
SQL Remote™

February 2009

Version 11.0.1

Copyright and trademarks
Copyright © 2009 iAnywhere Solutions, Inc. Portions copyright © 2009 Sybase, Inc. All rights reserved.

This documentation is provided AS IS, without warranty or liability of any kind (unless provided by a separate written agreement between
you and iAnywhere).

You may use, print, reproduce, and distribute this documentation (in whole or in part) subject to the following conditions: 1) you must retain
this and all other proprietary notices, on all copies of the documentation or portions thereof, 2) you may not modify the documentation, 3) you
may not do anything to indicate that you or anyone other than iAnywhere is the author or source of the documentation.

iAnywhere®, Sybase®, and the marks listed at http://www.sybase.com/detail?id=1011207 are trademarks of Sybase, Inc. or its subsidiaries.
® indicates registration in the United States of America.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

http://www.sybase.com/detail?id=1011207

Contents

About this book .. v

About the SQL Anywhere documentation ... vi

SQL Remote Replication Design ... 1

SQL Remote introduction .. 3
SQL Remote features .. 4
Typical SQL Remote setups .. 5
SQL Remote components ... 8
Understanding the SQL Remote replication process ... 9

SQL Remote replication design and set up ... 11
Creating SQL Remote systems ... 12
Publications and articles .. 13
User permissions ... 21
Subscriptions ... 33
Understanding transaction log-based replication ... 35
Replication conflicts and errors .. 42
Update conflicts ... 43
Row not found errors ... 50
Referential integrity errors ... 51
Duplicate primary key errors .. 54
Partitioning rows among remote databases .. 60
Using disjoint data partitions .. 61
Using overlap partitions ... 67
Assigning unique identification numbers to each database 73

SQL Remote Deployment and Administration ... 77

SQL Remote Administration .. 79
Management overview of SQL Remote ... 80
Extracting remote databases ... 82
Extracting remote databases to a reload file ... 84
Understanding the Message Agent (dbremote) ... 89

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 iii

Improving SQL Remote performance .. 94
Understanding the Guaranteed Message Delivery System 103
Controlling message size ... 108
SQL Remote message systems .. 110
Backing up SQL Remote systems ... 120
Recover consolidated databases manually ... 125
Recover consolidated databases automatically ... 127
Reporting and handling replication errors .. 129
Security .. 134
Upgrading and resynchronization .. 135
SQL Remote passthrough mode ... 137
Resynchronizing subscriptions .. 140

SQL Remote Reference ... 143

SQL Remote utilities and options reference .. 145
Message Agent (dbremote) ... 146
Extraction utility (dbxtract) ... 154
SQL Remote options ... 162
SQL Remote system procedures ... 164

SQL Remote system objects ... 169
SQL Remote system tables ... 170

SQL Remote SQL statements ... 171
SQL Remote statements ... 172

Glossary .. 173

Glossary .. 175

Index .. 205

SQL Remote™

iv Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

About this book
Subject

This book describes the SQL Remote data replication system for mobile computing, which enables sharing
of data between a SQL Anywhere consolidated database and many SQL Anywhere remote databases using
an indirect link such as email or file transfer.

Audience
This book is for users of SQL Anywhere who want to add SQL Remote replication to their information
systems.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 v

About the SQL Anywhere documentation
The complete SQL Anywhere documentation is available in four formats that contain identical information.

● HTML Help The online Help contains the complete SQL Anywhere documentation, including the
books and the context-sensitive help for SQL Anywhere tools.

If you are using a Microsoft Windows operating system, the online Help is provided in HTML Help
(CHM) format. To access the documentation, choose Start » Programs » SQL Anywhere 11 »
Documentation » Online Books.

The administration tools use the same online documentation for their Help features.

● Eclipse On Unix platforms, the complete online Help is provided in Eclipse format. To access the
documentation, run sadoc from the bin32 or bin64 directory of your SQL Anywhere 11 installation.

● DocCommentXchange DocCommentXchange is a community for accessing and discussing SQL
Anywhere documentation.

Use DocCommentXchange to:

○ View documentation

○ Check for clarifications users have made to sections of documentation

○ Provide suggestions and corrections to improve documentation for all users in future releases

Visit http://dcx.sybase.com.

● PDF The complete set of SQL Anywhere books is provided as a set of Portable Document Format
(PDF) files. You must have a PDF reader to view information. To download Adobe Reader, visit http://
get.adobe.com/reader/.

To access the PDF documentation on Microsoft Windows operating systems, choose Start »
Programs » SQL Anywhere 11 » Documentation » Online Books - PDF Format.

To access the PDF documentation on Unix operating systems, use a web browser to open install-dir/
documentation/en/pdf/index.html.

About the books in the documentation set
The SQL Anywhere documentation consists of the following books:

● SQL Anywhere 11 - Introduction This book introduces SQL Anywhere 11, a comprehensive
package that provides data management and data exchange, enabling the rapid development of database-
powered applications for server, desktop, mobile, and remote office environments.

● SQL Anywhere 11 - Changes and Upgrading This book describes new features in SQL Anywhere
11 and in previous versions of the software.

● SQL Anywhere Server - Database Administration This book describes how to run, manage, and
configure SQL Anywhere databases. It describes database connections, the database server, database

About this book

vi Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://dcx.sybase.com/
http://get.adobe.com/reader/
http://get.adobe.com/reader/

files, backup procedures, security, high availability, replication with the Replication Server, and
administration utilities and options.

● SQL Anywhere Server - Programming This book describes how to build and deploy database
applications using the C, C++, Java, PHP, Perl, Python, and .NET programming languages such as Visual
Basic and Visual C#. A variety of programming interfaces such as ADO.NET and ODBC are described.

● SQL Anywhere Server - SQL Reference This book provides reference information for system
procedures, and the catalog (system tables and views). It also provides an explanation of the SQL
Anywhere implementation of the SQL language (search conditions, syntax, data types, and functions).

● SQL Anywhere Server - SQL Usage This book describes how to design and create databases; how
to import, export, and modify data; how to retrieve data; and how to build stored procedures and triggers.

● MobiLink - Getting Started This book introduces MobiLink, a session-based relational-database
synchronization system. MobiLink technology allows two-way replication and is well suited to mobile
computing environments.

● MobiLink - Client Administration This book describes how to set up, configure, and synchronize
MobiLink clients. MobiLink clients can be SQL Anywhere or UltraLite databases. This book also
describes the Dbmlsync API, which allows you to integrate synchronization seamlessly into your C++
or .NET client applications.

● MobiLink - Server Administration This book describes how to set up and administer MobiLink
applications.

● MobiLink - Server-Initiated Synchronization This book describes MobiLink server-initiated
synchronization, a feature that allows the MobiLink server to initiate synchronization or perform actions
on remote devices.

● QAnywhere This book describes QAnywhere, which is a messaging platform for mobile, wireless,
desktop, and laptop clients.

● SQL Remote This book describes the SQL Remote data replication system for mobile computing,
which enables sharing of data between a SQL Anywhere consolidated database and many SQL Anywhere
remote databases using an indirect link such as email or file transfer.

● UltraLite - Database Management and Reference This book introduces the UltraLite database
system for small devices.

● UltraLite - C and C++ Programming This book describes UltraLite C and C++ programming
interfaces. With UltraLite, you can develop and deploy database applications to handheld, mobile, or
embedded devices.

