE;

ALTER SPATIAL REFERENCE SYSTEM statement
Changes the settings of an existing spatial reference system. See the Remarks section for considerations
before altering a spatial reference system.

SQL statements

416 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
ALTER SPATIAL REFERENCE SYSTEM
srs-name
[srs-attribute [srs-attribute ...]

srs-name : string

srs-attribute :
SRID srs-id
| DEFINITION { definition-string | NULL }
| ORGANIZATION { organization-name IDENTIFIED BY organization-srs-id | NULL }
| TRANSFORM DEFINITION { transform-definition-string | NULL }
| LINEAR UNIT OF MEASURE linear-unit-name
| ANGULAR UNIT OF MEASURE { angular-unit-name | NULL }
| TYPE { ROUND EARTH | PLANAR }
| COORDINATE coordinate-name { UNBOUNDED | BETWEEN low-number AND high-number }
| ELLIPSOID SEMI MAJOR AXIS semi-major-axis-length { SEMI MINOR AXIS semi-minor-axis-length |
INVERSE FLATTENING inverse-flattening-ratio }
| SNAP TO GRID { grid-size | DEFAULT }
| TOLERANCE { tolerance-distance | DEFAULT }
| POLYGON FORMAT polygon-format
| STORAGE FORMAT storage-format

srs-id : integer

semi-major-axis-length : number

semi-minor-axis-length : number

inverse-flattening-ratio : number

grid-size : DOUBLE, usually between 0 and 1

tolerance-distance : number

axis-order : { 'x/y/z/m' | 'long/lat/z/m' | 'lat/long/z/m' }

polygon-format : { 'CounterClockWise' | 'Clockwise' | 'EvenOdd' }

exclude-lat : number

exclude-long : number

storage-format : { 'Internal' | 'Original' | 'Mixed' }

Parameters
IDENTIFIED BY clause Use this clause to change the SRID number for the spatial reference system.
For a complete description of this clause, see “IDENTIFIED BY clause, CREATE SPATIAL
REFERENCE SYSTEM statement” on page 580.

DEFINITION clause Use this clause to set, or override, default coordinate system settings. For a
complete description of this clause, see “DEFINITION clause, CREATE SPATIAL REFERENCE
SYSTEM statement” on page 580.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 417

ORGANIZATION clause Use this clause to specify information about the organization that created the
spatial reference system that the spatial reference system is based on. For a complete description of this
clause, see “ORGANIZATION clause, CREATE SPATIAL REFERENCE SYSTEM
statement” on page 581.

TRANSFORM DEFINITION clause Use this clause to specify a description of the transform to use for
the spatial reference system. Currently, only the PROJ.4 transform is supported. For a complete
description of this clause, see “TRANSFORM DEFINITION clause, CREATE SPATIAL REFERENCE
SYSTEM statement” on page 581.

The transform definition is used by the ST_Transform method when transforming data between spatial
reference systems. Some transforms may still be possible even if there is no transform-definition-string
defined. See “ST_Transform method for type ST_Geometry” [SQL Anywhere Server - Spatial Data
Support].

COORDINATE clause Use this clause to specify the bounds on the spatial reference system's
dimensions. coordinate-name is the name of the coordinate system used by the spatial reference system.
For non-geographic types coordinate-name can be x, y, or m. For geographic types, coordinate-name can
be LATITUDE, LONGITUDE, z, or m.

For a complete description of this clause, see “COORDINATE clause, CREATE SPATIAL
REFERENCE SYSTEM statement” on page 581.

LINEAR UNIT OF MEASURE clause Use this clause to specify the linear unit of measure for the
spatial reference system. The value you specify must match a linear unit of measure defined in the
ST_UNITS_OF_MEASURE system view. For a complete description of this clause, see “LINEAR UNIT
OF MEASURE clause, CREATE SPATIAL REFERENCE SYSTEM statement” on page 581.

ANGULAR UNIT OF MEASURE clause Use this clause to specify the angular unit of measure for the
spatial reference system. The value you specify must match an angular unit of measure defined in the
ST_UNITS_OF_MEASURE system table. For a complete description of this clause, see “ANGULAR
UNIT OF MEASURE clause, CREATE SPATIAL REFERENCE SYSTEM statement” on page 582.

TYPE clause Use the type clause to control how the spatial reference system interprets lines between
points. For geographic spatial reference systems, the TYPE clause can specify either ROUND EARTH
(the default) or PLANAR. For non-geographic spatial reference systems, the type must be PLANAR. For
a complete description of this clause, see “TYPE clause, CREATE SPATIAL REFERENCE SYSTEM
statement” on page 582.

ELLIPSOID clause Use the ellipsoid clause to specify the values to use for representing the Earth as
an ellipsoid for spatial reference systems of type ROUND EARTH. If the DEFINITION clause is present,
it can specify ellipsoid definition. If the ELLIPSOID clause is specified, it overrides this default ellipsoid.
For a complete description of this clause, see “ELLIPSOID clause, CREATE SPATIAL REFERENCE
SYSTEM statement” on page 583.

SNAP TO GRID clause For flat-Earth (planar) spatial reference systems, use the SNAP TO GRID
clause to define the size of the grid SQL Anywhere uses when performing calculations. Specify SNAP
TO GRID DEFAULT to set the grid size to the default that the database server would use. For a complete
description of this clause, see “SNAP TO GRID clause, CREATE SPATIAL REFERENCE SYSTEM
statement” on page 583.

SQL statements

418 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

For round-Earth spatial reference systems, SNAP TO GRID must be set to 0.

TOLERANCE clause For flat-Earth (planar) spatial reference systems, use the TOLERANCE clause
to specify the precision to use when comparing points. For a complete description of this clause, see
“TOLERANCE clause, CREATE SPATIAL REFERENCE SYSTEM statement” on page 584.

For round-Earth spatial reference systems, TOLERANCE must be set to 0.

POLYGON FORMAT clause Use the POLYGON FORMAT clause to change the polygon
interpretation. The following values are supported:

○ 'CounterClockwise'
○ 'Clockwise'
○ 'EvenOdd'

The default polygon format is 'EvenOdd'.

For a complete description of this clause, see “POLYGON FORMAT clause, CREATE SPATIAL
REFERENCE SYSTEM statement” on page 584.

STORAGE FORMAT clause Use the STORAGE FORMAT clause to control what is stored when
spatial data is loaded into the database. Possible values are:

○ 'Internal' SQL Anywhere stores only the normalized representation. Specify this when the original
input characteristics do not need to be reproduced. This is the default for planar spatial reference
systems (TYPE PLANAR).

Note
If you are using MobiLink to synchronize your spatial data, you should specify Mixed instead.
MobiLink tests for equality during synchronization, which requires the data in its original format.

○ 'Original' SQL Anywhere stores only the original representation. The original input characteristics
can be reproduced, but all operations on the stored values must repeat normalization steps, possibly
slowing down operations on the data.

○ 'Mixed' SQL Anywhere stores the internal version and, if it is different from the original version,
SQL Anywhere stores the original version as well. By storing both versions, the original
representation characteristics can be reproduced and operations on stored values do not need to repeat
normalization steps. However, storage requirements may increase significantly because potentially
two representations are being stored for each geometry.

Mixed is the default format for round-Earth spatial reference systems (TYPE ROUND EARTH).

For a complete description of this clause, see “STORAGE FORMAT clause, CREATE SPATIAL
REFERENCE SYSTEM statement” on page 584.

Remarks
You cannot alter a spatial reference system if there is existing data that references it. For example, if you
have a column declared as ST_Point(SRID=8743), you cannot alter the spatial reference system with

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 419

SRID 8743. This is because many spatial reference system attributes, such as storage format, impact the
storage format of the data. If you have data that references the SRID, create a new spatial reference
system and transform the data to the new SRID.

Permissions
Must have DBA authority or be a member of the SYS_SPATIAL_ADMIN_ROLE group.

Side effects
None

See also
● “CREATE SPATIAL REFERENCE SYSTEM statement” on page 579
● “DROP SPATIAL REFERENCE SYSTEM statement” on page 664
● “Getting started with spatial data” [SQL Anywhere Server - Spatial Data Support]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example changes the polygon format of a fictitious spatial reference system named
mySpatialRef to EvenOdd.

ALTER SPATIAL REFERENCE SYSTEM mySpatialRef
POLYGON FORMAT 'EvenOdd';

ALTER STATISTICS statement

Controls whether statistics are automatically updated on a column, or columns, in a table.

Syntax
ALTER STATISTICS
[ON] table [(column1 [, column2 ...])]
AUTO UPDATE { ENABLE | DISABLE }

Parameters
ON The word ON is optional. Including it has no impact on the execution of the statement.

AUTO UPDATE clause Specify whether to enable or disable automatic updating of statistics for the
column(s).

Remarks
During normal execution of queries, DML statements, and LOAD TABLE statements, the database server
automatically maintains column statistics for use by the optimizer. The benefit of maintaining statistics
for some columns may not outweigh the overhead necessary to generate them. For example, if a column is
not queried often, or if it is subject to periodic mass changes that are eventually rolled back, there is little

SQL statements

420 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

value in continually updating its statistics. Use the ALTER STATISTICS statement to suppress the
automatic updating of statistics for these types of columns.

When automatic updating is disabled, you can still update the statistics for the column using the CREATE
STATISTICS and DROP STATISTICS statements. However, you should only update them if it has been
determined that it would have a positive impact on performance. Normally, column statistics should not
be disabled.

Permissions
DBA authority

Side effects
If automatic updating has been disabled, the statistics may become out of date. Re-enabling does not
immediately bring them up to date. Run the CREATE STATISTICS statement to recreate them, if necessary.

See also
● “CREATE STATISTICS statement” on page 588
● “DROP STATISTICS statement” on page 666

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example disables the automatic updating of statistics on the Street column in the Customers
table:

ALTER STATISTICS Customers (Street) AUTO UPDATE DISABLE;

ALTER SYNCHRONIZATION PROFILE statement [MobiLink]
Changes a SQL Anywhere synchronization profile. Synchronization profiles are named collections of
synchronization options that can be used to control synchronization.

Syntax
ALTER SYNCHRONIZATION PROFILE name
MERGE string

Parameters
name The name of the synchronization profile to alter.

MERGE clause Use this clause to change existing, or add new, options to a synchronization profile.

string A string of one or more synchronization option value pairs, separated by semicolons. For
example, 'option1=value1;option2=value2'.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 421

Remarks
Synchronization profiles define how a SQL Anywhere database synchronizes with the MobiLink server.
For a list of the synchronization profile options supported by SQL Anywhere, see “CREATE
SYNCHRONIZATION PROFILE statement [MobiLink]” on page 590.

When MERGE is used in the ALTER SYNCHRONIZATION PROFILE statement, options specified in
the string are added to those already in the synchronization profile. If an option in the string already exists
in profile, then the value from the string replaces the value already stored in the profile.

For example, executing the following statements leaves the profile myProfile with the value
subscription=s2;verbosity=high;uploadonly=on.

CREATE SYNCHRONIZATION PROFILE myProfile 'subscription=p1;verbosity=high';
ALTER SYNCHRONIZATION PROFILE myProfile MERGE
'subscription=p2;uploadonly=on';

When setting extended options, use the following syntax:

ALTER SYNCHRONIZATION PROFILE myprofile MERGE
's=mysub;e={ctp=tcpip;adr=''host=localhost;port=2439''}';

Permissions
DBA authority.

Side effects
Automatic commit.

See also
● “CREATE SYNCHRONIZATION PROFILE statement [MobiLink]” on page 590
● “DROP SYNCHRONIZATION PROFILE statement [MobiLink]” on page 668

Standards and compatibility
● SQL/2008 Vendor extension.

ALTER SYNCHRONIZATION SUBSCRIPTION statement
[MobiLink]

Alters the properties of a synchronization subscription in a SQL Anywhere remote database.

Syntax
ALTER SYNCHRONIZATION SUBSCRIPTION
{ subscription-name | TO publication-name [FOR ml-username, ...] }

alter-clause:
RENAME new-subscription-name
| TYPE network-protocol
| ADDRESS protocol-options
| ADD OPTION option=value, ...

SQL statements

422 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

| ALTER OPTION option=value, ...
| DELETE { ALL OPTION | OPTION option, ... }
| SET SCRIPT VERSION=script-version

subscription-name: identifier

publication-name: identifier

ml-username: identifier

new-subscription-name: identifier

network-protocol: http | https | tls | tcpip

protocol-options: string

value: string | integer

option: identifier

script-version: string

Parameters
TO clause This clause specifies the name of a publication.

If the TO clause is used without a FOR clause, you cannot use the RENAME or SET SCRIPT VERSION
clauses.

FOR clause This clause specifies one or more MobiLink user names.

Omit the FOR clause to set the protocol type, protocol options, and extended options for a publication.

If the TO clause is used without a FOR clause, you cannot use the RENAME or SET SCRIPT VERSION
clauses.

For information about how dbmlsync processes options that are specified in different locations, see
“Priority order” [MobiLink - Client Administration].

RENAME clause This clause specifies a new name for the subscription.

If the TO clause is used without a FOR clause, you cannot use the RENAME clause.

TYPE clause This clause specifies the network protocol to use for synchronization. The default
protocol is tcpip.

For more information about communication protocols, see “CommunicationType (ctp) extended option”
[MobiLink - Client Administration].

ADDRESS clause This clause specifies network protocol options, including the location of the
MobiLink server.

For a complete list of protocol options, see “MobiLink client network protocol option summary”
[MobiLink - Client Administration].

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 423

ADD OPTION, ALTER OPTION, DELETE OPTION, and DELETE ALL OPTION clauses These
clauses allow you to add, alter, delete, or delete all extended options. You can specify only one option in
each clause. No option is specified for Delete All.

The values for each option cannot contain the characters " = " or " , " or " ; ".

For a complete list of options, see “MobiLink SQL Anywhere client extended options” [MobiLink - Client
Administration].

SET SCRIPT VERSION clause This clause specifies the script version to use during synchronization.
You can alter the script version without making a schema change.

If the TO clause is used without a FOR clause, you cannot use the SET SCRIPT VERSION clause.

For more information about MobiLink script versions, see “Script versions” [MobiLink - Server
Administration].

Remarks
The network-protocol, protocol-options, and options can be set in several places.

For information about how dbmlsync processes options that are specified in different locations, see
“Priority order” [MobiLink - Client Administration].

This statement causes options and other information to be stored in the SQL Anywhere ISYSSYNC
system table. Anyone with DBA authority for the database can view the information, which could include
passwords and encryption certificates. To avoid this potential security issue, you can specify the
information on the dbmlsync command line. See “dbmlsync syntax” [MobiLink - Client Administration].

Permissions
DBA authority and exclusive access to all tables referred to in the publication.

Side effects
Automatic commit.

See also
● “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” on page 559
● “DROP PUBLICATION statement [MobiLink] [SQL Remote]” on page 660
● SQL Anywhere MobiLink clients: “Creating synchronization subscriptions” [MobiLink - Client

Administration]
● UltraLite MobiLink clients: “Designing synchronization in UltraLite” [UltraLite - Database

Management and Reference]
● “ISYSSYNC system table” on page 919

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example changes the address of the MobiLink server for the sales subscription:

SQL statements

424 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ALTER SYNCHRONIZATION SUBSCRIPTION sales
TYPE TCPIP
ADDRESS 'host=10.11.12.132;port=2439';

ALTER SYNCHRONIZATION USER statement [MobiLink]

Alters the properties of a MobiLink user in a SQL Anywhere remote database.

Syntax
ALTER SYNCHRONIZATION USER ml-username
[TYPE network-protocol]
[ADDRESS protocol-options]
[ADD OPTION option=value, ...]
[ALTER OPTION option=value, ...]
[DELETE { ALL OPTION | OPTION option }]

ml-username: identifier

network-protocol: http | https | tls | tcpip

protocol-options: string

value: string | integer

Parameters
TYPE clause This clause specifies the network protocol to use for synchronization.

For more information about communication protocols, see “CommunicationType (ctp) extended option”
[MobiLink - Client Administration].

ADDRESS clause This clause specifies network protocol options, including the location of the
MobiLink server.

For a complete list of protocol options, see “MobiLink client network protocol option summary”
[MobiLink - Client Administration].

ADD OPTION, ALTER OPTION, DELETE OPTION, and DELETE ALL OPTION clauses These
clauses allow you to add, modify, delete, or delete all extended options. You may specify only one option
in each clause. No option is specified for Delete All.

For a complete list of options, see “MobiLink SQL Anywhere client extended options” [MobiLink - Client
Administration].

Remarks
The network-protocol, protocol-options, and options can be set in several places.

For information about how dbmlsync processes options that are specified in different locations, see
“Priority order” [MobiLink - Client Administration].

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 425

This statement causes options and other information to be stored in the SQL Anywhere ISYSSYNC
system table. Anyone with DBA authority for the database can view the information, which could include
passwords and encryption certificates. To avoid this potential security issue, you can specify the
information on the dbmlsync command line.

Permissions
DBA authority. Requires exclusive access to all tables referred to in the publication.

Side effects
Automatic commit.

See also
● “dbmlsync syntax” [MobiLink - Client Administration]
● “CREATE SYNCHRONIZATION USER statement [MobiLink]” on page 594
● “DROP SYNCHRONIZATION USER statement [MobiLink]” on page 670
● “MobiLink users” [MobiLink - Client Administration]
● “ISYSSYNC system table” on page 919

Standards and compatibility
● SQL/2008 Vendor extension.

ALTER TABLE statement
Modifies a table definition or disables dependent views.

Syntax 1 - Altering an existing table
ALTER TABLE [owner.]table-name { alter-clause, ... }

alter-clause :
ADD create-clause
| ALTER column-name column-alteration
| ALTER [CONSTRAINT constraint-name] CHECK (condition)
| DROP drop-object
| RENAME rename-object
| table-alteration

create-clause :
column-name [AS] column-data-type [new-column-attribute ...]
| table-constraint
| PCTFREE integer

column-alteration :
 { column-data-type | alterable-column-attribute } [alterable-column-attribute ...]
| SET COMPUTE (compute-expression)
| ADD [constraint-name] CHECK (condition)
| DROP { DEFAULT | COMPUTE | CHECK | CONSTRAINT constraint-name }

SQL statements

426 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

drop-object :
column-name
| CHECK
| CONSTRAINT constraint-name
| UNIQUE [CLUSTERED] (index-columns-list)
| FOREIGN KEY fkey-name
| PRIMARY KEY

rename-object :
new-table-name
| column-name TO new-column-name
| CONSTRAINT constraint-name TO new-constraint-name

table-alteration :
PCTFREE DEFAULT
| [NOT] ENCRYPTED

new-column-attribute :
NULL
| DEFAULT default-value
| COMPRESSED
| INLINE { inline-length | USE DEFAULT }
| PREFIX { prefix-length | USE DEFAULT }
| [NO] INDEX
| IDENTITY
| COMPUTE (expression)
| column-constraint

table-constraint :
[CONSTRAINT constraint-name] {
 CHECK (condition)
 | UNIQUE [CLUSTERED | NONCLUSTERED] (column-name [ASC | DESC], ...)
 | PRIMARY KEY [CLUSTERED | NONCLUSTERED] (column-name [ASC | DESC], ...)
 | foreign-key
 }

column-constraint :
[CONSTRAINT constraint-name] {
 CHECK (condition)
 | UNIQUE [CLUSTERED | NONCLUSTERED] [ASC | DESC]
 | PRIMARY KEY [CLUSTERED | NONCLUSTERED] [ASC | DESC]
 | REFERENCES table-name [(column-name)]
 [MATCH [UNIQUE] { SIMPLE | FULL }]
 [actions][CLUSTERED | NONCLUSTERED]
 | NOT NULL
 }

alterable-column-attribute :
 [NOT] NULL
| DEFAULT default-value
| [CONSTRAINT constraint-name] CHECK { NULL | (condition) }
| [NOT] COMPRESSED
| INLINE { inline-length | USE DEFAULT }
| PREFIX { prefix-length | USE DEFAULT }
| [NO] INDEX

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 427

default-value :
 special-value
| string
| global variable
| [-] number
| (constant-expression)
| built-in-function (constant-expression)
| AUTOINCREMENT
| GLOBAL AUTOINCREMENT [(partition-size)]
| NULL
| TIMESTAMP
| UTC TIMESTAMP
| LAST USER
| USER

special-value :
CURRENT {
 DATABASE
 | DATE
 | REMOTE USER
 | TIME
 | TIMESTAMP
 | UTC TIMESTAMP
 | USER
 | PUBLISHER }

foreign-key :
[NOT NULL] FOREIGN KEY [role-name]
 [(column-name [ASC | DESC], ...)
 REFERENCES table-name
 [(pkey-column-list)]
 [MATCH [UNIQUE] { SIMPLE | FULL }]
 [actions] [CHECK ON COMMIT] [CLUSTERED]
 [FOR OLAP WORKLOAD]

actions :
[ON UPDATE action] [ON DELETE action]

action :
CASCADE | SET NULL | SET DEFAULT | RESTRICT

Syntax 2 - Disabling view dependencies
ALTER TABLE [owner.]table-name {
 DISABLE VIEW DEPENDENCIES
}

Parameters
Adding clauses The following section explains the clauses used for adding columns or table
constraints to a table:

ADD column-name [AS] column-data-type [new-column-attribute ...] clause Use this clause
to add a new column to the table, specifying the data type and attributes for the column. For more
information about what data type to specify, see “SQL data types” on page 79.

SQL statements

428 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

NULL and NOT NULL clauses Use this clause to specify whether to allow NULLs in the column.
With the exception of bit type columns, new columns allow NULL values. Bit type columns
automatically have the NOT NULL constraint applied when they are created.

DEFAULT clause Sets the default value for the column. All rows in the column are populated with
this value. For information about possible default values, see “CREATE TABLE statement” on page 596.

column-constraint clause Use this clause to add a constraint to the column. With the exception of
CHECK constraints, when a new constraint is added, the database server validates existing values to
confirm that they satisfy the constraint. CHECK constraints are enforced only for operations that occur
after the table alteration is complete. Possible column constraints include:

● CHECK clause Use this subclause to add a check condition for the column.

● UNIQUE clause Use this subclause to specify that values in the column must be unique, and
whether to create a clustered or nonclustered index.

● PRIMARY KEY clause Use this subclause to make the column a primary key, and specify whether
to use a clustered index. For more information about clustered indexes, see “Using clustered indexes”
[SQL Anywhere Server - SQL Usage].

● REFERENCES clause Use this subclause to add or alter a reference to another table, to specify
how matches are handled, and to specify whether to use a clustered index. See “Using clustered
indexes” [SQL Anywhere Server - SQL Usage].

● MATCH clause Use this subclause to control what is considered a match when using a multi-
column foreign key. It also allows you to specify uniqueness for the key, thereby eliminating the need
to declare uniqueness separately. For the list of match types you can specify, see “MATCH clause,
CREATE TABLE statement” on page 604.

● NULL and NOT NULL clauses Use this clause to specify whether to allow NULL values in the
column. By default, NULLs are allowed.

COMPRESSED clause Use this clause to compress the column.

INLINE and PREFIX clauses When storing BLOBs (character and binary data types only), use the
INLINE and PREFIX clauses to specify how much of a BLOB, in bytes, to keep within a row. For more
information, see the INLINE and PREFIX clauses in “CREATE TABLE statement” on page 596.

INDEX and NO INDEX clauses Use this clause to specify whether to build indexes on large BLOBs
in this column. For more information about how to use this clause, see the corresponding section for the
[NO] INDEX clause in “CREATE TABLE statement” on page 596.

IDENTITY clause This clause is equivalent to AUTOINCREMENT, and is provided for compatibility
with Transact-SQL. See the description for AUTOINCREMENT in “CREATE TABLE
statement” on page 596.

COMPUTE clause Use this clause to ensure that the value in the column reflects the value of
expression. For more information about what is allowed for the COMPUTE clause, see “CREATE
TABLE statement” on page 596.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 429

ADD table-constraint clause Use this clause to add a table constraint. Table constraints place limits
on what data columns in the table can hold. When adding or altering table constraints, the optional
constraint name allows you to modify or drop individual constraints. Following is a list of the table
constraints you can add.

● UNIQUE Use this subclause to specify that values in the columns specified in column-list must be
unique, and, optionally, whether to use a clustered index. For more information about this constraint,
see “CREATE TABLE statement” on page 596.

● PRIMARY KEY Use this subclause to add or alter the primary key for the table, and specify
whether to use a clustered index. The table must not already have a primary key that was created by
the CREATE TABLE statement or another ALTER TABLE statement. For more information about
this constraint, see “CREATE TABLE statement” on page 596.

For more information about clustered indexes, see “Using clustered indexes” [SQL Anywhere Server -
SQL Usage].

● foreign-key Use this subclause to add a foreign key as a constraint. If you use a subclause other
than ADD FOREIGN KEY with the ALTER TABLE statement on a table with dependent
materialized views, the ALTER TABLE statement fails. For all other clauses, you must disable the
dependent materialized views and then re-enable them when your changes are complete.

You can specify a MATCH subclause to control what is considered a match when using a multi-
column foreign key. It also allows you to specify uniqueness for the key, thereby eliminating the need
to declare uniqueness separately. For the list of match types you can specify, see “MATCH clause,
CREATE TABLE statement” on page 604.

For more information about adding a foreign key relationship to a table, see “CREATE TABLE
statement” on page 596.

ADD PCTFREE clause Specify the percentage of free space you want to reserve in each table page.
The free space is used if rows increase in size when the data is updated. If there is no free space in a table
page, every increase in the size of a row on that page requires the row to be split across multiple table
pages, causing row fragmentation and possible performance degradation. A free space percentage of 0
specifies that no free space is to be left on each page—each page is to be fully packed. A high free space
percentage causes each row to be inserted into a page by itself. If PCTFREE is not set, or is dropped, the
default PCTFREE value is applied according to the database page size (200 bytes for a 4 KB or larger
page size). The value for PCTFREE is stored in the ISYSTAB system table. When PCTFREE is set, all
subsequent inserts into table pages use the new value, but rows that were already inserted are not affected.
The value persists until it is changed. The PCTFREE specification can be used for base, global temporary,
or local temporary tables.

Altering clauses The following section explains the clauses used for altering the definition for a
column or table:

ALTER column-name column-alteration clause Use this clause to change attributes for the
specified column. If a column is contained in a unique constraint, a foreign key, or a primary key, you can
change only the default for the column. However, for any other change, you must delete the key or
constraint before the column can be modified. Following is a list of the alterations you can make. For
further information about these attributes, see “CREATE TABLE statement” on page 596.

SQL statements

430 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

column-data-type clause Use this clause to alter the length or data type of the column. If necessary,
the data in the modified column is converted to the new data type. If a conversion error occurs, the
operation will fail and the table is left unchanged. You cannot reduce the size of a column. For example,
you cannot change a column from a VARCHAR(100) to a VARCHAR(50).

[NOT] NULL clause Use this clause to change whether NULLs are allowed in the column. If NOT
NULL is specified, and the column value is NULL in any of the existing rows, then the operation fails
and the table is left unchanged.

CHECK NULL Use this clause to delete all check constraints for the column.

DEFAULT clause Use this clause to change the default value for the column.

DEFAULT NULL clause Use this clause to remove the default value for the column.

[CONSTRAINT constraint-name] CHECK { NULL | (condition) } clause Use this clause to add
a CHECK constraint on the column.

[NOT] COMPRESSED clause Use this clause to change whether the column is compressed.

INLINE and PREFIX clauses Use the INLINE and PREFIX clauses with columns that contain
BLOBs to specify how much of a BLOB, in bytes, to keep within a row. For more information about how
to set the INLINE and PREFIX values, see the corresponding sections for the INLINE and PREFIX
clauses in “CREATE TABLE statement” on page 596.

INDEX and NO INDEX clauses Use this clause to specify whether to build indexes on large BLOBs
in this column. For more information about how to use this clause, see the corresponding section for the
[NO] INDEX clause in “CREATE TABLE statement” on page 596.

SET COMPUTE clause Use this clause to change the expression associated with the computed
column. The values in the column are recalculated when the statement is executed, and the statement fails
if the new expression is invalid. For more information about what is allowed for the COMPUTE
expression, see “CREATE TABLE statement” on page 596.

ALTER CONSTRAINT constraint-name CHECK clause Use this clause to alter a named check
constraint for the table.

Dropping clauses The following section explains the DROP clauses:

DROP DEFAULT Drops the default value set for the table or specified column. Existing values do not
change.

DROP COMPUTE Removes the COMPUTE attribute for the specified column. This statement does
not change any existing values in the table.

DROP CHECK Drops all CHECK constraints for the table or specified column. DELETE CHECK is
also accepted.

DROP CONSTRAINT constraint-name Drops the named constraint for the table or specified
column. DELETE CONSTRAINT is also accepted.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 431

DROP column-name Drops the specified column from the table. DELETE column-name is also
accepted. If the column is contained in any index, unique constraint, foreign key, or primary key, then the
index, constraint, or key must be deleted before the column can be deleted. This does not delete CHECK
constraints that refer to the column.

DROP UNIQUE (column-name ...) Drop the unique constraints on the specified column(s). Any
foreign keys referencing this unique constraint are also deleted. DELETE UNIQUE (column-name ...) is
also accepted.

DROP FOREIGN KEY fkey-name Drop the specified foreign key. DELETE FOREIGN KEY fkey-
name is also accepted.

DROP PRIMARY KEY Drop the primary key. All foreign keys referencing the primary key for this
table are also deleted. DELETE PRIMARY KEY is also accepted.

Renaming clauses The following section explains the clauses used for renaming parts of a column or
table definition:

RENAME new-table-name Change the name of the table to new-table-name. Any applications using
the old table name must be modified, as necessary. After the renaming operation succeeds, foreign keys
with ON UPDATE or ON DELETE actions must be dropped and re-created, as the system-created
triggers used to implement these actions continue to refer to the old name.

RENAME column-name TO new-column-name Change the name of the column to the new-column-
name. Any applications using the old column namemust be modified, as necessary. After the renaming
operation succeeds, foreign keys with ON UPDATE or ON DELETE actions must be dropped and re-
created, as the system-created triggers used to implement these actions continue to refer to the old name.

RENAME CONSTRAINT constraint-name TO new-constraint-name Change the name of the
constraint to the new-constraint-name.

ALTER TABLE ... RENAME CONSTRAINT constraint-name TO new-constraint-name, when used for
an RI constraint, only renames the constraint, not the underlying index or, if applicable, the foreign key
role name. If you want to rename the underlying index or the role name, use the ALTER INDEX
statement. See “ALTER INDEX statement” on page 399.

table-alteration clauses Use this clause to alter the following table attributes.

PCTFREE DEFAULT Use this clause to change the percent free setting for the table to the default (200
bytes for a 4 KB, and up, page size).

[NOT] ENCRYPTED Use this clause to change whether the table is encrypted. To encrypt a table,
table encryption must already be enabled on the database. The table is encrypted using the encryption key
and algorithm specified at database creation time. See “Enabling table encryption in the database” [SQL
Anywhere Server - Database Administration]. After encrypting a table, any data for that table that was in
temporary files or the transaction log before encryption still exists in unencrypted form. To address this,
restart the database to remove the temporary files. Run the Backup utility (dbbackup) with the -o option,
or use the BACKUP statement, to back up the transaction log and start a new one. See “Backup utility
(dbbackup)” [SQL Anywhere Server - Database Administration] or “BACKUP statement” on page 447.

SQL statements

432 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

When table encryption is enabled, table pages for the encrypted table, associated index pages, temporary
file pages, and transaction log pages containing transactions on encrypted tables are encrypted.

DISABLE VIEW DEPENDENCIES clause Use this clause to disable dependent regular views.
Dependent materialized views are not disabled; you must disable each dependent materialized view by
executing an ALTER MATERIALIZED VIEW ... DISABLE statement. See “ALTER MATERIALIZED
VIEW statement” on page 401.

Remarks
The ALTER TABLE statement changes table attributes (column definitions, constraints, and so on) in an
existing table.

The database server keeps track of object dependencies in the database. Alterations to the schema of a
table may impact dependent views. Also, if there are materialized views that are dependent on the table
you are attempting to alter, you must first disable them using the ALTER MATERIALIZED VIEW ...
DISABLE statement. For information about view dependencies, see “View dependencies” [SQL
Anywhere Server - SQL Usage].

You cannot use ALTER TABLE on a local temporary table.

ALTER TABLE is prevented whenever the statement affects a table that is currently being used by
another connection. ALTER TABLE can be time-consuming, and the database server does not process
other requests referencing the table while the statement is being processed.

For more information about using the CLUSTERED option, see “Using clustered indexes” [SQL
Anywhere Server - SQL Usage].

If you alter a column that a text index defined as IMMEDIATE REFRESH is built on, the text index is
immediately rebuilt. If the text index is defined as AUTO REFRESH or MANUAL REFRESH, the text
index is rebuilt the next time it is refreshed.

When you execute an ALTER TABLE statement, the database server attempts to restore column
permissions on dependent views that are automatically recompiled. Permissions on columns that no
longer exist in the recompiled views are lost.

Permissions
Must be one of the following:

● The owner of the table.

● A user with DBA authority.

● A user who has been granted ALTER permission on the table.

ALTER TABLE requires exclusive access to the table.

Global temporary tables cannot be altered unless all users that have referenced the temporary table have
disconnected.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 433

Cannot be used within a snapshot transaction. See “Snapshot isolation” [SQL Anywhere Server - SQL
Usage].

Side effects
Automatic commit.

A checkpoint is carried out at the beginning of the ALTER TABLE operation, and further checkpoints are
suspended until the ALTER operation completes.

Once you alter a column or table, any stored procedures, views, or other items that refer to the altered
column may no longer work.

If you change the declared length or type of a column, or drop a column, the statistics for that column are
dropped. For information about how to generate new statistics, see “Updating column statistics to
improve optimizer performance” [SQL Anywhere Server - SQL Usage].

See also
● “CREATE TABLE statement” on page 596
● “DROP TABLE statement” on page 670
● “SQL data types” on page 79
● “Altering tables” [SQL Anywhere Server - SQL Usage]
● “Special values” on page 58
● “Using table and column constraints” [SQL Anywhere Server - SQL Usage]
● “allow_nulls_by_default option” [SQL Anywhere Server - Database Administration]
● “Enabling table encryption in the database” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 ALTER TABLE is a core feature. In the SQL/2008 standard, ADD COLUMN and

DROP COLUMN are supported as core features, as are ADD CONSTRAINT and DROP
CONSTRAINT. ALTER [COLUMN] is SQL feature F381, as is the ability to add, modify, or drop a
DEFAULT value for a column. In SQL/2008, altering the data type of a column is performed by
specifying the SET DATA TYPE clause, which is SQL language feature F382. Conversely, SQL
Anywhere supports modifying a column's data type through the ALTER clause directly.

Other clauses supported by SQL Anywhere, including ALTER CONSTRAINT, RENAME,
PCTFREE, ENCRYPTED, and DISABLE MATERIALIZED VIEW, are vendor extensions. Support
for extensions to column definitions, and column and table constraint definitions, are vendor
extensions to SQL/2008 or are specific optional features of SQL/2008.

● Transact-SQL ALTER TABLE is supported by Adaptive Server Enterprise. Adaptive Server
Enterprise supports the ADD COLUMN and DROP COLUMN clauses, in addition to ADD
CONSTRAINT and DROP CONSTRAINT. Adaptive Server Enterprise uses MODIFY rather than
the keyword ALTER for the ALTER clause. Adaptive Server Enterprise uses the REPLACE clause
for altering a column's DEFAULT value. In Adaptive Server Enterprise, ALTER TABLE is also used
to enable/disable triggers for a specific table, a feature that is not supported in SQL Anywhere.

Example
The following example adds a new timestamp column, TimeStamp, to the Customers table.

SQL statements

434 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ALTER TABLE Customers
 ADD TimeStamp AS TIMESTAMP DEFAULT TIMESTAMP;

The following example drops the new timestamp column, TimeStamp that you added in the previous
example.

ALTER TABLE Customers
DROP TimeStamp;

The Street column in the Customers table can currently hold up to 35 characters. To allow it to hold up to
50 characters, execute the following:

ALTER TABLE Customers
ALTER Street CHAR(50);

The following example adds a column to the Customers table, assigning each customer a sales contact.

ALTER TABLE Customers
ADD SalesContact INTEGER
REFERENCES Employees (EmployeeID)
ON UPDATE CASCADE
ON DELETE SET NULL;

This foreign key is constructed with cascading updates and is set to NULL on deletes. If an employee has
their employee ID changed, the column is updated to reflect this change. If an employee leaves the
company and has their employee ID deleted, the column is set to NULL.

The following example creates a foreign key, FK_SalesRepresentative_EmployeeID2, on the
SalesOrders.SalesRepresentative column, linking it to Employees.EmployeeID:

ALTER TABLE GROUPO.SalesOrders
 ADD CONSTRAINT FK_SalesRepresentative_EmployeeID2
 FOREIGN KEY (SalesRepresentative)
 REFERENCES GROUPO.Employees (EmployeeID);

ALTER TEXT CONFIGURATION statement
Alters a text configuration object.

Syntax
ALTER TEXT CONFIGURATION [owner.]config-name
STOPLIST stoplist-string
| DROP STOPLIST
| { MINIMUM | MAXIMUM } TERM LENGTH integer
| TERM BREAKER { GENERIC [EXTERNAL NAME external-call] | NGRAM }
| PREFILTER EXTERNAL NAME external-call
| DROP PREFILTER
| SAVE OPTION VALUES [FROM CONNECTION]
}

external-call : '[operating-system:]library-function-name@library-name[;...]'

operating-system : UNIX

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 435

Parameters
STOPLIST clause Use this clause to create or replace the list of terms to ignore when building a text
index. Using this text configuration object, terms specified in this list are also ignored in a query. Separate
stoplist terms with spaces. For example, STOPLIST 'because about therefore only'.
Stoplist terms cannot contain whitespace.

Samples of stoplists for different languages are located in the samples-dir\SQLAnywhere\SQL
subdirectory. For the location of samples-dir, see “Samples directory” [SQL Anywhere Server - Database
Administration].

Stoplist terms should not contain non-alphanumeric characters. The stoplist length must be less than 8000
bytes.

Carefully consider whether you want to put terms in your stoplist. For more information, see “Text
configuration object settings” [SQL Anywhere Server - SQL Usage].

DROP STOPLIST clause Use this clause to drop the stoplist for a text configuration object.

MINIMUM TERM LENGTH clause The value specified in the MINIMUM TERM LENGTH clause is
ignored when using NGRAM text indexes.

The minimum length, in characters, of a term to include in the text index. Terms that are shorter than this
setting are ignored when building or refreshing the text index. The value of this option must be greater
than 0. If you set this option to be higher than MAXIMUM TERM LENGTH, the value of MAXIMUM
TERM LENGTH is automatically adjusted to be the same as the new MINIMUM TERM LENGTH value.

MAXIMUM TERM LENGTH clause With NGRAM text indexes, use the MAXIMUM TERM
LENGTH clause to set the size of the n-grams into which strings are broken.

With GENERIC text indexes, use the MAXIMUM TERM LENGTH clause to set the maximum length, in
characters, of a term to include in the text index. Terms that are longer than this setting are ignored when
building or refreshing the text index. The value of MAXIMUM TERM LENGTH must be less than or
equal to 60. If you set this option to be lower than MINIMUM TERM LENGTH, the value of MINIMUM
TERM LENGTH is automatically adjusted to be the same as the new MAXIMUM TERM LENGTH value.

TERM BREAKER clause The name of the algorithm to use for separating column values into terms.
The choices are GENERIC (the default) or NGRAM.

○ GENERIC For GENERIC, you can use the built-in GENERIC term breaker algorithm by
specifying TERM BREAKER GENERIC, or you can specify an external algorithm using the TERM
BREAKER GENERIC EXTERNAL NAME clause.

The built-in GENERIC algorithm treats any string of one or more alphanumerics, separated by non-
alphanumerics, as a term.

Specify the TERM BREAKER GENERIC EXTERNAL NAME clause to specify an entry point to a
term breaker function in an external library. This is useful if you have custom requirements for how
you want terms broken up before they are indexed or queried (for example, if you want an apostrophe
to be considered as part of a term and not as a term breaker).

SQL statements

436 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

external-call can specify more than one function and/or library, and can include the file extension of
the library, which is typically .dll on Windows, and .so on Unix. In the absence of the file extension,
the database server defaults to the platform-specific file extension for libraries. For example,
EXTERNAL NAME 'TermBreakFunct1@myTBlib;Unix:TermBreakFunct2@myTBlib'
calls the TermBreakFunct1 function from myTBlib.dll on Windows, and the TermBreakFunct2
function from myTBlib.so on Unix.

○ NGRAM The built-in NGRAM algorithm breaks strings into n-grams. An n-gram is an n-character
substring of a larger string. The NGRAM term breaker is required for fuzzy (approximate) matching,
or for documents that do not use whitespace or non-alphanumeric characters to separate terms, if no
external term breaker is specified. For more information about these algorithms and how to choose
between them, see “Text configuration object settings” [SQL Anywhere Server - SQL Usage].

PREFILTER EXTERNAL NAME clause Specify the PREFILTER EXTERNAL NAME clause to
specify an entry point to a prefilter function in an external library. This is useful if text data needs to be
extracted from binary data (for example, PDF). It is also useful if the text you want to index contains
formatting information and/or images that you want to strip out before indexing the data (for example,
HTML).

external-call can specify more than one function and/or library, and can include the file extension of the
library, which is typically .dll on Windows, and .so on Unix. In the absence of the file extension, the
database server defaults to the platform-specific file extension for libraries. For example, PREFILTER
EXTERNAL NAME
'PrefilterFunct1@myPreFilterlib;Unix:PrefilterFunct2@myPreFilterlib'
calls the PrefilterFunct1 function from myPreFilterlib.dll on Windows, and the PrefilterFunct2 function
from myPreFilterlib.so on Unix.

DROP PREFILTER clause Use the DROP PREFILTER clause to drop use of the specified
prefiltering library for the text configuration object. This means that prefiltering is no longer performed
when the database server builds indexes that use this text configuration object.

SAVE OPTION VALUES clause When a text configuration object is created, the current date_format,
time_format, timestamp_format, and timestamp_with_time_zone_format database options reflect how
DATE, TIME, and TIMESTAMP columns are saved with the text configuration object. Use the SAVE
OPTION VALUES clause to update the option values saved for the text configuration object to reflect the
options currently in effect for the connection. See “How to alter a text configuration object” [SQL
Anywhere Server - SQL Usage].

Remarks
Before changing the term length settings, read about the impact of various settings on what gets indexed
and how query terms are interpreted. See “Text configuration object settings” [SQL Anywhere Server -
SQL Usage], and “Example text configuration objects” [SQL Anywhere Server - SQL Usage].

Text indexes are dependent on a text configuration object. Before using this statement you must truncate
dependent AUTO or MANUAL REFRESH text indexes, and drop any IMMEDIATE REFRESH text
indexes.

To determine the text indexes that refer to a text configuration object, see “How to view text index info in
the database” [SQL Anywhere Server - SQL Usage].

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 437

To view the settings for text configuration objects, query the SYSTEXTCONFIG system view. See
“SYSTEXTCONFIG system view” on page 1179.

Permissions
When changing or dropping the external prefilter or term breaker, DBA authority is required (being the
owner of the text configuration object is not enough).

For all other cases, you can be the owner of the text configuration object, or have DBA authority.

Side effects
Automatic commit

See also
● “How to alter a text configuration object” [SQL Anywhere Server - SQL Usage]
● “Text configuration object settings” [SQL Anywhere Server - SQL Usage]
● “Tutorial: Performing a full text search on a GENERIC text index” [SQL Anywhere Server - SQL

Usage]
● “Tutorial: Performing a fuzzy full text search” [SQL Anywhere Server - SQL Usage]
● “CREATE TEXT CONFIGURATION statement” on page 610
● “DROP TEXT CONFIGURATION statement” on page 671
● “sa_char_terms system procedure” on page 954
● “sa_nchar_terms system procedure” on page 1037
● “sa_refresh_text_indexes system procedure” on page 1049
● “sa_text_index_stats system procedure” on page 1089

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statements create a text configuration object, maxTerm16, and then change the maximum
term length to 16:

CREATE TEXT CONFIGURATION maxTerm16 FROM default_char;
ALTER TEXT CONFIGURATION maxTerm16
 MAXIMUM TERM LENGTH 16;

The following statement adds a stoplist to the maxTerm16 configuration object:

ALTER TEXT CONFIGURATION maxTerm16
 STOPLIST 'because about therefore only';

The following statement configures an external term breaker for the myTextConfig text configuration
object. Both the Windows and Unix interfaces are specified.

ALTER TEXT CONFIGURATION myTextConfig
 TERM BREAKER GENERIC
 EXTERNAL NAME
'my_termbreaker@termbreaker.dll;Unix:my_termbreaker@libtermbreaker_r.so'

The following example configures an external prefilter for the myTextConfig text configuration object.
Both the Windows and Unix interfaces are specified.

SQL statements

438 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ALTER TEXT CONFIGURATION myTextConfig
 PREFILTER EXTERNAL NAME
'html_xml_filter@html_xml_filter.dll;UNIX:html_xml_filter@libhtml_xml_filter_
r.so';

The following example drops the external prefilter for the myTextConfig text configuration object.

ALTER TEXT CONFIGURATION myTextConfig DROP PREFILTER;

ALTER TEXT INDEX statement
Alters the definition of a text index.

Syntax
ALTER TEXT INDEX [owner.]text-index-name
ON [owner.]table-name
alter-clause

alter-clause :
rename-object
| refresh-alteration

rename-object :
 RENAME { AS | TO } new-name

refresh-alteration :
{ MANUAL REFRESH
| AUTO REFRESH [EVERY integer { MINUTES | HOURS }] }

Parameters
RENAME clause Use the RENAME clause to rename the text index.

REFRESH clause Specify the REFRESH clause to set the refresh type for the text index. For more
information about the options for this clause, see “CREATE TEXT INDEX statement” on page 611.

Remarks
Once a text index is created, you cannot change it to, or from, IMMEDIATE REFRESH. If either of these
changes is required, you must drop and recreate the text index.

To view text indexes and the text configuration objects they refer to, see “How to view text index info in
the database” [SQL Anywhere Server - SQL Usage].

Permissions
Must be the owner of the underlying table, or have DBA authority, or have REFERENCES permission.

This statement cannot be executed when there are cursors opened with the WITH HOLD clause that use
either statement or transaction snapshots. See “Snapshot isolation” [SQL Anywhere Server - SQL Usage].

Side effects
Automatic commit

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 439

See also
● “Full text search” [SQL Anywhere Server - SQL Usage]
● “Altering text indexes overview” [SQL Anywhere Server - SQL Usage]
● “Tutorial: Performing a full text search on a GENERIC text index” [SQL Anywhere Server - SQL

Usage]
● “Tutorial: Performing a fuzzy full text search” [SQL Anywhere Server - SQL Usage]
● “CREATE TEXT INDEX statement” on page 611
● “ALTER TEXT INDEX statement” on page 439
● “DROP TEXT INDEX statement” on page 672
● “REFRESH TEXT INDEX statement” on page 801
● “TRUNCATE TEXT INDEX statement” on page 882

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The first statement creates a text index, txt_index_manual, defining it as MANUAL REFRESH. The
second statement alters the text index to refresh automatically every day. The third statement renames the
text index to txt_index_daily.

CREATE TEXT INDEX txt_index_manual ON MarketingInformation (Description)
 MANUAL REFRESH;
ALTER TEXT INDEX txt_index_manual ON MarketingInformation
 AUTO REFRESH EVERY 24 HOURS;
ALTER TEXT INDEX txt_index_manual ON MarketingInformation
 RENAME AS txt_index_daily;

ALTER TRIGGER statement
Replaces a trigger definition with a modified version. You must include the entire new trigger definition
in the ALTER TRIGGER statement.

Syntax 1 - Change the definition of a trigger
ALTER TRIGGER trigger-name trigger-definition

trigger-definition : CREATE TRIGGER syntax

Syntax 2 - Obfuscate a trigger definition
ALTER TRIGGER trigger-name ON [owner.] table-name SET HIDDEN

Remarks
● Syntax 1 The ALTER TRIGGER statement is identical in syntax to the CREATE TRIGGER

statement except for the first word. For information about trigger-definition, see “CREATE
TRIGGER statement” on page 614 and “CREATE TRIGGER statement [T-SQL]” on page 619.

Either the Transact-SQL or Watcom SQL form of the CREATE TRIGGER syntax can be used.

SQL statements

440 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● Syntax 2 You can use SET HIDDEN to obfuscate the definition of the associated trigger and cause
it to become unreadable. The trigger can be unloaded and reloaded into other databases. If SET
HIDDEN is used, debugging using the debugger does not show the trigger definition, nor is it be
available through procedure profiling.

Note
The SET HIDDEN operation is irreversible.

Permissions
Must be the owner of the table on which the trigger is defined, or be user DBA, or have ALTER
permissions on the table and have RESOURCE authority.

Side effects
Automatic commit.

See also
● “CREATE TRIGGER statement” on page 614
● “CREATE TRIGGER statement [T-SQL]” on page 619
● “DROP TRIGGER statement” on page 673
● “Hiding the contents of procedures, functions, triggers and views” [SQL Anywhere Server - SQL

Usage]

Standards and compatibility
● SQL/2008 Vendor extension.

ALTER USER statement
Alters user settings.

Syntax 1 - Change the definition of a database user
ALTER USER user-name [IDENTIFIED BY password]
 [LOGIN POLICY policy-name]
 [FORCE PASSWORD CHANGE { ON | OFF }]

Syntax 2 - Revert a user's login policy to the original values
ALTER USER user-name
[RESET LOGIN POLICY]

Parameters
user-name The name of the user.

IDENTIFIED BY clause The password for the user.

policy-name The name of the login policy to assign the user. No change is made if the LOGIN
POLICY clause is not specified.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 441

FORCE PASSWORD CHANGE clause Controls whether the user must specify a new password
when they log in. This setting overrides the password_expiry_on_next_login option setting in their policy.

RESET LOGIN POLICY clause Reverts the settings of a user's login policy to the original values.
When you reset a login policy, a user can access an account that has been locked for exceeding a login
policy option limit such as max_failed_login_attempts or max_days_since_login.

Remarks
User IDs and passwords cannot:

● begin with white space, single quotes, or double quotes
● end with white space
● contain semicolons

A password can be either a valid identifier, or a string (maximum 255 bytes) placed in single quotes.
Passwords are case sensitive. It is recommended that the password be composed of 7-bit ASCII
characters, as other characters may not work correctly if the database server cannot convert them from the
client's character set to UTF-8.

The verify_password_function option can be used to specify a function to implement password rules (for
example, passwords must include at least one digit). If a password verification function is used, you
cannot specify more than one user ID and password in the GRANT CONNECT statement. See
“verify_password_function option” [SQL Anywhere Server - Database Administration].

If you set the password_expiry_on_next_login value to ON, the user's password expires immediately
when they next login even if they are assigned to the same policy. You can use the ALTER USER and
LOGIN POLICY clauses to force a user to change their password when they next login.

Permissions
Any user can change their own password. All other changes require DBA authority.

Side effects
None.

See also
● “ALTER LOGIN POLICY statement” on page 400
● “COMMENT statement” on page 468
● “CREATE LOGIN POLICY statement” on page 526
● “CREATE USER statement” on page 621
● “DROP LOGIN POLICY statement” on page 656
● “DROP USER statement” on page 674
● “Managing login policies” [SQL Anywhere Server - Database Administration]
● “Assigning a login policy to an existing user” [SQL Anywhere Server - Database Administration]
● “GRANT statement” on page 718

SQL statements

442 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement alters a user named SQLTester. The password is set to welcome. The SQLTester
user is assigned to the Test1 login policy and the password does not expire on the next login.

ALTER USER SQLTester IDENTIFIED BY welcome
LOGIN POLICY Test1
FORCE PASSWORD CHANGE off;

ALTER VIEW statement
Replaces a view definition with a modified version.

Syntax 1 - Change the definition of a view
ALTER VIEW
[owner.]view-name [(column-name, ...)] AS select-statement
[WITH CHECK OPTION]

Syntax 2 - Change the attributes of a view
ALTER VIEW
[owner.]view-name { SET HIDDEN | RECOMPILE | DISABLE | ENABLE }

Parameters
AS clause The purpose and syntax of this clause is identical to that of the CREATE VIEW statement.
See “CREATE VIEW statement” on page 624.

WITH CHECK OPTION clause The purpose and syntax of this clause is identical to that of the
CREATE VIEW statement. See “CREATE VIEW statement” on page 624.

SET HIDDEN clause Use the SET HIDDEN clause to obfuscate the definition of the view and cause
the view to become hidden from view, for example in Sybase Central. Explicit references to the view still
work.

Note
The SET HIDDEN operation is irreversible.

RECOMPILE clause Use the RECOMPILE clause to re-create the column definitions for the view.
This clause is identical in functionality to the ENABLE clause, except that it can be used on a view that is
not disabled. When a view is recompiled, the database server restores the column permissions based on
the column names specified in the new view definition. The existing permissions are lost when a column
no longer exists after the recompilation.

DISABLE clause Use the DISABLE clause to disable the view from use by the database server.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 443

ENABLE clause Use the ENABLE clause to enable a disabled view. Enabling the view causes the
database server to re-create the column definitions for the view. Before you enable a view, you must
enable any views upon which it depends.

Remarks
If you alter a view owned by another user, you must qualify the name by including the owner (for
example, GROUPO.ViewSalesOrders). If you don't qualify the name, the database server looks for a view
with that name owned by you and alters it. If there isn't one, it returns an error.

When you alter a view, existing permissions on the view are maintained, and do not have to be
reassigned. Instead of using the ALTER VIEW statement, you could also drop the view and recreate it
using the DROP VIEW and CREATE VIEW, respectively. However, if you do so, permissions on the
view need to be reassigned.

After completing the view alteration using Syntax 1, the database server recompiles the view. Depending
on the type of change you made, if there are dependent views, the database server attempts to recompile
them as well. If you have made a change that impacts a dependent view, you may need to alter the
definition for the dependent view as well. For more information about view alterations and how they
impact view dependencies, see “View dependencies” [SQL Anywhere Server - SQL Usage].

Caution
If the SELECT statement defining the view contained an asterisk (*), the number of the columns in the
view may change if columns have been added or deleted from the underlying tables. The names and data
types of the view columns may also change.

Syntax 1 This syntax is used to alter the structure of the view. Unlike altering tables where your
change may be limited to individual columns, altering the structure of a view requires you to replace the
entire view definition with a new definition, much as you would for creating the view. For a description of
the parameters used to define the structure of a view, see “CREATE VIEW statement” on page 624.

Syntax 2 This syntax is used to change attributes for the view, such as whether the view definition is
hidden.

When you use SET HIDDEN, the view can be unloaded and reloaded into other databases. If SET
HIDDEN is used, debugging using the debugger does not show the view definition, nor is it be available
through procedure profiling. If you need to change the definition of a hidden view, you must drop the
view and create it again using the CREATE VIEW statement.

When you use the DISABLE clause, the view is no longer available for use by the database server for
answering queries. Disabling a view is similar to dropping it, except that the view definition remains in
the database. Disabling a view also disables any dependent views. Therefore, the DISABLE clause
requires exclusive access not only to the view being disabled, but also any dependent views, since they
are disabled too.

Permissions
Must be owner of the view or have DBA authority.

SQL statements

444 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Side effects
Automatic commit.

All procedures and triggers are unloaded from memory, so that any procedure or trigger that references
the view reflects the new view definition. The unloading and loading of procedures and triggers can have
a performance impact if you are regularly altering views.

See also
● “CREATE VIEW statement” on page 624
● “DROP VIEW statement” on page 676
● “Hiding the contents of procedures, functions, triggers and views” [SQL Anywhere Server - SQL

Usage]
● “View dependencies” [SQL Anywhere Server - SQL Usage]
● “CREATE MATERIALIZED VIEW statement” on page 529
● “ALTER MATERIALIZED VIEW statement” on page 401

Standards and compatibility
● SQL/2008 Vendor extension.

ATTACH TRACING statement
Starts a diagnostic tracing session (starts sending diagnostic information to the diagnostic tables).

Syntax

ATTACH TRACING TO { LOCAL DATABASE | connect-string }
 [LIMIT { size | history }]

connect-string : the connection string for the database

size : SIZE nnn { MB | GB }

history : HISTORY nnn { MINUTES | HOURS | DAYS }

nnn : integer

Parameters
● connect-string The connection string required to connect to the database receiving the tracing

information. This parameter is only required when the database being profiled is different from the
database receiving the data.

The following connection parameters are allowed in connect-string: DBF, DBKEY, DBN, Host,
Server, LINKS, PWD, UID.

Specify DBF relative to the database server to which you want to connect. If you do not specify a
different database server, then the database server to which you are currently connected attempts to
start the tracing database identified by the DBF connection parameter.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 445

An error is returned if you specify the DBF parameter with the LINKS or Server connection parameters.

For more information about connction parameters, see “Connection parameters” [SQL Anywhere
Server - Database Administration].

● LIMIT clause The volume limit of data stored in the tracing database, either by size, or by length of
time.

Remarks
The ATTACH TRACING statement is used to start a tracing session for the database you want to profile.
You can only use it once a tracing level has been set. You can set the tracing level using Sybase Central,
or using the sa_set_tracing_level system procedure. See “sa_set_tracing_level system
procedure” on page 1080.

Once a session is started, tracing information is generated according to the tracing levels set in the
sa_diagnostic_tracing_level table. You can send the tracing data to tracing tables within the same
database that is being profiled, by specifying LOCAL DATABASE. Alternatively, you can send the
tracing data to a separate tracing database by specifying a connection string (connect-string) to that
database. The tracing database must already exist, and you must have permissions to access it.

You can limit the amount of tracing data to store using the LIMIT SIZE or LIMIT HISTORY clauses.
Use the LIMIT SIZE clause when you want to limit the volume of tracing data to a certain size, as
measured in megabytes or gigabytes. Use the LIMIT HISTORY clause to limit the volume of tracing data
to a period of time, as measured in minutes, hours, or days. For example, HISTORY 8 DAYS limits the
amount of tracing data stored in the tracing database to 8 days' worth.

To start a tracing session, TCP/IP must be running on the database server(s) on which the tracing database
and production database are running. See “Using the TCP/IP protocol” [SQL Anywhere Server - Database
Administration] and “-x dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database
Administration].

Packets that contain potentially sensitive data are visible on the network interface, even when tracing to a
local database. For security purposes, you can specify encryption in the connection string.

To see the current tracing levels set for a database, look in the sa_diagnostic_tracing_level table. See
“sa_diagnostic_tracing_level table” on page 935.

To see where tracing data is being sent to, examine the SendingTracingTo database property. See
“SendingTracingTo database property” [SQL Anywhere Server - Database Administration].

Permissions
Must be connected to the database being profiled and must have DBA or PROFILE authority.

Side effects
None.

SQL statements

446 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “DETACH TRACING statement” on page 647
● “REFRESH TRACING LEVEL statement” on page 803
● “Advanced application profiling using diagnostic tracing” [SQL Anywhere Server - SQL Usage]
● “sa_set_tracing_level system procedure” on page 1080

Standards and compatibility
● SQL/2008 Vendor extension.

Examples
The following example sets the tracing level to 1 using the sa_set_tracing_level system procedure. Then it
starts a tracing session. Tracing data generated for the local database will be sent to the mytracingdb
tracing database on another computer, as shown by the specified connection string. A maximum of two
hours of tracing data will be maintained during the tracing session. Note that the ATTACH TRACING
statement example is all on one line.

CALL sa_set_tracing_level(1);
ATTACH TRACING TO
'uid=DBA;pwd=sql;server=remotedbsrv;dbn=mytracingdb;host=winxp-32'
 LIMIT HISTORY 2 HOURS;

BACKUP statement
Backs up a database and transaction log.

Syntax 1 - Image backup
BACKUP DATABASE
DIRECTORY backup-directory
[backup-option [backup-option ...]

backup-directory : { string | variable }

backup-option :
WAIT BEFORE START
| WAIT AFTER END
| DBFILE ONLY
| TRANSACTION LOG ONLY
| TRANSACTION LOG RENAME [MATCH]
| TRANSACTION LOG TRUNCATE
| ON EXISTING ERROR
| WITH COMMENT comment string
| HISTORY { ON | OFF }
| AUTO TUNE WRITERS { ON | OFF }
| WITH CHECKPOINT LOG { AUTO | COPY | NO COPY | RECOVER }

Syntax 2 - Archive backup
BACKUP DATABASE TO archive-root
[backup-option [backup-option ...]

archive-root : { string | variable }

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 447

backup-option :
| WAIT BEFORE START
| WAIT AFTER END
| DBFILE ONLY
| TRANSACTION LOG ONLY
| TRANSACTION LOG RENAME [MATCH]
| TRANSACTION LOG TRUNCATE
| ATTENDED { ON | OFF }
| WITH COMMENT comment string
| HISTORY { ON | OFF }
| WITH CHECKPOINT LOG [NO] COPY
| MAX WRITE { number-of-writers | AUTO }
| FREE PAGE ELIMINATION { ON | OFF }

comment-string : string

number-of-writers : integer

Parameters
DIRECTORY clause The target location on disk for the backup files, relative to the database server's
current directory at startup. If the directory does not exist, it is created. Specifying an empty string as a
directory allows you to rename or truncate the transaction log without first making a copy of it. Do not
use this clause if you are using database mirroring. See “Database mirroring and transaction log files”
[SQL Anywhere Server - Database Administration].

WAIT BEFORE START clause Use this clause to ensure that the rollback log for each connection in
the backup copy of the database is empty. Use this clause with the WITH CHECKPOINT LOG NO
COPY clause to verify that the backup copy of the database does not contain any information required for
recovery.

If you use the WAIT BEFORE START and WITH CHECKPOINT LOG NO COPY clauses to complete
a backup, you can start the backup copy of the database in read-only mode and validate it. By enabling
validation of the backup database, you can avoid making an additional copy of the database.

When this clause is specified, the backup is delayed until there are no active transactions. All other
activity on the database is prevented and a checkpoint is performed to ensure that the backup copy of the
database does not require recovery. When the checkpoint is complete, other activity on the database resumes.

WAIT AFTER END clause When renaming or truncating the transaction log you can specify the
WAIT AFTER END clause to ensure that all transactions are completed before the log is renamed or
truncated. If you specify this clause, the backup waits for other connections to commit or rollback any
open transactions before finishing. This clause should be used with caution because new, incoming
transactions may cause the backup to wait indefinitely.

DBFILE ONLY clause When you specify the DBFILE ONLY clause, backup copies of the main
database file and all associated dbspaces are made, but the transaction log is not copied. You cannot use
the DBFILE ONLY clause with the TRANSACTION LOG RENAME or TRANSACTION LOG
TRUNCATE clauses.

TRANSACTION LOG ONLY clause You can specify the TRANSACTION LOG ONLY clause to
create a backup copy of the transaction log, without copying the other database files.

SQL statements

448 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

TRANSACTION LOG RENAME [MATCH] clause This clause causes the database server to rename
the current transaction log at the completion of the backup. If the MATCH keyword is omitted, the
backup copy of the transaction log has the same name as the current transaction log for the database. If
you supply the MATCH keyword, the backup copy of the transaction log is given a name of the form
YYMMDDnn.log, to match the renamed copy of the current transaction log. Using the MATCH keyword
enables the same statement to be executed several times without writing over old data.

The transaction log can be renamed without completing a backup by specifying an empty directory name
with the TRANSACTION LOG ONLY clause. For example:

BACKUP DATABASE DIRECTORY ''
TRANSACTION LOG ONLY
TRANSACTION LOG RENAME;

TRANSACTION LOG TRUNCATE clause If this clause is used, the current transaction log is
truncated and restarted at the completion of the backup. Do not use this clause if you are using database
mirroring. See “Database mirroring and transaction log files” [SQL Anywhere Server - Database
Administration].

The transaction log can be truncated without completing a backup by specifying an empty directory name
with the TRANSACTION LOG ONLY clause. For example:

BACKUP DATABASE DIRECTORY ''
TRANSACTION LOG ONLY
TRANSACTION LOG TRUNCATE;

archive-root clause The file name or tape drive device name for the archive file.

To back up to tape, you must specify the device name of the tape drive. The number automatically
appended to the end of the archive file name is incremented each time you execute an archive backup.

The backslash (\) is an escape character in SQL strings, so each backslash must be doubled. For more
information about escape characters and strings, see “Strings” on page 5.

ON EXISTING ERROR clause This clause applies only to image backups. By default, existing files
are overwritten when you execute a BACKUP DATABASE statement. If this clause is used, an error
occurs if any of the files to be created by the backup already exist.

ATTENDED clause The clause applies only when backing up to a tape device. ATTENDED ON (the
default) indicates that someone is available to monitor the status of the tape drive and to place a new tape
in the drive when needed. A message is sent to the application that issued the BACKUP DATABASE
statement if the tape drive requires intervention. The database server then waits for the drive to become
ready. This may happen, for example, when a new tape is required.

If ATTENDED OFF is specified and a new tape is required or the drive is not ready, no message is sent
and an error is given.

WITH COMMENT clause This clause records a comment in the backup history file. For archive
backups, the comment is also recorded in the archive file.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 449

HISTORY clause By default, each backup operation appends a line to the backup.syb file. You can
prevent updates to the backup.syb file by specifying HISTORY OFF. You may want to prevent the file
from being updated if any of the following conditions apply:

○ your backups occur frequently
○ there is no procedure to periodically archive or delete the backup.syb file
○ disk space is very limited

For more information about the backup.syb file, see “SALOGDIR environment variable” [SQL Anywhere
Server - Database Administration].

AUTO TUNE WRITERS clause When the backup starts, one thread is dedicated to writing the backup
files to the backup directory. However, if the backup directory is on a device that can handle an increased
writer load (such as a RAID array), then overall backup performance can be improved by increasing the
number of threads acting as writers. If this clause is ON (the default), the database server periodically
examines the read and write performance from all the devices taking part in the backup. If the overall
backup speed can be improved by creating another writer, then the database server creates another writer.

WITH CHECKPOINT LOG clause This clause specifies how the backup processes the database files
before writing them to the destination directory. The choice of whether to apply pre-images during a
backup, or copy the checkpoint log as part of the backup, has performance implications. The default
setting is AUTO for image backups and COPY for archive backups.

○ COPY clause This option cannot be used with the WAIT BEFORE START clause of the
BACKUP statement.

When you specify COPY, the backup reads the database files without applying any modified pages.
The entire checkpoint log and the system dbspace are copied to the backup directory. The next time
the database server is started, the database server automatically recovers the database to the state it
was in as of the checkpoint at the time the backup started.

Because pages do not have to be written to the temporary file, using this option can provide better
backup performance, and reduce internal server contention for other connections that are operating
during a backup. However, since the checkpoint log contains original images of modified pages, it
grows in the presence of database updates. With copy specified, the backed-up copy of the database
files may be larger than the database files at the time the backup started. The COPY option should be
used if disk space in the destination directory is not an issue.

○ NO COPY clause When you specify NO COPY, the checkpoint log is not copied as part of the
backup. This option causes modified pages to be saved in the temporary file so that they can be
applied to the backup as it progresses. The backup copies of the database files will be the same size as
the database when the backup operation commenced.

This option results in smaller backed up database files, but the backup may proceed more slowly, and
possibly decrease performance of other operations in the database server. It is useful in situations
where space on the destination drive is limited.

○ RECOVER clause When you specify RECOVER, the database server copies the checkpoint log
(as with the COPY option), but applies the checkpoint log to the database when the backup is
complete. This restores the backed up database files to the same state (and size) that they were in at

SQL statements

450 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

the start of the backup operation. This option is useful if space on the backup drive is limited (it
requires the same amount of space as the COPY option for backing up the checkpoint log, but the
resulting file size is smaller).

○ AUTO clause When you specify AUTO, the database server checks the amount of available disk
space on the volume hosting the backup directory. If there is at least twice as much disk space
available as the size of the database at the start of the backup, then this option behaves as if copy were
specified. Otherwise, it behaves as NO COPY. AUTO is the default behavior.

MAX WRITE clause For archive backups, by default one thread is dedicated to writing the backup
files. If the backup directory is on a device that can handle an increased writer load (such as a RAID
array), then overall backup performance can be improved by increasing the number of threads acting as
writers.

If AUTO is specified, one output stream is created for each reader thread. The value n specifies the
maximum number of output streams that can be created, up to the number of reader threads. The default
value for this clause is 1. If you are backing up to tape, only one writer can be used.

The first stream, stream 0, produces files named myarchive.X, where X is a number that starts at 1 and
continues incrementing to the number of files required. All of the other streams produce files named
myarchive.Y.Z, where Y is the stream number (starting at 1), and Z is a number that starts at 1 and
continues incrementing to the number of files required.

FREE PAGE ELIMINATION clause By default, archive backups skip some free pages, which can
result in smaller and potentially faster backups. Free page elimination has no effect on the back up of
transaction log files because transaction log files do not contain free pages. Databases with large
transaction log files may not benefit as much from free page elimination as databases with small
transaction log files.

When you back up a strongly-encrypted database with free page elimination turned on, you must specify
the encryption key when restoring the database. When you back up a strongly-encrypted database with
free page elimination turned off, you do not need to specify the encryption key when restoring the
database. See “KEY CLAUSE, RESTORE DATABASE statement” on page 811.

Archive backups created with version 12 database servers cannot be restored with version 11 or earlier
database servers.

Remarks
The BACKUP statement performs a server-side backup. To perform a client-side backup, use the
dbbackup utility. See “Backup utility (dbbackup)” [SQL Anywhere Server - Database Administration].

Each backup operation, whether image or archive, updates a history file called backup.syb. This file
records the BACKUP and RESTORE operations that have been performed on a database server. For
information about how the location of the backup.syb file is determined, see “SALOGDIR environment
variable” [SQL Anywhere Server - Database Administration].

To create a backup that can be started on a read-only server without having to go through recovery, you
must use both the WAIT BEFORE START and WITH CHECKPOINT LOG NO COPY clauses. The
WAIT BEFORE START clause ensures that the rollback log is empty, and the WITH CHECKPOINT

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 451

LOG NO COPY clause ensures that the checkpoint log is empty. If either of these files is missing, then
recovery is required. You can use WITH CHECKPOINT LOG RECOVER as an alternative to the WAIT
BEFORE START and WITH CHECKPOINT LOG NO COPY clauses if you do not need to recover the
database you backed up.

● Syntax 1 - Image backup An image backup creates copies of each of the database files, in the
same way as the Backup utility (dbbackup). By default, the Backup utility makes the backup on the
client computer, but you can specify the -s option to create the backup on the database server when
using the Backup utility. For the BACKUP DATABASE statement, however, the backup can only be
made on the database server.

Optionally, only the database file(s) or transaction log can be saved. The transaction log may also be
renamed or truncated after the backup has completed.

Alternatively, you can specify an empty string as a directory to rename or truncate the log without
copying it first. This is useful in a replication environment where space is a concern. You can use this
feature with an event handler on transaction log size to rename the transaction log when it reaches a
given size, and with the delete_old_logs option to delete the transaction log when it is no longer needed.

To restore from an image backup, copy the saved files back to their original locations and reapply the
transaction logs as described in “Recovering a database with multiple transaction logs” [SQL
Anywhere Server - Database Administration].

● Syntax 2 - Archive backup An archive backup creates a single file holding all the required
backup information. The destination can be either a file name or a tape drive device name.

There can be only one backup on a given tape. The tape is ejected at the end of the backup.

Only one archive per tape is allowed, but a single archive can span multiple tapes. To restore a
database from an archive backup, use the RESTORE DATABASE statement.

If a RESTORE DATABASE statement references an archive file containing only a transaction log,
the statement must specify a file name for the location of the restored database file, even if that file
does not exist. For example, to restore from an archive that only contains a transaction log to the
directory C:\MYNEWDB, the RESTORE DATABASE statement is:

RESTORE DATABASE 'c:\mynewdb\my.db' FROM archive-root

Caution
Backup copies of the database and transaction log must not be changed in any way. If there were no
transactions in progress during the backup, or if you specified BACKUP DATABASE WITH
CHECKPOINT LOG RECOVER or WITH CHECKPOINT LOG NO COPY, you can check the
validity of the backup database using read-only mode or by validating a copy of the backup database.

However, if transactions were in progress, or if you specified BACKUP DATABASE WITH
CHECKPOINT LOG COPY, the database server must perform recovery on the database when you
start it. Recovery modifies the backup copy, which is not desirable.

During the execution of this statement, you can request progress messages. See “progress_messages
option” [SQL Anywhere Server - Database Administration].

SQL statements

452 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

You can also use the Progress connection property to determine how much of the statement has been
executed. See “Progress connection property” [SQL Anywhere Server - Database Administration].

Permissions
Must have DBA, REMOTE DBA, or BACKUP authority.

Side effects
Causes a checkpoint.

See also
● “Backup utility (dbbackup)” [SQL Anywhere Server - Database Administration]
● “Image backups” [SQL Anywhere Server - Database Administration]
● “RESTORE DATABASE statement” on page 810
● “Backup and data recovery” [SQL Anywhere Server - Database Administration]
● “EXECUTE IMMEDIATE statement [SP]” on page 678
● “Understanding parallel database backups” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

● Windows Mobile Only the BACKUP DATABASE DIRECTORY syntax (syntax 1) is supported
on Windows Mobile.

Example
Back up the current database and the transaction log, each to a different file, and rename the existing
transaction log. An image backup is created.

BACKUP DATABASE
DIRECTORY 'd:\\temp\\backup'
TRANSACTION LOG RENAME;

The option to rename the transaction log is useful, especially in replication environments where the old
transaction log is still required.

Back up the current database and transaction log to tape:

BACKUP DATABASE
TO '\\\\.\\tape0';

Rename the transaction log without making a copy:

BACKUP DATABASE DIRECTORY ''
TRANSACTION LOG ONLY
TRANSACTION LOG RENAME;

Execute the BACKUP DATABASE statement with a dynamically-constructed directory name:

CREATE EVENT NightlyBackup
SCHEDULE
START TIME '23:00' EVERY 24 HOURS
HANDLER
BEGIN

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 453

 DECLARE dest LONG VARCHAR;
 DECLARE day_name CHAR(20);

 SET day_name = DATENAME(WEEKDAY, CURRENT DATE);
 SET dest = 'd:\\backups\\' || day_name;
 BACKUP DATABASE DIRECTORY dest
 TRANSACTION LOG RENAME;
END;

BEGIN SNAPSHOT statement

Starts a snapshot at a specified period in time for use with snapshot isolation transactions.

Syntax
BEGIN SNAPSHOT

Remarks
By default, when a transaction begins, the database server defers creating the snapshot until the
application causes the first row of a table to be fetched. You can use the BEGIN SNAPSHOT statement to
start the snapshot earlier within the transaction. The database server creates a snapshot when the BEGIN
SNAPSHOT statement is executed by a snapshot transaction.

The statement fails and returns an error when either of the following conditions is met:

● support for snapshots transactions has not been enabled for the database. See
“allow_snapshot_isolation option” [SQL Anywhere Server - Database Administration].

● a snapshot has already been started for the current transaction.

This statement is also useful for non-snapshot transactions because it allows them to start a snapshot that
can be used later in the transaction for a statement-level snapshot operation.

Permissions
None.

Side effects
None.

See also
● “Snapshot isolation” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 Vendor extension.

BEGIN statement

SQL statements

454 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Groups SQL statements together.

Syntax
[statement-label :]
BEGIN [[NOT] ATOMIC]
 [local-declaration; ...]
 statement-list
 [EXCEPTION [exception-case ...]]
END [statement-label]

local-declaration :
 variable-declaration
| cursor-declaration
| exception-declaration
| temporary-table-declaration

variable-declaration
DECLARE variable-name [, ...] data-type [{ = | DEFAULT } initial-value]

initial-value :
special-value
| string
| [-] number
| (constant-expression)
| built-in-function (constant-expression)
| NULL

special-value :
CURRENT {
 DATABASE
 |DATE
 | PUBLISHER
 | TIME
 | TIMESTAMP
 | USER
 | UTC TIMESTAMP }
| USER

exception-declaration :
DECLARE exception-name EXCEPTION
FOR SQLSTATE [VALUE] string

exception-case :
 WHEN exception-name [, ...] THEN statement-list
| WHEN OTHERS THEN statement-list

Parameters
local-declaration Immediately following the BEGIN, a compound statement can have local
declarations for objects that only exist within the compound statement. A compound statement can have a
local declaration for a variable, a cursor, a temporary table, or an exception. Local declarations can be
referenced by any statement in that compound statement, or in any compound statement nested within it.
Local declarations are not visible to other procedures that are called from within a compound statement.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 455

statement-label If the ending statement-label is specified, it must match the beginning statement-
label. The LEAVE statement can be used to resume execution at the first statement after the compound
statement. The compound statement that is the body of a procedure or trigger has an implicit label that is
the same as the name of the procedure or trigger.

For a complete description of compound statements and exception handling, see “Errors and warnings in
procedures and triggers” [SQL Anywhere Server - SQL Usage].

ATOMIC clause An atomic statement is a statement that is executed completely or not at all. For
example, an UPDATE statement that updates thousands of rows might encounter an error after updating
many rows. If the statement does not complete, all changes revert back to their original state. Similarly, if
you specify that the BEGIN statement is atomic, the statement is executed either in its entirety or not at all.

Remarks
The body of a procedure or trigger is a compound statement. Compound statements can also be used in
control statements within a procedure or trigger.

A compound statement allows one or more SQL statements to be grouped together and treated as a unit. A
compound statement starts with the keyword BEGIN and ends with the keyword END.

If you specify initial-value, the variable is set to that value. If you do not specify an initial-value, the
variable contains the NULL value until a different value is assigned by the SET statement.

If you specify initial-value, the data type must match the type defined by data-type.

Permissions
None.

Side effects
None.

See also
● “DECLARE CURSOR statement [ESQL] [SP]” on page 628
● “DECLARE LOCAL TEMPORARY TABLE statement” on page 633
● “CONTINUE statement” on page 476
● “SIGNAL statement” on page 856
● “RESIGNAL statement” on page 809
● “Using procedures, triggers, and batches” [SQL Anywhere Server - SQL Usage]
● “Atomic compound statements” [SQL Anywhere Server - SQL Usage]
● “Special values” on page 58

Standards and compatibility
● SQL/2008 BEGIN, which identifies a compound statement, comprises part of optional SQL

language feature P002 in SQL/2008. The form of exception declaration supported by SQL Anywhere,
namely the DECLARE EXCEPTION statement, is a vendor extension; in SQL/2008, exceptions are
specified using a handler declaration using the keywords DECLARE HANDLER.

SQL statements

456 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● Transact-SQL BEGIN ... END blocks are supported by Adaptive Server Enterprise to define
compound statements.

Example
The body of a procedure or trigger is a compound statement.

CREATE PROCEDURE TopCustomer (OUT TopCompany CHAR(35), OUT TopValue INT)
BEGIN
 DECLARE err_notfound EXCEPTION FOR
 SQLSTATE '02000';
 DECLARE curThisCust CURSOR FOR
 SELECT CompanyName, CAST(
 sum(SalesOrderItems.Quantity *
 Products.UnitPrice) AS INTEGER) VALUE
 FROM Customers
 LEFT OUTER JOIN SalesOrders
 LEFT OUTER JOIN SalesOrderItems
 LEFT OUTER JOIN Products
 GROUP BY CompanyName;
 DECLARE ThisValue INT;
 DECLARE ThisCompany CHAR(35);
 SET TopValue = 0;
 OPEN curThisCust;
 CustomerLoop:
 LOOP
 FETCH NEXT curThisCust
 INTO ThisCompany, ThisValue;
 IF SQLSTATE = err_notfound THEN
 LEAVE CustomerLoop;
 END IF;
 IF ThisValue > TopValue THEN
 SET TopValue = ThisValue;
 SET TopCompany = ThisCompany;
 END IF;
 END LOOP CustomerLoop;
 CLOSE curThisCust;
END;

The example below declares the following variables:

● v1 as an INT with the initial setting of 5.
● v2 and v3 as CHAR(10), both with an initial value of abc.

BEGIN
 DECLARE v1 INT = 5
 DECLARE v2, v3 CHAR(10) = 'abc'
 // ...
END

BEGIN TRANSACTION statement [T-SQL]

Begins a user-defined transaction.

Syntax
BEGIN TRAN[SACTION] [transaction-name]

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 457

Remarks
The optional parameter transaction-name is the name assigned to this transaction. It must be a valid
identifier. Use transaction names only on the outermost pair of nested BEGIN/COMMIT or BEGIN/
ROLLBACK statements.

When executed inside a transaction, the BEGIN TRANSACTION statement increases the nesting level of
transactions by one. The nesting level is decreased by a COMMIT statement. When transactions are
nested, only the outermost COMMIT makes the changes to the database permanent.

Both Adaptive Server Enterprise and SQL Anywhere have two transaction modes.

The default Adaptive Server Enterprise transaction mode, called unchained mode, commits each
statement individually, unless an explicit BEGIN TRANSACTION statement is executed to start a
transaction. In contrast, the ISO SQL/2008 compatible chained mode only commits a transaction when an
explicit COMMIT is executed or when a statement that carries out an autocommit (such as a data
definition statement) is executed.

You can control the mode by setting the chained database option. The default setting for ODBC and
embedded SQL connections in SQL Anywhere is On, in which case SQL Anywhere runs in chained
mode. (ODBC users should also check the AutoCommit ODBC setting). The default for TDS connections
is Off. See “chained option” [SQL Anywhere Server - Database Administration].

In unchained mode, a transaction is implicitly started before any data retrieval or modification statement.
These statements include: DELETE, INSERT, OPEN, FETCH, SELECT, and UPDATE. You must still
explicitly end the transaction with a COMMIT or ROLLBACK statement.

You cannot alter the setting of the chained option within a transaction.

Caution
When calling a stored procedure, you should ensure that it operates correctly under the required
transaction mode.

The current nesting level is held in the global variable @@trancount. The @@trancount variable has a
value of zero before the first BEGIN TRANSACTION statement is executed, and only a COMMIT
executed when @@trancount is equal to one makes changes to the database permanent.

You should not rely on the value of @@trancount for more than keeping track of the number of explicit
BEGIN TRANSACTION statements that have been issued.

When Adaptive Server Enterprise starts a transaction implicitly, the @@trancount variable is set to 1.
SQL Anywhere does not set the @@trancount value to 1 when a transaction is started implicitly. Instead,
the SQL Anywhere @@trancount variable has a value of zero before any BEGIN TRANSACTION
statement (even though there is a current transaction), while in Adaptive Server Enterprise (in chained
mode) it has a value of 1.

For transactions starting with a BEGIN TRANSACTION statement, @@trancount has a value of 1 in
both SQL Anywhere and Adaptive Server Enterprise after the first BEGIN TRANSACTION statement. If
a transaction is implicitly started with a different statement, and a BEGIN TRANSACTION statement is

SQL statements

458 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

then executed, @@trancount has a value of 2 in both SQL Anywhere, and Adaptive Server Enterprise
after the BEGIN TRANSACTION statement.

A ROLLBACK statement without a transaction or savepoint name always rolls back statements to the
outermost BEGIN TRANSACTION (explicit or implicit) statement, and cancels the entire transaction.

Permissions
None.

Side effects
None.

See also
● “COMMIT statement” on page 470
● “isolation_level option” [SQL Anywhere Server - Database Administration]
● “ROLLBACK statement” on page 820
● “SAVEPOINT statement” on page 824
● “Savepoints within transactions” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 Vendor extension.

● Transact-SQL BEGIN TRANSACTION is supported by Adaptive Server Enterprise.

Example
The following batch reports successive values of @@trancount as 0, 1, 2, 1, and 0. The values are printed
in the database server messages window.

PRINT @@trancount
BEGIN TRANSACTION
PRINT @@trancount
BEGIN TRANSACTION
PRINT @@trancount
COMMIT
PRINT @@trancount
COMMIT
PRINT @@trancount

BREAK statement [T-SQL]
Exits a compound statement or loop.

Syntax
BREAK

Remarks
The BREAK statement is a control statement that allows you to leave a loop. Execution resumes at the
first statement after the loop.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 459

Permissions
None.

Side effects
None.

See also
● “WHILE statement [T-SQL]” on page 906
● “CONTINUE statement” on page 476
● “BEGIN statement” on page 454
● “Using procedures, triggers, and batches” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 Transact-SQL extension.

Example
In this example, the BREAK statement breaks the WHILE loop if the most expensive product has a price
above $50. Otherwise, the loop continues until the average price is greater than or equal to $30:

WHILE (SELECT AVG(UnitPrice) FROM Products) < $30
BEGIN
 UPDATE Products
 SET UnitPrice = UnitPrice + 2
 IF (SELECT MAX(UnitPrice) FROM Products) > $50
 BREAK
END

CALL statement
Invokes a procedure.

Syntax 1
[variable =] CALL procedure-name ([expression, ...])

Syntax 2
[variable =] CALL procedure-name ([parameter-name = expression, ...])

Remarks
The CALL statement invokes a procedure that has been previously created with a CREATE
PROCEDURE statement. When the procedure completes, any INOUT or OUT parameter value is copied
back.

The argument list can be specified by position or by using keyword format. By position, the arguments
match up with the corresponding parameter in the parameter list for the procedure. By keyword, the
arguments are matched up with the named parameters.

SQL statements

460 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Procedure arguments can be assigned default values in the CREATE PROCEDURE statement, and
missing parameters are assigned the default value. If no default is set, and an argument is not provided, an
error is given.

Inside a procedure, a CALL statement can be used in a DECLARE statement when the procedure returns
result sets. See “Returning results from procedures” [SQL Anywhere Server - SQL Usage].

Subqueries are not allowed as arguments to a stored procedure in a CALL statement.

Procedures can return an integer value (for example, as a status indicator) using the RETURN statement.
You can save this return value in a variable using the equality sign as an assignment operator:

CREATE VARIABLE returnval INT;
returnval = CALL proc_integer (arg1 = val1, ...)

If the procedure being called returns an INT and the value is NULL, then the error status value, 0, is
returned instead. There is no way to differentiate between this case and the case of an actual value of 0
being returned.

Note
Use of this statement to invoke a function is deprecated. If you have a function you want to call, consider
using an assignment statement to invoke the function and assign its result to a variable. For example:

DECLARE varname INT;
SET varname=test();

Permissions
Must be the owner of the procedure, have EXECUTE permission for the procedure, or have DBA authority.

Side effects
None.

See also
● “CREATE FUNCTION statement” on page 516
● “CREATE FUNCTION statement (external procedures)” on page 504
● “CREATE FUNCTION statement (web clients)” on page 510
● “CREATE PROCEDURE statement” on page 552
● “CREATE PROCEDURE statement (external procedures)” on page 536
● “CREATE PROCEDURE statement (web clients)” on page 543
● “GRANT statement” on page 718
● “EXECUTE statement [T-SQL]” on page 683
● “Using procedures, triggers, and batches” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 Core feature. The use of the RETURN statement to return a value from a stored

procedure is a vendor extension; SQL/2008 supports return values only for SQL-invoked functions,
not for procedures. Default values for stored procedure arguments are not supported in SQL/2008.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 461

Example
Call the ShowCustomers procedure. This procedure has no parameters, and returns a result set.

CALL ShowCustomers();

The following Interactive SQL example creates a procedure to return the number of orders placed by the
customer whose ID is supplied, creates a variable to hold the result, calls the procedure, and displays the
result.

CREATE PROCEDURE OrderCount (IN customer_ID INT, OUT Orders INT)
BEGIN
 SELECT COUNT(SalesOrders.ID)
 INTO Orders
 FROM Customers
 KEY LEFT OUTER JOIN SalesOrders
 WHERE Customers.ID = customer_ID;
END
go
 -- Create a variable to hold the result
CREATE VARIABLE Orders INT
go
-- Call the procedure, FOR customer 101
CALL OrderCount (101, Orders)
go
-- Display the result
SELECT Orders FROM DUMMY
go

CASE statement
Selects an execution path based on multiple cases.

Syntax 1
CASE value-expression
WHEN [constant | NULL] THEN statement-list ...
[WHEN [constant | NULL] THEN statement-list] ...
[ELSE statement-list]
END [CASE]

Syntax 2
CASE
WHEN [search-condition | NULL] THEN statement-list ...
[WHEN [search-condition | NULL] THEN statement-list] ...
[ELSE statement-list]
END [CASE]

Remarks
Syntax 1 The CASE statement is a control statement that allows you to choose a list of SQL
statements to execute based on the value of an expression. The value-expression is an expression that
takes on a single value, which may be a string, a number, a date, or other SQL data type. If a WHEN
clause exists for the value of value-expression, the statement-list in the WHEN clause is executed. If no
appropriate WHEN clause exists, and an ELSE clause exists, the statement-list in the ELSE clause is
executed. Execution resumes at the first statement after the END CASE.

SQL statements

462 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

If the value-expression can be null, use the ISNULL function to replace the NULL value-expression with
a different expression.

Syntax 2 With this form, the statements are executed for the first satisfied search-condition in the
CASE statement. The ELSE clause is executed if none of the search-conditions are met.

If the expression can be NULL, use the following syntax for the first search-condition:

WHEN search-condition IS NULL THEN statement-list

CASE statement is different from CASE expression
Do not confuse the syntax of the CASE statement with that of the CASE expression. See “CASE
expressions” on page 15.

Permissions
None.

Side effects
None.

See also
● “ISNULL function [Miscellaneous]” on page 243
● “Unknown Values: NULL” [SQL Anywhere Server - SQL Usage]
● “BEGIN statement” on page 454
● “Using procedures, triggers, and batches” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 The CASE statement is part of language feature P002 (Computational completeness) of

the SQL/2008 standard. The use of END alone, rather than END CASE, is a vendor extension.

● Transact-SQL The CASE statement is supported by Adaptive Server Enterprise. See “CASE
statement [T-SQL]” on page 464.

Example
The following procedure using a case statement classifies the products listed in the Products table of the
SQL Anywhere sample database into one of shirt, hat, shorts, or unknown.

CREATE PROCEDURE ProductType (IN product_ID INT, OUT type CHAR(10))
BEGIN
 DECLARE prod_name CHAR(20);
 SELECT Name INTO prod_name FROM Products
 WHERE ID = product_ID;
 CASE prod_name
 WHEN 'Tee Shirt' THEN
 SET type = 'Shirt'
 WHEN 'Sweatshirt' THEN
 SET type = 'Shirt'
 WHEN 'Baseball Cap' THEN
 SET type = 'Hat'
 WHEN 'Visor' THEN
 SET type = 'Hat'

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 463

 WHEN 'Shorts' THEN
 SET type = 'Shorts'
 ELSE
 SET type = 'UNKNOWN'
 END CASE;
END;

The following example uses Syntax 2 to generate a message about product quantity within the SQL
Anywhere sample database.

CREATE PROCEDURE StockLevel (IN product_ID INT)
BEGIN
 DECLARE qty INT;
 SELECT Quantity INTO qty FROM Products
 WHERE ID = product_ID;
 CASE
 WHEN qty < 30 THEN
 MESSAGE 'Order Stock' TO CLIENT;
 WHEN qty > 100 THEN
 MESSAGE 'Overstocked' TO CLIENT;
 ELSE
 MESSAGE 'Sufficient stock on hand' TO CLIENT;
 END CASE;
END;

CASE statement [T-SQL]
Selects an execution path based on multiple cases.

Syntax 1
CASE value-expression
WHEN [constant | NULL] THEN statement-list ...
[WHEN [constant | NULL] THEN statement-list] ...
[ELSE statement-list]
END

Syntax 2
CASE
WHEN [search-condition | NULL] THEN statement-list ...
[WHEN [search-condition | NULL] THEN statement-list] ...
[ELSE statement-list]
END

Remarks
Syntax 1 The CASE statement is a control statement that allows you to choose a list of SQL
statements to execute based on the value of an expression. The value-expression is an expression that
takes on a single value, which may be a string, a number, a date, or other SQL data type. If a WHEN
clause exists for the value of value-expression, the statement-list in the WHEN clause is executed. If no
appropriate WHEN clause exists, and an ELSE clause exists, the statement-list in the ELSE clause is
executed. Execution resumes at the first statement after the END CASE.

If the value-expression can be null, use the ISNULL function to replace the NULL value-expression with
a different expression.

SQL statements

464 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax 2 With this form, the statements are executed for the first satisfied search-condition in the
CASE statement. The ELSE clause is executed if none of the search-conditions are met.

If the expression can be NULL, use the following syntax for the first search-condition:

WHEN search-condition IS NULL THEN statement-list

CASE statement is different from CASE expression
Do not confuse the syntax of the CASE statement with that of the CASE expression. See “CASE
expressions” on page 15.

Permissions
None.

Side effects
None.

See also
● “ISNULL function [Miscellaneous]” on page 243
● “Unknown Values: NULL” [SQL Anywhere Server - SQL Usage]
● “BEGIN statement” on page 454
● “Using procedures, triggers, and batches” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 The CASE statement is part of language feature P002 (Computational completeness) of

the SQL/2008 standard. The SQL standard requires END CASE to terminate the CASE statement,
rather than END alone.

● Transact-SQL Compatible with Adaptive Server Enterprise.

Example
The following procedure using a case statement classifies the products listed in the Products table of the
SQL Anywhere sample database into one of shirt, hat, shorts, or unknown.

CREATE PROCEDURE DBA.ProductType(@product_ID INTEGER,@TYPE CHAR(10) OUTPUT)
AS
BEGIN
 DECLARE @prod_name CHAR(20)
 SELECT Name INTO @prod_name FROM Products
 WHERE ID = @product_ID
 IF @prod_name
 = 'Tee Shirt'
 SET @TYPE = 'Shirt'
 ELSE IF @prod_name
 = 'Sweatshirt'
 SET @TYPE = 'Shirt'
 ELSE IF @prod_name
 = 'Baseball Cap'
 SET @TYPE = 'Hat'
 ELSE IF @prod_name
 = 'Visor'
 SET @TYPE = 'Hat'

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 465

 ELSE IF @prod_name
 = 'Shorts'
 SET @TYPE = 'Shorts'
 ELSE
 SET @TYPE = 'UNKNOWN'
END;

The following example uses Syntax 2 to generate a message about product quantity within the SQL
Anywhere sample database.

CREATE PROCEDURE DBA.StockLevel(@product_ID INTEGER) AS
BEGIN
 DECLARe @qty INTEGER
 SELECT Quantity INTO @qty FROM Products
 WHERE ID = @product_ID
 IF @qty < 30
 MESSAGE 'Order Stock' TO CLIENT
 ELSE IF @qty > 100
 MESSAGE 'Overstocked' TO CLIENT
 ELSE
 MESSAGE 'Sufficient stock on hand' TO CLIENT
END;

CHECKPOINT statement
Checkpoints the database.

Syntax
CHECKPOINT

Remarks
The CHECKPOINT statement forces the database server to execute a checkpoint. Checkpoints are also
performed automatically by the database server according to an internal algorithm. It is not normally
required for applications to issue the CHECKPOINT statement.

Permissions
DBA authority is required to checkpoint the network database server.

No permissions are required to checkpoint the personal database server.

Side effects
None.

See also
● “Backup and data recovery” [SQL Anywhere Server - Database Administration]
● “Understanding the checkpoint log” [SQL Anywhere Server - Database Administration]
● “checkpoint_time option” [SQL Anywhere Server - Database Administration]
● “recovery_time option” [SQL Anywhere Server - Database Administration]

SQL statements

466 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Standards and compatibility
● SQL/2008 Vendor extension.

● Transact-SQL The CHECKPOINT statement is supported by Adaptive Server Enterprise.

CLEAR statement [Interactive SQL]
Closes any open result sets in Interactive SQL.

Syntax
CLEAR

Remarks
Closes any open result sets and leaves the contents of the SQL Statements pane unchanged

Permissions
None.

Side effects
Closes the cursor associated with the data being cleared.

See also
● “Using Interactive SQL” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

CLOSE statement [ESQL] [SP]
Closes a cursor.

Syntax
CLOSE cursor-name

cursor-name : identifier | hostvar

Remarks
This statement closes the named cursor.

Permissions
The cursor must have been previously opened.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 467

Side effects
None.

See also
● “OPEN statement [ESQL] [SP]” on page 777
● “DECLARE CURSOR statement [ESQL] [SP]” on page 628
● “PREPARE statement [ESQL]” on page 788

Standards and compatibility
● SQL/2008 Core feature. When used in embedded SQL, the CLOSE statement is part of optional

language feature B031 (Basic dynamic SQL).

● Transact-SQL Supported by Adaptive Server Enterprise.

Example
The following examples close cursors in embedded SQL.

EXEC SQL CLOSE employee_cursor;
EXEC SQL CLOSE :cursor_var;

The following procedure uses a cursor.

CREATE PROCEDURE TopCustomer (OUT TopCompany CHAR(35), OUT TopValue INT)
BEGIN
 DECLARE err_notfound EXCEPTION
 FOR SQLSTATE '02000';
 DECLARE curThisCust CURSOR FOR
 SELECT CompanyName, CAST(sum(SalesOrderItems.Quantity *
 Products.UnitPrice) AS INTEGER) VALUE
 FROM Customers
 LEFT OUTER JOIN SalesOrders
 LEFT OUTER JOIN SalesOrderItems
 LEFT OUTER JOIN Products
 GROUP BY CompanyName;
DECLARE ThisValue INT;
 DECLARE ThisCompany CHAR(35);
 SET TopValue = 0;
 OPEN curThisCust;
 CustomerLoop:
 LOOP
 FETCH NEXT curThisCust
 INTO ThisCompany, ThisValue;
 IF SQLSTATE = err_notfound THEN
 LEAVE CustomerLoop;
 END IF;
 IF ThisValue > TopValue THEN
 SET TopValue = ThisValue;
 SET TopCompany = ThisCompany;
 END IF;
 END LOOP CustomerLoop;
 CLOSE curThisCust;
END

COMMENT statement

SQL statements

468 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Stores a comment for a database object in the system tables.

Syntax
COMMENT ON {
 COLUMN [owner.]table-name.column-name
 | DBSPACE dbspace-name
 | EVENT [owner.]event-name
 | EXTERNAL ENVIRONMENT environment-name
 | EXTERNAL [ENVIRONMENT] OBJECT object-name
 | FOREIGN KEY [owner.]table-name.role-name
 | INDEX [[owner.] table.]index-name
 | INTEGRATED LOGIN integrated-login-id
 | JAVA CLASS java-class-name
 | JAVA JAR java-jar-name
 | KERBEROS LOGIN "client-Kerberos-principal"
 | LOGIN POLICY policy-name
 | MATERIALIZED VIEW [owner.]materialized-view-name
 | MIRROR SERVER mirror-server-name
 | PRIMARY KEY ON [owner.]table-name
 | PROCEDURE [owner.]procedure-name
 | SEQUENCE sequence-name
 | SERVICE web-service-name
 | SPATIAL REFERENCE SYSTEM srs-name
 | SPATIAL UNIT OF MEASURE uom-identifier
 | TABLE [owner.]table-name
 | TEXT CONFIGURATION [owner.]text-config-name
 | TEXT INDEX text-index-name ON [owner.]table-name
 | TRIGGER [[owner.]tablename.]trigger-name
 | USER userid
 | VIEW [owner.]view-name
}
IS comment

comment : string | NULL

environment-name :
JAVA
| PERL
| PHP
| CLR
| C_ESQL32
| C_ESQL64
| C_ODBC32
| C_ODBC64

Remarks
The COMMENT statement allows you to set a remark (comment) for an object in the database. The
COMMENT statement updates remarks listed in the ISYSREMARKS system table. You can remove a
comment by setting it to NULL. For a comment on an index or trigger, the owner of the comment is the
owner of the table on which the index or trigger is defined.

You cannot add comments for local temporary tables.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 469

If you use the Database Documentation Wizard to document your SQL Anywhere database, you have
the option to include the comments for procedures, functions, triggers, events, and views in the output.
See “Documenting a database” [SQL Anywhere Server - Database Administration].

Permissions
Must either be the owner of the database object being commented, or have DBA authority.

Side effects
Automatic commit.

Standards and compatibility
● SQL/2008 Vendor extension.

● Transact-SQL Not supported by Adaptive Server Enterprise.

Example
The following examples show how to add and remove a comment.

1. Add a comment to the Employees table.

COMMENT
ON TABLE Employees
IS 'Employee information';

2. Remove the comment from the Employees table.

COMMENT
ON TABLE Employees
IS NULL;

To view the comment set for an object, use a SELECT statement similar to the following. This example
retrieves the comment set for the ViewSalesOrders view in the SQL Anywhere sample database.

SELECT remarks
FROM SYSTAB t, SYSREMARK r
WHERE t.object_id = r.object_id
AND t.table_name = 'ViewSalesOrders';

COMMIT statement

Makes changes to the database permanent, or terminates a user-defined transaction.

Syntax 1
COMMIT [WORK]

Syntax 2
COMMIT TRAN[SACTION] [transaction-name]

SQL statements

470 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters
transaction-name An optional name assigned to this transaction. It must be a valid identifier. You
should use transaction names only on the outermost pair of nested BEGIN/COMMIT or BEGIN/
ROLLBACK statements.

For more information about transaction nesting in Adaptive Server Enterprise and SQL Anywhere, see
“BEGIN TRANSACTION statement [T-SQL]” on page 457. For more information about savepoints, see
“SAVEPOINT statement” on page 824.

You can use a set of options to control the detailed behavior of the COMMIT statement. See:

○ “cooperative_commit_timeout option” [SQL Anywhere Server - Database Administration]
○ “cooperative_commits option” [SQL Anywhere Server - Database Administration]
○ “delayed_commits option” [SQL Anywhere Server - Database Administration]
○ “delayed_commit_timeout option” [SQL Anywhere Server - Database Administration]
○ “Making changes permanent” [SQL Anywhere Server - SQL Usage]

You can use the Commit connection property to return the number of commits on the current connection.
See “Connection properties” [SQL Anywhere Server - Database Administration].

Remarks
● Syntax 1 The COMMIT statement ends a transaction and makes all changes made during this

transaction permanent in the database.

All data definition statements automatically carry out a commit. For information, see the Side effects
listing for each SQL statement.

The COMMIT statement fails if the database server detects any invalid foreign keys. This behavior
makes it impossible to end a transaction with any invalid foreign keys. Usually, foreign key integrity
is checked on each data manipulation operation. However, if the database option wait_for_commit is
set On or a particular foreign key was defined with a CHECK ON COMMIT option, the database
server delays integrity checking until the COMMIT statement is executed.

● Syntax 2 You can use BEGIN TRANSACTION and COMMIT TRANSACTION statements in
pairs to construct nested transactions. Nested transactions are similar to savepoints. When executed as
the outermost of a set of nested transactions, the statement makes changes to the database permanent.
When executed inside a transaction, the COMMIT TRANSACTION statement decreases the nesting
level of transactions by one. When transactions are nested, only the outermost COMMIT makes the
changes to the database permanent.

Syntax 2 is a Transact-SQL extension.

In Interactive SQL, you can also execute a COMMIT by:

● Pressing CTRL+SHIFT+C.

● Choosing SQL » Commit.

In Interactive SQL, executing a COMMIT from the SQL menu or the keyboard shortcut does not modify
the contents of the SQL Statements pane; however, the Results tab in the Results pane is cleared.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 471

Permissions
None.

Side effects
Closes all cursors except those opened WITH HOLD.

Deletes all rows of declared temporary tables on this connection, unless they were declared using ON
COMMIT PRESERVE ROWS.

If the database is not using a transaction log, each COMMIT operation causes an implicit checkpoint.

See also
● “wait_for_commit option” [SQL Anywhere Server - Database Administration]
● “auto_commit option [Interactive SQL]” [SQL Anywhere Server - Database Administration]
● “commit_on_exit option [Interactive SQL]” [SQL Anywhere Server - Database Administration]
● “Executing COMMIT and ROLLBACK statements in Interactive SQL” [SQL Anywhere Server -

Database Administration]
● “SAVEPOINT statement” on page 824
● “BEGIN TRANSACTION statement [T-SQL]” on page 457
● “PREPARE TO COMMIT statement” on page 790
● “ROLLBACK statement” on page 820

Standards and compatibility
● SQL/2008 Syntax 1 is a core feature. Syntax 2 is a Transact-SQL extension.

Example
The following statement commits the current transaction:

COMMIT;

The following Transact-SQL batch reports successive values of @@trancount as 0, 1, 2, 1, 0.

PRINT @@trancount
BEGIN TRANSACTION
PRINT @@trancount
BEGIN TRANSACTION
PRINT @@trancount
COMMIT TRANSACTION
PRINT @@trancount
COMMIT TRANSACTION
PRINT @@trancount
go

CONFIGURE statement [Interactive SQL]
Opens the Interactive SQL Options window.

Syntax
CONFIGURE

SQL statements

472 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
The CONFIGURE statement opens the Interactive SQL Options window. This window displays the
current settings of all Interactive SQL options. It does not display or allow you to modify database
options. You can configure Interactive SQL settings in this window.

Permissions
None.

Side effects
None.

See also
● “Customizing Interactive SQL” [SQL Anywhere Server - Database Administration]
● “SET OPTION statement” on page 840
● “Using Interactive SQL” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

CONNECT statement [ESQL] [Interactive SQL]
Establishes a connection to a database.

Syntax 1 - Shared memory connections
CONNECT
[TO database-server-name]
[DATABASE database-name]
[AS connection-name]
[USER] userid [IDENTIFIED BY password]

database-server-name, database-name, connection-name, userid, password :
{ identifier | string | hostvar }

Syntax 2 - TCP/IP connections
CONNECT USING connect-string

connect-string : { identifier | string | hostvar }

Parameters
AS clause A connection can optionally be named by specifying the AS clause. This allows multiple
connections to the same database, or multiple connections to the same or different database servers, all
simultaneously. Each connection has its own associated transaction. You may even get locking conflicts
between your transactions if, for example, you try to modify the same record in the same database from
two different connections.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 473

For Syntax 2, a connect-string is a list of parameter settings of the form keyword=value, separated by
semicolons, and must be enclosed in single quotes.

For more information about connection strings, see “Connection parameters” [SQL Anywhere Server -
Database Administration].

Remarks
The CONNECT statement establishes a connection to the database identified by database-name running
on the database server identified by database-server-name. This statement is not supported in procedures,
triggers, events, or batches.

Syntax 1 is only supported for shared memory connections to database servers running on the same
computer. If you want to connect to a local database server using TCP/IP or to a database server running
on a different computer, you must use Syntax 2.

● Embedded SQL behavior In embedded SQL, if no database-server-name is specified, the default
local database server is assumed (the first database server started). If no database-name is specified,
the first database on the given server is assumed.

The WHENEVER statement, SET SQLCA, and some DECLARE statements do not generate code
and may appear before the CONNECT statement in the source file. Otherwise, no statements are
allowed until a successful CONNECT statement has been executed.

The user ID and password are used for permission checks on all dynamic SQL statements.

For a detailed description of the connection algorithm, see “Troubleshooting connections” [SQL
Anywhere Server - Database Administration].

Note
For SQL Anywhere, only Syntax 1 is valid with embedded SQL. For UltraLite, both Syntax 1 and
Syntax 2 can be used with embedded SQL.

● Interactive SQL behavior If no database or server is specified in the CONNECT statement,
Interactive SQL remains connected to the current database, rather than to the default server and
database. If a database name is specified without a server name, Interactive SQL attempts to connect
to the specified database on the current server. If a server name is specified without a database name,
Interactive SQL connects to the default database on the specified server.

For example, if the following batch is executed while connected to a database, the two tables are
created in the same database.

CREATE TABLE t1(c1 int);
CONNECT DBA IDENTIFIED BY sql;
CREATE TABLE t2 (c1 int);

No other database statements are allowed until a successful CONNECT statement has been executed.

When Interactive SQL is run in windowed mode, you are prompted for any missing connection
parameters.

SQL statements

474 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

When Interactive SQL is running in command-prompt mode (-nogui is specified when you start
Interactive SQL from a command line) or batch mode, or if you execute CONNECT without an AS
clause, an unnamed connection is opened. If there is another unnamed connection already opened, the
old one is automatically closed. Otherwise, existing connections are not closed when you run CONNECT.

Multiple connections are managed through the concept of a current connection. After a successful
connect statement, the new connection becomes the current one. To switch to a different connection,
use the SET CONNECTION statement. The DISCONNECT statement is used to drop connections.

When connecting to Interactive SQL, specifying CONNECT [USER] userid is the same as executing
a SETUSER WITH OPTION userid statement. See “SETUSER statement” on page 854.

In Interactive SQL, the connection information (including the database name, your user ID, and the
database server) appears in the title bar above the SQL Statements pane. If you are not connected to a
database, Not Connected appears in the title bar.

Note
Both Syntax 1 and Syntax 2 are valid with Interactive SQL except that Interactive SQL does not
support the hostvar argument.

Permissions
None.

Side effects
None.

See also
● “GRANT statement” on page 718
● “DISCONNECT statement [ESQL] [Interactive SQL]” on page 648
● “SET CONNECTION statement [Interactive SQL] [ESQL]” on page 835
● “SETUSER statement” on page 854
● “Connection parameters” [SQL Anywhere Server - Database Administration]
● “Using Interactive SQL” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Syntax 1 is optional language feature F771 of the SQL/2008 standard. Syntax 2 is a

vendor extension.

● Transact-SQL Both Syntax 1 and Syntax 2 are supported by Adaptive Server Enterprise.

Examples
The following are examples of CONNECT usage within embedded SQL.

EXEC SQL CONNECT AS :conn_name
USER :userid IDENTIFIED BY :password;
EXEC SQL CONNECT USER "DBA" IDENTIFIED BY "sql";

The following examples assume that the SQL Anywhere sample database has already been started.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 475

Connect to a database from Interactive SQL. Interactive SQL prompts for a user ID and a password.

CONNECT;

Connect to the default database as DBA from Interactive SQL. Interactive SQL prompts for a password.

CONNECT USER "DBA";

Connect to the sample database as user DBA from Interactive SQL.

CONNECT
TO demo12
USER DBA
IDENTIFIED BY sql;

Connect to the sample database using a connect string, from Interactive SQL.

CONNECT
USING 'UID=DBA;PWD=sql;DBN=demo';

Once you connect to the sample database, the database name, your user ID, and the database server name
appear in the title bar as: demo (DBA) on demo12.

CONTINUE statement
Restarts a loop.

Syntax
CONTINUE [statement-label]

Remarks
The CONTINUE statement is a control statement that allows you to restart a loop. Execution continues at
the first statement in the loop. When CONTINUE appears within a set of Watcom-SQL statements,
statement-label must be specified.

When CONTINUE appears within a set of statements using Transact-SQL, statement-label must not be used.

Permissions
None.

Side effects
None.

See also
● “LOOP statement” on page 765
● “WHILE statement [T-SQL]” on page 906
● “FOR statement” on page 691
● “BEGIN statement” on page 454
● “Using procedures, triggers, and batches” [SQL Anywhere Server - SQL Usage]

SQL statements

476 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Standards and compatibility
● SQL/2008 Vendor extension.

● Transact-SQL CONTINUE without a statement label is supported by Adaptive Server Enterprise.

Example
The following fragment shows how the CONTINUE statement is used to restart a loop. This example
displays the odd numbers between 1 and 10.

BEGIN
 DECLARE i INT;
 SET i = 0;
 lbl:
 WHILE i < 10 LOOP
 SET i = i + 1;
 IF mod(i, 2) = 0 THEN
 CONTINUE lbl
 END IF;
 MESSAGE 'The value ' || i || ' is odd.' TO CLIENT;
 END LOOP lbl;
END

CREATE DATABASE statement
Creates a database.

Syntax
CREATE DATABASE db-filename-string [create-option ...]

create-option :
 [ACCENT { RESPECT | IGNORE | FRENCH }]
 [ASE [COMPATIBLE]]
 [BLANK PADDING { ON | OFF }]
 [CASE { RESPECT | IGNORE }]
 [CHECKSUM { ON | OFF }]
 [COLLATION collation-label[(collation-tailoring-string)]]
 [DATABASE SIZE size { KB | MB | GB | PAGES | BYTES }]
 [DBA USER userid]
 [DBA PASSWORD password]
 [ENCODING encoding-label]
 [ENCRYPTED [TABLE] { algorithm-key-spec | OFF }]
 [JCONNECT { ON | OFF }]
 [PAGE SIZE page-size]
 [NCHAR COLLATION nchar-collation-label[(collation-tailoring-string)]]
 [[TRANSACTION] { LOG OFF | LOG ON [log-filename-string]
 [MIRROR mirror-filename-string] }]

page-size :
2048 | 4096 | 8192 | 16384 | 32768

algorithm-key-spec:
ON
| [ON] KEY key [ALGORITHM AES-algorithm]

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 477

| [ON] ALGORITHM AES-algorithm KEY key
| [ON] ALGORITHM 'SIMPLE'

AES-algorithm :
'AES' | 'AES256' | 'AES_FIPS' | 'AES256_FIPS'

key : quoted string

Parameters
CREATE DATABASE The file names (db-filename-string, log-filename-string, and mirror-filename-
string) are strings containing operating system file names. As literal strings, they must be enclosed in
single quotes.

○ If you specify a path, any backslash characters (\) must be doubled if they are followed by an n or an
x. Escaping them prevents them from being interpreted as new line characters (\n) or as hexadecimal
numbers (\x), according to the rules for strings in SQL.

It is always safer to escape the backslash character. For example:

CREATE DATABASE 'c:\\databases\\my_db.db'
LOG ON 'e:\\logdrive\\my_db.log';

○ If you do not specify a path, or a relative path, the database file is created relative to the working
directory of the database server. If you specify no path for a transaction log file, the file is created in
the same directory as the database file. It is recommended that you store the database files and the
transaction log on separate disks on the computer.

○ If you provide no file extension, a file is created with extension .db for databases, .log for the
transaction log, and .mlg for the transaction log mirror.

You cannot specify utility_db for db-filename-string. This name is reserved for the utility database. See
“Using the utility database” [SQL Anywhere Server - Database Administration].

ACCENT clause This clause is used to specify accent sensitivity for the database. Support for this
clause is deprecated. Use the collation tailoring options provided for the COLLATION and NCHAR
COLLATION clauses to specify accent sensitivity.

The ACCENT clause applies only when using the UCA (Unicode Collation Algorithm) for the collation
specified in the COLLATION or NCHAR COLLATION clause. ACCENT RESPECT causes the UCA
string comparison to respect accent differences between letters. For example, e is less than é. ACCENT
FRENCH is similar to ACCENT RESPECT, except that accents are compared from right to left,
consistent with the rules of the French language. ACCENT IGNORE causes string comparisons to ignore
accents. For example, e is equal to é.

If accent sensitivity is not specified when the database is created, the default accent sensitivity for
comparisons and sorting is insensitive, with one exception; for Japanese databases created with a UCA
collation, the default accent sensitivity is sensitive.

For more information about character sets, see “International languages and character sets” [SQL
Anywhere Server - Database Administration].

ASE COMPATIBLE clause Do not create the SYS.SYSCOLUMNS and SYS.SYSINDEXES views.
By default, these views are created for compatibility with system tables available in Watcom SQL

SQL statements

478 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

(version 4 and earlier of this software). These views conflict with the Adaptive Server Enterprise
compatibility views dbo.syscolumns and dbo.sysindexes.

BLANK PADDING clause SQL Anywhere compares all strings as if they are varying length and
stored using the VARCHAR domain. This includes string comparisons involving fixed length CHAR or
NCHAR columns. In addition, SQL Anywhere never trims or pads values with trailing blanks when the
values are stored in the database.

By default, SQL Anywhere treats blanks as significant characters. For example, the value 'a ' (the
character 'a' followed by a blank) is not equivalent to the single-character string 'a'. Inequality
comparisons also treat a blank as any other character in the collation.

If blank padding is enabled (specifying BLANK PADDING ON), the semantics of string comparisons
more closely follow the ANSI/ISO SQL standard. With blank-padding enabled, SQL Anywhere ignores
trailing blanks in any comparison.

In the example above, an equality comparison of 'a ' to 'a' in a blank-padded database returns TRUE. With
a blank-padded database, fixed-length string values are padded with blanks when they are fetched by an
application. Whether the application receives a string truncation warning on such an assignment is
controlled by the ansi_blanks connection option. See “ansi_blanks option” [SQL Anywhere Server -
Database Administration].

CASE clause This clause is used to specify case sensitivity for the database. Support for this clause is
deprecated. Use the collation tailoring options provided for the COLLATION and NCHAR COLLATION
clauses to specify case sensitivity.

CASE RESPECT causes case-sensitive string comparisons for all CHAR and NCHAR data types.
Comparisons using UCA consider the case of a letter only if the base letters and accents are all equal. For
all other collations, uppercase and lowercase letters are distinct; for example, a is less than A, which is
less than b, and so on. CASE IGNORE causes case-insensitive string comparisons. Uppercase and
lowercase letters are considered to be exactly equal.

If case sensitivity is not specified when the database is created, default case sensitivity for comparisons
and sorting is insensitive, with one exception; for Japanese databases created with a UCA collation,
default case sensitivity is sensitive.

CASE RESPECT is provided for compatibility with the ISO/ANSI SQL standard. Identifiers in the
database are always case insensitive, even in case-sensitive databases.

For more information about character sets, see “International languages and character sets” [SQL
Anywhere Server - Database Administration].

CHECKSUM clause Checksums are used to determine whether a database page has been modified on
disk. When you create a database with global checksums enabled, a checksum is calculated for each page
just before it is written to disk. The next time the page is read from disk, the page's checksum is
recalculated and compared to the checksum stored on the page. If the checksums are different, then the
page has been modified on disk and an error occurs. Databases created with global checksums enabled
can also be validated using checksums. You can check whether a database was created with global
checksums enabled by executing the following statement:

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 479

SELECT DB_PROPERTY ('Checksum');

This query returns ON if global checksums are turned on, otherwise, it returns OFF. Global checksums
are turned on by default, so if the CHECKSUM clause is omitted, ON is applied.

Regardless of the setting of this clause, the database server always enables write checksums for databases
running on storage devices such as removable drives, and databases running on Windows Mobile to help
provide early detection if the database file becomes corrupt. It also calculates checksums for critical pages
during validation activities. See “Using checksums to detect corruption” [SQL Anywhere Server -
Database Administration], “Validation utility (dbvalid)” [SQL Anywhere Server - Database
Administration], “sa_validate system procedure” on page 1095, or “VALIDATE statement” on page 902.

For databases that do not have global checksums enabled, you can enable write checksums by using the -
wc options. See “-wc dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
and “-wc dbeng12/dbsrv12 database option” [SQL Anywhere Server - Database Administration].

COLLATION clause The collation specified by the COLLATION clause is used for sorting and
comparison of character data types (CHAR, VARCHAR, and LONG VARCHAR). The collation
provides character comparison and ordering information for the encoding (character set) being used. If the
COLLATION clause is not specified, SQL Anywhere chooses a collation based on the operating system
language and encoding.

The collation can be chosen from the list of collations that use the SQL Anywhere Collation Algorithm
(SACA), or it can be the Unicode Collation Algorithm (UCA). If UCA is specified, you should also
specify the ENCODING clause.

It is important to choose your collation carefully. It cannot be changed after the database has been created.
See “Choosing collations” [SQL Anywhere Server - Database Administration].

For a list of supported collations, see “Recommended character sets and collations” [SQL Anywhere
Server - Database Administration], and “Supported and alternate collations” [SQL Anywhere Server -
Database Administration].

Optionally, you can specify collation tailoring options (collation-tailoring-string) for additional control
over the sorting and comparing of characters. These options take the form of keyword=value pairs,
assembled in parentheses, following the collation name. For example, ... CHAR COLLATION
'UCA(locale=es;case=respect;accent=respect)'.

DATABASE SIZE clause Use this optional clause to set the initial size of the database file. You can
use KB, MB, GB, or PAGES to specify units of kilobytes, megabytes, gigabytes, or pages respectively.

Specifying the file size at creation time is a way of pre-allocating space for the file. This helps reduce the
risk of running out of space on the drive the database is located on. As well, it can help improve
performance by increasing the amount of data that can be stored in the database before the database server
needs to grow the database, which can be a time-consuming operation.

DBA USER clause Use this clause to specify a DBA user for the database. When you use this clause,
you can no longer connect to the database as the default DBA user. If you do not specify this clause, the
default DBA user ID is created.

SQL statements

480 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

DBA PASSWORD clause You can specify a different password for the DBA database user. If you do
not specify this clause, the default password (sql) is used for the DBA user.

ENCODING clause Most collations specified in the COLLATION clause dictate both the encoding
(character set) and ordering. For those collations, the ENCODING clause should not be specified.
However, if the value specified in the COLLATION clause is UCA (Unicode Collation Algorithm), use
the ENCODING clause to specify a locale-specific encoding and get the benefits of the UCA for
comparison and ordering. The ENCODING clause may specify UTF-8 or any single-byte encoding for
CHAR data types. ENCODING may not specify a multibyte encoding other than UTF-8.

If you choose the UCA collation, you can optionally specify collation tailoring options. See “Collation
tailoring options” [SQL Anywhere Server - Database Administration].

If COLLATION is set to UCA and ENCODING is not specified, then SQL Anywhere uses UTF-8. For
more information about the recommended encodings and collations, see “Recommended character sets
and collations” [SQL Anywhere Server - Database Administration].

For more information about how to obtain the list of SQL Anywhere supported encodings, see “Supported
character sets” [SQL Anywhere Server - Database Administration].

ENCRYPTED or ENCRYPTED TABLE clause Encryption makes stored data unreadable. Use the
ENCRYPTED keyword (without TABLE) when you want to encrypt the entire database. Use the
ENCRYPTED TABLE clause when you only want to enable table encryption. Enabling table encryption
means that the tables that are subsequently created or altered using the ENCRYPTED clause are
encrypted using the settings you specified at database creation. See “Table encryption” [SQL Anywhere
Server - Database Administration].

There are two levels of database and table encryption: simple and strong. Simple encryption is equivalent
to obfuscation. The data is unreadable, but someone with cryptographic expertise could decipher the data.
Strong encryption makes the data is unreadable and virtually undecipherable.

For simple encryption, specify ENCRYPTED ON ALGORITHM SIMPLE, or ENCRYPTED
ALGORITHM SIMPLE, or specify the ENCRYPTED ON clause without specifying an algorithm or key.

For strong encryption, specify ENCRYPTED ON ALGORITHM with a 128-bit or 256-bit AES
algorithm, and the KEY clause to specify an encryption key. It is recommended that you choose a value
for your key that is at least 16 characters long, contains a mix of uppercase and lowercase, and includes
numbers, letters, and special characters.

On Windows Mobile, the AES_FIPS and AES256_FIPS algorithms are only supported with ARM
processors.

Caution
For strongly encrypted databases, be sure to store a copy of the key in a safe location. If you lose the
encryption key there is no way to access the data, even with the assistance of technical support. The
database must be discarded and you must create a new database.

For more information about strong database encryption, see “Strong encryption” [SQL Anywhere Server -
Database Administration].

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 481

You can also create an encrypted copy of an existing database using the CREATE ENCRYPTED
DATABASE statement. See “CREATE ENCRYPTED DATABASE statement” on page 490.

JCONNECT clause To allow the jConnect JDBC driver access to system catalog information, specify
JCONNECT ON. This installs the system objects that provide jConnect support. Specify JCONNECT
OFF if you want to exclude the jConnect system objects. You can still use JDBC, as long as you do not
access system information. JCONNECT is ON by default.

If you are creating a database for use on Windows Mobile, see “Using jConnect on Windows Mobile”
[SQL Anywhere Server - Database Administration].

PAGE SIZE clause The page size for a database can be 2048, 4096, 8192, 16384, or 32768 bytes. The
default page size is 4096 bytes. Large databases generally obtain performance benefits from a larger page
size, but there can be additional overhead associated with large page sizes.

For example,

CREATE DATABASE 'c:\\databases\\my_db.db'
PAGE SIZE 4096;

Page size limit
The page size cannot be larger than the page size used by the current server. The server page size is taken
from the first set of databases started or is set on the server command line using the -gp option. See “-gp
dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration].

NCHAR COLLATION clause The collation specified by the NCHAR COLLATION clause is used for
sorting and comparison of national character data types (NCHAR, NVARCHAR, and LONG
NVARCHAR). The collation provides character ordering information for the UTF-8 encoding (character
set) used for national characters. If the NCHAR COLLATION clause is not specified, SQL Anywhere
uses the Unicode Collation Algorithm (UCA). The only other allowed collation is UTF8BIN, which
provides a binary ordering of all characters whose encoding is greater than 0x7E. See “Choosing
collations” [SQL Anywhere Server - Database Administration].

Optionally, you can specify collation tailoring options (collation-tailoring-string) for additional control
over the sorting and comparing of characters. These options take the form of keyword=value pairs,
assembled in a quoted string, following the collation name. For example, ... NCHAR COLLATION
'UCA(locale=es;case=respect;accent=respect)'. If you specify the ACCENT or CASE
clause and a collation tailoring string that contains settings for case and accent, the values of the
ACCENT and CASE clauses are used as defaults only.

For a list of the supported collation tailoring options, see “Collation tailoring options” [SQL Anywhere
Server - Database Administration].

Note
When you specify the UCA collation, all collation tailoring options are supported. For all other collations,
only the case sensitivity tailoring option is supported.

Note
Databases created with collation tailoring options cannot be started using a pre-10.0.1 database server.

SQL statements

482 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

TRANSACTION LOG clause The transaction log is a file where the database server logs all changes
made to the database. The transaction log plays a key role in backup and recovery, and in data replication.

The MIRROR clause of the TRANSACTION clause allows you to provide a file name if you want to use
a transaction log mirror. A transaction log mirror is an identical copy of a transaction log, usually
maintained on a separate device, for greater protection of your data. By default, SQL Anywhere does not
use a transaction log mirror.

Remarks
Creates a database file with the supplied name and attributes. The database is stored as an operating
system file. This statement is not supported in procedures, triggers, events, or batches.

Permissions
The permissions required to execute this statement are set on the server command line, using the -gu
option. The default setting requires DBA authority.

The account under which the database server is running must have write permissions on the directories
where files are created.

Side effects
An operating system file is created.

See also
● “ALTER DATABASE statement” on page 386
● “DROP DATABASE statement” on page 650
● “Initialization utility (dbinit)” [SQL Anywhere Server - Database Administration]
● “DatabaseKey (DBKEY) connection parameter” [SQL Anywhere Server - Database Administration]
● “The transaction log” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

● Transact-SQL The CREATE DATABASE statement is supported by Adaptive Server Enterprise,
though with different clauses.

Examples
The following statement creates a database file named mydb.db in the C:\ directory.

CREATE DATABASE 'C:\\mydb.db'
TRANSACTION LOG ON
CASE IGNORE
PAGE SIZE 4096
ENCRYPTED OFF
BLANK PADDING OFF;

The following statement creates a database using code page 1252 and uses the UCA for both CHAR and
NCHAR data types. Accents and case are respected during comparison and sorting.

CREATE DATABASE 'c:\\uca.db'
COLLATION 'UCA'

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 483

ENCODING 'CP1252'
NCHAR COLLATION 'UCA'
ACCENT RESPECT
CASE RESPECT;

The following statement creates a database, myencrypteddb.db, that is encrypted using simple encryption:

CREATE DATABASE 'myencrypteddb.db'
ENCRYPTED ON;

The following statement creates a database, mystrongencryptdb.db, that is encrypted using the key
gh67AB2 (strong encryption):

CREATE DATABASE 'mystrongencryptdb.db'
ENCRYPTED ON KEY 'gh67AB2';

The following statement creates a database, mytableencryptdb.db, with table encryption enabled using
simple encryption. Notice the keyword TABLE inserted after ENCRYPTED to indicate table encryption
instead of database encryption:

CREATE DATABASE 'mytableencryptdb.db'
ENCRYPTED TABLE ON;

The following statement creates a database, mystrongencrypttabledb.db, with table encryption enabled
using the key gh67AB2 (strong encryption), and the AES_FIPS encryption algorithm:

CREATE DATABASE 'mystrongencrypttabledb.db'
ENCRYPTED TABLE ON KEY 'gh67AB2'
ALGORITHM 'AES_FIPS';

The following statement creates a database file named mydb.db that uses collation 1252LATIN1. The
NCHAR collation is set to UCA, with the locale set to es, and has case sensitivity and accent sensitivity
enabled:

CREATE DATABASE 'my2.db'
 COLLATION '1252LATIN1(case=respect)'
 NCHAR COLLATION 'UCA(locale=es;case=respect;accent=respect)';

CREATE DBSPACE statement
Defines a new database space and creates the associated database file.

Syntax
CREATE DBSPACE dbspace-name AS filename

Parameters
dbspace-name Specify a name for the dbspace. This is not the actual database file name, which you
specify using filename. dbspace-name is an internal name you can refer to, for example in statements and
procedures. You cannot use the following names for a dbspace because they are reserved for predefined
dbspaces: system, temporary, temp, translog, and translogmirror. See “Predefined dbspaces” [SQL
Anywhere Server - Database Administration].

An error is returned if you specify a value that contains a period (.).

SQL statements

484 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

filename Specify a name for the database file, including, optionally, the path to the file. If no path is
specified, the database file is created in the same location (directory) as the main database file. If you
specify a different location, the path is relative to the database server. The backslash (\) is an escape
character in SQL strings, so each backslash must be doubled. For more information about escape
characters and strings, see “Strings” on page 5.

The filename parameter must be either a string literal or a variable.

Remarks
The CREATE DBSPACE statement creates a new database file. When a database is created, it is
composed of one file. All tables and indexes created are placed in that file. CREATE DBSPACE adds a
new file to the database. This file can be on a different disk drive than the main file, which means that the
database can be larger than one physical device.

For each database, there is a limit of twelve dbspaces in addition to the main file.

Each object, such as a table or index, is contained entirely within one dbspace. The IN clause of the
CREATE statement specifies the dbspace into which an object is placed. Objects are put into the system
database file by default. You can also specify which dbspace tables are created in by setting the
default_dbspace option before you create the tables.

For information about how the default dbspace for a database object is determined, see “Using additional
dbspaces” [SQL Anywhere Server - Database Administration].

Permissions
DBA authority.

Side effects
Automatic commit. Automatic checkpoint.

See also
● “default_dbspace option” [SQL Anywhere Server - Database Administration]
● “DROP DBSPACE statement” on page 651
● “Using additional dbspaces” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following CREATE DBSPACE statement creates a dbspace called libbooks. The database file name
for the dbspace is library.db, located in the c:\ directory. A subsequent CREATE TABLE statement
creates a table called LibraryBooks in the libbooks dbspace.

CREATE DBSPACE libbooks
AS 'c:\\library.db';
CREATE TABLE LibraryBooks (
 title char(100),
 author char(50),

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 485

 isbn char(30),
) IN libbooks;

CREATE DECRYPTED DATABASE statement
Creates a decrypted copy of an existing database, including all transaction logs and dbspaces.

Syntax
CREATE DECRYPTED DATABASE newfile
FROM oldfile
[KEY key]

Parameters
FROM clause Use this clause to specify the name of the database to copy (oldfile).

KEY clause Use this clause to specify the encryption key needed to decrypt the database. You do not
specify the KEY clause if the existing database was encrypted with simple encryption, which does not
require a key.

Remarks
The CREATE DECRYPTED DATABASE statement produces a new database file (newfile), and does
not replace or remove the original database file (oldfile).

All encrypted tables in oldfile are not encrypted in newfile, and table encryption is not enabled.

Note
For databases created with SQL Anywhere 12, the ISYSCOLSTAT, ISYSUSER, and
ISYSEXTERNLOGIN system tables always remain encrypted to protect the data from unauthorized access.

If oldfile uses a transaction log or transaction log mirror, the files are renamed newfile.log and
newfile.mlg, respectively.

If oldfile contains dbspace files, a D (decrypted) is added to the file name. For example, when you execute
the CREATE DECRYPTED DATABASE statement, if oldfile is mydbspace.dbs, newfile becomes
mydbspace.dbsD.

You cannot execute this statement on a database that requires recovery. This statement is not supported in
procedures, triggers, events, or batches.

Permissions
DBA authority.

Side effects
None.

SQL statements

486 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “Encrypting and decrypting a database” [SQL Anywhere Server - Database Administration]
● “CREATE ENCRYPTED DATABASE statement” on page 490
● “CREATE ENCRYPTED FILE statement” on page 493
● “CREATE DECRYPTED FILE statement” on page 487

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The first statement below creates an AES256-encrypted copy of the demo.db called demoEncrypted.db,.
The second statement creates a decrypted copy of demoEncrypted.db called demoDecrypted.db.

CREATE ENCRYPTED DATABASE 'demoEncrypted.db'
 FROM 'demo.db'
 KEY 'Sd8f6654*Mnn'
 ALGORITHM 'AES256';
CREATE DECRYPTED DATABASE 'demoDecrypted.db'
 FROM 'demoEncrypted.db'
 KEY 'Sd8f6654*Mnn';

CREATE DECRYPTED FILE statement
Creates a decrypted copy of a strongly encrypted database, and can be used to create decrypted copies of
transaction logs, transaction log mirrors, and dbspaces.

Syntax
CREATE DECRYPTED FILE newfile
FROM oldfile KEY key

Parameters
FROM clause Lists the file name of the encrypted file.

KEY clause Lists the key required to access the encrypted file.

Remarks
Use this statement when your database requires recovery and you need to create a decrypted copy of the
database for support reasons. You must also use this statement to decrypt any database-related files such
as the transaction log, transaction log mirror, or dbspaces.

The original database file must be strongly encrypted using an encryption key. The resulting file is an
exact copy of the encrypted file, without encryption and therefore requiring no encryption key.

If a database is decrypted using this statement, the corresponding transaction log file (and any dbspaces)
must also be decrypted to use the database.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 487

If a database requiring recovery is decrypted, its transaction log file must also be decrypted and recovery
on the new database is necessary. The name of the transaction log file remains the same in this process, so
if the database and transaction log file are renamed, then you need to run dblog -t on the resulting database.

You cannot use this statement on a database that has table encryption enabled. If you have tables you
want to decrypt, use the NOT ENCRYPTED clause of the ALTER TABLE statements to decrypt them.
See “ALTER TABLE statement” on page 426.

Note
For databases created with SQL Anywhere 12, the ISYSCOLSTAT, ISYSUSER, and
ISYSEXTERNLOGIN system tables always remain encrypted to protect the data from unauthorized
access to the database file.

This statement is not supported in procedures, triggers, events, or batches.

Permissions
DBA authority.

Side effects
None.

See also
● “CREATE ENCRYPTED FILE statement” on page 493
● “CREATE DECRYPTED DATABASE statement” on page 486
● “CREATE ENCRYPTED DATABASE statement” on page 490

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example decrypts the contacts database and creates a new unencrypted database called
contacts2.

CREATE DECRYPTED FILE 'contacts2.db'
FROM 'contacts.db'
KEY 'Sd8f6654*Mnn';

CREATE DOMAIN statement
Creates a domain in a database.

Syntax
CREATE { DOMAIN | DATATYPE } [AS] domain-name data-type
[[NOT] NULL]
[DEFAULT default-value]
[CHECK (condition)]

SQL statements

488 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

domain-name : identifier

data-type : built-in data type, with precision and scale

Parameters
DOMAIN | DATATYPE clause It is recommended that you use CREATE DOMAIN, rather than
CREATE DATATYPE, because CREATE DOMAIN is defined in the SQL/2008 standard.

NULL clause This clause allows you to specify the nullability of a domain. When a domain is used to
define a column, nullability is determined as follows:

○ Nullability specified in the column definition.

○ Nullability specified in the domain definition.

○ If the nullability was not explicitly specified in either the column definition or the domain definition,
then the setting of the allow_nulls_by_default option is used.

CHECK clause When creating a domain with a CHECK constraint, you can use a variable name
prefixed with the @ sign in the CHECK constraint's search condition. When the data type is used in the
definition of a column, such a variable is replaced by the column name. This allows a domain's CHECK
constraint to be applied to each table column defined with that domain.

Remarks
Domains are aliases for built-in data types, including precision and scale values where applicable. They
improve convenience and encourage consistency in the database.

Domains are objects within the database. Their names must conform to the rules for identifiers. Domain
names are always case insensitive, as are built-in data type names.

The user who creates a data type is automatically made the owner of that data type. No owner can be
specified in the CREATE DATATYPE statement. The domain name must be unique, and all users can
access the data type without using the owner as prefix.

Domains can have CHECK conditions and DEFAULT values, and you can indicate whether the data type
permits NULL values or not. These conditions and values are inherited by any column defined on the
domain. Any conditions or values explicitly specified in the column definition override those specified for
the domain.

To drop the domain from the database, use the DROP DOMAIN statement. You must be either the owner
of the domain, or have DBA authority, to drop a domain.

Permissions
RESOURCE authority.

Side effects
Automatic commit.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 489

See also
● “DROP DOMAIN statement” on page 652
● “SQL data types” on page 79

Standards and compatibility
● SQL/2008 Domain support is optional SQL language feature F251 in the SQL/2008 standard.

Examples
The following statement creates a domain named address, which holds a 35-character string, and which
may be NULL.

CREATE DOMAIN address CHAR(35) NULL;

The following statement creates a domain named ID, which does not allow NULLS, and which is
autoincremented by default.

CREATE DOMAIN ID INT
NOT NULL
DEFAULT AUTOINCREMENT;

The following statement creates a domain named PhoneNumber, which uses a regular expression within a
CHECK constraint to ensure that the string has a properly-formatted North American phone number of 12
characters, consisting of a 3-digit area code, 3-digit exchange, and 4-digit number separated by either
dashes or a blank.

CREATE DOMAIN PhoneNumber CHAR(12) NULL
CHECK(@PhoneNumber REGEXP '([2-9][0-9]{2}-[2-9][0-9]{2}-[0-9]{4})|([2-9]
[0-9]{2}\s[2-9][0-9]{2}\s[0-9]{4})');

CREATE ENCRYPTED DATABASE statement
Creates an encrypted copy of an existing database, including all transaction logs and dbspaces.

Syntax 1 - Create an encrypted copy of a database
CREATE ENCRYPTED DATABASE newfile
FROM oldfile
[KEY newkey]
[ALGORITHM algorithm]
[OLD KEY oldkey]

algorithm :
 'SIMPLE'
 | 'AES'
 | 'AES256'
 | 'AES_FIPS'
 | 'AES256_FIPS'

Syntax 2 - Create a copy of a database with table encryption enabled
CREATE ENCRYPTED TABLE DATABASE newfile
FROM oldfile

SQL statements

490 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

[KEY newkey]
[ALGORITHM algorithm]
[OLD KEY oldkey]

Parameters
CREATE ENCRYPTED DATABASE clause Use this clause to specify a name for the new encrypted
database.

CREATE ENCRYPTED TABLE DATABASE clause Use this clause to specify a name for the new
database. The new database is not encrypted, but has table encryption enabled.

FROM clause Use this clause to specify the name of the original database (oldfile).

KEY clause If algorithm-key is anything other than SIMPLE, use this clause to specify the encryption
key for newfile.

OLD KEY clause Use this clause to specify the encryption key for oldfile. This clause is only required
if oldfile is encrypted with anything other than SIMPLE encryption.

ALGORITHM clause Use this clause to specify the encryption algorithm to use for newfile. If you
specify a KEY clause but do not specify the ALGORITHM clause, AES (128-bit encryption) is used by
default. If you specify SIMPLE for algorithm, you do not specify a KEY clause.

Remarks
You can also use this statement to create a copy of a database and enable table encryption in the copy.

oldfile can be an unencrypted database, an encrypted database, or a database with table encryption enabled.

Syntax 1 takes an existing database, oldfile, and creates an encrypted copy of it, newfile.

Syntax 2 takes an existing database, oldfile, and creates a copy of it, newfile, with table encryption
enabled. When you use this syntax, any tables encrypted in oldfile are encrypted in newfile as well. If no
tables were encrypted in oldfile, but you want to encrypt them, you can execute an ALTER TABLE ...
ENCRYPTED statement on each table you want to encrypt. See “ALTER TABLE
statement” on page 426.

Neither syntax replaces or removes oldfile.

If oldfile uses transaction log or transaction log mirror files, they are renamed newfile.log and newfile.mlg
respectively.

If oldfile contains dbspace files, an E (for encrypted) is added to the file name. For example, when you
execute the CREATE ENCRYPTED DATABASE statement, the file mydbspace.dbs is changed to
mydbspace.dbsE.

You can use this statement to change the encryption algorithm and key for a database. However, the
CREATE ENCRYPTED DATABASE statement produces a new file (newfile), and does not replace or
remove the previous version of the file (oldfile).

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 491

CREATE ENCRYPTED DATABASE and CREATE ENCRYPTED TABLE DATABASE cannot be run
against a database that requires recovery. These statements are not supported in procedures, triggers,
events, or batches.

For more information about simple and strong encryption, see “Simple encryption” [SQL Anywhere
Server - Database Administration], and “Strong encryption” [SQL Anywhere Server - Database
Administration].

You can also encrypt an existing database or change an existing encryption key by unloading and
reloading the database using the dbunload -an option with either -ek or -ep. See “Using the dbunload
utility to rebuild databases” [SQL Anywhere Server - SQL Usage].

You can also create an encrypted database, or a database with table encryption enabled, using the
CREATE DATABASE statement. See “CREATE DATABASE statement” on page 477.

Note
FIPS is not available on all platforms. For a list of supported platforms, see http://www.sybase.com/detail?
id=1002288.

Permissions
DBA authority.

Side effects
None.

See also
● “Encrypting and decrypting a database” [SQL Anywhere Server - Database Administration]
● “Table encryption” [SQL Anywhere Server - Database Administration]
● “Simple encryption” [SQL Anywhere Server - Database Administration]
● “Strong encryption” [SQL Anywhere Server - Database Administration]
● “CREATE DECRYPTED DATABASE statement” on page 486
● “CREATE ENCRYPTED FILE statement” on page 493
● “CREATE DECRYPTED FILE statement” on page 487
● “CREATE DATABASE statement” on page 477
● “ALTER TABLE statement” on page 426
● “Initialization utility (dbinit)” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example creates an encrypted copy of the sample database called demoEnc.db. The new
database is encrypted with AES256 encryption.

CREATE ENCRYPTED DATABASE 'demoEnc.db'
 FROM 'demo.db'
 KEY 'Sd8f6654*Mnn'
 ALGORITHM 'AES256';

SQL statements

492 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

http://www.sybase.com/detail?id=1002288
http://www.sybase.com/detail?id=1002288

The following example creates a copy of the sample database called demoTableEnc.db. Table encryption
is enabled on the new database. Since a key was specified with no algorithm, AES encryption is used.

CREATE ENCRYPTED TABLE DATABASE 'demoTableEnc.db'
 FROM 'demo.db'
 KEY 'Sd8f6654';

CREATE ENCRYPTED FILE statement
Creates a strongly encrypted copy of a database file, transaction log, transaction log mirror, or dbspace.

Syntax
CREATE ENCRYPTED FILE newfile
FROM oldfile
{ KEY key | KEY key OLD KEY oldkey }
[ALGORITHM {
 'AES'
 | 'AES256'
 | 'AES_FIPS'
 | 'AES256_FIPS' }]

Parameters
FROM clause Specifies the name of the existing file (oldfile) on which to execute the CREATE
ENCRYPTED FILE statement.

KEY clause Specifies the encryption key to use.

OLD KEY clause Specifies the current key with which the file is encrypted.

ALGORITHM clause Specifies the algorithm used to encrypt the file. If you do not specify an
algorithm, AES (128-bit encryption) is used by default.

Remarks
Use this statement when your database requires recovery and you need to create an encrypted copy of the
database for support reasons. You must also use this statement to encrypt any database-related files such
as the transaction log, transaction log mirror, or dbspace files.

When encrypting the database-related files, you must specify the same algorithm and key for all files
related to the same database.

If oldfile has dbspaces or transaction log files associated with it and you encrypt those too, you must
ensure that the new name and location of those files is stored with the new database. To do so:

● run dblog -t on the new database to change the name and location of the transaction log

● run dblog -m on the new database to change the name and location of the transaction log mirror

● execute an ALTER DBSPACE statement against the new database to change the location and name of
the dbspace files

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 493

You can use this statement to change the encryption algorithm and key for a database. However, the
CREATE ENCRYPTED FILE statement produces a new file (newfile), and does not replace or remove
the previous version of the file (oldfile).

The name of the transaction log file remains the same in this process, so if the database and transaction
log file are renamed, then you need to run dblog -t on the resulting database.

You can also encrypt an existing database or change an existing encryption key by unloading and
reloading the database using the dbunload -an option with either -ek or -ep.

If you have a database on which table encryption is enabled, you cannot encrypt the database using this
statement. However, you can use this statement to change the key used for table encryption. To encrypt a
database that has table encryption enabled, use the CREATE ENCRYPTED DATABASE statement. See
“CREATE ENCRYPTED DATABASE statement” on page 490.

This statement is not supported in procedures, triggers, events, or batches.

Note
FIPS is not available on all platforms. For a list of supported platforms, see http://www.sybase.com/detail?
id=1002288.

Permissions
Must be a user with DBA authority.

On Windows Mobile, the AES_FIPS and AES256_FIPS algorithms are only supported with ARM
processors.

Side effects
None.

See also
● “Encrypting and decrypting a database” [SQL Anywhere Server - Database Administration]
● “CREATE ENCRYPTED DATABASE statement” on page 490
● “CREATE DECRYPTED FILE statement” on page 487
● “CREATE DECRYPTED DATABASE statement” on page 486
● “Unload utility (dbunload)” [SQL Anywhere Server - Database Administration]
● “Transaction Log utility (dblog)” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example encrypts the contacts database and creates a new database called contacts2 that is
encrypted with AES_FIPS encryption.

CREATE ENCRYPTED FILE 'contacts2.db'
FROM 'contacts.db'
 KEY 'Sd8f6654*Mnn'
 ALGORITHM AES_FIPS;

SQL statements

494 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

http://www.sybase.com/detail?id=1002288
http://www.sybase.com/detail?id=1002288

The following example encrypts the contacts database and the contacts transaction log file, renaming the
both files. You will need to run dblog -ek Sd8f6654*Mnn -t contacts2.log
contacts.db, since the transaction log has been renamed and the database file still points to the old log.

CREATE ENCRYPTED FILE 'contacts2.db'
 FROM 'contacts.db'
 KEY 'Sd8f6654*Mnn';
CREATE ENCRYPTED FILE 'contacts2.log'
 FROM 'contacts.db'
 KEY 'Sd8f6654*Mnn';

The following example encrypts the contacts database and the contacts transaction log file, leaving the
original transaction log file name untouched. In this case, you do not need to run dblog, since the name of
the file remains the same.

CREATE ENCRYPTED FILE 'newpath\contacts.db'
 FROM 'contacts.db'
 KEY 'Sd8f6654*Mnn';
CREATE ENCRYPTED FILE 'newpath\contacts.log'
 FROM 'contacts.log'
 KEY 'Sd8f6654*Mnn';

To change the encryption key for a database, first create a copy of the database file using the new key, as
shown in this statement:

CREATE ENCRYPTED FILE 'newcontacts.db'
 FROM 'contacts.db'
 KEY 'newkey' OLD KEY 'oldkey';

Once you have created the encrypted file, delete contacts.db and then rename newcontacts.db to be
contacts.db.

CREATE EVENT statement
Defines an event and its associated handler for automating predefined actions, and to define scheduled
actions.

Syntax
CREATE EVENT [owner.]event-name
[TYPE event-type
 [WHERE trigger-condition [AND trigger-condition] ...]
 | SCHEDULE schedule-spec, ...]
[ENABLE | DISABLE]
[AT { CONSOLIDATED | REMOTE | ALL }]
[HANDLER
 BEGIN
...
 END]

event-type :
 BackupEnd
| Connect
| ConnectFailed

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 495

| DatabaseStart
| DBDiskSpace
| Deadlock
| "Disconnect"
| GlobalAutoincrement
| GrowDB
| GrowLog
| GrowTemp
| LogDiskSpace
| MirrorFailover
| MirrorServerDisconnect
| RAISERROR
| ServerIdle
| TempDiskSpace

trigger-condition :
event_condition(condition-name) {
=
| <
| >
| !=
| <=
| >=
} value

schedule-spec :
[schedule-name]
 { START TIME start-time | BETWEEN start-time AND end-time }
 [EVERY period { HOURS | MINUTES | SECONDS }]
 [ON { (day-of-week, ...) | (day-of-month, ...) }]
 [START DATE start-date]

event-name : identifier

schedule-name : identifier

day-of-week : string

day-of-month : integer

value : integer

period : integer

start-time : time

end-time : time

start-date : date

Parameters
CREATE EVENT clause The event name is an identifier. An event has a creator, which is the user
creating the event, and the event handler executes with the permissions of that creator. This is the same as
stored procedure execution. You cannot create events owned by other users.

SQL statements

496 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

TYPE clause You can specify the TYPE clause with an optional WHERE clause, or specify the
SCHEDULE.

The event-type is one of the listed set of system-defined event types. The event types are case insensitive.
To specify the conditions under which this event-type triggers the event, use the WHERE clause. For a
description of event-types not listed below, see “Understanding system events” [SQL Anywhere Server -
Database Administration].

○ DiskSpace event types If the database contains an event handler for one of the DiskSpace types,
the database server checks the available space on each device associated with the relevant file every
30 seconds.

In the event the database has more than one dbspace, on separate drives, DBDiskSpace checks each
drive and acts depending on the lowest available space.

The LogDiskSpace event type checks the location of the transaction log and any transaction log
mirror, and reports based on the least available space.

Disk space event types are not supported on Windows Mobile.

The TempDiskSpace event type checks the amount of temporary disk space.

If the appropriate event handlers have been defined (DBDiskSpace, LogDiskSpace, or
TempDiskSpace), the database server checks the available space on each device associated with a
database file every 30 seconds. Similarly, if an event has been defined to handle the system event type
ServerIdle, the database server notifies the handler when no requests have been processed during the
previous 30 seconds.

You can specify the -fc option when starting the database server to implement a callback function
when the database server encounters a file system full condition.

See “-fc dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration].

○ GlobalAutoincrement event type The event fires on each insert when the number of remaining
values for a GLOBAL AUTOINCREMENT is less than 1% of the end of its range. A typical action
for the handler could be to request a new value for the global_database_id option, based on the table
and number of remaining values which are supplied as parameters to this event.

You can use the event_condition function with RemainingValues as an argument for this event type.

○ ServerIdle event type If the database contains an event handler for the ServerIdle type, the
database server checks for server activity every 30 seconds.

○ Database mirroring event types The MirrorServerDisconnect event fires when a connection
from the primary database server to the mirror server or arbiter server is lost, and the MirrorFailover
event fires whenever a server takes ownership of the database. See “Database mirroring system
events” [SQL Anywhere Server - Database Administration].

WHERE clause The trigger condition determines the condition under which an event is fired. For
example, to take an action when the disk containing the transaction log becomes more than 80% full, use
the following triggering condition:

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 497

...
WHERE event_condition('LogDiskSpacePercentFree') < 20
...

The argument to the event_condition function must be valid for the event type.

You can use multiple AND conditions to make up the WHERE clause, but you cannot use OR conditions
or other conditions.

For information about valid arguments, see “EVENT_CONDITION function [System]” on page 207.

SCHEDULE clause This clause specifies when scheduled actions are to take place. The sequence of
times acts as a set of triggering conditions for the associated actions defined in the event handler.

You can create more than one schedule for a given event and its associated handler. This permits complex
schedules to be implemented. You must provide a schedule-name when there is more than one schedule;
the schedule-name is optional if you provide only a single schedule.

A scheduled event is recurring if its definition includes EVERY or ON; if neither of these reserved words
is used, the event executes at most once. An attempt to create a non-recurring scheduled event for which
the start time has passed generates an error. When a non-recurring scheduled event has passed, its
schedule is deleted, but the event handler is not deleted.

Scheduled event times are calculated when the schedules are created, and again when the event handler
completes execution. The next event time is computed by inspecting the schedule or schedules for the
event, and finding the next schedule time that is in the future. If an event handler is instructed to run every
hour between 9:00 and 5:00, and it takes 65 minutes to execute, it runs at 9:00, 11:00, 1:00, 3:00, and
5:00. If you want execution to overlap, you must create more than one event.

The subclauses of a schedule definition are as follows:

● START TIME clause The first scheduled time for each day on which the event is scheduled. The
start-time parameter is a string, and cannot be a variable or an expression such as NOW(). If a START
DATE is specified, the START TIME refers to that date. If no START DATE is specified, the
START TIME is on the current day (unless the time has passed) and each subsequent day (if the
schedule includes EVERY or ON).

● BETWEEN ... AND clause A range of times during the day outside which no scheduled times
occur. The start-time and end-time parameters are strings, and cannot be variables or expressions such
as NOW(). If a START DATE is specified, the scheduled times do not occur until that date.

● EVERY clause An interval between successive scheduled events. Scheduled events occur only
after the START TIME for the day, or in the range specified by BETWEEN ... AND.

● ON clause A list of days on which the scheduled events occur. The default is every day if EVERY
is specified. Days can be specified as days of the week or days of the month.

Days of the week are Mon, Tues, and so on. You may also use the full forms of the day, such as
Monday. You must use the full forms of the day names if the language you are using is not English, is
not the language requested by the client in the connection string, and is not the language which
appears in the database server messages window.

SQL statements

498 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Days of the month are integers from 0 to 31. A value of 0 represents the last day of any month.

● START DATE clause The date on which scheduled events are to start occurring. This value is a
string, and cannot be a variable or an expression such as TODAY(). The default is the current date.

Each time a scheduled event handler is completed, the following actions are taken to calculate the next
scheduled time and date for the event:

1. If the EVERY clause is used, find whether the next scheduled time falls on the current day, and is
before the end time specified by the BETWEEN ... AND clause, if it was specified. If so, that is
the next scheduled time.

2. If the next scheduled time does not fall on the current day, find the next date on which the event is
to be executed and use the START TIME for that date, or the beginning of the BETWEEN ...
AND range.

● ENABLE | DISABLE clause By default, event handlers are enabled. When DISABLE is specified,
the event handler does not execute even when the scheduled time or triggering condition occurs. A
TRIGGER EVENT statement does not cause a disabled event handler to be executed.

● AT clause This clause should be used only in the following circumstance: in a SQL Remote setup,
use the AT clause against your remote or consolidated databases to restrict the databases at which the
event is handled.

If you do not use the AT clause when creating events for SQL Remote, all databases execute the
event. When executed on a consolidated database, this statement does not affect remote databases that
have already been extracted.

● HANDLER clause Each event has one handler.

Remarks
Events can be used for:

● Scheduling actions The database server executes actions on a timed schedule. You can use this
capability to complete scheduled tasks such as backups, validity checks, and queries used to add data
to reporting tables.

● Event handling actions The database server executes actions when a predefined event occurs.
You can use this capability to complete scheduled tasks such as restrict disk space when a disk fills
beyond a specified percentage. Event handler actions are committed if errors are not detected during
execution, and rolled back if errors are detected.

An event definition includes two distinct pieces. The trigger condition can be an occurrence, such as a
disk filling up beyond a defined threshold. A schedule is a set of times, each of which acts as a trigger
condition. When a trigger condition is satisfied, the event handler executes. The event handler includes
one or more actions specified inside a compound statement (BEGIN... END).

If no trigger condition or schedule specification is supplied, only an explicit TRIGGER EVENT statement
can trigger the event. During development, you may want to test event handlers using TRIGGER
EVENT, and add the schedule or WHERE clause once testing is complete.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 499

Event errors are logged to the database server message log. See “Logging database server actions” [SQL
Anywhere Server - Database Administration].

After each execution of an event handler, a COMMIT occurs if no errors occurred. A ROLLBACK occurs
if there was an error.

When event handlers are triggered, the database server makes context information, such as the connection
ID that caused the event to be triggered, available to the event handler using the event_parameter
function. For more information about event_parameter, see “EVENT_PARAMETER function
[System]” on page 209.

Permissions
DBA authority.

Event handlers execute on a separate connection, with the permissions of the event owner. To execute
with authority other than DBA, you can call a procedure from within the event handler: the procedure
executes with the permissions of its owner. The separate connection does not count towards the ten-
connection limit of the personal database server.

Side effects
Automatic commit.

See also
● “BEGIN statement” on page 454
● “ALTER EVENT statement” on page 394
● “COMMENT statement” on page 468
● “DROP EVENT statement” on page 653
● “TRIGGER EVENT statement” on page 880
● “EVENT_PARAMETER function [System]” on page 209
● “Understanding system events” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Examples
Instruct the database server to carry out an automatic backup to tape using the first tape drive, every day at
1 A.M.

CREATE EVENT DailyBackup
SCHEDULE daily_backup
START TIME '1:00AM' EVERY 24 HOURS
HANDLER
 BEGIN
 BACKUP DATABASE TO '\\\\.\\tape0'
 ATTENDED OFF
 END;

Instruct the database server to carry out an automatic backup of the transaction log only, every hour,
Monday to Friday between 8 A.M. and 6 P.M.

SQL statements

500 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

CREATE EVENT HourlyLogBackup
SCHEDULE hourly_log_backup
BETWEEN '8:00AM' AND '6:00PM'
EVERY 1 HOURS ON
 ('Monday','Tuesday','Wednesday','Thursday','Friday')
HANDLER
 BEGIN
 BACKUP DATABASE DIRECTORY 'c:\\database\\backup'
 TRANSACTION LOG ONLY
 TRANSACTION LOG RENAME
 END;

See “Defining trigger conditions for events” [SQL Anywhere Server - Database Administration].

Determine when an event is next scheduled to run:

SELECT DB_EXTENDED_PROPERTY('NextScheduleTime', 'HourlyLogBackup');

CREATE EXISTING TABLE statement
Creates a new proxy table, which represents an existing object on a remote server.

Syntax
CREATE EXISTING TABLE [owner.]table-name
[(column-definition, ...)]
AT location-string

column-definition :
column-name data-type [NOT NULL]

location-string :
 remote-server-name.[db-name].[owner].object-name
| remote-server-name;[db-name];[owner];object-name

Parameters
AT clause The AT clause specifies the location of the remote object. The AT clause supports the
semicolon (;) as a delimiter. If a semicolon is present anywhere in the location-string string, the
semicolon is the field delimiter. If no semicolon is present, a period is the field delimiter. This allows file
names and extensions to be used in the database and owner fields. For example, the following statement
maps the table a1 to the Microsoft Access file mydbfile.mdb:

CREATE EXISTING TABLE a1
AT 'access;d:\mydbfile.mdb;;a1';

Remarks
The CREATE EXISTING TABLE statement creates a new, local, proxy table that maps to a table at an
external location. The CREATE EXISTING TABLE statement is a variant of the CREATE TABLE
statement. The EXISTING keyword is used with CREATE TABLE to specify that a table already exists
remotely and that its metadata is to be imported into SQL Anywhere. This establishes the remote table as
a visible entity to SQL Anywhere users. SQL Anywhere verifies that the table exists at the external
location before it creates the table.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 501

If the object does not exist (either as a host data file or remote server object), the statement is rejected
with an error message.

Index information from the host data file or remote server table is extracted and used to create rows for
the ISYSIDX system table. This information defines indexes and keys in server terms and enables the
query optimizer to consider any indexes that may exist on this table.

Referential constraints are passed to the remote location when appropriate.

If column-definitions are not specified, SQL Anywhere derives the column list from the metadata it
obtains from the remote table. If column-definitions are specified, SQL Anywhere verifies the column-
definitions. Column names, data types, lengths, identity property, and null properties are checked for the
following:

● Column names must match identically (although case is ignored).

● Data types in the CREATE EXISTING TABLE statement must match or be convertible to the data
types of the column on the remote location. For example, a local column data type is defined as
money, while the remote column data type is numeric.

● Each column's NULL property is checked. If the local column's NULL property is not identical to the
remote column's NULL property, a warning message is issued, but the statement is not aborted.

● Each column's length is checked. If the length of char, varchar, binary, varbinary, decimal and
numeric columns do not match, a warning message is issued, but the command is not aborted.

You may choose to include only a subset of the actual remote column list in your CREATE
EXISTING statement.

Permissions
Must have RESOURCE authority. To create a table for another user, you must have DBA authority.

Not supported on Windows Mobile.

Side effects
Automatic commit.

See also
● “CREATE TABLE statement” on page 596
● “Specify proxy table locations” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 Vendor extension.

● Transact-SQL Supported by Adaptive Server Enterprise. The format of location-string is
implementation-defined.

Examples
Create a proxy table named blurbs for the blurbs table at the remote server server_a.

SQL statements

502 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

CREATE EXISTING TABLE blurbs
(author_id ID not null,
copy text not null)
AT 'server_a.db1.joe.blurbs';

Create a proxy table named blurbs for the blurbs table at the remote server server_a. SQL Anywhere
derives the column list from the metadata it obtains from the remote table.

CREATE EXISTING TABLE blurbs
AT 'server_a.db1.joe.blurbs';

Create a proxy table named rda_employees for the Employees table at the remote SQL Anywhere Server,
demo12.

CREATE EXISTING TABLE rda_employees
AT 'demo12...Employees';

CREATE EXTERNLOGIN statement
Assigns an alternate login name and password to be used when communicating with a remote server.

Syntax
CREATE EXTERNLOGIN login-name
TO remote-server
[REMOTE LOGIN remote-user [IDENTIFIED BY remote-password]]

Parameters
login-name specifies the local user login name. When using integrated logins, the login-name is the
database user to which the Windows user or group is mapped.

TO clause The TO clause specifies the name of the remote server.

REMOTE LOGIN clause The REMOTE LOGIN clause specifies the user account on remote-server
for the local user login-name. Values for the REMOTE LOGIN clause are restricted to 128 bytes.

IDENTIFIED BY clause The IDENTIFIED BY clause specifies the remote-password for remote-user.
The remote-user and remote-password combination must be valid on the remote-server.

If you omit the IDENTIFIED BY clause, the password is sent to the remote server as NULL. However, if
you specify IDENTIFIED BY "" (an empty string), then the password sent is the empty string.

Remarks
By default, SQL Anywhere uses the names and passwords of its clients whenever it connects to a remote
server on behalf of those clients. CREATE EXTERNLOGIN assigns an alternate login name and
password to be used when communicating with a remote server.

The REMOTE LOGIN clause is required only when the remote server requires a user ID and password
for the connection. Having an external login without a remote login allows the DBA to control who can
access the remote server and tells the remote access layer that logging in to the remote server does not
require a user ID and password. For example, the directory access server class requires an external login

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 503

for restricting access to the directory server, but remote login is not needed because the directory server
does not perform user ID and password validation.

The password is stored internally in encrypted form. The remote-server must be known to the local server
by an entry in the ISYSSERVER table. See “CREATE SERVER statement” on page 567.

Sites with automatic password expiration should plan for periodic updates of passwords for external logins.

CREATE EXTERNLOGIN cannot be used from within a transaction.

Permissions
Only users with DBA authority can add or modify an external login for login-name.

Not supported on Windows Mobile.

Side effects
Automatic commit.

See also
● “Create external logins” [SQL Anywhere Server - SQL Usage]
● “DROP EXTERNLOGIN statement” on page 653

Standards and compatibility
● SQL/2008 Vendor extension.

Example
Map the local user named DBA to the user sa with password Plankton when connecting to the server sybase1.

CREATE EXTERNLOGIN DBA
TO sybase1
REMOTE LOGIN sa
IDENTIFIED BY Plankton;

CREATE FUNCTION statement (external procedures)
Creates an interface to a native or external function. To create a user-defined SQL function, see
“CREATE FUNCTION statement” on page 516.

Syntax
CREATE [OR REPLACE] FUNCTION [owner.]function-name
([parameter, ...])
RETURNS data-type
[SQL SECURITY { INVOKER | DEFINER }]
[[NOT] DETERMINISTIC]
EXTERNAL NAME external-call [LANGUAGE environment-name]

parameter :
 [IN] parameter-name data-type [DEFAULT expression]

SQL statements

504 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

environment-name :
 C_ESQL32
| C_ESQL64
| C_ODBC32
| C_ODBC64
| CLR
| JAVA
| PERL
| PHP

Parameters
CREATE FUNCTION You can create permanent stored functions that call external or native functions
written in a variety of programming languages.

Parameter names must conform to the rules for other database identifiers such as column names. They
must be a valid SQL data type. For a list of valid data types, see “SQL data types” on page 79.

Parameters can be prefixed with the keyword IN. However, function parameters are IN by default.

○ IN The parameter is an expression that provides a value to the function.

When functions are executed, not all parameters need to be specified. If a default value is provided in the
CREATE FUNCTION statement, missing parameters are assigned the default values. If an argument is
not provided when the function is executed, and no default is set, an error is given.

Specifying OR REPLACE (CREATE OR REPLACE FUNCTION) creates a new function, or replaces an
existing function with the same name. This clause changes the definition of the function, but preserves
existing permissions.

The EXTERNAL NAME clause is not supported for TEMPORARY functions.

[NOT] DETERMINISTIC clause Use this clause to indicate whether functions are deterministic or non-
deterministic. If this clause is omitted, then the deterministic behavior of the function is unspecified (the
default).

If a function is declared as DETERMINISTIC, it should return the same value every time it is invoked
with the same set of parameters.

If a function is declared as NOT DETERMINISTIC, then it is not guaranteed to return the same value for
the same set of parameters. A function declared as NOT DETERMINISTIC is re-evaluated each time it is
called in a query. This clause must be used when it is known that the function result for a given set of
parameters can vary.

Also, functions that have side effects such as modifying the underlying data should be declared as NOT
DETERMINISTIC. For example, a function that generates primary key values and is used in an
INSERT ... SELECT statement should be declared NOT DETERMINISTIC:

CREATE FUNCTION keygen(increment INTEGER)
RETURNS INTEGER
NOT DETERMINISTIC
BEGIN
 DECLARE keyval INTEGER;
 UPDATE counter SET x = x + increment;

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 505

 SELECT counter.x INTO keyval FROM counter;
 RETURN keyval
END
INSERT INTO new_table
SELECT keygen(1), ...
FROM old_table;

Functions can be declared as DETERMINISTIC if they always return the same value for given input
parameters.

SQL SECURITY clause The SQL SECURITY clause defines whether the function is executed as the
INVOKER (the user who is calling the function), or as the DEFINER (the user who owns the function).
The default is DEFINER. For external calls, this clause establishes the ownership context for unqualified
object references in the external environment.

When SQL SECURITY INVOKER is specified, more memory is used because annotation must be done
for each user that calls the function. Also, when SQL SECURITY INVOKER is specified, name
resolution is done as the invoker as well. Therefore, care should be taken to qualify all object names
(tables, procedures, and so on) with their appropriate owner. For example, suppose user1 creates the
following function:

CREATE FUNCTION user1.myFunc()
 RETURNS INT
 SQL SECURITY INVOKER
 BEGIN
 DECLARE res INT;
 SELECT COUNT(*) INTO res FROM table1;
 RETURN res;
 END;

If user2 attempts to run this function and a table user2.table1 does not exist, a table lookup error results.
Additionally, if a user2.table1 does exist, that table is used instead of the intended user1.table1. To
prevent this situation, qualify the table reference in the statement (user1.table1, instead of just table1).

EXTERNAL NAME native-call clause

native-call :
[operating-system:]function-name@library; ...

operating-system : Unix
A function using the EXTERNAL NAME clause with no LANGUAGE attribute defines an interface to a
native function written in a programming language such as C. The native function is loaded by the
database server into its address space.

The library name can include the file extension, which is typically .dll on Windows and .so on Unix. In
the absence of the extension, the software appends the platform-specific default file extension for
libraries. The following is a formal example.

CREATE FUNCTION mystring(IN instr LONG VARCHAR)
RETURNS LONG VARCHAR
EXTERNAL NAME 'mystring@mylib.dll;Unix:mystring@mylib.so';

A simpler way to write the above EXTERNAL NAME clause, using platform-specific defaults, is as follows:

SQL statements

506 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

CREATE FUNCTION mystring(IN instr LONG VARCHAR)
RETURNS LONG VARCHAR
EXTERNAL NAME 'mystring@mylib';

When called, the library containing the function is loaded into the address space of the database server.
The native function will execute as part of the server. In this case, if the function causes a fault, then the
database server will be terminated. Because of this, loading and executing functions in an external
environment using the LANGUAGE attribute is recommended. If a function causes a fault in an external
environment, the database server will continue to run.

For information about native library calls, see “SQL Anywhere external call interface” [SQL Anywhere
Server - Programming].

EXTERNAL NAME c-call LANGUAGE {C_ESQL32 | C_ESQL64 | C_ODBC32 | C_ODBC64 }
clause To call a compiled native C function in an external environment instead of within the database
server, the stored procedure or function is defined with the EXTERNAL NAME clause followed by the
LANGUAGE attribute specifying one of C_ESQL32, C_ESQL64, C_ODBC32, or C_ODBC64.

When the LANGUAGE attribute is specified, then the library containing the function is loaded by an
external process and the external function will execute as part of that external process. In this case, if the
function causes a fault, then the database server will continue to run.

The following is a sample function definition.

CREATE FUNCTION ODBCinsert(
 IN ProductName CHAR(30),
 IN ProductDescription CHAR(50)
)
RETURNS INT
EXTERNAL NAME 'ODBCexternalInsert@extodbc.dll'
LANGUAGE C_ODBC32;

For more information, see “The ESQL and ODBC external environments” [SQL Anywhere Server -
Programming].

EXTERNAL NAME clr-call LANGUAGE CLR clause To call a .NET function in an external
environment, the function interface is defined with an EXTERNAL NAME clause followed by the
LANGUAGE CLR attribute.

A CLR stored procedure or function behaves the same as a SQL stored procedure or function except that
the code for the procedure or function is written in a .NET language such as C# or Visual Basic, and the
execution of the procedure or function takes place outside the database server (that is, within a
separate .NET executable).

The following is a sample function definition.

CREATE FUNCTION clr_interface(
 IN p1 INT,
 IN p2 UNSIGNED SMALLINT,
 IN p3 LONG VARCHAR)
RETURNS INT
EXTERNAL NAME 'CLRlib.dll::CLRproc.Run(int, ushort, string)'
LANGUAGE CLR;

For more information, see “The CLR external environment” [SQL Anywhere Server - Programming].

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 507

EXTERNAL NAME perl-call LANGUAGE PERL clause To call a Perl function in an external
environment, the function interface is defined with an EXTERNAL NAME clause followed by the
LANGUAGE PERL attribute.

A Perl stored procedure or function behaves the same as a SQL stored procedure or function except that
the code for the procedure or function is written in Perl and the execution of the procedure or function
takes place outside the database server (that is, within a Perl executable instance).

The following is a sample function definition.

CREATE FUNCTION PerlWriteToConsole(IN str LONG VARCHAR)
RETURNS INT
EXTERNAL NAME '<file=PerlConsoleExample>
 WriteToServerConsole($sa_perl_arg0)'
LANGUAGE PERL;

For more information, see “The PERL external environment” [SQL Anywhere Server - Programming].

EXTERNAL NAME php-call LANGUAGE PHP clause To call a PHP function in an external
environment, the function interface is defined with an EXTERNAL NAME clause followed by the
LANGUAGE PHP attribute.

A PHP stored procedure or function behaves the same as a SQL stored procedure or function except that
the code for the procedure or function is written in PHP and the execution of the procedure or function
takes place outside the database server (that is, within a PHP executable instance).

The following is a sample function definition.

CREATE FUNCTION PHPPopulateTable()
RETURNS INT
EXTERNAL NAME '<file=ServerSidePHPExample> ServerSidePHPSub()'
LANGUAGE PHP;

For more information, see “The PHP external environment” [SQL Anywhere Server - Programming].

EXTERNAL NAME java-call LANGUAGE JAVA clause To call a Java method in an external
environment, the function interface is defined with an EXTERNAL NAME clause followed by the
LANGUAGE JAVA attribute.

A Java-interfacing stored procedure or function behaves the same as a SQL stored procedure or function
except that the code for the procedure or function is written in Java and the execution of the procedure or
function takes place outside the database server (that is, within a Java VM).

The following is a sample function definition.

CREATE FUNCTION HelloDemo(IN name LONG VARCHAR)
RETURNS INT
EXTERNAL NAME 'Hello.main([Ljava/lang/String;)V'
LANGUAGE JAVA;

For more information, see “The Java external environment” [SQL Anywhere Server - Programming].

SQL statements

508 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
The CREATE FUNCTION statement creates a function in the database. Users with DBA authority can
create functions for other users by specifying an owner. A function is invoked as part of a SQL expression.

When referencing a temporary table from multiple functions, a potential issue can arise if the temporary
table definitions are inconsistent and statements referencing the table are cached. See “Referencing
temporary tables within procedures” [SQL Anywhere Server - SQL Usage].

Permissions
Must have RESOURCE authority, unless creating a temporary function.

Must have DBA authority for external functions or to create a function for another user.

Side effects
Automatic commit.

See also
● “ALTER FUNCTION statement” on page 397
● “CALL statement” on page 460
● “CREATE FUNCTION statement” on page 516
● “CREATE FUNCTION statement (web clients)” on page 510
● “CREATE PROCEDURE statement (external procedures)” on page 536
● “DROP FUNCTION statement” on page 654
● “GRANT statement” on page 718
● “SQL Anywhere external environment support” [SQL Anywhere Server - Programming]

Standards and compatibility
● SQL/2008 CREATE FUNCTION for an external language environment is a core feature of the SQL/

2008 standard, though some of its components supported in SQL Anywhere are optional SQL/2008
language features. A subset of these features include:

○ The SQL SECURITY clause is optional language feature T324.

○ The ability to pass a LONG VARCHAR, LONG NVARCHAR, or LONG BINARY value to an
SQL function is language feature T041.

○ Support for LANGUAGE JAVA is optional SQL/2008 language feature J621.

○ The ability to create or modify a schema object within an external function, using statements such
as CREATE TABLE or DROP TRIGGER, is language feature T653.

○ The ability to use a dynamic-SQL statement within an external function, including statements such
as CONNECT, EXECUTE IMMEDIATE, PREPARE, and DESCRIBE, is language feature T654.

Several clauses of the CREATE FUNCTION statement are vendor extensions. These include:

○ Support for C_ESQL32, C_ESQL64, C_ODBC32, C_ODBC64, CLR, PERL, and PHP in the
LANGUAGES clause are vendor extensions.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 509

○ The format of external-call is implementation-defined.

○ The optional DEFAULT clause for a specific routine parameter is a vendor extension.

○ The optional OR REPLACE clause is a vendor extension.

● Transact-SQL CREATE FUNCTION for an external routine is supported by Adaptive Server
Enterprise. Adaptive Server Enterprise only supports LANGUAGE JAVA as the external
environment (SQL/2008 language feature J621) for an external function.

CREATE FUNCTION statement (web clients)

Creates a web client function that makes an HTTP or SOAP over HTTP request. To create a user-defined
SQL function, see “CREATE FUNCTION statement” on page 516.

Syntax
CREATE [OR REPLACE] FUNCTION [owner.]function-name ([parameter, ...])
RETURNS data-type
URL url-string
[HEADER header-string]
[SOAPHEADER soap-header-string]
[TYPE {
 'HTTP[:{ GET | POST[:MIME-type] | PUT[:MIME-type] | DELETE | HEAD }]' |
 'SOAP[:{ RPC | DOC }]' }]
[NAMESPACE namespace-string]
[CERTIFICATE certificate-string]
[CLIENTPORT clientport-string]
[PROXY proxy-string]
[SET protocol-option-string]

url-string :
' { HTTP | HTTPS | HTTPS_FIPS }://[user:password@]hostname[:port][/path]'

parameter :
 [IN] parameter-name data-type [DEFAULT expression]

Parameters
CREATE FUNCTION Parameter names must conform to the rules for database identifiers. They must
have a valid SQL data type, and must be prefixed by the keyword IN, signifying that the argument is an
expression that provides a value to the function.

When functions are executed, not all parameters need to be specified. If a default value is provided in the
CREATE FUNCTION statement, missing parameters are assigned the default values. If an argument is
not provided by the caller and no default is set, an error is given.

Specifying OR REPLACE (CREATE OR REPLACE FUNCTION) creates a new function, or replaces an
existing function with the same name. This clause changes the definition of the function, but preserves
existing permissions. You cannot use the OR REPLACE clause with temporary functions.

SQL statements

510 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

RETURNS clause Specify one of the following to define the return type for the SOAP or HTTP function:

○ CHAR
○ VARCHAR
○ LONG VARCHAR
○ TEXT
○ NCHAR
○ NVARCHAR
○ LONG NVARCHAR
○ NTEXT
○ XML
○ BINARY
○ VARBINARY
○ LONG BINARY

The value returned is the body of the HTTP response. No HTTP header information is included. If more
information is required, such as status information, use a procedure instead of a function.

The data type does not affect how the HTTP response is processed.

URL clause For use only when defining an HTTP or SOAP web services client function. Specifies the
URL of the web service. The optional user name and password parameters provide a means of supplying
the credentials needed for HTTP basic authentication. HTTP basic authentication base-64 encodes the
user and password information and passes it in the Authentication header of the HTTP request.

Specifying HTTPS_FIPS forces the system to use the FIPS libraries. If HTTPS_FIPS is specified, but no
FIPS libraries are present, non-FIPS libraries are used instead.

HEADER clause When creating HTTP web service client functions, use this clause to add or modify
HTTP request header entries. Only printable ASCII characters can be specified for HTTP headers, and
they are case-insensitive. For more information about how to use this clause, see the HEADER clause of
the “CREATE PROCEDURE statement (web clients)” on page 543.

For more information about using HTTP headers, see “HTTP request header management” [SQL
Anywhere Server - Programming].

SOAPHEADER clause When declaring a SOAP web service as a function, use this clause to specify
one or more SOAP request header entries. A SOAP header can be declared as a static constant, or can be
dynamically set using the parameter substitution mechanism (declaring IN, OUT, or INOUT parameters
for hd1, hd2, and so on). A web service function can define one or more IN mode substitution parameters,
but can not define an INOUT or OUT substitution parameter. For more information about how to use this
clause, see the SOAPHEADER clause of the “CREATE PROCEDURE statement (web
clients)” on page 543.

For more information about using SOAP headers, see “Tutorial: Using SQL Anywhere to access a SOAP/
DISH service” [SQL Anywhere Server - Programming].

For more information about substitution parameters, see “HTTP and SOAP request structures” [SQL
Anywhere Server - Programming].

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 511

TYPE clause Specifies the format used when making the web service request. SOAP:RPC is used
when SOAP is specified or no type clause is included. HTTP:POST is used when HTTP is specified. See
“Developing web client applications” [SQL Anywhere Server - Programming].

The TYPE clause allows the specification of a MIME-type for HTTP:GET, HTTP:POST, and HTTP:PUT
types. The MIME-type specification is used to set the Content-Type request header and set the mode of
operation to allow only a single call parameter to populate the body of the request. Only zero or one
parameter may remain when making a web service stored function call after parameter substitutions have
been processed. Calling a web service function with a null or no parameter (after substitutions) results in a
request with no body and a content-length of zero. The behavior has not changed if a MIME type is not
specified. Parameter names and values (multiple parameters are permitted) are URL encoded within the
body of the HTTP request.

Some typical MIME-types include:

○ text/plain
○ text/html
○ text/xml

The keywords for the TYPE clause have the following meanings:

○ HTTP:GET By default, this type uses the application/x-www-form-urlencoded MIME-type for
encoding parameters specified in the URL.

For example, the following request is produced when a client submits a request from the URL, http://
localhost/WebServiceName?arg1=param1&arg2=param2:

GET /WebServiceName?arg1=param1&arg2=param2 HTTP/1.1
// <End of Request - NO BODY>

○ HTTP:POST By default, this type uses the application/x-www-form-urlencoded MIME-type for
encoding parameters specified in the body of a POST request. URL parameters are stored in the body.

For example, the following request is produced when a client submits a request the URL, http://
localhost/WebServiceName?arg1=param1&arg2=param2:

POST /WebServiceName HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: 19
arg1=param1&arg2=param2
// <End of Request>

○ HTTP:PUT HTTP:PUT is similar to HTTP:POST, but the HTTP request method is emitted. An
HTTP:PUT type does not have a default media type.

The following example demonstrates how to configure a general purpose client procedure that uploads
data to a SQL Anywhere server running the put_data.sql sample:

ALTER PROCEDURE CPUT("data" LONG VARCHAR, resnm LONG VARCHAR, mediatype
LONG VARCHAR)
 URL 'http://localhost/resource/!resnm'
 TYPE 'HTTP:PUT:!mediatype';

SQL statements

512 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

CALL CPUT('hello world', 'hello', 'text/plain');

○ HTTP:DELETE A web service client procedure can be configured to delete a resource located on a
server. Specifying the media type is optional.

The following example demonstrates how to configure a general purpose client procedure that deletes
a resource from a SQL Anywhere server running the put_data.sql sample:

ALTER PROCEDURE CDEL(resnm LONG VARCHAR, mediatype LONG VARCHAR)
 URL 'http://localhost/resource/!resnm'
 TYPE 'HTTP:DELETE:!mediatype';
CALL CDEL('hello', 'text/plain');

○ HTTP:HEAD The head method is identical to a GET method but the server does not return a body.
A media type can be specified.

ALTER PROCEDURE CHEAD(resnm LONG VARCHAR)
 URL 'http://localhost/resource/!resnm'
 TYPE 'HTTP:HEAD';
CALL CHEAD('hello');

○ SOAP:RPC This type sets the Content-Type to 'text/xml'. SOAP operations and parameters are
encapsulated in SOAP envelope XML documents.

○ SOAP:DOC This type sets the Content-Type to 'text/xml'. It is similar to the SOAP:RPC type but
allows you to send richer data types. SOAP operations and parameters are encapsulated in SOAP
envelope XML documents.

Specifying a MIME-type for the TYPE clause automatically sets the Content-Type header to that MIME-
type. For an example of MIME-type usage, see “Supplying variables to a web service” [SQL Anywhere
Server - Programming] and “Tutorial: Working with MIME types in a RAW service” [SQL Anywhere
Server - Programming].

NAMESPACE clause Applies to SOAP client functions only. This clause identifies the method
namespace usually required for both SOAP:RPC and SOAP:DOC requests. The SOAP server handling
the request uses this namespace to interpret the names of the entities in the SOAP request message body.
The namespace can be obtained from the WSDL (Web Services Description Language) of the SOAP
service available from the web service server. The default value is the function's URL, up to but not
including, the optional path component.

CERTIFICATE clause To make a secure (HTTPS) request, a client must have access to the certificate
used by the HTTPS server. The necessary information is specified in a string of semicolon-separated key/
value pairs. You can use the file key to specify the file name of the certificate, or you can use the
certificate key to specify the server certificate in a string. You cannot specify a file and certificate key
together. The following keys are available:

Key Abbreviation Description

file The file name of the certificate.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 513

Key Abbreviation Description

certificate cert The certificate itself.

company co The company specified in the certificate.

unit The company unit specified in the certifi-
cate.

name The common name specified in the certif-
icate.

Certificates are required only for requests that are directed to an HTTPS server, or for requests that can be
redirected from a non-secure to a secure server. Only PEM formatted certificates are supported.

CLIENTPORT clause Identifies the port number on which the HTTP client function communicates
using TCP/IP. It is provided for and recommended only for connections across firewalls, as firewalls filter
according to the TCP/UDP port. You can specify a single port number, ranges of port numbers, or a
combination of both; for example, CLIENTPORT '85,90-97'. See “ClientPort (CPORT) protocol option”
[SQL Anywhere Server - Database Administration].

PROXY clause Specifies the URI of a proxy server. For use when the client must access the network
through a proxy. This clause indicates that the function is to connect to the proxy server and send the
request to the web service through it.

SET clause Specifies protocol-specific behavior options for HTTP and SOAP. The following list
describes the supported SET options. CHUNK and VERSION apply to the HTTP protocol, and
OPERATION applies to the SOAP protocol. Parameter substitution is supported for this clause.

○ 'HTTP(CH[UNK]=option)' (HTTP or SOAP) This option allows you to specify whether to use
chunking. Chunking allows HTTP messages to be broken up into several parts. Possible values are
ON (always chunk), OFF (never chunk), and AUTO (chunk only if the contents, excluding auto-
generated markup, exceeds 8196 bytes). For example, the following SET clause enables chunking:

SET 'HTTP(CHUNK=ON)'

If the CHUNK option is not specified, the default behavior is AUTO. If a chunked request fails in
AUTO mode with a status of 505 HTTP Version Not Supported, or with 501 Not Implemented, or
with 411 Length Required, the client retries the request without chunked transfer-coding.

Set the CHUNK option to OFF (never chunk) if the HTTP server does not support chunked transfer-
coded requests.

Since CHUNK mode is a transfer encoding supported starting in HTTP version 1.1, setting CHUNK
to ON requires that the version (VER) be set to 1.1, or not be set at all, in which case 1.1 is used as the
default version.

○ ' HTTP(VER[SION]=ver)' (HTTP or SOAP) This option allows you to specify the version of HTTP
protocol that is used for the format of the HTTP message. For example, the following SET clause sets
the HTTP version to 1.1:

SQL statements

514 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SET 'HTTP(VERSION=1.1)'

Possible values are 1.0 and 1.1. If VERSION is not specified:

● if CHUNK is set to ON, 1.1 is used as the HTTP version

● if CHUNK is set to OFF, 1.0 is used as the HTTP version

● if CHUNK is set to AUTO, either 1.0 or 1.1 is used, depending on whether the client is sending in
CHUNK mode

○ 'SOAP(OP[ERATION]=soap-operation-name)' (SOAP only) This option allows you to specify
the name of the SOAP operation, if it is different from the name of the procedure you are creating.
The value of OPERATION is analogous to the name of a remote procedure call. For example, if you
wanted to create a procedure called accounts_login that calls a SOAP operation called login, you
would specify something like the following:

CREATE FUNCTION accounts_login(
 name LONG VARCHAR,
 pwd LONG VARCHAR)
 SET 'SOAP(OPERATION=login)';

If the OPERATION option is not specified, the name of the SOAP operation must match the name of
the procedure you are creating.

The following statement shows how several protocol-option settings are combined in the same SET clause:

CREATE FUNCTION accounts_login(
 name LONG VARCHAR,
 pwd LONG VARCHAR)
 SET 'HTTP (CHUNK=ON; VERSION=1.1), SOAP(OPERATION=login)'
 ...

Remarks
The CREATE FUNCTION statement creates a web services function in the database. A function can be
created for another user by specifying an owner name.

Parameter values are passed as part of the request. The syntax used depends on the type of request. For
HTTP:GET, the parameters are passed as part of the URL; for HTTP:POST requests, the values are
placed in the body of the request. Parameters to SOAP requests are always bundled in the request body.

Permissions
RESOURCE authority.

DBA authority for external functions, including Java functions.

Side effects
Automatic commit.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 515

See also
● “ALTER FUNCTION statement” on page 397
● “CREATE FUNCTION statement” on page 516
● “CREATE FUNCTION statement (external procedures)” on page 504
● “CREATE PROCEDURE statement” on page 552
● “CREATE PROCEDURE statement (web clients)” on page 543
● “DROP FUNCTION statement” on page 654
● “RETURN statement” on page 813
● “Using SQL Anywhere as an HTTP web server” [SQL Anywhere Server - Programming]
● “Developing web client applications” [SQL Anywhere Server - Programming]
● “remote_idle_timeout option” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

● Transact-SQL Not supported by Adaptive Server Enterprise.

Examples
The following statement creates a function named cli_test1 that returns images from the get_picture
service running on localhost:

CREATE FUNCTION cli_test1(image LONG VARCHAR)
RETURNS LONG BINARY
URL 'http://localhost/get_picture'
TYPE 'HTTP:GET';

The following statement issues an HTTP request with the URL http://localhost/get_picture?
image=widget:

SELECT cli_test1('widget');

The following statement uses a substitution parameter to allow the request URL to be passed as an input
parameter. The SET clause is used to turn off CHUNK mode transfer-encoding.

CREATE FUNCTION cli_test2(image LONG VARCHAR, myurl LONG VARCHAR)
RETURNS LONG BINARY
URL '!myurl'
TYPE 'HTTP:GET'
SET 'HTTP(CH=OFF)'
HEADER 'ASA-ID';

The following statement issues an HTTP request with the URL http://localhost/get_picture?
image=widget:

CREATE VARIABLE a_binary LONG BINARY
a_binary = cli_test2('widget', 'http://localhost/get_picture');
SELECT a_binary;

CREATE FUNCTION statement

SQL statements

516 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Creates a user-defined SQL function in the database. To create external function interfaces, see
“CREATE FUNCTION statement (external procedures)” on page 504. To create web services functions,
see “CREATE FUNCTION statement (web clients)” on page 510.

Syntax
CREATE [OR REPLACE | TEMPORARY] FUNCTION [owner.]function-name
([parameter, ...])
RETURNS data-type
[SQL SECURITY { INVOKER | DEFINER }]
[ON EXCEPTION RESUME]
[[NOT] DETERMINISTIC]
compound-statement | AS tsql-compound-statement

parameter :
 [IN] parameter-name data-type [DEFAULT expression]

tsql-compound-statement:
sql-statement
sql-statement
 ...

Parameters
OR REPLACE clause Specifying CREATE OR REPLACE FUNCTION creates a new function, or
replaces an existing function with the same name. When a function is replaced, the definition of the
function is changed but the existing permissions are preserved.

You cannot use the OR REPLACE clause with temporary functions.

TEMPORARY keyword Specifying CREATE TEMPORARY FUNCTION means that the function is
visible only by the connection that created it, and that it is automatically dropped when the connection is
dropped. Temporary functions can also be explicitly dropped. You cannot perform ALTER, GRANT, or
REVOKE on them, and, unlike other functions, temporary functions are not recorded in the catalog or
transaction log.

Temporary functions execute with the permissions of their creator (current user) or specified owner. You
can specify an owner for a temporary function when:

○ the temporary function is created within a permanent stored procedure

○ the owner of the temporary function and permanent stored procedure is the same

To drop the owner of a temporary function, you must drop the temporary function first.

Temporary functions can be created and dropped when connected to a read-only database.

You cannot use the OR REPLACE clause with temporary functions.

SQL SECURITY clause The SQL SECURITY clause defines whether the function is executed as the
INVOKER (the user who is calling the function), or as the DEFINER (the user who owns the function).
The default is DEFINER.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 517

compound-statement A set of SQL statements bracketed by BEGIN and END, and separated by
semicolons. See “BEGIN statement” on page 454.

tsql-compound-statement A batch of Transact-SQL statements. See “Transact-SQL batch
overview” [SQL Anywhere Server - SQL Usage], and “CREATE PROCEDURE statement [T-
SQL]” on page 550.

ON EXCEPTION RESUME clause Use Transact-SQL-like error handling. See “CREATE
PROCEDURE statement” on page 552.

[NOT] DETERMINISTIC clause Use this clause to indicate whether functions are deterministic or non-
deterministic. If this clause is omitted, then the deterministic behavior of the function is unspecified (the
default).

If a function is declared as DETERMINISTIC, it should return the same value every time it is invoked
with the same set of parameters.

If a function is declared as NOT DETERMINISTIC, then it is not guaranteed to return the same value for
the same set of parameters. A function declared as NOT DETERMINISTIC is re-evaluated each time it is
called in a query. This clause must be used when it is known that the function result for a given set of
parameters can vary.

Also, functions that have side effects such as modifying the underlying data should be declared as NOT
DETERMINISTIC. For example, a function that generates primary key values and is used in an
INSERT ... SELECT statement should be declared NOT DETERMINISTIC:

CREATE FUNCTION keygen(increment INTEGER)
RETURNS INTEGER
NOT DETERMINISTIC
BEGIN
 DECLARE keyval INTEGER;
 UPDATE counter SET x = x + increment;
 SELECT counter.x INTO keyval FROM counter;
 RETURN keyval
END
INSERT INTO new_table
SELECT keygen(1), ...
FROM old_table;

Functions can be declared as DETERMINISTIC if they always return the same value for given input
parameters.

Remarks
The CREATE FUNCTION statement creates a function in the database. A function can be created for
another user by specifying an owner name. Subject to permissions, a function can be used in exactly the
same way as other non-aggregate functions.

Parameter names must conform to the rules for database identifiers. They must have a valid SQL data
type, and must be prefixed by the keyword IN, signifying that the argument is an expression that provides
a value to the function.

SQL statements

518 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

When functions are executed, not all parameters need to be specified. If a default value is provided in the
CREATE FUNCTION statement, missing parameters are assigned the default values. If an argument is
not provided by the caller and no default is set, an error is given.

When SQL SECURITY INVOKER is specified, more memory is used because annotation must be done
for each user that calls the procedure. Also, when SQL SECURITY INVOKER is specified, name
resolution is done as the invoker as well. Therefore, care should be taken to qualify all object names
(tables, procedures, and so on) with their appropriate owner.

All functions are treated as deterministic unless they are declared NOT DETERMINISTIC. Deterministic
functions return a consistent result for the same parameters, and are free of side effects. That is, the
database server assumes that two successive calls to the same function with the same parameters returns
the same result, and does not have any unwanted side-effects on the query's semantics.

If a function returns a result set, it cannot also set output parameters or return a return value.

Permissions
Must have RESOURCE authority, unless creating a temporary function.

External functions, including Java functions, must have DBA authority.

Side effects
Automatic commit.

See also
● “ALTER FUNCTION statement” on page 397
● “CREATE FUNCTION statement (external procedures)” on page 504
● “CREATE FUNCTION statement (web clients)” on page 510
● “BEGIN statement” on page 454
● “CREATE PROCEDURE statement” on page 552
● “DROP FUNCTION statement” on page 654
● “RETURN statement” on page 813
● “Using procedures, triggers, and batches” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 CREATE FUNCTION is a core feature of the SQL/2008 standard, though some of its

components supported in SQL Anywhere are optional SQL language features. A subset of these
features include:

○ The SQL SECURITY clause is optional language feature T324.

○ The ability to pass a LONG VARCHAR, LONG NVARCHAR, or LONG BINARY value to an
SQL function is language feature T041.

○ The ability to create or modify a schema object within an SQL function, using statements such as
CREATE TABLE or DROP TRIGGER, is language feature T651.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 519

○ The ability to use a dynamic-SQL statement within an SQL function, including statements such as
EXECUTE IMMEDIATE, PREPARE, and DESCRIBE, is language feature T652.

Several clauses of the CREATE FUNCTION statement are vendor extensions. These include:

○ The TEMPORARY clause.

○ The ON EXCEPTION RESUME clause.

○ The optional DEFAULT clause for a specific routine parameter.

○ The specification of a Transact-SQL function using the AS clause.

○ The optional OR REPLACE clause.

● Transact-SQL CREATE FUNCTION is supported by Adaptive Server Enterprise. Adaptive
Server Enterprise does not support the optional IN keyword for function parameters.

Examples
The following function concatenates a firstname string and a lastname string.

CREATE FUNCTION fullname(
 firstname CHAR(30),
 lastname CHAR(30))
RETURNS CHAR(61)
BEGIN
 DECLARE name CHAR(61);
 SET name = firstname || ' ' || lastname;
 RETURN (name);
END;

The following example replaces the fullname function created in the first example. After replacing the
function, the local variable name is removed:

CREATE OR REPLACE FUNCTION fullname(
 firstname CHAR(30),
 lastname CHAR(30))
RETURNS CHAR(61)
BEGIN
 RETURN = firstname || ' ' || lastname;
END;

The following examples illustrate the use of the fullname function.

Return a full name from two supplied strings:

SELECT fullname ('joe', 'smith');

fullname('joe', 'smith')

joe smith

List the names of all employees:

SQL statements

520 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SELECT fullname (GivenName, Surname)
FROM Employees;

fullname (GivenName, Surname)

Fran Whitney

Matthew Cobb

Philip Chin

Julie Jordan

...

The following function uses Transact-SQL syntax:

CREATE FUNCTION DoubleIt(@Input INT)
RETURNS INT
AS
BEGIN
 DECLARE @Result INT
 SELECT @Result = @Input * 2
 RETURN @Result
END;

The statement SELECT DoubleIt(5) returns a value of 10.

CREATE INDEX statement
Creates an index on a specified table or materialized view.

Syntax 1 - Creating an index on a table
CREATE [VIRTUAL] [UNIQUE] [CLUSTERED] INDEX [IF NOT EXISTS] index-name
ON [owner.]table-name
 (column-name [ASC | DESC], ...
 | function-name (argument, ...]) AS column-name)
| [WITH NULLS NOT DISTINCT]
[{ IN | ON } dbspace-name]
[FOR OLAP WORKLOAD]

Syntax 2 - Creating an index on a materialized view
CREATE [VIRTUAL] [UNIQUE] [CLUSTERED] INDEX [IF NOT EXISTS] index-name
 ON [owner.]materialized-view-name
 (column-name [ASC | DESC], ...)
| [WITH NULLS NOT DISTINCT]
[{ IN | ON } dbspace-name]
[FOR OLAP WORKLOAD]

Parameters

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 521

VIRTUAL clause The VIRTUAL keyword is primarily for use by the Index Consultant. A virtual
index mimics the properties of a real physical index during the evaluation of execution plans by the Index
Consultant and when the PLAN function is used. You can use virtual indexes together with the PLAN
function to explore the performance impact of an index, without the often time-consuming and resource-
consuming effects of creating a real index.

Virtual indexes are not visible to other connections, and are dropped when the connection is closed.
Virtual indexes are not used when evaluating plans for the actual execution of queries, and so do not
interfere with performance.

Virtual indexes have a limit of four columns.

See “Obtain Index Consultant recommendations for a query” [SQL Anywhere Server - SQL Usage], and
“Index Consultant” [SQL Anywhere Server - SQL Usage].

UNIQUE clause The UNIQUE attribute ensures that there will not be two rows in the table or
materialized view with identical values in all the columns in the index. If you specify UNIQUE, but do
not specify WITH NULLS NOT DISTINCT, each index key must be unique or contain a NULL in at
least one column. For example, two entries ('a', NULL) and ('a', NULL) are each considered unique.

If you specify UNIQUE...WITH NULLS NOT DISTINCT, then the index key must be unique regardless
of the NULL values. For example, two entries ('a', NULL) and ('a', NULL) are considered equal, not unique.

There is a difference between a unique constraint and a unique index. Columns of a unique index are
allowed to be NULL, while columns in a unique constraint are not. A foreign key can reference either a
primary key or a unique constraint, but not a unique index, because it can include multiple instances of
NULL.

It is recommended that you do not use approximate data types such as FLOAT and DOUBLE for primary
keys or for columns in unique constraints. Approximate numeric data types are subject to rounding errors
after arithmetic operations.

CLUSTERED clause The CLUSTERED attribute causes rows to be stored in an approximate key
order corresponding to the index. While the database server makes an attempt to preserve key order, total
clustering is not guaranteed.

If a clustered index exists, the LOAD TABLE statement inserts rows in the order of the index key, and the
INSERT statement attempts to put new rows on the same page as the one containing adjacent rows, as
defined by the key order.

See “Using clustered indexes” [SQL Anywhere Server - SQL Usage].

IF NOT EXISTS clause When the IF NOT EXISTS attribute is specified and the named index already
exists, no changes are made and an error is not returned.

ASC | DESC clause Columns are sorted in ascending (increasing) order unless descending (DESC) is
explicitly specified. An index is used for both an ascending and a descending ORDER BY, whether the
index was ascending or descending. However, if an ORDER BY is performed with mixed ascending and
descending attributes, an index is used only if the index was created with the same ascending and
descending attributes.

SQL statements

522 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

function-name The function-name clause creates an index on a function. This clause cannot be used
on declared temporary tables or materialized views.

This form of the CREATE INDEX statement is a convenience method that carries out the following
operations:

1. Adds a computed column named column-name to the table. The column is defined with a COMPUTE
clause that is the specified function, along with any specified arguments. See the COMPUTE clause of
the CREATE TABLE statement for restrictions on the type of function that can be specified. The data
type of the column is based on the result type of the function.

2. Populates the computed column for the existing rows in the table.

3. Creates an index on the column.

Dropping the index does not cause the associated computed column to be dropped.

For more information about computed columns, see “Working with computed columns” [SQL
Anywhere Server - SQL Usage].

IN | ON clause By default, the index is placed in the same database file as its table or materialized
view. You can place the index in a separate database file by specifying a dbspace name in which to put
the index. This feature is useful mainly for large databases to circumvent file size limitations, or for
performance improvements that might be achieved by using multiple disk devices.

If the new index can share the physical index with an existing logical index, the IN clause is ignored.

For more information about limitations, see “SQL Anywhere size and number limitations” [SQL
Anywhere Server - Database Administration].

WITH NULLS NOT DISTINCT clause This clause can only be specified if you are declaring the index
to be UNIQUE and allows you to specify that NULLs in index keys are not unique. See the UNIQUE
clause for more information.

FOR OLAP WORKLOAD clause When you specify FOR OLAP WORKLOAD, the database server
performs certain optimizations and gathers statistics on the key to help improve performance for OLAP
workloads. Performance improvements are most noticeable when the optimization_workload is set to
OLAP. See “optimization_workload option” [SQL Anywhere Server - Database Administration].

For more information about OLAP, see “OLAP support” [SQL Anywhere Server - SQL Usage].

Remarks
Syntax 1 is for use with tables; Syntax 2 is for use with materialized views.

Indexes can improve database performance. SQL Anywhere uses physical and logical indexes. A physical
index is the actual indexing structure as it is stored on disk. A logical index is a reference to a physical
index. If you create an index that is identical in its physical attributes to an existing index, the database
server creates a logical index that shares the existing physical index. In general, indexes created by users
are considered logical indexes. The database server creates physical indexes as required to implement

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 523

logical indexes, and can share the same physical index among several logical indexes. See “Index sharing
using logical indexes” [SQL Anywhere Server - SQL Usage].

The CREATE INDEX statement creates a sorted index on the specified columns of the named table or
materialized view. Indexes are automatically used to improve the performance of queries issued to the
database, and to sort queries with an ORDER BY clause. Once an index is created, it is never referenced
in a SQL statement again except to validate it (VALIDATE INDEX), alter it (ALTER INDEX), delete it
(DROP INDEX), or in a hint to the optimizer.

● Index ownership There is no way of specifying the index owner in the CREATE INDEX
statement. Indexes are always owned by the owner of the table or materialized view.

● Indexes on views You can create indexes on materialized views, but not on regular views.

● Index name space The name of each index must be unique for a given table or materialized view.

● Exclusive use CREATE INDEX is prevented whenever the statement affects a table or
materialized view currently being used by another connection. CREATE INDEX can be time
consuming and the database server will not process requests referencing the same table while the
statement is being processed.

● Automatically created indexes SQL Anywhere automatically creates indexes for primary key,
foreign key, and unique constraints. These automatically created indexes are held in the same database
file as the table.

This statement cannot be executed when there are cursors opened with the WITH HOLD clause that use
either statement or transaction snapshots. See “Snapshot isolation” [SQL Anywhere Server - SQL Usage].

Permissions
Must be the owner of the table or materialized view, or have either DBA authority or REFERENCES
permission.

Side effects
Automatic commit. Creating an index on a function (an implicit computed column) also causes a checkpoint.

Column statistics are updated (or created if they do not exist).

See also
● “DROP INDEX statement” on page 655
● “Indexes” [SQL Anywhere Server - SQL Usage]
● “CREATE STATISTICS statement” on page 588
● “Index sharing using logical indexes” [SQL Anywhere Server - SQL Usage]
● “Indexes” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
Create a two-column index on the Employees table.

SQL statements

524 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

CREATE INDEX employee_name_index
ON Employees
(Surname, GivenName);

Create an index on the SalesOrderItems table for the ProductID column.

CREATE INDEX item_prod
ON SalesOrderItems
(ProductID);

Use the SORTKEY function to create an index on the Description column of the Products table, sorted
according to a Russian collation. As a side effect, the statement adds a computed column desc_ru to the
table.

CREATE INDEX ix_desc_ru
ON Products (
 SORTKEY(Description, 'rusdict')
 AS desc_ru);

CREATE LOCAL TEMPORARY TABLE statement
Creates a local temporary table within a procedure that persists after the procedure completes and until it
is either explicitly dropped, or until the connection terminates.

Syntax
CREATE LOCAL TEMPORARY TABLE table-name
({ column-definition [column-constraint ...] | table-constraint | pctfree }, ...)
[ON COMMIT { DELETE | PRESERVE } ROWS | NOT TRANSACTIONAL]

pctfree : PCTFREE percent-free-space

percent-free-space : integer

Parameters
For definitions of column-definition, column-constraint, table-constraint, and pctfree, see “CREATE
TABLE statement” on page 596.

ON COMMIT clause By default, the rows of a temporary table are deleted on a COMMIT. You can
use the ON COMMIT clause to preserve rows on a COMMIT.

NOT TRANSACTIONAL clause The NOT TRANSACTIONAL clause provides performance
improvements in some circumstances because operations on non-transactional temporary tables do not
cause entries to be made in the rollback log. For example, NOT TRANSACTIONAL may be useful if
procedures that use the temporary table are called repeatedly with no intervening COMMITs or
ROLLBACKs.

Remarks
In a procedure, use the CREATE LOCAL TEMPORARY TABLE statement, instead of the DECLARE
LOCAL TEMPORARY TABLE statement, when you want to create a table that persists after the
procedure completes. Local temporary tables created using the CREATE LOCAL TEMPORARY
TABLE statement remain until they are either explicitly dropped, or until the connection closes.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 525

Tables created using CREATE LOCAL TEMPORARY TABLE do not appear in the SYSTABLE view
of the system catalog.

Local temporary tables created in IF statements using CREATE LOCAL TEMPORARY TABLE also
persist after the IF statement completes.

Permissions
None.

Side effects
None.

See also
● “CREATE TABLE statement” on page 596
● “DECLARE LOCAL TEMPORARY TABLE statement” on page 633
● “Using compound statements” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 CREATE LOCAL TEMPORARY TABLE is part of optional language feature F531 of

the SQL/2008 standard. The PCTFREE and NOT TRANSACTIONAL clauses are vendor extensions.
The column and constraint definitions defined by the statement may also include vendor extension
syntax. In SQL/2008, the standard stipulates that tables created via the CREATE LOCAL
TEMPORARY TABLE statement appear in the system catalog; this is not the case with SQL Anywhere.

● Transact-SQL CREATE LOCAL TEMPORARY TABLE is not supported by Adaptive Server
Enterprise. In Sybase Adaptive Server Enterprise, one creates a temporary table using the CREATE
TABLE statement with a table name that begins with the special character '#'. See “CREATE TABLE
statement” on page 596.

Example
The following example creates a local temporary table called TempTab:

CREATE LOCAL TEMPORARY TABLE TempTab (number INT)
ON COMMIT PRESERVE ROWS;

CREATE LOGIN POLICY statement
Creates a login policy.

Syntax
CREATE LOGIN POLICY policy-name policy-options

policy options :
policy-option [policy-option ...]

policy-option :
policy-option-name = policy-option-value

SQL statements

526 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

policy-option-value :
{ UNLIMITED | legal-option-value }

Parameters
policy-name The name of the login policy.

policy-option-name The name of the login policy option. If you do not specify an option, the value
from the root login policy is applied.

policy-option-value The value assigned to the login policy option. If you specify UNLIMITED, no
limits are imposed.

Remarks
If you do not specify a policy option, values for the login policy are taken from the root login policy.

All new databases include a root login policy. You can modify the root login policy values, but you
cannot delete the policy. An overview of the default options for the root login policy is provided in the
table below.

Policy-option-name Description Default value Applies to

password_life_time The maximum number of
days before a password must
be changed.

Unlimited All users including
those with DBA
authority

password_grace_time The number of days before
the password expires during
which login is allowed, but
the default post_login proce-
dure issues warnings.

0 All users including
those with DBA
authority

password_expiry_on_next_login If the value for this option is
ON, the user's password will
expire after the next login.

OFF All users including
those with DBA
authority

locked If the value for this option is
ON, users are not allowed to
establish new connections.
Users with DBA authority
cannot be locked. The rea-
son_locked column of the
sa_get_user_status system
procedure returns a string gen-
erated by the database server
that shows why a user is
locked.

OFF Users without
DBA authority

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 527

Policy-option-name Description Default value Applies to

max_connections The maximum number of con-
current connections allowed
for a user.

Unlimited Users without
DBA authority

max_failed_login_attempts The maximum number of
failed attempts, since the last
successful attempt, to login
before the user is locked.

Unlimited Users without
DBA authority

max_days_since_login The maximum number of
days that can elapse between
two successive logins by the
same user.

Unlimited Users without
DBA authority

max_non_dba_connections The maximum number of con-
current connections that users
without DBA authority can
make. This option is only sup-
ported in the root login policy.

Unlimited Users without
DBA authority
and only to the de-
fault login policy

Permissions
DBA authority

Side effects
None.

See also
● “ALTER LOGIN POLICY statement” on page 400
● “ALTER USER statement” on page 441
● “COMMENT statement” on page 468
● “CREATE USER statement” on page 621
● “DROP LOGIN POLICY statement” on page 656
● “DROP USER statement” on page 674
● “Managing login policies” [SQL Anywhere Server - Database Administration]
● “Creating a new login policy” [SQL Anywhere Server - Database Administration]
● “Assigning a login policy to an existing user” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Examples
The following example creates the Test1 login policy. This example has an unlimited password life and
allows the user a maximum of 5 attempts to enter a correct password before the account is locked.

SQL statements

528 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

CREATE LOGIN POLICY Test1
password_life_time=UNLIMITED
max_failed_login_attempts=5;

CREATE MATERIALIZED VIEW statement
Creates a materialized view.

Syntax
CREATE MATERIALIZED VIEW
[owner.]materialized-view-name [(alt-column-names, ...)]
[IN dbspace-name]
AS select-statement
[CHECK { IMMEDIATE | MANUAL } REFRESH]

alt-column-names :
(column-name [,...])

Parameters
alt-column-names Use this clause to specify alternate names for the columns in the materialized
view. If you specify alternate columns names, the number of columns listed in alt-column-names must
match the number of columns in select-statement. If you do not specify alternate column names, the
names are set to those in select-statement.

IN clause Use this clause to specify the dbspace in which to create the materialized view. If this clause
is not specified, then the materialized view is created in the dbspace specified by the default_dbspace
option. Otherwise, the system dbspace is used. For more information, see “Using additional dbspaces”
[SQL Anywhere Server - Database Administration].

AS clause Use this clause to specify, in the form of a SELECT statement, the data to use to populate
the materialized view. A materialized view definition can only reference base tables; it cannot reference
views, other materialized views, or temporary tables. select-statement must contain column names or have
an alias name specified. If you specify alt-column-names, those names are used instead of the aliases
specified in select-statement.

Column names in the SELECT statement must be specified explicitly; you cannot use the SELECT *
construct. For example, you cannot specify CREATE MATERIALIZED VIEW matview AS
SELECT * FROM table-name. Also, you should fully qualify objects names in the select-statement.
See “Restrictions on materialized views” [SQL Anywhere Server - SQL Usage].

CHECK clause Use this clause to validate the statement without actually creating the view. When you
specify the CHECK clause:

○ The database server performs the normal language checks that would be carried out if CREATE
MATERIALIZED VIEW was executed without the clause, and any errors generated are returned as
usual.

○ The database server does not carry out the actual creation of the view. This means that certain errors
that would occur at creation time are not generated. For example, an error indicating that the specified

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 529

view name already exists is not generated. This allows you to use the CHECK clause to test intended
changes to the definition of the view, without a conflict with the naming of the view.

○ If CHECK IMMEDIATE REFRESH is used then the database server verifies that the syntax is valid
for an immediate view and returns any errors.

○ No changes are made to the database, and nothing is recorded in the transaction log.

○ There is an implicit commit at the beginning of statement execution and a rollback at the end to
release all locks obtained during execution.

Remarks
When you create a materialized view, it is a manual view and uninitialized. That is, it has a manual
refresh type, and it has not been refreshed (populated with data). To initialize the view, execute a
REFRESH MATERIALIZED VIEW statement, or use the sa_refresh_materialized_views system
procedure. See “REFRESH MATERIALIZED VIEW statement” on page 798, and
“sa_refresh_materialized_views system procedure” on page 1049.

You can encrypt a materialized view, change its PCTFREE setting, change its refresh type, and enable or
disable its use by the optimizer. However, you must create the materialized view first, and then use the
ALTER MATERIALIZED VIEW to change these settings. The default values for materialized views at
creation time are:

● NOT ENCRYPTED

● ENABLE USE IN OPTIMIZATION

● PCTFREE is set according to the database page size: 200 bytes for a 4 KB page size, and 100 bytes
for a 2 KB page size

● MANUAL REFRESH

Several database and server options must be in effect to create a materialized view. See “Restrictions on
materialized views” [SQL Anywhere Server - SQL Usage].

The sa_recompile_views system procedure does not affect materialized views.

Permissions
You must have RESOURCE authority and SELECT permission on the tables in the materialized view
definition. To create a materialized view for another user, you must also have DBA authority.

Side effects
While executing, the CREATE MATERIALIZED VIEW statement places exclusive locks, without
blocking, on all tables referenced by the materialized view. If one of the referenced tables cannot be
locked, the statement fails and an error is returned.

SQL statements

530 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “Working with materialized views” [SQL Anywhere Server - SQL Usage]
● “Materialized view statuses and properties” [SQL Anywhere Server - SQL Usage]
● “ALTER MATERIALIZED VIEW statement” on page 401
● “DROP MATERIALIZED VIEW statement” on page 657
● “REFRESH MATERIALIZED VIEW statement” on page 798
● “CREATE VIEW statement” on page 624
● “sa_refresh_materialized_views system procedure” on page 1049

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example creates a materialized view containing confidential information about employees
in the SQL Anywhere sample database. You must subsequently execute a REFRESH MATERIALIZED
VIEW statement to initialize the view for use, as shown in the example.

CREATE MATERIALIZED VIEW EmployeeConfid2 AS
SELECT EmployeeID, Employees.DepartmentID,
 SocialSecurityNumber, Salary, ManagerID,
 Departments.DepartmentName, Departments.DepartmentHeadID
FROM Employees, Departments
WHERE Employees.DepartmentID=Departments.DepartmentID;
REFRESH MATERIALIZED VIEW EmployeeConfid2;

CREATE MESSAGE statement [T-SQL]
Adds a user-defined message to the ISYSUSERMESSAGE system table for use by PRINT and
RAISERROR statements.

Syntax
CREATE MESSAGE message-number AS message-text

message-number : integer

message-text : string

Parameters
message-number The message number of the message to add. The message number for a user-
defined message must be 20000 or greater.

message-text The text of the message to add. The maximum length is 255 bytes. PRINT and
RAISERROR recognize placeholders in the message text. A single message can contain up to 20 unique
placeholders in any order. These placeholders are replaced with the formatted contents of any arguments
that follow the message when the text of the message is sent to the client.

The placeholders are numbered to allow reordering of the arguments when translating a message to a
language with a different grammatical structure. A placeholder for an argument appears as "%nn!": a

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 531

percent sign (%), followed by an integer from 1 to 20, followed by an exclamation mark (!), where the
integer represents the position of the argument in the argument list. "%1!" is the first argument, "%2!" is
the second argument, and so on.

There is no parameter corresponding to the language argument for sp_addmessage.

Remarks
CREATE MESSAGE associates a message number with a message string. The message number can be
used in PRINT and RAISERROR statements.

To drop a message, see “DROP MESSAGE statement” on page 658.

Permissions
Must have RESOURCE authority

Side effects
Automatic commit.

See also
● “PRINT statement [T-SQL]” on page 791
● “RAISERROR statement” on page 793
● “ISYSUSERMESSAGE system table” on page 921

Standards and compatibility
● SQL/2008 Vendor extension.

● Transact-SQL CREATE MESSAGE supplies the functionality provided by the sp_addmessage
system procedure in Adaptive Server Enterprise.

CREATE MIRROR SERVER statement

Separately licensed component required
Read-only scale-out and database mirroring each require a separate license. See “Separately licensed
components” [SQL Anywhere 12 - Introduction].

Creates or replaces a mirror server that is being used for database mirroring or read-only scale-out.

Syntax
CREATE [OR REPLACE] MIRROR SERVER mirror-server-name
AS { PRIMARY | MIRROR | ARBITER | PARTNER | COPY }
[{ FROM SERVER parent-name [OR SERVER server-name] | USING AUTO PARENT }]
[server-option = string [...]]

parent-name :
server-name | PRIMARY

SQL statements

532 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

server-option :
connection_string
logfile
preferred
state_file

Parameters
● CREATE OR REPLACE MIRROR SERVER CREATE MIRROR SERVER creates the mirror

server. An error is returned if a mirror server with the specified name already exists in the database.

CREATE OR REPLACE MIRROR SERVER creates a mirror server if the server does not already
exist in the database, and replaces it if it does exist. An error is returned if you attempt to replace a
mirror server while it is in use.

● AS clause You can specify one of the following server types:

○ PRIMARY The mirror server with type PRIMARY defines a virtual or logical server, rather
than an actual database server. The name of this server is the alternate server name for the
database. The alternate server name can be used by applications to connect to the server currently
acting as the primary server. The server marked as PRIMARY also defines the connection string
used by mirror servers to connect to the server currently acting as primary, and it defines how new
copy nodes initially connect to the root server in a scale-out system. There can be only one
PRIMARY server for a database.

○ MIRROR The mirror server with type MIRROR defines a virtual or logical server, rather than
an actual database server. The name of this server is the alternate mirror server name for the
database. The alternate mirror server name can be used by applications to connect to the server
currently acting as the read-only mirror. There can be only one MIRROR server for a database.

○ ARBITER In a database mirroring system, the arbiter server assists in determining which of the
PARTNER servers takes ownership of the database. The arbiter server must be defined with a
connection string that can be used by the partner servers to connect to the arbiter. There can be
only one ARBITER server for a database.

○ PARTNER In a database mirroring system, servers defined as PARTNER are eligible to
become the primary server and take ownership of the database. You must define two PARTNER
servers for database mirroring, and both must have a connection string and a state file. The name
of the mirror server must correspond to the name of the database server, as specified by the -n
server option, and must match the value of the SERVER connection string parameter specified in
the connection_string mirror server option.

In a read-only scale-out system, you must define one PARTNER server. This server is the root
server, and runs the only copy of the database that allows both read and write operations.

○ COPY In a read-only scale-out system, this value specifies that the database server is a copy
node. All connections to the database on this server are read-only. The name of the mirror server
must correspond to the name of the database server, as specified by the -n server option, and must
match the value of the SERVER connection string parameter specified in the connection_string
mirror server option. You do not have to explicitly define copy nodes for the scale-out system; you

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 533

can choose to have the root node define the copy nodes when they connect. See “Adding copy
nodes” [SQL Anywhere Server - Database Administration].

● FROM SERVER clause You can only specify this clause for mirror servers of type COPY. This
clause constructs a tree of servers for a mirroring or scale-out system and indicates which servers the
non-participating nodes obtain transaction log pages from.

The parent can be specified using the name of the mirror server or PRIMARY. An alternate parent for
the copy node can be specified using the OR SERVER clause.

In a database mirroring system that has only two levels (participating and non-participating nodes),
the non-participating nodes obtain transaction log pages from the current primary or mirror server.

A copy node determines which server to connect to by using its mirror server definition that is stored
in the database. From its definition, it can locate the definition of its parent, and from its parent's
definition, it can obtain the connection string to connect to the parent. See “SYSMIRRORSERVER
system view” on page 1149.

You do not have to explicitly define copy nodes for the scale-out system: you can choose to have the
root node define the copy nodes when they connect. See “Adding copy nodes” [SQL Anywhere Server
- Database Administration].

● USING AUTO PARENT clause This clause causes the primary server to assign a parent for this
server. See “Automatically assign the parent of a copy node” [SQL Anywhere Server - Database
Administration].

● server-option clause The following options are supported:

○ connection_string Specifies the connection string to be used to connect to the server. A user
ID and password are not required. The connection string for a mirror server should not include a
user ID or password because they are not used when one mirror server connects to another mirror
server.

For a complete list of connection parameters, see “Connection parameters” [SQL Anywhere Server
- Database Administration].

○ logfile Specifies the location of the file that contains one line per request that is sent between
mirror servers if database mirroring is used. This file is used only for debugging.

○ preferred Specifies whether the server is the preferred server in the mirroring system. You can
specify either YES or NO. The preferred server assumes the role of primary server whenever
possible. You specify this option when defining PARTNER servers. See “Specifying a preferred
database server” [SQL Anywhere Server - Database Administration].

○ state_file Specifies the location of the file used for maintaining state information about the
mirroring system. This option is required for database mirroring. A state file must be specified for
servers with type PARTNER. For arbiter servers, the location is specified as part of the command
to start the server. See “State information files” [SQL Anywhere Server - Database
Administration].

SQL statements

534 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
In a database mirroring system, the mirror server type can be PRIMARY, MIRROR, ARBITER, or
PARTNER.

In a read-only scale-out system, the mirror server type can be PRIMARY, PARTNER, or COPY.

Mirror server names for servers of type PARTNER, ARBITER, or COPY must match the names of the
database servers that are part of the mirroring system (the name used with the -n server option). This
allows each database server to find its own definition and that of its parent.

Permissions
Must have DBA authority.

Side effects
Automatic commit.

See also
● “Introduction to database mirroring” [SQL Anywhere Server - Database Administration]
● “SQL Anywhere read-only scale-out” [SQL Anywhere Server - Database Administration]
● “SET MIRROR OPTION statement” on page 837
● “ALTER MIRROR SERVER statement” on page 404
● “COMMENT statement” on page 468
● “DROP MIRROR SERVER statement” on page 659

Standards and compatibility
● SQL/2008 Vendor extension

Example
The following statement creates a mirror server that can be used as the primary server in a database
mirroring system:

CREATE MIRROR SERVER "scaleout_primary"
 AS PRIMARY
 connection_string =
'server=scaleout_primary;host=winxp-2:6871,winxp-3:6872';

The following statement creates a mirror server that can be used as the mirror server in a database
mirroring system:

CREATE MIRROR SERVER "scaleout_mirror"
AS MIRROR
connection_string =
'server=scaleout_mirror;links=tcpip(host=winxp-2:6871,winxp-3:6872)';

The following statement creates a mirror server that can be used as the arbiter in a database mirroring system:

CREATE MIRROR SERVER "scaleout_arbiter"
AS ARBITER
connection_string = 'server=scaleout_arbiter;host=winxp-4:6870';

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 535

The following statement creates a mirror server that can be used as a partner server in a database
mirroring system:

CREATE MIRROR SERVER "scaleout_server1"
AS PARTNER
connecton_string = 'server=scaleout_server1;HOST=winxp-2:6871'
state_file = 'c:\server1\server1.state';

CREATE PROCEDURE statement (external procedures)

Creates an interface to a native or external procedure. To create a SQL procedure, see “CREATE
PROCEDURE statement” on page 552.

Syntax
CREATE [OR REPLACE] PROCEDURE [owner.]procedure-name
 ([parameter[, ...]])
[RESULT (result-column [, ...]) | NO RESULT SET]
[DYNAMIC RESULT SETS integer-expression]
[SQL SECURITY { INVOKER | DEFINER }]
{ EXTERNAL NAME 'native-call'
 | EXTERNAL NAME 'c-call' LANGUAGE { C_ESQL32 | C_ESQL64 | C_ODBC32 | C_ODBC64 }
 | EXTERNAL NAME 'clr-call' LANGUAGE CLR
 | EXTERNAL NAME 'perl-call' LANGUAGE PERL
 | EXTERNAL NAME 'php-call' LANGUAGE PHP
 | EXTERNAL NAME 'java-call' LANGUAGE JAVA }

parameter :
[parameter-mode] parameter-name data-type [DEFAULT expression]
| SQLCODE
| SQLSTATE

parameter-mode :
IN
| OUT
| INOUT

native-call :
[operating-system:]function-name@library

result-column :
column-name data-type

c-call :
[operating-system:]function-name@library; ...

clr-call :
dll-name::function-name(param-type-1[, ...])

perl-call :
<file=perl-file> $sa_perl_return = perl-subroutine($sa_perl_arg0[, ...])

php-call :
<file=php-file> print php-func($argv[1][, ...])

SQL statements

536 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

java-call :
[package-name.]class-name.method-name method-signature

operating-system :
Unix

method-signature :
([field-descriptor, ...]) return-descriptor

field-descriptor and return-descriptor :
{ Z
 | B
 | S
 | I
 | J
 | F
 | D
 | C
 | V
 | [descriptor
 | Lclass-name;
}

Parameters
CREATE PROCEDURE You can create permanent stored procedures that call external or native
procedures written in a variety of programming languages. You can use PROC as a synonym for
PROCEDURE.

Parameter names must conform to the rules for other database identifiers such as column names. They
must be a valid SQL data type. For a list of valid data types, see “SQL data types” on page 79.

Parameters can be prefixed with one of the keywords IN, OUT, or INOUT. If you do not specify one of
these values, parameters are INOUT by default. The keywords have the following meanings:

○ IN The parameter is an expression that provides a value to the procedure.

○ OUT The parameter is a variable that could be given a value by the procedure.

○ INOUT The parameter is a variable that provides a value to the procedure, and could be given a new
value by the procedure.

When procedures are executed using the CALL statement, not all parameters need to be specified. If a
default value is provided in the CREATE PROCEDURE statement, missing parameters are assigned the
default values. If an argument is not provided in the CALL statement, and no default is set, an error is given.

SQLSTATE and SQLCODE are special OUT parameters that output the SQLSTATE or SQLCODE
value when the procedure ends. The SQLSTATE and SQLCODE special values can be checked
immediately after a procedure call to test the return status of the procedure.

The SQLSTATE and SQLCODE special values are modified by the next SQL statement. Providing
SQLSTATE or SQLCODE as procedure arguments allows the return code to be stored in a variable.

Specifying OR REPLACE (CREATE OR REPLACE PROCEDURE) creates a new procedure, or
replaces an existing procedure with the same name. This clause changes the definition of the procedure,

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 537

but preserves existing permissions. An error is returned if you attempt to replace a procedure that is
already in use.

You cannot create TEMPORARY external call procedures.

RESULT clause The RESULT clause declares the number and type of columns in the result set. The
parenthesized list following the RESULT keyword defines the result column names and types. This
information is returned by the embedded SQL DESCRIBE or by ODBC SQLDescribeCol when a CALL
statement is being described. For a list of data types, see “SQL data types” on page 79.

Embedded SQL (LANGUAGE C_ESQL32, LANGUAGE C_ESQL64) or ODBC (LANGUAGE
C_ODBC32, LANGUAGE C_ODBC64) external procedures can return 0 or 1 result sets.

Perl or PHP (LANGUAGE PERL, LANGUAGE PHP) external procedures cannot return result sets.
Procedures that call native functions loaded by the database server cannot return result sets.

CLR or Java (LANGUAGE CLR, LANGUAGE JAVA) external procedures can return 0, 1, or more
result sets.

Some procedures can produce more than one result set, with different numbers of columns, depending on
how they are executed. For example, the following procedure returns two columns under some
circumstances, and one in others.

CREATE PROCEDURE names(IN formal char(1))
BEGIN
 IF formal = 'n' THEN
 SELECT GivenName
 FROM Employees
 ELSE
 SELECT Surname, GivenName
 FROM Employees
 END IF
END;

Procedures with variable result sets must be written without a RESULT clause, or in Transact-SQL. Their
use is subject to the following limitations:

○ Embedded SQL You must DESCRIBE the procedure call after the cursor for the result set is
opened, but before any rows are returned, to get the proper shape of result set. The CURSOR cursor-
name clause on the DESCRIBE statement is required.

○ ODBC, OLE DB, ADO.NET Variable result-set procedures can be used by applications using these
interfaces. The proper description of the result sets is carried out by the driver or provider.

○ Open Client applications Variable result-set procedures can be used by Open Client applications.

If your procedure returns only one result set, you should use a RESULT clause. The presence of this
clause prevents ODBC and Open Client applications from re-describing the result set after a cursor is open.

To handle multiple result sets, ODBC must describe the currently executing cursor, not the procedure's
defined result set. Therefore, ODBC does not always describe column names as defined in the RESULT
clause of the procedure definition. To avoid this problem, use column aliases in the SELECT statement
that generates the result set.

SQL statements

538 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

For more information about returning result sets from procedures, see “Returning results from
procedures” [SQL Anywhere Server - SQL Usage].

NO RESULT SET clause Declares that no result set is returned by this procedure. This declaration
can lead to a performance improvement.

DYNAMIC RESULT SETS clause Use this clause with LANGUAGE CLR and LANGUAGE JAVA
calls. If the DYNAMIC RESULT SETS clause is not provided, it is assumed that the method returns no
result set.

Note that procedures that call into Perl or PHP (LANGUAGE PERL, LANGUAGE PHP) external
functions cannot return result sets. Procedures that call native functions loaded by the database server
cannot return result sets.

SQL SECURITY clause The SQL SECURITY clause defines whether the procedure is executed as
the INVOKER (the user who is calling the procedure), or as the DEFINER (the user who owns the
procedure). The default is DEFINER. For external calls, this clause establishes the ownership context for
unqualified object references in the external environment.

When SQL SECURITY INVOKER is specified, more memory is used because annotation must be done
for each user that calls the procedure. Also, when SQL SECURITY INVOKER is specified, name
resolution is done as the invoker as well. Therefore, care should be taken to qualify all object names
(tables, procedures, and so on) with their appropriate owner. For example, suppose user1 creates the
following procedure:

CREATE PROCEDURE user1.myProcedure()
 RESULT(columnA INT)
 SQL SECURITY INVOKER
 BEGIN
 SELECT columnA FROM table1;
 END;

If user2 attempts to run this procedure and a table user2.table1 does not exist, a table lookup error results.
Additionally, if a user2.table1 does exist, that table is used instead of the intended user1.table1. To
prevent this situation, qualify the table reference in the statement (user1.table1, instead of just table1).

EXTERNAL NAME clause A procedure using the EXTERNAL NAME clause with no LANGUAGE
attribute defines an interface to a native function written in a programming language such as C. The native
function is loaded by the database server into its address space.

The library name can include the file extension, which is typically .dll on Windows and .so on Unix. In
the absence of the extension, the software appends the platform-specific default file extension for
libraries. The following is a formal example.

CREATE PROCEDURE mystring(IN instr LONG VARCHAR)
EXTERNAL NAME 'mystring@mylib.dll;Unix:mystring@mylib.so';

A simpler way to write the above EXTERNAL NAME clause, using platform-specific defaults, is as follows:

CREATE PROCEDURE mystring(IN instr LONG VARCHAR)
EXTERNAL NAME 'mystring@mylib';

When called, the library containing the function is loaded into the address space of the database server.
The native function will execute as part of the server. In this case, if the function causes a fault, then the

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 539

database server will be terminated. Because of this, loading and executing functions in an external
environment using the LANGUAGE attribute is recommended. If a function causes a fault in an external
environment, the database server will continue to run.

For syntaxes that support operating-system, if you do not specify operating-system, then it is assumed that
the procedure runs on all platforms. If you specify Unix for one of the calls, then it is assumed that the
other call is for Windows.

For information about native library calls, see “SQL Anywhere external call interface” [SQL Anywhere
Server - Programming].

● EXTERNAL NAME 'c-call' LANGUAGE { C_ESQL32 | C_ESQL64 | C_ODBC32 | C_ODBC64 }
clause To call a compiled native C function in an external environment instead of within the
database server, the stored procedure or function is defined with the EXTERNAL NAME clause
followed by the LANGUAGE attribute specifying one of C_ESQL32, C_ESQL64, C_ODBC32, or
C_ODBC64.

When the LANGUAGE attribute is specified, then the library containing the function is loaded by an
external process and the external function will execute as part of that external process. In this case, if
the function causes a fault, then the database server will continue to run.

The following is a sample procedure definition.

CREATE PROCEDURE ODBCinsert(
 IN ProductName CHAR(30),
 IN ProductDescription CHAR(50)
)
NO RESULT SET
EXTERNAL NAME 'ODBCexternalInsert@extodbc.dll'
LANGUAGE C_ODBC32;

For more information, see “The ESQL and ODBC external environments” [SQL Anywhere Server -
Programming].

● EXTERNAL NAME clr-call LANGUAGE CLR clause To call a .NET function in an external
environment, the procedure interface is defined with an EXTERNAL NAME clause followed by the
LANGUAGE CLR attribute.

A CLR stored procedure or function behaves the same as a SQL stored procedure or function except
that the code for the procedure or function is written in a .NET language such as C# or Visual Basic,
and the execution of the procedure or function takes place outside the database server (that is, within a
separate .NET executable).

The following is a sample procedure definition.

CREATE PROCEDURE clr_interface(
 IN p1 INT,
 IN p2 UNSIGNED SMALLINT,
 OUT p3 LONG VARCHAR)
NO RESULT SET
EXTERNAL NAME 'CLRlib.dll::CLRproc.Run(int, ushort, out string)'
LANGUAGE CLR;

SQL statements

540 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

For more information, see “The CLR external environment” [SQL Anywhere Server - Programming].

● EXTERNAL NAME perl-call LANGUAGE PERL clause To call a Perl function in an external
environment, the procedure interface is defined with an EXTERNAL NAME clause followed by the
LANGUAGE PERL attribute.

A Perl stored procedure or function behaves the same as a SQL stored procedure or function except
that the code for the procedure or function is written in Perl and the execution of the procedure or
function takes place outside the database server (that is, within a Perl executable instance).

The following is a sample procedure definition.

CREATE PROCEDURE PerlWriteToConsole(IN str LONG VARCHAR)
NO RESULT SET
EXTERNAL NAME '<file=PerlConsoleExample>
 WriteToServerConsole($sa_perl_arg0)'
LANGUAGE PERL;

For more information, see “The PERL external environment” [SQL Anywhere Server - Programming].

● EXTERNAL NAME php-call LANGUAGE PHP clause To call a PHP function in an external
environment, the procedure interface is defined with an EXTERNAL NAME clause followed by the
LANGUAGE PHP attribute.

A PHP stored procedure or function behaves the same as a SQL stored procedure or function except
that the code for the procedure or function is written in PHP and the execution of the procedure or
function takes place outside the database server (that is, within a PHP executable instance).

The following is a sample procedure definition.

CREATE PROCEDURE PHPPopulateTable()
NO RESULT SET
EXTERNAL NAME '<file=ServerSidePHPExample> ServerSidePHPSub()'
LANGUAGE PHP;

For more information, see “The PHP external environment” [SQL Anywhere Server - Programming].

● EXTERNAL NAME java-call LANGUAGE JAVA clause To call a Java method in an external
environment, the procedure interface is defined with an EXTERNAL NAME clause followed by the
LANGUAGE JAVA attribute.

A Java-interfacing stored procedure or function behaves the same as a SQL stored procedure or
function except that the code for the procedure or function is written in Java and the execution of the
procedure or function takes place outside the database server (that is, within a Java VM).

The following is a sample procedure definition.

CREATE PROCEDURE HelloDemo(IN name LONG VARCHAR)
NO RESULT SET
EXTERNAL NAME 'Hello.main([Ljava/lang/String;)V'
LANGUAGE JAVA;

For more information, see “The Java external environment” [SQL Anywhere Server - Programming].

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 541

Remarks
The CREATE PROCEDURE statement creates a procedure in the database. Users with DBA authority
can create procedures for other users by specifying an owner. A procedure is invoked with a CALL statement.

If a stored procedure returns a result set, it cannot also set output parameters or return a return value.

When referencing a temporary table from multiple procedures, a potential issue can arise if the temporary
table definitions are inconsistent and statements referencing the table are cached. See “Referencing
temporary tables within procedures” [SQL Anywhere Server - SQL Usage].

Permissions
Must have RESOURCE authority, unless creating a temporary procedure.

Must have DBA authority for external procedures or to create a procedure for another user.

Side effects
Automatic commit.

See also
● “ALTER PROCEDURE statement” on page 407
● “CALL statement” on page 460
● “CREATE FUNCTION statement” on page 516
● “CREATE FUNCTION statement (external procedures)” on page 504
● “CREATE PROCEDURE statement” on page 552
● “DROP PROCEDURE statement” on page 659
● “GRANT statement” on page 718
● “SQL Anywhere external environment support” [SQL Anywhere Server - Programming]

Standards and compatibility
● SQL/2008 CREATE PROCEDURE for an external language environment is a core feature of the

SQL/2008 standard, though some of its components supported in SQL Anywhere are optional SQL/
2008 language features. A subset of these features include:

○ The SQL SECURITY clause is SQL/2008 optional language feature T324.

○ The ability to pass a LONG VARCHAR, LONG NVARCHAR, or LONG BINARY value to an
external procedure is SQL/2008 language feature T041.

○ The ability to create or modify a schema object within an external procedure, using statements
such as CREATE TABLE or DROP TRIGGER, is SQL/2008 language feature T653.

○ The ability to use a dynamic-SQL statement within an external procedure, including statements
such as CONNECT, EXECUTE IMMEDIATE, PREPARE, and DESCRIBE, is SQL/2008
language feature T654.

○ JAVA external procedures embody SQL/2008 language feature J621.

Several clauses of the CREATE PROCEDURE statement are vendor extensions. These include:

SQL statements

542 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

○ Support for C_ESQL32, C_ESQL64, C_ODBC32, C_ODBC64, CLR, PERL, and PHP in the
LANGUAGES clause are vendor extensions. The SQL/2008 standard supports "C" as an
environment-name as optional language feature B122.

○ The format of external-call is implementation-defined.

○ The RESULT and NO RESULT SET clauses are vendor extensions. The SQL/2008 standard uses
the RETURNS clause.

○ The optional DEFAULT clause for a specific routine parameter is a vendor extension.

○ The optional OR REPLACE clause is a vendor extension.

● Transact-SQL CREATE PROCEDURE for an external routine is supported by Adaptive Server
Enterprise. Adaptive Server Enterprise supports C-language and Java language external routines.

CREATE PROCEDURE statement (web clients)

Creates a web client procedure that makes an HTTP or SOAP over HTTP request. To create a user-
defined SQL procedure, see “CREATE PROCEDURE statement” on page 552.

Syntax
CREATE [OR REPLACE] PROCEDURE [owner.]procedure-name ([parameter, ...])
URL url-string
[TYPE { http-type-spec-string | soap-type-spec-string }]
[HEADER header-string]
[CERTIFICATE certificate-string]
[CLIENTPORT clientport-string]
[PROXY proxy-string]
[SET protocol-option-string]
[SOAPHEADER soap-header-string]
[NAMESPACE namespace-string]

http-type-spec-string :
HTTP[: { GET
 | POST[:MIME-type]
 | PUT[:MIME-type]
 | DELETE
 | HEAD }]

soap-type-spec-string :
SOAP[:{ RPC | DOC }

parameter :
 parameter-mode parameter-name data-type [DEFAULT expression]

parameter-mode :
IN
| OUT
| INOUT

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 543

url-string :
{ HTTP | HTTPS | HTTPS_FIPS }://[user:password@]hostname[:port][/path]

protocol-option-string
[http-option-list]
[, soap-option-list]

http-option-list :
HTTP(
[CH[UNK]={ ON | OFF | AUTO }]
[; VER[SION]={ 1.0 | 1.1 }]
)

 soap-option-list:
SOAP(OP[ERATION]=soap-operation-name)

Parameters
CREATE PROCEDURE You can create or replace a web services client procedure. You can use
PROC as a synonym for PROCEDURE.

For SOAP requests, the procedure name is used as the SOAP operation name by default. See the SET
clause below for more information.

Parameter names must conform to the rules for other database identifiers such as column names. They
must be a valid SQL data type. For a list of valid data types, see “SQL data types” on page 79.

Only SOAP requests support the transmission of typed data such as FLOAT, INT, and so on. HTTP
requests support the transmission of strings only, so you are limited to CHAR types. For more
information about supported SOAP types, see “Working with data types (SOAP only)” [SQL Anywhere
Server - Programming] and “Working with structured data types (SOAP only)” [SQL Anywhere Server -
Programming].

Parameters can be prefixed with one of the keywords IN, OUT, or INOUT. If you do not specify one of
these values, parameters are INOUT by default. The keywords have the following meanings:

○ IN The parameter is an expression that provides a value to the procedure.

○ OUT The parameter is a variable that could be given a value by the procedure.

○ INOUT The parameter is a variable that provides a value to the procedure, and could be given a new
value by the procedure.

When procedures are executed using the CALL statement, not all parameters need to be specified. If a
default value is provided in the CREATE PROCEDURE statement, missing parameters are assigned the
default values. If an argument is not provided in the CALL statement, and no default is set, an error is given.

Specifying OR REPLACE (CREATE OR REPLACE PROCEDURE) creates a new procedure, or
replaces an existing procedure with the same name. This clause changes the definition of the procedure,
but preserves existing permissions. An error is returned if you attempt to replace a procedure that is
already in use.

You cannot create TEMPORARY web services procedures.

SQL statements

544 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

URL clause Specifies the URI of the web service. The optional user name and password parameters
provide a means of supplying the credentials needed for HTTP basic authentication. HTTP basic
authentication base-64 encodes the user and password information and passes it in the Authentication
header of the HTTP request. When specified in this way, the user name and password are passed
unencrypted, as part of the URL.

TYPE clause Specifies the format used when making the web service request. SOAP:RPC is used
when SOAP is specified or no type clause is included. HTTP:POST is used when HTTP is specified. See
“Developing web client applications” [SQL Anywhere Server - Programming].

The TYPE clause allows the specification of a MIME-type for HTTP:GET, HTTP:POST, and HTTP:PUT
types. The MIME-type specification is used to set the Content-Type request header and set the mode of
operation to allow only a single call parameter to populate the body of the request. Only zero or one
parameter may remain when making a web service stored procedure call after parameter substitutions
have been processed. Calling a web service procedure with a null or no parameter (after substitutions)
results in a request with no body and a content-length of zero. The behavior has not changed if a MIME
type is not specified. Parameter names and values (multiple parameters are permitted) are URL encoded
within the body of the HTTP request.

Some typical MIME-types include:

○ text/plain
○ text/html
○ text/xml

The keywords for the TYPE clause have the following meanings:

○ 'HTTP:GET' By default, this type uses the application/x-www-form-urlencoded MIME-type for
encoding parameters specified in the URL.

For example, the following request is produced when a client submits a request from the URL, http://
localhost/WebServiceName?arg1=param1&arg2=param2:

GET /WebServiceName?arg1=param1&arg2=param2 HTTP/1.1
// <End of Request - NO BODY>

○ 'HTTP:POST' By default, this type uses the application/x-www-form-urlencoded MIME-type for
encoding parameters specified in the body of a POST request. URL parameters are stored in the body
of the request.

For example, the following request is produced when a client submits a request the URL, http://
localhost/WebServiceName?arg1=param1&arg2=param2:

POST /WebServiceName HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: 19
arg1=param1&arg2=param2
// <End of Request>

○ HTTP:PUT HTTP:PUT is similar to HTTP:POST, but the HTTP request method is emitted. An
HTTP:PUT type does not have a default media type.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 545

The following example demonstrates how to configure a general purpose client procedure that uploads
data to a SQL Anywhere server running the samples-dir\SQLAnywhere\HTTP\put_data.sql sample:

ALTER PROCEDURE CPUT("data" LONG VARCHAR, resnm LONG VARCHAR, mediatype
LONG VARCHAR)
 URL 'http://localhost/resource/!resnm'
 TYPE 'HTTP:PUT:!mediatype';
CALL CPUT('hello world', 'hello', 'text/plain');

○ HTTP:DELETE A web service client procedure can be configured to delete a resource located on a
server. Specifying the media type is optional.

The following example demonstrates how to configure a general purpose client procedure that deletes
a resource from a SQL Anywhere server running the put_data.sql sample:

ALTER PROCEDURE CDEL(resnm LONG VARCHAR, mediatype LONG VARCHAR)
 URL 'http://localhost/resource/!resnm'
 TYPE 'HTTP:DELETE:!mediatype';
CALL CDEL('hello', 'text/plain');

○ HTTP:HEAD The head method is identical to a GET method but the server does not return a body.
A media type can be specified.

ALTER PROCEDURE CHEAD(resnm LONG VARCHAR)
 URL 'http://localhost/resource/!resnm'
 TYPE 'HTTP:HEAD';
CALL CHEAD('hello');

○ 'SOAP:RPC' This type sets the Content-Type header to 'text/xml'. SOAP operations and
parameters are encapsulated in SOAP envelope XML documents.

○ 'SOAP:DOC' This type sets the Content-Type header to 'text/xml'. It is similar to the SOAP:RPC
type but allows you to send richer data types. SOAP operations and parameters are encapsulated in
SOAP envelope XML documents.

Specifying a MIME-type for the TYPE clause automatically sets the Content-Type header to that MIME-
type. For an example of MIME-type usage, see “Supplying variables to a web service” [SQL Anywhere
Server - Programming] and “Tutorial: Working with MIME types in a RAW service” [SQL Anywhere
Server - Programming].

HEADER clause When creating HTTP web service client procedures, use this clause to add, modify,
or delete HTTP request header entries. The specification of headers closely resembles the format specified
in RFC2616 Hypertext Transfer Protocol — HTTP/1.1, and RFC822 Standard for ARPA Internet Text
Messages, including the fact that only printable ASCII characters can be specified for HTTP headers, and
they are case-insensitive.

Headers can be defined as header-name:value-name pairs. Each header must be delimited from its value
with a colon (:) and therefore cannot contain a colon. You can define multiple headers by delimiting
each pair with \n, \x0d\n, <LF> (line feed), or <CR><LF>. (carriage return followed by a line feed)

Multiple contiguous white spaces within the header are converted to a single white space.

SQL statements

546 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

For more information about using HTTP headers, see “HTTP request header management” [SQL
Anywhere Server - Programming].

CERTIFICATE clause To make a secure (HTTPS) request, a client must have access to the certificate
used by the HTTPS server. The necessary information is specified in a string of semicolon-separated key/
value pairs. You can use the file key to specify the file name of the certificate, or you can use the
certificate key to specify the server certificate in a string. You cannot specify a file and certificate key
together. The following keys are available:

Key Abbreviation Description

file The file name of the certificate.

certificate cert The certificate itself.

company co The company specified in the certificate.

unit The company unit specified in the certificate.

name The common name specified in the certificate.

Certificates are required only for requests that are either directed to an HTTPS server, or can be redirected
from a non-secure to a secure server. Only PEM formatted certificates are supported.

CLIENTPORT clause Identifies the port number on which the HTTP client procedure communicates
using TCP/IP. It is provided for and recommended only for connections through firewalls that filter
"outgoing" TCP/IP connections. You can specify a single port number, ranges of port numbers, or a
combination of both; for example, CLIENTPORT '85,90-97'. See “ClientPort (CPORT) protocol option”
[SQL Anywhere Server - Database Administration].

PROXY clause Specifies the URI of a proxy server. For use when the client must access the network
through a proxy. Indicates that the procedure is to connect to the proxy server and send the request to the
web service through it.

SET clause Specifies protocol-specific behavior options for HTTP and SOAP. The following list
describes the supported SET options. CHUNK and VERSION apply to the HTTP protocol, and
OPERATION applies to the SOAP protocol. Parameter substitution is supported for this clause.

○ 'HTTP(CH[UNK]=option)' (HTTP or SOAP) This option allows you to specify whether to use
chunking. Chunking allows HTTP messages to be broken up into several parts. Possible values are
ON (always chunk), OFF (never chunk), and AUTO (chunk only if the contents, excluding auto-
generated markup, exceeds 8196 bytes). For example, the following SET clause enables chunking:

SET 'HTTP(CHUNK=ON)'

If the CHUNK option is not specified, the default behavior is AUTO. If a chunked request fails in
AUTO mode with a status of 505 HTTP Version Not Supported, or with 501 Not Implemented, or
with 411 Length Required, the client retries the request without chunked transfer-coding.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 547

Set the CHUNK option to OFF (never chunk) if the HTTP server does not support chunked transfer-
coded requests.

Since CHUNK mode is a transfer encoding supported starting in HTTP version 1.1, setting CHUNK
to ON requires that the version (VER) be set to 1.1, or not be set at all, in which case 1.1 is used as the
default version.

○ ' HTTP(VER[SION]=ver)' (HTTP or SOAP) This option allows you to specify the version of HTTP
protocol that is used for the format of the HTTP message. For example, the following SET clause sets
the HTTP version to 1.1:

SET 'HTTP(VERSION=1.1)'

Possible values are 1.0 and 1.1. If VERSION is not specified:

● if CHUNK is set to ON, 1.1 is used as the HTTP version

● if CHUNK is set to OFF, 1.0 is used as the HTTP version

● if CHUNK is set to AUTO, either 1.0 or 1.1 is used, depending on whether the client is sending in
CHUNK mode

○ ' SOAP(OP[ERATION]=soap-operation-name) (SOAP only) This option allows you to specify
the name of the SOAP operation, if it is different from the name of the procedure you are creating.
The value of OPERATION is analogous to the name of a remote procedure call. For example, if you
wanted to create a procedure called accounts_login that calls a SOAP operation called login, you
would specify something like the following:

CREATE PROCEDURE accounts_login(
 name LONG VARCHAR,
 pwd LONG VARCHAR)
 SET 'SOAP(OPERATION=login)'

If the OPERATION option is not specified, the name of the SOAP operation must match the name of
the procedure you are creating.

The following statement shows how several protocol-option settings are combined in the same SET clause:

CREATE PROCEDURE accounts_login(
 name LONG VARCHAR,
 pwd LONG VARCHAR)
 SET 'HTTP (CHUNK=ON; VERSION=1.1), SOAP(OPERATION=login)'
 ...

SOAPHEADER clause (SOAP format only) When declaring a SOAP web service as a procedure, use
this clause to specify one or more SOAP request header entries. A SOAP header can be declared as a
static constant, or can be dynamically set using the parameter substitution mechanism (declaring IN,
OUT, or INOUT parameters for hd1, hd2, and so on). A web service procedure can define one or more IN
mode substitution parameters, and a single INOUT or OUT substitution parameter.

The following example illustrates how a client can specify the sending of several header entries with
parameters and receiving the response SOAP header data:

SQL statements

548 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

CREATE PROCEDURE soap_client
 (INOUT hd1 LONG VARCHAR, IN hd2 LONG VARCHAR, IN hd3 LONG VARCHAR)
 URL 'localhost/some_endpoint'
 SOAPHEADER '!hd1!hd2!hd3';

For more information about using SOAP headers, see “Tutorial: Using SQL Anywhere to access a SOAP/
DISH service” [SQL Anywhere Server - Programming].

For more information about substitution parameters, see “HTTP and SOAP request structures” [SQL
Anywhere Server - Programming].

NAMESPACE clause (SOAP format only) This clause identifies the method namespace usually
required for both SOAP:RPC and SOAP:DOC requests. The SOAP server handling the request uses this
namespace to interpret the names of the entities in the SOAP request message body. The namespace can
be obtained from the WSDL (Web Services Description Language) of the SOAP service available from
the web service server. The default value is the procedure's URL, up to but not including the optional path
component. For more information about using SOAP namespaces, see “Working with structured data
types (SOAP only)” [SQL Anywhere Server - Programming].

For more information about creating web services, including examples, see “Using SQL Anywhere as an
HTTP web server” [SQL Anywhere Server - Programming].

Remarks
Parameter values are passed as part of the request. The syntax used depends on the type of request. For
HTTP:GET, the parameters are passed as part of the URL; for HTTP:POST requests, the values are
placed in the body of the request. Parameters to SOAP requests are always bundled in the request body.

Permissions
Must have RESOURCE authority.

Must have DBA authority to create a procedure for another user.

Side effects
Automatic commit.

See also
● “ALTER PROCEDURE statement” on page 407
● “CALL statement” on page 460
● “CREATE FUNCTION statement” on page 516
● “CREATE FUNCTION statement (web clients)” on page 510
● “CREATE PROCEDURE statement” on page 552
● “DROP PROCEDURE statement” on page 659
● “GRANT statement” on page 718
● “Using SQL Anywhere as an HTTP web server” [SQL Anywhere Server - Programming]
● “Developing web client applications” [SQL Anywhere Server - Programming]
● “remote_idle_timeout option” [SQL Anywhere Server - Database Administration]

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 549

Standards and compatibility
● SQL/2008 Vendor extension.

● Transact-SQL Not supported by Adaptive Server Enterprise.

Example
The following example creates a web services client procedure named FtoC.

CREATE PROCEDURE FtoC(IN temperature FLOAT,
 INOUT inoutheader LONG VARCHAR,
 IN inheader LONG VARCHAR)
 URL 'http://localhost:8082/FtoCService'
 TYPE 'SOAP:DOC'
 SOAPHEADER '!inoutheader!inheader';

CREATE PROCEDURE statement [T-SQL]

Creates a new procedure in the database in a manner compatible with Adaptive Server Enterprise.

Syntax
The following subset of the Transact-SQL CREATE PROCEDURE statement is supported in SQL
Anywhere.

CREATE PROCEDURE [owner.]procedure_name
[NO RESULT SET]
[[(] @parameter-name data-type [= default] [OUTPUT], ... [)]]
[WITH RECOMPILE] AS statement-list

Parameters
NO RESULT SET clause Declares that no result set is returned by this procedure. This is useful when
an external environment needs to know that a procedure does not return a result set.

Remarks
The following differences between Transact-SQL and SQL Anywhere statements (Watcom SQL) are
listed to help those writing in both dialects.

● Variable names prefixed by @ The @ sign denotes a Transact-SQL variable name, while
Watcom SQL variables can be any valid identifier, and the @ prefix is optional.

● Input and output parameters Watcom SQL procedure parameters are INOUT by default or can
specified as IN, OUT, or INOUT. Transact-SQL procedure parameters are INPUT parameters by
default. They can be specified as input/output with the addition of the OUTPUT keyword. There are
no output-only parameters in the Transact-SQL dialect.

When you use the Watcom SQL dialect to declare a parameter OUT, it is output-only. The mixing of
dialects is not recommended because it can cause problems when the procedure declaration is
unloaded and used to rebuild the database. If the procedure declaration is unloaded and used to rebuild

SQL statements

550 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

the database, the rebuilt procedure declaration is in the Transact-SQL dialect, the OUTPUT keyword
is used, and the parameter is input/output.

● Parameter default values Watcom SQL procedure parameters are given a default value using the
keyword DEFAULT, while Transact-SQL uses an equality sign (=) to provide the default value.

● Returning result sets Watcom SQL uses a RESULT clause to specify returned result sets. In
Transact-SQL procedures, the column names or alias names of the first query are returned to the
calling environment.

The following Transact-SQL procedure illustrates how result sets are returned from Transact-SQL
stored procedures:

CREATE PROCEDURE showdept @deptname varchar(30)
AS
 SELECT Employees.Surname, Employees.GivenName
 FROM Departments, Employees
 WHERE Departments.DepartmentName = @deptname
 AND Departments.DepartmentID = Employees.DepartmentID;

The following is the corresponding Watcom SQL procedure:

CREATE PROCEDURE showdept(in deptname
 varchar(30))
RESULT (lastname char(20), firstname char(20))
ON EXCEPTION RESUME
BEGIN
 SELECT Employees.Surname, Employees.GivenName
 FROM Departments, Employees
 WHERE Departments.DepartmentName = deptname
 AND Departments.DepartmentID = Employees.DepartmentID
END;

● Procedure body The body of a Transact-SQL procedure is a list of Transact-SQL statements
prefixed by the AS keyword. The body of a Watcom SQL procedure is a compound statement,
bracketed by BEGIN and END keywords.

Permissions
Must have RESOURCE authority.

Side effects
Automatic commit.

See also
● “CREATE FUNCTION statement” on page 516
● “CREATE PROCEDURE statement” on page 552

Standards and compatibility
● SQL/2008 Transact-SQL extension.

● Transact-SQL SQL Anywhere supports a subset of the Adaptive Server Enterprise CREATE
PROCEDURE statement syntax.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 551

Only Transact-SQL SQL procedures are supported in SQL Anywhere's Transact-SQL dialect. To
create an external procedure you must use Watcom SQL syntax. Adaptive Server Enterprise does not
support the NO RESULT SET clause. If the Transact-SQL WITH RECOMPILE optional clause is
supplied, it is ignored. SQL Anywhere always recompiles procedures the first time they are executed
after a database is started, and stores the compiled procedure until the database is stopped.

Groups of Transact-SQL procedures are not supported in SQL Anywhere.

CREATE PROCEDURE statement
Creates a user-defined SQL procedure in the database. To create external procedure interfaces, see
“CREATE PROCEDURE statement (external procedures)” on page 536. To create web services
procedures, see “CREATE PROCEDURE statement (web clients)” on page 543.

Syntax
CREATE [OR REPLACE | TEMPORARY] PROCEDURE [owner.]procedure-name
([parameter, ...])
[RESULT (result-column, ...) | NO RESULT SET]
[SQL SECURITY { INVOKER | DEFINER }]
[ON EXCEPTION RESUME]
compound-statement | AT location-string

parameter :
parameter-mode parameter-name data-type [DEFAULT expression]
| SQLCODE
| SQLSTATE

parameter-mode :
IN
| OUT
| INOUT

result-column : column-name data-type

Parameters
CREATE PROCEDURE You can create permanent or temporary (TEMPORARY) stored procedures.
You can use PROC as a synonym for PROCEDURE.

Parameter names must conform to the rules for other database identifiers such as column names. They
must be a valid SQL data type. For a list of valid data types, see “SQL data types” on page 79.

Parameters can be prefixed with one of the keywords IN, OUT, or INOUT. If you do not specify one of
these values, parameters are INOUT by default. The keywords have the following meanings:

○ IN The parameter is an expression that provides a value to the procedure.

○ OUT The parameter is a variable that could be given a value by the procedure.

SQL statements

552 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

○ INOUT The parameter is a variable that provides a value to the procedure, and could be given a new
value by the procedure.

When procedures are executed using the CALL statement, not all parameters need to be specified. If a
default value is provided in the CREATE PROCEDURE statement, missing parameters are assigned the
default values. If an argument is not provided in the CALL statement, and no default is set, an error is given.

SQLSTATE and SQLCODE are special OUT parameters that output the SQLSTATE or SQLCODE
value when the procedure ends. The SQLSTATE and SQLCODE special values can be checked
immediately after a procedure call to test the return status of the procedure.

The SQLSTATE and SQLCODE special values are modified by the next SQL statement. Providing
SQLSTATE or SQLCODE as procedure arguments allows the return code to be stored in a variable.

Specifying CREATE OR REPLACE PROCEDURE creates a new procedure, or replaces an existing
procedure with the same name. This clause changes the definition of the procedure, but preserves existing
permissions. You cannot use the OR REPLACE clause with temporary procedures. An error is returned if
the procedure being replaced is already in use. Open cursors for a connection are closed whne a CREATE
OR REPLACE PROCEDURE statement is executed.

Specifying CREATE TEMPORARY PROCEDURE means that the stored procedure is visible only by
the connection that created it, and that it is automatically dropped when the connection is dropped.
Temporary stored procedures can also be explicitly dropped. You cannot perform ALTER, GRANT, or
REVOKE on them, and, unlike other stored procedures, temporary stored procedures are not recorded in
the catalog or transaction log.

Temporary procedures execute with the permissions of their creator (current user), or specified owner.
You can specify an owner for a temporary procedure when:

○ the temporary procedure is created within a permanent stored procedure

○ the owner of the temporary and permanent procedure is the same

To drop the owner of a temporary procedure, you must drop the temporary procedure first.

Temporary stored procedures can be created and dropped when connected to a read-only database, and
they cannot be external procedures.

For example, the following temporary procedure drops the table called CustRank, if it exists. For this
example, the procedure assumes that the table name is unique and can be referenced by the procedure
creator without specifying the table owner:

CREATE TEMPORARY PROCEDURE drop_table(IN @TableName char(128))
BEGIN
 IF EXISTS (SELECT * FROM SYS.SYSTAB WHERE table_name = @TableName)
THEN
 EXECUTE IMMEDIATE 'DROP TABLE "' || @TableName || '"';
 MESSAGE 'Table "' || @TableName || '" dropped' to client;
 END IF;
END;
CALL drop_table('CustRank');

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 553

RESULT clause The RESULT clause declares the number and type of columns in the result set. The
parenthesized list following the RESULT keyword defines the result column names and types. This
information is returned by the embedded SQL DESCRIBE or by ODBC SQLDescribeCol when a CALL
statement is being described. For a list of data types, see “SQL data types” on page 79.

For more information about returning result sets from procedures, see “Returning results from
procedures” [SQL Anywhere Server - SQL Usage].

Some procedures can produce more than one result set, with different numbers of columns, depending on
how they are executed. For example, the following procedure returns two columns under some
circumstances, and one in others.

CREATE PROCEDURE names(IN formal char(1))
BEGIN
 IF formal = 'n' THEN
 SELECT GivenName
 FROM Employees
 ELSE
 SELECT Surname, GivenName
 FROM Employees
 END IF
END;

Procedures with variable result sets must be written without a RESULT clause, or in Transact-SQL. Their
use is subject to the following limitations:

○ Embedded SQL You must DESCRIBE the procedure call after the cursor for the result set is
opened, but before any rows are returned, to get the proper shape of result set. The CURSOR cursor-
name clause on the DESCRIBE statement is required.

○ ODBC, OLE DB, ADO.NET Variable result-set procedures can be used by applications using these
interfaces. The proper description of the result sets is carried out by the driver or provider.

○ Open Client applications Variable result-set procedures can be used by Open Client applications.

If your procedure returns only one result set, you should use a RESULT clause. The presence of this
clause prevents ODBC and Open Client applications from re-describing the result set after a cursor is open.

To handle multiple result sets, ODBC must describe the currently executing cursor, not the procedure's
defined result set. Therefore, ODBC does not always describe column names as defined in the RESULT
clause of the procedure definition. To avoid this problem, use column aliases in the SELECT statement
that generates the result set.

NO RESULT SET clause Declares that no result set is returned by this procedure. This is useful when
an external environment needs to know that a procedure does not return a result set.

SQL SECURITY clause The SQL SECURITY clause defines whether the procedure is executed as
the INVOKER (the user who is calling the procedure), or as the DEFINER (the user who owns the
procedure). The default is DEFINER.

When SQL SECURITY INVOKER is specified, more memory is used because annotation must be done
for each user that calls the procedure. Also, when SQL SECURITY INVOKER is specified, name
resolution is done as the invoker as well. Therefore, care should be taken to qualify all object names

SQL statements

554 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

(tables, procedures, and so on) with their appropriate owner. For example, suppose user1 creates the
following procedure:

CREATE PROCEDURE user1.myProcedure()
 RESULT(columnA INT)
 SQL SECURITY INVOKER
 BEGIN
 SELECT columnA FROM table1;
 END;

If user2 attempts to run this procedure and a table user2.table1 does not exist, a table lookup error results.
Additionally, if a user2.table1 does exist, that table is used instead of the intended user1.table1. To
prevent this situation, qualify the table reference in the statement (user1.table1, instead of just table1).

ON EXCEPTION RESUME clause This clause enables Transact-SQL-like error handling to be used
within a Watcom SQL syntax procedure.

If you use ON EXCEPTION RESUME, the procedure takes an action that depends on the setting of the
on_tsql_error option. If on_tsql_error is set to Conditional (the default) the execution continues if the next
statement handles the error; otherwise, it exits.

Error-handling statements include the following:

○ IF
○ SELECT @variable =
○ CASE
○ LOOP
○ LEAVE
○ CONTINUE
○ CALL
○ EXECUTE
○ SIGNAL
○ RESIGNAL
○ DECLARE
○ SET VARIABLE

You should not use explicit error handling code with an ON EXCEPTION RESUME clause.

See “on_tsql_error option” [SQL Anywhere Server - Database Administration].

AT location-string clause Create a proxy stored procedure on the current database for a remote
procedure specified by location-string. The AT clause supports the semicolon (;) as a field delimiter in
location-string. If no semicolon is present, a period is the field delimiter. This allows file names and
extensions to be used in the database and owner fields.

Remote procedures accept input parameters up to 254 bytes in length, and return up to 254 characters in
output variables.

If a remote procedure can return a result set, even if it does not always return one, then the local procedure
definition must contain a RESULT clause.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 555

For information about remote servers, see “CREATE SERVER statement” on page 567. For
information about using remote procedures, see “Using remote procedure calls (RPCs)” [SQL Anywhere
Server - SQL Usage].

Remarks
The CREATE PROCEDURE statement creates a procedure in the database. Users with DBA authority
can create procedures for other users by specifying an owner. A procedure is invoked with a CALL statement.

If a stored procedure returns a result set, it cannot also set output parameters or return a return value.

When referencing a temporary table from multiple procedures, a potential issue can arise if the temporary
table definitions are inconsistent and statements referencing the table are cached. See “Referencing
temporary tables within procedures” [SQL Anywhere Server - SQL Usage].

Permissions
Must have RESOURCE authority, unless creating a temporary procedure.

Must have DBA authority for external procedures or to create a procedure for another user.

Side effects
Automatic commit.

See also
● “ALTER PROCEDURE statement” on page 407
● “BEGIN statement” on page 454
● “CALL statement” on page 460
● “CREATE FUNCTION statement” on page 516
● “CREATE PROCEDURE statement [T-SQL]” on page 550
● “DROP PROCEDURE statement” on page 659
● “EXECUTE IMMEDIATE statement [SP]” on page 678
● “GRANT statement” on page 718
● “Using procedures, triggers, and batches” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 CREATE PROCEDURE is a core feature of the SQL/2008 standard, though some of its

components supported in SQL Anywhere are optional SQL language features. A subset of these
features include:

○ The SQL SECURITY clause is optional SQL/2008 language feature T324.

○ The ability to pass a LONG VARCHAR, LONG NVARCHAR, or LONG BINARY value to an
SQL procedure is SQL/2008 language feature T041.

○ The ability to create or modify a schema object within an SQL procedure, using statements such as
CREATE TABLE or DROP TRIGGER, is SQL/2008 language feature T651.

SQL statements

556 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

○ The ability to use a dynamic-SQL statement within an SQL procedure, including statements such
as EXECUTE IMMEDIATE, PREPARE, and DESCRIBE, is SQL/2008 language feature T652.

Several clauses of the CREATE PROCEDURE statement are vendor extensions. These include:

○ The TEMPORARY clause.

○ The ON EXCEPTION RESUME clause.

○ The AT clause.

○ The optional DEFAULT clause for a specific routine parameter.

○ The RESULT and NO RESULT SET clauses. The SQL/2008 standard uses the RETURNS keyword.

○ The optional OR REPLACE clause.

● Transact-SQL CREATE PROCEDURE is supported by Adaptive Server Enterprise. See
“CREATE PROCEDURE statement [T-SQL]” on page 550.

Examples
The following procedure queries the Employees table and returns salaries that are within the specified
percent (percentage) of a specified salary (sal):

CREATE OR REPLACE PROCEDURE AverageEmployees(IN percentage NUMERIC(5,3), IN
sal NUMERIC(20, 3))
RESULT(Department CHAR(40), GivenName person_name_t, Surname person_name_t,
Salary NUMERIC(20, 3))
BEGIN
 DECLARE maxS NUMERIC(20, 3);
 DECLARE minS NUMERIC(20, 3);
 IF percentage >= 1 THEN
 SET percentage = percentage / 100;
 ELSEIF percentage < 0 THEN
 SELECT 'Percentage error', 'Err','Err', -1;
 RETURN;
 END IF;
 SELECT MIN(E.Salary), MAX(E.Salary) INTO minS, maxS
 FROM Employees E;
 IF sal < minS OR sal > maxS THEN
 SELECT 'Salary out of bounds', 'Err', 'Err', -2;
 RETURN;
 END IF;
 SELECT D.DepartmentName, E.GivenName, E.Surname, E.Salary
 FROM Employees E JOIN Departments D ON E.DepartmentID = D.DepartmentID
 WHERE E.Salary BETWEEN sal *(1 - percentage) AND sal * (1 +
percentage);
END;

The following procedure uses a CASE statement to classify the results of a query.

CREATE PROCEDURE ProductType (IN product_ID INT, OUT type CHAR(10))
BEGIN

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 557

 DECLARE prod_name CHAR(20);
 SELECT name INTO prod_name FROM Products
 WHERE ID = product_ID;
 CASE prod_name
 WHEN 'Tee Shirt' THEN
 SET type = 'Shirt'
 WHEN 'Sweatshirt' THEN
 SET type = 'Shirt'
 WHEN 'Baseball Cap' THEN
 SET type = 'Hat'
 WHEN 'Visor' THEN
 SET type = 'Hat'
 WHEN 'Shorts' THEN
 SET type = 'Shorts'
 ELSE
 SET type = 'UNKNOWN'
 END CASE;
END;

The following example replaces the ProductType procedure created in the previous example. After
replacing the procedure, the parameters for Tee Shirt and Sweatshirt are updated:

CREATE OR REPLACE PROCEDURE ProductType (IN product_ID INT, OUT type
CHAR(10))
BEGIN
 DECLARE prod_name CHAR(20);
 SELECT name INTO prod_name FROM Products
 WHERE ID = product_ID;
 CASE prod_name
 WHEN 'Tee Shirt' THEN
 SET type = 'T Shirt'
 WHEN 'Sweatshirt' THEN
 SET type = 'Long Sleeve Shirt'
 WHEN 'Baseball Cap' THEN
 SET type = 'Hat'
 WHEN 'Visor' THEN
 SET type = 'Hat'
 WHEN 'Shorts' THEN
 SET type = 'Shorts'
 ELSE
 SET type = 'UNKNOWN'
 END CASE;
END;

The following procedure uses a cursor and loops over the rows of the cursor to return a single value.

CREATE PROCEDURE TopCustomer (OUT TopCompany CHAR(35), OUT TopValue INT)
BEGIN
 DECLARE err_notfound EXCEPTION
 FOR SQLSTATE '02000';
 DECLARE curThisCust CURSOR FOR
 SELECT CompanyName,
 CAST(SUM(SalesOrderItems.Quantity *
 Products.UnitPrice) AS INTEGER) VALUE
 FROM Customers
 LEFT OUTER JOIN SalesOrders
 LEFT OUTER JOIN SalesOrderItems
 LEFT OUTER JOIN Products
 GROUP BY CompanyName;
 DECLARE ThisValue INT;
 DECLARE ThisCompany CHAR(35);
 SET TopValue = 0;
 OPEN curThisCust;

SQL statements

558 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 CustomerLoop:
 LOOP
 FETCH NEXT curThisCust
 INTO ThisCompany, ThisValue;
 IF SQLSTATE = err_notfound THEN
 LEAVE CustomerLoop;
 END IF;
 IF ThisValue > TopValue THEN
 SET TopValue = ThisValue;
 SET TopCompany = ThisCompany;
 END IF;
 END LOOP CustomerLoop;
 CLOSE curThisCust;
END;

CREATE PUBLICATION statement [MobiLink] [SQL Remote]
Creates a publication. In MobiLink, a publication identifies synchronized data in a SQL Anywhere remote
database. In SQL Remote, publications identify replicated data in both consolidated and remote databases.

Syntax 1 (MobiLink general use)
CREATE PUBLICATION [IF NOT EXISTS] [owner.] publication-name
(article-definition, ...)

article-definition :
 TABLE table-name [(column-name, ...)]
[WHERE search-condition]

Syntax 2 (MobiLink scripted upload)
CREATE PUBLICATION [IF NOT EXISTS] [owner.]
WITH SCRIPTED UPLOAD
(article-definition, ...)

article-definition :
 TABLE table-name [(column-name, ...)]
[USING ([PROCEDURE] [owner.][procedure-name]
 FOR UPLOAD { INSERT | DELETE | UPDATE }, ...)]

Syntax 3 (MobiLink download-only publications)
CREATE PUBLICATION [IF NOT EXISTS] [owner.] publication-name
FOR DOWNLOAD ONLY
(article-definition, ...)

article-definition : TABLE table-name [(column-name, ...)]

Syntax 4 (SQL Remote)
CREATE PUBLICATION [IF NOT EXISTS] [owner.] publication-name
(article-definition, ...)

article-definition :
 TABLE table-name [(column-name, ...)]
[WHERE search-condition]
[SUBSCRIBE BY expression]

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 559

Parameters
IF NOT EXISTS clause When the IF NOT EXISTS clause is specified and the named publication
already exists, no changes are made and an error is not returned.

article-definition Publications are built from articles. Each article identifies the rows and columns of a
single table that are included in the publication. A publication may not contain two articles that refer to
the same table.

If a list of column-names is included in an article, only those columns are included in the publication. If
no column-names are listed, all columns in the table are include in the publication. For MobiLink
synchronization, if column-names are listed then all columns in the primary key of the table must be
included in the list.

In Syntax 2, which is used for publications that perform scripted uploads, the article description also
registers the scripts that are used to define the upload. See “Creating publications for scripted upload”
[MobiLink - Client Administration].

In Syntax 3, which is used for download-only publications, the article specifies only the tables and
columns to be downloaded.

WHERE clause The WHERE clause lets you define the subset of rows in a table to be included in an
article.

In MobiLink applications, the WHERE clause affects the rows included in the upload. (The download is
defined by the download_cursor script.) In MobiLink SQL Anywhere remote databases, the WHERE
clause can only refer to columns included in the article, and cannot contain subqueries, variables, or non-
deterministic functions.

SUBSCRIBE BY clause In SQL Remote, one way of defining a subset of rows of a table to be
included in an article is to use a SUBSCRIBE BY clause. This clause allows many different subscribers to
receive different rows from a table in a single publication definition.

Remarks
The CREATE PUBLICATION statement creates a publication in the database. A publication can be
created for another user by specifying an owner name.

In MobiLink, publications are required in SQL Anywhere remote databases, and are optional in UltraLite
databases. These publications and the subscriptions to them determine which data is uploaded to the
MobiLink server.

You set options for a MobiLink publication with the ADD OPTION clause in the CREATE
SYNCHRONIZATION SUBSCRIPTION statement or ALTER SYNCHRONIZATION
SUBSCRIPTION statement.

Syntax 2 creates a publication for scripted uploads. Use the USING clause to register the stored
procedures that you want to use to define the upload. For each table, you can use up to three stored
procedures: one each for inserts, deletes, and updates.

SQL statements

560 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax 3 creates a download-only publication that can be synchronized with no transaction log file. When
download-only publications are synchronized, downloaded rows may overwrite changes that were made
to those rows in the remote database.

In SQL Remote, publishing is a two-way operation, as data can be entered at both consolidated and
remote databases. In a SQL Remote installation, any consolidated database and all remote databases must
have the same publication defined. Running the SQL Remote extraction utility from a consolidated
database automatically executes the correct CREATE PUBLICATION statement in the remote database.

Permissions
DBA authority and exclusive access to all tables referred to in the statement.

Side effects
Automatic commit.

See also
● “ALTER PUBLICATION statement [MobiLink] [SQL Remote]” on page 409
● “DROP PUBLICATION statement [MobiLink] [SQL Remote]” on page 660
● “CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” on page 591
● “ALTER SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” on page 422
● SQL Anywhere MobiLink clients: “Publishing data” [MobiLink - Client Administration]
● UltraLite MobiLink clients: “CREATE PUBLICATION statement [UltraLite] [UltraLiteJ]” [UltraLite

- Database Management and Reference]
● SQL Remote: “Publications and articles” [SQL Remote]
● “Scripted upload” [MobiLink - Client Administration]
● “Download-only publications” [MobiLink - Client Administration]
● “ISYSSYNC system table” on page 919

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement publishes all columns and rows of two tables.

CREATE PUBLICATION pub_contact (
 TABLE Contacts,
 TABLE Company
);

The following statement publishes only some columns of one table.

CREATE PUBLICATION pub_customer (
 TABLE Customers (ID, CompanyName, City)
);

The following statement publishes only the active customer rows by including a WHERE clause that tests
the Status column of the Customers table.

CREATE PUBLICATION pub_customer (
 TABLE Customers (ID, CompanyName, City, State, Status)

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 561

 WHERE Status = 'active'
);

The following statement publishes only some rows by providing a subscribe-by value. This method can
be used only with SQL Remote.

CREATE PUBLICATION pub_customer (
 TABLE Customers (ID, CompanyName, City, State)
 SUBSCRIBE BY State
);

The subscribe-by value is used as follows when you create a SQL Remote subscription.

CREATE SUBSCRIPTION TO pub_customer ('NY')
 FOR jsmith;

The following example creates a MobiLink publication that uses scripted uploads:

CREATE PUBLICATION pub WITH SCRIPTED UPLOAD (
 TABLE t1 (a, b, c) USING (
 PROCEDURE my.t1_ui FOR UPLOAD INSERT,
 PROCEDURE my.t1_ud FOR UPLOAD DELETE,
 PROCEDURE my.t1_uu FOR UPLOAD UPDATE
),
 TABLE t2 AS my_t2 USING (
 PROCEDURE my.t2_ui FOR UPLOAD INSERT
)
);

The following example creates a download-only publication:

CREATE PUBLICATION p1 FOR DOWNLOAD ONLY (
 TABLE t1
);

CREATE REMOTE MESSAGE TYPE statement [SQL
Remote]

Identifies a message-link and return address for outgoing messages from a database.

Syntax
CREATE REMOTE MESSAGE TYPE message-system
[ADDRESS address-string]

message-system:
FILE
| FTP
| SMTP

Parameters
message-system One of the supported message systems.

address-string The address for the specified message system.

SQL statements

562 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
The Message Agent sends outgoing messages from a database using one of the supported message links.
Return messages for users employing the specified link are sent to the specified address as long as the
remote database is created by the extraction utility. The Message Agent starts links only if it has remote
users for those links.

The address is the publisher's address under the specified message system. If it is an email system, the
address string must be a valid email address. If it is a file-sharing system, the address string is a
subdirectory of the directory set in the SQLREMOTE environment variable, or of the current directory if
that is not set. You can override this setting on the GRANT CONSOLIDATE statement at the remote
database.

To remove the address, execute a CREATE REMOTE MESSAGE TYPE statement without an
ADDRESS clause.

The Initialization utility (dbinit) creates message types automatically, without an address. Unlike other
CREATE statements, the CREATE REMOTE MESSAGE TYPE statement does not give an error if the
type exists; instead it alters the type.

Permissions
DBA authority.

Side effects
Automatic commit.

See also
● “GRANT PUBLISH statement [SQL Remote]” on page 714
● “GRANT REMOTE statement [SQL Remote]” on page 716
● “GRANT CONSOLIDATE statement [SQL Remote]” on page 713
● “DROP REMOTE MESSAGE TYPE statement [SQL Remote]” on page 661
● “SQL Remote message systems” [SQL Remote]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
When remote databases are extracted using the extraction utility, the following statement sets all
recipients of file message-system messages to send messages back to the company subdirectory.

The statement also instructs dbremote to look in the company subdirectory for incoming messages.

CREATE REMOTE MESSAGE TYPE file
ADDRESS 'company';

CREATE SCHEMA statement
Creates a collection of tables, views, and permissions for a database user.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 563

Syntax
CREATE SCHEMA
 AUTHORIZATION userid
[create-table-statement
 | create-view-statement
 | grant-statement
] ... ;

Remarks
The CREATE SCHEMA statement creates a schema. A schema is a collection of tables and views along
with their associated permissions.

The userid must be the user ID of the current connection. You cannot create a schema for another user.

If any statement contained in the CREATE SCHEMA statement fails, the entire CREATE SCHEMA
statement is rolled back.

The CREATE SCHEMA statement is a way of collecting together individual CREATE and GRANT
statements into one operation. There is no SCHEMA database object created in the database, and to drop
the objects you must use individual DROP TABLE or DROP VIEW statements. To revoke permissions,
you must use a REVOKE statement for each permission granted.

The individual CREATE or GRANT statements are not separated by statement delimiters. The statement
delimiter marks the end of the CREATE SCHEMA statement itself.

The individual CREATE or GRANT statements must be ordered such that the objects are created before
permissions are granted on them.

Although you can create more than one schema for a user, doing so is not recommended.

Permissions
Must have RESOURCE authority.

Side effects
Automatic commit.

See also
● “CREATE TABLE statement” on page 596
● “CREATE VIEW statement” on page 624
● “GRANT statement” on page 718

Standards and compatibility
● SQL/2008 CREATE SCHEMA is a core feature of the SQL/2008 standard. The ability to create

multiple schemas for a single user is SQL/2008 optional language feature F171. SQL Anywhere does
not support the use of REVOKE statements within the CREATE SCHEMA statement, and does not
allow its use within Transact-SQL batches or procedures.

SQL statements

564 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● Transact-SQL Supported by Adaptive Server Enterprise, which supports GRANT and REVOKE
statements within the CREATE SCHEMA statement.

Example
The following CREATE SCHEMA statement creates a schema consisting of two tables. The statement
must be executed by the user ID sample_user, who must have RESOURCE authority. If the statement
creating table t2 fails, neither table is created.

CREATE SCHEMA AUTHORIZATION sample_user
CREATE TABLE t1 (id1 INT PRIMARY KEY)
CREATE TABLE t2 (id2 INT PRIMARY KEY);

The statement delimiter in the following CREATE SCHEMA statement is placed after the first CREATE
TABLE statement. As the statement delimiter marks the end of the CREATE SCHEMA statement, the
example is interpreted as a two statement batch by the database server. If the statement creating table t2
fails, the table t1 is still created.

CREATE SCHEMA AUTHORIZATION sample_user
CREATE TABLE t1 (id1 INT PRIMARY KEY);
CREATE TABLE t2 (id2 INT PRIMARY KEY);

CREATE SEQUENCE statement
Defines a sequence that can be used to generate unique key values.

Syntax
CREATE [OR REPLACE] SEQUENCE [owner.] sequence-name
[INCREMENT BY signed-integer]
[START WITH signed-integer]
[MINVALUE signed-integer | NO MINVALUE]
[MAXVALUE signed-integer | NO MAXVALUE]
[CACHE integer | NO CACHE]
[CYCLE | NO CYCLE]

Parameters
CREATE OR REPLACE SEQUENCE Creates a sequence that can be used to generate primary key
values that are unique across multiple tables, and for generating default values for a table. An error is
returned if you specify the name of a sequence that already exists for the current user.

INCREMENT BY Defines the amount the next sequence value is incremented from the last value
assigned. The default is 1. Specify a negative value to generate a descending sequence. An error is
returned if the INCREMENT BY value is 0.

START WITH Defines the starting sequence value. If you do not specify a value for the START WITH
clause, MINVALUE is used for ascending sequences and MAXVALUE is used for descending
sequences. An error is returned if the START WITH value is beyond the range specified by MINVALUE
or MAXVALUE.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 565

MINVALUE Defines the smallest value generated by the sequence. The default is 1. An error is
returned if MINVALUE is greater than (2^63-1) or less than -(2^63-1). An error is also returned if
MINVALUE is greater than MAXVALUE.

MAXVALUE Defines the largest value generated by the sequence. The default is 2^63-1. An error is
returned if MAXVALUE is greater than 2^63-1 or less than -(2^63-1).

CACHE Specifies the number of preallocated sequence values that are kept in memory for faster
access. When the cache is exhausted, the sequence cache is repopulated and a corresponding entry is
written to the transaction log. At checkpoint time, the current value of the cache is forwarded to the
ISYSSEQUENCE system table. The default is 100.

CYCLE Specifies whether values should continue to be generated after the maximum or minimum
value is reached.

The default is NO CYCLE, which returns an error once the maximum or minimum value is reached.

Remarks
A sequence is a database object that allows the automatic generation of numeric values. A sequence is not
bound to a specific or unique table column and is only accessible through the table column to which it is
applied.

Sequences can generate values in one of the following ways:

● Increment or decrement monotonically without bound
● Increment or decrement monotonically to a user-defined limit and stop
● Increment or decrement monotonically to a user-defined limit and cycle back to the beginning and

start again

You control the behavior when the sequence runs out of values using the CYCLE clause.

If a sequence is increasing and it exceeds the MAXVALUE, MINVALUE is used as the next sequence
value if CYCLE is specified. If a sequence is decreasing and it falls below MINVALUE, MAXVALUE is
used as the next sequence value if CYCLE is specified. If CYCLE is not specified, an error is returned.

Sequence values cannot be used with views or materialized view definitions.

For information about determining whether a sequence or an autoincrement value may be more
appropriate for values in a column, see “Choosing between sequences and autoincrement values” [SQL
Anywhere Server - SQL Usage].

Permissions
Must have RESOURCE authority.

Side effects
None

SQL statements

566 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “Using a sequence to generate unique values” [SQL Anywhere Server - SQL Usage]
● “sequence-expression clause, SELECT statement” on page 833
● “ALTER SEQUENCE statement” on page 411
● “DROP SEQUENCE statement” on page 662

Standards and compatibility
● SQL/2008 Sequences comprise SQL/2008 language feature T176. SQL Anywhere does not allow

optional specification of the sequence data type - this can be achieved with a CAST when using the
sequence.

In addition, the following are vendor extensions:

○ CACHE clause
○ OR REPLACE syntax
○ CURRVAL expression
○ Use of sequences in DEFAULT expressions

Example
The following example creates a sequence named Test that starts at 4, increments by 2, does not cycle,
and caches 15 values at a time:

CREATE SEQUENCE Test
START WITH 4
INCREMENT BY 2
NO MAXVALUE
NO CYCLE
CACHE 15;

CREATE SERVER statement
Creates a remote server.

Syntax 1
CREATE SERVER server-name
CLASS server-class-string
USING connection-info-string
[READ ONLY]

server-class-string :
'SAODBC'
| 'ASEODBC'
| 'DB2ODBC'
| 'IQODBC'
| 'MSSODBC'
| 'ORAODBC'
| 'MSACCESSODBC'
| 'MYSQLODBC'
| 'ULODBC'
| 'ADSODBC'

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 567

| 'ODBC'
| 'SAJDBC'
| 'ASEJDBC'
| 'IQJDBC'

connection-info-string :
 { host-name:port-number [/dbname] | data-source-name | sqlanywhere-connection-string }

Syntax 2
CREATE SERVER server-name
CLASS 'DIRECTORY'
USING using-string

using-string :
'ROOT = path
[;SUBDIRS = n]
[;READONLY = { YES | NO }]'
[;CREATEDIRS = { YES | NO }]'

Parameters
● CLASS clause Specifies the server class you want to use for a remote connection. Server classes

contain detailed server capability information. The DIRECTORY class is used in Syntax 2 to access a
directory on the local computer.

● USING clause In Syntax 1, the USING clause supplies a connection string for the database server.
The appropriate connection string depends on the driver being used, which in turn depends on the server-
class-string.

If an ODBC-based server class is used, the USING clause is the data-source-name. The data-source-
name is the ODBC Data Source Name.

For SQL Anywhere remote servers (SAODBC server classes), the connection-info-string parameter
can be any valid SQL Anywhere connection string. You can use any SQL Anywhere connection
parameters. For example, if you have connection problems, you can include a LOG connection
parameter to troubleshoot the connection attempt.

For more information about SQL Anywhere connection strings, see “Connection parameters” [SQL
Anywhere Server - Database Administration].

On Unix platforms, you need to reference the ODBC driver manager as well. For example, using the
supplied iAnywhere Solutions ODBC drivers, the syntax is as follows:

USING 'driver=SQL Anywhere 12;dsn=my_dsn'

If a JDBC-based server class is used, the USING clause is of the form host-name:port-number [/
dbname], where:

○ host-name The computer the remote server runs on.

○ port-number The TCP/IP port number the remote server listens on. The default port number
for SQL Anywhere is 2638.

SQL statements

568 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

○ dbname For SQL Anywhere remote servers, if you do not specify a dbname, then the default
database is used. For Adaptive Server Enterprise, the default is the master database, and an
alternative to using dbname is to another database by some other means (for example, in the
FORWARD TO statement).

In Syntax 2, the USING clause specifies the following values for the local directory:

● ROOT clause The path, relative to the database server, that is the root of the directory access class.
When you create a proxy table using the directory access server name, the proxy table is relative to
this root path.

● SUBDIRS clause A number between 0 and 10 that represents the number of levels of directories
within the root that the database server can access. If SUBDIRS is omitted or set to 0, then only the
files in the root directory are accessible via the directory access server. You can create proxy tables to
any of the directories or subdirectories available via the directory access server.

● READONLY clause Specifies whether the files accessed by the directory are READONLY and
cannot be modified. By default, this is set to NO.

● CREATEDIRS clause Specifies whether directories can be created using the directory access
server. The default is NO.

Remarks
When you create a remote server, it is added to the ISYSSERVER system table.

Syntax 1 The CREATE SERVER statement defines a remote server.

The SAJDBC, ASEJDBC, and IQJDBC JDBC-based server classes are deprecated and should not be used.

For more information about server classes and how to configure a server, see “Server classes for remote
data access” [SQL Anywhere Server - SQL Usage].

Syntax 2 The CREATE SERVER statement lets you create a directory access server that accesses the
local directory structure on the computer where the database server is running. You must create an
external login for each database user that needs to use the directory access server. On Unix, the database
server runs as a specific user, so file permissions are based on the permissions granted to the database
server user.

For more information about directory access servers, see “Using directory access servers” [SQL Anywhere
Server - SQL Usage].

Permissions
DBA authority

Not supported on Windows Mobile.

Side effects
Automatic commit.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 569

See also
● “ALTER SERVER statement” on page 413
● “DROP SERVER statement” on page 662
● “Server classes for remote data access” [SQL Anywhere Server - SQL Usage]
● “ISYSSERVER system table” on page 919
● “CREATE EXTERNLOGIN statement” on page 503
● “CREATE EXISTING TABLE statement” on page 501
● “USING parameter in the CREATE SERVER statement” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example creates a SQL Anywhere remote server named testsa, using the SQL Anywhere
ODBC driver.

CREATE SERVER testsa
CLASS 'SAODBC'
USING 'Driver=SQL Anywhere 12;DSN=remoteSA';

The following example creates an Adaptive Server Enterprise (ASE) remote server named ase_prod using
the ASE ODBC driver.

CREATE SERVER ase_prod
CLASS 'ASEODBC'
USING 'DSN=remoteASE';

The following example creates a remote server for the Oracle server named oracle723. Its ODBC Data
Source Name is oracle723.

CREATE SERVER oracle723
CLASS 'ORAODBC'
USING 'oracle723';

The following example creates a directory access server that only sees files within the directory c:\temp:

CREATE SERVER diskserver0
CLASS 'directory'
USING 'root=c:\temp';
CREATE EXTERNLOGIN DBA TO diskserver0;
CREATE EXISTING TABLE diskdir0 AT 'diskserver0;;;.';
-- Get a list of those files.
SELECT permissions, file_name, size FROM diskdir0;

The following example creates a directory access server that sees nine levels of directories:

-- Create a directory server that sees 9 levels of directories.
CREATE SERVER diskserver9
CLASS 'directory'
USING 'ROOT=c:\temp;SUBDIRS=9';
CREATE EXTERNLOGIN DBA TO diskserver9;
CREATE EXISTING TABLE diskdir9 AT 'diskserver9;;;.';

SQL statements

570 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

CREATE SERVICE statement
Creates a new web service.

Syntax 1: General HTTP web services
CREATE SERVICE service-name
TYPE { 'RAW' | 'HTML' | 'JSON' | 'XML' }
[URL [PATH] { ON | OFF | ELEMENTS }]
[common-attributes]
[AS { statement | NULL }]

common-attributes:
[AUTHORIZATION { ON | OFF }]
[ENABLE | DISABLE]
[METHODS 'method,...']
[SECURE { ON | OFF }]
[USER { user-name | NULL }]

method:
DEFAULT
| POST
| GET
| HEAD
| PUT
| DELETE
| NONE
| *

Syntax 2: SOAP over HTTP
CREATE SERVICE service-name
TYPE 'SOAP'
[DATATYPE { ON | OFF | IN | OUT }]
[FORMAT { 'DNET' | 'CONCRETE' [EXPLICIT { ON | OFF }] | 'XML' | NULL }]
[common-attributes]
AS statement

Syntax 3: DISH services
CREATE SERVICE service-name
TYPE 'DISH'
[GROUP { group-name | NULL }]
[FORMAT { 'DNET' | 'CONCRETE' [EXPLICIT { ON | OFF }] | 'XML' | NULL }]
[common-attributes]

Parameters
service-name Web service names can be any sequence of alphanumeric characters or slash (/), hyphen
(-), underscore (_), period (.), exclamation mark (!), tilde (~), asterisk (*), apostrophe ('), left parenthesis
((), or right parenthesis ()), except that the service name must not begin or end with a slash (/) or contain
two or more consecutive slashes (for example, //).

Unlike other services, you cannot use a slash (/) anywhere in a DISH service name.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 571

You can name your service root, but this name has a special function. For more information, see
“Creating and customizing a root web service” [SQL Anywhere Server - Programming].

TYPE clause Identifies the type of the service where each service defines a specific response format.
The type must be one of the listed service types. There is no default value.

○ 'SOAP' The result set is returned as an XML payload known as a SOAP envelope. The format of
the data may be further refined using by the FORMAT clause. A request to a SOAP service must be a
valid SOAP request, not just a general HTTP request. For more information about the SOAP
standards, see http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

○ 'DISH' A DISH service (Determine SOAP Handler) is a SOAP endpoint that references any SOAP
service within its GROUP context. It also exposes the interfaces to its SOAP services by generating a
WSDL (Web Services Description Language) for consumption by SOAP client toolkits.

○ 'RAW' The result set is sent to the client without any formatting. Utilization of this service requires
that all content markup is explicitly provided. Complex dynamic content containing current content
with markup, JavaScript and images can be generated on demand. The media type may be specified
by setting the Content-Type response header using the sa_set_http_header procedure. Setting the
Content-Type header to 'text/html' is good practice when generating HTML markup to ensure that all
browsers display the markup as HTML and not text/plain. See “Developing web service applications
in an HTTP web server” [SQL Anywhere Server - Programming], and “sa_set_http_header system
procedure” on page 1074.

○ 'HTML' The result set is returned as an HTML representation of a table or view.

○ 'JSON' The result set is returned in JavaScript Object Notation (JSON). For more information
about JSON, see http://www.json.org/.

○ 'XML' The result set is returned as XML. If the result set is already XML, no additional formatting
is applied. Otherwise, it is automatically formatted as XML. As an alternative approach, a RAW
service could return a select using the FOR XML RAW clause having set a valid Content-Type such
as text/xml using sa_set_http_header procedure. See “sa_set_http_header system
procedure” on page 1074.

GROUP clause A DISH service without a GROUP clause exposes all SOAP services defined within
the database. By convention, the SOAP service name can be composed of a GROUP and a NAME
element. The name is delimited from the group by the last slash character. For example, a SOAP service
name defined as 'aaa/bbb/ccc' is 'ccc', and the group is 'aaa/bbb'. Delimiting a DISH service using this
convention is invalid. Instead, a GROUP clause is applied to specify the group of SOAP services for
which it is to be the SOAP endpoint.

Note
Slashes are converted to underscores within the WSDL to produce valid XML. Use caution when using a
DISH service that does not specify a GROUP clause such that it exposes all SOAP services that may
contain slashes. Use caution when using groups in conjunction with SOAP service names that contain
underscores to avoid ambiguity.

DATATYPE clause Applies to SOAP services only. When DATATYPE OFF is specified, SOAP
input parameters and response data are defined as XMLSchema string types. In most cases, true data types

SQL statements

572 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.json.org/

are preferred because it negates the need for the SOAP client to cast the data prior to computation.
Parameter data types are exposed in the schema section of the WSDL generated by the DISH service.
Output data types are represented as XML schema type attributes for each column of data.

The following values are permitted for the DATATYPE clause:

○ ON Generates data typing of input parameters and result set responses.

○ OFF All input parameters and response data are typed as XMLSchema string. (default)

○ IN Generates true data types for input parameters only. Response data types are XMLSchema string.

○ OUT Generates true data types for responses only. Input parameters are typed as XMLSchema string.

For more information about SOAP services, see “Tutorial: Using SQL Anywhere to access a SOAP/DISH
service” [SQL Anywhere Server - Programming].

For more information about mapping XMLSchema types to SQL data types, see “Working with data
types (SOAP only)” [SQL Anywhere Server - Programming].

URL clause Determines whether URL paths are accepted and, if so, how they are processed. Applies
to XML, HTML, JSON, and RAW service types. PATH is optional in the syntax and is ignored.

○ OFF Indicates that the service name in a URL request must not be followed by a path. OFF is the
default setting. For example, the following form will be disallowed due to the path elements /aaa/
bbb/ccc.

http://<host-name>/<service-name>/aaa/bbb/ccc

Suppose that CREATE SERVICE echo URL PATH OFF was specified when creating the web
service. A URL similar to http://localhost/echo?id=1 produces the following values:

HTTP_VARIABLE('id') == 1,
HTTP_HEADER('@HTTPQUERYSTRING') == id=1

○ ON Indicates that the service name in a URL request can be followed by a path. The path is value is
returned by querying a dedicated HTTP variable named URL. A service can be defined to explicitly
provide the URL parameter or it may be retrieved using the HTTP_VARIABLE function. For
example, the following form is allowed:

http://<host-name>/<service-name>/aaa/bbb/ccc

Suppose that CREATE SERVICE echo URL PATH ON was specified when creating the web
service. A URL similar to http://localhost/echo/one/two?id=1 produces the following
values:

HTTP_VARIABLE('id') == 1,
HTTP_VARIABLE('URL') == one/two,
HTTP_HEADER('@HTTPQUERYSTRING') == id=1

○ ELEMENTS Indicates that the service name in a URL request may be followed by a path. The path
is obtained in segments by specifying a single parameter keyword URL1, URL2, and so on. Each
parameter may be retrieved using the HTTP_VARIABLE or NEXT_HTTP_VARIABLE functions.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 573

These iterator functions can be used in applications where a variable number of path elements can be
provided. For example, the following form is allowed:

http://<host-name>/<service-name>/aaa/bbb/ccc

Suppose that CREATE SERVICE echo URL PATH ELEMENTS was specified when creating the
web service. A URL similar to http://localhost/echo/one/two?id=1 produces the
following values:

HTTP_VARIABLE('id') == 1,
HTTP_VARIABLE('URL1') == one,
HTTP_VARIABLE('URL2') == two,
HTTP_HEADER('@HTTPQUERYSTRING') == id=1

Up to 10 elements can be obtained. A NULL value is returned if the corresponding element is not
supplied. In the above example, HTTP_VARIABLE('URL3') returns NULL because no
corresponding element was supplied.

For more information about URLs, see “Browsing an HTTP web server” [SQL Anywhere Server -
Programming], and “Accessing client-supplied HTTP variables and headers” [SQL Anywhere Server -
Programming].

FORMAT clause Applies to DISH and SOAP services only. This clause specifies the output format
when sending responses to SOAP client applications.

The SOAP service format is dictated by the associated DISH service format specification when it is not
specified by the SOAP service. The default format is DNET.

SOAP requests should be directed to the DISH service (the SQL Anywhere SOAP endpoint) to leverage
common formatting rules for a group of SOAP services (SOAP operations). A SOAP service FORMAT
specification overrides that of a DISH service. The format specification of the DISH service is used when
a SOAP service does not define a FORMAT clause. If no FORMAT is provided by either service then the
default is 'DNET'.

The following formats are supported for DISH and SOAP services:

○ 'DNET' The output is in a System.Data.DataSet compatible format for consumption by .NET client
applications. (default)

○ 'CONCRETE' This output format is used to support client SOAP toolkits that are capable of
generating interfaces representing arrays of row and column objects but are not able to consume the
DNET format. Java and .NET clients can easily consume this output format.

The specific output format is exposed within the WSDL of a DISH service. For CONCRETE OFF or
as a last resort, a CONCRETE format for one or more SOAP services is represented as a
SimpleDataset. Examining the WSDL, a SimpleDataset is composed of an array of rows composed
of an array of any number of columns. This is not an ideal representation because the specific column
names and data types are not specified. It is recommended that SOAP services define a call to a stored
procedure that, in turn, defines a RESULT clause. A DISH service exposing SOAP services defined in
this way can fully describe the result set when generating the WSDL.

SQL statements

574 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

By default, EXPLICIT ON is assumed and the WSDL contains a specific Dataset entry for each
SOAP service if the result set for a SOAP service can be described. Each entry name is prefixed by
the SOAP service name and an underscore. For example, a SOAP service named test produces a
test_Dataset object specification containing the XMLSchema definitions for each of its column
elements.

When EXPLICIT ON is specified (default), the WSDL describes an explicit DataSet element when
the following criteria are met:

● The CREATE SERVICE statement calls a stored procedure

● A RESULT clause describing the columns and data types is specified in the stored procedure

When EXPLICIT OFF is specified, the WSDL describes the SimpleDataset element. This
description does not provide the number of columns, column names or data types.

○ 'XML' The output is generated in an XMLSchema string format. The response is an XML document
that requires further processing by the SOAP client to extract column data. This format is suitable for
SOAP clients that cannot generate intermediate interface objects that represent arrays of rows and
columns.

○ NULL A NULL type causes the SOAP or DISH service to use the default behavior. The format type
of an existing service is overwritten when using the NULL type in an ALTER SERVICE statement.

AUTHORIZATION clause Determines whether users must specify a user name and password through
basic HTTP authorization when connecting to the service. The default value is ON. If authorization is
OFF, the AS clause is required for all services with the exception of DISH, and a user must be specified
with the USER clause. All requests are run using that user's account and permissions. If
AUTHORIZATION is ON, all users must provide a user name and password. Optionally, you can limit
the users that are permitted to use the service by providing a user or group name with the USER clause. If
the user name is NULL, all known users can access the service. The AUTHORIZATION clause allows
your web services to use database authorization and permissions to control access to the data in your database.

When the authorization value is ON, an HTTP client connecting to a web service uses basic
authentication (RFC 2617) which obfuscates the user and password information using base-64 encoding.
It is recommended that you use the HTTPS protocol for increased security.

ENABLE and DISABLE clauses Determines whether the service is available for use. By default,
when a service is created, it is enabled. When creating or altering a service, you may include an ENABLE
or DISABLE clause. Disabling a service effectively takes the service off line. Later, it can be enabled
using ALTER SERVICE with the ENABLE clause. An HTTP request made to a disabled service
typically returns a 404 Not Found HTTP status.

METHODS clause Specifies the HTTP methods that are supported by the service. Valid values are
DEFAULT, POST, GET, HEAD, PUT, DELETE, and NONE. An asterisk (*) may be used as a short
form to represent the POST, GET, and HEAD methods which are default request types for the RAW,
HTML and XML service types. The default method types for SOAP services are POST and HEAD. The
default method types for DISH services are GET, POST, and HEAD. Not all HTTP methods are valid for
all the service types. The following table summarizes the valid HTTP methods that can be applied to each
service type:

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 575

Request
type

Applies to
service

Description

DEFAULT all Use DEFAULT to reset the set of request types to the default set for the
given service type. It cannot be included in a list with other request types.

POST SOAP,
DISH,
RAW,
HTML,
XML

Enabled by default for SOAP, RAW, HTML and XML.

GET DISH,
RAW,
HTML,
XML

Enabled by default for DISH, RAW, HTML and XML.

HEAD SOAP,
DISH,
RAW,
HTML,
XML

Enabled by default for SOAP, DISH, RAW, HTML and XML.

PUT RAW,
HTML,
XML

Not enabled by default.

DELETE RAW,
HTML,
XML

Not enabled by default.

NONE all Use NONE to disable access to a service. When applied to a SOAP serv-
ice, the service cannot be directly accessed by a SOAP request. This en-
force exclusive access to a SOAP operation through a DISH service
SOAP endpoint.

It is recommended that you specify METHOD NONE for each SOAP
service.

* DISH,
RAW,
HTML,
XML

Same as specifying 'POST,GET,HEAD'.

For example, you can use either of the following clauses to specify that a service supports all HTTP
method types:

METHODS '*,PUT,DELETE'
METHODS 'POST,GET,HEAD,PUT,DELETE'

SQL statements

576 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

To reset the list of request types for any service type to its default, you can use the following clause:

METHODS 'DEFAULT'

SECURE clause Specifies whether the service should be accessible on a secure or non-secure listener.
ON indicates that only HTTPS connections are accepted, and that connections received on the HTTP port
are automatically redirected to the HTTPS port. OFF indicates that both HTTP and HTTPS connections
are accepted, provided that the necessary ports are specified when starting the web server. The default
value is OFF.

USER clause Specifies a database user, or group of users, with permissions to execute the web service
request. A USER clause must be specified when the service is configured with AUTHORIZATION OFF
and should be specified with AUTHORIZATION ON. (the default) An HTTP request made to a service
requiring authorization results in a 401 Authorization Required HTTP response status. Based
on this response, the web browser prompts for a user ID and password.

Caution
It is strongly recommended that you specify a USER clause when authorization is enabled (default).
Otherwise, authorization is granted to all users.

The USER clause controls which database user accounts can be used to process service requests. Database
access permissions are restricted to the privileges assigned to the user of the service.

statement Specifies a command, such as a stored procedure call, to invoke when the service is accessed.

A DISH service is the only service that must either define a null statement, or not define a statement. A
SOAP service must define a statement. Any other SERVICE can have a NULL statement, but only if
configured with AUTHORIZATION ON.

An HTTP request to a non-DISH service with no statement specifies the SQL expression to execute
within its URL. Although authorization is required, this capability should not be used in production
systems because it makes the server vulnerable to SQL injections. When a statement is defined within the
service, the specified SQL statement is the only statement that can be executed through the service.

In a typical web service application, you use statement to call a function or procedure. You can pass host
variables as parameters to access client-supplied HTTP variables.

The following statement demonstrates a procedure call that passes two host variables to a procedure
named AuthenticateUser. This call presumes that a web client supplies the user_name and
user_password variables:

CALL AuthenticateUser (:user_name, :user_password);

For more information about passing host variables to a function or procedure, see “Accessing client-
supplied HTTP variables and headers” [SQL Anywhere Server - Programming].

Remarks
Service definitions are stored within the ISYSWEBSERVICE table and can be examined from the
SYSWEBSERVICE view.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 577

Permissions
DBA authority.

Side effects
None.

See also
● “ALTER SERVICE statement” on page 415
● “DROP SERVICE statement” on page 663
● “ISYSWEBSERVICE system table” on page 922
● “Using SQL Anywhere as an HTTP web server” [SQL Anywhere Server - Programming]

Standards and compatibility
● SQL/2008 Vendor extension.

● Transact-SQL CREATE SERVICE is supported by Adaptive Server Enterprise, for types XML,
RAW, and SOAP only.

Examples
The following example demonstrates how to create a JSON service.

Start a database server with the -xs (http or https) option and then execute the following SQL script to set
up the service:

CREATE PROCEDURE ListEmployees()
RESULT (
 EmployeeID integer,
 Surname person_name_t,
 GivenName person_name_t,
 StartDate date,
 TerminationDate date)
BEGIN
 SELECT EmployeeID, Surname, GivenName, StartDate, TerminationDate
 FROM Employees
END;
CREATE SERVICE "jsonEmployeeList"
 TYPE 'JSON'
 AUTHORIZATION OFF
 SECURE OFF
 USER DBA
 AS CALL ListEmployees();

The JSON service provides data for easy consumption by an AJAX call back.

Run the following SQL script to create an HTML service that provides the service in a readable form:

CREATE SERVICE "EmployeeList"
 TYPE 'HTML'
 AUTHORIZATION OFF
 SECURE OFF
 USER DBA
 AS CALL ListEmployees();

SQL statements

578 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Use a web browser to access the service using an URL similar to http://localhost/
EmplyeeList.

CREATE SPATIAL REFERENCE SYSTEM statement
Creates or replaces a spatial reference system.

Syntax
{ CREATE [OR REPLACE] SPATIAL REFERENCE SYSTEM
| CREATE SPATIAL REFERENCE SYSTEM IF NOT EXISTS }
srs-name
[srs-attribute [srs-attribute ...]

srs-name : string

srs-attribute :
IDENTIFIED BY srs-id
| DEFINITION { definition-string | NULL }
| ORGANIZATION { organization-name IDENTIFIED BY organization-srs-id | NULL }
| TRANSFORM DEFINITION { transform-definition-string | NULL }
| LINEAR UNIT OF MEASURE linear-unit-name
| ANGULAR UNIT OF MEASURE { angular-unit-name | NULL }
| TYPE { ROUND EARTH | PLANAR }
| COORDINATE coordinate-name { UNBOUNDED | BETWEEN low-number AND high-number }
| ELLIPSOID SEMI MAJOR AXIS semi-major-axis-length { SEMI MINOR AXIS semi-minor-axis-length |
INVERSE FLATTENING inverse-flattening-ratio }
| SNAP TO GRID { grid-size | DEFAULT }
| TOLERANCE { tolerance-distance | DEFAULT }
| POLYGON FORMAT polygon-format
| STORAGE FORMAT storage-format

srs-id : integer

semi-major-axis-length : number

semi-minor-axis-length : number

inverse-flattening-ratio : number

grid-size : DOUBLE, usually between 0 and 1

tolerance-distance : number

axis-order : { 'x/y/z/m' | 'long/lat/z/m' | 'lat/long/z/m' }

polygon-format : { 'CounterClockWise' | 'Clockwise' | 'EvenOdd' }

exclude-lat : number

exclude-long : number

storage-format : { 'Internal' | 'Original' | 'Mixed' }

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 579

Parameters
CREATE SPATIAL REFERENCE SYSTEM CREATE SPATIAL REFERENCE SYSTEM creates
the spatial reference system. An error is returned if a spatial reference system by that name already exists
in the database.

CREATE OR REPLACE SPATIAL REFERENCE SYSTEM creates the spatial reference system if it
does not already exist in the database, and replaces it if it does exist. An error is returned if you attempt to
replace a spatial reference system while it is in use.

CREATE SPATIAL REFERENCE IF NOT EXISTS checks to see if a spatial reference system by that
name already exists. If it does not exist, the database server creates the spatial reference system. If it does
exist, no further action is performed and no error is returned.

IDENTIFIED BY clause Use this clause to specify the SRID (srs-id) for the spatial reference system. If
the spatial reference system is defined by an organization with an organization-srs-id, then srs-id should
be set to that value.

If the IDENTIFIED BY clause is not specified, then the SRID defaults to the organization-srs-id defined
by either the ORGANIZATION clause or the DEFINITION clause. If neither clause defines an organization-
srs-id that could be used as a default SRID, an error is returned.

When the spatial reference system is based on a well known coordinate system, but has a different
geodesic interpretation, set the srs-id value to be 1000000000 (one billion) plus the well known value. For
example, the SRID for a planar interpretation of the geodetic spatial reference system WGS 84 (ID 4326)
would be 1000004326.

With the exception of SRID 0, spatial reference systems provided by SQL Anywhere that are not based on
well known systems are given a SRID of 2000000000 (two billion) and above. The range of SRID values
from 2000000000 to 2147483647 is reserved by SQL Anywhere and you should not create SRIDs in this
range.

To reduce the possibility of choosing a SRID that is reserved by a defining authority such as OGC or by
other vendors, you should not choose a SRID in the range 0-32767 (reserved by EPSG), or in the range
2,147,483,547-2,147,483,647.

Also, since the SRID is stored as a signed 32-bit integer, the number cannot exceed 2^31-1 or 2147483647.

DEFINITION clause Use this clause to set, or override, default coordinate system settings. If any
attribute is set in a clause other than the DEFINITION clause, it takes the value specified in the other
clause regardless of what is specified in the DEFINITION clause.

definition-string is a string in the Spatial Reference System Well Known Text syntax as defined by SQL/
MM and OGC. For example, the following query returns the definition for WGS 84.

SELECT ST_SpatialRefSys::ST_FormatWKT(definition)
 FROM ST_Spatial_Reference_systems
 WHERE srs_id=4326;

In Interactive SQL, if you double-click the value returned, a more easy-to-read version of the value appears.

SQL statements

580 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

When the DEFINITION clause is specified, definition-string is parsed and used to choose default values
for attributes. For example, definition-string may contain an AUTHORITY element that defines the
organization-name and organization-srs-id.

Parameter values in definition-string are overridden by values explicitly set using the SQL statement
clauses. For example, if the ORGANIZATION clause is specified, it overrides the value for
ORGANIZATION in definition-string.

ORGANIZATION clause Use this clause to specify information about the organization that created the
spatial reference system that the new spatial reference system is based on. organization-name is the name
of the organization that created it; organization-srs-id is the numeric identifier the organization uses to
identify the spatial reference system.

TRANSFORM DEFINITION clause Use this clause to specify a description of the transform to use for
the spatial reference system. Currently, only the PROJ.4 transform is supported. For example, the transform-
definition-string for WGS 84 is '+proj=longlat +ellps=WGS84 +datum=WGS84
+no_defs'.

If you specify an unsupported transform definition, an error is returned.

The transform definition is used by the ST_Transform method when transforming data between spatial
reference systems. Some transforms may still be possible even if there is no transform-definition-string
defined. See “ST_Transform method for type ST_Geometry” [SQL Anywhere Server - Spatial Data
Support].

COORDINATE clause Use this clause to specify the bounds on the spatial reference system's
dimensions. coordinate-name is the name of the coordinate system used by the spatial reference system.
For non-geographic coordinate systems, coordinate-name can be x, y, or m. For geographic coordinate
systems, coordinate-name can be LATITUDE, LONGITUDE, z, or m.

Specify UNBOUNDED to place no bounds on the dimensions. Use the BETWEEN clause to set low and
high bounds.

The X and Y coordinates must have associated bounds. For geographic spatial reference systems, the
longitude coordinate is bounded between -180 and 180 degrees and the latitude coordinate is bounded
between -90 and 90 degrees by default unless COORDINATE clause overrides this. For non-geographic
spatial reference systems, the CREATE statement must specify bounds for both X and Y coordinates.

LATITUDE and LONGITUDE are used for geographic coordinate systems. The bounds for LATITUDE
and LONGITUDE default to the entire Earth, if not specified.

LINEAR UNIT OF MEASURE clause Use this clause to specify the linear unit of measure for the
spatial reference system. The value you specify must match a linear unit of measure defined in the
ST_UNITS_OF_MEASURE system view.

If this clause is not specified, and is not defined in the DEFINITION clause, the default is METRE.

To add predefined units of measure to the database, use the sa_install_feature system procedure. See
“sa_install_feature system procedure” on page 1010.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 581

To add custom units of measure to the database, use the CREATE SPATIAL UNIT OF MEASURE
statement. See “CREATE SPATIAL UNIT OF MEASURE statement” on page 586.

Note
While both METRE and METER are accepted spellings, METRE is preferred as it conforms to the SQL/
MM standard.

ANGULAR UNIT OF MEASURE clause Use this clause to specify the angular unit of measure for the
spatial reference system. The value you specify must match an angular unit of measure defined in the
ST_UNITS_OF_MEASURE system table.

If this clause is not specified, and is not defined in the DEFINITION clause, the default is DEGREE for
geographic spatial reference systems and NULL for non-geographic spatial reference systems.

The angular unit of measure must be non-NULL for geographic spatial reference systems and it must be
NULL for non-geographic spatial reference systems.

To add predefined units of measure to the database, use the sa_install_feature system procedure. See
“sa_install_feature system procedure” on page 1010.

To add custom units of measure to the database, use the CREATE SPATIAL UNIT OF MEASURE
statement. See “CREATE SPATIAL UNIT OF MEASURE statement” on page 586.

TYPE clause Use the type clause to control how the SRS interprets lines between points. For
geographic spatial reference systems, the TYPE clause can specify either ROUND EARTH (the default)
or PLANAR. The ROUND EARTH model interprets lines between points as great elliptic arcs. Given
two points on the surface of the Earth, a plane is selected that intersects the two points and the center of
the Earth. This plane intersects the Earth, and the line between the two points is the shortest distance
along this intersection.

For two points that lie directly opposite each other, there is not a single unique plane that intersects the
two points and the center of the Earth. Line segments connecting these anti-podal points are not valid and
give an error in the ROUND EARTH model.

The ROUND EARTH model treats the Earth as a spheroid and selects lines that follow the curvature of
the Earth. In some cases, it may be necessary to use a planar model where a line between two points is
interpreted as a straight line in the equi-rectangular projection where x=long, y=lat.

In the following example, the blue line shows the line interpretation used in the ROUND EARTH model
and the red line shows the corresponding PLANAR model.

SQL statements

582 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The PLANAR model may be used to match the interpretation used by other products. The PLANAR
model may also be useful because there are some limitations for methods that are not supported in the
ROUND EARTH model (such as ST_Area, ST_ConvexHull) and some are partially supported
(ST_Distance only supported between point geometries). Geometries based on circular strings are not
supported in ROUND EARTH spatial reference systems.

For non-geographic SRSs, the type must be PLANAR (and that is the default if the TYPE clause is not
specified and either the DEFINITION clause is not specified or it uses a non-geographic definition).

ELLIPSOID clause Use the ellipsoid clause to specify the values to use for representing the Earth as
an ellipsoid for spatial reference systems of type ROUND EARTH. If the DEFINITION clause is present,
it can specify ellipsoid definition. If the ELLIPSOID clause is specified, it overrides this default ellipsoid.

The Earth is not a perfect sphere because the rotation of the Earth causes a flattening so that the distance
from the center of the Earth to the North or South pole is less than the distance from the center to the
equator. For this reason, the Earth is modeled as an ellipsoid with different values for the semi-major axis
(distance from center to equator) and semi-minor axis (distance from center to the pole). It is most
common to define an ellipsoid using the semi-major axis and the inverse flattening, but it can instead be
specified using the semi-minor axis (for example, this approach must be used when a perfect sphere is
used to approximate the Earth). The semi-major and semi-minor axes are defined in the linear units of the
spatial reference system, and the inverse flattening (1/f) is a ratio:

1/f = (semi-major-axis) / (semi-major-axis - semi-minor-axis)

SQL Anywhere uses the ellipsoid definition when computing distance in geographic spatial reference
systems.

The ellipsoid must be defined for geographic spatial reference systems (either in the DEFINITION clause
or the ELLIPSOID clause), and it must not be specified for non-geographic spatial reference systems.

SNAP TO GRID clause For flat-Earth (planar) spatial reference systems, use the SNAP TO GRID
clause to define the size of the grid SQL Anywhere uses when performing calculations. By default, SQL

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 583

Anywhere selects a grid size so that 12 significant digits can be stored at all points in the space bounds for
X and Y. For example, if a spatial reference system bounds X between -180 and 180 and Y between -90
and 90, then a grid size of 0.000000001 (1E-9) is selected.

grid-size must be large enough so that points snapped to the grid can be represented with equal precision
at all points in the bounded space. If grid-size is too small, the server reports an error.

When set to 0, no snapping to grid is performed.

For round-Earth spatial reference systems, SNAP TO GRID must be set to 0.

Specify SNAP TO GRID DEFAULT to set the grid size to the default that the database server would use.

TOLERANCE clause For flat-Earth (planar) spatial reference systems, use the TOLERANCE clause
to specify the precision to use when comparing points. If the distance between two points is less than
tolerance-distance, the two points are considered equal. Setting tolerance-distance allows you to control
the tolerance for imprecision in the input data or limited internal precision. By default, tolerance-distance
is set to be equal to grid-size.

When set to 0, two points must be exactly equal to be considered equal.

For round-Earth spatial reference systems, TOLERANCE must be set to 0.

POLYGON FORMAT clause Internally, SQL Anywhere interprets polygons by looking at the
orientation of the constituent rings. As one travels a ring in the order of the defined points, the inside of
the polygon is on the left-hand side of the ring. The same rules are applied in PLANAR and ROUND
EARTH spatial reference systems.

The interpretation used by SQL Anywhere is a common but not universal interpretation. Some products
use the exact opposite orientation, and some products do not rely on ring orientation to interpret polygons.
The POLYGON FORMAT clause can be used to select a polygon interpretation that matches the input
data, as needed. The following values are supported:

○ 'CounterClockwise' The input follows SQL Anywhere's internal interpretation: the inside of the
polygon is on the left side while following ring orientation.

○ 'Clockwise' The input follows the opposite of SQL Anywhere's approach: the inside of the
polygon is on the right hand side while following ring orientation.

○ 'EvenOdd' EvenOdd is the default format. With EvenOdd, the orientation of rings is ignored and
the inside of the polygon is instead determined by looking at the nesting of the rings, with the exterior
ring being the largest ring and interior rings being smaller rings inside this ring. A ray is traced from a
point within the rings and radiating outward crossing all rings. If the number the ring being crossed is
an even number, it is an outer ring. If it is odd, it is an inner ring.

STORAGE FORMAT clause When you insert spatial data into the database from an external format
(such as WKT or WKB), the database server normalizes the data to improve the performance and
semantics of spatial operations. The normalized representation may differ from the original representation
(for example, in the orientation of polygon rings or the precision stored in individual coordinates). While
spatial equality is maintained after the normalization, some original input characteristics may not be

SQL statements

584 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

reproducible, such as precision and ring orientation. In some cases you may want to store the original
representation, either exclusively, or in addition to the normalized representation.

To control what is stored, specify the STORAGE FORMAT clause followed by one of the following values:

○ 'Internal' SQL Anywhere stores only the normalized representation. Specify this when the original
input characteristics do not need to be reproduced. This is the default for planar spatial reference
systems (TYPE PLANAR).

Note
If you are using MobiLink to synchronize your spatial data, you should specify Mixed instead.
MobiLink tests for equality during synchronization, which requires the data in its original format.

○ 'Original' SQL Anywhere stores only the original representation. The original input characteristics
can be reproduced, but all operations on the stored values must repeat normalization steps, possibly
slowing down operations on the data.

○ 'Mixed' SQL Anywhere stores the internal version and, if different from the original version, it
stores the original version as well. By storing both versions, the original representation characteristics
can be reproduced and operations on stored values do not need to repeat normalization steps.
However, storage requirements may increase significantly because potentially two representations are
being stored for each geometry.

Mixed is the default format for round-Earth spatial reference systems (TYPE ROUND EARTH).

Remarks
For a geographic spatial reference system, you can specify both a LINEAR and an ANGULAR unit of
measure; otherwise for non-geographic, you specify only a LINEAR unit of measure.. The LINEAR unit
of measure is used for computing distance between points and areas. The ANGULAR unit of measure
tells how the angular latitude / longitude are interpreted and is NULL for projected coordinate systems, non-
NULL for geographic coordinate systems.

All derived geometries returned by operations are normalized.

When working with data that is being synchronized with a non-SQL Anywhere database, STORAGE
FORMAT should be set to either 'Original' or 'Mixed' so that the original characteristics of the data can be
preserved.

Permissions
Must have DBA authority or be a member of the SYS_SPATIAL_ADMIN_ROLE group.

Side effects
None

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 585

See also
● “sa_install_feature system procedure” on page 1010
● “CREATE SPATIAL UNIT OF MEASURE statement” on page 586
● “ST_UNITS_OF_MEASURE consolidated view” on page 1194
● “ST_SPATIAL_REFERENCE_SYSTEMS consolidated view” on page 1191
● “ALTER SPATIAL REFERENCE SYSTEM statement” on page 416
● “Spatial reference systems (SRS) and Spatial reference identifiers (SRID)” [SQL Anywhere Server -

Spatial Data Support]
● “Getting started with spatial data” [SQL Anywhere Server - Spatial Data Support]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example creates a spatial reference system named mySpatialRS:

CREATE SPATIAL REFERENCE SYSTEM "mySpatialRS"
 IDENTIFIED BY 1000026980
 LINEAR UNIT OF MEASURE "metre"
 TYPE PLANAR
 COORDINATE X BETWEEN 171266.736269555 AND 831044.757769222
 COORDINATE Y BETWEEN 524881.608973277 AND 691571.125115319
 DEFINITION 'PROJCS["NAD83 / Kentucky South",
 GEOGCS["NAD83",
 DATUM["North_American_Datum_1983",
 SPHEROID["GRS 1980",
6378137,298.257222101,AUTHORITY["EPSG","7019"]],
 AUTHORITY["EPSG","6269"]],
 PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],
 UNIT["degree",0.01745329251994328,AUTHORITY["EPSG","9122"]],
 AUTHORITY["EPSG","4269"]],
 UNIT["metre",1,AUTHORITY["EPSG","9001"]],
 PROJECTION["Lambert_Conformal_Conic_2SP"],
 PARAMETER["standard_parallel_1",37.93333333333333],
 PARAMETER["standard_parallel_2",36.73333333333333],
 PARAMETER["latitude_of_origin",36.33333333333334],
 PARAMETER["central_meridian",-85.75],
 PARAMETER["false_easting",500000],
 PARAMETER["false_northing",500000],
 AUTHORITY["EPSG","26980"],
 AXIS["X",EAST],
 AXIS["Y",NORTH]]'
 TRANSFORM DEFINITION '+proj=lcc +lat_1=37.93333333333333
+lat_2=36.73333333333333 +lat_0=36.33333333333334 +lon_0=-85.75 +x_0=500000
+y_0=500000 +ellps=GRS80 +datum=NAD83 +units=m +no_defs '

CREATE SPATIAL UNIT OF MEASURE statement
Creates or replaces a spatial unit of measurement.

SQL statements

586 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
CREATE [OR REPLACE] SPATIAL UNIT OF MEASURE identifier
TYPE { LINEAR | ANGULAR }
[CONVERT USING number]

Parameters
OR REPLACE clause Including the OR REPLACE creates a new spatial unit of measure, or replaces
an existing spatial unit of measure with the same name. This clause preserves existing permissions. An
error is returned if you attempt to replace a spatial unit that is already in use.

TYPE Defines whether the unit of measure is used for angles (ANGULAR) or distances (LINEAR).

CONVERT USING The conversion factor for the spatial unit relative to the base unit. For linear units,
the base unit is 'METRE'. For angular units, the base unit is 'RADIAN'.

Remarks
The CONVERT USING clause is used to define how to convert a measurement in the defined unit of
measure to the base unit of measure (radians or meters). The measurement is multiplied by the supplied
conversion factor to get a value in the base unit of measure. For example, a measurement of 512
millimeters would be multiplied by a conversion factor of 0.001 to get a measurement of 0.512 metres.

Spatial reference systems always include a linear unit of measure to be used when calculating distances
(ST_Distance or ST_Length), or area. For example, if the linear unit of measure for a spatial reference
system is miles, then the area unit used is square miles. In some cases, spatial methods accept an optional
parameter that specifies the linear unit of measure to use. For example, if the linear unit of measure for a
spatial reference system is in miles, you could retrieve the distance between two geometries in meters by
using the optional parameter 'metre':

SELECT geom1.ST_Distance(geom2, 'metre');

For projected coordinate systems, the X and Y coordinates are specified in the linear unit of the spatial
reference system. For geographic coordinate systems, the latitude and longitude are specified in the
angular units of measure associated with the spatial reference system. In many cases, this angular unit of
measure is degrees but any valid angular unit of measure can be used.

You can use the sa_install_feature system procedure to add many predefined units of measure to your
database. See “sa_install_feature system procedure” on page 1010.

Permissions
Must have DBA authority.

Side effects
None

See also
● “DROP SPATIAL UNIT OF MEASURE statement” on page 664
● “Getting started with spatial data” [SQL Anywhere Server - Spatial Data Support]

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 587

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example creates a spatial unit of measure named TEST.

CREATE SPATIAL UNIT OF MEASURE Test
TYPE LINEAR
CONVERT USING 15;

CREATE STATISTICS statement
Recreates the column statistics used by the optimizer, and stores them in the ISYSCOLSTAT system table.

Syntax
CREATE STATISTICS object-name [(column-list)]

object-name :
table-name | materialized-view-name | temp-table-name

Remarks
The CREATE STATISTICS statement recreates the column statistics that SQL Anywhere uses to
optimize database queries, and can be performed on base tables, materialized views, local temporary
tables, and global temporary tables. You cannot create statistics on proxy tables. Column statistics include
histograms, which reflect the distribution of data in the database for the specified columns. By default,
column statistics are automatically created for tables with five or more rows.

In rare circumstances, when your database queries are very variable, and when data distribution is not
uniform or the data is changing frequently, you can improve performance by running the CREATE
STATISTICS statement against a table or column.

When executing, the CREATE STATISTICS statement updates existing column statistics regardless of
the size of the table, unless the table is empty, in which case nothing is done. If column statistics exist for
an empty table, they remain unchanged by the CREATE STATISTICS statement. To remove column
statistics for an empty table, execute the DROP STATISTICS statement.

The process of running CREATE STATISTICS performs a complete scan of the table. For this reason,
careful consideration should be made before issuing a CREATE STATISTICS statement.

If you drop statistics, it is recommended that you recreate them using the CREATE STATISTICS
statement. Without statistics, the optimizer can generate inefficient data access plans, causing poor
database performance.

Permissions
DBA authority.

Side effects
Execution plans may change.

SQL statements

588 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “Optimizer estimates and column statistics” [SQL Anywhere Server - SQL Usage]
● “DROP STATISTICS statement” on page 666
● “LOAD TABLE statement” on page 750
● “ISYSCOLSTAT system table” on page 912
● “Histogram utility (dbhist)” [SQL Anywhere Server - Database Administration]
● “sa_get_histogram system procedure” on page 995

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement updates the column statistics for the ProductID column of the SalesOrderItems
table:

CREATE STATISTICS SalesOrderItems (ProductID);

CREATE SUBSCRIPTION statement [SQL Remote]
Creates a subscription for a user to a publication.

Syntax
CREATE SUBSCRIPTION
TO publication-name [(subscription-value)]
FOR subscriber-id

publication-name: identifier

subscription-value : string

subscriber-id: string

Parameters
publication-name The name of the publication to which the user is being subscribed. This can include
the owner of the publication.

subscription-value A string that is compared to the subscription expression of the publication. The
subscriber receives all rows for which the subscription expression matches the subscription value.

subscriber-id The user ID of the subscriber to the publication. This user must have been granted
REMOTE permissions.

Remarks
In a SQL Remote installation, data is organized into publications for replication. To receive SQL Remote
messages, a subscription must be created for a user ID with REMOTE permissions.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 589

If a string is supplied in the subscription, it is matched against each SUBSCRIBE BY expression in the
publication. The subscriber receives all rows for which the value of the expression is equal to the supplied
string.

In SQL Remote, publications and subscriptions are two-way relationships. If you create a subscription for
a remote user to a publication on a consolidated database, you should also create a subscription for the
consolidated database on the remote database. The extraction utility carries this out automatically.

Permissions
DBA authority

Side effects
Automatic commit.

See also
● “DROP SUBSCRIPTION statement [SQL Remote]” on page 667
● “GRANT REMOTE statement [SQL Remote]” on page 716
● “SYNCHRONIZE SUBSCRIPTION statement [SQL Remote]” on page 878
● “START SUBSCRIPTION statement [SQL Remote]” on page 863
● “ISYSSUBSCRIPTION system table” on page 919

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement creates a subscription for the user p_chin to the publication pub_sales. The
subscriber receives all rows for which the subscription expression has a value of Eastern.

CREATE SUBSCRIPTION
TO pub_sales ('Eastern')
FOR p_chin;

CREATE SYNCHRONIZATION PROFILE statement
[MobiLink]

Creates a SQL Anywhere synchronization profile. Synchronization profiles are named collections of
synchronization options that can be used to control synchronization.

Syntax
CREATE [OR REPLACE] SYNCHRONIZATION PROFILE name string

Parameters
OR REPLACE clause Specifying CREATE OR REPLACE SYNCHRONIZATION PROFILE
replaces the definition of the named synchronization profile if it already exists.

name Specifies the name of the synchronization profile to create. Each profile must have a unique name.

SQL statements

590 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

string Specify a valid option string as described below. Option strings are specified as semicolon
delimited lists of elements of the form <option name>=<option value>. For example
subscription=s1;verbosity=high.

Remarks
For a listing of the synchronization profile options supported by dbmlsync, see “MobiLink
synchronization profiles” [MobiLink - Client Administration].

For options that take a Boolean value, setting the value to TRUE is equivalent to specifying the
corresponding option on the command line.

The following values can be used to specify TRUE: TRUE, ON, 1, YES.

The following values can be used to specify FALSE: FALSE, OFF, 0, NO.

When setting extended options, use the following syntax:

CREATE SYNCHRONIZATION PROFILE myprofile MERGE
's=mysub;e={ctp=tcpip;adr=''host=localhost;port=2439''}'

Permissions
DBA authority

Side effects
Automatic commit.

See also
● “ALTER SYNCHRONIZATION PROFILE statement [MobiLink]” on page 421
● “DROP SYNCHRONIZATION PROFILE statement [MobiLink]” on page 668
● “SYNCHRONIZE statement [MobiLink]” on page 874

Standards and compatibility
● SQL/2008 Vendor extension.

CREATE SYNCHRONIZATION SUBSCRIPTION statement
[MobiLink]

Creates a subscription in a SQL Anywhere remote database between a MobiLink user and a publication.

Syntax
CREATE SYNCHRONIZATION SUBSCRIPTION[subscription-name]
TO publication-name
[FOR ml-username, ...]
[TYPE network-protocol]
[ADDRESS protocol-options]
[OPTION option=value, ...]
[SCRIPT VERSION script-version]

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 591

subscription-name: identifier

ml-username: identifier

network-protocol: http | https | tls | tcpip

protocol-options: string

value: string | integer

script-version: string

Parameters
subscription-name A unique name that you can use to identify this subscription. It is strongly
recommended that you name all your subscriptions.

TO clause This clause specifies the name of a publication.

FOR clause This clause specifies one or more MobiLink user names. If you specify more than one
user name, a separate subscription is created for each user. If you specify a subscription name, only one
MobiLink user name can be specified.

ml-username is a user who is authorized to synchronize with the MobiLink server.

For more information about synchronization user names, see “Introduction to MobiLink users” [MobiLink
- Client Administration].

Omit the FOR clause to set the protocol type, protocol options, and extended options for a publication.

If the FOR clause is omitted, you cannot specify a subscription name or use the SCRIPT VERSION clause.

For information about how dbmlsync processes options that are specified in different locations, see
“Priority order” [MobiLink - Client Administration].

TYPE clause This clause specifies the network protocol to use for synchronization. The default
protocol is tcpip.

For more information about network protocols, see “CommunicationType (ctp) extended option”
[MobiLink - Client Administration].

ADDRESS clause This clause specifies network protocol options such as the location of the
MobiLink server. Multiple options must be separated with semicolons.

For a complete list of protocol options, see “MobiLink client network protocol option summary”
[MobiLink - Client Administration].

OPTION clause This clause allows you to set extended options for the subscription. If no FOR clause
is provided, the extended options act as default settings for the publication.

For information about how dbmlsync processes options that are specified in different locations, see
“Priority order” [MobiLink - Client Administration].

SQL statements

592 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

For a complete list of options, see “MobiLink SQL Anywhere client extended options” [MobiLink - Client
Administration].

SCRIPT VERSION clause This clause specifies the script version to use during synchronization.
Typically, you must specify a new script version for each schema change you implement.

You cannot use the SCRIPT VERSION clause if the FOR clause is omitted.

For more information about MobiLink script versions, see “Script versions” [MobiLink - Server
Administration].

Remarks
If no subscription-name is specified, a unique name is generated. The generated subscription name is the
same as the publication name, provided it is unique. Otherwise, a unique name is formed by adding a
number to the end of the publication name, for example, pub001, pub002, and so on).

The network-protocol, protocol-options, and option can be set in several places.

For information about how dbmlsync processes options that are specified in different locations, see
“Priority order” [MobiLink - Client Administration].

This statement causes options and other information to be stored in the SQL Anywhere ISYSSYNC
system table. Anyone with DBA authority for the database can view the information, which could include
passwords and encryption certificates. To avoid this potential security issue, you can specify the
information on the dbmlsync command line. See “dbmlsync syntax” [MobiLink - Client Administration].

Permissions
DBA authority and exclusive access to all tables referenced in the publication.

Side effects
Automatic commit.

See also
● “ALTER SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” on page 422
● “DROP SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” on page 669
● SQL Anywhere MobiLink clients: “Creating synchronization subscriptions” [MobiLink - Client

Administration]
● UltraLite MobiLink clients: “Designing synchronization in UltraLite” [UltraLite - Database

Management and Reference]
● “ISYSSYNC system table” on page 919

Standards and compatibility
● SQL/2008 Vendor extension.

Examples
The following example creates a subscription named sales between the MobiLink user ml_user1 and the
publication called sales_publication. When the subscription is synchronized, the script version sales_v1 is
used and tables are locked in exclusive mode:

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 593

CREATE SYNCHRONIZATION SUBSCRIPTION sales
TO sales_publication
FOR ml_user1
OPTION locktables='exclusive'
SCRIPT VERSION 'sales_v1'

The following example omits the FOR clause and stores settings for the publication called sales_publication:

CREATE SYNCHRONIZATION SUBSCRIPTION
TO sales_publication
ADDRESS 'host=test.internal;port=2439;
security=ecc_tls'
OPTION locktables='exclusive';

CREATE SYNCHRONIZATION USER statement [MobiLink]

Creates a MobiLink user in a SQL Anywhere remote database.

Syntax
CREATE SYNCHRONIZATION USER ml-username
[TYPE network-protocol]
[ADDRESS protocol-options]
[OPTION option=value, ...]

ml-username: identifier

network-protocol :
tcpip
| http
| https
| tls

protocol-options : string

value: string | integer

Parameters
ml_username A name identifying a MobiLink user.

For more information about MobiLink users, see “Introduction to MobiLink users” [MobiLink - Client
Administration].

TYPE clause This clause specifies the network protocol to use for synchronization. The default
protocol is tcpip.

For more information about communication protocols, see “CommunicationType (ctp) extended option”
[MobiLink - Client Administration].

ADDRESS clause This clause specifies protocol-options in the form keyword=value, separated by
semicolons. Which settings you supply depends on the communication protocol you are using (TCPIP,
TLS, HTTP, or HTTPS).

SQL statements

594 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

For a complete list of protocol options, see “MobiLink client network protocol option summary”
[MobiLink - Client Administration].

OPTION clause The OPTION clause allows you to set extended options using option=value in a comma-
separated list.

The values for each option cannot contain equal signs or semicolons. The database server accepts any
option that you enter without checking for its validity. Therefore, if you misspell an option or enter an
invalid value, no error message appears until you run the dbmlsync command to perform synchronization.

Options set for a synchronization user can be overridden in individual subscriptions or on the dbmlsync
command line.

For information about extended options, see “MobiLink SQL Anywhere client extended options”
[MobiLink - Client Administration].

The network-protocol, protocol-options, and options can be set in several places.

For information about how dbmlsync processes options that are specified in different locations, see
“Priority order” [MobiLink - Client Administration].

This statement causes options and other information to be stored in the SQL Anywhere ISYSSYNC
system table. Anyone with DBA authority for the database can view the information, which could include
passwords and encryption certificates. To avoid this potential security issue, you can specify the
information on the dbmlsync command line.

See “dbmlsync syntax” [MobiLink - Client Administration].

Permissions
DBA authority.

Side effects
Automatic commit.

See also
● “ALTER SYNCHRONIZATION USER statement [MobiLink]” on page 425
● “DROP SYNCHRONIZATION USER statement [MobiLink]” on page 670
● “Encrypting MobiLink client/server communications” [SQL Anywhere Server - Database

Administration]
● “ISYSSYNC system table” on page 919

Standards and compatibility
● SQL/2008 Vendor extension.

Examples
The following example creates a MobiLink user named SSinger, who synchronizes over TCP/IP with a
server computer named mlserver.mycompany.com using the password Sam. The use of a password in the
user definition is not secure.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 595

CREATE SYNCHRONIZATION USER SSinger
TYPE http
ADDRESS 'host=mlserver.mycompany.com'
OPTION MobiLinkPwd='Sam';

CREATE TABLE statement

Creates a new table in the database and, optionally, to create a table on a remote server.

Syntax
CREATE [GLOBAL TEMPORARY] TABLE [IF NOT EXISTS] [owner.]table-name
({ column-definition | table-constraint | pctfree }, ...)
[{ IN | ON } dbspace-name]
[ENCRYPTED]
[ON COMMIT { DELETE | PRESERVE } ROWS
 | NOT TRANSACTIONAL]
[AT location-string]
[SHARE BY ALL]

column-definition :
column-name data-type
[COMPRESSED]
[INLINE { inline-length | USE DEFAULT }]
[PREFIX { prefix-length | USE DEFAULT }]
[[NO] INDEX]
[[NOT] NULL]
[DEFAULT default-value | IDENTITY]
[column-constraint ...]

default-value :
 special-value
| string
| global variable
| [-] number
| (constant-expression)
| built-in-function(constant-expression)
| AUTOINCREMENT
| CURRENT DATABASE
| CURRENT REMOTE USER
| CURRENT UTC TIMESTAMP
| GLOBAL AUTOINCREMENT [(partition-size)]
| NULL
| TIMESTAMP
| UTC TIMESTAMP
| LAST USER

special-value:
CURRENT {
 DATE
 | TIME
 | TIMESTAMP
 | USER
 | PUBLISHER
 | DATABASE

SQL statements

596 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 | REMOTE USER
 | UTC TIMESTAMP
}
| USER

column-constraint :
[CONSTRAINT constraint-name] {
 UNIQUE [CLUSTERED]
 | PRIMARY KEY [CLUSTERED] [ASC | DESC]
 | REFERENCES table-name [(column-name)]
 [MATCH [UNIQUE] { SIMPLE | FULL }]
 [action-list] [CLUSTERED]
 | CHECK (condition)
 }
| COMPUTE (expression)

table-constraint :
[CONSTRAINT constraint-name] {
 UNIQUE [CLUSTERED] (column-name [ASC | DESC], ...)
 | PRIMARY KEY [CLUSTERED] (column-name [ASC | DESC], ...)
 | CHECK (condition)
 | foreign-key-constraint
}

foreign-key-constraint :
[NOT NULL] FOREIGN KEY [role-name]
 [(column-name [ASC | DESC], ...)]
 REFERENCES table-name
 [(column-name, ...)]
 [MATCH [UNIQUE] { SIMPLE | FULL }]
 [action-list] [CHECK ON COMMIT] [CLUSTERED] [FOR OLAP WORKLOAD]

action-list :
[ON UPDATE action]
[ON DELETE action]

action :
CASCADE
| SET NULL
| SET DEFAULT
| RESTRICT

location-string :
 remote-server-name.[db-name].[owner].object-name
| remote-server-name;[db-name];[owner];object-name

pctfree : PCTFREE percent-free-space

percent-free-space : integer

Parameters
IN clause Use this clause to specify the dbspace in which the base table is located. If this clause is not
specified, then the base table is created in the dbspace specified by the default_dbspace option.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 597

Temporary tables can only be created in the temporary dbspace. If you are creating a GLOBAL
TEMPORARY table, and specify IN, the table is created in the temporary dbspace. If you specify a user-
defined dbspace, an error is returned.

For more information about dbspaces, see:

○ “CREATE DBSPACE statement” on page 484
○ “Using additional dbspaces” [SQL Anywhere Server - Database Administration]
○ “default_dbspace option” [SQL Anywhere Server - Database Administration]

ENCRYPTED clause The encrypted clause specifies that the table should be encrypted. You must
enable table encryption when you create a database if you want to encrypt tables. The table is encrypted
using the encryption key and algorithm specified at database creation time. See “Enabling table
encryption in the database” [SQL Anywhere Server - Database Administration].

ON COMMIT clause The ON COMMIT clause is allowed only for temporary tables. By default, the
rows of a temporary table are deleted on COMMIT. If the SHARE BY ALL clause is specified, either ON
COMMIT PRESERVE ROWS or NOT TRANSACTIONAL must be specified.

NOT TRANSACTIONAL clause The NOT TRANSACTIONAL clause is allowed when creating a
global temporary table. A table created using NOT TRANSACTIONAL is not affected by either
COMMIT or ROLLBACK. If the SHARE BY ALL clause is specified, either ON COMMIT PRESERVE
ROWS or NOT TRANSACTIONAL must be specified. For information about the benefits of the NOT
TRANSACTIONAL clause, see “Working with temporary tables” [SQL Anywhere Server - SQL Usage].

AT clause Create a remote table on a different server specified by location-string, and a proxy table on
the current database that maps to the remote table. The AT clause supports the semicolon (;) as a field
delimiter in location-string. If no semicolon is present, a period is the field delimiter. This syntax allows
file names and extensions to be used in the database and owner fields.

For example, the following statement maps the table a1 to the Microsoft Access file mydbfile.mdb:

CREATE TABLE a1
AT 'access;d:\mydbfile.mdb;;a1';

For information about remote servers, see “CREATE SERVER statement” on page 567. For information
about proxy tables, see “CREATE EXISTING TABLE statement” on page 501 and “Specify proxy table
locations” [SQL Anywhere Server - SQL Usage].

Windows Mobile does not support the AT clause.

Foreign key definitions are ignored on remote tables. Foreign key definitions on local tables that refer to
remote tables are also ignored. Primary key definitions are sent to the remote server if the database server
supports primary keys.

SHARE BY ALL clause Use this clause only when creating global temporary tables to allow the table
to be shared by all connections to the database. If the SHARE BY ALL clause is specified, either ON
COMMIT PRESERVE ROWS or NOT TRANSACTIONAL must be specified.

For information about the characteristics of temporary tables, see “Working with temporary tables” [SQL
Anywhere Server - SQL Usage].

SQL statements

598 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

IF NOT EXISTS clause No changes are made if the named table already exists, and an error is not
returned.

column-definition Define a column in the table. The following are part of column definitions.

○ column-name The column name is an identifier. Two columns in the same table cannot have the
same name. See “Identifiers” on page 4.

○ data-type The type of data stored in the column. See “SQL data types” on page 79.

○ COMPRESSED clause Compress the column. For example, the following statement creates a
table, t, with two columns: filename and contents. The contents column is LONG BINARY and is
compressed:

CREATE TABLE t (
 filename VARCHAR(255),
 contents LONG BINARY COMPRESSED
);

INLINE and PREFIX clauses The INLINE clause specifies the maximum BLOB size, in bytes, to
store within the row. BLOBs smaller than or equal to the value specified by the INLINE clause are stored
within the row. BLOBs that exceed the value specified by the INLINE clause are stored outside the row in
table extension pages. Also, a copy of some bytes from the beginning of the BLOB may be kept in the
row when a BLOB is larger than the INLINE value. Use the PREFIX clause to specify how many bytes
are kept in the row. The PREFIX clause can improve the performance of requests that need the prefix
bytes of a BLOB to determine if a row is accepted or rejected.

The prefix data for a compressed column is stored uncompressed, so if all the data required to satisfy a
request is stored in the prefix, no decompression is necessary.

If neither INLINE nor PREFIX is specified, or if USE DEFAULT is specified, default values are applied
as follows:

○ For character data type columns, such as CHAR, NCHAR, and LONG VARCHAR, the default value
of INLINE is 256, and the default value of PREFIX is 8.

○ For binary data type columns, such as BINARY, LONG BINARY, VARBINARY, BIT, VARBIT,
LONG VARBIT, BIT VARYING, and UUID, the default value of INLINE is 256, and the default
value of PREFIX is 0.

Note
It is strongly recommended that you use the default values unless there are specific circumstances that
require a different setting. The default values have been chosen to balance performance and disk space
requirements. For example, if you set INLINE to a large value, and all the BLOBs are stored inline,
row processing performance may degrade. If you set PREFIX too high, you increase the amount of
disk space required to store BLOBs since the prefix data is a duplicate of a portion of the BLOB.

If only one of the values is specified, the other value is automatically set to the largest amount that
does not conflict with the specified value. Neither the INLINE nor PREFIX value can exceed the
database page size. Also, there is a small amount of overhead reserved in a table page that cannot be

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 599

used to store row data. Therefore, specifying an INLINE value approximate to the database page size
can result in a slightly smaller number of bytes being stored inline.

INDEX and NO INDEX clauses When storing BLOBs (character or binary types only), specify
INDEX to create BLOB indexes on inserted values that exceed the internal BLOB size threshold
(approximately eight database pages). This is the default behavior.

BLOB indexes can improve performance when random access searches within the BLOBs are required.
However, for some types of BLOB values, such as images and multimedia files that will never require
random-access, performance can improve if BLOB indexing is turned off. To turn off BLOB indexing for
a column, specify NO INDEX.

Note
A BLOB index is not the same as a table index. A table index is created to index values in one or more
columns.

NULL and NOT NULL clauses If NULL is specified, NULL values are allowed in the column. This
is the default behavior.

If NOT NULL is specified, NULL values are not allowed.

If the column is part of a UNIQUE or PRIMARY KEY constraint, the column cannot contain NULL,
even if NULL is specified.

DEFAULT clause For more information about the special-value, see “Special values” on page 58.

If a DEFAULT value is specified, it is used as the value for the column in any INSERT statement that
does not specify a value for the column. If no DEFAULT value is specified, it is equivalent to DEFAULT
NULL.

Following is a list of possible values for DEFAULT:

○ Sequence expression You can set DEFAULT to the current value or next value from a sequence
in the database. See “Using a sequence to generate unique values” [SQL Anywhere Server - SQL
Usage].

○ Constant expression Constant expressions that do not reference database objects are allowed in a
DEFAULT clause, so functions such as GETDATE or DATEADD can be used. If the expression is
not a function or simple value, it must be enclosed in parentheses.

○ CURRENT REMOTE USER clause The CURRENT REMOTE USER special value is set by the
receive phase of SQL Remote when it is applying messages to the database. The CURRENT
REMOTE USER special value is most useful in triggers to determine whether the operations being
applied are being applied by the receive phase of SQL Remote, and if they are, which remote user
generated the operations. See “SQL Remote Message Agent utility (dbremote)” [SQL Remote].

○ AUTOINCREMENT clause When using AUTOINCREMENT, the column must be one of the
integer data types, or an exact numeric type.

On inserts into the table, if a value is not specified for the AUTOINCREMENT column, a unique
value larger than any other value in the column is generated. If an INSERT specifies a value for the

SQL statements

600 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

column that is larger than the current maximum value for the column, that value is inserted and then
used as a starting point for subsequent inserts.

Deleting rows does not decrement the AUTOINCREMENT counter. Gaps created by deleting rows
can only be filled by explicit assignment when using an insert. After an explicit insert of a column
value less than the maximum, subsequent rows without explicit assignment are still automatically
incremented with a value of one greater than the previous maximum.

You can find the most recently inserted value of the column by inspecting the @@identity global
variable. See “@@identity global variable” on page 73.

AUTOINCREMENT values are maintained as signed 64-bit integers, corresponding to the data type
of the max_identity column in the SYSTABCOL system view. When the next value to be generated
exceeds the maximum value that can be stored in the column to which the AUTOINCREMENT is
assigned, NULL is returned. If the column has been declared to not allow NULLs, as is true for
primary key columns, a SQL error is generated.

The next value to use for a column can be reset using the sa_reset_identity procedure. See
“sa_reset_identity system procedure” on page 1053.

For information about rebuilding databases that use AUTOINCREMENT, see “Reloading tables with
autoincrement columns” [SQL Anywhere 12 - Changes and Upgrading].

For information about determining whether a sequence or an autoincrement value may be more
appropriate for values in a column, see “Choosing between sequences and autoincrement values”
[SQL Anywhere Server - SQL Usage].

○ IDENTITY clause The IDENTITY default is a Transact-SQL-compatible alternative to using the
AUTOINCREMENT default. In SQL Anywhere, a column defined as IDENTITY is implemented as
AUTOINCREMENT. See “The special IDENTITY column” [SQL Anywhere Server - SQL Usage].

○ GLOBAL AUTOINCREMENT clause This default is intended for use when multiple databases are
used in a MobiLink synchronization environment or SQL Remote replication.

This option is similar to AUTOINCREMENT, except that the domain is partitioned. Each partition
contains the same number of values. You assign each copy of the database a unique global database
identification number. SQL Anywhere supplies default values in a database only from the partition
uniquely identified by that database's number.

The partition size can be specified in parentheses immediately following the AUTOINCREMENT
keyword. The partition size can be any positive integer, although the partition size is generally chosen
so that the supply of numbers within any one partition will rarely, if ever, be exhausted.

If the column is of type BIGINT or UNSIGNED BIGINT, the default partition size is 232 =
4294967296; for columns of all other types, the default partition size is 216 = 65536. Since these
defaults may be inappropriate, especially if your column is not of type INT or BIGINT, it is best to
specify the partition size explicitly.

When using this default, the value of the public option global_database_id in each database must be
set to a unique, non-negative integer. This value uniquely identifies the database and indicates from

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 601

which partition default values are to be assigned. The range of allowed values is np + 1 to p(n + 1),
where n is the value of the public option global_database_id and p is the partition size. For example, if
you define the partition size to be 1000 and set global_database_id to 3, then the range is from 3001 to
4000.

If the previous value is less than p(n + 1), the next default value is one greater than the previous
largest value in the column. If the column contains no values, the first default value is np + 1. Default
column values are not affected by values in the column outside the current partition; that is, by
numbers less than np + 1 or greater than p(n + 1). Such values may be present if they have been
replicated from another database via MobiLink or SQL Remote.

You can find the most recently inserted value of the column by inspecting the @@identity global variable.

GLOBAL AUTOINCREMENT values are maintained as signed 64-bit integers, corresponding to the
data type of the max_identity column in the SYSTABCOL system view. When the supply of values
within the partition has been exhausted, NULL is returned. If the column has been declared to not
allow NULLs, as is true for primary key columns, a SQL error is generated. In this case, a new value
of global_database_id should be assigned to the database to allow default values to be chosen from
another partition. To detect that the supply of unused values is low and handle this condition, create an
event of type GlobalAutoincrement. See “Understanding events” [SQL Anywhere Server - Database
Administration].

Because the public option global_database_id cannot be set to a negative value, the values chosen are
always positive. The maximum identification number is restricted only by the column data type and
the partition size.

If the public option global_database_id is set to the default value of 2147483647, a NULL value is
inserted into the column. If NULL values are not permitted, attempting to insert the row causes an error.

The next value to use for a column can be reset using the sa_reset_identity procedure. See
“sa_reset_identity system procedure” on page 1053.

For information about determining whether a sequence or an autoincrement value may be more
appropriate for values in a column, see “Choosing between sequences and autoincrement values”
[SQL Anywhere Server - SQL Usage].

TIMESTAMP clause Provides a way of indicating when each row in the table was last modified.
When a column is declared with DEFAULT TIMESTAMP, a default value is provided for inserts, and the
value is updated with the current date and time whenever the row is updated.

To provide a default value on insert, but not update the column whenever the row is updated, use
DEFAULT CURRENT TIMESTAMP instead of DEFAULT TIMESTAMP.

For more information about TIMESTAMP columns, see “The special Transact-SQL timestamp column
and data type” [SQL Anywhere Server - SQL Usage].

Columns declared with DEFAULT TIMESTAMP contain unique values, so that applications can detect
near-simultaneous updates to the same row. If the current TIMESTAMP value is the same as the last
value, it is incremented by the value of the default_timestamp_increment option. See
“truncate_timestamp_values option” [SQL Anywhere Server - Database Administration].

SQL statements

602 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

You can automatically truncate timestamp values in SQL Anywhere based on the
default_timestamp_increment option. This is useful for maintaining compatibility with other database
software that records less precise timestamp values. See “default_timestamp_increment option” [SQL
Anywhere Server - Database Administration].

The global variable @@dbts returns a TIMESTAMP value representing the last value generated for a
column using DEFAULT TIMESTAMP. See “Global variables” on page 70.

UTC TIMESTAMP clause The behavior of UTC TIMESTAMP is the same as TIMESTAMP except
that a UTC TIMESTAMP value is in Coordinated Universal (UTC) time.

string See “Strings” on page 5.

global-variable See “Global variables” on page 70.

column-constraint and table-constraint clauses Column and table constraints help ensure the
integrity of data in the database. If a statement would cause a violation of a constraint, execution of the
statement does not complete, any changes made by the statement before error detection are undone, and
an error is reported. There are two classes of constraints that can be created: check constraint, and
referential integrity (RI) constraints. Check constraints are used to specify conditions that must be
satisfied by values of columns being put into the database. RI constraints establish a relationship between
data in different tables that must be maintained in addition to specifying uniqueness requirements for data.

There are three types of RI constraints: primary key, foreign key, and unique constraint. When you create
an RI constraint (primary key, foreign key or unique constraint), the database server enforces the
constraint by implicitly creating an index on the columns that make up the key of the constraint. The
index is created on the key for the constraint as specified. A key consists of an ordered list of columns and
a sequencing of values (ASC/DESC) for each column.

Constraints can be specified on columns or tables. Generally speaking, a column constraint is one that
refers to one column in a table, while a table constraint can refer to one or more columns in a table.

○ PRIMARY KEY constraint clause A primary key uniquely defines each row in the table. Primary
keys comprise one or more columns. A table cannot have more than one primary key. In a column-
constraint clause, specifying PRIMARY KEY indicates that the column is the primary key for the
table. In a table-constraint, you use the PRIMARY KEY clause to specify one or more columns that,
when combined in the specified order, make up the primary key for the table.

The ordering of columns in a primary key need not match the respective ordinal numbers of the
columns. That is, the columns in a primary key need not have the same physical order in the row.
Additionally, you cannot specify duplicate column names.

When you create a primary key, an index for the key is automatically created. You can specify the
sequencing of values in the index by specifying ASC (ascending) or DESC (descending) for each
column. You can also specify whether to cluster the index, using the CLUSTERED keyword. For
more information about the CLUSTERED option and clustered indexes, see “Using clustered
indexes” [SQL Anywhere Server - SQL Usage].

Columns included in primary keys cannot allow NULL. Each row in the table has a unique primary
key value.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 603

It is recommended that you do not use approximate data types such as FLOAT and DOUBLE for
primary keys. Approximate numeric data types are subject to rounding errors after arithmetic operations.

○ Foreign key A foreign key restricts the values for a set of columns to match the values in a
primary key or a unique constraint of another table (the primary table). For example, a foreign key
constraint could be used to ensure that a customer number in an invoice table corresponds to a
customer number in the Customers table.

For information about how the database server can select columns automatically for the foreign key,
see “Omitting column names at foreign key creation (SQL)” [SQL Anywhere Server - SQL Usage].

The foreign key column order does not need to reflect the order of columns in the table.

Duplicate column names are not allowed in the foreign key specification.

The default action is RESTRICT if no action is specified for an UPDATE or DELETE operation.

When you create a foreign key, an index for the key is automatically created. You can specify the
sequencing of values in the index by specifying ASC (ascending) or DESC (descending) for each
column. You can also specify whether to cluster the index, using the CLUSTERED keyword. For
more information about the CLUSTERED option and clustered indexes, see “Using clustered
indexes” [SQL Anywhere Server - SQL Usage].

A global temporary table cannot have a foreign key that references a base table and a base table
cannot have a foreign key that references a global temporary table.

● NOT NULL clause Disallow NULLs in the foreign key columns. A NULL in a foreign key
means that no row in the primary table corresponds to this row in the foreign table.

● role-name clause The role name is the name of the foreign key. The main function of the role
name is to distinguish between two foreign keys to the same table. If no role name is specified, the
role name is assigned as follows:

1. If there is no foreign key with a role name the same as the table name, the table name is
assigned as the role name.

2. If the table name is already taken, the role name is the table name concatenated with a zero-
padded three-digit number unique to the table.

● REFERENCES clause A foreign key constraint can be implemented using a REFERENCES
column constraint (single column only) or a FOREIGN KEY table constraint, in which case the
constraint can specify one or more columns. If you specify column-name in a REFERENCES
column constraint, it must be a column in the primary table, must be subject to a unique constraint
or primary key constraint, and that constraint must consist of only that one column. If you do not
specify column-name, the foreign key column references the single primary key column of the
primary table.

● MATCH clause The MATCH clause allows you to control what is considered a match when
using a multi-column foreign key. It also allows you to specify uniqueness for the key, thereby
eliminating the need to declare uniqueness separately.

SQL statements

604 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The following is a list of MATCH types you can specify. See the Examples section at the end of
this topic for a description of how the MATCH type affects matching behavior.

○ MATCH [UNIQUE] SIMPLE A match occurs for a row in the referencing table if at least
one column in the key is NULL, or all the column values match the corresponding column
values present in a row of the referenced table.

MATCH SIMPLE is the default behavior.

If the UNIQUE keyword is specified, the referencing table can have only one match for non-
NULL key values.

Keys with at least one non-NULL column value are implicitly unique.

○ MATCH [UNIQUE] FULL A match occurs for a row in the referencing table if all column
values in the key are NULL, or if none of the values is NULL and the values match the
corresponding column values in a row of the referenced table.

If the UNIQUE keyword is specified, the referencing table can have only one match for non-
NULL key values.

Keys with at least one non-NULL column value are implicitly unique.

○ UNIQUE clause In a column-constraint clause, a UNIQUE constraint specifies that the values in
the column must be unique. In a table-constraint clause, the UNIQUE constraint identifies one or
more columns that uniquely identify each row in the table. No two rows in the table can have the same
values in all the named column(s). A table can have more than one UNIQUE constraint.

A UNIQUE constraint is not the same as a unique index. Columns of a unique index are allowed to be
NULL, while columns in a UNIQUE constraint are not. Also, a foreign key can reference either a
primary key or a UNIQUE constraint, but cannot reference a unique index since a unique index can
include multiple instances of NULL.

Columns in a UNIQUE constraint can be specified in any order. Additionally, you can specify the
sequencing of values in the corresponding index that is automatically created, by specifying ASC
(ascending) or DESC (descending) for each column. You cannot specify duplicate column names,
however.

It is recommended that you do not use approximate data types such as FLOAT and DOUBLE for
columns with unique constraints. Approximate numeric data types are subject to rounding errors after
arithmetic operations.

You can also specify whether to cluster the constraint, using the CLUSTERED keyword. For more
information about the CLUSTERED option, see “Using clustered indexes” [SQL Anywhere Server -
SQL Usage].

For information about unique indexes, see “CREATE INDEX statement” on page 521.

○ CHECK clause This constraint allows arbitrary conditions to be verified. For example, a CHECK
constraint could be used to ensure that a column called Sex only contains the values M or F.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 605

No row in a table is allowed to violate a CHECK constraint. If an INSERT or UPDATE statement
would cause a row to violate the constraint, the operation is not permitted and the effects of the
statement are undone. The change is rejected only if a CHECK constraint condition evaluates to
FALSE, and the change is allowed if a CHECK constraint condition evaluates to TRUE or UNKNOWN.

For more information about TRUE, FALSE, and UNKNOWN conditions, see “NULL
value” on page 74, and “Search conditions” on page 32.

○ COMPUTE clause The COMPUTE clause is only for use in a column-constraint clause. When a
column is created using a COMPUTE clause, its value in any row is the value of the supplied
expression. Columns created with this constraint are read-only columns for applications: the value is
changed by the database server whenever the row is modified. The COMPUTE expression should not
return a non-deterministic value. For example, it should not include a special value such as
CURRENT TIMESTAMP, or a non-deterministic function. If a COMPUTE expression returns a non-
deterministic value, then it cannot be used to match an expression in a query. See “Working with
computed columns” [SQL Anywhere Server - SQL Usage].

The COMPUTE clause is ignored for remote tables.

Any UPDATE statement that attempts to change the value of a computed column fires any triggers
associated with the column.

CHECK ON COMMIT clause The CHECK ON COMMIT option overrides the wait_for_commit
database option, and causes the database server to wait for a COMMIT before checking RESTRICT
actions on a foreign key. The CHECK ON COMMIT option delays foreign key checking, but does not
delay other actions such as CASCADE, SET NULL, SET DEFAULT, or check constraints.

FOR OLAP WORKLOAD clause When you specify FOR OLAP WORKLOAD in the
REFERENCES clause of a foreign key definition, the database server performs certain optimizations and
gathers statistics on the key to help improve performance for OLAP workloads, particularly when the
optimization_workload option is set to OLAP. See “optimization_workload option” [SQL Anywhere
Server - Database Administration].

For more information, see “OLAP support” [SQL Anywhere Server - SQL Usage].

PCTFREE clause Specifies the percentage of free space you want to reserve for each table page. The
free space is used if rows increase in size when the data is updated. If there is no free space in a table
page, every increase in the size of a row on that page requires the row to be split across multiple table
pages, causing row fragmentation and possible performance degradation.

The value percent-free-space is an integer between 0 and 100. The former value specifies that no free
space is to be left on each page—each page is to be fully packed. A high value causes each row to be
inserted into a page by itself. If PCTFREE is not set, or is later dropped, the default PCTFREE value is
applied according to the database page size (200 bytes for a 4 KB (and up) page size). The value for
PCTFREE is stored in the ISYSTAB system table.

Remarks
The CREATE TABLE statement creates a new table. A table can be created for another user by
specifying an owner name. If GLOBAL TEMPORARY is specified, the table is a temporary table.
Otherwise, the table is a base table.

SQL statements

606 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Tables created by preceding the table name in a CREATE TABLE statement with a pound sign (#) are
declared temporary tables, which are available only in the current connection. Temporary tables created
with the pound sign (#) are identical to those created with the ON COMMIT PRESERVE ROWS clause.
See “DECLARE LOCAL TEMPORARY TABLE statement” on page 633.

Two local temporary tables within the same scope cannot have the same name. If you create a temporary
table with the same name as a base table, the base table only becomes visible within the connection once
the scope of the local temporary table ends. A connection cannot create a base table with the same name
as an existing temporary table.

Columns in SQL Anywhere allow NULLs by default. This setting can be controlled using the
allow_nulls_by_default database option. See “allow_nulls_by_default option” [SQL Anywhere Server -
Database Administration].

Permissions
DBA or RESOURCE authority

Side effects
Automatic commit.

See also
● “CREATE LOCAL TEMPORARY TABLE statement” on page 525
● “ALTER TABLE statement” on page 426
● “CREATE DBSPACE statement” on page 484
● “CREATE EXISTING TABLE statement” on page 501
● “DECLARE LOCAL TEMPORARY TABLE statement” on page 633
● “DROP TABLE statement” on page 670
● “Special values” on page 58
● “SQL data types” on page 79
● “Create tables” [SQL Anywhere Server - SQL Usage]
● “allow_nulls_by_default option” [SQL Anywhere Server - Database Administration]
● “Working with temporary tables” [SQL Anywhere Server - SQL Usage]

Standards and compatibility

● SQL/2008 CREATE TABLE is a core feature of the SQL/2008 standard, though some of its
components supported in SQL Anywhere are optional SQL language features. A subset of these
features include:

○ Temporary table support is SQL language feature F531.

○ Support for IDENTITY columns is SQL feature T174, though SQL Anywhere uses slightly
different syntax from that in the standard.

○ Foreign key constraint support includes SQL language features T191 "Referential action:
RESTRICT", F741 "Referential MATCH types", F191 "Referential delete actions", and F701
"Referential update actions". Note that SQL Anywhere does not support MATCH PARTIAL.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 607

SQL Anywhere does not support SQL language feature T591 ("UNIQUE constraints of possibly
null columns"). In SQL Anywhere, all columns that are part of a PRIMARY KEY or UNIQUE
constraint must be declared NOT NULL.

The following components of CREATE TABLE are vendor extensions:

○ The { IN | ON } dbspace-name clause.

○ The ENCRYPTED, NOT TRANSACTIONAL, and SHARE BY ALL clauses.

○ The COMPRESSED, INLINE, PREFIX, and NO INDEX clauses of a column definition.

○ Various implementation-defined DEFAULT values, including AUTOINCREMENT, GLOBAL
AUTOINCREMENT, CURRENT DATABASE, CURRENT REMOTE USER, CURRENT UTC
TIMESTAMP, and most special values. A DEFAULT clause that references a SEQUENCE
generator is also a vendor extension.

○ The specification of MATCH UNIQUE.

○ Sortedness specification (ASC or DESC) on a PRIMARY KEY or FOREIGN KEY clause.

○ The ability to specify FOREIGN KEY columns in an order different from that specified in the
referenced table's PRIMARY KEY clause.

Examples
The following example creates a table for a library database to hold book information.

CREATE TABLE library_books (
 -- NOT NULL is assumed for primary key columns
 isbn CHAR(20) PRIMARY KEY,
 copyright_date DATE,
 title CHAR(100),
 author CHAR(50),
 -- column(s) corresponding to primary key of room
 -- are created automatically
 FOREIGN KEY location REFERENCES room
);

The following example creates a table for a library database to hold information on borrowed books. The
default value for date_borrowed indicates that the book is borrowed on the day the entry is made. The
date_returned column is NULL until the book is returned.

CREATE TABLE borrowed_book (
 date_borrowed DATE NOT NULL DEFAULT CURRENT DATE,
 date_returned DATE,
 book CHAR(20)
 REFERENCES library_books (isbn),
 -- The check condition is UNKNOWN until
 -- the book is returned, which is allowed
CHECK(date_returned >= date_borrowed)
);

The following example creates tables for a sales database to hold order and order item information.

CREATE TABLE Orders (
 order_num INTEGER NOT NULL PRIMARY KEY,

SQL statements

608 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 date_ordered DATE,
 name CHAR(80)
);
CREATE TABLE Order_item (
 order_num INTEGER NOT NULL,
 item_num SMALLINT NOT NULL,
 PRIMARY KEY (order_num, item_num),
 -- When an order is deleted, delete all of its
 -- items.
 FOREIGN KEY (order_num)
 REFERENCES Orders (order_num)
 ON DELETE CASCADE
);

The following example creates a table named t1 at a fictitious remote server, SERVER_A, and creates a
proxy table named t1 that is mapped to the remote table.

CREATE TABLE t1
(a INT,
 b CHAR(10))
AT 'SERVER_A.db1.joe.t1';

The following example creates two tables named Table1 and Table2, adds foreign keys to Table2, and
inserts values into Table1. The final statement attempts to insert values into Table2. An error is returned
because the values that you attempt to insert are not a simple match with Table1.

CREATE TABLE Table1 (P1 INT, P2 INT, P3 INT, P4 INT, P5 INT, P6 INT, PRIMARY
KEY (P1, P2));
CREATE TABLE Table2 (F1 INT, F2 INT, F3 INT, PRIMARY KEY (F1, F2));
ALTER TABLE Table2
 ADD FOREIGN KEY fk2(F1,F2)
 REFERENCES Table1(P1, P2)
 MATCH SIMPLE;
INSERT INTO Table1 (P1, P2, P3, P4, P5, P6) VALUES (1,2,3,4,5,6);
INSERT INTO Table2 (F1,F2) VALUES (3,4);

The following statements show how MATCH SIMPLE and MATCH SIMPLE UNIQUE differ in how multi-
column foreign keys are handled when some, but not all, of the columns in the key are NULL:

CREATE TABLE pt(pk INT PRIMARY KEY, str VARCHAR(10));
INSERT INTO pt VALUES(1,'one'), (2,'two');
COMMIT;
CREATE TABLE ft1(fpk INT PRIMARY KEY, FOREIGN KEY (ref) REFERENCES pt MATCH
SIMPLE);
INSERT INTO ft1 VALUES(100,1), (200,1); //This statement will insert 2 rows.
CREATE TABLE ft2(fpk INT PRIMARY KEY, FOREIGN KEY (ref) REFERENCES pt MATCH
UNIQUE SIMPLE);
INSERT INTO ft2 VALUES(100,1), (200,1); //This statement will fail because
the values for the second column are not unique.

The following statements show how MATCH SIMPLE and MATCH UNIQUE SIMPLE differ:

CREATE TABLE pt2(
 pk1 INT NOT NULL,
 pk2 INT NOT NULL,
 str VARCHAR(10),
 PRIMARY KEY (pk1,pk2));
INSERT INTO pt2 VALUES(1,10,'one-ten'), (2,20,'two-twenty');

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 609

COMMIT;
CREATE TABLE ft3(
 fpk INT PRIMARY KEY,
 ref1 INT,
 ref2 INT);
ALTER TABLE ft3 ADD FOREIGN KEY (ref1,ref2)
 REFERENCES pt2 (pk1,pk2) MATCH SIMPLE;

CREATE TABLE ft4(
 fpk INT PRIMARY KEY,
 ref1 INT,
 ref2 INT);
ALTER TABLE ft4 add FOREIGN KEY (ref1,ref2)
 REFERENCES pt2 (pk1,pk2) MATCH FULL;
INSERT INTO ft3 VALUES(100,1,10);
// MATCH SIMPLE test succeeds; all column values match the corresponding
values in pt2.
INSERT INTO ft3 VALUES(200,null,null);
// MATCH SIMPLE test succeeds; at least one column in the key is null.
INSERT INTO ft3 VALUES(300,2,null);
// MATCH SIMPLE test succeeds; at least one column in the key is null.
INSERT INTO ft4 VALUES(100,1,10);
// MATCH FULL test succeeds; all column values match the corresponding values
in pt2.
INSERT INTO ft4 VALUES(200,null,null);
// MATCH FULL test succeeds; all column values in the key are null.
INSERT INTO ft4 VALUES(300,2,null);
// MATCH FULL test fails; both columns in the key must be null or match the
corresponding values in pt2.

CREATE TEXT CONFIGURATION statement
Creates a text configuration object for use with building and updating text indexes.

Syntax
CREATE TEXT CONFIGURATION [owner.]new-config-name
 FROM [owner.]existing-config-name

Parameters
FROM clause Specify the name of a text configuration object to use as the template for creating the
new one. The names of the default text configuration objects are default_char and default_nchar. See
“Default text configuration objects” [SQL Anywhere Server - SQL Usage].

When you create a text configuration object, the database options that affect how date and time values are
converted to strings are copied from the default_char and default_nchar text configuration object
templates. See “Text configuration objects and database options” [SQL Anywhere Server - SQL Usage].

SQL statements

610 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
You create a text configuration object using another text configuration object as a template and then alter
the options as needed using the ALTER TEXT CONFIGURATION statement.

To view the list of all text configuration objects in the database, and their settings, query the
SYSTEXTCONFIG system view. See “SYSTEXTCONFIG system view” on page 1179.

Permissions
Must have DBA or RESOURCE authority.

All text configuration objects have PUBLIC access. Any user with permission to create a text index can
use any text configuration object.

Side effects
Automatic commit

See also
● “Full text search” [SQL Anywhere Server - SQL Usage]
● “Text configuration object settings” [SQL Anywhere Server - SQL Usage]
● “Tutorial: Performing a full text search on a GENERIC text index” [SQL Anywhere Server - SQL

Usage]
● “Tutorial: Performing a fuzzy full text search” [SQL Anywhere Server - SQL Usage]
● “ALTER TEXT CONFIGURATION statement” on page 435
● “DROP TEXT CONFIGURATION statement” on page 671
● “sa_refresh_text_indexes system procedure” on page 1049

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following CREATE TEXT CONFIGURATION statement creates a text configuration object,
max_term_sixteen, using the default_char text configuration object. The subsequent ALTER TEXT
CONFIGURATION statement changes the maximum term length for max_term_sixteen to 16.

CREATE TEXT CONFIGURATION max_term_sixteen FROM default_char;
ALTER TEXT CONFIGURATION max_term_sixteen
 MAXIMUM TERM LENGTH 16;

CREATE TEXT INDEX statement
Creates a text index.

Syntax
CREATE TEXT INDEX [IF NOT EXISTS] text-index-name
ON [owner.]table-name(column-name, ...)
 [IN dbspace-name]
 [CONFIGURATION [owner.]text-configuration-name]

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 611

 [{ IMMEDIATE REFRESH
 | MANUAL REFRESH
 | AUTO REFRESH [EVERY integer { MINUTES | HOURS }]]
 }

Parameters
IF NOT EXISTS clause When the IF NOT EXISTS clause is specified and the named text index
already exists, no changes are made and an error is not returned.

ON clause Use this clause to specify the table and columns on which to build the text index.

IN clause Use this clause to specify the dbspace in which the text index is located. If this clause is not
specified, then the text index is created in the same dbspace as the table it references.

CONFIGURATION clause Use this clause to specify the text configuration object to use when
creating the text index. If this clause is not specified, the default_nchar text configuration object is used if
any of the columns in the index are NCHAR; otherwise, the default_char text configuration object is used.

REFRESH clause Use this clause to specify the refresh type for the text index. If you do not specify a
REFRESH clause, IMMEDIATE REFRESH is used as the default. Following are the list of refresh types
you can specify:

○ IMMEDIATE REFRESH Specify IMMEDIATE REFRESH to refresh the text index each time
changes in the underlying table impact data in the text index.

○ AUTO REFRESH Use this clause to refresh the materialized view automatically using an internal
server event. Use the EVERY subclause to specify the refresh interval in minutes or hours. If you
specify AUTO REFRESH without supplying interval information, the database server refreshes the
text index every 60 minutes. A text index may be refreshed earlier than specified by the AUTO
REFRESH clause if the pending_size value, as returned by the sa_text_index_stats system procedure,
exceeds 20% of the text index size at the last refresh or if the deleted_length exceeds 50% of the text
index size. An internal event executes once per minute to check this condition for all AUTO
REFRESH text indexes.

○ MANUAL REFRESH Use this clause to specify that the text index is refreshed manually.

For more information about refresh types, see “Text index refresh types” [SQL Anywhere Server - SQL
Usage].

Remarks
You cannot create a text index on views, materialized views, or temporary tables.

An IMMEDIATE REFRESH text index is populated at creation time and an exclusive lock is held on the
table during this initial refresh. IMMEDIATE REFRESH text indexes provide full support for queries that
use snapshot isolation.

MANUAL and AUTO REFRESH text indexes must be initialized (refreshed) after creation.

Refreshes for AUTO REFRESH text indexes scan the table using isolation level 0. See “isolation_level
option” [SQL Anywhere Server - Database Administration].

SQL statements

612 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Once a text index is created, you cannot change it to, or from, being defined as IMMEDIATE REFRESH.
If either of these changes is required, you must drop and recreate the text index.

You can choose to manually refresh an AUTO REFRESH text index using the REFRESH TEXT INDEX
statement. See “REFRESH TEXT INDEX statement” on page 801.

To view text indexes and the text configuration objects they refer to, see “How to view text index info in
the database” [SQL Anywhere Server - SQL Usage].

Permissions
Must be the owner of the underlying table, or have DBA authority, or have REFERENCES permission.

This statement cannot be executed when there are cursors opened with the WITH HOLD clause that use
either statement or transaction snapshots. See “Snapshot isolation” [SQL Anywhere Server - SQL Usage].

Side effects
Automatic commit

See also
● “Tutorial: Performing a full text search on a GENERIC text index” [SQL Anywhere Server - SQL

Usage]
● “Tutorial: Performing a fuzzy full text search” [SQL Anywhere Server - SQL Usage]
● “How to manage text indexes” [SQL Anywhere Server - SQL Usage]
● “SYSTEXTCONFIG system view” on page 1179
● “CREATE TEXT INDEX statement” on page 611
● “ALTER TEXT INDEX statement” on page 439
● “DROP TEXT INDEX statement” on page 672
● “REFRESH TEXT INDEX statement” on page 801
● “TRUNCATE TEXT INDEX statement” on page 882
● “sa_char_terms system procedure” on page 954
● “sa_nchar_terms system procedure” on page 1037
● “sa_refresh_text_indexes system procedure” on page 1049
● “sa_text_index_stats system procedure” on page 1089

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example creates a text index, myTxtIdx, on the Description column of the
MarketingInformation table in the sample database. The MarketingTextConfig text configuration object is
used, and the refresh interval is set to every 24 hours.

CREATE TEXT INDEX myTxtIdx ON MarketingInformation (Description)
 CONFIGURATION default_char
 AUTO REFRESH EVERY 24 HOURS;

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 613

CREATE TRIGGER statement
Creates a trigger on a table.

Syntax
CREATE [OR REPLACE] TRIGGER trigger-name trigger-type
{ trigger-event-list | UPDATE OF column-list }
[ORDER integer] ON table-name
[REFERENCING [OLD AS old-name]
 [NEW AS new-name]
 [REMOTE AS remote-name]]
[FOR EACH { ROW | STATEMENT }]
[WHEN (search-condition)]
trigger-body

column-list : column-name[, ...]

trigger-type :
BEFORE
| AFTER
| INSTEAD OF
| RESOLVE

trigger-event-list : trigger-event[, ...]

trigger-event :
DELETE
| INSERT
| UPDATE

trigger-body : a BEGIN statement. See “BEGIN statement” on page 454.

Parameters
OR REPLACE clause Specifying OR REPLACE (CREATE OR REPLACE TRIGGER) creates a
new trigger, or replaces an existing trigger with the same name.

trigger-event Triggers can be fired by the following events. You can define either multiple triggers for
DELETE, INSERT, or UPDATE events, or one trigger for an UPDATE OF column-list event:

○ DELETE clause Invoked whenever a row of the associated table is deleted.

○ INSERT clause Invoked whenever a new row is inserted into the table associated with the trigger.

○ UPDATE clause Invoked whenever a row of the associated table is updated.

○ UPDATE OF column-list clause Invoked whenever a row of the associated table is updated and a
column in the column-list is modified. This type of trigger event cannot be used in a trigger-event-list;
it must be the only trigger event defined for the trigger. This clause cannot be used in an INSTEAD
OF trigger.

You can write separate triggers for each event that you need to handle or, if you have some shared
actions and some actions that depend on the event, you can create a trigger for all events and use an IF

SQL statements

614 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

statement to distinguish the action taking place. For more information about trigger operations, see
“Trigger operation conditions” on page 55.

trigger-type Row-level triggers can be defined to execute BEFORE, AFTER, or INSTEAD OF an
insert, update, or delete operation. Statement-level triggers can be defined to execute INSTEAD OF or
AFTER the statement.

BEFORE UPDATE triggers fire any time an UPDATE occurs on a row, whether the new value differs
from the old value. That is, if a column-list is specified for a BEFORE UPDATE trigger, the trigger fires
if any of the columns in column-list appear in the SET clause of the UPDATE statement. If a column-list
is specified for an AFTER UPDATE trigger, the trigger is fired only if the value of any of the columns in
column-list is changed by the UPDATE statement.

INSTEAD OF triggers are the only form of trigger that you can define on a regular view. INSTEAD OF
triggers replace the triggering action with another action. When an INSTEAD OF trigger fires, the
triggering action is skipped and the specified action is performed. INSTEAD OF triggers can be defined
at a row-level or a statement-level. A statement-level INSTEAD OF trigger replaces the entire statement,
including all row-level operations. If a statement-level INSTEAD OF trigger fires, no row-level triggers
fire as a result of that statement. However, the body of the statement-level trigger could perform other
operations that, in turn, cause other row-level triggers to fire.

If you are defining an INSTEAD OF trigger, you cannot use the UPDATE OF column-list clause, the
ORDER clause, or the WHEN clause.

For more information about the capabilities of, and restrictions for, INSTEAD OF triggers, see
“INSTEAD OF triggers” [SQL Anywhere Server - SQL Usage].

The RESOLVE trigger type is for use with SQL Remote: it fires before row-level UPDATE or UPDATE
OF column-list only.

FOR EACH clause To declare a trigger as a row-level trigger, use the FOR EACH ROW clause. To
declare a trigger as a statement-level trigger, you can either use a FOR EACH STATEMENT clause or
omit the FOR EACH clause. For clarity, it is recommended that you specify the FOR EACH
STATEMENT clause if you are declaring a statement-level trigger.

ORDER clause When defining additional triggers of the same type (insert, update, or delete) to fire at
the same time (before, after, or resolve), you must specify an ORDER clause to tell the database server
the order in which to fire the triggers. Order numbers must be unique among same-type triggers
configured to fire at the same time. If you specify an order number that is not unique, an error is returned.
Order numbers do not need to be in consecutive order (for example, you could specify 1, 12, 30). The
database server fires the triggers starting with the lowest number.

If you omit the ORDER clause, or specify 0, the database server assigns the order of 1. However, if
another same-type trigger is already set to 1, an error is returned.

When adding additional triggers, you may need to modify the existing same-type triggers for the event,
depending on whether the actions of the triggers interact. If they do not interact, the new trigger must have
an ORDER value higher than the existing triggers. If they do interact, you need to consider what the other
triggers do, and you may need to change the order in which they fire.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 615

The ORDER clause is not supported for INSTEAD OF triggers since there can only be one INSTEAD OF
trigger of each type (insert, update, or delete) defined on a table or view.

REFERENCING clause The REFERENCING OLD and REFERENCING NEW clauses allow you to
refer to the inserted, deleted, or updated rows. With this clause an UPDATE is treated as a delete followed
by an insert.

An INSERT takes the REFERENCING NEW clause, which represents the inserted row. There is no
REFERENCING OLD clause.

A DELETE takes the REFERENCING OLD clause, which represents the deleted row. There is no
REFERENCING NEW clause.

An UPDATE takes the REFERENCING OLD clause, which represents the row before the update, and it
takes the REFERENCING NEW clause, which represents the row after the update.

The meaning of REFERENCING OLD and REFERENCING NEW differs, depending on whether the
trigger is a row-level or a statement-level trigger. For row-level triggers, the REFERENCING OLD clause
allows you to refer to the values in a row before an update or delete, and the REFERENCING NEW
clause allows you to refer to the inserted or updated values. The OLD and NEW rows can be referenced in
BEFORE and AFTER triggers. The REFERENCING NEW clause allows you to modify the new row in a
BEFORE trigger before the insert or update operation takes place.

For statement-level triggers, the REFERENCING OLD and REFERENCING NEW clauses refer to
declared temporary tables holding the old and new values of the rows.

The REFERENCING REMOTE clause is for use with SQL Remote. It allows you to refer to the values in
the VERIFY clause of an UPDATE statement. It should be used only with RESOLVE UPDATE or
RESOLVE UPDATE OF column-list triggers.

WHEN clause The trigger fires only for rows where the search-condition evaluates to true. The
WHEN clause can be used only with row level triggers. This clause cannot be used in an INSTEAD OF
trigger.

trigger-body The trigger body contains the actions to take when the triggering action occurs, and
consists of a BEGIN statement. See “BEGIN statement” on page 454.

You can include trigger operation conditions in the BEGIN statement. Trigger operation conditions carry
out actions depending on the trigger event that caused the trigger to fire. For example, if the trigger is
defined to fire for both updates and deletes, you can specify different actions for the two conditions. For
more information about trigger operation conditions, including an example, see “Trigger operation
conditions” on page 55.

Remarks
The CREATE TRIGGER statement creates a trigger associated with a table in the database, and stores the
trigger in the database.

You cannot define a trigger on a materialized view. If you do, a
SQLE_INVALID_TRIGGER_MATVIEW error is returned.

SQL statements

616 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The trigger is declared as either a row-level trigger, in which case it executes before or after each row is
modified, or as a statement-level trigger, in which case it executes after the entire triggering statement is
completed.

Permissions
Must have RESOURCE authority and have ALTER permissions on the table, or must be the owner of the
table or have DBA authority. CREATE TRIGGER puts a table lock on the table, and requires exclusive
use of the table.

Side effects
Automatic commit.

See also
● “BEGIN statement” on page 454
● “CREATE PROCEDURE statement” on page 552
● “CREATE PROCEDURE statement (web clients)” on page 543
● “CREATE TRIGGER statement [T-SQL]” on page 619
● “DROP TRIGGER statement” on page 673
● “Using procedures, triggers, and batches” [SQL Anywhere Server - SQL Usage]
● “UPDATE statement” on page 895

Standards and compatibility
● SQL/2008 CREATE TRIGGER is part of optional SQL language feature T211 "Basic trigger

capability" of the SQL/2008 standard. Row triggers are optional SQL language feature T212, while
INSTEAD OF triggers are optional SQL language feature T213.

Some features of SQL Anywhere triggers are vendor extensions. These include:

○ The optional OR REPLACE syntax. If an existing trigger is replaced, authorization of the creation
of the new trigger instance is bypassed.

○ The ORDER clause. In SQL/2008, triggers are fired in the order they were created.

○ RESOLVE triggers are a vendor extension.

● Transact-SQL ROW and RESOLVE triggers are not supported by Adaptive Server Enterprise.
SQL Anywhere's Transact-SQL dialect does not support Transact-SQL INSTEAD OF triggers,
though these are supported by Adaptive Server Enterprise. Transact-SQL triggers are defined using
different syntax: see “CREATE TRIGGER statement [T-SQL]” on page 619.

Example
This example creates a statement-level trigger. You must first create a table:

CREATE TABLE t0
(id integer NOT NULL,
 times timestamp NULL DEFAULT current timestamp,
 remarks text NULL,
 PRIMARY KEY (id)
);

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 617

Next, create a statement-level trigger for this table:

CREATE TRIGGER myTrig AFTER INSERT ORDER 4 ON t0
REFERENCING NEW AS new_name
FOR EACH STATEMENT
BEGIN
 DECLARE @id1 INTEGER;
 DECLARE @times1 TIMESTAMP;
 DECLARE @remarks1 LONG VARCHAR;
 DECLARE @err_notfound EXCEPTION FOR SQLSTATE VALUE '02000';
//declare a cursor for table new_name
 DECLARE new1 CURSOR FOR
 SELECT id, times, remarks FROM new_name;
 OPEN new1;
 //Open the cursor, and get the value
 LoopGetRow:
 LOOP
 FETCH NEXT new1 INTO @id1, @times1,@remarks1;
 IF SQLSTATE = @err_notfound THEN
 LEAVE LoopGetRow
 END IF;
 //print the value or for other use
 PRINT (@remarks1);
 END LOOP LoopGetRow;
 CLOSE new1
END;

The following example replaces the myTrig trigger created in the previous example.

CREATE OR REPLACE TRIGGER myTrig AFTER INSERT ORDER 4 ON t0
REFERENCING NEW AS new_name
FOR EACH STATEMENT
BEGIN
FOR L1 AS new1 CURSOR FOR
 SELECT id, times, remarks FROM new_name;
DO
 //print the value or for other use
 PRINT (@remarks1);
END FOR;
END;

The next example shows how you can use REFERENCING NEW in a BEFORE UPDATE trigger. This
example ensures that postal codes in the new Employees table are in uppercase:

CREATE TRIGGER emp_upper_postal_code
BEFORE UPDATE OF PostalCode
ON Employees
REFERENCING NEW AS new_emp
FOR EACH ROW
WHEN (ISNUMERIC(new_emp.PostalCode) = 0)
BEGIN
 -- Ensure postal code is uppercase (employee might be
 -- in Canada where postal codes contain letters)
 SET new_emp.PostalCode = UPPER(new_emp.PostalCode)
END;
UPDATE Employees SET state='ON', PostalCode='n2x 4y7' WHERE EmployeeID=191;
SELECT PostalCode FROM Employees WHERE EmployeeID = 191;

The next example shows how you can use REFERENCING OLD in a BEFORE DELETE trigger. This
example prevents deleting an employee from the Employees table who has not been terminated.

SQL statements

618 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

CREATE TRIGGER TR_check_delete_employee
BEFORE DELETE
ON Employees
REFERENCING OLD AS current_employees
FOR EACH ROW /* WHEN(search_condition) */
BEGIN
 IF current_employees.TerminationDate IS NULL THEN
 RAISERROR 30001 'You cannot delete an employee who has not been fired';
 END IF;
END;

The next example shows how you can use REFERENCING NEW and REFERENCING OLD in a
BEFORE UPDATE trigger. This example prevents a decrease in an employee's salary.

CREATE TRIGGER TR_check_salary_decrease
 BEFORE UPDATE
 ON Employees
 REFERENCING OLD AS before_update
 NEW AS after_update
FOR EACH ROW
BEGIN
 IF after_update.salary < before_update.salary THEN
 RAISERROR 30002 'You cannot decrease a salary';
 END IF;
END;

The next example shows how you can use REFERENCING NEW and REFERENCING OLD in a
BEFORE UPDATE trigger. This example also disallows decreasing an employee's salary, but this trigger
is more efficient because it fires only when the salary column is updated.

CREATE TRIGGER TR_check_salary_decrease_column
 BEFORE UPDATE OF Salary
 ON Employees
 REFERENCING OLD AS before_update
 NEW AS after_update
FOR EACH ROW /* WHEN(search_condition) */
BEGIN
 IF after_update.salary < before_update.salary THEN
 RAISERROR 30002 'You cannot decrease a salary';
End IF;
END;

The next example shows how you can use REFERENCING NEW and in a BEFORE INSERT and
UPDATE trigger. The following example creates a trigger that will fire before a row in the
SalesOrderItems table is inserted or updated.

CREATE TRIGGER TR_update_date
 BEFORE INSERT, UPDATE
 ON SalesOrderItems
 REFERENCING NEW AS new_row
FOR EACH ROW
BEGIN
 SET new_row.ShipDate = CURRENT TIMESTAMP;
END;

CREATE TRIGGER statement [T-SQL]
Creates a new trigger in the database in a manner compatible with Adaptive Server Enterprise.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 619

Syntax 1
CREATE TRIGGER [owner.]trigger_name
ON [owner.]table_name
FOR { INSERT, UPDATE, DELETE }
AS statement-list

Syntax 2
CREATE TRIGGER [owner.]trigger_name
ON [owner.]table_name
FOR {INSERT, UPDATE}
AS
[IF UPDATE (column-name)
[{ AND | OR } UPDATE (column-name)] ...]
 statement-list
[IF UPDATE (column-name)
[{ AND | OR} UPDATE (column-name)] ...]
 statement-list

Remarks
CREATE TRIGGER acquires an exclusive table lock on the table.

The rows deleted or inserted are held in two temporary tables. In the Transact-SQL form of triggers, they
can be accessed using the table names "deleted", and "inserted", as in Adaptive Server Enterprise. In the
Watcom SQL CREATE TRIGGER statement, these rows are referenced using the REFERENCING clause.

Trigger names must be unique in the database.

Transact-SQL triggers are executed AFTER the triggering statement has executed.

Since the ORDER clause is not supported when creating Transact-SQL triggers, the value of trigger_order
is set to 1. The SYSTRIGGER system table has a unique index on: table_id, event, trigger_time, and
trigger_order. For a particular event (insert, update, delete), statement-level triggers are always AFTER
and trigger_order cannot be set, so there can be only one of each type per table, assuming any other
triggers do not set an order other than 1. See “Transact-SQL trigger overview” [SQL Anywhere Server -
SQL Usage].

Permissions
DBA authority, or RESOURCE authority and ALTER permissions on the table.

Side effects
Automatic commit.

See also
● “CREATE TRIGGER statement” on page 614

Standards and compatibility
● SQL/2008 Vendor extension.

SQL statements

620 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● Transact-SQL ROW triggers are not supported by Adaptive Server Enterprise. SQL Anywhere's
Transact-SQL dialect does not support Transact-SQL INSTEAD OF triggers, though these are
supported by Adaptive Server Enterprise.

CREATE USER statement
Creates a database user or group.

Syntax
CREATE USER user-name [IDENTIFIED BY password]
 [LOGIN POLICY policy-name]
 [FORCE PASSWORD CHANGE { ON | OFF }]

Parameters
user-name The name of the user you are creating.

IDENTIFIED BY clause The password of the user you are creating. A user without a password cannot
connect to the database.

policy-name The name of the login policy to assign the user. If no login policy is specified, the
DEFAULT login policy is applied.

FORCE PASSWORD CHANGE clause Controls whether the user must specify a new password
when they log in. This setting overrides the password_expiry_on_next_login option setting in their policy.

Remarks
You do not have to specify a password for the user. A user without a password cannot connect to the
database. This is useful if you are creating a group and do not want anyone to connect to the database
using the group user ID. A user ID must be a valid identifier.

User IDs and passwords cannot:

● begin with white space, single quotes, or double quotes
● end with white space
● contain semicolons

A password can be either a valid identifier, or a string (maximum 255 bytes) placed in single quotes.
Passwords are case sensitive. It is recommended that the password be composed of 7-bit ASCII
characters, as other characters may not work correctly if the database server cannot convert them from the
client's character set to UTF-8.

Permissions
DBA authority

Side effects
None.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 621

See also
● “CREATE LOGIN POLICY statement” on page 526
● “ALTER LOGIN POLICY statement” on page 400
● “ALTER USER statement” on page 441
● “COMMENT statement” on page 468
● “DROP LOGIN POLICY statement” on page 656
● “DROP USER statement” on page 674
● “Managing login policies” [SQL Anywhere Server - Database Administration]
● “Creating a user and assigning a login policy” [SQL Anywhere Server - Database Administration]
● “GRANT statement” on page 718
● “min_password_length option” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example creates a user named SQLTester with the password welcome. The SQLTester user
is assigned to the Test1 login policy and the password expires on the next login.

CREATE USER SQLTester IDENTIFIED BY welcome
LOGIN POLICY Test1
FORCE PASSWORD CHANGE ON;

The following example creates a group named MyGroup

CREATE USER MyGroup;
GRANT GROUP TO MyGroup;

CREATE VARIABLE statement
Creates a SQL variable.

Syntax
CREATE [OR REPLACE] VARIABLE identifier data-type [{ = | DEFAULT } initial-value]

initial-value :
special-value
| string
| [-] number
| (constant-expression)
| built-in-function (constant-expression)
| NULL

special-value :
CURRENT {
DATABASE
 | DATE
 | PUBLISHER
 | TIME
 | TIMESTAMP

SQL statements

622 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 | USER
 | UTC TIMESTAMP }
| USER

Remarks
The CREATE VARIABLE statement creates a new variable of the specified data type. If you specify initial-
value, the variable is set to that value. If you do not specify an initial-value, the variable contains the
NULL value until a different value is assigned by the SET statement.

Specifying the OR REPLACE clause drops the named variable if it already exists and replaces its
definition. You can use the OR REPLACE clause as an alternative to the VAREXISTS function in SQL
scripts. See “VAREXISTS function [Miscellaneous]” on page 365.

A variable can be used in a SQL expression anywhere a column name is allowed. Name resolution is
performed as follows:

1. Match any aliases specified in the query's SELECT list.

2. Match column names for any referenced tables.

3. Assume the name is a variable.

Variables belong to the current connection, and persist until you disconnect from the database or when
you use the DROP VARIABLE statement. Variables are not visible to other connections. Variables are
not affected by COMMIT or ROLLBACK statements.

Variables are useful for creating large text or binary objects for INSERT or UPDATE statements from
embedded SQL programs.

Local variables in procedures and triggers are declared within a compound statement. See “Using
compound statements” [SQL Anywhere Server - SQL Usage].

If you specify initial-value, the data type must match the type defined by data-type.

Permissions
None.

Side effects
None.

See also
● “BEGIN statement” on page 454
● “SQL data types” on page 79
● “DROP VARIABLE statement” on page 675
● “SET statement” on page 849
● “VAREXISTS function [Miscellaneous]” on page 365
● “Special values” on page 58

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 623

Standards and compatibility
● SQL/2008 Vendor extension.

Example
This example creates a variable named first_name, of data type VARCHAR(50).

CREATE VARIABLE first_name VARCHAR(50);

This example creates a variable named 'birthday', of data type DATE.

CREATE VARIABLE birthday DATE;

This example creates a variable named v1 as an INT with the initial setting of 5.

CREATE VARIABLE v1 INT = 5;

This example creates a variable named v1 and sets its value to 10, regardless of whether or not the v1
variable already exists.

CREATE OR REPLACE VARIABLE v1 INT = 10;

CREATE VIEW statement
Creates a view on the database.

Syntax
CREATE [OR REPLACE] VIEW
[owner.]view-name [(column-name, ...)]
AS select-statement
[WITH CHECK OPTION]

Parameters
OR REPLACE clause Specifying OR REPLACE (CREATE OR REPLACE VIEW) creates a new
view, or replaces an existing view with the same name. Existing permissions are preserved when you use
the OR REPLACE clause, but INSTEAD OF triggers on the view are dropped.

AS clause The SELECT statement on which the view is based. The SELECT statement must not refer
to local temporary tables. Also, the SELECT statement can have a GROUP BY, HAVING, WINDOW, or
ORDER BY clause, and can contain UNION, EXCEPT, or INTERSECT or a common table expression.
However, you can affect the results of a view definition by using a SELECT with an ORDER BY clause
in combination with the FIRST or TOP clauses.

WITH CHECK OPTION clause The WITH CHECK OPTION clause rejects any updates and inserts to
the view that do not meet the criteria of the view as defined by its SELECT statement.

Remarks
Views are used to give a different perspective on the data, even though it is not stored that way. The
CREATE VIEW statement creates a view with the given name. You can create a view owned by another
user by specifying the owner. You must have DBA authority to create a view for another user.

SQL statements

624 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

A view name can be used in place of a table name in SELECT, DELETE, UPDATE, and INSERT
statements. Views, however, do not physically exist in the database as tables. They are derived each time
they are used. The view is derived as the result of the SELECT statement specified in the CREATE
VIEW statement. Table names used in a view should be qualified by the user ID of the table owner.
Otherwise, a different user ID might not be able to find the table or might get the wrong table.

Views can be updated unless the SELECT statement defining the view contains a GROUP BY clause, a
WINDOW clause, an aggregate function, or involves a set operator (UNION, INTERSECT, EXCEPT).
An update to the view causes the underlying table(s) to be updated.