● UltraLite - M-Business Anywhere Programming This book describes UltraLite for M-Business
Anywhere. With UltraLite for M-Business Anywhere you can develop and deploy web-based database
applications to handheld, mobile, or embedded devices, running Palm OS, Windows Mobile, or
Windows.

● UltraLite - .NET Programming This book describes UltraLite.NET. With UltraLite.NET you can
develop and deploy database applications to computers, or handheld, mobile, or embedded devices.

● UltraLiteJ This book describes UltraLiteJ. With UltraLiteJ, you can develop and deploy database
applications in environments that support Java. UltraLiteJ supports BlackBerry smartphones and Java
SE environments. UltraLiteJ is based on the iAnywhere UltraLite database product.

About the SQL Anywhere documentation

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 vii

● Error Messages This book provides a complete listing of SQL Anywhere error messages together
with diagnostic information.

Documentation conventions
This section lists the conventions used in this documentation.

Operating systems
SQL Anywhere runs on a variety of platforms. In most cases, the software behaves the same on all platforms,
but there are variations or limitations. These are commonly based on the underlying operating system
(Windows, Unix), and seldom on the particular variant (AIX, Windows Mobile) or version.

To simplify references to operating systems, the documentation groups the supported operating systems as
follows:

● Windows The Microsoft Windows family includes Windows Vista and Windows XP, used primarily
on server, desktop, and laptop computers, and Windows Mobile used on mobile devices.

Unless otherwise specified, when the documentation refers to Windows, it refers to all Windows-based
platforms, including Windows Mobile.

● Unix Unless otherwise specified, when the documentation refers to Unix, it refers to all Unix-based
platforms, including Linux and Mac OS X.

Directory and file names

In most cases, references to directory and file names are similar on all supported platforms, with simple
transformations between the various forms. In these cases, Windows conventions are used. Where the details
are more complex, the documentation shows all relevant forms.

These are the conventions used to simplify the documentation of directory and file names:

● Uppercase and lowercase directory names On Windows and Unix, directory and file names
may contain uppercase and lowercase letters. When directories and files are created, the file system
preserves letter case.

On Windows, references to directories and files are not case sensitive. Mixed case directory and file
names are common, but it is common to refer to them using all lowercase letters. The SQL Anywhere
installation contains directories such as Bin32 and Documentation.

On Unix, references to directories and files are case sensitive. Mixed case directory and file names are
not common. Most use all lowercase letters. The SQL Anywhere installation contains directories such
as bin32 and documentation.

The documentation uses the Windows forms of directory names. In most cases, you can convert a mixed
case directory name to lowercase for the equivalent directory name on Unix.

● Slashes separating directory and file names The documentation uses backslashes as the directory
separator. For example, the PDF form of the documentation is found in install-dir\Documentation\en
\PDF (Windows form).

About this book

viii Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

On Unix, replace the backslash with the forward slash. The PDF documentation is found in install-dir/
documentation/en/pdf.

● Executable files The documentation shows executable file names using Windows conventions, with
a suffix such as .exe or .bat. On Unix, executable file names have no suffix.

For example, on Windows, the network database server is dbsrv11.exe. On Unix, it is dbsrv11.

● install-dir During the installation process, you choose where to install SQL Anywhere. The
environment variable SQLANY11 is created and refers to this location. The documentation refers to this
location as install-dir.

For example, the documentation may refer to the file install-dir\readme.txt. On Windows, this is
equivalent to %SQLANY11%\readme.txt. On Unix, this is equivalent to $SQLANY11/readme.txt or $
{SQLANY11}/readme.txt.

For more information about the default location of install-dir, see “SQLANY11 environment variable”
[SQL Anywhere Server - Database Administration].

● samples-dir During the installation process, you choose where to install the samples included with
SQL Anywhere. The environment variable SQLANYSAMP11 is created and refers to this location. The
documentation refers to this location as samples-dir.

To open a Windows Explorer window in samples-dir, from the Start menu, choose Programs » SQL
Anywhere 11 » Sample Applications And Projects.

For more information about the default location of samples-dir, see “SQLANYSAMP11 environment
variable” [SQL Anywhere Server - Database Administration].

Command prompts and command shell syntax

Most operating systems provide one or more methods of entering commands and parameters using a
command shell or command prompt. Windows command prompts include Command Prompt (DOS prompt)
and 4NT. Unix command shells include Korn shell and bash. Each shell has features that extend its
capabilities beyond simple commands. These features are driven by special characters. The special characters
and features vary from one shell to another. Incorrect use of these special characters often results in syntax
errors or unexpected behavior.

The documentation provides command line examples in a generic form. If these examples contain characters
that the shell considers special, the command may require modification for the specific shell. The
modifications are beyond the scope of this documentation, but generally, use quotes around the parameters
containing those characters or use an escape character before the special characters.

These are some examples of command line syntax that may vary between platforms:

● Parentheses and curly braces Some command line options require a parameter that accepts
detailed value specifications in a list. The list is usually enclosed with parentheses or curly braces. The
documentation uses parentheses. For example:

-x tcpip(host=127.0.0.1)

Where parentheses cause syntax problems, substitute curly braces:

-x tcpip{host=127.0.0.1}

About the SQL Anywhere documentation

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 ix

If both forms result in syntax problems, the entire parameter should be enclosed in quotes as required
by the shell:

-x "tcpip(host=127.0.0.1)"
● Quotes If you must specify quotes in a parameter value, the quotes may conflict with the traditional

use of quotes to enclose the parameter. For example, to specify an encryption key whose value contains
double-quotes, you might have to enclose the key in quotes and then escape the embedded quote:

-ek "my \"secret\" key"

In many shells, the value of the key would be my "secret" key.

● Environment variables The documentation refers to setting environment variables. In Windows
shells, environment variables are specified using the syntax %ENVVAR%. In Unix shells, environment
variables are specified using the syntax $ENVVAR or ${ENVVAR}.

Graphic icons
The following icons are used in this documentation.

● A client application.

● A database server, such as Sybase SQL Anywhere.

● A database. In some high-level diagrams, the icon may be used to represent both the database and the
database server that manages it.

● Replication or synchronization middleware. These assist in sharing data among databases. Examples are
the MobiLink server and the SQL Remote Message Agent.

About this book

x Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● A programming interface.

Contacting the documentation team
We would like to receive your opinions, suggestions, and feedback on this Help.

To submit your comments and suggestions, send an email to the SQL Anywhere documentation team at
iasdoc@sybase.com. Although we do not reply to emails, your feedback helps us to improve our
documentation, so your input is welcome.

DocCommentXchange
You can also leave comments directly on help topics using DocCommentXchange. DocCommentXchange
(DCX) is a community for accessing and discussing SQL Anywhere documentation. Use
DocCommentXchange to:

● View documentation

● Check for clarifications users have made to sections of documentation

● Provide suggestions and corrections to improve documentation for all users in future releases

Visit http://dcx.sybase.com.

Finding out more and requesting technical support
Additional information and resources are available at the Sybase iAnywhere Developer Community at http://
www.sybase.com/developer/library/sql-anywhere-techcorner.

If you have questions or need help, you can post messages to the Sybase iAnywhere newsgroups listed below.

When you write to one of these newsgroups, always provide details about your problem, including the build
number of your version of SQL Anywhere. You can find this information by running the following command:
dbeng11 -v.

The newsgroups are located on the forums.sybase.com news server.