The columns in the view are given the names specified in the column-name list. If the column name list is
not specified, the view columns are given names from the select list items. All items in the select list must
have unique names. To use the names from the select list items, each item must be a simple column name
or have an alias-name specified. See “SELECT statement” on page 825.

Typically, a view references tables and views (and their respective attributes) that are defined in the
catalog. However, a view can also reference SQL variables. In this case, when a query that references the
view is executed, the value of the SQL variable is used. Views that reference SQL variables are called
parameterized views since the variables act as parameters to the execution of the view.

Parameterized views offer an alternative to embedding the body of an equivalent SELECT block in a
query as a derived table in the query's FROM clause. Parameterized views can be especially useful for
queries embedded in stored procedures where the SQL variables referenced in the view are input
parameters to the procedure.

It is not necessary for the SQL variable to exist when the CREATE VIEW statement is executed.
However, if the SQL variable is not defined when a query that refers to the view is executed, an error is
returned indicating that the column could be found.

Permissions
Must have RESOURCE authority and SELECT permission on the tables in the view definition.

Side effects
Automatic commit.

See also
● “CREATE VIEW statement” on page 624
● “CREATE TABLE statement” on page 596
● “CREATE MATERIALIZED VIEW statement” on page 529
● “INSTEAD OF triggers” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 CREATE VIEW is a core feature of the SQL/2008 standard, but some features of a

view's embedded SELECT statement are optional language features. The ability to specify an ORDER
BY clause with the top-level SELECT statement in the view definition is optional SQL/2008 language
feature F852. The ability to restrict the result set of a view using SELECT TOP or LIMIT is optional
SQL/2008 language feature F859 (though the SQL/2008 standard uses the FETCH clause for this
purpose). Specifying WITH CHECK OPTION on a view that is not simply updatable - for example,

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 625

the view's SELECT statement contains a derived table involving aggregation or DISTINCT, or a set
operator (INTERSECT, EXCEPT or UNION) - is optional SQL/2008 language feature T111.

Some features of CREATE VIEW are vendor extensions. Parameterized views are a vendor extension,
as is the optional OR REPLACE syntax.

Example
The following example creates a view showing information for male employees only. This view has the
same column names as the base table.

CREATE VIEW MaleEmployees
AS SELECT *
FROM Employees
WHERE Sex = 'M';

The following example creates a view showing employees and the departments they belong to.

CREATE VIEW EmployeesAndDepartments
 AS SELECT Surname, GivenName, DepartmentName
 FROM Employees JOIN Departments
 ON Employees.DepartmentID = Departments.DepartmentID;

The following example replaces the EmployeesAndDepartments view created in the previous example.
After replacing the view, the view shows the city, state, and country location for each employee:

CREATE OR REPLACE VIEW EmployeesAndDepartments
 AS SELECT Surname, GivenName, City, State, Country
 FROM Employees JOIN Departments
 ON Employees.DepartmentID = Departments.DepartmentID;

The following example creates a parameterized view based on the variables var1 and var2, which are
neither attributes of the Employees nor Departments tables:

CREATE VIEW EmployeesByState
 AS SELECT Surname, GivenName, DepartmentName
 FROM Employees JOIN Departments
 ON Employees.DepartmentID = Departments.DepartmentID
 WHERE Employees.State = var1 and Employees.Status = var2;

Variables can appear in the view's SELECT statement in any context where a variable is a permitted
expression. For example, the following parameterized view utilizes the parameter var1 as the pattern for a
LIKE predicate:

CREATE VIEW ProductsByDescription
 AS SELECT *
 FROM Products
 WHERE Products.Description LIKE var1;

To use this view, the variable var1 must be defined before the query referencing the view is executed. For
example, the following could be placed in a procedure, function, or a batch statement:

BEGIN
DECLARE var1 CHAR(20);
SET var1 = '%cap%';
SELECT * FROM ProductsByDescription
END

SQL statements

626 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

DEALLOCATE DESCRIPTOR statement [ESQL]
Frees memory associated with a SQL descriptor area.

Syntax
DEALLOCATE DESCRIPTOR descriptor-name

descriptor-name : identifier

Remarks
Frees all memory associated with a descriptor area, including the data items, indicator variables, and the
structure itself.

Permissions
None.

Side effects
None.

See also
● “ALLOCATE DESCRIPTOR statement [ESQL]” on page 384
● “The SQL descriptor area (SQLDA)” [SQL Anywhere Server - Programming]
● “SET DESCRIPTOR statement [ESQL]” on page 836

Standards and compatibility
● SQL/2008 DEALLOCATE DESCRIPTOR is part of optional SQL/2008 language feature B031,

"Basic dynamic SQL".

Example
For an example, see “ALLOCATE DESCRIPTOR statement [ESQL]” on page 384.

DEALLOCATE statement
This statement has no effect in SQL Anywhere, and is ignored. It is provided for compatibility with
Adaptive Server Enterprise and Microsoft SQL Server. Refer to your Adaptive Server Enterprise or
Microsoft SQL Server documentation for more information about this statement.

Standards and compatibility
● SQL/2008 Vendor extension.

Declaration section [ESQL]

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 627

Declares host variables in an embedded SQL program. Host variables are used to exchange data with the
database.

Syntax
EXEC SQL BEGIN DECLARE SECTION;
C declarations
EXEC SQL END DECLARE SECTION;

Remarks
A declaration section is simply a section of C variable declarations surrounded by the BEGIN DECLARE
SECTION and END DECLARE SECTION statements. A declaration section makes the SQL
preprocessor aware of C variables that are used as host variables. Not all C declarations are valid inside a
declaration section. See “Using host variables” [SQL Anywhere Server - Programming].

Permissions
None.

See also
● “BEGIN statement” on page 454

Standards and compatibility
● SQL/2008 Core feature.

Example
EXEC SQL BEGIN DECLARE SECTION;
char *surname, initials[5];
int dept;
EXEC SQL END DECLARE SECTION;

DECLARE CURSOR statement [ESQL] [SP]
Declares a cursor.

Syntax 1 [ESQL]
DECLARE cursor-name
[UNIQUE]
[NO SCROLL
 | DYNAMIC SCROLL
 | SCROLL
 | INSENSITIVE
 | SENSITIVE
]
CURSOR FOR
{ select-statement
| statement-name
| call-statement }

SQL statements

628 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax 2 [SP]
DECLARE cursor-name
[NO SCROLL
 | DYNAMIC SCROLL
 | SCROLL
 | INSENSITIVE
 | SENSITIVE
]
CURSOR
{ FOR select-statement
| FOR call-statement
| USING variable-name }

cursor-name : identifier

statement-name : identifier | hostvar

variable-name : identifier

Parameters
UNIQUE clause When a cursor is declared UNIQUE, the query is forced to return all the columns
required to uniquely identify each row. Often this means ensuring that all columns in the primary key or a
uniqueness table constraint are returned. Any columns that are required but were not specified in the
query are added to the result set.

A DESCRIBE done on a UNIQUE cursor sets the following additional options in the indicator variables:

○ DT_KEY_COLUMN The column is part of the key for the row.

○ DT_HIDDEN_COLUMN The column was added to the query because it was required to uniquely
identify the rows.

NO SCROLL clause A cursor declared NO SCROLL is restricted to moving forward through the
result set using FETCH NEXT and FETCH RELATIVE 0 seek operations.

As rows cannot be returned to once the cursor leaves the row, there are no sensitivity restrictions on the
cursor. When a NO SCROLL cursor is requested, SQL Anywhere supplies the most efficient kind of
cursor, which is an asensitive cursor. See “Asensitive cursors” [SQL Anywhere Server - Programming].

DYNAMIC SCROLL clause DYNAMIC SCROLL is the default cursor type. DYNAMIC SCROLL
cursors can use all formats of the FETCH statement.

When a DYNAMIC SCROLL cursor is requested, SQL Anywhere supplies an asensitive cursor. When
using cursors there is always a trade-off between efficiency and consistency. Asensitive cursors provide
efficient performance at the expense of consistency. See “Asensitive cursors” [SQL Anywhere Server -
Programming].

SCROLL clause A cursor declared SCROLL can use all formats of the FETCH statement. When a
SCROLL cursor is requested, SQL Anywhere supplies a value-sensitive cursor. With a value-sensitive
cursor, a subsequent FETCH of a previously-FETCHed result row may return a warning or an error if the
underlying row has been modified or deleted. See “Value-sensitive cursors” [SQL Anywhere Server -
Programming].

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 629

SQL Anywhere must execute value-sensitive cursors in such a way that result set membership is
guaranteed. DYNAMIC SCROLL cursors are more efficient and should be used unless the consistent
behavior of SCROLL cursors is required.

INSENSITIVE clause A cursor declared INSENSITIVE has its membership fixed when it is opened; a
temporary table is created with a copy of all the original rows. FETCHING from an INSENSITIVE cursor
does not see the effect of any other INSERT, UPDATE, or DELETE statement from concurrently-
executing transactions, or any other update operations from within the same transaction. INSENSITIVE
cursors are not updatable. See “Insensitive cursors” [SQL Anywhere Server - Programming].

SENSITIVE clause A cursor declared SENSITIVE is sensitive to changes to membership or values of
the result set. See “Sensitive cursors” [SQL Anywhere Server - Programming].

FOR statement-name Statements are named using the PREPARE statement. Cursors can be declared
only for a prepared SELECT or CALL. The cursor updatability specified in the PREPARE statement is
used for the cursor, unless the SQL preprocessor -m HISTORICAL option is specified. See “SQL
preprocessor” [SQL Anywhere Server - Programming].

USING variable-name For use within stored procedures only. The variable is a string containing a
SELECT statement for the cursor. The variable must be available when the DECLARE is processed, and
so must be one of the following:

A parameter to the procedure. For example,

CREATE FUNCTION GetRowCount(IN qry LONG VARCHAR)
RETURNS INT
BEGIN
 DECLARE crsr CURSOR USING qry;
 DECLARE rowcnt INT;
 SET rowcnt = 0;
 OPEN crsr;
 lp: LOOP
 FETCH crsr;
 IF SQLCODE <> 0 THEN LEAVE lp END IF;
 SET rowcnt = rowcnt + 1;
 END LOOP;
 CLOSE crsr;
 RETURN rowcnt;
END;

Nested inside another BEGIN ... END after the variable has been assigned a value. For example,

CREATE PROCEDURE get_table_name(
 IN id_value INT, OUT tabname CHAR(128)
)
BEGIN
 DECLARE qry LONG VARCHAR;
 SET qry = 'SELECT table_name FROM SYS.SYSTAB ' ||
 'WHERE table_id=' || string(id_value);
 BEGIN
 DECLARE crsr CURSOR USING qry;
 OPEN crsr;
 FETCH crsr INTO tabname;
 CLOSE crsr;
 END
END;

SQL statements

630 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
Cursors are the primary means for manipulating the results of queries. The DECLARE CURSOR
statement declares a cursor with the specified name for a SELECT statement or a CALL statement. In a
Watcom SQL procedure, trigger, or batch, a DECLARE CURSOR statement must appear with other
declarations, immediately following the BEGIN keyword. Cursor names must be unique.

If a cursor is declared inside a compound statement, it exists only for the duration of that compound
statement (whether it is declared in a Watcom SQL or Transact-SQL compound statement).

Permissions
None.

Side effects
None.

See also
● “PREPARE statement [ESQL]” on page 788
● “OPEN statement [ESQL] [SP]” on page 777
● “EXPLAIN statement [ESQL]” on page 686
● “SELECT statement” on page 825
● “CALL statement” on page 460
● “FOR statement” on page 691

Standards and compatibility
● SQL/2008 DECLARE CURSOR is a core feature of the SQL/2008 standard. The ability to specify

FOR UPDATE with SCROLL or NO SCROLL is optional SQL language feature F831, "Full cursor
update". Using DECLARE CURSOR in an embedded SQL program constitutes optional SQL
language feature B031. Some cursor types are also optional SQL features. These include:

○ INSENSITIVE cursors are optional SQL language feature F791 of the SQL/2008 standard.

○ SENSITIVE cursors are optional SQL language feature F231 of the SQL/2008 standard.

○ Scrollable cursors are optional SQL language feature F431 of the SQL/2008 standard.

SQL Anywhere supports a number of vendor extensions to DECLARE CURSOR, including:

○ SQL Anywhere supports several extensions to the FOR UPDATE clause, which SQL/2008
defines as a clause of the DECLARE CURSOR statement. See “FOR UPDATE or FOR READ
ONLY clause, SELECT statement” on page 830.

○ WITH HOLD is specified as a clause of the OPEN statement, rather than as a clause of the
DECLARE CURSOR statement as defined in SQL/2008. See “OPEN statement [ESQL]
[SP]” on page 777.

○ The SQL/2008 standard separates the notions of cursor sensitivity and scrollability, while for
historical reasons SQL Anywhere combines the two. In SQL Anywhere, all cursors are forward-and-
backward scrollable except for those declared as NO SCROLL.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 631

○ DYNAMIC SCROLL and UNIQUE are vendor extensions. DYNAMIC SCROLL has similar
behavior to cursors declared as ASENSITIVE in the SQL/2008 standard.

○ The ability to declare a cursor over a CALL statement, or with a USING clause, is a vendor extension.

● Transact-SQL DECLARE CURSOR is supported by Adaptive Server Enterprise, but there are
several behavioral differences. Adaptive Server Enterprise differentiates, as in SQL/2008, between
scrollability and sensitivity; in Adaptive Server Enterprise, cursor sensitivity options are SEMI-
SENSITIVE, INSENSITIVE, or default (akin to ASENSITIVE). In Adaptive Server Enterprise, NO
SCROLL cursors are the default, and all scrollable cursors are read-only. Several features of the
DECLARE CURSOR statement are not supported by Adaptive Server Enterprise. These include:

○ Adaptive Server Enterprise does not support the SQL Anywhere cursor concurrency clause. See
“FOR UPDATE or FOR READ ONLY clause, SELECT statement” on page 830.

To acquire a lock on a fetched row, you must use the HOLDLOCK table hint. See “WITH table-
hint clause, FROM clause” on page 702.

○ Adaptive Server Enterprise does not support DYNAMIC SCROLL or UNIQUE cursors.
DYNAMIC SCROLL is similar to Adaptive Server Enterprise default cursor behavior.

○ The ability to declare a cursor over a CALL statement, or with a USING clause, is not supported
by Adaptive Server Enterprise.

In Adaptive Server Enterprise, Transact-SQL procedures and functions can contain multiple
DECLARE CURSOR statements that use the same cursor name. In Adaptive Server Enterprise, the
DEALLOCATE CURSOR statement is used to eliminate a cursor from the current scope, so that a
subsequent OPEN statement can reference the correct, previously-declared cursor. This feature is not
supported in SQL Anywhere. In SQL Anywhere, all cursors in a given scope must have unique
names. If a Transact-SQL dialect procedure contains multiple cursor declarations with the same name,
the procedure parses without error. However, at execution time, if a second DECLARE CURSOR
statement with the same cursor name is executed, an error occurs.

You should be aware that the TDS wire protocol for Open Client and jConnect connections does not
implement true scrollable result sets. When scrolling backward through a cursor, the FETCH request
may be satisfied immediately if the desired row is within a window of prefetched rows that have
already been retrieved by the TDS client. If the desired row is beyond this window, however, the
cursor's SELECT statement may be re-executed.

Example
The following example illustrates how to declare a scroll cursor in embedded SQL:

EXEC SQL DECLARE cur_employee SCROLL CURSOR
FOR SELECT * FROM Employees;

The following example illustrates how to declare a cursor for a prepared statement in embedded SQL:

EXEC SQL PREPARE employee_statement
FROM 'SELECT Surname FROM Employees'FOR READ ONLY;
EXEC SQL DECLARE cur_employee CURSOR
FOR employee_statement;

SQL statements

632 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The following example illustrates the use of cursors in a stored procedure:

BEGIN
 DECLARE cur_employee CURSOR FOR
 SELECT Surname
 FROM Employees;
 DECLARE name CHAR(40);
 OPEN cur_employee;
 lp: LOOP
 FETCH NEXT cur_employee INTO name;
 IF SQLCODE <> 0 THEN LEAVE lp END IF;
 ...
 END LOOP;
 CLOSE cur_employee;
END

DECLARE LOCAL TEMPORARY TABLE statement
Declares a local temporary table.

Syntax
DECLARE LOCAL TEMPORARY TABLE table-name
({ column-definition [column-constraint ...] | table-constraint | pctfree }, ...)
[ON COMMIT { DELETE | PRESERVE } ROWS
 | NOT TRANSACTIONAL]

pctfree : PCTFREE percent-free-space

percent-free-space : integer

Parameters
For definitions of column-definition, column-constraint, table-constraint, and pctfree, see “CREATE
TABLE statement” on page 596.

ON COMMIT clause By default, the rows of a temporary table are deleted on a COMMIT. You can
use the ON COMMIT clause to preserve rows on a COMMIT.

NOT TRANSACTIONAL clause A table created using this clause is not affected by either COMMIT
or ROLLBACK. The NOT TRANSACTIONAL clause provides performance improvements in some
circumstances because operations on non-transactional temporary tables do not cause entries to be made
in the rollback log. For example, NOT TRANSACTIONAL can be useful if procedures that use the
temporary table are called repeatedly with no intervening COMMITs or ROLLBACKs.

Remarks
You cannot use the REFERENCES column-constraint or the FOREIGN KEY table-constraint on a local
temporary table.

The DECLARE LOCAL TEMPORARY TABLE statement declares a temporary table.

Tables created using DECLARE LOCAL TEMPORARY TABLE do not appear in the SYSTABLE view
of the system catalog.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 633

The rows of a declared temporary table are deleted when the table is explicitly dropped or when the table
goes out of scope. You can also explicitly delete rows using TRUNCATE or DELETE.

Declared local temporary tables within compound statements exist within the compound statement.
Otherwise, the declared local temporary table exists until the end of the connection. See “Using
compound statements” [SQL Anywhere Server - SQL Usage].

Two local temporary tables within the same scope cannot have the same name. If you create temporary
table with the same name as a base table, the base table only becomes visible within the connection once
the scope of the local temporary table ends. A connection cannot create a base table with the same name
as an existing temporary table.

If you want a procedure to create a local temporary table that persists after the procedure completes, use
the CREATE LOCAL TEMPORARY TABLE statement instead. See “CREATE LOCAL TEMPORARY
TABLE statement” on page 525.

Permissions
None.

Side effects
None.

See also
● “CREATE TABLE statement” on page 596
● “CREATE LOCAL TEMPORARY TABLE statement” on page 525
● “Using compound statements” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 DECLARE LOCAL TEMPORARY TABLE is part of optional language feature F531

of the SQL/2008 standard. The PCTFREE and NOT TRANSACTIONAL clauses are vendor
extensions. The column and constraint definitions defined by the statement may also include vendor
extension syntax. In SQL/2008, the standard stipulates that tables created via the DECLARE LOCAL
TEMPORARY TABLE statement appear in the system catalog; this is not the case with SQL Anywhere.

● Transact-SQL DECLARE LOCAL TEMPORARY TABLE is not supported by Adaptive Server
Enterprise. In Sybase Adaptive Server Enterprise, one creates a temporary table using the CREATE
TABLE statement with a table name that begins with the special character '#'. See “CREATE TABLE
statement” on page 596.

Example
The following example illustrates how to declare a temporary table in a stored procedure:

BEGIN
 DECLARE LOCAL TEMPORARY TABLE TempTab (number INT);
 ...
END

SQL statements

634 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

DECLARE statement
Declares a SQL variable within a compound statement (BEGIN ... END).

Syntax

DECLARE variable-name [, ...] data-type
[{ = | DEFAULT } initial-value]

initial-value :
special-value
| string
| [-] number
| (constant-expression)
| built-in-function (constant-expression)
| NULL

special-value :
CURRENT {
DATABASE
| DATE
| PUBLISHER
| TIME
| TIMESTAMP
| USER
| UTC TIMESTAMP }
| USER

Remarks
Variables used in the body of a procedure, trigger, or batch can be declared using the DECLARE
statement. The variable persists for the duration of the compound statement in which it is declared. If you
specify initial-value, the variable is set to that value. If you do not specify an initial-value, the variable
contains the NULL value until a different value is assigned by the SET statement.

The body of a Watcom SQL procedure or trigger is a compound statement, and variables must be declared
with other declarations, such as a cursor declaration (DECLARE CURSOR), immediately following the
BEGIN keyword. In a Transact-SQL procedure or trigger, there is no such restriction.

If you specify initial-value, the data type must match the type defined by data-type.

See also
● “SQL data types” on page 79
● “DECLARE CURSOR statement [ESQL] [SP]” on page 628
● “Special values” on page 58

Standards and compatibility
● SQL/2008 Persistent Stored Module feature.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 635

Example
The following batch illustrates the use of the DECLARE statement and prints a message in the database
server messages window:

BEGIN
 DECLARE varname CHAR(61);
 SET varname = 'Test name';
 MESSAGE varname;
END

This example declares the following variables:

● v1 as an INT with the initial setting of 5.
● v2 and v3 as CHAR(10), both with an initial value of abc.

BEGIN
 DECLARE v1 INT = 5;
 DECLARE v2, v3 CHAR(10) = 'abc';
 // ...
END

DELETE (positioned) statement [ESQL] [SP]
Deletes the data at the current location of a cursor.

Syntax
DELETE [[FROM]table] WHERE CURRENT OF cursor-name

cursor-name : identifier | hostvar

table : [owner.]table-or-view [[AS] correlation-name]

owner : identifier

table-or-view : identifier

correlation-name : identifier

Remarks
This form of the DELETE statement deletes the current row of the specified cursor. The current row is
defined to be the last row fetched from the cursor.

The table from which rows are deleted is determined as follows:

● If no FROM clause is included, the cursor must be on a single table only.

● If the cursor is for a joined query (including using a view containing a join), then the FROM clause
must be used. Only the current row of the specified table is deleted. The other tables involved in the
join are not affected.

● If a FROM clause is included, table must unambiguously identify an updatable table in the cursor. If
acorrelation-name is specified, the server attempts to match that correlation name with a correlation

SQL statements

636 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

name specified in the underlying cursor. If a correlation name is not specified in the DELETE
statement, and a table owner is not specified, then the server attempts to match table-or-view with an
updatable table in the underlying cursor. table-or-view is first matched against any correlation names.

○ If a correlation name exists in the underlying cursor, table-or-view may be matched with the
corresponding correlation name.

○ If a correlation name does not exist, table-or-view must unambiguously match a table name in the
cursor.

● If a FROM clause is included, and a table owner is specified, table must unambiguously match an
updatable table in the underlying cursor.

● The positioned DELETE statement can be used on a cursor open on a view as long as the view is
updatable.

Permissions
Must have DELETE permission on tables used in the cursor.

Side effects
None.

See also
● “UPDATE statement” on page 895
● “UPDATE (positioned) statement [ESQL] [SP]” on page 890
● “INSERT statement” on page 737
● “PUT statement [ESQL]” on page 792

Standards and compatibility
● SQL/2008 The DELETE statement (positioned) is a core feature of the SQL/2008 standard. The

ability to use a positioned DELETE statement from within an embedded SQL program is part of
optional SQL language feature B031, "Basic dynamic SQL".

The FROM keyword is mandatory in SQL/2008, but optional in SQL Anywhere. The range of cursors
that can be updated may contain vendor extensions if the ansi_update_constraints option is set to Off.

Example
The following statement removes the current row in the cursor cur_employee from the database.

DELETE
WHERE CURRENT OF cur_employee;

DELETE statement

Deletes rows from the database.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 637

Syntax 1
DELETE [row-limitation]
[FROM] [owner.]table-or-view [[AS] correlation-name]
[WHERE search-condition]
[ORDER BY { expression | integer } [ASC | DESC], ...]
[OPTION(query-hint, ...)]

Syntax 2 - Transact-SQL
DELETE [row-limitation]
[FROM] [owner.]table-or-view [[AS] correlation-name]
[FROM table-expression]
[WHERE search-condition]
[ORDER BY { expression | integer } [ASC | DESC], ...]
[OPTION(query-hint, ...)]

table-or-view : identifier

row-limitation :
 FIRST | TOP n [START AT m] | TOP (n)

query-hint :
MATERIALIZED VIEW OPTIMIZATION option-value
| FORCE OPTIMIZATION
| FORCE NO OPTIMIZATION
| option-name = option-value

table-expression : A full table expression that can include joins. See “FROM
clause” on page 696.

option-name : identifier

option-value : hostvar (indicator allowed), string, identifier, or number

Parameters
row-limitation clause The row limiting clause allows you to return only a subset of the rows that
satisfy the WHERE clause. The TOP and START AT values can be a host variable, integer constant, or
integer variable. The TOP value must be greater than or equal to 0. The START AT value must be greater
than 0. Normally, when specifying these clauses, an ORDER BY clause is specified as well to order the
rows in a meaningful manner. See “Explicitly limiting the number of rows returned by a query” [SQL
Anywhere Server - SQL Usage].

FROM clause The FROM clause indicates the table from which rows will be deleted. In Syntax 2, the
second FROM clause in the DELETE statement determines the rows to be deleted from the specified table
based on joins with other tables. table-expression can contain arbitrarily complex table expressions,
including derived tables and KEY and NATURAL joins. For a full description of the FROM clause and
joins, see “FROM clause” on page 696.

The following examples illustrate how correlation names are matched when Syntax 2 is used. With this
statement:

SQL statements

638 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

DELETE
FROM table_1
FROM table_1 AS alias_1, table_2 AS alias_2
WHERE ...

table table_1 doesn't have a correlation name in the first FROM clause but does in the second FROM
clause. In this case, table_1 in the first clause is identified with alias_1 in the second clause—there is only
one instance of table_1 in this statement. This is allowed as an exception to the general rule that where a
table is identified with a correlation name and without a correlation name in the same statement, two
instances of the table are considered.

However, in the following example, there are two instances of table_1 in the second FROM clause. The
statement fails with a syntax error because it is not clear which instance of the table_1 from the second
FROM clause matches the first instance of table_1 in the first FROM clause.

DELETE
FROM table_1
FROM table_1 AS alias_1, table_1 AS alias_2
WHERE ...

WHERE clause The DELETE statement deletes all the rows that satisfy the conditions in the WHERE
clause. If no WHERE clause is specified, all rows from the named table are deleted. If a second FROM
clause is present, the WHERE clause qualifies the rows of the second FROM clause's table-expression.

ORDER BY clause Specifies the sort order for the rows to be deleted. Normally, the order in which
rows are updated does not matter. However, in conjunction with the FIRST or TOP clause the order can
be significant.

You cannot use ordinal column numbers in the ORDER BY clause.

Each item in the ORDER BY list can be labeled as ASC for ascending order (the default) or DESC for
descending order.

OPTION clause Use this clause to specify hints for executing the statement. The following hints are
supported:

○ MATERIALIZED VIEW OPTIMIZATION option-value
○ FORCE OPTIMIZATION
○ FORCE NO OPTIMIZATION
○ option-name = option-value. Note that a OPTION(isolation_level = ...) specification

in the query text overrides all other means of specifying isolation level for a query.

For a description of these options, see “OPTION clause, SELECT statement” on page 832.

Remarks
Deleting a significant amount of data using the DELETE statement causes an update to column statistics.

If you want to delete all of the rows of a table, consider using the more efficient TRUNCATE TABLE
statement.

DELETE operations can be performed on views if the query specification defining the view is updatable.
A view is updatable provided the SELECT statement defining the view has only one table in the FROM

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 639

clause and does not contain a DISTINCT clause, a GROUP BY clause, a WINDOW clause, an aggregate
function, or involve a set operator such as UNION or INTERSECT. For more information about
identifying views that are inherently non-updatable, see “Working with regular views” [SQL Anywhere
Server - SQL Usage].

Permissions
Must have DELETE permission on the table.

Side effects
None.

See also
● “TRUNCATE statement” on page 881
● “INSERT statement” on page 737
● “INPUT statement [Interactive SQL]” on page 731
● “FROM clause” on page 696
● “Locking during deletes” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 Syntax 1 is a core feature of the SQL/2008 standard, whereas Syntax 2 is a Transact-

SQL vendor extension. The following features of Syntax 1 are vendor extensions:

○ The optional FROM keyword.

○ The row-limitation clause and the ORDER BY clause.

○ The OPTION clause.

Example
Remove all data before 2000 from the FinancialData table.

DELETE
FROM FinancialData
WHERE Year < 2000;

Remove the first 10 orders from SalesOrderItems table where ship date is older than 2001-01-01 and their
region is Central.

DELETE TOP 10
FROM SalesOrderItems
FROM SalesOrders
WHERE SalesOrderItems.ID = SalesOrders.ID
 and ShipDate < '2001-01-01' and Region ='Central'
ORDER BY ShipDate ASC;

Remove department 600 from the database, executing the statement at isolation level 3.

DELETE FROM Departments
WHERE DepartmentID = 600
OPTION(isolation_level = 3);

SQL statements

640 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

DESCRIBE statement [ESQL]
Gets information about the host variables required to store data retrieved from the database, or host
variables required to pass data to the database.

Syntax
DESCRIBE
[USER TYPES]
[ALL | BIND VARIABLES FOR | INPUT | OUTPUT
| SELECT LIST FOR]
[LONG NAMES [long-name-spec] | WITH VARIABLE RESULT]
[FOR] { statement-name | CURSOR cursor-name }
INTO sqlda-name

long-name-spec :
OWNER.TABLE.COLUMN
| TABLE.COLUMN
| COLUMN

statement-name : identifier or hostvar

cursor-name : declared cursor

sqlda-name : identifier

Parameters
USER TYPES clause A DESCRIBE statement with the USER TYPES clause returns information
about domains of a column. Typically, such a DESCRIBE is done when a previous DESCRIBE returns an
indicator of DT_HAS_USERTYPE_INFO.

The information returned is the same as for a DESCRIBE without the USER TYPES keywords, except
that the sqlname field holds the name of the domain, instead of the name of the column.

If the DESCRIBE uses the LONG NAMES clause, the sqldata field holds this information.

ALL clause DESCRIBE ALL allows you to describe INPUT and OUTPUT with one request to the
database server. This has a performance benefit. The OUTPUT information is filled in the SQLDA first,
followed by the INPUT information. The sqld field contains the total number of INPUT and OUTPUT
variables. The DT_DESCRIBE_INPUT bit in the indicator variable is set for INPUT variables and clear
for OUTPUT variables.

INPUT clause A bind variable is a value supplied by the application when the database executes the
statements. Bind variables can be considered parameters to the statement. DESCRIBE INPUT fills in the
name fields in the SQLDA with the bind variable names. DESCRIBE INPUT also puts the number of
bind variables in the sqlda field of the SQLDA.

DESCRIBE uses the indicator variables in the SQLDA to provide additional information.
DT_PROCEDURE_IN and DT_PROCEDURE_OUT are bits that are set in the indicator variable when a
CALL statement is described. DT_PROCEDURE_IN indicates an IN or INOUT parameter and
DT_PROCEDURE_OUT indicates an INOUT or OUT parameter. Procedure RESULT columns will have

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 641

both bits clear. After a describe OUTPUT, these bits can be used to distinguish between statements that
have result sets (need to use OPEN, FETCH, RESUME, CLOSE) and statements that do not (need to use
EXECUTE). DESCRIBE INPUT only sets DT_PROCEDURE_IN and DT_PROCEDURE_OUT
appropriately when a bind variable is an argument to a CALL statement; bind variables within an
expression that is an argument in a CALL statement will not set the bits.

OUTPUT clause The DESCRIBE OUTPUT statement fills in the data type and length for each select
list item in the SQLDA. The name field is also filled in with a name for the select list item. If an alias is
specified for a select list item, the name will be that alias. Otherwise, the name is derived from the select
list item: if the item is a simple column name, it is used; otherwise, a substring of the expression is used.
DESCRIBE will also put the number of select list items in the sqld field of the SQLDA.

If the statement being described is a UNION of two or more SELECT statements, the column names
returned for DESCRIBE OUTPUT are the same column names which would be returned for the first
SELECT statement.

If you describe a CALL statement, the DESCRIBE OUTPUT statement fills in the data type, length, and
name in the SQLDA for each INOUT or OUT parameter in the procedure. DESCRIBE OUTPUT also
puts the number of INOUT or OUT parameters in the sqld field of the SQLDA.

If you describe a CALL statement with a result set, the DESCRIBE OUTPUT statement fills in the data
type, length, and name in the SQLDA for each RESULT column in the procedure definition. DESCRIBE
OUTPUT will also put the number of result columns in the sqld field of the SQLDA.

LONG NAMES clause The LONG NAMES clause is provided to retrieve column names for a
statement or cursor. Without this clause, there is a 29-character limit on the length of column names; with
the clause, names of an arbitrary length are supported.

If LONG NAMES is used, the long names are placed into the SQLDATA field of the SQLDA, as if you
were fetching from a cursor. None of the other fields (SQLLEN, SQLTYPE, and so on) are filled in. The
SQLDA must be set up like a FETCH SQLDA: it must contain one entry for each column, and the entry
must be a string type. If there is an indicator variable, truncation is indicated in the usual fashion.

The default specification for the long names is TABLE.COLUMN.

WITH VARIABLE RESULT clause This clause is used to describe procedures that can have more
than one result set, with different numbers or types of columns.

If WITH VARIABLE RESULT is used, the database server sets the SQLCOUNT value after the
DESCRIBE statement to one of the following values:

○ 0 The result set may change. The procedure call should be described again following each OPEN
statement.

○ 1 The result set is fixed. No re-describing is required.

For more information about the use of the SQLDA structure, see “The SQL descriptor area (SQLDA)”
[SQL Anywhere Server - Programming].

SQL statements

642 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
The DESCRIBE statement sets up the named SQLDA to describe either the OUTPUT (equivalently
SELECT LIST) or the INPUT (BIND VARIABLES) for the named statement.

In the INPUT case, DESCRIBE BIND VARIABLES does not set up the data types in the SQLDA: this
needs to be done by the application. The ALL keyword allows you to describe INPUT and OUTPUT in
one SQLDA.

If you specify a statement name, the statement must have been previously prepared using the PREPARE
statement with the same statement name and the SQLDA must have been previously allocated. See
“ALLOCATE DESCRIPTOR statement [ESQL]” on page 384.

If you specify a cursor name, the cursor must have been previously declared and opened. The default
action is to describe the OUTPUT. Only SELECT statements and CALL statements have OUTPUT. A
DESCRIBE OUTPUT on any other statement, or on a cursor that is not a dynamic cursor, indicates no
output by setting the sqld field of the SQLDA to zero.

In embedded SQL, NCHAR, NVARCHAR and LONG NVARCHAR are described as DT_FIXCHAR,
DT_VARCHAR, and DT_LONGVARCHAR, respectively, by default. If the db_change_nchar_charset
function has been called, these data types are described as DT_NFIXCHAR, DT_NVARCHAR and
DT_LONGNVARCHAR, respectively. See “db_change_nchar_charset function” [SQL Anywhere Server
- Programming].

For more information about how NCHAR data types are described, see the documentation for the data
type: “NCHAR data type” on page 82, “NVARCHAR data type” on page 83, and “LONG NVARCHAR
data type” on page 81.

Permissions
None.

Side effects
None.

See also
● “ALLOCATE DESCRIPTOR statement [ESQL]” on page 384
● “DECLARE CURSOR statement [ESQL] [SP]” on page 628
● “OPEN statement [ESQL] [SP]” on page 777
● “PREPARE statement [ESQL]” on page 788

Standards and compatibility
● SQL/2008 The DESCRIBE OUTPUT statement is optional SQL language feature B031, "Basic

dynamic SQL", of the SQL/2008 standard. The DESCRIBE INPUT statement is optional SQL
language feature B032, "Extended dynamic SQL". Many of the other clauses of the DESCRIBE
statement are vendor extensions. These include:

○ The USER TYPES, ALL, BIND VARIABLES FOR, LONG NAMES, and WITH VARIABLE
RESULT clauses.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 643

○ DESCRIBE uses the INTO clause to identify the sqlda; in the SQL/2008 standard, the USING
keyword is used instead.

○ In the SQL/2008 standard, the CURSOR clause ends with the keyword STRUCTURE.
STRUCTURE is not supported by SQL Anywhere.

Example
The following example shows how to use the DESCRIBE statement:

sqlda = alloc_sqlda(3);
EXEC SQL DESCRIBE OUTPUT
 FOR employee_statement
 INTO sqlda;
if(sqlda->sqld > sqlda->sqln) {
 actual_size = sqlda->sqld;
 free_sqlda(sqlda);
 sqlda = alloc_sqlda(actual_size);
 EXEC SQL DESCRIBE OUTPUT
 FOR employee_statement
 INTO sqlda;
}

DESCRIBE statement [Interactive SQL]

Returns information about a given database object.

Syntax 1 - Describing database objects
DESCRIBE [[INDEX FOR] TABLE | PROCEDURE] [owner.]object-name

 object-name: table, view, materialized view, procedure, or function

Syntax 2 - Describing the current connection
DESCRIBE CONNECTION

Parameters
INDEX FOR clause Indicates that you want to see the indexes for the specified object-name.

TABLE clause Indicates that object-name to be described is a table or a view.

PROCEDURE clause Indicates that object-name is a procedure or a function.

Remarks
Use DESCRIBE TABLE to list all the columns in the specified table or view. The DESCRIBE TABLE
statement returns one row per table column, containing:

● Column The name of the column.

● Type The type of data in the column.

SQL statements

644 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● Nullable Whether nulls are allowed (1=yes, 0=no).

● Primary Key Whether the column is in the primary key (1=yes, 0=no).

Use DESCRIBE INDEX FOR TABLE to list all the indexes for the specified table. The DESCRIBE
TABLE statement returns one row per index, containing:

● Index Name The name of the index.

● Columns The columns in the index.

● Unique Whether the index is unique (1=yes, 0=no).

● Type The type of index. Possible values are: Clustered, Statistic, Hashed, and Other.

Use DESCRIBE PROCEDURE to list all the parameters used by the specified procedure or function. The
DESCRIBE PROCEDURE statement returns one row for each parameter, containing:

● Parameter The name of the parameter.

● Type The data type of the parameter.

● In/Out Information about what is passed to, or returned from, the parameter. Possible values are:

○ In The parameter is passed to the procedure, but is not modified.

○ Out The procedure ignores the parameter's initial value and sets its value when the procedure
returns.

○ In/Out The parameter is passed to the procedure and the procedure sets the parameter's value
when the procedure returns.

○ Result The parameter returns a result set.

○ Return The parameter returns a declared return value.

If you do not specify either TABLE or PROCEDURE (for example, DESCRIBE object-name),
Interactive SQL assumes the object is a table. However, if no such table exists, Interactive SQL attempts
to describe the object as either a procedure or a function.

Use Syntax 2 to list information about the database or database server that Interactive SQL is connected
to. The following properties are returned:

● Database Product The name and version number of the database product Interactive SQL is
connected to (for example, SQL Anywhere 12.0.0.2413).

● Host Name The network name of the computer the database server is running on.

● Host TCP/IP Address The IP address of the computer the database server is running on.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 645

● Host Operating System The name and version number of the operating system used by the
computer the database server is running on.

● Server Name The name of the database server.

● Server TCP/IP Port The port number used by the database server for the current connection.

● Database Name The name of the database that Interactive SQL is connected to.

● Database Character Set The character set used for CHAR columns in the database.

● Connection String The connection string that was used to connect to the database or database
server. Three asterisks replace passwords.

Properties that do not apply to the current connection are omitted. For example, if you connect to a
database server using shared memory, then the TCP/IP port is omitted.

Permissions
None

Side effects
None

See also
● “Using Interactive SQL” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Examples
Describe the columns in the Departments table:

DESCRIBE TABLE Departments;

Here is an example of the result set for this statement:

Column Type Nullable Primary key

DepartmentID integer 0 1

DepartmentName char(40) 0 0

DepartmentHeadID integer 0 0

List the indexes for the Customers table:

DESCRIBE INDEX FOR TABLE Customers;

Here is an example of the results for this statement:

SQL statements

646 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Index Name Columns Unique Type

IX_customer_name Surname,GivenName 0 Clustered

DETACH TRACING statement
Ends a diagnostic tracing session.

Syntax
DETACH TRACING { WITH | WITHOUT } SAVE

Parameters
WITH SAVE clause Specify WITH SAVE to save data any unsaved diagnostic data in the diagnostic
tables.

WITHOUT SAVE clause Specify WITHOUT SAVE if you do not want to save any unsaved tracing data.

Remarks
Issue this statement from the database being profiled to stop sending diagnostic information to the
diagnostic tables. If you specify the WITHOUT SAVE clause, you can still save the data later—assuming
the tracing database is still running and another tracing session has not been started—by using the
sa_save_trace_data system procedure. See “sa_save_trace_data system procedure” on page 1056.

To see the current tracing levels set for a database, look in the sa_diagnostic_tracing_level table. See
“sa_diagnostic_tracing_level table” on page 935.

Note
Tracing information is not unloaded as part of a database unload or reload operation. If you want to
transfer tracing information from one database to another, you must do so manually by copying the
contents of the sa_diagnostic_* tables; however, this is not recommended.

Permissions
DBA authority

Side effects
None.

See also
● “ATTACH TRACING statement” on page 445
● “REFRESH TRACING LEVEL statement” on page 803
● “Advanced application profiling using diagnostic tracing” [SQL Anywhere Server - SQL Usage]
● “sa_diagnostic_tracing_level table” on page 935
● “sa_save_trace_data system procedure” on page 1056

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 647

Standards and compatibility
● SQL/2008 Vendor extension.

DISCONNECT statement [ESQL] [Interactive SQL]
Drops the current connection to a database.

Syntax
DISCONNECT [connection-name | CURRENT | ALL]

connection-name : identifier, string, or hostvar

Remarks
The DISCONNECT statement drops a connection with the database server and releases all resources used
by it. If the connection to be dropped was named on the CONNECT statement, the name can be specified.
Specifying ALL will drop all the application's connections to all database environments. CURRENT is
the default, and will drop the current connection.

Before closing the database connection, Interactive SQL automatically executes a COMMIT statement if
the commit_on_exit option is set to On. If this option is set to Off, Interactive SQL performs an implicit
ROLLBACK. By default, the commit_on_exit option is set to On.

For information about dropping connections other than the current connection, see “DROP
CONNECTION statement” on page 649.

This statement is not supported in procedures, triggers, events, or batches.

Permissions
None.

Side effects
None.

See also
● “CONNECT statement [ESQL] [Interactive SQL]” on page 473
● “SET CONNECTION statement [Interactive SQL] [ESQL]” on page 835
● “Using Interactive SQL” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 DISCONNECT comprises optional SQL language feature F771 of the SQL/2008

standard. The ability to specify DISCONNECT without a parameter is a vendor extension. The
commit_on_exit option is a vendor extension.

Example
The following statement shows how to use DISCONNECT in embedded SQL:

SQL statements

648 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

EXEC SQL DISCONNECT :conn_name

The following statement shows how to use DISCONNECT from Interactive SQL to disconnect all
connections:

DISCONNECT ALL;

DROP CONNECTION statement
Drops a user's connection to the database.

Syntax
DROP CONNECTION connection-id

Remarks
The DROP CONNECTION statement disconnects a user from the database by dropping the connection to
the database.

The connection-id parameter is an integer constant. You can obtain the connection-id using the
sa_conn_info system procedure.

This statement is not supported in procedures, triggers, events, or batches.

Permissions
DBA authority

Side effects
None.

See also
● “CONNECT statement [ESQL] [Interactive SQL]” on page 473
● “sa_conn_info system procedure” on page 964
● “Using exception handlers in procedures and triggers” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following procedure drops a connection identified by its connection number. Note that when
executing the DROP CONNECTION statement from within a procedure, you should do so using the
EXECUTE IMMEDIATE statement, as shown in this example:

CREATE PROCEDURE drop_connection_by_id(IN conn_number INTEGER)
 BEGIN
 EXECUTE IMMEDIATE 'DROP CONNECTION ' || conn_number;
 END;

The following statement drops the connection with ID number 4.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 649

DROP CONNECTION 4;

DROP DATABASE statement
Deletes all database files associated with a database.

Syntax
DROP DATABASE database-name [KEY key]

Remarks
The DROP DATABASE statement physically deletes all associated database files from disk. If the
database file does not exist, or is not in a suitable condition for the database to be started, an error is generated.

DROP DATABASE cannot be used in stored procedures, triggers, events, or batches.

Permissions
Required permissions are set using the database server -gu option. The default setting is to require DBA
authority.

The database must not be in use to be dropped.

You must specify a key if you want to drop a strongly encrypted database

Not supported on Windows Mobile.

Side effects
In addition to deleting the database files from disk, any associated transaction log file or transaction log
mirror file is deleted.

See also
● “CREATE DATABASE statement” on page 477
● “DatabaseKey (DBKEY) connection parameter” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
Drop the database temp.db, in the C:\temp directory:

DROP DATABASE 'c:\temp\temp.db';

DROP DATATYPE statement
Removes a datatype from the database.

SQL statements

650 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
DROP DATATYPE datatype-name

Remarks
It is recommended that you use DROP DOMAIN rather than DROP DATATYPE, as DROP DOMAIN is
the syntax used in the SQL/2008 standard. You cannot drop system-defined data types (such as MONEY
or UNIQUEIDENTIFIERSTR) from a database.

Permissions
Any user who owns the object, or has DBA authority, can execute the DROP DATATYPE statement.

Side effects
Automatic commit. Clears the Results tab in the Results pane in Interactive SQL.

See also
● “DROP DOMAIN statement” on page 652
● “CREATE DOMAIN statement” on page 488
● “ALTER DOMAIN statement” on page 393

Standards and compatibility
● SQL/2008 Domain support is optional SQL language feature F251 in the SQL/2008 standard. The

DROP DATATYPE statement is a vendor extension.

Example
Drop MyDatatype from the database. If the datatype does not exist, an error is returned.

DROP DATATYPE MyDatatype;

DROP DBSPACE statement
Removes a dbspace from the database.

Syntax
DROP DBSPACE dbspace-name

Remarks
You must drop all tables in the dbspace before dropping the dbspace. You cannot use the DROP
DBSPACE statement to drop the predefined dbspaces SYSTEM, TEMPORARY, TEMP, TRANSLOG,
or TRANSLOGMIRROR. See “Predefined dbspaces” [SQL Anywhere Server - Database Administration].

DROP DBSPACE is prevented whenever the statement affects an object that is currently being used by
another connection.

Permissions
You must own the object, or have DBA authority, and be the only connection to the database.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 651

Side effects
Automatic commit, and causes an implicit checkpoint. Clears the Results tab in the Results pane in
Interactive SQL.

See also
● “CREATE DBSPACE statement” on page 484
● “ALTER DBSPACE statement” on page 391
● “Delete a dbspace” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
Drop MyDBSpace from the database. If the dbspace does not exist, an error is returned.

DROP DBSPACE MyDBSpace;

DROP DOMAIN statement
Removes a domain from the database.

Syntax
DROP DOMAIN domain-name

Remarks
DROP DOMAIN is prevented if the data type is used in a table column, or in a procedure or function
argument. You must change data types on all columns defined using the domain to drop the data type. It is
recommended that you use DROP DOMAIN rather than DROP DATATYPE, as DROP DOMAIN is the
syntax used in the SQL/2008 standard. You cannot drop system-defined data types (such as MONEY or
UNIQUEIDENTIFIERSTR) from a database.

Permissions
Any user who owns the object, or has DBA authority, can execute the DROP DOMAIN statement.

Side effects
Automatic commit. Clears the Results tab in the Results pane in Interactive SQL.

See also
● “CREATE DOMAIN statement” on page 488
● “ALTER DOMAIN statement” on page 393

Standards and compatibility
● SQL/2008 Domain support is optional SQL language feature F251 in the SQL/2008 standard.

SQL statements

652 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example
Drop the domain MyDomain from the database. If the domain does not exist, an error is returned.

DROP DOMAIN MyDomain;

DROP EVENT statement
Drops an event from the database.

Syntax
DROP EVENT [IF EXISTS] [owner.]event-name

Remarks
Use the IF EXISTS clause if you do not want an error returned when the DROP EVENT statement
attempts to remove an event that does not exist.

Permissions
Any user who owns the object, or has DBA authority, can execute the DROP EVENT statement.

Side effects
Automatic commit. Clears the Results tab in the Results pane in Interactive SQL.

See also
● “CREATE EVENT statement” on page 495
● “ALTER EVENT statement” on page 394
● “TRIGGER EVENT statement” on page 880

Standards and compatibility
● SQL/2008 Vendor extension.

Example
Drop MyEvent from the database. If the event does not exist, an error is returned.

DROP EVENT MyEvent;

DROP EXTERNLOGIN statement
Drops an external login from the SQL Anywhere catalogs.

Syntax
DROP EXTERNLOGIN login-name TO remote-server

Parameters
DROP clause Specifies the local user login name

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 653

TO clause Specifies the name of the remote server. The local user's alternate login name and password
for that server is the external login that is deleted.

Remarks
DROP EXTERNLOGIN deletes an external login from the SQL Anywhere catalogs.

Permissions
DBA authority

Side effects
Automatic commit.

See also
● “CREATE EXTERNLOGIN statement” on page 503

Standards and compatibility
● SQL/2008 Vendor extension.

Example
DROP EXTERNLOGIN DBA TO sybase1;

DROP FUNCTION statement
Removes a function from the database.

Syntax
DROP FUNCTION [IF EXISTS] [owner.]function-name

Remarks
Use the IF EXISTS clause if you do not want an error returned when the DROP FUNCTION statement
attempts to remove a function that does not exist.

DROP FUNCTION is prevented when the statement affects an object that is currently being used by
another connection.

Permissions
Any user who owns the object, or has DBA authority, can execute the DROP FUNCTION statement.

Side effects
Automatic commit. Clears the Results tab in the Results pane in Interactive SQL.

SQL statements

654 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “CREATE FUNCTION statement” on page 516
● “CREATE FUNCTION statement (external procedures)” on page 504
● “CREATE FUNCTION statement (web clients)” on page 510
● “ALTER FUNCTION statement” on page 397

Standards and compatibility
● SQL/2008 Core feature. The IF EXISTS clause is a vendor extension.

Example
Drop MyFunction from the database. If the function does not exist, an error is returned.

DROP FUNCTION MyFunction;

DROP INDEX statement
Removes an index from the database.

Syntax
DROP INDEX [IF EXISTS] { [[owner.]table-name.]index-name | [[owner.]materialized-view-name.]index-
name }

Remarks
Use the IF EXISTS clause if you do not want an error returned when the DROP INDEX statement
attempts to remove an index that does not exist.

When you specify the IF EXISTS clause and the named table cannot be located, an error is returned.

DROP INDEX is prevented when the statement affects an object that is currently being used by another
connection.

Permissions
A user with REFERENCES permissions on the table can execute DROP INDEX.

The DROP INDEX statement cannot be executed when there are cursors opened with the WITH HOLD
clause that use either statement or transaction snapshots. See “Snapshot isolation” [SQL Anywhere Server
- SQL Usage].

Side effects
Automatic commit. Clears the Results tab in the Results pane in Interactive SQL. The DROP INDEX
statement closes all cursors for the current connection.

If you use the DROP INDEX statement to drop an index on a local temporary table an error is returned
indicating that the index could not be found. Use the DROP TABLE statement to drop a local temporary
table. Indexes on local temporary tables are dropped automatically when the local temporary table goes
out of scope.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 655

See also
● “CREATE INDEX statement” on page 521
● “ALTER INDEX statement” on page 399

Standards and compatibility
● SQL/2008 Vendor extension.

Example
Drop MyIndex from the database. If the index does not exist, an error is returned.

DROP INDEX MyIndex;

DROP LOGIN POLICY statement
Drops a login policy.

Syntax
DROP LOGIN POLICY policy-name

Parameters
policy-name The name of the login policy.

Remarks
The statement fails if you drop a policy that is assigned to a user. You cannot drop the root login policy.
Use the ALTER USER statement to change a user's policy assignment. See “ALTER USER
statement” on page 441.

Permissions
DBA authority.

Side effects
None.

See also
● “ALTER LOGIN POLICY statement” on page 400
● “ALTER USER statement” on page 441
● “COMMENT statement” on page 468
● “CREATE LOGIN POLICY statement” on page 526
● “CREATE USER statement” on page 621
● “DROP USER statement” on page 674
● “Managing login policies” [SQL Anywhere Server - Database Administration]
● “Dropping a login policy” [SQL Anywhere Server - Database Administration]

SQL statements

656 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Standards and compatibility
● SQL/2008 Vendor extension.

Examples
The following example creates a login policy, Test11, and then deletes it.

CREATE LOGIN POLICY Test11;
DROP LOGIN POLICY Test11;

DROP MATERIALIZED VIEW statement
Removes a materialized view from the database.

Syntax
DROP MATERIALIZED VIEW [IF EXISTS] [owner.]materialized-view-name

Remarks
All data in the table is automatically deleted as part of the dropping process. All indexes and keys for the
materialized view are dropped as well.

Use the IF EXISTS clause if you do not want an error returned when the DROP MATERIALIZED VIEW
statement attempts to remove a materialized view that does not exist.

You cannot execute a DROP MATERIALIZED VIEW statement on an object that is currently being used
by another connection.

Executing a DROP MATERIALIZED VIEW statement changes the status of all dependent regular views
to INVALID. To determine view dependencies before dropping a materialized view, use the
sa_dependent_views system procedure. See “sa_dependent_views system procedure” on page 977.

Permissions
Any user who owns the object, or has DBA authority, can execute the DROP MATERIALIZED VIEW
statement.

Side effects
Automatic commit. If the materialized view had been populated, DROP MATERIALIZED VIEW will
trigger an automatic checkpoint. Clears the Results tab in the Results pane in Interactive SQL. Closes all
cursors for the current connection.

When a view is dropped, all procedures and triggers are unloaded from memory, so that any procedure or
trigger that references the view reflects the fact that the view does not exist. The unloading and loading of
procedures and triggers can affect performance if you are regularly dropping and creating views.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 657

See also
● “CREATE MATERIALIZED VIEW statement” on page 529
● “ALTER MATERIALIZED VIEW statement” on page 401
● “REFRESH MATERIALIZED VIEW statement” on page 798
● “Materialized view statuses and properties” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
Drop MyMaterializedView from the database. If the materialized view does not exist, an error is returned.

DROP MATERIALIZED VIEW MyMaterializedView;

DROP MESSAGE statement
Removes a message from the database.

Syntax
DROP MESSAGE msgnum

Remarks
None.

Permissions
Any user who owns the object, or has DBA authority, can execute the DROP MESSAGE statement.

Side effects
Automatic commit. Clears the Results tab in the Results pane in Interactive SQL.

See also
● “PRINT statement [T-SQL]” on page 791
● “CREATE MESSAGE statement [T-SQL]” on page 531
● “ISYSUSERMESSAGE system table” on page 921

Standards and compatibility
● SQL/2008 Vendor extension.

● Transact-SQL DROP MESSAGE supplies the functionality provided by the sp_dropmessage()
system procedure in Adaptive Server Enterprise.

Example
Drop MyMessage from the database. If the message does not exist, an error is returned.

DROP MESSAGE MyMessage;

SQL statements

658 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

DROP MIRROR SERVER statement

Separately licensed component required
Read-only scale-out and database mirroring each require a separate license. See “Separately licensed
components” [SQL Anywhere 12 - Introduction].

Drops a mirror server.

Syntax
DROP MIRROR SERVER mirror-server-name

Remarks
Removes the specified mirror server from the database.

Permissions
Must have DBA authority.

Side effects
Automatic commit.

See also
● “Introduction to database mirroring” [SQL Anywhere Server - Database Administration]
● “CREATE MIRROR SERVER statement” on page 532
● “ALTER MIRROR SERVER statement” on page 404
● “COMMENT statement” on page 468

Standards and compatibility
● SQL/2008 Vendor extension

Example
The following statement removes the mirror server named scaleout_server_root from the database:

DROP MIRROR SERVER scaleout_server_root;

DROP PROCEDURE statement
Removes a procedure from the database.

Syntax
DROP PROCEDURE [IF EXISTS] [owner.]procedure-name

Remarks
Use the IF EXISTS clause if you do not want an error returned when the DROP PROCEDURE statement
attempts to remove a procedure that does not exist.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 659

You cannot execute a DROP PROCEDURE statement when the statement affects an object that is
currently being used by another connection.

Permissions
Any user who owns the object, or has DBA authority, can execute the DROP PROCEDURE statement.

Side effects
Automatic commit. Clears the Results tab in the Results pane in Interactive SQL.

See also
● “CREATE PROCEDURE statement” on page 552
● “CREATE PROCEDURE statement (external procedures)” on page 536
● “CREATE PROCEDURE statement (web clients)” on page 543
● “ALTER PROCEDURE statement” on page 407

Standards and compatibility
● SQL/2008 Core feature. The IF EXISTS clause is a vendor extension.

Example
Drop MyProcedure from the database. If the procedure does not exist, an error is returned.

DROP PROCEDURE MyProcedure;

DROP PUBLICATION statement [MobiLink] [SQL Remote]
Drops a publication.

Syntax
DROP PUBLICATION [IF EXISTS] [owner.]publication-name

owner, publication-name : identifier

Remarks
This statement is applicable only to MobiLink and SQL Remote.

In MobiLink, a publication identifies synchronized data in a SQL Anywhere remote database. In SQL
Remote, publications identify replicated data in both consolidated and remote databases.

Use the IF EXISTS clause if you do not want an error returned when the DROP PUBLICATION
statement attempts to remove a publication that does not exist.

Permissions
Must have DBA authority, or be the owner of the publication. Requires exclusive access to all tables
referred to in the statement.

SQL statements

660 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Side effects
Automatic commit. All subscriptions to the publication are dropped.

See also
● “ALTER PUBLICATION statement [MobiLink] [SQL Remote]” on page 409
● “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” on page 559
● SQL Anywhere MobiLink clients: “Publishing data” [MobiLink - Client Administration]
● UltraLite MobiLink clients: “DROP PUBLICATION statement [UltraLite] [UltraLiteJ]” [UltraLite -

Database Management and Reference]
● “Dropping publications” [MobiLink - Client Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement drops the pub_contact publication.

DROP PUBLICATION pub_contact;

DROP REMOTE MESSAGE TYPE statement [SQL Remote]
Deletes a message type definition from a database.

Syntax
DROP REMOTE MESSAGE TYPE message-system

message-system:
FILE
| FTP
| SMTP

Remarks
The statement removes a message type from a database.

Permissions
DBA authority, and there must be no user granted REMOTE or CONSOLIDATE permissions with this type.

Side effects
Automatic commit.

See also
● “CREATE REMOTE MESSAGE TYPE statement [SQL Remote]” on page 562
● “SQL Remote message systems” [SQL Remote]

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 661

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement drops the FILE message type from a database.

DROP REMOTE MESSAGE TYPE file;

DROP SEQUENCE statement
Drops a sequence.

Syntax
DROP SEQUENCE [owner.] sequence-name

Remarks
If the named sequence cannot be located, an error message is returned. When you drop a sequence, all
synonyms for the name of the sequence are dropped automatically by the database server.

Permissions
Must have DBA authority or be the owner of the sequence and have RESOURCE authority.

Side effects
None

See also
● “Using a sequence to generate unique values” [SQL Anywhere Server - SQL Usage]
● “ALTER SEQUENCE statement” on page 411
● “CREATE SEQUENCE statement” on page 565

Standards and compatibility
● SQL/2008 Sequences comprise SQL/2008 optional language feature T176.

Example
The following example drops a sequence named Test:

DROP SEQUENCE Test;

DROP SERVER statement
Drops a remote server from the SQL Anywhere catalog.

Syntax
DROP SERVER server-name

SQL statements

662 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
DROP SERVER deletes a remote server from the SQL Anywhere catalogs. You must drop all the proxy
tables that have been defined for the remote server before this statement will succeed.

Permissions
DBA authority.

Not supported on Windows Mobile.

Side effects
Automatic commit.

See also
● “CREATE SERVER statement” on page 567

Standards and compatibility
● SQL/2008 Vendor extension.

Example
DROP SERVER ase_prod;

DROP SERVICE statement
Drops a web service.

Syntax
DROP SERVICE service-name

Remarks
This statement deletes a web service listed in the ISYSWEBSERVICE system table.

Permissions
DBA authority

Side effects
None.

See also
● “ALTER SERVICE statement” on page 415
● “CREATE SERVICE statement” on page 571
● “ISYSWEBSERVICE system table” on page 922

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 663

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following SQL script illustrates how to drop a web service named WebServiceTable:

DROP SERVICE WebServiceTable;

DROP SPATIAL REFERENCE SYSTEM statement
Drops a spatial reference system.

Syntax
DROP SPATIAL REFERENCE SYSTEM [IF EXISTS] name

Remarks
Use the IF EXISTS clause if you do not want an error returned when the DROP SPATIAL REFERENCE
SYSTEM statement attempts to remove a spatial reference system that does not exist.

Permissions
Must have DBA authority.

Side effects
None

See also
● “CREATE SPATIAL REFERENCE SYSTEM statement” on page 579
● “ALTER SPATIAL REFERENCE SYSTEM statement” on page 416
● “Getting started with spatial data” [SQL Anywhere Server - Spatial Data Support]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example drops a spatial reference system named TEST.

DROP SPATIAL REFERENCE SYSTEM Test;

DROP SPATIAL UNIT OF MEASURE statement
Drops a spatial unit of measurement.

Syntax
DROP SPATIAL UNIT OF MEASURE [IF EXISTS] identifier

SQL statements

664 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
Use the IF EXISTS clause if you do not want an error returned when the DROP SPATIAL UNIT OF
MEASURE statement attempts to remove a spatial unit of measure that does not exist.

Permissions
Must have DBA authority.

Side effects
None

See also
● “CREATE SPATIAL UNIT OF MEASURE statement” on page 586
● “Getting started with spatial data” [SQL Anywhere Server - Spatial Data Support]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example drops a spatial unit of measure named TEST.

DROP SPATIAL UNIT OF MEASURE Test;

DROP STATEMENT statement [ESQL]
Frees statement resources.

Syntax
DROP STATEMENT [owner.]statement-name

statement-name :
identifier
| hostvar

Remarks
The DROP STATEMENT statement frees resources used by the named prepared statement. These
resources are allocated by a successful PREPARE statement, and are normally not freed until the database
connection is released.

Permissions
Must have prepared the statement.

Side effects
None.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 665

See also
● “PREPARE statement [ESQL]” on page 788

Standards and compatibility
● SQL/2008 Vendor extension. In the SQL/2008 standard, this functionality is provided by the

DEALLOCATE PREPARE statement, which is part of the optional SQL language feature B032,
"Extended dynamic SQL".

Example
The following are examples of DROP STATEMENT use:

EXEC SQL DROP STATEMENT S1;
EXEC SQL DROP STATEMENT :stmt;

DROP STATISTICS statement
Erases all column statistics on the specified columns.

Syntax
DROP STATISTICS [ON] [owner.]object-name [(column-list)]

object-name :
table-name
| materialized-view-name
| temp-table-name

Remarks
The SQL Anywhere optimizer uses column statistics to determine the best strategy for executing each
statement. SQL Anywhere automatically gathers and updates these statistics. Column statistics are stored
permanently in the database in the ISYSCOLSTAT system table. Column statistics gathered while
processing one statement are available when searching for efficient ways to execute subsequent statements.

Occasionally, the column statistics can become inaccurate or relevant statistics may be unavailable. This
condition is most likely to arise when few queries have been executed since a large amount of data was
added, updated, or deleted.

The DROP STATISTICS statement deletes all internal statistical data from the ISYSCOLSTAT system
table for the specified columns. This drastic step leaves the optimizer with no access to essential statistical
information. Without these statistics, the optimizer can generate inefficient data access plans, causing
poor database performance.

The DROP STATISTICS statement requires an exclusive lock on the table against which it is being
performed. This means that execution of the statement cannot proceed until all other connections that
refer to the table have either committed or rolled back the referring transactions, or closed any open
cursors that refer to the table.

This statement should be used only during problem determination or when reloading data into a database
that differs substantially from the original data.

SQL statements

666 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Permissions
DBA authority

Side effects
Automatic commit.

See also
● “CREATE STATISTICS statement” on page 588
● “Optimizer estimates and column statistics” [SQL Anywhere Server - SQL Usage]
● “ISYSCOLSTAT system table” on page 912

Standards and compatibility
● SQL/2008 Vendor extension.

DROP SUBSCRIPTION statement [SQL Remote]
Drops a subscription for a user from a publication.

Syntax
DROP SUBSCRIPTION TO publication-name [(subscription-value)]
 FOR subscriber-id, ...

subscription-value: string

subscriber-id: string

Parameters
publication-name The name of the publication to which the user is being subscribed. This can include
the owner of the publication.

subscription-value A string that is compared to the subscription expression of the publication. This
value is required because a user can have more than one subscription to a publication.

subscriber-id The user ID of the subscriber to the publication.

Remarks
Drops a SQL Remote subscription for a user ID to a publication in the current database. The user ID will
no longer receive updates when data in the publication is changed.

In SQL Remote, publications and subscriptions are two-way relationships. If you drop a subscription for a
remote user to a publication on a consolidated database, you should also drop the subscription for the
consolidated database on the remote database to prevent updates on the remote database being sent to the
consolidated database.

Permissions
DBA authority.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 667

Side effects
Automatic commit.

See also
● “CREATE SUBSCRIPTION statement [SQL Remote]” on page 589
● “ISYSSUBSCRIPTION system table” on page 919

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement drops a subscription for the SamS user ID to the pub_contact publication.

DROP SUBSCRIPTION TO pub_contact
FOR SamS;

DROP SYNCHRONIZATION PROFILE statement [MobiLink]

Deletes a SQL Anywhere synchronization profile.

Syntax
DROP SYNCHRONIZATION PROFILE [IF EXISTS] name

Parameters
name The name of the synchronization profile to delete.

Remarks
Synchronization profiles are named collections of synchronization options that can be used to control
synchronization. Use the IF EXISTS clause if you do not want an error returned when the DROP
SYNCHRONIZATION PROFILE statement attempts to remove a synchronization profile that does not
exist.

Permissions
DBA authority

Side effects
Automatic commit.

See also
● “CREATE SYNCHRONIZATION PROFILE statement [MobiLink]” on page 590
● “ALTER SYNCHRONIZATION PROFILE statement [MobiLink]” on page 421

Standards and compatibility
● SQL/2008 Vendor extension.

SQL statements

668 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

DROP SYNCHRONIZATION SUBSCRIPTION statement
[MobiLink]

Drops a synchronization subscription in a remote database.

Syntax
DROP SYNCHRONIZATION SUBSCRIPTION {subscription-name |
TO publication-name
[FOR ml-username, ...]}

Parameters
subscription-name Specifies the name of the subscription to drop.

TO clause Specify the name of a publication.

FOR clause Specify one more users.

Omitting this clause drops the default settings for the publication.

Permissions
Must have DBA authority. Requires exclusive access to all tables referred to in the publication.

Side Effects
Automatic commit.

See also
● “ALTER SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” on page 422
● “CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” on page 591
● “ISYSSYNC system table” on page 919
● “Dropping MobiLink subscriptions” [MobiLink - Client Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Examples
The following example drops the subscription named mysub:

DROP SYNCHRONIZATION SUBSCRIPTION mysub;

The following example drops the subscription between the user ml_user1 and the publication called
sales_publication:

DROP SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR "ml_user1";

The following example omits the FOR clause, and so drops the default settings for the publication called
sales_publication:

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 669

DROP SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication;

DROP SYNCHRONIZATION USER statement [MobiLink]
Drops one or more synchronization users from a SQL Anywhere remote database.

Syntax
DROP SYNCHRONIZATION USER ml-username, ...

ml-username: identifier

Remarks
Drop one or more synchronization users from a MobiLink remote database.

Permissions
DBA authority and exclusive access to all tables referred to publications subscribed by the user.

Side Effects
All subscriptions associated with the user are also deleted.

See also
● “ALTER SYNCHRONIZATION USER statement [MobiLink]” on page 425
● “CREATE SYNCHRONIZATION USER statement [MobiLink]” on page 594
● “ISYSSYNC system table” on page 919

Standards and compatibility
● SQL/2008 Vendor extension.

Example
Remove MobiLink user ml_user1 from the database.

DROP SYNCHRONIZATION USER ml_user1;

DROP TABLE statement
Removes a table from the database.

Syntax
DROP TABLE [IF EXISTS] [owner.]table-name

Remarks
When you remove a table, all data in the table is automatically deleted as part of the dropping process. All
indexes and keys for the table are dropped as well.

SQL statements

670 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Use the IF EXISTS clause if you do not want an error returned when the DROP TABLE statement
attempts to remove a table that does not exist.

You cannot execute a DROP TABLE statement when the statement affects a table that is currently being
used by another connection. Execution of a DROP TABLE statement is also prevented if there is a
materialized view dependent on the table.

When you execute a DROP TABLE statement, the status of all dependent regular views change to
INVALID. To determine view dependencies before dropping a table, use the sa_dependent_views system
procedure. See “sa_dependent_views system procedure” on page 977.

Permissions
Any user who owns the object, or has DBA authority, can execute the DROP TABLE statement.

Global temporary tables cannot be dropped unless all users that have referenced the temporary table have
disconnected.

Side effects
Automatic commit. DROP TABLE may also cause an automatic checkpoint. Clears the Results tab in the
Results pane in Interactive SQL. Executing a DROP TABLE statement closes all cursors for the current
connection.

You can use the DROP TABLE statement to drop a local temporary table.

See also
● “Dropping tables” [SQL Anywhere Server - SQL Usage]
● “CREATE TABLE statement” on page 596
● “ALTER TABLE statement” on page 426

Standards and compatibility
● SQL/2008 DROP TABLE is a core feature of the SQL/2008 standard. The IF EXISTS clause is a

vendor extension. The ability to drop a declared local temporary table with the DROP TABLE
statement is a vendor extension.

Example
Drop MyTable from the database. If the table does not exist, an error is returned.

DROP TABLE MyTable;

Drop MyTable from the database if it exists. If the table does not exist, an error is not returned.

DROP TABLE IF EXISTS MyTable;

DROP TEXT CONFIGURATION statement
Drops a text configuration object.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 671

Syntax
DROP TEXT CONFIGURATION [owner.]text-config-name

Remarks
Attempting to drop a text configuration object with dependent text indexes results in an error. You must
drop the dependent text indexes before dropping the text configuration object.

Text configuration objects are stored in the ISYSTEXTCONFIG system table.

To determine the text indexes that refer to the text configuration object, see “How to view text index info
in the database” [SQL Anywhere Server - SQL Usage].

Permissions
Must be the owner of the text configuration object or have DBA authority.

Side effects
Automatic commit

See also
● “DROP TEXT INDEX statement” on page 672
● “Full text search” [SQL Anywhere Server - SQL Usage]
● “How to manage text configuration objects” [SQL Anywhere Server - SQL Usage]
● “SYSTEXTCONFIG system view” on page 1179
● “CREATE TEXT CONFIGURATION statement” on page 610
● “ALTER TEXT CONFIGURATION statement” on page 435

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statements create and drop the mytextconfig text configuration object:

CREATE TEXT CONFIGURATION mytextconfig FROM default_char;
DROP TEXT CONFIGURATION mytextconfig;

DROP TEXT INDEX statement
Removes a text index from the database.

Syntax
DROP TEXT INDEX text-index-name
ON [owner.]table-name

Parameters
ON clause Use this clause to specify the table on which the text index was built.

SQL statements

672 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
You must drop dependent text indexes before you can drop a text configuration object.

Permissions
Must be the owner of the underlying table, or have DBA authority, or have REFERENCES permission.

This statement cannot be executed when there are cursors opened with the WITH HOLD clause that use
either statement or transaction snapshots. See “Snapshot isolation” [SQL Anywhere Server - SQL Usage].

Side effects
Automatic commit

See also
● “Full text search” [SQL Anywhere Server - SQL Usage]
● “How to manage text indexes” [SQL Anywhere Server - SQL Usage]
● “SYSTEXTCONFIG system view” on page 1179
● “CREATE TEXT INDEX statement” on page 611
● “ALTER TEXT INDEX statement” on page 439
● “DROP TEXT INDEX statement” on page 672
● “REFRESH TEXT INDEX statement” on page 801
● “TRUNCATE TEXT INDEX statement” on page 882

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statements create and drop the TextIdx text index:

CREATE TEXT INDEX TextIdx ON MarketingInformation (Description)
DROP TEXT INDEX TextIdx ON MarketingInformation;

DROP TRIGGER statement
Removes a trigger from the database.

Syntax
DROP TRIGGER [IF EXISTS] [owner.] [table-name.]trigger-name

Remarks
Use the IF EXISTS clause if you do not want an error returned when the DROP statement attempts to
remove a database object that does not exist.

Permissions
A user with ALTER permissions on the table can execute DROP TRIGGER.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 673

Side effects
Automatic commit. Clears the Results tab in the Results pane in Interactive SQL.

See also
● “CREATE TRIGGER statement” on page 614
● “ALTER TRIGGER statement” on page 440
● “ROLLBACK TRIGGER statement” on page 823
● “Dropping triggers” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 DROP TRIGGER comprises part of optional SQL language feature T211, "Basic trigger

capability", of the SQL/2008 standard. The IF EXISTS clause is a vendor extension.

Example
Drop MyTrigger from the database. If the trigger does not exist, an error is returned.

DROP TRIGGER MyTrigger;

DROP USER statement
Drops a user.

Syntax
DROP USER user-name

Parameters
● user-name The name of the user you are dropping.

Permissions
DBA authority.

Remarks
None.

Side effects
None.

SQL statements

674 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “ALTER LOGIN POLICY statement” on page 400
● “ALTER USER statement” on page 441
● “COMMENT statement” on page 468
● “CREATE LOGIN POLICY statement” on page 526
● “CREATE USER statement” on page 621
● “DROP LOGIN POLICY statement” on page 656
● “Managing login policies” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example drops the user SQLTester from a database.

DROP USER SQLTester;

DROP VARIABLE statement
Eliminates a SQL variable.

Syntax
DROP VARIABLE [IF EXISTS] identifier

Remarks
The DROP VARIABLE statement eliminates a SQL variable that was previously created using the
CREATE VARIABLE statement. Variables are automatically eliminated when the database connection is
released. Variables are often used for large objects, so eliminating them after use or setting them to NULL
can free up significant resources (primarily disk space).

Use the IF EXISTS clause if you do not want an error returned when the DROP statement attempts to
remove a database object that does not exist.

Permissions
None.

Side effects
None.

See also
● “CREATE VARIABLE statement” on page 622
● “SET statement” on page 849

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 675

Standards and compatibility
● SQL/2008 Vendor extension.

DROP VIEW statement

Removes a view from the database.

Syntax
DROP VIEW [IF EXISTS] [owner.]view-name

Remarks
Use the IF EXISTS clause if you do not want an error returned when the DROP VIEW statement attempts
to remove a view that does not exist.

When you execute the DROP VIEW statement, the status of all dependent regular views change to
INVALID. To determine view dependencies before dropping a view, use the sa_dependent_views system
procedure. See “sa_dependent_views system procedure” on page 977.

Permissions
Any user who owns the object, or has DBA authority, can execute the DROP VIEW statement.

Side effects
Automatic commit. Clears the Results tab in the Results pane in Interactive SQL. Executing a DROP
VIEW statement closes all cursors for the current connection.

When a view is dropped, all procedures and triggers are unloaded from memory, so that any procedure or
trigger that references the view reflects the fact that the view does not exist. The unloading and loading of
procedures and triggers can affect performance if you are regularly dropping and creating views.

See also
● “CREATE VIEW statement” on page 624
● “ALTER VIEW statement” on page 443

Standards and compatibility
● SQL/2008 DROP VIEW is a core feature of the SQL/2008 standard. The IF EXISTS clause is a

vendor extension.

Example
Drop MyView from the database. If the view does not exist, an error is returned.

DROP VIEW MyView;

EXCEPT statement

SQL statements

676 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Returns the set difference of two query blocks.

Syntax
[WITH temporary-views] main-query-block
 EXCEPT [ALL | DISTINCT] except-query-block
[ORDER BY [integer | select-list-expression-name] [ASC | DESC], ...]
[FOR XML xml-mode]
[OPTION(query-hint, ...)]

query-hint :
MATERIALIZED VIEW OPTIMIZATION option-value
| FORCE OPTIMIZATION
| option-name = option-value

main-query-block : A query block. See “Common elements in SQL syntax” on page 381.

except-query-block : A query block. See “Common elements in SQL syntax” on page 381.

option-name : identifier

option-value : hostvar (indicator allowed), string, identifier, or number

Parameters
main-query-block A query block, comprising a SELECT statement or a query expression (possibly
nested).

except-query-block A query block, comprising a SELECT statement or a query expression (possibly
nested).

FOR XML clause For a description of the FOR XML clause, see “SELECT statement” on page 825.

OPTION clause Use this clause to specify hints for executing the statement. The following hints are
supported:

○ MATERIALIZED VIEW OPTIMIZATION option-value
○ FORCE OPTIMIZATION
○ option-name = option-value. Note that a OPTION(isolation_level = ...) specification

in the query text overrides all other means of specifying isolation level for a query.

For a description of these options, see “OPTION clause, SELECT statement” on page 832.

Remarks
The EXCEPT statement returns all rows in main-query-block except those that also appear in the except-
query-block. Specify EXCEPT or EXCEPT DISTINCT if you do not want duplicates from main-query-
block to appear as duplicates in the result. Otherwise, specify EXCEPT ALL. Note that query blocks can
be nested.

The use of EXCEPT alone is equivalent to EXCEPT DISTINCT.

The main-query-block and the except-query-block must be UNION-compatible; they must each have the
same number of items in their respective SELECT lists, and the types of each expression should be

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 677

comparable. If corresponding items in two select lists have different data types, SQL Anywhere chooses a
data type for the corresponding column in the result and automatically convert the columns in each query-
block appropriately.

EXCEPT ALL implements bag difference rather than set difference. For example, if main-query-block
contains 5 (duplicate) rows with specific values, and except-query-block contains 2 duplicate rows with
identical values, then EXCEPT ALL will return 3 rows.

The results of EXCEPT are the same as the results of EXCEPT ALL if main-query-block does not contain
duplicate rows.

The column names displayed are the same column names that are displayed for the first query-block and
these names are used to determine the expression names to be matched with the ORDER BY clause. An
alternative way of customizing result set column names is to use a common table expression (the WITH
clause).

Permissions
Must have SELECT permission for each query-block.

Side effects
None

See also
● “INTERSECT statement” on page 746
● “UNION statement” on page 883
● “SELECT statement” on page 825

Standards and compatibility
● SQL/2008 EXCEPT DISTINCT is a core feature of the SQL/2008 standard; EXCEPT ALL

comprises the optional SQL language feature F304. Explicitly specifying the DISTINCT keyword
with EXCEPT is optional SQL language feature T551 of the SQL/2008 standard. Specifying an
ORDER BY clause with EXCEPT is SQL language feature F850. A query-block that contains an
ORDER BY clause constitutes SQL/2008 feature F851. A query block that contains a row-limit clause
(SELECT TOP or LIMIT) comprises optional SQL language feature F857 or F858, depending on the
context. The FOR XML clause and the OPTION clause are vendor extensions.

● Transact-SQL EXCEPT is not supported by Adaptive Server Enterprise. However, both EXCEPT
ALL and EXCEPT DISTINCT can be used in the Transact-SQL dialect supported by SQL Anywhere.

Example
For examples of EXCEPT usage, see “Set operators and NULL” [SQL Anywhere Server - SQL Usage].

EXECUTE IMMEDIATE statement [SP]

Enables dynamically-constructed statements to be executed from within a procedure.

SQL statements

678 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax 1
EXECUTE IMMEDIATE [execute-option] string-expression

execute-option:
 WITH QUOTES [ON | OFF]
| WITH ESCAPES { ON | OFF }
| WITH RESULT SET { ON | OFF }

Syntax 2 - Transact-SQL
EXECUTE (string-expression)

Parameters
WITH QUOTES clause When you specify WITH QUOTES or WITH QUOTES ON, any double
quotes in the string expression are assumed to delimit an identifier. When you do not specify WITH
QUOTES, or specify WITH QUOTES OFF, the treatment of double quotes in the string expression
depends on the current setting of the quoted_identifier option.

WITH QUOTES is useful when an object name that is passed into the stored procedure is used to
construct the statement that is to be executed, but the name might require double quotes and the procedure
might be called when the quoted_identifier option is set to Off. See “quoted_identifier option” [SQL
Anywhere Server - Database Administration].

WITH ESCAPES clause WITH ESCAPES OFF causes any escape sequences (such as \n, \x, or \\) in
the string expression to be ignored. For example, two consecutive backslashes remain as two backslashes,
rather than being converted to a single backslash. The default setting is equivalent to WITH ESCAPES ON.

One use of WITH ESCAPES OFF is for easier execution of dynamically-constructed statements
referencing file names that contain backslashes.

In some contexts, escape sequences in the string-expression are transformed before the EXECUTE
IMMEDIATE statement is executed. For example, compound statements are parsed before being
executed, and escape sequences are transformed during this parsing, regardless of the WITH ESCAPES
setting. In these contexts, WITH ESCAPES OFF prevents further translations from occurring. For example:

BEGIN
 DECLARE String1 LONG VARCHAR;
 DECLARE String2 LONG VARCHAR;
 EXECUTE IMMEDIATE
 'SET String1 = ''One backslash: \\\\ ''';
 EXECUTE IMMEDIATE WITH ESCAPES OFF
 'SET String2 = ''Two backslashes: \\\\ ''';
 SELECT String1, String2
END

WITH RESULT SET clause You can have an EXECUTE IMMEDIATE statement return a result set
by specifying WITH RESULT SET ON. With this clause, the containing procedure is marked as returning
a result set. If you do not include this clause, an error is reported when the procedure is called if the
statement produces a result set.

Note
The default option is WITH RESULT SET OFF, meaning that no result set is produced when the
statement is executed.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 679

Remarks
The EXECUTE statement extends the range of statements that can be executed from within procedures
and triggers. It lets you execute dynamically-prepared statements, such as statements that are constructed
using the parameters passed in to a procedure.

Literal strings in the statement must be enclosed in single quotes, and the statement must be on a single line.

Only global variables can be referenced in a statement executed by EXECUTE IMMEDIATE.

Only syntax 2 can be used inside Transact-SQL stored procedures and triggers.

Permissions
None. The statement is executed with the permissions of the owner of the procedure, not with the
permissions of the user who calls the procedure.

Side effects
None. However, if the statement is a data definition statement with an automatic commit as a side effect,
that commit does take place.

For more information about using the EXECUTE IMMEDIATE statement in procedures, see “Using the
EXECUTE IMMEDIATE statement in procedures” [SQL Anywhere Server - SQL Usage].

See also
● “CREATE PROCEDURE statement” on page 552
● “CREATE PROCEDURE statement (external procedures)” on page 536
● “CREATE PROCEDURE statement (web clients)” on page 543
● “BEGIN statement” on page 454
● “EXECUTE statement [ESQL]” on page 681
● “EXECUTE statement [T-SQL]” on page 683

Standards and compatibility
● SQL/2008 EXECUTE IMMEDIATE is optional SQL language feature B031, "Basic dynamic

SQL", of the SQL/2008 standard. The execute-option syntax is a vendor extension. The SQL/2008
standard prohibits the use of EXECUTE IMMEDIATE that returns a result set.

Examples
The following procedure creates a table, where the table name is supplied as a parameter to the procedure.
The EXECUTE IMMEDIATE statement must all be on a single line.

CREATE PROCEDURE CreateTableProc(
 IN tablename char(30)
)
BEGIN
 EXECUTE IMMEDIATE
 'CREATE TABLE ' || tablename ||
 ' (column1 INT PRIMARY KEY)'
END;

To call the procedure and create a table called mytable:

SQL statements

680 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

CALL CreateTableProc('mytable');

For an example of EXECUTE IMMEDIATE with a query that returns a result set, see “Using the
EXECUTE IMMEDIATE statement in procedures” [SQL Anywhere Server - SQL Usage].

EXECUTE statement [ESQL]
Executes a prepared SQL statement.

Syntax 1
EXECUTE statement
[USING { hostvar-list | [SQL] DESCRIPTOR sqlda-name }]
[INTO { into-hostvar-list | [SQL] DESCRIPTOR into-sqlda-name }]
[ARRAY :row-count]

row-count : integer or hostvar

statement : identifier | hostvar | string

sqlda-name : identifier

into-sqlda-name : identifier

Syntax 2
EXECUTE IMMEDIATE statement

statement : string | hostvar

Parameters

USING clause Results from a SELECT statement or a CALL statement are put into either the
variables in the variable list or the program data areas described by the named SQLDA. The
correspondence is one-to-one from the OUTPUT (selection list or parameters) to either the host variable
list or the SQLDA descriptor array.

INTO clause If EXECUTE INTO is used with an INSERT statement, the inserted row is returned in
the second descriptor. For example, when using auto-increment primary keys or BEFORE INSERT
triggers that generate primary key values, the EXECUTE statement provides a mechanism to re-fetch the
row immediately and determine the primary key value that was assigned to the row. The same thing can
be achieved by using @@identity with auto-increment keys.

ARRAY clause The optional ARRAY clause can be used with prepared INSERT statements to allow
wide inserts, which insert more than one row at a time and which can improve performance. The integer
value is the number of rows to be inserted. The SQLDA must contain a variable for each entry (number of
rows * number of columns). The first row is placed in SQLDA variables 0 to (columns per row)-1, and so
on.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 681

Remarks
The EXECUTE statement can be used for any SQL statement that can be prepared. Cursors are used for
SELECT statements or CALL statements that return many rows from the database. See “Using cursors in
embedded SQL” [SQL Anywhere Server - Programming].

After successful execution of an INSERT, UPDATE or DELETE statement, the sqlerrd[2] field of the
SQLCA (SQLCOUNT) is filled in with the number of rows affected by the operation.

Syntax 1 Execute the named dynamic statement, which was previously prepared. If the dynamic
statement contains host variable place holders which supply information for the request (bind variables),
either the sqlda-name must specify a C variable which is a pointer to a SQLDA containing enough
descriptors for all the bind variables occurring in the statement, or the bind variables must be supplied in
the hostvar -list.

Syntax 2 A short form to PREPARE and EXECUTE a statement that does not contain bind variables
or output. The SQL statement contained in the string or host variable is immediately executed, and is
dropped on completion.

Permissions
Permissions are checked on the statement being executed.

Side effects
None.

See also
● “EXECUTE IMMEDIATE statement [SP]” on page 678
● “PREPARE statement [ESQL]” on page 788
● “DECLARE CURSOR statement [ESQL] [SP]” on page 628

Standards and compatibility
● SQL/2008 The EXECUTE statement comprises part of optional SQL language feature B031,

"Basic dynamic SQL", of the SQL/2008 standard. The INTO clause is part of optional language
feature B032, "Extended dynamic SQL". The ARRAY clause is a vendor extension.

The EXECUTE IMMEDIATE statement supported with embedded SQL is also part of optional SQL
language feature B031.

Example
Execute a DELETE.

EXEC SQL EXECUTE IMMEDIATE
'DELETE FROM Employees WHERE EmployeeID = 105';

Execute a prepared DELETE statement.

EXEC SQL PREPARE del_stmt FROM
'DELETE FROM Employees WHERE EmployeeID = :a';
EXEC SQL EXECUTE del_stmt USING :employee_number;

Execute a prepared query.

SQL statements

682 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

EXEC SQL PREPARE sel1 FROM
'SELECT Surname FROM Employees WHERE EmployeeID = :a';
EXEC SQL EXECUTE sel1 USING :employee_number INTO :surname;

EXECUTE statement [T-SQL]
Syntax 1 invokes a procedure, as an Adaptive Server Enterprise-compatible alternative to the CALL
statement. Syntax 2 executes a prepared SQL statement in Transact-SQL.

Syntax 1
[EXECUTE] | [EXEC][@return_status =] [creator.]procedure_name [argument, ...]

argument :
 [@parameter-name =] expression
| [@parameter-name =] @variable [output]

Syntax 2
EXECUTE (string-expression)

Remarks
Syntax 1 is implemented for Transact-SQL compatibility. EXECUTE calls a stored procedure, optionally
supplying procedure parameters and retrieving output values and return status information. In Watcom
SQL, use the CALL or EXECUTE IMMEDIATE statements.

With Syntax 2, you can execute dynamic statements within Transact-SQL stored procedures and triggers.
The EXECUTE statement extends the range of statements that can be executed from within procedures
and triggers. It lets you execute dynamically prepared statements, such as statements that are constructed
using the parameters passed in to a procedure. Literal strings in the statement must be enclosed in single
quotes, and the statement must be on a single line. Syntax 2 of the EXECUTE statement is implemented
for Transact-SQL compatibility, but can be used in either Transact-SQL or Watcom SQL batches and
procedures.

The Transact-SQL EXECUTE statement does not have a way to signify that a result set is expected. One
way to indicate that a Transact-SQL procedure returns a result set is to include something like the following:

IF 1 = 0 THEN
 SELECT 1 AS a

You can also execute statements within Transact-SQL stored procedures and triggers. See “EXECUTE
IMMEDIATE statement [SP]” on page 678.

Permissions
Must be the owner of the procedure, have EXECUTE permission for the procedure, or have DBA authority.

Side effects
None.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 683

See also
● “CALL statement” on page 460
● “EXECUTE statement [ESQL]” on page 681
● “EXECUTE IMMEDIATE statement [SP]” on page 678

Standards and compatibility
● SQL/2008 Syntax 1 is a vendor extension. Syntax 2 offers functionality equivalent to the

EXECUTE IMMEDIATE statement in the SQL/2008 standard, which is optional SQL language
feature B031, "Basic dynamic SQL". However, the syntax of Syntax 2 differs from that of the SQL/
2008 standard.

Example
The following procedure illustrates Syntax 1.

CREATE PROCEDURE p1(@var INTEGER = 54)
AS
PRINT 'on input @var = %1!', @var
DECLARE @intvar integer
SELECT @intvar=123
SELECT @var=@intvar
PRINT 'on exit @var = %1!', @var;

The following statement executes the procedure, supplying the input value of 23 for the parameter. If you
are connected from an Open Client or JDBC application, the PRINT messages are displayed in the client
window. If you are connected from an ODBC or embedded SQL application, the messages are displayed
in the database server messages window.

EXECUTE p1 23;

The following is an alternative way of executing the procedure, which is useful if there are several parameters.

EXECUTE p1 @var = 23;

The following statement executes the procedure, using the default value for the parameter

EXECUTE p1;

The following statement executes the procedure, and stores the return value in a variable for checking
return status.

EXECUTE @status = p1 23;

EXIT statement [Interactive SQL]
Leaves Interactive SQL.

Syntax
{ EXIT | QUIT | BYE } [return-code]

return-code: number | connection-variable

SQL statements

684 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
This statement closes the Interactive SQL window if you are running Interactive SQL as a windowed
program, or terminates Interactive SQL altogether when run in command-prompt (batch) mode. In both
cases, the database connection is also closed. Before closing the database connection, Interactive SQL
automatically executes a COMMIT statement if the commit_on_exit option is set to On. If this option is
set to Off, Interactive SQL performs an implicit ROLLBACK. By default, the commit_on_exit option is
set to On.

The optional return code can be used in batch files to indicate success or failure of the commands in an
Interactive SQL command file. The default return code is 0.

Permissions
None.

Side effects
This statement automatically performs a commit if option commit_on_exit is set to On (the default);
otherwise it performs an implicit rollback.

On Windows operating systems the optional return value is available as ERRORLEVEL.

See also
● “SET OPTION statement” on page 840
● “Using Interactive SQL” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Examples
The following example sets the Interactive SQL return value to 1 if there are any rows in table T, or to 0 if
T contains no rows.

CREATE VARIABLE rowCount INT;
CREATE VARIABLE retcode INT;
SELECT COUNT(*) INTO rowCount FROM T;
IF(rowCount > 0) THEN
 SET retcode = 1;
ELSE
 SET retcode = 0;
END IF;
EXIT retcode;

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 685

Note
You cannot write the following the statement because EXIT is an Interactive SQL statement (not a SQL
statement), and you cannot include any Interactive SQL statement in other SQL block statements.

CREATE VARIABLE rowCount INT;
SELECT COUNT(*) INTO rowCount FROM T;
IF(rowCount > 0) THEN
 EXIT 1; // <-- not allowed
ELSE
 EXIT 0; // <-- not allowed
END IF;

EXPLAIN statement [ESQL]
Retrieves a text specification of the optimization strategy used for a particular cursor.

Syntax
EXPLAIN PLAN FOR CURSOR cursor-name
{ INTO hostvar | USING DESCRIPTOR sqlda-name }

cursor-name : identifier or hostvar

sqlda-name : identifier

Remarks
The EXPLAIN statement retrieves a text representation of the optimization strategy for the named cursor.
The cursor must be previously declared and opened.

The hostvar or sqlda-name variable must be of string type. The optimization string specifies in what order
the tables are searched, and also which indexes are being used for the searches if any.

This string may be long, depending on the query, and has the following format:

table (index), table (index), ...

If a table has been given a correlation name, the correlation name will appear instead of the table name.
The order that the table names appear in the list is the order in which they are accessed by the database
server. After each table is a parenthesized index name. This is the index that is used to access the table. If
no index is used (the table is scanned sequentially) the letters "seq" will appear for the index name. If a
particular SQL SELECT statement involves subqueries, a colon (:) will separate each subquery's
optimization string. These subquery sections will appear in the order that the database server executes the
queries.

After successful execution of the EXPLAIN statement, the sqlerrd field of the SQLCA
(SQLIOESTIMATE) is filled in with an estimate of the number of input/output operations required to
fetch all rows of the query.

A discussion with quite a few examples of the optimization string can be found in “Improving database
performance” [SQL Anywhere Server - SQL Usage].

SQL statements

686 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Permissions
Must have opened the named cursor.

Side effects
None.

See also
● “DECLARE CURSOR statement [ESQL] [SP]” on page 628
● “PREPARE statement [ESQL]” on page 788
● “FETCH statement [ESQL] [SP]” on page 687
● “CLOSE statement [ESQL] [SP]” on page 467
● “OPEN statement [ESQL] [SP]” on page 777
● “Using cursors in embedded SQL” [SQL Anywhere Server - Programming]
● “The SQL Communication Area (SQLCA)” [SQL Anywhere Server - Programming]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example illustrates the use of EXPLAIN:

EXEC SQL BEGIN DECLARE SECTION;
char plan[300];
EXEC SQL END DECLARE SECTION;
EXEC SQL DECLARE employee_cursor CURSOR FOR
 SELECT EmployeeID, Surname
 FROM Employees
 WHERE Surname like :pattern;
EXEC SQL OPEN employee_cursor;
EXEC SQL EXPLAIN PLAN FOR CURSOR employee_cursor INTO :plan;
printf("Optimization Strategy: '%s'.n", plan);

The plan variable contains the following string:

'Employees <seq>'

FETCH statement [ESQL] [SP]
Positions, or re-positions, a cursor to a specific row, and then copies expression values from that row into
variables accessible from within the stored procedure or application.

Syntax 1 [SP]
FETCH [cursor-position] cursor-name
INTO variable-list [FOR UPDATE]

Syntax 2 [ESQL]
FETCH [cursor-position] cursor-name
[INTO { hostvar-list | variable-list } | USING [SQL] DESCRIPTOR sqlda-name]

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 687

[PURGE]
[BLOCK n]
[FOR UPDATE]
[ARRAY fetch-count]

cursor-position :
 NEXT | PRIOR | FIRST | LAST
| { ABSOLUTE | RELATIVE } row-count

row-count : number or hostvar

cursor-name : identifier or hostvar

hostvar-list : may contain indicator variables

variable-list : stored procedure variables

sqlda-name : identifier

fetch-count : integer or hostvar

Parameters
● INTO clause The INTO clause is optional. If it is not specified, the FETCH statement positions the

cursor only. The hostvar-list is for embedded SQL use only.

● cursor position An optional positional parameter allows the cursor to be moved before a row is
fetched. If not specified, NEXT is assumed. If the fetch includes a positioning parameter and the
position is outside the allowable cursor positions, the SQLE_NOTFOUND warning is issued and the
SQLCOUNT field indicates the offset from a valid position.

The OPEN statement initially positions the cursor before the first row.

● NEXT clause Next is the default positioning, and causes the cursor to be advanced one row before
the row is fetched.

● PRIOR clause Causes the cursor to be backed up one row before fetching.

● RELATIVE clause RELATIVE positioning is used to move the cursor by a specified number of
rows in either direction before fetching. A positive number indicates moving forward and a negative
number indicates moving backward. So, a NEXT is equivalent to RELATIVE 1 and PRIOR is
equivalent to RELATIVE -1. RELATIVE 0 retrieves the same row as the last fetch statement on this
cursor.

● ABSOLUTE clause The ABSOLUTE positioning parameter is used to go to a particular row. A
zero indicates the position before the first row. See “Using cursors in procedures and triggers” [SQL
Anywhere Server - SQL Usage].

A one (1) indicates the first row, and so on. Negative numbers are used to specify an absolute position
from the end of the cursor. A negative one (-1) indicates the last row of the cursor.

● FIRST clause A short form for ABSOLUTE 1.

SQL statements

688 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● LAST clause A short form for ABSOLUTE -1.

Cursor positioning problems
Inserts and some updates to DYNAMIC SCROLL cursors can cause problems with cursor
positioning. The database server does not put inserted rows at a predictable position within a cursor
unless there is an ORDER BY clause on the SELECT statement. Sometimes the inserted row does not
appear until the cursor is closed and opened again.

This occurs if a temporary table had to be created to open the cursor. For a description, see “Use work
tables in query processing (use All-rows optimization goal)” [SQL Anywhere Server - SQL Usage].

The UPDATE statement may cause a row to move in the cursor. This will happen if the cursor has an
ORDER BY that uses an existing index (a temporary table is not created).

● BLOCK clause Rows may be fetched by the client application more than one at a time. This is
referred to as block fetching, prefetching, or multi-row fetching. The first fetch causes several rows to
be sent back from the database server. The client buffers these rows, and subsequent fetches are
retrieved from these buffers without a new request to the database server.

The BLOCK clause is for use in embedded SQL only. It gives the client and server a hint about how
many rows may be fetched by the application. The special value of 0 means the request is sent to the
database server and a single row is returned (no row blocking). The BLOCK clause will reduce the
number of rows included in the next prefetch to the BLOCK value. To increase the number of rows
prefetched, use the PrefetchRows connection parameter.

If you do not specify a BLOCK clause, the value specified on OPEN is used. See “OPEN statement
[ESQL] [SP]” on page 777.

FETCH RELATIVE 0 always re-fetches the row.

If prefetch is disabled for the cursor, the BLOCK clause is ignored and rows are fetched one at a time.
If ARRAY is also specified, then the number of rows specified by ARRAY are fetched.

● PURGE clause The PURGE clause is for use in embedded SQL only. It causes the client to flush
its buffers of all rows, and then send the fetch request to the database server. Note that this fetch
request may return a block of rows.

● FOR UPDATE clause The FOR UPDATE clause indicates that the fetched row will subsequently
be updated with an UPDATE WHERE CURRENT OF CURSOR statement. This clause causes the
database server to put an intent lock on the row. The lock is held until the end of the current
transaction. See “How locking works” [SQL Anywhere Server - SQL Usage] and the FOR UPDATE
clause of the “SELECT statement” on page 825.

● ARRAY clause The ARRAY clause is for use in embedded SQL only. It allows so-called wide
fetches, which retrieve more than one row at a time, and which may improve performance.

To use wide fetches in embedded SQL, include the fetch statement in your code as follows:

EXEC SQL FETCH ... ARRAY nnn

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 689

where ARRAY nnn is the last item of the FETCH statement. The fetch count nnn can be a host
variable. The SQLDA must contain nnn * (columns per row) variables. The first row is placed in
SQLDA variables 0 to (columns per row)-1, and so on.

For a detailed example of using wide fetches, see “Fetching more than one row at a time” [SQL
Anywhere Server - Programming].

Remarks
The FETCH statement retrieves one row from the named cursor. The cursor must have been previously
opened.

● Embedded SQL use A DECLARE CURSOR statement must appear before the FETCH statement
in the C source code, and the OPEN statement must be executed before the FETCH statement. If a
host variable is being used for the cursor name, the DECLARE statement actually generates code and
must be executed before the FETCH statement.

The server returns in SQLCOUNT the number of records fetched, and always returns a SQLCOUNT
greater than zero unless there is an error or warning.

If the SQLSTATE_NOTFOUND warning is returned on the fetch, the sqlerrd[2] field of the SQLCA
(SQLCOUNT) contains the number of rows by which the attempted fetch exceeded the allowable
cursor positions. The value is 0 if the row was not found but the position is valid; for example,
executing FETCH RELATIVE 1 when positioned on the last row of a cursor. The value is positive if
the attempted fetch was beyond the end of the cursor, and negative if the attempted fetch was before
the beginning of the cursor. The cursor is positioned on the last row if the attempted fetch was beyond
the end of the cursor, and on the first row if the attempted fetch was before the beginning of the cursor.

After successful execution of the fetch statement, the sqlerrd[1] field of the SQLCA (SQLIOCOUNT)
is incremented by the number of input/output operations required to perform the fetch. This field is
actually incremented on every database statement.

● Single row fetch One row from the result of the SELECT statement is put into the variables in the
variable list. The correspondence is one-to-one from the select list to the host variable list.

● Multi-row fetch One or more rows from the result of the SELECT statement are put into either the
variables in variable-list or the program data areas described by sqlda-name. In either case, the
correspondence is one-to-one from the select-list to either the hostvar-list or the sqlda-name descriptor
array.

Permissions
The cursor must be opened, and the user must have SELECT permission on the tables referenced in the
declaration of the cursor.

Side effects
A FETCH statement may cause multiple rows to be retrieved from the server to the client if prefetching is
enabled. See “prefetch option” [SQL Anywhere Server - Database Administration].

SQL statements

690 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “DECLARE CURSOR statement [ESQL] [SP]” on page 628
● “PREPARE statement [ESQL]” on page 788
● “OPEN statement [ESQL] [SP]” on page 777
● “Using cursors in embedded SQL” [SQL Anywhere Server - Programming]
● “Using cursors in procedures and triggers” [SQL Anywhere Server - SQL Usage]
● “FOR statement” on page 691
● “RESUME statement” on page 812
● “Fetching data” [SQL Anywhere Server - Programming]

Standards and compatibility
● SQL/2008 With minor exceptions, Syntax 1 of the FETCH statement is a core feature of the SQL/

2008 standard. Scrolling options other than NEXT constitute optional SQL language feature F431,
"Read-only scrollable cursors". SQL Anywhere does not support the optional FROM clause of the
FETCH statement as documented in the SQL/2008 standard.

Syntax 2 is a vendor extension.

The FOR UPDATE, PURGE, ARRAY, BLOCK, and USING [SQL] DESCRIPTOR clauses are
vendor extensions.

Example
The following is an embedded SQL example:

EXEC SQL DECLARE cur_employee CURSOR FOR
SELECT EmployeeID, Surname FROM Employees;
EXEC SQL OPEN cur_employee;
EXEC SQL FETCH cur_employee
INTO :emp_number, :emp_name:indicator;

The following is a procedure example:

BEGIN
 DECLARE cur_employee CURSOR FOR
 SELECT Surname
 FROM Employees;
 DECLARE name CHAR(40);
 OPEN cur_employee;
 lp: LOOP
 FETCH NEXT cur_employee into name;
 IF SQLCODE <> 0 THEN LEAVE lp END IF;
 ...
 END LOOP;
 CLOSE cur_employee;
END

FOR statement
Repeats the execution of a statement list once for each row in a cursor.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 691

Syntax
[statement-label :]
FOR for-loop-name AS cursor-name [cursor-type] CURSOR
 { FOR statement [FOR { UPDATE cursor-concurrency | FOR READ ONLY }]
 | USING variable-name }
 DO statement-list
END FOR [statement-label]

cursor-type :
NO SCROLL
 | DYNAMIC SCROLL
 | SCROLL
 | INSENSITIVE
 | SENSITIVE

cursor-concurrency : BY { VALUES | TIMESTAMP | LOCK }

variable-name : identifier

Parameters
NO SCROLL clause A cursor declared NO SCROLL is restricted to moving forward through the
result set using FETCH NEXT and FETCH RELATIVE 0 seek operations.

As rows cannot be returned to once the cursor leaves the row, there are no sensitivity restrictions on the
cursor. When a NO SCROLL cursor is requested, SQL Anywhere supplies the most efficient kind of
cursor, which is an asensitive cursor. See “Asensitive cursors” [SQL Anywhere Server - Programming].

DYNAMIC SCROLL clause DYNAMIC SCROLL is the default cursor type. DYNAMIC SCROLL
cursors can use all formats of the FETCH statement.

When a DYNAMIC SCROLL cursor is requested, SQL Anywhere supplies an asensitive cursor. When
using cursors there is always a trade-off between efficiency and consistency. Asensitive cursors provide
efficient performance at the expense of consistency. See “Asensitive cursors” [SQL Anywhere Server -
Programming].

SCROLL clause A cursor declared SCROLL can use all formats of the FETCH statement. When a
SCROLL cursor is requested, SQL Anywhere supplies a value-sensitive cursor. See “Value-sensitive
cursors” [SQL Anywhere Server - Programming].

SQL Anywhere must execute value-sensitive cursors in such a way that result set membership is
guaranteed. DYNAMIC SCROLL cursors are more efficient and should be used unless the consistent
behavior of SCROLL cursors is required.

INSENSITIVE clause A cursor declared INSENSITIVE has its membership fixed when it is opened; a
temporary table is created with a copy of all the original rows. FETCHING from an INSENSITIVE cursor
does not see the effect of any other INSERT, UPDATE, or DELETE statement, or any other PUT,
UPDATE WHERE CURRENT, DELETE WHERE CURRENT operations on a different cursor. It does
see the effect of PUT, UPDATE WHERE CURRENT, DELETE WHERE CURRENT operations on the
same cursor. See “Insensitive cursors” [SQL Anywhere Server - Programming].

SQL statements

692 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SENSITIVE clause A cursor declared SENSITIVE is sensitive to changes to membership or values of
the result set. See “Sensitive cursors” [SQL Anywhere Server - Programming].

FOR UPDATE clause FOR UPDATE is the default. Cursors default to FOR UPDATE for single-table
queries without an ORDER BY clause, or if the ansi_update_constraints option is set to Off. When the
ansi_update_constraints option is set to Cursors or Strict, then cursors over a query containing an ORDER
BY clause default to READ ONLY. However, you can explicitly mark cursors as updatable using the
FOR UPDATE clause.

FOR READ ONLY clause A cursor declared FOR READ ONLY cannot be used in UPDATE
(positioned), DELETE (positioned), or PUT statements. Because it is expensive to allow updates over
cursors with an ORDER BY clause or a join, cursors over a query containing a join of two or more tables
are READ ONLY and cannot be made updatable unless the ansi_update_constraints database option is
Off. In response to any request for a cursor that specifies FOR UPDATE, SQL Anywhere provides either
a value-sensitive cursor or a sensitive cursor. Insensitive and asensitive cursors are not updatable.

Remarks
The FOR statement is a control statement that allows you to execute a list of SQL statements once for
each row in a cursor. The FOR statement is equivalent to a compound statement with a DECLARE for the
cursor and a DECLARE of a variable for each column in the result set of the cursor followed by a loop
that fetches one row from the cursor into the local variables and executes statement-list once for each row
in the cursor.

Valid cursor types include dynamic scroll (default), scroll, no scroll, sensitive, and insensitive.

The name and data type of each local variable is derived from the statement used in the cursor. With a
SELECT statement, the data types are the data types of the expressions in the select list. The names are
the select list item aliases, if they exist; otherwise, they are the names of the columns. Any select list item
that is not a simple column reference must have an alias. With a CALL statement, the names and data
types are taken from the RESULT clause in the procedure definition.

The LEAVE statement can be used to resume execution at the first statement after the END FOR. If the
ending statement-label is specified, it must match the beginning statement-label.

The cursor created by a FOR statement is implicitly opened WITH HOLD, so statements executed within
the loop that cause a COMMIT do not cause the cursor to be closed.

Permissions
None.

Side effects
None.

See also
● “DECLARE CURSOR statement [ESQL] [SP]” on page 628
● “FETCH statement [ESQL] [SP]” on page 687
● “CONTINUE statement” on page 476
● “LOOP statement” on page 765

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 693

Standards and compatibility
● SQL/2008 The FOR statement is part of optional SQL/2008 language feature P002,

"Computational completeness". As with the DECLARE CURSOR statement, the use of cursor-
concurrency is a vendor extension, as are the combinations of cursor sensitivity and cursor
scrollability options; see “DECLARE CURSOR statement [ESQL] [SP]” on page 628. The USING
clause of the FOR statement is also a vendor extension.

Example
The following fragment illustrates the use of the FOR loop.

FOR names AS curs INSENSITIVE CURSOR FOR
SELECT Surname
FROM Employees
DO
 CALL search_for_name(Surname);
END FOR;

This fragment also illustrates the use of the FOR loop.

BEGIN
 FOR names AS curs SCROLL CURSOR FOR
 SELECT EmployeeID, GivenName FROM Employees where EmployeeID < 130
 FOR UPDATE BY VALUES
 DO
 MESSAGE 'emp: ' || GivenName;
 END FOR;
END

The following example shows the FOR loop being using inside of a procedure called myproc, which
returns the top 10 employees from the Employees table, depending on the sort order specified when
calling the procedure (asc for ascending, and desc for descending).

CALL sa_make_object('procedure', 'myproc') ;
ALTER PROCEDURE myproc (
 IN @order_by VARCHAR(20) DEFAULT NULL
)
RESULT (Surname person_name_t)
BEGIN
 DECLARE @sql LONG VARCHAR;
 DECLARE @msg LONG VARCHAR;
 DECLARE LOCAL TEMPORARY TABLE temp_names(surnames person_name_t);
 SET @sql = 'SELECT TOP(10) * FROM Employees AS t ' ;
 CASE @order_by
 WHEN 'asc' THEN
 SET @sql = @sql || 'ORDER BY t.Surname ASC';
 SET @msg = 'Sorted ascending by last name: ';
 WHEN 'desc' THEN
 SET @sql = @sql || 'ORDER BY t.Surname DESC';
 SET @msg = 'Sorted ascending by last name: ';
 END CASE;
 FOR loop_name AS SCROLL CURSOR USING @sql
 DO
 INSERT INTO temp_names(surnames) VALUES(Surname);
 MESSAGE(@msg || Surname) ;
 END FOR;
 SELECT * FROM temp_names;
END ;

SQL statements

694 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Calling the myproc procedure and specifying asc (for example, CALL myproc('asc');) returns
the following results:

Surname

Ahmed

Barker

Barletta

Bertrand

Bigelow

Blaikie

Braun

Breault

Bucceri

Butterfield

FORWARD TO statement
Sends native syntax SQL statements to a remote server.

Syntax 1
FORWARD TO server-name sql-statement

Syntax 2
FORWARD TO [server-name]

Remarks
The FORWARD TO statement enables users to specify the server to which a passthrough connection is
required. The statement can be used in two ways:

● Syntax 1 Send a single statement to a remote server.

● Syntax 2 Place SQL Anywhere into passthrough mode for sending a series of statements to a
remote server. All subsequent statements are passed directly to the remote server. To turn passthrough
mode off, issue FORWARD TO without a server-name specification.

If you encounter an error from the remote server while in passthrough mode, you must still issue a
FORWARD TO statement to turn passthrough off.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 695

When establishing a connection to server-name on behalf of the user, the database server uses one of the
following:

● A remote login alias set using CREATE EXTERNLOGIN

● If a remote login alias is not set up, the name and password used to communicate with SQL Anywhere

If the connection cannot be made to the server specified, the reason is contained in a message returned to
the user.

After statements are passed to the requested server, any results are converted into a form that can be
recognized by the client program.

server-name The name of the remote server.

SQL-statement A command in the native SQL syntax of the remote server. The command or group of
commands is enclosed in curly brackets ({}) or single quotes.

Note
The FORWARD TO statement is a server directive and cannot be used in stored procedures, triggers,
events, or batches.

Permissions
None

Side effects
The remote connection is set to AUTOCOMMIT (unchained) mode for the duration of the FORWARD
TO session. Any work that was pending before the FORWARD TO statement is automatically committed.

Example
The following example sends a SQL statement to the remote server RemoteASE:

FORWARD TO RemoteASE { SELECT * FROM titles };

The following example shows a passthrough session with the remote server aseprod:

FORWARD TO aseprod
 SELECT * FROM titles
 SELECT * FROM authors
FORWARD TO;

Standards and compatibility
● SQL/2008 Vendor extension.

FROM clause
Specifies the database tables or views involved in a DELETE, SELECT, or UPDATE statement. When
used within a SELECT statement, the FROM clause can also be used in a MERGE or INSERT statement.

SQL statements

696 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
FROM table-expression, ...

table-expression :
table-name
| view-name
| procedure-name
| derived-table
| lateral-derived-table
| join-expression
| (table-expression, ...)
| openstring-expression
| apply-expression
| contains-expression
| dml-derived-table

table-name :
[userid.]table-name]
[[AS] correlation-name]
[WITH (hint [...])]
[FORCE INDEX (index-name)]

view-name :
[userid.]view-name [[AS] correlation-name]
[WITH (table-hint)]

procedure-name :
[owner.]procedure-name ([parameter, ...])
[WITH (column-name data-type, ...)]
[[AS] correlation-name]

derived-table :
(select-statement)
[AS] correlation-name [(column-name, ...)]

lateral-derived-table :
LATERAL (select-statement | table-expression)
[AS] correlation-name [(column-name, ...)]

join-expression :
table-expression join-operator table-expression
[ON join-condition]

join-operator :
[KEY | NATURAL] [join-type] JOIN
| CROSS JOIN

join-type :
INNER
| LEFT [OUTER]
| RIGHT [OUTER]
| FULL [OUTER]

hint :
table-hint | index-hint

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 697

table-hint :
READPAST
| UPDLOCK
| XLOCK
| FASTFIRSTROW
| HOLDLOCK
| NOLOCK
| READCOMMITTED
| READUNCOMMITTED
| REPEATABLEREAD
| SERIALIZABLE

index-hint :
NO INDEX
| INDEX ([PRIMARY KEY | FOREIGN KEY] index-name [, ...]) [INDEX ONLY { ON | OFF }]

openstring-expression :
OPENSTRING ({ FILE | VALUE } string-expression)
WITH (rowset-schema)
 [OPTION (scan-option ...)]
 [AS] correlation-name

apply-expression :
table-expression { CROSS | OUTER } APPLY table-expression

contains-expression :
{ table-name | view-name } CONTAINS (column-name [,...], contains-query) [[AS] score-correlation-
name]

rowset-schema :
column-schema-list
| TABLE [owner.]table-name [(column-list)]

column-schema-list :
{ column-name user-or-base-type | filler() } [, ...]

column-list :
{ column-name | filler() } [, ...]

scan-option :
BYTE ORDER MARK { ON | OFF }
| COMMENTS INTRODUCED BY comment-prefix
| DELIMITED BY string
| ENCODING encoding
| ESCAPE CHARACTER character
| ESCAPES { ON | OFF }
| FORMAT { TEXT | BCP
| HEXADECIMAL { ON | OFF }
| QUOTE string
| QUOTES { ON | OFF }
| ROW DELIMITED BY string
| SKIP integer
| STRIP { ON | OFF | LTRIM | RTRIM | BOTH }

contains-query : string

SQL statements

698 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

dml-derived-table :
(dml-statement) REFERENCING ([table-version-names | NONE])

dml-statement :
insert-statement
delete-statement
update-statement
merge-statement

table-version-names :
OLD [AS] correlation-name [FINAL [AS] correlation-name]
| FINAL [AS] correlation-name

Parameters

● table-name A base table or temporary table. Tables owned by a different user can be qualified by
specifying the user ID. Tables owned by groups to which the current user belongs are found by default
without specifying the user ID. See “Referring to tables owned by groups” [SQL Anywhere Server -
Database Administration].

● view-name Specifies a view to include in the query. As with tables, views owned by a different
user can be qualified by specifying the user ID. Views owned by groups to which the current user
belongs are found by default without specifying the user ID. Although the syntax permits table hints
on views, these hints have no effect.

● procedure-name A stored procedure that returns a result set. This clause applies to the FROM
clause of SELECT statements only. The parentheses following the procedure name are required even
if the procedure does not take parameters. If the stored procedure returns multiple result sets, only the
first is used.

The WITH clause provides a way of specifying column name aliases for the procedure result set. If a
WITH clause is specified, the number of columns must match the number of columns in the procedure
result set, and the data types must be compatible with those in the procedure result set. If no WITH
clause is specified, the column names and types are those defined by the procedure definition. The
following query illustrates the use of the WITH clause:

SELECT sp.ident, sp.quantity, Products.name
FROM ShowCustomerProducts(149) WITH (ident INT, description CHAR(20),
quantity INT) sp
 JOIN Products
ON sp.ident = Products.ID;

When you create a procedure without a RESULT clause and the procedure returns a variable result
set, a DESCRIBE of the SELECT statement referencing the procedure may fail. To prevent the failure
of the DESCRIBE, it is recommended that you include a WITH clause that describes the expected
result set schema.

● derived-table You can supply a SELECT statement instead of table or view name in the FROM
clause. A SELECT statement used in this way is called a derived table, and it must be given an alias.
For example, the following statement contains a derived table, MyDerivedTable, which ranks
products in the Products table by UnitPrice.

SELECT TOP 3 *
 FROM (SELECT Description,

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 699

 Quantity,
 UnitPrice,
 RANK() OVER (ORDER BY UnitPrice ASC)
 AS Rank
 FROM Products) AS MyDerivedTable
ORDER BY Rank;

For more information about derived tables, see “Querying derived tables” [SQL Anywhere Server -
SQL Usage].

● lateral-derived-table A derived table, stored procedure, or joined table that may include
references to objects in the parent statement (outer references). You must use a lateral derived table if
you want to use an outer reference in the FROM clause.

You can use outer references only to tables that precede the lateral derived table in the FROM clause.
For example, you cannot use an outer reference to an item in the select-list.

The table and the outer reference must be separated by a comma. For example, the following queries
are valid:

SELECT *
 FROM A, LATERAL(B LEFT OUTER JOIN C ON (A.x = B.x)) LDT;
SELECT *
 FROM A, LATERAL(SELECT * FROM B WHERE A.x = B.x) LDT;
SELECT *
 FROM A, LATERAL(procedure-name(A.x)) LDT;

Specifying LATERAL (table-expression) is equivalent to specifying LATERAL (SELECT * FROM
table-expression).

● openstring-expression Specify an OPENSTRING clause to query within a file or a BLOB,
treating the content of these sources as a set of rows. When doing so, you also specify information
about the schema of the file or BLOB for the result set to be generated, since you are not querying a
defined structure such as a table or view. This clause applies to the FROM clause of a SELECT
statement. It is not supported for UPDATE or DELETE statements.

The ROWID function is supported over the result set of a table generated by an OPENSTRING
expression.

The following subclauses and parameters of the OPENSTRING clause are used to define and query
data within files and BLOBs:

FILE and VALUE clauses Use the FILE clause to specify the file to query. Use the VALUE
clause to specify the BLOB expression to query. The data type for the BLOB expression is assumed to
be LONG BINARY. You can specify the READ_CLIENT_FILE function as a value to the VALUE
clause.

If neither the FILE nor VALUE keyword is specified, VALUE is assumed.

When using FORMAT SHAPEFILE, only FILE is assumed. See “Support for ESRI shapefiles” [SQL
Anywhere Server - Spatial Data Support].

SQL statements

700 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

WITH clause Use this clause to specify the rowset schema (column names and data types) of the
data being queried. You can specify the columns directly (for example, WITH (Surname
CHAR(30), GivenName CHAR(30))). You can also use the TABLE subclause to reference a
table to use to obtain schema information from (for example, WITH TABLE dba.Employees
(Surname, GivenName)). You must own or have SELECT permissions on the table you specify.

When specifying columns, you can specify filler() for columns you want to skip in the input data (for
example, WITH (filler(), Surname CHAR(30), GivenName CHAR(30))). For
more information about the use of filler(), see “LOAD TABLE statement” on page 750.

OPTION clause Use the OPTION clause to specify parsing options to use for the input file, such
as escape characters, delimiters, encoding, and so on. Supported options comprise those options for
the LOAD TABLE statement that control the parsing of an input file. See “LOAD TABLE
statement” on page 750.

● scan-option For a description of each scan option, see the load options described in “LOAD
TABLE statement” on page 750.

● apply-expression Use this clause to specify a join condition where the right table-expression is
evaluated for every row in the left table-expression. For example, you can use an apply expression to
evaluate a function, procedure, or derived table for each row in a table expression. See “Joins resulting
from apply expressions” [SQL Anywhere Server - SQL Usage].

● contains-expression Use the CONTAINS clause following a table name to filter the table and
return only those rows matching the full text query specified with contains-query. Every matching
row of the table is returned together with a score column that can be referred to using score-correlation-
name, if it is specified. If score-correlation-name is not specified, then the score column can be
referred to by the default correlation name, contains.

With the exception of the optional correlation name argument, the CONTAINS clause takes the same
arguments as those of the CONTAINS search condition. See “CONTAINS search
condition” on page 47.

There must be a text index on the columns listed in the CONTAINS clause. See “How to manage text
indexes” [SQL Anywhere Server - SQL Usage].

The contains-query cannot be NULL or an empty string. If the text configuration settings cause all of
the terms in the contains-query to be dropped, rows from the base table referenced by the contains-
expression are not returned. For additional information on text configuration object settings, see “Text
configuration object settings” [SQL Anywhere Server - SQL Usage]. For more information about how
the contains-query-string is interpreted, see “Example text configuration objects” [SQL Anywhere
Server - SQL Usage].

● correlation-name Use correlation-name to specify a substitute name for a table or view in the
FROM clause. The substitute name can then be referenced from elsewhere in the statement. For
example, emp and dep are correlation names for the Employees and Departments tables, respectively:

SELECT Surname, GivenName, DepartmentName
 FROM Employees emp, Departments dep,
 WHERE emp.DepartmentID=dep.DepartmentID;

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 701

● dml-statement Use dml-statement to specify the DML statement (INSERT, DELETE, UPDATE,
or MERGE) from which you want to select rows. During execution, the DML statement specified in
dml-derived-table is executed first, and the rows affected by that DML are materialized into a
temporary table whose columns are described by the REFERENCING clause. The temporary table
represents the result set of dml-derived-table.

Use REFERENCING () or REFERENCING (NONE) if the results do not need to be materialized
into a temporary table because you are not referencing them in the query.

If you specify REFERENCING () or REFERENCING (NONE), the updated rows are not
materialized into a temporary table that represents the result set of dml-derived-table because they are
not being referenced in the query. The temporary table in this case is an empty table. You can use this
feature if you want dml-statement to be executed before the main statement is executed.

In the results, OLD columns contain the values as seen by the scan that finds the rows to include in the
update operation. FINAL columns contain the values after referential integrity checks have been
made, computed and default columns have been updated, and all triggers have fired (excluding
AFTER triggers of type FOR STATEMENT).

Statement Supported table versions

INSERT FINAL

DELETE OLD

UPDATE FINAL and/or OLD

MERGE FINAL and/or OLD

When specifying both OLD and FINAL names, two correlation names are used; however, these are
not true correlations since they both refer to the same result set. If you specify REFERENCING (OLD
AS O FINAL AS F), there is an implicit join predicate: O.rowid = F.rowid.

The INSERT statement only supports FINAL. Consequently the values of updated rows that are
modified by an INSERT ON EXISTING UPDATE statement do not appear in the result set of the
derived table. Instead, use the MERGE statement to perform the insert-else-update processing.

The dml-derived-table statement can only reference one updatable table; updates over multiple tables
return an error. Also, selecting from dml-statement is not allowed if the DML statement appears inside
a correlated subquery or common table expression because the semantics of these constructs can be
unclear.

For more information, see “Executing a SELECT over a DML statement” [SQL Anywhere Server -
SQL Usage] and “Data modification statements” [SQL Anywhere Server - SQL Usage].

● WITH table-hint clause The WITH table-hint clause allows you to specify the behavior to be used
only for this table, and only for this statement. Use this clause to change the behavior without
changing the isolation level or setting a database or connection option. Table hints can be used for
base tables, temporary tables, and materialized views.

SQL statements

702 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Caution
The WITH table-hint clause is an advanced feature that should be used only if needed, and only by
experienced database administrators. In addition, the setting may not be respected in all situations.

○ Isolation level related table hints The isolation level table hints are used to specify isolation
level behavior when querying tables. They specify a locking method that is used only for the
specified tables, and only for the current query. You cannot specify snapshot isolation levels as
table hints.

Following is the list of supported isolation level related table hints:

Table hint Description

HOLD-
LOCK

Sets the behavior to be equivalent to isolation level 3. This table hint is synony-
mous with SERIALIZABLE.

NOLOCK Sets the behavior to be equivalent to isolation level 0. This table hint is synony-
mous with READUNCOMMITTED.

READCOM-
MITTED

Sets the behavior to be equivalent to isolation level 1.

READPAST Instructs the database server to ignore, instead of block on, write-locked rows.
This table hint can only be used with isolation level 1. The READPAST hint is
respected only when the correlation name in the FROM clause refers to a base
or globally shared temporary table. In other situations (views, proxy tables, and
table functions) the READPAST hint is ignored. Queries within views may uti-
lize READPAST as long as the hint is specified for a correlation name that is a
base table. The use of the READPAST table hint can lead to anomalies due to
the interaction of locking and predicate evaluation within the server. In addi-
tion, you cannot use the READPAST hint against tables that are the targets of a
DELETE, INSERT or UPDATE statement.

READUN-
COMMIT-
TED

Sets the behavior to be equivalent to isolation level 0. This table hint is synony-
mous with NOLOCK.

REPEATA-
BLEREAD

Sets the behavior to be equivalent to isolation level 2.

SERIALIZ-
ABLE

Sets the behavior to be equivalent to isolation level 3. This table hint is synony-
mous with HOLDLOCK.

UPDLOCK Indicates that rows processed by the statement from the hinted table are locked
using intent locks. The affected rows remain locked until the end of the transac-
tion. UPDLOCK works at all isolation levels and uses intent locks. See “Intent
locks” [SQL Anywhere Server - SQL Usage].

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 703

Table hint Description

XLOCK Indicates that rows processed by the statement from the hinted table are to be
locked exclusively. The affected rows remain locked until the end of the trans-
action. XLOCK works at all isolation levels and uses write locks. See “Write
locks” [SQL Anywhere Server - SQL Usage].

For information about isolation levels, see “Isolation levels and consistency” [SQL Anywhere
Server - SQL Usage].

Using READPAST with MobiLink synchronization
If you are writing queries for databases that participate in MobiLink synchronization, it is
recommended that you do not use the READPAST table hint in your synchronization scripts.

For more information, see:

● “download_cursor table event” [MobiLink - Server Administration]
● “download_delete_cursor table event” [MobiLink - Server Administration]
● “upload_fetch table event” [MobiLink - Server Administration]

If you are considering READPAST because your application performs many updates that affect
download performance, an alternative solution is to use snapshot isolation. See “MobiLink
isolation levels” [MobiLink - Server Administration].

○ Optimization table hint (FASTFIRSTROW) The FASTFIRSTROW table hint allows you to
set the optimization goal for the query without setting the optimization_goal option to First-row.
When you use FASTFIRSTROW, SQL Anywhere chooses an access plan that is intended to
reduce the time to fetch the first row of the query's result. See “optimization_goal option” [SQL
Anywhere Server - Database Administration].

● WITH (index-hint) clause The WITH (index-hint) clause allows you to specify index hints that
override the query optimizer plan selection algorithms, and tell the optimizer exactly how to access
the table using indexes. Index hints can be used for base tables, temporary tables, and materialized views.

○ NO INDEX Use this clause to force a sequential scan of the table (indexes are not used).
Sequential scans may be very costly.

○ INDEX ([PRIMARY KEY | FOREIGN KEY] index-name [,...]) Use this clause to specify
up to four indexes that the optimizer must use to satisfy the query.

If any of the specified indexes cannot be used, an error is returned.

You can specify PRIMARY KEY or FOREIGN KEY to remove ambiguity in the cases where the
PRIMARY KEY index and FOREIGN KEY index on a table have the same name.

index-name can be qualified by specifying the user ID and the table name of the index.

The indexes specified in the INDEX clause must be indexes defined for that table; otherwise, an
error is returned. For example, FROM Products WITH(INDEX (Products.xx)) returns

SQL statements

704 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

an error if the index xx is not defined for the Products table. Likewise, FROM Products
WITH(INDEX (sales_order_items.sales_order_items)) returns an error
because the sales_order_items.sales_order_items index exists but is not defined for the Products
table.

○ INDEX ONLY { ON | OFF } Use this clause to control whether an index-only retrieval of data is
performed. If the INDEX (index-name...) clause is specified with INDEX ONLY ON, the
database server attempts an index-only retrieval using the specified indexes. If any of the specified
indexes cannot be used in satisfying an index-only retrieval, an error is returned (for example, if
there are no indexes, or if the existing indexes cannot satisfy the query).

Specify INDEX ONLY OFF to prevent an index-only retrieval.

● FORCE INDEX (index-name) The FORCE INDEX (index-name) syntax is provided for
compatibility, and does not support specifying more than one index. Use this clause to specify the
index that the optimizer must use to find rows in the table that satisfy the query.

Remarks
Subqueries are not allowed as arguments to a store procedures in the FROM clause. For example, the
following statement returns an error:

SELECT *, (SELECT 12 x) D
FROM sa_rowgenerator(1,(SELECT 12 x)):

The SELECT, UPDATE, and DELETE statements require a table list to specify which tables are used by
the statement.

Views and derived tables
Although the FROM clause description refers to tables, it also applies to views and derived tables unless
otherwise noted.

The FROM clause creates a result set consisting of all the columns from all the tables specified. Initially,
all combinations of rows in the component tables are in the result set, and the number of combinations is
usually reduced by JOIN conditions and/or WHERE conditions.

You cannot use an ON phrase with CROSS JOIN.

Permissions
The FILE clause of openstring-expression requires either DBA or READFILE authority.

The TABLE clause of openstring-expression requires the user, to own or have SELECT permissions on,
the specified table.

Side effects
None.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 705

See also
● “DELETE statement” on page 637
● “SELECT statement” on page 825
● “UPDATE statement” on page 895
● “INSERT statement” on page 737
● “MERGE statement” on page 767
● “Joins: Retrieving data from several tables” [SQL Anywhere Server - SQL Usage]
● “MultipleIndexScan method (MultIdx)” [SQL Anywhere Server - SQL Usage]
● “Text configuration object settings” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
SQL/2008 The FROM clause is a fundamental part of the SQL/2008 standard. The complexity of the
FROM clause means that you should check individual components of a FROM clause against the
appropriate portions of the standard. The following is a non-exhaustive list of optional SQL/2008
language features supported in SQL Anywhere:

○ CROSS JOIN, FULL OUTER JOIN, and NATURAL JOIN constitute optional SQL/2008 feature F401.

○ INTERSECT and INTERSECT ALL constitute optional SQL/2008 feature F302.

○ EXCEPT ALL is optional language feature F304.

○ derived tables are SQL/2008 language feature F591.

○ procedures in the FROM clause (table functions) are feature T326. Note that the SQL/2008 standard
requires the keyword TABLE to identify the output of a procedure as a table expression, whereas in
SQL Anywhere the TABLE keyword is unnecessary.

○ common table expressions are optional SQL/2008 language feature T121. Using a common table
expression in a derived table nested within another common table expression is language feature T122.

○ recursive table expressions are feature T131. Using a recursive table expression in a derived table
nested within a common table expression is optional SQL/2008 language feature T132.

The following components of the FROM clause are vendor extensions:

○ KEY JOIN.

○ CROSS APPLY and OUTER APPLY.

○ OPENSTRING.

○ a table-expression using CONTAINS (full text search).

○ specifying a dml-statement as a derived table.

○ all table hints, including the use of WITH, FORCE INDEX, READPAST and isolation level hints.

○ LATERAL (table-expression), which is a vendor extension. LATERAL (select-statement) is in the
SQL/2008 standard as optional SQL language feature T491.

SQL statements

706 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example
The following are valid FROM clauses:

...
FROM Employees
...
...
FROM Employees NATURAL JOIN Departments
...
...
FROM Customers
KEY JOIN SalesOrders
KEY JOIN SalesOrderItems
KEY JOIN Products
...
...
FROM Employees CONTAINS (Street, ' Way ')
...

The following query illustrates how to use derived tables in a query:

SELECT Surname, GivenName, number_of_orders
FROM Customers JOIN
 (SELECT CustomerID, COUNT(*)
 FROM SalesOrders
 GROUP BY CustomerID)
 AS sales_order_counts(CustomerID,
 number_of_orders)
ON (Customers.ID = sales_order_counts.CustomerID)
WHERE number_of_orders > 3;

The following query illustrates how to select rows from stored procedure result sets:

SELECT t.ID, t.QuantityOrdered AS q, p.name
FROM ShowCustomerProducts(149) t JOIN Products p
ON t.ID = p.ID;

The following example illustrates how to perform a query using the OPENSTRING clause to query a file.
The CREATE TABLE statement creates a table called testtable with two columns, column1 and
columns2. The UNLOAD statement creates a file called testfile.dat by unloading rows from the
RowGenerator table. The SELECT statement uses the OPENSTRING clause in a FROM clause to query
testfile.dat using the schema information from both the testtable and RowGenerator tables. The query
returns one row with the value 49.

CREATE TABLE testtable(column1 CHAR(10), column2 INT);
UNLOAD SELECT * FROM RowGenerator TO 'testfile.dat';
SELECT A.column2
 FROM OPENSTRING(FILE 'testfile.dat')
 WITH (TABLE testtable(column2)) A, RowGenerator B
 WHERE A.column2 = B.row_num
 AND A.column2 < 50
 AND B.row_num > 48;

The following example illustrates how to perform a query using the OPENSTRING clause to query a
string value. The SELECT statement uses the OPENSTRING clause in a FROM clause to query a string

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 707

value using the schema information provided in the WITH clause. The query returns two columns with
three rows.

SELECT *
 FROM OPENSTRING(VALUE '1,"First"$2,"Second"$3,"Third"')
 WITH (c1 INT, c2 VARCHAR(30))
 OPTION (DELIMITED BY ',' ROW DELIMITED BY '$')
 AS VALS

The following example illustrates how to perform a query to select the rows modified by a data
modification statement. In this example, a warning is issued when the stock of blue items drops by more
than half.

SELECT old_products.name, old_products.quantity, final_products.quantity
FROM
(UPDATE Products SET quantity = quantity - 10 WHERE color = 'Blue')
REFERENCING (OLD AS old_products FINAL AS final_products)
WHERE final_products.quantity < 0.5 * old_products.quantity;

GET DATA statement [ESQL]

Gets string or binary data for one column of the current row of a cursor.

Syntax
GET DATA cursor-name
COLUMN column-num
OFFSET start-offset
[WITH TEXTPTR]
USING DESCRIPTOR sqlda-name | INTO hostvar, ...

cursor-name : identifier, or hostvar

column-num : integer or hostvar

start-offset : integer or hostvar

sqlda-name : identifier

Parameters
COLUMN clause The value of column-num starts at one, and identifies the column whose data is to be
fetched. That column must be of a string or binary type.

OFFSET clause The start-offset indicates the number of bytes to skip over in the field value.
Normally, this would be the number of bytes previously fetched. The number of bytes fetched on this
GET DATA statement is determined by the length of the target host variable.

The indicator value for the target host variable is a short integer, so it cannot always contain the number
of bytes truncated. Instead, it contains a negative value if the field contains the NULL value, a positive
value (NOT necessarily the number of bytes truncated) if the value is truncated, and zero if a non-NULL
value is not truncated.

SQL statements

708 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Similarly, if a LONG VARCHAR or a LONG VARCHAR host variable is used with an offset greater
than zero, the untrunc_len field does not accurately indicate the size before truncation.

WITH TEXTPTR clause If the WITH TEXTPTR clause is given, a text pointer is retrieved into a
second host variable or into the second field in the SQLDA. This text pointer can be used with the Transact-
SQL READ TEXT and WRITE TEXT statements. The text pointer is a 16-bit binary value, and can be
declared as follows:

DECL_BINARY(16) textptr_var;

The WITH TEXTPTR clause can only be used with long data types (LONG BINARY, LONG
VARCHAR, TEXT, IMAGE). If you attempt to use it with another data type, the error
INVALID_TEXTPTR_VALUE is returned.

The total length of the data is returned in the SQLCOUNT field of the SQLCA structure.

Remarks
Get a piece of one column value from the row at the current cursor position. The cursor must be opened
and positioned on a row, using FETCH.

GET DATA is usually used to fetch LONG BINARY or LONG VARCHAR fields. See “SET
statement” on page 849.

Permissions
None.

Side effects
None.

See also
● “FETCH statement [ESQL] [SP]” on page 687
● “READTEXT statement [T-SQL]” on page 797

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example uses GET DATA to fetch a binary large object (also called a BLOB).

EXEC SQL BEGIN DECLARE SECTION;
DECL_BINARY(1000) piece;
short ind;
EXEC SQL END DECLARE SECTION;
int size;
/* Open a cursor on a long varchar field */
EXEC SQL DECLARE big_cursor CURSOR FOR
SELECT long_data FROM some_table
WHERE key_id = 2;
EXEC SQL OPEN big_cursor;
EXEC SQL FETCH big_cursor INTO :piece;

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 709

for(offset = 0; ; offset += piece.len) {
 EXEC SQL GET DATA big_cursor COLUMN 1
 OFFSET :offset INTO :piece:ind;
 /* Done if the NULL value */
 if(ind < 0) break;
 write_out_piece(piece);
 /* Done when the piece was not truncated */
 if(ind == 0) break;
}
EXEC SQL CLOSE big_cursor;

GET DESCRIPTOR statement [ESQL]
Retrieves information about a variable within a descriptor area, or retrieves its value.

Syntax
GET DESCRIPTOR descriptor-name
{ hostvar = COUNT | VALUE { integer | hostvar } assignment, ... }

assignment :
 hostvar =
TYPE
| LENGTH
| PRECISION
| SCALE
| DATA
| INDICATOR
| NAME
| NULLABLE
| RETURNED_LENGTH

descriptor-name : identifier

Remarks
The GET DESCRIPTOR statement is used to retrieve information about a variable within a descriptor
area, or to retrieve its value.

The value { integer | hostvar } specifies the variable in the descriptor area about which the information is
retrieved. Type checking is performed when doing GET ... DATA to ensure that the host variable and the
descriptor variable have the same data type. LONG VARCHAR and LONG BINARY are not supported
by GET DESCRIPTOR ... DATA.

If an error occurs, it is returned in the SQLCA.

Permissions
None.

Side effects
None.

SQL statements

710 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “ALLOCATE DESCRIPTOR statement [ESQL]” on page 384
● “DEALLOCATE DESCRIPTOR statement [ESQL]” on page 627
● “SET DESCRIPTOR statement [ESQL]” on page 836
● “The SQL descriptor area (SQLDA)” [SQL Anywhere Server - Programming]

Standards and compatibility
● SQL/2008 GET DESCRIPTOR is part of optional SQL/2008 language feature B031, "Basic

dynamic SQL".

Example
The following example returns the type of the column with position col_num in sqlda.

int get_type(SQLDA *sqlda, int col_num)
{
 EXEC SQL BEGIN DECLARE SECTION;
 int ret_type;
 int col = col_num;
 EXEC SQL END DECLARE SECTION;
EXEC SQL GET DESCRIPTOR sqlda VALUE :col :ret_type = TYPE;
 return(ret_type);
}

For a longer example, see “ALLOCATE DESCRIPTOR statement [ESQL]” on page 384.

GET OPTION statement [ESQL]
Gets the current setting of an option. It is recommended that you use the CONNECTION_PROPERTY
function instead.

Syntax
GET OPTION [userid.]option-name
{ INTO hostvar | USING DESCRIPTOR sqlda-name }

userid : identifier, string, or hostvar

option-name : identifier, string, or hostvar

hostvar : indicator variable allowed

sqlda-name : identifier

Remarks
The GET OPTION statement is provided for compatibility with older versions of the software. The
recommended way to get the values of options is to use the CONNECTION_PROPERTY system function.

The GET OPTION statement gets the option setting of the option option-name for the user userid or for
the connected user if userid is not specified. This is either the user's personal setting or the PUBLIC

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 711

setting if there is no setting for the connected user. If the option specified is a database option and the user
has a temporary setting for that option, then the temporary setting is retrieved.

If option-name does not exist, GET OPTION returns the warning SQLE_NOTFOUND.

Permissions
None required.

Side effects
None.

See also
● “SET OPTION statement” on page 840
● “Alphabetical list of system procedures” on page 946
● “CONNECTION_PROPERTY function [System]” on page 164

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement illustrates use of GET OPTION.

EXEC SQL GET OPTION 'date_format' INTO :datefmt;

GOTO statement [T-SQL]
Branches to a labeled statement.

Syntax
label : GOTO label

Remarks
Any statement in a Transact-SQL procedure, trigger, or batch can be labeled. The label name is a valid
identifier followed by a colon. In the GOTO statement, the colon is not used.

Permissions
None.

Side effects
None.

Standards and compatibility
● SQL/2008 Vendor extension.

SQL statements

712 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example
The following Transact-SQL batch prints the message "yes" in the database server messages window four
times:

DECLARE @count SMALLINT
SELECT @count = 1
restart:
 PRINT 'yes'
 SELECT @count = @count + 1
 WHILE @count <=4
 GOTO restart

GRANT CONSOLIDATE statement [SQL Remote]
Identifies the database immediately above the current database in a SQL Remote hierarchy, who will
receive messages from the current database.

Syntax
GRANT CONSOLIDATE
TO userid
TYPE message-system, ...
ADDRESS address-string, ...
[SEND { EVERY | AT } hh:mm:ss]

message-system:
FILE | FTP | SMTP

address: string

Parameters
userid The user ID for the user to be granted the permission.

message-system One of the message systems supported by SQL Remote.

address The address for the specified message system.

Remarks
In a SQL Remote installation, the database immediately above the current database in a SQL Remote
hierarchy must be granted CONSOLIDATE permissions. GRANT CONSOLIDATE is issued at a remote
database to identify its consolidated database. Each database can have only one user ID with
CONSOLIDATE permissions: you cannot have a database that is a remote database for more than one
consolidated database.

The consolidated user is identified by a message system, identifying the method by which messages are
sent to and received from the consolidated user. The address-name must be a valid address for the message-
system, enclosed in single quotes. There can be only one consolidated user per remote database.

For the FILE message type, the address is a subdirectory of the directory pointed to by the SQLREMOTE
environment variable.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 713

The GRANT CONSOLIDATE statement is required for the consolidated database to receive messages,
but does not by itself subscribe the consolidated database to any data. To subscribe to data, a subscription
must be created for the consolidated user ID to one of the publications in the current database. Running
the database extraction utility at a consolidated database creates a remote database with the proper
GRANT CONSOLIDATE statement already issued.

The optional SEND EVERY and SEND AT clauses specify a frequency at which messages are sent. The
string contains a time that is a length of time between messages (for SEND EVERY) or a time of day at
which messages are sent (for SEND AT). With SEND AT, messages are sent once per day.

If a user has been granted remote permissions without a SEND EVERY or SEND AT clause, the Message
Agent processes messages, and then stops. To run the Message Agent continuously, you must ensure that
every user with REMOTE permission has either a SEND AT or SEND EVERY frequency specified.

It is anticipated that at many remote databases, the Message Agent is run periodically, and that the
consolidated database will have no SEND clause specified.

Permissions
DBA authority

Side effects
Automatic commit.

See also
● “CONSOLIDATE permission” [SQL Remote]
● “GRANT PUBLISH statement [SQL Remote]” on page 714
● “GRANT REMOTE statement [SQL Remote]” on page 716
● “REVOKE CONSOLIDATE statement [SQL Remote]” on page 814

Standards and compatibility
● SQL/2008 Vendor extension.

Example
GRANT CONSOLIDATE TO con_db
TYPE SMTP
ADDRESS 'Singer, Samuel';

GRANT PUBLISH statement [SQL Remote]
Identifies the publisher of the current database.

Syntax
GRANT PUBLISH TO userid

SQL statements

714 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
Each database in a SQL Remote installation is identified in outgoing messages by a user ID, called the
publisher. The GRANT PUBLISH statement identifies the publisher user ID associated with these
outgoing messages.

Only one user ID can have PUBLISH authority. The user ID with PUBLISH authority is identified by the
special constant CURRENT PUBLISHER. The following query identifies the current publisher:

SELECT CURRENT PUBLISHER;

If there is no publisher, the special constant is NULL.

The current publisher special constant can be used as a default setting for columns. It is often useful to
have a CURRENT PUBLISHER column as part of the primary key for replicating tables, as this helps
prevent primary key conflicts due to updates at more than one site.

To change the publisher, you must first drop the current publisher using the REVOKE PUBLISH
statement, and then create a new publisher using the GRANT PUBLISH statement.

Permissions
DBA authority

Side effects
Automatic commit.

See also
● “PUBLISH permission” [SQL Remote]
● “GRANT PUBLISH statement [SQL Remote]” on page 714
● “GRANT CONSOLIDATE statement [SQL Remote]” on page 713
● “REVOKE PUBLISH statement [SQL Remote]” on page 815
● “CREATE SUBSCRIPTION statement [SQL Remote]” on page 589

Standards and compatibility
● SQL/2008 Vendor extension.

Example
GRANT PUBLISH TO publisher_ID;

GRANT REMOTE DBA statement [MobiLink] [SQL Remote]
Grants remote DBA privileges to a user ID.

Syntax
GRANT REMOTE DBA
TO userid, ...
[IDENTIFIED BY password]

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 715

Parameters
IDENTIFIED BY clause The IDENTIFIED BY clause is optional for this statement. If included, the
password for the user is changed.

Remarks
A user ID with REMOTE DBA authority has full DBA authority only:

● In MobiLink, when the connection is made from the SQL Anywhere synchronization client
(dbmlsync) utility. The REMOTE DBA authority enables dbmlsync to have full access to the
database. Any other connection using the same user ID is granted no special authority. See
“Permissions for dbmlsync” [MobiLink - Client Administration].

● In SQL Remote, when the connection is made from the Message Agent. The REMOTE DBA
authority enables the Message Agent to have full access to the database to make any changes
contained in the messages. Any other connection using the same user ID is granted no special authority.

The REMOTE DBA authority avoids having to grant full DBA authority to the user ID, thereby avoiding
security problems associated with distributing DBA user IDs and passwords.

For example, a SQL Remote user ID with REMOTE DBA authority has no extra permissions on any
connection apart from the Message Agent. Even if the user ID and password for a REMOTE DBA user is
widely distributed, there is no security problem. As long as the user ID has no permissions beyond
CONNECT granted on the database, no one can use this user ID to access data in the database.

Permissions
Must have DBA authority.

Side effects
Automatic commit.

See also
● MobiLink: “Initiating synchronization” [MobiLink - Client Administration]
● SQL Remote: “Granting REMOTE DBA authority” [SQL Remote]
● “REVOKE REMOTE DBA statement [SQL Remote]” on page 816

Standards and compatibility
● SQL/2008 Vendor extension.

Examples
You can grant REMOTE DBA authority to a user ID named dbremote as follows:

GRANT REMOTE DBA
TO dbremote
IDENTIFIED BY dbremote;

GRANT REMOTE statement [SQL Remote]

SQL statements

716 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Identifies a database immediately below the current database in a SQL Remote hierarchy, who will
receive messages from the current database. These are called remote users.

Syntax
GRANT REMOTE TO userid, ...
TYPE message-system, ...
ADDRESS address-string, ...
[SEND { EVERY | AT } send-time]

Parameters
userid The user ID for the user to be granted the permission

message-system One of the message systems supported by SQL Remote. It must be one of the
following values:

○ FILE
○ FTP
○ SMTP

address-string A string containing a valid address for the specified message system.

send-time A string containing a time specification in the form hh:mm:ss.

Remarks
In a SQL Remote installation, each database receiving messages from the current database must be
granted REMOTE permissions.

The single exception is the database immediately above the current database in a SQL Remote hierarchy,
which must be granted CONSOLIDATE permissions.

The remote user is identified by a message system, identifying the method by which messages are sent to
and received from the consolidated user. The address-name must be a valid address for the message-
system, enclosed in single quotes.

For the FILE message type, the address is a subdirectory of the directory pointed to by the SQLREMOTE
environment variable.

The GRANT REMOTE statement is required for the remote database to receive messages, but does not
by itself subscribe the remote user to any data. To subscribe to data, a subscription must be created for the
user ID to one of the publications in the current database, using the database extraction utility or the
CREATE SUBSCRIPTION statement.

The optional SEND EVERY and SEND AT clauses specify a frequency at which messages are sent. The
string contains a time that is a length of time between messages (for SEND EVERY) or a time of day at
which messages are sent (for SEND AT). With SEND AT, messages are sent once per day.

If a user has been granted remote permissions without a SEND EVERY or SEND AT clause, the Message
Agent processes messages, and then stops. To run the Message Agent continuously, you must ensure that
every user with REMOTE permission has either a SEND AT or SEND EVERY frequency specified.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 717

It is anticipated that at many consolidated databases, the Message Agent is run continuously, so that all
remote databases would have a SEND clause specified. A typical setup may involve sending messages to
laptop users daily (SEND AT) and to remote servers every hour or two (SEND EVERY). You should use
as few different times as possible, for efficiency.

Permissions
DBA authority

Side effects
Automatic commit.

See also
● “REMOTE permission” [SQL Remote]
● “GRANT PUBLISH statement [SQL Remote]” on page 714
● “REVOKE REMOTE statement [SQL Remote]” on page 817
● “GRANT CONSOLIDATE statement [SQL Remote]” on page 713

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement grants remote permissions to user SamS, using an SMTP email system, sending
messages to the address Singer, Samuel once every two hours:

GRANT REMOTE TO SamS
TYPE SMTP
ADDRESS 'Singer, Samuel'
SEND EVERY '02:00';

GRANT statement
Grants membership in groups, creates new user IDs, grants or changes permissions for specified users,
and creates or changes passwords.

Syntax 1 - Grant authorities

GRANT authority, ...
 TO userid, ...

authority :
BACKUP
| DBA
| PROFILE
| READCLIENTFILE
| READFILE
| [RESOURCE | ALL]
| VALIDATE
| WRITECLIENTFILE

SQL statements

718 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax 2 - Grant group status or membership in a group
GRANT { GROUP | MEMBERSHIP IN GROUP userid, ... }
 TO userid, ...

Syntax 3 - Grant database object permissions

GRANT permission, ...
 ON [owner.]object-name
 TO userid, ...
[WITH GRANT OPTION]
[FROM userid]

permission :
ALL [PRIVILEGES]
| ALTER
| DELETE
| INSERT
| REFERENCES [(column-name, ...)]
| SELECT [(column-name, ...)]
| UPDATE [(column-name, ...)]

Syntax 4 - Grant execute permission

GRANT EXECUTE ON [owner.]{ procedure-name | user-defined-function }
TO userid, ...

Syntax 5 - Grant integrated login

GRANT INTEGRATED LOGIN TO user-profile-name, ...
AS USER userid

Syntax 6 - Grant Kerberos login

GRANT KERBEROS LOGIN TO client-Kerberos-principal, ...
AS USER userid

Syntax 7 - Grant connect permissions
GRANT CONNECT TO userid, ...
[AT starting-id]
[IDENTIFIED BY password, ...]

Syntax 8 - Grant creation permission on a dbspace

GRANT CREATE ON dbspace-name
TO userid, ...

Syntax 9 - Grant permission on a sequence

GRANT USAGE ON SEQUENCE sequence-name
TO userid, ...

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 719

Parameters
AT starting-id clause This clause is not for general purpose use. The clause specifies the internal
numeric value to be used for the first user ID in the list.

The AT starting-id clause is used by the Unload utility.

GRANT authority clause Use this clause to grant one of the authorities listed below:

○ BACKUP authority clause This authority grants the user the ability to back up the database. See
“BACKUP authority” [SQL Anywhere Server - Database Administration].

○ DBA authority clause This authority grants the user the ability to perform all tasks. This is
usually reserved for the person in the organization who is looking after the database. See “DBA
authority” [SQL Anywhere Server - Database Administration].

○ PROFILE authority clause This authority grants the user the ability to perform profiling and
diagnostic operations. See “PROFILE authority” [SQL Anywhere Server - Database Administration].

○ READCLIENTFILE authority clause This authority grants the user the ability to read from a file
on the client computer, for example when loading data. See “READCLIENTFILE authority” [SQL
Anywhere Server - Database Administration].

○ READFILE authority clause This authority grants the user the ability to execute a SELECT
statement against a file using the OPENSTRING clause. See “READFILE authority” [SQL Anywhere
Server - Database Administration].

○ RESOURCE or ALL authority clause This authority grants the user the ability to create tables
and views. ALL is a synonym for RESOURCE that is compatible with Adaptive Server Enterprise.
See “RESOURCE authority” [SQL Anywhere Server - Database Administration].

○ VALIDATE authority clause This authority grants the user the ability to perform the validation
operations supported by the various VALIDATE statements, such as validating the database,
validating tables and indexes, and validating checksums. It also allows the user to use the Validation
utility (dbvalid), and the Validate Database wizard in Sybase Central. See “VALIDATE authority”
[SQL Anywhere Server - Database Administration].

○ WRITECLIENTFILE authority clause This authority grants the user the ability to write to a file
on the client computer, for example when unloading data. See “WRITECLIENTFILE authority” [SQL
Anywhere Server - Database Administration].

GROUP clause This permission allows the user(s) to have members. See “Managing groups” [SQL
Anywhere Server - Database Administration].

MEMBERSHIP IN GROUP clause This permission grants a user membership in a group. The user
inherits the inheritable permissions and authorities set at the group level. See “Managing groups” [SQL
Anywhere Server - Database Administration].

GRANT permission clause The GRANT permission clause allows you to grant permission on
individual tables or views. The table permissions can be specified individually, or you can use ALL to
grant all permissions at once. The following is a list of grantable permissions:

SQL statements

720 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

○ ALL permission clause This permission grants ALTER, DELETE, INSERT, REFERENCES,
SELECT, and UPDATE permissions. ALL is a synonym for RESOURCE.

○ ALTER permission clause This permission allows the user to alter the named table with the
ALTER TABLE statement. This permission is not allowed for views.

○ DELETE permission clause This permission allows the user to delete rows from the named table
or view.

○ INSERT permission clause This permission allows the user to insert rows into the named table or
view.

○ REFERENCES permission clause This permission allows the user to create indexes on the
named table, and foreign keys that reference the named tables. If column names are specified, the user
can reference only those columns. REFERENCES permissions on columns cannot be granted for
views, only for tables. INDEX is a synonym for REFERENCES.

○ SELECT permission clause This permission allows the user to view information in the view or
table. If column names are specified, the users are allowed to view only those columns. SELECT
permissions on columns cannot be granted for views, only for tables.

○ UPDATE permission clause This permission allows the user to update rows in the view or table.
If column names are specified, the user can update only those columns.

FROM clause If FROM userid is specified, the userid is recorded as a grantor user ID in the system
tables. This clause is for use by the Unload utility (dbunload). Do not use or modify this option directly.

CONNECT TO clause

Note
It is recommended that you use the CREATE USER statement to create users. See “CREATE USER
statement” on page 621.

Creates a new user. GRANT CONNECT can also be used by any user to change their own password. To
create a user with an empty string as the password, use:

GRANT CONNECT TO userid IDENTIFIED BY "";

To create a user with no password, use:

GRANT CONNECT TO userid;

A user with no password cannot connect to the database. This is useful if you are creating a group and do
not want anyone to connect to the database using the group user ID. A user ID must be a valid identifier.

User IDs and passwords cannot:

○ begin with white space, single quotes, or double quotes
○ end with white space
○ contain semicolons

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 721

A password can be either a valid identifier, or a string (maximum 255 bytes) placed in single quotes. For
information about specifying a valid password, see “Setting a password” [SQL Anywhere Server -
Database Administration].

The verify_password_function option can be used to specify a function to implement password rules (for
example, passwords must include at least one digit). If a password verification function is used, you
cannot specify more than one user ID and password in the GRANT CONNECT statement. See
“verify_password_function option” [SQL Anywhere Server - Database Administration].

CREATE ON clause Allows users to create database objects in the specified dbspace. The CREATE
permission can be inherited through group membership. Before a user can create objects, they must also
have RESOURCE authority. See “RESOURCE authority” [SQL Anywhere Server - Database
Administration].

GRANT USAGE ON SEQUENCE clause Allows users to evaluate the current or next value in a
sequence. You must have DBA authority or be the creator of the sequence to run this statement. If the
sequence is part of a DEFAULT clause on a table, any user that inserts a row into the table must have
permission on the sequence. See “Using a sequence to generate unique values” [SQL Anywhere Server -
SQL Usage].

Remarks
The GRANT statement is used to grant database permissions and authorities to individual user IDs and
groups. It is also used to create users and groups.

If WITH GRANT OPTION is specified, then the named user ID is also given permission to GRANT the
same permissions to other user IDs. Members of groups do not inherit the WITH GRANT OPTION if it is
granted to a group.

You can grant permissions on disabled objects. Permissions on disabled objects are stored in the database
and become effective when the object is enabled.

Syntax 4 of the GRANT statement is used to grant permission to execute a procedure.

Syntax 5 of the GRANT statement creates an explicit integrated login mapping between one or more
Windows user or group profiles and an existing database user ID, allowing users who successfully log in
to their local computer to connect to a database without having to provide a user ID or password. The user-
profile-name can be of the form domain\user-name. The database user ID the integrated login is mapped
to must have a password. See “Using Windows integrated logins” [SQL Anywhere Server - Database
Administration].

Syntax 6 of the GRANT statement creates a Kerberos authenticated login mapping from one or more
Kerberos principals to an existing database user ID. This allows users who have successfully logged in to
Kerberos (users who have a valid Kerberos ticket-granting ticket) to connect to a database without having
to provide a user ID or password. The database user ID the Kerberos login is mapped to must have a
password. The client-Kerberos-principal must have the format user/instance@REALM, where /instance is
optional. The full principal, including the realm, must be specified, and principals that differ only in the
instance or realm are treated as different.

SQL statements

722 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Principals are case sensitive and must be specified in the correct case. Mappings for multiple principals
that differ only in case are not supported (for example, you cannot have mappings for both
jjordan@MYREALM.COM and JJordan@MYREALM.COM).

If no explicit mapping is made for a Kerberos principal, and the Guest database user ID exists and has a
password, then the Kerberos principal connects using the Guest database user ID (the same Guest
database user ID as for integrated logins).

For more information about Kerberos authentication, see “Kerberos authentication” [SQL Anywhere
Server - Database Administration].

Permissions
● Syntax 3 If the FROM clause is specified, you must have DBA authority. Otherwise, you must

either own the table, or have been granted permissions on the table WITH GRANT OPTION.

● Syntax 4 You must either own the procedure, or have DBA authority.

● Syntax 5 and 6 You must have DBA authority.

● Syntax 7 You must either be changing your own password using GRANT CONNECT, or have
DBA authority.

Side effects
Automatic commit.

See also
● “REVOKE statement” on page 818
● “Database permissions and authorities” [SQL Anywhere Server - Database Administration]
● “CREATE USER statement” on page 621

Standards and compatibility
● SQL/2008 Syntax 3 is a core feature of the SQL/2008 standard. With Syntax 3, the FROM clause is

a vendor extension, as is the ALTER privilege. In the SQL/2008 standard, rather than the optional
ALL PRIVILEGES syntax, the PRIVILEGES keyword is mandatory.

Syntax 4 is also a core feature of SQL/2008, used for granting EXECUTE permissions on stored
procedures.

Syntax 9 is part of optional SQL/2008 language feature T176.

All other syntaxes are vendor extensions.

Example
Create a new database user.

GRANT CONNECT TO SQLTester
IDENTIFIED BY welcome

Grant permissions on the Employees table to user Laurel.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 723

GRANT
SELECT, UPDATE (Street)
ON Employees
TO Laurel;

More than one permission can be granted in a single statement. Separate the permissions with commas.

Allow the user Hardy to execute the Calculate_Report procedure.

GRANT EXECUTE ON Calculate_Report
TO Hardy;

GROUP BY clause
Groups columns, alias names, and functions as part of the SELECT statement.

Syntax
GROUP BY
| group-by-term, ...]
| simple-group-by-term, ... WITH ROLLUP
| simple-group-by-term, ... WITH CUBE
|GROUPING SETS (group-by-term, ...)

group-by-term :
simple-group-by-term
| (simple-group-by-term, ...)
| ROLLUP (simple-group-by-term, ...)
| CUBE (simple-group-by-term, ...)

simple-group-by-term :
expression
| (expression)
| ()

Parameters
GROUPING SETS clause The GROUPING SETS clause allows you to perform aggregate operations
on multiple groupings from a single query specification. Each set specified in a GROUPING SET clause
is equivalent to a GROUP BY clause.

For example, the following two queries are equivalent:

SELECT a, b, SUM(c) FROM t
GROUP BY GROUPING SETS ((a, b), (a), (b), ());
SELECT a, b, SUM(c) FROM t
 GROUP BY a, b
UNION ALL
SELECT a, NULL, SUM(c) FROM t
 GROUP BY a
UNION ALL
SELECT NULL, b, SUM(c) FROM t
 GROUP BY b
UNION ALL
SELECT NULL, NULL, SUM(c) FROM t;

SQL statements

724 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

An grouping expression may be reflected in the result set as a NULL value, depending on the grouping in
which the result row belongs. This may cause confusion over whether the NULL is the result of another
grouping, or whether the NULL is the result of an actual NULL value in the underlying data. To
distinguish between NULL values present in the input data and NULL values inserted by the grouping
operator, use the GROUPING function. See “GROUPING function [Aggregate]” on page 223.

Specifying an empty set of parentheses () in the GROUPING SETS clause returns a single row
containing the overall aggregate.

For more information about using empty parentheses in GROUPING sets, including an example, see
“Specifying an empty grouping specification” [SQL Anywhere Server - SQL Usage].

ROLLUP clause The ROLLUP clause is similar to the GROUPING SETS clause in that it can be used
to specify multiple grouping specifications within a single query specification. A ROLLUP clause of n
simple-group-by-terms generates n+1 grouping sets, formed by starting with the empty parentheses, and
then appending successive group-by-terms from left to right.

For example, the following two statements are equivalent:

SELECT a, b, SUM(c) FROM t
GROUP BY ROLLUP (a, b);
SELECT a, b, SUM(c) FROM t
GROUP BY GROUPING SETS ((a, b), a, ());

You can use a ROLLUP clause within a GROUPING SETS clause.

For more information about ROLLUP operations, see “Using ROLLUP” [SQL Anywhere Server - SQL
Usage].

CUBE clause The CUBE clause is similar to the ROLLUP and GROUPING SETS clauses in that it
can be used to specify multiple grouping specifications within a single query specification. The CUBE
clause is used to represent all possible combinations that can be made from the expressions listed in the
CUBE clause.

For example, the following two statements are equivalent:

SELECT a, b, SUM(c) FROM t
GROUP BY CUBE (a, b, c);
SELECT a, b, SUM(c) FROM t
GROUP BY GROUPING SETS ((a, b, c), (a, b), (a, c),
 (b, c), a, b, c, ());

You can use a CUBE clause within a GROUPING SETS clause.

For more information about ROLLUP operations, see “Using CUBE” [SQL Anywhere Server - SQL
Usage].

WITH ROLLUP clause This is an alternative syntax to the ROLLUP clause, and is provided for Transact-
SQL compatibility.

WITH CUBE clause This is an alternate syntax to the CUBE clause, and is provided for Transact-SQL
compatibility.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 725

Remarks
When using the GROUP BY clause, you can group by expressions (with some limitations), columns, alias
names, or functions. The result of the query contains one row for each distinct value (or set of values) of
each grouping set.

The empty GROUP BY list, (), signifies the treatment of the entire input as a single group. For example,
the following two statements are equivalent:

SELECT COUNT(), SUM(Salary) FROM Employees;
SELECT COUNT(), SUM(Salary) FROM Employees GROUP BY ();

See also
● “Summarizing, grouping, and sorting query results” [SQL Anywhere Server - SQL Usage]
● “SELECT statement” on page 825
● “GROUP BY clause extensions” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 GROUP BY is a core feature of the SQL/2008 standard. GROUPING SETS, GROUP

BY (), ROLLUP, and CUBE constitute portions of optional SQL/2008 language feature T431. SQL
Anywhere does not support optional SQL/2008 language feature T432, "Nested and concatenated
GROUPING SETS".

Vendor extensions to the GROUP BY clause include:

○ WITH ROLLUP

○ WITH CUBE

○ the ability to specify arbitrary expressions as GROUP BY terms. In the SQL/2008 standard, every
GROUP BY term must be a column reference from an underlying table in the query's FROM
clause. See “GROUP BY and the SQL/2008 standard” [SQL Anywhere Server - SQL Usage].

Examples
The following example returns a result set showing the total number of orders, and then provides subtotals
for the number of orders in each year (2000 and 2001).

SELECT year (OrderDate) Year, Quarter (OrderDate) Quarter, count(*)
Orders
FROM SalesOrders
GROUP BY ROLLUP (Year, Quarter)
ORDER BY Year, Quarter;

Like the preceding ROLLUP operation example, the following CUBE query example returns a result set
showing the total number of orders and provides subtotals for the number of orders in each year (2000 and
2001). Unlike ROLLUP, this query also gives subtotals for the number of orders in each quarter (1, 2, 3,
and 4).

SELECT year (OrderDate) Year, Quarter (OrderDate) Quarter, count(*) Orders
FROM SalesOrders
GROUP BY CUBE (Year, Quarter)
ORDER BY Year, Quarter;

SQL statements

726 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The following example returns a result set that gives subtotals for the number of orders in the years 2000
and 2001. The GROUPING SETS operation lets you select the columns to be subtotaled instead of
returning all combinations of subtotals like the CUBE operation.

SELECT year (OrderDate) Year, Quarter (OrderDate) Quarter, count(*) Orders
FROM SalesOrders
GROUP BY GROUPING SETS ((Year, Quarter), (Year))
ORDER BY Year, Quarter;

HELP statement [Interactive SQL]
Provides help in the Interactive SQL environment.

Syntax
HELP ['topic']

Remarks
The HELP statement is used to access SQL Anywhere documentation.

The topic for help can be optionally specified. You must enclose topic in single quotes. In some help
formats, the topic cannot be specified; in this case, a link to a general help page for Interactive SQL appears.

You can specify the following topic values:

● SQL Anywhere error codes
● SQL statement keywords (such as INSERT, UPDATE, SELECT, CREATE DATABASE)

Permissions
None.

Side effects
None.

See also
● “Using Interactive SQL” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

IF statement
Controls conditional execution of SQL statements.

Syntax
IF search-condition THEN statement-list
[ELSEIF { search-condition | operation-type } THEN statement-list] ...

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 727

[ELSE statement-list]
{ END IF | ENDIF }

Remarks
The IF statement is a control statement that allows you to conditionally execute the first list of SQL
statements whose search-condition evaluates to TRUE. If no search-condition evaluates to TRUE, and an
ELSE clause exists, the statement-list in the ELSE clause is executed.

Execution resumes at the first statement after the END IF.

IF statement is different from IF expression
Do not confuse the syntax of the IF statement with that of the IF expression.

For information about the IF expression, see “IF expressions” on page 15.

Permissions
None.

Side effects
None.

See also
● “BEGIN statement” on page 454
● “Using procedures, triggers, and batches” [SQL Anywhere Server - SQL Usage]
● “Search conditions” on page 32

Standards and compatibility
● SQL/2008 The IF statement is part of optional SQL/2008 language feature P002, "Computational

completeness". The ENDIF keyword is a vendor extension.

Example
The following procedure illustrates the use of the IF statement:

CREATE PROCEDURE TopCustomer2 (OUT TopCompany CHAR(35), OUT TopValue INT)
BEGIN
 DECLARE err_notfound EXCEPTION
 FOR SQLSTATE '02000';
 DECLARE curThisCust CURSOR FOR
 SELECT CompanyName, CAST(sum(SalesOrderItems.Quantity *
 Products.UnitPrice) AS INTEGER) VALUE
 FROM Customers
 LEFT OUTER JOIN SalesOrders
 LEFT OUTER JOIN SalesOrderItems
 LEFT OUTER JOIN Products
 GROUP BY CompanyName;
 DECLARE ThisValue INT;
 DECLARE ThisCompany CHAR(35);
 SET TopValue = 0;
 OPEN curThisCust;
 CustomerLoop:
 LOOP
 FETCH NEXT curThisCust

SQL statements

728 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 INTO ThisCompany, ThisValue;
 IF SQLSTATE = err_notfound THEN
 LEAVE CustomerLoop;
 END IF;
 IF ThisValue > TopValue THEN
 SET TopValue = ThisValue;
 SET TopCompany = ThisCompany;
 END IF;
 END LOOP CustomerLoop;
 CLOSE curThisCust;
END;

IF statement [T-SQL]

Controls conditional execution of a SQL statement, as an alternative to the Watcom SQL IF statement.

Syntax
 IF expression statement
[ELSE [IF expression] statement]

Remarks
The Transact-SQL IF conditional and the ELSE conditional each control the execution of only a single
SQL statement or compound statement (between the keywords BEGIN and END).

In comparison to the Watcom SQL IF statement, there is no THEN in the Transact-SQL IF statement. The
Transact-SQL version also has no ELSEIF or END IF keywords.

Permissions
None.

Side effects
None.

Standards and compatibility
● SQL/2008 Transact-SQL extension.

Example
The following example illustrates the use of the Transact-SQL IF statement:

IF (SELECT max(ID) FROM sysobjects) < 100
 RETURN
ELSE
 BEGIN
 PRINT 'These are the user-created objects'
 SELECT name, type, ID
 FROM sysobjects
 WHERE ID < 100
 END

The following two statement blocks illustrate Transact-SQL and Watcom SQL compatibility:

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 729

/* Transact-SQL IF statement */
IF @v1 = 0
 PRINT '0'
ELSE IF @v1 = 1
 PRINT '1'
ELSE
 PRINT 'other'
/* Watcom SQL IF statement */
IF v1 = 0 THEN
 PRINT '0'
ELSEIF v1 = 1 THEN
 PRINT '1'
ELSE
 PRINT 'other'
END IF

INCLUDE statement [ESQL]

Includes a file into a source program to be scanned by the SQL preprocessor.

Syntax
INCLUDE filename

filename : SQLDA | SQLCA | string

Remarks
The INCLUDE statement is very much like the C preprocessor #include directive. The SQL preprocessor
reads an embedded SQL source file and replaces all the embedded SQL statements with C-language
source code. If a file contains information that the SQL preprocessor requires, include it with the
embedded SQL INCLUDE statement.

Two file names are specially recognized: SQLCA and SQLDA. The following statement must appear
before any embedded SQL statements in all embedded SQL source files.

EXEC SQL INCLUDE SQLCA;

This statement must appear at a position in the C program where static variable declarations are allowed.
Many embedded SQL statements require variables (invisible to the application developer), which are
declared by the SQL preprocessor at the position of the SQLCA include statement. The SQLDA file must
be included if any SQLDAs are used.

Permissions
None.

Side effects
None.

Standards and compatibility
● SQL/2008 Vendor extension.

SQL statements

730 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

INPUT statement [Interactive SQL]
Imports data into a database table from an external file or from the keyboard, or import from a generic
ODBC data source

Syntax 1 - Import from an external file or from the keyboard
INPUT INTO [owner.]table-name input-options

input-options :
[(column-name, ...)]
[BY { ORDER | NAME]
[BYTE ORDER MARK { ON | OFF }]
[COLUMN WIDTHS (integer, ...)]
[DELIMITED BY string]
[ENCODING encoding]
[ESCAPE CHARACTER character]
[ESCAPES { ON | OFF }
[FORMAT input-format]
[FROM filename | PROMPT]
[NOSTRIP]
[SKIP integer]

input-format :
TEXT
| FIXED

encoding : identifier or string

Syntax 2 - Import from an ODBC data source
INPUT
USING connection-string
FROM source-table-name
INTO destination-table-name
[CREATE TABLE { ON | OFF }]

connection-string :
{ DRIVER=odbc-driver-name
| DSN=odbc-data-source } [; { connection-parameter = value }]

Parameters
BY clause The BY clause allows the user to specify whether the columns from the input file should be
matched up with the table columns based on their ordinal position in the list (ORDER, the default) or by
their names (NAME). Not all input formats have column name information in the file. NAME is allowed
only for those formats that do.

BYTE ORDER MARK clause Use this clause to specify whether to process a byte order mark (BOM)
in the data.

The BYTE ORDER MARK clause is relevant only when reading from TEXT formatted files. Attempts to
use the BYTE ORDER MARK clause with FORMAT clauses other than TEXT returns an error.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 731

The BYTE ORDER MARK clause is used only when reading or writing files encoded with UTF-8 or
UTF-16 (and their variants). Attempts to use the BYTE ORDER MARK clause with any other encoding
returns an error.

If the ENCODING clause is specified:

○ If the BYTE ORDER MARK option is ON and you specify a UTF-16 encoding with an endian such
as UTF-16BE or UTF-16LE, the Interactive SQL searches for a BOM at the beginning of the data. If a
BOM is present, it is used to verify the endianness of the data. If you specify the wrong endian, an
error is returned.

○ If the BYTE ORDER MARK option is ON and you specify a UTF-16 encoding without an explicit
endian, Interactive SQL searches for a BOM at the beginning of the data. If a BOM is present, it is
used to determine the endianness of the data. Otherwise, the operating system endianness is assumed.

○ If the BYTE ORDER MARK option is ON and you specify a UTF-8 encoding, Interactive SQL
searches for a BOM at the beginning of the data. If a BOM is present it is ignored.

If the ENCODING clause is not specified:

○ If you do not specify an ENCODING clause and the BYTE ORDER MARK option is ON, Interactive
SQL looks for a BOM at the beginning of the input data. If a BOM is located, the source encoding is
automatically selected based on the encoding of the BOM (UTF-16BE, UTF-16LE, or UTF-8) and the
BOM is not considered to be part of the data to be loaded.

○ If you do not specify an ENCODING clause and the BYTE ORDER MARK option is OFF, or a BOM
is not found at the beginning of the input data, the database CHAR encoding is used.

COLUMN WIDTHS clause COLUMN WIDTHS can be specified for FIXED format only. It specifies
the widths of the columns in the input file. If COLUMN WIDTHS is not specified, the widths are
determined by the database column types.

CREATE TABLE clause Use the CREATE TABLE clause to specify whether to create the destination
table if it does not exist. The default is ON.

DELIMITED BY clause The DELIMITED BY clause allows you to specify a string to be used as the
delimiter in TEXT input format. The default delimiter is a comma.

ENCODING clause The encoding argument allows you to specify the encoding that is used to read the
file. The ENCODING clause can only be used with the TEXT format.

For more information about how to obtain the list of SQL Anywhere supported encodings, see “Supported
character sets” [SQL Anywhere Server - Database Administration].

When running Interactive SQL, the encoding that is used to import the data is determined in the following
order:

○ The encoding specified by the ENCODING clause (if this clause is specified)

○ The encoding specified with the default_isql_encoding option (if this option is set). See
“default_isql_encoding option [Interactive SQL]” [SQL Anywhere Server - Database Administration].

SQL statements

732 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

○ The default encoding for the platform you are running on. On English Windows computers, the
default encoding is 1252.

If the input file was created using the OUTPUT statement and an encoding was specified, then the same
ENCODING clause should be specified on the INPUT statement. See “OUTPUT statement [Interactive
SQL]” on page 780.

Specify the BYTE ORDER clause to include a byte order mark in the data.

ESCAPE CHARACTER clause The default escape character for hexadecimal codes and symbols is a
backslash (\). For example, \x0A is the linefeed character.

The newline characters can be specified as \n. Other characters can be specified using hexadecimal ASCII
codes, such as \x09 for the tab character. A sequence of two backslash characters (\\) is interpreted as a
single backslash. A backslash followed by any character other than n, x, X or \ is interpreted as two
separate characters. For example, \q is interpreted as a backslash and the letter q.

The escape character can be changed, using the ESCAPE CHARACTER clause. For example, to use the
exclamation mark as the escape character, specify:

... ESCAPE CHARACTER '!'

ESCAPES clause With ESCAPES turned on (the default), characters following the escape character
are interpreted as special characters by the database server. With ESCAPES turned off, the characters are
read exactly as they appear in the source.

FORMAT clause The FORMAT clause allows you to specify the file format for the output.

If the FORMAT clause is not specified, then each set of values must be in the format set by the Interactive
SQL SET OPTION input-format statement.

Input from a command file is terminated by a line containing END. Input from a file is terminated at the
end of the file.

Allowable input formats are:

○ TEXT Input lines are assumed to be characters, one row per line, with column values separated by
delimiters. Alphabetic strings may be enclosed in apostrophes (single quotes) or quotation marks
(double quotes). Strings containing delimiters must be enclosed in either single or double quotes. If
the string itself contains single or double quotes, double the quote character to use it within the string.
You can use the DELIMITED BY clause to specify a different delimiter string than the default, which
is a comma.

Three other special sequences are also recognized. The two characters \n represent a newline
character, \\ represents a single (\), and the sequence \xDD represents the character with hexadecimal
code DD.

If the file has entries indicating that a value might be null, it is treated as NULL. If the value in that
position cannot be NULL, a zero is inserted in numeric columns and an empty string in character columns.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 733

See also “input_format option [Interactive SQL]” [SQL Anywhere Server - Database Administration].

○ FIXED Input lines are in fixed format. The width of the columns can be specified using the
COLUMN WIDTHS clause. If they are not specified, column widths in the file must be the same as
the maximum number of characters required by any value of the corresponding database column's type.

The FIXED format cannot be used with binary columns that contain embedded newline and End-of-
File character sequences.

If you want to use other formats such as, DBASE II, DBASE III, FoxPro, Lotus 123, or Excel 97, you
must use INPUT USING.

FROM filename clause The filename can be quoted or unquoted. If the string is quoted, it is subject to
the same formatting requirements as other SQL strings.

To indicate directory paths, the backslash character (\) must be represented by two backslashes. The
statement to load data from the file c:\temp\input.dat into the Employees table is:

INPUT INTO Employees
FROM 'c:\\temp\\input.dat';

The location of a relative filename is determined as follows:

○ If the INPUT statement is executed directly in Interactive SQL, the path to filename is resolved
relative to the directory in which Interactive SQL is running. For example, suppose you open
Interactive SQL from the directory c:\work and execute the following statement:

INPUT INTO Employees
 FROM 'inputs\\inputfile.dat';

Interactive SQL looks for c:\work\inputs\inputfile.dat.

○ If the INPUT statement resides in a .sql file, Interactive SQL first attempts to resolve the path to
filename relative to the location of the file. If unsuccessful, Interactive SQL looks for filename in a
path relative to the directory in which Interactive SQL is running.

For example, suppose you had a file, c:\homework\inputs.sql, that contained the following statement:

INPUT INTO Employees
 FROM 'inputs\\inputfile.dat';

Interactive SQL would first look for inputfile.dat in c:\homework\inputs. If Interactive SQL does not
find inputfile.dat in that location, Interactive SQL looks in the directory in which Interactive SQL is
running.

FROM source-table-name clause The source-table-name parameter is a quoted string containing the
name of the table in the source database. The name can be in the form database-name.owner.table-name,
owner.table-name, or simply table-name. Use a period to separate the components, even if that is not the
native separator in the source database. If the source database requires a database name, but not an owner
name, the format of source-table-name must be database..table (in this case the owner name is empty).
Do not quote any of the names in the parameter (for example, do not use 'dba."my-table"'; use
'dba.my-table' instead.)

SQL statements

734 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

INTO clause The name of the table to input the data into.

PROMPT clause The PROMPT clause allows the user to enter values for each column in a row. When
running in windowed mode, a window is displayed, allowing the user to enter the values for the new row.
If you are running Interactive SQL from the command line, Interactive SQL prompts you to type the value
for each column on the command line. See “Inserting rows into the database from the Interactive SQL
result set” [SQL Anywhere Server - Database Administration].

NOSTRIP clause Normally, for TEXT input format, trailing blanks are stripped from unquoted strings
before the value is inserted. NOSTRIP can be used to suppress trailing blank stripping. Trailing blanks are
not stripped from quoted strings, regardless of whether the option is used. Leading blanks are stripped
from unquoted strings, regardless of the NOSTRIP option setting.

SKIP clause When inserting lines from a TEXT file, the SKIP clause omits the specified number of
lines starting at the beginning of the file. The number specified must be a non-negative integer. The SKIP
clause is for TEXT format only.

If the specified number of lines exceeds the number of lines in the file, the INPUT statement inserts no
data and no error is returned.

USING clause The USING clause inputs data from an ODBC data source. You can either specify the
ODBC data source name with the DSN option, or the ODBC driver name and connection parameters with
the DRIVER option. Connection-parameter is a list of database-specific connection parameters.

odbc-data-source is the name of a user or ODBC data source name. For example, odbc-data-source for
the SQL Anywhere sample database is SQL Anywhere 12 Demo.

Odbc-driver-name is the ODBC driver name. For a SQL Anywhere database, the odbc-driver-name is
SQL Anywhere 12 for an UltraLite database, odbc-driver-name is UltraLite 12.

See “Import data with the INPUT statement” [SQL Anywhere Server - SQL Usage].

Remarks
The INPUT statement allows efficient mass insertion into a named database table. Lines of input are read
either from the user via an input window (if PROMPT is specified) or from a file (if FROM filename is
specified). If neither is specified, the input is read from the command file that contains the INPUT statement
—in Interactive SQL, this can even be directly from the SQL Statements pane. In this case, input is ended
with a line containing only the string END.

When the input is read directly from the SQL Statements pane, you must specify a semicolon before the
values for the records to be inserted at the end of the INPUT statement. For example:

INPUT INTO Owner.TableName;
value1, value2, value3
value1, value2, value3
value1, value2, value3
value1, value2, value3
END

The END keyword (not a semicolon) terminates data for INPUT statements that do not name a file and do
not include the PROMPT keyword.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 735

If a column list is specified, the data is inserted into the specified columns of the named table. By default,
the INPUT statement assumes that column values in the input file appear in the same order as they appear
in the database table definition. If the input file's column order is different, you must list the input file's
actual column order at the end of the INPUT statement.

For example, if you create a table with the following statement:

CREATE TABLE inventory (
Quantity INTEGER,
item VARCHAR(60)
);

and you want to import TEXT data from the input file stock.txt that contains the name value before the
quantity value,

'Shirts', 100
'Shorts', 60

then you must list the input file's actual column order at the end of the INPUT statement for the data to be
inserted correctly:

INPUT INTO inventory
FROM stock.txt
FORMAT TEXT
(item, Quantity);

By default, the INPUT statement stops when it attempts to insert a row that causes an error. Errors can be
treated in different ways by setting the on_error and conversion_error options. See “SET OPTION
statement [Interactive SQL]” on page 844.

Interactive SQL prints a warning on the Messages tab if any string values are truncated on INPUT.
Missing values for NOT NULL columns are set to zero for numeric types and to the empty string for non-
numeric types. If INPUT attempts to insert a NULL row, the input file contains an empty row.

Because the INPUT statement is an Interactive SQL command, it cannot be used in any compound
statement (such as IF) or in a stored procedure. See “Statements allowed in procedures, triggers, events,
and batches” [SQL Anywhere Server - SQL Usage].

The INPUT statement cannot be used in an UltraLite PreparedStatement object. See “Importing ASCII
data into a new database” [UltraLite - Database Management and Reference].

Permissions
Must have INSERT permission on the table or view.

Side effects
None.

SQL statements

736 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “Import data with the INPUT statement” [SQL Anywhere Server - SQL Usage]
● “Importing data” [SQL Anywhere Server - SQL Usage]
● “OUTPUT statement [Interactive SQL]” on page 780
● “INSERT statement” on page 737
● “SET OPTION statement [Interactive SQL]” on page 844
● “LOAD TABLE statement” on page 750
● “Using Interactive SQL” [SQL Anywhere Server - Database Administration]
● “Unload utility (dbunload)” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following is an example of an INPUT statement from a TEXT file.

INPUT INTO Employees
FROM new_emp.inp
FORMAT TEXT;

The following example copies the table, ulTest, into a table called saTest. ulTest is a table in an UltraLite
database in the file C:\test\myULDatabase.udb, and saTest is a table created in demo.db:

INPUT USING 'driver=UltraLite 12;dbf=C:\\test\\myULDatabase.udb'
 FROM "ulTest" INTO "saTest";

INSERT statement

Inserts a single row (syntax 1) or a selection of rows from elsewhere in the database (syntax 2) into a table.

Syntax 1
INSERT [INTO] [owner.]table-name [(column-name, ...)]
[ON EXISTING {
 ERROR
 | SKIP
 | UPDATE [DEFAULTS { ON | OFF }]
 }]
{ DEFAULT VALUES
 | VALUES row-value-constructor [, ...] }
[OPTION(query-hint [, ...])]

Syntax 2
INSERT [INTO] [owner.]table-name [([column-name [, ...]])]
[ON EXISTING {
 ERROR
 | SKIP
 | UPDATE [DEFAULTS { ON | OFF }]
 }]
[WITH AUTO NAME]

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 737

select-statement
[OPTION(query-hint[, ...])]

query-hint :
MATERIALIZED VIEW OPTIMIZATION option-value
| FORCE OPTIMIZATION
| FORCE NO OPTIMIZATION
| option-name = option-value

option-name :
 identifier

option-value :
 hostvar (indicator allowed), string, identifier, or number

insert-expression :
 expression | DEFAULT

row-value-constructor :
 ([insert-expression [, ...]])

Parameters
VALUES clause Use the VALUES clause to specify the values to insert. If you want to insert the
default values defined for the columns, specify DEFAULT VALUES. You can also specify VALUES (),
which is equivalent to DEFAULT VALUES. The VALUES clause also support row value constructors so
that you can insert multiple rows of values in a single statement. The number and order of insert-
expression values in each row-value-constructor must correspond to the column list specified in the INTO
clause. If a column list is not specified, it is assumed to be the complete ordered column list for the table.
If you specify an empty column list (), then each of the columns in the table must have a default value.

If an error occurs while inserting any of the rows, all of the changes are rolled back.

WITH AUTO NAME clause WITH AUTO NAME applies only to syntax 2. If you specify WITH
AUTO NAME, the names of the items in the query block determine which column the data belongs in.
The query block items should be either column references or aliased expressions. Destination columns not
defined in the query block are assigned their default value. This is useful when the number of columns in
the destination table is very large.

The INSERT statement returns an error if the WITH AUTO NAME clause is specified and the query
block contains columns that do not match columns in the target table. For example, executing the
following statement returns an error indicating that the operation column in the SELECT query block
does not match any of the columns in the MyTable5 table.

CREATE TABLE MyTable5(
 pk INT PRIMARY KEY DEFAULT AUTOINCREMENT,
 TableName CHAR(128),
 TableNameLen INT);
INSERT
INTO MyTable5 WITH AUTO NAME
SELECT length(t.table_name) AS TableNameLen,
 t.table_name AS TableName, 1 as operation
FROM SYS.SYSTAB t
WHERE table_id <= 10;

SQL statements

738 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ON EXISTING clause The ON EXISTING clause of the INSERT statement applies to both syntaxes.
It updates existing rows in a table, based on primary key lookup, with new column values. This clause can
only be used on tables that have a primary key. Attempting to use this clause on tables without primary
keys generates a syntax error. You cannot insert values into a proxy table with the ON EXISTING clause.

Note
If you anticipate many rows qualifying for the ON EXISTING condition, consider using the MERGE
statement instead. The MERGE statement provides more control over the actions you can take for
matching rows. It also provides a more sophisticated syntax for defining what constitutes a match. See
“MERGE statement” on page 767.

If you specify the ON EXISTING clause, the database server performs a primary key lookup for each
input row. If the corresponding row does not already exist in the table, it inserts the new row. For rows
that already exist in the table, you can choose to silently ignore the input row (SKIP), generate an error
message for duplicate key values (ERROR), or update the old values using the values from the input row
(UPDATE). By default, if you do not specify the ON EXISTING clause, attempting to insert rows into a
table where the row already exists results in a duplicate key value error, and is equivalent to specifying
the ON EXISTING ERROR clause. Rows that are skipped are included in the @@rowcount variable. See
“@@rowcount global variable” on page 72.

When using the ON EXISTING UPDATE clause, the input row is compared to the stored row. Any
column values explicitly stated in the input row replace the corresponding column values in the stored
row. Likewise, column values not explicitly stated in the input row result in no change to the
corresponding column values in the stored row—with the exception of columns with defaults. When
using the ON EXISTING UPDATE clause with columns that have defaults (including DEFAULT
AUTOINCREMENT columns), you can further specify whether to update the column value with the
default values by specifying ON EXISTING UPDATE DEFAULTS ON, or leave the column value as it
is by specifying ON EXISTING UPDATE DEFAULTS OFF. If nothing is specified, the default behavior
is ON EXISTING UPDATE DEFAULTS OFF.

Note
DEFAULTS ON and DEFAULTS OFF parameters do not affect values in DEFAULT TIMESTAMP,
DEFAULT UTC TIMESTAMP, or DEFAULT LAST USER. For these columns, the value in the stored
row is always updated during the UPDATE.

When using the ON EXISTING SKIP and ON EXISTING ERROR clauses, if the table contains default
columns, the server computes the default values even for rows that already exist. As a result, default
values such as AUTOINCREMENT cause side effects even for skipped rows. In this case of
AUTOINCREMENT, this results in skipped values in the AUTOINCREMENT sequence. The following
example illustrates this:

CREATE TABLE t1(c1 INT PRIMARY KEY, c2 INT DEFAULT AUTOINCREMENT);
INSERT INTO t1(c1) ON EXISTING SKIP VALUES(20);
INSERT INTO t1(c1) ON EXISTING SKIP VALUES(20);
INSERT INTO t1(c1) ON EXISTING SKIP VALUES(30);

The row defined in the first INSERT statement is inserted, and c2 is set to 1. The row defined in the
second INSERT statement is skipped because it matches the existing row. However, the autoincrement

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 739

counter still increments to 2 (but does not impact the existing row). The row defined in the third INSERT
statement is inserted, and the value of c2 is set to 3. So, the values inserted for the example above are:

20,1
30,3

Caution
If you are using SQL Remote, do not replicate DEFAULT LAST USER columns. When the column is
replicated the column value is set to the SQL Remote user, not the replicated value.

OPTION clause Use this clause to specify hints for executing the statement. The following hints are
supported:

○ MATERIALIZED VIEW OPTIMIZATION option-value
○ FORCE OPTIMIZATION
○ FORCE NO OPTIMIZATION
○ option-name = option-value. Note that a OPTION(isolation_level = ...) specification

in the query text overrides all other means of specifying isolation level for a query.

For a description of these options, see “OPTION clause, SELECT statement” on page 832.

Remarks
The INSERT statement is used to add new rows to a database table.

Since text indexes and materialized views are impacted by changes to the underlying table data, consider
truncating dependent text indexes or materialized views before bulk loading (LOAD TABLE, INSERT,
MERGE) data into their underlying tables. See “TRUNCATE statement” on page 881, and
“TRUNCATE TEXT INDEX statement” on page 882.

Syntax 1 Insert a single row, or multiple rows, with the specified expression column values. Multiple
rows, if specified, are delimited by additional parentheses. The keyword DEFAULT can be used to cause
the default value for the column to be inserted. If the optional list of column names is given, values are
inserted one for one into the specified columns. If the list of column names is not specified, the values are
inserted into the table columns in the order they were created (the same order as retrieved with SELECT
*). The row is inserted into the table at an arbitrary position. (In relational databases, tables are not ordered.)

Syntax 2 Carry out mass insertion into a table with the results of a fully general SELECT statement.
Insertions are done in an arbitrary order unless the SELECT statement contains an ORDER BY clause.
See “SELECT statement” on page 825.

If you specify column names, the columns from the select list are matched ordinally with the columns
specified in the column list, or sequentially in the order in which the columns were created.

Inserts can be done into views if the query specification defining the view is updatable. For more
information about identifying views that are inherently non-updatable, see “Working with regular views”
[SQL Anywhere Server - SQL Usage].

Character strings inserted into tables are always stored in the same case as they are entered, regardless of
whether the database is case sensitive or not. So, a string Value inserted into a table is always held in the

SQL statements

740 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

database with an uppercase V and the remainder of the letters lowercase. SELECT statements return the
string as Value. If the database is not case sensitive, however, all comparisons make Value the same as
value, VALUE, and so on. Further, if a single-column primary key already contains an entry Value, an
INSERT of value is rejected, as it would make the primary key not unique.

Inserting a significant amount of data using the INSERT statement will also update column statistics.

Performance tips
To insert many rows into a table, it is more efficient to declare a cursor and insert the rows through the
cursor, where possible, than to carry out many separate INSERT statements. Before inserting data, you
can specify the percentage of each table page that should be left free for later updates. See “ALTER
TABLE statement” on page 426.

Permissions
Must have INSERT permission on the table.

If the ON EXISTING UPDATE clause is specified, UPDATE permissions on the table are required as well.

Side effects
None.

See also
● “Importing data” [SQL Anywhere Server - SQL Usage]
● “MERGE statement” on page 767
● “INPUT statement [Interactive SQL]” on page 731
● “LOAD TABLE statement” on page 750
● “UPDATE statement” on page 895
● “DELETE statement” on page 637
● “PUT statement [ESQL]” on page 792
● “Accessing data on client computers” [SQL Anywhere Server - SQL Usage]
● “Adding data using INSERT” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 The INSERT statement is a core feature of the SQL/2008 standard. The DEFAULT

VALUES clause is optional SQL language feature F222, "INSERT statement: DEFAULT VALUES
clause". Support for row value constructors in an INSERT statement comprises part of optional SQL
language feature F641, "Row and table constructors". The VALUES keyword is a vendor extension,
mandatory with SQL Anywhere to specify the list of expressions to be inserted. However, VALUES
is not part of SQL/2008.

Several optional constructions are vendor extensions. These include:

○ The INSERT ... ON EXISTING clause is a vendor extension. A SQL/2008 compliant equivalent
in many instances is the MERGE statement. See “MERGE statement” on page 767.

○ The OPTION clause.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 741

○ The WITH AUTO NAME clause.

Examples
Add an Eastern Sales department to the database.

INSERT
INTO Departments (DepartmentID, DepartmentName)
VALUES (230, 'Eastern Sales');

Create the table DepartmentHead and fill it with the names of department heads and their departments
using the WITH AUTO NAME syntax.

CREATE TABLE DepartmentHead(
 pk INT PRIMARY KEY DEFAULT AUTOINCREMENT,
 DepartmentName VARCHAR(128),
 ManagerName VARCHAR(128));
INSERT
INTO DepartmentHead WITH AUTO NAME
SELECT GivenName || ' ' || Surname AS ManagerName,
 DepartmentName
FROM Employees JOIN Departments
ON EmployeeID = DepartmentHeadID;

Create the table MyTable5 and populate it using the WITH AUTO NAME syntax.

CREATE TABLE MyTable5(
 pk INT PRIMARY KEY DEFAULT AUTOINCREMENT,
 TableName CHAR(128),
 TableNameLen INT);
INSERT INTO MyTable5 WITH AUTO NAME
SELECT
 length(t.table_name) AS TableNameLen,
 t.table_name AS TableName
FROM SYS.SYSTAB t
WHERE table_id <= 10;

Insert a new department, executing the statement at isolation level 3, rather than using the current
isolation level setting of the database.

INSERT INTO Departments
 (DepartmentID, DepartmentName, DepartmentHeadID)
 VALUES(600, 'Foreign Sales', 129)
 OPTION(isolation_level = 3);

The following example inserts three rows into a table:

INSERT INTO T (c1,c2,c3)
VALUES (1,10,100), (2,20,200), (3,30,300);

In the following example, the INSERT statement inserts three rows into a table of four columns where
each column has a default value:

INSERT INTO T ()
VALUES (), (), ();

SQL statements

742 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

INSTALL EXTERNAL OBJECT statement
Installs an object that can be run in an external environment.

Syntax
INSTALL EXTERNAL OBJECT object-name
[update-mode]
FROM { FILE file-path | VALUE expression }
ENVIRONMENT environment-name

environment-name :
PERL
| PHP

update-mode :
NEW
| UPDATE

Parameters
object-name The name by which the installed object will be identified within the database.

update-mode The update mode for the object. If the update mode is omitted, then NEW is assumed.

file-path The location on the server computer from where the object is being installed.

environment-name The name of the external environment in which the external object is run.

Remarks
For more information about external environments, see “SQL Anywhere external environment support”
[SQL Anywhere Server - Programming].

Permissions
DBA authority

Side effects
None

See also
● “SQL Anywhere external environment support” [SQL Anywhere Server - Programming]
● “ALTER EXTERNAL ENVIRONMENT statement” on page 396
● “REMOVE EXTERNAL OBJECT statement” on page 806
● “START EXTERNAL ENVIRONMENT statement” on page 860
● “STOP EXTERNAL ENVIRONMENT statement” on page 868
● “SYSEXTERNENV system view” on page 1137
● “SYSEXTERNENVOBJECT system view” on page 1138

Standards and compatibility
● SQL/2008 Vendor extension.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 743

Examples
In this example, you install a Perl script that is located in a file into the database.

INSTALL EXTERNAL OBJECT 'PerlScript'
NEW
FROM FILE 'perlfile.pl'
ENVIRONMENT PERL;

Perl code also can be built and installed from an expression, as follows:

INSTALL EXTERNAL OBJECT 'PerlConsoleExample'
NEW
FROM VALUE 'sub WriteToServerConsole { print $sa_output_handle $_[0]; }'
ENVIRONMENT PERL;

Perl code also can be built and installed from a variable, as follows:

CREATE VARIABLE PerlVariable LONG VARCHAR;
SET PerlVariable =
 'sub WriteToServerConsole { print $sa_output_handle $_[0]; }';
INSTALL EXTERNAL OBJECT 'PerlConsoleExample'
NEW
FROM VALUE PerlVariable
ENVIRONMENT PERL;

INSTALL JAVA statement
Makes Java classes available for use within a database.

Syntax
INSTALL JAVA
[NEW | UPDATE]
[JAR jar-name]
FROM { FILE filename | expression }

Parameters
NEW and UPDATE keyword clauses If you specify an install mode of NEW, the referenced Java
classes must be new classes, rather than updates of currently installed classes. An error occurs if a class
with the same name exists in the database and the NEW install mode is used.

If you specify UPDATE, the referenced Java classes may include replacements for Java classes that are
already installed in the given database.

If install-mode is omitted, the default is NEW.

JAR clause If this is specified, then the filename must designate a jar file. JAR files typically have
extensions of .jar or .zip.

Installed jar and zip files can be compressed or uncompressed. Due to differences in compression
schemes, it is strongly recommended that jars containing textual resources be created with compression
turned off.

SQL statements

744 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

If the JAR option is specified, the jar is retained as a jar after the classes that it contains have been
installed. That jar is the associated jar of each of those classes. The jars installed in a database with the
JAR option are called the retained jars of the database.

The jar-name is a character string value, of up to 255 bytes long. The jar-name is used to identify the
retained jar in subsequent INSTALL JAVA, UPDATE, and REMOVE JAVA statements.

FROM FILE clause Specifies the location of the Java class(es) to be installed.

The formats supported for filename include fully qualified file names, such as 'c:\libs\jarname.jar' and '/usr/
u/libs/jarname.jar', and relative file names, which are relative to the current working directory of the
database server.

The filename must identify either a class file, or a jar file.

FROM clause Expressions must evaluate to a binary type whose value contains a valid class file or jar
file.

Remarks
The class definition for each class is loaded by each connection's VM the first time that class is used.
When you INSTALL a class, the VM on your connection is implicitly restarted. Therefore, you have
immediate access to the new class, whether the INSTALL has an install-mode of NEW or UPDATE.
Because the VM is restarted, any values stored in Java static variables are lost, and any SQL variables
with Java class types are dropped.

For other connections, the new class is loaded the next time a VM accesses the class for the first time. If
the class is already loaded by a VM, that connection does not see the new class until the VM is restarted
for that connection.

Permissions
DBA permissions are required to execute the INSTALL JAVA statement.

All installed classes can be referenced in any way by any user.

Not supported on Windows Mobile.

See also
● “REMOVE JAVA statement” on page 806

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement installs the user-created Java class named Demo, by providing the file name and
location of the class.

INSTALL JAVA NEW
FROM FILE 'D:\JavaClass\Demo.class';

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 745

The following statement installs all the classes contained in a zip file, and associates them within the
database with a JAR file name.

INSTALL JAVA
JAR 'Widgets'
FROM FILE 'C:\Jars\Widget.zip';

Again, the location of the zip file is not retained and classes must be referenced using the fully qualified
class name (package name and class name).

INTERSECT statement
Computes the intersection between the result sets of two or more queries.

Syntax
[WITH temporary-views] query-block
 INTERSECT [ALL | DISTINCT] query-block
[ORDER BY [integer | select-list-expression-name] [ASC | DESC], ...]
[FOR XML xml-mode]
[OPTION(query-hint, ...)]

query-block : see “Common elements in SQL syntax” on page 381

query-hint :
MATERIALIZED VIEW OPTIMIZATION option-value
| FORCE OPTIMIZATION
| option-name = option-value

option-name : identifier

option-value : hostvar (indicator allowed), string, identifier, or number

Parameters
FOR XML clause For a description of the FOR XML clause, see “SELECT statement” on page 825.

OPTION clause Use this clause to specify hints for executing the statement. The following hints are
supported:

○ MATERIALIZED VIEW OPTIMIZATION option-value
○ FORCE OPTIMIZATION
○ option-name = option-value. Note that a OPTION(isolation_level = ...) specification

in the query text overrides all other means of specifying isolation level for a query.

For a description of these options, see “OPTION clause, SELECT statement” on page 832.

Remarks
INTERSECT computes the set intersection between the result sets of two query blocks. Note that query
blocks can be nested, and can in turn be comprised of nested SELECT statements or the set operators
UNION, EXCEPT, or INTERSECT. Specifying INTERSECT alone is equivalent to specifying
INTERSECT DISTINCT.

SQL statements

746 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

INTERSECT ALL implements bag intersection rather than set intersection. For example, if the first query-
block contains 5 (duplicate) rows with specific values, and the second query-block contains 3 duplicate
rows with identical values to the first, then INTERSECT ALL will return 3 rows.

The results of INTERSECT are the same as INTERSECT ALL if either query-block does not contain
duplicate rows.

The two query-block result sets must be UNION-compatible; they must each have the same number of
items in their respective SELECT lists, and the types of each expression should be comparable. If
corresponding items in two select lists have different data types, SQL Anywhere chooses a data type for
the corresponding column in the result and automatically convert the columns in each query-block
appropriately.

The column names displayed are the same column names that are displayed for the first query-block and
these names are used to determine the expression names to be matched with the ORDER BY clause. An
alternative way of customizing result set column names is to use a common table expression (the WITH
clause).

Permissions
Must have SELECT permission for each query-block.

Side effects
None.

See also
● “EXCEPT statement” on page 676
● “UNION statement” on page 883
● “SELECT statement” on page 825

Standards and compatibility
● SQL/2008 INTERSECT is optional SQL language feature F302 of the SQL/2008 standard.

Explicitly specifying the DISTINCT keyword with INTERSECT is optional SQL language feature
T551. Specifying an ORDER BY clause with INTERSECT is SQL language feature F850. A query-
block that contains an ORDER BY clause constitutes SQL/2008 feature F851. A query block that
contains a row-limit clause (SELECT TOP or LIMIT) comprises optional SQL language feature F857
or F858, depending on the context. The FOR XML and OPTION clauses are vendor extensions.

● Transact-SQL INTERSECT is not supported by Adaptive Server Enterprise. However, both
INTERSECT ALL and INTERSECT DISTINCT can be used in the Transact-SQL dialect supported
by SQL Anywhere.

Example
For examples of INTERSECT usage, see “Set operators and NULL” [SQL Anywhere Server - SQL
Usage].

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 747

LEAVE statement
Leaves a compound statement or loop.

Syntax
LEAVE statement-label

Remarks
The LEAVE statement is a control statement that allows you to leave a labeled compound statement or a
labeled loop. Execution resumes at the first statement after the compound statement or loop.

The compound statement that is the body of a procedure or trigger has an implicit label that is the same as
the name of the procedure or trigger.

Permissions
None.

Side effects
None.

See also
● “LOOP statement” on page 765
● “FOR statement” on page 691
● “BEGIN statement” on page 454
● “Using procedures, triggers, and batches” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 The LEAVE statement is part of optional SQL/2008 language feature P002,

"Computational completeness".

Example
The following fragment shows how the LEAVE statement is used to leave a loop.

SET i = 1;
lbl:
LOOP
 INSERT
 INTO Counters (number)
 VALUES (i);
 IF i >= 10 THEN
 LEAVE lbl;
 END IF;
 SET i = i + 1
END LOOP lbl

The following example fragment uses LEAVE in a nested loop.

outer_loop:
LOOP
 SET i = 1;

SQL statements

748 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 inner_loop:
 LOOP
 ...
 SET i = i + 1;
 IF i >= 10 THEN
 LEAVE outer_loop
 END IF
 END LOOP inner_loop
END LOOP outer_loop

LOAD STATISTICS statement
For internal use only. Loads statistics into the ISYSCOLSTAT system table. It is used by the dbunload
utility to unload column statistics from the old database. It should not be used manually.

Syntax
LOAD STATISTICS [[owner.]table-name.]column-name
 format-id, density, max-steps, actual-steps, step-values, frequencies

Parameters
format-id Internal field used to determine the format of the rest of the row in the ISYSCOLSTAT
system table.

density An estimate of the weighted average selectivity of a single value for the column, not counting
the selectivity of large single value selectivities stored in the row.

max-steps The maximum number of steps allowed in the histogram.

actual-steps The number of steps actually used at this time.

step-values Boundary values of the histogram steps.

frequencies Selectivities of histogram steps.

Permissions
DBA authority

Side effects
None.

See also
● “ISYSCOLSTAT system table” on page 912
● “Unload utility (dbunload)” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 749

LOAD TABLE statement
Imports bulk data into a database table from an external file.

Syntax
LOAD [INTO] TABLE [owner.]table-name
[(column-name, ...)]
load-source
[load-option ...]
[statistics-limitation-option]

load-source :
{ FROM filename-expression
 | USING FILE filename-expression
 | USING CLIENT FILE client-filename-expression
 | USING VALUE value-expression
 | USING COLUMN column-expression }

filename-expression : string | variable

client-filename-expression : string | variable

value-expression : expression

column-expression :
column-name
 FROM table-name
 ORDER BY column-list

load-option :
BYTE ORDER MARK { ON | OFF }
| CHECK CONSTRAINTS { ON | OFF }
| { COMPRESSED | AUTO COMPRESSED | NOT COMPRESSED }
| { ENCRYPTED KEY 'key' | NOT ENCRYPTED }
| COMMENTS INTRODUCED BY comment-prefix
| COMPUTES { ON | OFF }
| DEFAULTS { ON | OFF }
| DELIMITED BY string
| ENCODING encoding
| ESCAPE CHARACTER character
| ESCAPES { ON | OFF }
| FORMAT {
 TEXT
 | BCP
 | XML row-xpath (column-xpath,...) [NAMESPACES namespace] }
 | SHAPEFILE
| HEXADECIMAL { ON | OFF }
| ORDER { ON | OFF }
| PCTFREE percent-free-space
| QUOTE string
| QUOTES { ON | OFF }
| ROW DELIMITED BY string
| SKIP integer
| STRIP { ON | OFF | LTRIM | RTRIM | BOTH }

SQL statements

750 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

| WITH CHECKPOINT { ON | OFF }
| WITH { FILE NAME | ROW | CONTENT } LOGGING

statistics-limitation-option :
STATISTICS {
 ON [ALL COLUMNS]
 | ON KEY COLUMNS
 | ON (column-list)
 | OFF
 }

comment-prefix : string

encoding : string

Parameters
column-name Use this clause to specify one or more columns to load data into. Any columns not
present in the column list become NULL if DEFAULTS is OFF. If DEFAULTS is ON and the column
has a default value, that value is used. If DEFAULTS is OFF and a non-nullable column is omitted from
the column list, the database server attempts to convert the empty string to the column's type.

When a column list is specified, it lists the columns that are expected to exist in the file and the order in
which they are expected to appear. Column names cannot be repeated. Column names that do not appear
in the list are set to NULL/zero/empty or DEFAULT (depending on column nullability, data type, and the
DEFAULTS setting). Columns that exist in the input file that are to be ignored by LOAD TABLE can be
specified using filler() as a column name.

load-source Use this clause to specify the data source to load data from. There are several sources of
data from which data can be loaded. The following list gives the supported load sources:

FROM clause Use this to specify a file. The filename-expression is passed to the database server as a
string. The string is therefore subject to the same database formatting requirements as other SQL strings.
In particular:

○ To indicate directory paths, the backslash character (\) must be represented by two backslashes. The
statement to load data from the file c:\temp\input.dat into the Employees table is:

LOAD TABLE Employees
FROM 'c:\\temp\\input.dat' ...

○ The path name is relative to the database server, not to the client application.

○ You can use UNC path names to load data from files on computers other than the database server.

USING FILE clause Use this clause to load data from a file. This is synonymous with specifying the
FROM filename clause.

When the LOAD TABLE statement is used with the USING FILE clause, you can request progress
messages. See “progress_messages option” [SQL Anywhere Server - Database Administration].

You can also use the Progress connection property to determine how much of the statement has been
executed. See “Progress connection property” [SQL Anywhere Server - Database Administration].

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 751

USING CLIENT FILE clause Use this clause to load data from a file on a client computer. When the
database server retrieves data from client-filename-expression, the data is not materialized in the server's
memory, so the database server limit on the size of BLOB expressions does not apply to the file.
Therefore, the client file can be of an arbitrary size.

When the LOAD TABLE statement is used with the USING CLIENT FILE clause, you can request
progress messages. See “progress_messages option” [SQL Anywhere Server - Database Administration].

You can also use the Progress connection property to determine how much of the statement has been
executed. See “Progress connection property” [SQL Anywhere Server - Database Administration].

USING VALUE clause Use this clause to load data from any expression of CHAR, NCHAR,
BINARY, or LONG BINARY type, or BLOB string. The following are examples of how this clause can
be used:

○ The following syntax uses the xp_read_file system procedure to get the values to load from the target
file:

... USING VALUE xp_read_file('filename')...

○ The following syntax specifies the value directly, inserting two rows with values of 4 and 5, respectively;

... USING VALUE '4\n5'...

○ The following syntax uses the results of the READ_CLIENT_FILE function as the value:

... USING VALUE READ_CLIENT_FILE(client-filename-expression)

In this case, you can also specify USING CLIENT FILE client-filename-expression
since they are semantically equivalent.

If the ENCODING clause is not specified in the LOAD TABLE statement, then encoding for values is
assumed to be in the database character set (db_charset) if the values are of type CHAR or BINARY, and
NCHAR database character set (nchar_charset) if the values are of type NCHAR.

USING COLUMN clause Use this clause to load data from a single column in another table. This
clause is used by the database server when it replays the transaction log during recovery by replaying the
LOAD TABLE ... WITH CONTENT LOGGING statements. Transaction log records for LOAD
TABLE ... WITH CONTENT LOGGING statements comprise chunks of concatenated rows. When the
database server encounters these chunks in the transaction log during recovery, it loads the chunks into a
temporary table and then loads all the data from the original load operation.

The following clauses are supported in the USING COLUMN clause:

○ table-name The name of the base or temporary table that contains the column to load data from.
When used by the database server during recovery from the transaction log, this is the table that holds
the chunks of rows to be parsed and loaded.

○ column-name The name of the column in table-name that holds the chunks of rows to be loaded.

SQL statements

752 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

○ column-list One or more columns in the destination table used to sort the rows before loading the
data.

load-option clause There are several load options you can specify to control how data is loaded. The
following list gives the supported load options:

○ BYTE ORDER MARK clause Use this clause to specify whether a byte order mark (BOM) is
present in the encoding. By default, this option is ON, which enables the server to search for and
interpret a byte order mark (BOM) at the beginning of the data. If BYTE ORDER MARK is OFF, the
server does not search for a BOM.

If the ENCODING clause is specified:

● If the BYTE ORDER MARK option is ON and you specify a UTF-16 encoding with an endian
such as UTF-16BE or UTF-16LE, the database server searches for a BOM at the beginning of the
data. If a BOM is present, it is used to verify the endianness of the data. If you specify the wrong
endian, an error is returned.

● If the BYTE ORDER MARK option is ON and you specify a UTF-16 encoding without an
explicit endian, the database server searches for a BOM at the beginning of the data. If a BOM is
present, it is used to determine the endianness of the data. Otherwise, the operating system
endianness is assumed.

● If the BYTE ORDER MARK option is ON and you specify a UTF-8 encoding, the database server
searches for a BOM at the beginning of the data. If a BOM is present it is ignored.

If the ENCODING clause is not specified:

● If you do not specify an ENCODING clause and the BYTE ORDER MARK option is ON, the
server looks for a BOM at the beginning of the input data. If a BOM is located, the source
encoding is automatically selected based on the encoding of the BOM (UTF-16BE, UTF-16LE, or
UTF-8) and the BOM is not considered to be part of the data to be loaded.

● If you do not specify an ENCODING clause and the BYTE ORDER MARK option is OFF, or a
BOM is not found at the beginning of the input data, the database CHAR encoding is used.

○ CHECK CONSTRAINTS clause Use this clause to control whether constraints are checked during
loading. CHECK CONSTRAINTS is ON by default, but the Unload utility (dbunload) writes out
LOAD TABLE statements with CHECK CONSTRAINTS set to OFF. Setting CHECK
CONSTRAINTS to OFF disables check constraints, which can be useful, for example, during
database rebuilding. If a table has check constraints that call user-defined functions that are not yet
created, the rebuild fails unless CHECK CONSTRAINTS is set to OFF.

○ COMMENTS INTRODUCED BY clause Use this clause to specify the string used in the data file
to introduce a comment. When used, LOAD TABLE ignores any line that begins with the string comment-
prefix. For example, in the following statement, lines in input.dat that start with // are ignored.

LOAD TABLE Employees FROM 'c:\\temp\\input.dat' COMMENTS INTRODUCED BY
'//' ...

Comments are only allowed at the beginning of a new line.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 753

If COMMENTS INTRODUCED BY is omitted, the data file must not contain comments because they
are interpreted as data.

○ COMPRESSED clause Specify COMPRESSED if the data being loaded is compressed in the
input file. The database server decompresses the data before loading it. If you specify COMPRESSED
and the data is not compressed, the LOAD fails and returns an error.

Specify AUTO COMPRESSED to allow the database server determine whether the data in the input
file is compressed. If so, the database server decompresses the data before loading it.

Specify NOT COMPRESSED to indicate that the data in the input file is not compressed. You can
also specify NOT COMPRESSED if the data is compressed, but you don't want the database server to
decompress it. In this case, the data remains compressed in the database. However, if a file is both
encrypted and compressed, you cannot use NOT ENCRYPTED without also using NOT
COMPRESSED.

○ COMPUTES clause By default, this option is ON, which enables recalculation of computed
columns. Setting COMPUTES to OFF disables computed column recalculations. COMPUTES OFF is
useful, for example, if you are rebuilding a database, and a table has a computed column that calls a user-
defined function that is not yet created. The rebuild would fail unless this option was set to OFF.

The Unload utility (dbunload) writes out LOAD TABLE statements with the COMPUTES set to OFF.

○ DEFAULTS clause By default, DEFAULTS is set to OFF. If DEFAULTS is OFF, any column not
present in the list of columns is assigned NULL. If DEFAULTS is set to OFF and a non-nullable
column is omitted from the list, the database server attempts to convert the empty string to the
column's type. If DEFAULTS is set to ON and the column has a default value, that value is used.

○ DELIMITED BY clause Use this clause to specify the column delimiter string. The default column
delimiter string is a comma; however, it can be any string up to 255 bytes in length (for example, ...
DELIMITED BY '###' ...). The delimiter you specify is a string and should be quoted. If you
want to specify tab-delimited values, you could specify the hexadecimal escape sequence for the tab
character (9), ... DELIMITED BY '\x09'

○ ENCODING clause Use this clause to specify the character encoding used for the data being
loaded into the database. The ENCODING clause can not be used with the BCP format. For the
SHAPEFILE format, the encoding defaults to ISO-8859-1 if the ENCODING clause is not specified.

If a translation error occurs during the load operation, it is reported based on the setting of the
on_charset_conversion_failure option. See “on_charset_conversion_failure option” [SQL Anywhere
Server - Database Administration].

For more information about how to obtain the list of supported SQL Anywhere encodings, see
“Supported character sets” [SQL Anywhere Server - Database Administration].

Specify the BYTE ORDER clause to include a byte order mark in the data.

○ ENCRYPTED clause Use this clause to specify encryption settings. When loading encrypted data,
specify ENCRYPTED KEY followed by the key used to encrypt the data in the input file.

SQL statements

754 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Specify NOT ENCRYPTED to indicate that the data in the input file is not encrypted. You can also
specify NOT ENCRYPTED if the data is encrypted, but you don't want the database server to
decompress it. In this case, the data remains compressed in the database. However, if a file is both
encrypted and compressed, you cannot use NOT ENCRYPTED without also using NOT
COMPRESSED.

○ ESCAPE CHARACTER clause Use this clause to specify the escape character used in the data.
The default escape character for characters stored as hexadecimal codes and symbols is a backslash
(\), so \x0A is the linefeed character, for example. This can be changed using the ESCAPE
CHARACTER clause. For example, to use the exclamation mark as the escape character, you would
enter:

ESCAPE CHARACTER '!'

Only one single-byte character can be used as an escape character.

○ ESCAPES clause Use this clause to control whether to recognize escape characters. With
ESCAPES turned ON (the default), characters following the backslash character are recognized and
interpreted as special characters by the database server. Newline characters can be included as the
combination \n, and other characters can be included in data as hexadecimal ASCII codes, such as
\x09 for the tab character. A sequence of two backslash characters (\\) is interpreted as a single
backslash. A backslash followed by any character other than n, x, X, or \ is interpreted as two separate
characters. For example, \q inserts a backslash and the letter q.

○ FORMAT clause Use this clause to specify the format of the data source you are loading data from.

If you choose FORMAT TEXT (the default), input lines are assumed to be characters (as defined by
the ENCODING option), one row per line, with values separated by the column delimiter string.

Choosing FORMAT BCP allows the import of Adaptive Server Enterprise-generated BCP out files.

Choosing FORMAT SHAPEFILE allows ESRI shapefiles to be imported. The data source must be
loaded using FROM filename-expression or USING FILE filename-expression, where filename-
expression refers to an ESRI shapefile with the .shp file extension. The associated .shx and .dbf files
must be located in the same directory as the .shp file, and have the same base file name. For
FORMAT SHAPEFILE, the LOAD TABLE and OPENSTRING ENCODING option defaults to
ISO-8859-1.

If you specify FORMAT SHAPEFILE, only the following load options are allowed:

● CHECK CONSTRAINTS
● COMPUTES
● DEFAULTS
● ENCODING
● ORDER
● PCTFREE
● WITH CHECKPOINT
● WITH LOGGING

For more information about ESRI shapefile support, see “Support for ESRI shapefiles” [SQL
Anywhere Server - Spatial Data Support].

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 755

If you specify FORMAT XML, only the following load options are allowed:

● BYTE ORDER MARK
● CHECK CONSTRAINTS
● COMPRESSED
● COMPUTES
● DEFAULTS
● ENCODING
● ENCRYPTED
● ORDER
● PCTFREE
● WITH CHECKPOINT
● WITH LOGGING

The FORMAT XML clause uses the following parameters:

● row-xpath A string or variable containing an XPath query. XPath allows you to specify
patterns that describe the structure of the XML document you are querying. The XPath pattern
included in this argument selects the nodes from the XML document. Each node that matches the
XPath query in the row-xpath argument generates one row in the table.

Metaproperties can only be specified in FORMAT XML clause row-xpath arguments. A
metaproperty is accessed within an XPath query as if it was an attribute. If namespaces is not
specified, then by default the prefix mp is bound to the Uniform Resource Identifier (URI)
urn:ianywhere-com:sa-xpath-metaprop. If namespace is specified, this URI must be bound to mp
or some other prefix to access metaproperties in the query. Metaproperty names are case sensitive.
The following metaproperties are supported:

○ @mp:id returns an ID for a node that is unique within the XML document. The ID for a
given node in a given document may change if the database server is restarted. The value of
this metaproperty increases with document order.

○ @mp:localname returns the local part of the node name, or NULL if the node does not
have a name.

○ @mp:prefix returns the prefix part of the node name, or NULL if the node does not have a
name or if the name is not prefixed.

○ @mp:namespaceuri returns the URI of the namespace that the node belongs to, or NULL
if the node is not in a namespace.

○ @mp:xmltext returns a subtree of the XML document in XML form. For example, when
you match an internal node, you can use this metaproperty to return an XML string, rather than
the concatenated values of the descendant text nodes.

● column-xpath A string or variable that specifies the schema of the result set and how the value
is found for each column in the result set. If a FORMAT XML clause expression matches more
than one node, then only the first node in the document order is used. If the node is not a text

SQL statements

756 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

node, then the result is found by appending all the text node descendants. If a FORMAT XML
clause expression does not match any nodes, then the column for that row is NULL.

● namespace A string or variable containing an XML document. The in-scope namespaces for
the query are taken from the root element of the document.

○ HEXADECIMAL clause Use this clause to specify whether to read binary values as hexadecimals.
By default, HEXADECIMAL is ON. With HEXADECIMAL ON, binary column values are read as
0xnnnnnn..., where 0x is a zero followed by an x, and each n is a hexadecimal digit. It is important to
use HEXADECIMAL ON when dealing with multibyte character sets.

The HEXADECIMAL clause can be used only with the FORMAT TEXT clause.

○ ORDER clause Use this clause to specify the order to sort the data into when loading. The default
for ORDER is ON. If ORDER is ON, and a clustered index has been declared, then LOAD TABLE
sorts the input data according to the clustered index and inserts rows in the same order. If the data you
are loading is already sorted, you should set ORDER to OFF. See “Using clustered indexes” [SQL
Anywhere Server - SQL Usage].

○ PCTFREE clause Use this clause to specify the percentage of free space you want to reserve for
each table page. This setting overrides any permanent setting for the table, but only for the duration of
the load, and only for the data being loaded. The value percent-free-space is an integer between 0 and
100. A value of 0 specifies that no free space is to be left on each page—each page is to be fully
packed. A high value causes each row to be inserted into a page by itself. For more information about
PCTFREE, see “CREATE TABLE statement” on page 596.

○ QUOTE clause The QUOTE clause is for TEXT data only; the string is placed around string
values. The default is a single quote (apostrophe).

○ QUOTES clause Use this clause to specify whether strings are enclosed in quotes. When
QUOTES is set to ON (the default), the LOAD TABLE statement expects strings to be enclosed in
quote characters. The quote character is either an apostrophe (single quote) or a quotation mark
(double quote). The first such character encountered in a string is treated as the quote character for the
string. Strings must be terminated by a matching quote.

When QUOTES is set to ON, column delimiter strings can be included in column values. Also, quote
characters are assumed not to be part of the value. Therefore, the following line is treated as two
values, not three, despite the presence of the comma in the address. Also, the quotes surrounding the
address are not inserted into the database.

'123 High Street, Anytown',(715)398-2354

To include a quote character in a value, when QUOTES is set to ON, you must use two quotes. The
following line includes a value in the third column that is a single quote character:

'123 High Street, Anytown','(715)398-2354',''''

○ ROW DELIMITED BY clause Use this clause to specify the string that indicates the end of an
input record. The default delimiter string is a newline (\n); however, it can be any string up to 255
bytes in length (for example, ROW DELIMITED BY '###'). The same formatting requirements
apply to other SQL strings. If you wanted to specify tab-delimited values, you could specify the

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 757

hexadecimal escape sequence for the tab character (9), ROW DELIMITED BY '\x09'. If your
delimiter string contains a \n, it matches either \r\n or \n.

○ SKIP clause Use this clause to specify whether to ignore lines at the beginning of a file. The
integer argument specifies the number of lines to skip. You can use this clause to skip over a line
containing column headings, for example. If the row delimiter is not the default (newline), then
skipping may not work correctly if the data contains the row delimiter embedded within a quoted string.

○ STRIP clause Use this clause to specify whether unquoted values should have leading or trailing
blanks stripped off before they are inserted. The STRIP option accepts the following options:

● STRIP OFF Do not strip off leading or trailing blanks.

● STRIP LTRIM Strip leading blanks.

● STRIP RTRIM Strip trailing blanks.

● STRIP BOTH Strip both leading and trailing blanks.

● STRIP ON Deprecated. Equivalent to STRIP RTRIM.

○ WITH CHECKPOINT clause Use this clause to specify whether to perform a checkpoint. The
default setting is OFF. If this clause is set to ON, a checkpoint is issued after successfully completing
and logging the statement. If this clause is set to ON, and the database requires automatic recovery
before a CHECKPOINT is issued, the data file used to load the table must be present for the recovery
to complete successfully. If WITH CHECKPOINT ON is specified, and recovery is subsequently
required, recovery begins after the checkpoint, and the data file need not be present.

The data files are required, regardless of what is specified for this clause, if the database becomes
corrupt and you need to use a backup and apply the current log file.

Caution
If you set the database option conversion_error to Off, you may load bad data into your table without
any error being reported. If you do not specify WITH CHECKPOINT ON, and the database needs to
be recovered, the recovery may fail as conversion_error is On (the default value) during recovery. It is
recommended that you do not load tables when conversion_error is set to Off and WITH
CHECKPOINT ON is not specified.

For more information about the conversion_error option, see “conversion_error option” [SQL
Anywhere Server - Database Administration].

○ WITH { FILE NAME | ROW | CONTENT } LOGGING Use this clause to control the level of detail
logged in the transaction log during a load operation. The levels of logging are as follows:

● WITH FILE NAME LOGGING clause The WITH FILE NAME LOGGING clause causes only
the LOAD TABLE statement to be recorded in the transaction log. To guarantee consistent results
when the transaction log is used during recovery, the file used for the original load operation must
be present in its original location, and must contain the original data. This level of logging does
not impact performance; however, you should not use it if your database is involved in mirroring
or synchronization. Also, this level can not be used when loading from an expression or a client file.

SQL statements

758 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

When you do not specify a logging level in the LOAD TABLE statement, WITH FILE NAME
LOGGING is the default level when specifying:

○ FROM filename-expression
○ USING FILE filename-expression

● WITH ROW LOGGING clause The WITH ROW LOGGING clause causes each row that is
loaded to be recorded in the transaction log as an INSERT statement. This level of logging is
recommended for databases involved in synchronization, and is supported in database mirroring.
However, when loading large amounts of data, this logging type can impact performance, and
results in a much longer transaction log.

This level is also ideal for databases where the table being loaded into contains non-deterministic
values, such as computed columns, or CURRENT TIMESTAMP defaults.

● WITH CONTENT LOGGING clause The WITH CONTENT LOGGING clause causes the
database server to chunk together the content of the rows that are being loaded. These chunks can
be reconstituted into rows later, for example during recovery from the transaction log. When
loading large amounts of data, this logging type has a very low impact on performance, and offers
increased data protection, but it does result in a longer transaction log. This level of logging is
recommended for databases involved in mirroring, or where it is desirable to not maintain the
original data files for later recovery.

The WITH CONTENT LOGGING clause cannot be used if the database is involved in
synchronization.

When you do not specify a logging level in the LOAD TABLE statement, WITH CONTENT
LOGGING is the default level when specifying:

○ USING CLIENT FILE client-filename-expression

○ USING VALUE value-expression

○ USING COLUMN column-expression

statistics-limitation-option Allows you to limit the columns for which statistics are generated during
the execution of LOAD TABLE. Otherwise, statistics are generated for all columns. You should only use
this clause if you are certain that statistics will not be used on some columns. You can specify ON ALL
COLUMNS (the default), OFF, ON KEY COLUMNS, or a list of columns for which statistics should be
generated.

Remarks
LOAD TABLE allows efficient mass insertion into a database table from a file. LOAD TABLE is more
efficient than the Interactive SQL statement INPUT.

LOAD TABLE places a write lock on the whole table. For base tables and global temporary tables, a
commit is performed. For local temporary tables, a commit is not performed

If you attempt to use LOAD TABLE on a table on which an immediate text index is built, or that is
referenced by an immediate view, the load fails. This does not occur for non-immediate text indexes or

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 759

materialized views; however, it is strongly recommended that you truncate the data in dependent indexes
and materialized views before executing the LOAD TABLE statement, and then refresh the indexes and
views after. See “TRUNCATE statement” on page 881, and “TRUNCATE TEXT INDEX
statement” on page 882.

Do not use the LOAD TABLE statement on a temporary table for which ON COMMIT DELETE ROWS
was specified, either explicitly or by default, at creation time. However, you can use LOAD TABLE if
ON COMMIT PRESERVE ROWS or NOT TRANSACTIONAL was specified.

With FORMAT TEXT, a NULL value is indicated by specifying no value. For example, if three values
are expected and the file contains 1,,'Fred',, then the values inserted are 1, NULL, and Fred. If the
file contains 1,2,, then the values 1, 2, and NULL are inserted. Values that consist only of spaces are
also considered NULL values. For example, if the file contains 1, ,'Fred',, then values 1, NULL,
and Fred are inserted. All other values are considered not NULL. For example, '' (single-quote single-
quote) is an empty string. 'NULL' is a string containing four letters.

If a column being loaded by LOAD TABLE does not allow NULL values and the file value is NULL,
then numeric columns are given the value 0 (zero), character columns are given an empty string (''). If a
column being loaded by LOAD TABLE allows NULL values and the file value is NULL, then the
column value is NULL (for all types).

If the table contains columns a, b, and c, and the input data contains a, b, and c, but the LOAD statement
only specifies only a and b as columns to load data into, the following values are inserted into column c:

● if DEFAULTS ON is specified, and column c has a default value, the default value is used.

● if column c does not have a default defined for it and it allows NULLs, then a NULL is used.

● if column c does not have a default defined for it and it does not allow NULLs, then either a zero (0)
or an empty string ('') is used, or an error is returned, depending on the data type of the column.

LOAD TABLE and database mirroring If you are using database mirroring and execute a LOAD
TABLE statement on a base table, you must specify either WITH ROW LOGGING or WITH CONTENT
LOGGING as the logging level for the statement. These clauses allow the loaded data to be recorded in
the transaction log so that it can be loaded into the mirroring database as well. If these clauses are not
specified, an error is reported. See “Import data with the LOAD TABLE statement” [SQL Anywhere
Server - SQL Usage].

LOAD TABLE and column statistics To create histograms on table columns, LOAD TABLE
captures column statistics when it loads data. The histograms are used by the optimizer. For more
information about how column statistics are used by the optimizer, see “Optimizer estimates and column
statistics” [SQL Anywhere Server - SQL Usage].

Following are additional tips about loading and column statistics:

● LOAD TABLE saves statistics on base tables for future use. It does not save statistics on global
temporary tables.

SQL statements

760 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● If you are loading into an empty table that may have previously contained data, it may be beneficial to
drop the statistics for the column before executing the LOAD TABLE statement. See “DROP
STATISTICS statement” on page 666.

● If column statistics exist when LOAD TABLE is performed on a column, statistics for the column are
not recalculated. Instead, statistics for the new data are inserted into the existing statistics. This means
that if the existing column statistics are out-of-date, they will still be out of date after loading new data
into the column. If you suspect that the column statistics are out of date, you should consider updating
them either before, or after, executing the LOAD TABLE statement. See “Updating column statistics
to improve optimizer performance” [SQL Anywhere Server - SQL Usage].

● LOAD TABLE adds statistics only if the table has five or more rows. If the table has at least five
rows, histograms are modified as follows:

Data already in table? Histogram present? Action taken

Yes Yes Integrate changes into the existing histograms

Yes No Do not build histograms

No Yes Integrate changes into the existing histograms

No No Build new histograms

● LOAD TABLE does not generate statistics for columns that contain NULL values for more than 90%
of the rows being loaded.

Using dynamically constructed file names You can execute a LOAD TABLE statement with a
dynamically constructed file name by assigning the file name to a variable and using the variable name in
the LOAD TABLE statement.

Permissions
The permissions required to execute a LOAD TABLE statement depend on the database server -gl option,
as follows:

● If the -gl option is set to ALL, you must be the owner of the table or have DBA authority or have
ALTER privileges.

● If the -gl option is set to DBA, you must have DBA authority.

● If the -gl option is set to NONE, LOAD TABLE is not permitted.

See “-gl dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration].

Requires an exclusive lock on the table.

When reading from a file on a client computer:

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 761

● READCLIENTFILE authority is required. See “READCLIENTFILE authority” [SQL Anywhere
Server - Database Administration].

● Read permissions are required on the directory being read from.

● The allow_read_client_file database option must be enabled. See “allow_read_client_file option”
[SQL Anywhere Server - Database Administration].

● The read_client_file secured feature must be enabled. See “-sf dbeng12/dbsrv12 server option” [SQL
Anywhere Server - Database Administration].

Side effects
Automatic commit.

Inserts are not recorded in the log file unless WITH ROW LOGGING clause is specified. So, the inserted
rows may not be recovered in the event of a failure depending upon the logging type. In addition, the
LOAD TABLE statement without the WITH ROW LOGGING clause should never be used in databases
used as MobiLink clients, or in a database involved in SQL Remote replication, because these
technologies replicate changes through analysis of the log file.

The LOAD TABLE statement does not fire any triggers associated with the table.

A checkpoint is carried out at the beginning of the operation. A second checkpoint is performed at the end
if WITH CHECKPOINT ON is specified.

Column statistics are updated if a significant amount of data is loaded.

See also
● “Importing data” [SQL Anywhere Server - SQL Usage]
● “UNLOAD statement” on page 885
● “INSERT statement” on page 737
● “INPUT statement [Interactive SQL]” on page 731
● “Accessing data on client computers” [SQL Anywhere Server - SQL Usage]
● “Importing and exporting data” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
Following is an example of LOAD TABLE. First, you create a table, and then load data into it using a file
called input.txt.

CREATE TABLE t(a CHAR(100), let_me_default INT DEFAULT 1, c CHAR(100));

Following is the content of a file called input.txt:

ignore_me, this_is_for_column_c, this_is_for_column_a

The following LOAD statement loads the file called input.txt:

SQL statements

762 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

LOAD TABLE T (filler(), c, a) FROM 'input.txt' FORMAT TEXT DEFAULTS ON;

The command SELECT * FROM t yields the result set:

a let_me_default c

this_is_for_column_a 1 this_is_for_column_c

The following example executes the LOAD TABLE statement with a dynamically-constructed file name,
via the EXECUTE IMMEDIATE statement:

CREATE PROCEDURE LoadData(IN from_file LONG VARCHAR)
BEGIN
 DECLARE path LONG VARCHAR;
 SET path = 'd:\\data\\' || from_file;
 LOAD TABLE MyTable FROM path;
END;

The following example loads UTF-8-encoded table data into mytable:

LOAD TABLE mytable FROM 'mytable_data_in_utf8.dat' ENCODING 'UTF-8';

LOCK FEATURE statement
Prevents other concurrent connections from using a database server feature.

Syntax
LOCK FEATURE feature-name { ON | OFF }

feature-name :
synchronization schema
| all

Parameters
feature-name The name of the feature to be locked or unlocked. Specify all to unlock all the features
locked by a connection.

ON | OFF Specify ON to prevent other connections from using the feature. Specify OFF to allow
connections to use the feature.

Remarks
You cannot lock a feature more than once for the same connection. If you attempt to unlock a feature that
is not locked by the current connection and you do not specify all as the feature name, an error is returned.
When a feature is locked by two or more connections, the feature must be unlocked by all connections
before it can be used by other connections. Feature locks created by a connection are removed when the
connection is dropped. Feature locks are removed when the database server is shut down.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 763

When the synchronization schema feature is locked, the following statements cannot be executed by other
connections:

● START SYNCHRONIZATION SCHEMA CHANGE
● CREATE SYNCHRONIZATION SUBSCRIPTION
● DROP SYNCHRONIZATION SUBSCRIPTION
● ALTER SYNCHRONIZATION SUBSCRIPTION
● ALTER PUBLICATION

Permissions
DBA authority

Side effects
None

See also
● “LOCK TABLE statement” on page 764

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement prevents other connections from using the synchronization schema feature:

LOCK FEATURE 'synchronization schema' ON;

LOCK TABLE statement

Prevents other concurrent transactions from accessing or modifying a table.

Syntax
LOCK TABLE table-name
[WITH HOLD]
IN { SHARE | EXCLUSIVE } MODE

Parameters
table-name The name of the table. The table must be a base table, not a view. As temporary table data
is local to the current connection, locking global or local temporary tables has no effect.

WITH HOLD clause Specify this clause to lock the table until the end of the connection. If the clause
is not specified, the lock is released when the current transaction is committed or rolled back.

IN SHARE MODE clause Specify this clause to obtain a shared table lock on the table, preventing
other transactions from modifying the table but allowing them read access. If a transaction puts a shared
lock on a table, it can change data in the table provided no other transaction holds a lock of any kind on

SQL statements

764 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

the row(s) being modified. Read locks on individual rows are not acquired when the IN SHARE MODE
clause is selected.

IN EXCLUSIVE MODE clause Specify this clause to obtain an exclusive table lock on the table,
preventing other transactions from accessing the table. No other transaction can execute queries, updates,
or any other action against the table. If a table is locked exclusively with a statement such as LOCK
TABLE...IN EXCLUSIVE MODE, the default behavior is to not acquire row locks for the table. This
behavior can be disabled by setting the subsume_row_locks option to Off.

Remarks
The LOCK TABLE statement allows direct control over concurrency at a table level, independent of the
current isolation level.

While the isolation level of a transaction generally governs the kinds of locks that are set when the current
transaction executes a request, the LOCK TABLE statement allows more explicit control locking of the
rows in a table.

You cannot execute the LOCK TABLE statement against a view. However, if you execute the LOCK
TABLE statement against a base table, a shared schema lock is created, which locks dependent views. A
shared schema lock persists until the transaction is committed or rolled back.

Permissions
To lock a table in SHARE mode, SELECT privileges are required.

To lock a table in EXCLUSIVE mode, you must be the table owner or have DBA authority.

Side effects
Other transactions that require access to the locked table may be delayed or blocked.

See also
● “Table locks” [SQL Anywhere Server - SQL Usage]
● “SELECT statement” on page 825
● “sa_locks system procedure” on page 1014
● “How locking works” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement prevents other transactions from modifying the Customers table for the duration
of the current transaction:

LOCK TABLE Customers
IN SHARE MODE;

LOOP statement

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 765

Repeats the execution of a statement list.

Syntax
 [statement-label :]
[WHILE search-condition] LOOP
 statement-list
END LOOP [statement-label]

Remarks
The WHILE and LOOP statements are control statements that allow you to execute a list of SQL
statements repeatedly while a search-condition evaluates to TRUE. The LEAVE statement can be used to
resume execution at the first statement after the END LOOP.

If the ending statement-label is specified, it must match the beginning statement-label.

Permissions
None.

Side effects
None.

See also
● “FOR statement” on page 691
● “CONTINUE statement” on page 476
● “WHILE statement [T-SQL]” on page 906

Standards and compatibility
● SQL/2008 The LOOP/END LOOP statement is part of optional SQL/2008 language feature P002,

"Computational completeness". In SQL/2008, the WHILE DO/END WHILE statement is a separate
statement that is also part of language feature P002. The syntax combination WHILE search-condition
LOOP supported in SQL Anywhere is a vendor extension.

● Transact-SQL LOOP is not supported in the Transact-SQL dialect. Looping within Transact-SQL
stored procedures is done with the Transact-SQL WHILE statement.

Example
A While loop in a procedure.

...
SET i = 1;
WHILE i <= 10 LOOP
 INSERT INTO Counters(number) VALUES (i);
 SET i = i + 1;
END LOOP;
...

A labeled loop in a procedure.

SET i = 1;
lbl:

SQL statements

766 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

LOOP
 INSERT
 INTO Counters(number)
 VALUES (i);
 IF i >= 10 THEN
 LEAVE lbl;
 END IF;
 SET i = i + 1;
END LOOP lbl

MERGE statement
Merges tables, views, and procedure results into a table or view.

Syntax
MERGE
INTO target-object [into-column-list]
USING [WITH AUTO NAME] source-object
 ON merge-search-condition
merge-operation [...]
 [OPTION (query-hint, ...)]

target-object:
[userid.]target-table-name [[AS] target-correlation-name]
| [userid.]target-view-name [[AS] target-correlation-name]
| (select-statement) [AS] target-correlation-name

source-object :
[userid.]source-table-name [[AS] source-correlation-name] [WITH (table-hints)]
| [userid.]source-view-name [[AS] source-correlation-name]
| [userid.]source-mat-view-name [[AS] source-correlation-name]
| (select-statement) [AS] source-correlation-name [using-column-list]
| procedure

procedure :
[owner.]procedure-name (procedure-syntax)
 [WITH (column-name data-type, ...)]
 [[AS] source-correlation-name]

merge-search-condition :
search-condition
| PRIMARY KEY

merge-operation :
WHEN MATCHED [AND search-condition] THEN match-action
| WHEN NOT MATCHED [AND search-condition] THEN not-match-action

match-action :
DELETE
| RAISERROR [error-number]
| SKIP
| UPDATE SET set-item, ...
| UPDATE [DEFAULTS { ON | OFF }]

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 767

not-match-action :
INSERT
| INSERT [insert-column-list] VALUES (value, ...)
| RAISERROR [error-number]
| SKIP

set-item :
[target-correlation-name.]column-name = { expression | DEFAULT }
| [owner-name.]target-table-name.column-name = { expression | DEFAULT }

insert-column-list :
(column-name, ...)

query-hint :
MATERIALIZED VIEW OPTIMIZATION option-value
| FORCE OPTIMIZATION
| option-name = option-value

into-column-list :
(column-name, ...)

using-column-list :
(column-name, ...)

error-number : positive integer or variable greater than 17000

option-name : identifier

option-value : hostvar (indicator allowed), string, identifier, or number

table-hints : see “FROM clause” on page 696

search-condition : see “Search conditions” on page 32

set-clause-list : see “SET statement” on page 849

Parameters
INTO clause Use this clause to define the target object for the MERGE statement. target-object can be
the name of a base table, regular view, or derived table; it cannot be a materialized view. The derived
table or view must represent an updatable query block. For example, if the view or derived table
definition contains UNION, INTERSECT, EXCEPT, or GROUP BY, then it cannot be used as a target
object for the MERGE statement.

When target-object is a derived table, the optional into-column-list can be used to provide alternate names
for the columns of the derived table. When used in this manner, the size of the into-column-list must
match the column list for the derived table, and the ordering of the two lists must be the same.

When target-object is a base table or view, into-column-list can be used to specify a subset of the table or
view columns as relevant for the rest of the MERGE statement.

The database server uses into-column-list to resolve:

○ UPDATE without a SET clause in WHEN MATCHED clause

SQL statements

768 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

○ INSERT without a VALUES clause in a WHEN NOT MATCHED clause

○ PRIMARY KEY search condition in the ON clause

○ WITH AUTO NAME clause in the USING clause

If you do not specify into-column-list, then into-column-list is assumed to contain all the columns of the
target-object.

USING clause Use this clause to define the source of the data you are merging from. source-object can
be a base table (including table hints), a view, a materialized view, a derived table, or a procedure. If source-
object is a derived table, you can specify using-column-list. All columns of source-object are used if you
do not specify using-column-list.

WITH AUTO NAME clause Use this clause to get the server to automatically use column names to
match columns in the into-column-list columns in target-object for the merge operation. The following
examples are equivalent and demonstrate that the order of the columns in into-column-list changes to
match the names of the columns in the source-object when WITH AUTO Name is specified:

... INTO T (Name, ID, Description)
 USING WITH AUTO NAME (SELECT Description, Name, ID FROM PRODUCTS WHERE
Description LIKE '%cap%')
... INTO T (Description, Name, ID)
 USING (SELECT Description, Name, ID FROM PRODUCTS WHERE Description LIKE
'%cap%')

ON clause Use this clause to specify the condition to match a row in source-object with rows in target-
object.

For more information about search condition syntax, see “Search conditions” on page 32.

You can specify ON PRIMARY KEY to match source-object rows based on the target-object primary
key definition. source-object does not need a primary key. However, target-object must have a primary
key. When specifying ON PRIMARY KEY:

○ An error is returned if target-object is not a base table, or if it does not have a primary key.

○ An error is returned if one or more primary key columns are not included in into-column-list.

○ The number of columns in into-column-list and using-column-list can be different as long as every
primary key column in into-column-list has a corresponding matching column in using-column-list.
For example, if into-column-list is (I1, I2, I3), using-column-list is (U1, U2), and the primary key
columns are (I2, I3), an error is returned because column (I3) of the target-object primary key does
not have a match in the using-column-list.

○ Regardless of the definition of the primary key, matching of primary key columns in into-column-list
to expressions in using-column-list is based on the position of the primary key columns in into-column-
list. For example, suppose the primary key on target-object is defined as (B, C), and the into-column-
list is (E, C, F, A, D, B). When ON PRIMARY KEY is specified, target-object column B is compared
to the sixth element of using-column-list because column B is in the sixth position in the into-column-
list. Likewise, target-object column C is compared to the second element of using-column-list.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 769

ON PRIMARY KEY is syntactic shorthand for a corresponding ON condition. For example, assume
that into-column-list is (I1, I2, .. In), and that the corresponding matched using-column-list is (U1,
U2, .. Um). Also assume that the primary key columns of target-object are I1, I2, I3 and all the
primary key columns are contained in into-column-list. In this case, merge-search-condition is defined
as the conjunct "I1=U1 AND I2=U2 AND I3=U3".

WHEN MATCHED and WHEN NOT MATCHED clauses Use the WHEN MATCHED and WHEN
NOT MATCHED clauses to define an action to take when a row from source-object matches or does not
match a row in target-object. You specify the action after the THEN keyword. You can control the
actions to take for subsets of matching or non-matching rows by specifying an additional AND clause.

The ON clause determines how rows from source-object are separated into matching and non-matching
rows. A row in source-object is considered a matching row when the ON clause is TRUE for at least one
row in target-object. A row from source-object is considered a non-matching row when the ON clause is
not TRUE for any rows in target-object. Use multiple WHEN MATCHED and WHEN NOT MATCHED
clauses to partition sets of matching and non-matching rows into disjoint subsets. Each subset is
processed by a WHEN clause. WHEN MATCHED and WHEN NOT MATCHED clauses are processed
in the order they appear in the MERGE statement.

The search condition specified in the AND clause of a WHEN MATCHED or WHEN NOT MATCHED
clause determines if a candidate row is processed by the specific clause. When you specify a WHEN
MATCHED or WHEN NOT MATCHED clause without the AND clause the search condition in the
AND clause is assumed to be TRUE. If a row satisfies the AND condition for more than one clause, the
row is processed by the clause that appears first in the MERGE statement.

An error is returned when any of the WHEN MATCHED clauses process the same target-object row
more than once. A target-object row can belong to the same subset of the same WHEN MATCHED
clause more than once if it matches two different input rows from the source-object.

In the following example an error is returned because the row with ID 300 from the target-object Products
matches 111 rows from the source-object SalesOrderItems. All the matches belong to the same subset
corresponding to the WHEN MATCHED THEN UPDATE clause.

MERGE INTO Products
 USING SalesOrderItems S
 ON S.ProductID = Products.ID
 WHEN MATCHED THEN UPDATE SET Products.Quantity = 20;

WHEN MATCHED: For a matching row, you can specify one of the following actions for match-action:

○ DELETE Specify DELETE to delete the row from target-object.

○ RAISERROR Specify RAISERROR to terminate the merge operation, roll back any changes, and
return an error. By default, when you specify RAISERROR, the database server returns SQLSTATE
23510 and SQLCODE -1254. Optionally, you can customize the SQLCODE that is returned by
specifying the error-number parameter after the RAISERROR keyword. The custom SQLCODE must
be a positive integer greater than 17000, and can be specified either as a number or a variable. When
you specify a custom SQLCODE, the number returned is a negative number.

For example, if you specify WHEN MATCHED AND search-condition THEN RAISERROR
17001, then, when a row is found that satisfies the conditions of the WHEN clause, the merge

SQL statements

770 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

operation fails, changes are rolled back, and the error returned has SQLSTATE 23510 and SQLCODE
-17001. See “Using the RAISERROR action” [SQL Anywhere Server - SQL Usage].

○ SKIP Specify SKIP to skip the row; no action is taken.

○ UPDATE Specify UPDATE SET to update the row using the set-item values. set-item is a simple
assignment expression where a column is set to the value of expression. There are no restrictions on
the expression. You can also specify DEFAULT to set the column to the default defined for the column.

For example, UPDATE SET target-column1=DEFAULT, target-column2=source-
column2 sets target-column1 to its default value and sets target-column2 to be the same as the
modify row from source-column2 in source-object.

If you do not specify the SET clause, the SET clause is defined by into-column-list and using-column-
list. For example, if into-column-list is (I1, I2, .. In), and using-column-list is (U1, U2, .. Un) the SET
clause is assumed to be "SET I1=U1 , I2=U2 , .. In=Un".

WHEN NOT MATCHED: For a non-matching row, you can specify one of the following actions for non-
match-action:

○ INSERT Specify INSERT ... VALUES to insert the row using the specified values. When you
specify the INSERT clause without a VALUES clause, the VALUES clause is defined by into-column-
list and using-column-list. For example, if into-column-list is (I1, I2, .. In), and using-column-list is
(U1, U2, .. Un), the INSERT without a VALUES clause is equivalent to INSERT (I1, I2, ..
In) VALUES (U1, U2, .. Un).

○ RAISERROR Specify RAISERROR to terminate the merge operation, roll back any changes, and
return an error. When you specify RAISERROR, the database server returns SQLSTATE 23510 and
SQLCODE -1254 by default. Optionally, you can customize the SQLCODE that is returned by
specifying the error-number parameter after the RAISERROR keyword. The custom SQLCODE must
be a positive integer greater than 17000, and can be specified either as a number or a variable. When
you specify a custom SQLCODE, the number returned is a negative number.

For example, if you specify WHEN NOT MATCHED AND search-condition THEN
RAISERROR 17001, then, when a row is found that satisfies the conditions of the WHEN clause,
the merge operation fails, changes are rolled back, and the error returned has SQLSTATE 23510 and
SQLCODE -17001. See “Using the RAISERROR action” [SQL Anywhere Server - SQL Usage].

○ SKIP Specify SKIP to skip the row; no action is taken.

OPTION clause Use this clause to specify hints for executing the statement. The following hints are
supported:

○ MATERIALIZED VIEW OPTIMIZATION option-value
○ FORCE OPTIMIZATION
○ option-name = option-value. Note that a OPTION(isolation_level = ...) specification

in the query text overrides all other means of specifying isolation level for a query.

For a description of these options, see the OPTIONS clause of the “SELECT statement” on page 825.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 771

Remarks
Rows in source-object are compared to rows in target-object and found to be matching or non-matching
depending on whether they satisfy the conditions of the ON clause. Rows in source-object are considered
a match if there exists at least one row in target-table such that merge-search-condition evaluates to true.
Matching rows and non-matching rows are then grouped by the actions defined for them in the WHEN
MATCHED and WHEN NOT MATCHED clauses according to the search conditions specified by the
AND clauses. The process of grouping rows by matched and non-matched actions is referred to as
branching, and each group is referred to as a branch.

Once branching is complete, the database begins executing the action defined for the rows of the branch.
Branches are processed in the order in which they occur, which matches the order in which the WHEN
clauses occur in the statement. If, during branching, more than one row in source-object has an action
defined for the same row in target-object, the merge operation fails and an error is returned. This prevents
the merge operation from performing more than one action on any given row in target-object.

As branches are processed, the insert, update, and delete actions are recorded in the transaction log as
their respective INSERT, UPDATE, and DELETE statements.

For information about how triggers can impact the merge operation, see “Import data with the MERGE
statement” [SQL Anywhere Server - SQL Usage].

Permissions
DBA authority, or:

● INSERT, UPDATE, and DELETE permissions on target-object if the INSERT, UPDATE or
DELETE action is specified in the MERGE statement.

● SELECT permission is required on any objects referenced in the MERGE statement.

● EXECUTE permission is required on any procedure referenced in the MERGE statement.

Side effects
Any triggers defined for target-object are fired.

See also
● “Import data with the MERGE statement” [SQL Anywhere Server - SQL Usage]
● “UPDATE statement” on page 895
● “INSERT statement” on page 737
● “DELETE statement” on page 637
● “SELECT statement” on page 825
● “Search conditions” on page 32

Standards and compatibility
● SQL/2008 The MERGE statement comprises features F312 and F313 of the SQL/2008 standard.

The MERGE statement in SQL Anywhere is compliant with the MERGE statement specification in
the SQL/2008 standard, with additional extensions. The SQL Anywhere-specific extensions to the
MERGE statement include:

SQL statements

772 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

○ DELETE in a WHEN MATCHED clause

○ RAISERROR in a WHEN [NOT] MATCHED clause

○ SKIP in a WHEN [NOT] MATCHED clause

○ OPTION clause

○ PRIMARY KEY clause

○ DEFAULTS clause

○ INSERT clause without a VALUES clause

○ WITH AUTO NAME clause

○ UPDATE clause without the SET clause

Examples
The following example merges a row from a derived table into the Products table, effectively adding a
new tee shirt with the same attributes as an existing tee shirt, but with a new color, quantity, and product
identifier. In this example if the product with identification number 304 already exists in the Products
table then the row is not inserted:

MERGE INTO Products (ID, Name, Description, Size, Color, Quantity,
UnitPrice, Photo)
 USING WITH AUTO NAME (
 SELECT 304 AS ID,
 'Purple' AS Color,
 100 AS Quantity,
 Name,
 Description,
 Size,
 UnitPrice,
 Photo
 FROM Products WHERE Products.ID = 300) AS DT
 ON PRIMARY KEY
 WHEN NOT MATCHED THEN INSERT;

The following example is equivalent to the previous, but does not use syntactic shorthand:

MERGE INTO Products (ID, Name, Description, Size, Color, Quantity,
UnitPrice, Photo)
 USING (
 SELECT 304 AS ID,
 'Purple' AS Color,
 100 AS Quantity,
 Name,
 Description,
 Size,
 UnitPrice,
 Photo
 FROM Products WHERE Products.ID = 300)
 AS DT (ID, Name, Description, Size, Color, Quantity, UnitPrice,
Photo)
 ON (Products.ID = DT.ID)
 WHEN NOT MATCHED

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 773

 THEN INSERT (ID, Name, Description, Size, Color, Quantity, UnitPrice,
Photo)
 VALUES (DT.ID, DT.Name, DT.Description, DT.Size, DT.Color, DT.Quantity,
DT.UnitPrice, DT.Photo);

For more detailed examples of the MERGE statement, see “Import data with the MERGE statement”
[SQL Anywhere Server - SQL Usage].

MESSAGE statement
Displays a message.

Syntax
MESSAGE expression
[TYPE { INFO | ACTION | WARNING | STATUS }]
[TO { CONSOLE
 | CLIENT [FOR { CONNECTION conn-id-number [IMMEDIATE] | ALL }]
 | [EVENT | SYSTEM] LOG }
 [DEBUG ONLY]]

conn-id : integer

Parameters
TYPE clause This clause specifies the message type. The client application must decide how to handle
the message. For example, Interactive SQL displays messages in the following locations:

○ INFO The Messages tab. INFO is the default type.

○ ACTION A window with an OK button.

○ WARNING A window with an OK button.

○ STATUS The Messages tab.

TO clause This clause specifies the destination of a message:

○ CONSOLE Send messages to the database server messages window and the database server
message log file if one has been specified. CONSOLE is the default.

○ CLIENT Send messages to the client application. Your application must decide how to handle the
message, and you can use the TYPE as information on which to base that decision.

○ LOG Send messages to the database server message log file specified by the -o option. If EVENT
or SYSTEM is specified, the message is also written to the database server messages window and to
the Windows event log under event source SQLANY 12.0 Admin and to the Unix Syslog under the
name SQLANY 12.0 Admin (servername). Messages in the database server message log are identified
as follows:

● i Messages of type INFO or STATUS.

SQL statements

774 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● w Messages of type WARNING.

● e Messages of type ACTION.

FOR clause For messages TO CLIENT, this clause specifies which connections receive notification
about the message. By default, the connection receives the message the next time a SQL statement or a
WAITFOR DELAY statement is executed.

○ CONNECTION conn-id-number Specify the recipient's connection ID number. If IMMEDIATE
is specified, the connection receives the message within a few seconds regardless of when the SQL
statement is executed.

○ ALL Specify that all open connections receive the message.

DEBUG ONLY This clause allows you to control whether debugging messages added to stored
procedures and triggers are enabled or disabled by changing the setting of the debug_messages option.
When DEBUG ONLY is specified, the MESSAGE statement is executed only when the debug_messages
option is set to On.

Note
DEBUG ONLY messages are inexpensive when the debug_messages option is set to Off, so these
statements can usually be left in stored procedures on a production system. However, they should be used
sparingly in locations where they would be executed frequently; otherwise, they may result in a small
performance penalty.

Remarks
The MESSAGE statement displays a message, which can be any expression. Clauses can specify the
message type and where the message appears.

If the size of expression exceeds the database page size, expression is truncated to fit within the database
page size. To check the page size in effect for the database, you can query the PageSize database property
(SELECT DB_PROPERTY('PageSize');).

The procedure issuing a MESSAGE ... TO CLIENT statement must be associated with a connection.

For example, the window is not displayed in the following example because the event occurs outside a
connection.

CREATE EVENT CheckIdleTime
TYPE ServerIdle
WHERE event_condition('IdleTime') > 100
HANDLER
BEGIN
 MESSAGE 'Idle server' TYPE WARNING TO CLIENT;
END;

However, in the following example, the message is written to the database server messages window.

CREATE EVENT CheckIdleTime
TYPE ServerIdle
WHERE event_condition('IdleTime') > 100
HANDLER

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 775

BEGIN
 MESSAGE 'Idle server' TYPE WARNING TO CONSOLE;
END;

Valid expressions can include a quoted string or other constant, variable, or function.

The FOR clause can be used to notify another application of an event detected on the database server
without the need for the application to explicitly check for the event. When the FOR clause is used,
recipients receive the message the next time that they execute a SQL statement. If the recipient is
currently executing a SQL statement, the message is received when the statement completes. If the
statement being executed is a stored procedure call, the message is received before the call is completed.

If an application requires notification within a short time after the message is sent and when the
connection is not executing SQL statements, use the IMMEDIATE clause to implement client notification
and not multiple concurrent WAITFOR DELAY statements.

Typically, messages sent using the IMMEDIATE clause are delivered in less than five seconds, even if
the destination connection is not making database server requests. Message delivery could be delayed if
the client connection makes several requests per second, receives very large BLOB data, or if the client's
message callback executes for more than a second. In addition, sending more than one IMMEDIATE
message to a single connection every two seconds could delay message delivery or generate an error
message. If the client connection is disconnected, a successful MESSAGE ... IMMEDIATE statement
may not be delivered.

Messages sent without the IMMEDIATE clause are only delivered when the client executes a specific
request, or a WAITFOR DELAY statement. As a result, the delivery time of messages is unlimited.

The IMMEDIATE clause requires a SQL Anywhere 11 or later DBLib, ODBC, or SQL Anywhere JDBC
driver. The IMMEDIATE clause is not supported by non-threaded Unix client libraries. An error message
is generated when a message is sent to a destination connection that does not support the IMMEDIATE
clause. An error message is generated when an IMMEDIATE message is sent to the same connection
issuing the MESSAGE statement.

MESSAGE 'Please disconnect' TYPE WARNING TO CLIENT
 FOR CONNECTION 16 IMMEDIATE;

A MESSAGE ... TO CLIENT expression can be truncated to 2048 bytes. For messages sent with the
IMMEDIATE clause, the message expression can be truncated to the smaller of the packet size of the
connection or 2048 bytes.

Embedded SQL and ODBC clients receive messages via message callback functions. In each case, these
functions must be registered. In embedded SQL, the message callback is registered with
db_register_a_callback using the DB_CALLBACK_MESSAGE parameter. In ODBC, the message
callback is registered with SQLSetConnectAttr using the SA_REGISTER_MESSAGE_CALLBACK
parameter.

Permissions
DBA authority is required to execute a MESSAGE statement containing a FOR clause or a TO EVENT
LOG or TO SYSTEM LOG clause.

SQL statements

776 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Side effects
None.

See also
● “sa_conn_info system procedure” on page 964
● “CREATE PROCEDURE statement” on page 552
● “debug_messages option” [SQL Anywhere Server - Database Administration]
● “db_register_a_callback function” [SQL Anywhere Server - Programming]
● “WAITFOR statement” on page 903

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following procedure displays a message in the database server messages window:

CREATE PROCEDURE message_text()
BEGIN
MESSAGE 'The current date and time: ', Now();
END;

The following statement displays the string The current date and time, followed by the current
date and time, in the database server messages window.

CALL message_text();

OPEN statement [ESQL] [SP]
Opens a previously declared cursor to access information from the database.

Syntax 1 [ESQL]
OPEN cursor-name
[USING { DESCRIPTOR sqlda-name | hostvar, ... }]
[WITH HOLD]
[ISOLATION LEVEL isolation-level]
[BLOCK n]

Syntax 2 [SP]
OPEN cursor-name
[WITH HOLD]
[ISOLATION LEVEL isolation-level]

cursor-name : identifier or hostvar

sqlda-name : identifier

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 777

isolation-level : 0 | 1 | 2 | 3 | SNAPSHOT | STATEMENT SNAPSHOT | READONLY STATEMENT
SNAPSHOT

Parameters
USING DESCRIPTOR clause The USING DESCRIPTOR clause is for embedded SQL only. It
specifies the host variables to be bound to the place-holder bind variables in the SELECT statement for
which the cursor has been declared.

OPEN...USING cannot be used in a stored procedure.

WITH HOLD clause By default, all cursors are automatically closed at the end of the current
transaction (COMMIT or ROLLBACK). The optional WITH HOLD clause keeps the cursor open for
subsequent transactions. It remains open until the end of the current connection or until an explicit
CLOSE statement is executed. Cursors are automatically closed when a connection is terminated.

Upon COMMIT or ROLLBACK, all long-term row locks held by the connection are released, including
those rows that constitute the result set of a WITH HOLD cursor. However, cursor stability locks, which
are acquired at isolation levels 1, 2, and 3, are retained for the life of the cursor and are only released
when the cursor is closed or when the connection terminates. See “Lock duration” [SQL Anywhere Server
- SQL Usage].

Upon completion of a ROLLBACK statement, the contents of, and positioning within, a WITH HOLD
cursor are unpredictable and are not guaranteed. You can use the ansi_close_cursors_on_rollback option
to control whether or not a ROLLBACK statement will close WITH HOLD cursors automatically. See
“ansi_close_cursors_on_rollback option” [SQL Anywhere Server - Database Administration].

ISOLATION LEVEL clause The ISOLATION LEVEL clause allows this cursor to be opened at an
isolation level different from the current setting of the isolation_level option. All operations on this cursor
are performed at the specified isolation level regardless of the option setting. If this clause is not specified,
then the cursor's isolation level for the entire time the cursor is open is the value of the isolation_level
option when the cursor is opened. See “How locking works” [SQL Anywhere Server - SQL Usage].

The following values are supported:

○ 0
○ 1
○ 2
○ 3
○ SNAPSHOT
○ STATEMENT SNAPSHOT
○ READONLY STATEMENT SNAPSHOT

The cursor is positioned before the first row. See “Using cursors in embedded SQL” [SQL Anywhere
Server - Programming], or “Using cursors in procedures and triggers” [SQL Anywhere Server - SQL
Usage].

BLOCK clause This clause is for embedded SQL use only. Rows may be fetched by the client
application more than one at a time. This is referred to as block fetching, prefetching, or multi-row
fetching. The BLOCK clause can reduce the number of rows prefetched. Specifying the BLOCK clause

SQL statements

778 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

on OPEN is the same as specifying the BLOCK clause on each FETCH. See “FETCH statement [ESQL]
[SP]” on page 687.

Remarks
The OPEN statement opens the named cursor. The cursor must be previously declared.

When the cursor is on a CALL statement, OPEN causes the procedure to execute until the first result set
(SELECT statement with no INTO clause) is encountered. If the procedure completes and no result set is
found, the SQLSTATE_PROCEDURE_COMPLETE warning is set.

Embedded SQL usage After successful execution of the OPEN statement, the sqlerrd[3] field of the
SQLCA (SQLIOESTIMATE) is filled in with an estimate of the number of input/output operations
required to fetch all rows of the query. Also, the sqlerrd[2] field of the SQLCA (SQLCOUNT) is filled
with either the actual number of rows in the cursor (a value greater than or equal to 0), or an estimate
thereof (a negative number whose absolute value is the estimate). It is the actual number of rows if the
database server can compute it without counting the rows. The database can also be configured to always
return the actual number of rows, but this can be expensive. See “row_counts option” [SQL Anywhere
Server - Database Administration].

If cursor-name is specified by an identifier or string, the corresponding DECLARE CURSOR statement
must appear before the OPEN in the C program; if the cursor-name is specified by a host variable, the
DECLARE CURSOR statement must execute before the OPEN statement.

Permissions
Must have SELECT permission on all tables in a SELECT statement, or EXECUTE permission on the
procedure in a CALL statement.

Side effects
None.

See also
● “DECLARE CURSOR statement [ESQL] [SP]” on page 628
● “RESUME statement” on page 812
● “PREPARE statement [ESQL]” on page 788
● “FETCH statement [ESQL] [SP]” on page 687
● “RESUME statement” on page 812
● “CLOSE statement [ESQL] [SP]” on page 467
● “FOR statement” on page 691
● “ansi_close_cursors_on_rollback option” [SQL Anywhere Server - Database Administration]
● “close_on_endtrans option” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Use of the OPEN statement within embedded SQL is part of optional SQL language

feature B031, "Basic dynamic SQL". The use of the OPEN statement within a stored procedure is a
core feature of SQL/2008. The ISOLATION LEVEL and BLOCK clauses are vendor extensions, as is
the ability to OPEN a cursor over a CALL statement. In the SQL/2008 standard, WITH HOLD is
specified as part of the DECLARE CURSOR statement, and not on OPEN.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 779

The setting of specific values in the SQLCA is a vendor extension.

● Transact-SQL The OPEN statement is supported by Adaptive Server Enterprise. Adaptive Server
Enterprise does not support the ISOLATION LEVEL, BLOCK, and WITH HOLD clauses.

Example
The following examples show the use of OPEN in embedded SQL.

EXEC SQL OPEN employee_cursor;

and

EXEC SQL PREPARE emp_stat FROM
'SELECT empnum, empname FROM Employees WHERE name like ?';
EXEC SQL DECLARE employee_cursor CURSOR FOR emp_stat;
EXEC SQL OPEN employee_cursor USING :pattern;

The following example is from a procedure or trigger.

BEGIN
 DECLARE cur_employee CURSOR FOR
 SELECT Surname
 FROM Employees;
 DECLARE name CHAR(40);
 OPEN cur_employee;
 LP: LOOP
 FETCH NEXT cur_employee INTO name;
 IF SQLCODE <> 0 THEN LEAVE LP END IF;
 ...
 END LOOP
 CLOSE cur_employee;
END

OUTPUT statement [Interactive SQL]
Outputs the current query results to a file or ODBC data source.

Syntax 1 - Output to a file
OUTPUT TO filename
[APPEND]
[BYTE ORDER MARK { ON | OFF }
[COLUMN WIDTHS (integer, ...)]
[DELIMITED BY string]
[ENCODING encoding]
[ESCAPE CHARACTER character]
[ESCAPES { ON | OFF }
[FORMAT output-format]
[HEXADECIMAL { ON | OFF | ASIS }]
[QUOTE string [ALL]]
[VERBOSE]
[WITH COLUMN NAMES]

output-format :
TEXT

SQL statements

780 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

| FIXED
| HTML
| SQL
| XML

encoding : string or identifier

Syntax 2 - Output to an ODBC data source
OUTPUT
USING connection-string
INTO destination-table-name
[CREATE TABLE { ON | OFF }]

connection-string :
{ DSN = odbc-data-source
| DRIVER = odbc-driver-name [; connection-parameter = value [; ...]] }

Parameters
APPEND clause This optional keyword is used to append the results of the query to the end of an
existing output file without overwriting the previous contents of the file. If the APPEND clause is not
used, the OUTPUT statement overwrites the contents of the output file by default. The APPEND keyword
is valid if the output format is TEXT, FIXED, or SQL.

BYTE ORDER MARK clause Use this clause to specify whether to include a byte order mark (BOM)
at the start of a Unicode file. By default, this option is ON, which directs Interactive SQL to write a byte
order mark (BOM) at the beginning of the file. If BYTE ORDER MARK is OFF, DBISQL does not write
a BOM.

The BYTE ORDER MARK clause is relevant only when writing TEXT formatted files. Attempts to use
the BYTE ORDER MARK clause with FORMAT clauses other than TEXT returns an error.

The BYTE ORDER MARK clause is used only when reading or writing files encoded with UTF-8 or
UTF-16 (and their variants). Attempts to use the BYTE ORDER MARK clause with any other encoding
returns an error.

COLUMN WIDTHS clause The COLUMN WIDTHS clause is used to specify the column widths for
the FIXED format output.

CREATE TABLE clause Use the CREATE TABLE clause to specify whether to create the destination
table if it does not exist. The default is ON.

DELIMITED BY clause The DELIMITED BY clause is for the TEXT output format only. The
delimiter string is placed between columns. The default is comma.

ENCODING clause The ENCODING clause allows you to specify the encoding that is used to write
the file. The ENCODING clause can only be used with the TEXT format.

The ENCODING clause is useful when you have data that cannot be represented in the operating system
character set. In this case, if you do not use the ENCODING clause, characters that cannot be represented
in the default encoding are lost in the output (that is, a lossy conversion occurs).

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 781

If the input file was created using the OUTPUT statement and an encoding was specified, then the same
ENCODING clause should be specified on the INPUT statement. See “INPUT statement [Interactive
SQL]” on page 731.

For more information about how to obtain the list of SQL Anywhere supported encodings, see “Supported
character sets” [SQL Anywhere Server - Database Administration].

When running Interactive, the encoding that is used to export the data is determined in the following order:

○ The encoding specified by the ENCODING clause (if this clause is specified)

○ The encoding specified with the default_isql_encoding option (if this option is set). See
“default_isql_encoding option [Interactive SQL]” [SQL Anywhere Server - Database Administration].

○ The default encoding for the platform you are running on. On English Windows computers, the
default encoding is 1252.

For more information about Interactive SQL and encodings, see “default_isql_encoding option
[Interactive SQL]” [SQL Anywhere Server - Database Administration].

ESCAPE CHARACTER clause The default escape character for characters stored as hexadecimal
codes and symbols is a backslash (\). For example, \x0A is the linefeed character.

This can be changed using the ESCAPE CHARACTER clause. For example, to use the exclamation mark
as the escape character, specify:

... ESCAPE CHARACTER '!'

The new line character can be specified as '\n'. Other characters can be specified using hexadecimal
ASCII codes, such as \x09 for the tab character. A sequence of two backslash characters (\\) is
interpreted as a single backslash. A backslash followed by any character other than n, x, X, or \ is
interpreted as two separate characters. For example, \q is interpreted as a backslash and the letter q.

ESCAPES clause With ESCAPES turned on (the default), characters following the backslash
character are recognized and interpreted as special characters by the database server. With ESCAPES
turned off, the characters are written exactly as they appear in the source data.

FORMAT clause The FORMAT clause allows you to specify the file format for the output. Allowable
output formats are:

○ TEXT The output is a TEXT format file with one row per line in the file. All values are separated
by commas, and strings are enclosed in apostrophes (single quotes). The delimiter and quote strings
can be changed using the DELIMITED BY and QUOTE clauses. If ALL is specified in the QUOTE
clause, all values (not just strings) are quoted. TEXT is the default output type

Three other special sequences are also used. The two characters \n represent a newline character, \\
represents a single \, and the sequence \xDD represents the character with hexadecimal code DD.

If you want to output to TEXT but do not want to include quotes or newlines in your output, turn off
quotes and escapes as follows: QUOTE '' ESCAPES OFF.

SQL statements

782 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

○ FIXED The output is fixed format with each column having a fixed width. The width for each
column can be specified using the COLUMN WIDTHS clause. No column headings are output in this
format.

If the COLUMN WIDTHS clause is omitted, the width for each column is computed from the data
type for the column, and is large enough to hold any value of that data type. The exception is that
LONG VARCHAR and LONG BINARY data default to 32 KB.

○ HTML The output is in the Hyper Text Markup Language format.

○ SQL The output is an Interactive SQL INPUT statement (required to recreate the information in the
table) in a .sql file.

○ XML The output is an XML file encoded in UTF-8 and containing an embedded DTD. Binary
values are encoded in CDATA blocks with the binary data rendered as 2-hex-digit strings.

HEXADECIMAL clause The HEXADECIMAL clause specifies how binary values are output for the
TEXT format. Allowable values are:

○ ON When set to ON, binary values are written with an Ox prefix followed by a series of
hexadecimal pairs; for example, 0xabcd.

○ OFF When set to OFF, unprintable character values are prefixed with the escape character, such as
a backslash, followed by an x, and then followed by the hexadecimal pair for the byte. Printable
characters are output as-is.

For example, the following command outputs a file which contains 'one\x0Atwo\x0Athree':

SELECT 'one\ntwo\nthree'
OUTPUT TO 'test.txt' HEXADECIMAL OFF;

○ ASIS When set to ASIS, values are written as is, without any escaping, even if the values contain
control characters. ASIS is useful for text that contains formatting characters such as tabs or carriage
returns.

QUOTE clause The QUOTE clause is for the TEXT output format only. The quote string is placed
around string values. The default is a single quote ('). If ALL is specified in the QUOTE clause, the quote
string is placed around all values, not just around strings. To suppress quoting, specify empty single
quotes. For example, QUOTE ''.

USING clause The USING clause exports data to an ODBC data source. You can either specify the
ODBC data source name with the DSN option, or the ODBC driver name and connection parameters with
the DRIVER option. Connection-parameter is an optional list of database-specific connection parameters.

Odbc-data-source is the name of a user or ODBC data source name. For example, odbc-data-source for
the SQL Anywhere sample database is SQL Anywhere 12 Demo.

Odbc-driver-name is the ODBC driver name. For a SQL Anywhere database, the odbc-driver-name is
SQL Anywhere; for an UltraLite database, odbc-driver-name is UltraLite 12.

VERBOSE clause When the optional VERBOSE keyword is included, error messages about the
query, the SQL statement used to select the data, and the data itself are written to the output file. Lines

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 783

that do not contain data are prefixed by two hyphens. If VERBOSE is omitted (the default) only the data
is written to the file. The VERBOSE keyword is valid if the output format is TEXT, FIXED, or SQL.

WITH COLUMN NAMES clause The WITH COLUMN NAMES clause inserts the column names in
the first line of the text file. The WITH COLUMN NAMES clause is for TEXT format only.

Remarks
The OUTPUT statement outputs data to a file or database. The OUTPUT statement is used directly after a
statement that retrieves the data to be output.

To export multiple result sets, use syntax 1 and set the isql_show_multiple_result_sets option to On.
Interactive SQL creates a file for each result set. The files are named filename-x, where x is a counter
starting at 1. For example, specifying OUTPUT TO a file named data.txt results in files named data-1.txt,
data-2.txt, and so on. See “Returning multiple result sets from procedures” [SQL Anywhere Server - SQL
Usage].

You cannot use syntax 2 to export multiple result sets.

The output format can be specified with the optional FORMAT clause. The default format is TEXT. If no
FORMAT clause is specified, the Interactive SQL output_format option setting is used. See
“output_format option [Interactive SQL]” [SQL Anywhere Server - Database Administration].

Because the OUTPUT statement is an Interactive SQL command, it cannot be used in any compound
statement (such as IF), or in a stored procedure. See “Statements allowed in procedures, triggers, events,
and batches” [SQL Anywhere Server - SQL Usage].

When exporting columns containing BINARY or LONG BINARY data to a Microsoft Excel workbook,
you must convert the data to a string or number. In addition, when data is exported to a Microsoft Excel
workbook, the data is read-only unless the ReadOnly parameter is set to zero or turned off when the DSN
option is selected.

Permissions
None.

Side effects
In Interactive SQL, the Results tab displays the results of the current query.

See also
● “SELECT statement” on page 825
● “INPUT statement [Interactive SQL]” on page 731
● “UNLOAD statement” on page 885
● “Importing and exporting data” [SQL Anywhere Server - SQL Usage]
● “isql_show_multiple_result_sets [Interactive SQL]” [SQL Anywhere Server - Database

Administration]
● “Using Interactive SQL” [SQL Anywhere Server - Database Administration]
● “Export data with the OUTPUT statement” [SQL Anywhere Server - SQL Usage]

SQL statements

784 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Standards and compatibility
● SQL/2008 Vendor extension.

Examples
Place the contents of the Employees table in a text file:

SELECT *
FROM Employees;
OUTPUT TO 'Employees.txt'
FORMAT TEXT;

Place the contents of the Employees table at the end of an existing text file, and include any messages
about the query in this file as well:

SELECT *
FROM Employees;
OUTPUT TO 'Employees.txt'
APPEND VERBOSE;

Suppose you need to export a value that contains an embedded line feed character. A line feed character
has the numeric value 10, which you can represent as the string '\x0a' in a SQL statement. For example,
execute the following statement, with HEXADECIMAL set to ON:

SELECT CAST ('line1\x0aline2' AS VARBINARY);
OUTPUT TO 'file.txt' HEXADECIMAL ON;

You get a file with one line in it containing the following text:

0x6c696e65310a6c696e6532

But if you execute the same statement with HEXADECIMAL set to OFF, you get the following:

'line1\x0Aline2'

Finally, if you set HEXADECIMAL to ASIS, you get a file with two lines:

'line1
line2'

You get two lines when you use ASIS because the embedded line feed character has been exported
without being converted to a two digit hexadecimal representation, and without being prefixed by anything.

The following example outputs the data from the Customers table to a new table, Customers2:

SELECT * FROM Customers;
OUTPUT USING 'dsn=SQL Anywhere 12 Demo'
INTO "Customers2";

The following example copies the Customers table from the sample database to a database called
mydatabase.db, using the DRIVER option.

SELECT * FROM Customers;
OUTPUT USING "DRIVER=SQL Anywhere 12;uid=dba;pwd=sql;dbf=c:\test
\mydatabase.db"
INTO "Customers";

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 785

The following example copies the Customers table from the SQL Anywhere sample database into a table
called Customers in a fictitious UltraLite database, myULDatabase.db, using the DRIVER option.

SELECT * FROM Customers;
OUTPUT USING "DRIVER=UltraLite 12;dbf=c:\test\myULDatabase.udb"
INTO "Customers";

The following example copies the Customers table into a fictitious MySQL database called mydatabase,
using the DRIVER option.

SELECT * FROM Customers;
OUTPUT USING "DRIVER=MySQL ODBC 5.1
Driver;DATABASE=mydatabase;SERVER=mySQLHost;UID=me;PWD=secret"
INTO "Customers";

PARAMETERS statement [Interactive SQL]
Specifies parameters to an Interactive SQL command file.

Syntax
PARAMETERS parameter1, parameter2, ...

Remarks
The PARAMETERS statement names the parameters for a command file, so that they can be referenced
later in the command file.

Parameters are referenced by putting {parameter1} into the file where you want the named parameter
to be substituted. There must be no spaces between the braces and the parameter name.

If a command file is invoked with less than the required number of parameters, Interactive SQL prompts
for values of the missing parameters.

Permissions
None.

Side effects
None.

See also
● “READ statement [Interactive SQL]” on page 795
● “Using Interactive SQL” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following Interactive SQL command file takes two parameters.

SQL statements

786 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

PARAMETERS department_id, file;
SELECT Surname
FROM Employees
WHERE DepartmentID = {department_id}
>#{file}.dat;

If you save this script in a file named test.sql, you can run it from Interactive SQL using the following
command:

READ test.sql [100] [data]

PASSTHROUGH statement [SQL Remote]
Starts or stops passthrough mode for SQL Remote administration. Syntaxes 1 and 2 start passthrough
mode, while syntax 3 stops passthrough mode.

Syntax 1
PASSTHROUGH [ONLY] FOR userid, ...

Syntax 2
PASSTHROUGH [ONLY] FOR SUBSCRIPTION
TO [owner.]publication-name [(constant)]

Syntax 3
PASSTHROUGH STOP

Remarks
In passthrough mode, any SQL statements are executed by the database server, and are also placed into
the transaction log to be sent in messages to subscribers. If the ONLY keyword is used to start
passthrough mode, the statements are not executed at the server; they are sent to recipients only. When a
passthrough session contains calls to stored procedures, the procedures must exist in the server that is
issuing the passthrough commands, even if they are not being executed locally at the server. The
recipients of the passthrough SQL statements are either a list of user IDs (syntax 1) or all subscribers to a
given publication. Passthrough mode may be used to apply changes to a remote database from the
consolidated database or send statements from a remote database to the consolidated database.

Syntax 2 sends statements to remote databases whose subscriptions are started, and does not send
statements to remote databases whose subscriptions are created and not started.

Syntax 3 stops passthrough mode on the current connection. You must execute the PASSTHROUGH
STOP statement on the same connection that initiated the passthrough mode. If you use syntax 1 or 2 to
start passthrough mode on a connection and it disconnects before a PASSTHROUGH STOP statement is
executed, the disconnect implicitly executes a PASSTHROUGH STOP statement.

Permissions
DBA authority.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 787

Side effects
None.

Standards and compatibility
● SQL/2008 Vendor extension.

Example
PASSTHROUGH FOR rem_db ;
...
(SQL statements to be executed at the remote database)
...
PASSTHROUGH STOP ;

PREPARE statement [ESQL]
Prepares a statement to be executed later, or defines a cursor.

Syntax
PREPARE statement-name
 FROM statement [FOR { UPDATE [cursor-concurrency] | READ ONLY }]
[DESCRIBE describe-type INTO [[SQL] DESCRIPTOR] descriptor]
[WITH EXECUTE]

statement-name : identifier or hostvar

statement : string or hostvar

describe-type :
 [ALL | BIND VARIABLES | INPUT | OUTPUT | SELECT LIST]
 [LONG NAMES [[[OWNER.]TABLE.]COLUMN]
 | WITH VARIABLE RESULT]

cursor-concurrency :
BY { VALUES | TIMESTAMP | LOCK }

Parameters
statement-name The statement name can be an identifier or host variable. However, you should not
use an identifier when using multiple SQLCAs. If you do, two prepared statements may have the same
statement number, which could cause the wrong statement to be executed or opened. Also, using an
identifier for a statement name is not recommended for multithreaded applications where the statement
name may be referenced by multiple threads concurrently.

DESCRIBE clause If DESCRIBE INTO DESCRIPTOR is used, the prepared statement is described
into the specified descriptor. The describe type may be any of the describe types allowed in the
DESCRIBE statement.

FOR UPDATE | FOR READ ONLY Defines the cursor updatability if the statement is used by a
cursor. A FOR READ ONLY cursor cannot be used in an UPDATE (positioned) or a DELETE
(positioned) operation. FOR READ ONLY is the default.

SQL statements

788 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

In response to any request for a cursor that specifies FOR UPDATE, SQL Anywhere provides either a value-
sensitive cursor or a sensitive cursor. Insensitive and asensitive cursors are not updatable.

BY VALUES | BY TIMESTAMP The database server utilizes a keyset-driven cursor to enable the
application to be informed when rows have been modified or deleted as the result set is scrolled.

BY LOCK clause The database server acquires intent row locks on fetched rows of the result set.
These are long-term locks that are held until the transaction is committed or rolled back.

● WITH EXECUTE clause If the WITH EXECUTE clause is used, the statement is executed if and
only if it is not a CALL or SELECT statement, and it has no host variables. The statement is
immediately dropped after a successful execution. If the PREPARE and the DESCRIBE (if any) are
successful but the statement cannot be executed, a warning SQLCODE 111, SQLSTATE 01W08 is
set, and the statement is not dropped.

The DESCRIBE INTO DESCRIPTOR and WITH EXECUTE clauses may improve performance
because they cut down on the required client/server communication.

● WITH VARIABLE RESULT clause The WITH VARIABLE RESULT clause is used to describe
procedures that may have more than one result set, with different numbers or types of columns.

If WITH VARIABLE RESULT is used, the database server sets the SQLCOUNT value after the
describe to one of the following values:

○ 0 The result set may change: the procedure call should be described again following each OPEN
statement.

○ 1 The result set is fixed. No re-describing is required.

Static and dynamic SQL
For compatibility reasons, preparing COMMIT, PREPARE TO COMMIT, and ROLLBACK
statements is still supported. However, it is recommended that you do all transaction management
operations with static embedded SQL because certain application environments may require it. Also,
other embedded SQL systems do not support dynamic transaction management operations.

Remarks
The PREPARE statement prepares a SQL statement from the statement and associates the prepared
statement with statement-name. This statement name is referenced to execute the statement, or to open a
cursor if the statement is a SELECT or CALL statement. The statement-name may be a host variable of
type a_sql_statement_number defined in the sqlca.h header file that is automatically included. If an
identifier is used for the statement-name, only one statement per module may be prepared with this statement-
name.

If a host variable is used for statement-name, it must have the type short int. There is a typedef for this
type in sqlca.h called a_sql_statement_number. This type is recognized by the SQL preprocessor and can
be used in a DECLARE section. The host variable is defined by the database during the PREPARE
statement, and you do not need to initialize it.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 789

Permissions
None.

Side effects
Any statement previously prepared with the same name is lost.

The statement is dropped after use only if you use WITH EXECUTE and the execution is successful. You
should ensure that you DROP the statement after use in other circumstances. If you do not, the memory
associated with the statement is not reclaimed.

See also
● “DECLARE CURSOR statement [ESQL] [SP]” on page 628
● “DESCRIBE statement [ESQL]” on page 641
● “OPEN statement [ESQL] [SP]” on page 777
● “EXECUTE statement [ESQL]” on page 681
● “DROP STATEMENT statement [ESQL]” on page 665
● “Dynamic SQL statements” [SQL Anywhere Server - Programming]

Standards and compatibility
● SQL/2008 PREPARE is part of optional SQL/2008 language feature B031, "Basic dynamic SQL".

The optional FOR UPDATE, FOR READ ONLY, DESCRIBE, and WITH EXECUTE clauses are
vendor extensions.

Example
The following statement prepares a simple query:

EXEC SQL PREPARE employee_statement FROM
'SELECT Surname FROM Employees';

PREPARE TO COMMIT statement
Checks whether a COMMIT can be performed successfully.

Syntax
PREPARE TO COMMIT

Remarks
The PREPARE TO COMMIT statement tests whether a COMMIT can be performed successfully. The
statement will cause an error if a COMMIT is impossible without violating the integrity of the database.

The PREPARE TO COMMIT statement cannot be used in stored procedures, triggers, events, or batches.

Permissions
None.

SQL statements

790 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Side effects
None.

See also
● “COMMIT statement” on page 470
● “ROLLBACK statement” on page 820

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following sequence of statements leads to an error because of foreign key checking on the Employees
table.

EXECUTE IMMEDIATE
 "SET OPTION wait_for_commit = 'On'";
EXECUTE IMMEDIATE "DELETE FROM Employees
 WHERE EmployeeID = 160";
EXECUTE IMMEDIATE "PREPARE TO COMMIT";

The following sequence of statements does not cause an error when the delete statement is executed, even
though it causes integrity violations. The PREPARE TO COMMIT statement returns an error.

SET OPTION wait_for_commit= 'On';
DELETE
FROM Departments
WHERE DepartmentID = 100;
PREPARE TO COMMIT;

PRINT statement [T-SQL]
Returns a message to the client, or display a message in the message window of the database server.

Syntax
PRINT format-string [, arg-list]

Remarks
The PRINT statement returns a message to the client window if you are connected from an Open Client
application or jConnect application. If you are connected from an embedded SQL or ODBC application,
the message is displayed in the database server messages window.

The format string can contain placeholders for the arguments in the optional argument list. These
placeholders are of the form %nn!, where nn is an integer between 1 and 20.

Permissions
None.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 791

Side effects
None.

See also
● “MESSAGE statement” on page 774

Standards and compatibility
● SQL/2008 Transact-SQL extension.

Example
The following statement displays a message:

PRINT 'Display this message';

The following statement illustrates the use of placeholders in the PRINT statement:

DECLARE @var1 INT, @var2 INT
SELECT @var1 = 3, @var2 = 5
PRINT 'Variable 1 = %1!, Variable 2 = %2!', @var1, @var2

PUT statement [ESQL]
Inserts a row into the specified cursor.

Syntax
PUT cursor-name
{ USING DESCRIPTOR sqlda-name | FROM hostvar-list }
[INTO { DESCRIPTOR sqlda-name | hostvar-list }]
[ARRAY :row-count]

cursor-name : identifier or hostvar

sqlda-name : identifier

hostvar-list : may contain indicator variables

row-count : integer or hostvar

Remarks
Inserts a row into the named cursor. Values for the columns are taken from the first SQLDA or the host
variable list, in a one-to-one correspondence with the columns in the INSERT statement (for an INSERT
cursor) or the columns in the select list (for a SELECT cursor).

The PUT statement can be used only on a cursor over an INSERT or SELECT statement that references a
single table in the FROM clause, or that references an updatable view consisting of a single base table.

If the sqldata pointer in the SQLDA is the null pointer, no value is specified for that column. If the
column has a DEFAULT VALUE associated with it, that is used; otherwise, a NULL value is used.

SQL statements

792 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The second SQLDA or host variable list contains the results of the PUT statement.

The optional ARRAY clause can be used to carry out wide puts, which insert more than one row at a time
and which may improve performance. The integer value is the number of rows to be inserted. The
SQLDA must contain a variable for each entry (number of rows * number of columns). The first row is
placed in SQLDA variables 0 to (columns per row)-1, and so on.

Inserting into a cursor
For scroll (values sensitive) cursors, the inserted row will appear if the new row matches the WHERE
clause and the keyset cursor has not finished populating. For dynamic cursors, if the inserted row matches
the WHERE clause, the row may appear. Insensitive cursors cannot be updated.

For information about putting LONG VARCHAR or LONG BINARY values into the database, see “SET
statement” on page 849.

Permissions
Must have INSERT permission.

Side effects
When inserting rows into a value-sensitive (keyset driven) cursor, the inserted rows appear at the end of
the result set, even when they do not match the WHERE clause of the query or if an ORDER BY clause
would normally have placed them at another location in the result set. See “Modifying rows through a
cursor” [SQL Anywhere Server - Programming].

See also
● “UPDATE statement” on page 895
● “UPDATE (positioned) statement [ESQL] [SP]” on page 890
● “DELETE statement” on page 637
● “DELETE (positioned) statement [ESQL] [SP]” on page 636
● “INSERT statement” on page 737

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement illustrates the use of PUT in embedded SQL:

EXEC SQL PUT cur_employee FROM :employeeID, :surname;

RAISERROR statement
Signals an error and sends a message to the client.

Syntax
RAISERROR error-number [format-string] [, arg-list]

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 793

Parameters
error-number The error-number is a five-digit integer greater than 17000. The error number is stored
in the global variable @@error.

format-string If format-string is not supplied or is empty, the error number is used to locate an error
message in the system tables. Adaptive Server Enterprise obtains messages 17000-19999 from the
SYSMESSAGES table. In SQL Anywhere this table is an empty view, so errors in this range should
provide a format string. Messages for error numbers of 20000 or greater are obtained from the
ISYSUSERMESSAGE table.

In SQL Anywhere, the format-string length can be up to 255 bytes.

The extended values supported by the Adaptive Server Enterprise RAISERROR statement are not
supported in SQL Anywhere.

The format string can contain placeholders for the arguments in the optional argument list. These
placeholders are of the form %nn!, where nn is an integer between 1 and 20.

Intermediate RAISERROR status and code information is lost after the procedure terminates. If at return
time an error occurs along with the RAISERROR then the error information is returned and the
RAISERROR information is lost. The application can query intermediate RAISERROR statuses by
examining @@error global variable at different execution points.

Remarks
The RAISERROR statement allows user-defined errors to be signaled and sends a message on the client.

Permissions
None.

Side effects
None.

See also
● “CREATE TRIGGER statement [T-SQL]” on page 619
● “CREATE TRIGGER statement” on page 614
● “on_tsql_error option” [SQL Anywhere Server - Database Administration]
● “continue_after_raiserror option” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement raises error 23000, which is in the range for user-defined errors, and sends a
message to the client. Note that there is no comma between the error-number and the format-string
parameters. The first item following a comma is interpreted as the first item in the argument list.

RAISERROR 23000 'Invalid entry for this column: %1!', @val

SQL statements

794 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The next example uses RAISERROR to disallow connections.

CREATE PROCEDURE DBA.login_check()
BEGIN
 // Allow a maximum of 3 concurrent connections
 IF(DB_PROPERTY('ConnCount') > 3) THEN
 RAISERROR 28000
 'User %1! is not allowed to connect -- there are ' ||
 'already %2! users logged on',
 Current User,
 CAST(DB_PROPERTY('ConnCount') AS INT)-1;
 ELSE
 CALL sp_login_environment;
 END IF;
END
go
GRANT EXECUTE ON DBA.login_check TO PUBLIC
go
SET OPTION PUBLIC.login_procedure='DBA.login_check'
go

For an alternate way to disallow connections, see “login_procedure option” [SQL Anywhere Server -
Database Administration].

READ statement [Interactive SQL]

Reads Interactive SQL statements from a file.

Syntax
READ [ENCODING encoding] filename [parameter] ...

encoding : identifier or string

Parameters
● ENCODING The ENCODING clause allows you to specify the encoding that is used to read the

file. The READ statement does not process escape characters when it reads a file. It assumes that the
entire file is in the specified encoding.

When running Interactive SQL, the encoding that is used to read the data is determined in the
following order:

○ The encoding specified by the ENCODING clause (if this clause is specified)

○ The encoding specified with the default_isql_encoding option (if this option is set). See
“default_isql_encoding option [Interactive SQL]” [SQL Anywhere Server - Database
Administration].

○ The default encoding for the platform you are running on. On English Windows computers, the
default encoding is 1252.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 795

Remarks
The READ statement reads a sequence of Interactive SQL statements from the named file. This file can
contain any valid Interactive SQL statements, including other READ statements. READ statements can be
nested to any depth.

If filename has no file extension, Interactive SQL searches for the same file name with the extension .sql.

If filename does not contain an absolute path, Interactive SQL searches for the file. The location of
filename is determined based on the location of the READ statement, as follows:

● If the READ statement is executed directly in Interactive SQL, Interactive SQL first attempts to
resolve the path to filename relative to the directory in which Interactive SQL is running. If
unsuccessful, Interactive SQL looks for filename in the directories specified in the environment
variable SQLPATH, and then the directories specified in the environment variable PATH.

● If the READ statements reside in an external file (for example, a .sql file), Interactive SQL first
attempts to resolve the path to filename relative to the location of the external file. If unsuccessful,
Interactive SQL looks for filename in a path relative to the directory in which Interactive SQL is
running. If still unsuccessful, Interactive SQL looks in the directories specified in the environment
variable SQLPATH, and then the directories specified in the environment variable PATH.

Parameters can be listed after the name of the command file. These parameters correspond to the
parameters named in the PARAMETERS statement at the beginning of the statement file. See
“PARAMETERS statement [Interactive SQL]” on page 786.

Parameter names must be enclosed in square brackets. Interactive SQL substitutes the corresponding
parameter wherever the source file contains { parameter-name } , where parameter-name is the
name of the appropriate parameter.

The parameters passed to a command file can be identifiers, numbers, quoted identifiers, or strings. When
quotes are used around a parameter, the quotes are put into the text during the substitution. Parameters
that are not identifiers, numbers, or strings (contain spaces or tabs) must be enclosed in square brackets
([]). This allows for arbitrary textual substitution in the command file.

If not enough parameters are passed to the command file, Interactive SQL prompts for values for the
missing parameters.

When executing a reload.sql file with Interactive SQL, you must specify the encryption key as a
parameter. If you do not provide the key in the READ statement, Interactive SQL prompts for the key.
See “Interactive SQL utility (dbisql)” [SQL Anywhere Server - Database Administration].

Permissions
None.

Side effects
None.

SQL statements

796 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “PARAMETERS statement [Interactive SQL]” on page 786
● “Using Interactive SQL” [SQL Anywhere Server - Database Administration]
● “Interactive SQL utility (dbisql)” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following are examples of the READ statement.

READ status.rpt '160';
READ birthday.sql [>= '1988-1-1'] [<= '1988-1-30'];

To process a file that uses a specific OEM codepage, you need to specify the codepage. For example:

dbisql READ ENCODING 'cp437' myfile.sql

READTEXT statement [T-SQL]

Reads text and image values from the database, starting from a specified offset and reading a specified
number of bytes.

Syntax
READTEXT table-name.column-name
text-pointer-offset-size
[HOLDLOCK]

Remarks
READTEXT is used to read image and text values from the database. You cannot perform READTEXT
operations on views.

Permissions
SELECT permissions on the table.

Side effects
None.

See also
● “WRITETEXT statement [T-SQL]” on page 910
● “GET DATA statement [ESQL]” on page 708
● “TEXTPTR function [Text and image]” on page 346

Standards and compatibility
● SQL/2008 Transact-SQL extension.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 797

REFRESH MATERIALIZED VIEW statement
Initializes or refreshes the data in a materialized view by executing its query definition.

Syntax
REFRESH MATERIALIZED VIEW view-list
 [WITH {
 ISOLATION LEVEL isolation-level
 | { EXCLUSIVE | SHARE } MODE }]
 [FORCE BUILD]

view-list :
[owner.]materialized-view-name [, ...]

isolation-level :
READ UNCOMMITTED
| READ COMMITTED
| SERIALIZABLE
| REPEATABLE READ
| SNAPSHOT

Parameters
WITH clause Use the WITH clause to specify the type of locking to use on the underlying base tables
during the refresh. The type of locking determines how the materialized view is populated and how
concurrency for transactions is affected. The WITH clause setting does not impact the type of lock placed
on the materialized view itself, which is always an exclusive lock. The possible locking clauses you can
specify are:

○ ISOLATION LEVEL isolation-level Use WITH ISOLATION LEVEL to change the isolation
level for the execution of the refresh operation. The original isolation level is restored for the
connection when statement execution finishes.

For immediate views, isolation-level can only be SERIALIZABLE.

For snapshot isolation, only snapshot level is supported (specify SNAPSHOT); statement-level and
readonly-statement-snapshot are not supported.

For information about isolation levels, see “Using transactions and isolation levels” [SQL Anywhere
Server - SQL Usage], and “Isolation levels and consistency” [SQL Anywhere Server - SQL Usage].

○ EXCLUSIVE MODE Use WITH EXCLUSIVE MODE if you do not want to change the isolation
level, but want to guarantee that the data is updated to be consistent with committed data in the
underlying tables. When using WITH EXCLUSIVE MODE, exclusive table locks are placed on all
underlying base tables and no other transaction can execute queries, updates, or any other action
against the underlying table(s) until the refresh operation is complete. If exclusive table locks cannot
be obtained, the refresh operation fails and an error is returned. See “Table locks” [SQL Anywhere
Server - SQL Usage].

○ SHARE MODE Use WITH SHARE MODE to give read access on underlying tables to other
transactions while the refresh operation takes place. When this clause is specified, shared table locks

SQL statements

798 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

are obtained on all underlying base tables before the refresh operation is performed and until the
refresh operation completes. See “Table locks” [SQL Anywhere Server - SQL Usage].

FORCE BUILD clause By default, when you execute a REFRESH MATERIALIZED VIEW
statement, the database server checks whether the materialized view is stale (that is, underlying tables
have changed since the materialized view was last refreshed). If it is not stale, the refresh does not take
place. Specify the FORCE BUILD clause to force a refresh of the materialized view regardless of whether
the materialized view is stale.

Remarks
Use this statement to initialize or refresh the materialized views listed in view-list.

If a REFRESH MATERIALIZED VIEW statement is executed against a materialized view that is not
stale, a refresh is not performed unless the FORCE BUILD clause is specified.

The default refresh behavior for locking and data concurrency is as follows:

● If the view is an immediate view, the default refresh behavior is WITH SHARE MODE, regardless of
whether snapshot isolation is enabled.

● If the view is a manual view and snapshot isolation is in use, the default is WITH ISOLATION
LEVEL SNAPSHOT.

● If the view is a manual view and snapshot isolation is not in use, the default is WITH SHARE MODE.

For more information about isolation levels and on enabling snapshot isolation, see “Isolation levels and
consistency” [SQL Anywhere Server - SQL Usage], and “allow_snapshot_isolation option” [SQL
Anywhere Server - Database Administration].

Several options need to have specific values for a REFRESH MATERIALIZED VIEW to succeed, and
for the view to be used in optimization. Additionally, there are option settings that are stored for each
materialized view when it is created. To refresh the view, or to use the view in optimization these option
settings must match the current options. See “Restrictions on materialized views” [SQL Anywhere Server
- SQL Usage].

When a refresh fails after having done partial work, the view is left in an uninitialized state, and the data
cannot be restored to what it was before the refresh started. Examine the error that occurred when the
refresh failed, resolve the issue that caused the failure, and execute the REFRESH MATERIALIZED
VIEW statement again.

You can also use the IMMEDIATE REFRESH clause of the ALTER MATERIALIZED VIEW statement
to change the view to be refreshed immediately when underlying data changes. See “ALTER
MATERIALIZED VIEW statement” on page 401.

This statement cannot be executed when there are cursors opened with the WITH HOLD clause that use
either statement or transaction snapshots. See “Snapshot isolation” [SQL Anywhere Server - SQL Usage].

Permissions
Must have INSERT permission on the materialized view, and SELECT permission on the tables in the
materialized view definition.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 799

Side effects
Any open cursors that reference the materialized view are closed.

A checkpoint is performed at the beginning of execution.

Automatic commits are performed at the beginning and end of execution.

While executing, an exclusive schema lock is placed on the materialized view being refreshed using the
connection blocking option, and shared schema locks, without blocking, are placed on all tables
referenced by the materialized view. If the WITH clause is specified, extra locks may be acquired on the
underlying tables. Also, until refreshing is complete, the materialized view is in an uninitialized state,
making it unavailable to the database server or optimizer.

See also
● “Working with materialized views” [SQL Anywhere Server - SQL Usage]
● “CREATE MATERIALIZED VIEW statement” on page 529
● “ALTER MATERIALIZED VIEW statement” on page 401
● “Isolation levels and consistency” [SQL Anywhere Server - SQL Usage]
● “blocking option” [SQL Anywhere Server - Database Administration]
● “Table locks” [SQL Anywhere Server - SQL Usage]
● “Schema locks” [SQL Anywhere Server - SQL Usage]
● “sa_refresh_materialized_views system procedure” on page 1049
● “sa_materialized_view_info system procedure” on page 1020
● “sa_materialized_view_can_be_immediate system procedure” on page 1018

Standards and compatibility
● SQL/2008 Vendor extension.

Example
Suppose you create a materialized view, EmployeeConfid99, and then populate it with data using the
following statements:

CREATE MATERIALIZED VIEW EmployeeConfid99 AS
 SELECT EmployeeID, Employees.DepartmentID, SocialSecurityNumber, Salary,
ManagerID,
 Departments.DepartmentName, Departments.DepartmentHeadID
 FROM Employees, Departments
 WHERE Employees.DepartmentID=Departments.DepartmentID;
REFRESH MATERIALIZED VIEW EmployeeConfid99;

Later, after the view has been in use, you want to refresh the view using the READ COMMITTED
isolation level (isolation level 1), and you want the view to be rebuilt. You could execute the following
statement:

REFRESH MATERIALIZED VIEW EmployeeConfid99
 WITH ISOLATION LEVEL READ COMMITTED
 FORCE BUILD;

SQL statements

800 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Caution
When you are done with this example, you should drop the materialized view you created. Otherwise, you
will not be able to make schema changes to its underlying tables Employees and Departments, when
trying out other examples. You cannot alter the schema of a table that has enabled, dependent materialized
view. See “Drop materialized views” [SQL Anywhere Server - SQL Usage].

REFRESH TEXT INDEX statement
Refreshes a text index.

Syntax
REFRESH TEXT INDEX text-index-name ON [owner.]table-name
[WITH {
 ISOLATION LEVEL isolation-level
 | EXCLUSIVE MODE
 | SHARE MODE }]
[FORCE { BUILD | INCREMENTAL }]

Parameters
WITH clause Use the WITH clause to specify what kind of locks to obtain on the underlying base
tables during the refresh. The types of locks obtained determine how the text index is populated and how
concurrency for transactions is affected. If you do not specify the WITH clause, the default is WITH
ISOLATION LEVEL READ UNCOMMITTED, regardless of any isolation level set for the connection.

You can specify the following WITH clause options:

○ ISOLATION LEVEL isolation-level Use WITH ISOLATION LEVEL to change the isolation
level for the execution of the refresh operation. For information about isolation levels, see “Using
transactions and isolation levels” [SQL Anywhere Server - SQL Usage], and “Isolation levels and
consistency” [SQL Anywhere Server - SQL Usage].

The original isolation level of the connection is restored at the end of the statement execution.

○ EXCLUSIVE MODE Use WITH EXCLUSIVE MODE if you do not want to change the isolation
level, but want to guarantee that the data is updated to be consistent with committed data in the
underlying table. When using WITH EXCLUSIVE MODE, exclusive table locks are placed on the
underlying base table and no other transaction can execute queries, updates, or any other action
against the underlying table(s) until the refresh operation is complete. If table locks cannot be
obtained, the refresh operation fails and an error is returned. See “Table locks” [SQL Anywhere Server
- SQL Usage].

○ SHARE MODE Use WITH SHARE MODE to give read access on the underlying table to other
transactions while the refresh operation takes place. When this clause is specified, shared table locks
are obtained on the underlying base table before the refresh operation is performed and are held until
the refresh operation completes. See “Table locks” [SQL Anywhere Server - SQL Usage].

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 801

FORCE clause Use this clause to specify the refresh method. If this clause is not specified, the
database server decides whether to do an incremental update or a full rebuild based on how much of the
table has changed. See “Text index refresh types” [SQL Anywhere Server - SQL Usage].

○ FORCE BUILD clause Refreshes the text index by recreating it. Use this clause to force a
complete rebuild of the text index.

○ FORCE INCREMENTAL clause Refreshes the text index based only on what has changed in the
underlying table. An incremental refresh takes less time to complete if there have not been a
significant amount of updates to the underlying table. Use this clause to force an incremental update
of the text index.

An incremental refresh does not remove deleted entries from the text index. As a result, the size of the
text index may be larger than expected to contain the current and historic data. Typically, this issue
occurs with text indexes that are always manually refreshed with the FORCE INCREMENTAL
clause. On automatically refreshed text indexes, historic data is automatically deleted when it makes
up 50% of the total size of the text index.

Remarks
This statement can only be used on text indexes defined as MANUAL REFRESH or AUTO REFRESH.

When using the FORCE clause, you can examine the results of the sa_text_index_stats system procedure
to decide whether a complete rebuild (FORCE BUILD), or incremental update (FORCE
INCREMENTAL) is most appropriate. See “sa_text_index_stats system procedure” on page 1089.

You cannot execute the REFRESH TEXT INDEX statement on a text index that is defined as
IMMEDIATE REFRESH.

For MANUAL REFRESH text indexes, use the sa_text_index_stats system procedure to determine
whether the text index should be refreshed. Divide pending_length by doc_length, and use the percentage
as a guide for deciding whether a refresh is required. To determine the type of rebuild required, use the
same process for deleted_length and doc_count.

Permissions
Must be the owner of the underlying table, or have either DBA authority or REFERENCES permission.

This statement cannot be executed when there are cursors opened with the WITH HOLD clause that use
either statement or transaction snapshots. See “Snapshot isolation” [SQL Anywhere Server - SQL Usage].

Side effects
Automatic commit.

SQL statements

802 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “How to manage text indexes” [SQL Anywhere Server - SQL Usage]
● “CREATE TEXT INDEX statement” on page 611
● “ALTER TEXT INDEX statement” on page 439
● “DROP TEXT INDEX statement” on page 672
● “TRUNCATE TEXT INDEX statement” on page 882
● “sa_refresh_text_indexes system procedure” on page 1049
● “sa_text_index_stats system procedure” on page 1089

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement refreshes a text index called MarketingTextIndex, forcing it to be rebuilt.

REFRESH TEXT INDEX MarketingTextIndex ON MarketingInformation
 FORCE BUILD;

REFRESH TRACING LEVEL statement
Reloads the tracing levels from the sa_diagnostic_tracing_level table while a tracing session is in progress.

Syntax
REFRESH TRACING LEVEL

Remarks
This statement is used to reload the tracing level information from the sa_diagnostic_tracing_level table.
It must be called from the database being profiled.

When a tracing session is first started, rows from the sa_diagnostic_tracing_level table are loaded into
server memory to control what kind of information is traced. If you want to change the types of data being
traced, without stopping and restarting the tracing session to do so, you can do so by manually deleting or
inserting the appropriate rows in the sa_diagnostic_tracing_level table, and then executing the REFRESH
TRACING LEVEL statement to reload the settings.

To see the current tracing levels, query the sa_diagnostic_tracing_level table as follows:

SELECT * FROM sa_diagnostic_tracing_level WHERE enabled = 1;

For more information about the sa_diagnostic_tracing_level system table, see
“sa_diagnostic_tracing_level table” on page 935.

Permissions
DBA authority

Side effects
None.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 803

See also
● “ATTACH TRACING statement” on page 445
● “DETACH TRACING statement” on page 647
● “Advanced application profiling using diagnostic tracing” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
Suppose you are troubleshooting a performance problem. You turn on a high level of tracing for the entire
database to capture the queries that are causing the problem. After starting the tracing session, you find
that capturing all queries for all users on your system slows down your database too much, so you decide
you would rather limit tracing to one user and wait for that user to report a problem. However, you do not
want to stop the tracing session to change the settings.

You can do this in Sybase Central by using the Database Tracing wizard, which is the recommended
method. However, you can also do this from the command line by replacing the rows in
sa_diagnostic_tracing_level table where scope=DATABASE and enabled=1, with equivalent rows where
scope=USER, identifier=userid, enabled=1, and so on. Then, you execute a REFRESH TRACING
LEVEL statement to continue tracing using use the new settings.

RELEASE SAVEPOINT statement
Releases a savepoint within the current transaction.

Syntax
RELEASE SAVEPOINT [savepoint-name]

Remarks
Release a savepoint. The savepoint-name is an identifier specified on a SAVEPOINT statement within the
current transaction. If savepoint-name is omitted, the most recent savepoint is released.

Releasing a savepoint does not do any type of COMMIT. It simply removes the savepoint from the list of
currently active savepoints.

Permissions
There must have been a corresponding SAVEPOINT within the current transaction.

Side effects
None.

SQL statements

804 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “BEGIN TRANSACTION statement [T-SQL]” on page 457
● “COMMIT statement” on page 470
● “ROLLBACK statement” on page 820
● “ROLLBACK TO SAVEPOINT statement” on page 821
● “SAVEPOINT statement” on page 824
● “Savepoints within transactions” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 RELEASE SAVEPOINT is part of optional SQL/2008 language feature T271,

"Savepoints".

REMOTE RESET statement [SQL Remote]
Starts all subscriptions for a remote user in a single transaction in custom database-extraction procedures.

Syntax
REMOTE RESET userid

Remarks
This statement starts all subscriptions for a remote user in a single transaction. It sets the log_sent and
confirm_sent values in ISYSREMOTEUSER table to the current position in the transaction log. It also
sets the created and started values in ISYSSUBSCRIPTION to the current position in the transaction log
for all subscriptions for this remote user. The statement does not do a commit. You must do an explicit
commit after this call.

To write an extraction process that is safe on a live database, the data must be extracted at isolation level 3
in the same transaction as the subscriptions are started.

This statement is an alternative to start subscription. START SUBSCRIPTION has an implicit commit as
a side effect, so that if a remote user has several subscriptions, it is impossible to start them all in one
transaction using START SUBSCRIPTION.

Permissions
DBA authority

Side effects
No automatic commit is done by this statement.

See also
● “START SUBSCRIPTION statement [SQL Remote]” on page 863
● “ISYSREMOTEUSER system table” on page 918

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 805

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement resets the subscriptions for remote user SamS:

REMOTE RESET SamS;
COMMIT;

REMOVE EXTERNAL OBJECT statement
Removes an external object from the database.

Syntax
REMOVE EXTERNAL OBJECT object-name

Parameters
object-name The name of the external object.

Remarks
For more information about external environments, see “SQL Anywhere external environment support”
[SQL Anywhere Server - Programming].

Permissions
DBA authority

Side effects
None

See also
● “SQL Anywhere external environment support” [SQL Anywhere Server - Programming]
● “ALTER EXTERNAL ENVIRONMENT statement” on page 396
● “INSTALL EXTERNAL OBJECT statement” on page 743
● “START EXTERNAL ENVIRONMENT statement” on page 860
● “STOP EXTERNAL ENVIRONMENT statement” on page 868
● “SYSEXTERNENV system view” on page 1137
● “SYSEXTERNENVOBJECT system view” on page 1138

Standards and compatibility
● SQL/2008 Vendor extension.

REMOVE JAVA statement
Removes a class or a JAR file from a database.

SQL statements

806 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
REMOVE JAVA classes-to-remove

classes-to-remove :
 CLASS java-class-name, ... | JAR jar-name, ...

Parameters
CLASS clause The java-class-name parameter is the name of one or more Java class to be removed.
These classes must be installed classes in the current database.

JAR clause The jar-name is a single-quoted character string value of maximum length 255.

Each jar-name must be equal to the jar-name of a retained jar in the current database. Equality of jar-
name is determined by the character string comparison rules of the SQL system.

Remarks
Removes a class or jar file from the database. The class or jar must already be installed. When a class is
removed it is no longer available for use as a column or variable type.

This statement is not supported on Windows Mobile.

Permissions
● DBA authority

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement removes a Java class named Demo from the current database:

REMOVE JAVA CLASS Demo;

The following statement removes a Java jar named myJar from the current database:

REMOVE JAVA JAR 'myJar';

REORGANIZE TABLE statement

Defragments tables when a full rebuild of the database is not possible due to the requirements for
continuous access to the database.

Syntax
REORGANIZE TABLE [owner.]table-name
[{ PRIMARY KEY
| FOREIGN KEY foreign-key-name
| INDEX index-name }]

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 807

Parameters
Reorganize the table according to the values in one of the following:

PRIMARY KEY clause Reorganizes the primary key index for the table.

FOREIGN KEY clause Reorganizes the specified foreign key.

INDEX clause Reorganizes the specified index.

Remarks
Table fragmentation can impede performance. Use this statement to defragment rows in a table, or to
compress indexes which have become sparse due to DELETEs. It may also reduce the total number of
pages used to store the table and its indexes, and it may reduce the number of levels in an index tree.
However, it will not result in a reduction of the total size of the database file. It is recommended that you
use the sa_table_fragmentation and sa_index_density system procedures to select tables worth processing.

If an index or key is not specified, the reorganization process defragments rows in the table by deleting
and re-inserting groups of rows. For each group, an exclusive lock on the table is obtained. Once the
group has been processed, the lock is released and re-acquired (waiting if necessary), providing an
opportunity for other connections to access the table. Checkpoints are suspended while a group is being
processed; once a group is finished, a checkpoint may occur. The rows are processed in order by primary
key; if the table has no primary key, an error results. The processed rows are re-inserted at the end of the
table, resulting in the rows being clustered by primary key at the end of the process. Note that the same
amount of work is required, regardless of how fragmented the rows initially were.

If an index or key is specified, the specified index is processed. For the duration of the operation, an
exclusive lock is held on the table and checkpoints are suspended. Any attempts to access the table by
other connections will block or fail, depending on their setting of the blocking option. The duration of the
lock is minimized by pre-reading the index pages before obtaining the exclusive lock.

Since reorganization may modify many pages, the checkpoint log can become large. This can result in a
increase in the database file size. However, this increase is temporary since the checkpoint log is deleted
at shutdown and the file is truncated at that point.

This statement is not logged to the transaction log.

This statement cannot be executed when there are cursors opened with the WITH HOLD clause that use
either statement or transaction snapshots. See “Snapshot isolation” [SQL Anywhere Server - SQL Usage].

During the execution of this statement, you can request progress messages. See “progress_messages
option” [SQL Anywhere Server - Database Administration].

You can also use the Progress connection property to determine how much of the statement has been
executed. See “Progress connection property” [SQL Anywhere Server - Database Administration].

Permissions
● Must be either the owner of the table, or a user with DBA authority.

● Not supported on Windows Mobile.

SQL statements

808 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Side effects
Before starting the reorganization, a checkpoint is done to try to maximize the number of free pages. Also,
when executing the REORGANIZE TABLE statement, there is an implied commit for approximately
every 100 rows, so reorganizing a large table causes multiple commits to take place.

Standards and compatibility
● SQL/2008 Vendor extension.

Examples
The following statement reorganizes the primary key index for the Employees table:

REORGANIZE TABLE Employees
PRIMARY KEY;

The following statement reorganizes the table pages of the Employees table:

REORGANIZE TABLE Employees;

The following statement reorganizes the index IX_product_name on the Products table:

REORGANIZE TABLE Products
 INDEX IX_product_name;

The following statement reorganizes the foreign key FK_DepartmentID_DepartmentID for the Employees
table:

REORGANIZE TABLE Employees
 FOREIGN KEY FK_DepartmentID_DepartmentID;

RESIGNAL statement

Resignals an exception condition.

Syntax
RESIGNAL [exception-name]

Remarks
Within an exception handler, RESIGNAL allows you to quit the compound statement with the exception
still active, or to quit reporting another named exception. The exception is handled by another exception
handler or returned to the application.

Permissions
None.

Side effects
None.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 809

See also
● “SIGNAL statement” on page 856
● “BEGIN statement” on page 454
● “Using exception handlers in procedures and triggers” [SQL Anywhere Server - SQL Usage]
● “RAISERROR statement” on page 793

Standards and compatibility
● SQL/2008 The RESIGNAL statement is part of optional SQL/2008 language feature P002,

"Computational completeness".

Example
The following fragment returns all exceptions except Column Not Found to the application.

...
DECLARE COLUMN_NOT_FOUND EXCEPTION
 FOR SQLSTATE '52003';
...
EXCEPTION
WHEN COLUMN_NOT_FOUND THEN
SET message='Column not found';
WHEN OTHERS THEN
RESIGNAL;

RESTORE DATABASE statement

Restores a backed up database from an archive.

Syntax
RESTORE DATABASE filename
FROM archive-root
[CATALOG ONLY
 | [RENAME dbspace-name TO new-dbspace-name] ...]
[HISTORY { ON | OFF }]
[KEY encryption-key]

filename : string | variable
archive-root : string | variable
new-dbspace-name : string | variable

Parameters
CATALOG ONLY clause Retrieves information about the named archive, and places it in the backup
history file (backup.syb), but does not restore any data from the archive.

RENAME clause Allows you to specify a new location for each dbspace. You cannot use the
RENAME clause to change the dbspace name. However, you can use the RENAME clause to change the
file name.

HISTORY clause Allows you to control whether the RESTORE DATABASE operation is recorded in
the history file, backup.syb.

SQL statements

810 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

KEY clause Allows you to specify the encryption key to restore an archived strongly-encrypted
database that was backed up with free page elimination on. If the back up was made with free page
elimination off, then you do not need to specify the encryption key to restore the database.

Archive backups created with version 12 database servers cannot be restored with version 11 or earlier
database servers.

See “FREE PAGE ELIMINATION clause, BACKUP statement” on page 451.

Remarks
Unless HISTORY OFF is specified, each RESTORE DATABASE operation updates a backup history file
called backup.syb. This file records the BACKUP and RESTORE operations that have been performed on
a database server. You may want to prevent the RESTORE DATABASE operation from being recorded
in backup.syb if the following conditions apply:

● your RESTORE DATABASE operations occur frequently

● there is no procedure to periodically archive or delete the backup.syb file

● disk space is very limited

RESTORE DATABASE replaces the database that is being restored. If you need incremental backups,
use the image format of the BACKUP command and save only the transaction log; however, image
backups to tape are not supported.

During the execution of this statement, you can request progress messages. See “progress_messages
option” [SQL Anywhere Server - Database Administration].

You can also use the Progress connection property to determine how much of the statement has been
executed. See “Progress connection property” [SQL Anywhere Server - Database Administration].

Permissions
The permissions required to execute this statement are set on the server command line, using the -gu
option. The default setting is to require DBA authority. See “-gu dbeng12/dbsrv12 server option” [SQL
Anywhere Server - Database Administration].

This statement is not supported on Windows Mobile.

Side effects
None.

See also
● “Predefined dbspaces” [SQL Anywhere Server - Database Administration]
● “BACKUP statement” on page 447
● “Backup and data recovery” [SQL Anywhere Server - Database Administration]
● “SALOGDIR environment variable” [SQL Anywhere Server - Database Administration]

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 811

Standards and compatibility
● SQL/2008 Vendor extension.

● Windows Mobile Not supported on Windows Mobile.

Example
The following example restores a database from a tape drive. The number of backslashes that are required
depends on which database you are connected to when you execute RESTORE DATABASE. The
database affects the setting of the escape_character option. It is normally set to On, but is set to Off in
utility_db. When connected to any database other than utility_db, the extra backslashes are required.

RESTORE DATABASE 'd:\\dbhome\\mydatabase.db'
FROM '\\\\.\\tape0';

RESUME statement
Resumes execution of a cursor that returns result sets.

Syntax
RESUME cursor-name

cursor-name : identifier | hostvar

Remarks
This statement resumes execution of a procedure that returns result sets. The procedure executes until the
next result set (SELECT statement with no INTO clause) is encountered. If the procedure completes and
no result set is found, the SQLSTATE_PROCEDURE_COMPLETE warning is set. This warning is also
set when you RESUME a cursor for a SELECT statement.

The RESUME statement is not supported in Interactive SQL. If you want to view multiple result sets in
Interactive SQL, you can set the isql_show_multiple_result_sets option to ON, or choose Tools » Options,
and then select Show Multiple Result sets on the Results tab.

Permissions
The cursor must have been previously opened.

Side effects
None.

See also
● “DECLARE CURSOR statement [ESQL] [SP]” on page 628
● “FETCH statement [ESQL] [SP]” on page 687
● “Returning results from procedures” [SQL Anywhere Server - SQL Usage]

SQL statements

812 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Standards and compatibility
● SQL/2008 Vendor extension.

Example
Following are embedded SQL examples.

1. EXEC SQL RESUME cur_employee;
2. EXEC SQL RESUME :cursor_var;

RETURN statement

Exits from a function, procedure, or batch unconditionally, optionally providing a return value.

Syntax
RETURN [expression]

Remarks
A RETURN statement causes an immediate exit from a block of SQL. If expression is supplied, the value
of expression is returned as the value of the function or procedure. Subqueries can not be used in
expression.

If the RETURN appears inside an inner BEGIN block, it is the outer BEGIN block that is terminated.

Statements following a RETURN statement are not executed.

Within a function, the expression should be of the same data type as the function's RETURNS data type.

Within a procedure, RETURN is used for Transact-SQL-compatibility, and is used to return an integer
error code.

Permissions
None.

Side effects
None.

See also
● “CREATE FUNCTION statement” on page 516
● “CREATE FUNCTION statement (external procedures)” on page 504
● “CREATE FUNCTION statement (web clients)” on page 510
● “CREATE PROCEDURE statement” on page 552
● “CREATE PROCEDURE statement (external procedures)” on page 536
● “CREATE PROCEDURE statement (web clients)” on page 543
● “BEGIN statement” on page 454
● “Returning a value using the RETURN statement” [SQL Anywhere Server - SQL Usage]

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 813

Standards and compatibility
● SQL/2008 Core feature.

Example
The following function returns the product of three numbers:

CREATE FUNCTION product (
 a NUMERIC,
 b NUMERIC,
 c NUMERIC)
RETURNS NUMERIC
BEGIN
 RETURN (a * b * c);
END;

Calculate the product of three numbers:

SELECT product(2, 3, 4);

product(2, 3, 4)

24

The following procedure uses the RETURN statement to avoid executing a complex query if it is
meaningless:

CREATE PROCEDURE customer_products
(in customer_ID integer DEFAULT NULL)
RESULT (ID integer, quantity_ordered integer)
BEGIN
 IF customer_ID NOT IN (SELECT ID FROM Customers)
 OR customer_ID IS NULL THEN
 RETURN
 ELSE
 SELECT Products.ID,sum(
 SalesOrderItems.Quantity)
 FROM Products,
 SalesOrderItems,
 SalesOrders
 WHERE SalesOrders.CustomerID=customer_ID
 AND SalesOrders.ID=SalesOrderItems.ID
 AND SalesOrderItems.ProductID=Products.ID
 GROUP BY Products.ID
 END IF
END;

REVOKE CONSOLIDATE statement [SQL Remote]

Stops a consolidated database from receiving SQL Remote messages from this database.

Syntax
REVOKE CONSOLIDATE FROM userid

SQL statements

814 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
CONSOLIDATE permissions must be granted at a remote database for the user ID representing the
consolidated database. The REVOKE CONSOLIDATE statement removes the consolidated database user
ID from the list of users receiving messages from the current database.

Permissions
DBA authority

Side effects
Automatic commit. Drops all subscriptions for the user.

See also
● “REVOKE PUBLISH statement [SQL Remote]” on page 815
● “REVOKE REMOTE statement [SQL Remote]” on page 817
● “REVOKE REMOTE DBA statement [SQL Remote]” on page 816
● “GRANT CONSOLIDATE statement [SQL Remote]” on page 713

Standards and compatibility
● SQL/2008 Vendor extension.

Example
● The following statement revokes consolidated status from the condb user ID:

REVOKE CONSOLIDATE FROM condb;

REVOKE PUBLISH statement [SQL Remote]
Terminates the identification of the named user ID as the CURRENT publisher.

Syntax
REVOKE PUBLISH FROM userid

Remarks
Each database in a SQL Remote installation is identified in outgoing messages by a publisher user ID.
The current publisher user ID can be found using the CURRENT PUBLISHER special constant. The
following query identifies the current publisher:

SELECT CURRENT PUBLISHER;

The REVOKE PUBLISH statement ends the identification of the named user ID as the publisher.

You should not REVOKE PUBLISH from a database while the database has active SQL Remote
publications or subscriptions.

Issuing a REVOKE PUBLISH statement at a database has several consequences for a SQL Remote
installation:

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 815

● You will not be able to insert data into any tables with a CURRENT PUBLISHER column as part of
the primary key. Any outgoing messages will not be identified with a publisher user ID, and so will
not be accepted by recipient databases.

If you change the publisher user ID at any consolidated or remote database in a SQL Remote installation,
you must ensure that the new publisher user ID is granted REMOTE permissions on all databases
receiving messages from the database. This will generally require all subscriptions to be dropped and
recreated.

Permissions
DBA authority

Side effects
Automatic commit.

See also
● “GRANT PUBLISH statement [SQL Remote]” on page 714
● “REVOKE REMOTE statement [SQL Remote]” on page 817
● “REVOKE REMOTE DBA statement [SQL Remote]” on page 816
● “REVOKE CONSOLIDATE statement [SQL Remote]” on page 814

Standards and compatibility
● SQL/2008 Vendor extension.

Example
REVOKE PUBLISH FROM publisher_ID;

REVOKE REMOTE DBA statement [SQL Remote]
Revokes REMOTE DBA authority from a user ID.

Syntax 1
REVOKE REMOTE DBA
FROM userid, ...

Remarks
In MobiLink, REMOTE DBA authority is a level of permission required by the SQL Anywhere
synchronization client (dbmlsync).

In SQL Remote, REMOTE DBA authority enables the SQL Remote Message Agent to have full access to
the database to make any changes contained in the messages, while avoiding security problems associated
with distributing DBA user IDs passwords.

Permissions
DBA authority

SQL statements

816 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Side effects
Automatic commit.

See also
● “REVOKE PUBLISH statement [SQL Remote]” on page 815
● “REVOKE REMOTE statement [SQL Remote]” on page 817
● “GRANT REMOTE DBA statement [MobiLink] [SQL Remote]” on page 715
● “REVOKE CONSOLIDATE statement [SQL Remote]” on page 814
● “Initiating synchronization” [MobiLink - Client Administration]
● “Granting REMOTE DBA authority” [SQL Remote]

Standards and compatibility
● SQL/2008 Vendor extension.

Examples
The following statement revokes REMOTE DBA permission from user S_Beaulieu.

REVOKE REMOTE DBA FROM S_Beaulieu;

REVOKE REMOTE statement [SQL Remote]
Stops a user from being able to receive SQL Remote messages from this database.

Syntax
REVOKE REMOTE FROM userid, ...

Remarks
REMOTE permissions are required for a user ID to receive messages in a SQL Remote replication
installation. The REVOKE REMOTE statement removes a user ID from the list of users receiving
messages from the current database.

Permissions
DBA authority

Side effects
Automatic commit. Drops all subscriptions for the user.

See also
● “REVOKE PUBLISH statement [SQL Remote]” on page 815
● “GRANT REMOTE statement [SQL Remote]” on page 716
● “REVOKE REMOTE DBA statement [SQL Remote]” on page 816
● “REVOKE CONSOLIDATE statement [SQL Remote]” on page 814

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 817

Standards and compatibility
● SQL/2008 Vendor extension.

Example
REVOKE REMOTE FROM SamS;

REVOKE statement
Removes permissions from users.

Syntax 1 - Revoke authorities

REVOKE permission, ... FROM userid, ...

permission :
BACKUP
| CONNECT
| CREATE ON dbspace
| DBA
| GROUP
| INTEGRATED LOGIN
| KERBEROS LOGIN
| MEMBERSHIP IN GROUP userid, ...
| PROFILE
| READCLIENTFILE
| READFILE
| RESOURCE
| VALIDATE
| WRITECLIENTFILE

Syntax 2 - Revoke database object permissions

REVOKE table-permission, ...
ON [owner.]table-name
FROM userid, ...

table-permission :
ALL [PRIVILEGES]
| ALTER
| DELETE
| INSERT
| REFERENCES [(column-name, ...)]
| SELECT [(column-name, ...)]
| UPDATE [(column-name, ...)]

Syntax 3
REVOKE EXECUTE
ON [owner.]procedure-name
FROM userid, ...

SQL statements

818 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax 4

REVOKE USAGE ON SEQUENCE sequence-name
FROM userid, ...

Remarks
The REVOKE statement removes permissions given using the GRANT statement. Syntax 1 revokes
special user permissions. Syntax 2 revokes table permissions. Syntax 3 revokes permission to execute a
procedure. Syntax 4 revokes sequence permissions.

REVOKE CONNECT removes a user ID from a database, and also destroys any objects (tables, views,
procedures, and so on) owned by that user and any permissions granted by that user. You cannot execute a
REVOKE CONNECT on a user if the user being dropped owns a table referenced by a view owned by
another user.

REVOKE GROUP automatically revokes MEMBERSHIP IN GROUP from all members of the group.

When you add a user to a group, the user inherits all the permissions assigned to that group. SQL
Anywhere does not allow you to revoke a subset of the permissions that a user inherits as a member of a
group because you can only revoke permissions that are explicitly given by a GRANT statement. If you
need to have different permissions for different users, you can create different groups with the appropriate
permissions, or you can explicitly grant each user the permissions they require.

When you grant or revoke group permissions for tables, views, or procedures, all members of the group
inherit those changes. The DBA, RESOURCE, and GROUP permissions are not inherited: you must
assign them to each individual user ID that requires them.

If you give a user WITH GRANT OPTION permission, and later revoke that permission, you also revoke
any permissions that user granted to others while they had the WITH GRANT OPTION permission.

REVOKE USAGE ON SEQUENCE removes a user's permission to evaluate the current or next value in
a sequence. You must have DBA authority or be the creator of the sequence to run this statement.

Permissions
Must be the grantor of the permissions that are being revoked or have DBA authority.

If you are revoking connect permissions or table permissions from another user, the other user must not be
connected to the database. You cannot revoke connect permissions from DBO.

When you are connected to the utility database, executing REVOKE CONNECT FROM DBA disables
future connections to the utility database. This means that no future connections can be made to the utility
database unless you use a connection that existed before the REVOKE CONNECT was done, or restart
the database server.

Side effects
Automatic commit.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 819

See also
● “GRANT statement” on page 718

Standards and compatibility
● SQL/2008 Syntax 1 is a vendor extension. Syntax 2 and Syntax 3 are core features of the SQL/

2008 standard. With Syntax 2, in SQL Anywhere the PRIVILEGES keyword is optional, while in the
SQL/2008 standard "ALL PRIVILEGES" is mandatory.

Syntax 4 is part of optional SQL/2008 language feature T176, "Sequence generator support".

Example
Prevent user Dave from updating the Employees table.

REVOKE UPDATE ON Employees FROM Dave;

Revoke resource permissions from user Jim.

REVOKE RESOURCE FROM Jim;

Revoke an integrated login mapping from the user profile named Administrator.

REVOKE INTEGRATED LOGIN FROM Administrator;

Disallow the Finance group from executing the procedure ShowCustomers.

REVOKE EXECUTE ON ShowCustomers FROM Finance;

Drop the user ID FranW from the database.

REVOKE CONNECT FROM FranW;

ROLLBACK statement
Ends a transaction and undo any changes made since the last COMMIT or ROLLBACK.

Syntax
ROLLBACK [WORK]

Remarks
A transaction is the logical unit of work done on one database connection to a database between
COMMIT or ROLLBACK statements. The ROLLBACK statement ends the current transaction and
undoes all changes made to the database since the previous COMMIT or ROLLBACK.

In Interactive SQL, you can also execute a ROLLBACK by:

● Pressing CTRL+SHIFT+R.

● Choosing SQL » Rollback.

SQL statements

820 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

In Interactive SQL, executing a ROLLBACK from the SQL menu or the keyboard shortcut does not
modify the contents of the SQL Statements pane; however, the Results tab in the Results pane is cleared.

Permissions
None.

Side effects
Closes all cursors not opened WITH HOLD.

See also
● “COMMIT statement” on page 470
● “Executing COMMIT and ROLLBACK statements in Interactive SQL” [SQL Anywhere Server -

Database Administration]
● “ROLLBACK TO SAVEPOINT statement” on page 821
● “Interactive SQL options” [SQL Anywhere Server - Database Administration]
● “Canceling changes” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 Core feature.

ROLLBACK TO SAVEPOINT statement
Cancels any changes made since a SAVEPOINT.

Syntax
ROLLBACK TO SAVEPOINT [savepoint-name]

Remarks
The ROLLBACK TO SAVEPOINT statement will undo any changes that have been made since the
SAVEPOINT was established. Changes made before the SAVEPOINT are not undone; they are still pending.

The savepoint-name is an identifier that was specified on a SAVEPOINT statement within the current
transaction. If savepoint-name is omitted, the most recent savepoint is used. Any savepoints since the
named savepoint are automatically released.

Permissions
There must have been a corresponding SAVEPOINT within the current transaction.

Side effects
None.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 821

See also
● “BEGIN TRANSACTION statement [T-SQL]” on page 457
● “COMMIT statement” on page 470
● “RELEASE SAVEPOINT statement” on page 804
● “ROLLBACK statement” on page 820
● “SAVEPOINT statement” on page 824
● “Savepoints within transactions” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 ROLLBACK TO SAVEPOINT is part of optional SQL language feature T271 of the SQL/

2008 standard.

ROLLBACK TRANSACTION statement [T-SQL]
Cancels any changes made since a SAVE TRANSACTION.

Syntax
ROLLBACK TRANSACTION [savepoint-name]

Remarks
The ROLLBACK TRANSACTION statement undoes any changes that have been made since a savepoint
was established using SAVE TRANSACTION. Changes made before the SAVE TRANSACTION are
not undone; they are still pending.

The savepoint-name is an identifier that was specified on a SAVE TRANSACTION statement within the
current transaction. If savepoint-name is omitted, all outstanding changes are rolled back. Any savepoints
since the named savepoint are automatically released.

Permissions
There must be a corresponding SAVE TRANSACTION within the current transaction.

Side effects
None.

See also
● “ROLLBACK TO SAVEPOINT statement” on page 821
● “BEGIN TRANSACTION statement [T-SQL]” on page 457
● “COMMIT statement” on page 470
● “SAVE TRANSACTION statement [T-SQL]” on page 824

Standards and compatibility
● SQL/2008 Vendor extension.

SQL statements

822 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example
The following example displays five rows with values 10, 20, and so on. The effect of the DELETE, but
not the prior INSERTs or UPDATE, is undone by the ROLLBACK TRANSACTION statement.

BEGIN
 SELECT row_num INTO #tmp
 FROM sa_rowgenerator(1, 5)
 UPDATE #tmp SET row_num=row_num*10
 SAVE TRANSACTION before_delete
 DELETE FROM #tmp WHERE row_num >= 3
 ROLLBACK TRANSACTION before_delete
 SELECT * FROM #tmp
END

ROLLBACK TRIGGER statement
Undoes any changes made in a trigger.

Syntax
ROLLBACK TRIGGER [WITH raiserror-statement]

Remarks
The ROLLBACK TRIGGER statement rolls back the work done in a trigger, including the data
modification that caused the trigger to fire.

Optionally, a RAISERROR statement can be issued. If a RAISERROR statement is issued, an error is
returned to the application. If no RAISERROR statement is issued, no error is returned.

If a ROLLBACK TRIGGER statement is used within a nested trigger and without a RAISERROR
statement, only the innermost trigger and the statement which caused it to fire are undone.

Permissions
None.

Side effects
None

See also
● “CREATE TRIGGER statement” on page 614
● “ROLLBACK statement” on page 820
● “ROLLBACK TO SAVEPOINT statement” on page 821
● “RAISERROR statement” on page 793

Standards and compatibility
● SQL/2008 Vendor extension.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 823

● Transact-SQL ROLLBACK TRIGGER is supported in both Watcom SQL and Transact-SQL
stored procedures. ROLLBACK TRIGGER is supported by Adaptive Server Enterprise.

SAVE TRANSACTION statement [T-SQL]

Establishes a savepoint within the current transaction.

Syntax
SAVE TRANSACTION savepoint-name

Remarks
Establish a savepoint within the current transaction. The savepoint-name is an identifier that can be used
in a ROLLBACK TRANSACTION statement. All savepoints are automatically released when a
transaction ends. See “Savepoints within transactions” [SQL Anywhere Server - SQL Usage].

Permissions
None.

Side effects
None.

See also
● “SAVEPOINT statement” on page 824
● “BEGIN TRANSACTION statement [T-SQL]” on page 457
● “COMMIT statement” on page 470
● “ROLLBACK TRANSACTION statement [T-SQL]” on page 822

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example displays five rows with values 10, 20, and so on. The effect of the DELETE, but
not the prior INSERTs or UPDATE, is undone by the ROLLBACK TRANSACTION statement.

BEGIN
 SELECT row_num INTO #tmp
 FROM sa_rowgenerator(1, 5)
 UPDATE #tmp SET row_num=row_num*10
 SAVE TRANSACTION before_delete
 DELETE FROM #tmp WHERE row_num >= 3
 ROLLBACK TRANSACTION before_delete
 SELECT * FROM #tmp
END

SAVEPOINT statement

SQL statements

824 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Establishes a savepoint within the current transaction.

Syntax
SAVEPOINT [savepoint-name]

Remarks
Establish a savepoint within the current transaction. The savepoint-name is an identifier that can be used
in a RELEASE SAVEPOINT or ROLLBACK TO SAVEPOINT statement. All savepoints are
automatically released when a transaction ends. See “Savepoints within transactions” [SQL Anywhere
Server - SQL Usage].

Savepoints that are established while a trigger or atomic compound statement is executing are
automatically released when the atomic operation ends.

You cannot modify data in a proxy table from within a savepoint.

Permissions
None.

Side effects
None.

See also
● “RELEASE SAVEPOINT statement” on page 804
● “ROLLBACK TO SAVEPOINT statement” on page 821
● “SAVE TRANSACTION statement [T-SQL]” on page 824

Standards and compatibility
● SQL/2008 The SAVEPOINT statement is part of optional SQL/2008 language feature T271,

"Savepoints".

● Transact-SQL In Transact-SQL, creating a savepoint is accomplished with the SAVE
TRANSACTION statement.

SELECT statement
Retrieves information from the database.

Syntax
[WITH temporary-views]
 SELECT [ALL | DISTINCT] [row-limitation-option-1] select-list
[INTO { hostvar-list | variable-list | table-name }]
[INTO LOCAL TEMPORARY TABLE { table-name }]
[FROM from-expression]
[WHERE search-condition]
[GROUP BY group-by-expression]

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 825

[HAVING search-condition]
[WINDOW window-expression]
[ORDER BY { expression | integer } [ASC | DESC], ...]
[FOR READ ONLY | for-update-clause]
[FOR XML xml-mode]
[row-limitation-option-2]
[OPTION(query-hint, ...)]

temporary-views :
 regular-view, ...
| RECURSIVE { regular-view | recursive-view }, ...

regular-view :
 view-name [(column-name, ...)]
 AS (subquery)

recursive-view :
 view-name (column-name, ...)
 AS (initial-subquery UNION ALL recursive-subquery)

row-limitation-option-1 :
 FIRST
| TOP n [START AT m]

row-limitation-option-2 :
LIMIT { [offset ,] row-count | row-count OFFSET offset }

offset : integer-or-variable
row-count : integer-or-variable

select-list :
expression [[AS] alias-name], ...
| *
| window-function OVER { window-name | window-spec }
 [[AS] alias-name]
| sequence-expression

sequence-expression
sequence-name [CURRVAL | NEXTVAL]
FROM table-name

sequence-expression: See “Expressions” on page 12.

from-expression : See “FROM clause” on page 696.

group-by-expression : See “GROUP BY clause” on page 724.

search-condition : See “Search conditions” on page 32.

window-name : identifier

window-expression : See “WINDOW clause” on page 907.

window-spec : See “WINDOW clause” on page 907.

SQL statements

826 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

window-function :
RANK()
| DENSE_RANK()
| PERCENT_RANK()
| CUME_DIST()
| ROW_NUMBER()
| aggregate-function

for-update-clause
FOR UPDATE
| FOR UPDATEcursor-concurrency
| FOR UPDATE OF [(column-name, ...)]

 cursor-concurrency :
BY { VALUES | TIMESTAMP | LOCK }

xml-mode :
RAW [, ELEMENTS]
| AUTO [, ELEMENTS]
| EXPLICIT

query-hint :
MATERIALIZED VIEW OPTIMIZATION option-value
| FORCE OPTIMIZATION
| FORCE NO OPTIMIZATION
| option-name=option-value

option-name : identifier

option-value : hostvar (indicator allowed), string, identifier, or number

Parameters
WITH or WITH RECURSIVE clause Define one or more common table expressions, also known as
temporary views, to be used elsewhere in the remainder of the statement. These expressions may be non-
recursive, or may be self-recursive. Recursive common table expressions may appear alone, or intermixed
with non-recursive expressions, only if the RECURSIVE keyword is specified. Mutually recursive
common table expressions are not supported.

This clause is permitted only if the SELECT statement appears in one of the following locations:

○ Within a top-level SELECT statement

○ Within the top-level SELECT statement of a VIEW definition

○ Within a top-level SELECT statement within an INSERT statement

Recursive expressions consist of an initial subquery and a recursive subquery. The initial-query implicitly
defines the schema of the view. The recursive subquery must contain a reference to the view within the
FROM clause. During each iteration, this reference refers only to the rows added to the view in the
previous iteration. The reference must not appear on the null-supplying side of an outer join. A recursive
common table expression must not use aggregate functions and must not contain a GROUP BY, ORDER
BY, or DISTINCT clause. See “Common table expressions” [SQL Anywhere Server - SQL Usage].

The WITH clause is not supported with remote tables.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 827

ALL or DISTINCT clause ALL (the default) returns all rows that satisfy the clauses of the SELECT
statement. If DISTINCT is specified, duplicate output rows are eliminated. Many statements take
significantly longer to execute when DISTINCT is specified, so you should reserve DISTINCT for cases
where it is necessary.

row-limitation clauses The row limitation clauses allow you to return only a subset of the rows that
satisfy the WHERE clause. Only one row-limitation clause can be specified at a time. When specifying
these clauses, an ORDER BY clause is also specified to order the rows in a meaningful manner. See
“Explicitly limiting the number of rows returned by a query” [SQL Anywhere Server - SQL Usage].

○ row-limitation-option-1 The TOP and START AT values can be a host variable, integer constant,
or integer variable. The TOP value must be greater than or equal to 0. The START AT value must be
greater than 0.

○ row-limitation-option-2 The LIMIT and OFFSET values can be a host variable, integer constant,
or integer variable. The LIMIT value must be greater than or equal to 0. The OFFSET value must be
greater or equal to 0.

The LIMIT keyword is disabled by default. Use the reserved_keywords option to enable the LIMIT
keyword. See “reserved_keywords option” [SQL Anywhere Server - Database Administration].

select-list clause The select-list is a list of expressions, separated by commas, specifying what is
retrieved from the database. An asterisk (*) means select all columns of all tables in the FROM clause.

Aggregate functions are allowed in the select-list. Subqueries are also allowed in the select-list. Each
subquery must be within parentheses.

Alias names can be used throughout the query to represent the aliased expression.

Alias names are also displayed by Interactive SQL at the top of each column of output from the SELECT
statement. If the optional alias name is not specified after an expression, Interactive SQL displays the
expression.

INTO clause Following are the three uses of the INTO clause:

○ INTO hostvar-list clause This clause is used in embedded SQL only. It specifies where the results
of the SELECT statement go. There must be one host variable item for each item in the select-list. select-
list items are put into the host variables in order. An indicator host variable is also allowed with each
host variable, so the program can tell if the select-list item was NULL.

If the query results in no rows being selected, the variables are not updated, and a row not found
warning appears.

○ INTO variable-list clause This clause is used in procedures and triggers only. It specifies where
the results of the SELECT statement go. There must be one variable for each item in the select-list.
select-list items are put into the variables in order.

○ INTO table-name clause This clause is used to create a table and fill it with data.

For permanent tables to be created, the query must satisfy one of the following conditions:

SQL statements

828 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● The select-list contains more than one item, and the INTO target is a single table-name identifier.

● The select-list contains a * and the INTO target is specified as owner.table.

To create a permanent table with one column, the table name must be specified as owner.table.

This statement causes a COMMIT before execution as a side effect of creating the table. RESOURCE
authority is required to execute this statement. No permissions are granted on the new table: the
statement is a short form for CREATE TABLE followed by INSERT ... SELECT.

Tables created using this clause do not have a primary key defined. You can add a primary key using
ALTER TABLE. A primary key should be added before applying any UPDATEs or DELETEs to the
table; otherwise, these operations result in all column values being logged in the transaction log for
the affected rows.

INTO LOCAL TEMPORARY TABLE This clause is used to create a local, temporary table and
populate it with the results of the query. When you use this clause, you do not need to start the temporary
table name with #.

FROM clause Rows are retrieved from the tables and views specified in the table-expression. A
SELECT statement with no FROM clause can be used to display the values of expressions not derived
from tables. For example, these two statements are equivalent and display the value of the global variable
@@version.

SELECT @@version;
SELECT @@version FROM DUMMY;

See “FROM clause” on page 696.

WHERE clause This clause specifies which rows are selected from the tables named in the FROM
clause. It can be used to do joins between multiple tables, as an alternative to the ON phrase (which is part
of the FROM clause). See “Search conditions” on page 32 and “FROM clause” on page 696.

GROUP BY clause You can group by columns, alias names, or functions. The result of the query
contains one row for each distinct set of values in the named columns, aliases, or functions. As with
DISTINCT and the set operations UNION, INTERSECT, and EXCEPT, the GROUP BY clause treats
NULL values in the same manner as any other value in each domain. In other words, multiple NULL
values in a grouping attribute form a single group. Aggregate functions can then be applied to these
groups to get meaningful results.

When GROUP BY is used, the select-list, HAVING clause, and ORDER BY clause must not reference
any identifier that is not named in the GROUP BY clause. The exception is that the select-list and
HAVING clause can contain aggregate functions.

See “GROUP BY clause” on page 724.

HAVING clause This clause selects rows based on the group values and not on the individual row
values. The HAVING clause can only be used if either the statement has a GROUP BY clause or the select-
list consists solely of aggregate functions. Any column names referenced in the HAVING clause must
either be in the GROUP BY clause or be used as a parameter to an aggregate function in the HAVING clause.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 829

WINDOW clause This clause defines all or part of a window for use with window functions such as
AVG and RANK. See “WINDOW clause” on page 907.

ORDER BY clause This clause sorts the results of a query. Each item in the ORDER BY list can be
labeled as ASC for ascending order (the default) or DESC for descending order. If the expression is an
integer n, then the query results are sorted by the nth item in the select-list.

The only way to ensure that rows are returned in a particular order is to use ORDER BY. In the absence
of an ORDER BY clause, SQL Anywhere returns rows in whatever order is most efficient. This means
that the appearance of result sets may vary depending on when you last accessed the row and other factors.

In embedded SQL, the SELECT statement is used for retrieving results from the database and placing the
values into host variables via the INTO clause. The SELECT statement must return only one row. For
multiple row queries, you must use cursors.

FOR UPDATE or FOR READ ONLY clause These clauses specify whether updates are allowed
through a cursor opened on the query, and if so, what concurrency semantics can be used. This clause
cannot be used with the FOR XML clause.

If you do not use a FOR clause in the SELECT statement, the updatability of a cursor depends on the
cursor's declaration and how cursor concurrency is specified by the API. In ODBC, JDBC, OLE DB,
ADO.NET, and embedded SQL, statement updatability is explicit and a read-only cursor is used unless it
is overridden by the application. In Open Client and within stored procedures, cursor updatability does not
have to be specified, and the default is FOR UPDATE.

For Open Client and stored procedures, cursor updatability and statement updatability is dependent on the
setting of the ansi_update_constraints database option and the specific characteristics of the statement,
including whether the statement contains ORDER BY, DISTINCT, GROUP BY, HAVING, UNION,
aggregate functions, joins, or non-updatable views. For stored procedures, cursors default to FOR
UPDATE for single-table queries without an ORDER BY clause, or if the ansi_update_constraints option
is set to Off. When the ansi_update_constraints option is set to Cursors or Strict, then cursors over a query
containing an ORDER BY clause default to READ ONLY. However, you can explicitly mark cursors as
updatable using the FOR UPDATE clause. Because it is expensive to allow updates over cursors with an
ORDER BY clause or a join, cursors over a query containing a join of two or more tables are READ
ONLY and cannot be made updatable unless the ansi_update_constraints database option is Off.

A cursor declared FOR READ ONLY cannot be used in UPDATE (positioned), DELETE (positioned), or
PUT statements. FOR READ ONLY is the default for embedded SQL.

The FOR UPDATE clause explicitly makes a cursor updatable. The use of FOR UPDATE alone does not,
by itself, affect concurrency control on the rows in the result set of the statement. To do this, you must
specify either FOR UPDATE BY LOCK or FOR UPDATE BY [VALUES | TIMESTAMP].

○ FOR UPDATE BY LOCK clause The database server acquires intent row locks on fetched rows of
the result set. These are long-term locks that are held until the transaction is committed or rolled back.

○ FOR UPDATE BY { VALUES | TIMESTAMP } When you specify FOR UPDATE BY
TIMESTAMP or FOR UPDATE BY VALUES, the database server uses optimistic concurrency by
using a keyset-driven (value-sensitive) cursor. In this situation, lost updates can occur if the
application modifies a row outside of the cursor (using a separate statement) or if the application does

SQL statements

830 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

not heed the warnings and/or errors generated by the server indicating that the row has been modified
by another connection.

To ensure that a statement acquires an intent lock, you must do one of the following:

○ specify FOR UPDATE BY LOCK in the query

○ specify HOLDLOCK, WITH (HOLDLOCK), WITH (UPDLOCK), or WITH (XLOCK) in the
FROM clause of the query

○ open the cursor with API calls that specify CONCUR_LOCK

○ fetch the rows with attributes indicating fetch for update

The FOR UPDATE OF clause explicitly names the columns that can be modified with an UPDATE
(positioned), DELETE (positioned), or PUT statement. You cannot use this clause in combination with
any other FOR UPDATE, FOR READ ONLY, or FOR XML clause.

○ FOR UPDATE OF column-list clause When you specify the FOR UPDATE OF clause, the
database server restricts the columns that can be modified with a positioned UPDATE or positioned
DELETE statement to those columns that are explicitly named in that clause. An attempt to modify
another column will yield a "column not found" error. No check is made to determine if a column
referenced within the list actually exists, or if that column's table is an updatable table.

For more information about cursor sensitivity, see “SQL Anywhere cursors” [SQL Anywhere Server -
Programming].

For more information about ODBC concurrency, see the discussion of SQLSetStmtAttr in “Choosing
ODBC cursor characteristics” [SQL Anywhere Server - Programming].

For more information about the ansi_update_constraints database option, see “ansi_update_constraints
option” [SQL Anywhere Server - Database Administration].

For more information about cursor updatability, see “Understanding updatable statements” [SQL
Anywhere Server - Programming].

FOR XML clause This clause specifies that the result set is to be returned as an XML document. The
format of the XML depends on the mode you specify. This clause cannot be used with the FOR UPDATE
or FOR READ ONLY clause. Cursors declared with FOR XML are implicitly READ ONLY.

When you specify RAW mode, each row in the result set is represented as an XML <row> element, and
each column is represented as an attribute of the <row> element.

AUTO mode returns the query results as nested XML elements. Each table referenced in the select-list is
represented as an element in the XML. The order of nesting for the elements is based on the order that
tables are referenced in the select-list.

EXPLICIT mode allows you to control the form of the generated XML document. Using EXPLICIT
mode offers more flexibility in naming elements and specifying the nesting structure than either RAW or
AUTO mode. See “Using FOR XML EXPLICIT” [SQL Anywhere Server - SQL Usage].

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 831

For more information about using the FOR XML clause, see “Using the FOR XML clause to retrieve
query results as XML” [SQL Anywhere Server - SQL Usage].

OPTION clause This clause provides hints about how to process the query. The following query hints
are supported:

○ MATERIALIZED VIEW OPTIMIZATION clause Use the MATERIALIZED VIEW
OPTIMIZATION clause to specify how the optimizer should make use of materialized views when
processing the query. The specified option-value overrides the materialized_view_optimization
database option for this query only. Possible values for option-value are the same values available for
the materialized_view_optimization database option. See “materialized_view_optimization option”
[SQL Anywhere Server - Database Administration].

○ FORCE OPTIMIZATION clause When a query specification contains only simple queries (single-
block, single-table queries that contain equality conditions in the WHERE clause that uniquely
identify a specific row), it typically bypasses cost-based optimization during processing. Sometimes
you may want cost-based optimization to occur. For example, if you want materialized views to be
considered during query processing, view matching must occur. However, view matching only occurs
during cost-based optimization. If you want cost-based optimization to occur for a query, but your
query specification contains only simple queries, specify the FORCE OPTIMIZATION option to
ensure that the optimizer performs cost-based optimization on the query.

Similarly, specifying the FORCE OPTIMIZATION option in a SELECT statement inside of a
procedure forces the use of the optimizer for any call to the procedure. In this case, plans for the
statement are not cached.

For more information about simple queries and view matching, see “Query processing phases” [SQL
Anywhere Server - SQL Usage], and “Eligibility to skip query processing phases” [SQL Anywhere
Server - SQL Usage].

○ FORCE NO OPTIMIZATION clause Specify the FORCE NO OPTIMIZATION clause if you
want the statement to bypass the optimizer. If the statement is too complex to process in this way —
possibly due to the setting of database options or characteristics of the schema or query — the
statement fails and the database server returns an error. For more information about statements that
can bypass the optimizer, see “Eligibility to skip query processing phases” [SQL Anywhere Server -
SQL Usage].

○ option-name = option-value Specify an option setting. The setting you specify is only applicable
to the current statement and takes precedence over any public or temporary option settings, including
those set by ODBC-enabled applications. The supported options are:

● “isolation_level option” [SQL Anywhere Server - Database Administration]
● “max_query_tasks option” [SQL Anywhere Server - Database Administration]
● “optimization_goal option” [SQL Anywhere Server - Database Administration]
● “optimization_level option” [SQL Anywhere Server - Database Administration]
● “optimization_workload option” [SQL Anywhere Server - Database Administration]
● “user_estimates option” [SQL Anywhere Server - Database Administration]

SQL statements

832 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

If you specify the isolation_level option in a query, the value specified in the query takes precedence
over all other isolation level settings (such as setting the isolation_level option for the database or the
setting for the cursor) for the current query.

sequence-expression You can select the current value (CURRVAL) or next value (NEXTVAL)
from a sequence generator. See “Using a sequence to generate unique values” [SQL Anywhere Server -
SQL Usage].

Remarks
The SELECT statement can be used:

● for retrieving results from the database.

● in Interactive SQL to browse data in the database, or to export data from the database to an external file.

● in procedures and triggers or in embedded SQL. A SELECT statement with an INTO clause is used
for retrieving results from the database when the SELECT statement only returns one row. For
multiple row queries, you must use cursors.

● to return a result set from a procedure.

Permissions
Must have SELECT permission on the named tables and views.

To select the CURRVAL or NEXTVAL values from a sequence generator, you must have DBA
authority, be the owner of the sequence, or have been granted permission to use the sequence generator.

Side effects
None.

See also
● “Expressions” on page 12
● “FROM clause” on page 696
● “GROUP BY clause” on page 724
● “WINDOW clause” on page 907
● “Search conditions” on page 32
● “UNION statement” on page 883
● “EXCEPT statement” on page 676
● “INTERSECT statement” on page 746
● “Joins: Retrieving data from several tables” [SQL Anywhere Server - SQL Usage]
● “Common table expressions” [SQL Anywhere Server - SQL Usage]
● “DECLARE CURSOR statement [ESQL] [SP]” on page 628

Standards and compatibility
● SQL/2008 Core feature. The complexity of the SELECT statement means that you should check

individual clauses against the standard. For example, the ROLLUP keyword, which can be specified
in a GROUP BY clause, is part of optional SQL/2008 language feature T431. Some of the SQL/2008
optional language features supported by SQL Anywhere include:

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 833

○ The WINDOW clause and WINDOW aggregate functions comprise optional SQL/2008 language
features T611 and T612. See “WINDOW clause” on page 907.

○ Sequence expressions are part of feature T176.

○ Common table expressions are optional SQL/2008 language feature T121. A common table
expression included in a nested query expression is feature T122. WITH RECURSIVE is optional
SQL/2008 language feature 131; if included in a nested query it constitutes feature T132.

○ The ability to specify an ORDER BY clause with a query expression involving UNION,
EXCEPT, or INTERSECT is optional feature F850. The ability to specify ORDER BY in a
subquery is feature F851.

○ In the SQL standard, FOR UPDATE and FOR READ ONLY are part of a cursor declaration. See
“DECLARE CURSOR statement [ESQL] [SP]” on page 628.

SQL Anywhere offers support for many extensions to the SQL/2008 definition of the SELECT
statement. Some of these include:

○ The optional cursor-concurrency clause (FOR UPDATE BY { LOCK | VALUES |
TIMESTAMP}) is a vendor extension.

○ The FOR XML, OPTION, and INTO clauses are vendor extensions.

○ The row limitation clause is a vendor extension. In the SQL/2008 standard, row limitation is
supported using FETCH FIRST syntax, which is optional language feature F856. The syntax for
feature F856 is not supported by SQL Anywhere.

○ The ability to specify ORDER BY n is a vendor extension.

○ In SQL/2008, all cursors except INSENSITIVE cursors are updatable by default. The read-only
default with embedded SQL programs is a vendor extension.

● Transact-SQL There are substantial differences in SELECT statement support between SQL
Anywhere and Adaptive Server Enterprise. Several features of the SELECT statement are not
supported by Adaptive Server Enterprise — see “Writing compatible queries” [SQL Anywhere Server
- SQL Usage]. These differences include:

○ Sybase ASE does not support SQL Anywhere's cursor concurrency clause; to acquire a lock on a
fetched row, you must use the HOLDLOCK table hint. See “WITH table-hint clause, FROM
clause” on page 702.

○ Adaptive Server Enterprise does not support recursive queries or common table expressions.

○ There are differences between Adaptive Server Enterprise and SQL Anywhere with respect to
Transact-SQL outer joins. See “Transact-SQL outer joins (*= or =*)” [SQL Anywhere Server -
SQL Usage]..

In Transact-SQL you use the SELECT statement to assign a value to a variable, rather than with the
Watcom SQL SET statement.

SQL statements

834 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example
This query returns the total number of employees in the Employees table.

SELECT COUNT(*)
FROM Employees;

This query lists all customers and the total value of their orders.

SELECT CompanyName,
 CAST(SUM(SalesOrderItems.Quantity *
 Products.UnitPrice) AS INTEGER) VALUE
FROM Customers
 JOIN SalesOrders
 JOIN SalesOrderItems
 JOIN Products
GROUP BY CompanyName
ORDER BY VALUE DESC;

The following statement shows an embedded SQL SELECT statement where the number of employees in
the Employees table is selected into the :size host variable:

SELECT COUNT(*) INTO :size
FROM Employees;

The following statement is optimized to return the first row in the result set quickly:

SELECT Name
FROM Products
GROUP BY Name
HAVING COUNT(*) > 1
AND MAX(UnitPrice) > 10
OPTION(optimization_goal = 'first-row');

SET CONNECTION statement [Interactive SQL] [ESQL]

Changes the active database connection.

Syntax
SET CONNECTION [connection-name]

connection-name : identifier, string, or hostvar

Remarks
The SET CONNECTION statement changes the active database connection to connection-name. The
current connection state is saved, and is resumed when it again becomes the active connection. If connection-
name is omitted and there is a connection that was not named, that connection becomes the active connection.

When cursors are opened in embedded SQL, they are associated with the current connection. When the
connection is changed, the cursor names of the previously active connection become inaccessible. These
cursors remain active and in position, and become accessible when the associated connection becomes
active again.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 835

Permissions
None.

Side effects
None.

See also
● “CONNECT statement [ESQL] [Interactive SQL]” on page 473
● “DISCONNECT statement [ESQL] [Interactive SQL]” on page 648
● “Using Interactive SQL” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 SET CONNECTION is part of optional SQL/2008 language feature F771, "Connection

management". Its usage within an Interactive SQL session is a vendor extension.

Example
The following example is in embedded SQL.

EXEC SQL SET CONNECTION :conn_name;

From Interactive SQL, set the current connection to the connection named conn1.

SET CONNECTION conn1;

SET DESCRIPTOR statement [ESQL]

Describes the variables in a SQL descriptor area and to place data into the descriptor area.

Syntax
SET DESCRIPTOR descriptor-name
{ COUNT = { integer | hostvar }
| VALUE { integer | hostvar } assignment, ... }

assignment :
{ TYPE | SCALE | PRECISION | LENGTH | INDICATOR }
 = { integer | hostvar }
| DATA = hostvar

descriptor-name : identifier

Remarks
The SET DESCRIPTOR statement is used to describe the variables in a descriptor area, and to place data
into the descriptor area.

The SET ... COUNT statement sets the number of described variables within the descriptor area. The
value for count must not exceed the number of variables specified when the descriptor area was allocated.

SQL statements

836 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The value { integer | hostvar } specifies the variable in the descriptor area upon which the assignment(s)
is performed.

Type checking is performed when doing SET ... DATA, to ensure that the variable in the descriptor area
has the same type as the host variable. LONG VARCHAR and LONG BINARY are not supported by
SET DESCRIPTOR ... DATA.

If an error occurs, the code is returned in the SQLCA.

Permissions
None.

Side effects
None.

See also
● “ALLOCATE DESCRIPTOR statement [ESQL]” on page 384
● “DEALLOCATE DESCRIPTOR statement [ESQL]” on page 627
● “The SQL descriptor area (SQLDA)” [SQL Anywhere Server - Programming]

Standards and compatibility
● SQL/2008 SET DESCRIPTOR is part of optional SQL/2008 language feature B031, "Basic

dynamic SQL".

Example
The following example sets the type of the column with position col_num in sqlda.

void set_type(SQLDA *sqlda, int col_num, int new_type)
{
 EXEC SQL BEGIN DECLARE SECTION;
 INT new_type1 = new_type;
 INT col = col_num;
 EXEC SQL END DECLARE SECTION;
 EXEC SQL SET DESCRIPTOR sqlda VALUE :col TYPE = :new_type1;
}

For a longer example, see “ALLOCATE DESCRIPTOR statement [ESQL]” on page 384.

SET MIRROR OPTION statement

Separately licensed component required
Read-only scale-out and database mirroring each require a separate license. See “Separately licensed
components” [SQL Anywhere 12 - Introduction].

Changes the values of options that control the settings for database mirroring and read-only scale-out.

Syntax
SET MIRROR OPTION option-name={ option-value | NULL }

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 837

option-name :
authentication_string
auto_add_fan_out
auto_add_server
auto_failover
child_creation
page_timeout
max_disconnected_time
max_retry_connect_time
synchronization_mode

Parameters

option-name Ap-
plies
to

Val-
ues

De-
fault

Description

authentica-
tion_string

data-
base
mir-
roring

string null Specifies the authentication string used by all the servers
in the database mirroring system. The authentication
string is required for database mirroring. See “-xa
dbsrv12 server option” [SQL Anywhere Server - Data-
base Administration].

au-
to_add_fan_out

read-
only
scale-
out

inte-
ger

10 Specifies the maximum number of children for each
branch. See “Automatically assign the parent of a copy
node” [SQL Anywhere Server - Database Administra-
tion].

auto_add_server read-
only
scale-
out

string null Specifies the name of the database server that acts as the
parent of the automatic assignment tree. See “Automati-
cally assign the parent of a copy node” [SQL Anywhere
Server - Database Administration].

auto_failover data-
base
mir-
roring

on, off null Specifies whether the mirror server automatically takes
over as the primary server when the current primary serv-
er goes down. This option does not apply to synchronous
mode.

This option accepts Boolean values (automatic failover
is turned on with YES, ON, TRUE, or 1, and is turned
off with any of NO, OFF, FALSE, and 0). The parame-
ters are case insensitive.

If you are using asynchronous or asyncfullpage mode, it
is recommended that you set the auto_failover option to
on. Then, if the primary server goes down, the mirror serv-
er automatically takes over as the primary server.

SQL statements

838 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

option-name Ap-
plies
to

Val-
ues

De-
fault

Description

child_creation read-
only
scale-
out

auto-
matic,
off,
man-
ual

auto-
matic

Controls whether copy nodes are created automatically.
See “Adding copy nodes” [SQL Anywhere Server - Data-
base Administration].

page_timeout data-
base
mir-
roring

inte-
ger, in
sec-
onds

5 Specifies how often, in seconds, transaction log pages
are sent to the mirror server, whether or not they are full.
This option applies only when using asyncfullpage mode.

max_disconnec-
ted_time

read-
only
scale-
out

inte-
ger, in
sec-
onds

no
time
limit

Specifies the length of time that the copy server attempts
to connect to the root database server after a parent con-
nection is lost. If the copy server fails to connect within
the specified time, the database is shut down.

See “Handling the loss of a parent connection” [SQL Any-
where Server - Database Administration].

max_retry_con-
nect_time

read-
only
scale-
out

inte-
ger, in
sec-
onds

120 Specifies the length of time that a copy node attempts to
reconnect to its parent once the parent becomes unavaila-
ble.

See “Handling the loss of a parent connection” [SQL Any-
where Server - Database Administration].

synchroniza-
tion_mode

data-
base
mir-
roring

syn-
chro-
nous,
asyn-
chro-
nous,
asyn-
cfull-
page

syn-
chro-
nous

Specifies the synchronization mode used for database mir-
roring: synchronous (sync), asynchronous (async), or
asyncfullpage (page). The synchronization mode con-
trols when and how transactions are recorded on the mir-
ror server. For information about the synchronization
modes, see “Choosing a database mirroring mode” [SQL
Anywhere Server - Database Administration].

Remarks
Once you create a database server for a database mirroring system or a read-only scale-out system using
the CREATE MIRROR SERVER statement, you can use the SET MIRROR OPTION statement to
configure the settings for the system.

Permissions
Must have DBA authority.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 839

Side effects
Automatic commit.

See also
● “Introduction to database mirroring” [SQL Anywhere Server - Database Administration]
● “SQL Anywhere read-only scale-out” [SQL Anywhere Server - Database Administration]
● “CREATE MIRROR SERVER statement” on page 532
● “ALTER MIRROR SERVER statement” on page 404
● “DROP MIRROR SERVER statement” on page 659

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement sets the authentication string for a database mirroring system to abc:

SET MIRROR OPTION authentication_string = 'abc';

SET OPTION statement
Changes the values of database and connection options.

Syntax 1
SET [EXISTING] [TEMPORARY] OPTION
 [userid.| PUBLIC.]option-name = [option-value]

Syntax 2 (deprecated)
SET [EXISTING] [TEMPORARY] OPTION
 [userid.| PUBLIC.]option-name = [identifier]

userid : identifier

option-name : identifier

option-value : ON, OFF, NULL, string literal, number, hostvar, or @variable-name

Parameters
Option values With Syntax 1, option values can be one of:

○ the keywords ON, OFF, or NULL
○ a string literal value, within single quotation marks
○ a number of any valid format, including NUMERIC
○ within an embedded SQL program, the value of a host variable hostvar
○ the value of a SQL variable with a variable-name that must begin with an @ sign

SQL statements

840 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

With Syntax 2, you can specify any valid identifier as an option value. With Syntax 2, the database server
treats the name of the identifier as if it were a string literal enclosed within single quotes. For example, the
statement:

SET TEMPORARY OPTION ansi_update_constraints = 'strict';

is equivalent to

SET TEMPORARY OPTION ansi_update_constraints = strict;

Remarks
The SET OPTION statement is used to change options that affect the behavior of the database server.
Setting the value of an option can change the behavior for all users (public), for an individual user, or for
the current connection. The new setting can be made either temporary or permanent.

The classes of options that can be set with the SET OPTION statement are:

● Transact-SQL compatibility options. See “Compatibility options” [SQL Anywhere Server - Database
Administration].

● connection and database options. See “Database options” [SQL Anywhere Server - Database
Administration].

● synchronization options. See “Synchronization options” [SQL Anywhere Server - Database
Administration] and “SQL Remote options” [SQL Anywhere Server - Database Administration].

● user-defined options

For information about Interactive SQL options, see “Interactive SQL options” [SQL Anywhere Server -
Database Administration].

Option scope With most options, you can set their value at three levels of scope: public, user, and
connection. Some specific options, such as login_mode, are restricted to the public level only. A
connection option takes precedence over the other two levels, and user options take precedence over
public options. You set a connection-level option by using the TEMPORARY keyword. If you set a user-
level option for the current user, the corresponding connection-level option is set at the same time.

If you specify a user ID, the option value applies to that user. If you specify PUBLIC, the option value
applies to all users who do not have an individual setting for the option. By default, the option value
applies to the currently logged on user ID that issued the SET OPTION statement.

For example, the following statement applies an option change to the user DBA, if DBA is the user
issuing the SQL statement:

SET OPTION precision = 40;

However the following statement applies the change to the PUBLIC user ID, a group to which all users
belong:

SET OPTION PUBLIC.login_mode = 'Standard';

TEMPORARY options By default, a new option value is made permanent unless the TEMPORARY
keyword is specified. Adding the TEMPORARY keyword to the SET OPTION statement affects the
duration of the change.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 841

When the SET TEMPORARY OPTION statement is not qualified with a user ID, the new option value is
in effect only for the current connection.

When SET TEMPORARY OPTION is used for the PUBLIC user ID, the change is in place for as long as
the database is running. When the database is shut down, TEMPORARY options for the PUBLIC group
revert back to their permanent value.

Setting temporary options for the PUBLIC user ID offers a security benefit. For example, when the
login_mode option is enabled, the database relies on the login security of the system on which it is
running. Enabling it temporarily means that a database relying on the security of a Windows domain is
not compromised if the database is shut down and copied to a local computer. In that case, the temporary
enabling of the login_mode option reverts to its permanent value, which could be Standard, a mode where
integrated logins are not permitted.

Removing option settings If option-value is omitted, the specified option setting is deleted from the
database. If it was a user-level option setting, the value reverts back to the PUBLIC setting. If a
TEMPORARY option is deleted, the option setting reverts back to the permanent setting for that user.

Option data types Options can have Boolean, numeric, or string values, but are always stored as
strings in the database. Option settings are always returned as strings as the result of a property function
or when returned as a result of a function or system stored procedure. Option values cannot be larger than
the database page size.

User-defined options Any option, whether user-defined or not, must have a public setting before a user-
specific value can be assigned. The database server does not support setting TEMPORARY values for user-
defined options. For example, to create a user-defined option named ApplicationControl, you first issue
the statement:

SET OPTION PUBLIC.ApplicationControl = 'Default';

This statement sets the ApplicationControl option to Default for all users, and takes effect with each new
connection to the server. Subsequently, an individual user may establish their own setting for this option
by issuing a separate SET OPTION statement.

Restrictions Only users with DBA authority have the authority to set an option for the PUBLIC user
ID or for other database users.

If you use the EXISTING keyword, option values cannot be set for an individual user ID unless there is
already a PUBLIC user ID setting for that option.

Caution
Do not change option settings while fetching rows from an open cursor because it can result in ill-defined
behavior whose semantics are not guaranteed. For example, changing the date_format setting while
fetching from a cursor would lead to different date formats among the rows in the result set.

There are several ways you can query the value of specific options for a connection or user. See “Finding
option settings” [SQL Anywhere Server - Database Administration].

The SET OPTION statement is ignored by the SQL Flagger.

SQL statements

842 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Permissions
None required to set your own options.

DBA authority is required to set database options for another user or PUBLIC.

Side effects
If TEMPORARY is not specified, an automatic commit is performed.

See also
● “Database options” [SQL Anywhere Server - Database Administration]
● “Compatibility options” [SQL Anywhere Server - Database Administration]
● “Synchronization options” [SQL Anywhere Server - Database Administration]
● “SQL Remote options” [SQL Anywhere Server - Database Administration]
● “Finding option settings” [SQL Anywhere Server - Database Administration]
● “Setting database options” [SQL Anywhere Server - Database Administration]
● “SYSOPTION system view” on page 1153
● “sa_conn_options system procedure” on page 968
● “sa_conn_options system procedure” on page 968
● “CONNECTION_PROPERTY function [System]” on page 164
● “GET OPTION statement [ESQL]” on page 711
● “SET OPTION statement [Interactive SQL]” on page 844
● “SET statement [T-SQL]” on page 851
● “SET REMOTE OPTION statement [SQL Remote]” on page 847

Standards and compatibility
● SQL/2008 Vendor extension.

Example
Set the date format option for all users without an individual setting:

SET OPTION PUBLIC.date_format = 'Mmm dd yyyy';

Set the wait_for_commit option to On:

SET OPTION wait_for_commit = 'On';

The following is an embedded SQL example:

EXEC SQL SET TEMPORARY OPTION date_format = :value;

Set the date_format option for the user that is currently connected. Future connections for the same user
ID use this option value.

SET OPTION date_format = 'yyyy/mm/dd';

The following statement removes the setting of the date_format option for the current user ID. After
executing this statement, the date_format setting for PUBLIC is used instead.

SET OPTION date_format=;

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 843

SET OPTION statement [Interactive SQL]

Changes the values of Interactive SQL options.

Syntax 1 - Set an Interactive SQL option
SET OPTION option-name = [option-value] | SET TEMPORARY OPTION option-name = [option-value]

option-name : identifier, string, or hostvar

option-value : string, identifier, or number

Syntax 2 - Save current Interactive SQL options permanently
SET PERMANENT

Syntax 3 - List current database option settings
SET

Remarks
When you set an option using the SET OPTION syntax, the option setting is stored permanently and does
not change unless another SET OPTION statement changes it.

Using the SET TEMPORARY OPTION syntax allows you to temporarily change an option setting. The
temporary setting remains in effect until you close Interactive SQL. The next time you start Interactive
SQL, the option reverts to its permanent setting.

Use the SET PERMANENT syntax to permanently save all current Interactive SQL option settings (any
temporary settings become permanent).

If option-value is omitted, the specified option is set to its default value.

Use Syntax 3 to display all the current database option settings in a window. If there are temporary
options settings for the database server, they are displayed instead of the permanent settings.

Interactive SQL option settings are stored on the client computer, not in the database.

The following table lists the Interactive SQL options.

Option Values Default

“auto_commit option [Interactive SQL]”
[SQL Anywhere Server - Database Adminis-
tration]

On, Off Off

“auto_refetch option [Interactive SQL]”
[SQL Anywhere Server - Database Adminis-
tration]

On, Off On

SQL statements

844 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Option Values Default

“bell option [Interactive SQL]” [SQL Any-
where Server - Database Administration]

On, Off On

“command_delimiter option [Interactive
SQL]” [SQL Anywhere Server - Database Ad-
ministration]

String ' ; '

“commit_on_exit option [Interactive SQL]”
[SQL Anywhere Server - Database Adminis-
tration]

On, Off On

“default_isql_encoding option [Interactive
SQL]” [SQL Anywhere Server - Database Ad-
ministration]

String Empty string

“echo option [Interactive SQL]” [SQL Any-
where Server - Database Administration]

On, Off On

“input_format option [Interactive SQL]”
[SQL Anywhere Server - Database Adminis-
tration]

TEXT, FIXED TEXT

“isql_allow_read_client_file option [Interac-
tive SQL]” [SQL Anywhere Server - Data-
base Administration]

On, Off, Prompt Prompt

“isql_allow_write_client_file option [Interac-
tive SQL]” [SQL Anywhere Server - Data-
base Administration]

On, Off, Prompt Prompt

“isql_command_timing option [Interactive
SQL]” [SQL Anywhere Server - Database Ad-
ministration]

On, Off On

“isql_escape_character option [Interactive
SQL]” [SQL Anywhere Server - Database Ad-
ministration]

Character ' \ '

“isql_field_separator option [Interactive
SQL]” [SQL Anywhere Server - Database Ad-
ministration]

String ' , '

“isql_maximum_displayed_rows option [In-
teractive SQL]” [SQL Anywhere Server - Da-
tabase Administration]

All or a non-negative integer 500

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 845

Option Values Default

“isql_print_result_set option [Interactive
SQL]” [SQL Anywhere Server - Database Ad-
ministration]

Last, All, None Last

“isql_quote option [Interactive SQL]” [SQL
Anywhere Server - Database Administration]

String '

“isql_show_multiple_result_sets [Interactive
SQL]” [SQL Anywhere Server - Database Ad-
ministration]

On, Off Off

“nulls option [Interactive SQL]” [SQL Any-
where Server - Database Administration]

String '(NULL)'

“on_error option [Interactive SQL]” [SQL
Anywhere Server - Database Administration]

Stop, Continue, Prompt, Exit,
Notify_Continue, Notify_Stop,
Notify_Exit

Prompt

“output_format option [Interactive SQL]”
[SQL Anywhere Server - Database Adminis-
tration]

TEXT, FIXED, HTML, SQL,
XML

TEXT

“output_length option [Interactive SQL]”
[SQL Anywhere Server - Database Adminis-
tration]

Integer 0

“output_nulls option [Interactive SQL]”
[SQL Anywhere Server - Database Adminis-
tration]

String Empty string

“truncation_length option [Interactive SQL]”
[SQL Anywhere Server - Database Adminis-
tration]

Integer 256

Standards and compatibility
● SQL/2008 Vendor extension.

See also
● “Interactive SQL options” [SQL Anywhere Server - Database Administration]
● “Using Interactive SQL” [SQL Anywhere Server - Database Administration]

Example
The following statement changes the value of the on_error option:

SET OPTION on_error='continue';

SQL statements

846 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SET REMOTE OPTION statement [SQL Remote]
Sets a message control parameter for a SQL Remote message link.

Syntax
SET REMOTE link-name OPTION
[userid.| PUBLIC.]link-option-name = link-option-value

link-name:
file
| ftp
| smtp

link-option-name:
common-option
| file-option
| ftp-option
| smtp-option

common-option:
debug
| output_log_send_on_error
| output_log_send_limit
| output_log_send_now

file-option:
directory
| invalid_extensions
| unlink_delay

ftp-option:
active_mode
| host
| invalid_extensions
| password
| port
| root_directory
| user
| reconnect_retries
| reconnect_pause

smtp-option:
 local_host
| pop3_host
| pop3_password
| pop3_userid
| smtp_host
| top_supported

link-option-value : string

Parameters
userid If you do not specify a userid, then the current publisher is assumed.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 847

options The option values are message-link dependent. For more information, see:

○ “The FILE message system” [SQL Remote]
○ “The FTP message system” [SQL Remote]
○ “The SMTP message system” [SQL Remote]

Remarks
The Message Agent saves message link parameters when the user enters them in the message link window
when the message link is first used. In this case, it is not necessary to use this statement explicitly. This
statement is most useful when preparing a consolidated database for extracting many databases.

The option names are case sensitive. The case sensitivity of option values depends on the option: Boolean
values are case insensitive, while the case sensitivity of passwords, directory names, and other strings
depend on the cases sensitivity of the file system (for directory names), or the database (for user IDs and
passwords).

Permissions
DBA authority. The publisher can set their own options.

Side effects
Automatic commit.

See also
● “Collect errors from the remote database” [SQL Remote]

Standards and compatibility
● SQL/2008 Vendor extension.

Examples
The following statement sets the FTP host to ftp.mycompany.com for the FTP link for user myuser:

SET REMOTE FTP OPTION myuser.host = 'ftp.mycompany.com';

The following statement stops SQL Remote from using the specified file extensions for messages that are
generated:

SET REMOTE ftp OPTION "Public"."invalid_extensions" =
'exe,pif,dll,bat,cmd,vbs';

SET SQLCA statement [ESQL]
Instructs the SQL preprocessor to use a SQLCA other than the default, global sqlca.

Syntax
SET SQLCA sqlca

sqlca : identifier or string

SQL statements

848 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
The SET SQLCA statement tells the SQL preprocessor to use a SQLCA other than the default global
sqlca. The sqlca must be an identifier or string that is a C language reference to a SQLCA pointer.

The current SQLCA pointer is implicitly passed to the database interface library on every embedded SQL
statement. All embedded SQL statements that follow this statement in the C source file will use the new
SQLCA.

This statement is necessary only when you are writing code that is reentrant. See “SQLCA management
for multithreaded or reentrant code” [SQL Anywhere Server - Programming].

The sqlca should reference a local variable. Any global or module static variable is subject to being
modified by another thread.

Permissions
None.

Side effects
None.

See also
● “SQLCA management for multithreaded or reentrant code” [SQL Anywhere Server - Programming]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The owning function could be found in a Windows DLL. Each application that uses the DLL has its own
SQLCA.

an_sql_code FAR PASCAL ExecuteSQL(an_application *app, char *com)
{
 EXEC SQL BEGIN DECLARE SECTION;
 char *sqlcommand;
 EXEC SQL END DECLARE SECTION;
 EXEC SQL SET SQLCA "&app->.sqlca";
 sqlcommand = com;
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL EXECUTE IMMEDIATE :sqlcommand;
return(SQLCODE);
}

SET statement
Assigns a value to a SQL variable.

Syntax
SET identifier = expression

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 849

Remarks
The SET statement assigns a new value to a variable. The variable must have been previously created
using a CREATE VARIABLE statement or DECLARE statement, or it must be an OUTPUT parameter
for a procedure. The variable name can optionally use the Transact-SQL convention of an @ sign
preceding the name. For example:

SET @localvar = 42

A variable can be used in a SQL statement anywhere a column name is allowed. If a column name exists
with the same name as the variable, the variable value is used.

Variables are local to the current connection, and disappear when you disconnect from the database or use
the DROP VARIABLE statement. They are not affected by COMMIT or ROLLBACK statements.

Variables are necessary for creating large text or binary objects for INSERT or UPDATE statements from
embedded SQL programs because embedded SQL host variables are limited to 32,767 bytes.

Permissions
None.

Side effects
None.

See also
● “CREATE VARIABLE statement” on page 622
● “DECLARE statement” on page 635
● “DROP VARIABLE statement” on page 675
● “Expressions” on page 12
● “Host variable usage” [SQL Anywhere Server - Programming]

Standards and compatibility
● SQL/2008 The SET statement is part of optional SQL/2008 language feature P002, "Computational

completeness".

Example
This simple example shows the creation of a variable called 'birthday', and uses SET to set the date to
CURRENT DATE.

CREATE VARIABLE @birthday DATE;
SET @birthday = CURRENT DATE;

The following code fragment inserts a large text value into the database.

EXEC SQL BEGIN DECLARE SECTION;
DECL_VARCHAR(5000) buffer;
/* Note: maximum DECL_VARCHAR size is 32765 */
EXEC SQL END DECLARE SECTION;
EXEC SQL CREATE VARIABLE hold_blob LONG VARCHAR;
EXEC SQL SET hold_blob = '';
for(;;) {

SQL statements

850 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 /* read some data into buffer ... */
 size = fread(buffer, 1, 5000, fp);
 if(size <= 0) break;
 /* Does not work if data contains null chars */
 EXEC SQL SET hold_blob = hold_blob || :buffer;
}
EXEC SQL INSERT INTO some_table VALUES(1, hold_blob);
EXEC SQL DROP VARIABLE hold_blob;

The following code fragment inserts a large binary value into the database.

EXEC SQL BEGIN DECLARE SECTION;
DECL_BINARY(5000) buffer;
EXEC SQL END DECLARE SECTION;
EXEC SQL CREATE VARIABLE hold_blob LONG BINARY;
EXEC SQL SET hold_blob = '';
for(;;) {
 /* read some data into buffer ... */
 size = fread(&(buffer.array), 1, 5000, fp);
 if(size <= 0) break;
 buffer.len = size;
 /* add data to blob using concatenation */
 EXEC SQL SET hold_blob = hold_blob || :buffer;
}
EXEC SQL INSERT INTO some_table VALUES (1, hold_blob);
EXEC SQL DROP VARIABLE hold_blob;

SET statement [T-SQL]
Sets database options for the current connection in an Adaptive Server Enterprise-compatible manner.

Syntax
SET option-name option-value

Remarks
The available options are as follows:

Option name Option value

ansinull On or Off

ansi_permissions On or Off

close_on_endtrans On or Off

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 851

Option name Option value

datefirst 1, 2, 3, 4, 5, 6, or 7

The setting of this option affects the DATEPART function when obtaining a
weekday value.

For more information about specifying the first day of the week, see
“first_day_of_week option” [SQL Anywhere Server - Database Administra-
tion] and “DATEPART function [Date and time]” on page 185.

quoted_identifier On | Off

rowcount integer

self_recursion On | Off

string_rtruncation On | Off

textsize integer

transaction isolation
level

0, 1, 2, 3, snapshot, statement snapshot, or read only statement snapshot

Database options in SQL Anywhere are set using the SET OPTION statement. However, SQL Anywhere
also provides support for the Adaptive Server Enterprise SET statement for options that are useful for
compatibility.

The following options can be set using the Transact-SQL SET statement in SQL Anywhere and Adaptive
Server Enterprise:

● SET ansinull { On | Off } The default behavior for comparing values to NULL is different in SQL
Anywhere and Adaptive Server Enterprise. Setting ansinull to Off provides Transact-SQL compatible
comparisons with NULL.

SQL Anywhere also supports the following syntax:

SET ansi_nulls { On | Off }

For more information, see “ansinull option” [SQL Anywhere Server - Database Administration].

● SET ansi_permissions { On | Off } The default behavior is different in SQL Anywhere and
Adaptive Server Enterprise regarding permissions required to carry out an UPDATE or DELETE
containing a column reference. Setting ansi_permissions to Off provides Transact-SQL-compatible
permissions on UPDATE and DELETE. See “ansi_permissions option” [SQL Anywhere Server -
Database Administration].

● SET close_on_endtrans { On | Off } The default behavior is different in SQL Anywhere and
Adaptive Server Enterprise for closing cursors at the end of a transaction. Setting close_on_endtrans

SQL statements

852 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

to Off provides Transact-SQL compatible behavior. See “close_on_endtrans option” [SQL Anywhere
Server - Database Administration].

● SET datefirst { 1 | 2 | 3 | 4 | 5 | 6 | 7 } The default is 7, which means that the first day of the week
is by default Sunday. To set this option permanently, see “first_day_of_week option” [SQL Anywhere
Server - Database Administration].

● SET quoted_identifier { On | Off } Controls whether strings enclosed in double quotes are
interpreted as identifiers (On) or as literal strings (Off). See “Setting options for Transact-SQL
compatibility” [SQL Anywhere Server - SQL Usage] and “quoted_identifier option” [SQL Anywhere
Server - Database Administration].

● SET rowcount integer The Transact-SQL ROWCOUNT option limits the number of rows fetched
for any cursor to the specified integer. This includes rows fetched by re-positioning the cursor. Any
fetches beyond this maximum return a warning. The option setting is considered when returning the
estimate of the number of rows for a cursor on an OPEN request.

SET ROWCOUNT also limits the number of rows affected by a searched UPDATE or DELETE
statement to integer. This might be used, for example, to allow COMMIT statements to be performed
at regular intervals to limit the size of the rollback log and lock table. The application (or procedure)
would need to provide a loop to cause the update/delete to be re-issued for rows that are not affected
by the first operation. A simple example is given below:

BEGIN
 DECLARE @count INTEGER
 SET rowcount 20
 WHILE(1=1) BEGIN
 UPDATE Employees SET Surname='new_name'
 WHERE Surname <> 'old_name'
 /* Stop when no rows changed */
 SELECT @count = @@rowcount
 IF @count = 0 BREAK
 PRINT string('Updated ',
 @count,' rows; repeating...')
 COMMIT
 END
 SET rowcount 0
END

In SQL Anywhere, if the ROWCOUNT setting is greater than the number of rows that Interactive
SQL can display, Interactive SQL may do some extra fetches to reposition the cursor. So, the number
of rows actually displayed may be less than the number requested. Also, if any rows are re-fetched
due to truncation warnings, the count may be inaccurate.

A value of zero resets the option to get all rows.

● SET self_recursion { On | Off } The self_recursion option is used within triggers to enable (On)
or prevent (Off) operations on the table associated with the trigger from firing other triggers.

● SET string_rtruncation { On | Off } The default behavior is different between SQL Anywhere
and Adaptive Server Enterprise when non-space characters are truncated during assignment of SQL
string data. Setting string_rtruncation to On provides Transact-SQL-compatible string comparisons.
See “string_rtruncation option” [SQL Anywhere Server - Database Administration].

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 853

● SET textsize Specifies the maximum size (in bytes) of text or image type data to be returned with
a select statement. The @@textsize global variable stores the current setting. To reset to the default
size (32 KB), use the command:

set textsize 0

● SET transaction isolation level { 0 | 1 | 2 | 3 | snapshot | statement snapshot | readonly
statement snapshot } Sets the locking isolation level for the current connection, as described in
“Isolation levels and consistency” [SQL Anywhere Server - SQL Usage]. For Adaptive Server
Enterprise, only 1 and 3 are valid options. For SQL Anywhere, any of 0, 1, 2, 3, snapshot, statement
snapshot, and read only statement snapshot is a valid option. See “isolation_level option” [SQL
Anywhere Server - Database Administration].

The SET statement is allowed by SQL Anywhere for the prefetch option, for compatibility, but has no effect.

Permissions
None.

Side effects
None.

See also
● “SET OPTION statement” on page 840
● “Setting options for Transact-SQL compatibility” [SQL Anywhere Server - SQL Usage]
● “Compatibility options” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Transact-SQL extension.

SETUSER statement
Allows a database administrator to assume the identity of another authorized user on the same connection.

Syntax
{ SET SESSION AUTHORIZATION | SETUSER }
[[WITH OPTION] userid]

Parameters
WITH OPTION clause By default, only permissions (including group membership) are altered. If
WITH OPTION is specified, the database options in effect are changed to the current database options of
userid.

userid The user ID is an identifier (SETUSER syntax) or a string (SET SESSION AUTHORIZATION
syntax). See “Identifiers” on page 4 and “Strings” on page 5.

SQL statements

854 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
The SETUSER statement is provided for administrative use and should not be used for connection
pooling. After running a SETUSER statement, you can execute one of the following commands to verify
which user authorization you have assumed:

● SELECT USER
● SELECT CURRENT USER

SETUSER with no user ID undoes all earlier SETUSER statements.

The SETUSER statement cannot be used inside a procedure, trigger, event handler or batch.

There are several uses for the SETUSER statement, including the following:

● Creating objects You can use SETUSER to create a database object that is to be owned by
another user.

● Permissions checking By acting as another user, with their permissions and group memberships,
a database administrator can test the permissions and name resolution of queries, procedures, views,
and so on.

● Providing a safer environment for administrators The database administrator has permission
to carry out any action in the database. If you want to ensure that you do not accidentally carry out an
unintended action, you can use SETUSER to switch to a different user ID with fewer permissions.

Note
The SETUSER statement cannot be used within procedures, triggers, events, or batches.

Permissions
DBA authority.

See also
● “EXECUTE IMMEDIATE statement [SP]” on page 678
● “GRANT statement” on page 718
● “REVOKE statement” on page 818
● “SET OPTION statement” on page 840

Standards and compatibility
● SQL/2008 The SET SESSION AUTHORIZATION syntax is part of optional SQL/2008 language

feature F321, "User authorization". The SETUSER syntax is a vendor extension. You can use the
WITH OPTION syntax with both variants, but WITH OPTION is a vendor extension.

Example
The following statements, executed by a user named DBA, change the user ID to be Joe, then Jane, and
then back to DBA.

SETUSER "Joe"
// ... operations...

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 855

SETUSER WITH OPTION "Jane"
// ... operations...
SETUSER

The following statement sets the user to Jane. The user ID is supplied as a string rather than as an identifier.

SET SESSION AUTHORIZATION 'Jane';

SIGNAL statement
Signals an exception condition.

Syntax
SIGNAL exception-name

Remarks
SIGNAL allows you to raise an exception. For a description of how exceptions are handled, see “Using
exception handlers in procedures and triggers” [SQL Anywhere Server - SQL Usage].

Use exception-name to specify the name of an exception declared using a DECLARE statement at the
beginning of the current compound statement. The exception must correspond to a system-defined
SQLSTATE or a user-defined SQLSTATE. User-defined SQLSTATE values must be in the range 99000
to 99999.

Permissions
None.

Side effects
None.

See also
● “RESIGNAL statement” on page 809
● “BEGIN statement” on page 454
● “Using exception handlers in procedures and triggers” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 The SIGNAL statement is part of optional SQL/2008 language feature P002,

"Computational completeness".

Example
The following compound statement declares and signals a user-defined exception. If you execute this
example from Interactive SQL, the message My exception signaled appears on the Messages tab in the
Results area.

BEGIN
 DECLARE myexception EXCEPTION
 FOR SQLSTATE '99001';

SQL statements

856 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 SIGNAL myexception;
 EXCEPTION
 WHEN myexception THEN
 MESSAGE 'My exception signaled'
 TO CLIENT;
END

START DATABASE statement
Starts a database on the current database server.

Syntax
START DATABASE database-file [start-options ...]

start-options :
[AS database-name]
[ON database-server-name]
[WITH TRUNCATE AT CHECKPOINT]
[FOR READ ONLY]
[AUTOSTOP { ON | OFF }]
[KEY key]
[WITH SERVER NAME alternative-database-server-name]
[DIRECTORY dbspace-directory]
[CHECKSUM { ON | OFF }]

Parameters
database-file The database-file parameter is a string. If a relative path is supplied in database-file, it is
relative to the database server starting directory.

start-options clauses The start-options can be listed in any order:

○ AS clause If database-name is not specified, a default name is assigned to the database. This
default name is the root of the database file. For example, a database in file C:\Database Files
\demo.db would be given the default name of demo. The database-name parameter is an identifier.

○ ON clause This clause is supported from Interactive SQL only. In Interactive SQL, if server-name
is not specified, the default server is the first started server among those currently running. The server-
name parameter is an identifier.

○ WITH TRUNCATE AT CHECKPOINT clause Starts a database with log truncation on checkpoint
enabled.

○ FOR READ ONLY clause Starts a database in read-only mode. When used on a database requiring
recovery, the statement fails and the error message is returned.

○ AUTOSTOP clause The default setting for the AUTOSTOP clause is ON. With AUTOSTOP set
to ON, the database is unloaded when the last connection to it is dropped. If AUTOSTOP is set to
OFF, the database is not unloaded.

In Interactive SQL, you can use YES or NO as alternatives to ON and OFF.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 857

○ KEY clause If the database is strongly encrypted, enter the KEY value (password) using this clause

○ WITH SERVER NAME clause Use this clause to specify an alternate name for the database server
when connecting to this database. If you are using database mirroring, the primary and mirror servers
must both have the same database server name because clients do not know to which server they are
connecting.

For more information about alternate server names and database mirroring, see “-sn dbsrv12 database
option” [SQL Anywhere Server - Database Administration] and “Introduction to database mirroring”
[SQL Anywhere Server - Database Administration].

○ DIRECTORY clause Use this clause to specify the directory where the dbspace files are located
for the database that is being started. For example, if the database server is started in the same
directory as the dbspaces, and you include the DIRECTORY '.' clause, then this instructs the
database server to find all dbspaces in the current directory. See “-ds dbeng12/dbsrv12 database
option” [SQL Anywhere Server - Database Administration].

○ CHECKSUM clause Use this clause to enable write checksums for newly-written pages for
databases that were not created with global checksums enabled. This clause has the same behavior as
the -wc database option.

The difference between the CHECKSUM clause and creating a database with global checksums
enabled is that when you specify CHECKSUM ON, database pages are checksummed only when they
are written out to disk. Pages that are read from disk are only verified if a checksum value was
calculated before the pages were written. If a database has global checksums enabled, checksums are
calculated for all pages when they are written and checksums are verified for all pages when they are
read.

If the database server detects that the database is running on Windows Mobile or a removable storage
device, such as a network share or USB device, then the database server automatically enables write
checksums for all database pages.

By default, databases created with version 10 and 11 of SQL Anywhere do not have global checksums
enabled. If you start a database created with SQL Anywhere 10 or 11 on a version 12 database server,
then by default the database server creates write checksums for pages when they are written to disk
(CHECKSUM ON). Version 12 databases have global checksums enabled by default, so the database
server defaults to CHECKSUM OFF for these databases because by default all database pages have
checksums. You can use either the -wc option or the START DATABASE statement to change the
database server's checksum behavior if you do not want to use the default checksum settings.

You can check whether a database was created with global checksums enabled by executing the
following statement:

SELECT DB_PROPERTY ('Checksum');

You can check whether write checksums are enabled by executing the following statement:

SELECT DB_PROPERTY ('WriteChecksum');

SQL statements

858 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See:

● “Using checksums to detect corruption” [SQL Anywhere Server - Database Administration]
● “-wc dbeng12/dbsrv12 database option” [SQL Anywhere Server - Database Administration]
● “VALIDATE statement” on page 902

Remarks
Starts a specified database on the current database server.

If you are not connected to a database and you want to use the START DATABASE statement, you must
first connect to a database, such as the utility database.

For information about the utility database, see “Using the utility database” [SQL Anywhere Server -
Database Administration].

The START DATABASE statement does not connect the current application to the specified database: an
explicit connection is still needed.

Interactive SQL supports the ON clause, which allows the database to be started on a database server
other than the current.

You can only use the database name utility_db to connect to the SQL Anywhere utility database. See
“Using the utility database” [SQL Anywhere Server - Database Administration].

Permissions
The required permissions are specified by the database server -gd option. This option defaults to all on the
personal database server, and DBA on the network server.

Side effects
None

See also
● “STOP DATABASE statement” on page 867
● “CONNECT statement [ESQL] [Interactive SQL]” on page 473
● “-gd dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
Start the database file C:\Database Files\sample_2.db on the current server.