About the SQL Anywhere documentation

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 xi

mailto:iasdoc@sybase.com
http://dcx.sybase.com/
http://www.sybase.com/developer/library/sql-anywhere-techcorner
http://www.sybase.com/developer/library/sql-anywhere-techcorner

The newsgroups include the following:

● sybase.public.sqlanywhere.general
● sybase.public.sqlanywhere.linux
● sybase.public.sqlanywhere.mobilink
● sybase.public.sqlanywhere.product_futures_discussion
● sybase.public.sqlanywhere.replication
● sybase.public.sqlanywhere.ultralite
● ianywhere.public.sqlanywhere.qanywhere

For web development issues, see http://groups.google.com/group/sql-anywhere-web-development.

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information, or ideas on its newsgroups, nor is
iAnywhere Solutions obliged to provide anything other than a systems operator to monitor the service and
ensure its operation and availability.

iAnywhere Technical Advisors, and other staff, assist on the newsgroup service when they have time. They
offer their help on a volunteer basis and may not be available regularly to provide solutions and information.
Their ability to help is based on their workload.

About this book

xii Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

news://forums.sybase.com/sybase.public.sqlanywhere.general
news://forums.sybase.com/sybase.public.sqlanywhere.linux
news://forums.sybase.com/sybase.public.sqlanywhere.mobilink
news://forums.sybase.com/sybase.public.sqlanywhere.product_futures_discussion
news://forums.sybase.com/sybase.public.sqlanywhere.replication
news://forums.sybase.com/sybase.public.sqlanywhere.ultralite
news://forums.sybase.com/ianywhere.public.sqlanywhere.qanywhere
http://groups.google.com/group/sql-anywhere-web-development

SQL Remote Replication Design

This section provides an overview and instructions for setting up SQL Remote replication.

SQL Remote introduction .. 3
SQL Remote replication design and set up ... 11

SQL Remote introduction

Contents
SQL Remote features .. 4
Typical SQL Remote setups .. 5
SQL Remote components ... 8
Understanding the SQL Remote replication process .. 9

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 3

SQL Remote features
SQL Remote is a message-based technology designed for the two-way replication of database transactions
between a consolidated database and large numbers of remote databases. Administration and resource
requirements at the remote sites are minimal, making SQL Remote well suited to mobile devices.

SQL Remote provides the following functionality:

● Multiple subscriber support SQL Remote allows occasionally connected users to replicate data
between a SQL Anywhere consolidated database and a large number of remote SQL Anywhere
databases, typically including many mobile databases.

● Transaction log-based replication SQL Remote uses the transaction log for replication. As a result,
only changed data is replicated during an update. It ensures proper transaction atomicity throughout the
replication system and maintains consistency among the databases involved in the replication.

● Central administration SQL Remote is centrally administered at the consolidated database. A
company can have a large mobile workforce with many unique databases without maintaining each
remote database individually. In addition, SQL Remote operation is invisible to the end user.

● Economical memory use To run efficiently, SQL Remote uses memory economically. This allows
you to use SQL Remote on existing remote computers and devices without having to invest in new
hardware. Replication is possible to and from remote computers and devices with limited space; only
relevant data is replicated from the consolidated database to the remote databases.

● Multi-platform support SQL Remote is supported on several operating systems and message links.
SQL Anywhere databases can be copied from one file or operating system to another. “Supported
platforms” [SQL Anywhere 11 - Introduction].

See also
● “Comparing synchronization technologies” [SQL Anywhere 11 - Introduction]
● “Choosing a synchronization technology” [SQL Anywhere 11 - Introduction]

SQL Remote introduction

4 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Typical SQL Remote setups
SQL Remote is designed for replication systems with the following requirements:

● Large numbers of remote databases SQL Remote can support thousands of remote databases in
a single installation because the messages for many remote databases can be prepared simultaneously.

● Occasionally connected SQL Remote supports databases that are occasionally connected or
indirectly connected to the network. SQL Remote is not designed for instantaneous data availability at
each site. For example, it may use an SMTP email system to carry the replication.

● Low to high latency High latency means a long lag time between data being entered at one database
and being replicated to each database in the system. With SQL Remote, replication messages can be sent
at intervals of seconds, minutes, hours, or days.

● Low to moderate volume As replication messages are delivered occasionally, a high transaction
volume at each remote database can lead to a large volume of messages. SQL Remote is best suited to
systems with a relatively low volume of replicated data per remote database. At the consolidated database,
SQL Remote can prepare messages for multiple databases simultaneously.

● Homogeneous databases Each SQL Anywhere database in the system must have a similar schema.

Server-to-remote database replication for mobile
workforces

In the following example, SQL Remote provides two-way replication between a consolidated database on
an office network, and personal databases on the laptop computers of sales representatives. An SMTP email
system is used as a message transport.

Typical SQL Remote setups

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 5

To manage the consolidated database, the office network server runs a SQL Anywhere database server. SQL
Remote connects to the consolidated database in the same way as any other client application.

Each sales representative's laptop computer includes a SQL Anywhere personal server, a SQL Anywhere
remote database, and SQL Remote.

While away from the office, a sales representative can connect to the internet to run SQL Remote, which
carries out the following functions:

● Collects publication updates from the consolidated database on the office network server.

● Submits any local updates, such as new orders, to the consolidated database on the office network server.

The publication updates from the office network database may include new specials on the products the sales
representative handles, or new pricing and inventory information. These updates are read by SQL Remote
on the laptop and applied to the sales representative's remote database automatically, without requiring any
additional action from the sales representative.

The new orders recorded by the sales representative are also automatically submitted and applied to the
office network database without any extra action from the sales representative.

SQL Remote introduction

6 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Server-to-server database replication among offices
In this example, SQL Remote provides two-way replication between the database servers at the sales offices
or outlets, and the central company office. The only work required at the sales offices is the initial setup and
ongoing maintenance of the server.

Layers can be added to SQL Remote hierarchies: for example, each sales office server could act as a
consolidated database, supporting remote subscribers who work from that office.

SQL Remote can be configured to allow each office to receive its own set of data. Tables such as staff records
can be kept private in the same database as the replicated data.

Typical SQL Remote setups

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 7

SQL Remote components
The following components are required for SQL Remote:

● Database server A SQL Anywhere database is required at the consolidated and each remote site.

● SQL Remote To send and receive replication messages from database to database, SQL Remote must
be installed at the consolidated site and the remote sites.

The SQL Remote Message Agent connects to the database server via a client/server connection. The
message agent may run on the same computer as the database server or on a different computer.

● Message system client software SQL Remote uses existing message systems to transport
replication messages.

If you are using a shared file or FTP message system, the message system is included with your operating
system.

If you are using an SMTP email system, you must have an email client installed at the consolidated and
each remote site.

● Client applications The client application can use ODBC, embedded SQL, or several other
programming interfaces. Client applications do not have to know if they are using a consolidated or
remote database. From the client application perspective, there is no difference. See “SQL Anywhere
data access programming interfaces” [SQL Anywhere Server - Programming].

SQL Remote introduction

8 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Understanding the SQL Remote replication process
With SQL Remote, messages are always sent two ways. The consolidated database sends messages
containing publication updates to remote databases, and remote databases send updated data and receipt
confirmation messages to the consolidated database.