START DATABASE 'c:\database files\sample_2.db';

From Interactive SQL, start the database file c:\Database Files\sample_2.db as sam2 on the server named
sample.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 859

START DATABASE 'c:\database files\sample_2.db'
AS sam2
ON sample;

START SERVER statement [Interactive SQL]
Starts a database server.

Syntax
START SERVER AS database-server-name [STARTLINE command-string]

Remarks
The START SERVER statement starts a database server. If you want to specify a set of options for the
database server, use the STARTLINE keyword together with a command string. Valid command strings
are those that conform to the database server description in “The SQL Anywhere database server” [SQL
Anywhere Server - Database Administration].

START ENGINE is accepted for compatibility reasons, but is deprecated.

Permissions
None

Side effects
None

See also
● “STOP SERVER statement” on page 871
● “The SQL Anywhere database server” [SQL Anywhere Server - Database Administration]
● “Using Interactive SQL” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
Start a database server named sample without starting any databases on it.

START SERVER AS sample;

The following example shows the use of a STARTLINE clause.

START SERVER AS eng1 STARTLINE 'dbsrv12 -c 8M';

START EXTERNAL ENVIRONMENT statement
Starts an external environment.

SQL statements

860 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
START EXTERNAL ENVIRONMENT environment-name

environment-name :
JAVA
| PERL
| PHP
| CLR
| C_ESQL32
| C_ESQL64
| C_ODBC32
| C_ODBC64

Parameters
environment-name The name of the external environment to start.

Remarks
For more information about external environments, see “SQL Anywhere external environment support”
[SQL Anywhere Server - Programming].

Permissions
DBA authority

Side effects
None

See also
● “SQL Anywhere external environment support” [SQL Anywhere Server - Programming]
● “ALTER EXTERNAL ENVIRONMENT statement” on page 396
● “STOP EXTERNAL ENVIRONMENT statement” on page 868
● “INSTALL EXTERNAL OBJECT statement” on page 743
● “REMOVE EXTERNAL OBJECT statement” on page 806
● “SYSEXTERNENV system view” on page 1137
● “SYSEXTERNENVOBJECT system view” on page 1138

Standards and compatibility
● SQL/2008 Vendor extension.

Example
Start the Perl external environment.

START EXTERNAL ENVIRONMENT PERL;

START JAVA statement

Starts the Java VM.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 861

Syntax
START JAVA

Remarks
The START JAVA statement starts the Java VM. The main use is to load the Java VM at a convenient
time so that when the user starts to use Java functionality there is no initial pause while the Java VM is
loaded.

The database server must be set up to locate a Java VM. Since you can specify different Java VMs for
each database, the java_location option can be used to indicate the location (path) of the Java VM. See
“java_location option” [SQL Anywhere Server - Database Administration].

For more information about starting the Java VM, see “Starting and stopping the Java VM” [SQL
Anywhere Server - Programming].

Permissions
A Java VM must be installed, and the database must be Java-enabled.

This statement is not supported on Windows Mobile.

Side effects
None

See also
● “STOP JAVA statement” on page 869

Standards and compatibility
● SQL/2008 Vendor extension.

Example
Start the Java VM.

START JAVA;

START LOGGING statement [Interactive SQL]
Starts logging executed SQL statements to a log file.

Syntax
START LOGGING filename

Remarks
The START LOGGING statement starts copying all subsequent executed SQL statements to the log file
that you specify. If the file does not exist, Interactive SQL creates it. Logging continues until you
explicitly stop the logging process with the STOP LOGGING statement, or until you end the current
Interactive SQL session.

SQL statements

862 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

You can also start and stop logging by clicking SQL » Start Logging and SQL » Stop Logging.

Execution times are included in the log file when logging and execution time reporting are both enabled.
To enable execution time reporting, see “isql_command_timing option [Interactive SQL]” [SQL
Anywhere Server - Database Administration].

Permissions
None.

Side effects
None.

See also
● “STOP LOGGING statement [Interactive SQL]” on page 870
● “isql_command_timing option [Interactive SQL]” [SQL Anywhere Server - Database Administration]
● “Logging commands” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
Start logging to a file called filename.sql, located in the c: directory.

START LOGGING 'c:\filename.sql';

START SUBSCRIPTION statement [SQL Remote]
Starts a subscription for a user to a publication.

Syntax
START SUBSCRIPTION
TO publication-name [(subscription-value)]
FOR subscriber-id, ...

Parameters
publication-name The name of the publication to which the user is being subscribed. This may
include the owner of the publication.

subscription-value A string that is compared to the subscription expression of the publication. The
value is required here because each subscriber may have more than one subscription to a publication.

subscriber-id The user ID of the subscriber to the publication. This user must have a subscription to
the publication.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 863

Remarks
A SQL Remote subscription is said to be started when publication updates are being sent from the
consolidated database to the remote database.

The START SUBSCRIPTION statement is one of a set of statements that manage subscriptions. The
CREATE SUBSCRIPTION statement defines the data that the subscriber is to receive. The
SYNCHRONIZE SUBSCRIPTION statement ensures that the consolidated and remote databases are
consistent with each other. The START SUBSCRIPTION statement is required to start messages being
sent to the subscriber.

Data at each end of the subscription must be consistent before a subscription is started. It is recommended
that you use the database extraction utility to manage the creation, synchronization, and starting of
subscriptions. If you use the database extraction utility, you do not need to execute an explicit START
SUBSCRIPTION statement. Also, the Message Agent starts subscriptions once they are synchronized.

Permissions
DBA authority.

Side effects
Automatic commit.

See also
● “CREATE SUBSCRIPTION statement [SQL Remote]” on page 589
● “REMOTE RESET statement [SQL Remote]” on page 805
● “SYNCHRONIZE SUBSCRIPTION statement [SQL Remote]” on page 878
● “STOP SUBSCRIPTION statement [SQL Remote]” on page 872
● “Extraction utility (dbxtract)” [SQL Remote]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement starts the subscription of user SamS to the pub_contact publication.

START SUBSCRIPTION TO pub_contact
FOR SamS;

START SYNCHRONIZATION DELETE statement [MobiLink]
Restarts logging of deletes for MobiLink synchronization.

Syntax
START SYNCHRONIZATION DELETE

SQL statements

864 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
Ordinarily, SQL Anywhere and UltraLite automatically log any changes made to tables or columns that
are part of a synchronization, and upload these changes to the consolidated database during the next
synchronization. You can temporarily suspend automatic logging of delete operations using the STOP
SYNCHRONIZATION DELETE statement. The START SYNCHRONIZATION DELETE statement
allows you to restart the automatic logging.

When a STOP SYNCHRONIZATION DELETE statement is executed, none of the delete operations
executed on that connection are synchronized. The effect continues until a START
SYNCHRONIZATION DELETE statement is executed. Repeating STOP SYNCHRONIZATION
DELETE has no additional effect.

A single START SYNCHRONIZATION DELETE statement restarts the logging, regardless of the
number of STOP SYNCHRONIZATION DELETE statements preceding it.

Do not use START SYNCHRONIZATION DELETE if your application does not synchronize data.

Permissions
DBA authority

Side effects
None.

See also
● “STOP SYNCHRONIZATION DELETE statement [MobiLink]” on page 873
● “StartSynchronizationDelete method” [UltraLite - .NET Programming]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following sequence of SQL statements illustrates how to use START SYNCHRONIZATION
DELETE and STOP SYNCHRONIZATION DELETE:

-- Prevent deletes from being sent
-- to the consolidated database
STOP SYNCHRONIZATION DELETE;
-- Remove all records older than 1 month
-- from the remote database,
-- NOT the consolidated database
DELETE FROM PROPOSAL
WHERE last_modified < months(CURRENT TIMESTAMP, -1)
-- Re-enable all deletes to be sent
-- to the consolidated database
-- DO NOT FORGET to start this
START SYNCHRONIZATION DELETE;
-- Commit the entire operation,
-- otherwise rollback everything

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 865

-- including the stopping of the deletes
commit;

START SYNCHRONIZATION SCHEMA CHANGE statement
[MobiLink]

Starts a MobiLink synchronization schema change.

Syntax
START SYNCHRONIZATION SCHEMA CHANGE
FOR TABLES table-list
[set-script-version
| set-script-version-on-subscription [...]]

set-script-version :
 SET SCRIPT VERSION = script-version

set-script-version-on-subscription :
 SET SCRIPT VERSION = script-version ON SUBSCRIPTION subscription_name

script-version: string

subscription-name: identifier

Parameters
FOR TABLES clause This clause specifies the tables that are affected by the schema change.

SET SCRIPT VERSION clause Specifies the new script version for all subscriptions that contain any
table specified in the FOR TABLES clause. The new script version may be the same as the existing script
version.

ON SUBSCRIPTION clause Specifies the new script version for specified subscription. When used,
this clause must be repeated for each subscription that contains any table specified in the FOR TABLES
clause. The new script version may be the same as the existing script version.

Remarks
All tables to which you want to apply a schema change must be listed in table-list. A table cannot be
listed more than once. An error message is reported if there is an existing lock on any of the tables in table-
list.

Only one synchronization schema change can be executed on a database at a time. The START
SYNCHRONIZATION SCHEMA CHANGE statement fails when another schema change is in progress.

The database server obtains locks on all tables specified in table-list. The database server ignores the
setting of the blocking option when attempting to obtain locks. If a lock cannot be obtained, all previously
acquired locks are released and an error message is reported.

During a synchronization schema change:

SQL statements

866 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● You cannot execute a data modification statement.

● You cannot execute additional START SYNCHRONIZATION SCHEMA CHANGE statements.

● You can alter a publication to change the column subsetting of any table in table-list.

● You can alter a publication to drop any table in table-list.

● You can alter any of the tables listed in table-list.

An implicit commit is performed both before and after the START SYNCHRONIZATION SCHEMA
CHANGE statement is executed. A synchronization schema change ends with the execution of a STOP
SYNCHRONIZATION SCHEMA CHANGE statement. When the STOP SYNCHRONIZATION
SCHEMA CHANGE statement is executed, all table locks are released.

Permissions
DBA authority

Side effects
None.

See also
● “STOP SYNCHRONIZATION SCHEMA CHANGE statement [MobiLink]” on page 877
● “SynchronizationSchemaChangeActive database property” [SQL Anywhere Server - Database

Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following sequence of SQL statements illustrates how to use START SYNCHRONIZATION
SCHEMA CHANGE and STOP SYNCHRONIZATION SCHEMA CHANGE:

START SYNCHRONIZATION SCHEMA CHANGE
 FOR TABLES DBA.Sales, DBA.Products
 SET SCRIPT VERSION = 'version_2';
ALTER TABLE DBA.Sales ADD SUBTOTAL NUMERIC (10,2);
ALTER TABLE DBA.Products ALTER QUANTITY BIGINT;
STOP SYNCHRONIZATION SCHEMA CHANGE;

STOP DATABASE statement
Stops a database on the current database server.

Syntax
STOP DATABASE database-name
[ON database-server-name]
[UNCONDITIONALLY]

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 867

Parameters
STOP DATABASE clause The database-name is the name of a database (other than the current
database) running on the current server.

ON clause This clause is supported in Interactive SQL only. If database-server-name is not specified
in Interactive SQL, all running servers are searched for a database of the specified name.

When not using this statement in Interactive SQL, the database is stopped only if it is started on the
current database server.

UNCONDITIONALLY clause Stop the database even if there are connections to the database. By
default, the database is not stopped if there are connections to it.

Remarks
The STOP DATABASE statement stops a specified database on the current database server.

Permissions
The required permissions are specified by the database server -gd option. This option defaults to all on the
personal database server, and DBA on the network server.

You cannot use STOP DATABASE on the database to which you are currently connected.

Side effects
None

See also
● “START DATABASE statement” on page 857
● “DISCONNECT statement [ESQL] [Interactive SQL]” on page 648
● “-gd dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “Stop Server utility (dbstop)” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
Stop the database named sample on the current server.

STOP DATABASE sample;

STOP EXTERNAL ENVIRONMENT statement

Stops an external environment.

Syntax
STOP EXTERNAL ENVIRONMENT environment-name

SQL statements

868 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

environment-name :
JAVA
| PERL
| PHP
| CLR
| C_ESQL32
| C_ESQL64
| C_ODBC32
| C_ODBC64

Parameters
environment-name The name of the external environment to stop.

Remarks
For more information about external environments, see “SQL Anywhere external environment support”
[SQL Anywhere Server - Programming].

Permissions
DBA authority

Side effects
None

See also
● “SQL Anywhere external environment support” [SQL Anywhere Server - Programming]
● “ALTER EXTERNAL ENVIRONMENT statement” on page 396
● “START EXTERNAL ENVIRONMENT statement” on page 860
● “INSTALL EXTERNAL OBJECT statement” on page 743
● “REMOVE EXTERNAL OBJECT statement” on page 806
● “SYSEXTERNENV system view” on page 1137
● “SYSEXTERNENVOBJECT system view” on page 1138

Standards and compatibility
● SQL/2008 Vendor extension.

Example
Stop the Perl external environment.

STOP EXTERNAL ENVIRONMENT PERL;

STOP JAVA statement

Stops the Java VM.

Syntax
STOP JAVA

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 869

Remarks
The STOP JAVA statement unloads the Java VM when it is not in use. The main use is to economize on
the use of system resources.

Permissions
This statement is not supported on Windows Mobile.

Side effects
None

See also
● “START JAVA statement” on page 861

Standards and compatibility
● SQL/2008 Vendor extension.

Example
Stop the Java VM.

STOP JAVA;

STOP LOGGING statement [Interactive SQL]

Stops logging of SQL statements in the current session.

Syntax
STOP LOGGING

Remarks
The STOP LOGGING statement stops Interactive SQL from writing each SQL statement you execute to a
log file. You can start logging with the START LOGGING statement. See “START LOGGING statement
[Interactive SQL]” on page 862.

You can also stop logging by clicking SQL » Stop Logging.

Permissions
None.

Side effects
None.

See also
● “START LOGGING statement [Interactive SQL]” on page 862
● “Logging commands” [SQL Anywhere Server - Database Administration]

SQL statements

870 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example stops the current logging session.

STOP LOGGING;

STOP SERVER statement
Stops a database server.

Syntax
STOP SERVER [database-server-name] [UNCONDITIONALLY]

Parameters
UNCONDITIONALLY clause If you are the only connection to the database server, you do not need to
use UNCONDITIONALLY. If there are other connections, the database server stops only if you use the
UNCONDITIONALLY keyword.

Remarks
database-server-name can be used in Interactive SQL only. If you are not running this statement in
Interactive SQL, the current database server is stopped.

The STOP SERVER statement stops the specified database server. If the UNCONDITIONALLY
keyword is supplied, the database server is stopped even if there are other connections to the database
server. By default, the database server is not stopped if there are other connections to it.

The STOP SERVER statement cannot be used in stored procedures, triggers, events, or batches.

STOP ENGINE is accepted for compatibility reasons, but is deprecated.

Permissions
The permissions to shut down a server depend on the -gk setting on the database server command line.
The default setting is all for the personal server, and DBA for the network server.

Side effects
None

See also
● “START SERVER statement [Interactive SQL]” on page 860
● “-gk dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 871

Example
Stop the current database server, as long as there are no other connections.

STOP SERVER;

STOP SUBSCRIPTION statement [SQL Remote]
Stops a subscription for a user to a publication.

Syntax
STOP SUBSCRIPTION
TO publication-name [(subscription-value)]
FOR subscriber-id, ...

Parameters
publication-name The name of the publication to which the user is being subscribed. This may
include the owner of the publication.

subscription-value A string that is compared to the subscription expression of the publication. The
value is required here because each subscriber may have more than one subscription to a publication.

subscriber-id The user ID of the subscriber to the publication. This user must have a subscription to
the publication.

Remarks
A SQL Remote subscription is said to be started when publication updates are being sent from the
consolidated database to the remote database.

The STOP SUBSCRIPTION statement prevents any further messages being sent to the subscriber. The
START SUBSCRIPTION statement is required to restart messages being sent to the subscriber. However,
you should ensure that the subscription is properly synchronized before restarting: that no messages have
been missed.

Permissions
DBA authority

Side effects
Automatic commit.

See also
● “DROP SUBSCRIPTION statement [SQL Remote]” on page 667
● “START SUBSCRIPTION statement [SQL Remote]” on page 863
● “SYNCHRONIZE SUBSCRIPTION statement [SQL Remote]” on page 878
● “Extraction utility (dbxtract)” [SQL Remote]

SQL statements

872 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement stops the subscription of user SamS to the pub_contact publication.

STOP SUBSCRIPTION TO pub_contact
FOR SamS;

STOP SYNCHRONIZATION DELETE statement [MobiLink]
Temporarily stops logging of deletes for MobiLink synchronization.

Syntax
STOP SYNCHRONIZATION DELETE

Remarks
Ordinarily, SQL Anywhere and UltraLite remote databases automatically log any changes made to tables
or columns that are being synchronized, and then upload these changes to the consolidated database
during the next synchronization. This statement allows you to temporarily suspend logging of delete
operations to a SQL Anywhere or UltraLite remote database.

None of the delete operations executed on a connection between the time the connection executes STOP
SYNCHRONIZATION DELETE and the time the connection executes START SYCNCHRONIZATION
DELETE are synchronized.

A single START SYNCHRONIZATION DELETE statement restarts the logging, regardless of the
number of STOP SYNCHRONIZATION DELETE statements preceding it.

This statement can be useful to make corrections to a remote database, but should be used with caution as
it effectively disables MobiLink synchronization.

Do not use STOP SYNCHRONIZATION DELETE if your application does not synchronize data.

Permissions
DBA authority

Side effects
None.

See also
● UltraLite.NET “StartSynchronizationDelete method” [UltraLite - .NET Programming]
● UltraLite.NET “StopSynchronizationDelete method” [UltraLite - .NET Programming]
● “START SYNCHRONIZATION DELETE statement [MobiLink]” on page 864

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 873

Standards and compatibility
● SQL/2008 Vendor extension.

Example
For an example, see “START SYNCHRONIZATION DELETE statement [MobiLink]” on page 864.

SYNCHRONIZE statement [MobiLink]

Use this statement to synchronize a SQL Anywhere database with a MobiLink server. The
synchronization options can be specified in the statement itself.

Syntax
SYNCHRONIZE {
PROFILE sync-profile-name [MERGE sync-option [;...]]
| USING sync-option [;...]
| START
| STOP
}

[PORT port-number]
[VERBOSITY { LOW | NORMAL | HIGH }]
[TIMEOUT timeout]
[USER user-name IDENTIFIED BY password]

sync-option-value : string

Parameters
sync-profile-name The name of the synchronization profile to use for this synchronization.

MERGE clause Use this clause to add or override synchronization profile options.

USING clause Use this clause to specify synchronization profile options when you are not using a
synchronization profile.

sync-option A string of one or more synchronization profile option value pairs, separated by
semicolons. For example, 'option1=value1;option2=value2'.

See “MobiLink synchronization profiles” [MobiLink - Client Administration].

PORT clause Use this clause to specify the port number that the database server uses to communicate
with the dbmlsync utility. The default is 4433.

VERBOSITY clause This clause controls the amount of information that is added to the
synchronize_results shared global temporary table during synchronization.

The following is a list of client API events that are returned by each VERBOSITY option. For
descriptions of the options, see “DBSC_Event structure” [MobiLink - Client Administration].

SQL statements

874 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Option Returns

LOW ○ DBSC_EVENTTYPE_SYNC_START
○ DBSC_EVENTTYPE_SYNC_DONE
○ DBSC_EVENTTYPE_ERROR_MSG
○ DBSC_EVENTTYPE_WARNING_MSG

NORMAL (default) ○ DBSC_EVENTTYPE_SYNC_START
○ DBSC_EVENTTYPE_SYNC_DONE
○ DBSC_EVENTTYPE_ERROR_MSG
○ DBSC_EVENTTYPE_WARNING_MSG
○ DBSC_EVENTTYPE_INFO_MSG

HIGH ○ DBSC_EVENTTYPE_SYNC_START
○ DBSC_EVENTTYPE_SYNC_DONE
○ DBSC_EVENTTYPE_ERROR_MSG
○ DBSC_EVENTTYPE_WARNING_MSG
○ DBSC_EVENTTYPE_INFO_MSG
○ DBSC_EVENTTYPE_PROGRESS_INDEX
○ DBSC_EVENTTYPE_PROGRESS_TEXT
○ DBSC_EVENTTYPE_TITLE

The optional VERBOSITY parameter does not change the verbosity settings of your synchronization
profile. When used with the SYNCHRONIZE statement, the VERBOSITY parameter specifies the
amount of information that is added to the synchronize_results shared global temporary table. The
verbosity settings of your synchronization profile define the verbosity of the
DBSC_EVENTTYPE_INFO_MSG that is added to the dbmlsync log. If you modify the synchronization
profile or use the MERGE option to change the synchronization profile verbosity from BASIC to
BASIC,ROW_DATA, the number of rows placed in the synchronize_results shared global temporary
table increases. For example, the following two statements result in different data being added to the
synchronize_results shared global temporary table:

SYNCHRONIZE PROFILE SalesData VERBOSITY NORMAL;

SYNCHRONIZE PROFILE SalesData MERGE 'Verbosity='BASIC,ROW_DATA' VERBOSITY
NORMAL;

TIMEOUT clause This clause specifies how long the database server waits, in seconds, for the
synchronization to complete before attempting to cancel the synchronization. The default is 240 seconds.

USER / IDENTIFIED BY clause Use this clause to specify that database user id and password that the
dbmlsync utility uses to synchronize the database. The user id specified must have REMOTE DBA or
DBA authority. By default, synchronization uses the user id for database connection that issued the
SYNCHRONIZE command.

START clause Starts the dbmlsync utility running in server mode and leaves it running. No
synchronization is performed. When you are performing more than one synchronization in a short period,
you can improve performance by explicitly starting the server using this clause, performing your
synchronizations, then explicitly stopping the server using the STOP clause.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 875

STOP clause Stops a dbmlsync utility running in server mode that was previously started using the
START clause. No synchronization is performed.

Remarks
When synchronization is complete, you can view the results of the synchronization in the
synchronize_results shared global temporary table. The synchronize_results shared global temporary table
stores the results of all synchronizations that have been executed with the SYNCHRONIZE statement
since the database server was started. The synchronize_results shared global temporary table is truncated
each time the database server is shut down.

You can use the synchronize_results shared global temporary table to monitor the progress of a
synchronization on a connection that is different from your current connection. To monitor the progress of
a synchronization on a different connection:

● Execute SELECT CONNECTION_PROPERTY statement to determine the connection ID of the
current connection.

● Execute a SYNCHRONIZE statement to start synchronization.

● On a separate connection, use the sp_get_last_synchronize_results system procedure to retrieve results
using the connection ID you determined above.

To view the results of a synchronization that is complete or in progress on a specific connection, you can
use the sp_get_last_synchronize_results system procedure.

The SYNCHRONIZE statement is similar to the UltraLite SYNCHRONIZE statement. However, the
SQL Anywhere SYNCHRONIZE statement launches the dbmlsync utility in server mode to perform the
synchronization. The UltraLite SYNCHRONIZE statement uses UltraLite runtime.

The database server functions as a dbmlsync API client and uses TCP/IP to communicate with a
dbmlsync server. By default, this communication occurs on port 4433. Use the PORT clause to specify a
different port.

Use the SYNCHRONIZE PROFILE and SYNCHRONIZE USING statements to perform a
synchronization. Use the SYNCHRONIZE START and SYNCHRONIZE STOP to start or stop a
dbmlsync server. When executing a SYNCHRONIZE PROFILE or SYNCHRONIZE USING statement,
the database server attempts to connect to a dbmlsync server that is already running. If a dbmlsync server
that is already running cannot be located, a dbmlsync server is started. When the synchronization is
complete, the database server shuts down the dbmlsync server it started. If the statement connected to a
dbmlsync server that was already running, the dbmlsync server is not shut down. If you are performing
multiple synchronizations and do not want to start and stop the dbmlsync server for each synchronization,
you may want to execute a SYNCHRONIZE START statement, followed by multiple SYNCHRONIZE
PROFILE or SYNCHRONIZE USING statements, and end with a SYNCHRONIZE STOP statement.

Permissions
REMOTE DBA or DBA authority

Side effects
None

SQL statements

876 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “CREATE SYNCHRONIZATION PROFILE statement [MobiLink]” on page 590
● “Understanding MobiLink synchronization” [MobiLink - Getting Started]
● “MobiLink synchronization profiles” [MobiLink - Client Administration]
● “sp_get_last_synchronize_result system procedure” on page 1096

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example shows the syntax for synchronizing a synchronization profile named Test1:

 SYNCHRONIZE PROFILE Test1;

STOP SYNCHRONIZATION SCHEMA CHANGE statement
[MobiLink]

Stops a MobiLink synchronization schema change.

Syntax
STOP SYNCHRONIZATION SCHEMA CHANGE

Remarks
The STOP SYNCHRONIZATION SCHEMA CHANGE statement stops a schema change started by a
START SYNCHRONIZATION SCHEMA CHANGE statement. All locks obtained by the START
SYNCHRONIZATION SCHEMA CHANGE statement are released.

Permissions
DBA authority

Side effects
None.

See also
● “START SYNCHRONIZATION SCHEMA CHANGE statement [MobiLink]” on page 866
● “SYSARTICLE system view” on page 1127
● “SynchronizationSchemaChangeActive database property” [SQL Anywhere Server - Database

Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 877

Example
The following sequence of SQL statements illustrates how to use START SYNCHRONIZATION
SCHEMA CHANGE and STOP SYNCHRONIZATION SCHEMA CHANGE:

START SYNCHRONIZATION SCHEMA CHANGE
 ON DBA.Sales, DBA.Products
 SET SCRIPT VERSION = 'version 2';
ALTER TABLE DBA.Sales ADD SUBTOTAL NUMERIC (10,2);
ALTER TABLE DBA.Products ALTER QUANTITY BIGINT;
STOP SYNCHRONIZATION SCHEMA CHANGE;

SYNCHRONIZE SUBSCRIPTION statement [SQL Remote]
Synchronizes a subscription for a user to a publication.

Syntax
SYNCHRONIZE SUBSCRIPTION
TO publication-name [(subscription-value)]
FOR remote-user, ...

Parameters
publication-name The name of the publication to which the user is being subscribed. This may
include the owner of the publication.

subscription-value A string that is compared to the subscription expression of the publication. The
value is required here because each subscriber may have more than one subscription to a publication.

remote-user The user ID of the subscriber to the publication. This user must have a subscription to the
publication.

Remarks
A SQL Remote subscription is said to be synchronized when the data in the remote database is consistent
with that in the consolidated database, so that publication updates sent from the consolidated database to
the remote database will not result in conflicts and errors.

To synchronize a subscription, a copy of the data in the publication at the consolidated database is sent to
the remote database. The SYNCHRONIZE SUBSCRIPTION statement does this through the message
system. It is recommended that where possible you use the database extraction utility (dbxtract) instead to
synchronize subscriptions without using a message system.

Permissions
DBA authority

Side effects
Automatic commit.

SQL statements

878 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “CREATE SUBSCRIPTION statement [SQL Remote]” on page 589
● “START SUBSCRIPTION statement [SQL Remote]” on page 863
● “STOP SUBSCRIPTION statement [SQL Remote]” on page 872
● “Extraction utility (dbxtract)” [SQL Remote]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement synchronizes the subscription of user SamS to the pub_contact publication.

SYNCHRONIZE SUBSCRIPTION
 TO pub_contact
 FOR SamS;

SYSTEM statement [Interactive SQL]
Launches an executable file from within Interactive SQL.

Syntax
SYSTEM '[path] filename'

Remarks
Launches the specified executable file. The path and file name must be enclosed in single quotation marks.

Permissions
None.

Side effects
None.

See also
● “CONNECT statement [ESQL] [Interactive SQL]” on page 473
● “Using Interactive SQL” [SQL Anywhere Server - Database Administration]
● “Interactive SQL utility (dbisql)” [SQL Anywhere Server - Database Administration]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following statement launches the Notepad program if the Notepad executable is in your path.

SYSTEM 'notepad.exe';

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 879

TRIGGER EVENT statement
Triggers a named event. The event may be defined for event triggers or be a scheduled event.

Syntax
TRIGGER EVENT event-name [(parm = value, ...)]

Parameters
parm = value When a triggering condition causes an event handler to execute, the database server can
provide context information to the event handler using the event_parameter function. The TRIGGER
EVENT statement allows you to explicitly supply these parameters, to simulate a context for the event
handler.

Remarks
Actions are tied to particular trigger conditions or schedules by a CREATE EVENT statement. You can
use the TRIGGER EVENT statement to force the event handler to execute, even when the scheduled time
or trigger condition has not occurred. TRIGGER EVENT does not execute disabled event handlers.

Each value is a string. The maximum length of each value is limited by the maximum page size specified
by the -gp server option. If the length of value exceeds the page size, the string is truncated at the point at
which the page is full.

Permissions
DBA authority

Side effects
None

See also
● “-gp dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “ALTER EVENT statement” on page 394
● “CREATE EVENT statement” on page 495
● “EVENT_PARAMETER function [System]” on page 209

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example shows how to pass a string parameter to an event. The event displays the time it
was triggered in the database server messages window.

CREATE EVENT ev_PassedParameter
HANDLER
BEGIN
 MESSAGE 'ev_PassedParameter - was triggered at ' ||
event_parameter('time');
END;
TRIGGER EVENT ev_PassedParameter("Time"=string(current timestamp));

SQL statements

880 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

TRUNCATE statement
Deletes all rows from a table without deleting the table definition.

Syntax
TRUNCATE
TABLE [owner.]table-name
| MATERIALIZED VIEW [owner.]materialized-view-name

Remarks
The TRUNCATE statement deletes all rows from the table or materialized view.

Note
The TRUNCATE TABLE statement should be used with great care on a database involved in
synchronization or replication because the statement deletes all rows from a table, similar to a DELETE
statement that doesn't have a WHERE clause. However, no triggers are fired as a result of a TRUNCATE
statement. Furthermore, the row deletions are not entered into the transaction log and therefore are not
synchronized or replicated. This can lead to inconsistencies that can cause synchronization or replication
to fail.

After a TRUNCATE statement, the object's schema and all the indexes continue to exist until you issue a
DROP statement. The schema definitions and constraints remain intact, and triggers and permissions
remain in effect.

table-name can be the name of a base table or a temporary table.

With TRUNCATE TABLE, if all the following criteria are satisfied, a fast form of table truncation is
executed:

● There are no foreign keys either to or from the table.

● The TRUNCATE TABLE statement is not executed within a trigger.

● The TRUNCATE TABLE statement is not executed within an atomic statement.

If a fast truncation is carried out, individual DELETEs are not recorded in the transaction log, and a
COMMIT is carried out before and after the operation. Fast truncation cannot be used within snapshot
transactions. See “Snapshot isolation” [SQL Anywhere Server - SQL Usage].

If you attempt to use TRUNCATE TABLE on a table on which an immediate text index is built, or that is
referenced by an immediate view, the truncation fails. This does not occur for non-immediate text indexes
or materialized views; however, it is strongly recommended that you truncate the data in dependent
indexes and materialized views before executing the TRUNCATE TABLE statement on a table, and then
refreshing the indexes and materialized views after. See “TRUNCATE statement” on page 881, and
“TRUNCATE TEXT INDEX statement” on page 882.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 881

Permissions
● Must be the table owner, or have DBA authority, or have ALTER permissions on the table.

● For base tables and materialized views, the TRUNCATE statement requires exclusive access to the
table, as the operation is atomic (either all rows are deleted, or none are). This means that any cursors
that were previously opened and that reference the table being truncated must be closed and a
COMMIT or ROLLBACK must be issued to release the reference to the table.

● For temporary tables, each user has their own copy of the data, and exclusive access is not required
when executing the TRUNCATE statement.

Side effects
● When you truncate a materialized view, you change the status of the view to uninitialized. See

“Materialized view statuses and properties” [SQL Anywhere Server - SQL Usage].

● Delete triggers are not fired by the TRUNCATE statement.

● A COMMIT is performed before and after a TRUNCATE statement is executed.

● Individual deletions of rows are not entered into the transaction log, so the TRUNCATE operation is
not replicated. Do not use this statement in SQL Remote replication or on a MobiLink remote database.

● If the table contains a column defined as DEFAULT AUTOINCREMENT or DEFAULT GLOBAL
AUTOINCREMENT, the truncation operation resets the next available value for the column.

See also
● “DELETE statement” on page 637
● “TRUNCATE TEXT INDEX statement” on page 882
● “Deleting all rows from a table” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 The TRUNCATE TABLE statement is optional language feature F200 of the SQL/2008

standard. TRUNCATE MATERIALIZED VIEW is a vendor extension.

Example
Delete all rows from the Departments table:

TRUNCATE TABLE Departments;

TRUNCATE TEXT INDEX statement
Deletes the data in a MANUAL or an AUTO REFRESH text index.

Syntax
TRUNCATE TEXT INDEX text-index-name
ON [owner.]table-name

SQL statements

882 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters
ON clause The name of the table on which the text index is built.

Remarks
Use the TRUNCATE TEXT INDEX statement when you want to delete data from a manual text index
without dropping the text index definition. For example, if you want to alter the text configuration object
for the text index to change the stoplist, you must first truncate the text index, change the text
configuration object it refers to, and then refresh the text index to populate it with new data.

You cannot perform a TRUNCATE TEXT INDEX statement on a text index defined as IMMEDIATE
REFRESH (the default). For IMMEDIATE REFRESH text indexes, you must drop the index instead.

Permissions
● Must be the owner of the table the text index is built on, or have DBA authority, or have ALTER

permissions on the table.

● The TRUNCATE TEXT INDEX requires exclusive access to the table. This means that any open
cursors that reference the table being truncated must be closed, and a COMMIT or ROLLBACK
statement must be issued to release the reference to the table.

Side effects
Automatic commit

See also
● “Full text search” [SQL Anywhere Server - SQL Usage]
● “How to manage text indexes” [SQL Anywhere Server - SQL Usage]
● “CREATE TEXT INDEX statement” on page 611
● “ALTER TEXT INDEX statement” on page 439
● “DROP TEXT INDEX statement” on page 672
● “REFRESH TEXT INDEX statement” on page 801

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The first statement creates the txt_index_manual text index. The second statement populates the text
index with data. The third statement truncates the text index data.

CREATE TEXT INDEX txt_index_manual ON MarketingInformation (Description)
 MANUAL REFRESH;
REFRESH TEXT INDEX txt_index_manual ON MarketingInformation;
TRUNCATE TEXT INDEX txt_index_manual ON MarketingInformation;

The truncated text index is repopulated with data the next time it is refreshed.

UNION statement

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 883

Combines the results of two or more select statements or query expressions.

Syntax
[WITH temporary-views] query-block
 UNION [ALL | DISTINCT] query-block
[ORDER BY [integer | select-list-expression-name] [ASC | DESC], ...]
[FOR XML xml-mode]
[OPTION(query-hint, ...)]

query-block : see “Common elements in SQL syntax” on page 381

query-hint :
MATERIALIZED VIEW OPTIMIZATION option-value
| FORCE OPTIMIZATION
| option-name = option-value

option-name : identifier

option-value : hostvar (indicator allowed), string, identifier, or number

Parameters
FOR XML clause For a description of the FOR XML clause, see “SELECT statement” on page 825.

OPTION clause Use this clause to specify hints for executing the statement. The following hints are
supported:

○ MATERIALIZED VIEW OPTIMIZATION option-value
○ FORCE OPTIMIZATION
○ option-name = option-value. Note that a OPTION(isolation_level = ...) specification

in the query text overrides all other means of specifying isolation level for a query.

For a description of these options, see “OPTION clause, SELECT statement” on page 832.

Remarks
UNION ALL concatenates the results of the two query blocks into a single (larger) result set. Each query
block may be nested. UNION DISTINCT eliminates duplicate rows in the final result. Eliminating
duplicates requires extra processing, so UNION ALL should be used instead of UNION where possible.
UNION DISTINCT is identical to UNION.

The result sets of the two query-blocks must be UNION-compatible; they must each have the same
number of items in their respective SELECT lists, and the types of each expression should be comparable.
If corresponding items in two select lists have different data types, SQL Anywhere chooses a data type for
the corresponding column in the result and automatically convert the columns in each query-block
appropriately.

The column names displayed are the same column names that are displayed for the first query-block and
these names are used to determine the expression names to be matched with the ORDER BY clause. An
alternative way of customizing result set column names is to use a common table expression (the WITH
clause).

SQL statements

884 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Permissions
Must have SELECT permission for each query-block.

Side effects
None.

See also
● “EXCEPT statement” on page 676
● “INTERSECT statement” on page 746
● “SELECT statement” on page 825

Standards and compatibility
● SQL/2008 UNION is a core feature of the SQL/2008 standard. Explicitly specifying the

DISTINCT keyword with UNION is optional SQL language feature T551. Specifying an ORDER BY
clause with UNION is SQL language feature F850. A query-block that contains an ORDER BY clause
constitutes SQL/2008 feature F851. A query block that contains a row-limit clause (SELECT TOP or
LIMIT) comprises optional SQL language feature F857 or F858, depending on the context. The FOR
XML and OPTION clauses are vendor extensions.

● Transact-SQL UNION and UNION ALL are supported by Adaptive Server Enterprise. The FOR
XML and OPTION clauses are not supported.

Example
List all distinct surnames of employees and customers.

SELECT Surname
FROM Employees
UNION
SELECT Surname
FROM Customers;

For additional examples of UNION usage, see “Set operators and NULL” [SQL Anywhere Server - SQL
Usage].

UNLOAD statement
Unloads data from a data source into a file.

Syntax
UNLOAD data-source
{ TO filename
 | INTO FILE filename
 | INTO CLIENT FILE client-filename
 | INTO VARIABLE variable-name }
[unload-option ...]

data-source
[FROM] [TABLE] [owner.]table-name

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 885

| [FROM] [MATERIALIZED VIEW] [owner.]materialized-view-name
| select-statement

filename : string | variable

client-filename : string | variable

Syntax
unload-option :
APPEND { ON | OFF }
| BYTE ORDER MARK { ON | OFF }
| { COMPRESSED | NOT COMPRESSED }
| COLUMN DELIMITED BY string
| DELIMITED BY string
| ENCODING encoding
| { ENCRYPTED KEY 'key' [ALGORITHM 'algorithm'] | NOT ENCRYPTED }
| ESCAPE CHARACTER character
| ESCAPES { ON | OFF }
| FORMAT { TEXT | BCP }
| HEXADECIMAL { ON | OFF }
| ORDER { ON | OFF }
| QUOTE string
| QUOTES { ON | OFF }
| ROW DELIMITED BY string

encoding : string

Parameters
TO clause The name of the file to unload data into. The filename path is relative to the database
server's starting directory. If the file does not exist, it is created. If it already exists, it is overwritten unless
APPEND ON is also specified.

INTO FILE clause Semantically equivalent to TO filename.

INTO CLIENT FILE clause The file on the client computer into which the data is unloaded. If the file
doesn't exist, it is created. If it already exists, it is overwritten unless APPEND ON is also specified. The
path is resolved on the client computer relative to the current working directory of the client application.

To unload data onto a client computer using SQL Remote, see “PASSTHROUGH statement [SQL
Remote]” on page 787.

INTO VARIABLE clause The variable to unload the data into. The variable must already exist and be
of CHAR, NCHAR or BINARY type. The APPEND option causes the unloaded data to be concatenated
to the current contents of the variable.

APPEND clause When APPEND is ON, unloaded data is appended to the end of the file specified.
When APPEND is OFF, unloaded data replaces the contents of the file specified. APPEND is OFF by
default. This clause cannot be specified when specifying the COMPRESSED or ENCRYPTED clauses,
and cannot be used if the file being appended to is compressed or encrypted.

BYTE ORDER MARK clause Use this clause to specify whether a byte order mark (BOM) is present
in the encoding. By default, this option is ON, provided the destination for the unload is a local or client

SQL statements

886 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

file. When the BYTE ORDER MARK option is ON, UTF-8 and UTF-16 data contains a BOM. If BYTE
ORDER MARK is OFF, a BOM is not unloaded.

COMPRESSED clause Specifies whether to compress the data. The default is NOT COMPRESSED.
You cannot compress the data if you want the data to be appended (APPEND ON).

If the file you are appending to is compressed, you must specify the COMPRESSED clause.

DELIMITED BY clause The string used between columns. The default column delimiter is a comma.
You can specify an alternative column delimiter by providing a string. Only the first byte (character) of
the string is used as the delimiter.

ENCODING clause All database data is translated from the database character encoding to the
specified character encoding. When ENCODING is not specified, the database's character encoding is
used, and translation is not performed.

For information about how to obtain the list of SQL Anywhere supported encodings, see “Supported
character sets” [SQL Anywhere Server - Database Administration].

If a translation error occurs during the unload operation, it is reported based on the setting of the
on_charset_conversion_failure option. See “on_charset_conversion_failure option” [SQL Anywhere
Server - Database Administration].

The following example unloads the data using the UTF-8 character encoding:

UNLOAD TABLE mytable TO 'mytable_data_in_utf8.dat' ENCODING 'UTF-8';

Specify the BYTE ORDER clause to include a byte order mark in the data.

ENCRYPTED clause Specifies whether to encrypt the data. If you specify NOT ENCRYPTED (the
default), the data is not encrypted. If you specify ENCRYPTED KEY with a key and no algorithm, the
data is encrypted using AES128 and the specified key. If you specify ENCRYPTED KEY with a key and
algorithm, the data is encrypted using the specified key and algorithm. The algorithm can be any of the
algorithms accepted by the CREATE DATABASE statement. You cannot specify simple encryption. See
“CREATE DATABASE statement” on page 477.

You cannot encrypt the data if you want the data to be appended (APPEND ON).

If the file you are appending to is encrypted, you must specify the ENCRYPTED clause.

ESCAPES clause With ESCAPES turned ON (the default), characters following the backslash
character are recognized and interpreted as special characters by the database server. Newline characters
can be included as the combination \n, other characters can be included in data as hexadecimal ASCII
codes, such as \x09 for the tab character. A sequence of two backslash characters (\\) is interpreted as a
single backslash. A backslash followed by any character other than n, x, X, or \ is interpreted as two
separate characters. For example, \q inserts a backslash and the letter q.

FORMAT clause Outputs data in either TEXT format or in BCP out format. If you choose TEXT,
output lines are written as text characters, one row per line, with values separated by the column delimiter
string. If you choose BCP, data including BLOBs are exported as BCP input files for use with Adaptive
Server Enterprise. The default format for the data source is TEXT.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 887

HEXADECIMAL clause By default, HEXADECIMAL is ON. Binary column values are written as
0xnnnnnn..., where 0x is a zero followed by an x, and each n is a hexadecimal digit. It is important to use
HEXADECIMAL ON when dealing with multibyte character sets.

The HEXADECIMAL clause can be used only with the FORMAT TEXT clause.

ORDER clause With ORDER ON (the default), the exported data is ordered by clustered index if one
exists. If a clustered index does not exist, the exported data is ordered by primary key values. With
ORDER OFF, the data is exported in the same order you see when selecting from the table without an
ORDER BY clause. Exporting is slower with ORDER ON. However, reloading using the LOAD TABLE
statement is quicker because of the simplicity of the indexing step.

For UNLOAD select-statement, the ORDER clause is ignored. However, you can still order the data by
specifying an ORDER BY clause in the SELECT statement.

QUOTE clause The QUOTE clause is for TEXT data only; the string is placed around string values.
The default is a single quote (apostrophe).

QUOTES clause With QUOTES turned on (the default), single quotes are placed around all exported
strings.

ROW DELIMITED BY clause Use this clause to specify the string that indicates the end of a record.
The default delimiter string is a newline (\n). However, it can be any string up to up to 255 bytes in
length; for example, ... ROW DELIMITED BY '###' The same formatting requirements
apply to other SQL strings. If you want to specify tab-delimited values, you could specify the
hexadecimal escape sequence for the tab character (9), ... ROW DELIMITED BY '\x09' If
your delimiter string contains a \n, it will match either \r\n or \n.

Remarks
The UNLOAD statement allows data from a SELECT statement to be exported to a comma-delimited file.
The result set is not ordered unless the SELECT statement contains an ORDER BY clause.

The UNLOAD TABLE statement allows efficient mass exporting from a database table or materialized
view into a file. The UNLOAD TABLE statement is more efficient than the Interactive SQL statement
OUTPUT, and can be called from any client application.

The database server, or the client application, depending upon whether TO FILE or INTO CLIENT FILE
was specified, respectively, must have operating system permissions to write to the specified file.

For UNLOAD TABLE, when unloading table columns with binary data types, UNLOAD TABLE writes
hexadecimal strings, of the form \xnnnn, where n is a hexadecimal digit. For UNLOAD select-statement,
when unloading result set columns with binary data types, UNLOAD writes hexadecimal strings of the
form \0xnnnn, where n is a hexadecimal digit.

When unloading and reloading a database that has proxy tables, you must create an external login to map
the local user to the remote user, even if the user has the same password on both the local and remote
databases. If you do not have an external login, the reload may fail because you cannot connect to the
remote server. See “Working with external logins” [SQL Anywhere Server - SQL Usage].

When unloading into a variable (INTO VARIABLE), the output is converted to a character set as follows:

SQL statements

888 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

1. Use the character set specified in the ENCODING clause.

2. If no ENCODING clause is specified, then the database NCHAR character set is used if the variable is
of type NCHAR; otherwise, the database CHAR character set is used.

Also, the chosen encoding must match the database CHAR encoding if the variable is of CHAR type The
chosen encoding must match the database NCHAR encoding if the variable if of NCHAR type Any
encoding can be used for BINARY variables

If you choose to compress and encrypt the unloaded data, it is compressed first.

UNLOAD TABLE places an exclusive lock on the whole table or materialized view.

During the execution of this statement, you can request progress messages. See “progress_messages
option” [SQL Anywhere Server - Database Administration].

You can also use the Progress connection property to determine how much of the statement has been
executed. See “Progress connection property” [SQL Anywhere Server - Database Administration].

To retain maximum precision of date values, set the date_format to YYYY-MM-DD. See “date_format
option” [SQL Anywhere Server - Database Administration].

To retain maximum precision of timestamp values, set the timestamp_format to YYYY-MM-DD
HH:NN:SS.SSSSSS. See “timestamp_format option” [SQL Anywhere Server - Database Administration].

To retain maximum precision of timestamp with time zone values, set the
timestamp_with_time_zone_format to YYYY-MM-DD HH:NN:SS.SSSSSS+HH:NN.

Permissions
When unloading into a variable, no permissions are required (other than the normal permissions required
to access the data source).

The permissions required to execute an UNLOAD statement depend on the database server -gl option, as
follows:

● If the -gl option is set to ALL, you must have SELECT permissions on the table or tables referenced
in the UNLOAD statement.

● If the -gl option is set to DBA, you must have DBA authority.

● If the -gl option is set to NONE, UNLOAD is not permitted.

See “-gl dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration].

When writing to a file on a client computer:

● WRITECLIENTFILE authority is required. See “WRITECLIENTFILE authority” [SQL Anywhere
Server - Database Administration].

● Write permissions are required for the directory being written to.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 889

● The allow_write_client_file database option must be enabled. See “allow_write_client_file option”
[SQL Anywhere Server - Database Administration].

● The write_client_file secured feature must be enabled. See “-sf dbeng12/dbsrv12 server option” [SQL
Anywhere Server - Database Administration].

Side effects
None. The query is executed at the current isolation level.

See also
● “CREATE DATABASE statement” on page 477
● “LOAD TABLE statement” on page 750
● “Using clustered indexes” [SQL Anywhere Server - SQL Usage]
● “OUTPUT statement [Interactive SQL]” on page 780
● “Export data with the UNLOAD statement” [SQL Anywhere Server - SQL Usage]
● “Accessing data on client computers” [SQL Anywhere Server - SQL Usage]
● “Importing and exporting data” [SQL Anywhere Server - SQL Usage]
● “Export data with the UNLOAD TABLE statement” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example unloads the contents of the Products table to a UTF-8-encoded file, productsT.dat:

UNLOAD TABLE Products TO 'productsT.dat' ENCODING 'UTF-8';

The following example creates a variable called @myProducts and then unloads the Products.Name
column into the variable:

CREATE VARIABLE @myProducts LONG VARCHAR;
UNLOAD SELECT NAME FROM Products INTO VARIABLE @myProducts;

UPDATE (positioned) statement [ESQL] [SP]
Modifies the data at the current location of a cursor.

Syntax 1 [ESQL only]
UPDATE WHERE CURRENT OF cursor-name
{ USING [SQL] DESCRIPTOR sqlda-name | { [FROM] | [USING] } hostvar-list }

Syntax 2
UPDATE update-table, ...
SET set-item, ...
WHERE CURRENT OF cursor-name

hostvar-list : indicator variables allowed

SQL statements

890 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

update-table :
[owner-name.]object-name [[AS] correlation-name]

set-item :
[correlation-name.]column-name = { expression | DEFAULT }
| [owner-name.]object-name.column-name = { expression | DEFAULT }

object-name : identifier (a table or view name)

sqlda-name : identifier

Parameters
USING DESCRIPTOR clause When assigning a variable, the variable must already be declared, and
its name must begin with the "at" sign (@). Variable and column assignments can be mixed together, and
any number can be used. If a name on the left side of an assignment in the SET list matches a column in
the updated table and the variable name, the statement updates the column.

SET clause The columns that are referenced in set-item must be in the table or view that is updated.
They cannot refer to aliases, nor to columns from other tables or views. If the table or view you are
updating is given a correlation name in the cursor specification, you must use the correlation name in the
SET clause.

Each set-item is associated with a single update-table, and the corresponding column of the matching
table in the cursor's query is modified. The expression references columns of the tables identified in the
UPDATE list and may use constants, host variables, variables, expressions from the select list of the
query, or combinations of the above using operators such as +, -, ..., COALESCE, IF, and so on. The
expression can not reference aliases of expressions from the cursor's query, nor can they reference
columns of other tables of the cursor's query which do not appear in the UPDATE list. Subselects,
subquery predicates, and aggregate functions can not be used in the set-items.

Each update-table is matched to a table in the query for the cursor as follows:

○ If a correlation name is specified, it is matched to a table in the cursor's query that has the same table-
or-view-name and the same correlation-name.

○ Otherwise, if there is a table in the cursor's query that has the same table-or-view-name that does not
have a correlation name specified, or has a correlation name that is the same as the table-or-view-
name, then the update table is matched with this table in the cursor's query.

○ Otherwise, if there is a single table in the cursor's query that has the same table-or-view-name as the
update table, then the update table is matched with this table in the cursor's query.

If a column has a default defined, you can use the SET clause to set a column to its default value. For an
example of this, see the Examples section of “UPDATE statement” on page 895.

Remarks
This form of the UPDATE statement updates the current row of the specified cursor. The current row is
defined to be the last row successfully fetched from the cursor, and the last operation on the cursor must
not have been a positioned DELETE statement.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 891

For syntax 1, columns from the SQLDA or values from the host variable list correspond one-to-one with
the columns returned from the specified cursor. If the sqldata pointer in the SQLDA is the null pointer, the
corresponding select list item is not updated.

In syntax 2, the requested columns are set to the specified values for the row at the current row of the
specified query. The columns do not need to be in the select list of the specified open cursor. This format
can be prepared.

Also, when assigning a variable, the variable must already be declared, and its name must begin with the
"at" sign (@). Variable and column assignments can be mixed together, and any number can be used. If a
name on the left side of an assignment in the SET list matches a column in the updated table and the
variable name, the statement updates the column.

The USING DESCRIPTOR, FROM hostvar-list, and hostvar formats are for embedded SQL only.

Permissions
Must have UPDATE permission on the columns being modified.

Side effects
None.

See also
● “INSERT statement” on page 737
● “LOAD TABLE statement” on page 750
● “MERGE statement” on page 767
● “DELETE statement” on page 637
● “DELETE (positioned) statement [ESQL] [SP]” on page 636
● “UPDATE statement” on page 895

Standards and compatibility
● SQL/2008 Syntax 1 is a vendor extension. Syntax 2 is a core feature of the SQL/2008 standard. If

used within an embedded SQL program, Syntax 2 comprises part of optional SQL language feature
B031, "Basic dynamic SQL". The ability to specify more than one table to be updated is a vendor
extension.

The range of cursors that can be updated is dependent upon the setting of the ansi_update_constraints
option. The ability to perform a positioned update over a cursor that is ordered — that is the SQL
query has an ORDER BY clause — comprises optional SQL/2008 language feature F831, "Full cursor
update". Performing a positioned update over more complex SQL constructions may involve
additional vendor extensions.

Example
The following is an example of an UPDATE statement WHERE CURRENT OF cursor:

UPDATE Employees
SET Surname = 'Jones'
WHERE CURRENT OF emp_cursor;

SQL statements

892 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

UPDATE statement [SQL Remote]
Modifies data in the database.

Syntax 1
UPDATE table-list
SET column-name = expression, ...
[VERIFY (column-name, ...) VALUES (expression, ...)]
[WHERE search-condition]
[ORDER BY expression [ASC | DESC], ...]

Syntax 2
UPDATE table-name
PUBLICATION publication-name
{ SUBSCRIBE BY subscription-expression |
 OLD SUBSCRIBE BY old-subscription-expression
 NEW SUBSCRIBE BY new-subscription-expression }
WHERE search-condition

expression: value | subquery

Parameters
table-name The table-name indicates the table that must be modified on the remote databases.

publication-name The publication-name indicates the publication for which subscriptions must be
changed.

subscription-expression The value of subscription-expression is used by SQL Remote to determine
both new and existing recipients of the rows. The subscription-expression is either a value or a
subquery.Alternatively, you can provide both OLD and NEW subscription expressions.

WHERE The WHERE clause specifies which rows are to be transferred between subscribed databases.

Remarks
The UPDATE statement is used to modify rows of one or more tables. Each named column is set to the
value of the expression on the right-hand side of the equal sign. There are no restrictions on the
expression. Even column-name can be used in the expression—the old value is used.

If no WHERE clause is specified, every row is updated. If a WHERE clause is specified, then only those
rows which satisfy the search condition are updated.

Normally, the order that rows are updated does not matter. However, in conjunction with the
NUMBER(*) function, an ordering can be useful to get increasing numbers added to the rows in some
specified order. Also, if you want to do something like add 1 to the primary key values of a table, it is
necessary to do this in descending order by primary key, so that you do not get duplicate primary keys
during the operation.

Views can be updated provided the SELECT statement defining the view does not contain a GROUP BY
clause, an aggregate function, or involve a UNION clause.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 893

Character strings inserted into tables are always stored in the case they are entered, regardless of whether
the database is case sensitive or not. So, a character data type column updated with a string Value is
always held in the database with an uppercase V and the remainder of the letters lowercase. SELECT
statements return the string as Value. If the database is not case sensitive, however, all comparisons make
Value the same as value, VALUE, and so on. Further, if a single-column primary key already contains an
entry Value, an INSERT of value is rejected, as it would make the primary key not unique.

The optional FROM clause allows tables to be updated based on joins. If the FROM clause is present, the
WHERE clause qualifies the rows of the FROM clause. Data is updated only in the table list immediately
following the UPDATE keyword.

If a FROM clause is used, it is important to qualify the table name that is being updated the same way in
both parts of the statement. If a correlation name is used in one place, the same correlation name must be
used in the other. Otherwise, an error is generated.

Syntax 1 and Syntax 2 are applicable only to SQL Remote.

Syntax 2 with no OLD and NEW SUBSCRIBE BY expressions must be used in a BEFORE trigger.

Syntax 2 with OLD and NEW SUBSCRIBE BY expressions can be used anywhere.

Syntax 1 is intended for use with SQL Remote only, in single-row updates executed by the Message
Agent. The VERIFY clause contains a set of values that are expected to be present in the row being
updated. If the values do not match, any RESOLVE UPDATE triggers are fired before the UPDATE
proceeds. The UPDATE does not fail if the VERIFY clause fails to match. When the VERIFY clause is
specified, only one table can be updated at a time.

Syntax 2 is intended for use with SQL Remote only. If no OLD and NEW expressions are used, it must be
used inside a BEFORE trigger so that it has access to the relevant values. The purpose is to provide a full
list of subscribe by values any time the list changes. It is placed in SQL Remote triggers so that the
database server can compute the current list of SUBSCRIBE BY values. Both lists are placed in the
transaction log.

The Message Agent uses the two lists to make sure that the row moves to any remote database that did not
have the row and now needs it. The Message Agent also removes the row from any remote database that
has the row and no longer needs it. A remote database that has the row and still needs it is not affected by
the UPDATE statement.

Syntax 2 of the UPDATE statement allows the old SUBSCRIBE BY list and the new SUBSCRIBE BY
list to be explicitly specified, which can make SQL Remote triggers more efficient. In the absence of
these lists, the database server computes the old SUBSCRIBE BY list from the publication definition.
Since the new SUBSCRIBE BY list is commonly only slightly different from the old SUBSCRIBE BY
list, the work to compute the old list may be done twice. By specifying both the old and new lists, this
extra work can be avoided.

The OLD and NEW SUBSCRIBE BY syntax is especially useful when many tables are being updated in
the same trigger with the same subscribe by expressions. This can dramatically increase performance.

The SUBSCRIBE BY expression is either a value or a subquery.

SQL statements

894 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax 2 of the UPDATE statement is used to implement a specific SQL Remote feature, and is to be
used inside a BEFORE trigger.

For publications created using a subquery in a subscription expression, you must write a trigger
containing syntax 2 of the UPDATE statement to ensure that the rows are kept in their proper subscriptions.

For a full description of this feature, see “Using BEFORE UPDATE triggers” [SQL Remote].

Syntax 2 of the UPDATE statement makes an entry in the transaction log, but does not change the
database table.

Permissions
Must have UPDATE permission for the columns being modified.

Side effects
None.

See also
● “Using BEFORE UPDATE triggers” [SQL Remote]

Standards and compatibility
● SQL/2008 Vendor extension.

Example
The following example transfers employee Philip Chin (employee 129) from the sales department to the
marketing department.

UPDATE Employees
VERIFY(DepartmentID) VALUES(300)
SET DepartmentID = 400
WHERE EmployeeID = 129;

UPDATE statement
Modifies existing rows in database tables.

Syntax 1
UPDATE [row-limitation] table-list]
SET set-item, ...
[FROM table-expression [,...]]
[WHERE search-condition]
[ORDER BY expression [ASC | DESC] , ...]
[OPTION(query-hint, ...)]

table-list :
table-name [,...]

table-name :
[owner.]table-name [[AS] correlation-name]

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 895

| [owner.]view-name [[AS] correlation-name]
| derived-table

derived-table :
(select-statement)
[AS] correlation-name [(column-name [,...])]

table-expression :
A full table expression that can include joins. See “FROM clause” on page 696.

Syntax 2
UPDATE table-name
SET set-item, ...
VERIFY (column-name, ...) VALUES (expression, ...)
[WHERE search-condition]
[ORDER BY expression [ASC | DESC], ...]
[OPTION(query-hint, ...)]

Syntax 3
UPDATE [owner.]table-name
PUBLICATION publication
{ SUBSCRIBE BY expression
| OLD SUBSCRIBE BY expression NEW SUBSCRIBE BY expression
 }
WHERE search-condition

row-limitation :
 FIRST
| TOP n [START AT m]

set-item :
[correlation-name.]column-name = { expression | DEFAULT }
| [owner-name.]table-name.column-name = { expression | DEFAULT }
| @variable-name = expression

query-hint :
MATERIALIZED VIEW OPTIMIZATION option-value
| FORCE OPTIMIZATION
| FORCE NO OPTIMIZATION
| option-name = option-value

table-name :
[owner.]base-table-name
| temporary-table-name
| derived-table-name
| [owner.]view-name

option-name : identifier

option-value : hostvar (indicator allowed), string, identifier, or number

SQL statements

896 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Parameters
UPDATE clause For Syntax 1, table-list can include temporary tables, derived tables, or views. Views
and derived tables can be updated unless they are non-updatable. For Syntax 2 and 3, table-name must be
a base table.

UPDATES can be performed on views only if the query specification defining the view is updatable. For
more information about identifying views that are inherently non-updatable, see “Working with views”
[SQL Anywhere Server - SQL Usage].

row-limitation clause The row limiting clause allows you to return only a subset of the rows that
satisfy the WHERE clause. The TOP and START AT values can be a host variable, integer constant, or
integer variable. The TOP value must be greater than or equal to 0. The START AT value must be greater
than 0. Normally, when specifying these clauses, an ORDER BY clause is specified as well to order the
rows in a meaningful manner. See “Explicitly limiting the number of rows returned by a query” [SQL
Anywhere Server - SQL Usage].

SET clause The set clause specifies the columns and how the values are changed.

You can use the SET clause to set the column to a computed column value using this format:

SET column-name = expression, ...

Each named column is set to the value of the expression on the right-hand side of the equal sign. There
are no restrictions on the expression. If the expression is a column-name, the old value is used.

If a column has a default defined, you can use the SET clause to set a column to its default value. See the
Examples section for an example of this.

You can also use the SET clause to assign a variable using this format:

SET @variable-name = expression, ...

When assigning a variable, the variable must already be declared, and its name must begin with the "at"
sign (@). Variable and column assignments can be mixed together, and any number can be used. If a
name on the left side of an assignment in the SET list matches a column in the updated table and the
variable name, the statement updates the column.

Following is an example of part of an UPDATE statement. It assigns a variable in addition to updating the
table:

UPDATE T SET @var = expression1, col1 = expression2
WHERE...

This is equivalent to:

SELECT @var = expression1
FROM T
WHERE... ;
UPDATE T SET col1 = expression2
WHERE...

FROM clause If the FROM clause is present, the WHERE clause qualifies the rows of the FROM clause.

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 897

The FROM table-expression clause allows tables to be updated based on joins. table-expression can
contain arbitrary complex table expressions, such as KEY and NATURAL joins. For a full description of
the FROM clause and joins, see “FROM clause” on page 696.

If a FROM clause is used, it is important to qualify the table name the same way in both parts of the
statement. If a correlation name is used in one place, the same correlation name must be used elsewhere.
Otherwise, an error is generated.

The following statement illustrates a potential ambiguity in table names in UPDATE statements with two
FROM clauses that use correlation names:

UPDATE
FROM table_1
FROM table_1 AS alias_1, table_2 AS alias_2
WHERE ...

table table_1 doesn't have a correlation name in the first FROM clause but does in the second FROM
clause. In this case, table_1 in the first clause is identified with alias_1 in the second clause—there is only
one instance of table_1 in this statement. This is allowed as an exception to the general rule that where a
table is identified with a correlation name and without a correlation name in the same statement, two
instances of the table are considered.

However, in the following example, there are two instances of table_1 in the second FROM clause. The
statement fails with a syntax error because it is not clear which instance of the table_1 from the second
FROM clause matches the first instance of table_1 in the first FROM clause.

UPDATE
FROM table_1
FROM table_1 AS alias_1, table_1 AS alias_2
WHERE ...

This clause is allowed only if ansi_update_constraints is set to Off. See “ansi_update_constraints option”
[SQL Anywhere Server - Database Administration].

For a full description of joins, see “Joins: Retrieving data from several tables” [SQL Anywhere Server -
SQL Usage].

For more information, see “FROM clause” on page 696.

WHERE clause If a WHERE clause is specified, only rows satisfying the search condition are
updated. If no WHERE clause is specified, every row is updated.

ORDER BY clause Normally, the order in which rows are updated does not matter. However, in
conjunction with the FIRST or TOP clause the order can be significant.

You cannot use ordinal column numbers in the ORDER BY clause.

You must not update columns that appear in the ORDER BY clause unless you set the
ansi_update_constraints option to Off. See “ansi_update_constraints option” [SQL Anywhere Server -
Database Administration].

SQL statements

898 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

OPTION clause Use this clause to specify hints for executing the statement. The following hints are
supported:

○ MATERIALIZED VIEW OPTIMIZATION option-value
○ FORCE OPTIMIZATION
○ FORCE NO OPTIMIZATION
○ option-name = option-value. Note that a OPTION(isolation_level = ...) specification

in the query text overrides all other means of specifying isolation level for a query.

For a description of the options that can be set using the OPTION clause in an UPDATE statement, see
“OPTION clause, SELECT statement” on page 832.

Remarks
Character strings inserted into tables are always stored in the same case as they are entered, regardless of
whether the database is case sensitive or not. A CHAR data type column updated with the string Street is
always held in the database with an uppercase S and the remainder of the letters lowercase. SELECT
statements return the string as Street. If the database is not case sensitive, however, all comparisons make
Street the same as street, STREET, and so on. Further, if a single-column primary key already contains an
entry Street, an INSERT of street is rejected, as it would make the primary key not unique.

If the new value does not differ from the old value, no change is made to the data. However, BEFORE
UPDATE triggers fire any time an UPDATE occurs on a row, whether the new value differs from the old
value. AFTER UPDATE triggers fire only if the new value is different from the old value.

Syntax 1 of the UPDATE statement modifies values in rows of one or more tables. Syntax 2 and 3 are
applicable only to SQL Remote.

Syntax 2 is intended for use with SQL Remote only, in single-row updates of a single table executed by
the Message Agent. The VERIFY clause contains a set of values that are expected to be present in the row
being updated. If the values do not match, any RESOLVE UPDATE triggers are fired before the
UPDATE proceeds. The UPDATE does not fail simply because the VERIFY clause fails to match.

Syntax 3 of the UPDATE statement is used to implement a specific SQL Remote feature, and is to be
used inside a BEFORE trigger. It provides a full list of SUBSCRIBE BY values any time the list changes.
It is placed in SQL Remote triggers so that the database server can compute the current list of
SUBSCRIBE BY values. Both lists are placed in the transaction log.

The Message Agent uses the two lists to make sure that the row moves to any remote database that did not
have the row and now needs it. The Message Agent also removes the row from any remote database that
has the row and no longer needs it. A remote database that has the row and still needs it is not affected by
the UPDATE statement.

For publications created using a subquery in a SUBSCRIBE BY clause, you must write a trigger
containing syntax 3 of the UPDATE statement to ensure that the rows are kept in their proper subscriptions.

Syntax 3 of the UPDATE statement allows the old SUBSCRIBE BY list and the new SUBSCRIBE BY
list to be explicitly specified, which can make SQL Remote triggers more efficient. In the absence of
these lists, the database server computes the old SUBSCRIBE BY list from the publication definition.
Since the new SUBSCRIBE BY list is commonly only slightly different from the old SUBSCRIBE BY

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 899

list, the work to compute the old list may be done twice. By specifying both the old and new lists, you can
avoid this extra work.

The SUBSCRIBE BY expression is either a value or a subquery.

Syntax 3 of the UPDATE statement makes an entry in the transaction log, but does not change the
database table.

Updating a significant amount of data using the UPDATE statement also updates column statistics.

Permissions
Must have UPDATE permission for the columns being modified.

Side effects
Column statistics are updated.

See also
● “DELETE statement” on page 637
● “INSERT statement” on page 737
● “FROM clause” on page 696
● “Joins: Retrieving data from several tables” [SQL Anywhere Server - SQL Usage]
● “UPDATE (positioned) statement [ESQL] [SP]” on page 890
● “Locking during updates” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 Syntax 1 of the UPDATE statement is a core feature of the SQL/2008 standard. Syntax

2 and 3 are vendor extensions for use only with SQL Remote.

Syntax 1 includes support for two optional SQL language features:

○ Support for updating a join, possibly including one or more derived tables, comprises part of
optional SQL language feature T111, "Updatable joins, unions, and columns".

○ Support for modifying a table referenced in a nested subquery that forms part of the search
condition for the UPDATE statement comprises optional SQL/2008 language feature F781, "Self-
referencing operations".

The following features of Syntax 1 are vendor extensions:

○ The FROM and ORDER BY clauses.

○ The row-limitation clause.

○ The ability to specify more than one table in table-list.

○ The ability to update a variable using the SET clause.

○ The OPTION clause.

SQL statements

900 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The setting of the ansi_update_constraints option controls which forms of table expressions can be
modified. To enforce SQL/2008 core feature compatibility, ensure that the ansi_update_constraints
option is set to Strict. See “ansi_update_constraints option” [SQL Anywhere Server - Database
Administration].

Examples
Using the sample database, this example transfers employee Philip Chin (employee 129) from the sales
department to the marketing department.

UPDATE Employees
SET DepartmentID = 400
WHERE EmployeeID = 129;

Using the sample database, this example renumbers all existing sales orders by subtracting 2000 from the
ID.

UPDATE SalesOrders AS orders
SET orders.ID = orders.ID - 2000
ORDER BY orders.ID ASC;

This update is possible only if the foreign key of the SalesOrderItems table (referencing the primary key
SalesOrders.ID) is defined with the action ON UPDATE CASCADE. The SalesOrderItems table is then
updated as well.

For more information about foreign key properties, see “ALTER TABLE statement” on page 426 and
“CREATE TABLE statement” on page 596.

Using the sample database, this example changes the price of a product at isolation level 2, rather than
using the current isolation level setting of the database.

UPDATE Products
SET UnitPrice = 7.00
WHERE ID = 501
OPTION(isolation_level = 2);

The following example shows how to update a table to set a column to its default value. In this example,
you create a table, MyTable, populate it with data, and then execute an UPDATE statement specifying the
SET clause to change the column values to their defaults.

CREATE TABLE MyTable(
 PK INT PRIMARY KEY DEFAULT AUTOINCREMENT,
 TableName CHAR(128) NOT NULL,
 TableNameLen INT DEFAULT 20,
 LastUser CHAR(10) DEFAULT last user,
 LastTime TIMESTAMP DEFAULT TIMESTAMP,
 LastTimestamp TIMESTAMP DEFAULT @@dbts);
INSERT INTO MyTable WITH AUTO NAME
 SELECT
 LENGTH(t.table_name) AS TableNameLen,
 t.table_name AS TableName
 FROM SYS.SYSTAB t
 WHERE table_id<=10;
UPDATE MyTable SET LastTime = DEFAULT, LastTimestamp = DEFAULT
 WHERE TableName LIKE '%sys%';

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 901

VALIDATE statement

Validates the current database, or a single table or materialized view in the current database.

Syntax 1 - Validating tables and materialized views
VALIDATE {
TABLE [owner.]table-name
 | MATERIALIZED VIEW [owner.]materialized-view-name }
[WITH EXPRESS CHECK]

Syntax 2 - Validating a database
VALIDATE { CHECKSUM | DATABASE }

Syntax 3 - Validating indexes
 VALIDATE {
INDEX index-name
| [INDEX] FOREIGN KEY role-name
| [INDEX] PRIMARY KEY }
ON [owner.]object-name
}

object-name :
table-name
| materialized-view-name

Parameters
WITH EXPRESS CHECK In addition to the default checks, check that the number of rows in the table
or materialized view matches the number of entries in the index. This option does not perform individual
index lookups for each row, nor does it perform checksum validation. This option can significantly
improve performance when validating large databases with a small cache.

Remarks
Validation of tables includes a checksum validation, and validation that the number of rows in a table
matches the number of rows in each index associated with the table. If you specify WITH EXPRESS
CHECK, a checksum validation is not performed.

The VALIDATE DATABASE statement validates that all table pages in the database belong to the
correct object. VALIDATE DATABASE also performs a checksum validation, but does not validate the
indexes, or check data correctness. If you start database validation while the database cleaner is running,
the validation does not run until the database cleaner is finished running. See “sa_clean_database system
procedure” on page 957.

Use the VALIDATE CHECKSUM statement to perform a checksum validation on the database. The
VALIDATE CHECKSUM statement ensures that database pages have not been modified on disk. When a
database is created with checksums enabled, a checksum is calculated for each database page before it is
written to disk. VALIDATE CHECKSUM reads each database page from disk and calculates the
checksum for each page. If the calculated checksum for a page does not match the stored checksum for
that page, an error occurs and information about the invalid page appears in the database server messages

SQL statements

902 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

window. The VALIDATE CHECKSUM statement can also be useful on databases with checksums
disabled, since critical database pages still include checksums.

Use the VALIDATE INDEX statement to validate an index, including index statistics, on a table or a
materialized view. The VALIDATE INDEX statement ensures that every row referenced in the index
actually exists. For foreign key indexes, it also ensures that the corresponding row exists in the primary
table. This check complements the validity checking carried out by the VALIDATE TABLE statement.
The VALIDATE INDEX statement also verifies that the statistics reported on the specified indexes are
accurate. If they are not accurate, an error is generated.

Caution
Validating a table or an entire database should be performed while no connections are making changes to
the database; otherwise, errors may be reported indicating some form of database corruption even though
no corruption actually exists.

During the execution of this statement, you can request progress messages. See “progress_messages
option” [SQL Anywhere Server - Database Administration].

You can also use the Progress connection property to determine how much of the statement has been
executed. See “Progress connection property” [SQL Anywhere Server - Database Administration].

Permissions
DBA or VALIDATE authority

Side effects
None.

See also
● “Validation utility (dbvalid)” [SQL Anywhere Server - Database Administration]
● “sa_validate system procedure” on page 1095
● “Validating databases” [SQL Anywhere Server - Database Administration]
● “CREATE DATABASE statement” on page 477
● “CREATE INDEX statement” on page 521

Standards and compatibility
● SQL/2008 Vendor extension.

WAITFOR statement

Delays processing for the current connection for a specified amount of time or until a given time.

Syntax
WAITFOR {
DELAY time
| TIME time }

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 903

[CHECK EVERY integer]
[AFTER MESSAGE BREAK]

time : string

Parameters
DELAY clause If DELAY is used, processing is suspended for the given interval.

TIME clause If TIME is specified, processing is suspended until the database server time reaches the
time specified. If the current server time is greater than the time specified, processing is suspended until
that time on the following day.

CHECK EVERY clause This optional clause controls how often the WAITFOR statement wakes up.
By default, it wakes up every 5 seconds. The value is in milliseconds, and the minimum value is 250
milliseconds.

AFTER MESSAGE BREAK clause The WAITFOR statement can be used to wait for a message from
another connection. When a message is received it is usually forwarded to the application that executed
the WAITFOR statement and the WAITFOR statement continues to wait. If the AFTER MESSAGE
BREAK clause is specified, when a message is received from another connection, the WAITFOR
statement completes. The message text is not forwarded to the application, but it can be accessed by
obtaining the value of the MessageReceived connection property.

For more information about the MessageReceived property, see “Connection properties” [SQL Anywhere
Server - Database Administration].

Remarks
The WAITFOR statement wakes up periodically (every 5 seconds by default) to check if it has been
canceled or if messages have been received. If neither of these has happened, the statement continues to
wait.

Because scheduled events execute on their own connection, scheduled events are often a better choice
than using WAITFOR TIME.

Permissions
None

Side effects
The implementation of the WAITFOR statement causes the worker servicing the statement to block while
it is waiting. This reduces the number of available workers in the worker pool. See “Threading in SQL
Anywhere” [SQL Anywhere Server - Database Administration].

See also
● “CREATE EVENT statement” on page 495
● “MESSAGE statement” on page 774

SQL statements

904 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Standards and compatibility
● SQL/2008 Vendor extension.

Examples
The following example waits for three seconds:

WAITFOR DELAY '00:00:03';

The following example waits for 0.5 seconds (500 milliseconds):

WAITFOR DELAY '00:00:00:500';

The following example waits until 8 PM:

WAITFOR TIME '20:00';

In the following example, connection 1's WAITFOR statement completes when it receives the message
from connection 2:

// connection 1:
BEGIN
 DECLARE msg LONG VARCHAR;
 LOOP // forever
 WAITFOR DELAY '00:05:00' AFTER MESSAGE BREAK;
 SET msg = CONNECTION_PROPERTY('MessageReceived');
 IF msg != '' THEN
 MESSAGE 'Msg: ' || msg TO CONSOLE;
 END IF;
 END LOOP
END;
// connection 2:
MESSAGE 'here it is' FOR connection 1

WHENEVER statement [ESQL]
Specifies error handling in embedded SQL programs.

Syntax
WHENEVER {
SQLERROR
| SQLWARNING
| NOTFOUND }
GOTO
 label
 | STOP
 | CONTINUE
 | { C-code; }

label : identifier

Remarks
The WHENEVER statement is used to trap errors, warnings and exceptional conditions encountered by
the database when processing SQL statements. The statement can be put anywhere in an embedded SQL

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 905

program and does not generate any code. The preprocessor will generate code following each successive
SQL statement. The error action remains in effect for all embedded SQL statements from the source line
of the WHENEVER statement until the next WHENEVER statement with the same error condition, or the
end of the source file.

Errors based on source position
The error conditions are in effect based on positioning in the C language source file, not based on when
the statements are executed.

The default action is CONTINUE.

Note that this statement is provided for convenience in simple programs. Most of the time, checking the
sqlcode field of the SQLCA (SQLCODE) directly is the easiest way to check error conditions. In this
case, the WHENEVER statement would not be used. If fact, all the WHENEVER statement does is cause
the preprocessor to generate an if (SQLCODE) test after each statement.

Permissions
None.

Side effects
None.

Standards and compatibility
● SQL/2008 An exception condition declaration made with the WHENEVER statement is a core

feature of the SQL/2008 standard. The standard uses the keyword SQLEXCEPTION rather than
SQLERROR. The ability to directly include C code in the WHENEVER statement, rather than merely
a statement label, is a vendor extension. The action STOP is also a vendor extension.

Example
The following are examples of the WHENEVER statement:

EXEC SQL WHENEVER NOTFOUND GOTO done;
EXEC SQL WHENEVER SQLERROR
 {
 PrintError(&sqlca);
 return(FALSE);
 };

WHILE statement [T-SQL]
Provides repeated execution of a statement or compound statement.

Syntax
WHILE search-condition statement

SQL statements

906 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Remarks
The WHILE conditional affects the execution of only a single SQL statement, unless statements are
grouped into a compound statement between the keywords BEGIN and END.

The BREAK statement and CONTINUE statement can be used to control execution of the statements in
the compound statement. The BREAK statement terminates the loop, and execution resumes after the
END keyword marking the end of the loop. The CONTINUE statement causes the WHILE loop to restart,
skipping any statements after the CONTINUE.

Permissions
None.

Side effects
None.

See also
● “LOOP statement” on page 765
● “CONTINUE statement” on page 476

Standards and compatibility
● SQL/2008 Transact-SQL extension. The WHILE statement is part of optional SQL/2008 language

feature P002, "Computational completeness". The Transact-SQL variant of the WHILE statement
does not include END WHILE.

Example
The following code illustrates the use of WHILE:

WHILE (SELECT AVG(UnitPrice) FROM Products) < $30
BEGIN
 UPDATE Products
 SET UnitPrice = UnitPrice + 2
 IF (SELECT MAX(UnitPrice) FROM Products) > $50
 BREAK
END

The BREAK statement breaks the WHILE loop if the most expensive product has a price above $50.
Otherwise, the loop continues until the average price is greater than or equal to $30.

WINDOW clause
Defines all or part of a window for use with window functions such as AVG and RANK in a SELECT
statement.

Syntax
WINDOW window-expression, ...

window-expression : new-window-name AS (window-spec)

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 907

window-spec :
[existing-window-name]
[PARTITION BY expression, ...]
[ORDER BY expression [ASC | DESC], ...]
[{ ROWS | RANGE } { window-frame-start | window-frame-between }]

window-frame-start :
{ UNBOUNDED PRECEDING
 | unsigned-integer PRECEDING
 | CURRENT ROW }

window-frame-between :
BETWEEN window-frame-bound1 AND window-frame-bound2

window-frame-bound :
window-frame-start
| UNBOUNDED FOLLOWING
| unsigned-integer FOLLOWING

Parameters
PARTITION BY clause The PARTITION BY clause organizes the result set into logical groups based
on the unique values of the specified expression. When this clause is used with window functions, the
functions are applied to each partition independently. For example, if you follow PARTITION BY with a
column name, the result set is partitioned by distinct values in the column.

If this clause is omitted, the entire result set is considered a partition.

The PARTITION BY expression cannot be an integer literal.

ORDER BY clause The ORDER BY clause defines how to sort the rows in each partition of the result
set. You can further control the order by specifying ASC for ascending order (the default) or DESC for
descending order.

The ORDER BY expression cannot be an integer literal.

If this clause is omitted, SQL Anywhere returns rows in whatever order is most efficient, and the
appearance of result sets may vary depending on when you last accessed the row.

ROWS clause and RANGE clause Use either a ROWS or RANGE clause to express the size of the
window. The window size can be one, many, or all rows of a partition. You can express the size of the
window as a range of data values offset from the value in the current row (RANGE), or the number of
physical rows offset from the current row (ROWS).

When using the RANGE clause, you must also specify an ORDER BY clause because range calculations
require values to be sorted. The ORDER BY clause for ranges must contain one expression, and that
expression must result in either a date or a numeric value.

If you do not specify a ROWS or RANGE clause, the database server uses default window sizes based on
whether an ORDER BY clause is present. For information about the defaults, see “Defining a window”
[SQL Anywhere Server - SQL Usage].

○ PRECEDING clause Use the PRECEDING clause to define the first row of the window using the
current row as a reference point. The starting row is expressed as the number of rows preceding the

SQL statements

908 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

current row. For example, 5 PRECEDING sets the window to start with the fifth row preceding the
current row.

Use UNBOUNDED PRECEDING to set the first row in the window to be the first row in the partition.

○ BETWEEN clause Use the BETWEEN clause to define the first and last row of the window, using
the current row as a reference point. First and last rows are expressed as the number of rows preceding
and following the current row, respectively. For example, BETWEEN 3 PRECEDING AND 5
FOLLOWING sets the window to start with the third row preceding the current row, and end with the
fifth row following the current row.

Use BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING to set the first
and last rows in the window to be the first and last row in the partition, respectively. This is equivalent
to the default behavior if no ROW or RANGE clause is specified.

○ FOLLOWING clause Use the FOLLOWING clause to define the last row of the window using the
current row as a reference point. The last row is expressed as the number of rows following the
current row.

Use UNBOUNDED FOLLOWING to set the last row in the window to be the last row in the partition.

Remarks
The WINDOW clause must appear before the ORDER BY clause in a SELECT statement.

With the exception of the LIST function, all aggregate functions can be used as window functions.
However, ranking aggregate functions (RANK, DENSE_RANK, PERCENT_RANK, CUME_DIST, and
ROW_NUMBER) require an ORDER BY clause, and do not allow a ROW or RANGE clause in the
WINDOW clause or inline definition. For all other window functions, you can use any of the clauses.

For more information about defining and using windows to achieve the results you want, see “Defining a
window” [SQL Anywhere Server - SQL Usage] and “Window definition: inlining using the OVER clause
and WINDOW clause” [SQL Anywhere Server - SQL Usage].

See also
● “SELECT statement” on page 825
● “OLAP support” [SQL Anywhere Server - SQL Usage]

Standards and compatibility
● SQL/2008 The WINDOW clause and window aggregate functions comprise SQL/2008 optional

language features T611, "Elementary OLAP operations", and T612, "Advanced OLAP operations".
The window functions FIRST_VALUE and LAST_VALUE are vendor extensions.

Example
The following example returns an employee's salary and the average salary for all employees in the
selected state. The results are ordered by state and then by surname.

SELECT EmployeeID, Surname, Salary, State,
 AVG(Salary) OVER Salary_Window
FROM Employees

SQL statements

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 909

WINDOW Salary_Window AS (PARTITION BY State)
ORDER BY State, Surname;

WRITETEXT statement [T-SQL]
Permits non-logged, interactive updating of an existing text or image column.

Syntax
WRITETEXT table-name.column-name
text-pointer [WITH LOG] data

Remarks
Updates an existing text or image value. The update is not recorded in the transaction log, unless the
WITH LOG option is supplied. You cannot carry out WRITETEXT operations on views.

Permissions
None.

Side effects
WRITETEXT does not fire triggers, and by default WRITETEXT operations are not recorded in the
transaction log.

See also
● “READTEXT statement [T-SQL]” on page 797
● “TEXTPTR function [Text and image]” on page 346

Standards and compatibility
● SQL/2008 Transact-SQL extension.

Example
The following code fragment illustrates the use of the WRITETEXT statement. The SELECT statement in
this example returns a single row. The example replaces the contents of the column_name column on the
specified row with the value newdata.

EXEC SQL create variable textpointer binary(16);
EXEC SQL set textpointer =
 (SELECT textptr(column_name)
 FROM table_name WHERE ID = 5);
EXEC SQL writetext table_name.column_name
 textpointer 'newdata';

SQL statements

910 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Tables

System tables
The structure of every database is described in several system tables. System tables are owned by the user
SYS. The contents of these tables can be changed only by the database server. The UPDATE, DELETE,
and INSERT commands cannot be used to modify the contents of these tables. Further, the structure of
these tables cannot be changed using the ALTER TABLE and DROP commands.

System tables in SQL Anywhere are exposed via their corresponding views.

DUMMY system table

Column name Column type Column constraint Table constraints

dummy_col INTEGER NOT NULL

The DUMMY table is provided as a read-only table that always has exactly one row. This can be useful
for extracting information from the database, as in the following example that gets the current user ID and
the current date from the database.

SELECT USER, today(*) FROM SYS.DUMMY;

Use of SYS.DUMMY in the FROM clause is optional. If no table is specified in the FROM clause, the
table is assumed to be SYS.DUMMY. The above example could be written as follows:

SELECT USER, today(*);

dummy_col This column is not used. It is present because a table cannot be created with no columns.

The cost of reading from the SYS.DUMMY table is less than the cost of reading from a similar user-
created table because there is no latch placed on the table page of SYS.DUMMY.

Access plans are not constructed with scans of the SYS.DUMMY table. Instead, references to
SYS.DUMMY are replaced with a Row Constructor algorithm, which virtualizes the table reference. This
eliminates contention associated with the use of SYS.DUMMY. Note that DUMMY still appears as the
table and/or correlation name in short, long, and graphical plans. See “RowConstructor algorithm
(ROWS)” [SQL Anywhere Server - SQL Usage].

ISYSARTICLE system table
Each row in the ISYSARTICLE system table describes an article in a publication. See “SYSARTICLE
system view” on page 1127.

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 911

ISYSARTICLECOL system table
Each row in the ISYSARTICLECOL system table identifies a column in an article. See
“SYSARTICLECOL system view” on page 1128.

ISYSATTRIBUTE system table
This table is for internal use only.

ISYSATTRIBUTENAME system table
This table is for internal use only.

ISYSCAPABILITY system table
Each row in the ISYSCAPABILITY system table identifies a capability of a remote server. See
“SYSCAPABILITY system view” on page 1128.

ISYSCHECK system table
Each row in the ISYSCHECK system table identifies a named check constraint in a table. See
“SYSCHECK system view” on page 1129.

ISYSCOLPERM system table
Each row in the ISYSCOLPERM system table describes an UPDATE, SELECT, or REFERENCES
permission on a column. See “SYSCOLPERM system view” on page 1130.

ISYSCOLSTAT system table
The ISYSCOLSTAT system table contains the column statistics used by the optimizer. See
“SYSCOLSTAT system view” on page 1131.

Note
For databases created using SQL Anywhere 12, this table is always encrypted to protect the data from
unauthorized access.

Tables

912 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ISYSCONSTRAINT system table

Each row in the ISYSCONSTRAINT system table describes a named constraint for all tables except the
system tables. See “SYSCONSTRAINT system view” on page 1131.

ISYSDEPENDENCY system table

Each row in the ISYSDEPENDENCY system table describes a table or view dependency. See
“SYSDEPENDENCY system view” on page 1134.

ISYSDBFILE system table

Each row in the ISYSDBFILE system table describes a dbspace. See “SYSDBFILE system
view” on page 1132.

ISYSDBSPACE system table

Each row in the ISYSDBSPACE system table describes a dbspace. See “SYSDBSPACE system
view” on page 1133.

ISYSDBSPACEPERM system table

Each row in the ISYSDBSPACEPERM system table describes permission on a dbspace. See
“SYSDBSPACEPERM system view” on page 1134.

ISYSDOMAIN system table

Each of the predefined data types (also called domains) is assigned a unique number. The ISYSDOMAIN
table is provided for informational purposes, to show the association between these numbers and the
appropriate data types. This table is never changed. See “SYSDOMAIN system view” on page 1135.

ISYSEVENT system table

Each row in the ISYSEVENT system table describes an event created with CREATE EVENT. See
“SYSEVENT system view” on page 1135.

System tables

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 913

ISYSEXTERNLOGIN system table
Each row in the ISYSEXTERNLOGIN system table describes an external login for remote data access.
See “SYSEXTERNLOGIN system view” on page 1139.

Note
For databases created using SQL Anywhere 12, this table is always encrypted to protect the data from
unauthorized access.

ISYSFILE system table
Each row in the ISYSFILE system table describes a dbspace for a database. Every database consists of
one or more dbspaces; each dbspace corresponds to an operating system file. See “SYSFILE
compatibility view (deprecated)” on page 1212.

ISYSFKEY system table
Each row in the ISYSFKEY system table describes a foreign key in the database. See “SYSFKEY system
view” on page 1139.

ISYSGROUP system table
Each row in the ISYSGROUP system table defines a member of a group. This table describes the many-to-
many relationship between groups and members. See “SYSGROUP system view” on page 1140.

ISYSHISTORY system table
Each row in the ISYSHISTORY system table indicates a time in which the database was started with a
different version of the software and/or on a different platform. See “SYSHISTORY system
view” on page 1141.

ISYSIDX system table
Each row in the ISYSIDX system table describes an index in the database. See “SYSIDX system
view” on page 1143.

Tables

914 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ISYSIDXCOL system table

Each row in the ISYSIDXCOL system table describes a column in an index. See “SYSIDXCOL system
view” on page 1145.

ISYSJAR system table

Each row in the ISYSJAR system table defines a JAR file in the system. See “SYSJAR system
view” on page 1146.

ISYSJARCOMPONENT system table

Each row in the ISYSJAR system table defines a JAR file component. See “SYSJARCOMPONENT
system view” on page 1146.

ISYSJAVACLASS system table

Each row in the ISYSJAVACLASS system table describes a Java class. See “SYSJAVACLASS system
view” on page 1147.

ISYSLOGINMAP system table

The ISYSLOGINMAP system table contains all the User Profile names that can be used to connect to the
database using either an integrated login or a Kerberos login. As a security measure, only users with DBA
authority can view the contents of this table. See “SYSLOGINMAP system view” on page 1147.

ISYSLOGINPOLICY system table

Each row in the ISYSLOGINPOLICY system table describes a login policy. See “SYSLOGINPOLICY
system view” on page 1148.

ISYSLOGINPOLICYOPTION system table

Each row in the ISYSLOGINPOLICYOPTION system table describes an option for a login policy. See
“SYSLOGINPOLICYOPTION system view” on page 1148.

System tables

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 915

ISYSMIRROROPTION system table
Each row in the ISYSMIRROROPTION system table describes an option for a mirror server. See
“SYSMIRROROPTION system view” on page 1149.

ISYSMIRRORSERVER system table
Each row in the ISYSMIRRORSERVER system table describes an option for a mirror server. See
“SYSMIRRORSERVER system view” on page 1149.

ISYSMIRRORSERVEROPTION system table
Each row in the SYSMIRRORSERVEROPTION system table describes an option for a mirror server. See
“SYSMIRRORSERVEROPTION system view” on page 1150.

ISYSMVOPTION system table
Each row in the ISYSMVOPTION system table gives the value of a creation option for a materialized
view or text index in the database. See “SYSMVOPTION system view” on page 1151.

ISYSMVOPTIONNAME system table
Each row in the ISYSMVOPTIONNAME system table provides the name of a creation option listed in
ISYSMVOPTION for a materialized view or text index. See “SYSMVOPTIONNAME system
view” on page 1151.

ISYSOBJECT system table
Each row in the ISYSOBJECT system view describes an object in the database. Examples of database
objects include tables, views, columns, indexes, and procedures. See “SYSOBJECT system
view” on page 1152.

ISYSOPTION system table
Each row in the ISYSOPTION system table describes the settings for an option for one user ID. Options
settings are stored in the ISYSOPTION table by the SET command, and each user can have their own
setting for each option. See “SYSOPTION system view” on page 1153.

Tables

916 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ISYSOPTSTAT system table
The ISYSOPTSTAT system table stores the cost model calibration information as computed by the
ALTER DATABASE CALIBRATE statement. See “SYSOPTSTAT system view” on page 1153.

ISYSPHYSIDX system table
Each row in the ISYSPHYSIDX system table describes a physical index in the database. See
“SYSPHYSIDX system view” on page 1154.

ISYSPROCEDURE system table
Each row in the ISYSPROCEDURE system table describes a procedure in the database. See
“SYSPROCEDURE system view” on page 1154.

ISYSPROCPARM system table
Each row in the ISYSPROCPARM system table describes a parameter to a procedure in the database. See
“SYSPROCPARM system view” on page 1156.

ISYSPROCPERM system table
Each row in the ISYSPROCPERM system table describes a user granted permission to call one
procedure. See “SYSPROCPERM system view” on page 1157.

ISYSPROXYTAB system table
Each row in the ISYSPROXYTAB system table describes a proxy table. See “SYSPROXYTAB system
view” on page 1157.

ISYSPUBLICATION system table
Each row in the ISYSPUBLICATION system table describes a SQL Remote or MobiLink publication.
See “SYSPUBLICATION system view” on page 1158.

System tables

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 917

ISYSREMARK system table

Each row in the ISYSREMARK system table describes a remark (or comment) for an object. See
“SYSREMARK system view” on page 1159.

ISYSREMOTEOPTION system table

Each row in the ISYSREMOTEOPTION system table describes the values of a SQL Remote message
link parameter. See “SYSREMOTEOPTION system view” on page 1160.

ISYSREMOTEOPTIONTYPE system table

Each row in the ISYSREMOTEOPTIONTYPE system table describes one of the SQL Remote message
link parameters. See “SYSREMOTEOPTIONTYPE system view” on page 1160.

ISYSREMOTETYPE system table

The ISYSREMOTETYPE system table contains information about SQL Remote. See
“SYSREMOTETYPE system view” on page 1160.

ISYSREMOTEUSER system table

Each row in the ISYSREMOTEUSER system table describes a user ID with REMOTE permissions (a
subscriber), together with the status of SQL Remote messages that were sent to and from that user. See
“SYSREMOTEUSER system view” on page 1161.

ISYSSCHEDULE system table

Each row in the ISYSSCHEDULE system table describes a time at which an event is to fire, as specified
by the SCHEDULE clause of CREATE EVENT. See “SYSSCHEDULE system view” on page 1162.

ISYSSEQUENCE system table

The ISYSSEQUENCE system table contains one row for each user-defined sequence. See
“SYSSEQUENCE system view” on page 1164.

Tables

918 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ISYSSEQUENCEPERM system table
The ISYSSEQUENCEPERM system table records the privileges that users or groups hold on sequences.
See “SYSSEQUENCEPERM system view” on page 1164.

ISYSSERVER system table
Each row in the ISYSSERVER system table describes a remote server. See “SYSSERVER system
view” on page 1165.

ISYSSOURCE system table
Each row in the ISYSSOURCE system view contains the source for an object listed in the ISYSOBJECT
system table. See “SYSSOURCE system view” on page 1166.

ISYSSPATIALREFERENCESYSTEM system table
Each row in the ISYSSPATIALREFERENCESYSTEM system table describes a spatial reference system
defined in the database. See “SYSSPATIALREFERENCESYSTEM system view” on page 1166.

ISYSSQLSERVERTYPE system table
The ISYSSQLSERVERTYPE system table contains information relating to compatibility with Adaptive
Server Enterprise. See “SYSSQLSERVERTYPE system view” on page 1169.

ISYSSUBSCRIPTION system table
Each row in the ISYSSUBSCRIPTION system table describes a subscription from one user ID (which
must have REMOTE permissions) to one publication. See “SYSSUBSCRIPTION system
view” on page 1170.

ISYSSYNC system table
This table contains information relating to MobiLink synchronization. Some columns in this table contain
potentially sensitive data. For that reason, access to this table is restricted to users with DBA authority.
The SYSSYNC2 view provides public access to the data in this table except for the potentially sensitive
columns. See “SYSSYNC system view” on page 1170.

System tables

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 919

ISYSSYNCPROFILE system table
This table contains information relating to synchronization profiles for MobiLink. See
“SYSSYNCPROFILE system view” on page 1171.

ISYSSYNCSCRIPT system table
This table contains information relating to MobiLink synchronization scripts. See “SYSSYNCSCRIPT
system view” on page 1172.

ISYSTAB system table
Each row in the ISYSTAB system table describes one table in the database. See “SYSTAB system
view” on page 1173.

ISYSTABCOL system table
Each row in the ISYSTABCOL system table describes a column of a table in the database. See
“SYSTABCOL system view” on page 1175.

ISYSTEXTCONFIG system table
Each row in the ISYSTEXTCONFIG system table describes a text configuration, for use with the full text
search feature. See “SYSTEXTCONFIG system view” on page 1179.

ISYSTEXTIDX system table
Each row in the ISYSTEXTIDX system table describes a text index, for use with the full text search
feature. See “SYSTEXTIDX system view” on page 1181.

ISYSTEXTIDXTAB system table
Each row in the ISYSTEXTIDXTAB system table describes a text index, for use with the full text search
feature. See “SYSTEXTIDX system view” on page 1181.

Tables

920 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ISYSTABLEPERM system table
Each row in the ISYSTABLEPERM system table corresponds to one table, one user ID granting the
permission (grantor) and one user ID granted the permission (grantee). See “SYSTABLEPERM system
view” on page 1177.

ISYSTRIGGER system table
Each row in the ISYSTRIGGER system table describes a trigger in the database. See “SYSTRIGGER
system view” on page 1182.

ISYSTYPEMAP system table
The ISYSTYPEMAP system table contains the compatibility mapping values for the
ISYSSQLSERVERTYPE system table. See “SYSTYPEMAP system view” on page 1184.

ISYSUNITOFMEASURE system table
Each row in the ISYSUNITOFMEASURE system table describes a unit of measure defined in the
database. See “SYSUNITOFMEASURE system view” on page 1184.

ISYSUSER system table
Each row in the ISYSUSER system table describes a user in the system. See “SYSUSER system
view” on page 1185.

Note
For databases created using SQL Anywhere 12, this table is always encrypted to protect the data from
unauthorized access.

ISYSUSERAUTHORITY system table
Each row in the ISYSUSERAUTHORITY system table describes the authority granted to a user. See
“SYSUSERAUTHORITY system view” on page 1186.

ISYSUSERMESSAGE system table

System tables

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 921

Each row in the ISYSUSERMESSAGE system table holds a user-defined message for an error condition.
See “SYSUSERMESSAGE system view” on page 1186.

ISYSUSERTYPE system table
Each row in the ISYSUSERTYPE system table describes a user-defined data type. See “SYSUSERTYPE
system view” on page 1187.

ISYSVIEW system table
Each row in the ISYSVIEW system table describes a view in the database. See “SYSVIEW system
view” on page 1188.

ISYSWEBSERVICE system table
Each row in the ISYSWEBSERVICE system table describes a web service. See “SYSWEBSERVICE
system view” on page 1189.

Diagnostic tracing tables
Following are the main tables that are used for application profiling and diagnostic tracing. These tables
are owned by the dbo user. For many of these tables, there exists a global shared temporary table with a
similar name and schema. For example, the sa_diagnostic_blocking table has a global temporary table
counterpart, sa_tmp_diagnostic_blocking table, which has the same schema. During a tracing session,
diagnostic data is written to these temporary tables. Because temporary tables are not logged, they provide
superior performance during a tracing session, where it is important to minimize the impact on the server.

See also
● “Application profiling” [SQL Anywhere Server - SQL Usage]
● “Advanced application profiling using diagnostic tracing” [SQL Anywhere Server - SQL Usage]

sa_diagnostic_auxiliary_catalog table
The sa_diagnostic_auxiliary_catalog table is owned by the dbo user, and is used to map database objects
between the production database and tracing database. Objects include user tables, procedures, and
functions. This table is used primarily by the Index Consultant and the TRACED_PLAN function.

Tables

922 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Columns

Column name Column
type

Description

original_ob-
ject_id

UN-
SIGNED
BIGINT

The object ID of this object in the main tracing database.

local_ob-
ject_id

UN-
SIGNED
BIGINT

The object ID of this object in the auxiliary tracing database.

pages_if_table UN-
SIGNED
INT

If the object is a table, this is the number of pages in the table. If the ob-
ject is not a table, this value is NULL.

rows_if_table UN-
SIGNED
BIGINT

If the object is a table, this is the number of rows in the table. If the ob-
ject is not a table, this value is NULL.

See also
● “TRACED_PLAN function [Miscellaneous]” on page 351
● “Index Consultant” [SQL Anywhere Server - SQL Usage]

sa_diagnostic_blocking table
The sa_diagnostic_blocking table is owned by the dbo user, and records blocking events. If logging of
blocking events is enabled, a row is inserted in this table each time a connection is blocked while trying to
access a resource. Typically, this is caused by either a table or a row lock. A large number of blocks may
indicate that you should examine the concurrency in your application to reduce contention for tables and
rows.

There are two versions of this table: sa_diagnostic_blocking, and sa_tmp_diagnostic_blocking.

Columns

Column
name

Column
type

Description

logging_ses-
sion_id

UN-
SIGNED
INT

A number uniquely identifying the logging session during which the di-
agnostic information was gathered.

lock_id UN-
SIGNED
BIGINT

The ID of the lock that caused the blocking if a row or table lock caused
the block, otherwise NULL.

Diagnostic tracing tables

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 923

Column
name

Column
type

Description

request_id UN-
SIGNED
BIGINT

The ID of the request that was blocked if the block did not occur be-
cause of a cursor, otherwise NULL. This value corresponds to the ID as-
signed to the request in sa_diagnostic_request.

cursor_id UN-
SIGNED
BIGINT

The ID of the cursor if the block occurred because of a cursor, otherwise
NULL. This value corresponds to the ID assigned to the cursor in sa_di-
agnostic_cursor.

original_ta-
ble_object_id

UN-
SIGNED
BIGINT

If the block occurred because of a table lock, the ID of the table on
which the block occurred, otherwise NULL.

rowid UN-
SIGNED
BIGINT

If the block occurred because of a row lock, the ID of the row on which
the block occurred, otherwise NULL.

block_time TIME-
STAMP

The time at which the block occurred.

unblock_time TIME-
STAMP

The time at which the block ended.

blocked_by UN-
SIGNED
INT

The ID of the connection that held the lock, causing the block.

See also
● “Transaction blocking and deadlock” [SQL Anywhere Server - SQL Usage]
● “How locking works” [SQL Anywhere Server - SQL Usage]

sa_diagnostic_cachecontents table
The sa_diagnostic_cachecontents table is owned by the dbo user. When diagnostic tracing is enabled,
periodic snapshots of the cache contents are taken. The sa_diagnostic_cachecontents table records the
number of table pages for each table in the cache at the time the snapshot was taken, and the number of
rows in each table. The optimizer can use this information to recreate the conditions under which a query
was originally optimized, and then make optimization decisions.

Data in the sa_diagnostic_cachecontents table is updated every 20 seconds, as long as there is query activity.

There are two versions of this table: sa_diagnostic_cachecontents, and sa_tmp_diagnostic_cachecontents.

Tables

924 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Columns

Column name Column
type

Description

logging_ses-
sion_id

UN-
SIGNED
INT

A number uniquely identifying the logging session during which the
diagnostic information was gathered.

"time" TIME-
STAMP

The time at which the snapshot of the cache was taken.

original_ta-
ble_object_id

UN-
SIGNED
BIGINT

The object ID of each table represented in the snapshot.

pages_in_cache UN-
SIGNED
INT

For a specified table in the snapshot, the total number of pages in
cache at the moment of the snapshot.

num_table_pa-
ges

UN-
SIGNED
INT

For a specified table in the snapshot, the total number of pages for the
table.

num_table_rows UN-
SIGNED
BIGINT

For a specified table in the snapshot, the total number of rows in the
table.

sa_diagnostic_connection table
The sa_diagnostic_connection table is owned by the dbo user, and has one row for every database
connection that is active during the logging session. Connect and disconnect times, if they occur within
the logging session, can be derived from the sa_diagnostic_request table.

Most of the values in this table mirror values of connection properties.

There are two versions of this table: sa_diagnostic_connection, and sa_tmp_diagnostic_connection.

Columns

Column name Column type Description

logging_session_id UNSIGNED INT A number uniquely identifying the log-
ging session during which the diagnos-
tic information was gathered.

Diagnostic tracing tables

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 925

Column name Column type Description

connection_number UNSIGNED INT A number assigned by the database
server to identify the user's connec-
tion to the database. This value re-
flects the value of the Number connec-
tion property.

connection_name LONG VARCHAR Optional name property for the con-
nection. This value reflects the value
of the Name connection property.

user_name LONG VARCHAR The name of the user connected to the
database.

comm_link CHAR(40) Specifies the client-side network pro-
tocol options. This value reflects the
value of the CommLinks connection
property.

node_address LONG VARCHAR The node for the client in a client/serv-
er connection. This value reflects the
value of the NodeAddress connection
property.

appinfo LONG VARCHAR Information about the client process,
such as the IP address of the client
computer, the operating system it is
running on, and so on. This value re-
flects the value of the AppInfo connec-
tion property.

See also
● “Connection properties” [SQL Anywhere Server - Database Administration]

sa_diagnostic_cursor table
The sa_diagnostic_cursor table is owned by the dbo user. Each row describes either an internal or external
cursor opened during the logging session.

There are two versions of this table: sa_diagnostic_cursor, and sa_tmp_diagnostic_cursor.

Tables

926 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Columns

Column name Column
type

Description

logging_session_id UN-
SIGNED
INT

A number uniquely identifying the logging session during which
the diagnostic information was gathered.

cursor_id UN-
SIGNED
BIGINT

A unique number identifying the cursor.

query_id UN-
SIGNED
BIGINT

Identifies the query over which this cursor ranges.

isolation_level TINYINT Isolation level at which this cursor was opened.

flags UN-
SIGNED
INT

Internal use.

forward_fetches UN-
SIGNED
INT

Number of forward fetches, including prefetches, done on the cur-
sor.

reverse_fetches UN-
SIGNED
INT

Number of reverse fetches, including prefetches, done on the cursor.

absolute_fetches UN-
SIGNED
INT

Number of absolute fetches done on the cursor.

first_fetch_time_ms UN-
SIGNED
INT

Duration of time spent fetching the first row.

total_fetch_time_ms UN-
SIGNED
INT

Duration of time spent fetching. This value does not include appli-
cation processing time between actual fetches (think time).

plan_xml LONG
VAR-
CHAR

Detailed plan for cursors that were dumped at the time the cursor
was closed. These plans contain detailed statistics where appropri-
ate.

See also
● “Introduction to cursors” [SQL Anywhere Server - Programming]

Diagnostic tracing tables

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 927

sa_diagnostic_deadlock table
The sa_diagnostic_deadlock table is owned by the dbo user. When diagnostic tracing is enabled and is set
to include tracing of deadlock events, a set of rows is inserted into this table every time a deadlock occurs
(one row for each connection that was part of the deadlock is inserted). The set of all rows that comprise a
single deadlock event is uniquely identified by a snapshot_id.

Columns

Column
name

Column
type

Description

logging_ses-
sion_id

UN-
SIGNED
INT

A number uniquely identifying the logging session during which the di-
agnostic information was gathered.

snapshot_id UN-
SIGNED
BIGINT

A number identifying which deadlock event this row is a part of. Note
that this column has nothing to do with snapshot isolation.

snapshot_at TIME-
STAMP

The time at which the deadlock occurred.

waiter UN-
SIGNED
INT

The connection number of the connection that this row represents.

request_id UN-
SIGNED
BIGINT

The ID of the request that this connection was processing when the dead-
lock occurred.

original_ta-
ble_object_id

UN-
SIGNED
BIGINT

The object ID of the table on which this connection was blocked.

rowid UN-
SIGNED
BIGINT

The record ID of the row on which this connection was blocked.

owner UN-
SIGNED
INT

The connection number of the connection that locked the desired row.

rollback_op-
eration_count

UN-
SIGNED
INT

The number of uncommitted operations.

Tables

928 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “Transaction blocking and deadlock” [SQL Anywhere Server - SQL Usage]

sa_diagnostic_hostvariable table
The sa_diagnostic_hostvariable table is owned by the dbo user, and contains the values of host variables
used by the specified cursor.

There are two versions of this table: sa_diagnostic_hostvariable, and sa_tmp_diagnostic_hostvariable.

Columns

Column
name

Column type Description

log-
ging_ses-
sion_id

UNSIGNED
INT

A number uniquely identifying the logging session during which the
diagnostic information was gathered.

request_id UNSIGNED
BIGINT

The ID of the request to which the host variables belong.

cursor_id UNSIGNED
BIGINT

The ID of the cursor to which the host variables pertain.

host-
var_num

UNSIGNED
SMALLINT

The ordinal position of the host variable in the SQL statement.

host-
var_type

UNSIGNED
TINYINT

The domain number of the host variable, typically a string, integer, or
a float.

hostvar_val-
ue

LONG
NVARCHAR

A string representing the value of the host variable. Even if the host
variable is an integer or a float, the value is still represented here as a
string.

See also
● “Using host variables” [SQL Anywhere Server - Programming]

sa_diagnostic_internalvariable table
The sa_diagnostic_internalvariable table is owned by the dbo user, and contains the values of internal
(local) variables used by a given statement. This table is primarily used by the Index Consultant, and the
traced_plan function.

Diagnostic tracing tables

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 929

There are two versions of this table: sa_diagnostic_internalvariable, and
sa_tmp_diagnostic_internalvariable.

Columns

Column name Column type Description

logging_ses-
sion_id

UNSIGNED
INT

A number uniquely identifying the logging session during which
the diagnostic information was gathered.

request_id UNSIGNED BI-
GINT

The ID of the request that contains the internal variable.

rowvariable_id UNSIGNED
INT

The column number in the row variable of this value.

variable_do-
main

UNSIGNED
SMALLINT

The data type of the internal variable.

variable_name CHAR(128) The name of the internal variable.

variable_value LONG
NVARCHAR

A string representing the value of the internal variable.

See also
● “Local variables” on page 68

sa_diagnostic_query table
The sa_diagnostic_query table is owned by the dbo user, and stores optimization information for queries,
especially the context in which they were optimized. A row in this table represents an invocation of the
optimizer for a query. Plans captured at optimization time are stored here.

Some of the values in this table mirror database option values.

There are two versions of this table: sa_diagnostic_query, and sa_tmp_diagnostic_query.

Columns

Column name Column
type

Description

logging_ses-
sion_id

UN-
SIGNED
INT

The ID of the logging session during which the query or request oc-
curred.

Tables

930 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Column name Column
type

Description

query_id UN-
SIGNED
BIGINT

A number uniquely identifying the query.

statement_id UN-
SIGNED
BIGINT

A number uniquely identifying a statement in a query.

user_object_id UN-
SIGNED
BIGINT

The object ID of the user under which this query was executed. If the
query was run from a procedure, this would be the user ID of the pro-
cedure owner.

start_time TIME-
STAMP

The time at which this query was optimized.

cache_size_bytes UN-
SIGNED
BIGINT

The size, in bytes, of the cache at the time this query was optimized.

optimization_goal TI-
NYINT

Determines whether query processing is optimized towards returning
the first row quickly, or minimizing the cost of returning the com-
plete result set. This value reflects the value of the optimization_goal
database option.

To see possible values for this column, see “optimization_goal op-
tion” [SQL Anywhere Server - Database Administration].

optimization_level TI-
NYINT

Controls the amount of effort made by the SQL Anywhere query op-
timizer to find an access plan for a SQL statement. This value re-
flects the value of the optimization_level database option.

To see possible values for this column, see “optimization_level op-
tion” [SQL Anywhere Server - Database Administration].

user_estimates TI-
NYINT

Controls whether user selectivity estimates in query predicates are re-
spected or ignored by the query optimizer. This value reflects the val-
ue of the user_estimates database option.

To see possible values for this column, see “user_estimates option”
[SQL Anywhere Server - Database Administration].

Diagnostic tracing tables

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 931

Column name Column
type

Description

optimiza-
tion_workload

TI-
NYINT

Determines whether query processing is optimized towards a work-
load that is a mix of updates and reads or a workload that is predomi-
nantly read-based. This value reflects the value of the optimiza-
tion_workload database option.

To see possible values for this column, see “optimization_workload
option” [SQL Anywhere Server - Database Administration].

available_requests TI-
NYINT

Used internally to compute the level of intra-query parallelism.

active_requests TI-
NYINT

Used internally to compute the level of intra-query parallelism.

max_tasks TI-
NYINT

Used internally to compute the level of intra-query parallelism.

used_bypass TI-
NYINT

Whether a simple query bypass was used. A value of 1 indicates a
bypass was used; a value of 0 indicates that the query was fully opti-
mized.

estimated_cost_ms TI-
NYINT

The estimated cost, in milliseconds.

plan_explain LONG
VAR-
CHAR

A text plan representation of this query.

plan_xml LONG
VAR-
CHAR

A graphical plan representation of the query (if one was recorded).

sql_rewritten LONG
VAR-
CHAR

Text of a query after applying optimizations. A value will only be
present in this column if optimization logging is enabled.

See also
● “Database options” [SQL Anywhere Server - Database Administration]
● “How the optimizer works” [SQL Anywhere Server - SQL Usage]

sa_diagnostic_request table

Tables

932 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The sa_diagnostic_request table is owned by the dbo user, and is the master table for all requests. A
request is an event related to query processing and generally includes:

● connect or disconnect events

● statement executions

● statement preparations

● open or drop cursor events

There are two versions of this table: sa_diagnostic_request and sa_tmp_diagnostic_request.

Columns

Column
name

Column
type

Description

logging_ses-
sion_id

UNSIGNED
INT

The logging session during which the request occurred.

request_id UNSIGNED
BIGINT

A number uniquely identifying the request.

start_time TIME-
STAMP

The time at which the event started.

finish_time TIME-
STAMP

For statement execution, the time when the statement completed; oth-
erwise, NULL.

duration_ms UNSIGNED
INT

The duration of the event in milliseconds.

connec-
tion_number

UNSIGNED
INT

The ID of the connection that caused the event to happen.

request_type UNSIGNED
SMALLINT

The type of request. Values include:

statement_id UNSIGNED
BIGINT

If the event was statement-related, the ID assigned to the statement for
tracing purposes.

query_id UNSIGNED
BIGINT

If the event was query-related, the ID assigned to the query for tracing
purposes.

cursor_id UNSIGNED
BIGINT

If the event was cursor-related, the ID assigned to the cursor for trac-
ing purposes.

Diagnostic tracing tables

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 933

Column
name

Column
type

Description

sql_code SMALLINT Since rows in this table represent operations on statements, cursors, or
queries, most return a SQL code. This column contains the SQL code
returned. If a SQL code of 0 is returned, the column contains NULL.

sa_diagnostic_statement table

The sa_diagnostic_statement table is owned by the dbo user, and stores the text of statements. A row in
this table represents a SQL statement that was executed by the server. Such statements may have been
issued by an external source, such as a client request, or by an internal source such as a procedure, trigger,
or user-defined function. Internal statements only appear here once per session.

There are two versions of this table: sa_diagnostic_statement, and sa_tmp_diagnostic_statement.

Columns

Column
name

Column
type

Description

logging_ses-
sion_id

UNSIGNED
INT

The logging session during which the statement was submitted.

statement_id UNSIGNED
BIGINT

A unique number assigned to the statement for tracing purposes.

database_ob-
ject

UNSIGNED
BIGINT

If the statement came from a procedure, trigger, or function, this is the
ID as specified in the ISYSOBJECT system table.

line_number UNSIGNED
SMALLINT

If the statement formed part of a compound statement, this reflects the
ordinal position of the statement within the compound statement.

signature UNSIGNED
INT

Used internally to group similar queries.

state-
ment_text

LONG
VARCHAR

The statement text.

sa_diagnostic_statistics table

The sa_diagnostic_statistics table is owned by the dbo user, and contains a history of performance
counters maintained in the server. Each row represents the value of a given performance counter at a
given moment in time.

Tables

934 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

There are two versions of this table: sa_diagnostic_statistics, and sa_tmp_diagnostic_statistics.

Columns

Column name Column type Description

logging_session_id UNSIGNED INT A number uniquely identifying the log-
ging session during which the diagnos-
tic information was gathered.

"time" TIMESTAMP The time at which the performance
counter value was captured.

counter_id UNSIGNED SMALLINT A number uniquely identifying the per-
formance counter. You can get the
name of the property that this coun-
ter_id represents using the PROPER-
TY_NAME function.

type TINYINT Indicates whether this is a database,
server, or connection statistic. Possi-
ble values are 0 for server, 1 for data-
base, 2 for connection, and 4 for exter-
nal database.

connection_number UNSIGNED INT For a connection statistic, the connec-
tion number from which this property
was captured. For an extended data-
base statistic, the file number for the
file from which this property was cap-
tured. Otherwise, the value is 0.

counter_value UNSIGNED INT The value of the performance counter.

See also
● “PROPERTY_NAME function [System]” on page 286

sa_diagnostic_tracing_level table
The sa_diagnostic_tracing_level table is owned by the dbo user, and each row in this table is a condition
that determines what kind of diagnostic information to send to the tracing database. If a piece of logging
data meets the conditions of one or more rows in this table, then the corresponding data is logged.

Data in this table is populated using the CONNECT TRACING or REFRESH TRACING LEVELS
statements.

Diagnostic tracing tables

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 935

Columns

Column
name

Column
type

Description

id UNSIGNED
INT

For internal use only.

scope CHAR(32) The scope of the diagnostic tracing, as listed below. To see the descrip-
tion for each scope, see “Diagnostic tracing scopes” [SQL Anywhere Serv-
er - SQL Usage].

● DATABASE
● ORIGIN
● USER
● CONNECTION_NAME
● CONNECTION_NUMBER
● FUNCTION
● PROCEDURE
● EVENT
● TRIGGER
● TABLE

identifier CHAR(128) The identifier for the scope. This value changes, depending on the speci-
fied scope. For example:

● if scope is DATABASE, identifier may not be present.

● if scope is ORIGIN, identifier must be either Internal or External.

● if scope is USER, identifier is the ID of the user.

● if scope is CONNECTION_NAME, or CONNECTION_NUMBER,
identifier is the name or number, respectively, for the connection.

● if scope is FUNCTION, PROCEDURE, EVENT, TRIGGER, or TA-
BLE, identifier is the fully qualified identifier for the object.

Tables

936 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Column
name

Column
type

Description

trace_type CHAR(32) The type of data to trace for the specified scope, as listed below. To see
the description for each trace type, see “Diagnostic tracing types” [SQL
Anywhere Server - SQL Usage].

● VOLATILE_STATISTICS
● NONVOLATILE_STATISTICS
● CONNECTION_STATISTICS
● BLOCKING
● PLANS
● PLANS_WITH_STATISTICS
● STATEMENTS
● STATEMENTS_WITH_VARIABLES
● OPTIMIZATION_LOGGING
● OPTIMIZATION_LOGGING_WITH_PLANS

trace_con-
dition

CHAR(32) Applies only to plans, and controls whether to trace large, expensive quer-
ies, or queries for which the optimizer did not make optimal choices. Pos-
sible values are listed below. To see a description of each condition, see
“Diagnostic tracing conditions” [SQL Anywhere Server - SQL Usage].

● NONE, or NULL
● SAMPLE_EVERY
● ABSOLUTE_COST
● RELATIVE_COST_DIFFERENCE

value UNSIGNED
INT

The value associated with the condition. For example, if condition is SAM-
PLE_EVERY, the condition_value would be a positive integer reflecting
time in milliseconds. Additional rules are as follows:

● If condition is NULL or NONE, there is no condition_value.

● If condition is ABSOLUTE_COST, condition_value reflects the total
actual cost of executing the statement, in milliseconds.

● If condition is RELATIVE_COST_DIFFERENCE, condition_value
reflects the cost of executing, as a percentage of the estimated cost.

enabled BIT Whether the row is enabled. That is, whether the tracing settings in the
row are active. 1 is enabled; 0 is disabled.

See also
● “ATTACH TRACING statement” on page 445
● “REFRESH TRACING LEVEL statement” on page 803

Diagnostic tracing tables

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 937

Other tables
Following is information about other tables such as system tables used by Java in the database and SQL
Remote.

RowGenerator table (dbo)
The dbo.RowGenerator table is provided as a read-only table that has 255 rows. This table can be useful
for queries which produce small result sets and which need a range of numeric values.

The RowGenerator table is used by system procedures and views, and should not be modified in any way.

You can also use the sa_rowgenerator system procedure to generate a range of numeric values. For more
information about using the sa_rowgenerator system procedure, including examples, see
“sa_rowgenerator system procedure” on page 1054.

Column name Column type

row_num SMALLINT

row_num A value between 1 and 255.

Java system tables
The system tables that are used for Java are listed below. Foreign key relations between tables are
indicated by arrows: the arrow leads from the foreign table to the primary table.

MobiLink system tables
For information about the MobiLink system tables, see “MobiLink server system tables” [MobiLink -
Server Administration].

Tables

938 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SQL Remote system tables
For information about the SQL Remote system tables, see “SQL Remote system tables” [SQL Remote].

UltraLite system tables
For information about the UltraLite system tables, see “UltraLite system tables” [UltraLite - Database
Management and Reference].

Other tables

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 939

940

System procedures
This section documents the system procedures included with SQL Anywhere. A few system procedures,
such as sa_get_table_definition, are implemented as functions. However, because they are used in the
same context and manner as system procedures, they are included with the system procedures, and their
naming is similar to the system procedures (sa_xxx).

SQL Anywhere includes the following kinds of system procedures:

● System procedures, for displaying system information in tabular form.

● SOAP and HTTP services system procedures, for supporting web services.

● MAPI and SMTP system procedures, for sending electronic mail.

● Transact-SQL system and catalog procedures. See “Adaptive Server Enterprise system and catalog
procedures” on page 944.

View system procedure details
To view details about system procedures and functions

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with DBA authority.

2. Right-click the database and then choose Configure Owner Filter.

3. Click DBO and then click OK.

4. In the left pane, double-click Procedures & Functions.

5. In the left pane, select the procedure and in the right pane click the SQL tab.

Web services system procedures
The following system procedures are for use with web services:

● “sa_http_header_info system procedure” on page 1002
● “sa_http_php_page system procedure” on page 1003
● “sa_http_php_page_interpreted system procedure” on page 1003
● “sa_http_variable_info system procedure” on page 1005
● “sa_set_http_header system procedure” on page 1074
● “sa_set_http_option system procedure” on page 1075
● “sa_set_soap_header system procedure” on page 1079

There are also many functions available for web services. See “Web services functions” on page 135.

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 941

See also
● “Using SQL Anywhere as an HTTP web server” [SQL Anywhere Server - Programming]
● “-xs dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]

MAPI and SMTP procedures
SQL Anywhere includes system procedures for sending electronic mail using the Microsoft Messaging
API standard (MAPI) or the Internet standard Simple Mail Transfer Protocol (SMTP). These system
procedures are implemented as extended system procedures: each procedure calls a function in an external
DLL.

These procedures are owned by the dbo user ID. Users must be granted EXECUTE permission before
they can use these procedures, unless they already have DBA authority.

To use the MAPI or SMTP system procedures, a MAPI or SMTP email system must be accessible from
the database server computer.

The MAPI and SMTP system procedures are:

● xp_startmail Starts a mail session in a specified mail account by logging onto the MAPI message
system. See “xp_startmail system procedure” on page 1121.

● xp_startsmtp Starts a mail session in a specified mail account by logging onto the SMTP message
system. See “xp_startsmtp system procedure” on page 1122.

● xp_sendmail Sends a mail message to specified users. See “xp_sendmail system
procedure” on page 1116.

● xp_stopmail Closes the MAPI mail session. See “xp_stopmail system procedure” on page 1124.

● xp_stopsmtp Closes the SMTP mail session. See “xp_stopsmtp system procedure” on page 1124.

Example
The following procedure notifies a set of people that a backup has been completed.

CREATE PROCEDURE notify_backup()
BEGIN
 CALL xp_startmail(mail_user='ServerAccount',
 mail_password='ServerPassword'
);
 CALL xp_sendmail(recipient='IS Group',
 subject='Backup',
 "message"='Backup completed'
);
 CALL xp_stopmail()
END;

Return codes for MAPI and SMTP system procedures

System procedures

942 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The following codes may be returned by either the MAPI or the SMTP system procedures:

Return code Meaning

0 Success

2 xp_startmail or xp_startsmtp failed

3 xp_stopmail or xp_stopsmtp failed

5 xp_sendmail failed

12 Attachment not found

15 Insufficient memory

20 Unknown recipient

25 Mail session failed to start

In addition, the following codes may be returned by the MAPI system procedures:

Return code Meaning

11 Ambiguous recipient

13 Disk full

14 Failure

16 Invalid session

17 Text too large

18 Too many files

19 Too many recipients

21 Login failure

22 Too many sessions

23 User abort

24 No MAPI

In addition, the following codes may be returned by the SMTP system procedures:

MAPI and SMTP procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 943

Return
code

Meaning

100 Socket error.

101 Socket timeout.

102 Unable to resolve the SMTP server hostname.

103 Unable to connect to the SMTP server.

104 Server error; response not understood. For example, the message is poorly formatted, or
the server is not SMTP.

This error is also returned if you specify the smtp_auth_username and smtp_auth_pass-
word to xp_startsmtp, and the server does not support the SMTP authentication capability.

105 A TLS error occurred

Adaptive Server Enterprise system and catalog
procedures

Adaptive Server Enterprise provides system and catalog procedures to carry out many administrative
functions and to obtain system information. System procedures are built-in stored procedures used for
getting reports from and updating system tables; catalog stored procedures retrieve information from the
system tables in tabular form.

SQL Anywhere has implemented support for some of these Adaptive Server Enterprise procedures.
However, for information about using these procedures, refer to your Adaptive Server Enterprise
documentation.

Adaptive Server Enterprise system procedures
The following list describes the Adaptive Server Enterprise system procedures that are provided in SQL
Anywhere.

While these procedures perform the same functions as they do in Adaptive Server Enterprise and
Adaptive Server IQ version 12 and earlier, they are not identical. If you have preexisting scripts that use
these procedures, you may want to examine the procedures. To see the text of a stored procedure, you can
open it in Sybase Central or, in Interactive SQL, run the following command.

sp_helptext 'dbo.procedure_name'

You may need to reset the width of your Interactive SQL output to see the full text, by choosing Tools »
Options » SQL Anywhere » Truncation Length, and entering a new value.

System procedures

944 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

System procedure name Description

sp_addgroup Adds a group to a database

sp_addlogin Adds a new login ID to a database

sp_addmessage Adds a user-defined message to ISYSUSERMESSAGE, for use by stored
procedure PRINT and RAISERROR calls

sp_addtype Creates a user-defined data type

sp_adduser Adds a new user ID to a database

sp_changegroup Changes a user's group or adds a user to a group

sp_dropgroup Drops a group from a database

sp_droplogin Drops a login ID from a database

sp_dropmessage Drops a user-defined message

sp_droptype Drops a user-defined data type

sp_dropuser Drops a user ID from a database

sp_getmessage Retrieves a stored message string from ISYSUSERMESSAGE, for PRINT
and RAISERROR statements.

sp_helptext Displays the text of a system procedure, trigger, or view

sp_password Adds or changes a password for a user ID

Adaptive Server Enterprise catalog procedures
SQL Anywhere implements a subset of the Adaptive Server Enterprise catalog procedures. The
implemented catalog procedures are described in the following table.

Catalog procedure name Description

sp_column_privileges Unsupported

sp_columns Returns the data types of the specified columns

sp_fkeys Returns foreign key information about the specified table

sp_pkeys Returns primary key information about the specified table

Adaptive Server Enterprise system and catalog procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 945

Catalog procedure name Description

sp_special_columns Returns the optimal set of columns that uniquely identify a row in the speci-
fied table

sp_sproc_columns Returns information about a stored procedure's input and return parameters

sp_statistics Returns information about tables and their indexes

sp_stored_procedures Returns information about one or more stored procedures

sp_tables Returns a list of objects that can appear in a FROM clause for the speci-
fied table

Alphabetical list of system procedures
System procedures are owned by the user ID dbo. Some of these procedures are for internal system use.
This section documents only those not intended solely for system and internal use. You cannot call
external functions on Windows Mobile.

openxml system procedure

Generates a result set from an XML document.

Syntax 1
openxml(xml-data,
 xpath [, flags [, namespaces]])
WITH (column-name column-type [xpath],...)

Syntax 2
openxml({ USING FILE | USING VALUE } xml-data,
 xpath [, flags [, namespaces]])
WITH (column-name column-type [xpath],...)
[OPTION (scan-option)]
[AS] correlation-name

scan-option :
ENCODING encoding
| BYTE ORDER MARK { ON | OFF }

Arguments
● WITH clause Specifies the schema of the result set and how the value is found for each column in

the result set. WITH clause xpath arguments are matched relative to the matches for the xpath in the
second argument. If a WITH clause expression matches more than one node, then only the first node
in the document order is used. If the node is not a text node, then the result is found by appending all

System procedures

946 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

the text node descendants. If a WITH clause expression does not match any nodes, then the column
for that row is NULL.

The xpath arguments in the WITH clause can be literal strings or variables.

The openxml WITH clause syntax is similar to the syntax for selecting from a stored procedure.

For information about selecting from a stored procedure, see “FROM clause” on page 696.

● USING FILE | USING VALUE Use the USING FILE clause to load data from a file. DBA or
READFILE authority is required to use the USING FILE clause.

Use the USING VALUE clause to load data from any expression of CHAR, NCHAR, BINARY, or
LONG BINARY type, or BLOB string.

○ xml-data The XML on which the result set is based. This can be any string expression, such as
a constant, variable, or column.

The xml-data is parsed directly in the NCHAR encoding if there are any NCHAR columns in the
output. The xpath and namespaces arguments are also converted and parsed in the NCHAR encoding.

○ xpath A string containing an XPath query. XPath allows you to specify patterns that describe
the structure of the XML document you are querying. The XPath pattern included in this argument
selects the nodes from the XML document. Each node that matches the XPath query in the second
xpath argument generates one row in the table.

Metaproperties can only be specified in WITH clause xpath arguments. A metaproperty is
accessed within an XPath query as if it was an attribute. If a namespaces is not specified, then by
default the prefix mp is bound to the Uniform Resource Identifier (URI) urn:ianywhere-com:sa-
xpath-metaprop. If a namespaces is specified, this URI must be bound to mp or some other prefix
to access metaproperties in the query. Metaproperty names are case sensitive. The openxml
statement supports the following metaproperties:

● @mp:id returns an ID for a node that is unique within the XML document. The ID for a
given node in a given document may change if the database server is restarted. The value of
this metaproperty increases with document order.

● @mp:localname returns the local part of the node name, or NULL if the node does not
have a name.

● @mp:prefix returns the prefix part of the node name, or NULL if the node does not have a
name or if the name is not prefixed.

● @mp:namespaceuri returns the URI of the namespace that the node belongs to, or NULL
if the node is not in a namespace.

● @mp:xmltext returns a subtree of the XML document in XML form. For example, when
you match an internal node, you can use this metaproperty to return an XML string, rather than
the concatenated values of the descendant text nodes.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 947

○ flags Indicates the mapping that should be used between the XML data and the result set when
an XPath query is not specified in the WITH clause. If the flags parameter is not specified, the
default behavior is to map attributes to columns in the result set. The flags parameter can have one
of the following values:

Value Description

1 XML attributes are mapped to columns in the result set (the default).

2 XML elements are mapped to columns in the result set.

○ namespace-declaration An XML document. The in-scope namespaces for the query are
taken from the root element of the document. If namespaces are specified, then you must include a
flags argument, even if all the xpath arguments are specified.

● column-name The name of the column in the result set.

● column-type The data type of the column in the result set. The data type must be compatible with
the values selected from the XML document. See “SQL data types” on page 79.

● OPTION clause Use the OPTION clause to specify parsing options to use for the input file, such
as escape characters, delimiters, encoding, and so on.

○ ENCODING clause The ENCODING clause allows you to specify the encoding that is used to
read the file.

If the ENCODING clause is not specified, then encoding for values is assumed to be in the
database character set (db_charset) if the values are of type CHAR or BINARY, and NCHAR
database character set (nchar_charset) if the values are of type NCHAR.

For more information about how to obtain the list of SQL Anywhere supported encodings, see
“Supported character sets” [SQL Anywhere Server - Database Administration].

○ BYTE ORDER MARK clause Use the BYTE ORDER MARK clause to specify whether a
byte order mark (BOM) is present in the encoding. By default, this option is ON, which enables
the server to search for and interpret a byte order mark (BOM) at the beginning of the data. If
BYTE ORDER MARK is OFF, the server does not search for a BOM.

You must specify the BYTE ORDER MARK clause if the input data is encoded.

If the ENCODING clause is specified:

● If the BYTE ORDER MARK option is ON and you specify a UTF-16 encoding with an
endian such as UTF-16BE or UTF-16LE, the database server searches for a BOM at the
beginning of the data. If a BOM is present, it is used to verify the endianness of the data. If
you specify the wrong endian, an error is returned.

● If the BYTE ORDER MARK option is ON and you specify a UTF-16 encoding without an
explicit endian, the database server searches for a BOM at the beginning of the data. If a BOM

System procedures

948 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

is present, it is used to determine the endianness of the data. Otherwise, the operating system
endianness is assumed.

● If the BYTE ORDER MARK option is ON and you specify a UTF-8 encoding, the database
server searches for a BOM at the beginning of the data. If a BOM is present it is ignored.

If the ENCODING clause is not specified:

● If you do not specify an ENCODING clause and the BYTE ORDER MARK option is ON, the
server looks for a BOM at the beginning of the input data. If a BOM is located, the source
encoding is automatically selected based on the encoding of the BOM (UTF-16BE,
UTF-16LE, or UTF-8) and the BOM is not considered to be part of the data to be loaded.

● If you do not specify an ENCODING clause and the BYTE ORDER MARK option is OFF, or
a BOM is not found at the beginning of the input data, the database CHAR encoding is used.

Remarks
The openxml system procedure parses the xml-data and models the result as a tree. The tree contains a
separate node for each element, attribute, and text node, or other XML construct. The XPath queries
supplied to the openxml system procedure are used to select nodes from the tree, and the selected nodes
are then mapped to the result set.

The XML parser used by the openxml system procedure is non-validating, and does not read the external
DTD subset or external parameter entities.

When there are multiple matches for a column expression, the first match in the document order (the order
of the original XML document before it was parsed) is used. NULL is returned if there are no matching
nodes. When an internal node is selected, the result is all the descendant text nodes of the internal node
concatenated together.

Columns of type BINARY, LONG BINARY, IMAGE, and VARBINARY are assumed to be in base64-
encoded format and are decoded automatically. If you generate XML using the FOR XML clause, these
types are base64-encoded, and can be decoded using the openxml system procedure. See “FOR XML and
binary data” [SQL Anywhere Server - SQL Usage].

The openxml system procedure supports a subset of the XPath syntax, as follows:

● The child, self, attribute, descendant, descendant-or-self, and parent axes are fully supported.

● Both abbreviated and unabbreviated syntax can be used for all supported features. For example, 'a'
is equivalent to 'child::a' and '..' is equivalent to 'parent::node()'.

● Name tests can use wildcards. For example, 'a/*/b'.

● The following kind tests are supported: node(), text(), processing-instruction(), and comment().

● Qualifiers of the form expr1[expr2] and expr1[expr2="string"] can be used, where expr2 is any
supported XPath expression. A qualifier evaluates TRUE if expr2 matches one or more nodes. For

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 949

example, 'a[b]' finds a nodes that have at least one b child, and a[b="I"] finds a nodes that
have at least one b child with a text value of I.

See also
● “Using XPath expressions” [SQL Anywhere Server - SQL Usage]
● “Importing XML using openxml” [SQL Anywhere Server - SQL Usage]
● XPath query language: http://www.w3.org/TR/xpath.

Example
The following query generates a result set from the XML document supplied as the first argument to the
openxml system procedure:

SELECT * FROM openxml('<products>
 <ProductType ID="301">Tee Shirt</ProductType>
 <ProductType ID="401">Baseball Cap</ProductType>
 </products>',
 '/products/ProductType')
WITH (ProductName LONG VARCHAR 'text()', ProductID CHAR(3) '@ID');

This query generates the following result:

ProductName ProductID

Tee Shirt 301

Baseball Cap 401

In the following example, the first <ProductType> element contains an entity. When you execute the
query, this node is parsed as an element with four children: Tee, &, Sweater, and Set. You can use .
to concatenate the children together in the result set.

SELECT * FROM openxml('<products>
 <ProductType ID="301">Tee & Sweater Set</ProductType>
 <ProductType ID="401">Baseball Cap</ProductType>
 </products>',
 '/products/ProductType')
WITH (ProductName LONG VARCHAR '.', ProductID CHAR(3) '@ID');

This query generates the following result:

ProductName ProductID

Tee Shirt & Sweater Set 301

Baseball Cap 401

The following query uses an equality predicate to generate a result set from the supplied XML document.

SELECT * FROM openxml('<EmployeeDirectory>
 <Employee>
 <column name="EmployeeID">105</column>
 <column name="GivenName">Matthew</column>

System procedures

950 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

http://www.w3.org/TR/xpath

 <column name="Surname">Cobb</column>
 <column name="Street">7 Pleasant Street</column>
 <column name="City">Grimsby</column>
 <column name="State">UT</column>
 <column name="PostalCode">02154</column>
 <column name="Phone">6175553840</column>
 </Employee>
 <Employee>
 <column name="EmployeeID">148</column>
 <column name="GivenName">Julie</column>
 <column name="Surname">Jordan</column>
 <column name="Street">1244 Great Plain Avenue</column>
 <column name="City">Woodbridge</column>
 <column name="State">AZ</column>
 <column name="PostalCode">01890</column>
 <column name="Phone">6175557835</column>
 </Employee>
 <Employee>
 <column name="EmployeeID">160</column>
 <column name="GivenName">Robert</column>
 <column name="Surname">Breault</column>
 <column name="Street">358 Cherry Street</column>
 <column name="City">Milton</column>
 <column name="State">PA</column>
 <column name="PostalCode">02186</column>
 <column name="Phone">6175553099</column>
 </Employee>
 <Employee>
 <column name="EmployeeID">243</column>
 <column name="GivenName">Natasha</column>
 <column name="Surname">Shishov</column>
 <column name="Street">151 Milk Street</column>
 <column name="City">Grimsby</column>
 <column name="State">UT</column>
 <column name="PostalCode">02154</column>
 <column name="Phone">6175552755</column>
 </Employee>
</EmployeeDirectory>', '/EmployeeDirectory/Employee')
WITH (EmployeeID INT 'column[@name="EmployeeID"]',
 GivenName CHAR(20) 'column[@name="GivenName"]',
 Surname CHAR(20) 'column[@name="Surname"]',
 PhoneNumber CHAR(10) 'column[@name="Phone"]');

This query generates the following result set:

EmployeeID GivenName Surname PhoneNumber

105 Matthew Cobb 6175553840

148 Julie Jordan 6175557835

160 Robert Breault 6175553099

243 Natasha Shishov 6175552755

The following query uses the XPath @attribute expression to generate a result set:

SELECT * FROM openxml('<Employee
 EmployeeID="105"
 GivenName="Matthew"

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 951

 Surname="Cobb"
 Street="7 Pleasant Street"
 City="Grimsby"
 State="UT"
 PostalCode="02154"
 Phone="6175553840"
/>', '/Employee')
WITH (EmployeeID INT '@EmployeeID',
 GivenName CHAR(20) '@GivenName',
 Surname CHAR(20) '@Surname',
 PhoneNumber CHAR(10) '@Phone');

The following query operates on an XML document like the one used in the above query, except that an
XML namespace has been introduced. It demonstrates the use of wildcards in the name test for the XPath
query, and generates the same result set as the above query.

SELECT * FROM openxml('<Employee xmlns="http://www.iAnywhere.com/
EmployeeDemo"
 EmployeeID="105"
 GivenName="Matthew"
 Surname="Cobb"
 Street="7 Pleasant Street"
 City="Grimsby"
 State="UT"
 PostalCode="02154"
 Phone="6175553840"
/>', '/*:Employee')
WITH (EmployeeID INT '@EmployeeID',
 GivenName CHAR(20) '@GivenName',
 Surname CHAR(20) '@Surname',
 PhoneNumber CHAR(10) '@Phone');

Alternatively, you could specify a namespace declaration:

SELECT * FROM openxml('<Employee xmlns="http://www.iAnywhere.com/
EmployeeDemo"
 EmployeeID="105"
 GivenName="Matthew"
 Surname="Cobb"
 Street="7 Pleasant Street"
 City="Grimsby"
 State="UT"
 PostalCode="02154"
 Phone="6175553840"
/>', '/prefix:Employee', 1, '<r xmlns:prefix="http://www.iAnywhere.com/
EmployeeDemo"/>')
WITH (EmployeeID INT '@EmployeeID',
 GivenName CHAR(20) '@GivenName',
 Surname CHAR(20) '@Surname',
 PhoneNumber CHAR(10) '@Phone');

For more examples of using the openxml system procedure, see “Importing XML using openxml” [SQL
Anywhere Server - SQL Usage].

sa_ansi_standard_packages system procedure
Returns information about the non-core SQL extensions used in a SQL statement.

System procedures

952 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
sa_ansi_standard_packages(standard, statement)

Arguments
● standard The standard to use for the core extensions. One of SQL:1999 or SQL:2003.

● statement The SQL statement to evaluate.

Remarks
If there are no non-core extensions used for the statement, the result set is empty.

Permissions
None

Side effects
None

See also
● “SQL preprocessor” [SQL Anywhere Server - Programming]
● “SQLFLAGGER function [Miscellaneous]” on page 331
● “sql_flagger_error_level option” [SQL Anywhere Server - Database Administration]
● “sql_flagger_warning_level option” [SQL Anywhere Server - Database Administration]

Example
Following is an example call to the sa_ansi_standard_packages system procedure:

CALL sa_ansi_standard_packages('SQL:2003',
'SELECT *
 FROM (SELECT o.SalesRepresentative,
 o.Region,
 SUM(s.Quantity * p.UnitPrice) AS total_sales,
 DENSE_RANK() OVER (PARTITION BY o.Region,
 GROUPING(o.SalesRepresentative)
 ORDER BY total_sales DESC) AS
sales_rank
 FROM Product p, SalesOrderItems s, SalesOrders o
 WHERE p.ID = s.ProductID AND s.ID = o.ID
 GROUP BY GROUPING SETS((o.SalesRepresentative, o.Region),
o.Region)) AS DT
 WHERE sales_rank <= 3
 ORDER BY Region, sales_rank');

The query generates the following result set:

package_id package_name

T612 Advanced OLAP operations

T611 Elementary OLAP operations

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 953

package_id package_name

F591 Derived tables

T431 Extended grouping capabilities

sa_audit_string system procedure
Adds a string to the transaction log.

Syntax
sa_audit_string(string)

Arguments
● string A string of characters to add to the transaction log.

Remarks
If auditing is turned on, this system procedure adds a comment to the auditing information stored in the
transaction log. The string can be a maximum of 200 bytes.

Permissions
DBA authority

Side effects
None

See also
● “auditing option” [SQL Anywhere Server - Database Administration]
● “Auditing database activity” [SQL Anywhere Server - Database Administration]

Example
The following example uses sa_audit_string to add a comment to the transaction log:

CALL sa_audit_string('Auditing test');

sa_char_terms system procedure
Breaks a CHAR string into terms and returns each term as a row along with its position.

Syntax
sa_char_terms('text' [, 'config-name' [, 'owner']]
)

System procedures

954 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Arguments
● text The CHAR string you are parsing.

● config-name The text configuration object to apply when processing the string. The default value
is 'default_char'.

● owner The owner of the specified text configuration object. The default value is DBA.

Remarks
You can use this system procedure to find out how a string is interpreted when the settings for a text
configuration object are applied. This can be helpful when you want to know what terms would be
dropped during indexing or from a query string.

Permissions
None

Side effects
None

See also
● “Full text search” [SQL Anywhere Server - SQL Usage]
● “How to manage text configuration objects” [SQL Anywhere Server - SQL Usage]
● “sa_nchar_terms system procedure” on page 1037

Example
The following statement returns the terms in the CHAR string, It's a work-at-home day!, using the default
CHAR text configuration object, default_char:

CALL sa_char_terms ('It''s a work-at-home day!', 'default_char', 'sys');

term position

It 1

s 2

a 3

work 4

at 5

home 6

day 7

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 955

sa_check_commit system procedure
Checks for outstanding referential integrity violations before a commit.

Syntax
sa_check_commit(
tname,
keyname
)

Arguments
● tname A VARCHAR(128) parameter containing the name of a table with a row that is currently

violating referential integrity.

● keyname A VARCHAR(128) parameter containing the name of the corresponding foreign key index.

Remarks
If the database option wait_for_commit is On, or if a foreign key is defined using CHECK ON COMMIT
in the CREATE TABLE statement, you can update the database and cause a referential integrity violation
if the violations are resolved before the changes are committed.

You can use the sa_check_commit system procedure to check whether there are any outstanding
referential integrity violations before attempting to commit your changes.

The returned parameters indicate the name of a table containing a row that is currently violating
referential integrity, and the name of the corresponding foreign key index.

Permissions
None

Side effects
None

See also
● “wait_for_commit option” [SQL Anywhere Server - Database Administration]
● “CREATE TABLE statement” on page 596

Example
The following set of commands can be executed from Interactive SQL. Rows are deleted from the
Departments table in the sample database and a referential integrity violation occurs. The call to the
sa_check_commit system procedure checks which tables and keys have outstanding violations, and the
rollback cancels the change:

SET TEMPORARY OPTION wait_for_commit='On'
go
DELETE FROM Departments
go
CREATE VARIABLE tname VARCHAR(128);

System procedures

956 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

CREATE VARIABLE keyname VARCHAR(128)
go
CALL sa_check_commit(tname, keyname)
go
SELECT tname, keyname
go
ROLLBACK
go

sa_clean_database system procedure
Starts the database cleaner and sets the maximum length of time for which it can run.

Syntax
sa_clean_database([duration])

Arguments
● duration The number of seconds that the clean operation is allowed to run. If no argument is

specified, or if 0 is specified, the database cleaner runs until all pages in all dbspaces have been cleaned.

Remarks
The database cleaner is an internal task that runs on a default schedule. You can use this system procedure
to force the database cleaner to run immediately and to specify how long the cleaner can run each time it
is invoked. If you use this system procedure to start the database cleaner while a database is being
validated, the database cleaner does not run until validation is complete.

Some database tasks, such as processing snapshot isolation transactions, index maintenance, and deleting
rows, can execute more efficiently if some portions of the request are deferred to a later time. These
deferrable activities typically involve cleanup by removing deleted, historical, and otherwise unnecessary
entries from database pages, or reorganizing database pages for more efficient access.

Postponing some of these activities not only allows the current request to finish more quickly, it
potentially allows cleanup to occur when the database server is less active. These unnecessary entries are
identified so that they are not visible to other transactions; however, they do take up space on a page, and
must be removed at some point.

The database cleaner performs any deferred cleanup activities. It is scheduled to run every 20 seconds.
When it is invoked, the database cycles sequentially through the database's dbspaces, examining and
cleaning each cleanable page before moving on to the next one. When invoked automatically by the
database server, the database cleaner is a self-tuning process. The amount of work that the database
cleaner performs, and the duration for which it executes, depend on several factors, including the fraction
of outstanding cleanable pages in a dbspace, the current amount of activity in the database server, and the
amount of time that the database cleaner has already spent cleaning. If, after running for 0.5 seconds, the
cleaner detects active requests in the server, it stops and reschedules itself to execute at its regular
interval. The database cleaner attempts to process pages when there are no other requests executing in the
server, and therefore takes advantage of periods of server inactivity.

Database cleaner statistics are available through four database properties:

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 957

● CleanablePagesAdded returns the number of pages that need to be cleaned

● CleanablePagesCleaned returns the number of pages that have already been cleaned

● CleanableRowsAdded returns the number of rows that need to be cleaned

● CleanabledRowsCleaned returns the number of rows that have already been cleaned

The difference between the values of CleanablePagesAdded and CleanablePagesCleaned indicates how
many database pages still require cleaning.

You can use the sa_clean_database system procedure to configure the database cleaner to run until all the
pages in a database are cleaned, or to specify a maximum duration for the database cleaner to run.

To further customize the behavior of the database cleaner, you can set up an event that starts the database
cleaner if the number of pages or rows that need to be cleaned exceed a specified threshold. See
“CREATE EVENT statement” on page 495.

Permissions
DBA authority

Side effects
None

See also
● “CREATE EVENT statement” on page 495
● “CleanablePagesAdded database property” [SQL Anywhere Server - Database Administration]
● “CleanablePagesCleaned database property” [SQL Anywhere Server - Database Administration]
● “CleanableRowsAdded database property” [SQL Anywhere Server - Database Administration]
● “CleanableRowsCleaned database property” [SQL Anywhere Server - Database Administration]

Example
The following example sets the duration of the database cleaner to 10 seconds:

CALL sa_clean_database(10);

The following example creates a scheduled event that runs daily to allow the database cleaner to run until
all pages in the database are cleaned:

CREATE EVENT DailyDatabaseCleanup
SCHEDULE
 START TIME '6:00 pm'
 ON ('Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday')
 HANDLER
 BEGIN
 CALL sa_clean_database();
 END;

The following example forces the database cleaner to run when 20% or more of the pages in the database
need to be cleaned:

CREATE EVENT PERIODIC_CLEANER
SCHEDULE

System procedures

958 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

BETWEEN '9:00 am' and '5:00 pm'
EVERY 1 HOURS
HANDLER
BEGIN
 DECLARE @num_db_pages INTEGER;
 DECLARE @num_dirty_pages INTEGER;
 -- Get the number of database pages
 SELECT (SUM(DB_EXTENDED_PROPERTY('FileSize', t.dbspace_id) -
 DB_EXTENDED_PROPERTY('FreePages', t.dbspace_id)))
 INTO @num_db_pages
 FROM (SELECT dbspace_id FROM SYSDBSPACE) AS t;
 -- Get the number of dirty pages to be cleaned
 SELECT (DB_PROPERTY('CleanablePagesAdded') -
 DB_PROPERTY('CleanablePagesCleaned'))
 INTO @num_dirty_pages;
 -- Check whether the number of dirty pages exceeds 20% of
 -- the size of the database
 IF @num_dirty_pages > @num_db_pages * 0.20 THEN
 -- Start cleaning the database for a maximum of 60 seconds
 CALL sa_clean_database(60);
 END IF;
END;

sa_column_stats system procedure

Returns various statistics about the specified column(s). These statistics are not related to the column
statistics maintained for use by the optimizer.

Syntax
sa_column_stats (
[tab_name]
[, col_name]
[, tab_owner]
[, max_rows]
)

Arguments
● tab_name This optional CHAR(128) parameter specifies the name of the table. If this parameter is

not specified, statistics are calculated for all columns in all table(s).

● col_name This optional CHAR(128) parameter specifies the columns for which to calculate
statistics. If this parameter is not specified, statistics are calculated for all columns in the specified
table(s).

● tab_owner This optional CHAR(128) parameter specifies the owner of the table. If this parameter
is not specified, the database server uses the owner of the first table that matches the tab_name specified.

● max_rows This optional INTEGER parameter specifies the number of rows to use for the
calculations. If this parameter is not specified, 1000 rows are used by default. Specifying 0 instructs
the database server to calculate the ratio based on all the rows in the table.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 959

Result set
With the exception of table_owner, table_name, and column_name, all values in the result set are NULL
for non-string columns. Also, for empty tables, num_rows_processed and num_values_compressed are 0,
while all other values are NULL.

Column name Data type Description

table_owner CHAR(128) The owner of the table.

table_name CHAR(128) The table name.

column_name CHAR(128) The column name.

num_rows_processed INTEGER The total number of rows read to calculate the statistics.

num_values_compressed INTEGER The number of values in the column that are com-
pressed. If the column is not compressed, the value is 0.

avg_compression_ratio DOUBLE The average compression ratio, expressed as a percent-
age reduction in size, for compressed values in the col-
umn. If the column is not compressed, the value is NULL.

avg_length DOUBLE The average length of all non-NULL strings in the col-
umn.

stddev_length DOUBLE The standard deviation of the lengths of all non-NULL
strings in the column.

min_length INTEGER The minimum length of non-NULL strings in the column.

max_length INTEGER The maximum length of strings in the column.

avg_uncompressed_length DOUBLE The average length of all uncompressed, non-NULL
strings in the column.

stddev_uncompressed_length DOUBLE The standard deviation of the lengths of all uncom-
pressed, non-NULL strings in the column.

min_uncompressed_length INTEGER The minimum length of all uncompressed, non-NULL
strings in the column.

max_uncompressed_length INTEGER The maximum length of all uncompressed, non-NULL
strings in the column.

Remarks
The database server determines the columns that match the owner, table, and column names specified, and
then for each one, calculates statistics for the data in each specified column. By default, the database
server only uses the first 1000 rows of data.

System procedures

960 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

For avg_compression_ratio, values cannot be greater than, or equal to 100, however, they can be less than
0 if highly incompressible data (for example, data that is already compressed) is inserted into a
compressed column. Higher values indicate better compression. For example, if the number returned is
80, then the size of the compressed data is 80% less than the size of the uncompressed data.

Permissions
DBA authority

Side effects
None

See also
● “Choosing column compression” [SQL Anywhere Server - Database Administration]

Example
In this example, you use the sa_column_stats system procedure in a SELECT statement to determine
which columns in the database are benefitting most from column compression:

SELECT * FROM sa_column_stats()
 WHERE num_values_compressed > 0
 ORDER BY avg_compression_ratio desc;

In this example, you narrow your selection from the previous example to tables owned by bsmith:

SELECT * FROM sa_column_stats(tab_owner='bsmith')
 WHERE num_values_compressed > 0
 ORDER BY avg_compression_ratio desc;

sa_conn_activity system procedure
Returns the most recently-prepared SQL statement for each connection to the specified database on the
server.

Syntax
sa_conn_activity([connidparm])

Arguments
● connidparm Use this optional INTEGER parameter to specify the connection ID number.

Result set

Column name Data type Description

Number INT The connection ID number.

Name VARCHAR(255) The connection name.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 961

Column name Data type Description

Userid VARCHAR(255) The user ID for the connection.

DBNumber INT The database ID number.

LastReqTime VARCHAR(255) The time at which the last request for the specified connection
started.

LastStatement LONG VARCHAR The most recently-prepared SQL statement for the connection.

Remarks
The sa_conn_activity system procedure returns a result set consisting of the most recently-prepared SQL
statement for each connection, if the server has been told to collect the information. Recording of
statements must be enabled for the database server before calling sa_conn_activity. To do this, specify the
-zl option when starting the database server, or execute the following:

CALL sa_server_option('RememberLastStatement','ON');

This procedure is useful when the database server is busy and you want to obtain information about the
last SQL statement prepared for each connection. This feature can be used as an alternative to request logging.

For information about the LastStatement property, from which these values are derived, see “Connection
properties” [SQL Anywhere Server - Database Administration].

If connidparm is not specified, then information is returned for all connections to all databases running on
the database server. If connidparm is less than zero, option values for the current connection are returned.

Permissions
None

Side effects
None

See also
● “-zl dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “sa_server_option system procedure” on page 1060

sa_conn_compression_info system procedure
Summarizes communication compression rates.

Syntax
sa_conn_compression_info([connidparm])

System procedures

962 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Arguments
● connidparm Use this optional INTEGER parameter to specify the connection ID number.

Result set

Column name Data type Description

Type VARCHAR(20) A string identifying whether the compression statistics
that follow represent either one Connection, or all connec-
tions to the Server.

ConnNumber INTEGER An INTEGER representing a connection ID number. Re-
turns NULL if the Type is Server.

Compression VARCHAR(10) A string representing whether compression is enabled for
the connection. Returns NULL if Type is Server, or ON/
OFF if Type is Connection.

TotalBytes INTEGER An INTEGER representing the total number of actual
bytes both sent and received.

TotalBytesUnComp INTEGER An INTEGER representing the number of bytes that
would have been sent and received if compression was dis-
abled.

CompRate NUMERIC(5,2) A NUMERIC (5,2) representing the overall compression
rate. For example, a value of 0 indicates that no compres-
sion occurred. A value of 75 indicates that the data was
compressed by 75%, or down to one quarter of its original
size.

CompRateSent NUMERIC(5,2) A NUMERIC (5,2) representing the compression rate for
data sent to the client.

CompRateReceived NUMERIC(5,2) A NUMERIC (5,2) representing the compression rate for
data received from the client.

TotalPackets INTEGER An INTEGER representing the total number of actual pack-
ets both sent and received.

TotalPacketsUnComp INTEGER An INTEGER representing the total number of packets
that would have been sent and received if compression
was disabled.

CompPktRate NUMERIC(5,2) A NUMERIC (5,2) representing the overall compression
rate of packets.

CompPktRateSent NUMERIC(5,2) A NUMERIC (5,2) representing the compression rate of
packets sent to the client.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 963

Column name Data type Description

CompPktRateReceived NUMERIC(5,2) A NUMERIC (5,2) representing the compression rate of
packets received from the client.

Remarks
If you specify the connection ID number, the sa_conn_compression_info system procedure returns a
result set consisting of compression properties for the supplied connection. If connidparm is not supplied,
this system procedure returns information for all current connections to databases on the server.

For information about the properties these values are derived from, see “Connection properties” [SQL
Anywhere Server - Database Administration].

Permissions
None

Side effects
None

Example
The following example uses the sa_conn_compression_info system procedure to return a result set
summarizing compression properties for all connections to the server.

CALL sa_conn_compression_info();

Type ConnNumber Compression TotalBytes ...

Connection 79 Off 7841 ...

Server (NULL) (NULL) 2737761 ...

...

sa_conn_info system procedure
Reports connection property information.

Syntax
sa_conn_info([connidparm])

Arguments
● connidparm This optional INTEGER parameter specifies the connection ID number.

System procedures

964 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Result set

Column name Data type Description

Number INTEGER The connection ID number.

Name VARCHAR(255) The name of the connection. Temporary connection names
have INT: prepended to the connection name. For a list of tem-
porary connection names, see “Name connection property”
[SQL Anywhere Server - Database Administration].

Userid VARCHAR(255) The user ID for the connection.

DBNumber INTEGER The database ID number.

LastReqTime VARCHAR(255) The time at which the last request for the specified connection
started.

ReqType VARCHAR(255) A string for the type of the last request.

CommLink VARCHAR(255) The communication link for the connection. This is one of the
network protocols supported by SQL Anywhere, or local for a
same-computer connection.

NodeAddr VARCHAR(255) The address of the client in a client/server connection.

ClientPort INTEGER The port number on which the client application communicates
using TCP/IP.

ServerPort INTEGER The port number on which the server communicates using TCP/
IP.

BlockedOn INTEGER If the current connection is not blocked, this is zero. If it is
blocked, the connection number on which the connection is
blocked because of a locking conflict.

LockTable VARCHAR(255) If the connection is currently waiting for a lock, LockTable will
be the name of the table associated with that lock. Otherwise,
LockTable will be the empty string.

UncommitOps INTEGER The number of uncommitted operations.

LockRowID UNSIGNED BI-
GINT

If the connection is waiting on a lock that is associated with a
particular row identifier, LockRowID contains that row identifi-
er. LockRowID is NULL if the connection is not waiting on a
lock associated with a row (that is, it is not waiting on a lock, or
it is waiting on a lock that has no associated row).

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 965

Column name Data type Description

LockIndexID INTEGER If the connection is waiting on a lock that is associated with a
particular index, LockIndexID contains the identifier of that in-
dex (or -1 if the lock is associated with all indexes on the table
in LockTable). LockIndexID is NULL if the connection is not
waiting on a lock associated with an index (that is, it is not wait-
ing on a lock, or it is waiting on a lock that has no associated
index).

ParentConnec-
tion

INTEGER If the connection is a temporary connection created by the data-
base server, this property returns the connection ID that created
the temporary connection. Otherwise, the value is NULL. See
“Temporary connections” [SQL Anywhere Server - Database Ad-
ministration].

Remarks
If you specify the connection ID number, the sa_conn_info system procedure returns a result set
consisting of connection properties for the supplied connection. If no connidparm is supplied, this system
procedure returns information for all current connections to databases on the server. If connidparm is less
than zero, option values for the current connection are returned.

In a block situation, the BlockedOn value returned by this procedure allows you to check which users are
blocked, and who they are blocked on. The sa_locks system procedure can be used to display the locks
held by the blocking connection.

For more information based on any of these properties, you can execute something similar to the following:

SELECT *, DB_NAME(DBNumber),
 CONNECTION_PROPERTY('LastStatement', Number)
 FROM sa_conn_info();

The value of LockRowID can be used to look up a lock in the output of the sa_locks procedure.

The value in LockIndexID can be used to look up a lock in the output of the sa_locks procedure. Also, the
value in LockIndexID corresponds to the primary key of the ISYSIDX system table, which can be viewed
using the SYSIDX system view.

Every lock has an associated table, so the value of LockTable can be used to unambiguously determine
whether a connection is waiting on a lock.

Permissions
None

Side effects
None

System procedures

966 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “Connection properties” [SQL Anywhere Server - Database Administration]
● “sa_locks system procedure” on page 1014
● “SYSIDX system view” on page 1143

Examples
The following example uses the sa_conn_info system procedure to return a result set summarizing
connection properties for all connections to the server.

CALL sa_conn_info();

Number Name Userid DBNumber ...

79 DBA 0 ...

46 Sybase Central 1 DBA 0 ...

...

The following example uses the sa_conn_info system procedure to return a result set showing which
connection created a temporary connection.

SELECT Number, Name, ParentConnection FROM sa_conn_info();

Connection 8 created the temporary connection that executed a CREATE DATABASE statement.

Number Name ParentConnection
--
1000000048 INT: CreateDB 8
9 SQL_DBC_14675af8 (NULL)
8 SQL_DBA_152d5ac0 (NULL)

sa_conn_list system procedure
Returns a result set containing connection IDs.

Syntax
sa_conn_list(
[connidparm]
[, dbidparm]
)

Arguments
● connidparm Use this optional INTEGER parameter to specify the connection ID number.

● dbidparm Use this optional INTEGER parameter to specify the database ID number.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 967

Result set

Column name Data type Description

Number INTEGER The connection ID number.

Remarks
If you do not specify any parameters, or if both parameters are NULL, the connection IDs for all
connections to all databases running on the database server are returned. If connidparm is less than 0, only
the connection ID for the current connection is returned. If connidparm is NULL and dbidparm is less
than 0, the connection IDs for just the current database are returned. If connidparm is NULL, and
dbidparm is not NULL and its value is greater than or equal to 0, the connection IDs for only that
database are returned.

Permissions
None

Side effects
None

See also
● “sa_db_list system procedure” on page 975
● “sa_conn_options system procedure” on page 968

sa_conn_options system procedure
Returns property information for connection properties that correspond to database options.

Syntax
sa_conn_options([connidparm])

Arguments
● connidparm Use this optional INTEGER parameter to specify the connection ID number.

Result set

Column name Data type Description

Number INTEGER The connection ID number.

PropNum INTEGER The connection property number.

OptionName VARCHAR(255) The option name.

OptionDescription VARCHAR(255) The option description.

System procedures

968 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Column name Data type Description

Value LONG VARCHAR The option value.

Remarks
Returns the connection ID as Number, and the PropNum, OptionName, OptionDescription, and Value for
each available connection property that corresponds to a database option.

If you do not specify connidparm, then option values for all connections to the current database are
returned. If connidparm is less than zero, option values for the current connection are returned.

Permissions
None

Side effects
None

See also
● “sa_db_list system procedure” on page 975
● “sa_conn_list system procedure” on page 967
● “Connection properties” [SQL Anywhere Server - Database Administration]
● “Database options” [SQL Anywhere Server - Database Administration]

sa_conn_properties system procedure
Reports connection property information.

Syntax
sa_conn_properties([connidparm])

Arguments
● connidparm Use this optional INTEGER parameter to specify the connection ID number.

Result set

Column name Data type Description

Number INTEGER The connection ID number.

PropNum INTEGER The connection property number.

PropName VARCHAR(255) The connection property name.

PropDescription VARCHAR(255) The connection property description.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 969

Column name Data type Description

Value LONG VARCHAR The connection property value.

Remarks
Returns the connection ID as Number, and the PropNum, PropName, PropDescription, and Value for each
available connection property. Values are returned for all connection properties, database option settings
related to connections, and statistics related to connections. Valid properties with NULL values are also
returned.

If no connidparm is supplied, properties for all connections to the current database are returned. If
connidparm is less than zero, property values for the current connection are returned.

Permissions
None

Side effects
None

See also
● “sa_conn_list system procedure” on page 967
● “sa_conn_options system procedure” on page 968
● “System functions” on page 138
● “Connection properties” [SQL Anywhere Server - Database Administration]

Examples
The following example uses the sa_conn_properties system procedure to return a result set summarizing
connection property information for all connections.

CALL sa_conn_properties();

Number PropNum PropName ...

79 37 CacheHits ...

79 38 CacheRead ...

...

This example uses the sa_conn_properties system procedure to return a list of all connections, in
decreasing order by CPU time*:

SELECT Number AS connection_number,
 CONNECTION_PROPERTY ('Name', Number) AS connection_name,
 CONNECTION_PROPERTY ('Userid', Number) AS user_id,
 CAST (Value AS NUMERIC (30, 2)) AS approx_cpu_time
 FROM sa_conn_properties()
 WHERE PropName = 'ApproximateCPUTime'
 ORDER BY approx_cpu_time DESC;

System procedures

970 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

*Example courtesy of Breck Carter, RisingRoad Professional Services (http://www.risingroad.com).

sa_convert_ml_progress_to_timestamp system procedure
For MobiLink scripted uploads only. This converts the progress value for scripted upload from an
UNSIGNED BIGINT to a TIMESTAMP.

Syntax
sa_convert_ml_progress_to_timestamp(progress)

Arguments
● progress The function takes one parameter which is an UNSIGNED BIGINT.

Remarks
The function returns the TIMESTAMP that is represented by the value passed in. This procedure is the
inverse of sa_convert_timestamp_to_ml_progress.

Permissions
None

Side effects
None

See also
● “sa_convert_timestamp_to_ml_progress system procedure” on page 971
● “Scripted upload” [MobiLink - Client Administration]

Example
SELECT sa_convert_ml_progress_to_timestamp(3465034611199);

sa_convert_timestamp_to_ml_progress system procedure
For MobiLink scripted uploads only. This converts the progress value for scripted upload from a
TIMESTAMP to an UNSIGNED BIGINT.

Syntax
sa_convert_timestamp_to_ml_progress(t1)

Arguments
● t1 Use this TIMESTAMP parameter to specify the progress value to convert to an UNSIGNED

BIGINT.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 971

http://www.risingroad.com

Remarks
The function returns an UNSIGNED BIGINT that represents the timestamp passed in as a parameter. This
procedure is the inverse of sa_convert_ml_progress_to_timestamp.

Permissions
None

Side effects
None

See also
● “sa_convert_ml_progress_to_timestamp system procedure” on page 971
● “Scripted upload” [MobiLink - Client Administration]

Examples
SELECT sa_convert_timestamp_to_ml_progress(CURRENT TIMESTAMP);
SELECT sa_convert_timestamp_to_ml_progress('1900/01/01 1:00');

sa_copy_cursor_to_temp_table system procedure
Creates a temporary table and copies the result set of an open cursor to it.

Syntax
sa_copy_cursor_to_temp_table(
cursor_name,
table_name
[, first_row [, max_rows]]
)

Arguments
● cursor_name The name of the open cursor to describe.

● table_name The name of the temporary table to create.

● first_row The number of the first row to copy to the temporary table. The defaults is 1.

● max_rows The maximum number of rows to copy to the temporary table. The default is
9223372036854775807 (all rows).

Remarks
Suppose you have a cursor of several integer columns. sa_copy_cursor_to_temp_table creates a
temporary table using a statement in this form:

BEGIN
 DECLARE LOCAL TEMPORARY TABLE TempTab (
 col1 INT,
 col2 INT,

System procedures

972 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 ...
rownum bigint primary key)
END;

sa_copy_cursor_to_temp_table names the columns col1,col2, etc. to avoid duplication of names or
difficulty if cursor columns do not have a well defined name (for example, if they are a complex expression).

Once the temporary table is created, the contents of the open cursor are inserted by moving to the row
number indicated by first_row, and inserting the number of rows indicated by max_rows. After the
contents have been inserted into the temporary table, the cursor is re-positioned at its original location.

Permissions
None

Side effects
Copying from the cursor fetches the rows using the cursors isolation settings. This may acquire locks on
rows and have other effects equivalent to fetching from the cursor.

If concurrent changes are made outside of the current connection and the cursor is not protected from
these by materialization or isolation settings, then it is possible that the cursor will be positioned on a
different row after the procedure completes. For example, if the previous current row of the cursor was
deleted, the cursor could be repositioned on the row after the original position.

If an error occurs while copying from the cursor, the cursor enters an invalid state, and further operations
on the cursor fail with an error.

See also
● “sa_list_cursors system procedure” on page 1012
● “sa_describe_cursor system procedure” on page 978

Example
The following batch creates a cursor named myCursor and loads it with data from the Products table. The
cursor is then opened (OPEN statement). A DROP statement drops myTempTable, if it already exists.
Calling sa_copy_cursor_to_temp_table creates a temporary table called myTempTable and copies the
contents of myCursor into it. Finally, a SELECT statement returns the data that was copied into the
temporary table from the cursor:

begin
 DECLARE myCursor CURSOR FOR
 SELECT Id, Name, Description, Color, Quantity FROM Products;
 OPEN myCursor;
 DROP TABLE IF EXISTS myTempTable;
 CALL sa_copy_cursor_to_temp_table('myCursor','myTempTable');
 CLOSE myCursor;
 SELECT * FROM myTempTable;
end

sa_db_info system procedure
Reports database property information.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 973

Syntax
sa_db_info([dbidparm])

Arguments
● dbidparm Use this optional INTEGER parameter to specify the database ID number.

Result set

Column name Data type Description

Number INTEGER The connection ID number.

Alias VARCHAR(255) The database name.

File VARCHAR(255) The file name of the database root file, including path.

ConnCount INTEGER The number of connections to the database.

PageSize INTEGER The page size of the database, in bytes.

LogName VARCHAR(255) The file name of the transaction log, including path.

Remarks
If you specify a database ID, sa_db_info returns a single row containing the Number, Alias, File,
ConnCount, PageSize, and LogName for the specified database.

If dbidparm is not supplied, properties for all databases are returned.

Permissions
None

Side effects
None

See also
● “sa_db_properties system procedure” on page 975
● “Database properties” [SQL Anywhere Server - Database Administration]

Example
The following statement returns a row for each database that is running on the server:

CALL sa_db_info();

Property Value

Number 0

System procedures

974 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Property Value

Alias demo

File C:\Documents and Settings\All Users\Documents\SQL Anywhere 12\Samples\demo.db

ConnCount 1

PageSize 4096

LogName C:\Documents and Settings\All Users\Documents\SQL Anywhere 12\Samples\demo.log

sa_db_list system procedure
Returns a database ID.

Syntax
sa_db_list([dbidparm])

Arguments
● dbidparm Use this optional INTEGER parameter to specify the database ID number.

Result set

Column name Data type Description

Number INTEGER The database ID number.

Remarks
If you do not specify dbidparm, or if dbidparm is NULL, the IDs for all databases running on the database
server are returned. If dbidparm is less than 0, then only the ID for the current database is returned.

Permissions
None

Side effects
None

See also
● “sa_conn_list system procedure” on page 967
● “sa_conn_options system procedure” on page 968

sa_db_properties system procedure

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 975

Reports database property information.

Syntax
sa_db_properties([dbidparm])

Arguments
● dbidparm Use this optional INTEGER parameter to specify the database ID number.

Result set

Column name Data type Description

Number INTEGER The database ID number.

PropNum INTEGER The database property number.

PropName VARCHAR(255) The database property name.

PropDescription VARCHAR(255) The database property description.

Value LONG VARCHAR The database property value.

Remarks
If you specify a database ID, the sa_db_properties system procedure returns the database ID number and
the PropNum, PropName, PropDescription, and Value for each available database property. Values are
returned for all database properties and statistics related to databases. Valid properties with NULL values
are also returned.

If dbidparm is not specified, properties for all databases are returned.

Permissions
None

Side effects
None

See also
● “sa_db_info system procedure” on page 973
● “Database properties” [SQL Anywhere Server - Database Administration]

Example
The following example uses the sa_db_properties system procedure to return a result set summarizing
database property information for all databases.

CALL sa_db_properties();

System procedures

976 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Number PropNum PropName ...

0 0 ConnCount ...

0 1 IdleCheck ...

0 2 IdleWrite ...

...

sa_dependent_views system procedure

Returns the list of all dependent views for a given table or view.

Syntax
sa_dependent_views('tbl_name ' [, ' owner_name ')

Arguments
● tbl_name Use this CHARACTER parameter to specify the name of the table or view.

● owner_name Use this optional CHARACTER parameter to specify the owner for tbl_name.

Result set

Column name Data type Description

table_id UNSIGNED INTEGER The object ID of the table or view.

dep_view_id UNSIGNED INTEGER The object ID of the dependent views.

Remarks
Use this procedure to obtain the list of IDs of dependent views. Alternatively, you can use the procedure
in a statement that returns more information about the views, such as their names.

No errors are generated if no existing tables satisfy the specified criteria for table and owner names. Also:

● tbl_name is optional and has a default value of null.

● If both owner and tbl_name are null, information is returned on all tables that have dependent views.

● If tbl_name is null but owner is specified, information is returned on all tables owned by the specified
owner.

● If tbl_name is specified but owner is null, information is returned on any one of the tables with the
specified name.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 977

By default, execution of the procedure does not require any permissions and assumes that PUBLIC has
access to the catalog. DBAs can control access as needed on the view and/or the catalog.

Permissions
None

Side effects
None

See also
● “SYSDEPENDENCY system view” on page 1134
● “View dependencies” [SQL Anywhere Server - SQL Usage]

Examples
In this example, the sa_dependent_views system procedure is used to obtain the list of IDs for the views
that are dependent on the SalesOrders table. The procedure returns the table_id for SalesOrders, and the
dep_view_id for the dependent view, ViewSalesOrders.

sa_dependent_views('SalesOrders');

In this example, the sa_dependent_views system procedure is used in a SELECT statement to obtain the
list of names of views dependent on the SalesOrders table. The procedure returns the ViewSalesOrders view.

SELECT t.table_name FROM SYSTAB t,
sa_dependent_views('SalesOrders') v
WHERE t.table_id = v.dep_view_id;

sa_describe_cursor system procedure

Describes the name and type information for the columns of a cursor.

Syntax
sa_describe_cursor(cursor_name)

Arguments
● cursor_name This VARCHAR(256) value identifies the open cursor to describe.

Result set

Column name Data type Description

column_number INTEGER The ordinal position of the column described by this
row, starting at 1.

name VAR-
CHAR(128)

The name of the column.

System procedures

978 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Column name Data type Description

domain_id SMALLINT The data type of the column. See “SYSDOMAIN sys-
tem view” on page 1135.

domain_name VAR-
CHAR(128)

The data type name of the column. See “SYSDOMAIN
system view” on page 1135.

domain_name_with_size VAR-
CHAR(160)

The data type name, including size and precision (as
used in CREATE TABLE or CAST functions).

width INTEGER The length of a string parameter, the precision of a nu-
meric parameter, or the number of bytes of storage for
any other data type.

scale INTEGER The number of digits after the decimal point for numer-
ic data type columns, and zero for all other data types.

declared_width INTEGER The length of a string parameter, the precision of a nu-
meric parameter, or the number of bytes of storage for
any other data type.

user_type_id SMALLINT The user-defined data type if applicable, otherwise
NULL. See “SYSUSERTYPE system
view” on page 1187.

user_type_name VAR-
CHAR(128)

The user-defined data type if applicable, otherwise
NULL. See “SYSUSERTYPE system
view” on page 1187.

correlation_name VAR-
CHAR(128)

The correlation name associated with the expression if
applicable, otherwise NULL.

base_table_id UNSIGNED IN-
TEGER

The table_id if the expression is a column, otherwise
NULL. See “SYSTAB system view” on page 1173.

base_column_id UNSIGNED IN-
TEGER

The column_id if the expression is a column, otherwise
NULL. See “SYSTABCOL system
view” on page 1175.

base_owner_name VAR-
CHAR(128)

The owner name if the expression is a column, other-
wise NULL. See “SYSUSER system
view” on page 1185.

base_table_name VAR-
CHAR(128)

The table name if the expression is a column, otherwise
NULL.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 979

Column name Data type Description

base_column_name VAR-
CHAR(128)

The column name if the expression is a column, other-
wise NULL.

nulls_allowed BIT The indicator whether the expression can be NULL (1).

is_autoincrement BIT An indicator whether the expression is an autoincrement
column (1).

is_key_column BIT An indicator whether the expression is part of a key for
the result set (1). See the Remarks section below for
more information.

is_added_key_column BIT An indicator whether the expression is an added key col-
umn (1). See the Remarks section below for more infor-
mation.

Remarks
The sa_describe_cursor system procedure provides an API-independent mechanism for retrieving the
description of the columns returned by the cursor. The system procedure can be useful when writing
stored procedures that work with dynamic SQL.

The sa_describe_cursor system procedure can be used in a CALL statement or in the FROM clause of a
SELECT statement.

cursor_name must refer to an open cursor in the current connection. Use the sa_list_cursors system
procedure to get the list of open cursors for the connection. See “sa_list_cursors system
procedure” on page 1012.

Permissions
None

Side effects
None

See also
● “sa_copy_cursor_to_temp_table system procedure” on page 972

sa_describe_query system procedure
Describes the result set for a query with one row describing each output column of the query.

Syntax
sa_describe_query(
query

System procedures

980 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

[, add_keys]
)

Arguments
● query Use this LONG VARCHAR parameter to specify the text of the SQL statement being described.

● add_keys Use this optional BIT parameter to specify whether to determine a set of columns that
uniquely identify rows in the result set for the query being described. The default is 0; the database
server does not attempt to identify the columns. See the Remarks section below for a full explanation
of this parameter.

Result set

Column name Data type Description

column_number INTEGER The ordinal position of the column described by this
row, starting at 1.

name VAR-
CHAR(128)

The name of the column.

domain_id SMALLINT The data type of the column. See “SYSDOMAIN sys-
tem view” on page 1135.

domain_name VAR-
CHAR(128)

The data type name. See “SYSDOMAIN system
view” on page 1135.

domain_name_with_size VAR-
CHAR(160)

The data type name, including size and precision (as
used in CREATE TABLE or CAST functions).

width INTEGER The length of a string parameter, the precision of a nu-
meric parameter, or the number of bytes of storage for
any other data type.

scale INTEGER The number of digits after the decimal point for numer-
ic data type columns, and zero for all other data types.

declared_width INTEGER The length of a string parameter, the precision of a nu-
meric parameter, or the number of bytes of storage for
any other data type.

user_type_id SMALLINT The type_id of the user-defined data type if there is one,
otherwise NULL. See “SYSUSERTYPE system
view” on page 1187.

user_type_name VAR-
CHAR(128)

The name of the user-defined data type if there is one,
otherwise NULL. See “SYSUSERTYPE system
view” on page 1187.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 981

Column name Data type Description

correlation_name VAR-
CHAR(128)

The correlation name associated with the expression if
one is available, otherwise NULL.

base_table_id UNSIGNED IN-
TEGER

The table_id if the expression is a column, otherwise
NULL. See “SYSTAB system view” on page 1173.

base_column_id UNSIGNED IN-
TEGER

The column_id if the expression is a column, otherwise
NULL. See “SYSTABCOL system
view” on page 1175.

base_owner_name VAR-
CHAR(128)

The owner name if the expression is a column, other-
wise NULL. See “SYSUSER system
view” on page 1185.

base_table_name VAR-
CHAR(128)

The table name if the expression is a column, otherwise
NULL.

base_column_name VAR-
CHAR(128)

The column name if the expression is a column, other-
wise NULL.

nulls_allowed BIT An indicator that is 1 if the expression can be NULL, oth-
erwise 0.

is_autoincrement BIT An indicator that is 1 if the expression is a column de-
clared to be autoincrement, otherwise 0.

is_key_column BIT An indicator that is 1 if the expression is part of a key
for the result set, otherwise 0. See the Remarks section
below for more information.

is_added_key_column BIT An indicator that is 1 if the expression is an added key
column, otherwise 0. See the Remarks section below for
more information.

Remarks
The sa_describe_query procedure provides an API-independent mechanism to describe the name and type
information for the expressions in the result set of a query.

When 1 is specified for add_keys, the sa_describe_query procedure attempts to find a set of columns from
the objects being queried that, when combined, can be used as a key to uniquely identify rows in result set
of the query being described. The key takes the form of one or more columns from the objects being
queried, and may include columns that are not explicitly referenced in the query. If the optimizer finds a
key, the column or columns used in the key are identified in the results by an is_key_column value of 1. If
no key is found, an error is returned.

System procedures

982 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

For any column that is included in the key but that is not explicitly referenced in the query, the
is_added_key_column value is set to 1 to indicate that the column has been added to the results for the
procedure; otherwise, the value of is_added_key_column is 0.

If you do not specify add_keys, or you specify a value of 0, the optimizer does not attempt to find a key
for the result set, and the is_key_column and is_added_key_column columns contain NULL.

The declared_width and width values both describe the size of a column. The declared_width describes
the size of the column as defined by the CREATE TABLE statement or by the query, while the width
value gives the size of the column when fetched to the client. The client representation of a type may be
different from the database server. For example, date and time types are converted to strings if the
return_date_time_as_string option is on. For strings, columns declared with character-length semantics
have a declared_width value that matches the CREATE TABLE size, while the width value gives the
maximum number of bytes needed to store the returned string. For example:

Declaration width declared_width

CHAR(10) 10 10

CHAR(10 CHAR) 40 10

TIMESTAMP depends on the length of the timestamp format string 8

NUMERIC(10, 3) 10 (precision) 10 (precision)

Permissions
None

Side effects
None

See also
● “EXPRTYPE function [Miscellaneous]” on page 214
● “Character data types” on page 79
● “return_date_time_as_string option” [SQL Anywhere Server - Database Administration]

Examples
The following example describes the information returned when querying all columns in the Departments
table:

SELECT *
FROM sa_describe_query('SELECT * FROM Departments DEPT');

The results show the values of the is_key_column and is_added_key_column as NULL because the
add_keys parameter was not specified.

The following example describes the information returned by querying the DepartmentName and
Surname columns of the Employees table, joined with the Departments table:

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 983

SELECT *
FROM sa_describe_query('SELECT DepartmentName, Surname
 FROM Employees E JOIN Departments D ON E.EmployeeID = D.DepartmentHeadId',
 add_keys = 1);

The results shows a 1 in rows 3 and 4 of the result set, indicating that the columns needed to uniquely
identify rows in the result set for the query are Employees.EmployeeID and Departments.DepartmentID.
Also, a 1 is present in the is_added_key_column for rows 3 and 4 because Employees.EmployeeID and
Departments.DepartmentID were not explicitly referenced in the query being described.

sa_describe_shapefile system procedure
Describes the names and types of columns contained in a ESRI shape file. This system feature is for use
with the spatial feature.

Syntax
sa_describe_shapefile(shp_filename
, srid
[, encoding]
)

Arguments
● shp_filename A VARCHAR(512) parameter that identifies the location of the ESRI shape file.

The file name must have the extension .shp and must have an associated .dbf file with the same base
name located in the same directory.

● srid An INTEGER parameter that identifies the SRID for the geometries in the shape file. Specify
NULL to indicate the column can store multiple SRIDs. Specifying NULL limits the operations that
can be performed on the geometry values.

● encoding A VARCHAR(50) parameter that identifies the encoding to use when reading the shape
file. The default encoding is ISO-8859-1.

Result set

Column name Data type Description

column_number INTEGER The ordinal position of the column described by this
row, starting at 1.

name VARCHAR(128) The name of the column.

domain_name_with_size VARCHAR(160) The data type name, including size and precision (as
used in CREATE TABLE or CAST functions).

Remarks
The sa_describe_shapefile system procedure is used to describe the name and type of columns in an ESRI
shape file. This information can be used to create a table to load data from a shape file using the LOAD

System procedures

984 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

TABLE ... FORMAT SHAPEFILE. Alternately, this system procedure can be used to read a shape file by
specifying the WITH clause for OPENSTRING ... FORMAT SHAPEFILE.

Permissions
If the -gl database option has been set to all, all users can execute this system procedure. Otherwise, DBA
or READFILE authority is required.

See also
● “CREATE INDEX statement” on page 521
● “OpenString algorithm (OpenString)” [SQL Anywhere Server - SQL Usage]
● “LOAD TABLE statement” on page 750
● “Support for ESRI shapefiles” [SQL Anywhere Server - Spatial Data Support]

Example
The following example creates a table that can be loaded with ESRI shape file data:

SELECT 'create table esri_load(record_number int primary key, ' ||
 (SELECT list(name || ' ' || domain_name_with_size, ', '
 ORDER BY column_number)
 FROM sa_describe_shapefile('c:\\esri\\shapefile.shp', 1000004326)
 WHERE column_number > 1) || ')';

sa_disable_auditing_type system procedure
Disables auditing of specific events.

Syntax
sa_disable_auditing_type(' types ')

Arguments
● types Use this VARCHAR(128) parameter to specify a comma-delimited string containing one or

more of the following values:

○ all disables all types of auditing.

○ connect disables auditing of both successful and failed connection attempts.

○ connectFailed disables auditing of failed connection attempts.

○ DDL disables auditing of DDL statements.

○ options disables auditing of public options.

○ permission disables auditing of permission checks, user checks, and SETUSER statements.

○ permissionDenied disables auditing of failed permission and user checks.

○ triggers disables auditing in response to trigger events.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 985

Remarks
You can use the sa_disable_auditing_type system procedure to disable auditing of one or more categories
of information.

Setting this option to all disables all auditing. You can also disable auditing by setting the
PUBLIC.auditing option to Off.

Permissions
DBA authority

Side effects
None

See also
● “sa_enable_auditing_type system procedure” on page 987
● “Auditing database activity” [SQL Anywhere Server - Database Administration]
● “auditing option” [SQL Anywhere Server - Database Administration]

Example
To disable all auditing:

CALL sa_disable_auditing_type('all');

sa_disk_free_space system procedure
Reports information about space available for a dbspace, transaction log, transaction log mirror, and/or
temporary file.

Syntax
sa_disk_free_space([p_dbspace_name])

Arguments
● p_dbspace_name Use this VARCHAR(128) parameter to specify the name of a dbspace,

transaction log file, transaction log mirror file, or temporary file.

If there is a dbspace called log, mirror, or temp, you can prefix the keyword with an underscore. For
example, use _log to get information about the log file if a dbspace called log exists.

Specify SYSTEM to get information about the main database file, TEMPORARY or TEMP to get
information about the temporary file, TRANSLOG to get information about the transaction log, or
TRANSLOGMIRROR to get information about the transaction log mirror. See “Predefined dbspaces”
[SQL Anywhere Server - Database Administration].

System procedures

986 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Result set

Column name Data type Description

dbspace_name VARCHAR(128) This is the dbspace name, transaction log file, transaction log
mirror file, or temporary file.

free_space UNSIGNED BIGINT The number of free bytes on the volume.

total_space UNSIGNED BIGINT The total amount of disk space available on the drive where
the dbspace resides.

Remarks
If the p_dbspace_name parameter is not specified or is NULL, then the result set contains one row for
each dbspace, plus one row for each of the transaction log, transaction log mirror, and temporary file, if
they exist. If p_dbspace_name is specified, then exactly one or zero rows are returned (zero if no such
dbspace exists, or if log or mirror is specified and there is no log or mirror file).

For a list of the names of the predefined dbspaces for SQL Anywhere databases, see “Predefined
dbspaces” [SQL Anywhere Server - Database Administration].

Permissions
DBA authority

Side effects
None

Example
The following example uses the sa_disk_free_space system procedure to return a result set containing
information about available space.

CALL sa_disk_free_space();

dbspace_name free_space total_space

system 10952101888 21410402304

translog 10952101888 21410402304

temporary 10952101888 21410402304

sa_enable_auditing_type system procedure
Enables auditing and specifies which events to audit.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 987

Syntax
sa_enable_auditing_type('types')

Arguments
● types Use this VARCHAR(128) parameter to specify a comma-delimited string containing one or

more of the following values:

○ all enables all types of auditing.

○ connect enables auditing of both successful and failed connection attempts.

○ connectFailed enables auditing of failed connection attempts.

○ DDL enables auditing of DDL statements.

○ options enables auditing of public options.

○ permission enables auditing of permission checks, user checks, and SETUSER statements.

○ permissionDenied enables auditing of failed permission and user checks.

○ triggers enables auditing after a trigger event.

Remarks
sa_enable_auditing_type works in conjunction with the PUBLIC.auditing option to enable auditing of
specific types of information.

If you set the PUBLIC.auditing option to On, and do not specify which type of information to audit, the
default setting (all) takes effect. In this case, all types of auditing information are recorded.

If you set the PUBLIC.auditing option to On, and disable all types of auditing using
sa_disable_auditing_type, no auditing information is recorded. To re-establish auditing, you must use
sa_enable_auditing_type to specify which type of information you want to audit.

If you set the PUBLIC.auditing option to Off, then no auditing information is recorded, regardless of the
sa_enable_auditing_type setting.

Permissions
DBA authority

Side effects
None

See also
● “sa_disable_auditing_type system procedure” on page 985
● “Auditing database activity” [SQL Anywhere Server - Database Administration]
● “auditing option” [SQL Anywhere Server - Database Administration]

System procedures

988 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Example
To enable only option auditing:

CALL sa_enable_auditing_type('options');

sa_eng_properties system procedure
Reports database server property information.

Syntax
sa_eng_properties()

Result set

Column name Data type Description

PropNum INTEGER The database server property number.

PropName VARCHAR(255) The database server property name.

PropDescription VARCHAR(255) The database server property description.

Value LONG VARCHAR The database server property value.

Remarks
Returns the PropNum, PropName, PropDescription, and Value for each available server property. Values
are returned for all database server properties and statistics related to database servers. For a list of
available database server properties, see “System functions” on page 138.

Permissions
None

Side effects
None

See also
● “Database server properties” [SQL Anywhere Server - Database Administration]

Example
The following statement returns a set of available server properties

CALL sa_eng_properties();

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 989

PropNum PropName ...

1 IdleWrite ...

2 IdleChkPt ...

...

sa_external_library_unload system procedure
Unloads an external library.

Syntax
sa_external_library_unload(['lib_name'])

Arguments
● lib_name Optionally use this LONG VARCHAR parameter to specify the name of a library to be

unloaded. If no library is specified, all external libraries that are not in use are unloaded.

Remarks
If an external library is specified, but is in use or is not loaded, an error is returned. If no parameter is
specified, an error is returned if no loaded external libraries are found.

Permissions
DBA authority

Side effects
None

See also
● “SQL Anywhere external call interface” [SQL Anywhere Server - Programming]

Example
The following example unloads an external library called myextlib.dll:

CALL sa_external_library_unload('myextlib.dll');

The following example unloads all libraries that are not currently in use:

CALL sa_external_library_unload();

sa_flush_cache system procedure

Empties all pages for the current database in the database server cache.

System procedures

990 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
sa_flush_cache()

Remarks
Database administrators can use this procedure to empty the contents of the database server cache for the
current database. This is useful in performance measurement to ensure repeatable results.

Permissions
DBA authority

Side effects
None

sa_flush_statistics system procedure
Saves all cost model statistics in the database server cache.

Syntax
sa_flush_statistics()

Remarks
Use this procedure to flush current cost model statistics in the database, currently cached, to disk. You can
then retrieve the statistics using the sa_get_histogram system procedure, or the Histogram utility (dbhist).
When this system procedure runs, the ISYSCOLSTAT system table is updated. Under normal operation it
should not be necessary to execute this procedure because the server automatically writes out statistics to
disk on a periodic basis.

Permissions
DBA authority

Side effects
None

See also
● “sa_get_histogram system procedure” on page 995
● “SYSCOLSTAT system view” on page 1131
● “Histogram utility (dbhist)” [SQL Anywhere Server - Database Administration]

sa_get_bits system procedure
Takes a bit string and returns a row for each bit in the string. By default, only rows with a bit value of 1
are returned.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 991

Syntax
sa_get_bits(bit_string [, only_on_bits])

Arguments
● bit_string Use this LONG VARBIT parameter to specify the bit string from which to get the bits.

If the bit_string parameter is NULL, no rows are returned.

● only_on_bits Use this optional BIT to specify whether to return only rows with on bits (bits with
the value of 1). Specify 1 (the default) to return only rows with on bits; specify 0 to return rows for all
bits in the bit string.

Result set

Column Data type Description

bitnum UNSIGNED
INT

The position of the bit described by this row. For example, the first bit in
the bit string has bitnum of 1.

bit_val BIT The value of the bit at position bitnum. If only_on_bits is set to 1, this
value is always 1.

Remarks
The sa_get_bits system procedure decodes a bit string, returning one row for each bit in the bit string,
indicating the value of the bit. If only_on_bits is set to 1 (the default) or NULL, then only rows
corresponding to on bits are returned. An optimization allows this case to be processed efficiently for long
bit strings that have few on bits. If only_on_bits is set to 0, then a row is returned for each bit in the bit string.

For example, the statement CALL sa_get_bits('1010') returns the following result set,
indicating on bits in positions 1 and 3 of the bit string.

bitnum bit_val

1 1

3 1

The sa_get_bits system procedure can be used to convert a bit string into a relation. This can be used to
join a bit string with a table, or to retrieve a bit string as a result set instead of as a single binary value. It
can be more efficient to retrieve a bit string as a result set if there are a large number of 0 bits, as these do
not need to be retrieved.

Permissions
None

Side effects
None

System procedures

992 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “sa_split_list system procedure” on page 1082
● “SET_BIT function [Bit array]” on page 320
● “SET_BITS function [Aggregate]” on page 321
● “GET_BIT function [Bit array]” on page 218

Examples
The following example shows how to use the sa_get_bits system procedure to encode a set of integers as a
bit string, and then decode it for use in a join:

CREATE VARIABLE @s_depts LONG VARBIT;
SELECT SET_BITS(DepartmentID)
 INTO @s_depts
 FROM Departments
 WHERE DepartmentName like 'S%';
SELECT *
 FROM sa_get_bits(@s_depts) B
 JOIN Departments D ON B.bitnum = D.DepartmentID;

sa_get_dtt system procedure
Reports the current value of the Disk Transfer Time (DTT) model, which is part of the cost model.

Syntax
sa_get_dtt(file_id)

Arguments
● file_id Use this UNSIGNED SMALLINT parameter to specify the database file ID.

Remarks
You can obtain the file_id from the SYSDBSPACE system view.

This procedure, intended for internal diagnostic purposes, retrieves data from the ISYSOPTSTAT system
table.

Result set

Column name Data type Description

BandSize UNSIGNED INTEGER Size, in pages, of disk over which random access takes place.

ReadTime UNSIGNED INTEGER Amortized cost, in microseconds, of reading one page.

WriteTime UNSIGNED INTEGER Amortized cost, in microseconds, of writing one page.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 993

Permissions
None

Side effects
None

See also
● “SYSDBSPACE system view” on page 1133
● “SYSOPTSTAT system view” on page 1153
● “sa_get_dtt_groupreads system procedure” on page 994

sa_get_dtt_groupreads system procedure

Estimates and reports the cost of issuing group reads on the database server.

Syntax
sa_get_dtt_groupreads(file_id)

Arguments
● file_id Use this UNSIGNED SMALLINT parameter to specify the database file ID.

Remarks
You can obtain the file_id from the SYSDBSPACE system view. The estimates returned by the
sa_get_dtt_groupreads system procedure are part of the cost model, and are used to select group reads of
appropriate sizes during operations such as sorting.

This procedure, intended for internal diagnostic purposes, retrieves data from the ISYSOPTSTAT system
table. Rows are not returned if the specified dbspace does not have any estimates recorded in
SYSOPTSTAT. To tailor estimates for specific hardware devices, execute the following statement:

ALTER DATABASE CALIBRATE GROUP READ;

Result set

Column name Data type Description

GroupSize UNSIGNED INTEGER Size, in pages, of disk over which random access takes place.

ReadTime FLOAT Amortized cost, in microseconds, of reading one page.

Permissions
None

Side effects
None

System procedures

994 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “SYSDBSPACE system view” on page 1133
● “SYSOPTSTAT system view” on page 1153
● “ALTER DATABASE statement” on page 386
● “sa_get_dtt system procedure” on page 993

sa_get_histogram system procedure
Retrieves the histogram for a column.

Syntax
sa_get_histogram(
 col_name,
 tbl_name
 [, owner_name]
)

Arguments
● col_name Use this CHAR(128) parameter to specify the column for which to retrieve the histogram.

● tbl_name Use this CHAR(128) parameter to specify the table in which col_name is found.

● owner_name Use this optional CHAR(128) parameter to specify the owner of tbl_name.

Result set

Column name Data type Description

StepNumber SMALLINT Histogram bucket number. The frequency of the first bucket (Step-
Number = 0) indicates the selectivity of NULLs.

Low CHAR(128) Lowest (inclusive) column value in the bucket.

High CHAR(128) Highest (exclusive) column value in the bucket.

Frequency DOUBLE Selectivity of values in the bucket.

Remarks
This procedure, intended for internal diagnostic purposes, retrieves column statistics from the database
server for the specified columns. Note that while these statistics are permanently stored in the
ISYSCOLSTAT system table, they are maintained in memory while the server is running, and written to
ISYSCOLSTAT periodically. As such, the statistics returned by the sa_get_histogram system procedure
may differ from those obtained by selecting from ISYSCOLSTAT at any given point of time.

You can manually update ISYSCOLSTAT with the latest statistics held in memory using the
sa_flush_statistics system procedure, however, this is not recommended in a production environment, and
should be reserved for diagnostic purposes. See “sa_flush_statistics system procedure” on page 991.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 995

A singleton bucket is indicated by a Low value in the result set being equal to the corresponding High value.

It is recommended that you use the Histogram utility to view histograms. See “Histogram utility (dbhist)”
[SQL Anywhere Server - Database Administration].

To determine the selectivity of a predicate over a string column, use the ESTIMATE or
ESTIMATE_SOURCE functions. For string columns, both sa_get_histogram and the Histogram utility
retrieve nothing from the ISYSCOLSTAT system table. Attempting to retrieve string data generates an
error. See “ESTIMATE function [Miscellaneous]” on page 204, and “ESTIMATE_SOURCE function
[Miscellaneous]” on page 205.

Statistics (including histograms) may not be present for a table or materialized view, for example, if
statistics were recently dropped. In this case, the result set for the sa_get_histogram system procedure is
empty. To create statistics for a table or materialized view, execute a CREATE STATISTICS statement.
See “CREATE STATISTICS statement” on page 588.

Permissions
DBA authority

Side effects
None

See also
● “Optimizer estimates and column statistics” [SQL Anywhere Server - SQL Usage]
● “Histogram utility (dbhist)” [SQL Anywhere Server - Database Administration]
● “SYSCOLSTAT system view” on page 1131

Example
For example, the following statement retrieves the histogram for the ProductID column of the
SalesOrderItems table:

CALL sa_get_histogram('ProductID', 'SalesOrderItems');

sa_get_request_profile system procedure
Analyzes the request log to determine the execution times of similar statements.

Syntax
sa_get_request_profile(
 [filename
 [, conn_id
 [, first_file
 [, num_files]]]]
)

System procedures

996 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Arguments
● filename Use this optional LONG VARCHAR parameter to specify the request logging file name.

● conn_id Use this optional UNSIGNED INTEGER parameter to specify the connection ID number.

● first_file Use this optional INTEGER parameter to specify the first request log file to analyze.

● num_files Use this optional INTEGER parameter to specify the number of request log files to analyze.

Remarks
This procedure calls sa_get_request_times to process a request log file, and then summarizes the results
into the global temporary table satmp_request_profile. This table contains the statements from the log
along with how many times each was executed, and their total, average, and maximum execution times.
The table can be sorted in various ways to identify targets for performance optimization efforts.

If you do not specify a log file (filename), the default is the current log file that is specified with the -zo
database server option, or that has been specified by

sa_server_option('RequestLogFile', filename)

If a connection ID is specified, it is used to filter information from the log so that only requests for that
connection are retrieved.

Permissions
DBA authority

Side effects
Automatic commit

Example
The following command obtains the request times for the requests in the files req.out.3, req.out.4, and
req.out.5.

CALL sa_get_request_profile('req.out',0,3,3);

See also
● “sa_get_request_times system procedure” on page 997
● “sa_statement_text system procedure” on page 1085
● “sa_server_option system procedure” on page 1060
● “-zo dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]

sa_get_request_times system procedure
Analyzes the request log to determine statement execution times.

Syntax
sa_get_request_times(filename
 [, conn_id

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 997

 [, first_file
 [, num_files]]]
)

Arguments
● filename Use this optional LONG VARCHAR parameter to specify the request logging file name.

● conn_id Use this optional UNSIGNED INTEGER parameter to specify the connection ID number.

● first_file Use this optional INTEGER parameter to specify the first file to analyze.

● num_files Use this optional INTEGER parameter to specify the number of request log files to analyze.

Remarks
This procedure reads the specified request log and populates the global temporary table
satmp_request_time with the statements from the log and their execution times.

For statements such as inserts and updates, the execution time is straightforward. For queries, the time is
calculated from preparing the statement to dropping it, including describing it, opening a cursor, fetching
rows, and closing the cursor. For most queries, this is an accurate reflection of the amount of time taken.
When the cursor is left open while other events take place, such as operator interaction or client
processing, the time appears as a large value but is not a true indication that the query is costly.

This procedure recognizes host variables in the request log and populates the global temporary table
satmp_request_hostvar with their values. For older databases where this temporary table does not exist,
host variable values are ignored.

If you do not specify a log file, the default is the current log file that is specified in the command with -zo,
or that has been specified by

sa_server_option('RequestLogFile', filename)

If a connection ID is specified, it is used to filter information from the log so that only requests for that
connection are retrieved.

Permissions
DBA authority

Side effects
Automatic commit

Example
The following command obtains the execution times for the requests in the files req.out.3, req.out.4, and
req.out.5.

CALL sa_get_request_times('req.out',0,3,3);

System procedures

998 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “sa_get_request_profile system procedure” on page 996
● “sa_statement_text system procedure” on page 1085
● “sa_server_option system procedure” on page 1060

sa_get_server_messages system procedure [deprecated]

Allows you to return constants from the database server messages window as a result set.

This system procedure is deprecated. Use sa_server_messages instead. See “sa_server_messages system
procedure” on page 1057.

Syntax
sa_get_server_messages(first_line)

Arguments
● first_line Use this INTEGER parameter to specify the line number from which to start displaying

server messages.

Result set

Column name Data type Description

line_num INTEGER The line number of a server message.

message_text VARCHAR(255) The server message text.

message_time TIMESTAMP The time of the message.

Remarks
This procedure takes an INTEGER parameter that specifies the starting line number to display, and
returns a row for that line and for all subsequent lines. If the starting line is negative, the result set starts at
the first available line. The result set includes the line number, message text, and message time.

Permissions
None

Side effects
None

Example
The following example uses the sa_get_server_messages system procedure to return a result set
containing the content of the database server messages window, starting from line 16.

CALL sa_get_server_messages(16);

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 999

line_num message_text ...

16 Running on Windows XP Build 2195... ...

17 2132K of memory used for caching ...

...

sa_get_table_definition system procedure
Returns a LONG VARCHAR string containing the SQL statements required to create the specified table
and its indexes, foreign keys, triggers, and granted permissions.

Syntax
sa_get_table_definition(@owner, @tabname)

Arguments
● @owner Use this CHAR(128) parameter to specify the owner of @tabname.

● @tabname Use this CHAR(128) parameter to specify the name of the table.

Remarks
To create a new table with the same definition, use the string returned by the sa_get_table_definition
system procedure with the EXECUTE IMMEDIATE statement and the LOCATE, SUBSTRING, and
REPLACE functions.

Permissions
DBA authority

Side effects
None

See also
● “sa_split_list system procedure” on page 1082
● “EXECUTE IMMEDIATE statement [SP]” on page 678
● “LOCATE function [String]” on page 253
● “SUBSTRING function [String]” on page 340
● “REPLACE function [String]” on page 309

Example
The following statement uses the sa_get_table_definition system procedure to display the string
containing the SQL statements required to create the Departments table.

System procedures

1000 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SELECT row_value
FROM sa_split_list(sa_get_table_definition('GROUPO', 'Departments'),
CHAR(10));

sa_get_user_status system procedure
Allows you to determine the current status of users.

Syntax
sa_get_user_status()

Arguments
None

Result set

Column name Data type Description

user_id UNSIGNED INT A unique number identifying the user.

user_name CHAR(128) The name of the user.

connections INT The current number of connections by this user.

failed_logins UNSIGNED INT The number of failed login attempts made by the user.

last_login_time TIMESTAMP The time the user last logged in.

locked TINYINT Indicates if the user account is locked.

reason_locked LONG VARCHAR The reason the account is locked.

Remarks
This procedure returns a result set that shows the current status of users. In addition to basic user
information, the procedure includes a column indicating if the user has been locked out and a column with
a reason for the lockout. Users can be locked out for the following reasons: locked due to policy,
password expiry, or too many failed attempts.

A user without DBA authority can obtain user information by creating and executing a cover procedure
owned by a DBA.

Permissions
DBA authority is required to view information about all users. Users without DBA authority can view
their own information. In addition, users without DBA authority can view information about other users
by executing a cover procedure owned by a DBA.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1001

Side effects
None

See also
● “Managing login policies” [SQL Anywhere Server - Database Administration]
● “Creating a new login policy” [SQL Anywhere Server - Database Administration]
● “Creating a user and assigning a login policy” [SQL Anywhere Server - Database Administration]
● “Assigning a login policy to an existing user” [SQL Anywhere Server - Database Administration]
● “Altering a login policy” [SQL Anywhere Server - Database Administration]
● “Dropping a login policy” [SQL Anywhere Server - Database Administration]

Example
The following example uses the sa_get_user_status system procedure to return the status of database users.

CALL sa_get_user_status;

sa_http_header_info system procedure
Returns HTTP request header names and values.

Syntax
sa_http_header_info([header_parm])

Arguments
● header_parm Use this optional VARCHAR(255) parameter to specify an HTTP header name.

Result set

Column name Data type Description

Name VARCHAR(255) The HTTP header name.

Value LONG VARCHAR The HTTP header value.

Remarks
The sa_http_header_info system procedure returns header names and values. If you do not specify the
header name using the optional parameter, the result set contains values for all headers.

This procedure returns a non-empty result set if it is called while processing an HTTP request within a
web service.

Permissions
None

System procedures

1002 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Side effects
None

See also
● “NEXT_HTTP_HEADER function [HTTP]” on page 272
● “HTTP_HEADER function [HTTP]” on page 233
● “Web services functions” on page 135
● “Web services system procedures” on page 941

sa_http_php_page system procedure
Returns the result of passing the PHP code that is to be interpreted through a PHP interpreter using the
current HTTP request for context information such as headers, GET/POST data, protocol version, request
URL, method, and so on.

Syntax
sa_http_php_page(php_page)

Arguments
● php_page This LONG VARCHAR parameter contains the entire PHP code that is to be

interpreted, including the starting and ending markers (<?php and ?>).

Remarks
To use this system procedure, the PHP external environment must already be installed. See “The PHP
external environment” [SQL Anywhere Server - Programming].

The owner of this system procedure is DBO. However, for improved security, the sa_http_php_page
system procedure is executed as the invoker.

Permissions
None

Side effects
None

See also
● “sa_http_php_page_interpreted system procedure” on page 1003
● “Web services functions” on page 135
● “Web services system procedures” on page 941

sa_http_php_page_interpreted system procedure

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1003

Returns the result of passing the PHP code that is to be interpreted through a PHP interpreter using the
specified parameters for context information such as headers, GET/POST data, protocol version, request
URL, method, and so on.

Syntax
sa_http_php_page_interpreted(
php_page,
method,
url,
version,
headers,
request_body
)

Arguments
● php_page This LONG VARCHAR parameter contains the entire PHP code that is to be

interpreted, including the starting and ending markers (<?php and ?>).

● method This LONG VARCHAR parameter contains the HTTP request method (for example,
GET, POST, PUT, or one of the other standard request methods). The value for method can be
determined using the value of @HttpMethod in the current HTTP request.

● url This LONG VARCHAR parameter contains the full HTTP request URL, including the query
string, if present. The value for url can be determined using the value of @HttpURI in the current
HTTP request.

● version This LONG VARCHAR parameter contains the HTTP request protocol version (for
example, HTTP/1.1). The value for version can be determined using the value of @HttpVersion in the
current HTTP request.

● headers This LONG BINARY parameter contains the HTTP request headers in the standard
HTTP header format: Field-Name: Value\r\n. The value for headers can be retrieved from the
current HTTP request using the following SELECT statement:

SELECT LIST(name || ': ' || value, CHAR(13) || CHAR(10))
 FROM sa_http_header_info();

● request_body This LONG BINARY parameter contains the HTTP request body in binary form.
The value for request_body can be retrieved from the current HTTP request using the HTTP_BODY
function. See “HTTP_BODY function [HTTP]” on page 230.

Remarks
To use this system procedure, the PHP external environment must already be installed. See “The PHP
external environment” [SQL Anywhere Server - Programming].

To use this system procedure outside web services requests, you must provide request information. Any
headers set within the PHP code are lost.

The owner of this system procedure is DBO. However, for improved security, the
sa_http_php_page_interpreted system procedure is executed as the invoker.

System procedures

1004 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Permissions
None

Side effects
None

See also
● “HTTP_BODY function [HTTP]” on page 230
● “sa_http_php_page system procedure” on page 1003
● “sa_http_header_info system procedure” on page 1002
● “Web services functions” on page 135
● “Web services system procedures” on page 941

sa_http_variable_info system procedure
Returns HTTP variable names and values.

Syntax
sa_http_variable_info([variable_parm])

Arguments
● variable_parm Use this optional VARCHAR(255) parameter to specify an HTTP variable name.

Result set

Column name Data type Description

Name VARCHAR(255) The HTTP variable name.

Value LONG VARCHAR The HTTP variable value.

Remarks
The sa_http_variable_info system procedure returns variable names and values. If you do not specify the
variable name using the optional parameter, the result set contains values for all variables.

This procedure returns a non-empty result set if it is called while processing an HTTP request within a
web service.

Permissions
None

Side effects
None

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1005

See also
● “NEXT_HTTP_VARIABLE function [HTTP]” on page 274
● “HTTP_VARIABLE function [HTTP]” on page 236
● “sa_http_header_info system procedure” on page 1002
● “Web services functions” on page 135
● “Web services system procedures” on page 941

sa_index_density system procedure
Reports information about the amount of fragmentation and skew within indexes.

Syntax
sa_index_density(
 [tbl_name
 [, owner_name]]
)

Arguments
● tbl_name Use this optional CHAR(128) parameter to specify the table name.

● owner_name Use this optional CHAR(128) parameter to specify the owner name.

Result set

Column
name

Data type Description

Table-
Name

CHAR(128) The name of a table.

TableId UNSIGNED IN-
TEGER

The table ID.

Index-
Name

CHAR(128) The name of an index.

IndexId UNSIGNED IN-
TEGER

The index ID. This column contains one of the following values:

● 0 for primary keys

● SYSFKEY.foreign_key_id for foreign keys

● SYSIDX.index_id for all other indexes

System procedures

1006 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Column
name

Data type Description

Index-
Type

CHAR(4) The index type. This column contains one of the following values:

● PKEY for primary keys

● FKEY for foreign keys

● UI for unique indexes

● UC for unique constraints

● NUI for non-unique indexes

LeafPages UNSIGNED IN-
TEGER

The number of leaf pages.

Density DOUBLE A fraction between 0 and 1 that provides an indication of how full
each index page is (on average).

Skew DOUBLE A number that provides an indication of the level of unbalance in an
index. A value of 1 indicates a perfectly balanced index. Larger values
indicate a higher degree of skew.

Remarks
Use the sa_index_density system procedure to obtain information about the degree of fragmentation and
skew in indexes. For indexes with a high number of leaf pages, higher density values and lower skew
values are desirable.

Index density reflects the average fullness of the index pages, as a percentage. A density of 0.7 indicates
that index pages are, on average, 70% full with index data. Index skew reflects the typical deviation from
the average density. The amount of skew is important to the optimizer when making selectivity estimates.

When the number of leaf pages is low, you do not need to be concerned about density and skew values.
Density and skew values become important only when the number of leaf pages are high. When the
number of leaf pages is high, a low density value can indicate fragmentation, and a high skew value can
indicate that indexes are not well balanced. Both of these can be factors in poor performance. Executing a
REORGANIZE TABLE statement addresses both of these issues. See “REORGANIZE TABLE
statement” on page 807.

If you do not specify a table when calling this procedure, the information for all indexes on all tables in
the database is returned.

You can also use the Application Profiling Wizard to determine whether index density and skew are at
acceptable levels. See “Application Profiling Wizard” [SQL Anywhere Server - SQL Usage].

Permissions
DBA authority

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1007

Side effects
None

See also
● “Reduce index fragmentation and skew” [SQL Anywhere Server - SQL Usage]

Example
The following example uses the sa_index_density system procedure to return a result set summarizing the
amount of fragmentation and skew within all the indexes in the database.

CALL sa_index_density();

sa_index_levels system procedure
Assists in performance tuning by reporting the number of levels in an index.

Syntax
sa_index_levels(
[tbl_name
[, owner_name]]
)

Arguments
● tbl_name Use this optional CHAR(128) parameter to specify the table name.

● owner_name Use this optional CHAR(128) parameter to specify the owner name.

Result set

Column
name

Data type Description

TableName CHAR(128) The name of a table.

TableId UNSIGNED IN-
TEGER

The table ID.

IndexName CHAR(128) The name of an index.

IndexId UNSIGNED IN-
TEGER

The index ID. This column contains one of the following:

● 0 for primary keys

● SYSFKEY.foreign_key_id for foreign keys

● SYSIDX.index_id for all other indexes

System procedures

1008 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Column
name

Data type Description

IndexType CHAR(4) The index type. This column contains one of the following values:

● PKEY for primary keys

● FKEY for foreign keys

● UI for unique indexes

● UC for unique constraints

● NUI for non-unique indexes

Levels INTEGER The number of levels in the index.

Remarks
The number of levels in the index tree determines the number of I/O operations needed to access a row
using the index. Indexes with a few levels are more efficient than indexes with a large number of levels.

The procedure returns a result set containing the table name, the table ID, the index name, the index ID,
the index type, and the number of levels in the index.

If no arguments are supplied, levels are returned for all indexes in the database. If only tbl_name is
supplied, levels for all indexes on that table are supplied. If tbl_name is NULL and an owner_name is
given, only levels for indexes on tables owned by that user are returned.

Permissions
DBA authority

Side effects
None

See also
● “CREATE INDEX statement” on page 521
● “Using indexes” [SQL Anywhere Server - SQL Usage]

Example
The following example uses the sa_index_levels system procedure to return the number of levels in the
Products index.

CALL sa_index_levels();

TableName TableId IndexName ... Levels

Products 436 Products ... 1

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1009

TableName TableId IndexName ... Levels

...

sa_install_feature system procedure

Installs additional features that were not present in the database when SQL Anywhere was installed.

Syntax
sa_install_feature(' feat_name ')

Arguments
● feat_name A LONG VARCHAR parameter that identifies the feature to install. The supported

feature names are:

Value Description

st_geome-
try_prede-
fined_uom

Installs many predefined units of measure that are not installed by default in new
databases.

st_geome-
try_prede-
fined_srs

Installs many predefined spatial reference systems and units of measure that are
not installed by default in new databases.

st_geome-
try_com-
pat_func

Installs a set of spatial compatibility functions. These functions can be used as an
alternative to the spatial methods. See “Spatial compatibility functions” [SQL Any-
where Server - Spatial Data Support].

Feature name definitions are provided in the st_geometry_config.tgz file located in the scripts
directory. If the file is removed and you attempt to install features that are dependent on the file, an
error is returned.

Remarks
You can query the feat_name value to see what will be installed. For example, the following query returns
the units of measure that would be installed for st_geometry_predefined_uom.

SELECT * FROM dbo.st_geometry_predefined_uom('CREATE');

The previous example also shows you parameter names so you can query for specific values using a
WHERE clause. For example, the following statement queries the unit_name parameter for the chain unit
of measure:

SELECT * FROM dbo.st_geometry_predefined_uom('CREATE') WHERE
unit_name='chain';

System procedures

1010 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

unit_name unit_type conversion_factor ...

chain LINEAR 20.1168 ...

The following returns all units of measure that are based on foot:

SELECT * FROM dbo.st_geometry_predefined_uom() WHERE unit_name LIKE '%foot%';

Use the following query to find the spatial reference systems that would be installed:

SELECT * FROM dbo.st_geometry_predefined_srs();

The following statement queries for an SRS by organization_name and organization_coordsys_id:

SELECT * FROM dbo.st_geometry_predefined_srs() WHERE organization='EPSG' AND
organization_coordsys_id=2295;

Permissions
DBA or be a member of the SYS_SPATIAL_ADMIN_ROLE group

See also
● “Spatial reference systems (SRS) and Spatial reference identifiers (SRID)” [SQL Anywhere Server -

Spatial Data Support]
● “Units of measure” [SQL Anywhere Server - Spatial Data Support]
● “Spatial compatibility functions” [SQL Anywhere Server - Spatial Data Support]

Example
The following statement installs all of the predefined units of measure that are not installed by default in a
new database:

CALL sa_install_feature('st_geometry_predefined_uom');

sa_java_loaded_classes system procedure
Lists the classes currently loaded by the database server into a Java VM.

Syntax
sa_java_loaded_classes()

Result set

Column name Data type Description

class_name VARCHAR(512) The name of a class currently loaded by the database server into a
Java VM.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1011

Remarks
Returns a result set containing all the names of the Java classes currently loaded by the database server
into a Java VM.

The procedure can be useful to diagnose missing classes. It can also be used to identify which classes
from a particular jar are used by a given application.

Permissions
DBA authority

Side effects
None

See also
● “Installing Java classes into a database” [SQL Anywhere Server - Programming]

sa_list_cursors system procedure
Returns the list of cursors in use by the current connection.

Syntax
sa_list_cursors()

Result set

Column name Data type Description

handle UNSIGNED INT A unique handle identifying the cursor.

scope INTEGER The scope of the call stack where the cursor is open.

cursor_name VARCHAR(128) The cursor name.

is_open BIT The indicator of whether the cursor is currently open (1).

is_pinned BIT The indicator of whether the cursor is currently pinned in mem-
ory (1) in anticipation of reuse.

fetch_count UNSIGNED BIGINT The number of rows that have been fetched from the cursor.

Remarks
The sa_list_cursors system procedure can be used in a CALL statement or in the FROM clause of a
SELECT statement.

System procedures

1012 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Permissions
None

Side effects
None

See also
● “sa_copy_cursor_to_temp_table system procedure” on page 972
● “sa_describe_cursor system procedure” on page 978

Example
The following example returns the list of open cursors for the connection:

CALL sa_list_cursors();

sa_load_cost_model system procedure
Replaces the current cost model with the cost model stored in the specified file.

Syntax
sa_load_cost_model (file_name)

Arguments
● file_name Use this CHAR(1024) parameter to specify the name of the cost model file to load.

Remarks
The optimizer uses cost models to determine optimal access plans for queries. The database server
maintains a cost model for each database. The cost model for a database can be recalibrated at any time
using the CALIBRATE SERVER clause of the ALTER DATABASE statement. For example, you might
decide to recalibrate the cost model if you move the database onto non-standard hardware.

The sa_load_cost_model system procedure allows you to load a cost model that has been saved to file
(file_name). Loading a cost model replaces the current cost model for the database.

Note
The sa_unload_cost_model system procedure does not include CALIBRATE PARALLEL READ
information in the file that sa_load_cost_model loads.

Using the sa_load_cost_model system procedure can eliminate repetitive, time-consuming recalibration
activities when there is a large number of identical hardware installations.

Exclusive use of the database is required when loading the new cost model.

When loading a cost model, consider whether it was generated for a database that is located on similar
hardware. Loading a cost model from a database that is stored on significantly different hardware may
cause poor performance due to inefficient access plans.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1013

Cost models are saved to file using the sa_unload_cost_model system procedure. See
“sa_unload_cost_model system procedure” on page 1094.

Permissions
DBA authority

Side effects
The database server performs a COMMIT after loading the new cost model.

See also
● “ALTER DATABASE statement” on page 386
● “sa_unload_cost_model system procedure” on page 1094
● “Query optimization and execution” [SQL Anywhere Server - SQL Usage]

Example
The following example loads the cost model from a file called costmodel8:

CALL sa_load_cost_model('costmodel8');

sa_locks system procedure
Displays all locks in the database.

Syntax
sa_locks(
 [connection
 [, creator
 [, table_name
 [, max_locks]]]]
)

Arguments
● connection Use this INTEGER parameter to specify a connection ID number. The procedure

returns lock information only about the specified connection. The default value is 0 (or NULL), in
which case information is returned about all connections.

● creator Use this CHAR(128) parameter to specify a user ID. The procedure returns information
only about the tables owned by the specified user. The default value for the creator parameter is
NULL. When this parameter is set to NULL, sa_locks returns the following information:

○ if the table_name parameter is unspecified, locking information is returned for all tables in the
database

○ if the table_name parameter is specified, locking information is returned for tables with the
specified name that were created by the current user

System procedures

1014 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● table_name Use this CHAR(128) parameter to specify a table name. The procedure returns
information only about the specified tables. The default value is NULL, in which case information is
returned about all tables.

● max_locks Use this INTEGER parameter to specify the maximum number of locks for which to
return information. The default value is 1000. The value -1 means return all lock information.

Result set

Column name Data type Description

conn_name VARCHAR(128) The name of the current connection.

conn_id INTEGER The connection ID number.

user_id CHAR(128) The user ID for the connection.

table_type CHAR(6) The type of table. This type is either BASE for a table,
GLBTMP for global temporary table, or MVIEW for a mate-
rialized view.

creator VARCHAR(128) The owner of the table.

table_name VARCHAR(128) The table on which the lock is held.

index_id INTEGER The index ID or NULL.

lock_class CHAR(8) The lock class. One of Schema, Row, Table, or Position. See
“Objects that can be locked” [SQL Anywhere Server - SQL Us-
age].

lock_duration CHAR(11) The duration of the lock. One of Transaction, Position, or Con-
nection.

lock_type CHAR(9) The lock type (this is dependent on the lock class).

row_identifier UNSIGNED BIGINT The identifier for the row. This is either an 8-byte row identi-
fier or NULL.

Remarks
The sa_locks procedure returns a result set containing information about all the locks in the database.

The value in the lock_type column depends on the lock classification in the lock_class column. The
following values can be returned:

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1015

Lock
class

Lock types Comments

Sche-
ma

Shared (shared schema
lock)

Exclusive (exclusive
schema lock)

For schema locks, the row_identifier and index ID values are
NULL. See “Schema locks” [SQL Anywhere Server - SQL Usage].

Row Read (read lock)

Intent (intent lock)

ReadPK (read lock)

Write (write lock)

WriteNoPK (write lock)

Surrogate (surrogate
lock)

Row read locks can be short-term locks (scans at isolation level 1)
or can be long-term locks at higher isolation levels. The lock_dura-
tion column indicates whether the read lock is of short duration be-
cause of cursor stability (Position) or long duration, held until COM-
MIT/ROLLBACK (Transaction). Row locks are always held on a
specific row, whose 8-byte row identifier is reported as a 64-bit in-
teger value in the row_identifier column. A surrogate lock is a spe-
cial case of a row lock. Surrogate locks are held on surrogate en-
tries, which are created when referential integrity checking is de-
layed. See “Locking during inserts” [SQL Anywhere Server - SQL
Usage]. There is not a unique surrogate lock for every surrogate en-
try created in a table. Rather, a surrogate lock corresponds to the
set of surrogate entries created for a given table by a given connec-
tion. The row_identifier value is unique for the table and connec-
tion associated with the surrogate lock. See “Row locks” [SQL Any-
where Server - SQL Usage].

If required, key and non-key portions of a row can be locked inde-
pendently. A connection can obtain a read lock on the key portion
of a row for shared (read) access so that other connections can still
obtain write locks on other non-key columns of a row. Updating non-
key columns of a row does not interfere with the insertion and dele-
tion of foreign rows referencing that row. See “Objects that can be
locked” [SQL Anywhere Server - SQL Usage].

Table Shared (shared table
lock)

Intent (intent to update
table lock)

Exclusive (exclusive ta-
ble lock)

See “Table locks” [SQL Anywhere Server - SQL Usage].

Posi-
tion

Phantom (phantom
lock)

Insert (insert lock)

Usually a position lock is also held on a specific row, and that
row's 64-bit row identifier appears in the row_identifier column in
the result set. However, Position locks can be held on entire scans
(index or sequential), in which case the row_identifier column is
NULL. See “Position locks” [SQL Anywhere Server - SQL Usage].

System procedures

1016 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

A position lock can be associated with a sequential table scan, or an index scan. The index_id column
indicates whether the position lock is associated with a sequential scan. If the position lock is held
because of a sequential scan, the index_id column is NULL. If the position lock is held as the result of a
specific index scan, the index identifier of that index is listed in the index_id column. The index identifier
corresponds to the primary key of the ISYSIDX system table, which can be viewed using the SYSIDX
view. If the position lock is held for scans over all indexes, the index ID value is -1.

Permissions
DBA authority

Side effects
None

See also
● “How locking works” [SQL Anywhere Server - SQL Usage]
● “SYSIDX system view” on page 1143

Example
For an example of this system procedure, and tips to augment the amount of information you can return,
see “Obtaining information about locks” [SQL Anywhere Server - SQL Usage].

sa_make_object system procedure
Ensures that a skeletal instance of an object exists before executing an ALTER statement.

Syntax
sa_make_object(
 objtype,
 objname
 [, owner
 [, tabname]]
)

objtype:
'procedure'
| 'function'
| 'view'
| 'trigger'
| 'service'
| 'event'

Arguments
● objtype Use this CHAR(30) parameter to specify the type of object being created. If objtype is

'trigger', this argument specifies the owner of the table on which the trigger is to be created.

● objname Use this CHAR(128) parameter to specify the name of the object to be created.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1017

● owner Use this optional CHAR(128) parameter to specify the owner of the object to be created.
The default value is CURRENT USER.

● tabname This CHAR(128) parameter is required only if objtype is 'trigger', in which case you use
it to specify the name of the table on which the trigger is to be created.

Remarks
This procedure is useful in scripts or command files that are run repeatedly to create or modify a database
schema. A common problem in such scripts is that the first time they are run, a CREATE statement must
be executed, but subsequent times an ALTER statement must be executed. This procedure avoids the
necessity of querying the system views to find out whether the object exists.

To use the procedure, follow it by an ALTER statement that contains the entire object definition.

Permissions
Resource authority is required to create or modify database objects

Side effects
Automatic commit

See also
● “ALTER EVENT statement” on page 394
● “ALTER FUNCTION statement” on page 397
● “ALTER PROCEDURE statement” on page 407
● “ALTER TRIGGER statement” on page 440
● “ALTER VIEW statement” on page 443
● “ALTER SERVICE statement” on page 415

Examples
The following statements ensure that a skeleton procedure definition is created, define the procedure, and
grant permissions on it. A command file containing these instructions could be run repeatedly against a
database without error.

CALL sa_make_object('procedure','myproc');
ALTER PROCEDURE myproc(in p1 INT, in p2 CHAR(30))
BEGIN
 // ...
END;
GRANT EXECUTE ON myproc TO public;

The following example uses the sa_make_object system procedure to add a skeleton web service.

CALL sa_make_object('service','my_web_service');

sa_materialized_view_can_be_immediate system
procedure

Returns whether the specified materialized view can be defined as immediate.

System procedures

1018 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
sa_materialized_view_can_be_immediate(
view_name
, owner_name
)

Arguments
● view_name Use this CHAR(128) parameter to specify the name of the materialized view. If

view_name is NULL, an error is returned.

● owner_name Use this CHAR(128) parameter to specify the owner of the materialized view. If
owner_name is NULL, an error is returned.

Remarks
There are restrictions on whether the specified manual view can be changed to an immediate view. Use
this system procedure to determine whether the change is permitted. For a list of the additional restrictions
for creating immediate views, see “Additional restrictions for immediate views” [SQL Anywhere Server -
SQL Usage].

The sa_materialized_view_can_be_immediate system procedure returns the following information for the
specified materialized view.

Column name Data type Description

SQLStateVal CHAR(6) The SQLSTATE returned.

ErrorMessage LONG VARCHAR The error message corresponding to the SQLSTATE.

Each row in the result set corresponds to a single SQLSTATE returned for a view. So, if the materialized
view definition violates more than one restriction, the results include multiple rows for the view.

You can combine the output of this system procedure with the output of the sa_materialized_view_info
system procedure to get information on the status of views and whether they can be made immediate. See
the Example section of “sa_materialized_view_info system procedure” on page 1020.

Permissions
DBA authority, or execute permissions on DBO owned procedures.

See also
● “Change a manual view to an immediate view” [SQL Anywhere Server - SQL Usage]
● “Additional restrictions for immediate views” [SQL Anywhere Server - SQL Usage]
● “sa_materialized_view_info system procedure” on page 1020

Side effects
All metadata for the specified materialized view, and all dependencies, are loaded into the server cache.

Example
Execute the following statements to create a manual view, view10, and refresh it:

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1019

CREATE MATERIALIZED VIEW view10
 AS (SELECT C.ID, C.Surname, sum(P.UnitPrice) as revenue, C.CompanyName,
SO.OrderDate
 FROM Customers C, SalesOrders SO, SalesOrderItems SOI, Products P
 WHERE C.ID = SO.CustomerID
 AND SO.ID = SOI.ID
 AND P.ID = SOI.ProductID
 GROUP BY C.ID, C.Surname, C.CompanyName, SO.OrderDate);
REFRESH MATERIALIZED VIEW view10;

Use the following query to find the reasons why view10 cannot be changed to an immediate view:

SELECT SQLStateVal AS "SQLstate", ErrorMessage AS Description
 FROM sa_materialized_view_can_be_immediate('view10', 'DBA')
 ORDER BY SQLSTATE;

SQLstate Description

42WC3 The materialized view view10 cannot be changed to immediate because it has already been
initialized.

42WCA The materialized view view10 cannot be changed to immediate because it does not have a
unique index on non-nullable columns.

42WC6 The materialized view cannot be changed to immediate because COUNT(*) is required to
be part of the SELECT list.

42WC7 The materialized view cannot be changed to immediate because it does not have a unique
index on non-aggregate non-nullable columns.

sa_materialized_view_info system procedure

Returns information about the specified materialized views.

Syntax
sa_materialized_view_info(
[view_name
[, owner_name]]
)

Arguments
● view_name Use this optional CHAR(128) parameter to specify the name of the materialized view

for which to return information.

● owner_name Use this optional CHAR(128) parameter to specify the owner of the materialized view.

Remarks
If neither view_name nor owner_name are specified, information about all materialized views in the
database is returned.

System procedures

1020 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

If owner_name is not specified, information about all materialized views named view_name is returned.

The sa_materialized_view_info system procedure returns the following information for a materialized view:

Col-
umn
name

Data type Description

Owner-
Name

CHAR(128) The owner of the view.

View-
Name

CHAR(128) The name of the view.

Status CHAR(1) Status information about the view. Possible values are:

● D disabled

● E enabled

Data-
Status

CHAR(1) Status information about data in the view. Possible values are:

● E An error occurred during the last refresh attempt. The view is ena-
bled, but uninitialized.

● F The underlying tables have not changed since the last refresh, and
the view is considered fresh. The view is enabled and initialized.

● N The view is uninitialized. This occurs when one of the following is
true:

○ the view has not been refreshed since it was created

○ the data has been truncated from the view

○ the view is disabled

● S An underlying table has changed since the last refresh, and the view
is considered stale. The view is enabled and initialized.

View-
LastRe-
freshed

TIME-
STAMP

The time when the view was last refreshed. If the value of ViewLastRefresh-
ed is NULL, the view is uninitialized.

Data-
Last-
Modi-
fied

TIME-
STAMP

For a stale view, the last time that underlying data was modified.

The value is NULL for views that are not initialized, or for views that are
not considered stale.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1021

Col-
umn
name

Data type Description

Avail-
ForOp-
timiza-
tion

CHAR(1) Information about the availability of the view for use by the optimizer. Possi-
ble values are:

● D Use by the optimizer is disabled. The owner of the view doesn't al-
low the view to be used by the optimizer.

● I The view cannot be used by the optimizer for some internal reason,
for example its definition doesn't meet the conditions required. However,
the owner has not explicitly disallowed its use by the optimizer.

● N The view contains no data because a refresh has not been done or
has failed. The view is allowed to be used by the optimizer by the owner
of the view, but it is not initialized.

● O There is an incompatible option value for current connection. The
view is allowed to be used by the optimizer and its definition meets all
the required conditions, but the current option settings are not compati-
ble with the options settings used to create the view.

● Y The view can be used by the optimizer. The owner of the view al-
lows the view to be used by the optimizer and the view definition meets
all the conditions needed to be used by the optimizer.

For more information about how, and whether, a materialized view is selec-
ted by the optimizer, see “Improving performance with materialized views”
[SQL Anywhere Server - SQL Usage].

Re-
fresh-
Type

CHAR(1) The refresh type for the view. Possible values are:

● I The view is an immediate view. Immediate views are refreshed imme-
diately when changes to the data in an underlying table impact the data
in the materialized view.

● M The view is a manual view. Manual views are refreshed manually,
for example using the REFRESH MATERIALIZED VIEW statement, or
the sa_refresh_materialized_views system procedure.

For more information about manual and immediate views, see “Manual and
immediate materialized views” [SQL Anywhere Server - SQL Usage].

This procedure can be useful for determining the list of materialized views that will never be considered
by the optimizer because of a problem with the view definition. The AvailForOptimization value is I for
these materialized views. To learn more about the restrictions for materialized view definitions, see
“Restrictions on materialized views” [SQL Anywhere Server - SQL Usage].

System procedures

1022 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The following table shows how the AvailForOptimization property is determined. Starting from the left
column, you read across the row to see the conditions that must be in place to result in the value found in
the AvailForOptimization column.

User allows view
to be used in op-
timization?

The view defini-
tion satisfies all
the conditions re-
quired for use?

The connection
options match
those required for
use of the view?

The view is ini-
tialized?

AvailForOptimi-
zation value

Yes Yes Yes Yes Y

No N/A N/A N/A D

Yes No N/A Yes I

Yes N/A N/A No N

Yes Yes No Yes O

An initialized materialized view can be empty. This occurs when there is no data in the underlying tables
that meets the materialized view definition. An empty view is not considered the same as an uninitialized
materialized view, which also has no data in it. The value of the ViewLastRefreshed property allows you
to distinguish between whether the view is uninitialized (NULL), or empty because of data in the
underlying tables (non-NULL).

Permissions
DBA authority, or execute permissions on DBO owned procedures.

Side effects
All metadata for the specified materialized views, and all dependencies, are loaded into the database
server cache.

See also
● “Improving performance with materialized views” [SQL Anywhere Server - SQL Usage]
● “Change a manual view to an immediate view” [SQL Anywhere Server - SQL Usage]
● “Additional restrictions for immediate views” [SQL Anywhere Server - SQL Usage]
● “sa_materialized_view_can_be_immediate system procedure” on page 1018

Example
The following statement returns information on all materialized views in the database:

SELECT *
 FROM sa_materialized_view_info();

The results of the sa_materialized_view_info system procedure can be combined with the results of the
sa_materialized_view_can_be_immediate system procedure to return status information, and whether the
view is eligible for being an immediate view. Execute the following statements to create materialized
views that are examined for this example:

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1023

CREATE MATERIALIZED VIEW view0 AS (
 SELECT ID, Name, Description, Size
 FROM Products
 WHERE Quantity > 0);
CREATE UNIQUE INDEX u_view0
 ON view0(ID);
ALTER MATERIALIZED VIEW view0
 IMMEDIATE REFRESH;
CREATE MATERIALIZED VIEW view00 AS (
 SELECT ID, Name, Description, Size
 FROM Products
 WHERE Quantity <= 0);
CREATE UNIQUE INDEX u_view00
 ON view00(ID);
CREATE MATERIALIZED VIEW view1 AS (
 SELECT ID, Name, Description, Size
 FROM Products
 WHERE Quantity = 0);
ALTER MATERIALIZED VIEW view1
 DISABLE;
CREATE MATERIALIZED VIEW view100
 AS (SELECT C.ID, C.Surname, sum(P.UnitPrice) as revenue, C.CompanyName,
SO.OrderDate
 FROM Customers C, SalesOrders SO, SalesOrderItems SOI, Products P
 WHERE C.ID = SO.CustomerID
 AND SO.ID = SOI.ID
 AND P.ID = SOI.ProductID
 GROUP BY C.ID, C.Surname, C.CompanyName, SO.OrderDate);
REFRESH MATERIALIZED VIEW view100;

Execute the following statement to return the status and eligibility information for the views you just created:

SELECT ViewName, Status, ViewLastRefreshed, AvailForOptimization,
RefreshType, CanBeImmediate
FROM sa_materialized_view_info() AS V,
 LATERAL(SELECT LIST(ErrorMessage)
 FROM sa_materialized_view_can_be_immediate(V.ViewName,
V.OwnerName)) AS I(CanBeImmediate);

ViewName Status ViewLastRefreshed AvailForOptimi-
zation

RefreshType CanBeImmedi-
ate

view0 E (NULL) N I

view00 E (NULL) N M

view1 D (NULL) N M Cannot use view
'view1' because it
has been disabled

System procedures

1024 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ViewName Status ViewLastRefreshed AvailForOptimi-
zation

RefreshType CanBeImmedi-
ate

view100 E 2008-02-12
16:47:00.000

Y M The materialized
view view10 can-
not be changed to
immediate be-
cause it has al-
ready been initial-
ized. The materi-
alized view
view10 cannot be
changed to imme-
diate because it
does not have a
unique index on
non-nullable col-
umns. The mate-
rialized view can-
not be changed to
immediate be-
cause COUNT(*)
is required to be
part of the select
list. The material-
ized view cannot
be changed to im-
mediate because
it does not have a
unique index on
non-aggregate
non-nullable col-
umns.

From the results you can see that:

● view0 was never refreshed and is an immediate view.

● view00 was never refreshed and is a manual view.

● view1 is disabled

● view100 is a manual view that was last refreshed at 2008-02-12 16:47:00.000.

● view00 can be changed to an immediate view because there are no error messages in the
CanBeImmediate column.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1025

● view1 and view100 cannot be changed to immediate views for the reasons listed in the
CanBeImmediate column.

sa_migrate system procedure

Migrates a set of remote tables to a SQL Anywhere database.

Syntax
sa_migrate(
 base_table_owner,
 server_name
 [, table_name]
 [, owner_name]
 [, database_name]
 [, migrate_data]
 [, drop_proxy_tables]
 [, migrate_fkeys]
)

Arguments
● base_table_owner Use this VARCHAR(128) parameter to specify the user on the target SQL

Anywhere database who owns the migrated tables. Use the GRANT CONNECT statement to create
this user. A value is required for this parameter. See “GRANT statement” on page 718.

● server_name Use this VARCHAR(128) parameter to specify the name of the remote server that is
being used to connect to the remote database. Use the CREATE SERVER statement to create this
server. A value is required for this parameter. See “CREATE SERVER statement” on page 567.

● table_name If you are migrating a single table, use this VARCHAR(128) parameter to specify the
table name. Otherwise, you should specify NULL (the default) for this parameter. Do not specify
NULL for both the table_name and owner_name parameters.

● owner_name If you are migrating only tables that belong to one owner, use this VARCHAR(128)
parameter to specify the owner's name. Otherwise, you should enter NULL (the default) for this
parameter. Do not specify NULL for both the table_name and owner_name parameters.

● database_name Use this VARCHAR(128) parameter to specify the name of the remote database.
You must specify the database name if you want to migrate tables from only one database on the
remote server. Otherwise, enter NULL (the default) for this parameter.

● migrate_data Use this optional BIT parameter to specify whether the data in the remote tables is
migrated. This parameter can be 0 (do not migrate data) or 1 (migrate data). By default, data is
migrated. (1)

● drop_proxy_tables Use this optional BIT parameter to specify whether the proxy tables created
for the migration process are dropped once the migration is complete. This parameter can be 0 (proxy
tables are not dropped) or 1 (proxy tables are dropped). By default, the proxy tables are dropped (1).

System procedures

1026 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● migrate_fkeys Use this optional BIT parameter to specify whether the foreign key mappings are
migrated. This parameter can be 0 (do not migrate foreign key mappings) or 1 (migrate foreign key
mappings). By default, the foreign key mappings are migrated (1).

Remarks
You can use this procedure to migrate tables to SQL Anywhere from a remote Oracle, IBM DB2,
Microsoft SQL Server, Adaptive Server Enterprise, or SQL Anywhere database. This procedure allows
you to migrate in one step a set of remote tables, including their foreign key mappings, from the specified
server. The sa_migrate system procedure calls the following system procedures:

● sa_migrate_create_remote_table_list
● sa_migrate_create_tables
● sa_migrate_data
● sa_migrate_create_remote_fks_list
● sa_migrate_create_fks
● sa_migrate_drop_proxy_tables

You might want to use these system procedures instead of sa_migrate if you need more flexibility. For
example, if you are migrating tables with foreign key relationships that are owned by different users, you
cannot retain the foreign key relationships if you use sa_migrate.

Before you can migrate any tables, you must first create a remote server to connect to the remote database
using the CREATE SERVER statement. You may also need to create an external login to the remote
database using the CREATE EXTERNLOGIN statement. See “CREATE SERVER
statement” on page 567 and “CREATE EXTERNLOGIN statement” on page 503.

You can migrate all the tables from the remote database to a SQL Anywhere database by specifying only
the base_table_owner and server_name parameters. However, if you specify only these two parameters,
all the tables that are migrated will belong to one owner in the target SQL Anywhere database. If tables
have different owners on the remote database and you want them to have different owners on the SQL
Anywhere database, then you must migrate the tables for each owner separately, specifying the
base_table_owner and owner_name parameters each time you call the sa_migrate procedure.

Caution
Do not specify NULL for both the table_name and owner_name parameters. Supplying NULL for both
the table_name and owner_name parameters migrates all the tables in the database, including system
tables. As well, tables that have the same name, but different owners in the remote database all belong to
one owner in the target database. It is recommended that you migrate tables associated with one owner at
a time.

Permissions
None

Side effects
None

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1027

See also
● “Migrating databases to SQL Anywhere” [SQL Anywhere Server - SQL Usage]
● “sa_migrate_create_remote_table_list system procedure” on page 1030
● “sa_migrate_create_tables system procedure” on page 1032
● “sa_migrate_data system procedure” on page 1033
● “sa_migrate_create_remote_fks_list system procedure” on page 1029
● “sa_migrate_create_fks system procedure” on page 1028
● “sa_migrate_drop_proxy_tables system procedure” on page 1034

Examples
The following statement migrates all the tables belonging to user p_chin from the remote database,
including foreign key mappings; migrates the data in the remote tables; and drops the proxy tables when
migration is complete. In this example, all the tables that are migrated belong to local_user in the target
SQL Anywhere database.

CALL sa_migrate('local_user', 'server_a', NULL, 'p_chin', NULL, 1, 1, 1);

The following statement migrates only the tables that belong to user remote_a from the remote database.
In the target SQL Anywhere database, these tables belong to the user local_a. Proxy tables created during
the migration are not dropped at completion.

CALL sa_migrate('local_a', 'server_a', NULL, 'remote_a', NULL, 1, 0, 1);

sa_migrate_create_fks system procedure
Creates foreign keys for each table listed in the dbo.migrate_remote_fks_list table.

Syntax
sa_migrate_create_fks(i_table_owner)

Arguments
● i_table_owner Use this VARCHAR(128) parameter to specify the user on the target SQL

Anywhere database who owns the migrated foreign keys. If you want to migrate tables that belong to
different user, you must execute this procedure for each user whose tables you want to migrate. The
i_table_owner is created using the GRANT CONNECT statement. A value is required for this
parameter. See “GRANT statement” on page 718.

Remarks
This procedure creates foreign keys for each table that is listed in the dbo.migrate_remote_fks_list table.
The user specified by the i_table_owner argument owns the foreign keys in the target database.

If the tables in the target SQL Anywhere database do not all have the same owner, you must execute this
procedure for each user who owns tables for which you need to migrate foreign keys.

System procedures

1028 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Note
This system procedure is used in conjunction with several other migration system procedures, which must
be executed in sequence as listed below:

1. sa_migrate_create_remote_table_list

2. sa_migrate_create_tables

3. sa_migrate_data

4. sa_migrate_create_remote_fks_list

5. sa_migrate_create_fks

6. sa_migrate_drop_proxy_tables

As an alternative, you can migrate all tables in one step using the sa_migrate system procedure.

Permissions
None

Side effects
None

See also
● “Migrating databases to SQL Anywhere” [SQL Anywhere Server - SQL Usage]
● “sa_migrate system procedure” on page 1026
● “sa_migrate_create_remote_table_list system procedure” on page 1030
● “sa_migrate_create_tables system procedure” on page 1032
● “sa_migrate_data system procedure” on page 1033
● “sa_migrate_create_remote_fks_list system procedure” on page 1029
● “sa_migrate_drop_proxy_tables system procedure” on page 1034

Example
The following statement creates foreign keys based on the dbo.migrate_remote_fks_list table. The foreign
keys belong to the user local_a on the local SQL Anywhere database.

CALL sa_migrate_create_fks('local_a');

sa_migrate_create_remote_fks_list system procedure

Populates the dbo.migrate_remote_fks_list table.

Syntax
sa_migrate_create_remote_fks_list(server_name)

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1029

Arguments
● server_name Use this VARCHAR(128) parameter to specify the name of the remote server that is

being used to connect to the remote database. The remote server is created with the CREATE
SERVER statement. A value is required for this parameter. See “CREATE SERVER
statement” on page 567.

Remarks
This procedure populates the dbo.migrate_remote_fks_list table with a list of foreign keys that can be
migrated from the remote database. You can delete rows from this table for foreign keys that you do not
want to migrate.

As an alternative, you can migrate all tables in one step using the sa_migrate system procedure.

This system procedure is used in conjunction with several other migration system procedures. The note in
the Remarks section of the sa_migrate_create_fks system procedure contains the list of migrate
procedures, and the order in which you must execute them. See “sa_migrate_create_fks system
procedure” on page 1028.

Permissions
None

Side effects
None

See also
● “Migrating databases to SQL Anywhere” [SQL Anywhere Server - SQL Usage]
● “sa_migrate system procedure” on page 1026
● “sa_migrate_create_remote_table_list system procedure” on page 1030
● “sa_migrate_create_tables system procedure” on page 1032
● “sa_migrate_data system procedure” on page 1033
● “sa_migrate_create_fks system procedure” on page 1028
● “sa_migrate_drop_proxy_tables system procedure” on page 1034

Example
The following statement creates a list of foreign keys that are in the remote database.

CALL sa_migrate_create_remote_fks_list('server_a');

sa_migrate_create_remote_table_list system procedure
Populates the dbo.migrate_remote_table_list table.

Syntax
sa_migrate_create_remote_table_list(
 i_server_name
 [, i_table_name

System procedures

1030 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 [, i_owner_name
 [, i_database_name]]]
)

Arguments
● i_server_name Use this VARCHAR(128) parameter to specify the name of the remote server that

is being used to connect to the remote database. The remote server is created with the CREATE
SERVER statement. A value is required for this parameter. See “CREATE SERVER
statement” on page 567.

● i_table_name Use this optional VARCHAR(128) parameter to specify the name(s) of the tables
that you want to migrate, or NULL to migrate all the tables. The default is NULL. Do not specify
NULL for both the i_table_name and i_owner_name parameters.

● i_owner_name Use this optional VARCHAR(128) parameter to specify the user who owns the
tables on the remote database that you want to migrate, or NULL to migrate all the tables. The default
is NULL. Do not specify NULL for both the i_table_name and i_owner_name parameters

● i_database_name Use this optional VARCHAR(128) parameter to specify the name of the remote
database from which you want to migrate tables. This parameter is NULL by default. When migrating
tables from Adaptive Server Enterprise and Microsoft SQL Server databases, you must specify the
database name.

Remarks
This procedure populates the dbo.migrate_remote_table_list table with a list of tables that can be migrated
from the remote database. You can delete rows from this table for remote tables that you do not want to
migrate.

If you do not want all the migrated tables to have the same owner on the target SQL Anywhere database,
you must execute this procedure for each user whose tables you want to migrate.

As an alternative, you can migrate all tables in one step using the sa_migrate system procedure.

Caution
Do not specify NULL for both the i_table_name and i_owner_name parameters. Supplying NULL for
both the i_table_name and i_owner_name parameters migrates all the tables in the database, including
system tables. As well, tables that have the same name, but different owners in the remote database all
belong to one owner in the target database. It is recommended that you migrate tables associated with one
owner at a time.

This system procedure is used in conjunction with several other migration system procedures. The note in
the Remarks section of the sa_migrate_create_fks system procedure contains the list of migrate
procedures, and the order in which you must execute them. See “sa_migrate_create_fks system
procedure” on page 1028.

Permissions
None

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1031

Side effects
None

See also
● “Migrating databases to SQL Anywhere” [SQL Anywhere Server - SQL Usage]
● “sa_migrate system procedure” on page 1026
● “sa_migrate_create_tables system procedure” on page 1032
● “sa_migrate_data system procedure” on page 1033
● “sa_migrate_create_remote_fks_list system procedure” on page 1029
● “sa_migrate_create_fks system procedure” on page 1028
● “sa_migrate_drop_proxy_tables system procedure” on page 1034

Example
The following statement creates a list of tables that belong to the user remote_a on the remote database.

CALL sa_migrate_create_remote_table_list('server_a', NULL, 'remote_a',
NULL);

sa_migrate_create_tables system procedure
Creates a proxy table and base table for each table listed in the dbo.migrate_remote_table_list table.

Syntax
sa_migrate_create_tables(i_table_owner)

Arguments
● i_table_owner Use this VARCHAR(128) parameter to specify the user on the target SQL

Anywhere database who owns the migrated tables. This user is created using the GRANT CONNECT
statement. A value is required for this parameter. See “GRANT statement” on page 718.

Remarks
This procedure creates a base table and proxy table for each table listed in the
dbo.migrate_remote_table_list table (created using the sa_migrate_create_remote_table_list procedure).
These proxy tables and base tables are owned by the user specified by the i_table_owner argument. This
procedure also creates the same primary key indexes and other indexes for the new table that the remote
table has in the remote database.

If you do not want all the migrated tables to have the same owner on the target SQL Anywhere database,
you must execute the sa_migrate_create_remote_table_list procedure and the sa_migrate_create_tables
procedure for each user who will own migrated tables.

As an alternative, you can migrate all tables in one step using the sa_migrate system procedure.

This system procedure is used in conjunction with several other migration system procedures. The note in
the Remarks section of the sa_migrate_create_fks system procedure contains the list of migrate
procedures, and the order in which you must execute them. See “sa_migrate_create_fks system
procedure” on page 1028.

System procedures

1032 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Permissions
None

Side effects
None

See also
● “Migrating databases to SQL Anywhere” [SQL Anywhere Server - SQL Usage]
● “sa_migrate system procedure” on page 1026
● “sa_migrate_create_remote_table_list system procedure” on page 1030
● “sa_migrate_data system procedure” on page 1033
● “sa_migrate_create_remote_fks_list system procedure” on page 1029
● “sa_migrate_create_fks system procedure” on page 1028
● “sa_migrate_drop_proxy_tables system procedure” on page 1034

Example
The following statement creates base tables and proxy tables on the target SQL Anywhere database.
These tables belong to the user local_a.

CALL sa_migrate_create_tables('local_a');

sa_migrate_data system procedure
Migrates data from the remote database tables to the target SQL Anywhere database.

Syntax
sa_migrate_data(i_table_owner)

Arguments
● i_table_owner Use this VARCHAR(128) parameter to specify the user on the target SQL

Anywhere database who owns the migrated tables. This user is created using the GRANT CONNECT
statement. A value is required for this parameter. See “GRANT statement” on page 718.

Remarks
This procedure migrates the data from the remote database to the SQL Anywhere database for tables
belonging to the user specified by the i_table_owner argument.

When the tables on the target SQL Anywhere database do not all have the same owner, you must execute
this procedure for each user whose tables have data that you want to migrate.

As an alternative, you can migrate all tables in one step using the sa_migrate system procedure.

This system procedure is used in conjunction with several other migration system procedures. The note in
the Remarks section of the sa_migrate_create_fks system procedure contains the list of migrate
procedures, and the order in which you must execute them. See “sa_migrate_create_fks system
procedure” on page 1028.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1033

Permissions
None

Side effects
None

See also
● “Migrating databases to SQL Anywhere” [SQL Anywhere Server - SQL Usage]
● “sa_migrate system procedure” on page 1026
● “sa_migrate_create_remote_table_list system procedure” on page 1030
● “sa_migrate_create_tables system procedure” on page 1032
● “sa_migrate_create_remote_fks_list system procedure” on page 1029
● “sa_migrate_create_fks system procedure” on page 1028
● “sa_migrate_drop_proxy_tables system procedure” on page 1034

Example
The following statement migrates data to the target SQL Anywhere database for tables that belong to the
user local_a.

CALL sa_migrate_data('local_a');

sa_migrate_drop_proxy_tables system procedure
Drops the proxy tables that were created for migration purposes.

Syntax
sa_migrate_drop_proxy_tables(i_table_owner)

Arguments
● i_table_owner Use this VARCHAR(128) parameter to specify the user on the target SQL

Anywhere database who owns the proxy tables. This user is created using the GRANT CONNECT
statement. A value is required for this parameter. See “GRANT statement” on page 718.

Remarks
This procedure drops the proxy tables that were created for the migration. The user who owns these proxy
tables is specified by the i_table_owner argument.

If the migrated tables are not all owned by the same user on the target SQL Anywhere database, you must
call this procedure for each user to drop all the proxy tables.

As an alternative, you can migrate all tables in one step using the sa_migrate system procedure.

This system procedure is used in conjunction with several other migration system procedures. The note in
the Remarks section of the sa_migrate_create_fks system procedure contains the list of migrate
procedures, and the order in which you must execute them. See “sa_migrate_create_fks system
procedure” on page 1028.

System procedures

1034 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Permissions
None

Side effects
None

See also
● “Migrating databases to SQL Anywhere” [SQL Anywhere Server - SQL Usage]
● “sa_migrate system procedure” on page 1026
● “sa_migrate_create_remote_table_list system procedure” on page 1030
● “sa_migrate_create_tables system procedure” on page 1032
● “sa_migrate_data system procedure” on page 1033
● “sa_migrate_create_remote_fks_list system procedure” on page 1029
● “sa_migrate_create_fks system procedure” on page 1028

Example
The following statement drops the proxy tables on the target SQL Anywhere database that belong to the
user local_a.

CALL sa_migrate_drop_proxy_tables('local_a');

sa_mirror_server_status system procedure
Returns the connection status of servers below the server on which the procedure is executed. On primary
servers, the procedure returns the status of all connected servers.

Syntax
sa_mirror_server_status()

Result set

Column name Data type Description

server_name CHAR(128) The name of the server.

state CHAR(20) The connection status of the server. It can be one of the fol-
lowing values:

● connected
● disconnected

last_updated TIMESTAMP
WITH TIME
ZONE

The time the server information was last updated.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1035

Column name Data type Description

load_current DOUBLE The amount of work that the database server is currently per-
forming.

load_last_1_min DOUBLE The amount of work that the database server has performed
in the previous minute.

load_last_5_mins DOUBLE The amount of work that the database server has performed
in the previous 5 minutes.

load_last_10_mins DOUBLE The amount of work that the database server has performed
in the previous 10 minutes.

num_connections UNSIGNED INT The number of connections to the database server.

num_processors UNSIGNED INT The number of database server processors.

log_written UNSIGNED BI-
GINT

The latest transaction log position written to disk based on
the last update received from the server.

log_applied UNSIGNED BI-
GINT

The last operation from the transaction log that has been ap-
plied based on the last update received from the server. This
value is the same as the value of the CurrentRedoPos proper-
ty. See “CurrentRedoPos database property” [SQL Anywhere
Server - Database Administration].

Remarks
Each server updates its status and that of its children to its parent every 5 seconds. The columns with the
prefix load represent a computed load on the SQL Anywhere server. The value returned represents the
database server load, and not the load from other processes. Higher load values indicate that the database
server has more work to perform.

When the NodeType connection parameter is specified, the database server uses load information to
redirect connections. The database server selects the mirror server with the lowest load; if all servers have
the same load, the server with the fewest connections is used.

Permissions
None

Side effects
None

System procedures

1036 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “Introduction to database mirroring” [SQL Anywhere Server - Database Administration]
● “CREATE MIRROR SERVER statement” on page 532
● “ALTER MIRROR SERVER statement” on page 404
● “DROP MIRROR SERVER statement” on page 659

sa_nchar_terms system procedure
Breaks an NCHAR string into terms and returns each term as a row along with its position.

Syntax
sa_nchar_terms('text' [, 'config_name' [, 'owner']]
)

Arguments
● text The NCHAR string you are parsing.

● config_name The text configuration object to apply when processing the string. The default is
'default_nchar'.

● owner The owner of the specified text configuration object. The default is DBA.

Remarks
You can use this system procedure to find out how a string is interpreted when the settings for a text
configuration object are applied. This can be helpful when you want to know what terms would be
dropped during indexing or from a query string.

Permissions
None

Side effects
None

See also
● “Full text search” [SQL Anywhere Server - SQL Usage]
● “How to manage text configuration objects” [SQL Anywhere Server - SQL Usage]
● “sa_char_terms system procedure” on page 954

Example
The following statement returns the terms in the CHAR string, It's a work-at-home day!, using the default
CHAR text configuration object, default_char:

CALL sa_nchar_terms (N'It''s a work-at-home day!', 'default_nchar', 'sys');

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1037

term position

It 1

s 2

a 3

work 4

at 5

home 6

day 7

sa_performance_diagnostics system procedure
Returns a summary of request timing information for all connections when the database server has request
timing logging enabled.

Syntax
sa_performance_diagnostics()

Result set

Column name Data type Description

Number INT The connection ID number.

Name VARCHAR(255) The name of the connection.

Userid VARCHAR(255) The user ID for the connection.

DBNumber INT The database ID number.

LoginTime TIMESTAMP The date and time the connection was established.

TransactionStart-
Time

TIMESTAMP The time the database was first modified after a COMMIT
or ROLLBACK, or an empty string if no modifications
have been made to the database since the last COMMIT
or ROLLBACK.

LastReqTime TIMESTAMP The time at which the last request for the specified connec-
tion started.

ReqType VARCHAR(255) The type of the last request.

System procedures

1038 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Column name Data type Description

ReqStatus VARCHAR(255) The status of the request. It can be one of the following
values:

● Idle The connection is not currently processing a re-
quest.

● Unscheduled The connection has work to do and
is waiting for a worker thread.

● BlockedIO The connection is blocked waiting for
an I/O.

● BlockedContention The connection is blocked
waiting for access to shared database server data struc-
tures.

● BlockedLock The connection is blocked waiting
for a locked object.

● Executing The connection is executing a request.

ReqTimeUnsched-
uled

DOUBLE The time spent unscheduled.

ReqTimeActive DOUBLE The time spent waiting to process requests.

ReqTimeBlockIO DOUBLE The time spent waiting for I/O to complete.

ReqTimeBlock-
Lock

DOUBLE The time spent waiting for a lock.

ReqTimeBlock-
Contention

DOUBLE The time spent waiting for atomic access.

ReqCountUnsched-
uled

INT The number of times waited for scheduling.

ReqCountActive INT The number of requests processed.

ReqCountBlockIO INT The number of times waited for I/O to complete.

ReqCountBlock-
Lock

INT The number of times waited for a lock.

ReqCountBlock-
Contention

INT The number of times waited for atomic access.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1039

Column name Data type Description

LastIdle INT The number of ticks between requests.

BlockedOn INT If the current connection isn't blocked, this is zero. If it is
blocked, the connection number on which the connection
is blocked due to a locking conflict.

UncommitOp INT The number of uncommitted operations.

CurrentProcedure VARCHAR(255) The procedure that a connection is currently executing. If
the connection is executing nested procedure calls, the
name is the name of the current procedure. If there is no
procedure executing, an empty string is returned

EventName VARCHAR(255) The name of the associated event if the connection is run-
ning an event handler. Otherwise, the result is NULL.

CurrentLineNum-
ber

INT The current line number of the procedure or compound
statement a connection is executing. The procedure can be
identified using the CurrentProcedure property. If the line
is part of a compound statement from the client, an empty
string is returned.

LastStatement LONG VARCHAR The most recently prepared SQL statement for the current
connection.

LastPlanText LONG VARCHAR The long text plan of the last query executed on the con-
nection.

AppInfo LONG VARCHAR Information about the client that made the connection. For
HTTP connections, this includes information about the
browser. For connections using older versions of jConnect
or Open Client, the information may be incomplete. The
API value can be DBLIB, ODBC, OLEDB, or ADO.NET.

LockCount INT The number of locks held by the connection.

SnapshotCount INT The number of snapshots associated with the connection.

Remarks
The sa_performance_diagnostics system procedure returns a result set consisting of a set of request timing
properties and statistics if the server has been told to collect the information. Recording of request timing
information must be turned on the database server before calling sa_performance_diagnostics. To do this,
specify the -zt option when starting the database server or execute the following:

CALL sa_server_option('RequestTiming','ON');

System procedures

1040 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Permissions
DBA authority

Side effects
None

See also
● “-zt dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “sa_performance_statistics system procedure” on page 1041
● “sa_server_option system procedure” on page 1060

Examples
You can execute the following query to identify connections that have spent a long time waiting for
database server requests to complete.

SELECT Number, Name,
 CAST(DATEDIFF(second, LoginTime, CURRENT TIMESTAMP) AS DOUBLE) AS
T,
 ReqTimeActive / T AS PercentActive
FROM dbo.sa_performance_diagnostics()
WHERE PercentActive > 10.0
ORDER BY PercentActive DESC;

Find all requests that are currently executing, and have been executing for more than 60 seconds:

SELECT Number, Name,
 CAST(DATEDIFF(second, LastReqTime, CURRENT TIMESTAMP) AS DOUBLE) AS
ReqTime
FROM dbo.sa_performance_diagnostics()
WHERE ReqStatus <> 'IDLE' AND ReqTime > 60.0
ORDER BY ReqTime DESC;

sa_performance_statistics system procedure

Returns a summary of memory diagnostic statistics for all connections when the database server has
request timing logging enabled.

Syntax
sa_performance_statistics()

Result set

Column name Data type Description

DBNumber INT The database ID number.

ConnNumber INT An INTEGER representing a connection ID number. Returns
NULL if the Type is Server.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1041

Column name Data type Description

PropNum INT The connection property number.

PropName VARCHAR(255) The connection property name.

Value INT The connection property value.

Remarks
The sa_performance_statistics system procedure returns a result set consisting of a set of memory
diagnostic statistics if the server has been told to collect the information. Recording of memory diagnostic
statistics must be turned on the database server before calling sa_performance_statistics. To do this,
specify the -zt option when starting the database server or execute the following:

CALL sa_server_option('RequestTiming','ON');

Permissions
DBA authority

Side effects
None

See also
● “-zt dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “sa_performance_diagnostics system procedure” on page 1038
● “sa_server_option system procedure” on page 1060

Example
The following example unloads all performance statistics to a text file named dump_stats.txt:

UNLOAD
 SELECT CURRENT TIMESTAMP, *
 FROM sa_performance_statistics()
 TO 'dump_stats.txt'
 APPEND ON;

sa_post_login_procedure system procedure
Determines whether a user's password is about to expire.

Syntax
sa_post_login_procedure()

Arguments
None

System procedures

1042 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Result set
The sa_post_login_procedure system procedure returns the following:

Column name Data type Description

message_text VARCHAR(255) If message_action is 1, message_text returns the message to dis-
play. If message_action is 0, message_text is NULL.

message_action INTEGER Whether the password is about to expire (1=yes, 0=no).

Remarks
The sa_post_login_procedure system procedure is the default setting for the post_login_procedure
database option. See “post_login_procedure option” [SQL Anywhere Server - Database Administration].

sa_post_login_procedure uses the user's password_life_time and password_grace_time login policy
option values, and the current date and time, to determine whether a user's password is about to expire. If
it is, the message to display to the user is returned in the result set.

Permissions
DBA authority

Side effects
None

See also
● “Managing login policies” [SQL Anywhere Server - Database Administration]

sa_procedure_profile system procedure

Reports information about the execution time for each line within procedures, functions, events, or
triggers that have been executed in a database.

Syntax
sa_procedure_profile(
 [filename
 [, save_to_file]]
)

Arguments
● filename Use this optional LONG VARCHAR parameter to specify the file to which the profiling

information should be saved, or from which file it should be loaded. See the Remarks section below
for more about saving and loading the profiling information.

● save_to_file Use this optional INTEGER parameter to specify whether to save the profiling
information to a file, or load it from a previously stored file.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1043

Result set

Column name Data type Description

object_type CHAR(1) The type of object. See the Remarks section below for a
list of possible object types.

object_name CHAR(128) The name of the stored procedure, function, event, or trig-
ger. If the object_type is C or D, then this is the name of
the foreign key for which the system trigger was defined.

owner_name CHAR(128) The object's owner.

table_name CHAR(128) The table associated with a trigger (the value is NULL for
other object types).

line_num UNSIGNED INTEGER The line number within the procedure.

executions UNSIGNED INTEGER The number of times the line has been executed.

millisecs UNSIGNED INTEGER The time to execute the line, in milliseconds.

percentage DOUBLE The percentage of the total execution time required for the
specific line.

foreign_owner CHAR(128) The database user who owns the foreign table for a system
trigger.

foreign_table CHAR(128) The name of the foreign table for a system trigger.

Remarks
This procedure provides the same information as the Profile tab in Sybase Central.

You can use this procedure to:

● Return detailed procedure profiling information To do this, you can simply call the procedure
without specifying any arguments.

● Save detailed procedure profiling information to file To do this, you must include the
filename argument and specify 1 for the save_to_file argument.

● Load detailed procedure profiling information from a previously saved file To do this, you
must include the filename argument and specify 0 for the save_to_file argument (or leave it off, since
the default is 0). When using the procedure in this way, the loaded file must have been created by the
same database as the one from which you are running the procedure; otherwise, the results may be
unusable.

Since the result set includes information about the execution times for individual lines within procedures,
triggers, functions, and events, and what percentage of the total procedure execution time those lines use,
you can use this profiling information to fine-tune slower procedures that may decrease performance.

System procedures

1044 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Before you can profile your database, you must enable profiling. See “Enable procedure profiling” [SQL
Anywhere Server - SQL Usage].

The object_type column of the result set can be:

● P stored procedure

● F function

● E event

● T trigger

● C ON UPDATE system trigger

● D ON DELETE system trigger

If you want summary information instead of line by line details for each execution, use the
sa_procedure_profile_summary procedure instead.

Permissions
DBA authority

Side effects
None

See also
● “sa_server_option system procedure” on page 1060
● “sa_procedure_profile_summary system procedure” on page 1045

Example
The following statement returns the execution time for each line of every procedure, function, event, or
trigger that has been executed in the database:

CALL sa_procedure_profile();

The following statement returns the same detailed procedure profiling information as the example above,
and saves it to a file called detailedinfo.txt:

CALL sa_procedure_profile("detailedinfo.txt", 1);

Either of the following statements can be used to load detailed procedure profiling information from a file
called detailedinfoOLD.txt:

CALL sa_procedure_profile("detailedinfoOLD.txt", 0);
CALL sa_procedure_profile("detailedinfoOLD.txt");

sa_procedure_profile_summary system procedure

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1045

Reports summary information about the execution times for all procedures, functions, events, or triggers
that have been executed in a database. This procedure provides the same information for these objects as
the Profile tab in Sybase Central.

Syntax
sa_procedure_profile_summary(
 [filename
 [, save_to_file]]
)

Arguments
● filename Use this optional LONG VARCHAR parameter to specify the file to which the profiling

information is saved, or from which file it should be loaded. See the Remarks section below for more
about saving and loading the profiling information.

● save_to_file Use this optional INTEGER parameter to specify whether to save the summary
information to a file, or to load it from a previously saved file.

Result set

Column name Data type Description

object_type CHAR(1) The type of object. See the Remarks section below for a
list of possible object types.

object_name CHAR(128) The name of the stored procedure, function, event, or trigger.

owner_name CHAR(128) The object's owner.

table_name CHAR(128) The table associated with a trigger (the value is NULL for
other object types).

executions UNSIGNED INTEGER The number of times each procedure has been executed.

millisecs UNSIGNED INTEGER The time to execute the procedure, in milliseconds.

foreign_owner CHAR(128) The database user who owns the foreign table for a system
trigger.

foreign_table CHAR(128) The name of the foreign table for a system trigger.

Remarks
You can use this procedure to:

● Return current summary information To do this, you can simply call the procedure without
specifying any arguments.

System procedures

1046 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● Save current summary information to file To do this, you must include the filename argument
and specify 1 for the save_to_file argument.

● Load stored summary information from a file To do this, you must include the filename
argument and specify 0 for the save_to_file argument (or leave it off, since the default is 0). When
using the procedure in this way, the loaded file must have been created by the same database as the
one from which you are running the procedure; otherwise, the results may be unusable.

Since the procedure returns information about the usage frequency and efficiency of stored procedures,
functions, events, and triggers, you can use this information to fine-tune slower procedures to improve
database performance.

Before you can profile your database, you must enable profiling. See “Enable procedure profiling” [SQL
Anywhere Server - SQL Usage].

The object_type column of the result set can be:

● P stored procedure

● F function

● E event

● T trigger

● S system trigger

● C ON UPDATE system trigger

● D ON DELETE system trigger

If you want line by line details for each execution instead of summary information, use the
sa_procedure_profile procedure instead.

Permissions
DBA authority

Side effects
None

See also
● “sa_server_option system procedure” on page 1060
● “sa_procedure_profile system procedure” on page 1043

Example
The following statement returns the execution time for any procedure, function, event, or trigger that has
been executed in the database:

CALL sa_procedure_profile_summary();

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1047

The following statement returns the same summary information as the previous example, and saves it to a
file called summaryinfo.txt:

CALL sa_procedure_profile_summary("summaryinfo.txt", 1);

Either of the following statements can be used to load stored summary information from a file called
summaryinfoOLD.txt:

CALL sa_procedure_profile_summary("summaryinfoOLD".txt, 0);
CALL sa_procedure_profile_summary("summaryinfoOLD.txt");

sa_recompile_views system procedure
Locates view definitions stored in the catalog that do not have column definitions and causes the column
definitions to be created.

Syntax
sa_recompile_views([ignore_errors])

Arguments
● ignore_errors Use this optional INTEGER parameter to specify whether to return errors during

the recompilation. If you specify 0, an error is returned for each view for which column definition
failed. If you specify 1, or any value other than 0, no errors are returned. If no value is specified, 0 is
used by default.

Remarks
This procedure is used to locate views in the catalog that do not have column definitions and execute an
ALTER VIEW statement with the RECOMPILE clause to create the column definitions. The procedure
does this for each view that does not have a column definition until there are none left that require
compilation or until any remaining column definitions cannot be created. If the procedure is unable to
recompile any views, an error is reported. Errors can be suppressed by specifying a non-zero parameter to
this procedure.

Caution
The sa_recompile_views system procedure should only be called from within a reload.sql script. This
procedure is used by the Unload utility (dbunload) and should not be used explicitly.

The sa_recompile_views system procedure does not attempt to recompile materialized views or any view
marked DISABLED.

Permissions
DBA authority

Side effects
For each regular view that does not have a VALID status, an ALTER VIEW owner.viewname
ENABLE statement is executed, causing an automatic commit.

System procedures

1048 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “Regular view statuses” [SQL Anywhere Server - SQL Usage]
● “force_view_creation option” [SQL Anywhere Server - Database Administration]
● “ALTER VIEW statement” on page 443

sa_refresh_materialized_views system procedure
Initializes all materialized views that are in an uninitialized state.

Syntax
sa_refresh_materialized_views([ignore_errors])

Arguments
● ignore_errors Use this optional INTEGER parameter to specify whether to return errors during

the recompilation. If you specify 0, an error is returned for each view for which column definition
failed. If you specify 1, or any value other than 0, no errors are returned. If no value is specified, 0 is
used by default.

Remarks
A materialized view may be in an uninitialized state because it has just been created, has just been re-
enabled, or the last attempt to initialize or refresh it failed due to an error. The
sa_refresh_materialized_views system procedure scans the database for all such materialized views and
attempts to initialize them. If the procedure encounters an error initializing a materialized view, it
continues on attempting to process the remaining uninitialized views.

You can also use the REFRESH MATERIALIZED VIEW statement to initialize a materialized view.

Permissions
DBA authority

Side effects
None

See also
● “REFRESH MATERIALIZED VIEW statement” on page 798
● “Refresh manual views” [SQL Anywhere Server - SQL Usage]

sa_refresh_text_indexes system procedure
Refreshes all text indexes defined as MANUAL REFRESH or AUTO REFRESH.

Syntax
sa_refresh_text_indexes()

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1049

Remarks
The sa_refresh_text_indexes system procedure refreshes all text indexes defined as MANUAL REFRESH
or AUTO REFRESH. It does not refresh text indexes defined as IMMEDIATE REFRESH (the default)
because changes to those indexes are made when data is changed in the underlying table.

Permissions
DBA authority

Side effects
Automatic commit

See also
● “Full text search” [SQL Anywhere Server - SQL Usage]
● “How to manage text configuration objects” [SQL Anywhere Server - SQL Usage]
● “DROP TEXT INDEX statement” on page 672
● “REFRESH TEXT INDEX statement” on page 801
● “TRUNCATE statement” on page 881
● “SYSTEXTIDX system view” on page 1181
● “sa_text_index_stats system procedure” on page 1089
● “sa_text_index_vocab system procedure” on page 1090

Example
The following statement refreshes all MANUAL and AUTO REFRESH text indexes in the database:

CALL sa_refresh_text_indexes();

sa_remove_tracing_data system procedure
Permanently deletes from the diagnostic tracing tables all records pertaining to the specified logging
(tracing) session ID.

Syntax
sa_remove_tracing_data(log_session_id)

Arguments
● log_session_id Use this INTEGER parameter to specify the ID of the logging session for which

to remove the data.

Remarks
If there are no records for the specified log_session_id, the procedure has no effect. The procedure has no
return values.

Permissions
DBA authority

System procedures

1050 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Side effects
Causes a commit upon completion, even if no records were found for the specified log_session_id.

See also
● “Diagnostic tracing tables” on page 922

sa_report_deadlocks system procedure
Retrieves information about deadlocks from an internal buffer created by the database server.

Syntax
sa_report_deadlocks()

Result set

Column name Data type Description

snapshotId BIGINT The deadlock instance (all rows pertaining to a particular dead-
lock have the same ID).

snapshotAt TIMESTAMP The time when the deadlock occurred.

waiter INT The connection handle of the waiting connection.

who VARCHAR(128) The user ID associated with the connection that is waiting.

what LONG VAR-
CHAR

The command being executed by the waiting connection.

This information is only available if you have turned on cap-
turing of the most recently-prepared SQL statement by speci-
fying the -zl option on the database server command line or
have turned this feature on using the sa_server_option system
procedure.

object_id UNSIGNED BI-
GINT

The object ID of the table containing the row.

record_id BIGINT The row ID of the associated row.

owner INT The connection handle of the connection owning the lock be-
ing waited on.

is_victim BIT Identifies the rolled back transaction.

rollback_opera-
tion_count

UNSIGNED INT The number of uncommitted operations that may be lost if the
transaction rolls back.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1051

Remarks
When the log_deadlocks option is set to On, the database server logs information about deadlocks in an
internal buffer. You can view the information in the log using the sa_report_deadlocks system procedure.

Permissions
DBA authority

Side effects
None

See also
● “Understanding system events” [SQL Anywhere Server - Database Administration]
● “log_deadlocks option” [SQL Anywhere Server - Database Administration]
● “sa_server_option system procedure” on page 1060
● “Determining who is blocked” [SQL Anywhere Server - SQL Usage]
● “-zl dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration]
● “sa_server_option system procedure” on page 1060

sa_reserved_words system procedure
Returns a list of SQL Anywhere reserved words. Many, but not all, the keywords that appear in SQL
statements are reserved words.

Syntax
sa_reserved_words()

Remarks
The procedure takes no parameters and returns one word per row. The list of reserved words is based on
the version of the database server that executes the query, not the version of the software used to create
the database file.

Permissions
None

Side effects
None

See also
● “Reserved words” on page 1

Example
The following statement returns a list of SQL Anywhere reserved words:

SELECT *
FROM dbo.sa_reserved_words();

System procedures

1052 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

sa_reset_identity system procedure
Allows the next identity value to be set for a table. Use this to change the autoincrement value for the next
row that will be inserted.

Syntax
sa_reset_identity(
tbl_name,
owner_name,
new_identity
)

Arguments
● tbl_name Use this CHAR(128) parameter to specify the table for which you want to reset the

identity value. If the owner of the table is not specified, tbl_name must uniquely identify a table in the
database.

● owner_name Use this CHAR(128) parameter to specify the owner of the table for which you want
to reset the identity value.

● new_identity Use this BIGINT parameter to specify the value from which you want the auto-
incrementing to start.

Remarks
The next identity value generated for a row inserted into the table is new_identity + 1.

No checking occurs to see whether new_identity + 1 conflicts with existing rows in the table. For
example, if you specify new_identity as 100, the next row inserted gets an identity value of 101. However,
if 101 already exists in the table, the row insertion fails.

If owner_name is not specified or is NULL, tbl_name must uniquely identify a table in the database.

The sa_reset_identity system procedure cannot be used on a table having no columns with a default of
either AUTOINCREMENT or GLOBAL AUTOINCREMENT.

Permissions
DBA authority

Side effects
Causes a checkpoint to occur after the value has been updated

See also
● “The AUTOINCREMENT default” [SQL Anywhere Server - SQL Usage]
● “The GLOBAL AUTOINCREMENT default” [SQL Anywhere Server - SQL Usage]

Example
The following statement resets the next identity value to 101:

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1053

CALL sa_reset_identity('Employees', 'DBA', 100);

sa_rowgenerator system procedure
Returns a result set with rows between a specified start and end value.

Syntax
sa_rowgenerator(
 [rstart
 [, rend
 [, rstep]]]
)

Arguments
● rstart Use this optional INTEGER parameter to specify the starting value. The default value is 0.

● rend Use this optional INTEGER parameter to specify the ending value that is greater than or equal
to rstart. The default value is 100.

● rstep Use this optional INTEGER parameter to specify the increment by which the sequence
values are increased. The default value is 1.

Result set

Column name Data type Description

row_num INTEGER Sequence number.

Remarks
The sa_rowgenerator procedure can be used in the FROM clause of a query to generate a sequence of
numbers. This procedure is an alternative to using the RowGenerator system table. You can use
sa_rowgenerator for such tasks as:

● generating test data for a known number of rows in a result set.

● generating a result set with rows for values in every range. For example, you can generate a row for
every day of the month, or you can generate ranges of zip codes.

● generating a query that has a specified number of rows in the result set. This may be useful for testing
the performance of queries.

No rows are returned if you do not specify correct start and end values and a positive non-zero step value.

You can emulate the behavior of the RowGenerator table with the following statement:

SELECT row_num FROM sa_rowgenerator(1, 255);

Permissions
None

System procedures

1054 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Side effects
None

See also
● “RowGenerator table (dbo)” on page 938

Example
The following query returns a result set containing one row for each day of the current month.

SELECT DATEADD(day, row_num-1,
 YMD(DATEPART(year, CURRENT DATE),
 DATEPART(month, CURRENT DATE), 1))
 AS day_of_month
 FROM sa_rowgenerator(1, 31, 1)
 WHERE DATEPART(month, day_of_month) =
 DATEPART(month, CURRENT DATE)
 ORDER BY row_num;

The following query shows how many employees live in zip code ranges (0-9999), (10000-19999), ...,
(90000-99999). Some of these ranges have no employees, which causes the warning Null value
eliminated in aggregate function (-109). The sa_rowgenerator procedure can be used to
generate these ranges, even though no employees have a zip code in the range.

SELECT row_num AS r1, row_num+9999
 AS r2, COUNT(PostalCode) AS zips_in_range
FROM sa_rowgenerator(0, 99999, 10000) D LEFT JOIN Employees
 ON PostalCode BETWEEN r1 AND r2
GROUP BY r1, r2
ORDER BY 1;

The following example generates 10 rows of data and inserts them into the NewEmployees table:

INSERT INTO NewEmployees (ID, Salary, Name)
SELECT row_num,
 CAST(RAND() * 1000 AS INTEGER),
 'Mary'
FROM sa_rowgenerator(1, 10);

The following example uses the sa_rowgenerator system procedure to create a view containing all
integers. The value 2147483647 in this example represents the maximum signed integer supported in SQL
Anywhere.

CREATE VIEW Integers AS
SELECT row_num AS n
FROM sa_rowgenerator(0, 2147483647, 1);

This example uses the sa_rowgenerator system procedure to create a view containing dates from
0001-01-01 to 9999-12-31. The value 3652058 in this example represents the number of days between
0001-01-01 and 9999-12-31, the earliest and latest dates supported in SQL Anywhere.

CREATE VIEW Dates AS
SELECT DATEADD(day, row_num, '0001-01-01') AS d
FROM sa_rowgenerator(0, 3652058, 1);

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1055

sa_save_trace_data system procedure

Saves tracing data to base tables.

Syntax
sa_save_trace_data()

Remarks
While a tracing session is running, diagnostic data is stored in temporary versions of the diagnostic
tracing tables. When you stop a tracing session, you specify whether you want to permanently store the
tracing data in the base tables for diagnostic tracing. If you do not choose to save the data, you can still
save the data after the session is stopped by using the sa_save_trace_data system procedure.

The sa_save_trace_data system procedure returns an error if tracing is still in progress; you must stop
tracing to use this system procedure.

The sa_save_trace_data system procedure can be used even if the user specified WITHOUT SAVING
when stopping tracing. Also, the procedure must be called from the tracing database.

Permissions
DBA authority

Side effects
Automatic commit.

See also
● “Create a diagnostic tracing session” [SQL Anywhere Server - SQL Usage]
● “Diagnostic tracing tables” on page 922

sa_send_udp system procedure

Sends a UDP packet to the specified address.

Syntax
sa_send_udp(
destAddress,
destPort,
msg
)

Arguments
● destAddress Use this CHAR(254) to specify either the host name or IP number.

● destPort Use this UNSIGNED SMALLINT parameter to specify the port number to use.

System procedures

1056 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● msg Use this LONG BINARY parameter to specify the message to send to the specified address. If
this value is a string, it must be enclosed in single quotes.

Remarks
This procedure sends a single UDP packet to the specified address. The procedure returns 0 if the message
is sent successfully, and returns an error code if an error occurs. The error code is one of the following:

● -1 if the message is too large to send over a UDP socket (as determined by the operating system) or if
there is a problem with the destination address

● the Winsock/Posix error code that is returned by the operating system

If the msg parameter contains binary data or is more complex than a string, you may want to use a
variable. For example,

CREATE VARIABLE v LONG BINARY;
SET v='This is a UDP message';
SELECT dbo.sa_send_udp('10.25.99.124', 1234, v);
DROP VARIABLE v;

This procedure can be used with MobiLink server-initiated synchronization to wake up the Listener utility
(dblsn.exe). If you use the sa_send_udp system procedure as a way to notify the Listener, you should
append a 1 to your UDP packet. This number is a server-initiated synchronization protocol number. In
future versions of MobiLink, new protocol versions may cause the Listener to behave differently.

Permissions
DBA authority

Side effects
None

See also
● “Using SA_SEND_UDP to send push notifications” [MobiLink - Server-Initiated Synchronization]

Example
The following example sends the message "This is a test" to IP address 10.25.99.196 on port 2345:

CALL sa_send_udp('10.25.99.196', 2345', 'This is a test');

sa_server_messages system procedure
Allows you to return messages from the database server messages window as a result set.

Syntax
sa_server_messages([first_msg] [, num_msgs])

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1057

Arguments
● first_msg Use this optional UNSIGNED BIGINT parameter to specify the ID of the first or last

message to be returned, depending on the sign of the num_msgs parameter. The default is NULL,
which means that the search starts at the beginning of the list if num_msgs is NULL or non-negative;
the search starts past the end of the list if num_msgs is negative.

● num_msgs Use this optional BIGINT parameter to specify the number of messages to be returned.
The sign indicates whether the request is for messages starting at first_msg or ending at first_msg. The
default is NULL, which means that all messages starting at first_msg to the end of the list are returned.

Result set

Column
name

Data type Description

msg_id UNSIGNED
BIGINT

Unique message ID. Message IDs start at 0.

msg_text LONG VAR-
CHAR

Message text.

msg_time TIMESTAMP Time when the message was issued.

msg_severi-
ty

VAR-
CHAR(255)

Message severity. This column contains one of the following values:

● INFO Informational message.

● WARN Warning.

● ERR Error.

msg_cate-
gory

VAR-
CHAR(255)

Message category. This column contains one of the following values:

● STARTUP Messages related to database server or database start-
up or shutdown.

● CHKPT Messages related to checkpoints.

● MSG Messages generated using the MESSAGE or PRINT state-
ments.

● DBA_MSG Messages generated using the MESSAGE statement
that would have required DBA permissions, such as messages sent
to the event log.

● CONN Messages about database server connectivity.

● OTHER All other types of messages.

System procedures

1058 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Column
name

Data type Description

msg_data-
base

VAR-
CHAR(255)

Database name associated with the message if it applies to one specific
database. Otherwise, NULL.

Remarks
When new messages are sent to the console, old messages with the same category or severity are deleted
if the number of messages exceeds the value of the MessageCategoryLimit property. As a result, there
may be gaps in the result set, and two consecutive rows may not have consecutive message IDs.

Permissions
None

Side effects
None

See also
● “MessageCategoryLimit server property” [SQL Anywhere Server - Database Administration]

Example
The following command requests 100 messages starting at the message whose ID is 3:

CALL sa_server_messages(3, 100);

The following command requests 500 messages up to, and including, message 4032:

CALL sa_server_messages(4032, -500);

The following commands request all messages starting with message 3:

CALL sa_server_messages(3, NULL);

CALL sa_server_messages(3);

The following command requests the first 100 messages in the list:

CALL sa_server_messages(NULL, 100);

The following command requests the last 100 messages in the list:

CALL sa_server_messages(NULL, -100);

The following commands request all the messages in the list:

CALL sa_server_messages(NULL, NULL);

CALL sa_server_messages();

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1059

sa_server_option system procedure
Overrides a server option while the server is running.

Syntax
sa_server_option(
opt,
val
)

Arguments
● opt Use this CHAR(128) parameter to specify a server option name.

● val Use this CHAR(128) parameter to specify the new value for the server option.

Remarks
Database administrators can use this procedure to override some database server options temporarily,
without restarting the database server.

The option values that are changed using this procedure are reset to their default values when the server
shuts down. If you want to change an option value every time the server is started, you can specify the
corresponding database server option when the database server is started if one exists (these are listed in
the rightmost column in the table below).

The following option settings can be changed:

Option name Values Default Server option See also

AutoMultiProg-
rammingLevel

YES, NO YES “-gna dbsrv12
server option”
[SQL Anywhere
Server - Data-
base Administra-
tion]

“Configuring the data-
base server's multi-
programming level”
[SQL Anywhere Serv-
er - Database Admin-
istration]

AutoMultiProg-
rammingLevel-
Statistics

YES, NO NO “-gns dbsrv12
server option”
[SQL Anywhere
Server - Data-
base Administra-
tion]

“AutoMultiProgram-
mingLevelStatistics
server property” [SQL
Anywhere Server - Da-
tabase Administration]

System procedures

1060 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Option name Values Default Server option See also

CacheSizingSta-
tistics

YES, NO NO “-cs dbeng12/
dbsrv12 server
option” [SQL
Anywhere Server
- Database Ad-
ministration]

“CacheSizingStatistics
server property” [SQL
Anywhere Server - Da-
tabase Administration]

CollectStatistics YES, NO YES “-k dbeng12/
dbsrv12 server
option” [SQL
Anywhere Server
- Database Ad-
ministration]

“CollectStatistics serv-
er property” [SQL Any-
where Server - Data-
base Administration]

ConnsDisabled YES, NO NO “ConnsDisabled serv-
er property” [SQL Any-
where Server - Data-
base Administration]

ConnsDisabled-
ForDB

YES, NO NO

ConsoleLogFile filename “-o dbeng12/
dbsrv12 server
option” [SQL
Anywhere Server
- Database Ad-
ministration]

“ConsoleLogFile serv-
er property” [SQL Any-
where Server - Data-
base Administration]

ConsoleLog-
MaxSize

file-size, in bytes “-on dbeng12/
dbsrv12 server
option” [SQL
Anywhere Server
- Database Ad-
ministration]

“ConsoleLogMaxSize
server property” [SQL
Anywhere Server - Da-
tabase Administration]

CurrentMulti-
ProgrammingLe-
vel

Integer 20 “-gn dbsrv12
server option”
[SQL Anywhere
Server - Data-
base Administra-
tion]

“Configuring the data-
base server's multi-
programming level”
[SQL Anywhere Serv-
er - Database Admin-
istration]

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1061

Option name Values Default Server option See also

DatabaseCleaner ON, OFF ON “DatabaseCleaner da-
tabase property” [SQL
Anywhere Server - Da-
tabase Administration]

DeadlockLog-
ging

ON, OFF, RE-
SET, CLEAR

OFF “log_deadlocks
option” [SQL
Anywhere Server
- Database Ad-
ministration]

DebuggingInfor-
mation

YES, NO NO “-z dbeng12/
dbsrv12 server
option” [SQL
Anywhere Server
- Database Ad-
ministration]

“DebuggingInforma-
tion server property”
[SQL Anywhere Serv-
er - Database Admin-
istration]

DropBadStatis-
tics

YES, NO YES

DropUnusedSta-
tistics

YES, NO YES

IdleTimeout Integer, in mi-
nutes

240 “-ti dbeng12/
dbsrv12 server
option” [SQL
Anywhere Server
- Database Ad-
ministration]

“IdleTimeout server
property” [SQL Any-
where Server - Data-
base Administration]

IPAddressMoni-
torPeriod

Integer, in sec-
onds

120 for portable
devices, 0 other-
wise

“-xm dbeng12/
dbsrv12 server
option” [SQL
Anywhere Server
- Database Ad-
ministration]

“IPAddressMonitor-
Period server proper-
ty” [SQL Anywhere
Server - Database Ad-
ministration]

LivenessTimeout Integer, in sec-
onds

120 “-tl dbeng12/
dbsrv12 server
option” [SQL
Anywhere Server
- Database Ad-
ministration]

“LivenessTimeout
server property” [SQL
Anywhere Server - Da-
tabase Administration]

System procedures

1062 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Option name Values Default Server option See also

MaxMultiProg-
rammingLevel

Integer Four times the
CurrentMulti-
ProgrammingLe-
vel value

“-gnh dbsrv12
server option”
[SQL Anywhere
Server - Data-
base Administra-
tion]

“Configuring the data-
base server's multi-
programming level”
[SQL Anywhere Serv-
er - Database Admin-
istration]

MessageCategor-
yLimit

Integer 400 “MessageCategoryLi-
mit server property”
[SQL Anywhere Serv-
er - Database Admin-
istration]

MinMultiProg-
rammingLevel

Integer The minimum of
the value of the -
gtc server option
and the number
of logical CPUs
on the computer

“-gnl dbsrv12
server option”
[SQL Anywhere
Server - Data-
base Administra-
tion]

“Configuring the data-
base server's multi-
programming level”
[SQL Anywhere Serv-
er - Database Admin-
istration]

OptionWatchAc-
tion

MESSAGE, ER-
ROR

MESSAGE ● “Monitoring op-
tion settings”
[SQL Anywhere
Server - Database
Administration]

● “OptionWatchAc-
tion database prop-
erty” [SQL Any-
where Server - Da-
tabase Administra-
tion]

OptionWatchList comma-separated
list of database
options

● “Monitoring op-
tion settings”
[SQL Anywhere
Server - Database
Administration]

● “OptionWatchList
database property”
[SQL Anywhere
Server - Database
Administration]

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1063

Option name Values Default Server option See also

ProcedureProfil-
ing

YES, NO, RE-
SET, CLEAR

NO “ProcedureProfiling
database property”
[SQL Anywhere Serv-
er - Database Admin-
istration]

ProfileFilter-
Conn

connection-id “ProfileFilterConn
server property” [SQL
Anywhere Server - Da-
tabase Administration]

ProfileFilterUser user-id “ProfileFilterUser
server property” [SQL
Anywhere Server - Da-
tabase Administration]

QuittingTime valid date and
time

“-tq dbeng12/
dbsrv12 server
option” [SQL
Anywhere Server
- Database Ad-
ministration]

“QuittingTime server
property” [SQL Any-
where Server - Data-
base Administration]

RememberLast-
Plan

YES, NO NO “-zp dbeng12/
dbsrv12 server
option” [SQL
Anywhere Server
- Database Ad-
ministration]

“RememberLastPlan
server property” [SQL
Anywhere Server - Da-
tabase Administration]

RememberLast-
Statement

YES, NO NO “-zl dbeng12/
dbsrv12 server
option” [SQL
Anywhere Server
- Database Ad-
ministration]

“RememberLastState-
ment server property”
[SQL Anywhere Serv-
er - Database Admin-
istration]

RequestFilter-
Conn

connection-id, -1 “RequestFilterConn
server property” [SQL
Anywhere Server - Da-
tabase Administration]

RequestFilterDB database-id, -1 “RequestFilterDB
server property” [SQL
Anywhere Server - Da-
tabase Administration]

System procedures

1064 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Option name Values Default Server option See also

RequestLogFile filename “-zo dbeng12/
dbsrv12 server
option” [SQL
Anywhere Server
- Database Ad-
ministration]

“RequestLogFile serv-
er property” [SQL Any-
where Server - Data-
base Administration]

RequestLogging SQL, HOST-
VARS, PLAN,
PROCEDURES,
TRIGGERS,
OTHER,
BLOCKS, RE-
PLACE, ALL,
YES, NONE, NO

NONE “-zr dbeng12/
dbsrv12 server
option” [SQL
Anywhere Server
- Database Ad-
ministration]

“RequestLogging
server property” [SQL
Anywhere Server - Da-
tabase Administration]

RequestLogMax-
Size

file-size, in bytes “-zs dbeng12/
dbsrv12 server
option” [SQL
Anywhere Server
- Database Ad-
ministration]

“RequestLogMaxSize
server property” [SQL
Anywhere Server - Da-
tabase Administration]

RequestLog-
NumFiles

Integer “-zn dbeng12/
dbsrv12 server
option” [SQL
Anywhere Server
- Database Ad-
ministration]

“RequestLogNum-
Files server property”
[SQL Anywhere Serv-
er - Database Admin-
istration]

RequestTiming YES, NO NO “-zt dbeng12/
dbsrv12 server
option” [SQL
Anywhere Server
- Database Ad-
ministration]

“RequestTiming serv-
er property” [SQL Any-
where Server - Data-
base Administration]

SecureFeatures feature-list “-sf dbeng12/
dbsrv12 server
option” [SQL
Anywhere Server
- Database Ad-
ministration]

“Specifying secured
features” [SQL Any-
where Server - Data-
base Administration]

StatisticsCleaner ON, OFF ON

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1065

Option name Values Default Server option See also

WebClientLog-
File

filename “-zoc dbeng12/
dbsrv12 server
option” [SQL
Anywhere Server
- Database Ad-
ministration]

“WebClientLogFile
server property” [SQL
Anywhere Server - Da-
tabase Administration]

WebClientLog-
ging

ON, OFF OFF “-zoc dbeng12/
dbsrv12 server
option” [SQL
Anywhere Server
- Database Ad-
ministration]

“WebClientLogging
server property” [SQL
Anywhere Server - Da-
tabase Administration]

● AutoMultiProgrammingLevel When set to YES, the database server automatically adjusts its
multiprogramming level, which controls the maximum number of tasks that can be active at a time. If
you choose to control the multiprogramming level manually by setting this option to NO, you can still
set the initial, minimum, and maximum values for the multiprogramming level. See “-gna dbsrv12
server option” [SQL Anywhere Server - Database Administration].

● AutoMultiProgrammingLevelStatistics When set to YES, statistics for automatic
multiprogramming level adjustments appear in the database server message log. See “-gns dbsrv12
server option” [SQL Anywhere Server - Database Administration].

● CacheSizingStatistics When set to YES, display cache information in the database server
messages window whenever the cache size changes. See “-cs dbeng12/dbsrv12 server option” [SQL
Anywhere Server - Database Administration].

● CollectStatistics When set to YES, the database server collects Performance Monitor statistics.
See “-k dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration].

● ConnsDisabled When set to YES, no other connections are allowed to any databases on the
database server.

● ConnsDisabledForDB When set to YES, no other connections are allowed to the current database.

● ConsoleLogFile The name of the file used to record database server message log information.
Specifying an empty string stops logging to the file. Any backslash characters in the path must be
doubled because this is a SQL string. See “-o dbeng12/dbsrv12 server option” [SQL Anywhere Server
- Database Administration].

● ConsoleLogMaxSize The maximum size, in bytes, of the file used to record database server
message log information. When the database server message log file reaches the size specified by
either this property or the -on server option, the file is renamed with the extension .old appended
(replacing an existing file with the same name if one exists). The database server message log file is

System procedures

1066 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

then restarted. See “-on dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database
Administration].

● CurrentMultiProgrammingLevel Sets the multiprogramming level of the database server. See “-
gn dbsrv12 server option” [SQL Anywhere Server - Database Administration].

● DatabaseCleaner Do not change the setting of this option except on the recommendation of
iAnywhere Technical Support. See also “sa_clean_database system procedure” on page 957.

● DeadlockLogging Controls deadlock logging. The value deadlock_logging is also supported.
Deadlock logging options can also be configured on the Database Properties window in Sybase
Central. The following values are supported:

○ ON Enables deadlock logging.

○ OFF Disables deadlock logging and leaves the deadlock data available for viewing.

○ RESET Clears the logged deadlock data, if any exists, and then enables deadlock logging.

○ CLEAR Clears the logged deadlock data, if any exists, and then disables deadlock logging.

Once deadlock logging is enabled, you can use the sa_report_deadlocks system procedure to retrieve
deadlock information from the database. See “sa_report_deadlocks system procedure” on page 1051.

For more information, see “log_deadlocks option” [SQL Anywhere Server - Database Administration].

● DebuggingInformation Displays diagnostic messages and other messages for troubleshooting
purposes. The messages appear in the database server messages window. See “-z dbeng12/dbsrv12
server option” [SQL Anywhere Server - Database Administration].

● DropBadStatistics Allows automatic statistics management to drop statistics that return bad
estimates from the database. See “How the statistics governor maintains statistics” [SQL Anywhere
Server - SQL Usage].

● DropUnusedStatistics Allows automatic statistics management to drop statistics that have not
been used for 90 consecutive days from the database. See “How the statistics governor maintains
statistics” [SQL Anywhere Server - SQL Usage].

● IdleTimeout Disconnects TCP/IP connections that have not submitted a request for the specified
number of minutes. This prevents inactive connections from holding locks indefinitely. See “-ti dbeng12/
dbsrv12 server option” [SQL Anywhere Server - Database Administration].

● IPAddressMonitorPeriod Sets the time to check for new IP addresses in seconds. The minimum
value is 10 and the default is 0. For portable devices, the default value is 120 seconds. See “-xm dbeng12/
dbsrv12 server option” [SQL Anywhere Server - Database Administration].

● LivenessTimeout A liveness packet is sent periodically across a client/server TCP/IP network to
confirm that a connection is intact. If the network server runs for a LivenessTimeout period without
detecting a liveness packet, the communication is severed. See “-tl dbeng12/dbsrv12 server option”
[SQL Anywhere Server - Database Administration].

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1067

● MaxMultiProgrammingLevel Sets the maximum database server multiprogramming level. See “-
gnh dbsrv12 server option” [SQL Anywhere Server - Database Administration].

● MessageCategoryLimit Sets the minimum number of messages of each severity and category that
can be retrieved using the sa_server_messages system procedure. See “sa_server_messages system
procedure” on page 1057.

● MinMultiProgrammingLevel Sets the minimum database server multiprogramming level. See “-
gnl dbsrv12 server option” [SQL Anywhere Server - Database Administration].

● OptionWatchAction Specifies the action the database server should take when an attempt is made
to set an option in the list. The supported values are MESSAGE and ERROR. When
OptionWatchAction is set to MESSAGE, and an option specified by OptionWatchList is set, a
message appears in the database server messages window indicating that the option being set is on the
options watch list.

When OptionWatchAction is set to ERROR, an error is returned indicating that the option cannot be
set because it is on the options watch list.

You can view the current setting for this property by executing the following query:

SELECT DB_PROPERTY('OptionWatchAction');

● OptionWatchList Specifies a comma-separated list of database options that you want to be
notified about, or have the database server return an error for, when they are set. The string length is
limited to 128 bytes. By default, it is an empty string. For example, the following command adds the
automatic_timestamp, float_as_double, and tsql_hex_constant option to the list of options being
watched:

CALL sa_server_option('OptionWatchList','automatic_timestamp,
 float_as_double,tsql_hex_constant')

You can view the current setting for this property by executing the following query:

SELECT DB_PROPERTY('OptionWatchList');

● ProcedureProfiling Controls procedure profiling for stored procedures, functions, events, and
triggers. Procedure profiling shows you how long it takes your stored procedures, functions, events,
and triggers to execute. You can also set procedure profiling options on the Database Properties
window in Sybase Central

○ YES enables procedure profiling for the database you are currently connected to.

○ NO disables procedure profiling and leaves the profiling data available for viewing.

○ RESET returns the profiling counters to zero, without changing the YES or NO setting.

○ CLEAR returns the profiling counters to zero and disables procedure profiling.

System procedures

1068 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Once profiling is enabled, you can use the sa_procedure_profile_summary and
sa_procedure_profile system procedures to retrieve profiling information from the database. See
“Procedure profiling using system procedures” [SQL Anywhere Server - SQL Usage].

● ProfileFilterConn Instructs the database server to capture profiling information for a specific
connection ID, without preventing other connections from using the database. When connection
filtering is enabled, the value returned for SELECT PROPERTY('ProfileFilterConn') is
the connection ID of the connection being monitored. If no ID has been specified, or if connection
filtering is disabled, the value returned is -1.

● ProfileFilterUser Instructs the database server to capture profiling information for a specific user ID.

● QuittingTime Instructs the database server to shut down at the specified time. See “-tq dbeng12/
dbsrv12 server option” [SQL Anywhere Server - Database Administration].

● RememberLastPlan Instructs the database server to capture the long text plan of the last query
executed on the connection. This setting is also controlled by the -zp server option. See “-zp dbeng12/
dbsrv12 server option” [SQL Anywhere Server - Database Administration].

When RememberLastPlan is turned on, you can obtain the textual representation of the plan of the last
query executed on the connection by querying the value of the LastPlanText connection property:

SELECT CONNECTION_PROPERTY('LastPlanText');

● RememberLastStatement Instructs the database server to capture the most recently prepared
SQL statement for each database running on the server. For stored procedure calls, only the outermost
procedure call appears, not the statements within the procedure.

When RememberLastStatement is turned on, you can obtain the current value of the LastStatement for
a connection by querying the value of the LastStatement connection property:

SELECT CONNECTION_PROPERTY('LastStatement');

When client statement caching is enabled, and a cached statement is reused, this property returns an
empty string.

For more information, see “Database server properties” [SQL Anywhere Server - Database
Administration] and “-zl dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database
Administration].

When RememberLastStatement is turned on, the following statement returns the most recently-
prepared statement for the specified connection:

SELECT CONNECTION_PROPERTY('LastStatement', connection-id);

The sa_conn_activity system procedure returns this same information for all connections.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1069

Caution
When -zl is specified, or when the RememberLastStatement server setting is turned on, any user can
call the sa_conn_activity system procedure or obtain the value of the LastStatement connection
property to find out the most recently-prepared SQL statement for any other user. This option should
be used with caution and turned off when it is not required.

● RequestFilterConn Filter the request logging information so that only information for a particular
connection is logged. This can help reduce the size of the request log file when monitoring a database
server with many active connections or multiple databases. You can obtain the connection ID by
executing the following:

CALL sa_conn_info();

To specify a specific connection to be logged once you have obtained the connection ID, execute the
following:

CALL sa_server_option('RequestFilterConn', connection-id);

Filtering remains in effect until it is explicitly reset, or until the database server is shut down. To reset
filtering, use the following statement:

CALL sa_server_option('RequestFilterConn', -1);

● RequestFilterDB Filter the request logging information so that only information for a particular
database is logged. This can help reduce the size of the request log file when monitoring a server with
multiple databases. You can obtain the database ID by executing the following statement when you
are connected to the desired database:

SELECT CONNECTION_PROPERTY('DBNumber');

To specify that only information for a particular database is to be logged, execute the following:

CALL sa_server_option('RequestFilterDB', database-id);

Filtering remains in effect until it is explicitly reset, or until the database server is shut down. To reset
filtering, use the following statement:

CALL sa_server_option('RequestFilterDB', -1);

● RequestLogFile The name of the file used to record request information. Specifying an empty
string stops logging to the request log file. If request logging is enabled, but the request log file was
not specified or has been set to an empty string, the server logs requests to the database server
messages window. Any backslash characters in the path must be doubled as this is a SQL string. See “-
zo dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration].

When client statement caching is enabled, the max_client_statements_cached option should be set to 0
to disable client statement caching while the request log is captured if the log will be analyzed using
the tracetime.pl Perl script. See “max_client_statements_cached option” [SQL Anywhere Server -
Database Administration].

System procedures

1070 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● RequestLogging This call turns on logging of individual SQL statements sent to the database
server for use in troubleshooting, in conjunction with the database server -zr and -zo options. Values
can be combinations of the following, separated by either a plus sign (+), or a comma:

○ PLAN enables logging of execution plans (short form). Execution plans for procedures are also
recorded if logging of procedures (PROCEDURES) is enabled.

○ HOSTVARS enables logging of host variable values. If you specify HOSTVARS, the
information listed for SQL is also logged.

○ PROCEDURES enables logging of statements executed from within procedures.

○ TRIGGERS enables logging of statements executed from within triggers.

○ OTHER enables logging of additional request types not included by SQL, such as FETCH and
PREFETCH. However, if you specify OTHER but do not specify SQL, it is the equivalent of
specifying SQL+OTHER. Including OTHER can cause the log file to grow rapidly and could
negatively impact server performance.

○ BLOCKS enables logging of details showing when a connection is blocked and unblocked on
another connection.

○ REPLACE at the start of logging, the existing request log is replaced with a new (empty) one of
the same name. Otherwise, the existing request log is opened and new entries are appended to the
end of the file.

○ ALL logs all supported information. This is equivalent to specifying SQL+PLAN+HOSTVARS
+PROCEDURES+TRIGGERS+OTHER+BLOCKS. This setting can cause the log file to grow
rapidly and could negatively impact server performance.

○ NO or NONE turns off logging to the request log.

You can view the current setting for this property by executing the following query:

SELECT PROPERTY('RequestLogging');

For more information, see “-zr dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database
Administration], and “Database server properties” [SQL Anywhere Server - Database Administration].

● RequestLogMaxSize The maximum size of the file used to record request logging information, in
bytes. If you specify 0, then there is no maximum size for the request logging file, and the file is never
renamed. This is the default value.

When the request log file reaches the size specified by either the sa_server_option system procedure
or the -zs server option, the file is renamed with the extension .old appended (replacing an existing file
with the same name if one exists). The request log file is then restarted. See “-zs dbeng12/dbsrv12
server option” [SQL Anywhere Server - Database Administration].

● RequestLogNumFiles The number of request log file copies to retain.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1071

If request logging is enabled over a long period of time, the request log file can become large. The -zn
option allows you to specify the number of request log file copies to retain. See “-zn dbeng12/dbsrv12
server option” [SQL Anywhere Server - Database Administration].

● RequestTiming Instructs the database server to maintain timing information for each connection.
This feature is turned off by default. When it is turned on, the database server maintains cumulative
timers for each connection that indicate how much time the connection spent in the server in each of
several states. You can use the sa_performance_diagnostics system procedure to obtain a summary of
this timing information, or you can retrieve individual values by inspecting the following connection
properties:

○ ReqCountUnscheduled
○ ReqTimeUnscheduled
○ ReqCountActive
○ ReqTimeActive
○ ReqCountBlockIO
○ ReqTimeBlockIO
○ ReqCountBlockLock
○ ReqTimeBlockLock
○ ReqCountBlockContention
○ ReqTimeBlockContention

See “Connection properties” [SQL Anywhere Server - Database Administration].

When the RequestTiming server property is on, there is a small overhead for each request to maintain
the additional counters. See “-zt dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database
Administration], and “sa_performance_diagnostics system procedure” on page 1038.

● SecureFeatures Allows you to enable or disable secure features of a database server that is
already running. feature-list is a comma-separated list of feature names or feature sets. By adding to
the list of secure features, you are securing (preventing) a capability to do something. To remove
items from the list of secure features, specify a minus sign (-) before the secure feature name. For a
list of valid feature-list values, see “-sf dbeng12/dbsrv12 server option” [SQL Anywhere Server -
Database Administration].

Any changes you make to enable or disable features take effect immediately for the connection. The
settings do not affect the connection that executes the sa_server_option system procedure; you must
disconnect and reconnect to see the change.

Note
To use the sa_server_option system procedure to enable or disable features, you must have specified a
key with the -sk option when starting the database server, and set the value of the secure_feature_key
database option to the key you specified for -sk (for example, SET TEMPORARY OPTION
secure_feature_key = 'j978kls12'). Setting the secure_feature_key database option to
the -sk value allows you to change the setting for secure features. See “-sk dbeng12/dbsrv12 server
option” [SQL Anywhere Server - Database Administration] and “secure_feature_key” [SQL Anywhere
Server - Database Administration].

For example, to disable two features and enable a third, you would use this syntax:

System procedures

1072 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

CALL sa_server_option('SecureFeatures', 'CONSOLE_LOG,WEBCLIENT_LOG,-
REQUEST_LOG');

After executing this statement, CONSOLE_LOG, and WEBCLIENT_LOG are added to the list of
secure features, and REQUEST_LOG is removed from the list.

● StatisticsCleaner The statistics cleaner fixes statistics that give bad estimates by performing scans
on tables. By default the statistics cleaner runs in the background and has a minimal impact on
performance.

Turning off the statistics cleaner does not disable the statistic governor, but when the statistics cleaner
is turned off, statistics are only created or fixed when a query is run. See “Updating column statistics
to improve optimizer performance” [SQL Anywhere Server - SQL Usage].

● WebClientLogFile The name of the web service client log file. The web service client log file is
truncated each time you use the -zoc server option or the WebClientLogFile property to set or reset
the file name. Any backslash characters in the path must be doubled because this is a string. See “-zoc
dbeng12/dbsrv12 server option” [SQL Anywhere Server - Database Administration].

● WebClientLogging This option enables and disables logging of web service clients. The
information that is logged includes HTTP requests and response data. Specify ON to start logging to
the web service client log file, and specify OFF to stop logging to the file. See “-zoc dbeng12/dbsrv12
server option” [SQL Anywhere Server - Database Administration].

Permissions
The following options, which are related to application profiling or request logging, require either DBA or
PROFILE authority:

● ProcedureProfiling
● ProfileFilterConn
● ProfileFilterUser
● RequestFilterConn
● RequestFilterDB
● RequestLogFile
● RequestLogging
● RequestLogMaxSize
● RequestLogNumFiles

All other options require DBA authority.

Side effects
None

Example
The following statement disallows new connections to the database server:

CALL sa_server_option('ConnsDisabled', 'YES');

The following statement disallows new connections to the current database:

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1073

CALL sa_server_option('ConnsDisabledForDB', 'YES');

The following statement enables logging of all SQL statements, procedure calls, plans, blocking and
unblocking events, and specifies that a new request log be started:

CALL sa_server_option('RequestLogging', 'SQL+PROCEDURES+BLOCKS+PLAN
+REPLACE');

sa_set_http_header system procedure

Permits a web service to set an HTTP response header.

Syntax
sa_set_http_header(
fldname,
val
)

Arguments
● fldname Use this CHAR(128) parameter to specify a string containing the name of one of the

HTTP header fields.

● val Use this LONG VARCHAR parameter to specify the value to which the named parameter
should be set. Setting a response header to NULL, effectively removes it.

Remarks
Setting the special header field @HttpStatus sets the status code returned with the request. The status code
is also known as the response code. For example, the following script sets the status code to 404 Not Found:

CALL sa_set_http_header('@HttpStatus', '404');

You can create a user-defined status message by specifying a three digit status code with an optional colon-
delimited text message. For example, the following script outputs a status code with the message "999
User Code":

CALL sa_set_http_header('@HttpStatus', '999:User Code');

Note
A user defined status text message is not translated into a database character-set when logged using the
LogOptions protocol option. See “LogOptions (LOPT) protocol option” [SQL Anywhere Server -
Database Administration].

The body of the error message is inserted automatically. Only valid HTTP error codes can be used.
Setting the status to an invalid code causes a SQL error.

The sa_set_http_header procedure always overwrites the existing header value of the header field when
called.

System procedures

1074 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Response headers generated automatically by the database server can be removed. For example, the
following command removes the Expires response header:

CALL sa_set_http_header('Expires', NULL);

Permissions
None

Side effects
None

See also
● “NEXT_HTTP_RESPONSE_HEADER function [HTTP]” on page 273
● “HTTP_RESPONSE_HEADER function [HTTP]” on page 235
● “Web services functions” on page 135
● “Web services system procedures” on page 941

Example
The following example sets the Content-Type header field to text/html.

CALL sa_set_http_header('Content-Type', 'text/html');

sa_set_http_option system procedure

Permits a web service to set an HTTP option for process control.

Syntax
sa_set_http_option(
optname,
val
)

Arguments
● optname Use this CHAR(128) parameter to specify a string containing the name of one of the

HTTP options.

● val Use this LONG VARCHAR parameter to specify the value to which the named option should
be set.

Remarks
Use this procedure within statements or procedures that handle web services to set options.

The supported options are:

● CharsetConversion Use this option to control whether the result set is to be automatically
converted from the character set encoding of the database to the character set encoding of the client.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1075

The only permitted values are ON and OFF. The default value is ON. See “Character set conversion
considerations” [SQL Anywhere Server - Programming].

● AcceptCharset Use this option to specify the web server's preferences for a response character set
encoding. One or more character set encodings may be specified in order of preference. The syntax for
this option conforms to the syntax used for the HTTP Accept-Charset request-header field
specification in RFC2616 Hypertext Transfer Protocol.

An HTTP client such as a web browser may provide an Accept-Charset request header which
specifies a list of character set encodings ordered by preference. Optionally, each encoding may be
given an associated quality value (q=qvalue) which represents the client's preference for that
encoding. By default, the quality value is 1 (q=1). Here is an example:

Accept-Charset: iso-8859-5, utf-8;q=0.8

A plus sign (+) in the AcceptCharset HTTP option value may be used as a shortcut to represent the
current database character set encoding. The plus sign also indicates that the database character set
encoding should take precedence if the client also specifies the encoding in its list, regardless of the
quality value assigned by the client.

An asterisk (*) in the AcceptCharset HTTP option may be used to indicate that the web service should
use a character set encoding preferred by the client, as long as it is also supported by the server, when
client and server do not have an intersecting list.

When sending the response, the first character set encoding preferred by both client and web service is
used. The client's order of preference takes precedence. If no mutual encoding preference exists, then
the web service's most preferred encoding is used, unless an asterisk (*) appears in the web service list
in which case the client's most preferred encoding is used.

If the AcceptCharset HTTP option is not used, the most preferred character set encoding specified by
the client and supported by the server is used. If none of the encodings specified by the client are
supported (or the client does not send an Accept-Charset request header) then the database character
set encoding is used.

If a client does not send an Accept-Charset header then one of the following actions are taken:

○ If the AcceptCharset HTTP option has not been specified then the web server will use the database
character set encoding.

○ If the AcceptCharset HTTP option has been specified then the web server will use its most
preferred character set encoding.

If a client does send an Accept-Charset header then one of the following actions are taken:

○ If the AcceptCharset HTTP option has not been specified then the web server will attempt to use
one of the client's preferred character set encodings, starting with the most preferred encoding. If
the web server does not support any of the client's preferred encodings, it will use the database
character set encoding.

○ If the AcceptCharset HTTP option has been specified then the web server will attempt to use the
first preferred character set encoding common to both lists, starting with the client's most preferred

System procedures

1076 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

encoding. For example, if the client sends an Accept-Charset header listing, in order of preference,
encodings iso-a, iso-b, and iso-c and the web server prefers iso-b, then iso-a, and finally iso-c, then
iso-a will be selected.

Web client: iso-a, iso-b, iso-c
Web server: iso-b, iso-a, iso-c

If the intersection of the two lists is empty, then the web server's first preferred character set is
used. From the following example, encoding iso-d will be used.

Web client: iso-a, iso-b, iso-c
Web server: iso-d, iso-e, iso-f

If an asterisk ('*') was included in the AcceptCharset HTTP option, then emphasis would be
placed on the client's choice of encodings, resulting in iso-a being used. Essentially, the use of an
asterisk guarantees that the intersection of the two lists will not be empty.

The ideal situation occurs when both client and web service use the database character set encoding
since this eliminates the need for character set translation and improves the response time of the web
server.

Note that if the CharsetConversion option has been set to OFF, then AcceptCharset processing is not
performed.

● SessionID Use this option to create, delete or rename an HTTP session. The database connection is
persisted when a web service sets this option to create an HTTP session but sessions are not persisted
across server restarts. If already within a session context, this call will rename the session to the new
session ID. When called with a null value, the session will be deleted when the web service terminates.

The generated session keys are limited to 128 characters in length and unique across databases if
multiple databases are loaded.

For more information about HTTP sessions, see “Managing HTTP sessions on an HTTP server” [SQL
Anywhere Server - Programming].

● SessionTimeout Use this option to specify the amount of time, in minutes, that the HTTP session
persists during inactivity. This time-out period is reset whenever an HTTP request uses the given
session. The session is automatically deleted when the SessionTimeout is exceeded.

Permissions
None

Side effects
None

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1077

See also
● “Character set conversion considerations” [SQL Anywhere Server - Programming]
● “Managing HTTP sessions on an HTTP server” [SQL Anywhere Server - Programming]
● “Connection properties” [SQL Anywhere Server - Database Administration]
● “Web services functions” on page 135
● “Web services system procedures” on page 941

Examples
The following example illustrates the use of sa_set_http_option to indicate the web service's preference
for database character set encoding. The UTF-8 encoding is specified as a second choice. The asterisk (*)
indicates that the web service is willing to use the character set encoding most preferred by the client,
provided that it is supported by the web server.

CALL sa_set_http_option('AcceptCharset', '+,UTF-8,*');

The following example illustrates the use of sa_set_http_option to correctly identify the character
encoding in use by the web service. In this example, the web server is connected to a 1251CYR database
and is prepared to serve HTML documents containing the Cyrillic alphabet to any web browser.

CREATE PROCEDURE cyrillic_html()
RESULT (html_doc XML)
BEGIN
 DECLARE pos INT;
 DECLARE charset VARCHAR(30);
 CALL sa_set_http_option('AcceptCharset', 'iso-8859-5, utf-8');
 SET charset = CONNECTION_PROPERTY('CharSet');
 -- Change any IANA labels like ISO_8859-5:1988
 -- to ISO_8859-5 for Firefox.
 SET pos = LOCATE(charset, ':');
 IF pos > 0 THEN
 SET charset = LEFT(charset, pos - 1);
 END IF;
 CALL sa_set_http_header('Content-Type', 'text/html; charset=' ||
 charset);
 SELECT '<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">' ||
 XMLCONCAT(
 XMLELEMENT('HTML',
 XMLELEMENT('HEAD',
 XMLELEMENT('TITLE', 'Cyrillic characters')
),
 XMLELEMENT('BODY',
 XMLELEMENT('H1', 'First 5 lowercase Russian letters'),
 XMLELEMENT('P', UNISTR('\u0430\u0431\u0432\u0433\u0434'))
)
)
);
END;
CREATE SERVICE cyrillic
TYPE 'RAW'
AUTHORIZATION OFF
USER DBA
AS CALL cyrillic_html();

To illustrate the process of establishing the correct character set encoding to use, consider the following
Accept-Charset header delivered by a web browser such as Firefox to the web service. It indicates that the
browser prefers ISO-8859-1 and UTF-8 encodings but is willing to accept others.

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

System procedures

1078 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The web service will not accept the ISO-8859-1 character set encoding since the web page to be
transmitted contains Cyrillic characters. The web service prefers ISO-8859-5 or UTF-8 encodings as
indicated by the call to sa_set_http_option. In this example, the UTF-8 encoding will be chosen since it is
agreeable to both parties. The database connection property 'CharSet' indicates which encoding has been
selected by the web service. The sa_set_http_header procedure is used to indicate the HTML document's
encoding to the web browser.

Content-Type: text/html; charset=UTF-8

If the web browser does not specify an Accept-Charset, then the web service defaults to its first
preference, ISO-8859-5. The sa_set_http_header procedure is used to indicate the HTML document's
encoding.

Content-Type: text/html; charset=ISO_8859-5

The following example sets a unique HTTP session identifier:

DECLARE sessionid VARCHAR(30);
DECLARE tm TIMESTAMP;
SET tm = NOW(*);
SET sessionid = 'MySessions_' ||
 CONVERT(VARCHAR, SECONDS(tm)*1000 + DATEPART(millisecond,tm));
CALL sa_set_http_option('SessionID', sessionid);

The following example sets the time-out for an HTTP session to 5 minutes:

CALL sa_set_http_option('SessionTimeout', '5');

sa_set_soap_header system procedure
Permits the setting of SOAP headers for SOAP responses. This procedure is used within stored
procedures called from SOAP web services.

Syntax
sa_set_soap_header(
fldname,
val
)

Arguments
● fldname Use this VARCHAR parameter to specify the header key, a unique string used to

reference the given header entry (it need not be identical to the localname of the val).

● val Use this VARCHAR parameter to specify the raw XML of a top level header entry and its
children within the scope of a SOAP Header element.

Remarks
All SOAP header entries set with this procedure are serialized within the SOAP Header element when the
SOAP response message is sent. A val of NULL is not serialized. If no header entries exist for a SOAP
response, then an enclosing Header element, within the SOAP envelope, is not created.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1079

Permissions
None

Side effects
None

See also
● “Tutorial: Using SQL Anywhere to access a SOAP/DISH service” [SQL Anywhere Server -

Programming]
● “Web services functions” on page 135
● “Web services system procedures” on page 941

Example
The following example sets the SOAP header welcome to Hello:

CALL sa_set_soap_header('welcome', '<welcome>Hello</welcome>')

sa_set_tracing_level system procedure
Initializes the level of tracing information to be stored in the diagnostic tracing tables.

Syntax
sa_set_tracing_level(
level
[, specified_scope
, specified_name]
[, do_commit]
)

Arguments
● level Use this INTEGER parameter to specify the level of diagnostic tracing to perform. Possible

values include:

○ 0 Do not generate any tracing data. This level keeps the tracing session open, but does not send
any tracing data to the diagnostic tracing tables.

○ 1 Sets a basic level of tracing.

○ 2 Sets a medium level of tracing.

○ 3 Sets a high level of tracing.

● specified_scope Use this optional LONG VARCHAR parameter to specify the tracing scope; for
example, USER, DATABASE, CONNECTION_NAME, TRIGGER, and so on.

● specified_name Use this optional LONG VARCHAR parameter to specify the identifier for the
object indicated in specified_scope.

System procedures

1080 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● do_commit Use this optional TINYINT parameter to specify whether to commit, automatically,
rows inserted by this procedure. Specify 1 (the default) to commit the rows automatically
(recommended), and 0 to not commit them automatically.

Remarks
This procedure replaces the rows into the sa_diagnostic_tracing_level table, changing the tracing level
and scope to the settings specified when calling the procedure.

Setting the level 0 does not stop the tracing session. Instead, the tracing session remains attached to the
tracing database, but no tracing data is sent. The tracing session is still active when the level is 0.

This system procedure must be called from the database being profiled.

Permissions
DBA authority

Side effects
None

See also
● “Choosing a diagnostic tracing level” [SQL Anywhere Server - SQL Usage]
● “Diagnostic tracing scopes” [SQL Anywhere Server - SQL Usage]
● “sa_diagnostic_tracing_level table” on page 935
● “Advanced application profiling using diagnostic tracing” [SQL Anywhere Server - SQL Usage]

Examples
The following example sets the tracing level to 1. This means that the entire database will be profiled for
performance counter data, and some samples of executed statements:

CALL sa_set_tracing_level(1);

The following example sets the tracing level to 3, and specifies the user AG84756. This means that only
activities associated with AG84756 will be traced:

CALL sa_set_tracing_level(3, 'user', 'AG84756');

sa_snapshots system procedure
Returns a list of snapshots that are currently active.

Syntax
sa_snapshots()

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1081

Result set

Column name Data type Description

connection_num INT The connection ID for the connection on which the snap-
shot is running.

start_sequence_num UNSIGNED BIGINT A unique number that identifies the snapshot.

statement_level BIT True if the snapshot was created with statement-snap-
shot or readonly-statement-snapshot. Otherwise, false.

Remarks
Several statement snapshots can exist on one connection. For nested or interleaved statements running
under statement snapshot isolation levels, each one begins a different statement snapshot with its first read
or update.

Usually there is only one transaction snapshot per connection (one entry per connection in sa_snapshots
with statement_level=0). However, a snapshot associated with a cursor never changes after the cursor's
first fetch and a cursor opened WITH HOLD stays open through a commit or rollback. If the cursor has an
associated snapshot, then the snapshot also persists. Therefore, it is possible for multiple transaction
snapshots to exist for the same connection_num: one for the current transaction snapshot and one or more
for old transaction snapshots that persist because of WITH HOLD cursors.

Permissions
DBA authority

Side effects
None

See also
● “sa_transactions system procedure” on page 1093
● “Snapshot isolation” [SQL Anywhere Server - SQL Usage]

sa_split_list system procedure
Takes a string of values, separated by a delimiter, and returns a set of rows—one row for each value.

Syntax
sa_split_list(
str
 [, delim]
 [, maxlen]
)

System procedures

1082 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Arguments
● str Use this LONG VARCHAR parameter to specify the string containing the values to be split,

separated by delim.

● delim Use this optional CHAR(10) parameter to specify the delimiter used in str to separate values.
The delimiter can be a string of any characters, up to 10 bytes. If delim is not specified, a comma is
used by default.

● maxlen Use this optional INTEGER parameter to specify the maximum length of the returned
values. For example, if maxlen is set to 3, the values in the result set are truncated to a length of 3
characters. If you specify 0 (the default), values can be any length.

Result set

Column name Data type Description

line_num INTEGER Sequential number for the row.

row_value LONG VARCHAR Value from the string, truncated to maxlen if required.

Remarks
The sa_split_list procedure accepts a string with a delimited list of values, and returns a result set with one
value per row. This is the opposite of the action performed by the LIST function [Aggregate]. An empty
string is returned for row_value if the string:

● begins with delim
● contains two successive instances of delim in the middle of the string
● ends with delim

White space within the input string is significant. If the delimiter is a space character, extra spaces in the
input string result in extra rows in the result set. If the delimiter is not a space character, spaces in the
input string are not trimmed from the values in the result set.

Permissions
None

Side effects
None

See also
● “LIST function [Aggregate]” on page 250

Examples
The following query returns a list of black colored products.

SELECT list(Name)
 FROM Products
 WHERE Color = 'Black';

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1083

list (Products.Name)

Tee Shirt,Baseball Cap,Visor,Shorts

In the following example, the sa_split_list procedure is used to return the original result set from the
aggregated list.

SELECT *
 FROM sa_split_list('Tee Shirt,Baseball Cap,Visor,Shorts');

line_num row_value

1 Tee Shirt

2 Baseball Cap

3 Visor

4 Shorts

The following example returns a row for each word. To avoid returning rows where row_value is an
empty string, the WHERE clause must be specified.

SELECT *
 FROM sa_split_list('one||three|four||six|', '|')
 WHERE row_value <> '';

line_num row_value

1 one

3 three

4 four

6 six

In the following example, a procedure called ProductsWithColor is created. When called, the
ProductsWithColor procedure uses sa_split_list to parse the color values specified by the user, looks in
the Color column of the Products table, and returns the name, description, size, and color for each product
that matches one of the user-specified colors.

The result of the procedure call below is the name, description, size, and color of all products that are
either white or black.

CREATE PROCEDURE ProductsWithColor(IN color_list LONG VARCHAR)
BEGIN
 SELECT Name, Description, Size, Color
 FROM Products
 WHERE Color IN (SELECT row_value FROM sa_split_list(color_list))
END;
go

System procedures

1084 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SELECT * from ProductsWithColor('white,black');

sa_statement_text system procedure

Formats a SELECT statement so that individual items appear on separate lines. This is useful when
viewing long statements from the request log, in which all newline characters are removed.

Syntax
sa_statement_text(txt)

Arguments
● txt Use this LONG VARCHAR parameter to specify a SELECT statement.

Remarks
The txt that is entered must be a string (in single quotes) or a string expression.

Permissions
None

Side effects
None

See also
● “sa_get_request_times system procedure” on page 997
● “sa_get_request_profile system procedure” on page 996

Example
The following call formats a SELECT statement so that individual items appear on separate lines.

CALL sa_statement_text('SELECT * FROM car WHERE name=''Audi''');

stmt_text

1 SELECT *

2 FROM car

3 WHERE name = 'Audi'

sa_table_fragmentation system procedure

Reports information about the fragmentation of database tables.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1085

Syntax
sa_table_fragmentation(
 [tbl_name
 [, owner_name]]
)

Arguments
● tbl_name Use this optional CHAR(128) parameter to specify the name of the table to check for

fragmentation.

● owner_name Use this optional CHAR(128) parameter to specify the owner of tbl_name.

Result set

Column name Data type Description

TableName CHAR(128) Name of the table.

rows UNSIGNED INTEGER Number of rows in the table.

row_segments UNSIGNED BIGINT Number of row segments in the table.

segs_per_row DOUBLE Number of segments per row.

Remarks
Database administrators can use this procedure to obtain information about the fragmentation in a
database's tables. If no arguments are supplied, results are returned for all tables in the database.

When database tables become excessively fragmented, you can run REORGANIZE TABLE or rebuild
the database to reduce table fragmentation and improve performance. See “Reduce table fragmentation”
[SQL Anywhere Server - SQL Usage].

Permissions
DBA authority

Side effects
None

See also
● “Reduce table fragmentation” [SQL Anywhere Server - SQL Usage]
● “Rebuilding databases” [SQL Anywhere Server - SQL Usage]
● “REORGANIZE TABLE statement” on page 807

Example
CALL sa_table_fragmentation('Products','GROUPO');

System procedures

1086 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

sa_table_page_usage system procedure
Reports information about the page usage of database tables.

Syntax
sa_table_page_usage()

Result set

Column name Data type Description

TableId UNSIGNED INTEGER The table ID.

TablePages INTEGER The number of table pages used by the table.

PctUsedT INTEGER The percentage of used table page space.

IndexPages INTEGER The number of index pages used by the table.

PctUsedI INTEGER The percentage of used index page space.

PctOfFile INTEGER The percentage of the total database file the table occupies.

TableName CHAR(128) The table name.

Remarks
The results include the same information provided by the Information utility. When the
progress_messages database option is set to Raw or Formatted, this procedure periodically sends progress
messages while it is running.

Permissions
DBA authority

Side effects
None

See also
● “Information utility (dbinfo)” [SQL Anywhere Server - Database Administration]
● “progress_messages option” [SQL Anywhere Server - Database Administration]

sa_table_stats system procedure
Reports information about how many pages have been read from each table.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1087

Syntax
sa_table_stats()

Result set

Column name Data type Description

table_id INT The table ID.

creator CHAR(128) The user name of the table's creator.

table_name CHAR(128) The table name.

count UNSIGNED BIGINT The estimated number of rows in the table, taken from
SYSTAB.

table_page_count UNSIGNED BIGINT The number of main pages used by the table.

table_page_cached UNSIGNED BIGINT The number of tables pages currently stored in the cache.

table_page_reads UNSIGNED BIGINT The number of page reads performed for pages in the
main table.

ext_page_count UNSIGNED BIGINT The estimated number of pages in the table

ext_page_cached UNSIGNED BIGINT Reserved for future use.

ext_page_reads UNSIGNED BIGINT Reserved for future use.

Remarks
Each row returned by the sa_table_stats procedure describes a table for which the optimizer is
maintaining page statistics. The sa_table_stats procedure can be used to find which tables are using cache
memory and how many disk reads are being performed for each table. For example, you can use the
sa_table_stats procedure to find the table that is generating the most disk reads. The results of the
procedure represent estimates and should be used only for diagnostic purposes.

The table_page_cached column indicates how many pages of the table are currently stored in the cache,
and the table_page_reads column indicates how many table pages have been read from disk since the
optimizer started maintaining counts for the table. These statistics are not stored persistently within the
database; they represent the activity on tables after they are loaded into memory for the first time.

Permissions
DBA authority

Side effects
None

System procedures

1088 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “SYSTAB system view” on page 1173

sa_text_index_stats system procedure
Returns statistical information about the text indexes in the database.

Syntax
sa_text_index_stats()

Remarks
Use the sa_text_index_stats system procedure to view statistical information for each text index in the
database. The following table describes the information returned by sa_text_index_stats.

Column name Type Description

owner_id UNSIGNED INT ID of the owner of the table

table_id UNSIGNED INT ID of the table

index_id UNSIGNED INT ID of the text index

text_config_id UNSIGNED BIGINT ID of the text configuration object referenced by the index

owner_name CHAR(128) Name of the owner

table_name CHAR(128) Name of the table

index_name CHAR(128) Name of the text index

text_config_name CHAR(128) Name of the text configuration object

doc_count UNSIGNED BIGINT Total number of indexed column values in the text index

doc_length UNSIGNED BIGINT Total length of data in the text index

pending_length UNSIGNED BIGINT Total length of the pending changes

deleted_length UNSIGNED BIGINT Total length of the pending deletions

last_refresh TIMESTAMP Date and time of the last refresh

The pending_length, deleted_length, and last_refresh values are NULL for IMMEDIATE REFRESH text
indexes.

For MANUAL REFRESH text indexes, you can use doc_length, pending_length, and deleted_length to
decide whether to refresh the text index, and the type of refresh to perform (rebuild vs. incremental). See
“REFRESH TEXT INDEX statement” on page 801.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1089

Permissions
DBA authority

Side effects
None

See also
● “Full text search” [SQL Anywhere Server - SQL Usage]
● “How to manage text indexes” [SQL Anywhere Server - SQL Usage]
● “DROP TEXT INDEX statement” on page 672
● “REFRESH TEXT INDEX statement” on page 801
● “TRUNCATE TEXT INDEX statement” on page 882
● “sa_refresh_text_indexes system procedure” on page 1049
● “sa_text_index_vocab system procedure” on page 1090
● “SYSTEXTIDX system view” on page 1181

Example
The following statement returns statistical information for each text index in the database:

CALL sa_text_index_stats();

sa_text_index_vocab system procedure

Lists all terms that appear in a CHAR text index, and the total number of indexed values that each term
appears in. For NCHAR text indexes, see “sa_text_index_vocab_nchar system procedure” on page 1092.

Syntax
sa_text_index_vocab(
'indexname',
'tabname',
['tabowner']
)

Arguments
● indexname Use this CHAR(128) parameter to specify the name of the text index.

● tabname Use this CHAR(128) parameter to specify the name of the table on which the text index
is built.

● tabowner Use this optional CHAR(128) parameter to specify the owner of the table.

Result set

Column name Data type Description

term VARCHAR(60) A term in the text index.

System procedures

1090 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Column name Data type Description

freq BIGINT The number of indexed values the term appears in.

Remarks
The sa_text_index_vocab system procedure returns all terms that appear in a text index, and the total
number of indexed values that each term appears in (which is less than the total number of occurrences if
the term appears multiple times in some indexed values).

Permissions
DBA authority, or SELECT permission on the indexed table is required.

Side effects
None

See also
● “sa_text_index_vocab_nchar system procedure” on page 1092
● “Full text search” [SQL Anywhere Server - SQL Usage]
● “Term and phrase searching” [SQL Anywhere Server - SQL Usage]
● “DROP TEXT INDEX statement” on page 672
● “REFRESH TEXT INDEX statement” on page 801
● “TRUNCATE TEXT INDEX statement” on page 882
● “sa_refresh_text_indexes system procedure” on page 1049
● “SYSTEXTIDX system view” on page 1181

Example
The following example builds a text index called VocabTxtIdx on the Products.Description column in the
sample database. The next statement executes the sa_text_index_vocab system procedure to return all the
terms that appear in the text index.

CREATE TEXT INDEX VocabTxtIdx2 ON Products(Description);
SELECT *
 FROM sa_text_index_vocab('VocabTxtIdx2', 'Products', 'GROUPO');

term freq

Cap 2

Cloth 1

Cotton 2

Crew 1

Hooded 1

neck 2

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1091

term freq

... ...

sa_text_index_vocab_nchar system procedure
Lists all terms that appear in an NCHAR text index, and the total number of indexed values that each term
appears in. For CHAR text indexes, see “sa_text_index_vocab system procedure” on page 1090.

Syntax
sa_text_index_vocab(
'indexname',
'tabname',
['tabowner']
)

Arguments
● indexname Use this CHAR(128) parameter to specify the name of the text index.

● tabname Use this CHAR(128) parameter to specify the name of the table on which the text index
is built.

● tabowner Use this optional CHAR(128) parameter to specify the owner of the table.

Result set

Column name Data type Description

term NCHAR(60) A term in the text index.

freq BIGINT The number of indexed values the term appears in.

Remarks
The sa_text_index_vocab_nchar system procedure returns all terms that appear in a text index, and the
total number of indexed values that each term appears in (which is less than the total number of
occurrences if the term appears multiple times in some indexed values).

Permissions
DBA authority, or SELECT permission on the indexed table is required.

Side effects
None

System procedures

1092 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “sa_text_index_vocab system procedure” on page 1090
● “Full text search” [SQL Anywhere Server - SQL Usage]
● “Term and phrase searching” [SQL Anywhere Server - SQL Usage]
● “DROP TEXT INDEX statement” on page 672
● “REFRESH TEXT INDEX statement” on page 801
● “TRUNCATE TEXT INDEX statement” on page 882
● “sa_refresh_text_indexes system procedure” on page 1049
● “SYSTEXTIDX system view” on page 1181

sa_transactions system procedure
Returns a list of transactions that are currently active.

Syntax
sa_transactions()

Result set

Column name Data type Description

connection_num INT The connection ID for the connection the transaction is
running on.

transaction_id INT The ID that uniquely identifies the transaction as long
as the database server keeps track of it. IDs are reused
as old transaction information is discarded.

start_time TIMESTAMP The TIMESTAMP for when the transaction started.

start_sequence_num UNSIGNED BIGINT The start sequence number for the transaction.

end_sequence_num UNSIGNED BIGINT Then end sequence number for the transaction if it has
been committed or rolled back, otherwise, NULL.

committed bit The state of the transaction: true if the transaction
ended with a COMMIT, false if it ended with a ROLL-
BACK, and NULL if the transaction is still active.

version_entries unsigned INT The count of the number of row versions the transaction
has saved.

Remarks
This procedure provides information about the transactions that are currently running against the database.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1093

Permissions
DBA authority

Side effects
None

See also
● “sa_snapshots system procedure” on page 1081
● “Snapshot isolation” [SQL Anywhere Server - SQL Usage]

sa_unload_cost_model system procedure

Unloads the current cost model to the specified file.

Syntax
sa_unload_cost_model (file_name)

Arguments
● file_name Use this CHAR(256) parameter to specify the name of the file in which to unload the

data. Because it is the database server that executes the system procedure, file_name specifies a file on
the database server computer, and a relative file_name specifies a file relative to the database server's
starting directory.

Remarks
The optimizer uses cost models to determine optimal access plans for queries. The database server
maintains a cost model for each database. The cost model for a database can be recalibrated at any time
using the CALIBRATE SERVER clause of the ALTER DATABASE statement. For example, you might
decide to recalibrate the cost model if you move the database onto non-standard hardware.

The sa_unload_cost_model system procedure allows you save a cost model to an ASCII file (file_name).
You can then log into another database and use the sa_load_cost_model system procedure to load the cost
model from the first database into the second one. This avoids having to recalibrate the second database.

Note
The sa_unload_cost_model system procedure does not include CALIBRATE PARALLEL READ
information in the file.

Using the sa_unload_cost_model system procedure eliminates repetitive, time-consuming recalibration
activities when there is a large number of similar hardware installations.

Permissions
DBA authority

You must have write permissions where the file is created.

System procedures

1094 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Side effects
None

See also
● “ALTER DATABASE statement” on page 386
● “sa_load_cost_model system procedure” on page 1013
● “Query optimization and execution” [SQL Anywhere Server - SQL Usage]

Example
The following example unloads the cost model to a file called costmodel8:

CALL sa_unload_cost_model('costmodel8');

sa_validate system procedure
Validates all, or parts, of a database.

Syntax
sa_validate(
 [tbl_name [, owner_name]]
)

Arguments
● tbl_name Use this optional VARCHAR(128) parameter to specify the name of a table or

materialized view to validate.

● owner_name Use this optional VARCHAR(128) parameter to specify an owner. When specified
by itself, all tables and materialized views owned by the owner are validated.

Permissions
DBA authority

Side effects
None

Remarks
If you specify sa_validate() (no arguments), the database server validates all tables, materialized views,
indexes, checksums, and the database file.

If neither owner nor tbl_name are specified, all tables and materialized views in the database are
validated. Also, the database itself is validated, including checksum validation, and validation that the
number of rows in the each table or materialized view matches the number of rows in each associated index.

The values for tbl_name and owner_name are strings and must be enclosed in quotes.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1095

The procedure returns a single column named Messages. Errors returned during validation appear in the
column. If validation succeeds without error, the column contains No error detected.

Caution
Validating a table or an entire database should be performed while no connections are making changes to
the database; otherwise, errors may be reported indicating some form of database corruption even though
no corruption actually exists.

Example
The following statement performs a validation of tables and materialized views owned by DBA:

CALL sa_validate(owner_name = 'DBA');

sa_verify_password system procedure
Validates the password of the current user.

Syntax
sa_verify_password(curr_pwsd)

Arguments
● curr_pwsd Use this CHAR(128) parameter to specify the password of the current database user.

Remarks
This procedure is used by sp_password. If the password matches, it is accepted. If the password does not
match, an error is returned.

Permissions
None

Side effects
None

See also
● “Adaptive Server Enterprise system procedures” on page 944

sp_get_last_synchronize_result system procedure
Returns information about the last synchronization initiated by the SYNCHRONIZE statement.

Syntax
sp_get_last_synchronize_result (
 @conn_id,

System procedures

1096 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 @complete_only
)

Arguments
● @conn_id Use this INTEGER parameter to specify the connection ID number for a connection on

which the SYNCHRONIZE statement was executed. If no value is specified, then the connection ID
of the current connection is used.

● @complete_only Set this BIT parameter to 1 to have the stored procedure return information
about completed synchronizations. Set the parameter to 0 to return information about synchronizations
that are currently active.

Result set

Column name Data type Description

row_id BIGINT The primary key of the table used to determine the order in
which rows were inserted into the table.

conn_id UNSIGNED INT The connection ID number.

result_time TIMESTAMP The time the event was added to the synchronize_results table.

result_type CHAR(128) The type of event. For more information on the different types of
events, see “DBSC_Event structure” [MobiLink - Client Adminis-
tration].

result_message CHAR(1024) The message text associated with the event.

Remarks
To view details of past or current synchronizations, you can use the sp_get_last_synchronize_result stored
procedure as an alternative to directly querying the synchronize_results global shared temporary table.
The stored procedure only returns the results of the last synchronization for the specified connection ID
number. If you do not specify any parameters, the last completed synchronization on the current
connection is returned.

You can also use this stored procedure to monitor the progress of a synchronization on a connection that
is different from your current connection. To monitor the progress of a synchronization on a different
connection:

1. Execute a SELECT CONNECTION_PROPERTY statement to determine the connection ID of your
current connection.

2. Execute a SYNCHRONIZE statement using the connection ID returned by the SELECT
CONNECTION_PROPERTY statement.

3. On a different connection, execute a SELECT CONNECTION_PROPERTY statement and set the
@complete_only parameter to 0. Information about the last synchronization for the specified
connection is returned, even if the synchronization is incomplete.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1097

Permissions
DBA

Side effects
None

See also
● “SYNCHRONIZE statement [MobiLink]” on page 874
● “DBSC_Event structure” [MobiLink - Client Administration]

Example
The following example returns information about the last synchronization that completed on the current
connection.

CALL sp_get_last_synchronize_result();

The following example returns information about the last completed synchronization that was initiated
from connection ID 25.

CALL sp_get_last_synchronize_result(
 @conn_id=25,
 @complete_only=1);

sp_login_environment system procedure

Sets connection options when users log in.

Syntax
sp_login_environment()

Remarks
sp_login_environment is the default procedure called by the login_procedure database option.

It is recommended that you do not edit this procedure. Instead, to change the login environment, set the
login_procedure option to point to a different procedure.

Here is the text of the sp_login_environment procedure:

CREATE PROCEDURE dbo.sp_login_environment()
BEGIN
 IF connection_property('CommProtocol') = 'TDS' THEN
 CALL dbo.sp_tsql_environment()
 END IF
END;

Permissions
None

System procedures

1098 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Side effects
None

See also
● “login_procedure option” [SQL Anywhere Server - Database Administration]

sp_remote_columns system procedure

Produces a list of the columns in a remote table, and a description of their data types.

The server must be defined with the CREATE SERVER statement to use this system procedure.

Syntax
sp_remote_columns(
 @server_name,
 @table_name
 [, @table_owner
 [, @table_qualifier]]
)

Arguments
● @server_name Use this CHAR(128) parameter to specify a string containing the server name as

specified by the CREATE SERVER statement.

● @table_name Use this CHAR(128) parameter to specify the name of the remote table.

● @table_owner Use this optional CHAR(128) parameter to specify the owner of @table_name.

● @table_qualifier Use this optional CHAR(128) parameter to specify the name of the database in
which @table_name is located.

Result set

Column name Data type Description

database CHAR(128) The database name.

owner CHAR(128) The database owner name.

table-name CHAR(128) The table name.

column-name CHAR(128) The name of a column.

domain-id SMALLINT An INTEGER which indicates the data type of the column.

width SMALLINT The meaning of this column depends on the data type. For character
types width represents the number of characters.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1099

Column name Data type Description

scale SMALLINT The meaning of this column depends on the data type. For NUMERIC
data types scale is the number of digits after the decimal point.

nullable SMALLINT If null column values are allowed, the value is 1. Otherwise the value
is 0.

Remarks
If you are entering a CREATE EXISTING statement and you are specifying a column list, it may be
helpful to get a list of the columns that are available on a remote table. sp_remote_columns produces a list
of the columns on a remote table and a description of their data types. If you specify a database, you must
either specify an owner or provide the value NULL.

Standards and compatibility
● Sybase Supported by Open Client/Open Server.

Permissions
None

Side effects
None

See also
● “Accessing remote data” [SQL Anywhere Server - SQL Usage]
● “Server classes for remote data access” [SQL Anywhere Server - SQL Usage]
● “CREATE SERVER statement” on page 567

Example
The following example returns columns from the SYSOBJECTS table in the production database on an
Adaptive Server Enterprise server named asetest. The owner is unspecified.

CALL sp_remote_columns('asetest', 'sysobjects', null, 'production');

sp_remote_exported_keys system procedure

Provides information about tables with foreign keys on a specified primary table.

The server must be defined with the CREATE SERVER statement to use this system procedure.

Syntax
sp_remote_exported_keys(
 @server_name
 , @sp_name
 [, @sp_owner

System procedures

1100 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 [, @sp_qualifier]]
)

Arguments
● @server_name Use this CHAR(128) parameter to specify identifies the server the primary table is

located on. A value is required for this parameter.

● @sp_name Use this CHAR(128) parameter to specify the table containing the primary key. A
value is required for this parameter.

● @sp_owner Use this optional CHAR(128) parameter to specify the primary table's owner.

● @sp_qualifier Use this optional CHAR(128) parameter to specify the database containing the
primary table.

Result set

Column name Data type Description

pk_database CHAR(128) The database containing the primary key table.

pk_owner CHAR(128) The owner of the primary key table.

pk_table CHAR(128) The primary key table.

pk_column CHAR(128) The name of the primary key column.

fk_database CHAR(128) The database containing the foreign key table.

fk_owner CHAR(128) The foreign key table's owner.

fk_table CHAR(128) The foreign key table.

fk_column CHAR(128) The name of the foreign key column.

key_seq SMALLINT The key sequence number.

fk_name CHAR(128) The foreign key name.

pk_name CHAR(128) The primary key name.

Remarks
This procedure provides information about the remote tables that have a foreign key on a particular
primary table. The result set for the sp_remote_exported_keys system procedure includes the database,
owner, table, column, and name for both the primary and the foreign key, and the foreign key sequence
for the foreign key columns. The result set may vary because of the underlying ODBC and JDBC calls,
but information about the table and column for a foreign key is always returned.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1101

Permissions
None

Side effects
None

See also
● “CREATE SERVER statement” on page 567
● “Foreign keys” [SQL Anywhere 12 - Introduction]

Example
To get information about the remote tables with foreign keys on the SYSOBJECTS table, in the
production database, on a server named asetest:

CALL sp_remote_exported_keys(
 @server_name='asetest',
 @sp_name='sysobjects',
 @sp_qualifier='production');

sp_remote_imported_keys system procedure
Provides information about remote tables with primary keys that correspond to a specified foreign key.

The server must be defined with the CREATE SERVER statement to use this system procedure.

Syntax
sp_remote_imported_keys(
@server_name
 , @sp_name
 [, @sp_owner
 [, @sp_qualifier]]
)

Arguments
● @server_name Use this optional CHAR(128) parameter to specify the server the foreign key table

is located on. A value is required for this parameter.

● @sp_name Use this optional CHAR(128) parameter to specify the table containing the foreign
key. A value is required for this parameter.

● @sp_owner Use this optional CHAR(128) parameter to specify the foreign key table's owner.

● @sp_qualifier Use this optional CHAR(128) parameter to specify the database containing the
foreign key table.

System procedures

1102 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Result set

Column name Data type Description

pk_database CHAR(128) The database containing the primary key table.

pk_owner CHAR(128) The owner of the primary key table.

pk_table CHAR(128) The primary key table.

pk_column CHAR(128) The name of the primary key column.

fk_database CHAR(128) The database containing the foreign key table.

fk_owner CHAR(128) The foreign key table's owner.

fk_table CHAR(128) The foreign key table.

fk_column CHAR(128) The name of the foreign key column.

key_seq SMALLINT The key sequence number.

fk_name CHAR(128) The foreign key name.

pk_name CHAR(128) The primary key name.

Remarks
Foreign keys reference a row in a separate table that contains the corresponding primary key. This
procedure allows you to obtain a list of the remote tables with primary keys that correspond to a particular
foreign table. The sp_remote_imported_keys result set includes the database, owner, table, column, and
name for both the primary and the foreign key, and the foreign key sequence for the foreign key columns.
The result set may vary because of the underlying ODBC and JDBC calls, but information about the table
and column for a primary key is always returned.

Permissions
None

Side effects
None

See also
● “CREATE SERVER statement” on page 567
● “Foreign keys” [SQL Anywhere 12 - Introduction]

Example
To get information about the tables with primary keys that correspond to a foreign key on the
SYSOBJECTS table in the asetest server:

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1103

CALL sp_remote_imported_keys(
 @server_name='asetest',
 @sp_name='sysobjects',
 @sp_qualifier='production');

sp_remote_primary_keys system procedure
Provides primary key information about remote tables using remote data access.

Syntax
sp_remote_primary_keys(
 @server_name
 [, @table_name
 [, @table_owner
 [, @table_qualifier]]]
)

Arguments
● @server_name Use this CHAR(128) parameter to specify the server the remote table is located on.

● @table_name Use this optional CHAR(128) parameter to specify the remote table.

● @table_owner Use this optional CHAR(128) parameter to specify the owner of the remote table.

● @table_qualifier Use this optional CHAR(128) parameter to specify the name of the remote database.

Result set

Column name Data type Description

database CHAR(128) The name of the remote database.

owner CHAR(128) The owner of the remote table.

table-name CHAR(128) The remote table.

column-name CHAR(128) The column name.

key-seq SMALLINT The primary key sequence number.

pk-name CHAR(128) The primary key name.

Remarks
This system procedure provides primary key information about remote tables using remote data access.

Because of differences in the underlying ODBC/JDBC calls, the information returned differs slightly
from the catalog/database value depending upon the remote data access class that is specified for the server.

System procedures

1104 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Standards and compatibility
● Sybase Supported by Open Client/Open Server.

Permissions
None

Side effects
None

sp_remote_tables system procedure
Returns a list of the tables on a server.

The server must be defined with the CREATE SERVER statement to use this system procedure.

Syntax
sp_remote_tables(
 @server_name
 [, @table_name
 [, @table_owner
 [, @table_qualifier
 [, @with_table_type]]]]
)

Arguments
● @server_name Use this CHAR(128) parameter to specify the server the remote table is located on.

● @table_name Use this CHAR(128) parameter to specify the remote table.

● @table_owner Use this CHAR(128) parameter to specify the owner of the remote table.

● @table_qualifier Use this CHAR(128) parameter to specify the database in which table_name is
located.

● @with_table_type Use this optional BIT parameter to specify the type of remote table. This
argument is a bit type and accepts two values, 0 (the default) and 1. You must enter the value 1 if you
want the result set to include a column that lists table types.

Result set

Column name Data type Description

database CHAR(128) The name of the remote database.

owner CHAR(128) The name of the remote database owner.

table-name CHAR(128) The remote table.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1105

Column name Data type Description

table-type CHAR(128) Specifies the table type. The value depends on the type of remote serv-
er. For example, TABLE, VIEW, SYS, and GBL TEMP are possible
values.

Remarks
It may be helpful when you are configuring your database server to get a list of the remote tables available
on a particular server. This procedure returns a list of the tables on a server.

The procedure accepts five parameters. If a table, owner, or database name is given, the list of tables will
be limited to only those that match the arguments.

Standards and compatibility
● Sybase Supported by Open Client/Open Server.

Permissions
None

Side effects
None

See also
● “Accessing remote data” [SQL Anywhere Server - SQL Usage]
● “Server classes for remote data access” [SQL Anywhere Server - SQL Usage]
● “CREATE SERVER statement” on page 567

Examples
To get a list of all the Microsoft Excel worksheets available from an ODBC data source referenced by a
server named excel:

CALL sp_remote_tables('excel');

To get a list of all the tables owned by fred in the production database in an Adaptive Server Enterprise
server named asetest:

CALL sp_remote_tables('asetest', null, 'fred', 'production');

sp_servercaps system procedure
Displays information about a remote server's capabilities.

The server must be defined with the CREATE SERVER statement to use this system procedure.

Syntax
sp_servercaps(@sname)

System procedures

1106 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Arguments
● @sname Use this CHAR(64) parameter to specify a server defined with the CREATE SERVER

statement. The specified @sname must be the same server name used in the CREATE SERVER
statement.

Remarks
This procedure displays information about a remote server's capabilities. SQL Anywhere uses this
capability information to determine how much of a SQL statement can be forwarded to a remote server.
The ISYSCAPABILITY system table, which lists the server capabilities, is not populated until after SQL
Anywhere first connects to a remote server.

Standards and compatibility
● Sybase Supported by Open Client/Open Server.

Permissions
None

Side effects
None

See also
● “SYSCAPABILITY system view” on page 1128
● “SYSCAPABILITYNAME system view” on page 1129
● “Accessing remote data” [SQL Anywhere Server - SQL Usage]
● “Server classes for remote data access” [SQL Anywhere Server - SQL Usage]
● “CREATE SERVER statement” on page 567

Example
To display information about the remote server testasa:

CALL sp_servercaps('testasa');

sp_tsql_environment system procedure
Sets connection options when users connect from jConnect or Open Client applications.

Syntax
sp_tsql_environment()

Remarks
The sp_login_environment procedure is the default procedure specified by the login_procedure database
option. For each new connection, the procedure specified by login_procedure is called. If the connection
uses the TDS communications protocol (that is, if it is an Open Client or jConnect connection), then
sp_login_environment in turn calls sp_tsql_environment.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1107

This procedure sets database options so that they are compatible with default Adaptive Server Enterprise
behavior.

If you want to change the default behavior, it is recommended that you create new procedures and alter
your login_procedure option to point to these new procedures.

Permissions
None

Side effects
None

See also
● “sp_login_environment system procedure” on page 1098
● “login_procedure option” [SQL Anywhere Server - Database Administration]

Example
Here is the text of the sp_tsql_environment procedure:

CREATE PROCEDURE dbo.sp_tsql_environment()
BEGIN
 IF db_property('IQStore') = 'Off' THEN
 -- SQL Anywhere datastore
 SET TEMPORARY OPTION close_on_endtrans='OFF';
 END IF;
 SET TEMPORARY OPTION ansinull='OFF';
 SET TEMPORARY OPTION tsql_variables='ON';
 SET TEMPORARY OPTION ansi_blanks='ON';
 SET TEMPORARY OPTION chained='OFF';
 SET TEMPORARY OPTION quoted_identifier='OFF';
 SET TEMPORARY OPTION allow_nulls_by_default='OFF';
 SET TEMPORARY OPTION on_tsql_error='CONTINUE';
 SET TEMPORARY OPTION isolation_level='1';
 SET TEMPORARY OPTION date_format='YYYY-MM-DD';
 SET TEMPORARY OPTION timestamp_format='YYYY-MM-DD HH:NN:SS.SSS';
 SET TEMPORARY OPTION time_format='HH:NN:SS.SSS';
 SET TEMPORARY OPTION date_order='MDY';
 SET TEMPORARY OPTION escape_character='OFF';
END

st_geometry_dump system procedure
Disassembles a geometry into its lowest level component geometries.

Syntax
st_geometry_dump (geometry [, options])

Arguments
● geometry The geometry value to be disassembled.

System procedures

1108 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● options A VARCHAR(255) string of parameters and values, separated by semicolons, you can use
to configure the output of the procedure.

The following table lists the parameters that can be specified:

Parame-
ter

Default
value

Allowed
values

Description

Format Origi-
nal

Original,
Internal,
or Mixed

The format to return the geometry in. Specifying Original re-
turns the geometry in its original format. Specifying Internal re-
turns the geometry in its normalized format. Specifying Mixed
returns whatever stored formats are available, one row per for-
mat. For more information on the storage formats, see “STOR-
AGE FORMAT clause, CREATE SPATIAL REFERENCE
SYSTEM statement” on page 584.

Expand-
Points

Yes Yes, No By default, when disassembling a geometry containing points
(such as ST_LineString or ST_MultiPoint), the st_geome-
try_dump system procedure outputs the constituent points to sep-
arate rows. Set ExpandPoints to No if you do not want these ex-
tra rows to be generated.

Max-
Depth

-1 -1, any
number
greater
or equal
to zero

By default, st_geometry_dump system procedure continues to
disassembles an object hierarchy until it reaches the leaf ob-
jects. The MaxDepth parameter can be set to limit the number
of levels in the hierarchy the geometry is disassembled. With a
value of 0, only the root geometry is returned. With a value of
1, the geometry and its immediate children are returned, and so
on.

SetGeom Yes Yes, No The st_geometry_dump system procedure returns a column that
is the ST_Geometry associated with an object in the original
type hierarchy. If this column is not needed, the parameter Set-
Geom can be set to No to reduce the running time and output
size of the procedure.

Validate Basic None,
Basic,
Full

By default, the st_geometry_dump system procedure applies
the validation rules that the database server uses when loading
geometries, and sets the Valid column of the result set to 1 if
the object in the row matches these rules. The Validate parame-
ter can be set to None to disable this checking, or it can be set
to Full to also apply the additional checks performed by the
ST_IsValid method. Full checking takes longer to perform.

Returns
The following table describes the results returned by the st_geometry_dump procedure:

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1109

Column Data type Description

id UNSIGNED BI-
GINT

A unique id for this row in the results.

parent_id UNSIGNED BI-
GINT

The id of the immediate parent of this object.

depth INT The depth from the root object to the object associated with this row.

format VARCHAR(128) Whether the geometry is the original representation (Original) or
the normalized representation (Internal). See “STORAGE FOR-
MAT clause, CREATE SPATIAL REFERENCE SYSTEM state-
ment” on page 584.

valid BIT Whether the geometry is valid (1) according to the checking level
specified by the Validate option.

geom_type VARCHAR(128) The geometry type, as returned by the ST_GeometryType. See
“ST_GeometryType method for type ST_Geometry” [SQL Any-
where Server - Spatial Data Support].

geom ST_Geometry The geometry specification. If SetGeom parameter is set to No,
the geometry specification is not returned in the result set.

xmin DOUBLE The minimum x value for the geometry.

xmax DOUBLE The maximum x value for the geometry.

ymin DOUBLE The minimum y value for the geometry.

ymax DOUBLE The maximum y value for the geometry.

zmin DOUBLE The minimum z value for the geometry.

zmax DOUBLE The maximum z value for the geometry.

mmin DOUBLE The minimum m value for the geometry.

mmax DOUBLE The maximum m value for the geometry.

details LONG VARCHAR Any extra details about the geometry, including additional informa-
tion about why the object is not valid.

Remarks
The st_geometry_dump system procedure disassembles a geometry hierarchy with one row for each of the
objects in the hierarchy (including the root object). Each geometry in the hierarchy can be validated to
find out if it is valid, and if not, why.

System procedures

1110 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Some of the functionality of the st_geometry_dump system procedure can be matched by using type-
specific methods such as ST_GeometryN or ST_PointN.

The st_geometry_dump system procedure can be used to correct invalid geometries.

Permissions
None

Side effects
None

See also
● “ST_IsValid method for type ST_Geometry” [SQL Anywhere Server - Spatial Data Support]
● “CREATE SPATIAL REFERENCE SYSTEM statement” on page 579
● “st_geometry_on_invalid option” [SQL Anywhere Server - Database Administration]

Example
The following example disassembles the polygon, 'Polygon ((0 0, 3 0, 3 3, 0 3, 0
0))', into its component geometries:

SELECT * FROM st_geometry_dump('Polygon ((0 0, 3 0, 3 3, 0 3, 0 0))',
'SetGeom=No');

id pa-
rent_id

depth for-
mat

valid ge-
om_type

geom xmin xmax ymin ymax ...

1 1 0 Inter-
nal

1 ST_Poly-
gon

Polygon
((0 0,
3 0, 3
3, 0 3,
0 0))

0 3 0 3 ...

2 1 1 Inter-
nal

1 ST_Line-
String

Line-
String
(0 0, 3
0, 3 3,
0 3, 0
0)

0 3 0 3 ...

3 2 2 Inter-
nal

1 ST_Point Point
(0 0)

0 0 0 0 ...

4 2 2 Inter-
nal

1 ST_Point Point
(3 0)

3 3 0 0 ...

5 2 2 Inter-
nal

1 ST_Point Point
(3 3)

3 3 3 3 ...

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1111

id pa-
rent_id

depth for-
mat

valid ge-
om_type

geom xmin xmax ymin ymax ...

6 2 2 Inter-
nal

1 ST_Point Point
(0 3)

0 0 3 3 ...

7 2 2 Inter-
nal

1 ST_Point Point
(0 0)

0 0 0 0 ...

The following example shows how the st_geometry_dump system procedure can be used to find the
invalid points within a geometry. In this example, the linestring contains a point with longitude 1200.
Because of this, the point and the linestring are both reported as invalid (valid=0) in the results.

SET TEMPORARY OPTION st_geometry_on_invalid='Ignore';
CREATE OR REPLACE VARIABLE @geo ST_Geometry;
SET @geo = new ST_LineString('LineString(1200 2, 80 10)', 4326);
SELECT * FROM dbo.st_geometry_dump(@geo, 'SetGeom=No');

id pa-
rent_id

depth for-
mat

val-
id

ge-
om_type

geom xmin xmax ymin ymax ... details

1 1 0 Orig-
inal

0 ST_Line-
String

(NULL) 80 1,200 2 10 ... Value
1200.000000
out of range
for coordi-
nate longi-
tude (SRS al-
lows
-180.000000
to
180.000000).

2 1 1 Orig-
inal

0 ST_Line-
String

(NULL) 1,200 1,200 2 2 ... Value
1200.000000
out of range
for coordi-
nate longi-
tude (SRS al-
lows
-180.000000
to
180.000000).

3 1 1 Orig-
inal

1 ST_Point (NULL) 80 80 10 10 ...

Once invalid data has been identified, the st_geometry_dump system procedure can be used with other
spatial methods to correct the invalid elements to assemble a valid geometry. The following example
shows how an invalid point with longitude 1200 can be corrected to have longitude 120.0:

System procedures

1112 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SELECT ST_LineString::ST_LineStringAggr(
 new ST_Point(IF xmax = 1200 then 120.0 ELSE xmax ENDIF,
 ymax, 4326) ORDER BY id)
FROM dbo.st_geometry_dump(@geo)
WHERE geom_type='ST_Point';

xp_cmdshell system procedure

Carries out an operating system command from a procedure.

Syntax
xp_cmdshell(
command
[, redir_output])

Arguments
● command Use this CHAR(8000) parameter to specify a system command.

● redir_output Use this optional CHAR(254) parameter to specify whether to display output. The
default behavior is to display output. If this parameter is the string 'no_output', no output is displayed.

Remarks
xp_cmdshell executes a system command and then returns control to the calling environment. The value
returned by xp_cmdshell is the exit code from the executed shell process. The return value is 2 if an error
occurs when the child process is started.

The second parameter affects only command line applications on Windows operating systems. For Unix,
no output appears, regardless of the setting for the second parameter.

For Windows Mobile, any commands executed are visible in the database server message log, regardless
of the setting for the second parameter. The console shell \\windows\cmd.exe is needed to run the procedure.

Permissions
DBA authority

See also
● “CALL statement” on page 460

Example
The following statement lists the files in the current directory in the file c:\temp.txt:

CALL xp_cmdshell('dir > c:\\temp.txt');

The following statement carries out the same operation, but does so without displaying a Command window.

CALL xp_cmdshell('dir > c:\\temp.txt', 'no_output');

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1113

xp_msver system procedure
Retrieves version and name information about the database server.

Syntax
xp_msver(the_option)

Arguments
● the_option The string must be one of the following, enclosed in string delimiters.

Argument Description

ProductName The name of the product (SQL Anywhere).

ProductVersion The version number, followed by the build number. The format is as follows:

12.0.0.2413

CompanyName Returns the following string:

iAnywhere Solutions, Inc.

FileDescription Returns the name of the product, followed by the name of the operating system.

LegalCopyright Returns a copyright string for the software.

LegalTrademarks Returns trademark information for the software.

Remarks
xp_msver returns product, company, version, and other information.

Permissions
None

See also
● “System functions” on page 138

Example
The following statement requests the version and operating system description:

SELECT xp_msver('ProductVersion') Version,
 xp_msver('FileDescription') Description;

Sample output is as follows. The value for Version will likely be different on your system.

System procedures

1114 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Version Description

12.0.0.2413 SQL Anywhere Windows XP

xp_read_file system procedure
Reads a file and returns the contents of the file as a LONG BINARY variable.

Syntax
xp_read_file(filename [, lazy])

Arguments
● filename Use this LONG VARCHAR parameter to specify the name of the file for which to return

the contents.

● lazy When you specify this optional INTEGER parameter and its value is not zero, the contents of
the file are not read until they are requested. Reads only occur when the LONG BINARY value is
accessed and only on the portion of the file that is requested. The default is zero, or non-lazy.

Remarks
The function reads the contents of the named file, and returns the result as a LONG BINARY value.

The filename is relative to the starting directory of the database server.

The function can be useful for inserting entire documents or images stored in files into tables. If the file
cannot be read, the function returns NULL.

If the data file is in a different character set, you can use the CSCONVERT function to convert it. See
“CSCONVERT function [String]” on page 176.

You can also use the CSCONVERT function to address character set conversion requirements you have
when using the xp_read_file system procedure. See “CSCONVERT function [String]” on page 176.

Permissions
DBA authority

See also
● “CSCONVERT function [String]” on page 176
● “xp_write_file system procedure” on page 1125
● “CALL statement” on page 460
● “Using openxml with xp_read_file” [SQL Anywhere Server - SQL Usage]

Example
The following statement inserts an image into a column named picture of the table t1 (assuming all other
columns can accept NULL):

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1115

INSERT INTO t1 (picture)
 SELECT xp_read_file('portrait.gif');

xp_scanf system procedure
Extracts substrings from an input string and a format string.

Syntax
xp_scanf(
 input_buffer,
 format,
 parm [, parm2, ...]
)

Arguments
● input_buffer Use this CHAR(254) parameter to specify the input string.

● format Use this CHAR(254) parameter to specify the format of the input string, using placeholders
(%s) for each parm argument. There can be up to fifty placeholders in the format argument, and there
must be the same number of placeholders as parm arguments.

● parm Use one or more of these CHAR(254) parameters to specify the substrings extracted from
input_buffer. There can be up to 50 of these parameters.

Remarks
The xp_scanf system procedure extracts substrings from an input string using the specified format, and
puts the results in the specified parm values.

Permissions
None

See also
● “CALL statement” on page 460

Example
The following statements extract the substrings Hello and World! from the input buffer Hello World!, and
put them into variables string1 and string2, and then selects them:

CREATE VARIABLE string1 CHAR(254);
CREATE VARIABLE string2 CHAR(254);
CALL xp_scanf('Hello World!', '%s %s', string1, string2);
SELECT string1, string2;

xp_sendmail system procedure
Sends an email message.

System procedures

1116 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Syntax
xp_sendmail(
 recipient = mail-address
 [, subject = subject]
 [, cc_recipient = mail-address]
 [, bcc_recipient = mail-address]
 [, query = sql-query]
 [, "message" = message-body]
 [, attachname = attach-name]
 [, attach_result = attach-result]
 [, echo_error = echo-error]
 [, include_file = filename]
 [, no_column_header = no-column-header]
 [, no_output = no-output]
 [, width = width]
 [, separator = separator-char]
 [, dbuser = user-name]
 [, dbname = db-name]
 [, type = type]
 [, include_query = include-query]
 [, content_type = content-type]
)

Arguments
Some arguments supply fixed values and are available for use to ensure Transact-SQL compatibility, as
noted below.

● recipient This LONG VARCHAR parameter specifies the recipient mail address. When specifying
multiple recipients, each mail address must be separated by a semicolon.

● subject This LONG VARCHAR parameter specifies the subject field of the message. The default
is NULL.

● cc_recipient This LONG VARCHAR parameter specifies the cc recipient mail address. When
specifying multiple cc recipients, each mail address must be separated by a semicolon. The default is
NULL.

● bcc_recipient This LONG VARCHAR parameter specifies the bcc recipient mail address. When
specifying multiple bcc recipients, each mail address must be separated by a semicolon. The default is
NULL.

● query This LONG VARCHAR is for use with Transact-SQL. The default is NULL.

● "message" This LONG VARCHAR parameter specifies the message contents. The default is
NULL. The "message" parameter name requires double quotes around it because MESSAGE is a
reserved word. See “Reserved words” on page 1.

● attachname This LONG VARCHAR parameter is for use with Transact-SQL. The default is NULL.

● attach_result This INT parameter is for use with Transact-SQL. The default is 0.

● echo_error This INT parameter is for use with Transact-SQL. The default is 1.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1117

● include_file This LONG VARCHAR parameter specifies an attachment file. The default is NULL.

● no_column_header This INT parameter is for use with Transact-SQL. The default is 0.

● no_output This INT parameter is for use with Transact-SQL. The default is 0.

● width This INT parameter is for use with Transact-SQL. The default is 80.

● separator This CHAR(1) parameter is for use with Transact-SQL. The default is CHAR(9).

● dbuser This LONG VARCHAR parameter is for use with Transact-SQL. The default is guest.

● dbname This LONG VARCHAR parameter is for use with Transact-SQL. The default is master.

● type This LONG VARCHAR parameter is for use with Transact-SQL. The default is NULL.

● include_query This INT parameter is for use with Transact-SQL. The default is 0.

● content_type This LONG VARCHAR parameter specifies the content type for the "message"
parameter (for example, text/html, ASIS, and so on). The default is NULL. The value of content_type
is not validated; setting an invalid content type results in an invalid or incomprehensible email being
sent.

If you want to set headers manually, you can set content_type parameter to ASIS. When you do this,
the xp_sendmail procedure assumes that the data passed to the message parameter is a properly
formed email with headers, and does not add any additional headers. When specifying ASIS, you
must set all the headers manually in the message parameter, even headers that would normally be
filled in by passing data to the other parameters.

Permissions
DBA authority

Must have executed xp_startmail to start an email session using MAPI, or xp_startsmtp to start an email
session using SMTP.

If you are sending mail using MAPI, the content_type parameter is not supported.

Remarks
xp_sendmail is a system procedure that sends an email message to the specified recipients once a session
has been started with xp_startmail or xp_startsmtp. The procedure accepts messages of any length. The
argument values for xp_sendmail are strings. The length of each argument is limited to the amount of
available memory on your system.

The content_type argument is intended for users who understand the requirements of MIME email.
xp_sendmail accepts ASIS as a content_type. When content_type is set to ASIS, xp_sendmail assumes
that the message body ("message") is a properly formed email with headers, and does not add any
additional headers. Specify ASIS to send multipart messages containing more than one content type. For
more information about MIME, see RFCs 2045-2049 (http://www.ietf.org/).

System procedures

1118 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

http://www.ietf.org/

Attachments specified by the include_file parameter are sent as application/octet-stream MIME type, with
base64 encoding, and must be present on the database server.

In SQL Anywhere 10.0.0 and later, email sent with an SMTP email system is encoded if the subject line
contains characters that are not 7-bit ASCII. Also, email sent to an SMS-capable device may not be
decoded properly if the subject line contains characters that are not 7-bit ASCII.

Return codes
See “Return codes for MAPI and SMTP system procedures” on page 942.

See also
● “MAPI and SMTP procedures” on page 942
● “xp_startmail system procedure” on page 1121
● “xp_startsmtp system procedure” on page 1122
● “xp_stopmail system procedure” on page 1124
● “xp_stopsmtp system procedure” on page 1124
● “CALL statement” on page 460

Example
The following call sends a message to the user ID Sales Group containing the file prices.doc as a mail
attachment:

CALL xp_sendmail(recipient='Sales Group',
 subject='New Pricing',
 include_file = 'C:\\DOCS\\PRICES.DOC');

The following sample program shows various uses of the xp_sendmail system procedure, as described in
the example itself:

BEGIN
DECLARE to_list LONG VARCHAR;
DECLARE email_subject CHAR(256);
DECLARE content LONG VARCHAR;
DECLARE uid CHAR(20);
SET to_list='test_account@mytestdomain.com';
SET email_subject='This is a test';
SET uid='test_sender@mytestdomain.com';
// Call xp_startsmtp to start an SMTP email session
CALL xp_startsmtp(uid, 'mymailserver.mytestdomain.com');
// Basic email example
SET content='This text is the body of my email.\n';
CALL xp_sendmail(recipient=to_list,
 subject=email_subject,
 "message"=content);
// Send email containing HTML using the content_type parameter,
// as well as including an attachment with the include_file
// parameter
SET content='Plain text.

Bold text.

iAnywhere
 Home Page

';
CALL xp_sendmail(recipient=to_list,
 subject=email_subject,

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1119

 "message"=content,
 content_type = 'text/html',
 include_file = 'test.zip');
// Send email "ASIS". Here the content-type has been specified
// by the user as part of email body. Note the attachment can
// also be done separately
SET content='Content-Type: text/html;\nContent-Disposition: inline; \n\nThis
text
 is not bold

This text is bold

iAnywhere Home
 Page

';
CALL xp_sendmail(recipient=to_list,
 subject=email_subject,
 "message"=content,
 content_type = 'ASIS',
 include_file = 'test.zip');
// Send email "ASIS" along with an include file. Note that
// "message" contains the information for another attachment
SET content = 'Content-Type: multipart/mixed; boundary="xxxxx";\n';
SET content = content || 'This part of the email should not be shown. If this
is shown
 then the email client is not MIME compatible\n\n';
SET content = content || '--xxxxx\n';
SET content = content || 'Content-Type: text/html;\n';
SET content = content || 'Content-Disposition: inline;\n\n';
SET content = content || 'This text is not bold

This text is bold</
B>

iAnywhere Home Page

\n\n';
SET content = content || '--xxxxx\n';
SET content = content || 'Content-Type: application/zip; name="test.zip"\n';
SET content = content || 'Content-Transfer-Encoding: base64\n';
SET content = content || 'Content-Disposition: attachment;
filename="test.zip"\n\n';
// Encode the attachment yourself instead of adding this one in
// the include_file parameter
SET content = content || base64_encode(xp_read_file('othertest.zip')) ||
'\n\n';
SET content = content || '--xxxxx--\n';
CALL xp_sendmail(recipient=to_list,
 subject=email_subject,
 "message"=content,
 content_type = 'ASIS',
 include_file = 'othertest.zip');
// End the SMTP session
 CALL xp_stopsmtp();
END

xp_sprintf system procedure
Builds a result string from a set of input strings.

Syntax
xp_sprintf(
 output_buffer,
 format,

System procedures

1120 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 parm [, parm2, ...]
)

Arguments
● output_buffer Use this CHAR(254) parameter to specify the output buffer containing the result

string.

● format Use this CHAR(254) parameter to specify how to format the result string, using
placeholders (%s) for each parm argument. There can be up to fifty placeholders in the format
argument, and there should be the same number of placeholders as parm arguments.

● parm These are the input strings that are used in the result string. You can specify up to 50 of these
CHAR(254) arguments.

Remarks
The xp_sprintf system procedure builds up a string using the format argument and the parm argument(s),
and puts the results in output_buffer.

Permissions
None

See also
● “CALL statement” on page 460

Example
The following statements put the string Hello World! into the result variable.

CREATE VARIABLE result CHAR(254);
Call xp_sprintf(result, '%s %s', 'Hello', 'World!');

xp_startmail system procedure
Starts an email session under MAPI.

Syntax
xp_startmail(
 [mail_user = mail-login-name]
 [, mail_password = mail-password])

Arguments
● mail_user Use this LONG VARCHAR parameter to specify the MAPI login name.

● mail_password Use this LONG VARCHAR parameter to specify the MAPI password.

Permissions
DBA authority

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1121

Not supported on Unix.

Remarks
xp_startmail is a system procedure that starts an email session.

If you are using Microsoft Exchange, the mail-login-name argument is an Exchange profile name, and
you should not include a password in the procedure call.

Return codes
See “Return codes for MAPI and SMTP system procedures” on page 942.

See also
● “MAPI and SMTP procedures” on page 942
● “xp_stopmail system procedure” on page 1124
● “xp_sendmail system procedure” on page 1116
● “xp_startsmtp system procedure” on page 1122
● “xp_stopsmtp system procedure” on page 1124
● “CALL statement” on page 460

xp_startsmtp system procedure
Starts an email session under SMTP.

Syntax
xp_startsmtp(
smtp_sender = email-address
, smtp_server = smtp-server
[, smtp_port = port-number]
[, timeout = timeout]
[, smtp_sender_name = username]
[, smtp_auth_username = auth-username]
[, smtp_auth_password = auth-password]
[, trusted_certificates = public-certificate]
[, certificate_company = organization]
[, certificate_unit = organization-unit]
[, certificate_name = common-name]
)

Arguments
● smtp_sender This LONG VARCHAR parameter specifies the email address of the sender.

● smtp_server This LONG VARCHAR parameter specifies which SMTP server to use, and is the
server name or IP address.

● smtp_port This optional INTEGER parameter specifies the port number to connect to on the
SMTP server. The default is 25.

System procedures

1122 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● timeout This optional INTEGER parameter specifies how long to wait, in seconds, for a response
from the database server before aborting the current call to xp_sendmail. The default is 60 seconds.

● smtp_sender_name This optional LONG VARCHAR parameter specifies an alias for the
sender's email address. For example, 'JSmith' instead of 'email-address'.

● smtp_auth_username This optional LONG VARCHAR parameter specifies the user name to
provide to SMTP servers requiring authentication.

● smtp_auth_password This optional LONG VARCHAR parameter specifies the user name to
provide to SMTP servers requiring authentication.

● trusted_certificates This optional LONG VARCHAR parameter specifies the path and file name
of a file that contains one or more trusted certificates. The default is NULL. When this parameter is
NULL, a standard SMTP connection is made.

The trusted certificate can be a server's self-signed certificate, a public enterprise root certificate, or a
certificate belonging to a commercial Certificate Authority. You must generate your certificates using
RSA.

● certificate_company This optional LONG VARCHAR parameter specifies that the client accepts
server certificates only when the Organization field of the certificate matches this value. This
parameter is ignored when the trusted_certificates value is NULL.

● certificate_unit This optional LONG VARCHAR parameter specifies that the client accepts server
certificates only when the Organization Unit field of the certificate matches this value. This parameter
is ignored when the trusted_certificates value is NULL.

● certificate_name This optional LONG VARCHAR parameter specifies that the client accepts
server certificates only when the Common Name field on the certificate matches this value. This
parameter is ignored when the trusted_certificates value is NULL.

Permissions
DBA authority

Remarks
xp_startsmtp is a system procedure that starts a mail session for a specified email address by connecting
to an SMTP server. This connection can time out. Therefore, it is recommended that you call xp_startsmtp
just before executing xp_sendmail.

If you specify smtp_auth_username and smtp_auth_password, and the server does not support the SMTP
authentication capability, error code 104 is returned.

Virus scanners can affect xp_startsmtp, causing it to return error code 100. For McAfee VirusScan
version 8.0.0 and later, settings for preventing mass mailing of email worms also prevent xp_sendmail
from executing properly. If your virus scanning software allows you to specify processes that can bypass
the mass mailing protections, specify dbeng12.exe and dbsrv12.exe. For example, with McAfee
VirusScan you can prevent mass mailing by adding these two processes to the list of Excluded Processes
in the Properties area.

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1123

Return codes
See “Return codes for MAPI and SMTP system procedures” on page 942.

See also
● “MAPI and SMTP procedures” on page 942
● “xp_startmail system procedure” on page 1121
● “xp_stopmail system procedure” on page 1124
● “xp_sendmail system procedure” on page 1116
● “xp_stopsmtp system procedure” on page 1124
● “CALL statement” on page 460

xp_stopmail system procedure
Closes a MAPI email session.

Syntax
xp_stopmail()

Permissions
DBA authority

Not supported on Unix.

Remarks
xp_stopmail is a system procedure that ends an email session.

Return codes
See “Return codes for MAPI and SMTP system procedures” on page 942.

See also
● “MAPI and SMTP procedures” on page 942
● “xp_startmail system procedure” on page 1121
● “xp_sendmail system procedure” on page 1116
● “xp_startsmtp system procedure” on page 1122
● “xp_stopsmtp system procedure” on page 1124
● “CALL statement” on page 460

xp_stopsmtp system procedure
Closes an SMTP email session.

Syntax
xp_stopsmtp()

System procedures

1124 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Permissions
DBA authority

Remarks
xp_stopsmtp is a system procedure that ends an email session.

Return codes
See “Return codes for MAPI and SMTP system procedures” on page 942.

See also
● “MAPI and SMTP procedures” on page 942
● “xp_startmail system procedure” on page 1121
● “xp_stopmail system procedure” on page 1124
● “xp_sendmail system procedure” on page 1116
● “xp_startsmtp system procedure” on page 1122
● “CALL statement” on page 460

xp_write_file system procedure
Writes data to a file from a SQL statement.

Syntax
xp_write_file(
 filename,
 file_contents
)

Arguments
● filename Use this LONG VARCHAR parameter to specify the file name.

● file_contents Use this LONG BINARY parameter to specify the contents to write to the file.

Remarks
The function writes file_contents to the file filename. It returns 0 if successful, and non-zero if it fails.

The filename value can be prefixed by either an absolute or a relative path. If filename is prefixed by a
relative path, then the file name is relative to the current working directory of the database server. If the
file already exists, its contents are overwritten.

This function can be useful for unloading long binary data into files.

You can also use the CSCONVERT function to address character set conversion requirements you have
when using the xp_write_file system procedure. See “CSCONVERT function [String]” on page 176.

Permissions
DBA authority

Alphabetical list of system procedures

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1125

See also
● “CSCONVERT function [String]” on page 176
● “xp_read_file system procedure” on page 1115
● “CALL statement” on page 460

Examples
This example uses xp_write_file to create a file accountnum.txt containing the data 123456:

CALL xp_write_file('accountnum.txt', '123456');

This example queries the Contacts table of the sample database, and then creates a text file for each
contact living in New Jersey. Each text file is named using a concatenation of the contact's first name
(GivenName), last name (Surname), and then the string .txt (for example, Reeves_Scott.txt), and contains
the contact's street address (Street), city (City), and state (State), on separate lines.

SELECT xp_write_file(
Surname || '_' || GivenName || '.txt',
Street || '\n' || City || '\n' || State)
FROM Contacts WHERE State = 'NJ';

This example uses xp_write_file to create an image file (JPG) for every product in the Products table.
Each value of the ID column becomes a file name for a file with the contents of the corresponding value
of the Photo column:

SELECT xp_write_file(ID || '.jpg' , Photo) FROM Products;

In the example above, ID is a row with a UNIQUE constraint. This is important to ensure that a file isn't
overwritten with the contents of subsequent row. Also, you must specify the file extension applicable to
the data stored in the column. In this case, the Products.Photo stores image data (JPGs).

System procedures

1126 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Views

System views
The catalog contains system tables that link together by keys and indexes. In SQL Anywhere, the system
tables are hidden. However, there is a system view for each table. A system view may also include
columns from more than one system table, to satisfy a commonly needed join.

To ensure compatibility with future versions of the SQL Anywhere catalog, make sure your applications
make use of system views and not the underlying system tables, which may change.

To view detailed system information views and definitions (Sybase Central)

1. Use the SQL Anywhere 12 plug-in to connect to the database as a user with DBA authority.

2. Right-click the database and choose Configure Owner Filter.

3. Click SYS and then click OK.

4. In the left pane, double-click Views.

5. In the left pane click a view, and in the right pane click the SQL tab.

Click the Data tab to view details about the selected view.

SYSARTICLE system view
Each row of the SYSARTICLE system view describes an article in a publication. The underlying system
table for this view is ISYSARTICLE.

Column name Data type Description

publication_id UNSIGNED INT The publication of which the article is a part.

table_id UNSIGNED INT Each article consists of columns and rows from a sin-
gle table. This column contains the table ID for this table.

where_expr LONG VARCHAR For articles that contain a subset of rows defined by a
WHERE clause, this column contains the search condi-
tion.

subscribe_by_expr LONG VARCHAR For articles that contain a subset of rows defined by a
SUBSCRIBE BY expression, this column contains the
expression.

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1127

Column name Data type Description

query CHAR(1) Indicates information about the article type to the data-
base server.

alias VARCHAR(256) The alias for the article.

schema_change_active BIT 1 if the table and publication are part of a synchroniza-
tion schema change.

Constraints on underlying system table
PRIMARY KEY (publication_id, table_id)
FOREIGN KEY (publication_id) references SYS.ISYSPUBLICATION (publication_id)
FOREIGN KEY (table_id) references SYS.ISYSTAB (table_id)

SYSARTICLECOL system view
Each row of the SYSARTICLECOL system view identifies a column in an article. The underlying system
table for this view is ISYSARTICLECOL.

Column name Data type Description

publication_id UNSIGNED INT A unique identifier for the publication of which the column is a part.

table_id UNSIGNED INT The table to which the column belongs.

column_id UNSIGNED INT The column identifier, from the SYSTABCOL system view.

Constraints on underlying system table
PRIMARY KEY (publication_id, table_id, column_id)
FOREIGN KEY (publication_id, table_id) references SYS.ISYSARTICLE
(publication_id, table_id)
FOREIGN KEY (table_id, column_id) references SYS.ISYSTABCOL (table_id,
column_id)

SYSCAPABILITY system view
Each row of the SYSCAPABILITY system view specifies the status of a capability on a remote database
server. The underlying system table for this view is ISYSCAPABILITY.

Views

1128 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Column name Data type Description

capid INTEGER The ID of the capability, as listed in the SYSCAPABILITY-
NAME system view.

srvid UNSIGNED INT The server to which the capability applies, as listed in the SYS-
SERVER system view.

capvalue CHAR(128) The value of the capability.

capname VARCHAR(32000) The name of the capability.

Constraints on underlying system table
PRIMARY KEY (capid, srvid)

FOREIGN KEY (srvid) references SYS.ISYSSERVER (srvid)

See also
● “SYSCAPABILITYNAME system view” on page 1129

SYSCAPABILITYNAME system view

Each row in the SYSCAPABILITYNAME system view provides a name for each capability ID in the
SYSCAPABILITY system view.

Column name Data type Description

capid INTEGER A number uniquely identifying the capability.

capname VARCHAR(32000) The name of the capability.

Remarks
The SYSCAPABILITYNAME system view is defined using a combination of sa_rowgenerator and the
following server properties:

● RemoteCapability
● MaxRemoteCapability

See also
● “Database server properties” [SQL Anywhere Server - Database Administration]
● “SYSCAPABILITY system view” on page 1128

SYSCHECK system view

System views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1129

Each row in the SYSCHECK system view provides the definition for a named check constraint in a table.
The underlying system table for this view is ISYSCHECK.

Column name Data type Description

check_id UNSIGNED INT A number that uniquely identifies the constraint in the database.

check_defn LONG VARCHAR The CHECK expression.

Constraints on underlying system table
PRIMARY KEY (check_id)

FOREIGN KEY (check_id) references SYS.ISYSCONSTRAINT (constraint_id)

SYSCOLPERM system view

The GRANT statement can give UPDATE, SELECT, or REFERENCES permission to individual
columns in a table. Each column with UPDATE, SELECT, or REFERENCES permission is recorded in
one row of the SYSCOLPERM system view. The underlying system table for this view is ISYSCOLPERM.

Column name Data type Description

table_id UNSIGNED INT The table number for the table containing the column.

grantee UNSIGNED INT The user number of the user ID that is given permission on the
column. If the grantee is the user number for the special PUBLIC
user ID, the permission is given to all user IDs.

grantor UNSIGNED INT The user number of the user ID that grants the permission.

column_id UNSIGNED INT This column number, together with the table_id, identifies the col-
umn for which permission has been granted.

privilege_type SMALLINT The number in this column indicates the kind of column permis-
sion (16=REFERENCES, 1=SELECT, or 8=UPDATE).

is_grantable CHAR(1) Indicates if the permission on the column was granted WITH
GRANT OPTION.

Constraints on underlying system table
PRIMARY KEY (table_id, grantee, grantor, column_id, privilege_type)

FOREIGN KEY (table_id, column_id) references SYS.ISYSTABCOL (table_id,
column_id)

FOREIGN KEY (grantor) references SYS.ISYSUSER (user_id)

FOREIGN KEY (grantee) references SYS.ISYSUSER (user_id)

Views

1130 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SYSCOLSTAT system view
The SYSCOLSTAT system view contains the column statistics, including histograms, that are used by the
optimizer. The contents of this view are best retrieved using the sa_get_histogram stored procedure or the
Histogram utility. The underlying system table for this view is ISYSCOLSTAT.

Column name Data type Description

table_id UNSIGNED INT A number that uniquely identifies the table or materialized view
to which the column belongs.

column_id UNSIGNED INT A number that, together with table_id, uniquely identifies the col-
umn.

format_id SMALLINT For system use only.

update_time TIMESTAMP The time of the last update of the column statistics.

density FLOAT An estimate of the average selectivity of a single value for the col-
umn, not counting the large single value selectivities stored in the
row.

max_steps SMALLINT For system use only.

actual_steps SMALLINT For system use only.

step_values LONG BINARY For system use only.

frequencies LONG BINARY For system use only.

Note
For databases created using SQL Anywhere 12, the underlying system table for this view is always
encrypted to protect the data from unauthorized access.

Constraints on underlying system table
PRIMARY KEY (table_id, column_id)
FOREIGN KEY (table_id, column_id) references SYS.ISYSTABCOL (table_id,
column_id)

SYSCONSTRAINT system view
Each row in the SYSCONSTRAINT system view describes a named constraint in the database. The
underlying system table for this view is ISYSCONSTRAINT.

System views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1131

Column name Data type Description

constraint_id UNSIGNED INT The unique ID for the constraint.

constraint_type CHAR(1) The type of constraint:

● C - column check constraint.

● T - table constraint.

● P - primary key.

● F - foreign key.

● U - unique constraint.

ref_object_id UNSIGNED BIGINT The object ID of the column, ta-
ble, or index to which the con-
straint applies.

table_object_id UNSIGNED BIGINT The table ID of the table to
which the constraint applies.

constraint_name CHAR(128) The name of the constraint.

Constraints on underlying system table
PRIMARY KEY (constraint_id)
FOREIGN KEY (ref_object_id) references SYS.ISYSOBJECT (object_id)
FOREIGN KEY (table_object_id) references SYS.ISYSOBJECT (object_id)
UNIQUE Constraint (table_object_id, constraint_name)

SYSDBFILE system view
Each row in the SYSDBFILE system view describes a dbspace file. The underlying system table for this
view is ISYSDBFILE.

Column name Data type Description

dbfile_id SMALLINT For internal use only.

dbspace_id SMALLINT Each dbspace file in a database is assigned a unique number.
The system dbspace contains all system objects and has a
dbspace_id of 0.

Views

1132 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Column name Data type Description

dbfile_name CHAR(128) The file name for the dbspace. For dbspaces other than system
and TEMPORARY, the file name can be changed using the fol-
lowing statement:

ALTER DBSPACE dbspace RENAME 'new-filename';

file_name LONG VAR-
CHAR

A unique name for the dbspace. It is used in the CREATE TA-
BLE command.

lob_map LONG VARBIT For internal use only.

Constraints on underlying system table
PRIMARY KEY (dbfile_id)

FOREIGN KEY (dbspace_id) references SYS.ISYSDBSPACE (dbspace_id)

UNIQUE Index (file_name)

SYSDBSPACE system view

Each row in the SYSDBSPACE system view describes a dbspace file. The underlying system table for
this view is ISYSDBSPACE.

Column name Data type Description

dbspace_id SMALLINT Unique number identifying the dbspace. The system dbspace con-
tains all system objects and has a dbspace_id of 0.

object_id UNSIGNED
BIGINT

The file name for the dbspace. For the system dbspace, the value is
the name of the database file when the database was created and is
for informational purposes only; it cannot be changed. For other
dbspaces, the file name can be changed using the following statement:

ALTER DBSPACE dbspace RENAME 'new-filename';

dbspace_name CHAR(128) A unique name for the dbspace. It is used in the CREATE TABLE
command.

store_type TINYINT For internal use only.

Constraints on underlying system table
PRIMARY KEY (dbspace_id)

FOREIGN KEY (object_id) references SYS.ISYSOBJECT (object_id) MATCH UNIQUE
FULL

System views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1133

SYSDBSPACEPERM system view
Each row in the SYSDBSPACEPERM system view describes a permission on a dbspace file. The
underlying system table for this view is ISYSDBSPACEPERM.

Column name Data type Description

dbspace_id SMALLINT Unique number identifying the dbspace. The system dbspace con-
tains all system objects and has a dbspace_id of 0.

grantee UNSIGNED
INT

The user ID of the user getting the permission.

privilege_type SMALLINT The permission that is granted to the grantee. For example, CREATE
gives the grantee permission to create objects on the dbspace.

Constraints on underlying system table
FOREIGN KEY (dbspace_id) references SYS.ISYSDBSPACE (dbspace_id)
FOREIGN KEY (grantee) references SYS.ISYSUSER (user_id)

See also
● “GRANT statement” on page 718
● “Database permissions and authorities” [SQL Anywhere Server - Database Administration]

SYSDEPENDENCY system view
Each row in the SYSDEPENDENCY system view describes a dependency between two database objects.
The underlying system table for this view is ISYSDEPENDENCY.

A dependency exists between two database objects when one object references another object in its
definition. For example, if the query specification for a view references a table, the view is said to be
dependent on the table. The database server tracks dependencies of views on tables, views, materialized
views, and columns.

Column name Data type Description

ref_object_id UNSIGNED BIGINT The object ID of the referenced object.

dep_object_id UNSIGNED BIGINT The ID of the referencing object.

Constraints on underlying system table
PRIMARY KEY (ref_object_id, dep_object_id)
FOREIGN KEY (ref_object_id) references SYS.ISYSOBJECT (object_id)
FOREIGN KEY (dep_object_id) references SYS.ISYSOBJECT (object_id)

Views

1134 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “sa_dependent_views system procedure” on page 977
● “View dependencies” [SQL Anywhere Server - SQL Usage]

SYSDOMAIN system view
The SYSDOMAIN system view records information about built-in data types (also called domains). The
contents of this view does not change during normal operation. The underlying system table for this view
is ISYSDOMAIN.

Column name Data type Description

domain_id SMALLINT The unique number assigned to each data type. These numbers cannot
be changed.

domain_name CHAR(128) The name of the data type normally found in the CREATE TABLE
command, such as CHAR or INTEGER.

type_id SMALLINT The ODBC data type. This value corresponds to the value for da-
ta_type in the Transact-SQL-compatibility dbo.SYSTYPES table.

"precision" SMALLINT The number of significant digits that can be stored using this data
type. The column value is NULL for non-numeric data types.

Constraints on underlying system table
PRIMARY KEY (domain_id)

SYSEVENT system view
Each row in the SYSEVENT system view describes an event created with CREATE EVENT. The
underlying system table for this view is ISYSEVENT.

Column name Data type Description

event_id UNSIGNED INT The unique number assigned to each event.

object_id UNSIGNED BIGINT The internal ID for the event, uniquely identifying it in the
database.

creator UNSIGNED INT The user number of the owner of the event. The name of the
user can be found by looking in the SYSUSER system view.

event_name VARCHAR(128) The name of the event.

System views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1135

Column name Data type Description

enabled CHAR(1) Indicates whether the event is allowed to fire.

location CHAR(1) The location where the event is to fire:

● C = consolidated
● R = remote
● A = all

event_type_id UNSIGNED INT For system events, the event type as listed in the SYSEVENT-
TYPE system view.

action LONG VARCHAR The event handler definition. An obfuscated value indicates
a hidden event.

external_action LONG VARCHAR For system use only.

condition LONG VARCHAR The condition used to control firing of the event handler.

remarks LONG VARCHAR Remarks for the event; this column comes from ISYSRE-
MARK.

source LONG VARCHAR The original source for the event; this column comes from
ISYSSOURCE.

Constraints on underlying system table
PRIMARY KEY (event_id)

FOREIGN KEY (creator) references SYS.ISYSUSER (user_id)

FOREIGN KEY (object_id) references SYS.ISYSOBJECT (object_id) MATCH UNIQUE
FULL

UNIQUE Index (event_name)

See also
● “SYSEVENTTYPE system view” on page 1136

SYSEVENTTYPE system view

The SYSEVENTTYPE system view defines the system event types that can be referenced by CREATE
EVENT.

Column name Data type Description

event_type_id INT The unique number assigned to each event type.

Views

1136 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Column name Data type Description

name VARCHAR(32000) The name of the system event type.

description LONG VARCHAR A description of the system event type.