When remote database users modify data, their changes are replicated to the consolidated database. When
these changes are applied at the consolidated database, they become part of the consolidated database's
publication, and are included with the updates sent to all remote databases (except the one the update came
from). In this way, replication from remote database to remote database takes place via the consolidated
database.

For example, if data in a publication at a consolidated database is updated, those updates are sent to the
remote databases. Even if the data is never updated at the remote database, confirmation messages are still
sent back to the consolidated database to keep track of the status of the replication.

Understanding the SQL Remote replication process

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 9

Steps involved in the SQL Remote replication process

1. At each consolidated and remote database participating in replication, there is a Message Agent and a
transaction log that manages replication. All committed changes are recorded and stored in the transaction
log.

2. Periodically, the Message Agent on the consolidated database scans the transaction log and packages all
the committed transactions made to each publication (section of data) into messages. The consolidated
database's Message Agent then sends the relevant changes to remote users who subscribe to those
publications. The Message Agent sends the changes using a messaging system. SQL Remote supports
SMTP email systems, FTP, and FILE.

3. The Message Agent at the remote database accepts the messages sent from the consolidated database
and sends a confirmation to the consolidated database that the messages have been received. Then, the
Message Agent applies the transactions to the remote database.

4. At any time, a remote user can run the Message Agent to package the transactions made at the remote
database into messages and send them back to the consolidated database.

5. The Message Agent at the consolidated site processes the messages from the remote database and applies
the transactions to the consolidated database.

SQL Remote introduction

10 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Remote replication design and set up

Contents
Creating SQL Remote systems ... 12
Publications and articles .. 13
User permissions ... 21
Subscriptions ... 33
Understanding transaction log-based replication .. 35
Replication conflicts and errors ... 42
Update conflicts ... 43
Row not found errors ... 50
Referential integrity errors ... 51
Duplicate primary key errors .. 54
Partitioning rows among remote databases .. 60
Using disjoint data partitions .. 61
Using overlap partitions ... 67
Assigning unique identification numbers to each database ... 73

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 11

Creating SQL Remote systems
Use the consolidated database to complete all SQL Remote administrative tasks.

To create a SQL Remote system

1. Choose your SQL Anywhere consolidated database or create a new SQL Anywhere database. The remote
databases, which are also SQL Anywhere databases, are created from the consolidated database.

When creating a new SQL Anywhere database, consider how SQL Remote uses primary keys. For
example, a good practice is to choose BIGINT with global autoincrement for the primary key column
data type. See “Duplicate primary key errors” on page 54.

2. Determine what data to replicate.

When creating an efficient replication system, you decide on the tables that you want to use, the columns
from those tables, and finally the subset of rows to replicate. Only include the information that is needed.

3. Create publications on the consolidated database.

SQL Remote uses a publish and subscribe model to ensure that the correct information reaches its
intended user. Arrange the data that you want to replicate into publications on the consolidated database.
See “Publications and articles” on page 13.

4. Create a publisher user on the consolidated database.

A publisher is a user with PUBLISH authority and the publisher is used to uniquely identify the
consolidated database. See “PUBLISH permission” on page 23.

5. Create the remote user.

A remote user is used to uniquely identify a remote database. See “REMOTE
permission” on page 25.

When you create a remote user, you define the message type to use when transporting the data and,
optionally, you define how frequently to send the data.

6. Subscribe the remote users to publications by creating subscriptions. See “Subscriptions” on page 33.

7. Determine how the remote users can use the data.

Remote users can always read their data. You can also allow them to update, delete, and insert data. See
“Understanding transaction log-based replication” on page 35.

8. Choose a method for resolving conflicts.

Conflicts can occur during replication when your remote users update, delete, or insert data. You must
implement methods for resolving conflicts. See “Default resolution for update conflicts” on page 43.

9. Deploy the SQL Remote system.

Create the remote databases and install the appropriate software. See “Management overview of SQL
Remote” on page 80.

SQL Remote replication design and set up

12 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Publications and articles
A publication defines the set of data to be replicated. A publication can include data from several database
tables. An article refers to a table in a publication. Each article in a publication can consist of the entire table
or a subset of the rows and columns in the table.

Limitations
A publication cannot include views or stored procedures. For information about how SQL Remote replicates
procedures and triggers, see “Replicating procedures” on page 38 and “Replicating
triggers” on page 38.

Viewing publications and articles (Sybase Central)
In Sybase Central, publications appear in the Publications folder in the left pane. Any articles you create
for a publication appear on the Articles tab in the right pane when you select a publication.

Create publications
You create publications based on existing tables in the consolidated database.

Use the following procedures to create publications that consist of all the columns and rows in a table.

To publish tables (Sybase Central)

1. Connect to the consolidated database as a user with DBA authority.

2. In the left pane, select the Publications folder.

3. Choose File » New » Publication.

Publications and articles

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 13

4. In the What Do You Want To Name The New Publication field, type a name for the publication. Click
Next.

5. Click Next.

6. In the Available Tables list, select a table. Click Add.

7. Click Finish.

To publish tables (SQL)

1. Connect to the consolidated database as a user with DBA authority.

2. Execute a CREATE PUBLICATION statement that specifies the name of the new publication and the
table you want to publish. See “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL
Anywhere Server - SQL Reference].

For example, the following statement creates a publication that publishes the entire Customers table:

CREATE PUBLICATION PubCustomers (
 TABLE Customers
);

The following statement creates a publication that publishes the entire SalesOrders, SalesOrderItems,
and Products tables:

CREATE PUBLICATION PubSales (
 TABLE SalesOrders,
 TABLE SalesOrderItems,
 TABLE Products
);

Publish only some columns in a table
Use the following procedures to create a publication that contains all the rows, but only some of the columns,
of a table.

To publish only some columns in a table (Sybase Central)

1. Connect to the consolidated database as a user with DBA authority.

2. In the left pane, expand the Publications folder.

3. From the File menu, choose New » Publication.

4. In the What Do You Want To Name The New Publication field, type a name for the publication. Click
Next.

5. Click Next.

6. On the Available Tables list, select a table. Click Add. Click Next.

7. On the Available Columns tab, double-click the table's icon to expand the list of Available Columns.
Select each column you want to publish and click Add. Click Next.

8. Click Finish.

SQL Remote replication design and set up

14 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To publish only some columns in a table (SQL)

1. Connect to the consolidated database as a user with DBA authority.

2. Execute a CREATE PUBLICATION statement that specifies the publication name and the table name.
List the published columns in parentheses following the table name.

For example, the following statement creates a publication that publishes all the rows of the ID,
CompanyName, and City columns of the Customers table. This publication does not publish the Surname,
GivenName, Street, State, Country, PostalCode, and Phone columns of the Customers table.

CREATE PUBLICATION PubCustomers (
 TABLE Customers (
 ID,
 CompanyName,
 City)
);

See also
● “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “Referential integrity errors” on page 51

Publish only some rows in a table
To create a publication that contains only some of the rows in a table, you must write a search condition that
matches only the rows you want to publish. Use of one of the following clauses in your search condition:

● SUBSCRIBE BY clause Use the SUBSCRIBE BY clause when multiple subscribers to a publication
receive different rows from a table.

The SUBSCRIBE BY clause is recommended when your SQL Remote system requires a large number
of subscriptions. The SUBSCRIBE BY clause allows many subscriptions to be associated with a single
publication, whereas the WHERE clause does not. Subscribers receive rows depending on the value of
a supplied expression.