Remarks
The SYSEVENTTYPE system view is defined using a combination of sa_rowgenerator and the following
server properties:

● EventTypeName
● EventTypeDesc
● MaxEventType

See also
● “Database server properties” [SQL Anywhere Server - Database Administration]
● “SYSEVENT system view” on page 1135

SYSEXTERNENV system view
SQL Anywhere includes support for six external runtime environments. These include embedded SQL
and ODBC applications written in C/C++, and applications written in Java, Perl, PHP, or languages such
as C# and Visual Basic that are based on the Microsoft .NET Framework Common Language Runtime
(CLR).

Each row in the SYSEXTERNENV system view describes the information needed to identify and launch
each of the external environments. The underlying system table for this view is ISYSEXTERNENV.

Column
name

Data type Description

object_id unsigned bi-
gint

A unique identifier for the external environment.

name char(128) The name of the external environment or language.

scope char(1) Identifies if the external environment is launched as one-per-connection
(C), or one-per-database (D).

support_re-
sult_sets

char(1) Identifies the external environments that can return result sets to the user.

location long varchar Identifies the location where the main executable for the environment
can be found.

System views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1137

Column
name

Data type Description

options long varchar Identifies the options required on the command line to launch the exter-
nal environment.

user_id unsigned int For internal use only.

Constraints on underlying system table
PRIMARY KEY (object_id)

FOREIGN KEY (object_id) references SYS.ISYSOBJECT (object_id) MATCH UNIQUE
FULL

FOREIGN KEY (user_id) references SYS.ISYSUSER (user_id)

UNIQUE Index (name)

SYSEXTERNENVOBJECT system view

SQL Anywhere includes support for six external runtime environments. These include embedded SQL
and ODBC applications written in C/C++, and applications written in Java, Perl, PHP, or languages such
as C# and Visual Basic that are based on the Microsoft .NET Framework Common Language Runtime
(CLR).

Each row in the SYSEXTERNENVOBJECT system view describes an installed external object. The
underlying system table for this view is ISYSEXTERNENVOBJECT.

Column
name

Data type Description

object_id unsigned
bigint

A unique identifier for the external object.

extenv_id unsigned
bigint

The unique identifier for the external environment (SYSEXTERNENV.ob-
ject_id).

owner unsigned
int

Identifies the creator/owner of the external object.

name long var-
char

Identifies the name of the external object as specified in the INSTALL
statement.

contents long bina-
ry

The contents of the external object.

update_time timestamp Identifies the last time the object was modified (or installed).

Views

1138 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Constraints on underlying system table
PRIMARY KEY (object_id)

FOREIGN KEY (object_id) references SYS.ISYSOBJECT (object_id) MATCH UNIQUE
FULL

FOREIGN KEY (extenv_id) references SYS.ISYSEXTERNENV (object_id)

FOREIGN KEY (owner) references SYS.ISYSUSER (user_id)

UNIQUE Index (name)

SYSEXTERNLOGIN system view

Each row in the SYSEXTERNLOGIN system view describes an external login for remote data access.
The underlying system table for this view is ISYSEXTERNLOGIN.

Note
Previous versions of the catalog contained a SYSEXTERNLOGINS system table. That table has been
renamed to be ISYSEXTERNLOGIN (without an 'S'), and is the underlying table for this view.

Column name Data type Description

user_id UNSIGNED INT The user ID on the local database.

srvid UNSIGNED INT The remote server, as listed in the SYSSERVER system view.

remote_login VARCHAR(128) The login name for the user, for the remote server.

remote_password VARBINARY(128) The password for the user, for the remote server.

Note
For databases created using SQL Anywhere 12, the underlying system table for this view is always
encrypted to protect the data from unauthorized access.

Constraints on underlying system table
PRIMARY KEY (user_id, srvid)

FOREIGN KEY (user_id) references SYS.ISYSUSER (user_id)

FOREIGN KEY (srvid) references SYS.ISYSSERVER (srvid)

SYSFKEY system view

Each row in the SYSFKEY system view describes a foreign key constraint in the system. The underlying
system table for this view is ISYSFKEY.

System views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1139

Column name Data type Description

foreign_table_id UNSIGNED
INT

The table number of the foreign table.

foreign_index_id UNSIGNED
INT

The index number for the foreign key.

primary_table_id UNSIGNED
INT

The table number of the primary table.

primary_index_id UNSIGNED
INT

The index number of the primary key.

match_type TINYINT The matching type for the constraint. Matching types include:

● 0 - Use the default matching

● 1 - SIMPLE

● 2 - FULL

● 129 - SIMPLE UNIQUE

● 130 - FULL UNIQUE

For more information about match types, see the MATCH
clause of the “CREATE TABLE statement” on page 596.

check_on_commit CHAR(1) Indicates whether INSERT and UPDATE statements should
wait until the COMMIT to check if foreign keys are still valid.

nulls CHAR(1) Indicates whether the columns in the foreign key are allowed to
contain the NULL value. Note that this setting is independent of
the nulls setting in the columns contained in the foreign key.

Constraints on underlying system table
PRIMARY KEY (foreign_table_id, foreign_index_id)
FOREIGN KEY (foreign_table_id, foreign_index_id) references SYS.ISYSIDX
(table_id, index_id)
FOREIGN KEY (primary_table_id, primary_index_id) references SYS.ISYSIDX
(table_id, index_id)

SYSGROUP system view

Views

1140 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

There is one row in the SYSGROUP system view for each member of each group. This view describes
the many-to-many relationship between groups and members. A group may have many members, and a
user may be a member of many groups. The underlying system table for this view is ISYSGROUP.

Column name Data type Description

group_id UNSIGNED INT The user number of the group.

group_member UNSIGNED INT The user number of a member.

Constraints on underlying system table
PRIMARY KEY (group_id, group_member)
FOREIGN KEY group_id (group_id) references SYS.ISYSUSER (user_id)
FOREIGN KEY group_member (group_member) references SYS.ISYSUSER (user_id)

SYSHISTORY system view
Each row in the SYSHISTORY system view records a system operation on the database, such as a
database start, a database calibration, and so on. The underlying system table for this view is ISYSHISTORY.

System views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1141

Column
name

Data type Description

operation CHAR(128) The type of operation performed on the database file. The operation
must be one of the following values:

● INIT - Information about when the database was created.

● UPGRADE - Information about when the database was upgraded.

● START - Information about when the database was started using a
specific version of the database server on a particular operating sys-
tem.

● LAST_START - Information about the most recent time the data-
base server was started. A LAST_START operation is converted to
a START operation when the database is started with a different ver-
sion of the database server and/or on a different operating system
than those values currently stored in the LAST_START row.

● DTT - Information about the second to last Disk Transfer Time
(DTT) calibration operation performed on the dbspace. That is, infor-
mation on the second to last execution of either an ALTER DATA-
BASE CALIBRATE or ALTER DATABASE RESTORE DE-
FAULT CALIBRATION statement.

● LAST_DTT - Information about the most recent DTT calibration op-
eration performed on the dbspace. That is, information on the most
recent execution of either an ALTER DATABASE CALIBRATE or
ALTER DATABASE RESTORE DEFAULT CALIBRATION state-
ment.

● LAST_BACKUP - Information about the last backup, including
date and time of the backup, the backup type, the files that were
backed up, and the version of database server that performed the back-
up.

object_id UNSIGNED
INT

For any operation other than DTT and LAST_DTT, the value in this col-
umn will be 0. For DTT and LAST_DTT operations, this is the
dbspace_id of the dbspace as defined in the SYSDBSPACE system
view. See “SYSDBSPACE system view” on page 1133.

Views

1142 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Column
name

Data type Description

sub_opera-
tion

CHAR(128) For any operation other than DTT and LAST_DTT, the value in this col-
umn will be a set of empty single quotes ("). For DTT and LAST_DTT
operations, this column contains the type of sub-operation performed on
the dbspace. Values include:

● DTT_SET - The dbspace calibration has been set.

● DTT_UNSET - The dbspace calibration has been restored to the de-
fault setting.

version CHAR(128) The version and build number of the database server used to carry out
the operation.

platform CHAR(128) The operating system on which the operation was carried out.

first_time TIME-
STAMP

The date and time the database was first started on a particular operating
system with a particular version of the software.

last_time TIME-
STAMP

The most recent date and time the database was started on a particular
operating system with a particular version of the software.

details LONG VAR-
CHAR

This column stores information such as command line options used to
start the database server or the capability bits enabled for the database.
This information is for use by technical support.

Constraints on underlying system table
PRIMARY KEY (operation, object_id, version, platform)

SYSIDX system view
Each row in the SYSIDX system view defines a logical index in the database. The underlying system
table for this view is ISYSIDX.

Column name Data type Description

table_id UNSIGNED
INT

Uniquely identifies the table to which this index applies.

index_id UNSIGNED
INT

A unique number identifying the index within its table.

object_id UNSIGNED
BIGINT

The internal ID for the index, uniquely identifying it in the database.

System views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1143

Column name Data type Description

phys_index_id UNSIGNED
INT

Identifies the underlying physical index used to implement the logi-
cal index. This value is NULL for indexes on temporary tables or
remote tables. Otherwise, the value corresponds to the object_id of
a physical index in the SYSPHYSIDX system view. See “SYSPHY-
SIDX system view” on page 1154.

dbspace_id SMALLINT The ID of the file in which the index is contained. This value corre-
sponds to an entry in the SYSDBSPACE system view. See “SYSDB-
SPACE system view” on page 1133.

file_id SMALLINT DEPRECATED. This column is present in SYSVIEW, but not in
the underlying system table ISYSIDX. The contents of this column
is the same as dbspace_id and is provided for compatibility. Use
dbspace_id instead.

index_catego-
ry

TINYINT The type of index. Values include:

● 1 - Primary key
● 2 - Foreign key
● 3 - Secondary index (includes unique constraints)
● 4 - Text indexes

"unique" TINYINT Indicates whether the index is a unique index (1), a non-unique in-
dex (4), or a unique constraint (2). A unique index prevents two
rows in the indexed table from having the same values in the index
columns.

index_name CHAR(128) The name of the index.

not_enforced CHAR(1) For system use only.

file_id SMALLINT For system use only.

Constraints on underlying system table
PRIMARY KEY (table_id, index_id)
FOREIGN KEY (table_id) references SYS.ISYSTAB (table_id)
FOREIGN KEY (object_id) references SYS.ISYSOBJECT (object_id) MATCH UNIQUE
FULL
FOREIGN KEY (table_id, phys_index_id) references SYS.ISYSPHYSIDX (table_id,
phys_index_id)
UNIQUE Index (index_name, table_id, index_category)

Views

1144 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “SYSIDXCOL system view” on page 1145
● “SYSPHYSIDX system view” on page 1154
● “SYSDBSPACE system view” on page 1133

SYSIDXCOL system view
Each row in the SYSIDXCOL system view describes one column of an index described in the SYSIDX
system view. The underlying system table for this view is ISYSIDXCOL.

Column name Data type Description

table_id UNSIGNED INT Identifies the table to which the index applies.

index_id UNSIGNED INT Identifies the index to which the column applies. Together,
table_id and index_id identify one index described in the SY-
SIDX system view.

sequence SMALLINT Each column in an index is assigned a unique number start-
ing at 0. The order of these numbers determines the relative
significance of the columns in the index. The most important
column has sequence number 0.

column_id UNSIGNED INT Identifies which column of the table is indexed. Together, ta-
ble_id and column_id identify one column described in the
SYSCOLUMN system view.

"order" CHAR(1) Indicates whether the column in the index is kept in ascend-
ing(A) or descending(D) order. This value is NULL for text
indexes.

primary_column_id UNSIGNED INT The ID of the primary key column that corresponds to this
foreign key column. The value is NULL for non foreign key
columns.

Constraints on underlying system table
PRIMARY KEY (table_id, index_id, column_id)
FOREIGN KEY (table_id, index_id) references SYS.ISYSIDX (table_id, index_id)
FOREIGN KEY (table_id, column_id) references SYS.ISYSTABCOL (table_id,
column_id)

See also
● “SYSIDX system view” on page 1143

System views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1145

SYSJAR system view
Each row in the SYSJAR system view defines a JAR file stored in the database. The underlying system
table for this view is ISYSJAR.

Column name Data type Description

jar_id INTEGER A unique number identifying the JAR file.

object_id UNSIGNED BIGINT The internal ID for the JAR file, uniquely identifying it in the
database.

creator UNSIGNED INT The user number of the creator of the JAR file.

jar_name LONG VARCHAR The name of the JAR file.

jar_file LONG VARCHAR The external file name of the JAR file within the database.

update_time TIMESTAMP The time the JAR file was last updated.

Constraints on underlying system table
PRIMARY KEY (jar_id)
FOREIGN KEY (object_id) references SYS.ISYSOBJECT (object_id) MATCH UNIQUE
FULL
UNIQUE Index (jar_name)

See also
● “SYSJARCOMPONENT system view” on page 1146

SYSJARCOMPONENT system view
Each row in the SYSJAR system view defines a JAR file component. The underlying system table for this
view is ISYSJARCOMPONENT.

Column name Data type Description

component_id INTEGER The primary key containing the id of the component.

jar_id INTEGER A field containing the ID number of the JAR.

component_name LONG VARCHAR The name of the component.

component_type CHAR(1) The type of the component.

contents LONG BINARY The byte code of the JAR file.

Views

1146 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Constraints on underlying system table
PRIMARY KEY (component_id)
FOREIGN KEY (jar_id) references SYS.ISYSJAR (jar_id)

See also
● “SYSJAR system view” on page 1146

SYSJAVACLASS system view
Each row in the SYSJAVACLASS system view describes one Java class stored in the database. The
underlying system table for this view is ISYSJAVACLASS.

Column name Data type Description

class_id INTEGER The unique number for the Java class. Also the primary key
for the table.

object_id UNSIGNED BIGINT The internal ID for the Java class, uniquely identifying it in
the database.

creator UNSIGNED INT The user number of the creator of the class.

jar_id INTEGER The id of the JAR file from which the class came.

class_name LONG VARCHAR The name of the Java class.

public CHAR(1) Indicates whether the class is public (Y) or private (N).

component_id INTEGER The id of the component in the SYSJARCOMPONENT sys-
tem view.

update_time TIMESTAMP The last update time of the class.

Constraints on underlying system table
PRIMARY KEY (class_id)
FOREIGN KEY (object_id) references SYS.ISYSOBJECT (object_id) MATCH UNIQUE
FULL
FOREIGN KEY (creator) references SYS.ISYSUSER (user_id)
FOREIGN KEY (component_id) references SYS.ISYSJARCOMPONENT (component_id)

SYSLOGINMAP system view

System views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1147

The SYSLOGINMAP system view contains one row for each user that can connect to the database using
either an integrated login, or Kerberos login. As a security measure, only users with DBA authority can
view the contents of this view. The underlying system table for this view is ISYSLOGINMAP.

Column name Data type Description

login_mode TINYINT The type of login: 1 for integrated logins, 2 for Kerberos logins.

login_id VARCHAR(1024) Either the integrated login user profile name, or the Kerberos
principal that maps to database_uid.

object_id UNSIGNED BIGINT A unique identifier, one for each mapping between user ID
and database user ID.

database_uid UNSIGNED INT The database user ID to which the login ID is mapped.

Constraints on underlying system table
PRIMARY KEY (login_mode, login_id)
FOREIGN KEY (object_id) references SYS.ISYSOBJECT (object_id) MATCH UNIQUE
FULL
FOREIGN KEY (database_uid) references SYS.ISYSUSER (user_id)

SYSLOGINPOLICY system view
The underlying system table for this view is ISYSLOGINPOLICY.

Column name Data type Description

login_policy_id UNSIGNED BIGINT A unique identifier for the login policy.

login_policy_name CHAR(128) The name of the login policy.

Constraints on underlying system table
PRIMARY KEY (login_policy_id)
FOREIGN KEY (login_policy_id) references SYS.ISYSOBJECT (object_id)
UNIQUE Index (login_policy_name)

See also
● “SYSLOGINPOLICYOPTION system view” on page 1148
● “SYSUSER system view” on page 1185

SYSLOGINPOLICYOPTION system view

Views

1148 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The underlying system table for this view is ISYSLOGINPOLICYOPTION.

Column name Data type Description

login_policy_id UNSIGNED BIGINT A unique identifier for the login policy.

login_option_name CHAR(128) The name of the login policy.

login_option_value LONG VARCHAR The value of the login policy at the time it was created.

Constraints on underlying system table
PRIMARY KEY (login_policy_id, login_option_name)
FOREIGN KEY (login_policy_id) references SYS.ISYSLOGINPOLICY
(login_policy_id)

See also
● “SYSLOGINPOLICY system view” on page 1148
● “SYSUSER system view” on page 1185

SYSMIRROROPTION system view
The underlying system table for this view is ISYSMIRROROPTION.

Column name Data type Description

option_name CHAR(128) The name of the option.

option_value LONG VARCHAR The value of the option when the mirror was created.

Constraints on underlying system table
PRIMARY KEY (option_name)

See also
● “ISYSMIRROROPTION system table” on page 916
● “SYSMIRRORSERVER system view” on page 1149
● “SYSMIRRORSERVEROPTION system view” on page 1150

SYSMIRRORSERVER system view
The underlying system table for this view is ISYSMIRRORSERVER.

System views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1149

Column
name

Data type Description

object_id UNSIGNED BI-
GINT

A unique identifier for the mirror server.

server_name CHAR(128) The name of the server.

server_type CHAR(20) The type of server. The value can be one of PRIMARY, MIRROR,
ARBITER, PARTNER, or COPY.

parent UNSIGNED BI-
GINT

The parent server. If the value is null, then the server is the pri-
mary or mirror server in a database mirroring system.

If there is a value in this column, it is the ID of the server that is
the parent of the current server.

alternate_pa-
rent

UNSIGNED BI-
GINT

The ID of the server that is used as an alternate parent if the cur-
rent parent becomes unavailable.

Constraints on underlying system table
PRIMARY KEY (object_id)
FOREIGN KEY (object_id) references SYS.ISYSOBJECT (object_id)
UNIQUE Index (server_name)

See also
● “ISYSMIRRORSERVER system table” on page 916
● “SYSMIRROROPTION system view” on page 1149
● “SYSMIRRORSERVEROPTION system view” on page 1150
● “Determining the parent of a copy node” [SQL Anywhere Server - Database Administration]
● “CREATE MIRROR SERVER statement” on page 532

SYSMIRRORSERVEROPTION system view
The underlying system table for this view is ISYSMIRRORSERVEROPTION.

Column name Data type Description

server_id UNSIGNED BIGINT A unique identifier for the mirror server.

option_name CHAR(128) The name of the option.

option_value LONG VARCHAR The value of the option when the mirror was created.

Views

1150 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Constraints on underlying system table
PRIMARY KEY (server_id, option_name)

FOREIGN KEY (server_id) references SYS.ISYSMIRRORSERVER (object_id)

See also
● “ISYSMIRRORSERVEROPTION system table” on page 916
● “SYSMIRROROPTION system view” on page 1149
● “SYSMIRRORSERVER system view” on page 1149

SYSMVOPTION system view

Each row in the SYSMVOPTION system view describes the setting of one option value for a materialized
view or text index at the time of its creation. The name of the option can be found in the
SYSMVOPTIONNAME system view. The underlying system table for this view is ISYSMVOPTION.

Column name Data type Description

view_object_id UNSIGNED BIGINT The object ID of the materialized view.

option_id UNSIGNED INT A unique number identifying the option in the database. To
see the option name, see the SYSMVOPTIONNAME sys-
tem view.

option_value LONG VARCHAR The value of the option when the materialized view was cre-
ated.

Constraints on underlying system table
PRIMARY KEY (view_object_id, option_id)

FOREIGN KEY (view_object_id) references SYS.ISYSOBJECT (object_id)

FOREIGN KEY (option_id) references SYS.ISYSMVOPTIONNAME (option_id)

See also
● “SYSMVOPTIONNAME system view” on page 1151
● “How to view text index info in the database” [SQL Anywhere Server - SQL Usage]
● “How to view materialized view information in the database” [SQL Anywhere Server - SQL Usage]

SYSMVOPTIONNAME system view

Each row in the SYSMVOPTION system view gives the name option value for a materialized view or
text index at the time of its creation. The value for the option can be found in the SYSMVOPTION
system view. The underlying system table for this view is ISYSMVOPTIONNAME.

System views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1151

Column name Data type Description

option_id UNSIGNED INT A number uniquely identifying the option in the database.

option_name CHAR(128) The name of the option.

Constraints on underlying system table
PRIMARY KEY (option_id)

UNIQUE Index (option_name)

See also
● “SYSMVOPTION system view” on page 1151
● “How to view text index info in the database” [SQL Anywhere Server - SQL Usage]
● “How to view materialized view information in the database” [SQL Anywhere Server - SQL Usage]

SYSOBJECT system view

Each row in the SYSOBJECT system view describes a database object. The underlying system table for
this view is ISYSOBJECT.

Column name Data type Description

object_id UN-
SIGNED
BIGINT

The internal ID for the object, uniquely identifying it in the database.

status TINYINT The status of the object. Values include:

● 1 (valid) - The object is available for use by the database server.
This status is synonymous with ENABLED. That is, if you ENA-
BLE an object, the status changes to VALID.

● 2 (invalid) - An attempt to recompile the object after an internal op-
eration has failed, for example, after a schema-altering modification
to an object on which it depends. The database server continues to
try to recompile the object whenever it is referenced in a statement.

● 4 (disabled) - The object has been explicitly disabled by the user,
for example using an ALTER TABLE...DISABLE VIEW DEPEND-
ENCIES statement.

object_type TINYINT Type of object.

creation_time TIME-
STAMP

The date and time when the object was created.

Views

1152 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Column name Data type Description

ob-
ject_type_str

CHAR
(128)

Type of object.

Constraints on underlying system table
PRIMARY KEY (object_id)

SYSOPTION system view

The SYSOPTION system view contains the options one row for each option setting stored in the
database. Each user can have their own setting for a given option. In addition, settings for the PUBLIC
user ID define the default settings to be used for users that do not have their own setting. The underlying
system table for this view is ISYSOPTION.

Column name Data type Description

user_id UNSIGNED INT The user number to whom the option setting applies.

"option" CHAR(128) The name of the option.

"setting" LONG VARCHAR The current setting for the option.

Constraints on underlying system table
PRIMARY KEY (user_id, "option")

FOREIGN KEY (user_id) references SYS.ISYSUSER (user_id)

SYSOPTSTAT system view

The SYSOPTSTAT system view stores the cost model calibration information as computed by the
ALTER DATABASE CALIBRATE statement. The contents of this view are for internal use only and are
best accessed via the sa_get_dtt system procedure. The underlying system table for this view is
ISYSOPTSTAT.

Column name Data type Description

stat_id UNSIGNED INT For system use only.

group_id UNSIGNED INT For system use only.

format_id SMALLINT For system use only.

data LONG BINARY For system use only.

System views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1153

Constraints on underlying system table
PRIMARY KEY (stat_id, group_id, format_id)

SYSPHYSIDX system view

Each row in the SYSPHYSIDX system view defines a physical index in the database. The underlying
system table for this view is ISYSPHYSIDX.

Column name Data type Description

table_id UNSIGNED INT The object ID of the table to which the index corre-
sponds.

phys_index_id UNSIGNED INT The unique number of the physical index within its
table.

root INTEGER Identifies the location of the root page of the physi-
cal index in the database file.

key_value_count UNSIGNED INT The number of distinct key values in the index.

leaf_page_count UNSIGNED INT The number of leaf index pages.

depth UNSIGNED SMALLINT The depth (number of levels) of the physical index.

max_key_distance UNSIGNED INT For system use only.

seq_transitions UNSIGNED INT For system use only.

rand_transitions UNSIGNED INT For system use only.

rand_distance UNSIGNED INT For system use only.

allocation_bitmap LONG VARBIT For system use only.

long_value_bitmap LONG VARBIT For system use only.

Constraints on underlying system table
PRIMARY KEY (table_id, phys_index_id)

See also
● “SYSIDXCOL system view” on page 1145
● “SYSIDX system view” on page 1143

SYSPROCEDURE system view

Views

1154 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Each row in the SYSPROCEDURE system view describes one procedure in the database. The underlying
system table for this view is ISYSPROCEDURE.

Column name Data type Description

proc_id UNSIGNED INT Each procedure is assigned a unique number (the procedure
number).

creator UNSIGNED INT The owner of the procedure.

object_id UNSIGNED BIGINT The internal ID for the procedure, uniquely identifying it in
the database.

proc_name CHAR(128) The name of the procedure. One creator cannot have two pro-
cedures with the same name.

proc_defn LONG VARCHAR The definition of the procedure.

remarks LONG VARCHAR Remarks about the procedure. This value is stored in the ISYS-
REMARK system table.

replicate CHAR(1) This property is for internal use only.

srvid UNSIGNED INT If the procedure is a proxy for a procedure on a remote data-
base server, indicates the remote server.

source LONG VARCHAR The preserved source for the procedure. This value is stored
in the ISYSSOURCE system table.

avg_num_rows FLOAT Information collected for use in query optimization when the
procedure appears in the FROM clause.

avg_cost FLOAT Information collected for use in query optimization when the
procedure appears in the FROM clause.

stats LONG BINARY Information collected for use in query optimization when the
procedure appears in the FROM clause.

Constraints on underlying system table
PRIMARY KEY (proc_id)
FOREIGN KEY (srvid) references SYS.ISYSSERVER (srvid)
FOREIGN KEY (object_id) references SYS.ISYSOBJECT (object_id) MATCH UNIQUE
FULL
FOREIGN KEY (creator) references SYS.ISYSUSER (user_id)
UNIQUE Index (proc_name, creator)

System views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1155

SYSPROCPARM system view
Each row in the SYSPROCPARM system view describes one parameter to a procedure in the database.
The underlying system table for this view is ISYSPROCPARM.

Column name Data type Description

proc_id UNSIGNED INT Uniquely identifies the procedure to which the parameter be-
longs.

parm_id SMALLINT Each procedure starts numbering parameters at 1. The order
of parameter numbers corresponds to the order in which they
were defined. For functions, the first parameter has the name
of the function and represents the return value for the function.

parm_type SMALLINT The type of parameter will be one of the following:

● 0 - Normal parameter (variable)

● 1 - Result variable - used with a procedure that returns re-
sult sets

● 2 - SQLSTATE error value

● 3 - SQLCODE error value

● 4 - Return value from function

parm_mode_in CHAR(1) Indicates whether the parameter supplies a value to the proce-
dure (IN or INOUT parameters).

parm_mode_out CHAR(1) Indicates whether the parameter returns a value from the pro-
cedure (OUT or INOUT parameters) or columns in the RE-
SULT clause.

domain_id SMALLINT Identifies the data type for the parameter, by the data type num-
ber listed in the SYSDOMAIN system view.

width BIGINT Contains the length of a string parameter, the precision of a
numeric parameter, or the number of bytes of storage for any
other data type.

scale SMALLINT For numeric data types, the number of digits after the decimal
point. For all other data types, the value of this column is 1.

user_type SMALLINT The user type of the parameter, if applicable.

parm_name CHAR(128) The name of the procedure parameter.

Views

1156 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Column name Data type Description

"default" LONG VARCHAR Default value of the parameter. Provided for informational pur-
poses only.

remarks LONG VARCHAR Always returns NULL. Provided to allow the use of previous
versions of ODBC drivers with newer personal database serv-
ers.

base_type_str VARCHAR(32767) The annotated type string representing the physical type of
the parameter.

Constraints on underlying system table
PRIMARY KEY (proc_id, parm_id)

FOREIGN KEY (proc_id) references SYS.ISYSPROCEDURE (proc_id)

FOREIGN KEY (domain_id) references SYS.ISYSDOMAIN (domain_id)

FOREIGN KEY (user_type) references SYS.ISYSUSERTYPE (type_id)

SYSPROCPERM system view

Each row of the SYSPROCPERM system view describes a user granted permission to execute a
procedure. Only users who have been granted permission can execute a procedure. The underlying system
table for this view is ISYSPROCPERM.

Column name Data type Description

proc_id UNSIGNED INT The procedure number uniquely identifies the procedure for
which permission has been granted.

grantee UNSIGNED INT The user number of the user receiving the permission.

Constraints on underlying system table
PRIMARY KEY (proc_id, grantee)

FOREIGN KEY (grantee) references SYS.ISYSUSER (user_id)

FOREIGN KEY (proc_id) references SYS.ISYSPROCEDURE (proc_id)

SYSPROXYTAB system view

Each row of the SYSPROXYTAB system view describes the remote parameters of one proxy table. The
underlying system table for this view is ISYSPROXYTAB.

System views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1157

Column name Data type Description

table_object_id UNSIGNED BIGINT The object ID of the proxy table.

existing_obj CHAR(1) Indicates whether the proxy table previously existed on the
remote server .

srvid UNSIGNED INT The unique ID for the remote server associated with the
proxy table.

remote_location LONG VARCHAR The location of the proxy table on the remote server.

Constraints on underlying system table
PRIMARY KEY (table_object_id)
FOREIGN KEY (table_object_id) references ISYSOBJECT (object_id) MATCH UNIQUE
FULL
FOREIGN KEY (srvid) references SYS.ISYSSERVER (srvid)

SYSPUBLICATION system view
Each row in the SYSPUBLICATION system view describes a SQL Remote or MobiLink publication.
The underlying system table for this view is ISYSPUBLICATION.

Column
name

Data type Description

publica-
tion_id

UNSIGNED
INT

A number uniquely identifying the publication.

object_id UNSIGNED
BIGINT

The internal ID for the publication, uniquely identifying it in the da-
tabase.

creator UNSIGNED
INT

The owner of the publication.

publica-
tion_name

CHAR(128) The name of the publication.

remarks LONG VAR-
CHAR

Remarks about the publication. This value is stored in the ISYSRE-
MARK system table.

type CHAR(1) This column is deprecated.

Views

1158 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Column
name

Data type Description

sync_type UNSIGNED
INT

The type of synchronization for the publication. Values include:

● logscan - This is a regular publication that uses the transaction
log to upload all relevant data that has changed since the last up-
load.

● scripted upload - For this publication, the transaction log is ignor-
ed and the upload is defined by the user using stored procedures.
Information about the stored procedures is stored in the ISYS-
SYNCSCRIPT system table.

● download only - This is a download-only publication; no data is
uploaded.

Constraints on underlying system table
PRIMARY KEY (publication_id)

FOREIGN KEY (object_id) references SYS.ISYSOBJECT (object_id) MATCH UNIQUE
FULL

FOREIGN KEY (creator) references SYS.ISYSUSER (user_id)

UNIQUE Index (publication_name, creator)

See also
● “Scripted upload” [MobiLink - Client Administration]
● “SYSSYNCSCRIPT system view” on page 1172

SYSREMARK system view

Each row in the SYSREMARK system view describes a remark (or comment) for an object. The
underlying system table for this view is ISYSREMARK.

Column Data type Description

object_id UNSIGNED BIGINT The internal ID for the object that has an associated remark.

remarks LONG VARCHAR The remark or comment associated with the object.

Constraints on underlying system table
PRIMARY KEY (object_id)

FOREIGN KEY (object_id) references SYS.ISYSOBJECT (object_id) MATCH UNIQUE
FULL

System views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1159

SYSREMOTEOPTION system view
Each row in the SYSREMOTEOPTION system view describes the value of a SQL Remote message link
parameter. The underlying system table for this view is ISYSREMOTEOPTION.

Some columns in this view contain potentially sensitive data. For that reason, access to this view is
restricted to users with DBA authority. The SYSREMOTEOPTION2 view provides public access to the
data in this view except for the potentially sensitive columns.

Column Data type Description

option_id UNSIGNED INT An identification number for the message link parameter.

user_id UNSIGNED INT The user ID for which the parameter is set.

"setting" VARCHAR(255) The value of the message link parameter.

Constraints on underlying system table
PRIMARY KEY (option_id, user_id)
FOREIGN KEY (option_id) references SYS.ISYSREMOTEOPTIONTYPE (option_id)
FOREIGN KEY (user_id) references SYS.ISYSUSER (user_id)

SYSREMOTEOPTIONTYPE system view
Each row in the SYSREMOTEOPTIONTYPE system view describes one of the SQL Remote message
link parameters. The underlying system table for this view is ISYSREMOTEOPTIONTYPE.

Column Data type Description

option_id UNSIGNED INT An identification number for the message link parameter.

type_id SMALLINT An identification number for the message type that uses the parameter.

"option" VARCHAR(128) The name of the message link parameter.

Constraints on underlying system table
PRIMARY KEY (option_id)
FOREIGN KEY (type_id) references SYS.ISYSREMOTETYPE (type_id)

SYSREMOTETYPE system view
The SYSREMOTETYPE system view contains information about SQL Remote. The underlying system
table for this view is ISYSREMOTETYPE.

Views

1160 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Column name Data type Description

type_id SMALLINT Identifies which of the message systems supported by
SQL Remote is to be used to send messages to the user.

object_id UNSIGNED BIGINT The internal ID for the remote type, uniquely identifying
it in the database.

type_name CHAR(128) The name of the message system supported by SQL Re-
mote.

publisher_address LONG VARCHAR The address of the remote database publisher.

remarks LONG VARCHAR Remarks about the remote type. This value is stored in the
ISYSREMARK system table.

Constraints on underlying system table
PRIMARY KEY (type_id)
FOREIGN KEY (object_id) references SYS.ISYSOBJECT (object_id) MATCH UNIQUE
FULL
UNIQUE Index (type_name)

SYSREMOTEUSER system view
Each row in the SYSREMOTEUSER system view describes a user ID with REMOTE permissions (a
subscriber), together with the status of SQL Remote messages that were sent to and from that user. The
underlying system table for this view is ISYSREMOTEUSER.

Column name Data type Description

user_id UNSIGNED INT The user number of the user with REMOTE permissions.

consolidate CHAR(1) Indicates whether the user was granted CONSOLIDATE
permissions (Y) or REMOTE permissions (N).

type_id SMALLINT Identifies which of the message systems supported by
SQL Remote is used to send messages to the user.

address LONG VARCHAR The address to which SQL Remote messages are to be
sent. The address must be appropriate for the address_type.

frequency CHAR(1) How frequently SQL Remote messages are sent.

send_time TIME The next time messages are to be sent to this user.

System views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1161

Column name Data type Description

log_send UNSIGNED BIGINT Messages are sent only to subscribers for whom log_send
is greater than log_sent.

time_sent TIMESTAMP The time the most recent message was sent to this subscriber.

log_sent UNSIGNED BIGINT The log offset for the most recently sent operation.

confirm_sent UNSIGNED BIGINT The log offset for the most recently confirmed operation
from this subscriber.

send_count INTEGER How many SQL Remote messages have been sent.

resend_count INTEGER Counter to ensure that messages are applied only once at
the subscriber database.

time_received TIMESTAMP The time when the most recent message was received
from this subscriber.

log_received UNSIGNED BIGINT The log offset in the subscriber's database for the opera-
tion that was most recently received at the current database.

confirm_received UNSIGNED BIGINT The log offset in the subscriber's database for the most re-
cent operation for which a confirmation message has been
sent.

receive_count INTEGER How many messages have been received.

rereceive_count INTEGER Counter to ensure that messages are applied only once at
the current database.

Constraints on underlying system table
PRIMARY KEY (user_id)
FOREIGN KEY (user_id) references SYS.ISYSUSER (user_id)
FOREIGN KEY (type_id) references SYS.ISYSREMOTETYPE (type_id)
UNIQUE Index (type_id, address)

SYSSCHEDULE system view
Each row in the SYSSCHEDULE system view describes a time at which an event is to fire, as specified
by the SCHEDULE clause of CREATE EVENT. The underlying system table for this view is
ISYSSCHEDULE.

Views

1162 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Column name Data type Description

event_id UNSIGNED
INT

The unique number assigned to each event.

sched_name VAR-
CHAR(128)

The name associated with the schedule for the event.

recurring TINYINT Indicates if the schedule is repeating.

start_time TIME The schedule start time.

stop_time TIME The schedule stop time if BETWEEN was used.

start_date DATE The first date on which the event is scheduled to execute.

days_of_week TINYINT A bit mask indicating the days of the week on which the event is
scheduled:

● x01 = Sunday
● x02 = Monday
● x04 = Tuesday
● x08 = Wednesday
● x10 = Thursday
● x20 = Friday
● x40 = Saturday

days_of_month UNSIGNED
INT

A bit mask indicating the days of the month on which the event is
scheduled. Some examples include:

● x01 = first day
● x02 = second day
● x40000000 = 31st day
● x80000000 = last day of month

interval_units CHAR(10) The interval unit specified by EVERY:

● HH = hours
● NN = minutes
● SS = seconds

interval_amt INTEGER The period specified by EVERY.

Constraints on underlying system table
PRIMARY KEY (event_id, sched_name)
FOREIGN KEY (event_id) references SYS.ISYSEVENT (event_id)

System views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1163

SYSSEQUENCE system view
The SYSSEQUENCE system view contains one row for each user-defined sequence. The underlying
system table for this view is ISYSSEQUENCE.

Column name Data type Description

object_id UNSIGNED BIGINT The unique number assigned to each sequence.

owner UNSIGNED INT The owner of the sequence.

min_value BIGINT The minimum value allowed for the sequence.

max_value BIGINT The maximum value allowed for the sequence.

increment_by BIGINT The increment value for the sequence.

start_with BIGINT The starting value for the sequence.

cache UNSIGNED INT The number of sequence values to preallocate in memory
for faster access. A value of 0 indicates that values are not to
be preallocated

cycle TINYINT Whether values should continue to be generated after the
maximum or minimum value is reached.

resume_at BIGINT The RESTART WITH value specified by the ALTER SE-
QUENCE statement. The value is NULL if no ALTER RE-
START WITH statement has been executed.

sequence_name CHAR(128) The name of the sequence.

Constraints on underlying system table
PRIMARY KEY (object_id)
FOREIGN KEY (object_id) references SYS.ISYSOBJECT MATCH UNIQUE FULL
FOREIGN KEY (owner) references SYS.ISYSUSER (user_id)

SYSSEQUENCEPERM system view
The SYSSEQUENCEPERM system view records the privileges that users or groups hold on sequences.
The underlying system table for this view is ISYSSEQUENCEPERM.

Column name Data type Description

sequence_id UNSIGNED BIGINT The unique number assigned to each sequence.

Views

1164 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Column name Data type Description

grantee UNSIGNED INT The ID of the user or group with permissions to alter or drop
the sequence.

grantor UNSIGNED INT The ID of the user who granted the permissions for the se-
quence.

privilege_type SMALLINT The type of privileges granted to the user or group on the se-
quence.

Constraints on underlying system table
PRIMARY KEY (sequence_id, grantee, privilege_type)
FOREIGN KEY (sequence_id) references SYS.ISYSSEQUENCE (object_id)
FOREIGN KEY (grantee) references SYS.ISYSUSER (user_id)
FOREIGN KEY (grantor) references SYS.ISYSUSER (user_id)

SYSSERVER system view
Each row in the SYSSERVER system view describes a remote server. The underlying system table for
this view is ISYSSERVER.

Note
Previous versions of the catalog contained a SYSSERVERS system table. That table has been renamed to
be ISYSSERVER (without an 'S'), and is the underlying table for this view.

Column name Data type Description

srvid UNSIGNED INT An identifier for the remote server.

srvname VARCHAR(128) The name of the remote server.

srvclass LONG VARCHAR The server class, as specified in the CREATE SERVER state-
ment.

srvinfo LONG VARCHAR Server information.

srvreadonly CHAR(1) Whether the server is read-only.

Constraints on underlying system table
PRIMARY KEY (srvid)

System views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1165

SYSSOURCE system view
Each row in the SYSSOURCE system view contains the source code, if applicable, for an object listed in
the SYSOBJECT system view. The underlying system table for this view is ISYSSOURCE.

Column
name

Data
type

Description

object_id UN-
SIGNED
BIGINT

The internal ID for the object whose source code is being defined.

source LONG
VAR-
CHAR

This column contains the original source code for the object if the pre-
serve_source_format database option is On when the object was created. For
more information, see “preserve_source_format option” [SQL Anywhere Serv-
er - Database Administration].

Constraints on underlying system table
PRIMARY KEY (object_id)
FOREIGN KEY (object_id) references SYS.ISYSOBJECT (object_id) MATCH UNIQUE
FULL

SYSSPATIALREFERENCESYSTEM system view
Each row of the SYSSPATIALREFERENCESYSTEM system view describes an SRS defined in the
database. The underlying system table for this view is ISYSSPATIALREFERENCESYSTEM.

This view offers slightly different amount of information than the
ST_SPATIAL_REFERENCE_SYSTEMS system view.

Column name Data type Description

object_id UNSIGNED
BIGINT

For system use only.

owner UNSIGNED
INT

The owner of the SRS.

srs_name CHAR(128) The name of the SRS.

srs_id INT The numeric identifier (SRID) for the spatial reference sys-
tem. See “Spatial reference systems (SRS) and Spatial ref-
erence identifiers (SRID)” [SQL Anywhere Server - Spatial
Data Support].

Views

1166 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Column name Data type Description

round_earth CHAR(1) Whether the SRS type is ROUND EARTH (Y) or PLA-
NAR (N).

axis_order CHAR(12) Describes how the database server interprets points with re-
gards to latitude and longitude (for example when using the
ST_Lat and ST_Long methods). For non-geographic spa-
tial reference systems, the axis order is x/y/z/m. For geo-
graphic spatial reference systems, the default axis order is
long/lat/z/m; lat/long/z/m is also supported.

snap_to_grid DOUBLE Defines the size of the grid SQL Anywhere uses when per-
forming calculations.

tolerance DOUBLE Defines the precision to use when comparing points.

semi_major_axis DOUBLE Distance from center of the ellipsoid to the equator for a
ROUND EARTH SRS.

semi_minor_axis DOUBLE Distance from center of the ellipsoid to the poles for a
ROUND EARTH SRS.

inv_flattening DOUBLE The inverse flattening used for the ellipsoid in a ROUND
EARTH SRS.

Inverse flattening (f) is a mathematical value that defines
the degree of squashing of a spheroid's pole towards its equa-
tor. The value ranges from no flattening (a perfect circle) to
complete flattening (a straight line). Inverse flattening is
the value of 1/f, as follows:

1/f = (semi_major_axis) / (semi_major_axis -
semi_minor_axis)

min_x DOUBLE The minimum x value allowed in coordinates.

max_x DOUBLE The maximum x value allowed in coordinates.

min_y DOUBLE The minimum y value allowed in coordinates.

max_y DOUBLE The maximum y value allowed in coordinates.

min_z DOUBLE The minimum z value allowed in coordinates.

max_z DOUBLE The maximum z value allowed in coordinates.

min_m DOUBLE The minimum m value allowed in coordinates.

System views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1167

Column name Data type Description

max_m DOUBLE The maximum m value allowed in coordinates.

organization LONG VAR-
CHAR

The name of the organization that created the coordinate sys-
tem used by the spatial reference system.

organization_coord-
sys_id

INT The ID given to the coordinate system by the organization
that created it.

srs_type CHAR(11) The type of SRS as defined by the SQL/MM standard. Val-
ues can be one of:

● GEOGRAPHIC This is for SRSs based on georefer-
enced coordinate systems with axes of latitude, longi-
tude (and elevation). These SRSs are of type PLANAR
or ROUND EARTH.

● PROJECTED This is for SRSs based on georefer-
enced coordinate systems that do not have axes of lati-
tude and longitude. These SRSs are of type PLANAR.

● ENGINEERING This is for SRSs based on non-geore-
ferenced coordinate systems. These SRSs are of type
PLANAR.

● GEOCENTRIC Unsupported.

● COMPOUND Unsupported.

● VERTICAL Unsupported.

If srs_type is empty, the type is unspecified.

linear_unit_of_meas-
ure

UNSIGNED
BIGINT

The linear unit of measure used by the spatial reference sys-
tem.

angu-
lar_unit_of_measure

UNSIGNED
BIGINT

The angular unit of measure used by the spatial reference
system.

count_in_use UNSIGNED
BIGINT

For internal use only.

polygon_format LONG VAR-
CHAR

The orientation of the rings in a polygon. One of Counter-
Clockwise, ClockWise, or EvenOdd.

storage_format LONG VAR-
CHAR

Whether the data is stored in normalized format (Internal),
unnormalized format (Original), or both (Mixed).

Views

1168 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Column name Data type Description

definition LONG VAR-
CHAR

The WKT definition of the spatial reference system in the
format defined by the OGC standard.

transform_definition LONG VAR-
CHAR

Transform definition settings for use when transforming da-
ta from this SRS to another.

Constraints on underlying system table
PRIMARY KEY (object_id)

FOREIGN KEY (object_id) references SYS.ISYSOBJECT (object_id)

FOREIGN KEY (linear_unit_of_measure) references SYS.ISYSUNITOFMEASURE
(object_id)

FOREIGN KEY (angular_unit_of_measure) references SYS.ISYSUNITOFMEASURE
(object_id)

FOREIGN KEY (owner) references SYS.ISYSUSER (user_id)

UNIQUE Constraint (srs_name)

UNIQUE Constraint (srs_id)

See also
● “ST_SPATIAL_REFERENCE_SYSTEMS consolidated view” on page 1191
● “CREATE SPATIAL REFERENCE SYSTEM statement” on page 579

SYSSQLSERVERTYPE system view

The SYSSQLSERVERTYPE system view contains information relating to compatibility with Adaptive
Server Enterprise. The underlying system table for this view is ISYSSQLSERVERTYPE.

Column name Data type Description

ss_user_type SMALLINT The Adaptive Server Enterprise user type.

ss_domain_id SMALLINT The Adaptive Server Enterprise domain id.

ss_type_name VARCHAR (30) The Adaptive Server Enterprise type name.

primary_sa_domain_id SMALLINT The corresponding SQL Anywhere primary domain id.

primary_sa_user_type SMALLINT The corresponding SQL Anywhere primary user type.

Constraints on underlying system table
PRIMARY KEY (ss_user_type)

System views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1169

SYSSUBSCRIPTION system view

Each row in the SYSSUBSCRIPTION system view describes a subscription from one user ID (which
must have REMOTE permissions) to one publication. The underlying system table for this view is
ISYSSUBSCRIPTION.

Column name Data type Description

publication_id UNSIGNED INT The identifier for the publication to which the user ID is sub-
scribed.

user_id UNSIGNED INT The ID of the user who is subscribed to the publication.

subscribe_by CHAR(128) The value of the SUBSCRIBE BY expression, if any, for the
subscription.

created UNSIGNED BIGINT The offset in the transaction log at which the subscription
was created.

started UNSIGNED BIGINT The offset in the transaction log at which the subscription
was started.

Constraints on underlying system table
PRIMARY KEY (publication_id, user_id, subscribe_by)

FOREIGN KEY (publication_id) references SYS.ISYSPUBLICATION (publication_id)

FOREIGN KEY (user_id) references SYS.ISYSUSER (user_id)

SYSSYNC system view

The SYSSYNC system view contains information relating to MobiLink synchronization. Some columns
in this view contain potentially sensitive data. For that reason, access to this view is restricted to users
with DBA authority. The SYSSYNC2 view provides public access to the data in this view except for the
potentially sensitive columns. The underlying system table for this view is ISYSSYNC.

Column name Data type Description

sync_id UNSIGNED INT A number that uniquely identifies the row.

type CHAR(1) This value is always D.

publication_id UNSIGNED INT A publication_id found in the SYSPUBLICATION sys-
tem view.

progress UNSIGNED BIGINT The log offset of the last successful upload.

Views

1170 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Column name Data type Description

site_name CHAR(128) A MobiLink user name.

"option" LONG VARCHAR Synchronization options.

server_connect LONG VARCHAR The address or URL of the MobiLink server.

server_conn_type LONG VARCHAR The communication protocol, such as TCP/IP, to use
when synchronizing.

last_download_time TIMESTAMP Indicates the last time a download stream was received
from the MobiLink server.

last_upload_time TIMESTAMP Indicates the last time (measured at the MobiLink serv-
er) that information was successfully uploaded. The de-
fault is jan-1-1900.

created UNSIGNED BIGINT The log offset at which the subscription was created.

log_sent UNSIGNED BIGINT The log progress up to which information has been up-
loaded. It is not necessary that an acknowledgement of
the upload be received for the entry in this column to be
updated.

generation_number INTEGER For file-base downloads, the last generation number re-
ceived for this subscription. The default is 0.

extended_state VARCHAR(1024) For internal use only.

script_version CHAR(128) Indicates the script version used by the CREATE and
ALTER SYNCHRONIZATION SUBSCRIPTION state-
ments and the START SYNCHRONIZATION SCHE-
MA CHANGE statement.

subscription_name CHAR (128) The name of the subscription.

Constraints on underlying system table
PRIMARY KEY (sync_id)
FOREIGN KEY (publication_id) references SYS.ISYSPUBLICATION (publication_id)
UNIQUE Index (publication_id, site_name)
UNIQUE Index (subscription_name)

SYSSYNCPROFILE system view

System views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1171

The SYSSYNCPROFILE system view contains information relating to synchronization profiles for
MobiLink synchronization.

The underlying system table for this view is ISYSSYNCPROFILE.

Column name Data type Description

object_id UNSIGNED BIGINT The object ID of the sync profile.

profile_name CHAR(128) The name of the sync profile.

profile_defn LONG VARCHAR The definition for the syn profile.

Constraints on underlying system table
PRIMARY KEY (object_id)
FOREIGN KEY (object_id) references SYS.ISYSOBJECT (object_id)
UNIQUE Index (profile_name)

SYSSYNCSCRIPT system view
Each row in the SYSSYNCSCRIPT system view identifies a stored procedure for MobiLink scripted
upload. This view is almost identical to the SYSSYNCSCRIPTS view, except that the values in this view
are in their raw format. To see them in their human-readable format, see “SYSSYNCSCRIPTS
consolidated view” on page 1206.

For information about which publications use scripted upload, see “SYSPUBLICATION system
view” on page 1158.

For information about stored procedure definitions, see “SYSPROCEDURE system view” on page 1154.

The underlying system table for this view is ISYSSYNCSCRIPT.

Column name Data type Description

pub_object_id UNSIGNED BIGINT The object ID of the publication to which the script belongs.

table_object_id UNSIGNED BIGINT The object ID of the table to which the script applies.

type UNSIGNED INT The type of upload procedure.

proc_object_id UNSIGNED BIGINT The object ID of the stored procedure to use for the publication.

Constraints on underlying system table
PRIMARY KEY (pub_object_id, table_object_id, type)
FOREIGN KEY (pub_object_id) references SYS.ISYSOBJECT (object_id)

Views

1172 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

FOREIGN KEY (table_object_id) references SYS.ISYSOBJECT (object_id)
FOREIGN KEY (proc_object_id) references SYS.ISYSOBJECT (object_id)

See also
● “Scripted upload” [MobiLink - Client Administration]
● “SYSPUBLICATION system view” on page 1158
● “SYSPROCEDURE system view” on page 1154
● “SYSSYNCSCRIPTS consolidated view” on page 1206

SYSTAB system view
Each row of the SYSTAB system view describes one table or view in the database. Additional
information for views can be found in the SYSVIEW system view. The underlying system table for this
view is ISYSTAB.

Column name Data type Description

table_id UNSIGNED INT Each table is assigned a unique number (the table number).

dbspace_id SMALLINT A value indicating which dbspace contains the table.

count UNSIGNED BI-
GINT

The number of rows in the table or materialized view. This
value is updated during each successful checkpoint. This num-
ber is used by SQL Anywhere when optimizing database ac-
cess. The count is always 0 for a non-materialized view or re-
mote table.

creator UNSIGNED INT The user number of the owner of the table or view.

table_page_count INTEGER The total number of main pages used by the underlying table.

ext_page_count INTEGER The total number of extension pages used by the underlying
table.

commit_action INTEGER For global temporary tables, 0 indicates that the ON COM-
MIT PRESERVE ROWS clause was specified when the ta-
ble was created, 1 indicates that the ON COMMIT DELETE
ROWS clause was specified when the table was created (the
default behavior for temporary tables), and 3 indicates that
the NOT TRANSACTIONAL clause was specified when the
table was created. For non-temporary tables, commit_action
is always 0.

System views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1173

Column name Data type Description

share_type INTEGER For global temporary tables, 4 indicates that the SHARE BY
ALL clause was specified when the table was created, and 5
indicates that the SHARE BY ALL clause was not specified
when the table was created. For non-temporary tables,
share_type is always 5 because the SHARE BY ALL clause
cannot be specified when creating non-temporary tables.

object_id UNSIGNED BI-
GINT

The object ID of the table.

last_modified_at TIMESTAMP The time at which the data in the table was last modified.
This column is only updated at checkpoint time.

last_modified_tsn UNSIGNED BI-
GINT

A sequence number assigned to the transaction that modified
the table.

file_id SMALLINT DEPRECATED. This column is present in SYSVIEW, but
not in the underlying system table ISYSTAB. The contents
of this column is the same as dbspace_id and is provided for
compatibility. Use dbspace_id instead.

table_name CHAR(128) The name of the table or view. One creator cannot have two
tables or views with the same name.

table_type TINYINT The type of table or view. Values include:

● 1 - Base table
● 2 - Materialized view
● 3 - Global temporary table
● 4 - Local temporary table
● 5 - Text index base table
● 6 - Text index global temp table
● 21 - View

replicate CHAR(1) This value is for internal use only.

server_type TINYINT The location of the data for the underlying table. Values in-
clude:

● 1 - Local server (SQL Anywhere)
● 2 - Remote server

tab_page_list LONG VARBIT For internal use only. The set of pages that contain informa-
tion for the table, expressed as a bitmap.

Views

1174 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Column name Data type Description

ext_page_list LONG VARBIT For internal use only. The set of pages that contain row exten-
sions and large object (LOB) pages for the table, expressed
as a bitmap.

pct_free UNSIGNED INT The PCT_FREE specification for the table, if one has been
specified; otherwise, NULL.

clustered_index_id UNSIGNED INT The ID of the clustered index for the table. If none of the in-
dexes are clustered, then this field is NULL.

encrypted CHAR(1) Whether the table or materialized view is encrypted.

table_type_str CHAR(9) Readable value for table_type. Values include:

● BASE - Base table
● MAT VIEW - Materialized view
● GBL TEMP - Global temporary table
● VIEW - View

Constraints on underlying system table
FOREIGN KEY (dbspace_id) references SYS.ISYSDBSPACE (dbspace_id)
FOREIGN KEY (object_id) references SYS.ISYSOBJECT (object_id)
PRIMARY KEY (table_id)
FOREIGN KEY (creator) references SYS.ISYSUSER (user_id)
UNIQUE Index (table_name, creator)

See also
● “SYSVIEW system view” on page 1188

SYSTABCOL system view
The SYSTABCOL system view contains one row for each column of each table and view in the database.
The underlying system table for this view is ISYSTABCOL.

Column name Data type Description

table_id UNSIGNED INT The object ID of the table or view to which the column belongs.

System views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1175

Column name Data type Description

column_id UNSIGNED INT The ID of the column. For each table, column numbering starts at
1.

The column_id value determines the order of columns in the re-
sult set when SELECT * is used. It also determines the column
order for an INSERT statement when a list of column names is
not provided.

domain_id SMALLINT The data type for the column, indicated by a data type number lis-
ted in the SYSDOMAIN system view.

nulls CHAR(1) Indicates whether NULL values are allowed in the column.

width UNSIGNED INT The length of a string column, the precision of numeric columns,
or the number of bytes of storage for any other data type.

scale SMALLINT The number of digits after the decimal point for NUMERIC or
DECIMAL data type columns. For string columns, a value of 1
indicates character-length semantics and 0 indicates byte-length
semantics.

object_id UNSIGNED BI-
GINT

The object ID of the table column.

max_identity BIGINT The largest value of the column, if it is an AUTOINCREMENT,
IDENTITY, or GLOBAL AUTOINCREMENT column.

column_name CHAR(128) The name of the column.

"default" LONG VAR-
CHAR

The default value for the column. This value, if specified, is only
used when an INSERT statement does not specify a value for the
column.

user_type SMALLINT The data type, if the column is defined using a user-defined data
type.

column_type CHAR(1) The type of column (C=computed column, and R=other columns).

compressed TINYINT Whether this column is stored in a compressed format.

collect_stats TINYINT Whether the system automatically collects and updates statistics
on this column.

Views

1176 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Column name Data type Description

inline_max SMALLINT The maximum number of bytes of a BLOB to store in a row. A
NULL value indicates that either the default value has been ap-
plied, or that the column is not a character or binary type. A non-
NULL inline_max value corresponds to the INLINE value speci-
fied for the column using the CREATE TABLE or ALTER TA-
BLE statement. For more information about the INLINE clause,
see “CREATE TABLE statement” on page 596.

inline_long SMALLINT The number of duplicate bytes of a BLOB to store in a row if the
BLOB size exceeds the inline_max value. A NULL value indi-
cates that either the default value has been applied, or that the col-
umn is not a character or binary type. A non-NULL inline_long
value corresponds to the PREFIX value specified for the column
using the CREATE TABLE or ALTER TABLE statement. For
more information about the PREFIX clause, see “CREATE TA-
BLE statement” on page 596.

lob_index TINYINT Whether to build indexes on BLOB values in the column that ex-
ceed an internal threshold size (approximately eight database pa-
ges). A NULL value indicates either that the default is applied, or
that the column is not BLOB type. A value of 1 indicates that in-
dexes will be built. A value of 0 indicates that no indexes will be
built. A non-NULL lob_index value corresponds to whether IN-
DEX or NO INDEX was specified for the column using the CRE-
ATE TABLE or ALTER TABLE statement. For more informa-
tion about the [NO] INDEX clause, see “CREATE TABLE state-
ment” on page 596.

base_type_str VAR-
CHAR(32,767)

The annotated type string representing the physical type of the col-
umn.

Constraints on underlying system table
PRIMARY KEY (table_id, column_id)
FOREIGN KEY (table_id) references SYS.ISYSTAB (table_id)
FOREIGN KEY (domain_id) references SYS.ISYSDOMAIN (domain_id)
FOREIGN KEY (object_id) references SYS.ISYSOBJECT (object_id) MATCH UNIQUE
FULL
FOREIGN KEY (user_type) references SYS.ISYSUSERTYPE (type_id)

SYSTABLEPERM system view

System views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1177

Permissions given by the GRANT statement are stored in the SYSTABLEPERM system view. Each row
in this view corresponds to one table, one user ID granting the permission (grantor) and one user ID
granted the permission (grantee). The underlying system table for this view is ISYSTABLEPERM.

Column name Data type Description

stable_id UNSIGNED INT The table number of the table or view to which the permissions
apply.

grantee UNSIGNED INT The user number of the user ID receiving the permission.

grantor UNSIGNED INT The user number of the user ID granting the permission.

selectauth CHAR(1) Indicates whether SELECT permission has been granted. Possi-
ble values are Y, N, or G. See the Remarks area below for further
information on what these values mean.

insertauth CHAR(1) Indicates whether INSERT permission has been granted. Possible
values are Y, N, or G. See the Remarks area below for further in-
formation on what these values mean.

deleteauth CHAR(1) Indicates whether DELETE permission has been granted. Possi-
ble values are Y, N, or G. See the Remarks area below for further
information on what these values mean.

updateauth CHAR(1) Indicates whether UPDATE permission has been granted for all
columns in the table. Possible values are Y, N, or G. See the Re-
marks area below for further information on what these values
mean.

updatecols CHAR(1) Indicates whether UPDATE permission has only been granted for
some of the columns in the underlying table. If updatecols has the
value Y, there will be one or more rows in the SYSCOLPERM
system view granting update permission for the columns.

alterauth CHAR(1) Indicates whether ALTER permission has been granted. Possible
values are Y, N, or G. See the Remarks area below for further in-
formation on what these values mean.

referenceauth CHAR(1) Indicates whether REFERENCE permission has been granted. Pos-
sible values are Y, N, or G. See the Remarks area below for fur-
ther information on what these values mean.

Remarks
There are several types of permission that can be granted. Each permission can have one of the following
three values.

● N No, the grantee has not been granted this permission by the grantor.

Views

1178 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

● Y Yes, the grantee has been given this permission by the grantor.

● G The grantee has been given this permission and can grant the same permission to another user.
See “GRANT statement” on page 718.

Permissions
The grantee might have been given permission for the same table by another grantor. If so, this
information would be found in a different row of the SYSTABLEPERM system view.

Constraints on underlying system table
PRIMARY KEY (stable_id, grantee, grantor)
FOREIGN KEY (stable_id) references SYS.ISYSTAB (table_id)
FOREIGN KEY (grantor) references SYS.ISYSUSER (user_id)
FOREIGN KEY (grantee) references SYS.ISYSUSER (user_id)

SYSTEXTCONFIG system view
Each row in the SYSTEXTCONFIG system view describes one text configuration object, for use with the
full text search feature. The underlying system table for this view is ISYSTEXTCONFIG.

For more information about what each configuration setting means, see “Text configuration object
settings” [SQL Anywhere Server - SQL Usage].

For more information about the full text search feature, see “Full text search” [SQL Anywhere Server -
SQL Usage].

Column name Data type Description

object_id UNSIGNED BI-
GINT

The object ID for the text configuration object.

creator UNSIGNED
INT

The creator of the text configuration object.

term_breaker TINYINT The algorithm used to separate a string into terms or
words. Values are 0 for GENERIC and 1 for NGRAM.
With GENERIC, any string of one or more alphanumeric
characters separated by non-alphanumerics are treated as a
term. NGRAM is for approximate matching or for docu-
ments that do not use a whitespace to separate terms.

stemmer TINYINT For internal use only.

System views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1179

Column name Data type Description

min_term_length TINYINT The minimum length, in characters, allowed for a term.
Terms that are shorter than min_term_length are ignored.

The MINIMUM TERM LENGTH setting is only meaning-
ful for the GENERIC term breaker. For NGRAM text in-
dexes, the setting is ignored.

max_term_length TINYINT For GENERIC text indexes, the maximum length, in char-
acters, allowed for a term. Terms that are longer than
max_term_length are ignored.

For NGRAM text indexes, this is the length of the n-grams
into which terms are broken.

collation CHAR(128) For internal use only.

text_config_name CHAR(128) The name of the text configuration object.

prefilter LONG VAR-
CHAR

The function and library name for an external prefilter li-
brary.

postfilter LONG VAR-
CHAR

For internal use only.

char_stoplist LONG VAR-
CHAR

Terms to ignore when performing a full text search on
CHAR columns. These terms are also omitted from text in-
dexes. This column is used when the text configuration ob-
ject is created from default_char.

nchar_stoplist LONG
NVARCHAR

Terms to ignore when performing a full text search on
NCHAR columns. These terms are also omitted from text
indexes. This column is used when the text configuration
object is created from default_nchar.

external_term_break-
er

LONG VAR-
CHAR

The function and library name for an external term breaker
library.

Constraints on underlying system table
PRIMARY KEY (object_id)
FOREIGN KEY (object_id) references SYS.ISYSOBJECT (object_id) MATCH UNIQUE
FULL
FOREIGN KEY (creator) references SYS.ISYSUSER (user_id)
UNIQUE Index (creator, text_config_name)

Views

1180 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SYSTEXTIDX system view
Each row in the SYSTEXTIDX system view describes one text index. The underlying system table for
this view is ISYSTEXTIDX.

For more information about the full text search feature, see “Full text search” [SQL Anywhere Server -
SQL Usage].

Column name Data type Description

index_id UNSIGNED BIGINT The object ID of the text index in SYSIDX.

sequence UNSIGNED INT For internal use only.

status UNSIGNED INT For internal use only.

text_config UNSIGNED BIGINT The object ID of the text configuration object in SYSTEXT-
CONFIG.

next_handle UNSIGNED INT For internal use only.

last_handle UNSIGNED INT For internal use only.

deleted_length UNSIGNED BIGINT The total size of deleted indexed values in the text index.

pending_length UNSIGNED BIGINT The total size of indexed values that will be added to the
text index at the next refresh.

refresh_type TINYINT The type of refresh. One of:

● 1 - MANUAL
● 2 - AUTO
● 3 - IMMEDIATE

refresh_interval UNSIGNED INT The AUTO REFRESH interval, in minutes.

last_refresh TIMESTAMP The time of the last refresh.

Constraints on underlying system table
PRIMARY KEY (index_id, sequence)
FOREIGN KEY (index_id) references SYS.ISYSOBJECT (object_id)
FOREIGN KEY (text_config) references SYS.ISYSTEXTCONFIG (object_id)

SYSTEXTIDXTAB system view

System views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1181

Each row in the SYSTEXTIDXTAB system view describes a generated table that is part of a text index.
The underlying system table for this view is ISYSTEXTIDXTAB.

For more information about the full text search feature, see “Full text search” [SQL Anywhere Server -
SQL Usage].

Column name Data type Description

index_id UNSIGNED BIGINT For internal use only.

sequence UNSIGNED INT For internal use only.

table_type UNSIGNED INT For internal use only.

table_id UNSIGNED INT For internal use only.

Constraints on underlying system table
PRIMARY KEY (index_id, sequence, table_type)
FOREIGN KEY (index_id, sequence) references SYS.ISYSTEXTIDX (index_id,
sequence)
FOREIGN KEY (table_id) references SYS.ISYSTAB (table_id)

SYSTRIGGER system view
Each row in the SYSTRIGGER system view describes one trigger in the database. This view also
contains triggers that are automatically created for foreign key definitions which have a referential
triggered action (such as ON DELETE CASCADE). The underlying system table for this view is
ISYSTRIGGER.

Column name Data type Description

trigger_id UNSIGNED
INT

A unique number for the trigger in the SYSTRIGGER view.

table_id UNSIGNED
INT

The table ID of the table to which this trigger belongs.

object_id UNSIGNED
BIGINT

The object ID for the trigger in the database.

Views

1182 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Column name Data type Description

event CHAR(1) The operation that will cause the trigger to fire.

● A - INSERT, DELETE
● B - INSERT, UPDATE
● C - UPDATE COLUMNS
● D - DELETE
● E - DELETE, UPDATE
● I - INSERT
● U - UPDATE
● M - INSERT, DELETE, UPDATE

trigger_time CHAR(1) The time when the trigger will fire relative to the event.

● A - AFTER (row-level trigger)
● B - BEFORE (row-level trigger)
● I - INSTEAD OF (row-level trigger)
● K - INSTEAD OF (statement-level trigger)
● R - RESOLVE
● S - AFTER (statement-level trigger)

trigger_order SMALLINT The order in which are fired when there are multiple triggers of the
same type (insert, update, or delete) set to fire at the same time (ap-
plies to BEFORE or AFTER triggers only, only).

foreign_ta-
ble_id

UNSIGNED
INT

The ID of the table containing a foreign key definition that has a
referential triggered action (such as ON DELETE CASCADE).
The foreign_table_id value reflects the value of ISYSIDX.table_id.

foreign_key_id UNSIGNED
INT

The ID of the foreign key for the table referenced by foreign_ta-
ble_id. The foreign_key_id value reflects the value of ISYSIDX.in-
dex_id.

referential_ac-
tion

CHAR(1) The action defined by a foreign key. This single-character value cor-
responds to the action that was specified when the foreign key was
created.

● C - CASCADE
● D - SET DEFAULT
● N - SET NULL
● R - RESTRICT

trigger_name CHAR(128) The name of the trigger. One table cannot have two triggers with
the same name.

trigger_defn LONG VAR-
CHAR

The command that was used to create the trigger.

System views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1183

Column name Data type Description

remarks LONG VAR-
CHAR

Remarks about the trigger. This value is stored in the ISYSRE-
MARK system table.

source LONG VAR-
CHAR

The SQL source for the trigger. This value is stored in the ISYS-
SOURCE system table.

Constraints on underlying system table
PRIMARY KEY (trigger_id)
FOREIGN KEY (object_id) references SYS.ISYSOBJECT (object_id) MATCH UNIQUE
FULL
FOREIGN KEY (table_id) references SYS.ISYSTAB (table_id)
FOREIGN KEY fkey_index (foreign_table_id, foreign_key_id) references
SYS.ISYSIDX (table_id, index_id)
UNIQUE Index (table_id, event, trigger_time, trigger_order)
UNIQUE Index (trigger_name, table_id)
UNIQUE Index (table_id, foreign_table_id, foreign_key_id, event)

SYSTYPEMAP system view
The SYSTYPEMAP system view contains the compatibility mapping values for entries in the
SYSSQLSERVERTYPE system view. The underlying system table for this view is ISYSTYPEMAP.

Column name Data type Description

ss_user_type SMALLINT Contains the Adaptive Server Enterprise user type.

sa_domain_id SMALLINT Contains the corresponding SQL Anywhere domain_id.

sa_user_type SMALLINT Contains the corresponding SQL Anywhere user type.

nullable CHAR(1) Whether the type allows NULL values.

Constraints on underlying system table
FOREIGN KEY (sa_domain_id) references SYS.ISYSDOMAIN (domain_id)

SYSUNITOFMEASURE system view
Each row of the SYSUNITOFMEASURE system view describes a unit of measure defined in the
database. The underlying table for the SYSUNITOFMEASURE system view is the
ISYSUNITOFMEASURE system table.

Views

1184 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Column name Data type Description

object_id UNSIGNED BIGINT For system use only.

owner UNSIGNED INT The owner of the unit of measure.

unit_name CHAR(128) The name of the unit of measure.

unit_type CHAR(7) Angular or linear.

conversion_factor DOUBLE The conversion factor for the unit of measure.

Constraints on underlying system table
PRIMARY KEY (object_id)

FOREIGN KEY (object_id) references SYS.ISYSOBJECT (object_id)

FOREIGN KEY (owner) references SYS.ISYSUSER (user_id)

UNIQUE constraint (unit_name)

SYSUSER system view
Each row in the SYSUSER system view describes a user in the system. The underlying system table for
this view is ISYSUSER.

Column name Data type Description

user_id UNSIGNED INT A unique identifier for the user assigned to the
login policy.

object_id UNSIGNED BIGINT A unique identifier for the user in the database.

user_name CHAR(128) The login name for the user.

password BINARY(128) The password for the user.

login_policy_id UNSIGNED BIGINT A unique identifier for the login policy.

expired_password_on_login TINYINT Indicates if the user's password expires at the
next login.

password_creation_time TIMESTAMP The time the user's password was created.

failed_login_attempts UNSIGNED INT The number of times a user can fail to log in be-
fore the account is locked.

last_login_time TIMESTAMP The time the user last logged in.

System views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1185

Note
For databases created using SQL Anywhere 12, the underlying system table for this view is always
encrypted to protect the data from unauthorized access.

Constraints on underlying system table
PRIMARY KEY (user_id)
FOREIGN KEY (object_id) references SYS.ISYSOBJECT (object_id) MATCH UNIQUE
FULL
FOREIGN KEY (login_policy_id) references SYS.ISYSLOGINPOLICY
(login_policy_id)
UNIQUE Index (user_name)

See also
● “SYSLOGINPOLICY system view” on page 1148
● “SYSLOGINPOLICYOPTION system view” on page 1148

SYSUSERAUTHORITY system view
Each row of SYSUSERAUTHORITY system view describes an authority granted to one user ID. The
underlying system table for this view is ISYSUSERAUTHORITY.

Column name Data type Description

user_id UNSIGNED INT The ID of the user to whom the authority belongs.

auth VARCHAR(20) The authority granted to the user.

Constraints on underlying system table
PRIMARY KEY (user_id, auth)
FOREIGN KEY (user_id) references SYS.ISYSUSER (user_id)

SYSUSERMESSAGE system view
Each row in the SYSUSERMESSAGE system view holds a user-defined message for an error condition.
The underlying system table for this view is ISYSUSERMESSAGE.

Note
Previous versions of the catalog contained a SYSUSERMESSAGES system table. That table has been
renamed to be ISYSUSERMESSAGE (without an 'S'), and is the underlying table for this view.

Views

1186 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Column name Data type Description

error INTEGER A unique identifying number for the error condition.

uid UNSIGNED INT The user number that defined the message.

description VARCHAR(255) The message corresponding to the error condition.

langid SMALLINT Reserved.

Constraints on underlying system table
FOREIGN KEY (uid) references SYS.ISYSUSER (user_id)
UNIQUE Constraint (error, langid)

SYSUSERTYPE system view
Each row in the SYSUSERTYPE system view holds a description of a user-defined data type. The
underlying system table for this view is ISYSUSERTYPE.

Column name Data type Description

type_id SMALLINT A unique identifying number for the user-defined data type.

creator UNSIGNED INT The user number of the owner of the data type.

domain_id SMALLINT The data type on which this user defined data type is based,
indicated by a data type number listed in the SYSDOMAIN
system view.

nulls CHAR(1) Whether the user-defined data type allows nulls. Possible val-
ues are Y, N, or U. A value of U indicates that nullability is
unspecified.

width BIGINT The length of a string column, the precision of a numeric col-
umn, or the number of bytes of storage for any other data type.

scale SMALLINT The number of digits after the decimal point for numeric data
type columns, and zero for all other data types.

type_name CHAR(128) The name for the data type.

"default" LONG VARCHAR The default value for the data type.

"check" LONG VARCHAR The CHECK condition for the data type.

System views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1187

Column name Data type Description

base_type_str VARCHAR(32,767) The annotated type string representing the physical type of the
user type.

Constraints on underlying system table
PRIMARY KEY (type_id)
FOREIGN KEY (creator) references SYS.ISYSUSER (user_id)
FOREIGN KEY (domain_id) references SYS.ISYSDOMAIN (domain_id)
UNIQUE Constraint (type_name)

SYSVIEW system view
Each row in the SYSVIEW system view describes a view in the database. Additional information about
views can also be found in the SYSTAB system view. The underlying system table for this view is
ISYSVIEW.

You can also use the sa_materialized_view_info system procedure for a more readable format of the
information for materialized views. See “sa_materialized_view_info system procedure” on page 1020.

Column name Data type Description

view_object_id UN-
SIGNED
BIGINT

The object ID of the view.

view_def LONG
VAR-
CHAR

The definition (query specification) of the view.

mv_build_type TINYINT Currently unused.

mv_refresh_type TINYINT The refresh type defined for the view. Possible values are IMME-
DIATE and MANUAL. See “Manual and immediate materialized
views” [SQL Anywhere Server - SQL Usage].

mv_use_in_optimiza-
tion

TINYINT Whether the materialized view can be used during query optimi-
zation (0=cannot be used in optimization, 1=can be used in opti-
mization). See “Enable and disable optimizer use of a material-
ized view” [SQL Anywhere Server - SQL Usage].

mv_last_refreshed_at TIME-
STAMP

Indicates the date and time that the materialized view was last re-
freshed.

Views

1188 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Column name Data type Description

mv_known_stale_at TIME-
STAMP

The time at which the materialized view became stale. This value
corresponds to the time at which one of the underlying base ta-
bles was detected as having changed. A value of 0 indicates that
the view is either fresh, or that it has become stale but the data-
base server has not marked it as such because the view has not
been used since it became stale. Use the sa_materialized_view_in-
fo system procedure to determine the status of a materialized
view. See “sa_materialized_view_info system proce-
dure” on page 1020.

mv_last_refresh-
ed_tsn

UN-
SIGNED
BIGINT

The sequence number assigned to the transaction that refreshed
the materialized view.

Remarks
When a materialized view is refreshed with SNAPSHOT isolation, mv_last_refreshed_at and
mv_last_refreshed_tsn refer to the earliest transaction that modified any row used during the computation
of the materialized view contents.

Constraints on underlying system table
PRIMARY KEY (view_object_id)
FOREIGN KEY (view_object_id) references SYS.ISYSOBJECT (object_id) MATCH
UNIQUE FULL

See also
● “SYSTAB system view” on page 1173
● “CREATE MATERIALIZED VIEW statement” on page 529
● “REFRESH MATERIALIZED VIEW statement” on page 798
● “CREATE VIEW statement” on page 624

SYSWEBSERVICE system view
Each row in the SYSWEBSERVICE system view holds a description of a web service. The underlying
system table for this view is ISYSWEBSERVICE.

Column name Data type Description

service_id UNSIGNED INT A unique identifying number for the web service.

object_id UNSIGNED BIGINT The ID of the webservice.

service_name CHAR(128) The name assigned to the web service.

System views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1189

Column name Data type Description

service_type VARCHAR(40) The type of the service; for example, RAW, HTTP, XML,
SOAP, or DISH.

auth_required CHAR(1) Whether all requests must contain a valid user name and pass-
word.

secure_required CHAR(1) Whether insecure connections, such as HTTP, are to be ac-
cepted, or only secure connections, such as HTTPS.

url_path CHAR(1) Controls the interpretation of URLs.

user_id UNSIGNED INT If authentication is enabled, identifies the user, or group of
users, that have permission to use the service. If authentica-
tion is disabled, specifies the account to use when process-
ing requests.

parameter LONG VARCHAR A prefix that identifies the SOAP services to be included in
a DISH service.

statement LONG VARCHAR A SQL statement that is always executed in response to a re-
quest. If NULL, arbitrary statements contained in each re-
quest are executed instead. Ignored for services of type DISH.

remarks LONG VARCHAR Remarks about the webservice. This value is stored in the
ISYSREMARK system table.

enabled CHAR(1) Indicates whether the web service is currently enabled or dis-
abled (see CREATE SERVICE).

Constraints on underlying system table
PRIMARY KEY (service_id)
FOREIGN KEY (object_id) references SYS.ISYSOBJECT (object_id) MATCH UNIQUE
FULL
UNIQUE Constraint (service_name)

Consolidated views
Consolidated views provide data in a form more frequently required by users. For example, consolidated
views often provide commonly-needed joins. Consolidated views differ from system views in that they
are not just a straight forward view of raw data in a underlying system table(s). For example, many of the
columns in the system views are unintelligible ID values, whereas in the consolidated views, they are
readable names.

Views

1190 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ST_GEOMETRY_COLUMNS consolidated view
Each row of the ST_GEOMETRY_COLUMNS system view describes a spatial column defined in the
database.

Column name Data type Description

table_catalog VARCHAR(128) For internal use.

table_schema CHAR(128) The name of the schema to which the table containing the spa-
tial column belongs. This is equivalent to the table owner.

table_name CHAR(128) The name of the table containing the spatial column.

column_name CHAR(128) The name of the spatial column.

srs_name CHAR(128) The name of the SRS that is associated with the spatial col-
umn. If an SRS is not associated with the column, then
srs_name is NULL. See “Spatial reference systems (SRS) and
Spatial reference identifiers (SRID)” [SQL Anywhere Server -
Spatial Data Support].

srs_id INTEGER The SRID for the SRS associated with the spatial column. See
“Spatial reference systems (SRS) and Spatial reference identi-
fiers (SRID)” [SQL Anywhere Server - Spatial Data Support].

table_id UNSIGNED INT The numeric identifier for the table containing the column.

column_id UNSIGNED INT The numeric identifier for the column.

geome-
try_type_name

VAR-
CHAR(32767)

The spatial data type of the geometries contained in the col-
umn (for example, ST_Point, ST_Geometry, and so on. See
“Supported spatial data types and their hierarchy” [SQL Any-
where Server - Spatial Data Support].

ST_SPATIAL_REFERENCE_SYSTEMS consolidated view
Each row of the ST_SPATIAL_REFERENCE_SYSTEMS system view describes an SRS defined in the
database. This view offers a slightly different amount of information than the
SYSSPATIALREFERENCESYSTEM system view.

Column name Data type Description

object_id UNSIGNED BI-
GINT

For system use only.

Consolidated views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1191

Column name Data type Description

owner UNSIGNED INT The owner of the SRS.

srs_name CHAR(128) The name of the SRS.

srs_id INT The numeric identifier (SRID) for the spatial refer-
ence system.

srs_type CHAR(11) The type of SRS as defined by the SQL/MM stand-
ard. Values can be one of:

● GEOGRAPHIC This is for SRSs based on
georeferenced coordinate systems with axes of
latitude, longitude (and elevation). These SRSs
are of type PLANAR or ROUND EARTH.

● PROJECTED This is for SRSs based on geore-
ferenced coordinate systems that do not have ax-
es of latitude and longitude. These SRSs are of
type PLANAR.

● ENGINEERING This is for SRSs based on non-
georeferenced coordinate systems. These SRSs
are of type PLANAR.

● GEOCENTRIC Unsupported.

● COMPOUND Unsupported.

● VERTICAL Unsupported.

If srs_type is empty, the type is unspecified.

round_earth CHAR(1) Whether the SRS type is ROUND EARTH (Y) or
PLANAR (N).

axis_order CHAR(12) Describes how the database server interprets points
with regards to latitude and longitude (for example
when using the ST_Lat and ST_Long methods). For
non-geographic spatial reference systems, the axis or-
der is x/y/z/m. For geographic spatial reference sys-
tems, the default axis order is long/lat/z/m; lat/long/z/
m is also supported.

snap_to_grid DOUBLE Defines the size of the grid SQL Anywhere uses
when performing calculations.

tolerance DOUBLE Defines the precision to use when comparing points.

Views

1192 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Column name Data type Description

semi_major_axis DOUBLE Distance from center of the ellipsoid to the equator
for a ROUND EARTH SRS.

semi_minor_axis DOUBLE Distance from center of the ellipsoid to the poles for
a ROUND EARTH SRS.

inv_flattening DOUBLE The inverse flattening used for the ellipsoid in a
ROUND EARTH SRS. This is a ratio created by the
following equation:

1/f = (semi-major-axis) / (semi-major-
axis - semi-minor-axis)

min_x DOUBLE The minimum x value allowed in coordinates.

max_x DOUBLE The maximum x value allowed in coordinates.

min_y DOUBLE The minimum y value allowed in coordinates.

max_y DOUBLE The maximum y value allowed in coordinates.

min_z DOUBLE The minimum z value allowed in coordinates.

max_z DOUBLE The maximum z value allowed in coordinates.

min_m DOUBLE The minimum m value allowed in coordinates.

max_m DOUBLE The maximum m value allowed in coordinates.

min_lat DOUBLE The minimum latitude value allowed for coordinates.

max_lat DOUBLE The maximum latitude value allowed for coordinates.

min_long DOUBLE The minimum longitude value allowed in coordinates.

max_long DOUBLE The maximum longitude value allowed in coordi-
nates.

organization LONG VARCHAR The name of the organization that created the coordi-
nate system used by the spatial reference system.

organization_coordsys_id INT The ID given to the coordinate system by the organi-
zation that created it.

linear_unit_of_measure CHAR(128) The linear unit of measurement used by the SRS.

angular_unit_of_measure CHAR(128) The angular unit of measurement used by the SRS.

Consolidated views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1193

Column name Data type Description

polygon_format LONG VARCHAR The orientation of the rings in a polygon. One of
CounterClockwise, ClockWise, or EvenOdd.

storage_format LONG VARCHAR Whether the data is stored in normalized format (In-
ternal), unnormalized format (Original), or both
(Mixed).

definition LONG VARCHAR Additional definition settings.

transform_definition LONG VARCHAR Transform definition settings for use when transform-
ing data from this SRS to another.

description LONG VARCHAR Description of the SRS.

See also
● “SYSSPATIALREFERENCESYSTEM system view” on page 1166
● “CREATE SPATIAL REFERENCE SYSTEM statement” on page 579

ST_UNITS_OF_MEASURE consolidated view
Each row of the ST_UNITS_OF_MEASURE system view describes a unit of measure defined in the
database. This view offers more information than the SYSUNITOFMEASURE system view.

Column name Data type Description

object_id UNSIGNED BIGINT For system use only.

owner UNSIGNED INT The owner of the unit of measure.

unit_name CHAR(128) The name of the unit of measure.

unit_type CHAR(7) Angular or linear.

conversion_factor DOUBLE The conversion factor for the unit of measure.

description LONG VARCHAR Description for the unit of measure.

SYSARTICLECOLS consolidated view
Each row in the SYSARTICLECOLS view identifies a column in an article.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

Views

1194 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ALTER VIEW "SYS"."SYSARTICLECOLS"
 as select p.publication_name,t.table_name,c.column_name
 from SYS.ISYSARTICLECOL as ac
 join SYS.ISYSPUBLICATION as p on p.publication_id = ac.publication_id
 join SYS.ISYSTAB as t on t.table_id = ac.table_id
 join SYS.ISYSTABCOL as c on c.table_id = ac.table_id
 and c.column_id = ac.column_id

See also
● “SYSARTICLECOL system view” on page 1128
● “SYSPUBLICATION system view” on page 1158
● “SYSTAB system view” on page 1173
● “SYSTABCOL system view” on page 1175

SYSARTICLES consolidated view
Each row in the SYSARTICLES view describes an article in a publication.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSARTICLES"
 as select u1.user_name as publication_owner,p.publication_name,
 u2.user_name as table_owner,t.table_name,
 a.where_expr,a.subscribe_by_expr,a.alias
 from SYS.ISYSARTICLE as a
 join SYS.ISYSPUBLICATION as p on(a.publication_id = p.publication_id)
 join SYS.ISYSTAB as t on(a.table_id = t.table_id)
 join SYS.ISYSUSER as u1 on(p.creator = u1.user_id)
 join SYS.ISYSUSER as u2 on(t.creator = u2.user_id)

See also
● “SYSARTICLE system view” on page 1127
● “SYSPUBLICATION system view” on page 1158
● “SYSTAB system view” on page 1173
● “SYSUSER system view” on page 1185

SYSCAPABILITIES consolidated view
Each row in the SYSCAPABILITIES view specifies the status of a capability for a remote database
server. This view gets its data from the ISYSCAPABILITY and ISYSCAPABILITYNAME system tables.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSCAPABILITIES"
 as select
ISYSCAPABILITY.capid,ISYSCAPABILITY.srvid,property('RemoteCapability',ISYSCAP
ABILITY.capid) as capname,ISYSCAPABILITY.capvalue
 from SYS.ISYSCAPABILITY

Consolidated views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1195

See also
● “SYSCAPABILITY system view” on page 1128
● “SYSCAPABILITYNAME system view” on page 1129

SYSCATALOG consolidated view
Each row in the SYSCATALOG view describes a system table.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSCATALOG"(creator,
 tname,dbspacename,tabletype,ncols,primary_key,"check",
 remarks)
 as select u.user_name,tab.table_name,dbs.dbspace_name,
 if tab.table_type_str = 'BASE' then 'TABLE' else tab.table_type_str
endif,
 (select count() from SYS.ISYSTABCOL
 where ISYSTABCOL.table_id = tab.table_id),
 if ix.index_id is null then 'N' else 'Y' endif,
 null,
 rmk.remarks
 from SYS.SYSTAB as tab
 join SYS.ISYSDBSPACE as dbs on(tab.dbspace_id = dbs.dbspace_id)
 join SYS.ISYSUSER as u on u.user_id = tab.creator
 left outer join SYS.ISYSIDX as ix on(tab.table_id = ix.table_id and
ix.index_id = 0)
 left outer join SYS.ISYSREMARK as rmk on(tab.object_id = rmk.object_id)

See also
● “SYSTAB system view” on page 1173
● “SYSTABCOL system view” on page 1175
● “SYSDBSPACE system view” on page 1133
● “SYSUSER system view” on page 1185
● “SYSIDX system view” on page 1143
● “SYSREMARK system view” on page 1159

SYSCOLAUTH consolidated view
Each row in the SYSCOLAUTH view describes the set of privileges (UPDATE, SELECT, or
REFERENCES) granted on a column. The SYSCOLAUTH view provides a user-friendly presentation of
data in the “SYSCOLPERM system view” on page 1130.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSCOLAUTH"(grantor,grantee,creator,tname,colname,
 privilege_type,is_grantable)
 as select u1.user_name,u2.user_name,u3.user_name,tab.table_name,
 col.column_name,cp.privilege_type,cp.is_grantable

Views

1196 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 from SYS.ISYSCOLPERM as cp
 join SYS.ISYSUSER as u1 on u1.user_id = cp.grantor
 join SYS.ISYSUSER as u2 on u2.user_id = cp.grantee
 join SYS.ISYSTAB as tab on tab.table_id = cp.table_id
 join SYS.ISYSUSER as u3 on u3.user_id = tab.creator
 join SYS.ISYSTABCOL as col on col.table_id = cp.table_id
 and col.column_id = cp.column_id

See also
● “SYSCOLPERM system view” on page 1130
● “SYSTABCOL system view” on page 1175
● “SYSUSER system view” on page 1185
● “SYSTAB system view” on page 1173

SYSCOLSTATS consolidated view
The SYSCOLSTATS view contains the column statistics that are stored as histograms and used by the
optimizer.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSCOLSTATS"
 as select u.user_name,t.table_name,c.column_name,
 s.format_id,s.update_time,s.density,s.max_steps,
 s.actual_steps,s.step_values,s.frequencies
 from SYS.ISYSCOLSTAT as s
 join SYS.ISYSTABCOL as c on(s.table_id = c.table_id
 and s.column_id = c.column_id)
 join SYS.ISYSTAB as t on(t.table_id = c.table_id)
 join SYS.ISYSUSER as u on(u.user_id = t.creator)

See also
● “SYSCOLSTAT system view” on page 1131
● “SYSTABCOL system view” on page 1175
● “SYSTAB system view” on page 1173
● “SYSUSER system view” on page 1185

SYSCOLUMNS consolidated view
Each row in the SYSCOLUMNS view describes one column of each table and view in the catalog.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSCOLUMNS"(creator,cname,tname,coltype,nulls,length,
 syslength,in_primary_key,colno,default_value,
 column_kind,remarks)
 as select u.user_name,col.column_name,tab.table_name,dom.domain_name,
 col.nulls,col.width,col.scale,if ixcol.sequence is null then 'N' else 'Y'

Consolidated views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1197

endif,col.column_id,
 col."default",col.column_type,rmk.remarks
 from SYS.SYSTABCOL as col
 left outer join SYS.ISYSIDXCOL as ixcol on(col.table_id = ixcol.table_id
and col.column_id = ixcol.column_id and ixcol.index_id = 0)
 join SYS.ISYSTAB as tab on(tab.table_id = col.table_id)
 join SYS.ISYSDOMAIN as dom on(dom.domain_id = col.domain_id)
 join SYS.ISYSUSER as u on u.user_id = tab.creator
 left outer join SYS.ISYSREMARK as rmk on(col.object_id = rmk.object_id)

See also
● “SYSTABCOL system view” on page 1175
● “SYSIDXCOL system view” on page 1145
● “SYSTAB system view” on page 1173
● “SYSDOMAIN system view” on page 1135
● “SYSUSER system view” on page 1185
● “SYSREMARK system view” on page 1159

SYSFOREIGNKEYS consolidated view
Each row in the SYSFOREIGNKEYS view describes one foreign key for each table in the catalog.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSFOREIGNKEYS"(foreign_creator,
 foreign_tname,
 primary_creator,primary_tname,role,columns)
 as select fk_up.user_name,fk_tab.table_name,pk_up.user_name,
 pk_tab.table_name,ix.index_name,
 (select list(string(fk_col.column_name,' IS ',
 pk_col.column_name))
 from SYS.ISYSIDXCOL as fkc
 join SYS.ISYSTABCOL as fk_col on(
 fkc.table_id = fk_col.table_id
 and fkc.column_id = fk_col.column_id)
 ,SYS.ISYSTABCOL as pk_col
 where fkc.table_id = fk.foreign_table_id
 and fkc.index_id = fk.foreign_index_id
 and pk_col.table_id = fk.primary_table_id
 and pk_col.column_id = fkc.primary_column_id)
 from SYS.ISYSFKEY as fk
 join SYS.ISYSTAB as fk_tab on fk_tab.table_id = fk.foreign_table_id
 join SYS.ISYSUSER as fk_up on fk_up.user_id = fk_tab.creator
 join SYS.ISYSTAB as pk_tab on pk_tab.table_id = fk.primary_table_id
 join SYS.ISYSUSER as pk_up on pk_up.user_id = pk_tab.creator
 join SYS.ISYSIDX as ix on ix.table_id = fk.foreign_table_id and
ix.index_id = fk.foreign_index_id

Views

1198 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “SYSIDXCOL system view” on page 1145
● “SYSTABCOL system view” on page 1175
● “SYSFKEY system view” on page 1139
● “SYSTAB system view” on page 1173
● “SYSUSER system view” on page 1185
● “SYSIDX system view” on page 1143
● “SYSDOMAIN system view” on page 1135
● “SYSREMARK system view” on page 1159

SYSGROUPS consolidated view
There is one row in the SYSGROUPS view for each member of each group. This view describes the many-
to-many relationship between groups and members. A group may have many members, and a user may be
a member of many groups.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSGROUPS"(group_name,
 member_name)
 as select g.user_name,u.user_name
 from SYS.ISYSGROUP,SYS.ISYSUSER as g,SYS.ISYSUSER as u
 where ISYSGROUP.group_id = g.user_id and ISYSGROUP.group_member =
u.user_id

See also
● “SYSGROUP system view” on page 1140
● “SYSUSER system view” on page 1185

SYSINDEXES consolidated view
Each row in the SYSINDEXES view describes one index in the database. As an alternative to this view,
you could also use the SYSIDX and SYSIDXCOL system views.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSINDEXES"(icreator,
 iname,fname,creator,tname,indextype,
 colnames,interval,level_num)
 as select u.user_name,idx.index_name,dbs.dbspace_name,u.user_name,
 tab.table_name,
 case idx.index_category
 when 1 then 'Primary Key'
 when 2 then 'Foreign Key'
 when 3 then(
 if idx."unique" = 4 then 'Non-unique'
 else if idx."unique" = 2 then 'UNIQUE constraint'

Consolidated views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1199

 else if idx."unique" = 5 then 'UNIQUE NULLS NOT DISTINCT'
 else 'UNIQUE'
 endif
 endif
 endif) when 4 then 'Text Index' end,(select list(string(c.column_name,
 if ixc."order" = 'A' then ' ASC' else ' DESC' endif) order by
 ixc.table_id asc,ixc.index_id asc,ixc.sequence asc)
 from SYS.ISYSIDXCOL as ixc
 join SYS.ISYSTABCOL as c on(
 c.table_id = ixc.table_id
 and c.column_id = ixc.column_id)
 where ixc.index_id = idx.index_id
 and ixc.table_id = idx.table_id),
 0,0
 from SYS.ISYSTAB as tab
 join SYS.ISYSDBSPACE as dbs on(tab.dbspace_id = dbs.dbspace_id)
 join SYS.ISYSIDX as idx on(idx.table_id = tab.table_id)
 join SYS.ISYSUSER as u on u.user_id = tab.creator

See also
● “SYSIDXCOL system view” on page 1145
● “SYSTABCOL system view” on page 1175
● “SYSTAB system view” on page 1173
● “SYSDBSPACE system view” on page 1133
● “SYSIDX system view” on page 1143
● “SYSUSER system view” on page 1185

SYSOPTIONS consolidated view

Each row in the SYSOPTIONS view describes one option created using the SET command. Each user can
have their own setting for each option. In addition, settings for the PUBLIC user define the default
settings to be used for users that do not have their own setting.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSOPTIONS"(user_name,"option",setting)
 as select u.user_name,opt."option",opt.setting
 from SYS.ISYSOPTION as opt
 join SYS.ISYSUSER as u on opt.user_id = u.user_id

See also
● “SYSOPTION system view” on page 1153
● “SYSUSER system view” on page 1185

SYSPROCAUTH consolidated view

Each row in the SYSPROCAUTH view describes a set of privileges granted on a procedure. As an
alternative, you can also use the SYSPROCPERM system view.

Views

1200 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSPROCAUTH"(grantee,
 creator,procname)
 as select u1.user_name,u2.user_name,p.proc_name
 from SYS.ISYSPROCEDURE as p
 join SYS.ISYSPROCPERM as pp on(p.proc_id = pp.proc_id)
 join SYS.ISYSUSER as u1 on u1.user_id = pp.grantee
 join SYS.ISYSUSER as u2 on u2.user_id = p.creator

See also
● “SYSPROCEDURE system view” on page 1154
● “SYSPROCPERM system view” on page 1157
● “SYSUSER system view” on page 1185

SYSPROCPARMS consolidated view
Each row in the SYSPROCPARMS view describes a parameter to a procedure in the database.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSPROCPARMS"(creator,
 procname,parmname,parm_id,parmtype,parmmode,parmdomain,
 length,scale,"default",user_type)
 as select up.user_name,p.proc_name,pp.parm_name,pp.parm_id,pp.parm_type,
 if pp.parm_mode_in = 'Y' and pp.parm_mode_out = 'N' then 'IN'
 else if pp.parm_mode_in = 'N' and pp.parm_mode_out = 'Y' then 'OUT'
 else 'INOUT'
 endif
 endif,dom.domain_name,pp.width,pp.scale,pp."default",ut.type_name
 from SYS.SYSPROCPARM as pp
 join SYS.ISYSPROCEDURE as p on p.proc_id = pp.proc_id
 join SYS.ISYSUSER as up on up.user_id = p.creator
 join SYS.ISYSDOMAIN as dom on dom.domain_id = pp.domain_id
 left outer join SYS.ISYSUSERTYPE as ut on ut.type_id = pp.user_type

See also
● “SYSPROCPARM system view” on page 1156
● “SYSPROCEDURE system view” on page 1154
● “SYSUSER system view” on page 1185
● “SYSDOMAIN system view” on page 1135
● “SYSUSERTYPE system view” on page 1187

SYSPROCS consolidated view
The SYSPROCS view shows the procedure or function name, the name of its creator and any comments
recorded for the procedure or function.

The tables and columns that make up this view are provided in the ALTER VIEW statement below.

Consolidated views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1201

ALTER VIEW "SYS"."SYSPROCS"(creator,
 procname,remarks)
 as select u.user_name,p.proc_name,r.remarks
 from SYS.ISYSPROCEDURE as p
 join SYS.ISYSUSER as u on u.user_id = p.creator
 left outer join SYS.ISYSREMARK as r on(p.object_id = r.object_id)

See also
● “SYSPROCEDURE system view” on page 1154
● “SYSUSER system view” on page 1185
● “SYSREMARK system view” on page 1159

SYSPUBLICATIONS consolidated view
Each row in the SYSPUBLICATIONS view describes a SQL Remote or MobiLink publication.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSPUBLICATIONS"
 as select u.user_name as creator,
 p.publication_name,
 r.remarks,
 p.type,
 case p.sync_type
 when 0 then 'logscan'
 when 1 then 'scripted upload'
 when 2 then 'download only'
 else 'invalid'
 end as sync_type
 from SYS.ISYSPUBLICATION as p
 join SYS.ISYSUSER as u on u.user_id = p.creator
 left outer join SYS.ISYSREMARK as r on(p.object_id = r.object_id)

See also
● “SYSPUBLICATION system view” on page 1158
● “SYSREMARK system view” on page 1159

SYSREMOTEOPTION2 consolidated view
Presents, in a more readable format, the columns from SYSREMOTEOPTION and
SYSREMOTEOPTIONTYPE that do not contain sensitive data.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSREMOTEOPTION2"
 as select ISYSREMOTEOPTION.option_id,
 ISYSREMOTEOPTION.user_id,
 SYS.HIDE_FROM_NON_DBA(ISYSREMOTEOPTION.setting) as setting
 from SYS.ISYSREMOTEOPTION

Views

1202 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “SYSREMOTEOPTION system view” on page 1160

SYSREMOTEOPTIONS consolidated view

Each row of the SYSREMOTEOPTIONS view describes the values of a SQL Remote message link
parameter. Some columns in this view contain potentially sensitive data. For that reason, access to this
view is restricted to users with DBA authority. The SYSREMOTEOPTION2 view provides public access
to the insensitive data.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSREMOTEOPTIONS"
 as select srt.type_name,
 sup.user_name,
 srot."option",
 SYS.HIDE_FROM_NON_DBA(sro.setting) as setting
 from SYS.ISYSREMOTETYPE as srt
 ,SYS.ISYSREMOTEOPTIONTYPE as srot
 ,SYS.ISYSREMOTEOPTION as sro
 ,SYS.ISYSUSER as sup
 where srt.type_id = srot.type_id
 and srot.option_id = sro.option_id
 and sro.user_id = sup.user_id

See also
● “SYSREMOTETYPE system view” on page 1160
● “SYSREMOTEOPTIONTYPE system view” on page 1160
● “SYSREMOTEOPTION system view” on page 1160
● “SYSUSER system view” on page 1185

SYSREMOTETYPES consolidated view

Each row of the SYSREMOTETYPES view describes one of the SQL Remote message types, including
the publisher address.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSREMOTETYPES"
 as select rt.type_id,rt.type_name,rt.publisher_address,rm.remarks
 from SYS.ISYSREMOTETYPE as rt
 left outer join SYS.ISYSREMARK as rm on(rt.object_id = rm.object_id)

See also
● “SYSREMOTETYPE system view” on page 1160
● “SYSREMARK system view” on page 1159

Consolidated views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1203

SYSREMOTEUSERS consolidated view
Each row of the SYSREMOTEUSERS view describes a user ID with REMOTE permissions (a
subscriber), together with the status of SQL Remote messages that were sent to and from that user.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSREMOTEUSERS"
 as select u.user_name,r.consolidate,t.type_name,r.address,r.frequency,
 r.send_time,
 (if r.frequency = 'A' then null else if r.frequency = 'P' then
 if r.time_sent is null then current timestamp
 else(select min(minutes(a.time_sent,60*hour(a.send_time)
 +minute(seconds(a.send_time,59))))
 from SYS.ISYSREMOTEUSER as a where a.frequency = 'P'
 and a.send_time = r.send_time)
 endif
 else if current date+r.send_time
 > coalesce(r.time_sent,current timestamp) then
 current date+r.send_time else current date+r.send_time+1 endif
 endif endif) as next_send,
 r.log_send,r.time_sent,r.log_sent,r.confirm_sent,r.send_count,
 r.resend_count,r.time_received,r.log_received,
 r.confirm_received,r.receive_count,r.rereceive_count
 from SYS.ISYSREMOTEUSER as r
 join SYS.ISYSUSER as u on(u.user_id = r.user_id)
 join SYS.ISYSREMOTETYPE as t on(t.type_id = r.type_id)

See also
● “SYSREMOTEUSER system view” on page 1161
● “SYSUSER system view” on page 1185
● “SYSREMOTETYPE system view” on page 1160

SYSSUBSCRIPTIONS consolidated view
Each row describes a subscription from one user ID (which must have REMOTE permissions) to one
publication.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSSUBSCRIPTIONS"
 as select p.publication_name,u.user_name,s.subscribe_by,s.created,
 s.started
 from SYS.ISYSSUBSCRIPTION as s
 join SYS.ISYSPUBLICATION as p on(p.publication_id = s.publication_id)
 join SYS.ISYSUSER as u on u.user_id = s.user_id

Views

1204 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “SYSSUBSCRIPTION system view” on page 1170
● “SYSPUBLICATION system view” on page 1158
● “SYSUSER system view” on page 1185

SYSSYNC2 consolidated view
The SYSSYNC2 view provides public access to the data found in the SYSSYNC system view—
information relating to MobiLink synchronization—without exposing potentially sensitive data.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSSYNC2"
 as select ISYSSYNC.sync_id,
 ISYSSYNC.type,
 ISYSSYNC.publication_id,
 ISYSSYNC.progress,
 ISYSSYNC.site_name,
 SYS.HIDE_FROM_NON_DBA(ISYSSYNC."option") as "option",
 SYS.HIDE_FROM_NON_DBA(ISYSSYNC.server_connect) as server_connect,
 ISYSSYNC.server_conn_type,
 ISYSSYNC.last_download_time,
 ISYSSYNC.last_upload_time,
 ISYSSYNC.created,
 ISYSSYNC.log_sent,
 ISYSSYNC.generation_number,
 ISYSSYNC.extended_state,
 ISYSSYNC.script_version,
 ISYSSYNC.subscription_name
 from SYS.ISYSSYNC

See also
● “SYSSYNC system view” on page 1170

SYSSYNCPUBLICATIONDEFAULTS consolidated view
The SYSSYNCPUBLICATIONDEFAULTS view provides the default synchronization settings
associated with publications involved in MobiLink synchronization.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSSYNCPUBLICATIONDEFAULTS"
 as select s.sync_id,
 p.publication_name,
 SYS.HIDE_FROM_NON_DBA(s."option") as "option",
 SYS.HIDE_FROM_NON_DBA(s.server_connect) as server_connect,
 s.server_conn_type
 from SYS.ISYSSYNC as s join SYS.ISYSPUBLICATION as p on(p.publication_id
= s.publication_id) where
 s.site_name is null

Consolidated views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1205

See also
● “SYSSYNC system view” on page 1170
● “SYSPUBLICATION system view” on page 1158

SYSSYNCS consolidated view
The SYSSYNCS view contains information relating to MobiLink synchronization. Some columns in this
view contain potentially sensitive data. For that reason, access to this view is restricted to users with DBA
authority.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSSYNCS"
 as select p.publication_name,s.progress,s.site_name,
 SYS.HIDE_FROM_NON_DBA(s."option") as "option",
 SYS.HIDE_FROM_NON_DBA(s.server_connect) as server_connect,
 s.server_conn_type,s.last_download_time,
 s.last_upload_time,s.created,s.log_sent,s.generation_number,
 s.extended_state
 from SYS.ISYSSYNC as s
 left outer join SYS.ISYSPUBLICATION as p
 on p.publication_id = s.publication_id

See also
● “SYSSYNC system view” on page 1170
● “SYSPUBLICATION system view” on page 1158

SYSSYNCSCRIPTS consolidated view
Each row in the SYSSYNCSCRIPTS view identifies a stored procedure for MobiLink scripted upload.
This view is almost identical to the SYSSYNCSCRIPT system view, except that the values are in human-
readable format, as opposed to raw data.

ALTER VIEW "SYS"."SYSSYNCSCRIPTS"
 as select p.publication_name,
 t.table_name,
 case s.type
 when 0 then 'upload insert'
 when 1 then 'upload delete'
 when 2 then 'upload update'
 else 'unknown'
 end as type,
 c.proc_name
 from SYS.ISYSSYNCSCRIPT as s
 join SYS.ISYSPUBLICATION as p on p.object_id = s.pub_object_id
 join SYS.ISYSTAB as t on t.object_id = s.table_object_id
 join SYS.ISYSPROCEDURE as c on c.object_id = s.proc_object_id

Views

1206 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

See also
● “SYSSYNCSCRIPT system view” on page 1172
● “SYSPUBLICATION system view” on page 1158
● “SYSTAB system view” on page 1173
● “SYSPROCEDURE system view” on page 1154
● “Scripted upload” [MobiLink - Client Administration]

SYSSYNCSUBSCRIPTIONS consolidated view
The SYSSYNCSUBSCRIPTIONS view contains the synchronization settings associated with MobiLink
synchronization subscriptions.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSSYNCSUBSCRIPTIONS"
 as select s.sync_id,
 p.publication_name,
 s.progress,
 s.site_name,
 SYS.HIDE_FROM_NON_DBA(s."option") as "option",
 SYS.HIDE_FROM_NON_DBA(s.server_connect) as server_connect,
 s.server_conn_type,
 s.last_download_time,
 s.last_upload_time,
 s.created,
 s.log_sent,
 s.generation_number,
 s.extended_state
 from SYS.ISYSSYNC as s join SYS.ISYSPUBLICATION as p on(p.publication_id
= s.publication_id)
 where s.publication_id is not null and
 s.site_name is not null and exists
 (select 1 from SYS.SYSSYNCUSERS as u
 where s.site_name = u.site_name)

See also
● “SYSSYNC system view” on page 1170
● “SYSPUBLICATION system view” on page 1158
● “SYSSYNCUSERS consolidated view” on page 1207

SYSSYNCUSERS consolidated view
A view of synchronization settings associated with MobiLink synchronization users.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSSYNCUSERS"
 as select ISYSSYNC.sync_id,
 ISYSSYNC.site_name,

Consolidated views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1207

 SYS.HIDE_FROM_NON_DBA(ISYSSYNC."option") as "option",
 SYS.HIDE_FROM_NON_DBA(ISYSSYNC.server_connect) as server_connect,
 ISYSSYNC.server_conn_type
 from SYS.ISYSSYNC where
 ISYSSYNC.publication_id is null

See also
● “SYSSYNC system view” on page 1170

SYSTABAUTH consolidated view
The SYSTABAUTH view contains information from the SYSTABLEPERM system view, but in a more
readable format.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSTABAUTH"(grantor,
 grantee,screator,stname,tcreator,ttname,
 selectauth,insertauth,deleteauth,
 updateauth,updatecols,alterauth,referenceauth)
 as select u1.user_name,u2.user_name,u3.user_name,tab1.table_name,
 u4.user_name,tab2.table_name,tp.selectauth,tp.insertauth,
 tp.deleteauth,tp.updateauth,tp.updatecols,tp.alterauth,
 tp.referenceauth
 from SYS.ISYSTABLEPERM as tp
 join SYS.ISYSUSER as u1 on u1.user_id = tp.grantor
 join SYS.ISYSUSER as u2 on u2.user_id = tp.grantee
 join SYS.ISYSTAB as tab1 on tab1.table_id = tp.stable_id
 join SYS.ISYSUSER as u3 on u3.user_id = tab1.creator
 join SYS.ISYSTAB as tab2 on tab2.table_id = tp.stable_id
 join SYS.ISYSUSER as u4 on u4.user_id = tab2.creator

See also
● “SYSTABLEPERM system view” on page 1177
● “SYSUSER system view” on page 1185
● “SYSTAB system view” on page 1173

SYSTRIGGERS consolidated view
Each row in the SYSTRIGGERS view describes one trigger in the database. This view also contains
triggers that are automatically created for foreign key definitions which have a referential triggered action
(such as ON DELETE CASCADE).

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSTRIGGERS"(owner,
 trigname,tname,event,trigtime,trigdefn)
 as select u.user_name,trig.trigger_name,tab.table_name,
 if trig.event = 'I' then 'INSERT'

Views

1208 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

 else if trig.event = 'U' then 'UPDATE'
 else if trig.event = 'C' then 'UPDATE'
 else if trig.event = 'D' then 'DELETE'
 else if trig.event = 'A' then 'INSERT,DELETE'
 else if trig.event = 'B' then 'INSERT,UPDATE'
 else if trig.event = 'E' then 'DELETE,UPDATE'
 else 'INSERT,DELETE,UPDATE'
 endif
 endif
 endif
 endif
 endif
 endif
 endif,if trig.trigger_time = 'B' or trig.trigger_time = 'P' then 'BEFORE'
 else if trig.trigger_time = 'A' or trig.trigger_time = 'S' then 'AFTER'
 else if trig.trigger_time = 'R' then 'RESOLVE'
 else 'INSTEAD OF'
 endif
 endif
 endif,trig.trigger_defn
 from SYS.ISYSTRIGGER as trig
 join SYS.ISYSTAB as tab on(tab.table_id = trig.table_id)
 join SYS.ISYSUSER as u on u.user_id = tab.creator where
 trig.foreign_table_id is null

See also
● “SYSTRIGGER system view” on page 1182
● “SYSTAB system view” on page 1173
● “SYSUSER system view” on page 1185

SYSUSEROPTIONS consolidated view
The SYSUSEROPTIONS view contains the option settings that are in effect for each user. If a user has no
setting for an option, this view displays the public setting for the option.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSUSEROPTIONS"(user_name,
 "option",setting)
 as select u.user_name,
 o."option",
 isnull((select s.setting
 from SYS.ISYSOPTION as s
 where s.user_id = u.user_id
 and s."option" = o."option"),
 o.setting)
 from SYS.SYSOPTIONS as o,SYS.ISYSUSER as u
 where o.user_name = 'PUBLIC'

See also
● “SYSOPTIONS consolidated view” on page 1200
● “SYSUSER system view” on page 1185

Consolidated views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1209

SYSVIEWS consolidated view
Each row of the SYSVIEWS view describes one view, including its view definition.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSVIEWS"(vcreator,
 viewname,viewtext)
 as select u.user_name,t.table_name,v.view_def
 from SYS.ISYSTAB as t
 join SYS.ISYSVIEW as v on(t.object_id = v.view_object_id)
 join SYS.ISYSUSER as u on(u.user_id = t.creator)

See also
● “SYSTAB system view” on page 1173
● “SYSVIEW system view” on page 1188
● “SYSUSER system view” on page 1185

Compatibility views
Compatibility views are views that are provided for compatibility with versions of SQL Anywhere 10 and
earlier. Where possible you should use system and consolidated views instead, as support may diminish
for some compatibility views in future releases.

SYSCOLLATION compatibility view (deprecated)
The SYSCOLLATION compatibility view contains the collation sequence information for the database. It
is obtainable via built-in functions and is not kept in the catalog. Following is definition for this view:

ALTER VIEW "SYS"."SYSCOLLATION"
 as select 1 as collation_id,
 DB_PROPERTY('Collation') as collation_label,
 DB_EXTENDED_PROPERTY('Collation','Description') as collation_name,
 cast(DB_EXTENDED_PROPERTY('Collation','LegacyData') as binary(1280)) as
collation_order

See also
● “Database properties” [SQL Anywhere Server - Database Administration]
● “DB_PROPERTY function [System]” on page 194
● “DB_EXTENDED_PROPERTY function [System]” on page 189

SYSCOLLATIONMAPPINGS compatibility view (deprecated)

Views

1210 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

The SYSCOLLATIONMAPPINGS compatibility view contains only one row with the database collation
mapping. It is obtainable via built-in functions and is not kept in the catalog. Following is definition for
this view:

ALTER VIEW "SYS"."SYSCOLLATIONMAPPINGS"
 as select DB_PROPERTY('Collation') as collation_label,
 DB_EXTENDED_PROPERTY('Collation','Description') as collation_name,
 DB_PROPERTY('Charset') as cs_label,
 DB_EXTENDED_PROPERTY('Collation','ASESensitiveSortOrder') as
so_case_label,
 DB_EXTENDED_PROPERTY('Collation','ASEInsensitiveSortOrder') as
so_caseless_label,
 DB_EXTENDED_PROPERTY('Charset','java') as jdk_label

See also
● “Database properties” [SQL Anywhere Server - Database Administration]
● “DB_PROPERTY function [System]” on page 194
● “DB_EXTENDED_PROPERTY function [System]” on page 189

SYSCOLUMN compatibility view (deprecated)

The SYSCOLUMN view is provided for compatibility with older versions of SQL Anywhere that offered
a SYSCOLUMN system table. However, the previous SYSCOLUMN table has been replaced by the
ISYSTABCOL system table, and its corresponding “SYSTABCOL system view” on page 1175, which
you should use instead.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSCOLUMN"
 as select b.table_id,
 b.column_id,
 if c.sequence is null then 'N' else 'Y' endif as pkey,
 b.domain_id,
 b.nulls,
 b.width,
 b.scale,
 b.object_id,
 b.max_identity,
 b.column_name,
 r.remarks,
 b."default",
 b.user_type,
 b.column_type
 from SYS.SYSTABCOL as b
 left outer join SYS.ISYSREMARK as r on(b.object_id = r.object_id)
 left outer join SYS.ISYSIDXCOL as c on(b.table_id = c.table_id and
b.column_id = c.column_id and c.index_id = 0)

See also
● “SYSTABCOL system view” on page 1175
● “SYSREMARK system view” on page 1159
● “SYSIDXCOL system view” on page 1145

Compatibility views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1211

SYSFILE compatibility view (deprecated)
Each row in the SYSFILE system view describes a dbspace for a database. Every database consists of one
or more dbspaces; each dbspace corresponds to an operating system file.

SQL Anywhere automatically creates dbspaces for the main database file, temporary file, transaction log
file, and transaction log mirror file. Information about the transaction log, and transaction log mirror
dbspaces does not appear in the SYSFILE system view. See “Predefined dbspaces” [SQL Anywhere
Server - Database Administration].

ALTER VIEW "SYS"."SYSFILE"
 as select b.dbfile_id as file_id,
 if b.dbspace_id = 0 and b.dbfile_id = 0 then
 db_property('File')
 else
 if b.dbspace_id = 15 and b.dbfile_id = 15 then
 db_property('TempFileName')
 else
 b.file_name
 endif
 endif as file_name,
 a.dbspace_name,
 a.store_type,
 b.lob_map,
 b.dbspace_id
 from SYS.ISYSDBSPACE as a
 join SYS.ISYSDBFILE as b on(a.dbspace_id = b.dbspace_id)

SYSFKCOL compatibility view (deprecated)
Each row of SYSFKCOL describes the association between a foreign column in the foreign table of a
relationship and the primary column in the primary table. This view is deprecated; use the SYSIDX and
SYSIDXCOL system views instead.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSFKCOL"
 as select a.table_id as foreign_table_id,
 a.index_id as foreign_key_id,
 a.column_id as foreign_column_id,
 a.primary_column_id
 from SYS.ISYSIDXCOL as a
 ,SYS.ISYSIDX as b
 where a.table_id = b.table_id
 and a.index_id = b.index_id
 and b.index_category = 2

See also
● “SYSIDX system view” on page 1143
● “SYSIDXCOL system view” on page 1145

Views

1212 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SYSFOREIGNKEY compatibility view (deprecated)

The SYSFOREIGNKEY view is provided for compatibility with older versions of SQL Anywhere that
offered a SYSFOREIGNKEY system table. However, the previous SYSFOREIGNKEY system table has
been replaced by the ISYSFKEY system table, and its corresponding “SYSFKEY system
view” on page 1139, which you should use instead.

A foreign key is a relationship between two tables—the foreign table and the primary table. Every foreign
key is defined by one row in SYSFOREIGNKEY and one or more rows in SYSFKCOL.
SYSFOREIGNKEY contains general information about the foreign key while SYSFKCOL identifies the
columns in the foreign key and associates each column in the foreign key with a column in the primary
key of the primary table.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSFOREIGNKEY"
 as select b.foreign_table_id,
 b.foreign_index_id as foreign_key_id,
 a.object_id,
 b.primary_table_id,
 p.root,
 b.check_on_commit,
 b.nulls,
 a.index_name as role,
 r.remarks,
 b.primary_index_id,
 a.not_enforced as fk_not_enforced,
 10 as hash_limit
 from(SYS.ISYSIDX as a left outer join SYS.ISYSPHYSIDX as p on(a.table_id
= p.table_id and a.phys_index_id = p.phys_index_id))
 left outer join SYS.ISYSREMARK as r on(a.object_id = r.object_id)
 ,SYS.ISYSFKEY as b
 where a.table_id = b.foreign_table_id
 and a.index_id = b.foreign_index_id

See also
● “SYSIDX system view” on page 1143
● “SYSPHYSIDX system view” on page 1154
● “SYSREMARK system view” on page 1159
● “SYSFKEY system view” on page 1139

SYSINDEX compatibility view (deprecated)

The SYSINDEX view is provided for compatibility with older versions of SQL Anywhere that offered a
SYSINDEX system table. However, the SYSINDEX system table has been replaced by the ISYSIDX
system table, and its corresponding “SYSIDX system view” on page 1143, which you should use instead.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

Compatibility views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1213

ALTER VIEW "SYS"."SYSINDEX"
 as select b.table_id,
 b.index_id,
 b.object_id,
 p.root,
 b.dbspace_id,
 case b."unique"
 when 1 then 'Y'
 when 2 then 'U'
 when 3 then 'M'
 when 4 then 'N'
 when 5 then 'Y'
 else 'I'
 end as "unique",
 t.creator,
 b.index_name,
 r.remarks,
 10 as hash_limit,
 b.dbspace_id as file_id
 from(SYS.ISYSIDX as b left outer join SYS.ISYSPHYSIDX as p on(b.table_id
= p.table_id and b.phys_index_id = p.phys_index_id))
 left outer join SYS.ISYSREMARK as r on(b.object_id = r.object_id)
 ,SYS.ISYSTAB as t
 where t.table_id = b.table_id
 and b.index_category = 3

See also
● “SYSIDX system view” on page 1143
● “SYSPHYSIDX system view” on page 1154
● “SYSTABLE compatibility view (deprecated)” on page 1215
● “SYSREMARK system view” on page 1159

SYSINFO compatibility view (deprecated)

The SYSINFO view indicates the database characteristics, as defined when the database was created. It
always contains only one row. This view is obtainable via built-in functions and is not kept in the catalog.
Following is the definition for the SYSINFO view:

ALTER VIEW "SYS"."SYSINFO"(page_size,
 encryption,
 blank_padding,
 case_sensitivity,
 default_collation,
 database_version)
 as select db_property('PageSize'),
 if db_property('Encryption') <> 'None' then 'Y' else 'N' endif,
 if db_property('BlankPadding') = 'On' then 'Y' else 'N' endif,
 if db_property('CaseSensitive') = 'On' then 'Y' else 'N' endif,
 db_property('Collation'),
 null

See also
● “Database properties” [SQL Anywhere Server - Database Administration]
● “DB_PROPERTY function [System]” on page 194
● “DB_EXTENDED_PROPERTY function [System]” on page 189

Views

1214 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SYSIXCOL compatibility view (deprecated)
The SYSIXCOL view is provided for compatibility with older versions of SQL Anywhere that offered a
SYSIXCOL system table. However, the SYSIXCOL system table has been replaced by the
ISYSIDXCOL system table, and its corresponding SYSIDXCOL system view. You should switch to
using the “SYSIDXCOL system view” on page 1145.

Each row of the SYSIXCOL describes a column in an index. The tables and columns that make up this
view are provided in the SQL statement below. To learn more about a particular table or column, use the
links provided beneath the view definition.

ALTER VIEW "SYS"."SYSIXCOL"
 as select a.table_id,
 a.index_id,
 a.sequence,
 a.column_id,
 a."order"
 from SYS.ISYSIDXCOL as a
 ,SYS.ISYSIDX as b
 where a.table_id = b.table_id
 and a.index_id = b.index_id
 and b.index_category = 3

See also
● “SYSIDX system view” on page 1143
● “SYSIDXCOL system view” on page 1145

SYSTABLE compatibility view (deprecated)
The SYSTABLE view is provided for compatibility with older versions of SQL Anywhere that offered a
SYSTABLE system table. However, the SYSTABLE system table has been replaced by the ISYSTAB
system table, and its corresponding “SYSTAB system view” on page 1173, which you should use instead.

Each row of SYSTABLE view describes one table in the database.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSTABLE"
 as select b.table_id,
 b.file_id,
 b.count,
 0 as first_page,
 b.commit_action as last_page,
 COALESCE(ph.root,0) as primary_root,
 b.creator,
 0 as first_ext_page,
 0 as last_ext_page,
 b.table_page_count,
 b.ext_page_count,
 b.object_id,
 b.table_name,
 b.table_type_str as table_type,

Compatibility views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1215

 v.view_def,
 r.remarks,
 b.replicate,
 p.existing_obj,
 p.remote_location,
 'T' as remote_objtype,
 p.srvid,
 case b.server_type
 when 1 then 'SA'
 when 2 then 'IQ'
 when 3 then 'OMNI'
 else 'INVALID'
 end as server_type,
 10 as primary_hash_limit,
 0 as page_map_start,
 s.source,
 b."encrypted"
 from SYS.SYSTAB as b
 left outer join SYS.ISYSREMARK as r on(b.object_id = r.object_id)
 left outer join SYS.ISYSSOURCE as s on(b.object_id = s.object_id)
 left outer join SYS.ISYSVIEW as v on(b.object_id = v.view_object_id)
 left outer join SYS.ISYSPROXYTAB as p on(b.object_id =
p.table_object_id)
 left outer join(SYS.ISYSIDX as i left outer join SYS.ISYSPHYSIDX as ph
on(i.table_id = ph.table_id and i.phys_index_id = ph.phys_index_id))
 on(b.table_id = i.table_id and i.index_category = 1 and i.index_id
= 0)

See also
● “SYSTAB system view” on page 1173
● “SYSREMARK system view” on page 1159
● “SYSSOURCE system view” on page 1166
● “SYSVIEW system view” on page 1188
● “SYSPROXYTAB system view” on page 1157
● “SYSIDX system view” on page 1143
● “SYSPHYSIDX system view” on page 1154

SYSUSERAUTH compatibility view (deprecated)
The SYSUSERAUTH view is provided for compatibility with older versions of SQL Anywhere. Use the
SYSUSERAUTHORITY system view instead. See “SYSUSERAUTHORITY system
view” on page 1186.

Each row of the SYSUSERAUTH view describes a user, without exposing their user_id. Instead, each
user is identified by their user name. Because this view displays passwords, this view does not have
PUBLIC select permission.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSUSERAUTH"(name,
 password,resourceauth,dbaauth,scheduleauth,user_group)
 as select
SYSUSERPERM.user_name,SYSUSERPERM.password,SYSUSERPERM.resourceauth,SYSUSERPE

Views

1216 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

RM.dbaauth,SYSUSERPERM.scheduleauth,SYSUSERPERM.user_group
 from SYS.SYSUSERPERM

See also
● “SYSUSERPERM compatibility view (deprecated)” on page 1217

SYSUSERLIST compatibility view (deprecated)
The SYSUSERAUTH view is provided for compatibility with older versions of SQL Anywhere.

Each row of the SYSUSERLIST view describes a user, without exposing their user_id and password.
Each user is identified by their user name.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSUSERLIST"(name,
 resourceauth,dbaauth,scheduleauth,user_group)
 as select
SYSUSERPERM.user_name,SYSUSERPERM.resourceauth,SYSUSERPERM.dbaauth,SYSUSERPER
M.scheduleauth,SYSUSERPERM.user_group
 from SYS.SYSUSERPERM

See also
● “SYSUSERPERM compatibility view (deprecated)” on page 1217

SYSUSERPERM compatibility view (deprecated)
This view is deprecated because it only shows the authorities and permissions available in previous
versions. You should change your application to use the SYSUSERAUTHORITY system view instead.

Each row of the SYSUSERPERM view describes one user ID.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSUSERPERM"
 as select b.user_id,
 b.object_id,
 b.user_name,
 b.password,
 if exists(select * from SYS.ISYSUSERAUTHORITY
 where ISYSUSERAUTHORITY.user_id = b.user_id and ISYSUSERAUTHORITY.auth
= 'RESOURCE') then
 'Y' else 'N' endif as resourceauth,
 if exists(select * from SYS.ISYSUSERAUTHORITY
 where ISYSUSERAUTHORITY.user_id = b.user_id and ISYSUSERAUTHORITY.auth
= 'DBA') then
 'Y' else 'N' endif as dbaauth,
 'N' as scheduleauth,
 if exists(select * from SYS.ISYSUSERAUTHORITY

Compatibility views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1217

 where ISYSUSERAUTHORITY.user_id = b.user_id and ISYSUSERAUTHORITY.auth
= 'PUBLISH') then
 'Y' else 'N' endif as publishauth,
 if exists(select * from SYS.ISYSUSERAUTHORITY
 where ISYSUSERAUTHORITY.user_id = b.user_id and ISYSUSERAUTHORITY.auth
= 'REMOTE DBA') then
 'Y' else 'N' endif as remotedbaauth,
 if exists(select * from SYS.ISYSUSERAUTHORITY
 where ISYSUSERAUTHORITY.user_id = b.user_id and ISYSUSERAUTHORITY.auth
= 'GROUP') then
 'Y' else 'N' endif as user_group,
 r.remarks
 from SYS.ISYSUSER as b
 left outer join SYS.ISYSREMARK as r on(b.object_id = r.object_id)

See also
● “SYSUSERAUTHORITY system view” on page 1186
● “SYSUSER system view” on page 1185
● “SYSREMARK system view” on page 1159

SYSUSERPERMS compatibility view (deprecated)
This view is deprecated because it only shows the authorities and permissions available in previous
versions. You should change your application to use the SYSUSERAUTHORITY and SYSUSER system
views instead.

Similar to the SYSUSERPERM view, each row of the SYSUSERPERMS view describes one user ID.
However, password information is not included. All users are allowed to read from this view.

The tables and columns that make up this view are provided in the SQL statement below. To learn more
about a particular table or column, use the links provided beneath the view definition.

ALTER VIEW "SYS"."SYSUSERPERMS"
 as select
SYSUSERPERM.user_id,SYSUSERPERM.user_name,SYSUSERPERM.resourceauth,SYSUSERPER
M.dbaauth,

SYSUSERPERM.scheduleauth,SYSUSERPERM.user_group,SYSUSERPERM.publishauth,SYSUS
ERPERM.remotedbaauth,SYSUSERPERM.remarks
 from SYS.SYSUSERPERM

See also
● “SYSUSERPERM compatibility view (deprecated)” on page 1217
● “SYSUSERAUTHORITY system view” on page 1186

Views for Transact-SQL compatibility
The Adaptive Server Enterprise and SQL Anywhere system catalogs are different. The Adaptive Server
Enterprise system tables and views are owned by the user dbo, and exist partly in the master database,
partly in the sybsecurity database, and partly in each individual database. The SQL Anywhere system
tables and views are owned by the special user SYS and exist separately in each database.

Views

1218 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

To assist in preparing compatible applications, SQL Anywhere provides the following set of views owned
by the special user dbo, which correspond to their Adaptive Server Enterprise counterparts. Where
architectural differences make the contents of a particular Adaptive Server Enterprise table or view
meaningless in a SQL Anywhere context, the view is empty, containing just the column names and data
types.

View name Description

syscolumns One row for each column in a table or view, and for each parameter in a procedure

syscomments One or more rows for each view, rule, default, trigger, and procedure, giving the SQL
definition statement

sysindexes One row for each clustered or nonclustered index, one row for each table with no in-
dexes, and an additional row for each table containing text or image data.

sysobjects One row for each table, view, procedure, rule, trigger default, log, or (in tempdb only)
temporary object

systypes One row for each system-supplied or user-defined data type

sysusers One row for each user allowed in the database

syslogins One row for each valid user account

Compatibility views

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1219

1220

Index
Symbols
% comment indicator

about, 74
% operator

modulo function, 264
&

bitwise operator, 11
- comment indicator

about, 74
.COLUMN clause

DESCRIBE statement, 641
/* comment indicator

about, 74
// comment indicator

about, 74
0x

binary literals, 6
@@char_convert global variable

about, 70
@@client_csid global variable

about, 70
@@client_csname global variable

about, 70
@@connections global variable

about, 70
@@cpu_busy global variable

about, 70
@@dbts global variable

about, 70
@@error global variable

about, 70
@@fetch_status global variable

about, 70
@@identity global variable

about, 70
description, 73
triggers, 73

@@idle global variable
about, 70

@@io_busy global variable
about, 70

@@isolation global variable
about, 70

@@langid global variable

about, 70
@@language global variable

about, 70
@@max_connections global variable

about, 70
@@maxcharlen global variable

about, 70
@@ncharsize global variable

about, 70
@@nestlevel global variable

about, 70
@@pack_received global variable

about, 70
@@pack_sent global variable

about, 70
@@packet_errors global variable

about, 70
@@procid global variable

about, 70
@@rowcount global variable

about, 70
@@servername global variable

about, 70
@@spid global variable

about, 70
@@sqlstatus global variable

about, 70
@@textsize global variable

about, 70
@@thresh_hysteresis global variable

about, 70
@@timeticks global variable

about, 70
@@total_errors global variable

about, 70
@@total_read global variable

about, 70
@@total_write global variable

about, 70
@@tranchained global variable

about, 70
@@trancount global variable

about, 70
@@transtate global variable

about, 70
@@version global variable

about, 70
@HttpMethod special header

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1221

HTTP_HEADER function, 234
@HttpQueryString special header

HTTP_HEADER function, 234
@HttpStatus special header

sa_http_header_info system procedure, 1074
@HttpURI special header

HTTP_HEADER function, 234
@HttpVersion special header

HTTP_HEADER function, 234
@mp:id metaproperty

openxml system procedure, 947
@mp:localname metaproperty

openxml system procedure, 947
@mp:namespaceuri metaproperty

openxml system procedure, 947
@mp:prefix metaproperty

openxml system procedure, 947
@mp:xmltext metaproperty

openxml system procedure, 947
[ESQL]

statement indicators, 384
[Interactive SQL]

statement indicators, 384
[SP]

statement indicators, 384
[T-SQL]

statement indicators, 384
^

bitwise operator, 11
|

bitwise operator, 11
~

bitwise operator, 11

A
ABS function

syntax, 139
ABSOLUTE clause

FETCH statement , 688
ACCENT clause

CREATE DATABASE statement, 478
AccentSensitive property

DB_EXTENDED_PROPERTY function, 189
AcceptCharset option

sa_set_http_option system procedure, 1075
ACOS function

syntax, 140

Adaptive Server Enterprise
converting stored procedures to Watcom SQL
syntax, 366
CREATE DATABASE statement, 478
migrating to SQL Anywhere using sa_migrate
system procedure, 1027
system procedures, 944

ADD clause
ALTER DBSPACE statement , 391
ALTER PUBLICATION statement, 409
ALTER TABLE statement , 428

ADD OPTION clause
ALTER SYNCHRONIZATION SUBSCRIPTION
statement [MobiLink] , 424
ALTER SYNCHRONIZATION USER statement
[MobiLink] , 425

ADD PCTFREE clause
ALTER MATERIALIZED VIEW statement, 402

ADD table-constraint clause
ALTER TABLE statement , 430

ADD | ALTER | DELETE SCHEDULE clause
ALTER EVENT statement, 395

adding
columns using the ALTER TABLE statement, 426
indexes using the CREATE INDEX statement, 521
Java classes, 744
messages, 531
servers, 567
web services, 571

ADDRESS clause
ALTER REMOTE MESSAGE TYPE statement,
410
ALTER SYNCHRONIZATION SUBSCRIPTION
statement [MobiLink] , 423
ALTER SYNCHRONIZATION USER statement
[MobiLink] , 425
CREATE PUBLICATION statement [MobiLink]
[SQL Remote], 562
CREATE SYNCHRONIZATION
SUBSCRIPTION statement [MobiLink], 592
CREATE SYNCHRONIZATION USER, 594
GRANT CONSOLIDATE statement [SQL
Remote], 713
GRANT REMOTE statement [SQL Remote], 716

addresses
SQL Remote publishers, 410

AES encryption algorithm
CREATE DATABASE statement, 477

Index

1222 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

CREATE ENCRYPTED FILE statement, 493
DECRYPT function, 196
ENCRYPT function, 202

AES256 encryption algorithm
CREATE DATABASE statement, 477
CREATE ENCRYPTED FILE statement, 493
DECRYPT function, 196
ENCRYPT function, 202

AES256_FIPS encryption algorithm
CREATE DATABASE statement, 477
CREATE ENCRYPTED FILE statement, 493
DECRYPT function, 196
ENCRYPT function, 202

AES_FIPS encryption algorithm
CREATE DATABASE statement, 477
CREATE ENCRYPTED FILE statement, 493
DECRYPT function, 196
ENCRYPT function, 202

AFTER clause
CREATE TRIGGER statement, 614

AFTER MESSAGE BREAK clause
WAITFOR statement, 904

AFTER triggers
CREATE TRIGGER statement , 614

aggregate functions
alphabetical list, 127

ALGORITHM clause
CREATE ENCRYPTED FILE statement, 493
CREATE ENCRYPTED TABLE DATABASE
statement, 491

aliases
DELETE statement, 638, 898
for columns, 828

ALL
keyword in SELECT statement, 827

ALL authority clause
GRANT statement, 720

ALL clause
CREATE EVENT statement, 495
DESCRIBE statement, 641
DISCONNECT statement [ESQL] [Interactive
SQL] statement, 648
MEDIAN function, 259
REVOKE statement, 818
SELECT statement, 828

ALL permission clause
GRANT statement, 721

ALL PRIVILEGES clause

REVOKE statement, 818
ALL PRIVILEGES permission clause

GRANT statement, 721
ALL search condition

syntax, 34
ALLOCATE DESCRIPTOR statement

about, 384
embedded SQL syntax, 384

allocating
disk space using the ALTER DBSPACE statement,
391
memory for descriptor areas, 384

alphabetic characters
defined, 4

alphabetical list of binary data types
about, 108

alphabetical list of bit array data types
about, 97

alphabetical list of date and time data types
about, 99

alphabetical list of money data types
about, 96

alphabetical list of numeric data types
about, 87

ALTER [TRANSACTION] LOG clause
ALTER DATABASE statement, 387

ALTER clause
ALTER TABLE statement , 430
REVOKE statement, 818

ALTER DATABASE statement
about, 386
CHECKSUM clause, 390
FORCE START clause, 390
SET PARTNER FAILOVER clause, 388
syntax, 386

ALTER DATABASE UPGRADE statement
about, 386
syntax, 386

ALTER DATATYPE statement
about, 393
syntax, 393

ALTER DBSPACE statement
about, 391
syntax, 391

ALTER DOMAIN statement
about, 393
syntax, 393

ALTER EVENT statement

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1223

about, 394
syntax, 394

ALTER EXTERNAL ENVIRONMENT statement
about, 396
syntax, 396

ALTER FUNCTION statement
about, 397
syntax, 397

ALTER INDEX statement
about, 399
syntax, 399

ALTER LOGIN POLICY statement
about, 400
syntax, 400

ALTER MATERIALIZED VIEW statement
about, 401
syntax, 401

ALTER MIRROR SERVER statement
about, 404
syntax, 404

ALTER OPTION clause
ALTER SYNCHRONIZATION SUBSCRIPTION
statement [MobiLink] , 424
ALTER SYNCHRONIZATION USER statement
[MobiLink] , 425

ALTER PARENT FROM clause
ALTER MIRROR SERVER statement, 406

ALTER permission
GRANT statement, 719
REVOKE statement, 818

ALTER permission clause
GRANT statement, 721

ALTER PROCEDURE statement
about, 407
syntax, 407

ALTER PUBLICATION statement
MobiLink syntax, 409
SQL Remote syntax, 409

ALTER REMOTE MESSAGE TYPE statement
SQL Remote syntax, 410

ALTER SEQUENCE statement
about, 411
syntax, 411

ALTER SERVER statement
about, 413
syntax, 413

ALTER SERVICE statement
about, 415

syntax, 415
ALTER SPATIAL REFERENCE SYSTEM statement

about, 416
syntax, 416

ALTER STATISTICS statement
about, 420
syntax, 420

ALTER SYNCHRONIZATION PROFILE statement
MobiLink syntax, 421

ALTER SYNCHRONIZATION SUBSCRIPTION
statement

MobiLink syntax, 422
ALTER SYNCHRONIZATION USER statement

MobiLink syntax, 425
ALTER TABLE statement

about, 426
syntax, 426

ALTER TEXT CONFIGURATION statement
about, 435
syntax, 435

ALTER TEXT INDEX statement
about, 439
syntax, 439

ALTER TRIGGER statement
about, 440
syntax, 440

ALTER USER statement
about, 441
syntax, 441

ALTER VIEW statement
about, 443
DISABLE clause, 443
ENABLE clause, 444
RECOMPILE clause, 443
syntax, 443

altering
ALTER PUBLICATION statement, 409
ALTER TABLE statement, 426
columns using the ALTER TABLE statement, 426
data types using the ALTER DOMAIN statement,
393
databases using the ALTER DATABASE
statement, 386
dbspaces using the ALTER DBSPACE statement,
391
domains using the ALTER DOMAIN statement,
393
events using the ALTER EVENT statement, 394

Index

1224 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

indexes using the ALTER INDEX statement, 399
login policy options using ALTER LOGIN
POLICY statement, 400
login policy options using ALTER USER
statement, 441
materialized views using the ALTER
MATERIALIZED VIEW statement, 401
procedures using the ALTER PROCEDURE
statement, 407
remote server attributes using the ALTER
SERVER statement, 413
SQL Remote remote message types, 410
text configuration objects, 435
text indexes using ALTER TEXT INDEX
statement, 439
triggers using the ALTER TRIGGER statement,
440
views using the ALTER VIEW statement, 443
web services using the ALTER SERVICE
statement, 415

altering synchronization profiles
ALTER SYNCHRONIZATION PROFILE
statement [MobiLink], 421

AND
bitwise operators, 11
logical operators description, 9
three-valued logic, 56

ANGULAR UNIT OF MEASURE clause
ALTER SPATIAL REFERENCE SYSTEM
statement, 418
CREATE SPATIAL REFERENCE SYSTEM
statement, 582

ANSI
equivalency using the REWRITE function, 311

ansi_nulls option
Microsoft SQL Server compatibility, 852

ansi_permissions option
setting with Transact-SQL SET statement, 851

ansinull option
setting with Transact-SQL SET statement, 851

ANY search condition
syntax, 35

apostrophes
in SQL strings, 7

APPEND clause
OUTPUT statement, 781
UNLOAD statement, 886

application profiling

setting the tracing level, 1080
approximate data types

about, 87
arbiter servers

changing with ALTER MIRROR SERVER
statement, 405
defining with CREATE MIRROR SERVER
statement, 533

arc-cosine function
ACOS function, 140

arc-sine function
ASIN function, 142

arc-tangent function
ATAN function, 143
ATAN2 function, 144

archive backups
supported operating systems using the BACKUP
statement, 447

archives
creating database backups using the BACKUP
statement, 447
restoring databases from, 810

ARGN function
syntax, 141

arithmetic operators
Modulo, 10
SQL syntax, 10

ARRAY clause
EXECUTE statement, 681
FETCH statement, 689
PUT statement [ESQL], 792

articles
SYSARTICLE system view, 1127
SYSARTICLECOL system view, 1128

AS clause
ALTER MIRROR SERVER statement, 405
ALTER SERVICE statement, 415
ALTER VIEW statement, 443
CONNECT statement [ESQL] [Interactive SQL],
473
CREATE DBSPACE statement, 484
CREATE DOMAIN statement, 488
CREATE FUNCTION statement, 516
CREATE MATERIALIZED VIEW statement, 529
CREATE MESSAGE statement, 531
CREATE MIRROR SERVER statement, 533
CREATE PROCEDURE statement [T-SQL], 550

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1225

CREATE TRIGGER [Transact-SQL] statement,
619
CREATE VIEW statement, 624
DELETE statement, 637
START DATABASE statement, 857
UPDATE statement, 895

ASC | DESC clause
CREATE INDEX statement, 522

ASCII
function and syntax, 141

ASE COMPATIBLE clause
CREATE DATABASE statement, 478

ASIN function
syntax, 142

assertions
regular expression examples, 26
regular expressions, 26

assigning
logins for remote servers, 503
values to SQL variables, 849

asterisks
allowed syntax in a CONTAINS clause, 51
allowed syntax in a full text query string, 51

AT clause
ALTER EVENT statement, 395
CREATE EVENT statement, 499
CREATE EXISTING TABLE statement, 501
CREATE PROCEDURE statement, 555
CREATE TABLE statement, 598
GRANT statement, 720

ATAN function
syntax, 143

ATAN2 function
syntax, 144

ATN2 function
syntax, 144

ATOMIC clause
BEGIN statement, 456

ATTACH TRACING statement
about, 445
diagnostic tracing, 445
syntax, 445

ATTENDED clause
BACKUP statement, 449

attributes
altering remote server using the ALTER SERVER
statement, 413

auditing

adding comments, 954
disabling using sa_disable_auditing_type system
procedure, 985
enabling using sa_enable_auditing_type system
procedure, 987

authentication_string option
SET MIRROR OPTION statement, 838

authorities
GRANT statement, 718
granting REMOTE DBA, 715

AUTHORIZATION clause
ALTER SERVICE statement, 415
CREATE SERVICE statement, 575

AUTO clause
BACKUP statement, 451

AUTO COMPRESSED clause
LOAD TABLE statement, 754

AUTO REFRESH clause
CREATE TEXT INDEX statement, 612

AUTO TUNE WRITERS clause
BACKUP statement, 450

AUTO UPDATE clause
ALTER STATISTICS statement, 420

auto_add_fan_out option
SET MIRROR OPTION statement, 838

auto_add_server option
SET MIRROR OPTION statement, 838

auto_commit option
Interactive SQL option, 844

auto_failover option
SET MIRROR OPTION statement, 838

AUTOINCREMENT
@@identity, 73
CREATE TABLE statement, 600
GET_IDENTITY function, 219
resetting the value, 1053

AUTOINCREMENT clause
CREATE TABLE statement, 600

AutoMultiProgrammingLevel property
setting with sa_server_option, 1066

AutoMultiProgrammingLevelStatistics property
setting with sa_server_option, 1066

AUTOSTOP clause
START DATABASE statement, 857

AvailForOptimization property
sa_materialized_view_info system procedure, 1021

average function
AVG function, 144

Index

1226 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

AVG function
syntax, 144

B
back quotes

database objects, 4
SQL identifiers, 4

back ticks (see back quotes)
backslashes

in SQL strings, 7
not allowed in SQL identifiers, 4

BACKUP authority
GRANT statement, 718
REVOKE statement, 818

BACKUP authority clause
GRANT statement, 720

BACKUP clause
REVOKE statement, 818

BACKUP statement
about, 447
syntax, 447

backup.syb
about, 450

backups
BACKUP authority, 720
BACKUP statement, 447
creating events using the CREATE EVENT
statement, 495
creating using the BACKUP statement, 447
restoring databases from, 810
starting on a read-only database server, 451
to tape using the BACKUP statement, 447

base 10 logarithm
LOG10 function, 255

base tables
CREATE TABLE statement, 606

BASE64_DECODE function
syntax, 146

BASE64_ENCODE function
syntax, 147

BEFORE clause
CREATE TRIGGER statement, 614

BEFORE keyword, CONTAINS search condition
not supported in full text search, 51

BEFORE triggers
CREATE TRIGGER statement , 614

BEGIN DECLARE statement

about, 627
embedded SQL syntax, 627

BEGIN keyword
compatibility, 456

BEGIN SNAPSHOT statement
about, 454
syntax, 454

BEGIN statement
about, 454
syntax, 454

BEGIN TRANSACTION statement
about, 457
Transact-SQL syntax, 457

beginning
user-defined transactions using the BEGIN
TRANSACTION statement, 457

BETWEEN ... AND clause
CREATE EVENT statement, 498

BETWEEN clause
CREATE SPATIAL REFERENCE SYSTEM
statement, 579
WINDOW clause, 909

BETWEEN search condition
syntax, 37

BIGINT data type
syntax, 88

binary
escape characters, 6

binary constants (see binary literals)
BINARY data type

syntax, 108
binary data types

BINARY, 108
decoding, 146
encoding, 147
getting from columns, 708
IMAGE, 108
LONG BINARY, 109
UNIQUEIDENTIFIER, 109
VARBINARY, 110

binary large objects
binary data types, 108
exporting, 1125
GET DATA statement, 708
getting from columns, 708
importing ASE generated BCP files, 755
inserting using the xp_read_file system procedure,
1115

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1227

SET statement example, 851
transaction log considerations, 391

binary literals
special characters, 6

BINARY VARYING data type (see VARBINARY
data type)
bind variables

describing cursors, 641
EXECUTE statement, 681
OPEN statement, 778

BIND VARIABLES FOR clause
DESCRIBE statement, 641

bit array conversions
about, 119

bit array data types
about, 97
LONG VARBIT, 98
VARBIT, 98

bit arrays
about, 97
converting, 119
data types, 97

BIT data type
syntax, 88

BIT VARYING data type (see VARBIT data type)
BIT_AND function

syntax, 147
BIT_LENGTH function

syntax, 148
BIT_OR function

syntax, 149
BIT_SUBSTR function

syntax, 150
BIT_XOR function

syntax, 151
bits

converting, 119
bitwise operators

syntax, 11
BLANK PADDING clause

CREATE DATABASE statement, 479
BLOBs

configuring BLOB indexing at table creation, 600
configuring BLOB indexing using ALTER TABLE
statement, 429
exporting, 1125
GET DATA statement, 708
importing ASE generated BCP files, 755

INLINE clause, CREATE TABLE statement, 599
inserting using the SET statement, 849
inserting using the xp_read_file system procedure,
1115
PREFIX clause, CREATE TABLE statement, 599
querying within BLOBs, 700
SET statement example, 851
transaction log considerations, 391

BLOCK clause
FETCH statement , 689
OPEN statement, 778

block fetches
FETCH statement, 689
OPEN statement, 778

blocking
identifying, 964

blocks
identifying, 964
troubleshooting, 1014

BOM
loading data from UTF-16 or UTF-8 data file, 760

BOM (byte order mark)
read or write option in the CSCONVERT function,
176

brackets
database objects, 4
SQL identifiers, 4

branches
MERGE statement, 772

branching
MERGE statement, 772

BREAK statement
Transact-SQL syntax, 459, 906

bugs
providing feedback, viii

bulk loading
LOAD TABLE statement, 750

bulk operations
unloading data using the UNLOAD statement, 885

BY clause
INPUT statement, 731
PREPARE statement [ESQL] statement, 788

BY LOCK clause
PREPARE statement [ESQL] statement, 788, 789

BY TIMESTAMP clause
PREPARE statement [ESQL] statement, 788, 789

BY VALUES clause
PREPARE statement [ESQL] statement, 788, 789

Index

1228 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

BYE statement
Interactive SQL syntax, 684

bypassing optimization
avoiding using FORCE NO OPTIMIZATION
clause, 832
avoiding using FORCE OPTIMIZATION option,
832

byte order mark
INPUT statement, 731
loading data from UTF-16 or UTF-8 data file, 760
OUTPUT statement, 781

BYTE ORDER MARK clause
INPUT statement, 731
LOAD TABLE statement, 753
openxml system procedure, 948
OUTPUT statement, 781
UNLOAD statement, 886

BYTE_LENGTH function
syntax, 152

BYTE_SUBSTR function
syntax, 152

C
cache

flushing, 990
CACHE clause

ALTER SEQUENCE statement, 412
CREATE SEQUENCE statement, 566

CacheSizingStatistics property
setting with sa_server_option, 1066

CALIBRATE [SERVER] clause
ALTER DATABASE statement, 387

CALIBRATE DBSPACE clause
ALTER DATABASE statement], 387

CALIBRATE DBSPACE TEMPORARY clause
ALTER DATABASE statement, 387

CALIBRATE GROUP READ clause
ALTER DATABASE statement, 387

CALIBRATE PARALLEL READ clause
ALTER DATABASE statement, 387

calibrating
cost models using the ALTER DATABASE
statement, 386
database servers using the ALTER DATABASE
statement, 386
loading and unloading cost models using
sa_load_cost_model system procedure, 1013

loading and unloading cost models using
sa_unload_cost_model system procedure, 1094
parallel I/O capabilities, 389

CALL statement
about, 460
in Transact-SQL, 683
syntax, 460

calling procedures
CALL statement, 460

capabilities
remote servers, 1129
SYSCAPABILITY system view, 1128

CAPABILITY clause
ALTER SERVER statement, 413

CASCADE clause
CREATE TABLE statement, 596

CASE clause
CREATE DATABASE statement, 479

CASE expression
NULLIF function, 276
syntax, 15

case sensitivity
comparison operators, 8
LIKE search condition, 42
REGEXP search condition, 44
REGEXP_SUBSTR function, 294
SIMILAR TO search condition, 46

CASE statement
about, 462, 464
syntax, 462
Transact-SQL syntax, 464

CaseSensitivity property
DB_EXTENDED_PROPERTY function, 189

CAST function
data type conversions, 112
syntax, 153

catalog
default system views, 1127
system tables, 911

CATALOG ONLY clause
RESTORE DATABASE statement, 810

catalog procedures
alphabetical list , 946

catalog procedures (ASE)
sp_column_privileges, 945
sp_columns, 945
sp_fkeys, 945
sp_pkeys, 945

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1229

sp_special_columns, 945
sp_sproc_columns, 945
sp_statistics, 945
sp_stored_procedures, 945
sp_tables, 945
Transact-SQL list, 944
Transact-SQL, list, 945

catalog system procedures
about, 941

CatalogCollation property
DB_EXTENDED_PROPERTY function, 189

CEILING function
syntax, 154

CERTIFICATE clause
CREATE FUNCTION statement [web clients],
513
CREATE PROCEDURE statement [web clients],
547

CHAR data type
byte-length semantics, 79
character-length semantics, 79
comparing with NCHAR data type, 114
syntax, 79
using DESCRIBE on a CHAR column, 79

CHAR function
syntax, 155

CHAR VARYING data type (see VARCHAR data
type)
CHAR_LENGTH function

syntax, 156
character classes

sub-character classes, 21
support special character classes, 21

character data
storage, 79
strings, 5

character data types
about, 79
CHAR, 79
LONG NVARCHAR, 81
LONG VARCHAR, 81
NCHAR, 82
NTEXT, 83
NVARCHAR, 83
TEXT, 84
UNIQUEIDENTIFIERSTR, 84
VARCHAR, 85
XML, 86

character functions
alphabetical list, 136

character set conversion
comparisons between CHAR and NCHAR, 114
comparisons between data types, 113
comparisons between numeric data types, 115
comparisons between time and date data types, 116
converting NCHAR to CHAR, 117
lossy conversions, 113
passwords, 442, 621, 722
substitution characters, 113

character sets
COMPARE function, 159
converting during expression evaluation, 114
lossy character set conversions, 113
SORTKEY function, 326
substitution characters, 113

character strings
about, 5

character substitution
comparisons between CHAR and NCHAR, 114
lossy character set conversions, 113

CHARACTER VARYING data type (see VARCHAR
data type)
character-length semantics

CHAR data type, 79
VARCHAR data type, 85

CHARINDEX function
syntax, 157

CharSet property
DB_EXTENDED_PROPERTY function, 189

CharsetConversion option
sa_set_http_option system procedure, 1075

CHECK clause
ALTER TABLE statement , 429
CREATE DOMAIN statement, 489
CREATE MATERIALIZED VIEW statement, 529
CREATE TABLE statement, 605
search conditions, 32

CHECK conditions
CREATE TABLE statement, 603

CHECK CONSTRAINTS clause
LOAD TABLE statement, 753

CHECK EVERY clause
WAITFOR statement, 904

CHECK ON COMMIT clause
CREATE TABLE statement, 606

checkpoint logs

Index

1230 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

CHECKPOINT statement, 466
CHECKPOINT statement

about, 466
syntax, 466

checkpointing
databases using the CHECKPOINT statement, 466

checkpoints
using the CHECKPOINT statement, 466

CHECKSUM clause
ALTER DATABASE statement, 388, 390
CREATE DATABASE statement, 479
START DATABASE statement, 858

checksums
altering database settings, 388
creating databases with, 479
starting databases with, 858
VALIDATE CHECKSUM statement, 902
validating, 902

child_creation option
SET MIRROR OPTION statement, 838

CLASS clause
ALTER SERVER statement, 413
CREATE SERVER statement, 568
REMOVE JAVA statement, 807

classes
Java methods, 132
removing Java, 806

clause order in SQL
syntax conventions, 382

clauses
order of, SQL conventions, 382

cleaner (see database cleaner)
CLEAR statement

about, 467
Interactive SQL syntax, 467

clearing
Interactive SQL panes, 467

client files
READ_CLIENT_FILE function, 292
WRITE_CLIENT_FILE function, 368

client statement caching
ReqeustLogFile property, 1070

CLIENTPORT clause
CREATE FUNCTION statement [web clients],
514
CREATE PROCEDURE statement [web clients],
547

Clockwise format

CREATE SPATIAL REFERENCE SYSTEM
statement, 584

CLOSE statement
about, 467
embedded SQL syntax, 467
syntax, 467

close_on_endtrans option
setting with Transact-SQL SET statement, 851

closing
connections using the DROP CONNECTION
statement, 649
cursors using the CLOSE statement [ESQL] [SP],
467
Interactive SQL, 684

CLUSTERED clause
ALTER INDEX statement, 399
CREATE INDEX statement, 522

clustered indexes
creating using ALTER INDEX statement, 399

COALESCE function
syntax, 158

code pages
INPUT statement, 732
OUTPUT statement, 781

coefficient of determination
about, 300

COL_LENGTH function
syntax, 138

COL_NAME function
syntax, 138

COLLATION clause
collation tailoring, 480
CREATE DATABASE statement, 480

Collation property
DB_EXTENDED_PROPERTY function, 189

collation sequences
(see also collations)
CREATE DATABASE statement, 480
LIKE search condition, 41

collation tailoring
COLLATION clause, CREATE DATABASE
statement, 480
COMPARE function, 159
NCHAR COLLATION clause, CREATE
DATABASE statement, 482
SORTKEY function, 326

collations
REGEXP search condition, 44

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1231

REGEXP_SUBSTR function, 294
SIMILAR TO search condition, 46
SORTKEY function, 326
tailoring at database creation time, 480

CollectStatistics property
setting with sa_server_option, 1066

COLUMN clause
GET DATA statement , 708

column compression
ALTER TABLE statement, 426
CREATE TABLE statement, 596
retrieving compression statistics, 959

column constraints
adding using the ALTER TABLE statement, 429
changing using the ALTER TABLE statement, 431

column definition
CREATE TABLE statement, 599

COLUMN DELIMITED BY clause
UNLOAD statement, 885

column names
syntax, 14

column statistics
only partially updated by LOAD TABLE, 760
selectivity estimates, 57
SYSCOLSTAT system view, 1131
SYSCOLSTATS consolidated view, 1197
updating using CREATE STATISTICS, 588

COLUMN WIDTHS clause
INPUT statement, 732
OUTPUT statement, 781

column-name
common element in SQL syntax, 381

columns
aliases, 828
altering using the ALTER TABLE statement, 426
constraints and defaults with domains, 112
constraints in CREATE TABLE statement, 603
domains, 112
getting binary data from, 708
permissions on, 1130
renaming, 432
SYSTABCOL view, 1175
updating, 893
updating without logging, 910
user-defined data types, 112

combining
result of multiple select statements, 883

comma-separated lists

LIST function syntax, 250
command files

parameters for Interactive SQL, 786
reading SQL statements from, 795

command prompts
conventions, vii
curly braces, vii
environment variables, vii
parentheses, vii
quotes, vii
semicolons, vii

command shells
conventions, vii
curly braces, vii
environment variables, vii
parentheses, vii
quotes, vii

commands
executing operating system, 879

COMMENT statement
about, 469
syntax, 468

comments
adding to database objects using the COMMENT
statement, 469
syntax, 74

COMMENTS INTRODUCED BY clause
LOAD TABLE statement, 753

commit
preparing for two-phase, 790

COMMIT statement
about, 470
preparing for two-phase, 790
referential integrity, 956
syntax, 470

committing
transactions using the COMMIT statement, 470

communication protocols
multiple settings in MobiLink, 595

COMPARE function
collation tailoring, 159
syntax, 159

comparing
CHAR and NCHAR, 114
COMPARE function, 159

comparing dates and times
about, 116

comparison operators

Index

1232 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

data conversion, 113
syntax, 8
Transact-SQL compatibility, 8

comparisons
CHAR and NCHAR values, 114
dates, 116
numeric data types, 115
search conditions, 32
times, 116

compatibility
datetime, 116
NULLs, 76
T-SQL expressions and QUOTED IDENTIFIER
option, 31
Transact-SQL comparison operators, 8
Transact-SQL expressions, 31
Transact-SQL global variables, 70
Transact-SQL local variables, 68
Transact-SQL views, 1218
views, 1210

compatibility of expressions
about, 31

compatibility views
about, 1210
SYSCOLLATION, 1210
SYSCOLLATIONMAPPINGS, 1210
SYSCOLUMN, 1211
SYSFKCOL, 1212
SYSFOREIGNKEY, 1213
SYSINDEX, 1213
SYSINFO, 1214
SYSIXCOL, 1215
SYSTABLE, 1215
SYSUSERLIST, 1217
SYSUSERPERM, 1217
SYSUSERPERMS, 1218

compound statements
about, 454
compatibility, 456

COMPRESS function
syntax, 160

COMPRESSED clause
ALTER TABLE statement , 429
CREATE TABLE statement, 599
LOAD TABLE statement, 754
UNLOAD statement, 887

compressed columns
ALTER TABLE statement, 426

retrieving compression statistics, 959
compressing

tables using the ALTER TABLE statement, 426
compressing columns

CREATE TABLE statement, 599
compressing strings on Unix

COMPRESS function, 160
compression

COMPRESS function, 160
statistics, 962

COMPUTE clause
ALTER TABLE statement , 429
CREATE TABLE statement, 596, 606

COMPUTES clause
LOAD TABLE statement, 754

concatenating strings
string operators, 10

concurrency
locking tables, 764

condition
common element in SQL syntax, 381

conditions
CONTAINS, 47
EXISTS, 54
search, 32
SQL search conditions, 32
subqueries in, 34
three-valued logic, 56

CONFIGURATION clause
CREATE TEXT INDEX statement, 612

CONFIGURE statement
about, 472
Interactive SQL syntax, 472

CONFLICT function
syntax, 161

conflicts
CONFLICT function for SQL Remote, 161

CONNECT clause
REVOKE statement, 818

CONNECT permission
GRANT statement, 721

CONNECT statement
about, 473
embedded SQL syntax, 473
Interactive SQL syntax, 473

CONNECT TO clause
GRANT statement, 721

CONNECT TRACING statement

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1233

populating sa_diagnostic_tracing_level table, 935
connecting

creating events using the CREATE EVENT
statement, 495
databases using the CONNECT statement, 473

CONNECTION CLOSE clause
ALTER SERVER statement, 414

connection-level variables
definition, 67
syntax, 69

connection-name
common element in SQL syntax, 381

CONNECTION_EXTENDED_PROPERTY function
syntax, 163

CONNECTION_PROPERTY function
syntax, 164

connection_string option
ALTER MIRROR SERVER statement, 406
CREATE MIRROR SERVER statement, 534

connections
creating events for failed connections, 495
disabling connections to a server, 1060
disallowing with RAISERROR, 794
DROP CONNECTION statement, 649
dropping in Interactive SQL, 648
enabling pooling, 854
generating a list of connection IDs, 967
setting, 835
setting a maximum number, 795

ConnsDisabled property
setting with sa_server_option, 1066

ConnsDisabledForDB property
setting with sa_server_option, 1066

ConsoleLogFile property
setting with sa_server_option, 1066

ConsoleLogMaxSize property
setting with sa_server_option, 1066

CONSOLIDATE permissions
granting, 713
REVOKE CONSOLIDATE statement, 814

CONSOLIDATED clause
CREATE EVENT statement, 495

consolidated databases
SQL Remote revoking permissions, 814

consolidated views
about, 1190
SYSARTICLECOLS, 1194
SYSARTICLES, 1195

SYSCAPABILITIES, 1195
SYSCATALOG, 1196
SYSCOLAUTH, 1196
SYSCOLSTATS, 1197
SYSCOLUMNS, 1197
SYSFOREIGNKEYS, 1198
SYSGROUPS, 1199
SYSINDEXES, 1199
SYSOPTIONS, 1200
SYSPROCAUTH, 1200
SYSPROCPARMS, 1201
SYSPROCS, 1201
SYSPUBLICATIONS, 1202
SYSREMOTEOPTION2, 1202
SYSREMOTEOPTIONS, 1203
SYSREMOTETYPES, 1203
SYSREMOTEUSERS, 1204
SYSSUBSCRIPTIONS, 1204
SYSSYNC2, 1205
SYSSYNCPUBLICATIONDEFAULTS, 1205
SYSSYNCS, 1206
SYSSYNCSCRIPTS, 1206
SYSSYNCSUBSCRIPTIONS, 1207
SYSSYNCUSERS, 1207
SYSTABAUTH, 1208
SYSTRIGGERS, 1208
SYSUSERAUTH, 1216
SYSUSEROPTIONS, 1209
SYSVIEWS, 1210

constant binary (see binary literals)
constant strings (see string literals)
constants (see binary literals) (see string literals)

about, 6
syntax, 14
Transact-SQL, 31

CONSTRAINT clause
CREATE TABLE statement, 596

constraints
column, CREATE TABLE statement, 603
renaming, 432

CONTAINS clause (see CONTAINS search condition)
FROM clause, 701

CONTAINS search condition
allowed syntax for special characters, 52
fuzzy matching, 47
search conditions, 32
syntax, 47
use of BEFORE keyword unsupported, 51

Index

1234 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

CONTINUE clause
WHENEVER statement [ESQL], 905

CONTINUE statement
about, 476
Transact-SQL syntax, 476

control statements
BREAK syntax, 459
CALL statement, 460
CASE statement, 462
CASE statement [T-SQL], 464
CONTINUE statement syntax, 476
GOTO Transact-SQL statement, 712
IF statement, 727
LEAVE statement, 748
LOOP statement, 766
Transact-SQL BREAK statement, 906
Transact-SQL CONTINUE statement, 906
Transact-SQL IF statement, 729
Transact-SQL WHILE statement, 906
WHILE statement, 766

conventions
command prompts, vii
command shells, vii
documentation, v
file names in documentation, vi
operating systems, v
SQL language syntax, 1
syntax, 382
Unix , v
Windows, v
Windows CE, v
Windows Mobile, v

conversion
CAST, 153
converting DOUBLE to NUMERIC, 120
data type conversions, 112
NCHAR to CHAR, 117
strings to dates, 116
when evaluating expressions, 113

conversion between character sets
about, 114

conversion functions
alphabetical list, 129
data type, 129

conversion when using comparison operators
about, 113

CONVERT function
data type conversions, 112

syntax, 165
CONVERT USING clause

CREATE SPATIAL UNIT OF MEASURE
statement, 587

converting
ambiguous dates and strings, 121
bit arrays, 119
bits, 119
data types, 112
date to string, 118
SQL and Java, 122
using comparison operators, 113

converting dates to strings
about, 118

converting NULL constants to NUMERIC and string
types

about, 118
converting strings

about, 136
COORDINATE clause

ALTER SPATIAL REFERENCE SYSTEM
statement, 418
CREATE SPATIAL REFERENCE SYSTEM
statement, 581

coordinated universal time
UTC TIMESTAMP, 66

coordinated universal timestamp
CURRENT UTC TIMESTAMP, 61

COPY clause
BACKUP statement, 450

copy nodes
dropping servers, 659

copy servers
changing with ALTER MIRROR SERVER
statement, 405
defining with CREATE MIRROR SERVER
statement, 533

copyright
retrieving, 1114

CORR function
syntax, 168

correlation function
CORR function, 168

correlation names
DELETE statement, 638, 898

COS function
syntax, 169

cosine function

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1235

COS function, 169
cost models

calibrating the database server, 386
loading, 1013
recalibrating using the ALTER DATABASE
statement, 386
unloading, 1094

cost-based optimization
avoiding using FORCE NO OPTIMIZATION
clause, 832
forcing for procedures, 832
forcing using FORCE OPTIMIZATION option,
832

COT function
syntax, 170

cotangent function
COT function, 170

COUNT clause
GET DESCRIPTOR statement [ESQL], 710
SET DESCRIPTOR statement [ESQL], 836

COUNT function
syntax, 170

COUNT_BIG function
syntax, 172

COUNT_SET_BITS function
syntax, 173

CounterClockwise format
CREATE SPATIAL REFERENCE SYSTEM
statement, 584

COVAR_POP function
syntax, 173

COVAR_SAMP function
syntax, 175

CREATE DATABASE statement
about, 477
syntax, 477

CREATE DATATYPE statement
syntax, 488

CREATE DBSPACE statement
about, 484
syntax, 484

CREATE DECRYPTED DATABASE statement
about, 486
syntax, 486

CREATE DECRYPTED FILE statement
about, 487
syntax, 487

CREATE DOMAIN statement

about, 488
syntax, 488
using, 111

CREATE ENCRYPTED DATABASE statement
about, 490
syntax, 490

CREATE ENCRYPTED FILE statement
about, 493
example of usage to change an encryption key, 495
syntax, 493

CREATE ENCRYPTED TABLE DATABASE
statement

about, 490
syntax, 490

CREATE EVENT clause
CREATE EVENT statement, 496

CREATE EVENT statement
about, 495
syntax, 495

CREATE EXISTING TABLE statement
about, 501
sp_remote_columns system procedure, 1100
sp_remote_tables system procedure, 1106
syntax, 501

CREATE EXTERNLOGIN statement
about, 503
syntax, 503

CREATE FUNCTION statement
about, 504, 510, 516
syntax, 516
syntax for creating external call interfaces, 504
syntax for creating native call interfaces, 504
Transact-SQL example, 521
web services syntax, 510

CREATE INDEX statement
about, 521
syntax, 521
table use, 524

CREATE LOCAL TEMPORARY TABLE statement
about, 525
syntax, 525

CREATE LOGIN POLICY statement
about, 526
syntax, 526

CREATE MATERIALIZED VIEW statement
about, 529
syntax, 529

CREATE MESSAGE statement

Index

1236 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

about, 531
Transact-SQL syntax, 531

CREATE MIRROR SERVER statement
about, 532
syntax, 532

CREATE ON clause
GRANT statement, 722
REVOKE statement, 818

CREATE PROCEDURE statement
about, 543, 550, 552
native calls, 536
syntax, 552
syntax for creating external call interfaces, 536
syntax for creating web services procedures, 543
syntax for Transact-SQL, 550

CREATE PUBLICATION statement
MobiLink syntax, 559
SQL Remote syntax, 559

CREATE REMOTE MESSAGE TYPE statement
SQL Remote syntax, 562

CREATE SCHEMA statement
about, 563
syntax, 563

CREATE SEQUENCE statement
about, 565
syntax, 565

CREATE SERVER statement
about, 567
syntax, 567

CREATE SERVICE statement
about, 571
syntax, 571

CREATE SPATIAL REFERENCE SYSTEM
statement

about, 579
syntax, 579

CREATE SPATIAL UNIT OF MEASURE statement
about, 586
syntax, 586

CREATE STATISTICS statement
about, 588
syntax, 588

CREATE SUBSCRIPTION statement
SQL Remote syntax, 589

CREATE SYNCHRONIZATION PROFILE statement
MobiLink syntax, 590

CREATE SYNCHRONIZATION SUBSCRIPTION
statement

MobiLink syntax, 591
CREATE SYNCHRONIZATION USER statement

MobiLink syntax, 594
CREATE TABLE clause

INPUT statement, 732
OUTPUT statement, 781

CREATE TABLE statement
about, 596
remote tables, 598
syntax, 596
Transact-SQL, 607

CREATE TEMPORARY PROCEDURE statement
syntax, 552

CREATE TEXT CONFIGURATION statement
about, 610
syntax, 610

CREATE TEXT INDEX statement
about, 611
syntax, 611

CREATE TRIGGER statement
about, 619
syntax, 614
Transact-SQL syntax, 619
trigger operation conditions, 616

CREATE USER statement
about, 621
syntax, 621

CREATE VARIABLE statement
about, 622
syntax, 622

CREATE VIEW statement
about, 624
syntax, 624

CREATEDIRS clause
CREATE SERVER statement, 569

creating
backups of databases using the BACKUP
statement, 447
CREATE INDEX statement, 521
CREATE MATERIALIZED VIEW statement, 529
CREATE PUBLICATION statement, 559
CREATE SYNCHRONIZATION PROFILE
statement, 590
CREATE SYNCHRONIZATION
SUBSCRIPTION statement, 591
CREATE TABLE statement, 596
CREATE TRIGGER statement, 614
CREATE VIEW statement, 624

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1237

creating users using CREATE USER statement,
621
cursors, 628
cursors in Transact-SQL, 632, 834
database files using the CREATE DBSPACE
statement, 484
databases using the CREATE DATABASE
statement, 477
external call interfaces, 504, 536
local temporary tables, 633
local temporary tables using the CREATE LOCAL
TEMPORARY TABLE statement, 525
messages, 531
native call interfaces, 504, 536
proxy tables, 598
proxy tables using sp_remote_tables system
procedure, 1106
proxy tables using the CREATE EXISTING
TABLE statement, 501
savepoints, 824
schemas, 563
servers, 567
SQL Remote remote message types, 562
SQL variables using CREATE VARIABLE
statement, 622
SQL variables using DECLARE statement, 635
stored procedures, 543, 552
stored procedures in Transact SQL, 550
subscriptions, 589
text configuration objects for full text search, 610
text indexes for full text search, 611
triggers in Transact-SQL, 619
user-defined functions using the CREATE
FUNCTION statement, 516
web services, 571
web services functions using the CREATE
FUNCTION statement [web clients], 510

creating databases
CREATE DATABASE statement, 477

creating domains
CREATE DOMAIN statement, 488

creating external logins
CREATE EXTERNLOGIN statement, 503

creating indexes
CREATE INDEX statement, 521

creating login policies
CREATE LOGIN POLICY statement, 526

creating materialized views

CREATE MATERIALIZED VIEW statement, 529
creating synchronization profiles

CREATE SYNCHRONIZATION PROFILE
statement [MobiLink], 590

creating synchronization subscriptions
CREATE SYNCHRONIZATION
SUBSCRIPTION statement [MobiLink], 591

creating tables
CREATE TABLE statement, 596

creating views
CREATE VIEW statement, 624

CROSS APPLY clause
FROM clause, 701

CROSS JOIN clause
FROM clause SQL syntax, 696

CSCONVERT function
syntax, 176

CUBE operation
GROUP BY clause, 725
WITH CUBE clause, 725

CUME_DIST function
syntax, 178

CURRENT clause
CREATE TABLE statement, 596
DISCONNECT statement [ESQL] [Interactive
SQL] statement, 648

CURRENT DATABASE clause
CREATE TABLE statement, 596

CURRENT DATABASE special value
syntax, 58

CURRENT DATE function
TODAY function, 350

CURRENT DATE special value
syntax, 58

CURRENT PUBLISHER data type
setting, 714

CURRENT PUBLISHER special value
syntax, 59

CURRENT REMOTE USER clause
CREATE TABLE statement, 600

CURRENT REMOTE USER special value
syntax, 59

CURRENT TIME special value
syntax, 60

CURRENT TIMESTAMP special value
syntax, 60

CURRENT USER special value
syntax, 61

Index

1238 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

CURRENT UTC TIMESTAMP clause
CREATE TABLE statement, 596

CURRENT UTC TIMESTAMP special value
syntax, 61

CURRENT_TIMESTAMP special value
syntax, 60

CURRENT_USER special value
syntax, 61

CurrentMultiProgrammingLevel property
setting with sa_server_option, 1067

cursors
changing database option settings, 842
CLOSE statement [ESQL] [SP], 467
declaring, 628
declaring in Transact-SQL, 632, 834
deleting rows from, 636
DESCRIBE statement, 641
describing behavior, 538, 554
EXPLAIN statement syntax, 686
fetching rows from, 687
inserting rows using, 792
looping over, 691
OPEN statement, 778
opening, 777
preparing statements, 788
re-describing, 538, 554
updatability set in SELECT statement, 830

CYCLE clause
ALTER SEQUENCE statement, 412
CREATE SEQUENCE statement, 566

D
data

exporting from tables into files, 780
importing into tables from files, 731
selecting rows, 825

data access plans
getting text specification, 686

DATA clause
GET DESCRIPTOR statement [ESQL], 710
SET DESCRIPTOR statement [ESQL], 836

data type conversion functions
about, 129

data type conversions
about, 112
CAST, 153
comparing CHAR and NCHAR values, 114

comparison operators, 113
converting DOUBLE to NUMERIC, 120
converting NCHAR to CHAR, 117
Java-to-SQL, 123
SQL to Java, 122
SQL-to-Java, 123
when evaluating expressions, 113

data types
altering using the ALTER DOMAIN statement,
393
BIGINT data type, 88
BINARY data type, 108
BIT data type, 88
CHAR data type, 79
character, 79
comparing values, 113
compatibility, 116
converting for comparison operators, 113
converting Java and SQL, 122
CREATE DOMAIN statement, 488
DATE data type, 101
DATETIME data type, 102
DATETIMEOFFSET data type, 103
DECIMAL data type, 89
DOUBLE data type, 90
dropping user-defined using the DROP
DATATYPE statement, 650
FLOAT data type, 91
IMAGE data type, 108
INTEGER data type, 92
LONG BINARY data type, 109
LONG NVARCHAR data type, 81
LONG VARBIT data type, 98
LONG VARCHAR data type, 81
NCHAR, 82
NCHAR (NATIONAL CHAR), 82
NTEXT data type, 83
NUMERIC data type, 93
NVARCHAR data type, 83
REAL data type, 94
retrieving, 214
rounding errors, 87
SMALLDATETIME data type, 104
SMALLINT data type, 95
SMALLMONEY data type, 97
special values, 58
SQL conversion functions, 129
SYSDOMAIN system view, 1135

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1239

SYSEXTERNLOGIN system view, 1139
SYSUSERTYPE system view, 1187
TEXT data type, 84
TIME data type, 105
TIMESTAMP data type, 105
TIMESTAMP WITH TIME ZONE data type, 106
TINYINT data type, 96
Unicode, 79
UNIQUEIDENTIFIER data type, 109
UNIQUEIDENTIFIERSTR data type, 84
user-defined domains, 111
VARBINARY data type, 110
VARBIT data type, 98
VARCHAR data type, 85
XML data type, 86

data-type
common element in SQL syntax, 381

DATABASE clause
CONNECT statement, 473

database cleaner
about, 957
sa_clean_database system procedure, 957

database encryption
CREATE ENCRYPTED DATABASE statement,
490

database extraction
SQL Remote REMOTE RESET statement , 805

database files
decrypting using CREATE DECRYPTED FILE
statement, 487
decrypting with CREATE DECRYPTED
DATABASE statement, 486
dropping using the DROP DATABASE statement,
650
encrypting using the CREATE ENCRYPTED
DATABASE statement, 490
encrypting using the CREATE ENCRYPTED
FILE statement, 493
storing indexes in, 523

database ID numbers
DB_ID function, 193

database mirroring
ALTER MIRROR SERVER statement, 404
CREATE MIRROR SERVER statement, 532
dropping servers, 659
initiating a failover, 388
LOAD TABLE statement restrictions, 760
SET MIRROR OPTION statement, 837

database names
returning with the DB_NAME function, 193

database objects
adding comments using the COMMENT statement,
469
identifying, 4

database options
date_order and unambiguous dates, 120
fetching rows from cursors, 842
initial settings and sp_login_environment system
procedure, 1098
initial settings and sp_tsql_environment system
procedure, 1107
quoted_identifier and T-SQL compatibility, 31
setting in Transact-SQL, 851
Transact-SQL compatibility, 1107
user-defined options, 841

database schemas
system tables, 911
system views, 1127

database server messages window
displaying messages on, 774

database servers
configuring database mirroring, 404, 532
configuring read-only scale-out, 404, 532
setting options with sa_server_option system
procedure, 1060
START SERVER statement, 860
STOP SERVER statement, 871

DATABASE SIZE clause
CREATE DATABASE statement, 480

database validation
VALIDATE CHECKSUM statement, 902
VALIDATE INDEX statement, 902

DatabaseCleaner property
setting with sa_server_option, 1067

databases
backing up using the BACKUP statement, 447
checkpointing using the CHECKPOINT statement,
466
connecting to using the CONNECT statement, 473
creating an encrypted copy of a database, 490
creating files using the CREATE DBSPACE
statement, 484
creating using the CREATE DATABASE
statement, 477
default system views, 1127
disabling connections, 1060

Index

1240 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

dropping files using the DROP DATABASE
statement, 650
loading bulk data into, 750
migrating, 1026
restoring from archives, 810
returning the location of the current database, 192
schema (list of tables), 1127
schema (list of views), 911
starting, 857
stopping, 867
SYSFILE system view, 1212
system procedures, 941
system tables, 911
unloading data using the UNLOAD statement, 885
upgrading jConnect using the ALTER
DATABASE statement, 386
validating using sa_validate system procedure,
1095

DataLastModified property
sa_materialized_view_info system procedure, 1021

DATALENGTH function
syntax, 179

DATATYPE clause
ALTER SERVICE statement, 415
CREATE SERVICE statement, 572

date and time data types
about, 99
DATETIMEOFFSET, 103
TIME, 105
TIMESTAMP, 105
TIMESTAMP WITH TIME ZONE, 106

DATE data type
syntax, 101

date data types
about, 99
DATE, 101
DATETIME, 102
SMALLDATETIME, 104

DATE function
syntax, 180

date functions
alphabetical list, 129

date parts
about, 130

date_order option
ODBC, 120
using, 120

DATEADD function

syntax, 181
DATEDIFF function

syntax, 182
datefirst option

SET statement syntax, 851
DATEFORMAT function

comparing dates and times, 116
syntax, 183

DATENAME function
syntax, 184

DATEPART function
syntax, 185

dates
ambiguous string conversions, 118
comparing, 116
conversion functions, 129
conversion problems, 118
converting from strings, 116
February 29, 101
generating table of, 1055
inserting, 101
interpretation, 101
interpreting strings as dates, 120
leap years, 101
queries, 100
query the current system date, 220
retrieving, 101
sending to the database, 100
SQL Anywhere, 99
storing, 99
unambiguous specification of, 120

datetime
conversion functions, 129

DATETIME data type
syntax, 102

DATETIME function
syntax, 186

DATETIMEOFFSET data type
syntax, 103

DAY function
syntax, 187

day of week
DOW function, 201

DAYNAME function
syntax, 187

DAYS function
syntax, 188

DB2

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1241

migrating to SQL Anywhere using sa_migrate
system procedure, 1027

db_charset
CSCONVERT function, 176

DB_EXTENDED_PROPERTY function
syntax, 189

DB_ID function
syntax, 193

DB_NAME function
syntax, 193

DB_PROPERTY function
syntax, 194

db_register_a_callback function
using with MESSAGE TO CLIENT, 776

DBA
granting authority with GRANT statement, 720

DBA authority
GRANT statement, 718
REVOKE statement, 818

DBA authority clause
GRANT statement, 720

DBA clause
REVOKE statement, 818

DBA PASSWORD clause
CREATE DATABASE statement, 481

DBA USER clause
CREATE DATABASE statement, 480

DBFILE ONLY clause
BACKUP statement, 448

DBFreePercent event condition
about, 207

DBFreeSpace event condition
about, 207

dbmlsync utility
specifying location using ALTER EXTERNAL
ENVIRONMENT statement , 396

dbname FORCE START clause
ALTER DATABASE statement, 388

dbo user
RowGenerator system table, 938
Transact-SQL compatibility views, 1218

DBSize event condition
about, 207

dbspaces
adding comments using the COMMENT statement,
469
adding pages, 391

altering using the ALTER DBSPACE statement,
391
creating using the CREATE DBSPACE statement,
484
decrypting using CREATE DECRYPTED
DATABASE statement, 486
decrypting using CREATE DECRYPTED FILE
statement, 487
determining available space, 986
dropping using the DROP DBSPACE statement,
651
encrypting using the CREATE ENCRYPTED
DATABASE statement, 490
encrypting using the CREATE ENCRYPTED
FILE statement, 493
granting usage permissions, 719
SYSFILE system view, 1212

DCX
about, v

deadlock reporting
sa_report_deadlocks system procedure, 1051

deadlock_logging property
setting with sa_server_option, 1067

DeadlockLogging property
setting with sa_server_option, 1067

deadlocks
logging, 1067
sa_report_deadlocks system procedure, 1051

DEALLOCATE DESCRIPTOR statement
about, 627
embedded SQL syntax, 627

DEALLOCATE statement
about, 627
syntax, 627

deallocating
descriptor areas, 627

DEBUG ONLY clause
MESSAGE statement, 775

debugging
controlling MESSAGE statement behavior, 774
TRACEBACK, 350

DebuggingInformation property
setting with sa_server_option, 1067

DEC data type (see DECIMAL data type)
DECIMAL data type

syntax, 89
DECLARE CURSOR statement

about, 628

Index

1242 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

embedded SQL syntax, 628
syntax, 628
Transact-SQL syntax, 632

DECLARE EXCEPTION
used with BEGIN statement, 454

DECLARE LOCAL TEMPORARY TABLE statement
about, 633
syntax, 633

DECLARE statement
about, 635
syntax, 635
used with BEGIN statement, 454

declaring
cursors, 628
cursors in Transact-SQL, 632, 834
host variables in embedded SQL, 627
variables SQL, 635

decoding data
BASE64_DECODE function, 146
HTML_DECODE function, 228
HTTP_DECODE function, 231

DECOMPRESS function
syntax, 195

DECRYPT function
syntax, 196

decrypting
files using CREATE DECRYPTED DATABASE
statement, 486
files using CREATE DECRYPTED FILE
statement, 487
tables using the ALTER TABLE statement, 426

DEFAULT clause
ALTER TABLE statement , 429
CREATE DOMAIN statement, 488
CREATE SERVICE statement, 571
CREATE TABLE statement, 600

DEFAULT LAST USER
avoid replicating columns in SQL Remote, 740

DEFAULT login policy
about, 526

DEFAULT TIMESTAMP columns
about, 600
TIMESTAMP special value, 65

default values
CURRENT DATABASE, 58
CURRENT DATE, 58
CURRENT PUBLISHER, 59
CURRENT REMOTE USER, 59

CURRENT TIME, 60
CURRENT TIMESTAMP, 60
CURRENT USER, 61
CURRENT UTC TIMESTAMP, 61
CURRENT_TIMESTAMP, 60
CURRENT_USER, 61
INSERT statement, 738
LAST USER, 62
SQLCODE, 62
SQLSTATE, 63
TIMESTAMP, 65
USER, 66
UTC TIMESTAMP, 66

DEFAULT VALUES clause
INSERT statement, 738

defaults
CREATE TABLE statement, 600
INSERT statement, 738

DEFAULTS clause
LOAD TABLE statement, 754

DEFINITION clause
ALTER SPATIAL REFERENCE SYSTEM
statement, 417
CREATE SPATIAL REFERENCE SYSTEM
statement, 580

definitions
altering tables using the ALTER TABLE
statement, 426

defragmenting
REORGANIZE TABLE, 807

DEGREES function
syntax, 198

DELAY clause
WAITFOR statement, 904

DELETE ALL OPTION clause
ALTER SYNCHRONIZATION SUBSCRIPTION
statement [MobiLink] , 424
ALTER SYNCHRONIZATION USER statement
[MobiLink] , 425

DELETE clause
CREATE LOCAL TEMPORARY TABLE
statement, 525
CREATE PUBLICATION statement [MobiLink]
[SQL Remote], 559
CREATE TRIGGER statement, 614
DECLARE LOCAL TEMPORARY TABLE
statement, 633
MERGE statement, 770

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1243

REVOKE statement, 818
DELETE OPTION clause

ALTER SYNCHRONIZATION SUBSCRIPTION
statement [MobiLink] , 424
ALTER SYNCHRONIZATION USER statement
[MobiLink] , 425

DELETE permission
GRANT statement, 719
REVOKE statement, 818

DELETE permission clause
GRANT statement, 721

DELETE statement
(positioned) statement syntax, 636
about, 636, 637
embedded sql (positioned) statement syntax, 636
setting database options, 639
syntax, 637

DELETE TABLE clause
ALTER PUBLICATION statement, 409

DELETE TYPE clause
ALTER EVENT statement, 395

deleting
all rows from a table, 881
columns using the ALTER TABLE statement, 426
database files using the DROP DATABASE
statement, 650
dbspaces using the DROP DBSPACE statement,
651
domains, 652
events using the DROP EVENT statement, 653
functions using the DROP FUNCTION statement,
654
granting permissions, 818
indexes using the DROP INDEX statement, 655
Java classes, 806
materialized views using the DROP
MATERIALIZED VIEW statement, 657
optimizer statistics using the DROP STATISTICS
statement, 666
prepared statements using the DROP
STATEMENT statement, 665
procedures using the DROP PROCEDURE
statement, 659
rows from cursors, 636
rows from databases, 637
SQL variables using the DROP VARIABLE
statement, 675

START SYNCHRONIZATION DELETE
statement, 864
STOP SYNCHRONIZATION DELETE statement,
873
tables using the DROP TABLE statement, 670
text configuration objects, 671
triggers using the DROP FUNCTION statement,
654
triggers using the DROP statement, 673
views using the DROP VIEW statement, 676

DELIMITED BY clause
LOAD TABLE statement, 754
OUTPUT statement, 781
UNLOAD statement, 887

DELIMITED clause
INPUT statement, 732

delimited strings
compatibility with ASE, 31

delimiting SQL strings
about, 4

DENSE_RANK function
syntax, 198

denying
granting permissions, 818

dependencies
determining using sa_dependent_views system
procedure, 977

dependent variables
regression line, 296

derived tables
example in a FROM clause, 699
FROM clause SQL syntax, 696
lateral, 700

DESCRIBE clause
PREPARE statement, 788

DESCRIBE CONNECTION statement
about, 644
Interactive SQL syntax, 644

DESCRIBE statement
about, 641, 644
embedded SQL syntax, 641
Interactive SQL syntax, 644
long column names, 642

describing
cursor behavior, 538, 554
cursors, 641

descriptor areas
allocating memory for, 384

Index

1244 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

deallocating, 627
EXECUTE statement, 681
getting information from, 710
setting, 836
UPDATE (positioned) statement, 890

DESCRIPTOR clause
EXECUTE statement, 681

descriptors
DESCRIBE statement, 641
FETCH statement, 687
preparing statements, 788

DETACH TRACING statement
about, 647
diagnostic tracing, 647
syntax, 647

deterministic behavior
external functions, 505
user-defined functions, 518

developer centers
finding out more and requesting technical support,
ix

developer community
newsgroups, viii

diagnostic tracing
ATTACH TRACING statement, 445
deleting records, 1050
DETACH TRACING statement, 647
REFRESH TRACING LEVEL statement, 803
sa_diagnostic_auxiliary_catalog table, 922
sa_diagnostic_blocking table, 923
sa_diagnostic_cachecontents table, 924
sa_diagnostic_connection table, 925
sa_diagnostic_cursor table, 926
sa_diagnostic_deadlock table, 928
sa_diagnostic_hostvariable table, 929
sa_diagnostic_internalvariable table, 929
sa_diagnostic_query table, 930
sa_diagnostic_request table, 932
sa_diagnostic_statement table, 934
sa_diagnostic_statistics table, 934
sa_diagnostic_tracing_level table, 935
sa_save_trace_data system procedure, 1056
sa_set_tracing_level system procedure, 1080
tables, about, 922

diagnostic tracing level
setting at the command-line, 1080

diagnostics
sa_performance_statistics system procedure, 1041

DIFFERENCE function
syntax, 200

directory access servers
CREATE SERVER statement, 567

DIRECTORY clause
BACKUP statement, 448
START DATABASE statement, 858

DISABLE clause
ALTER EVENT statement, 394
ALTER MATERIALIZED VIEW statement, 402
ALTER SERVICE statement, 415
ALTER VIEW statement, 443
CREATE SERVICE statement, 575

DISABLE USE IN OPTIMIZATION clause
ALTER MATERIALIZED VIEW statement, 402

DISABLE VIEW DEPENDENCIES clause
ALTER TABLE statement, 433

disabled objects
permissions, 722

disabling connections
to all databases on a server, 1066
to individual databases, 1066

DISCONNECT statement
about, 648
embedded SQL syntax, 648
Interactive SQL syntax, 648

disconnecting
creating events using the CREATE EVENT
statement, 495
DROP CONNECTION statement, 649

DISH
CREATE SERVICE statement, 572

DISH services
forward slashes not allowed in name, 571

disk space
creating events using the CREATE EVENT
statement, 495
creating out of disk space events, 495
determining available space, 986

disk transfer time model
calibrating using the ALTER DATABASE
statement, 386
current value, 993
restoring the default using the ALTER
DATABASE statement, 386

displaying
messages, 774
messages in the message window, 791

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1245

DISTINCT clause
MEDIAN function, 259
NULL, 76
SELECT statement, 828

DISTINCT keyword
about, 827

DML
selecting from, 702

DO clause
FOR statement, 691

DocCommentXchange (DCX)
about, v

documentation
conventions, v
conventions for SQL syntax, 381
SQL Anywhere, v

DOMAIN | DATATYPE clause
CREATE DOMAIN statement, 489

domains
about, 111
altering using the ALTER DOMAIN statement,
393
CREATE DOMAIN statement, 488
dropping using the DROP DOMAIN statement,
652
nullability, 489
Transact-SQL, 112

DOUBLE data type
converting to NUMERIC, 120
syntax, 90

double hyphen
comment indicator, 74

double quotes
database objects, 4
not allowed in SQL identifiers, 4

double slash
comment indicator, 74

DOW function
syntax, 201

download-only
CREATE PUBLICATION syntax, 559

DRIVER clause
INPUT statement, 731

DriveType property
DB_EXTENDED_PROPERTY function, 189

DROP clause
ALTER TABLE statement , 431
DROP EXTERNLOGIN statement, 653

DROP CONNECTION statement
about, 649
syntax, 649

DROP DATABASE statement
about, 650
syntax, 650

DROP DATATYPE statement
about, 650
syntax, 650

DROP DBSPACE statement
about, 651
syntax, 651

DROP DOMAIN statement
about, 652
syntax, 652

DROP EVENT statement
about, 653
syntax, 653

DROP EXTERNLOGIN statement
about, 653
syntax, 653

DROP FUNCTION statement
about, 654
syntax, 654

DROP INDEX statement
about, 655
syntax, 655

DROP LOGIN POLICY statement
about, 656
syntax, 656

DROP MATERIALIZED VIEW statement
about, 657
syntax, 657

DROP MESSAGE statement
about, 658
syntax, 658

DROP MIRROR SERVER statement
about, 659
syntax, 659

DROP PCTFREE clause
ALTER MATERIALIZED VIEW statement, 402

DROP PREFILTER clause
ALTER TEXT CONFIGURATION statement, 437

DROP PROCEDURE statement
about, 659
syntax, 659

DROP PUBLICATION statement
MobiLink syntax, 660

Index

1246 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SQL Remote syntax, 660
DROP REMOTE MESSAGE TYPE statement

SQL Remote syntax, 661
DROP SEQUENCE statement

about, 662
syntax, 662

DROP SERVER statement
about, 662
syntax, 662

DROP SERVICE statement
about, 663
syntax, 663

DROP SPATIAL REFERENCE SYSTEM statement
about, 664
syntax, 664

DROP SPATIAL UNIT OF MEASURE statement
about, 664
syntax, 664

DROP STATEMENT statement
about, 665
embedded SQL syntax, 665

DROP STATISTICS statement
about, 666
syntax, 666

DROP STOPLIST clause
ALTER TEXT CONFIGURATION statement, 436

DROP SUBSCRIPTION statement
SQL Remote syntax, 667

DROP SYNCHRONIZATION PROFILE statement
MobiLink syntax, 668

DROP SYNCHRONIZATION SUBSCRIPTION
statement

syntax, 669
DROP SYNCHRONIZATION USER statement

MobiLink syntax, 670
DROP TABLE clause

ALTER PUBLICATION statement, 409
DROP TABLE statement

about, 670
syntax, 670

DROP TEXT CONFIGURATION statement
about, 671
syntax, 671

DROP TEXT INDEX statement
about, 672
syntax, 672, 673

DROP TRIGGER statement
about, 673

syntax, 673
DROP USER statement

about, 674
syntax, 674

DROP VARIABLE statement
syntax, 675

DROP VIEW statement
about, 676
syntax, 676

DropBadStatistics property
setting with sa_server_option, 1067

dropping
columns using the ALTER TABLE statement, 426
connections in Interactive SQL, 648
connections using the DROP CONNECTION
statement, 649
database files using the DROP DATABASE
statement, 650
dbspaces using the DROP DBSPACE statement,
651
domains using the DROP DOMAIN statement, 652
DROP PUBLICATION statement, 660
DROP SUBSCRIPTION statement, 667
DROP SYNCHRONIZATION SUBSCRIPTION
statement, 669
DROP SYNCHRONIZATION USER statement,
670
events using the DROP EVENT statement, 653
functions using the DROP FUNCTION statement,
654
indexes using the DROP INDEX statement, 655
login policies using DROP LOGIN POLICY
statement, 656
login policies using DROP USER statement, 674
logins for remote servers, 653
materialized views using the DROP
MATERIALIZED VIEW statement, 657
messages using the DROP MESSAGE statement,
658
optimizer statistics using the DROP STATISTICS
statement, 666
prepared statements using the DROP
STATEMENT statement, 665
procedures using the DROP PROCEDURE
statement, 659
remote message types, 661
remote servers using the DROP SERVER
statement, 662

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1247

spatial reference system using the DROP
SPATIAL REFERENCE SYSTEM statement, 664
SQL variables using the DROP VARIABLE
statement, 675
tables using the DROP TABLE statement, 670
text configuration objects, 671
text indexes for full text search, 672
triggers using the DROP FUNCTION statement,
654
triggers using the DROP statement, 673
users using the REVOKE statement, 818
views using the DROP VIEW statement, 676
web services using the DROP SERVICE statement,
663

dropping connections
DROP CONNECTION statement, 649

dropping indexes
DROP statement, 655

dropping materialized views
DROP MATERIALIZED VIEW statement, 657

dropping remote procedures
DROP PROCEDURE statement, 659

dropping synchronization profiles
DROP SYNCHRONIZATION PROFILE
statement [MobiLink], 668

dropping tables
DROP TABLE statement, 670

dropping views
DROP VIEW statement, 676

DropUnusedStatistics property
setting with sa_server_option, 1067

DSN clause
INPUT statement, 731

DUMMY
Row Constructor algorithm, 911
system table, 911

DYNAMIC RESULT SETS clause
CREATE PROCEDURE statement [external
procedures], 539

DYNAMIC SCROLL clause
DECLARE CURSOR statement, 629
FOR statement, 692

DYNAMIC SCROLL cursors
declaring, 628

dynamic SQL
executing procedures in, 678

E
elements

SQL language syntax, 1
ELLIPSOID clause

ALTER SPATIAL REFERENCE SYSTEM
statement, 418
CREATE SPATIAL REFERENCE SYSTEM
statement, 583

ELSE
CASE expression, 15
IF expressions, 15

ELSE clause
IF statement, 727
IF statement [T-SQL], 729

ELSEIF clause
IF statement, 727

email
extended system procedures, 942
system procedures, 1116

embedded SQL
ALLOCATE DESCRIPTOR syntax, 384
BEGIN DECLARE statement syntax, 627
CLOSE statement syntax, 467
CONNECT statement syntax, 473
DEALLOCATE DESCRIPTOR statement syntax,
627
DECLARE CURSOR statement syntax, 628
DELETE (positioned) statement syntax, 636
DESCRIBE statement syntax, 641
DISCONNECT statement syntax, 648
DROP STATEMENT statement syntax, 665
END DECLARE statement syntax, 627
EXECUTE IMMEDIATE statement syntax, 678
EXECUTE statement syntax, 681
EXPLAIN statement syntax, 686
FETCH statement syntax, 687
GET DATA statement syntax, 708
GET DESCRIPTOR statement syntax, 710
GET OPTION statement syntax, 711
INCLUDE statement syntax, 730
OPEN statement syntax, 777
PREPARE statement syntax, 788
PUT statement syntax, 792
SET CONNECTION statement syntax, 835
SET DESCRIPTOR statement syntax, 836
SET SQLCA statement syntax, 848
UPDATE (positioned) statement, 890

Index

1248 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

WHENEVER statement syntax, 905
ENABLE clause

ALTER MATERIALIZED VIEW statement, 402
ALTER SERVICE statement, 415
ALTER VIEW statement, 444
CREATE SERVICE statement, 575

ENABLE USE IN OPTIMIZATION clause
ALTER MATERIALIZED VIEW statement, 402

ENABLE | DISABLE clause
CREATE EVENT statement, 499

encoding
INPUT statement, 732
LOAD TABLE syntax, 750
OUTPUT statement, 781
READ statement, 795
UNLOAD statement, 885

ENCODING clause
CREATE DATABASE statement, 481
INPUT statement, 732
LOAD TABLE statement, 754
OUTPUT statement, 781
READ statement [Interactive SQL], 795
UNLOAD statement, 887

encoding data
BASE64_ENCODE function, 147
HTML_ENCODE function, 229

encodings
CREATE DATABASE statement, 480

ENCRYPT function
syntax, 202

ENCRYPTED clause
ALTER MATERIALIZED VIEW statement, 402
CREATE DATABASE statement, 481
CREATE TABLE statement, 598
LOAD TABLE statement, 754
UNLOAD statement, 887

ENCRYPTED DATABASE clause
CREATE ENCRYPTED DATABASE statement,
491

ENCRYPTED TABLE clause
CREATE DATABASE statement, 481

ENCRYPTED TABLE DATABASE clause
CREATE ENCRYPTED TABLE DATABASE
statement, 491

encrypting
databases, CREATE ENCRYPTED DATABASE
statement, 490

encrypting tables

ALTER TABLE statement, 426
encryption

CREATE DATABASE statement, 481
CREATE DECRYPTED DATABASE statement,
486
CREATE ENCRYPTED FILE statement, 493

encryption algorithms
CREATE DATABASE statement, 481

encryption keys
changing the key for an encrypted database, 495

END
CASE expression, 15

END CASE
CASE expression, 15

END DECLARE statement
about, 627
embedded SQL syntax, 627

END FOR clause
FOR statement, 691

END IF
IF expressions, 15

END IF clause
IF statement, 727

END keyword
compatibility, 456

END LOOP clause
LOOP statement, 765

END statement
used with BEGIN statement, 454

ENDIF
IF expressions, 15

ENDIF clause
IF statement, 727

ending
rolling back transactions, 820

engines
starting database, 860
stopping database, 871

ENVIRONMENT clause
INSTALL EXTERNAL OBJECT statement, 743

environment variables
command prompts, vii
command shells, vii

environments
altering using ALTER EXTERNAL
ENVIRONMENT statement, 396

error messages
ERRORMSG function, 203

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1249

ERRORMSG function
syntax, 203

ErrorNumber event condition
about, 207

errors
creating events using the CREATE EVENT
statement, 495
RAISERROR statement, 793
signaling, 856
trapping in embedded SQL, 905
user-defined messages, 1186