Publications using a SUBSCRIBE BY clause are more compact, easier to understand, and provide better
performance than maintaining several WHERE clause publications.

See “Publish only some rows using the SUBSCRIBE BY clause” on page 16.

● WHERE clause Use a WHERE clause to include a subset of rows in an article. All subscribers to the
publication containing this article receive the rows that satisfy the WHERE clause.

All unpublished rows must have a default value. Otherwise, when the remote database tries to insert new
rows from the consolidated database, an error occurs.

You can combine a WHERE clause in an article.

The database server must add information to the transaction log, and scan the transaction log to send
messages, in direct proportion to the number of publications. The WHERE clause does not allow many
subscriptions to be associated with a single publication; however the SUBSCRIBE BY clause does.

Publications and articles

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 15

See “Publish only some rows using a WHERE clause” on page 18.

Example
You need a publication that enables each sales representative to:

● Subscribe to their sales orders.

● Update their sales orders locally.

● Replicate their sales to the consolidated database.

If you use the WHERE clause, you would need to create separate publications for each sales representative.
The following publication is for a sales representative named Sam Singer; each of the other sales
representatives would need a similar publication.

CREATE PUBLICATION PubOrdersSamSinger (
 TABLE SalesOrders
 WHERE Active = 1
);

The following statement subscribes Sam Singer to the PubsOrdersSamSinger publication.

CREATE SUBSCRIPTION
TO PubOrdersSamSinger
FOR Sam_Singer;

If you use the SUBSCRIBE BY clause, you need only one publication. All of the sales representatives can
use the following publication:

CREATE PUBLICATION PubOrders (
 TABLE SalesOrders
 SUBSCRIBE BY SalesRepresentativeID
);

The following statement subscribes Sam Singer to the PubsOrders publication by his ID, 8887.

CREATE SUBSCRIPTION
TO PubOrders ('8887')
FOR Sam_Singer;

Publish only some rows using the SUBSCRIBE BY clause
Use the following procedure to create a publication using the SUBSCRIBE BY clause. For information about
using the SUBSCRIBE BY clause and its alternative the WHERE clause, see “Publish only some rows in a
table” on page 15.

To create a publication using the SUBSRIBE BY clause (Sybase Central)

1. Connect to the consolidated database as a user with DBA authority.

2. In the left pane, select the Publications folder.

3. From the File menu, choose New » Publication.

SQL Remote replication design and set up

16 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

4. In the What Do You Want To Name The New Publication field, type a name for the publication. Click
Next.

5. Click Next.

6. In the Available Tables list, select a table. Click Add. Click Next.

7. On the Available Columns tab, double-click the table's icon to expand the list of Available Columns.
Select each column you want to publish and click Add. Click Next.

8. Click Next.

9. On the Specify SUBSCRIBE BY Restrictions page:

a. Click a table in the Articles list.
Click Column and choose a column from the dropdown list.

10. Click Finish.

To create a publication using the SUBSRIBE BY clause (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a CREATE PUBLICATION statement that includes a SUBSCRIBE BY clause.

For example
The following statement creates a publication that publishes the ID, CompanyName, City, State, and
Country columns of the Customers table and to match the rows with subscribers uses the value of the
State column:

CREATE PUBLICATION PubCustomers (
 TABLE Customers (
 ID,
 CompanyName,
 City,
 State,
 Country)
 SUBSCRIBE BY State
);

The following statements subscribe two employees to the publication. Ann Taylor receives the customers
in Georgia (GA), and Sam Singer receives the customers in Massachusetts (MA).

CREATE SUBSCRIPTION
 TO PubCustomers ('GA')
 FOR Ann_Taylor;
CREATE SUBSCRIPTION
 TO PubCustomers ('MA')
 FOR Sam_Singer;

Users can subscribe to more than one publication, and can have more than one subscription to a single
publication.

Publications and articles

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 17

See also
● “Publish only some rows using a WHERE clause” on page 18
● “Using disjoint data partitions” on page 61
● “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “Subscribe to a publication” on page 33

Publish only some rows using a WHERE clause
Use the following procedures to create a publication that uses a WHERE clause to include all the columns,
but only some of the rows of a table. For information about using the WHERE clause and its alternative the
SUBSCRIBE BY clause, see “Publish only some rows in a table” on page 15.

To create a publication using a WHERE clause (Sybase Central)

1. Connect to the consolidated database as a user with DBA authority.

2. In the left pane, select the Publications folder.

3. From the File menu, choose New » Publication.

4. In the What Do You Want To Name The New Publication field, type a name for the publication. Click
Next.

5. Click Next.

6. In the Available Tables list, select a table. Click Add. Click Next.

7. On the Available Columns tab, double-click the table's icon to expand the list of Available Columns.
Select each column you want to publish and click Add. Click Next.

8. On the Specify WHERE Clauses page:

a. Click a table in the Articles list.

b. Type a WHERE clause into the The Selected Article Has The Following WHERE Clause field.

9. Click Finish.

To create a publication using a WHERE clause (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a CREATE PUBLICATION statement that uses a WHERE clause to include the rows you want
to include in the publication.

For example, the following statement creates a publication that publishes the ID, CompanyName, City,
State, and Country columns of the Customers table, for customers marked as active in the Status column.
The Status column is not published.

CREATE PUBLICATION PubCustomers (
 TABLE Customers (
 ID,
 CompanyName,
 City,

SQL Remote replication design and set up

18 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 State,
 Country)
 WHERE Status = 'active'
);

The following statements subscribe two employees to the same publication. Both Ann Taylor and Sam
Singer receive the same data.

CREATE SUBSCRIPTION
TO PubCustomers
FOR Ann_Taylor;
CREATE SUBSCRIPTION
TO PubCustomers)
FOR Sam_Singer;

Users can subscribe to more than one publication, and can have more than one subscription to a single
publication.

See “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL
Reference].

See also
● “WHERE clause and primary keys” on page 50

Alter publications
You alter a publication by adding, modifying, or deleting articles, or by renaming the publication.

Caution
Altering publications in a running SQL Remote system can cause replication errors and a loss of data in the
replication system. See “Upgrading and resynchronization” on page 135.

To alter a publication (Sybase Central)

1. Connect to the database as a user who owns the publication or as a user with DBA authority.

2. In the left pane, select the Publications folder.

3. Right-click the article you want to alter and choose Properties to edit the publication.

To alter a publication (SQL)

1. Connect to the database as a user who owns the publication or as a user with DBA authority.

2. Execute an ALTER PUBLICATION statement.

For example, the following statement adds the Customers table to the PubContacts publication.

ALTER PUBLICATION PubContacts (
 ADD TABLE Customers
);

Publications and articles

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 19

For example, the following statement redefines the Customers article in the PubContacts publication.

ALTER PUBLICATION PubContacts (
 ALTER ARTICLE Customers (name, surname)
);

See also
● “ALTER PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]

Drop a publication
When you drop a publication, all subscriptions to that publication are automatically deleted.

Caution
Dropping publications in a running SQL Remote system can cause replication errors and a loss of data in
the replication system. See “Upgrading and resynchronization” on page 135.

To delete a publication (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, expand the Publications folder.

3. Right-click the desired publication and choose Delete.

To delete a publication (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a DROP PUBLICATION statement.

For example, the following statement drops the publication named PubOrders.

DROP PUBLICATION PubOrders;

See “DROP PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL
Reference].

SQL Remote replication design and set up

20 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

User permissions
SQL Remote uses a consistent system to manage the users who have permissions on remote and consolidated
databases.

Users of databases involved in SQL Remote replication are identified by one or more of the following
permissions:

● PUBLISH Every database in a SQL Remote system publishes information. Therefore, every database
must have a publisher. To create a publisher, grant one user PUBLISH permission. The publisher user
must be unique throughout the SQL Remote system. When sending data, the publisher represents the
database. For example, when a database sends a message, its publisher user name is included with the
message. When a database receives a message, it can identify the database that sent the message by the
publisher name in the message.

● REMOTE A database, such as a consolidated database, that sends messages to other databases must
specify which remote databases it sends messages to. To specify these remote databases on the
consolidated database, grant REMOTE permission to the publishers of the remote databases. REMOTE
permission identifies databases that receive messages from the current database.

● CONSOLIDATE Each remote database must specify the consolidated database that it receives
messages from. To specify a consolidated database on the remote database, grant CONSOLIDATE
permission to the publisher of the consolidated database. A remote database can only receive messages
from one consolidated database. CONSOLIDATE permission identifies the database that sends messages
to the current database.

Information about these permissions is held in the SQL Remote system tables, and these permissions are
independent of other database authorities and permissions.

Extraction utility (dbxtract) sets permissions automatically
By default, the Extraction utility (dbxtract) and the Extract Database Wizard grant the appropriate
PUBLISH and CONSOLIDATE permissions to users in the remote databases.

Single-tiered hierarchy
In a single-tiered hierarchy, there is one consolidated database with one or more remote databases underneath.
In such a hierarchy, the consolidated database grants REMOTE permission to the publishers of the remote
databases. Each remote database grants CONSOLIDATE permission to the consolidated database.

For example, there is a consolidated database identified by its publisher, HeadOffice, and a remote database
identified by its publisher, RegionalOffice.

On the consolidated database, HeadOffice, you:

● Create a user with the same name as the publisher of the remote database: RegionalOffice.

● Grant REMOTE permission to RegionalOffice. This identifies RegionalOffice as a remote database of
the HeadOffice.

On the remote database, RegionalOffice, you:

User permissions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 21

● Create a user with the same name as the publisher of the consolidated database: HeadOffice.

● Grant CONSOLIDATE permission to RegionalOffice. This identifies RegionalOffice as a remote
database of the HeadOffice.

Dbxtract sets permissions automatically
By default, the Extraction utility (dbxtract) and the Extract Database Wizard grant the appropriate
PUBLISH and CONSOLIDATE permissions to users in the remote databases.

Multi-tiered hierarchy
In a multi-tier hierarchy, all remote databases immediately below the current database are granted REMOTE
permission. The database immediately above the current database in the hierarchy is granted
CONSOLIDATE permission.

For example, there is a consolidated database identified by its publisher, HeadOffice, which has a remote
database, RegionalOffice. However, the RegionalOffice database also has a remote database: Office.

On the consolidated database, HeadOffice, you:

● Create a user with the same name as the publisher of the remote database RegionalOffice.

● Grant REMOTE permission to the user RegionalOffice. This identifies RegionalOffice as a database
that receives messages from HeadOffice.

On the RegionalOffice database, you:

● Create a user with the same name as the publisher of the consolidated database HeadOffice.

● Grant CONSOLIDATE permission to HeadOffice. This identifies HeadOffice as the consolidated
database for RegionalOffice; that is, HeadOffice is the database that sends messages to RegionalOffice.

● Create a user with the same name as the database immediately below RegionalOffice: Office.

SQL Remote replication design and set up

22 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● Grant REMOTE permission to Office. This identifies Office as a database that receives messages from
RegionalOffice.

On the Office database, you:

● Create a user with the same name as the publisher of the consolidated database: RegionalOffice.

● Grant Consolidate permission to the RegionalOffice user. This identifies RegionalOffice as the
consolidated database for Office; that is RegionalOffice sends messages to Office.

PUBLISH permission
Every database in a SQL Remote system requires a publisher, which is a unique user with PUBLISH
permission. All outgoing SQL Remote messages, including publication updates and receipt confirmations,
are identified by their publisher. Every database in a SQL Remote system sends receipt confirmations.

PUBLISH permission has no authority except to identify the publisher in outgoing messages.

When PUBLISH permission is granted to a user name with GROUP permission, it is not inherited by
members of the group.

You create a publisher by granting a user PUBLISH permission.

Create a publisher
Use the following procedures to create users and grant them PUBLISH permission.

To a publisher (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. Create a user to serve as the publisher, if one doesn't already exist.

a. In the left pane, select the Users & Groups folder.

User permissions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 23

b. From the File menu, choose New » User.

c. Follow the instructions in the Create User Wizard. Assign the user a password.

3. In the Users & Groups folder, right-click the user you created, and choose Change To Publisher.

To create a publisher (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a CREATE USER statement to create a user to serve as the publisher. Assign the user a password.

For example the following creates a user named cons with the password sql:

CREATE USER cons IDENTIFIED BY SQL;
3. Execute a GRANT CONNECT statement to grant CONNECT permission to the user. See “GRANT

statement” [SQL Anywhere Server - SQL Reference].

For example, the following statement grants CONNECT permission to the user cons:

GRANT CONNECT TO cons IDENTIFIED BY SQL;
4. Execute a GRANT PUBLISH statement to grant PUBLISH permission to the user. See “GRANT

PUBLISH statement [SQL Remote]” [SQL Anywhere Server - SQL Reference].

For example, the following statement grants PUBLISH permission to the user cons:

GRANT PUBLISH TO cons;

Extraction utility (dbxtract)
When a remote database is extracted by the Extraction utility (dbxtract) or the Extract Database Wizard,
the remote user becomes the publisher of the remote database, and is granted PUBLISH permission.

See also
● “Revoke PUBLISH permission” on page 24
● “View the publisher” on page 25

Revoke PUBLISH permission
Use the following procedure to revoke the PUBLISH permission from a user.

Caution
Changing the publisher at a remote database or at the consolidated database can cause serious problems for
any subscriptions that the database is involved in, including the loss of information. See “Changes to avoid
on a running system” on page 135.

To revoke PUBLISH permission (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, select the Users & Groups folder.

SQL Remote replication design and set up

24 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

3. Right-click the user who has PUBLISH permission and choose Revoke Publisher.

To revoke PUBLISH permission (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a REVOKE PUBLISH statement to revoke the PUBLISH permission from the current publisher.
See “REVOKE PUBLISH statement [SQL Remote]” [SQL Anywhere Server - SQL Reference].

For example:

REVOKE PUBLISH FROM cons;

See also
● “PUBLISH permission” on page 23
● “View the publisher” on page 25

View the publisher
To identify the publisher (Sybase Central)

● In the left pane, select the Users & Groups folder.

In the right pane, the publisher is the user whose Type is Publisher.

To identify the publisher (SQL)

● Use the CURRENT PUBLISHER constant. The following statement retrieves the publisher user name:

SELECT CURRENT PUBLISHER;

See also
● “PUBLISH permission” on page 23
● “Revoke PUBLISH permission” on page 24

REMOTE permission
Granting REMOTE permission is also referred to as adding a remote user to the database. Publishers of
databases directly below the current database in a SQL Remote hierarchy are granted REMOTE permission
by the current database.