ESCAPE CHARACTER clause
INPUT statement, 733
LOAD TABLE statement, 755
OUTPUT statement, 782
UNLOAD statement, 885

escape characters
about , 7
binary literals, 6
INPUT statement, 731
OUTPUT statement, 780

ESCAPE clause
LIKE search condition, 39

escape sequences
backslashes in SQL strings, 7
hexadecimal values in SQL strings, 7
new line characters in SQL strings, 7
single quotes in SQL strings, 7
Unicode, 357
Unicode values in SQL strings, 7

ESCAPES clause
INPUT statement, 733
LOAD TABLE statement, 755
OUTPUT statement, 782
UNLOAD statement, 887

ESQL
statement indicators, 384

establishing
savepoints, 824

ESTIMATE function
syntax, 204

ESTIMATE_SOURCE function
syntax, 205

estimates
explicit selectivity estimates, 57

EvenOdd format
CREATE SPATIAL REFERENCE SYSTEM
statement, 584

event conditions
list, 207

event handlers
hiding using the ALTER EVENT statement, 394

EVENT_CONDITION function
syntax, 207

EVENT_CONDITION_NAME function
syntax, 208

EVENT_PARAMETER function
syntax, 209

events
adding comments using the COMMENT statement,
469
altering using the ALTER EVENT statement, 394
creating and scheduling, 495
disabling, 394
dropping using the DROP EVENT statement, 653
EVENT_PARAMETER, 209
scheduling using the ALTER EVENT statement,
394
scheduling using the CREATE EVENT statement,
495
triggering, 880

EVERY clause
CREATE EVENT statement, 498

EXCEPT clause
setting database options, 677

EXCEPT statement
about, 676
syntax, 676

EXCEPTION clause
BEGIN statement, 454

exceptions
resignaling, 809
signaling, 856

exclusive OR
bitwise operator, 11

EXECUTE IMMEDIATE statement
about, 678
syntax, 678

EXECUTE LOGIN permission
GRANT statement, 718

EXECUTE statement
about, 681, 683
embedded SQL syntax, 681
Transact-SQL syntax, 683

executing
operating system commands, 879

Index

1250 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

prepared statements, 681
resuming execution of procedures, 812
SQL statements from files, 795
stored procedures in Transact-SQL, 683

execution plans
example of saving a plan to a file, 222

execution time
START LOGGING statement, 862

EXISTS search condition
search conditions, 32
syntax, 54

exit codes
EXIT statement [Interactive SQL], 684

EXIT statement
about, 684
Interactive SQL syntax, 684

exiting
Interactive SQL, 684
procedures, 813

EXP function
syntax, 211

EXPERIENCE_ESTIMATE function
syntax, 212

EXPLAIN statement
about, 686
embedded SQL syntax, 686

EXPLANATION function
syntax, 213

explicit selectivity estimates
about, 57

exponential function
EXP function, 211

exporting
BLOBs, 1125
unloading data using the UNLOAD statement, 885

exporting data
tables into files, 780

expressions
CASE expressions, 15
column names, 14
common element in SQL syntax, 381
constants, 14
data types of, 214
IF expressions, 15
SQL operator precedence, 12
subqueries, 14
syntax, 12
Transact-SQL compatibility, 31

EXPRTYPE function
syntax, 214

extended procedures
about, 942

external environments
adding comments using the COMMENT statement,
469
starting using the START EXTERNAL
ENVIRONMENT statement, 860
stopping using the STOP EXTERNAL
ENVIRONMENT statement, 868

external function interface
creating, 504

external logins
assigning for remote servers, 503
dropping for remote servers, 653

EXTERNAL NAME clause
ALTER TEXT CONFIGURATION statement, 435
CREATE FUNCTION statement [external
procedures], 506
CREATE PROCEDURE statement [external
procedures], 539

external objects
creating using the INSTALL EXTERNAL
OBJECT statement, 743
removing using the REMOVE EXTERNAL
OBJECT statement, 806
SYSEXTERNENVOBJECT system view, 1138

external procedure interface
creating, 536

external term breakers
ALTER TEXT CONFIGURATION statement, 436

F
FALSE conditions

IS FALSE search condition, 54
three-valued logic, 56

FASTFIRSTROW table hint
FROM clause, 704

features
locking, 763

February 29
about, 101

feedback
documentation, viii
providing, viii
reporting an error, viii

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1251

requesting an update, viii
FETCH statement

about, 687
embedded SQL syntax, 687
syntax, 687

fetching
rows from cursors, 687

FILE clause
DROP REMOTE MESSAGE TYPE statement,
661
GRANT CONSOLIDATE statement [SQL
Remote], 713

FILE message type
SQL Remote ALTER REMOTE MESSAGE
TYPE statement, 410
SQL Remote CREATE REMOTE MESSAGE
TYPE statement, 562

File property
DB_EXTENDED_PROPERTY function, 189

file size
creating events using the CREATE EVENT
statement, 495

filename
common element in SQL syntax, 381

files
allocating space for database, 391
creating database using the CREATE DBSPACE
statement, 484
decrypting using CREATE DECRYPTED FILE
statement, 487
decrypting with CREATE DECRYPTED
DATABASE statement, 486
encrypting using the CREATE ENCRYPTED
FILE statement, 493
exporting data from tables into, 780
importing data into tables from, 731
querying within files, 700
reading on a client computer, 292
reading SQL statements from, 795
writing to a client computer, 368
xp_read_file system procedure, 1115
xp_write_file system procedure, 1125

FileSize property
DB_EXTENDED_PROPERTY function, 189

filler() column name
FROM clause, 700
LOAD TABLE statement, 750

finding out more and requesting technical assistance

technical support, viii
FIRST clause

DELETE statement, 638
FETCH statement , 688
SELECT statement, 828
UPDATE statement, 895, 897

FIRST_VALUE function
syntax, 215

FLOAT data type
syntax, 91

FLOOR function
syntax, 217

FOLLOWING clause
WINDOW clause, 909

FOR clause
ALTER SYNCHRONIZATION SUBSCRIPTION
statement [MobiLink] , 423
CREATE SUBSCRIPTION statement (SQL
Remote), 589
CREATE SYNCHRONIZATION
SUBSCRIPTION statement [MobiLink], 592
CREATE TRIGGER [Transact-SQL] statement,
619
DECLARE CURSOR statement [T-SQL], 632
DESCRIBE statement, 641
DROP SUBSCRIPTION statement [SQL Remote],
667
DROP SYNCHRONIZATION SUBSCRIPTION
statement, 669
MESSAGE statement, 775
SELECT statement, 830
START SUBSCRIPTION statement [SQL
Remote], 863
STOP SUBSCRIPTION statement [SQL Remote],
872
SYNCHRONIZE SUBSCRIPTION statement
[SQL Remote], 878

FOR DELETE clause
CREATE TRIGGER [Transact-SQL] statement,
619

FOR DOWNLOAD ONLY clause
CREATE PUBLICATION statement [MobiLink]
[SQL Remote], 559

FOR EACH clause
CREATE TRIGGER statement, 615

FOR INSERT clause
CREATE TRIGGER [Transact-SQL] statement,
619

Index

1252 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

FOR OLAP WORKLOAD clause
CREATE INDEX statement, 523
CREATE TABLE statement, 606

FOR OLAP WORKLOAD option
ALTER TABLE statement, 426

FOR READ ONLY clause
DECLARE CURSOR statement [T-SQL], 632
FOR statement, 693
PREPARE statement [ESQL] statement, 788
SELECT statement, 825
SELECT statement syntax, 830
START DATABASE statement, 857

FOR statement
about, 691
syntax, 691

FOR TABLES clause
START SYNCHRONIZATION SCHEMA
CHANGE statement, 866

FOR UPDATE BY LOCK clause
SELECT statement, 830

FOR UPDATE BY TIMESTAMP clause
SELECT statement, 830

FOR UPDATE BY VALUES clause
SELECT statement, 830

FOR UPDATE clause
CREATE TRIGGER [Transact-SQL] statement,
619
DECLARE CURSOR statement [T-SQL], 632
FETCH statement, 689
FOR statement, 693
PREPARE statement [ESQL] statement, 788
SELECT statement, 825, 830
SELECT statement syntax, 830

FOR UPDATE OF clause
SELECT statement, 831

FOR UPLOAD clause
ALTER PUBLICATION statement, 409
CREATE PUBLICATION statement [MobiLink]
[SQL Remote], 559

FOR XML clause
EXCEPT statement, 676
INTERSECT statement, 746
SELECT statement, 825, 831

FORCE BUILD clause
REFRESH MATERIALIZED VIEW statement,
799
REFRESH TEXT INDEX statement, 802

FORCE clause

REFRESH TEXT INDEX statement, 802
FORCE INCREMENTAL clause

REFRESH TEXT INDEX statement, 802
FORCE INDEX

index hints, 704
FORCE NO OPTIMIZATION clause

DELETE statement, 639
INSERT statement, 740
SELECT statement, 832
UPDATE statement, 899

FORCE OPTIMIZATION clause
DELETE statement, 639
EXCEPT statement, 677
INSERT statement, 740
INTERSECT statement, 746
MERGE statement, 771
SELECT statement, 832
UNION statement, 884
UPDATE statement, 899

FORCE PASSWORD CHANGE clause
ALTER USER statement, 442
CREATE USER statement, 621

FORCE START clause
ALTER DATABASE statement, 390

FOREIGN KEY clause
ALTER INDEX statement, 399
CREATE TABLE statement, 596
REORGANIZE TABLE statement, 808
VALIDATE statement, 902

foreign keys
adding comments using the COMMENT statement,
469
ALTER INDEX statement, 399
clustering using the ALTER INDEX statement,
399
consolidated views, 1198
integrity constraints in CREATE TABLE
statement, 604
remote tables, 1100, 1102
renaming using the ALTER INDEX statement, 399
system views, 1139
unnamed in CREATE TABLE statement, 604

foreign tables
system views, 1139

forest
in unparsed XML document, 375

FORMAT clause
ALTER SERVICE statement, 415

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1253

CREATE SERVICE statement, 574
INPUT statement, 733
LOAD TABLE statement, 755
OUTPUT statement, 782
UNLOAD statement, 887

FORWARD TO statement
about, 695
syntax, 695

fragmentation
defragmenting using REORGANIZE TABLE, 807
sa_index_density system procedure, 1006
sa_table_fragmentation , 1085

FREE PAGE ELIMINATION clause
BACKUP statement, 451

free search (see full text searching)
FreePages property

DB_EXTENDED_PROPERTY function, 189
frequency

sending messages, 713, 716
FROM clause

about, 696
CREATE DECRYPTED DATABASE statement,
486
CREATE DECRYPTED FILE statement, 487
CREATE ENCRYPTED DATABASE statement,
491
CREATE ENCRYPTED FILE statement, 493
CREATE ENCRYPTED TABLE DATABASE
statement, 491
CREATE TEXT CONFIGURATION statement,
610
DELETE (positioned) statement [ESQL] [SP]
statement, 636
DELETE statement, 638
GRANT statement, 721
INSTALL EXTERNAL OBJECT statement, 743
INSTALL JAVA statement, 744, 745
LOAD TABLE statement, 751
PREPARE statement [ESQL] statement, 788
PUT statement [ESQL], 792
RESTORE DATABASE statement, 810
REVOKE REMOTE DBA statement [SQL
Remote], 816
REVOKE statement, 818
SELECT statement, 829
selecting from DML, 702
selecting from stored procedures, 699
syntax, 696

UPDATE (positioned) statement, 890
UPDATE statement, 897

FROM FILE clause
INSTALL EXTERNAL OBJECT statement, 743
INSTALL JAVA statement, 745

FROM SERVER clause
ALTER MIRROR SERVER statement, 405
CREATE MIRROR SERVER statement, 534

FROM VALUE clause
INSTALL EXTERNAL OBJECT statement, 743

FTP clause
GRANT CONSOLIDATE statement [SQL
Remote], 713

FTP message type
SQL Remote ALTER REMOTE MESSAGE
TYPE statement, 410
SQL Remote CREATE REMOTE MESSAGE
TYPE statement, 562

full text search
ALTER TEXT CONFIGURATION statement, 435
ALTER TEXT INDEX statement, 439
asterisk, allowed syntax, 51
CONTAINS clause in the FROM clause, 696
CONTAINS search condition, 47
CREATE TEXT CONFIGURATION statement,
610
CREATE TEXT INDEX statement, 611
DROP TEXT CONFIGURATION statement, 671
DROP TEXT INDEX statement, 672
hyphen, allowed syntax, 52
operator precedence, 51
REFRESH TEXT INDEX statement, 801
sa_char_terms system procedure, 954
sa_nchar_terms system procedure, 1037
sa_refresh_text_indexes system procedure, 1049
sa_text_index_stats system procedure, 1089
sa_text_index_vocab system procedure, 1090
sa_text_index_vocab_nchar system procedure,
1092
snapshot isolation compatibility, 612
syntax for special characters, 52
TRUNCATE TEXT INDEX statement, 882
warning about using non-alphanumerics in query
string, 50

functions
aggregate, 127
ALTER FUNCTION statement, 397
bit array, 128

Index

1254 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

compared to procedures, 133
creating external call interfaces, 504
creating native call interfaces, 504
creating SQL stored functions, 516
creating using the CREATE FUNCTION statement
[web clients], 510
data type conversion SQL, 129
date and time, 129
dropping using the DROP FUNCTION statement,
654
exiting from user-defined, 813
HTTP, 135
image SQL, 139
indexes on, 523
introduction, 127
Java, 132
miscellaneous, 134
native function calls, 506
numeric, 134
ranking, 129
replacing external function interface, 505
returning values from user-defined, 813
SOAP, 135
string, 136
system, 138
temporary, 517
text SQL, 139
types of functions, 127
user defined, 132

functions, aggregate
about, 127
AVG, 144
BIT_AND, 147
BIT_OR, 149
BIT_XOR, 151
COUNT, 170
COUNT_BIG, 172
FIRST_VALUE, 215
GROUPING, 223
LAST_VALUE, 244
LIST, 250
MAX, 257
MEDIAN, 259
MIN, 261
SET_BITS, 321
STDDEV, 332
STDDEV_POP, 333
STDDEV_SAMP, 334

SUM, 342
VAR_POP, 362
VAR_SAMP, 364
VARIANCE, 366

functions, bit
GET_BIT, 218

functions, bit array
about, 128
alphabetical list, 128
BIT_LENGTH, 148
BIT_SUBSTR, 150
COUNT_SET_BITS, 173
SET_BIT, 320

functions, data type conversion
about, 129
CAST, 153
CONVERT, 165
HEXTOINT, 225
INTTOHEX, 240
ISDATE, 241
ISNULL, 243

functions, date and time
about, 129
DATE, 180
DATEADD, 181
DATEDIFF, 182
DATEFORMAT, 183
DATENAME, 184
DATEPART, 185
DATETIME, 186
DAY, 187
DAYNAME, 187
DAYS, 188
DOW, 201
GETDATE, 220
HOUR, 226
HOURS, 227
MINUTE, 262
MINUTES, 262
MONTH, 265
MONTHNAME, 266
MONTHS, 266
NOW, 276
QUARTER, 288
SECOND, 318
SECONDS, 319
SWITCHOFFSET, 344
SYSDATETIMEOFFSET, 345

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1255

TODATETIMEOFFSET, 349
TODAY, 350
WEEKS, 367
YEAR, 377
YEARS, 377
YMD, 378

functions, HTTP
HTTP_HEADER, 233
HTTP_RESPONSE_HEADER, 235
HTTP_VARIABLE, 236
NEXT_HTTP_HEADER, 272
NEXT_HTTP_RESPONSE_HEADER, 273
NEXT_HTTP_VARIABLE, 274

functions, Java and SQL user defined
about, 132

functions, miscellaneous
about, 134
ARGN, 141
COALESCE, 158
CONFLICT, 161
ERRORMSG, 203
ESTIMATE, 204
ESTIMATE_SOURCE, 205
EXPERIENCE_ESTIMATE, 212
EXPLANATION, 213
GET_IDENTITY, 219
GRAPHICAL_PLAN, 221
GREATER, 222
IDENTITY, 237
IFNULL, 238
INDEX_ESTIMATE, 239
ISNUMERIC, 243
LESSER, 249
NEWID, 268
NULLIF, 276
NUMBER, 277
PLAN, 282
REWRITE, 311
SQLDIALECT, 330
TRACEBACK, 350
TRACED_PLAN, 351
TRANSACTSQL, 351
VAREXISTS, 365
WATCOMSQL, 366

functions, numeric
about, 134
ABS, 139
ACOS, 140

ASIN, 142
ATAN, 143
ATAN2, 144
ATN2, 144
CEILING, 154
CONNECTION_PROPERTY, 164
COS, 169
COT, 170
DEGREES, 198
EXP, 211
FLOOR, 217
LOG, 254
LOG10, 255
MOD, 264
PI, 281
POWER, 283
RADIANS, 288
RAND, 289
REMAINDER, 307
ROUND, 314
SIGN, 322
SIN, 324
SQRT, 332
TAN, 346
TRUNCATE, 354
TRUNCNUM, 354

functions, ranking
about, 129

functions, SOAP
NEXT_SOAP_HEADER, 275
SOAP_HEADER, 325

functions, string
about, 136
ASCII, 141
BYTE_LENGTH, 152
BYTE_SUBSTR, 152
CHAR, 155
CHAR_LENGTH, 156
CHARINDEX, 157
COMPARE, 159
COMPRESS function, 160
CONNECTION_EXTENDED_PROPERTY, 163
CSCONVERT, 176
DECOMPRESS function, 195
DECRYPT function, 196
DIFFERENCE, 200
ENCRYPT function, 202
HASH function, 224

Index

1256 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

INSERTSTR, 240
LCASE, 247
LEFT, 247
LENGTH, 248
LOCATE, 253
LOWER, 256
LTRIM, 256
NCHAR, 268
PATINDEX, 279
READ_CLIENT_FILE, 292
REPEAT, 308
REPLACE, 309
REPLICATE, 310
REVERSE, 311
RIGHT, 313
RTRIM, 317
SIMILAR, 323
SORTKEY, 326
SOUNDEX, 329
SPACE, 329
STR, 336
STRING, 337
STRTOUUID, 338
STUFF, 339
SUBSTRING, 340
TO_CHAR, 347
TO_NCHAR, 348
TRIM, 353
UCASE, 356
UNICODE, 357
UNISTR, 357
UPPER, 359
UUIDTOSTR, 361
WRITE_CLIENT_FILE, 368
XMLAGG, 370
XMLCONCAT, 371
XMLELEMENT, 372
XMLFOREST, 374
XMLGEN, 375

functions, system
DATALENGTH, 179
DB_EXTENDED_PROPERTY, 189
DB_ID, 193
DB_NAME, 193
DB_PROPERTY, 194
EVENT_CONDITION, 207
EVENT_CONDITION_NAME, 208
EVENT_PARAMETER, 209

ISENCRYPTED, 242
NEXT_CONNECTION, 270
NEXT_DATABASE, 271
PROPERTY, 284
PROPERTY_DESCRIPTION, 283
PROPERTY_NAME, 286
PROPERTY_NUMBER, 287
SUSER_ID, 343
SUSER_NAME, 344
TSEQUAL, 355
USER_ID, 359
USER_NAME, 360

functions, text and image
about, 139
TEXTPTR, 346

fuzzy searches
CONTAINS search condition, 47

G
geometries

troubleshooting using st_geometry_dump, 1108
GET DATA statement

about, 708
embedded SQL syntax, 708

GET DESCRIPTOR statement
about, 710
embedded SQL syntax, 710

GET OPTION statement
about, 711
embedded SQL syntax, 711

GET_BIT function
syntax, 218

GET_IDENTITY function
syntax, 219

GETDATE function
query the current system date, 220
syntax, 220

getting
binary data from columns, 708
information from descriptor areas, 710
option values, 711

getting help
technical support, viii

GLOBAL AUTOINCREMENT
CREATE TABLE statement, 600
creating events using the CREATE EVENT
statement, 495

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1257

GLOBAL AUTOINCREMENT clause
CREATE TABLE statement, 601

global checksums
altering database settings, 388
creating databases with, 479
validating, 902

global temporary tables
CREATE TABLE statement, 596

global variables
@@identity, 73
alphabetical list, 70
definition, 67
triggers and @@identity, 73

global_database_id option
CREATE TABLE statement, 601

globally unique identifiers
SQL syntax for NEWID function, 268

goodness of fit
regression lines, 300

GOTO clause
WHENEVER statement [ESQL], 905

GOTO statement
about, 712
Transact-SQL syntax, 712

GRANT CONSOLIDATE statement
SQL Remote syntax, 713

GRANT CREATE ON statement
syntax, 718

GRANT PUBLISH statement
SQL Remote syntax, 714

GRANT REMOTE DBA statement
MobiLink syntax, 715
SQL Remote syntax, 715

GRANT REMOTE statement
SQL Remote syntax, 716

GRANT statement
about, 718
reviewing permissions, 1130
syntax, 718

GRANT USAGE ON SEQUENCE clause
GRANT statement, 722

granting
authorities, 718
CONSOLIDATE permissions, 713
permissions, 718
PUBLISH permissions, 714
REMOTE DBA authority, 715
REMOTE permissions, 716

GRAPHICAL_PLAN function
syntax, 221

GREATER function
syntax, 222

grid size
setting the grid size used for spatial calculations,
418, 583

GROUP BY clause
about, 724
CUBE operation, 725
GROUPING SETS operation, 724
ROLLUP operation, 725
SELECT statement, 829
syntax, 724

GROUP clause
ALTER SERVICE statement, 415
CREATE SERVICE statement, 572
GRANT statement, 720
REVOKE statement, 818

grouping
GROUP BY clause, 724
regular expressions, 18
statements in a BEGIN statement, 454

GROUPING function
syntax, 223

GROUPING SETS operation
GROUP BY clause, 724

groups
GRANT statement, 718

GUIDs
SQL syntax for NEWID function, 268
SQL syntax for STRTOUUID function, 338
SQL syntax for UUIDTOSTR function, 361
UNIQUEIDENTIFIER data type, 109

gzip utility
COMPRESS function, 160
DECOMPRESS function, 195

H
HANDLER clause

CREATE EVENT statement, 499
handling

errors in embedded SQL, 905
RAISERROR statement, 793

HASH function
syntax, 224

hashing

Index

1258 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

supported algorithms, 224
HAVING clause

search conditions, 32
SELECT statement, 829

HEADER clause
CREATE FUNCTION statement [web clients],
511
CREATE PROCEDURE statement [web clients],
546

help
technical support, viii

HELP statement
about, 727
Interactive SQL syntax, 727

hexadecimal
converting to and from hexadecimal values, 6
converting using CAST, CONVERT, HEXTOINT,
and INTTOHEX functions, 6

HEXADECIMAL clause
LOAD TABLE statement, 757
OUTPUT statement, 783
UNLOAD statement, 888

hexadecimal constants
(see also binary literals)
converting to and from hexadecimal values, 6
treated as binary, 6

hexadecimal escape sequences
in SQL strings, 7

hexadecimal strings
about, 225

HEXTOINT function
syntax, 225

high availability
ALTER MIRROR SERVER statement, 404
CREATE MIRROR SERVER statement, 532

histograms
creating using CREATE STATISTICS, 588
only partially updated by LOAD TABLE, 760
retrieving, 995
selectivity estimates, 57
SYSCOLSTAT system view, 1131
updating using CREATE STATISTICS, 588

HISTORY clause
ATTACH TRACING statement, 445
BACKUP statement, 450
RESTORE DATABASE statement, 810

HOLDLOCK clause
READTEXT statement [T-SQL], 797

HOLDLOCK table hint
FROM clause, 702

host variables
common element in SQL syntax, 381
declaring in embedded SQL, 627

hostvar
common element in SQL syntax, 381

HOUR function
syntax, 226

HOURS function
syntax, 227

HTML
CREATE SERVICE statement, 572

HTML_DECODE function
syntax, 228

HTML_ENCODE function
syntax, 229

HTTP
setting headers, 1074
setting options, 1075, 1079

HTTP functions
alphabetical list, 135

HTTP headers
returning names and values, 1002

HTTP system procedures
alphabetical list, 941

HTTP_BODY function
syntax, 230

HTTP_DECODE function
syntax, 231

HTTP_ENCODE function
syntax, 232

HTTP_HEADER function
syntax, 233

HTTP_RESPONSE_HEADER function
syntax, 235

HTTP_VARIABLE function
syntax, 236

HttpMethod special header
HTTP_HEADER function, 234

HttpQueryString special header
HTTP_HEADER function, 234

HttpStatus special header
sa_http_header_info system procedure, 1074

HttpURI special header
HTTP_HEADER function, 234

HttpVersion special header
HTTP_HEADER function, 234

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1259

hyphens
allowed syntax in a CONTAINS clause, 52
allowed syntax in a full text query string, 52

I
I/O

recalibrating the I/O cost model, 389
iAnywhere developer community

newsgroups, viii
IDENTIFIED BY clause

ALTER SPATIAL REFERENCE SYSTEM
statement, 416, 417
CREATE EXTERNLOGIN statement, 503
CREATE SPATIAL REFERENCE SYSTEM
statement, 579, 580
CREATE USER statement, 621
GRANT REMOTE DBA statement [MobiLink]
[SQL Remote], 716

IDENTIFIED BY password clause
ALTER USER statement, 441
CONNECT statement, 473

identifiers
about, 4
maximum length in SQL Anywhere, 4
syntax, 4

IDENTITY clause
ALTER TABLE statement , 429
CREATE TABLE statement, 601

IDENTITY column
@@identity, 73

IDENTITY function
syntax, 237

idle server
creating events using the CREATE EVENT
statement, 495

IdleTime event condition
about, 207

IdleTimeout property
setting with sa_server_option, 1067

IF EXISTS clause
DROP EVENT statement, 653
DROP EXTERNLOGIN statement, 654
DROP INDEX statement, 655
DROP MATERIALIZED VIEW statement, 657
DROP PROCEDURE statement, 659
DROP PUBLICATION statement [MobiLink]
[SQL Remote], 660

DROP SPATIAL REFERENCE SYSTEM
statement, 664
DROP SPATIAL UNIT OF MEASURE statement,
664
DROP SYNCHRONIZATION PROFILE
statement, 668
DROP TABLE statement, 670
DROP TRIGGER statement, 673
DROP VARIABLE statement, 675
DROP VIEW statement, 676

IF expressions
search conditions, 32
syntax, 15

IF NOT EXISTS clause
CREATE INDEX statement, 522
CREATE PUBLICATION statement [MobiLink]
[SQL Remote], 560
CREATE TABLE statement, 599
CREATE TEXT INDEX statement, 612

IF statement
about, 727, 729
syntax, 727
Transact-SQL syntax, 729

IF UPDATE clause
CREATE TRIGGER [Transact-SQL] statement,
619
in triggers, 614
in triggers in Transact-SQL, 619

IFNULL function
syntax, 238

image backups
creating using the BACKUP statement, 447

IMAGE data type
syntax, 108

image SQL functions
about, 139

images
reading from the database, 797

IMMEDIATE REFRESH clause
CREATE MATERIALIZED VIEW statement, 402,
529
CREATE TEXT INDEX statement, 612

immediate views
ALTER MATERIALIZED VIEW statement, 401
permissions not required to update underlying
tables, 403

importing data
into tables from files, 731

Index

1260 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

IN clause
CREATE FUNCTION statement, 516
CREATE FUNCTION statement [web clients],
510
CREATE MATERIALIZED VIEW statement, 529
CREATE PROCEDURE statement, 552
CREATE TABLE statement, 597
CREATE TEXT INDEX statement, 612
LOCK TABLE statement, 764

IN EXCLUSIVE MODE clause
LOCK TABLE statement, 765

IN search condition
syntax, 47

IN SHARE MODE clause
LOCK TABLE statement, 764

IN | ON clause
CREATE INDEX statement, 523

INCLUDE statement
about, 730
embedded SQL syntax, 730

INCREMENT BY clause
ALTER SEQUENCE statement, 412
CREATE SEQUENCE statement, 565

independent variables
regression line, 295

INDEX clause
ALTER INDEX statement, 399
ALTER TABLE statement, 429
CREATE TABLE statement, 600
FROM clause, 704
REORGANIZE TABLE statement, 808
VALIDATE statement, 902

INDEX FOR clause
DESCRIBE statement, 644

index hints
FROM clause, 704

INDEX ONLY clause
FROM clause, 704

INDEX_COL function
syntax, 138

INDEX_ESTIMATE function
syntax, 239

indexes
adding comments using the COMMENT statement,
469
ALTER INDEX statement, 399
automatically created, 524
built-in functions, 521

clustering using the ALTER INDEX statement,
399
compressing, 807
CREATE INDEX statement, 521
detecting index fragmentation using
sa_index_density, 1006
detecting skewed indexes using sa_index_density,
1006
DROP INDEX statement, 655
foreign keys, 524
functions, 523
levels, 1008
naming, 524
optimizing for OLAP workloads, 523
owner, 524
physical indexes recorded in SYSPHYSIDX
system view, 1154
primary keys, 524
renaming using the ALTER INDEX statement, 399
system views, 1143
table use, 524
unique, 521
VALIDATE statement, 902
views, 524, 1199
virtual, 521

INDICATOR clause
GET DESCRIPTOR statement [ESQL], 710
SET DESCRIPTOR statement [ESQL], 836

indicator variables
about, 381

indicator-variable
common element in SQL syntax, 381

indicators
comments, 74

initializing
databases using the CREATE DATABASE
statement, 477

INLINE clause
ALTER TABLE statement , 429
CREATE TABLE statement, 599

INNER JOIN clause
FROM clause SQL syntax, 696

INOUT clause
CREATE PROCEDURE statement, 553

INPUT clause
DESCRIBE statement, 641

INPUT INTO statement
Interactive SQL syntax, 731

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1261

INPUT statement
about, 731
cannot be used in stored procedures, 736
Interactive SQL syntax, 731
syntax, 731

INSENSITIVE clause
DECLARE CURSOR statement, 630
FOR statement, 692

INSERT clause
CREATE PUBLICATION statement [MobiLink]
[SQL Remote], 559
CREATE TRIGGER statement, 614
REVOKE statement, 818

INSERT INTO statement
syntax, 737

INSERT permission
GRANT statement, 719
REVOKE statement, 818

INSERT permission clause
GRANT statement, 721

INSERT statement
about, 737
setting database options, 740
syntax, 737
updating views, 740

inserting
BLOBs using the SET statement, 849
data using LOAD TABLE statement, 750
multi-row, 681
rows in bulk, 750
rows into tables, 737
rows using cursors, 792
wide inserts, 681

inserting BLOBs
using xp_read_file system procedure, 1115

INSERTSTR function
syntax, 240

INSTALL EXTERNAL OBJECT statement
about, 743
syntax, 743

INSTALL JAVA statement
about, 744
installing Java classes, 744
syntax, 744

install-dir
documentation usage, vi

installing
Java classes, 744

INSTEAD OF clause
CREATE TRIGGER statement, 614

INSTEAD OF triggers
CREATE TRIGGER statement, 614
dropped by CREATE OR REPLACE VIEW, 624

INT data type (see INTEGER data type)
INTEGER data type

syntax, 92
integers

generating table of , 1055
INTEGRATED LOGIN clause

REVOKE statement, 818
integrated logins

adding comments using the COMMENT statement,
469
GRANT statement, 719
REVOKE statement, 818

integrity
constraints in CREATE TABLE statement, 603

Interactive SQL
BYE statement syntax, 684
CLEAR statement syntax, 467
CONFIGURE statement syntax, 472
CONNECT statement syntax, 473
DESCRIBE CONNECTION statement syntax, 644
DESCRIBE statement syntax, 644
DISCONNECT statement syntax, 648
EXIT statement syntax, 684
HELP statement syntax, 727
INPUT statement syntax, 731
OUTPUT statement, 780
PARAMETERS statement syntax, 786
procedure profiling, 1060
QUIT statement syntax, 684
READ statement syntax, 795
RESUME statement unsupported, 812
return codes, 684
SET CONNECTION statement syntax, 835
SET OPTION statement syntax, 844
specifying encoding for INPUT statement, 732
specifying encoding for OUTPUT statement, 781
specifying encoding for READ statement, 795
START DATABASE statement, 857
START LOGGING statement syntax, 862
START SERVER statement syntax, 860
STOP LOGGING statement syntax, 870
SYSTEM statement syntax, 879

internal storage format

Index

1262 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

storage format, spatial data, 419, 584
international languages and character sets

substitution characters, 113
INTERSECT ALL clause

INTERSECT statement, 746
INTERSECT clause

INTERSECT statement, 746
setting database options, 746

INTERSECT DISTINCT clause
INTERSECT statement, 746

INTERSECT statement
about, 746
syntax, 746

intersecting
result of multiple select statements, 746

Interval event condition
about, 207

INTO clause
EXECUTE statement, 681
EXPLAIN statement [ESQL], 686
FETCH statement , 688
GET DATA statement , 708
GET OPTION statement [ESQL], 711
INPUT statement, 735
MERGE statement, 768
OUTPUT statement, 780
PUT statement [ESQL], 792
SELECT statement, 828

INTO CLIENT FILE clause
UNLOAD statement, 886

INTO DESCRIPTOR clause
PUT statement [ESQL], 792

INTO FILE clause
UNLOAD statement, 886

INTO LOCAL TEMPORARY TABLE clause
SELECT statement, 829

INTO VARIABLE clause
UNLOAD statement, 886

INTTOHEX function
syntax, 240

inverse flattening
defined, 1166

invoking
procedures using the CALL statement, 460

IOParallelism property
DB_EXTENDED_PROPERTY function, 189

IPAddressMonitorPeriod property
setting with sa_server_option, 1067

IS
logical operators description, 9
three-valued logic, 56

IS DISTINCT FROM search condition
syntax, 36

IS FALSE search condition
syntax, 54

IS NOT DISTINCT FROM search condition
syntax, 36

IS NOT NULL search condition
syntax, 54

IS NOT OF expressions
search conditions, 32

IS NULL search condition
syntax, 54

IS OF expressions
search conditions, 32

IS OF type-expression
search conditions, 33

IS TRUE search condition
syntax, 54

IS UNKNOWN search condition
syntax, 54

ISDATE function
syntax, 241

ISENCRYPTED function
syntax, 242

ISNULL function
syntax, 243

ISNUMERIC function
syntax, 243

ISOLATION LEVEL clause
OPEN statement, 778

isolation levels
cursors, 778
table hints, 702

isolation_level option
overriding in a MERGE statement, 771
overriding in a SELECT statement, 832
setting for DELETE statements, 639
setting for EXCEPT statement, 677
setting for INSERT statements, 740
setting for INTERSECT statement, 746
setting for UNION statement, 884
setting for UPDATE statements, 899

ISYSARTICLE
system table, 911

ISYSARTICLECOL

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1263

system table, 912
ISYSATTRIBUTE

system table, 912
ISYSATTRIBUTENAME

system table, 912
ISYSCAPABILITY

system table, 912
ISYSCHECK

system table, 912
ISYSCOLPERM

system table, 912
ISYSCOLSTAT

encrypted if database is encrypted, 912
encrypted if table encryption enabled, 912
loading statistics, 749
system table, 912

ISYSCONSTRAINT
system table, 913

ISYSDBFILE
system table, 913

ISYSDBSPACE
system table, 913

ISYSDBSPACEPERM
system table, 913

ISYSDEPENDENCY
system table, 913

ISYSDOMAIN
system table, 913

ISYSEVENT
system table, 913

ISYSEXTERNLOGIN
encrypted if database is encrypted, 914
encrypted if table encryption enabled, 914
system table, 914

ISYSFILE
system table, 914

ISYSFKEY
system table, 914

ISYSGROUP
system table, 914

ISYSHISTORY
system table, 914

ISYSIDX
system table, 914

ISYSIDXCOL
system table, 915

ISYSJAR
system table, 915

ISYSJARCOMPONENT
system table, 915

ISYSJAVACLASS
system table, 915

ISYSLOGINMAP
system table, 915

ISYSLOGINPOLICY
system table, 915

ISYSLOGINPOLICYOPTION
system table, 915

ISYSMIRROROPTION
system table, 916

ISYSMIRRORSERVER
system table, 916

ISYSMIRRORSERVEROPTION
system table, 916

ISYSMVOPTION
system table, 916

ISYSMVOPTIONNAME
system table, 916

ISYSOBJECT
system table, 916

ISYSOPTION
system table, 916

ISYSOPTSTAT
system table, 917

ISYSPHYSIDX
system table, 917

ISYSPROCEDURE
system table, 917

ISYSPROCPARM
system table, 917

ISYSPROCPERM
system table, 917

ISYSPROXYTAB
system table, 917

ISYSPUBLICATION
system table, 917

ISYSREMARK
system table, 918

ISYSREMOTEOPTION
system table, 918

ISYSREMOTEOPTIONTYPE
system table, 918

ISYSREMOTETYPE
system table, 918

ISYSREMOTEUSER
system table, 918

Index

1264 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ISYSSCHEDULE
system table, 918

ISYSSEQUENCE
system table, 918

ISYSSEQUENCEPERM
system table, 919

ISYSSERVER
adding servers, 567
remote servers for Component Integration
Services, 567
system table, 919

ISYSSOURCE
system table, 919

ISYSSPATIALREFERENCESYSTEM
system table, 919

ISYSSQLSERVERTYPE
system table, 919

ISYSSUBSCRIPTION
system table, 919

ISYSSYNC
system table, 919

ISYSSYNCPROFILE
system table, 920

ISYSSYNCSCRIPT
system table, 920

ISYSTAB
system table, 920

ISYSTABCOL
system table, 920

ISYSTABLEPERM
system table, 921

ISYSTEXTCONFIG
system table, 920

ISYSTEXTIDX
system table, 920

ISYSTEXTIDXTAB
system table, 920

ISYSTRIGGER
system table, 921

ISYSTYPEMAP
system table, 921

ISYSUNITOFMEASURE
system table, 921

ISYSUSER
encrypted if database is encrypted, 921
encrypted if table encryption enabled, 921
system table, 921

ISYSUSERAUTHORITY

system table, 921
ISYSUSERMESSAGE

system table, 921
ISYSUSERTYPE

system table, 922
ISYSVIEW

system table, 922
ISYSWEBSERVICE

adding servers, 415
adding services, 571
altering services, 415
system table, 922

iterating
over cursors, 691

J
JAR clause

INSTALL JAVA statement, 744
REMOVE JAVA statement, 807

JAR files
adding comments using the COMMENT statement,
469
installing, 744
removing, 806

Java
converting Java and SQL, 122
installing, 744
system tables, 938
user defined functions, 132

Java and SQL data type conversion
about, 122

Java classes
adding comments using the COMMENT statement,
469
loaded in the database, 1011
troubleshooting, 1011

Java data types
converting from SQL, 123
converting to SQL, 123

Java to SQL data type conversion
about, 122

Java VM
stopping, 869

JavaScript Object Notation
CREATE SERVICE statement, 572

jConnect
CREATE DATABASE statement, 482

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1265

JCONNECT clause
ALTER DATABASE statement, 387
CREATE DATABASE statement, 482

JDBC
data type conversion, 122
Java to SQL data type conversion, 123
SQL to Java data type conversion, 123
upgrading database components, 386

join operators
compatibility with ASE, 11

joins
ANSI equivalency, 311
deleting rows based on joins, 637
FROM clause SQL syntax, 696
updates, 893
updates based on, 894, 899

JSON
CREATE SERVICE statement, 572

K
Kerberos

adding comments using the COMMENT statement,
469
case sensitivity of principals, 722
granting Kerberos login, 719
revoking KERBEROS LOGIN, 818

KERBEROS LOGIN clause
REVOKE statement, 818

Kerberos logins
GRANT statement, 719

KEY clause
ALTER DATABASE statement, 388
CREATE DECRYPTED DATABASE statement,
486
CREATE DECRYPTED FILE statement, 487
CREATE ENCRYPTED DATABASE statement,
491
CREATE ENCRYPTED FILE statement, 493
CREATE ENCRYPTED TABLE DATABASE
statement, 491
DROP DATABASE statement, 650
RESTORE DATABASE statement, 811
START DATABASE statement, 858

KEY JOIN clause
FROM clause SQL syntax, 696

keys
CREATE SEQUENCE statement, 565

keywords
how to use SQL reserved words in syntax, 1
list of SQL reserved words, 1
sa_reserved_words system procedure, 1052

kind tests
supported by openxml system procedure, 949

L
labels

for statements, 382
statements, 712

LANGUAGE C_ESQL32 clause
CREATE FUNCTION statement [external call],
507
CREATE PROCEDURE statement [external call],
540

LANGUAGE C_ESQL64 clause
CREATE FUNCTION statement [external call],
507
CREATE PROCEDURE statement [external call],
540

LANGUAGE C_ODBC32 clause
CREATE FUNCTION statement [external call],
507
CREATE PROCEDURE statement [external call],
540

LANGUAGE C_ODBC64 clause
CREATE FUNCTION statement [external call],
507
CREATE PROCEDURE statement [external call],
540

LANGUAGE CLR clause
CREATE FUNCTION statement [external call],
507
CREATE PROCEDURE statement [external
procedures], 540

language elements
syntax, 1

LANGUAGE JAVA clause
CREATE FUNCTION statement [external call],
508
CREATE PROCEDURE statement [external
procedures], 541

LANGUAGE PERL clause
CREATE FUNCTION statement [external call],
508

Index

1266 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

CREATE PROCEDURE statement [external
procedures], 541

LANGUAGE PHP clause
CREATE FUNCTION statement [external call],
508
CREATE PROCEDURE statement [external
procedures], 541

large binary objects
getting from columns, 708

large databases
index storage, 523

LAST clause
FETCH statement , 689

LAST USER clause
CREATE TABLE statement, 596

LAST USER special value
syntax, 62

LAST_VALUE function
syntax, 244

lateral derived tables
FROM clause outer references, 700

LCASE function
syntax, 247

leap years
about, 101

LEAVE statement
about, 748
syntax, 748

LEFT function
syntax, 247

LEFT OUTER JOIN clause
FROM clause SQL syntax, 696

LENGTH clause
GET DESCRIPTOR statement [ESQL], 710
SET DESCRIPTOR statement [ESQL], 836

LENGTH function
syntax, 248

LESSER function
syntax, 249

LIKE search condition
case-sensitivity, 41
collations, 41
compared to REGEXP and SIMILAR TO, 37
pattern length, 40
syntax, 39

LIKE, REGEXP, and SIMILAR TO search conditions
about, 37

LIMIT clause

ATTACH TRACING statement, 446
SELECT statement, 828

limiting the number of rows returned
about, 825

limits
(see also limitations)

line interpretation, spatial data
planar type, 582
round-earth type, 582

LINEAR UNIT OF MEASURE clause
ALTER SPATIAL REFERENCE SYSTEM
statement, 418
CREATE SPATIAL REFERENCE SYSTEM
statement, 581

LIST function
syntax, 250

lists
LIST function syntax, 250
sa_split_list system procedure, 1082

literal strings (see string literals)
literals

about, 6
LivenessTimeout property

setting with sa_server_option, 1067
LOAD STATISTICS statement

about, 749
syntax, 749

LOAD TABLE statement
about, 750
syntax, 750
using with database mirroring, 760

loading
bulk inserts, 750
cost models, 1013
fails if table has an immediate text index, 759
fails if table referenced by an immediate views,
759
LOAD TABLE statement, 750
loading data from a file on the client computer, 752
loading data from a file on the database server
computer, 751
loading data from a specified value, 752

loading data
multibyte character sets, 757

LOCAL DATABASE clause
ATTACH TRACING statement, 445

local temporary tables
creating, 633

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1267

creating using the CREATE LOCAL
TEMPORARY TABLE statement, 525

local variables
definition, 67
syntax, 68

LOCATE function
syntax, 253

LOCATION clause
ALTER EXTERNAL ENVIRONMENT statement,
396

LOCK FEATURE statement
about, 763
syntax, 763

LOCK TABLE statement
about, 764
syntax, 764

locked accounts
determining cause, 1001

locked option
login policies, 526

locking
blocks, 964
features, 763
tables, 764

locks
displaying, 1014
types, 1015

log files
allocating space using ALTER DBSPACE, 391
analyzing the request log using
sa_get_request_profile, 996
analyzing the request log using
sa_get_request_times, 997
determining available space, 986

LOG function
syntax, 254

LOG10 function
syntax, 255

LogDiskSpace system event
example, 208

logfile option
ALTER MIRROR SERVER statement, 406
CREATE MIRROR SERVER statement, 534

LogFreePercent event condition
about, 207

LogFreeSpace event condition
about, 207

logging

deadlocks, 1067
START LOGGING statement, 862
STOP LOGGING statement, 870
updating columns without, 910

logical operators
syntax, 9
three-valued logic, 56

login policies
adding comments using the COMMENT statement,
469
ALTER LOGIN POLICY statement, 400
CREATE LOGIN POLICY statement, 526
default login policy, 526
DROP LOGIN POLICY statement, 656
locked option, 526
max_connections option, 526
max_days_since_login option, 526
max_failed_login_attempts option, 526
max_non_dba_connections, 526
password_expiry_on_next_login option, 526
password_grace_time option, 526
password_life_time option, 526

LOGIN POLICY
ALTER USER statement, 441

LOGIN POLICY clause
CREATE USER statement, 621

logins
assigning for remote servers, 503
disabling connections to a server, 1060
dropping for remote servers, 653
obtaining status, 1001

LogSize event condition
about, 207

LONG BINARY data type
syntax, 109

LONG BIT VARYING data type (see LONG
VARBIT data type)
long column names

retrieving, 642
LONG NAMES clause

DESCRIBE statement, 642
LONG NVARCHAR data type

describing, 81
syntax, 81

LONG VARBIT data type
syntax, 98

LONG VARCHAR data type
syntax, 81

Index

1268 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

LOOP clause
LOOP statement, 766

LOOP statement
about, 766
syntax, 766

looping
over cursors, 691

lossy conversions
about, 113

LOWER function
syntax, 256

lowercase strings
LCASE function, 247
LOWER function, 256

LTRIM function
syntax, 256

M
MANUAL REFRESH clause

CREATE MATERIALIZED VIEW statement, 403,
529
CREATE TEXT INDEX statement, 612

manual views
ALTER MATERIALIZED VIEW statement, 401

MAPI
extended system procedures, 942
MAPI and SMTP system procedures, 1119
return codes for MAPI and SMTP system
procedures, 942
starting email sessions, 1121
stopping email sessions, 1124

MAPI and SMTP system procedures
return codes, 942

MATCH clause
ALTER TABLE statement , 429
CREATE TABLE statement, 604

MATCH FULL clause
CREATE TABLE statement, 605

MATCH SIMPLE clause
CREATE TABLE statement, 605

match types
referential integrity, 604

MATCH UNIQUE FULL clause
CREATE TABLE statement, 605

MATCH UNIQUE SIMPLE clause
CREATE TABLE statement, 605

MATERIALIZED VIEW clause

TRUNCATE statement, 881
VALIDATE statement, 902

MATERIALIZED VIEW OPTIMIZATION clause
DELETE statement, 639
EXCEPT statement, 677
INSERT statement, 740
INTERSECT statement, 746
SELECT statement, 832
UPDATE statement, 899

MATERIALIZED VIEW OPTIMIZATION option
MERGE statement, 771

materialized view properties
RefreshType property, 1021

materialized views
adding comments using the COMMENT statement,
469
ALTER INDEX statement, 399
ALTER MATERIALIZED VIEW statement, 401
altering materialized views owned by someone
else, 403
CREATE MATERIALIZED VIEW statement, 529
creation options stored in SYSMVOPTION, 1151
determining status, 1020
DROP MATERIALIZED VIEW statement, 657
listing all materialized views in the database, 1020
permissions required for immediate views, 403
querying using index hints, 704
querying using table hints, 702
setting isolation level for refreshing, 798
testing eligibility for becoming an immediate view,
1018
unloading using the UNLOAD statement, 885
validating indexes, 902

materialized-view-name
common element in SQL syntax, 381

materialized_view_optimization option
overriding in a SELECT statement, 832
setting for DELETE statements, 639
setting for EXCEPT statement, 677
setting for INSERT statements, 740
setting for INTERSECT clauses, 746
setting for INTERSECT statement, 746
setting for UNION statement, 884
setting for UPDATE statements, 899

mathematical expressions
arithmetic operators, 10

MAX function
syntax, 257

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1269

MAX WRITE clause
BACKUP statement, 451

max_connections option
login policies, 526

max_days_since_login option
login policies, 526

max_disconnected_time option
SET MIRROR OPTION statement, 838

max_failed_login_attempts option
login policies, 526

max_non_dba_connections option
login policies, 526

max_query_tasks option
overriding in a MERGE statement, 771
overriding in a SELECT statement, 832
setting for DELETE statements, 639
setting for EXCEPT statement, 677
setting for INSERT statements, 740
setting for INTERSECT statement, 746
setting for UNION statement, 884
setting for UPDATE statements, 899

max_retry_connect_time option
SET MIRROR OPTION statement, 838

maximum
date ranges, 101

MAXIMUM TERM LENGTH clause
ALTER TEXT CONFIGURATION statement, 436

MaxMultiProgrammingLevel property
setting with sa_server_option, 1068

MAXVALUE clause
ALTER SEQUENCE statement, 412
CREATE SEQUENCE statement, 566

MEDIAN function
syntax, 259

MEMBERSHIP IN GROUP clause
GRANT statement, 720
REVOKE statement, 818

memory
allocating for descriptor areas, 384

MERGE clause
ALTER SYNCHRONIZATION PROFILE
statement, 421

MERGE statement
about, 767
syntax, 767

merging
MERGE statement, 767

message control parameters

setting, 847
MESSAGE statement

about, 774
syntax, 774

MessageCategoryLimit property
setting with sa_server_option, 1068

messages
creating, 531
displaying, 774
dropping remote types, 661
dropping using the DROP MESSAGE statement,
658
MESSAGE statement, 774
SQL Remote altering remote types, 410
SQL Remote creating remote types, 562

messages windows
printing messages in, 791

metacharacters
list of metacharacters used in regular expressions,
18

METHODS clause
ALTER SERVICE statement, 415
CREATE SERVICE statement, 575

migrating databases
sa_migrate system procedure, 1026

MIME base64
decoding data, 146
encoding data, 147

MIN function
syntax, 261

minimum
date ranges, 101

MINIMUM TERM LENGTH clause
ALTER TEXT CONFIGURATION statement, 436

MinMultiProgrammingLevel property
setting with sa_server_option, 1068

MINUTE function
syntax, 262

MINUTES function
syntax, 262

MINVALUE clause
ALTER SEQUENCE statement, 412
CREATE SEQUENCE statement, 566

MIRROR clause
CREATE DATABASE statement, 483

mirror servers
adding comments using the COMMENT statement,
469

Index

1270 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

ALTER MIRROR SERVER statement, 404
altering with the ALTER MIRROR SERVER
statement, 404
changing with ALTER MIRROR SERVER
statement, 405
CREATE MIRROR SERVER statement, 532
creating with the CREATE MIRROR SERVER
statement , 532
defining with CREATE MIRROR SERVER
statement, 533
dropping with the DROP MIRROR SERVER
statement, 659

mirroring
dropping servers, 659

MirrorServerState property
DB_EXTENDED_PROPERTY function, 189

MirrorState property
DB_EXTENDED_PROPERTY function, 189

mixed storage format
storage format, spatial data, 419, 584

MobiLink
ALTER PUBLICATION statement, 409
ALTER SYNCHRONIZATION PROFILE
statement, 421
ALTER SYNCHRONIZATION SUBSCRIPTION
statement, 422
ALTER SYNCHRONIZATION USER statement,
425
CREATE PUBLICATION statement, 559
CREATE SYNCHRONIZATION PROFILE
statement, 590
CREATE SYNCHRONIZATION
SUBSCRIPTION statement, 591
CREATE SYNCHRONIZATION USER
statement, 594
DROP PUBLICATION statement, 660
DROP SYNCHRONIZATION PROFILE
statement, 668
DROP SYNCHRONIZATION SUBSCRIPTION
statement, 669
START SYNCHRONIZATION DELETE
statement, 864
START SYNCHRONIZATION SCHEMA
CHANGE statement, 866
STOP SYNCHRONIZATION DELETE statement,
873
STOP SYNCHRONIZATION SCHEMA
CHANGE statement, 877

MobiLink users
ALTER SYNCHRONIZATION USER statement,
425
CREATE SYNCHRONIZATION USER
statement, 594
DROP SYNCHRONIZATION USER statement,
670

MOD function
syntax, 264

money
money data types, 96

MONEY data type
syntax, 96

money data types
MONEY, 96
SMALLMONEY, 97

monitoring performance
execution time determination, 997

MONTH function
syntax, 265

MONTHNAME function
syntax, 266

MONTHS function
syntax, 266

multi-row fetches
FETCH statement, 689
OPEN statement, 778

multi-row inserts
about, 681

multibyte character sets
unloading data, 757, 888

multiple result sets
retrieving, 812

multiprogramming level
controlling automatic tuning, 1066
setting current value, 1067
setting maximum value, 1068
setting minimum value, 1068
viewing statistics, 1066

N
n-gram

ALTER TEXT CONFIGURATION statement, 436
NAME clause

GET DESCRIPTOR statement [ESQL], 710
names

column names, 14

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1271

NAMESPACE clause
CREATE FUNCTION statement [web clients],
513
CREATE PROCEDURE statement [web clients],
549

NATIONAL CHAR data type (see NCHAR data type)
NATIONAL CHAR VARYING data type (see
NVARCHAR data type)
NATIONAL CHARACTER data type (see NCHAR
data type)
NATIONAL CHARACTER VARYING data type
(see NVARCHAR data type)
native function calls

functions, 506
procedures, 539

native function interface
creating, 504

native procedure interface
creating, 536

NATURAL JOIN clause
FROM clause SQL syntax, 696

NCHAR COLLATION clause
collation tailoring, 482
CREATE DATABASE statement, 482

NCHAR data type
comparing with CHAR data type, 114
describing, 82
syntax, 82
use with the LIKE search condition, 43
use with the REGEXP search condition, 44
use with the SIMILAR TO search condition, 46
using DESCRIBE on an NCHAR column, 82

NCHAR function
syntax, 268

NCHAR VARYING data type (see NVARCHAR data
type)
NcharCollation property

DB_EXTENDED_PROPERTY function, 189
NEAR clause

CONTAINS search condition, 47
nesting

user-defined transactions using the BEGIN
TRANSACTION statement, 457

NEW clause
INSTALL EXTERNAL OBJECT statement, 743
INSTALL JAVA statement, 744

new line characters
in SQL strings, 7

NEW SUBSCRIBE BY clause
UPDATE statement, 895
UPDATE statement [SQL Remote] , 893

NEWID function
syntax, 268

newsgroups
technical support, viii

NEXT clause
FETCH statement , 688

NEXT_CONNECTION function
syntax, 270

NEXT_DATABASE function
syntax, 271

NEXT_HTTP_HEADER function
syntax, 272

NEXT_HTTP_RESPONSE_HEADER function
syntax, 273

NEXT_HTTP_VARIABLE function
syntax, 274

NEXT_SOAP_HEADER function
syntax, 275

NextScheduleTime property
DB_EXTENDED_PROPERTY function, 189

NO COPY clause
BACKUP statement, 450

NO INDEX clause
ALTER TABLE statement, 429
CREATE TABLE statement, 600
FROM clause, 704

NO RESULT SET clause
about, 539, 550, 554
CREATE PROCEDURE statement, 554
CREATE PROCEDURE statement [external
procedures], 539
CREATE PROCEDURE statement [T-SQL], 550

NO SCROLL clause
DECLARE CURSOR statement, 629
FOR statement, 692

NO SCROLL cursors
declaring, 628

NOLOCK table hint
FROM clause, 702

NONCLUSTERED clause
ALTER INDEX statement, 399

NOSTRIP clause
INPUT statement, 735

NOT
bitwise operators, 11

Index

1272 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

logical operators description, 9
three-valued logic, 56

NOT COMPRESSED clause
LOAD TABLE statement, 754

NOT DETERMINISTIC clause
CREATE FUNCTION statement, 504
CREATE FUNCTION statement [external
procedures], 505
CREATE FUNCTION statement [user defined],
518

NOT ENCRYPTED clause
ALTER MATERIALIZED VIEW statement, 402
LOAD TABLE statement, 754

NOT NULL clause
ALTER TABLE statement , 429
CREATE EXISTING TABLE statement, 501
CREATE TABLE statement, 600, 604

NOT TRANSACTIONAL clause
CREATE LOCAL TEMPORARY TABLE
statement, 525
CREATE TABLE statement, 598
DECLARE LOCAL TEMPORARY TABLE
statement, 633

NOTFOUND clause
WHENEVER statement [ESQL], 905

NOW function
syntax, 276

NTEXT data type
syntax, 83

NULL
about, 74
ASE compatibility, 76
ISNULL function, 243
NULL value, 75
returned by functions if a NULL argument is
specified, 127
set operators and NULL, 76
space allocated for NULL values, 75
three-valued logic, 75

NULL clause
ALTER TABLE statement , 429
CASE statement, 462
CASE statement [T-SQL], 464
CREATE DOMAIN statement, 489
CREATE TABLE statement, 596, 600

NULL constants
converting to NUMERIC, 118
converting to string types, 118

NULL values
domains, 489

NULLABLE clause
GET DESCRIPTOR statement [ESQL], 710

NULLIF function
about, 276
using with CASE expressions, 16

number
common element in SQL syntax, 381

NUMBER function
syntax, 277
updates, 893

number of rows
system views, 1173

numeric constants (see binary literals)
NUMERIC data type

converting from DOUBLE, 120
syntax, 93

numeric data types
about, 87
BIGINT, 88
BIT, 88
converting DOUBLE to NUMERIC, 120
DECIMAL, 89
DOUBLE, 90
FLOAT, 91
INTEGER, 92
NUMERIC, 93
REAL, 94
SMALLINT, 95
TINYINT, 96

numeric functions
alphabetical list, 134

NVARCHAR data type
describing, 83
syntax, 83
using DESCRIBE on an NVARCHAR column, 83

O
OBJECT_ID function

syntax, 138
OBJECT_NAME function

syntax, 138
ODBC

declaring static cursors, 628
OFFSET clause

GET DATA statement , 708

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1273

SELECT statement, 828
OLAP

CUBE operation, 725
GROUP BY clause, 724
GROUPING function, 223
GROUPING SETS operation, 724
ROLLUP operation, 725
WINDOW clause, 907

OLAP functions
AVG function, 144
COUNT function, 170
COUNT_BIG function, 172
COVAR_POP function, 173
CUME_DIST function, 178
DENSE_RANK function, 198
MAX function, 257
MEDIAN function, 259
MIN function, 261
PERCENT_RANK function, 280
RANK function, 290
REGR_AVGX function, 295
REGR_AVGY function, 296
REGR_COUNT function, 298
REGR_INTERCEPT function, 299
REGR_R2 function, 300
REGR_SLOPE function, 302
REGR_SXX function, 303
REGR_SXY function, 304
ROW_NUMBER function, 315
STDDEV function, 333
STDDEV_POP function, 333
STDDEV_SAMP function, 334
SUM function, 342
VAR_POP function, 362
VAR_SAMP function, 364

OLD KEY clause
CREATE ENCRYPTED FILE statement, 493
CREATE ENCRYPTED TABLE DATABASE
statement, 491

OLD SUBSCRIBE BY clause
UPDATE statement, 895
UPDATE statement [SQL Remote] , 893

ON clause
ALTER STATISTICS statement, 420
ALTER TRIGGER statement, 440
CREATE EVENT statement, 498
CREATE INDEX statement, 521
CREATE TEXT INDEX statement, 612

CREATE TRIGGER [Transact-SQL] statement,
619
DROP STATISTICS statement, 666
DROP TEXT INDEX statement, 672
MERGE statement, 769
REVOKE statement, 818
START DATABASE statement, 857
TRUNCATE TEXT INDEX statement, 883
VALIDATE statement, 902

ON COMMIT clause
CREATE LOCAL TEMPORARY TABLE
statement, 525
CREATE TABLE statement, 598
DECLARE LOCAL TEMPORARY TABLE
statement, 633

ON DATABASE clause
STOP DATABASE statement, 868

ON EXCEPTION RESUME clause
about, 555
CREATE FUNCTION statement [user defined],
518
CREATE PROCEDURE statement, 555

ON EXISTING clause
INSERT statement, 739

ON EXISTING ERROR clause
BACKUP statement, 449
behavior with DEFAULT columns, 739

ON EXISTING SKIP clause
behavior with DEFAULT columns, 739

ON phrase
search conditions, 32

ON SUBSCRIPTION clause
START SYNCHRONIZATION SCHEMA
CHANGE statement, 866

on_tsql_error option
and ON EXCEPTION RESUME clause, 555

online books
PDF, v

OPEN statement
about, 777
embedded SQL syntax, 777
syntax, 777
WITH HOLD cursors, 628, 777

opening cursors
OPEN statement, 777

OPENSTRING clause
example, 707
FROM clause, 700

Index

1274 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

openxml system procedure
list of supported metaproperties, 947
supported kind tests, 949
syntax, 946

operating systems
executing commands, 879
Unix, v
Windows, v
Windows CE, v
Windows Mobile, v

operational servers
ALTER MIRROR SERVER statement, 404
CREATE MIRROR SERVER statement, 532

operator precedence
full text search, 51
syntax, 12

operators
about, 8
arithmetic operators, 10
bitwise operators, 11
comparison operators, 8
logical operators description, 9
precedence of operators, 12
string operators, 10

optimization
avoiding using FORCE NO OPTIMIZATION
clause, 832
defining existing tables and, 501
forcing using FORCE OPTIMIZATION option,
832

optimization_goal option
overriding in a MERGE statement, 771
overriding in a SELECT statement, 832
setting for DELETE statements, 639
setting for EXCEPT statement, 677
setting for INSERT statements, 740
setting for INTERSECT statement, 746
setting for UNION statement, 884
setting for UPDATE statements, 899

optimization_level option
overriding in a MERGE statement, 771
overriding in a SELECT statement, 832
setting for DELETE statements, 639
setting for EXCEPT statement, 677
setting for INSERT statements, 740
setting for INTERSECT statement, 746
setting for UNION statement, 884
setting for UPDATE statements, 899

optimization_workload option
overriding in a MERGE statement, 771
overriding in a SELECT statement, 832
setting for DELETE statements, 639
setting for EXCEPT statement, 677
setting for INSERT statements, 740
setting for INTERSECT statement, 746
setting for UNION statement, 884
setting for UPDATE statements, 899

optimizer
CREATE STATISTICS statement, 588
explicit selectivity estimates, 57

optimizer plans
getting text specification, 686

optimizer statistics
dropping using the DROP STATISTICS statement,
666

optimizer tables
about, 922

OPTION clause
CREATE SYNCHRONIZATION
SUBSCRIPTION statement [MobiLink], 592
CREATE SYNCHRONIZATION USER, 595
DELETE statement, 639
EXCEPT statement, 677
INSERT statement, 740
INTERSECT statement, 746
MERGE statement, 771
SELECT statement, 832
UNION statement, 884
UPDATE statement, 899

options
getting values, 711
initial settings for sp_login_environment system
procedure, 1098
initial settings for sp_tsql_environment system
procedure, 1107
overriding, 1060
quoted_identifier and T-SQL compatibility, 31
setting, 840
setting in Interactive SQL, 472, 844
setting in Transact-SQL, 851
setting remote, 847
setting with sp_tsql_environment system
procedure, 1107
SYSOPTIONS consolidated view, 1200
system views, 1153
SYSUSEROPTIONS consolidated view, 1209

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1275

options watch list
configuring with sa_server_option, 1068

OptionWatchAction property
setting with sa_server_option, 1068

OptionWatchList property
setting with sa_server_option, 1068

OR
bitwise operators, 11
logical operators description, 9
three-valued logic, 56

OR REPLACE clause
CREATE FUNCTION statement, 504
CREATE FUNCTION statement [external
procedures], 505
CREATE FUNCTION statement [user defined],
517
CREATE FUNCTION statement [web clients],
510
CREATE MIRROR SERVER statement, 533
CREATE PROCEDURE statement, 552
CREATE PROCEDURE statement [external
procedures], 536
CREATE PROCEDURE statement [web clients],
544
CREATE SEQUENCE statement, 565
CREATE SPATIAL REFERENCE SYSTEM
statement, 579
CREATE SYNCHRONIZATION PROFILE
statement, 590
CREATE TRIGGER statement, 614
CREATE VARIABLE statement, 622
CREATE VIEW statement, 624

Oracle databases
migrating to SQL Anywhere using sa_migrate
system procedure, 1027

ORDER BY clause
about, 830
DELETE statement, 639
EXCEPT statement, 676
INTERSECT statement, 746
SELECT statement, 825
UPDATE statement, 898
UPDATE statement [SQL Remote] , 893
WINDOW clause, 908

ORDER clause
CREATE TRIGGER statement, 615
LOAD TABLE statement, 757
UNLOAD statement, 888

order of operations
SQL operator precedence, 12

order of SQL clauses
syntax conventions, 382

ORGANIZATION clause
ALTER SPATIAL REFERENCE SYSTEM
statement, 418
CREATE SPATIAL REFERENCE SYSTEM
statement, 581

original storage format
spatial data, 419, 584

OUT clause
CREATE PROCEDURE statement, 552

out of disk space
creating events using the CREATE EVENT
statement, 495

OUTER APPLY clause
FROM clause, 701

outer references
FROM clause, 700
lateral derived tables, 700

OUTPUT clause
CREATE PROCEDURE statement [T-SQL], 550
DESCRIBE statement, 642

OUTPUT statement
about, 780
Interactive SQL syntax, 780

output_log_send_limit
SQL Remote syntax, 847

output_log_send_now
SQL Remote syntax, 847

output_log_send_on_error
SQL Remote syntax, 847

overflow errors
AVG function, 145
SUM function, 342

owner
common element in SQL syntax, 381

OWNER.TABLE.COLUMN clause
DESCRIBE statement, 641

OwnerName property
sa_materialized_view_info system procedure, 1021

P
packages

installing Java classes, 744
removing Java classes, 806

Index

1276 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

PAGE SIZE clause
CREATE DATABASE statement, 482

page sizes
creating databases, 482

page usage
tables, 1087

page_timeout option
SET MIRROR OPTION statement, 838

parallel backups
BACKUP statement, 447

parameterized views
about, 625

parameters
Interactive SQL command files, 786

PARAMETERS statement
about, 786
Interactive SQL syntax, 786

PARTITION BY clause
WINDOW clause, 908

partner servers
ALTER MIRROR SERVER statement, 404
changing with ALTER MIRROR SERVER
statement, 405
CREATE MIRROR SERVER statement, 532
defining with CREATE MIRROR SERVER
statement, 533

PASSTHROUGH FOR clause
PASSTHROUGH statement [SQL Remote], 787

PASSTHROUGH FOR SUBSCRIPTION clause
PASSTHROUGH statement [SQL Remote], 787

passthrough mode
PASSTHROUGH statement (SQL Remote), 787
starting, 787
stopping, 787

PASSTHROUGH ONLY clause
PASSTHROUGH statement [SQL Remote], 787

PASSTHROUGH statement
SQL Remote syntax, 787

PASSTHROUGH STOP clause
PASSTHROUGH statement [SQL Remote], 787

password_expiry_on_next_login option
login policies, 526

password_grace_time option
login policies, 526

password_life_time option
login policies, 526

passwords
character set conversion, 442, 621, 722

maximum length, 442, 621, 722
sa_verify_password system procedure, 1096

PATINDEX function
syntax, 279

pattern length
LIKE search condition, 40

pattern matching
case-sensitivity, 41
collations, 41
LIKE search condition, 39
PATINDEX function, 279
pattern length, 40
REGEXP search condition, 43
SIMILAR TO search condition, 45

PCTFREE clause
CREATE LOCAL TEMPORARY TABLE
statement, 525
CREATE TABLE statement, 606
DECLARE LOCAL TEMPORARY TABLE
statement, 633
LOAD TABLE, 757

PCTFREE setting
ALTER TABLE statement, 426
CREATE LOCAL TEMPORARY TABLE syntax,
525
CREATE TABLE statement, 596
DECLARE LOCAL TEMPORARY TABLE
syntax, 633
LOAD TABLE syntax, 750

PDF
documentation, v

percent sign
comment indicator, 74

PERCENT_RANK function
syntax, 280

performance
compression statistics, 962
preallocating space, 391
recalibrating the database server, 386
recalibrating the I/O cost model, 389
updates, 894

PERL clause
INSTALL EXTERNAL OBJECT statement, 743

permissions
dbspaces, 719
disabled objects, 722
GRANT statement, 718
granting CONSOLIDATE, 713

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1277

granting PUBLISH, 714
granting REMOTE, 716
procedures, 719
revoking, 818
revoking ALL, 818
revoking ALTER, 818
revoking BACKUP, 818
revoking CONNECT, 818
revoking CREATE ON, 818
revoking DBA, 818
revoking DELETE, 818
revoking EXECUTE, 818
revoking for sequences, 819
revoking GROUP, 818
revoking INSERT, 818
revoking INTEGRATED LOGIN, 818
revoking KERBEROS LOGIN, 818
revoking MEMBERSHIP IN GROUP, 818
revoking PROFILE, 818
revoking REFERENCES, 818
revoking RESOURCE, 818
revoking SELECT, 818
revoking UPDATE, 818
revoking VALIDATE, 818
sequences, 719
SQL Remote REVOKE REMOTE statement, 817
SQL Remote revoking CONSOLIDATE, 814
SQL Remote revoking PUBLISH, 815
SQL Remote revoking REMOTE DBA, 816
SYSCOLAUTH view, 1196
SYSCOLPERM system view, 1130
SYSTABAUTH consolidated view, 1208
SYSTABLEPERM system view, 1177

PHP clause
INSTALL EXTERNAL OBJECT statement, 743

physical indexes
recorded in SYSPHYSIDX system view, 1154

PI function
syntax, 281

PLAN function
syntax, 282

planar model
ALTER SPATIAL REFERENCE SYSTEM
statement, 418
CREATE SPATIAL REFERENCE SYSTEM
statement, 582

plans
and cursors, 213, 221, 282, 351

example of saving a plan to a file, 222
EXPLANATION function, 213
getting text specification, 686
GRAPHICAL_PLAN function, 221
PLAN function, 282
TRACED_PLAN function, 351

policy options
altering using ALTER LOGIN POLICY statement,
400
altering using ALTER USER statement, 441

POLYGON FORMAT clause
ALTER SPATIAL REFERENCE SYSTEM
statement, 419
CREATE SPATIAL REFERENCE SYSTEM
statement, 584

polygon formats
Clockwise, 584
CounterClockwise, 584
EvenOdd, 584

polygon orientation
Clockwise, 584
CounterClockwise, 584
EvenOdd, 584

pooling
enabling connection pooling, 854

population covariance
about, 173

population variance
about, 362

position locks
sa_locks system procedure, 1015

positioned DELETE statement
syntax, 636

POWER function
syntax, 283

precedence
SQL operator precedence, 12

PRECEDING clause
WINDOW clause, 908

PRECISION clause
GET DESCRIPTOR statement [ESQL], 710
SET DESCRIPTOR statement [ESQL], 836

predicates
(see also search conditions)
about, 32
ALL search condition, 34
ANY search condition, 35
BETWEEN search condition, 37

Index

1278 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

comparison operators, 8
CONTAINS search condition, 47
EXISTS search condition, 54
explicit selectivity estimates, 57
IN search condition, 47
IS DISTINCT FROM, 36
IS NOT DISTINCT FROM, 36
IS NOT NULL search condition, 54
IS NULL search condition, 54
IS TRUE or FALSE search conditions, 54
IS UNKNOWN search condition, 54
LIKE search condition, 39
REGEXP search condition, 43
SIMILAR TO search condition, 45
SOME search condition, 35
SQL subqueries in, 34
syntax, 32
three-valued logic, 56

preferred option
ALTER MIRROR SERVER statement, 406
CREATE MIRROR SERVER statement, 534

PREFILTER EXTERNAL NAME clause
ALTER TEXT CONFIGURATION statement, 435,
437

prefilters
ALTER TEXT CONFIGURATION statement, 437
dropping using ALTER TEXT
CONFIGURATION statement, 437

PREFIX clause
ALTER TABLE statement , 429
CREATE TABLE statement, 599

prefix searches
CONTAINS search condition, 47

PREPARE statement
about, 788
embedded SQL syntax, 788

PREPARE TO COMMIT statement
about, 790
syntax, 790

prepared statements
dropping using the DROP STATEMENT
statement, 665
executing, 681

preparing
for two-phase commit, 790
statements, 788

PRESERVE clause

CREATE LOCAL TEMPORARY TABLE
statement, 525
DECLARE LOCAL TEMPORARY TABLE
statement, 633

PRIMARY KEY clause
ALTER INDEX statement, 399
ALTER TABLE statement , 429, 430
REORGANIZE TABLE statement, 808
VALIDATE statement, 902

PRIMARY KEY constraint clause
CREATE TABLE statement, 603

primary key locks
sa_locks system procedure, 1015

primary keys
ALTER INDEX statement, 399
clustering using the ALTER INDEX statement,
399
CREATE SEQUENCE statement, 565
generating unique values, 268
generating unique values using UUIDs, 268
integrity constraints in CREATE TABLE
statement, 603
order of columns in CREATE TABLE statement,
603
remote tables and the sp_remote_exported_keys
system procedure , 1100
remote tables and the sp_remote_imported_keys
system procedure, 1102
renaming using the ALTER INDEX statement, 399
UUIDs and GUIDs, 268

primary servers
changing with ALTER MIRROR SERVER
statement, 405
defining with CREATE MIRROR SERVER
statement, 533

primary tables
system views, 1139

PRINT statement
about, 791
Transact-SQL syntax, 791

printing
messages in the message window, 791

PRIOR clause
FETCH statement , 688

procedure calls
invoking using the CALL statement, 460

PROCEDURE clause
ALTER DATABASE statement, 387

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1279

CREATE PUBLICATION statement [MobiLink]
[SQL Remote], 559
DESCRIBE statement, 644

procedure parameters
listing in Interactive SQL, 644

procedure profiling
disabling from Interactive SQL, 1068
enabling from Interactive SQL, 1068
in Interactive SQL, 1060
sa_procedure_profile system procedure, 1043
summary of procedures, 1046
viewing in Interactive SQL, 1046

ProcedureProfiling property
setting with sa_server_option, 1068

procedures
adding comments using the COMMENT statement,
469
alphabetical list , 946
alphabetical list of system procedures, 946
altering using the ALTER PROCEDURE
statement, 407
compared to functions, 133
CREATE PROCEDURE statement, 550
creating external call interfaces, 536
creating in Transact-SQL, 550
creating native call interfaces, 536
creating SQL stored procedures, 552
creating web services, 543
dropping using the DROP PROCEDURE
statement, 659
executing in dynamic SQL, 678
executing stored in Transact-SQL, 683
exiting, 813
extended list, 942
GRANT statement, 719
invoking using the CALL statement, 460
native function calls, 539
RAISERROR statement, 793
replacing external procedure interface, 537
replacing user-defined procedures, 553
replacing web services, 544
replicating using the ALTER PROCEDURE
statement, 407
resuming execution of, 812
returning values from, 813
selecting from, 699
system, 941
Transact-SQL list, 944

variable result sets, 538, 554, 642, 789
product name

retrieving, 1114
PROFILE authority

GRANT statement, 718
REVOKE statement, 818

PROFILE authority clause
GRANT statement, 720

PROFILE clause
REVOKE statement, 818

ProfileFilterConn property
setting with sa_server_option, 1069

ProfileFilterUser property
setting with sa_server_option, 1069

profiling
PROFILE authority, 720

PROMPT clause
INPUT statement, 735

properties
CONNECTION_PROPERTY function, 164
DB_PROPERTY function, 194
PROPERTY function, 284

Properties property
DB_EXTENDED_PROPERTY function, 189

PROPERTY function
syntax, 284

PROPERTY_DESCRIPTION function
syntax, 283

PROPERTY_NAME function
syntax, 286

PROPERTY_NUMBER function
syntax, 287

proximity searches
CONTAINS search condition, 47

PROXY clause
CREATE FUNCTION statement [web clients],
514
CREATE PROCEDURE statement [web clients] ,
547

proxy procedures
creating, 543

proxy tables
CREATE TABLE statement, 598
creating using the CREATE EXISTING TABLE
statement, 501

PUBLIC clause
SET OPTION statement, 840

PUBLICATION clause

Index

1280 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

UPDATE statement, 895
UPDATE statement [SQL Remote] , 893

publications
ALTER PUBLICATION statement, 409
CREATE PUBLICATION statement, 559
DROP PUBLICATION statement, 660
UPDATE statement, 899
UPDATE statement (SQL Remote), 894

PUBLISH permissions
granting, 714
SQL Remote revoking, 815

publisher
address, 661
GRANT PUBLISH statement, 714
remote, 716
SQL Remote address, 562
SQL Remote addresses, 410

PunctuationSensitivity property
DB_EXTENDED_PROPERTY function, 189

PURGE clause
FETCH statement, 689

PUT statement
about, 792
embedded SQL syntax, 792

putting
rows into cursors, 792

Q
quantifiers

expression quantifiers, 18
QUARTER function

syntax, 288
queries

SELECT statement, 825
query block

common element in SQL syntax, 382
query-block

common element in SQL syntax, 382
query-expression

common element in SQL syntax, 382
QUIT statement

Interactive SQL syntax, 684
quitting

Interactive SQL, 684
QuittingTime property

setting with sa_server_option, 1069
quotation marks

compatibility with ASE, 31
database objects, 4
single vs. double, 31
SQL identifiers, 4

QUOTE clause
LOAD TABLE statement, 757
OUTPUT statement, 783
UNLOAD statement, 888

quoted_identifier option
setting with Transact-SQL SET statement, 851
T-SQL expression compatibility, 31

quotes
(see also quotation marks)

QUOTES clause
LOAD TABLE statement, 757
UNLOAD statement, 888

R
R-squared

regression lines, 300
RADIANS function

syntax, 288
RAISERROR clause

MERGE statement, 770, 771
RAISERROR statement

about, 793
syntax, 793

raising
RAISERROR statement, 793

RAND function
syntax, 289

random numbers
RAND function, 289

range
date type, 101

RANGE clause
WINDOW clause, 908

RANK function
syntax, 290

ranking functions
alphabetical list, 129
CUME_DIST function, 178
DENSE_RANK function, 198
PERCENT_RANK function, 280
RANK function, 290

RAW
CREATE SERVICE statement, 572

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1281

re-describing cursors
CREATE PROCEDURE statement [user defined],
538, 554

read committed
FROM clause, 702

READ COMMITTED clause
REFRESH MATERIALIZED VIEW statement,
798

read only
backups that do not require recovery, 451
defining read only mirror server, 533
locking tables, 764

read only scale out
ALTER MIRROR SERVER statement, 404
CREATE MIRROR SERVER statement, 532
dropping servers, 659
SET MIRROR OPTION statement, 837

READ statement
about, 795
Interactive SQL syntax, 795

read uncommitted
FROM clause, 702

READ UNCOMMITTED clause
REFRESH MATERIALIZED VIEW statement,
798

READ_CLIENT_FILE function
syntax, 292

READCLIENTFILE authority
GRANT statement, 718
REVOKE statement, 818

READCLIENTFILE authority clause
GRANT statement, 720

READCOMMITTED table hint
FROM clause, 702

READFILE authority
GRANT statement, 718
REVOKE statement, 818

READFILE authority clause
GRANT statement, 720

reading
text and image values from the database, 797

reading files
using xp_read_file, 1115

reading SQL statements from files
about, 795

READONLY clause
CREATE SERVER statement, 569

READPAST table hint

FROM clause, 702
ReadPK locks

sa_locks system procedure, 1015
READTEXT statement

about, 797
Transact-SQL syntax, 797

READUNCOMMITTED table hint
FROM clause, 702

REAL data type
syntax, 94

REBUILD clause
ALTER INDEX statement, 399

recalibrating cost models
about, 386

RECOMPILE clause
ALTER FUNCTION statement, 397
ALTER PROCEDURE statement, 407
ALTER VIEW statement, 443

RECOVER clause
BACKUP statement, 450

REFERENCES clause
ALTER TABLE statement , 429
CREATE TABLE statement, 604
REVOKE statement, 818

REFERENCES permission
GRANT statement, 719
REVOKE statement, 818

REFERENCES permission clause
GRANT statement, 721

REFERENCING clause
CREATE TRIGGER statement, 616

referential integrity
FROM clause, 699
match clause in CREATE TABLE statement, 604

REFRESH clause
ALTER TEXT INDEX statement, 439
CREATE TEXT INDEX statement, 612

REFRESH MATERIALIZED VIEW statement
about, 798
syntax, 798

REFRESH TEXT INDEX statement
syntax, 801

REFRESH TRACING LEVEL statement
about, 803
diagnostic tracing, 803
syntax, 803

REFRESH TRACING LEVELS statement
populating sa_diagnostic_tracing_level table, 935

Index

1282 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

refresh types
RefreshType property, 1021

refreshing
text index REFRESH TEXT INDEX, 801

refreshing materialized views
REFRESH clause, CREATE MATERIALIZED
VIEW statement, 402
REFRESH MATERIALIZED VIEWS statement,
798

RefreshType property
sa_materialized_view_info system procedure, 1021

REGEXP search condition
compared to LIKE and SIMILAR TO, 37
database collation and matching, 44
matching sub-character classes, 43
regular expressions, 18
syntax, 43

REGEXP_SUBSTR function
database collation and matching, 294
regular expressions, 18
syntax, 293

REGR_AVGX function
syntax, 295

REGR_AVGY function
syntax, 296

REGR_COUNT function
syntax, 298

REGR_INTERCEPT function
syntax, 299

REGR_R2 function
syntax, 300

REGR_SLOPE function
syntax, 302

REGR_SXX function
syntax, 303

REGR_SXY function
syntax, 304

REGR_SYY function
syntax, 306

regression functions
REGR_AVGX function, 295
REGR_AVGY function, 296
REGR_COUNT function, 298
REGR_INTERCEPT function, 299
REGR_R2 function, 300
REGR_SLOPE function, 302
REGR_SXX function, 303
REGR_SXY function, 304

REGR_SYY function, 306
regular expressions

about, 17
assertion examples, 26
database collations and matching, 38
examples, 28
list of assertions, 26
metacharacters, 18
REGEXP search condition, 18
REGEXP_SUBSTR function, 18, 293
regular expressions syntax, 18, 43
SIMILAR TO search condition, 45
special character classes, 21
supported quantifiers, 18
wildcard, grouping, and sets, 18

relationships
system views, 1139

RELATIVE clause
FETCH statement , 688

relative paths
INPUT statement, 731
READ statement , 795

RELEASE SAVEPOINT statement
about, 804
syntax, 804

releasing
savepoints, 804

REMAINDER function
syntax, 307

RememberLastPlan property
setting with sa_server_option, 1069

RememberLastStatement property
setting with sa_server_option, 1069

REMOTE clause
CREATE EVENT statement, 495

remote data access
disconnecting, 414
FORWARD TO statement, 695

REMOTE DBA authority
granting, 715

remote DBA permissions
SQL Remote revoking, 816

REMOTE LOGIN clause
CREATE EXTERNLOGIN statement, 503

remote message types
dropping, 661
SQL Remote altering, 410
SQL Remote creating, 562

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1283

remote options
SET REMOTE OPTION statement (SQL Remote),
847

REMOTE permissions
granting, 716
SQL Remote revoking, 817

remote procedures
creating, 552
creating in Transact SQL, 550
RESULT clause requirement, 555

REMOTE RESET statement
SQL Remote syntax, 805

remote servers
altering attributes using the ALTER SERVER
statement, 413
assigning logins for, 503
capabilities, determining using sp_servercaps, 1106
capabilities, SYSCAPABILITY system view, 1128
CREATE SERVER statement, 567
CREATE TABLE statement, 596
disconnecting, 414
dropping logins for remote servers, 653
dropping using the DROP SERVER statement, 662
sending SQL statements to, 695
SYSCAPABILITYNAME system view, 1129

remote tables
columns, 1099
CREATE TABLE statement, 598
foreign keys and the sp_remote_exported_keys
system procedure, 1100
foreign keys and the sp_remote_imported_keys
system procedure, 1102
listing using sp_remote_tables system procedure,
1105
primary keys and the sp_remote_exported_keys
system procedure, 1100
primary keys and the sp_remote_imported_keys
system procedure, 1102

remote users
SQL Remote REVOKE REMOTE statement, 817

remoteoption view
about, 1160

remoteoptiontype view
about, 1160

REMOVE EXTERNAL OBJECT statement
about, 806
syntax, 806

REMOVE JAVA statement

about, 806
syntax, 806

removing
Java classes, 806
permissions, 818

RENAME clause
ALTER DBSPACE statement , 391
ALTER DOMAIN statement, 393
ALTER INDEX statement, 399
ALTER SPATIAL REFERENCE SYSTEM
statement, 416
ALTER SYNCHRONIZATION SUBSCRIPTION
statement [MobiLink] , 423
ALTER TABLE statement , 432
ALTER TEXT INDEX statement, 439
RESTORE DATABASE statement, 810

renaming
columns, 432
columns using the ALTER TABLE statement, 426
constraints, 432
tables, 432
tables using the ALTER TABLE statement, 426

REORGANIZE TABLE statement
about, 807
syntax, 807

reorganizing tables
REORGANIZE TABLE, 807

REPEAT function
syntax, 308

REPEATABLE READ clause
REFRESH MATERIALIZED VIEW statement,
798

repeatable reads
FROM clause, 702

REPEATABLEREAD table hint
FROM clause, 702

REPLACE function
syntax, 309

replacing objects
sa_make_object, 1017

REPLICATE function
syntax, 310

replication
ALTER TABLE statement, 426

request log
processing with sa_get_request_times profile
procedure, 1070

request logging

Index

1284 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

analyzing the request log with
sa_get_request_profile, 996
analyzing the request log with
sa_get_request_times, 997
enabling from Interactive SQL, 1071

request timing
sa_performance_diagnostics system procedure,
1038

RequestFilterConn property
setting with sa_server_option, 1070

RequestFilterDB property
setting with sa_server_option, 1070

RequestLogFile property
client statement caching, 1070
setting with sa_server_option, 1070

RequestLogging property
setting with sa_server_option, 1071

RequestLogMaxSize property
setting with sa_server_option, 1071

RequestLogNumFiles property
setting with sa_server_option, 1071

requests
obtaining timing information, 1038

RequestTiming property
setting with sa_server_option, 1072

reserved words
how to use in syntax, 1
sa_reserved_words system procedure, 1052
SQL Anywhere Server, 1
using as identifiers, 31

RESET LOGIN POLICY clause
ALTER USER statement, 442

RESIGNAL statement
about, 809
syntax, 809

resignaling
exceptions, 809

RESOLVE clause
CREATE TRIGGER statement, 614

resolving conflicts
CONFLICT function for SQL Remote, 161

RESOURCE authority
GRANT statement, 718
REVOKE statement, 818

RESOURCE authority clause
GRANT statement, 720

RESOURCE clause
REVOKE statement, 818

RESTART WITH clause
ALTER SEQUENCE statement, 412

RESTORE DATABASE statement
about, 810
syntax, 810

RESTORE DEFAULT CALIBRATION clause
ALTER DATABASE statement, 387

restoring
databases from archives, 810

RESULT clause
CREATE PROCEDURE statement, 554
CREATE PROCEDURE statement [external
procedures], 538

result sets
resuming execution of procedures, 812
retrieving multiple result sets, 812
selecting from stored procedures, 699
shape of, 642
unloading using the UNLOAD statement, 885
variable, 538, 554, 642, 789

RESUME statement
about, 812
not supported in Interactive SQL, 812
syntax, 812

resuming
execution of procedures, 812

retrieving
long column names, 642
multiple result sets, 812

retrieving dates and times from the database
about, 100

return codes
EXIT statement [Interactive SQL], 684
MAPI and SMTP system procedures, 942

RETURN statement
about, 813
syntax, 813

RETURNED_LENGTH clause
GET DESCRIPTOR statement [ESQL], 710

returning
values from procedures, 813

RETURNS clause
CREATE FUNCTION statement, 504, 516
CREATE FUNCTION statement [web clients],
511

REVERSE function
syntax, 311

REVOKE BACKUP statement

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1285

syntax, 818
REVOKE CONNECT statement

syntax, 818
REVOKE CONSOLIDATE statement

SQL Remote SQL syntax, 814
REVOKE CREATE ON statement

syntax, 818
REVOKE DBA statement

syntax, 818
REVOKE EXECUTE clause

REVOKE statement, 818
REVOKE GROUP statement

syntax, 818
REVOKE INTEGRATED LOGIN statement

syntax, 818
REVOKE KERBEROS LOGIN statement

syntax, 818
REVOKE MEMBERSHIP IN GROUP statement

syntax, 818
REVOKE PROFILE statement

syntax, 818
REVOKE PUBLISH statement

SQL Remote SQL syntax, 815
REVOKE REMOTE DBA statement

SQL Remote SQL syntax, 816
REVOKE REMOTE statement

SQL Remote SQL syntax, 817
REVOKE RESOURCE statement

syntax, 818
REVOKE statement

about, 818
syntax, 818

REVOKE VALIDATE statement
syntax, 818

revoking
REVOKE statement, 818
SQL Remote CONSOLIDATE permissions, 814
SQL Remote PUBLISH permissions, 815
SQL Remote remote DBA permissions, 816
SQL Remote REMOTE permissions, 817

revoking consolidate permissions
SQL Remote CONSOLIDATE permissions, 814

revoking consolidated permissions
REVOKE statement, 818

REWRITE function
syntax, 311

RI constraints

adding, deleting, or altering using the ALTER
TABLE statement, 426
ALTER TABLE statement, 596
not renamed when underlying index is renamed,
399
renaming using ALTER TABLE statement, 432

RIGHT function
syntax, 313

RIGHT OUTER JOIN clause
FROM clause SQL syntax, 696

role names
foreign keys in CREATE TABLE statement, 604

role-name
common element in SQL syntax, 382

ROLLBACK statement
about, 820
syntax, 820

ROLLBACK TO SAVEPOINT statement
about, 821
syntax, 821

ROLLBACK TRANSACTION statement
about, 822
Transact-SQL syntax, 822

ROLLBACK TRIGGER statement
about, 823
syntax, 823

rolling back
transactions, 820, 822, 824
transactions to savepoints, 821
triggers, 823

ROLLUP operation
GROUP BY clause, 725
GROUPING function, 223
WITH ROLLUP clause, 725

ROOT clause
CREATE SERVER statement, 569

round earth model
ALTER SPATIAL REFERENCE SYSTEM
statement, 418
CREATE SPATIAL REFERENCE SYSTEM
statement, 582

ROUND function
syntax, 314

round-off errors
about, 87

rounding errors
about, 87
DOUBLE, 90

Index

1286 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

FLOAT, 91
REAL, 94

Row Constructor algorithm
DUMMY system table, 911

ROW DELIMITED BY clause
LOAD TABLE statement, 757
UNLOAD statement, 888

row generator
RowGenerator table (dbo), 938
sa_rowgenerator system procedure, 1054

row limitation clause
DELETE statement, 638
SELECT statement, 828
UPDATE statement, 897

row limits
about, 825

row locks
sa_locks system procedure, 1015

ROW_NUMBER function
syntax, 315

rowcount option
setting with Transact-SQL SET statement, 851

RowGenerator
system table, 938

ROWID function
syntax, 316

rows
deleting all from a table, 881
deleting from cursors, 636
deleting from databases, 637
fetching from cursors, 687
inserting in bulk, 750
inserting into tables, 737
inserting using cursors, 792
limiting number returned, 825
selecting, 825
unloading using the UNLOAD statement, 885
updating, 895

ROWS clause
WINDOW clause, 908

RTRIM function
syntax, 317

rules
SQL language syntax, 1

S
sa_ansi_standard_packages system procedure

about, 952
sa_audit_string system procedure

syntax, 954
sa_char_terms system procedure

syntax, 954
sa_check_commit system procedure

syntax, 956
sa_clean_database system procedure

syntax, 957
sa_column_stats system procedure

syntax, 959
sa_conn_activity system procedure

syntax, 961
sa_conn_compression_info system procedure

syntax, 962
sa_conn_info system procedure

syntax, 964
sa_conn_list system procedure

syntax, 967
sa_conn_options system procedure

syntax, 968
sa_conn_properties system procedure

syntax, 969
sa_convert_ml_progress_to_timestamp system
procedure

syntax, 971
sa_convert_timestamp_to_ml_progress system
procedure

syntax, 971
sa_copy_cursor_to_temp_table system procedure

syntax, 972
sa_db_info system procedure

syntax, 973
sa_db_list system procedure

syntax, 975
sa_db_properties system procedure

syntax, 975
sa_dependent_views system procedure

syntax, 977
sa_describe_cursor system procedure

syntax, 978
sa_describe_query system procedure

syntax, 980
sa_describe_shapefile system procedure

syntax, 984
sa_diagnostic_auxiliary_catalog table

about, 922
sa_diagnostic_blocking table

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1287

about, 923
sa_diagnostic_cachecontents table

about, 924
sa_diagnostic_connection table

about, 925
sa_diagnostic_cursor table

about, 926
sa_diagnostic_deadlock table

about, 928
sa_diagnostic_hostvariable table

about, 929
sa_diagnostic_internalvariable table

about, 929
sa_diagnostic_query table

about, 930
sa_diagnostic_request table

about, 932
sa_diagnostic_statement table

about, 934
sa_diagnostic_statistics table

about, 934
sa_diagnostic_tracing_level table

about, 935
sa_disable_auditing_type system procedure

syntax, 985
sa_disk_free_space system procedure

syntax, 986
sa_enable_auditing_type system procedure

syntax, 987
sa_eng_properties system procedure

syntax, 989
sa_external_library_unload system procedure

syntax, 990
sa_flush_cache system procedure

syntax, 990
sa_flush_statistics system procedure

syntax, 991
sa_get_bits system procedure

syntax, 991
sa_get_dtt system procedure

syntax, 993
sa_get_dtt_groupreads system procedure

syntax, 994
sa_get_histogram system procedure

syntax, 995
sa_get_request_profile system procedure

syntax, 996
sa_get_request_times system procedure

syntax, 997
sa_get_server_messages system procedure

syntax, 999
sa_get_table_definition system procedure

syntax, 1000
sa_get_user_status system procedure

syntax, 1001
sa_http_header_info system procedure

syntax, 1002
sa_http_php_page system procedure

syntax, 1003
sa_http_php_page_interpreted system procedure

syntax, 1003
sa_http_variable_info system procedure

syntax, 1005
sa_index_density system procedure

syntax, 1006
sa_index_levels system procedure

syntax, 1008
sa_install_feature system procedure

syntax, 1010
sa_java_loaded_classes system procedure

syntax, 1011
sa_list_cursors system procedure

syntax, 1012
sa_load_cost_model system procedure

syntax, 1013
sa_locks system procedure

syntax, 1014
sa_make_object system procedure

syntax, 1017
sa_materialized_view_can_be_immediate system
procedure

combining results with sa_materialized_view_info,
1023
syntax, 1018

sa_materialized_view_info system procedure
AvailForOptimization property, 1021
combining results with
sa_materialized_view_can_be_immediate, 1023
DataLastModified property, 1021
examples, 1023
OwnerName property, 1021
Status property, 1021
syntax, 1020
ViewName property, 1021

sa_migrate system procedure
syntax, 1026

Index

1288 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

sa_migrate_create_fks system procedure
syntax, 1028

sa_migrate_create_remote_fks_list system procedure
syntax, 1029

sa_migrate_create_remote_table_list system procedure
syntax, 1030

sa_migrate_create_tables system procedure
syntax, 1032

sa_migrate_data system procedure
syntax, 1033

sa_migrate_drop_proxy_tables system procedure
syntax, 1034

sa_mirror_server_status system procedure
syntax, 1035

sa_nchar_terms system procedure
syntax, 1037

sa_performance_diagnostics system procedure
syntax, 1038

sa_performance_statistics system procedure
syntax, 1041

sa_post_login_procedure system procedure
syntax, 1042

sa_procedure_profile system procedure
syntax, 1043

sa_procedure_profile_summary system procedure
syntax, 1045

sa_recompile_views system procedure
syntax, 1048

sa_refresh_materialized_views system procedure
syntax, 1049

sa_refresh_text_indexes system procedure
syntax, 1049

sa_remove_tracing_data system procedure
syntax, 1050

sa_report_deadlocks system procedure
syntax, 1051

sa_reserved_words system procedure
syntax, 1052

sa_reset_identity system procedure
syntax, 1053

sa_rowgenerator system procedure
syntax, 1054

sa_save_trace_data system procedure
syntax, 1056

sa_send_udp system procedure
syntax, 1056

sa_server_messages system procedure
syntax, 1057

sa_server_option system procedure
syntax, 1060

sa_set_http_header system procedure
syntax, 1074

sa_set_http_option system procedure
syntax, 1075

sa_set_soap_header system procedure
syntax, 1079

sa_set_tracing_level system procedure
syntax, 1080

sa_snapshots system procedure
syntax, 1081

sa_split_list system procedure
syntax, 1082

sa_statement_text system procedure
syntax, 1085

sa_table_fragmentation system procedure
syntax, 1085

sa_table_page_usage system procedure
syntax, 1087

sa_table_stats system procedure
syntax, 1087

sa_text_index_stats system procedure
syntax, 1089

sa_text_index_vocab system procedure
syntax, 1090

sa_text_index_vocab_nchar system procedure
syntax, 1092

sa_transactions system procedure
syntax, 1093

sa_unload_cost_model system procedure
syntax, 1094

sa_validate system procedure
syntax, 1095

sa_verify_password system procedure
syntax, 1096

sample covariance
about, 175

sample variance
about, 364

samples-dir
documentation usage, vi

SAVE OPTION VALUES clause
ALTER TEXT CONFIGURATION statement, 437

SAVE TRANSACTION statement
about, 824
Transact-SQL syntax, 824

SAVEPOINT statement

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1289

about, 824
syntax, 824

savepoint-name
common element in SQL syntax, 382

savepoints
creating, 824
releasing, 804
rolling back to savepoints, 821

SCALE clause
GET DESCRIPTOR statement [ESQL], 710
SET DESCRIPTOR statement [ESQL], 836

scale out
dropping servers, 659
SET MIRROR OPTION statement, 837

SCHEDULE clause
CREATE EVENT statement, 498

scheduled events
triggering, 880
WAITFOR statement, 903

scheduling
creating events using the CREATE EVENT
statement, 495
events using the ALTER EVENT statement, 394
events using the CREATE EVENT statement, 495
WAITFOR, 903

schema locks
sa_locks system procedure, 1015

schemas
creating, 563
default system views, 1127
system tables, 911

SCRIPT VERSION clause
CREATE SYNCHRONIZATION
SUBSCRIPTION statement [MobiLink], 593

scripted upload
converting progress values to a TIMESTAMP, 971
converting progress values to an UNSIGNED
BIGINT, 971
CREATE PUBLICATION syntax, 559

SCROLL clause
DECLARE CURSOR statement, 629
FOR statement, 692

SCROLL cursors
declaring, 628

search conditions
(see also predicates)
about, 32
ALL, 34

ANY, 35
BETWEEN, 37
CONTAINS, 47
EXISTS, 54
explicit selectivity estimates, 57
IN, 47
IS DISTINCT FROM, 36
IS NOT DISTINCT FROM, 36
IS NOT NULL, 54
IS NULL, 54
IS TRUE or FALSE search conditions, 54
IS UNKNOWN search condition, 54
LIKE, 39
REGEXP, 43
SIMILAR TO, 45
SOME, 35
subqueries in, 34
syntax, 32
three-valued logic, 56
truth value, 54

search-condition
common element in SQL syntax, 382

SECOND function
syntax, 318

SECONDS function
syntax, 319

SECURE clause
ALTER SERVICE statement, 415
CREATE SERVICE statement, 577

secured features
changing with sa_server_option, 1072

SecureFeatures property
setting with sa_server_option, 1072

security
replication, 715
SQL Remote replication, 816

SELECT
converting T-SQL, 366

SELECT clause
REVOKE statement, 818

select from DML
FROM clause, 702

select list
describing cursors, 641

select list clause
SELECT statement, 828

SELECT LIST FOR clause
DESCRIBE statement, 641

Index

1290 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

SELECT permission
GRANT statement, 719
REVOKE statement, 818

SELECT permission clause
GRANT statement, 721

SELECT statement
about, 825
selecting from stored procedures, 699
setting database options, 832
syntax, 825
Transact-SQL syntax, 834

selecting
for unloading using the UNLOAD statement, 885
forming intersections, 746
forming set differences, 676
forming unions, 883
rows, 825

selectivity estimates
source of estimates, 205
user-defined, 57

self_recursion option
setting with Transact-SQL SET statement, 851

SEND AT clause
about, 713
GRANT CONSOLIDATE statement [SQL
Remote], 713
GRANT REMOTE statement [SQL Remote], 716
publish, 714

SEND EVERY clause
about, 713
GRANT CONSOLIDATE statement [SQL
Remote], 713
GRANT REMOTE statement [SQL Remote], 716

sending
SQL statements to remote servers, 695

sending dates and times to the database
about, 100

SENSITIVE clause
DECLARE CURSOR statement, 630
FOR statement, 693

sequence generator
adding comments using the COMMENT statement,
469
ALTER SEQUENCE statement, 411
CREATE SEQUENCE statement, 565
DROP SEQUENCE statement, 662
revoking usage permissions, 819

sequences

adding comments using the COMMENT statement,
469
ALTER SEQUENCE statement, 411
CREATE SEQUENCE statement, 565
CREATE TABLE statement, 600
DROP SEQUENCE statement, 662
granting usage permissions, 719
revoking usage permissions, 819
SELECT statement, 833

serializable
FROM clause, 702

SERIALIZABLE clause
REFRESH MATERIALIZED VIEW statement,
798

SERIALIZABLE table hint
FROM clause, 702

server options
setting with sa_server_option system procedure,
1060

server-option clause
ALTER MIRROR SERVER statement, 406
CREATE MIRROR SERVER statement, 534

ServerIdle system event
example, 775

servers
altering remote attributes using the ALTER
SERVER statement, 413
creating, 567
creating events for idle servers using the CREATE
EVENT statement, 495
dropping remote servers , 662
starting database, 860
stopping database, 871

services
adding comments using the COMMENT statement,
469
altering web services using the ALTER SERVICE
statement, 415
creating web, 571
dropping web services using the DROP SERVICE
statement, 663

SessionTimeout option
sa_set_http_option system procedure, 1075

SET clause
CREATE FUNCTION statement [web clients],
514
CREATE PROCEDURE statement [web clients],
547

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1291

UPDATE (positioned) statement, 891
UPDATE statement, 897
UPDATE statement [SQL Remote] , 893

SET CONNECTION statement
about, 835
embedded SQL syntax, 835
Interactive SQL syntax, 835

SET DESCRIPTOR statement
about, 836
embedded SQL syntax, 836

SET HIDDEN clause
ALTER EVENT statement, 394, 395
ALTER FUNCTION statement, 397
ALTER MATERIALIZED VIEW statement, 402
ALTER PROCEDURE statement, 407
ALTER VIEW statement, 443

SET MIRROR OPTION statement
about, 837
syntax, 837

set operators
EXCEPT statement, 676
INTERSECT statement, 746
NULL, 76
set difference, 676
set intersection, 746
set union, 883
UNION statement, 883

SET OPTION statement
about, 840, 844
Interactive SQL syntax, 844
syntax, 840
Transact-SQL syntax, 851

SET PARTNER FAILOVER clause
ALTER DATABASE statement, 388

SET PERMANENT statement
Interactive SQL syntax, 844

SET REMOTE OPTION statement
SQL Remote syntax, 847

SET SCRIPT VERSION clause
ALTER SYNCHRONIZATION SUBSCRIPTION
statement [MobiLink] , 424
START SYNCHRONIZATION SCHEMA
CHANGE statement, 866

SET SESSION AUTHORIZATION statement
syntax, 854

SET SQLCA statement
about, 848
embedded SQL syntax, 848

SET statement
about, 849, 851
Interactive SQL syntax, 844
syntax, 849
Transact-SQL syntax, 851

SET TEMPORARY OPTION statement
Interactive SQL syntax, 844
syntax, 840

SET_BIT function
syntax, 320

SET_BITS function
syntax, 321

sets
regular expressions, 18

setting
connections, 835
descriptor areas, 836
options, 840
options in Interactive SQL, 472, 844
options in Transact-SQL, 851
remote options, 847
SQLCAs, 848
users, 854
values of SQL variables, 849

SETUSER statement
about, 854
syntax, 854

SHARE BY ALL clause
CREATE TABLE statement, 598

shutting down
databases, 867

SIGN function
syntax, 322

SIGNAL statement
about, 856
syntax, 856

signaling
errors, 793, 856
exceptions, 809

SIMILAR function
syntax, 323

SIMILAR TO search condition
compared to REGEXP and LIKE, 37
database collation and matching, 46
matching sub-character classes, 45
regular expressions, 18
syntax, 45

SIN function

Index

1292 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

syntax, 324
SIZE clause

ATTACH TRACING statement, 445
skew

detecting in indexes using sa_index_density, 1006
SKIP clause

LOAD TABLE statement, 758
MERGE statement, 771

slash-asterisk
comment indicator, 74

slope
regression lines, 302

SMALLDATETIME data type
syntax, 104

SMALLINT data type
syntax, 95

SMALLMONEY data type
syntax, 97

SMTP
extended system procedures, 942
return codes, 942
starting email sessions, 1122
stopping email sessions, 1124

SMTP clause
GRANT CONSOLIDATE statement [SQL
Remote], 713

snap to grid
SNAP TO GRID clause, ALTER SPATIAL
REFERENCE SYSTEM statement, 418
SNAP TO GRID clause, CREATE SPATIAL
REFERENCE SYSTEM statement, 583

SNAPSHOT clause
REFRESH MATERIALIZED VIEW statement,
798

snapshot isolation
BEGIN SNAPSHOT statement, 454
sa_snapshots system procedure, 1081
sa_transactions system procedure, 1093
using with full text search, 612

snapshots
BEGIN SNAPSHOT statement, 454

SOAP
CREATE SERVICE statement, 572

SOAP functions
alphabetical list, 135

SOAP headers
setting, 1079

SOAP services

data typing, 572
SOAP system procedures

alphabetical list, 941
SOAP_HEADER function

syntax, 325
SOAPHEADER clause

CREATE FUNCTION statement [web clients],
511
CREATE PROCEDURE statement [web clients],
548

SOME search condition
syntax, 35

sort keys
generating using the SORTKEY function, 326

sorting
SORTKEY function, 326

SORTKEY function
collation tailoring, 326
syntax, 326

SOUNDEX function
syntax, 329

SP
statement indicators, 384

sp_addgroup system procedure
Adaptive Server Enterprise system procedures, 944

sp_addlogin system procedure
Adaptive Server Enterprise system procedures, 944

sp_addmessage system procedure
about, 531
Adaptive Server Enterprise system procedures, 944

sp_addtype system procedure
Adaptive Server Enterprise system procedures, 944

sp_adduser system procedure
Adaptive Server Enterprise system procedures, 944

sp_changegroup system procedure
Adaptive Server Enterprise system procedures, 944

sp_column_privileges catalog procedure
about, 945

sp_columns catalog procedure
about, 945

sp_dropgroup system procedure
Adaptive Server Enterprise system procedures, 944

sp_droplogin system procedure
Adaptive Server Enterprise system procedures, 944

sp_dropmessage system procedure
Adaptive Server Enterprise system procedures, 944

sp_droptype system procedure
Adaptive Server Enterprise system procedures, 944

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1293

sp_dropuser system procedure
Adaptive Server Enterprise system procedures, 944

sp_fkeys catalog procedure
about, 945

sp_get_last_synchronize_result system procedure
syntax, 1096

sp_getmessage system procedure
Adaptive Server Enterprise system procedures, 944

sp_helptext system procedure
Adaptive Server Enterprise system procedures, 944

sp_login_environment system procedure
syntax, 1098

sp_password system procedure
Adaptive Server Enterprise system procedures, 944

sp_pkeys catalog procedure
about, 945

sp_remote_columns system procedure
syntax, 1099

sp_remote_exported_keys system procedure
syntax, 1100

sp_remote_imported_keys system procedure
syntax, 1102

sp_remote_primary_keys system procedure
syntax, 1104

sp_remote_tables system procedure
syntax, 1105

sp_servercaps system procedure
syntax, 1106

sp_special_columns catalog procedure
about, 945

sp_sproc_columns catalog procedure
about, 945

sp_statistics catalog procedure
about, 945

sp_stored_procedures catalog procedure
about, 945

sp_tables catalog procedure
about, 945

sp_tsql_environment system procedure
syntax, 1107

SPACE function
syntax, 329

spatial data
ALTER SPATIAL REFERENCE SYSTEM
statement, 416
CREATE SPATIAL REFERENCE SYSTEM
statement, 579

CREATE SPATIAL UNIT OF MEASURE
statement, 586
disassembling geometries, 1108
DROP SPATIAL REFERENCE SYSTEM
statement, 664
DROP SPATIAL UNIT OF MEASURE statement,
664
importing ESRI shapefiles, 755
ISYSSPATIALREFERENCESYSTEM system
table, 919
ISYSUNITOFMEASURE system table, 921
TREAT function, 352
troubleshooting invalid geometries, 1108

spatial reference systems
adding comments using the COMMENT statement,
469
installing predefined , 1010

special character classes
regular expressions, 21

special characters
allowed syntax in a full text query string, 52
SQL strings, 7
used in binary, 6
used in strings , 7

special tables
about, 911

special values
CURRENT DATABASE, 58
CURRENT DATE, 58
CURRENT PUBLISHER, 59
CURRENT REMOTE USER, 59
CURRENT TIME, 60
CURRENT TIMESTAMP, 60
CURRENT USER, 61
CURRENT UTC TIMESTAMP, 61
CURRENT_TIMESTAMP, 60
CURRENT_USER, 61
LAST USER, 62
NULL, 75
SQLCODE, 62
SQLSTATE, 63
syntax, 58
TIMESTAMP, 65
USER, 66
UTC TIMESTAMP, 66

special views
about, 1127

special-value

Index

1294 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

common element in SQL syntax, 382
Specification property

DB_EXTENDED_PROPERTY function, 189
SQL

alphabetical list of SQL Anywhere Server
statements, 384

SQL Anywhere
documentation, v

SQL Anywhere Developer Centers
finding out more and requesting technical support,
ix

SQL Anywhere Tech Corner
finding out more and requesting technical support,
ix

SQL descriptor area
INCLUDE statement, 730
inserting rows using cursors, 792

SQL descriptor areas
DESCRIBE statement, 641

SQL Flagger
SQLFLAGGER function, 331
testing a SQL statement for non-core extensions,
952

SQL functions
aggregate, 127
bit array, 128
data type conversion, 129
date and time, 129
HTTP, 135
image, 139
introduction, 127
miscellaneous, 134
numeric, 134
ranking, 129
return NULL if you specify NULL argument, 127
SOAP, 135
string, 136
system, 138
text, 139
types of functions, 127
user defined, 132

SQL keywords
list of reserved words, 1
sa_reserved_words system procedure, 1052

SQL language elements
about, 1

SQL Remote
articles SYSARTICLE, 1127

articles SYSARTICLECOL, 1128
consolidated views, 1202, 1203, 1204
creating subscriptions, 589
setting remote options, 847
system views, 1127, 1128, 1158, 1160, 1161

SQL Remote system views
article system view, 1127
SYSARTICLECOL, 1128
SYSPUBLICATION system view, 1158
SYSPUBLICATIONS consolidated view, 1202
SYSREMOTEOPTION, 1160
SYSREMOTEOPTIONS consolidated view, 1203
SYSREMOTEOPTIONTYPE, 1160
SYSREMOTETYPES consolidated view, 1203
SYSREMOTEUSER , 1161
SYSREMOTEUSERS consolidated view, 1204

SQL SECURITY clause
about, 506, 539, 554
CREATE FUNCTION statement [external
procedures], 506
CREATE FUNCTION statement [user defined],
517
CREATE PROCEDURE statement, 554
CREATE PROCEDURE statement [external
procedures], 539

SQL Server
migrating to SQL Anywhere using sa_migrate
system procedure, 1027

SQL standards
testing compliance, 331

SQL statements
alphabetical list of SQL Anywhere Server
statements, 384
documentation conventions, 381
installing Java classes, 744
sending to remote servers, 695

SQL syntax
ALL search condition, 34
alphabetical list of SQL Anywhere Server
statements, 384
alphabetical list of system procedures, 946
ANY search condition, 35
arithmetic operators, 10
BETWEEN search condition, 37
bitwise operators, 11
CASE expression, 15
column names, 14
comments, 74

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1295

comparison operators, 8
connection-level variables, 69
constants , 6
constants in expressions, 14
CONTAINS search condition, 47
CURRENT DATABASE special value, 58
CURRENT DATE special value, 58
CURRENT PUBLISHER special value, 59
CURRENT REMOTE USER special value, 59
CURRENT TIME special value, 60
CURRENT TIMESTAMP special value, 60
CURRENT USER special value, 61
CURRENT UTC TIMESTAMP special value, 61
CURRENT_TIMESTAMP special value, 60
CURRENT_USER special value, 61
documentation conventions, 381
EXISTS search condition, 54
expressions, 12
functions, 127
identifiers, 4
IF expressions, 15
IN search condition, 47
IS NOT NULL search condition, 54
IS NULL search condition, 54
IS TRUE or FALSE search condition, 54
keywords, 1
LAST USER special value, 62
LIKE search condition, 39
local variables, 68
logical operators, 9
NULL value, 75
operator precedence, 12
operators, 8
predicates, 32
REGEXP search condition, 43
search conditions, 32
SIMILAR TO search condition, 45
SOME search condition, 35
special values, 58
SQLCODE special value, 62
SQLSTATE special value, 63
string operators, 10
strings, 5
subqueries, 14
subqueries in search conditions, 34
three-valued logic, 56
TIMESTAMP special value, 65
Transact-SQL expression compatibility, 31

USER special value, 66
UTC TIMESTAMP special value, 66
variables, 67

SQL to Java data type conversion
about, 123

SQL variables
creating, 622
declaring, 635
dropping using the DROP VARIABLE statement,
675
setting values, 849

SQL/1999
testing SQL compliance, 331

SQL/19992
testing SQL compliance, 331

SQL/2003
testing SQL compliance, 331

SQL/2008
testing SQL compliance, 331

SQLCA
INCLUDE statement, 730

SQLCA clause
INCLUDE statement, 730

SQLCAs
setting, 848

SQLCODE
special value, 62

SQLDA
allocating memory for, 384
deallocating, 627
DESCRIBE statement, 641
EXECUTE statement, 681
getting information from, 710
inserting rows using cursors, 792
setting, 836
UPDATE (positioned) statement, 890

SQLDA clause
INCLUDE statement, 730

SQLDIALECT function
syntax, 330

SQLERROR clause
WHENEVER statement [ESQL], 905

SQLFLAGGER function
syntax, 331

SQLSetConnectAttr
using with MESSAGE TO CLIENT, 776

SQLSTATE
conformance with ISO/ANSI standard, 63

Index

1296 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

special value, 63
SQLWARNING clause

WHENEVER statement [ESQL], 905
SQRT function

syntax, 332
square brackets

database objects, 4
SQL identifiers, 4

square root function
SQRT function, 332

SRIDs
choosing a SRID when creating a spatial reference
system, 580

ST_GEOMETRY_COLUMNS
consolidated view, 1191

st_geometry_dump system procedure
syntax, 1108

ST_SPATIAL_REFERENCE_SYSTEMS
consolidated view, 1191

ST_UNITS_OF_MEASURE
consolidated view, 1194

standard deviation
STDDEV function, 333
STDDEV_POP function, 333
STDDEV_SAMP function, 334

START AT clause
DELETE statement, 638
SELECT statement, 828
UPDATE statement, 897

START DATABASE statement
about, 857
syntax, 857

START DATE clause
ALTER EVENT statement, 395
CREATE EVENT statement, 499

START ENGINE statement (deprecated) (see START
SERVER statement)
START EXTERNAL ENVIRONMENT statement

about, 860
syntax, 860

START JAVA statement
about, 861
syntax, 861

START LOGGING statement
about, 862
Interactive SQL syntax, 862

START SERVER statement
about, 860

Interactive SQL syntax, 860
START SUBSCRIPTION statement

SQL Remote syntax, 863
START SYNCHRONIZATION DELETE statement

MobiLink syntax, 864
START SYNCHRONIZATION SCHEMA CHANGE
statement

MobiLink syntax, 866
START TIME clause

ALTER EVENT statement, 395
CREATE EVENT statement, 498

START WITH clause
CREATE SEQUENCE statement, 565

starting
creating events using the CREATE EVENT
statement, 495
database servers, 860
databases, 857
external environments using START EXTERNAL
ENVIRONMENT statement, 860
Java VM using the START JAVA statement, 861
logging in Interactive SQL, 862
passthrough mode, 787
SQL Remote subscriptions during database
extraction, 805
subscriptions, 863

state information files
ALTER MIRROR SERVER statement, 406
CREATE MIRROR SERVER statement, 534

state_file option
ALTER MIRROR SERVER statement, 406
CREATE MIRROR SERVER statement, 534

statement label
common element in SQL syntax, 382

statement labels
GOTO Transact-SQL statement, 712

statement syntax
alphabetical list of SQL Anywhere Server
statements, 384
documentation conventions, 381

statement-list
common element in SQL syntax, 382

statements
alphabetical list of SQL Anywhere Server
statements, 384
dropping prepared statements, 665
executing prepared, 681
grouping in the BEGIN statement, 454

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1297

preparing, 788
static cursors

declaring, 628
statistics

CREATE STATISTICS statement, 588
dropping using the DROP STATISTICS statement,
666
flushing to disk, 991
loading, 749
only partially updated by LOAD TABLE, 760
retrieving using sa_get_histogram system
procedure, 995
SYSCOLSTAT system view, 1131
updating using the ALTER SERVICE statement,
420

STATISTICS clause
LOAD TABLE statement, 759

statistics cleaner
controlling with sa_server_option, 1073

StatisticsCleaner property
setting with sa_server_option, 1073

Status property
sa_materialized_view_info system procedure, 1021

STDDEV function
syntax, 333

STDDEV_POP function
syntax, 333

STDDEV_SAMP function
syntax, 334

STOP clause
WHENEVER statement [ESQL], 905

STOP DATABASE clause
STOP DATABASE statement, 868

STOP DATABASE statement
about, 867
syntax, 867

STOP ENGINE statement (deprecated) (see STOP
SERVER statement)
STOP EXTERNAL ENVIRONMENT statement

about, 868
syntax, 868

STOP JAVA statement
about, 869
syntax, 869

STOP LOGGING statement
about, 870
Interactive SQL syntax, 870

STOP SERVER statement

about, 871
syntax, 871

STOP SUBSCRIPTION statement
SQL Remote syntax, 872

STOP SYNCHRONIZATION DELETE statement
MobiLink syntax, 873

STOP SYNCHRONIZATION SCHEMA CHANGE
statement

MobiLink syntax, 877
STOPLIST clause

ALTER TEXT CONFIGURATION statement, 436
stoplists

CREATE STOPLIST clause, 436
STOPLIST clause, 436

stopping
database servers, 871
external environments using STOP EXTERNAL
ENVIRONMENT statement, 868
Java VM, 869
logging in Interactive SQL, 870
passthrough mode, 787

stopping databases
STOP DATABASE statement, 867

stopping subscriptions
STOP SUBSCRIPTION statement, 872

STORAGE FORMAT clause
ALTER SPATIAL REFERENCE SYSTEM
statement, 419
CREATE SPATIAL REFERENCE SYSTEM
statement, 584

storage formats
spatial data, 419, 584

stored functions
native function calls, 506

stored procedures
converting T-SQL, 366
creating, 543, 552
creating in Transact SQL, 550
executing in dynamic SQL, 678
executing in Transact-SQL, 683
INPUT statement cannot be used, 736
native function calls, 539
selecting from, 699
system procedures, 941

STR function
syntax, 336

string constants (see string literals)
STRING function

Index

1298 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

syntax, 337
string functions

alphabetical list, 136
string length

LENGTH function, 248
string literals

about, 7
escape sequences, 7
special characters, 7

string operators
syntax, 10

string position
LOCATION function, 253

string-expression
common element in SQL syntax, 382

string_rtruncation option
setting with Transact-SQL SET statement, 851

strings
about, 5
ambiguous conversions to dates, 118, 121
changing the interpretation of delimited strings, 31
converting to dates, 116
delimiter, 31
escape characters, 7
quotation marks, 31
removing trailing blanks , 317
replacing, 309
SQL functions, 136
Transact-SQL, 31

STRIP clause
LOAD TABLE statement, 758

strong encryption
CREATE DATABASE statement, 481

STRTOUUID function
syntax, 338

STUFF function
syntax, 339

su
setting users, 854

sub-character classes
REGEXP search condition, 43
regular expressions, 21
SIMILAR TO search condition, 45

SUBDIRS clause
CREATE SERVER statement, 569

subqueries
evaluate to NULL if no matching rows, 14
in SQL search conditions, 34

syntax, 14
SUBSCRIBE BY clause

ALTER PUBLICATION statement, 409
CREATE PUBLICATION statement [MobiLink]
[SQL Remote], 559, 560
UPDATE statement, 895
UPDATE statement [SQL Remote] , 893

subscriptions
ALTER SYNCHRONIZATION SUBSCRIPTION
statement, 422
CREATE SUBSCRIPTION statement (SQL
Remote), 589
CREATE SYNCHRONIZATION
SUBSCRIPTION statement, 591
DROP SUBSCRIPTION statement, 667
DROP SYNCHRONIZATION SUBSCRIPTION
statement, 669
SQL Remote REMOTE RESET statement , 805
START SUBSCRIPTION statement (SQL
Remote), 863
STOP SUBSCRIPTION statement (SQL Remote),
872
SYNCHRONIZE SUBSCRIPTION statement
(SQL Remote), 878
UPDATE statement, 899
UPDATE statement (SQL Remote), 894

substitution characters
comparisons between CHAR and NCHAR, 114
lossy conversions, 113

SUBSTR function
syntax, 340

SUBSTRING function
syntax, 340

substrings
about, 340
replacing, 309

SUM function
syntax, 342

super types
about, 113

support
newsgroups, viii

SUSER_ID function
syntax, 343

SUSER_NAME function
syntax, 344

SWITCHOFFSET function
syntax, 344

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1299

synchronization_mode option
SET MIRROR OPTION statement, 838

SYNCHRONIZE statement
about, 874
MobiLink syntax, 874

SYNCHRONIZE SUBSCRIPTION statement
SQL Remote syntax, 878

synchronizing subscriptions
SYNCHRONIZE SUBSCRIPTION statement
(SQL Remote), 878

syntax
arithmetic operators, 10
bitwise operators, 11
CASE expression, 15
column names, 14
comments, 74
comparison operators, 8
connection-level variables, 69
constants , 6
constants in expressions, 14
conventions, 382
CURRENT DATABASE special value, 58
CURRENT DATE special value, 58
CURRENT PUBLISHER special value, 59
CURRENT TIMESTAMP special value, 60
CURRENT USER special value, 61
CURRENT UTC TIMESTAMP special value, 61
CURRENT_TIMESTAMP special value, 60
CURRENT_USER special value, 61
documentation conventions, 381
IF expressions, 15
IS NULL search condition, 54
IS TRUE or FALSE search condition, 54
LAST USER special value, 62
list of SQL reserved words, 1
local variables, 68
logical operators, 9
NULL value, 75
predicates, 32
search conditions, 32
special values, 58
SQL CURRENT REMOTE USER special value,
59
SQL CURRENT TIME special value, 60
SQL expressions, 12
SQL functions, 127
SQL identifiers, 4
SQL keywords, 1

SQL operator precedence, 12
SQL operators, 8
SQL statements, 384
SQL subqueries, 14
SQL subqueries in search conditions, 34
SQL variables, 67
SQLCODE special value, 62
SQLSTATE special value, 63
string operators, 10
strings, 5
testing compliance against a standard, 331
three-valued logic, 56
TIMESTAMP special value, 65
Transact-SQL expression compatibility, 31
USER special value, 66
UTC TIMESTAMP special value, 66

syntax conventions
SQL statements, 382

SYS
default system views, 1127
system tables, 911

SYSARTICLE
system view, 1127

SYSARTICLECOL
system view, 1128

SYSARTICLECOLS
consolidated view, 1194

SYSARTICLES
consolidated view, 1195

SYSCAPABILITIES
consolidated view, 1195

SYSCAPABILITY
system view, 1128

SYSCAPABILITYNAME
system view, 1129

SYSCATALOG
consolidated view, 1196

SYSCHECK
system view, 1129

SYSCOLAUTH
consolidated view, 1196

SYSCOLLATION
compatibility view (deprecated), 1210

SYSCOLLATIONMAPPINGS
compatibility view (deprecated), 1210

SYSCOLPERM
system view, 1130

SYSCOLSTAT

Index

1300 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

system view, 1131
SYSCOLSTATS

consolidated view, 1197
SYSCOLUMN

compatibility view (deprecated), 1211
SYSCOLUMNS

consolidated view, 1197
SYSCONSTRAINT

system view, 1131
SYSDATETIMEOFFSET function

syntax, 345
SYSDBFILE

system view, 1132
SYSDBSPACE

system view, 1133
SYSDBSPACEPERM

system view, 1134
SYSDEPENDENCY

system view, 1134
SYSDOMAIN

system view, 1135
SYSEVENT

system view, 1135
SYSEVENTTYPE

system view, 1136
SYSEXTERNENV

system view, 1137
SYSEXTERNENVOBJECT

system view, 1138
SYSEXTERNLOGIN

system view, 1139
SYSFILE

compatibility view (deprecated), 1212
SYSFKCOL

compatibility view (deprecated), 1212
SYSFKEY

system view, 1139
SYSFOREIGNKEY

compatibility view (deprecated), 1213
SYSFOREIGNKEYS

consolidated view, 1198
SYSGROUP

system view, 1140
SYSGROUPS

consolidated view, 1199
SYSHISTORY

system view, 1141
SYSIDX

system view, 1143
SYSIDXCOL

system view, 1145
SYSINDEX

compatibility view (deprecated), 1213
SYSINDEXES

consolidated view, 1199
SYSINFO

compatibility view (deprecated), 1214
SYSIXCOL

compatibility view (deprecated), 1215
SYSJAR

system view, 1146
SYSJARCOMPONENT

system view, 1146
SYSJAVACLASS

system view, 1147
SYSLOGINMAP

system view, 1147
SYSLOGINPOLICY

system view, 1148
SYSLOGINPOLICYOPTION

system view, 1148
SYSMIRROROPTION

system view, 1149
SYSMIRRORSERVER

system view, 1149
SYSMIRRORSERVEROPTION

system view, 1150
SYSMVOPTION

system view, 1151
SYSMVOPTIONNAME

system view, 1151
SYSOBJECT

system view, 1152
SYSOPTION

system view, 1153
SYSOPTIONS

consolidated view, 1200
SYSOPTSTAT

system view, 1153
SYSPHYSIDX

system view, 1154
SYSPROCAUTH

consolidated view, 1200
SYSPROCEDURE

system view, 1154
SYSPROCPARM

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1301

system view, 1156
SYSPROCPARMS

consolidated view, 1201
SYSPROCPERM

system view, 1157
SYSPROCS

consolidated view, 1201
SYSPROXYTAB

system view, 1157
SYSPUBLICATION

system view, 1158
SYSPUBLICATIONS

consolidated view, 1202
SYSREMARK

system view, 1159
SYSREMOTEOPTION

system view, 1160
SYSREMOTEOPTION2

consolidated view, 1202
SYSREMOTEOPTIONS

consolidated view, 1203
SYSREMOTEOPTIONTYPE

system view, 1160
SYSREMOTETYPE

system view, 1160
SYSREMOTETYPES

consolidated view, 1203
SYSREMOTEUSER

system view, 1161
SYSREMOTEUSERS

consolidated view, 1204
SYSSCHEDULE

system view, 1162
SYSSEQUENCE

system view, 1164
SYSSEQUENCEPERM

system view, 1164
SYSSERVER

system view, 1165
SYSSOURCE

system view, 1166
SYSSPATIALREFERENCESYSTEM

system view, 1166
SYSSQLSERVERTYPE

system view, 1169
SYSSSERVERS (see SYSSERVER system view)
SYSSUBSCRIPTION

system view, 1170

SYSSUBSCRIPTIONS
consolidated view, 1204

SYSSYNC
system view, 1170

SYSSYNC2
consolidated view, 1205

SYSSYNCPROFILE
system view, 1171

SYSSYNCPUBLICATIONDEFAULTS
consolidated view, 1205

SYSSYNCS
consolidated view, 1206

SYSSYNCSCRIPT
system view, 1172

SYSSYNCSCRIPTS
consolidated view, 1206

SYSSYNCSUBSCRIPTIONS
consolidated view, 1207

SYSSYNCUSERS
consolidated view, 1207

SYSTAB
system view, 1173

SYSTABAUTH
consolidated view, 1208

SYSTABCOL
system view, 1175

SYSTABLE
compatibility view (deprecated), 1215

SYSTABLEPERM
system view, 1177

system and catalog stored procedures
about, 946

system calls
from stored procedures, 1113
xp_cmdshell system procedure, 1113

system catalog
about, 911, 1127

system extended procedures
about, 942

system functions
alphabetical list, 138
compatibility, 138

system procedures
about, 941
Adaptive Server Enterprise system procedures, 944
alphabetical list , 946
creating messages, 531
extended list, 942

Index

1302 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

HTTP, 941
SOAP, 941
Sybase Central, 941
Transact-SQL, 944
Transact-SQL list, 944
viewing definitions, 941

SYSTEM statement
about, 879
Interactive SQL syntax, 879
not supported by dbisqlc, 879

system tables
about, 911
DUMMY, 911
Java, 938
RowGenerator, 938

system views
about, 1127
alphabetical list of system views, 1127
SYSARTICLE, 1127
SYSARTICLECOL, 1128
SYSCAPABILITY, 1128
SYSCAPABILITYNAME, 1129
SYSCHECK, 1129
SYSCOLPERM, 1130
SYSCOLSTAT, 1131
SYSCONSTRAINT, 1131
SYSDBFILE, 1132
SYSDBSPACE, 1133, 1134
SYSDEPENDENCY, 1134
SYSDOMAIN, 1135
SYSEVENT, 1135
SYSEVENTTYPE, 1136
SYSEXTERNENV, 1137
SYSEXTERNENVOBJECT, 1138
SYSEXTERNLOGIN, 1139
SYSFILE , 1212
SYSFKEY, 1139
SYSGROUP, 1140
SYSHISTORY, 1141
SYSIDX, 1143
SYSIDXCOL, 1145
SYSJAR, 1146
SYSJARCOMPONENT, 1146
SYSJAVACLASS, 1147
SYSLOGINMAP, 1147
SYSLOGINPOLICY, 1148
SYSLOGINPOLICYOPTION, 1148
SYSMIRROROPTION, 1149

SYSMIRRORSERVER, 1149
SYSMIRRORSERVEROPTION, 1150
SYSMVOPTION, 1151
SYSMVOPTIONNAME, 1151
SYSOBJECT, 1152
SYSOPTION, 1153
SYSOPTSTAT, 1153
SYSPHYSIDX, 1154
SYSPROCEDURE, 1154
SYSPROCPARM, 1156
SYSPROCPERM, 1157
SYSPROXYTAB, 1157
SYSPUBLICATION, 1158
SYSREMARK, 1159
SYSREMOTEOPTION, 1160
SYSREMOTEOPTIONTYPE, 1160
SYSREMOTETYPE, 1160
SYSREMOTEUSER, 1161
SYSSCHEDULE, 1162
SYSSEQUENCE, 1164
SYSSEQUENCEPERM, 1164
SYSSERVER, 1165
SYSSOURCE, 1166
SYSSPATIALREFERENCESYSTEM, 1166
SYSSQLSERVERTYPE, 1169
SYSSUBSCRIPTION, 1170
SYSSYNC, 1170
SYSSYNCPROFILE, 1171
SYSSYNCSCRIPT, 1172
SYSTAB, 1173
SYSTABCOL, 1175
SYSTABLEPERM, 1177
SYSTEXTCONFIG, 1179
SYSTEXTIDX, 1181
SYSTEXTIDXTAB, 1181
SYSTRIGGER, 1182
SYSTYPEMAP, 1184
SYSUNITOFMEASURE, 1184
SYSUSER, 1185
SYSUSERAUTHORITY, 1186
SYSUSERMESSAGE, 1186
SYSUSERTYPE, 1187
SYSVIEW, 1188
SYSWEBSERVICE, 1189

SYSTEXTCONFIG
system view, 1179

SYSTEXTIDX
system view, 1181

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1303

SYSTEXTIDXTAB
system view, 1181

SYSTRIGGER
system view, 1182

SYSTRIGGERS
consolidated view, 1208

SYSTYPEMAP
system view, 1184

SYSUNITOFMEASURE
system view, 1184

SYSUSER
system view, 1185

SYSUSERAUTH
compatibility view (deprecated), 1216

SYSUSERAUTHORITY
system view, 1186

SYSUSERLIST
compatibility view (deprecated), 1217

SYSUSERMESSAGE
system view, 1186

SYSUSEROPTIONS
consolidated view, 1209

SYSUSERPERM
compatibility view (deprecated), 1217

SYSUSERPERMS
compatibility view (deprecated), 1218

SYSUSERTYPE
system view, 1187

SYSVIEW
system view, 1188

SYSVIEWS
consolidated view, 1210

SYSWEBSERVICE
system view, 1189

T
TABLE clause

ALTER PUBLICATION statement, 409
CREATE PUBLICATION statement [MobiLink]
[SQL Remote], 559
DESCRIBE statement, 644
TRUNCATE statement, 881
VALIDATE statement, 902

table columns
listing in Interactive SQL, 644

table constraints
adding using the ALTER TABLE statement, 429

adding, deleting, or altering using the ALTER
TABLE statement, 426
changing using ALTER TABLE statement, 431
CREATE TABLE statement, 603

table decryption
ALTER TABLE statement, 426

table encryption
ALTER TABLE statement, 426
CREATE ENCRYPTED TABLE DATABASE
statement, 490

table hints
FROM clause, 702

table indexes
listing in Interactive SQL, 644

table list
FROM clause, 699

table locks
sa_locks system procedure, 1015

table number
system views, 1173

table pages
setting PCTFREE, 596, 633, 750
setting PCTFREE using the ALTER TABLE
statement, 426
setting PCTFREE using the CREATE LOCAL
TEMPORARY TABLE statement, 525

table-list
common element in SQL syntax, 382

table-name
common element in SQL syntax, 382

TABLE.COLUMN clause
DESCRIBE statement, 641

tables
adding comments using the COMMENT statement,
469
ALTER TABLE statement, 426
altering using the ALTER TABLE statement, 426
bulk loading, 750
CREATE TABLE statement, 596
creating local temporary, 633
creating local temporary tables using the CREATE
LOCAL TEMPORARY TABLE statement, 525
creating proxy tables using the CREATE
EXISTING TABLE statement, 501
determining dependencies, 977
dropping using the DROP TABLE statement, 670
encrypting with CREATE ENCRYPTED TABLE
DATABASE statement, 490

Index

1304 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

exporting data into files from, 780
generating definition with sa_get_table_definition
system procedure, 1000
importing data from files into, 731
inserting rows into, 737
locking, 764
renaming, 432
reorganizing, 807
truncating, 881
unloading using the UNLOAD statement, 885
updating, 893

TAN function
syntax, 346

tape drives
creating database backups using the BACKUP
statement, 447

tech corners
finding out more and requesting technical support,
ix

technical support
newsgroups, viii

TempFreePercent event condition
about, 207

TempFreeSpace event condition
about, 207

TEMPORARY clause
ALTER DBSPACE statement , 391
CREATE PROCEDURE statement, 552

temporary dbspace
calibrating, 387

temporary files
determining available space, 986

temporary functions
about, 517

TEMPORARY keyword
CREATE FUNCTION statement [user defined],
517

temporary options
SET OPTION statement, 840
setting in Interactive SQL, 844

temporary procedures
CREATE PROCEDURE statement, 553

temporary stored procedures
creating, 553

temporary tables
CREATE TABLE statement, 596
CREATE TABLE usage, 606

creating local temporary files using the CREATE
LOCAL TEMPORARY TABLE statement, 525
declaring local, 633
Transact-SQL CREATE TABLE statement, 607
views disallowed on local, 624

TempSize event condition
about, 207

TERM BREAKER clause
ALTER TEXT CONFIGURATION statement, 436

TERM BREAKER EXTERNAL NAME clause
ALTER TEXT CONFIGURATION statement, 435

term breakers
specifying an external term breaker library, 436
using sa_char_terms to test how strings are broken
into terms, 954
using sa_nchar_terms to test how strings are
broken into terms, 1037
warning about using non-alphanumerics in query
string, 50

terms
MAXIMUM TERM LENGTH clause, 436
MINIMUM TERM LENGTH clause, 436
TERM BREAKER clause, 436

text
reading from the database using the READTEXT
statement, 797

text configuration objects
adding comments using the COMMENT statement,
469
altering, 435
creating, 610
dropping, 671
using sa_char_terms to test how strings are broken
into terms, 954
using sa_nchar_terms to test how strings are
broken into terms, 1037

TEXT data type
syntax, 84

text functions
about, 139

text indexes
adding comments using the COMMENT statement,
469
altering, 439
creating, 611
creation options stored in SYSMVOPTION, 1151
dropping, 672
listing using sa_text_index_stats, 1089

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1305

refreshing using REFRESH TEXT INDEX, 801
refreshing using sa_refresh_text_indexes, 1049
truncating, 882

text searching (see full text searching)
TEXTPTR function

syntax, 346
textsize option

setting with Transact-SQL SET statement, 851
THEN

IF expressions, 15
THEN clause

IF statement, 727
three-valued logic

NULL value, 75
syntax, 56

TIME clause
WAITFOR statement, 904

TIME data type
sending dates and times to the database, 100
syntax, 105

time data types
DATETIME, 102
DATETIMEOFFSET, 103
overview, 99
SMALLDATETIME, 104
TIMESTAMP, 105
TIMESTAMP WITH TIME ZONE, 106

time functions
alphabetical list, 129

times
comparing, 116
conversion functions, 129
queries, 100
sending to the database, 100

TIMESTAMP
TIMESTAMP columns, 600

TIMESTAMP clause
CREATE TABLE statement, 602

TIMESTAMP data type
comparing, 116
sending dates and times to the database, 100
syntax, 105

TIMESTAMP special value
specifying column defaults using the CREATE
TABLE statement, 602
syntax, 65

TIMESTAMP WITH TIME ZONE data type
syntax, 106

timestamps
comparing, 116
comparisons using TIMESTAMP WITH
TIMEZONE, 107
conversions using TIMESTAMP WITH
TIMEZONE, 107

TINYINT data type
syntax, 96

TO clause
ALTER SYNCHRONIZATION SUBSCRIPTION
statement [MobiLink] , 423
CONNECT statement, 473
CREATE EXTERNLOGIN statement, 503
CREATE SUBSCRIPTION statement (SQL
Remote), 589
CREATE SYNCHRONIZATION
SUBSCRIPTION statement [MobiLink], 592
DROP EXTERNLOGIN statement, 654
DROP SYNCHRONIZATION SUBSCRIPTION
statement, 669
GRANT CONSOLIDATE statement [SQL
Remote], 713
GRANT REMOTE DBA statement [MobiLink]
[SQL Remote], 715
MESSAGE statement, 774
PASSTHROUGH statement [SQL Remote], 787
START SUBSCRIPTION statement [SQL
Remote], 863
STOP SUBSCRIPTION statement [SQL Remote],
872
SYNCHRONIZE SUBSCRIPTION statement
[SQL Remote], 878
UNLOAD statement, 886

TO_CHAR function
syntax, 347

TO_NCHAR function
syntax, 348

TODATETIMEOFFSET function
syntax, 349

TODAY function
syntax, 350

tolerance
setting tolerance for spatial calculations, 419, 584

TOLERANCE clause
ALTER SPATIAL REFERENCE SYSTEM
statement, 419
CREATE SPATIAL REFERENCE SYSTEM
statement, 584

Index

1306 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

TOP clause
DELETE statement, 638
SELECT statement, 828
UPDATE statement, 897

TRACEBACK function
syntax, 350

TRACED_PLAN function
syntax, 351

tracing
ATTACH TRACING statement, 445
DETACH TRACING statement, 647
REFRESH TRACING LEVEL statement, 803

tracing data
saving using sa_save_trace_data system procedure,
1056

tracing levels
setting the sa_set_tracing_level system procedure,
1080

trademark information
retrieving, 1114

Transact-SQL
alphabetical list of SQL Anywhere Server
statements, 384
ANSI equivalency, 311
bitwise operators, 11
BREAK statement syntax, 906
CASE statement [T-SQL], 464
catalog procedures, 945
comparison operators, 8
constants, 31
CONTINUE statement syntax, 906
converting SELECT statements, 366
converting stored procedures, 366
CREATE FUNCTION statement, 521
CREATE MESSAGE statement, 531
CREATE PROCEDURE statement, 550
CREATE SCHEMA statement syntax, 563
CREATE TABLE statement syntax, 607
CREATE TRIGGER statement syntax, 619
datetime compatibility, 116
DECLARE CURSOR statement syntax, 632
DECLARE section, 456
domains, 112
EXECUTE statement syntax, 683
GOTO statement syntax, 712
IF statement syntax, 729
local variables, 68
money data types, 96

outer join operators, 11
PRINT statement syntax, 791
quoted_identifier option, 31
READTEXT statement syntax, 797
SELECT statement syntax, 834
SET OPTION statement syntax, 851
SET statement syntax, 851
SQL expression compatibility, 31
statement indicators, 384
strings, 31
system functions, 138
system procedures, 944
time compatibility, 116
user-defined data types, 112
WHILE statement syntax, 906
WRITETEXT statement syntax, 910

Transact-SQL compatibility
global variables, 70
views, 1218

Transact-SQL statements
BEGIN TRANSACTION syntax, 457
ROLLBACK TRANSACTION syntax, 822
SAVE TRANSACTION syntax, 824

Transact-SQL string-to-date/time conversions
about, 116

transaction isolation level option
setting with Transact-SQL SET statement, 851

transaction log
allocating space using ALTER DBSPACE, 391
backing up using the BACKUP statement, 447
decrypting using CREATE DECRYPTED
DATABASE statement, 486
decrypting using CREATE DECRYPTED FILE
statement, 487
determining available space, 986
encrypting using the CREATE ENCRYPTED
DATABASE statement, 490
encrypting using the CREATE ENCRYPTED
FILE statement, 493
renaming without backup, 449
TRUNCATE TABLE statement, 881
truncating without backup, 449

TRANSACTION LOG clause
CREATE DATABASE statement, 483

transaction log mirror
decrypting using CREATE DECRYPTED
DATABASE statement, 486

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1307

decrypting using CREATE DECRYPTED FILE
statement, 487
determining available space, 986
encrypting using the CREATE ENCRYPTED
DATABASE statement, 490
encrypting using the CREATE ENCRYPTED
FILE statement, 493

TRANSACTION LOG ONLY clause
BACKUP statement, 448

TRANSACTION LOG RENAME [MATCH] clause
BACKUP statement, 449

TRANSACTION LOG TRUNCATE clause
BACKUP statement, 449

transaction management
BEGIN TRANSACTION statement, 457
in Transact-SQL, 457
Transact-SQL, 470

transaction modes
chained, 458
unchained, 458

transactions
beginning user-defined using the BEGIN
TRANSACTION statement, 457
committing using the COMMIT statement, 470
creating savepoints, 824
nesting user-defined transactions using the BEGIN
TRANSACTION statement, 457
rolling back, 820, 822, 824
rolling back to savepoints, 821

TRANSACTSQL function
syntax, 351

TRANSFORM DEFINITION clause
ALTER SPATIAL REFERENCE SYSTEM
statement, 418
CREATE SPATIAL REFERENCE SYSTEM
statement, 581

TRANSLOG clause
ALTER DBSPACE statement , 391

trapping
errors in embedded SQL, 905

TREAT function
syntax, 352

TRIGGER EVENT statement
about, 880
syntax, 880

triggering
events, 880

triggers

@@identity global variable, 73
adding comments using the COMMENT statement,
469
altering using the ALTER TRIGGER statement,
440
creating in Transact-SQL, 619
creating using CREATE TRIGGER statement, 614
DELETING condition, 55
dropping using the DROP FUNCTION statement,
654
dropping using the DROP statement, 673
INSERTING condition, 55
operation conditions, 55
rolling back, 823
row-level, 616
statement-level, 616
TRUNCATE TABLE statement, 882
UPDATING condition, 55

TRIM function
syntax, 353

troubleshooting
locks, 1014
logging operations, 1067
newsgroups, viii
non-standard disk drives, 389

TRUE conditions
IS TRUE search condition, 54
three-valued logic, 56

TRUNCATE function
syntax, 354

TRUNCATE statement
about, 881
syntax, 881

TRUNCATE TABLE statement
about, 881
syntax, 881

TRUNCATE TEXT INDEX statement
about, 882
syntax, 882

truncating
fails if the table has an immediate text index, 881
fails if the table is referenced by an immediate
views, 881
tables, 881
text indexes, 882

TRUNCNUM function
syntax, 354

TSEQUAL function

Index

1308 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

syntax, 355
TSQL (see Transact-SQL)
TYPE clause

ALTER SERVICE statement, 415
ALTER SPATIAL REFERENCE SYSTEM
statement, 418
ALTER SYNCHRONIZATION SUBSCRIPTION
statement [MobiLink] , 423
ALTER SYNCHRONIZATION USER statement
[MobiLink] , 425
CREATE EVENT statement, 497
CREATE FUNCTION statement [web clients],
512
CREATE PROCEDURE statement [web clients],
545
CREATE SERVICE statement, 572
CREATE SPATIAL REFERENCE SYSTEM
statement, 582
CREATE SPATIAL UNIT OF MEASURE
statement, 586, 587
CREATE SYNCHRONIZATION
SUBSCRIPTION statement [MobiLink], 592
CREATE SYNCHRONIZATION USER, 594
GET DESCRIPTOR statement [ESQL], 710
GRANT CONSOLIDATE statement [SQL
Remote], 713
GRANT REMOTE statement [SQL Remote], 716
MESSAGE statement, 774
SET DESCRIPTOR statement [ESQL], 836

type conversion
about, 112

type expressions
search conditions, 32

TYPE PLANAR clause
ALTER SPATIAL REFERENCE SYSTEM
statement, 418
CREATE SPATIAL REFERENCE SYSTEM
statement, 582

TYPE ROUND EARTH clause
ALTER SPATIAL REFERENCE SYSTEM
statement, 418
CREATE SPATIAL REFERENCE SYSTEM
statement, 582

types of data (see data types)

U
UCASE function

syntax, 356
UDF

user defined function, defined, 132
UDP packets

sending, 1056
UltraLite

return NULL if you specify NULL argument, 127
UNBOUNDED keyword

FOLLOWING clause of WINDOW clause, 909
PRECEDING clause of WINDOW clause, 908

UNCONDITIONALLY clause
STOP DATABASE statement, 868
STOP SERVER statement, 871

undoing
changes by rolling back transactions, 820

Unicode
escape sequences, 357
UNICODE function, 357
UNISTR function, 357

Unicode data
storage, 79

Unicode data types
about, 79

UNICODE function
syntax, 357

UNION statement
about, 883
setting database options, 884
syntax, 883

unions
multiple select statements, 883

unique
constraint in CREATE TABLE statement, 603

UNIQUE clause
ALTER TABLE statement , 429, 430
CREATE INDEX statement, 522
CREATE TABLE statement, 605
DECLARE CURSOR statement, 629

unique indexes
about, 521

UNIQUEIDENTIFIER data type
syntax, 109

UNIQUEIDENTIFIERSTR data type
syntax, 84

UNISTR function
syntax, 357

units of measure

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1309

adding comments using the COMMENT statement,
469
ALTER SPATIAL REFERENCE SYSTEM
statement, 416
CREATE SPATIAL REFERENCE SYSTEM
statement, 579
CREATE SPATIAL UNITS OF MEASURE
statement, 586
installing predefined , 1010
ST_UNITS_OF_MEASURE system view, 1194

universally unique identifiers
SQL syntax for NEWID function, 268

Unix
compressing strings, 160
decompressing strings, 195
documentation conventions, v
operating systems, v

UNKNOWN conditions
IS UNKNOWN search condition, 54

UNLIMITED clause
CREATE LOGIN POLICY statement, 526

UNLOAD statement
about, 885
syntax, 885

UNLOAD TABLE statement
about, 885
syntax, 885

unloading
cost models, 1094
data using the UNLOAD statement, 885
result sets using the UNLOAD statement, 885

unloading data
multibyte character sets, 888

unzip utility
DECOMPRESS function, 195

UPDATE clause
CREATE PUBLICATION statement [MobiLink]
[SQL Remote], 559
CREATE TRIGGER statement, 614
INSTALL EXTERNAL OBJECT statement, 743
REVOKE statement, 818

update column permission
SYSCOLPERM system view, 1130

UPDATE permission
GRANT statement, 719
REVOKE statement, 818

UPDATE permission clause
GRANT statement, 721

UPDATE SET clause
MERGE statement, 771

UPDATE statement
(positioned) statement syntax, 890
about, 895
about (positioned), 890
setting database options, 899
SQL Remote syntax, 893
syntax, 895

updates
based on joins, 899
joins, 894

updating
columns without logging, 910
publications and subscriptions, 899
rows, 895
tables and columns, 893

UPDLOCK table hint
FROM clause, 702

upgrading databases
ALTER DATABASE statement, 386

UPPER function
syntax, 359

uppercase characters
UPPER function, 359

uppercase strings
UCASE function, 356
UPPER function, 359

URL clause
ALTER SERVICE statement, 415
CREATE FUNCTION statement [web clients],
511
CREATE PROCEDURE statement [web clients],
545
CREATE SERVICE statement, 573

USAGE ON SEQUENCE clause
GRANT statement, 718
REVOKE statement, 818

USE DEFAULT clause
CREATE TABLE statement, 596

USER
CONNECT statement, 473

USER clause
ALTER SERVICE statement, 415
CREATE SERVICE statement, 577

user defined functions
about, 132
defined, 132

Index

1310 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

Java, 132
user estimates

about, 57
user IDs

restrictions, 721
revoking, 818
system views, 1173
views, 1216

USER special value
syntax, 66

USER TYPES clause
DESCRIBE statement, 641

user-defined data types
about, 111
CREATE DOMAIN statement, 488
dropping using the DROP DATATYPE statement,
650
Transact-SQL, 112

user-defined functions
CREATE FUNCTION statement, 516
exiting from, 813
returning values from, 813

user-defined options
temporary settings unsupported, 841

user-supplied selectivity estimates
about, 57

user_estimates option
overriding in a MERGE statement, 771
overriding in a SELECT statement, 832
setting for DELETE statements, 639
setting for EXCEPT statement, 677
setting for INSERT statements, 740
setting for INTERSECT statement, 746
setting for UNION statement, 884
setting for UPDATE statements, 899

USER_ID function
syntax, 359

USER_NAME function
syntax, 360

userid
common element in SQL syntax, 382

users
adding comments using the COMMENT statement,
469
ALTER SYNCHRONIZATION USER statement,
425
altering using ALTER USER statement, 441

CREATE SYNCHRONIZATION USER
statement, 594
creating using CREATE USER statement, 621
DROP SYNCHRONIZATION USER statement,
670
dropping, 818
dropping using DROP USER statement, 674
obtaining status, 1001
setting, 854

USING AUTO PARENT clause
ALTER MIRROR SERVER statement, 406
CREATE MIRROR SERVER statement, 534

USING clause
ALTER PUBLICATION statement, 409
ALTER SERVER statement, 413
CREATE PUBLICATION statement [MobiLink]
[SQL Remote], 559
CREATE SERVER statement, 568
DECLARE CURSOR statement, 630
EXECUTE statement, 681
FOR statement, 691
INPUT statement, 735
MERGE statement, 769
OUTPUT statement, 783

USING CLIENT FILE clause
LOAD TABLE statement, 752

USING COLUMN clause
LOAD TABLE statement, 752

USING DESCRIPTOR clause
EXPLAIN statement [ESQL], 686
GET DATA statement , 708
GET OPTION statement [ESQL], 711
OPEN statement, 778
PUT statement [ESQL], 792
UPDATE (positioned) statement, 891

USING FILE clause
LOAD TABLE statement, 751

USING VALUE clause
LOAD TABLE statement, 752

UTC TIMESTAMP
specifying column defaults using the CREATE
TABLE statement, 603

UTC TIMESTAMP clause
CREATE TABLE statement, 603

UTC TIMESTAMP special value
syntax, 66

UTF-16 encoding
CSCONVERT function, 176

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1311

LOAD TABLE statement, 753
UNLOAD statement, 886

UUIDs
SQL syntax for NEWID function, 268
SQL syntax for STRTOUUID function, 338
SQL syntax for UUIDTOSTR function, 361
UNIQUEIDENTIFIER data type, 109

UUIDTOSTR function
syntax, 361

V
VALIDATE authority

GRANT statement, 718
REVOKE statement, 818

VALIDATE authority clause
GRANT statement, 720

VALIDATE CHECKSUM statement
syntax, 902

VALIDATE clause
REVOKE statement, 818

VALIDATE DATABASE statement
syntax, 902

VALIDATE INDEX statement
syntax, 902

VALIDATE MATERIALIZED VIEW statement
syntax, 902

VALIDATE statement
about, 902
syntax, 902

VALIDATE TABLE statement
syntax, 902

validating
checksums, 902
databases, 1095
indexes using VALIDATE statement, 902
tables using VALIDATE TABLE statement, 902
VALIDATE statement, 902

validation
VALIDATE authority, 720

VALUE clause
GET DESCRIPTOR statement [ESQL], 710
SET DESCRIPTOR statement [ESQL], 836

values
returning from procedures, 813

VALUES clause
INSERT statement, 738

VAR_POP function

syntax, 362
VAR_SAMP function

syntax, 364
VARBINARY data type

syntax, 110
VARBIT data type

syntax, 98
VARCHAR data type

byte-length semantics, 85
character-length semantics, 85
syntax, 85
using DESCRIBE on a VARCHAR column, 85

VAREXISTS function
syntax, 365

variable result sets
from procedures, 538, 554, 642, 789

variable-name
common element in SQL syntax, 382

variables
connection-level variables, 69
creating SQL, 622
declaring SQL, 635
dropping SQL variables using the DROP
VARIABLE statement, 675
getting from within a descriptor area, 710
global variables, 70
initial value, 635
local variables, 68
setting values, 849
syntax, 67
using in view definitions, 625

VARIANCE function
syntax, 366

VERBOSE clause
OUTPUT statement, 783

VERIFY clause
UPDATE statement, 895
UPDATE statement [SQL Remote] , 893

verifying
passwords, 1096

version number
retrieving, 1114

view dependencies
unloading/reloading databases, 1048

viewing
Interactive SQL procedure profiling data, 1046

ViewName property
sa_materialized_view_info system procedure, 1021

Index

1312 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

views
about, 1127
adding comments using the COMMENT statement,
469
altering materialized views owned by someone
else, 444
altering using the ALTER VIEW statement, 443
compatibility views, 1210
consolidated views, 1190
CREATE MATERIALIZED VIEW statement, 529
CREATE VIEW statement, 624
determining dependencies, 977
DROP VIEW statement, 676
indexes, 524
parameterized views, 625
sa_recompile_views system procedure, 1048
system views, 1127
Transact-SQL compatibility, 1218
updating using INSERT statement, 740

VIRTUAL clause
CREATE INDEX statement, 522

VM
START JAVA statement, 861
STOP JAVA statement, 869

W
WAIT AFTER END clause

BACKUP statement, 448
WAIT BEFORE START clause

BACKUP statement, 448
WAITFOR statement

about, 903
syntax, 903

watch list
configuring with sa_server_option, 1068

Watcom SQL
DECLARE statement, 635

Watcom SQL statements
rewriting to Transact-SQL, 351

WATCOMSQL function
syntax, 366

web service client log file
setting name, 1073

web services
adding comments using the COMMENT statement,
469
alphabetical list of functions, 135, 941

creating, 571
HTML_DECODE function, 228
HTML_ENCODE function, 229
HTTP_BODY function, 230
HTTP_DECODE function, 231
HTTP_ENCODE function, 232
HTTP_HEADER function, 233
HTTP_RESPONSE_HEADER function, 235
HTTP_VARIABLE function, 236
list of web services-related system procedures, 941
NEXT_HTTP_HEADER function, 272
NEXT_HTTP_RESPONSE_HEADER function,
273
NEXT_HTTP_VARIABLE function, 274
NEXT_SOAP_HEADER function, 275
sa_http_header_info system procedure, 1002, 1074
sa_http_php_page system procedure, 1003
sa_http_php_page_interpreted system procedure,
1003
sa_http_variable_info system procedure, 1005
sa_set_http_option system procedure, 1075
sa_set_soap_header system procedure, 1079
SOAP_HEADER function, 325
system view, 1189

WebClientLogFile property
setting with sa_server_option, 1073

WebClientLogging property
setting with sa_server_option, 1073

WEEKS function
syntax, 367

WHEN
CASE expression, 15

WHEN clause
CASE statement , 462
CASE statement [T-SQL] , 464
CREATE TRIGGER statement, 616

WHEN MATCHED clause
MERGE statement, 770

WHEN NOT MATCHED clause
MERGE statement, 770

WHENEVER statement
about, 905
embedded SQL syntax, 905

WHERE clause
ALTER EVENT statement, 395
ALTER PUBLICATION statement, 409
CREATE EVENT statement, 497

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1313

CREATE PUBLICATION statement [MobiLink]
[SQL Remote], 560
DELETE statement, 639
search conditions, 32
SELECT statement, 829
UPDATE statement, 898
UPDATE statement [SQL Remote] , 893

WHERE CURRENT OF clause
DELETE (positioned) statement [ESQL] [SP]
statement, 636

WHILE clause
LOOP statement, 766

WHILE statement
about, 906
Transact-SQL syntax, 906

wide inserts
about, 681

wildcards
expression wildcards, 18
LIKE search condition, 39
PATINDEX function, 279
REGEXP search condition, 43
SIMILAR TO search condition, 45

WINDOW clause
about, 907
SELECT statement, 830
syntax, 907

window functions
AVG function, 144
COUNT function, 170
COUNT_BIG function, 172
COVAR_POP function, 173
CUME_DIST function, 178
DENSE_RANK function, 198
MAX function, 257
MEDIAN function, 259
MIN function, 261
PERCENT_RANK function, 280
RANK function, 290
REGR_AVGX function, 295
REGR_AVGY function, 296
REGR_COUNT function, 298
REGR_INTERCEPT function, 299
REGR_R2 function, 300
REGR_SLOPE function, 302
REGR_SXX function, 303
REGR_SXY function, 304
ROW_NUMBER function, 315

STDDEV function, 333
STDDEV_POP function, 333
STDDEV_SAMP function, 334
SUM function, 342
VAR_POP function, 362
VAR_SAMP function, 364

window-name
common element in SQL syntax, 382

window-spec
syntax in window functions, 907

Windows
documentation conventions, v
operating systems, v

windows (OLAP)
WINDOW clause, 907

Windows Mobile
documentation conventions, v
operating systems, v
Windows CE, v

WITH AUTO NAME clause
INSERT statement, 738
MERGE statement, 769

WITH CHECK OPTION clause
ALTER VIEW statement, 443
CREATE VIEW statement, 624

WITH CHECKPOINT clause
LOAD TABLE statement, 758

WITH CHECKPOINT LOG clause
BACKUP statement, 450

WITH clause
INTERSECT statement, 746
REFRESH MATERIALIZED VIEW statement,
798
REFRESH TEXT INDEX statement, 801
REVOKE REMOTE DBA statement [SQL
Remote], 823
SELECT statement, 825, 827

WITH COMMENT clause
BACKUP statement, 449

WITH CONTENT LOGGING clause
LOAD TABLE statement, 759
required for database mirroring, 760

WITH ESCAPES clause
EXECUTE IMMEDIATE statement, 679

WITH EXCLUSIVE MODE clause
REFRESH MATERIALIZED VIEW statement,
798
REFRESH TEXT INDEX statement, 801

Index

1314 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

WITH EXECUTE clause
PREPARE statement, 789

WITH EXPRESS CHECK clause
VALIDATE statement, 902

WITH FILE NAME LOGGING clause
LOAD TABLE statement, 758

WITH GRANT OPTION clause
syntax, 718

WITH HOLD clause
LOCK TABLE statement, 764
OPEN statement, 778

WITH HOLD cursors
locking, 778
OPEN statement, 628, 777, 778

WITH ISOLATION LEVEL clause
REFRESH MATERIALIZED VIEW statement,
798
REFRESH TEXT INDEX statement, 801

WITH LOG clause
WRITETEXT statement [T-SQL], 910

WITH MAX clause
ALLOCATE DESCRIPTOR statement [ESQL],
385

WITH NULLS NOT DISTINCT clause
CREATE INDEX statement, 523

WITH OPTION clause
SETUSER statement, 854

WITH QUOTES clause
EXECUTE IMMEDIATE statement, 679

WITH RECOMPILE clause
CREATE PROCEDURE statement [T-SQL], 550

WITH RECURSIVE clause
SELECT statement, 825, 827

WITH RESULT SET clause
EXECUTE IMMEDIATE statement, 679

WITH ROW LOGGING clause
LOAD TABLE statement, 759
required for database mirroring, 760

WITH SAVE clause
DETACH TRACING statement, 647

WITH SCRIPTED UPLOAD clause
CREATE PUBLICATION statement [MobiLink]
[SQL Remote], 559

WITH SERVER NAME clause
START DATABASE statement, 858

WITH SHARE MODE clause
REFRESH MATERIALIZED VIEW statement,
798

REFRESH TEXT INDEX statement, 801
WITH TEXTPTR clause

GET DATA statement , 709
WITH TRUNCATE AT CHECKPOINT clause

START DATABASE statement, 857
WITH VARIABLE RESULT clause

DESCRIBE statement, 642
PREPARE statement, 789

WITHOUT SAVE clause
DETACH TRACING statement, 647

WORK clause
COMMIT statement, 470
REVOKE REMOTE DBA statement [SQL
Remote], 820

write checksums
validating, 902

WRITE_CLIENT_FILE function
syntax, 368

WRITECLIENTFILE authority
GRANT statement, 718
REVOKE statement, 818

WRITECLIENTFILE authority clause
GRANT statement, 720

WriteNoPK locks
sa_locks system procedure, 1015

WRITETEXT statement
about, 910
Transact-SQL syntax, 910

writing files
using xp_write_file, 1125

WSDL
CREATE FUNCTION statement [web clients],
513
CREATE PROCEDURE statement [web clients],
549
CREATE SERVICE statement, 572

X
XLOCK table hint

FROM clause, 702
XML

CREATE SERVICE statement, 572
openxml system procedure, 946
XML data type, 86
XMLAGG function, 370
XMLCONCAT function, 371
XMLELEMENT function, 372

Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0 1315

XMLFOREST function, 374
XMLGEN function, 375

XML data type
syntax, 86

XMLAGG function
syntax, 370

XMLATTRIBUTES parameter
XMLELEMENT function, 372

XMLCONCAT function
syntax, 371

XMLELEMENT function
syntax, 372

XMLFOREST function
syntax, 374

XMLGEN function
syntax, 375

xp_cmdshell system procedure
syntax, 1113

xp_msver system procedure
syntax, 1114

xp_read_file system procedure
syntax, 1115

xp_scanf system procedure
syntax, 1116

xp_sendmail system procedure
syntax, 1116

xp_sprintf system procedure
syntax, 1120

xp_startmail system procedure
syntax, 1121

xp_startsmtp system procedure
enabling in McAfee VirusScan, 1123
possible conflicts with virus scanner settings, 1123
syntax, 1122

xp_stopmail system procedure
syntax, 1124

xp_stopsmtp system procedure
syntax, 1124

xp_write_file system procedure
syntax, 1125

Y
YEAR function

syntax, 377
YEARS function

syntax, 377
YMD function

syntax, 378

Z
zip utility

COMPRESS function, 160

Index

1316 Copyright © 2010, iAnywhere Solutions, Inc. - SQL Anywhere 12.0.0

	SQL Anywhere® Server - SQL Reference
	Contents
	About this book
	About the SQL Anywhere documentation
	Documentation conventions
	Contacting the documentation team
	Finding out more and requesting technical support

	SQL language elements
	Keywords
	Reserved words

	Identifiers
	Strings
	Constants
	Binary literals
	String literals

	Operators
	Comparison operators
	Logical operators
	Arithmetic operators
	String operators
	Bitwise operators
	Join operators
	Operator precedence

	Expressions
	Constants in expressions
	Column names in expressions
	Subqueries in expressions
	IF expressions
	CASE expressions
	Regular expressions overview
	Regular expressions syntax
	Regular expression examples
	Compatibility of expressions
	The quoted_identifier option

	Search conditions
	Subqueries in search conditions
	ALL search condition
	ANY and SOME search conditions
	IS DISTINCT FROM and IS NOT DISTINCT FROM search conditions
	BETWEEN search condition
	LIKE, REGEXP, and SIMILAR TO search conditions
	LIKE search condition
	REGEXP search condition
	SIMILAR TO search condition

	IN search condition
	CONTAINS search condition
	EXISTS search condition
	IS NULL and IS NOT NULL search conditions
	Truth value search conditions
	Trigger operation conditions
	Three-valued logic
	Explicit selectivity estimates

	Special values
	CURRENT DATABASE special value
	CURRENT DATE special value
	CURRENT PUBLISHER special value
	CURRENT REMOTE USER special value
	CURRENT TIME special value
	CURRENT TIMESTAMP special value
	CURRENT USER special value
	CURRENT UTC TIMESTAMP special value
	LAST USER special value
	SQLCODE special value
	SQLSTATE special value
	TIMESTAMP special value
	USER special value
	UTC TIMESTAMP special value

	Variables
	Local variables
	Connection-level variables
	Global variables
	@@identity global variable

	Comments
	NULL value

	SQL data types
	Character data types
	CHAR data type
	LONG NVARCHAR data type
	LONG VARCHAR data type
	NCHAR data type
	NTEXT data type
	NVARCHAR data type
	TEXT data type
	UNIQUEIDENTIFIERSTR data type
	VARCHAR data type
	XML data type

	Numeric data types
	BIGINT data type
	BIT data type
	DECIMAL data type
	DOUBLE data type
	FLOAT data type
	INTEGER data type
	NUMERIC data type
	REAL data type
	SMALLINT data type
	TINYINT data type

	Money data types
	MONEY data type
	SMALLMONEY data type

	Bit array data types
	LONG VARBIT data type
	VARBIT data type

	Date and time data types
	How dates are stored
	Sending dates and times to the database
	Retrieving dates and times from the database
	DATE data type
	DATETIME data type
	DATETIMEOFFSET data type
	SMALLDATETIME data type
	TIME data type
	TIMESTAMP data type
	TIMESTAMP WITH TIME ZONE data type

	Binary data types
	BINARY data type
	IMAGE data type
	LONG BINARY data type
	UNIQUEIDENTIFIER data type
	VARBINARY data type

	Domains
	Data type conversions
	Comparisons between data types
	Lossy conversion and substitution characters
	Comparisons between CHAR and NCHAR
	Comparisons between numeric data types
	Comparing dates and times
	Transact-SQL string-to-date/time conversions
	Other comparisons

	Converting NCHAR to CHAR
	Converting NULL constants to NUMERIC and string types
	Converting dates to strings
	Converting bit arrays
	Converting between numeric sets
	Ambiguous date and time conversions
	Handling of two-digit years

	Java and SQL data type conversion
	Java to SQL data type conversion
	SQL to Java data type conversion

	Spatial data types

	SQL functions
	Function types
	Aggregate functions
	Bit array functions
	Ranking functions
	Data type conversion functions
	Date and time functions
	User-defined functions
	Miscellaneous functions
	Numeric functions
	Web services functions
	String functions
	System functions
	Text and image functions

	Functions
	ABS function [Numeric]
	ACOS function [Numeric]
	ARGN function [Miscellaneous]
	ASCII function [String]
	ASIN function [Numeric]
	ATAN function [Numeric]
	ATAN2 function [Numeric]
	AVG function [Aggregate]
	BASE64_DECODE function [String]
	BASE64_ENCODE function [String]
	BIT_AND function [Aggregate]
	BIT_LENGTH function [Bit array]
	BIT_OR function [Aggregate]
	BIT_SUBSTR function [Bit array]
	BIT_XOR function [Aggregate]
	BYTE_LENGTH function [String]
	BYTE_SUBSTR function [String]
	CAST function [Data type conversion]
	CEILING function [Numeric]
	CHAR function [String]
	CHAR_LENGTH function [String]
	CHARINDEX function [String]
	COALESCE function [Miscellaneous]
	COMPARE function [String]
	COMPRESS function [String]
	CONFLICT function [Miscellaneous]
	CONNECTION_EXTENDED_PROPERTY function [String]
	CONNECTION_PROPERTY function [System]
	CONVERT function [Data type conversion]
	CORR function [Aggregate]
	COS function [Numeric]
	COT function [Numeric]
	COUNT function [Aggregate]
	COUNT_BIG function [Aggregate]
	COUNT_SET_BITS function [Bit array]
	COVAR_POP function [Aggregate]
	COVAR_SAMP function [Aggregate]
	CSCONVERT function [String]
	CUME_DIST function [Ranking]
	DATALENGTH function [System]
	DATE function [Date and time]
	DATEADD function [Date and time]
	DATEDIFF function [Date and time]
	DATEFORMAT function [Date and time]
	DATENAME function [Date and time]
	DATEPART function [Date and time]
	DATETIME function [Date and time]
	DAY function [Date and time]
	DAYNAME function [Date and time]
	DAYS function [Date and time]
	DB_EXTENDED_PROPERTY function [System]
	DB_ID function [System]
	DB_NAME function [System]
	DB_PROPERTY function [System]
	DECOMPRESS function [String]
	DECRYPT function [String]
	DEGREES function [Numeric]
	DENSE_RANK function [Ranking]
	DIFFERENCE function [String]
	DOW function [Date and time]
	ENCRYPT function [String]
	ERRORMSG function [Miscellaneous]
	ESTIMATE function [Miscellaneous]
	ESTIMATE_SOURCE function [Miscellaneous]
	EVENT_CONDITION function [System]
	EVENT_CONDITION_NAME function [System]
	EVENT_PARAMETER function [System]
	EXP function [Numeric]
	EXPERIENCE_ESTIMATE function [Miscellaneous]
	EXPLANATION function [Miscellaneous]
	EXPRTYPE function [Miscellaneous]
	FIRST_VALUE function [Aggregate]
	FLOOR function [Numeric]
	GET_BIT function [Bit array]
	GET_IDENTITY function [Miscellaneous]
	GETDATE function [Date and time]
	GRAPHICAL_PLAN function [Miscellaneous]
	GREATER function [Miscellaneous]
	GROUPING function [Aggregate]
	HASH function [String]
	HEXTOINT function [Data type conversion]
	HOUR function [Date and time]
	HOURS function [Date and time]
	HTML_DECODE function [Miscellaneous]
	HTML_ENCODE function [Miscellaneous]
	HTTP_BODY function [HTTP]
	HTTP_DECODE function [HTTP]
	HTTP_ENCODE function [HTTP]
	HTTP_HEADER function [HTTP]
	HTTP_RESPONSE_HEADER function [HTTP]
	HTTP_VARIABLE function [HTTP]
	IDENTITY function [Miscellaneous]
	IFNULL function [Miscellaneous]
	INDEX_ESTIMATE function [Miscellaneous]
	INSERTSTR function [String]
	INTTOHEX function [Data type conversion]
	ISDATE function [Data type conversion]
	ISENCRYPTED function [System]
	ISNULL function [Miscellaneous]
	ISNUMERIC function [Miscellaneous]
	LAST_VALUE function [Aggregate]
	LCASE function [String]
	LEFT function [String]
	LENGTH function [String]
	LESSER function [Miscellaneous]
	LIST function [Aggregate]
	LOCATE function [String]
	LOG function [Numeric]
	LOG10 function [Numeric]
	LOWER function [String]
	LTRIM function [String]
	MAX function [Aggregate]
	MEDIAN function [Aggregate]
	MIN function [Aggregate]
	MINUTE function [Date and time]
	MINUTES function [Date and time]
	MOD function [Numeric]
	MONTH function [Date and time]
	MONTHNAME function [Date and time]
	MONTHS function [Date and time]
	NCHAR function [String]
	NEWID function [Miscellaneous]
	NEXT_CONNECTION function [System]
	NEXT_DATABASE function [System]
	NEXT_HTTP_HEADER function [HTTP]
	NEXT_HTTP_RESPONSE_HEADER function [HTTP]
	NEXT_HTTP_VARIABLE function [HTTP]
	NEXT_SOAP_HEADER function [SOAP]
	NOW function [Date and time]
	NULLIF function [Miscellaneous]
	NUMBER function [Miscellaneous]
	PATINDEX function [String]
	PERCENT_RANK function [Ranking]
	PI function [Numeric]
	PLAN function [Miscellaneous]
	POWER function [Numeric]
	PROPERTY_DESCRIPTION function [System]
	PROPERTY function [System]
	PROPERTY_NAME function [System]
	PROPERTY_NUMBER function [System]
	QUARTER function [Date and time]
	RADIANS function [Numeric]
	RAND function [Numeric]
	RANK function [Ranking]
	READ_CLIENT_FILE function [String]
	REGEXP_SUBSTR function [String]
	REGR_AVGX function [Aggregate]
	REGR_AVGY function [Aggregate]
	REGR_COUNT function [Aggregate]
	REGR_INTERCEPT function [Aggregate]
	REGR_R2 function [Aggregate]
	REGR_SLOPE function [Aggregate]
	REGR_SXX function [Aggregate]
	REGR_SXY function [Aggregate]
	REGR_SYY function [Aggregate]
	REMAINDER function [Numeric]
	REPEAT function [String]
	REPLACE function [String]
	REPLICATE function [String]
	REVERSE function [String]
	REWRITE function [Miscellaneous]
	RIGHT function [String]
	ROUND function [Numeric]
	ROW_NUMBER function [Miscellaneous]
	ROWID function [Miscellaneous]
	RTRIM function [String]
	SECOND function [Date and time]
	SECONDS function [Date and time]
	SET_BIT function [Bit array]
	SET_BITS function [Aggregate]
	SIGN function [Numeric]
	SIMILAR function [String]
	SIN function [Numeric]
	SOAP_HEADER function [SOAP]
	SORTKEY function [String]
	SOUNDEX function [String]
	SPACE function [String]
	SQLDIALECT function [Miscellaneous]
	SQLFLAGGER function [Miscellaneous]
	SQRT function [Numeric]
	STDDEV function [Aggregate]
	STDDEV_POP function [Aggregate]
	STDDEV_SAMP function [Aggregate]
	STR function [String]
	STRING function [String]
	STRTOUUID function [String]
	STUFF function [String]
	SUBSTRING function [String]
	SUM function [Aggregate]
	SUSER_ID function [System]
	SUSER_NAME function [System]
	SWITCHOFFSET function [Date and time]
	SYSDATETIMEOFFSET function [Date and time]
	TAN function [Numeric]
	TEXTPTR function [Text and image]
	TO_CHAR function [String]
	TO_NCHAR function [String]
	TODATETIMEOFFSET function [Date and time]
	TODAY function [Date and time]
	TRACEBACK function [Miscellaneous]
	TRACED_PLAN function [Miscellaneous]
	TRANSACTSQL function [Miscellaneous]
	TREAT function [Data type conversion]
	TRIM function [String]
	TRUNCNUM function [Numeric]
	TSEQUAL function [System] (deprecated)
	UCASE function [String]
	UNICODE function [String]
	UNISTR function [String]
	UPPER function [String]
	USER_ID function [System]
	USER_NAME function [System]
	UUIDTOSTR function [String]
	VAR_POP function [Aggregate]
	VAR_SAMP function [Aggregate]
	VAREXISTS function [Miscellaneous]
	VARIANCE function [Aggregate]
	WATCOMSQL function [Miscellaneous]
	WEEKS function [Date and time]
	WRITE_CLIENT_FILE function [String]
	XMLAGG function [Aggregate]
	XMLCONCAT function [String]
	XMLELEMENT function [String]
	XMLFOREST function [String]
	XMLGEN function [String]
	YEAR function [Date and time]
	YEARS function [Date and time]
	YMD function [Date and time]

	SQL statements
	Common elements in SQL syntax
	Syntax conventions
	Statement applicability indicators
	SQL statements
	ALLOCATE DESCRIPTOR statement [ESQL]
	ALTER DATABASE statement
	ALTER DBSPACE statement
	ALTER DOMAIN statement
	ALTER EVENT statement
	ALTER EXTERNAL ENVIRONMENT statement
	ALTER FUNCTION statement
	ALTER INDEX statement
	ALTER LOGIN POLICY statement
	ALTER MATERIALIZED VIEW statement
	ALTER MIRROR SERVER statement
	ALTER PROCEDURE statement
	ALTER PUBLICATION statement [MobiLink] [SQL Remote]
	ALTER REMOTE MESSAGE TYPE statement [SQL Remote]
	ALTER SEQUENCE statement
	ALTER SERVER statement
	ALTER SERVICE statement
	ALTER SPATIAL REFERENCE SYSTEM statement
	ALTER STATISTICS statement
	ALTER SYNCHRONIZATION PROFILE statement [MobiLink]
	ALTER SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]
	ALTER SYNCHRONIZATION USER statement [MobiLink]
	ALTER TABLE statement
	ALTER TEXT CONFIGURATION statement
	ALTER TEXT INDEX statement
	ALTER TRIGGER statement
	ALTER USER statement
	ALTER VIEW statement
	ATTACH TRACING statement
	BACKUP statement
	BEGIN SNAPSHOT statement
	BEGIN statement
	BEGIN TRANSACTION statement [T-SQL]
	BREAK statement [T-SQL]
	CALL statement
	CASE statement
	CASE statement [T-SQL]
	CHECKPOINT statement
	CLEAR statement [Interactive SQL]
	CLOSE statement [ESQL] [SP]
	COMMENT statement
	COMMIT statement
	CONFIGURE statement [Interactive SQL]
	CONNECT statement [ESQL] [Interactive SQL]
	CONTINUE statement
	CREATE DATABASE statement
	CREATE DBSPACE statement
	CREATE DECRYPTED DATABASE statement
	CREATE DECRYPTED FILE statement
	CREATE DOMAIN statement
	CREATE ENCRYPTED DATABASE statement
	CREATE ENCRYPTED FILE statement
	CREATE EVENT statement
	CREATE EXISTING TABLE statement
	CREATE EXTERNLOGIN statement
	CREATE FUNCTION statement (external procedures)
	CREATE FUNCTION statement (web clients)
	CREATE FUNCTION statement
	CREATE INDEX statement
	CREATE LOCAL TEMPORARY TABLE statement
	CREATE LOGIN POLICY statement
	CREATE MATERIALIZED VIEW statement
	CREATE MESSAGE statement [T-SQL]
	CREATE MIRROR SERVER statement
	CREATE PROCEDURE statement (external procedures)
	CREATE PROCEDURE statement (web clients)
	CREATE PROCEDURE statement [T-SQL]
	CREATE PROCEDURE statement
	CREATE PUBLICATION statement [MobiLink] [SQL Remote]
	CREATE REMOTE MESSAGE TYPE statement [SQL Remote]
	CREATE SCHEMA statement
	CREATE SEQUENCE statement
	CREATE SERVER statement
	CREATE SERVICE statement
	CREATE SPATIAL REFERENCE SYSTEM statement
	CREATE SPATIAL UNIT OF MEASURE statement
	CREATE STATISTICS statement
	CREATE SUBSCRIPTION statement [SQL Remote]
	CREATE SYNCHRONIZATION PROFILE statement [MobiLink]
	CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]
	CREATE SYNCHRONIZATION USER statement [MobiLink]
	CREATE TABLE statement
	CREATE TEXT CONFIGURATION statement
	CREATE TEXT INDEX statement
	CREATE TRIGGER statement
	CREATE TRIGGER statement [T-SQL]
	CREATE USER statement
	CREATE VARIABLE statement
	CREATE VIEW statement
	DEALLOCATE DESCRIPTOR statement [ESQL]
	DEALLOCATE statement
	Declaration section [ESQL]
	DECLARE CURSOR statement [ESQL] [SP]
	DECLARE LOCAL TEMPORARY TABLE statement
	DECLARE statement
	DELETE (positioned) statement [ESQL] [SP]
	DELETE statement
	DESCRIBE statement [ESQL]
	DESCRIBE statement [Interactive SQL]
	DETACH TRACING statement
	DISCONNECT statement [ESQL] [Interactive SQL]
	DROP CONNECTION statement
	DROP DATABASE statement
	DROP DATATYPE statement
	DROP DBSPACE statement
	DROP DOMAIN statement
	DROP EVENT statement
	DROP EXTERNLOGIN statement
	DROP FUNCTION statement
	DROP INDEX statement
	DROP LOGIN POLICY statement
	DROP MATERIALIZED VIEW statement
	DROP MESSAGE statement
	DROP MIRROR SERVER statement
	DROP PROCEDURE statement
	DROP PUBLICATION statement [MobiLink] [SQL Remote]
	DROP REMOTE MESSAGE TYPE statement [SQL Remote]
	DROP SEQUENCE statement
	DROP SERVER statement
	DROP SERVICE statement
	DROP SPATIAL REFERENCE SYSTEM statement
	DROP SPATIAL UNIT OF MEASURE statement
	DROP STATEMENT statement [ESQL]
	DROP STATISTICS statement
	DROP SUBSCRIPTION statement [SQL Remote]
	DROP SYNCHRONIZATION PROFILE statement [MobiLink]
	DROP SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]
	DROP SYNCHRONIZATION USER statement [MobiLink]
	DROP TABLE statement
	DROP TEXT CONFIGURATION statement
	DROP TEXT INDEX statement
	DROP TRIGGER statement
	DROP USER statement
	DROP VARIABLE statement
	DROP VIEW statement
	EXCEPT statement
	EXECUTE IMMEDIATE statement [SP]
	EXECUTE statement [ESQL]
	EXECUTE statement [T-SQL]
	EXIT statement [Interactive SQL]
	EXPLAIN statement [ESQL]
	FETCH statement [ESQL] [SP]
	FOR statement
	FORWARD TO statement
	FROM clause
	GET DATA statement [ESQL]
	GET DESCRIPTOR statement [ESQL]
	GET OPTION statement [ESQL]
	GOTO statement [T-SQL]
	GRANT CONSOLIDATE statement [SQL Remote]
	GRANT PUBLISH statement [SQL Remote]
	GRANT REMOTE DBA statement [MobiLink] [SQL Remote]
	GRANT REMOTE statement [SQL Remote]
	GRANT statement
	GROUP BY clause
	HELP statement [Interactive SQL]
	IF statement
	IF statement [T-SQL]
	INCLUDE statement [ESQL]
	INPUT statement [Interactive SQL]
	INSERT statement
	INSTALL EXTERNAL OBJECT statement
	INSTALL JAVA statement
	INTERSECT statement
	LEAVE statement
	LOAD STATISTICS statement
	LOAD TABLE statement
	LOCK FEATURE statement
	LOCK TABLE statement
	LOOP statement
	MERGE statement
	MESSAGE statement
	OPEN statement [ESQL] [SP]
	OUTPUT statement [Interactive SQL]
	PARAMETERS statement [Interactive SQL]
	PASSTHROUGH statement [SQL Remote]
	PREPARE statement [ESQL]
	PREPARE TO COMMIT statement
	PRINT statement [T-SQL]
	PUT statement [ESQL]
	RAISERROR statement
	READ statement [Interactive SQL]
	READTEXT statement [T-SQL]
	REFRESH MATERIALIZED VIEW statement
	REFRESH TEXT INDEX statement
	REFRESH TRACING LEVEL statement
	RELEASE SAVEPOINT statement
	REMOTE RESET statement [SQL Remote]
	REMOVE EXTERNAL OBJECT statement
	REMOVE JAVA statement
	REORGANIZE TABLE statement
	RESIGNAL statement
	RESTORE DATABASE statement
	RESUME statement
	RETURN statement
	REVOKE CONSOLIDATE statement [SQL Remote]
	REVOKE PUBLISH statement [SQL Remote]
	REVOKE REMOTE DBA statement [SQL Remote]
	REVOKE REMOTE statement [SQL Remote]
	REVOKE statement
	ROLLBACK statement
	ROLLBACK TO SAVEPOINT statement
	ROLLBACK TRANSACTION statement [T-SQL]
	ROLLBACK TRIGGER statement
	SAVE TRANSACTION statement [T-SQL]
	SAVEPOINT statement
	SELECT statement
	SET CONNECTION statement [Interactive SQL] [ESQL]
	SET DESCRIPTOR statement [ESQL]
	SET MIRROR OPTION statement
	SET OPTION statement
	SET OPTION statement [Interactive SQL]
	SET REMOTE OPTION statement [SQL Remote]
	SET SQLCA statement [ESQL]
	SET statement
	SET statement [T-SQL]
	SETUSER statement
	SIGNAL statement
	START DATABASE statement
	START SERVER statement [Interactive SQL]
	START EXTERNAL ENVIRONMENT statement
	START JAVA statement
	START LOGGING statement [Interactive SQL]
	START SUBSCRIPTION statement [SQL Remote]
	START SYNCHRONIZATION DELETE statement [MobiLink]
	START SYNCHRONIZATION SCHEMA CHANGE statement [MobiLink]
	STOP DATABASE statement
	STOP EXTERNAL ENVIRONMENT statement
	STOP JAVA statement
	STOP LOGGING statement [Interactive SQL]
	STOP SERVER statement
	STOP SUBSCRIPTION statement [SQL Remote]
	STOP SYNCHRONIZATION DELETE statement [MobiLink]
	SYNCHRONIZE statement [MobiLink]
	STOP SYNCHRONIZATION SCHEMA CHANGE statement [MobiLink]
	SYNCHRONIZE SUBSCRIPTION statement [SQL Remote]
	SYSTEM statement [Interactive SQL]
	TRIGGER EVENT statement
	TRUNCATE statement
	TRUNCATE TEXT INDEX statement
	UNION statement
	UNLOAD statement
	UPDATE (positioned) statement [ESQL] [SP]
	UPDATE statement [SQL Remote]
	UPDATE statement
	VALIDATE statement
	WAITFOR statement
	WHENEVER statement [ESQL]
	WHILE statement [T-SQL]
	WINDOW clause
	WRITETEXT statement [T-SQL]

	Tables
	System tables
	DUMMY system table
	ISYSARTICLE system table
	ISYSARTICLECOL system table
	ISYSATTRIBUTE system table
	ISYSATTRIBUTENAME system table
	ISYSCAPABILITY system table
	ISYSCHECK system table
	ISYSCOLPERM system table
	ISYSCOLSTAT system table
	ISYSCONSTRAINT system table
	ISYSDEPENDENCY system table
	ISYSDBFILE system table
	ISYSDBSPACE system table
	ISYSDBSPACEPERM system table
	ISYSDOMAIN system table
	ISYSEVENT system table
	ISYSEXTERNLOGIN system table
	ISYSFILE system table
	ISYSFKEY system table
	ISYSGROUP system table
	ISYSHISTORY system table
	ISYSIDX system table
	ISYSIDXCOL system table
	ISYSJAR system table
	ISYSJARCOMPONENT system table
	ISYSJAVACLASS system table
	ISYSLOGINMAP system table
	ISYSLOGINPOLICY system table
	ISYSLOGINPOLICYOPTION system table
	ISYSMIRROROPTION system table
	ISYSMIRRORSERVER system table
	ISYSMIRRORSERVEROPTION system table
	ISYSMVOPTION system table
	ISYSMVOPTIONNAME system table
	ISYSOBJECT system table
	ISYSOPTION system table
	ISYSOPTSTAT system table
	ISYSPHYSIDX system table
	ISYSPROCEDURE system table
	ISYSPROCPARM system table
	ISYSPROCPERM system table
	ISYSPROXYTAB system table
	ISYSPUBLICATION system table
	ISYSREMARK system table
	ISYSREMOTEOPTION system table
	ISYSREMOTEOPTIONTYPE system table
	ISYSREMOTETYPE system table
	ISYSREMOTEUSER system table
	ISYSSCHEDULE system table
	ISYSSEQUENCE system table
	ISYSSEQUENCEPERM system table
	ISYSSERVER system table
	ISYSSOURCE system table
	ISYSSPATIALREFERENCESYSTEM system table
	ISYSSQLSERVERTYPE system table
	ISYSSUBSCRIPTION system table
	ISYSSYNC system table
	ISYSSYNCPROFILE system table
	ISYSSYNCSCRIPT system table
	ISYSTAB system table
	ISYSTABCOL system table
	ISYSTEXTCONFIG system table
	ISYSTEXTIDX system table
	ISYSTEXTIDXTAB system table
	ISYSTABLEPERM system table
	ISYSTRIGGER system table
	ISYSTYPEMAP system table
	ISYSUNITOFMEASURE system table
	ISYSUSER system table
	ISYSUSERAUTHORITY system table
	ISYSUSERMESSAGE system table
	ISYSUSERTYPE system table
	ISYSVIEW system table
	ISYSWEBSERVICE system table

	Diagnostic tracing tables
	sa_diagnostic_auxiliary_catalog table
	sa_diagnostic_blocking table
	sa_diagnostic_cachecontents table
	sa_diagnostic_connection table
	sa_diagnostic_cursor table
	sa_diagnostic_deadlock table
	sa_diagnostic_hostvariable table
	sa_diagnostic_internalvariable table
	sa_diagnostic_query table
	sa_diagnostic_request table
	sa_diagnostic_statement table
	sa_diagnostic_statistics table
	sa_diagnostic_tracing_level table

	Other tables
	RowGenerator table (dbo)
	Java system tables
	MobiLink system tables
	SQL Remote system tables
	UltraLite system tables

	System procedures
	View system procedure details
	Web services system procedures
	MAPI and SMTP procedures
	Return codes for MAPI and SMTP system procedures

	Adaptive Server Enterprise system and catalog procedures
	Adaptive Server Enterprise system procedures
	Adaptive Server Enterprise catalog procedures

	Alphabetical list of system procedures
	openxml system procedure
	sa_ansi_standard_packages system procedure
	sa_audit_string system procedure
	sa_char_terms system procedure
	sa_check_commit system procedure
	sa_clean_database system procedure
	sa_column_stats system procedure
	sa_conn_activity system procedure
	sa_conn_compression_info system procedure
	sa_conn_info system procedure
	sa_conn_list system procedure
	sa_conn_options system procedure
	sa_conn_properties system procedure
	sa_convert_ml_progress_to_timestamp system procedure
	sa_convert_timestamp_to_ml_progress system procedure
	sa_copy_cursor_to_temp_table system procedure
	sa_db_info system procedure
	sa_db_list system procedure
	sa_db_properties system procedure
	sa_dependent_views system procedure
	sa_describe_cursor system procedure
	sa_describe_query system procedure
	sa_describe_shapefile system procedure
	sa_disable_auditing_type system procedure
	sa_disk_free_space system procedure
	sa_enable_auditing_type system procedure
	sa_eng_properties system procedure
	sa_external_library_unload system procedure
	sa_flush_cache system procedure
	sa_flush_statistics system procedure
	sa_get_bits system procedure
	sa_get_dtt system procedure
	sa_get_dtt_groupreads system procedure
	sa_get_histogram system procedure
	sa_get_request_profile system procedure
	sa_get_request_times system procedure
	sa_get_server_messages system procedure [deprecated]
	sa_get_table_definition system procedure
	sa_get_user_status system procedure
	sa_http_header_info system procedure
	sa_http_php_page system procedure
	sa_http_php_page_interpreted system procedure
	sa_http_variable_info system procedure
	sa_index_density system procedure
	sa_index_levels system procedure
	sa_install_feature system procedure
	sa_java_loaded_classes system procedure
	sa_list_cursors system procedure
	sa_load_cost_model system procedure
	sa_locks system procedure
	sa_make_object system procedure
	sa_materialized_view_can_be_immediate system procedure
	sa_materialized_view_info system procedure
	sa_migrate system procedure
	sa_migrate_create_fks system procedure
	sa_migrate_create_remote_fks_list system procedure
	sa_migrate_create_remote_table_list system procedure
	sa_migrate_create_tables system procedure
	sa_migrate_data system procedure
	sa_migrate_drop_proxy_tables system procedure
	sa_mirror_server_status system procedure
	sa_nchar_terms system procedure
	sa_performance_diagnostics system procedure
	sa_performance_statistics system procedure
	sa_post_login_procedure system procedure
	sa_procedure_profile system procedure
	sa_procedure_profile_summary system procedure
	sa_recompile_views system procedure
	sa_refresh_materialized_views system procedure
	sa_refresh_text_indexes system procedure
	sa_remove_tracing_data system procedure
	sa_report_deadlocks system procedure
	sa_reserved_words system procedure
	sa_reset_identity system procedure
	sa_rowgenerator system procedure
	sa_save_trace_data system procedure
	sa_send_udp system procedure
	sa_server_messages system procedure
	sa_server_option system procedure
	sa_set_http_header system procedure
	sa_set_http_option system procedure
	sa_set_soap_header system procedure
	sa_set_tracing_level system procedure
	sa_snapshots system procedure
	sa_split_list system procedure
	sa_statement_text system procedure
	sa_table_fragmentation system procedure
	sa_table_page_usage system procedure
	sa_table_stats system procedure
	sa_text_index_stats system procedure
	sa_text_index_vocab system procedure
	sa_text_index_vocab_nchar system procedure
	sa_transactions system procedure
	sa_unload_cost_model system procedure
	sa_validate system procedure
	sa_verify_password system procedure
	sp_get_last_synchronize_result system procedure
	sp_login_environment system procedure
	sp_remote_columns system procedure
	sp_remote_exported_keys system procedure
	sp_remote_imported_keys system procedure
	sp_remote_primary_keys system procedure
	sp_remote_tables system procedure
	sp_servercaps system procedure
	sp_tsql_environment system procedure
	st_geometry_dump system procedure
	xp_cmdshell system procedure
	xp_msver system procedure
	xp_read_file system procedure
	xp_scanf system procedure
	xp_sendmail system procedure
	xp_sprintf system procedure
	xp_startmail system procedure
	xp_startsmtp system procedure
	xp_stopmail system procedure
	xp_stopsmtp system procedure
	xp_write_file system procedure

	Views
	System views
	SYSARTICLE system view
	SYSARTICLECOL system view
	SYSCAPABILITY system view
	SYSCAPABILITYNAME system view
	SYSCHECK system view
	SYSCOLPERM system view
	SYSCOLSTAT system view
	SYSCONSTRAINT system view
	SYSDBFILE system view
	SYSDBSPACE system view
	SYSDBSPACEPERM system view
	SYSDEPENDENCY system view
	SYSDOMAIN system view
	SYSEVENT system view
	SYSEVENTTYPE system view
	SYSEXTERNENV system view
	SYSEXTERNENVOBJECT system view
	SYSEXTERNLOGIN system view
	SYSFKEY system view
	SYSGROUP system view
	SYSHISTORY system view
	SYSIDX system view
	SYSIDXCOL system view
	SYSJAR system view
	SYSJARCOMPONENT system view
	SYSJAVACLASS system view
	SYSLOGINMAP system view
	SYSLOGINPOLICY system view
	SYSLOGINPOLICYOPTION system view
	SYSMIRROROPTION system view
	SYSMIRRORSERVER system view
	SYSMIRRORSERVEROPTION system view
	SYSMVOPTION system view
	SYSMVOPTIONNAME system view
	SYSOBJECT system view
	SYSOPTION system view
	SYSOPTSTAT system view
	SYSPHYSIDX system view
	SYSPROCEDURE system view
	SYSPROCPARM system view
	SYSPROCPERM system view
	SYSPROXYTAB system view
	SYSPUBLICATION system view
	SYSREMARK system view
	SYSREMOTEOPTION system view
	SYSREMOTEOPTIONTYPE system view
	SYSREMOTETYPE system view
	SYSREMOTEUSER system view
	SYSSCHEDULE system view
	SYSSEQUENCE system view
	SYSSEQUENCEPERM system view
	SYSSERVER system view
	SYSSOURCE system view
	SYSSPATIALREFERENCESYSTEM system view
	SYSSQLSERVERTYPE system view
	SYSSUBSCRIPTION system view
	SYSSYNC system view
	SYSSYNCPROFILE system view
	SYSSYNCSCRIPT system view
	SYSTAB system view
	SYSTABCOL system view
	SYSTABLEPERM system view
	SYSTEXTCONFIG system view
	SYSTEXTIDX system view
	SYSTEXTIDXTAB system view
	SYSTRIGGER system view
	SYSTYPEMAP system view
	SYSUNITOFMEASURE system view
	SYSUSER system view
	SYSUSERAUTHORITY system view
	SYSUSERMESSAGE system view
	SYSUSERTYPE system view
	SYSVIEW system view
	SYSWEBSERVICE system view

	Consolidated views
	ST_GEOMETRY_COLUMNS consolidated view
	ST_SPATIAL_REFERENCE_SYSTEMS consolidated view
	ST_UNITS_OF_MEASURE consolidated view
	SYSARTICLECOLS consolidated view
	SYSARTICLES consolidated view
	SYSCAPABILITIES consolidated view
	SYSCATALOG consolidated view
	SYSCOLAUTH consolidated view
	SYSCOLSTATS consolidated view
	SYSCOLUMNS consolidated view
	SYSFOREIGNKEYS consolidated view
	SYSGROUPS consolidated view
	SYSINDEXES consolidated view
	SYSOPTIONS consolidated view
	SYSPROCAUTH consolidated view
	SYSPROCPARMS consolidated view
	SYSPROCS consolidated view
	SYSPUBLICATIONS consolidated view
	SYSREMOTEOPTION2 consolidated view
	SYSREMOTEOPTIONS consolidated view
	SYSREMOTETYPES consolidated view
	SYSREMOTEUSERS consolidated view
	SYSSUBSCRIPTIONS consolidated view
	SYSSYNC2 consolidated view
	SYSSYNCPUBLICATIONDEFAULTS consolidated view
	SYSSYNCS consolidated view
	SYSSYNCSCRIPTS consolidated view
	SYSSYNCSUBSCRIPTIONS consolidated view
	SYSSYNCUSERS consolidated view
	SYSTABAUTH consolidated view
	SYSTRIGGERS consolidated view
	SYSUSEROPTIONS consolidated view
	SYSVIEWS consolidated view

	Compatibility views
	SYSCOLLATION compatibility view (deprecated)
	SYSCOLLATIONMAPPINGS compatibility view (deprecated)
	SYSCOLUMN compatibility view (deprecated)
	SYSFILE compatibility view (deprecated)
	SYSFKCOL compatibility view (deprecated)
	SYSFOREIGNKEY compatibility view (deprecated)
	SYSINDEX compatibility view (deprecated)
	SYSINFO compatibility view (deprecated)
	SYSIXCOL compatibility view (deprecated)
	SYSTABLE compatibility view (deprecated)
	SYSUSERAUTH compatibility view (deprecated)
	SYSUSERLIST compatibility view (deprecated)
	SYSUSERPERM compatibility view (deprecated)
	SYSUSERPERMS compatibility view (deprecated)
	Views for Transact-SQL compatibility

	Index