When granting REMOTE permission to a user, you must configure the following settings:

● Message system You cannot create a new remote user until at least one message system is defined
in the database. See “SQL Remote message systems” on page 110.

● Send frequency When you use SQL statements to grant REMOTE permission, setting the send
frequency is optional. See “Setting the send frequency” on page 91.

Granting REMOTE permission to a user:

User permissions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 25

● Identifies the user as a remote user.

● Specifies a message type to use for exchanging messages with this remote user.

● Provides an address to send messages to.

● Indicates how often messages should be sent to the remote user.

The publisher for a database cannot have REMOTE and CONSOLIDATE permission on the same database.
This would identify the publisher as both the sender and recipient of outgoing messages.

Granting REMOTE permission to groups
Although, you can grant REMOTE permission to a group, the REMOTE permission does not automatically
apply to all users in the group. You must explicitly grant REMOTE permission to each user in the group..

Grant REMOTE permission
Use the following procedures to add a remote user.

To create a remote user (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, select the SQL Remote Users folder.

3. From the File menu, choose New » SQL Remote User.

4. Follow the instructions in the Create Remote User Wizard.

To make an existing user a remote user (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, select the SQL Remote Users folder.

3. Right-click the user and choose Change To Remote User.

4. In the window, select the message type, enter an address, choose the send frequency, and click OK.

To create a remote user (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a CREATE USER statement to create a user.

For example:

CREATE USER remote1;
3. Execute a GRANT CONNECT statement to grant the user CONNECT permission. See “GRANT

statement” [SQL Anywhere Server - SQL Reference].

For example:

GRANT CONNECT TO remote1;

SQL Remote replication design and set up

26 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

4. Execute a GRANT REMOTE statement to grant the user REMOTE permission. See “GRANT REMOTE
statement [SQL Remote]” [SQL Anywhere Server - SQL Reference].

For example:

GRANT REMOTE TO userid;

For example, the following statement grants REMOTE permission to user S_Beaulieu, and specifies that
the remote database:

● Uses an SMTP email as its message system.

● Sends messages using the email address s_beaulieu@acme.com:

● Sends message daily at 10 P.M.

GRANT REMOTE TO S_Beaulieu
TYPE smtp
ADDRESS 's_beaulieu@acme.com'
SEND AT '22:00';

The following statement grants REMOTE permission to user rem1, and specifies that rem1's remote
database uses a FILE message system with the address rem1.

GRANT CONNECT TO rem1 IDENTIFIED BY SQL
GRANT REMOTE TO rem1 TYPE FILE ADDRESS 'rem1';

See also
● “Revoke REMOTE permission” on page 27

Revoke REMOTE permission
Revoking a user's REMOTE permission:

● Removes a user from the SQL Remote system.

● Reverts that user or group to a normal user/group.

● Unsubscribes the user or group from all publications.

To revoke REMOTE permission (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, expand either the Users & Groups folder or the SQL Remote Users folder.

3. Right-click the remote user or group and choose Revoke Remote.

To revoke REMOTE permission (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a REVOKE REMOTE statement to revoke the REMOTE permission from the current user or
group. See “REVOKE REMOTE statement [SQL Remote]” [SQL Anywhere Server - SQL Reference].

For example, the following statement revokes REMOTE permission from user S_Beaulieu.

User permissions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 27

REVOKE REMOTE FROM S_Beaulieu;

See also
● “Grant REMOTE permission” on page 26

CONSOLIDATE permission
Databases directly above the current database in a SQL Remote hierarchy are granted CONSOLIDATE
permission by the current database. At each remote database, the consolidated database must be granted
CONSOLIDATE permission.

CONSOLIDATE permission must be granted even from read-only remote databases to the consolidated
database, because receipt confirmations are sent from the remote databases to the consolidated database.

When granting CONSOLIDATE permission to a user, you must configure the following settings:

● Message system You cannot create a new consolidated user until at least one message system is
defined in the database. See “SQL Remote message systems” on page 110.

● Send frequency When you use SQL statements to grant CONSOLIDATE permission, setting the
send frequency is optional. See “Setting the send frequency” on page 91.

Granting CONSOLIDATE permission:

● Identifies a user as a consolidated user.

● Specifies a message type to use for exchanging messages with this consolidated user.

● Provides an address to send messages to.

● Indicates how often messages should be sent to the consolidated user.

The publisher for a database cannot have REMOTE and CONSOLIDATE permissions on the same database.
This would identify the publisher as both the sender and recipient of outgoing messages.

Extraction utility (dbxtract)
When a remote database is extracted by the Extraction utility (dbxtract) or the Extract Database Wizard,
the GRANT CONSOLIDATE statement is executed automatically on the remote database.

Grant CONSOLIDATE permission
Use the following procedures to grant CONSOLIDATE permission to a user.

It is recommended that you grant CONSOLIDATE permission to the publisher of the consolidated database.

To specify a consolidated database (Sybase Central)

1. Connect as a user with DBA authority.

2. In the left pane, click the database, and then choose File » Properties.

SQL Remote replication design and set up

28 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

3. Click the SQL Remote tab.

4. Select This Remote Database Has A Corresponding Consolidated Database.

5. Configure the Message Type, Address, and Send Frequency settings.

6. Click OK to close the Consolidated Database Properties window.

To specify a consolidated database (SQL)

1. Execute a GRANT CONNECT statement to grant CONNECT permission to the publisher of the
consolidated database. See “GRANT statement” [SQL Anywhere Server - SQL Reference].

For example:

GRANT CONNECT TO cons;
2. Execute a GRANT CONSOLDIATE statement to grant CONSOLIDATE permission to the consolidated

user. See “GRANT CONSOLIDATE statement [SQL Remote]” [SQL Anywhere Server - SQL
Reference].

For example, the following statement grants CONSOLIDATE permission to the hq_user user and
specifies that the consolidated database uses the SMTP email system:

GRANT CONSOLIDATE TO hq_user
TYPE SMTP
ADDRESS 'hq_address';

There is no SEND clause in this GRANT CONSOLIDATE statement, so SQL Remote sends messages
to the consolidated database and then stops.

For example, the following statement grants CONSOLIDATE permission to the cons user and specifies
that the consolidated database uses the FILE system:

GRANT CONNECT TO "cons" IDENTIFIED BY SQL;
GRANT CONSOLIDATE TO "cons" TYPE "FILE" ADDRESS 'cons';
GRANT CONNECT TO "rem1" IDENTIFIED BY SQL;
GRANT PUBLISH TO "rem1";
CREATE REMOTE MESSAGE TYPE FILE ADDRESS 'rem1';

See also
● “Revoke CONSOLIDATE permission” on page 29

Revoke CONSOLIDATE permission
When you revoke CONSOLIDATE permission from a user, SQL Anywhere:

● Removes the user from the SQL Remote system.

● Reverts that user or group to a normal user/group.

● Unsubscribes the user or group from all publications.

User permissions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 29

To revoke CONSOLDIATE permission (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. Expand either the Users & Groups folder or the SQL Remote Users folder.

3. Right-click the consolidated user or group and choose Revoke Consolidated.

4. Click Yes.

To revoke CONSOLIDATE permission (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a REVOKE CONSOLIDATE statement to revoke CONSOLIDATE permission from the current
user or group. See “REVOKE CONSOLIDATE statement [SQL Remote]” [SQL Anywhere Server - SQL
Reference].

For example:

REVOKE CONSOLIDATE FROM Cons_User;

See also
● “Grant CONSOLIDATE permission” on page 28

Grant REMOTE DBA authority
A user name with REMOTE DBA authority has full DBA authority on the database only when connecting
from SQL Remote. With REMOTE DBA authority, SQL Remote has full access to the database and can
make changes specified in the messages. Only users with REMOTE DBA or DBA authority can run SQL
Remote.

As a special authority, REMOTE DBA, has the following properties:

● No distinct permissions when not connected from SQL Remote A user that is granted
REMOTE DBA authority has no extra privileges on any connection apart from SQL Remote. Therefore,
even if the user name and password for a REMOTE DBA user are widely distributed, there are no security
issues. As long as the user name has no permissions beyond CONNECT granted on the database, no one
can use this user name to access data in the database.

● Full DBA permission from SQL Remote When connecting from SQL Remote, a user with
REMOTE DBA authority has full DBA permission on the database.

When to grant REMOTE DBA authority
It is recommended that when you are creating users on the consolidated database that you grant REMOTE
DBA authority the publisher of the consolidated database and to each remote user. When a remote database
is extracted by the Extraction utility (dbxtract) or the Extract Database Wizard, the remote user becomes
the publisher of the remote database, and is granted PUBLISH permission and REMOTE DBA authority.

This recommendation simplifies the administration of users. Each remote user only needs one user name to
connect to the database, whether from the SQL Remote (which provides the user with full DBA authority)

SQL Remote replication design and set up

30 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

or from any other client application (in which case the REMOTE DBA authority grants the user no extra
permissions).

To grant REMOTE DBA authority (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, select either the Users & Groups folder or the SQL Remote Users folder.

3. Right-click the user and choose Properties.

4. Click the Authorities tab and select the Remote DBA option.

5. Click Apply and then click OK.

To grant REMOTE DBA authority (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a GRANT REMOTE DBA statement to grant REMOTE DBA authority to a user.

For example:

GRANT REMOTE DBA TO dbremote
IDENTIFIED BY dbremote;

See also
● “REMOTE DBA authority” [SQL Anywhere Server - Database Administration]
● “GRANT REMOTE DBA statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]

Revoke REMOTE DBA authority
Revoking REMOTE DBA authority removes the user's ability to have full DBA authority on the database
when connected from SQL Remote. See “Grant REMOTE DBA authority” on page 30.

Use the following procedure to revoke REMOTE DBA authority from a user.

To revoke REMOTE DBA authority (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, select either the Users & Groups folder or the SQL Remote Users folder.

3. Right-click the user and choose Properties.

4. Click the Authorities tab and clear the Remote DBA option.

5. Click OK.

To revoke REMOTE DBA authority (SQL)

1. Connect to the database as a user with DBA authority.

User permissions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 31

2. Execute a REVOKE REMOTE DBA statement to revoke REMOTE DBA authority from a user.

For example:

REVOKE REMOTE DBA FROM dbremote;

See also
● “REVOKE REMOTE DBA statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “Grant REMOTE permission” on page 26

SQL Remote replication design and set up

32 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Subscriptions
You subscribe a user to a publication by creating a subscription. Each database that shares information in
a publication must have a subscription to the publication.

Periodically, the changes made to each publication in a database are replicated to all subscribers of that
publication. These replications are called publication updates.

Subscribe to a publication
To subscribe a user to a publication, you need the following information:

● User name The user who is being subscribed to the publication. This user must have been granted
REMOTE permission.

● Publication name The name of the publication to which the user is being subscribed.

● Subscription value The subscription value only applies if your publication includes a SUBSCRIBE
BY clause. The subscription value is the value that is tested against the SUBSCRIBE BY clause of the
publication. For example, if a publication has the name of a column containing an employee ID as a
SUBCRIBE BY clause, the value of the employee ID of the subscribing user must be provided when the
subscription is created. The subscription value is always a string.

This value is only needed when the publication has a SUBSCRIBE BY clause. See “Publish only some
rows using the SUBSCRIBE BY clause” on page 16.

To subscribe a user to the publication (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, select the Publications folder.

3. Select a publication.

4. In the right pane, click the SQL Remote Subscriptions tab.

5. From the File menu choose New » SQL Remote Subscription.

6. Follow the instructions in the Create SQL Remote Subscription Wizard.

The details of the subscription are different depending on whether the publication uses a subscription
expression.

To subscribe a remote user to a publication (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a CREATE SUBSCRIPTION statement to subscribe a user to a publication.

For example, the following statement creates a subscription for user name SamS to the CustomerPub
publication, which was created using a WHERE clause:

Subscriptions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 33

CREATE SUBSCRIPTION
 TO CustomerPub
 FOR SamS;

For example, the following statement creates a subscription for user name SamS to the PubOrders
publication, defined with a subscription expression SalesRepresentative, requesting the rows for Sam
Singer's own sales:

CREATE SUBSCRIPTION
 TO PubOrders ('856')
 FOR SamS;

See also
● “CREATE SUBSCRIPTION statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “Publish only some rows using the SUBSCRIBE BY clause” on page 16

SQL Remote replication design and set up

34 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Understanding transaction log-based replication
SQL Remote replicates:

● Committed changes Changes that have been made to databases as recorded in their transaction log.

● Changes that modify data that belong to publications SQL Remote scans the transaction log
for committed changes to rows that belong to publications, packages the SQL statements into messages,
and sends them to the subscriber databases.

On the consolidated database, all committed transactions in the transaction log that belong to publications
are sent periodically to the remote databases.

On the remote databases, all committed transactions in the transaction log that belong to publications are
sent periodically to the consolidated database.

The database server handles publications
The SQL Anywhere database server is the component that evaluates the publications and writes the
information to the transaction log. The more publications you have, the more work the database server must
do.

SQL Anywhere evaluates the subscription expression for each update made to a table that is part of a
publication. It adds the value of the expression to the transaction log, both before and after the update. For
a table that is part of more than one publication, the subscription expression is evaluated before and after
the update for each publication.

The additional information in the transaction log can affect performance in the following cases:

● Expensive expressions When a subscription expression is expensive to evaluate, it can affect
performance.

● Many publications When a table belongs to several publications, many expressions must be
evaluated. In contrast, the number of subscriptions is irrelevant to the database server.

● Many-valued expressions Some expressions are many-valued, which can lead to additional
information in the transaction log. This can affect on performance.

Understanding transaction log-based replication

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 35

Subscriptions are handled by SQL Remote
SQL Remote is the component that carries out the replication of statements.

During the send phase, the SQL Remote Message Agent maps the current subscriptions to the publication
information in the transaction log and generates the appropriate messages for each remote user. See “The
Message Agent (dbremote)” on page 94.

See also
● “The transaction log” [SQL Anywhere Server - Database Administration]

Replicating INSERT and DELETE statements
For SQL Remote, the INSERT and DELETE statements are the simplest statements to replicate:

● When an INSERT statement is executed on one database, it is sent as an INSERT statement to the
subscribed databases in the SQL Remote system.

● When a DELETE statement is executed on one database, it is sent as a DELETE statement to the
subscribed databases in the SQL Remote system.

Consolidated database
SQL Remote copies each INSERT or DELETE statement from the consolidated database transaction log,
and sends them to each remote database that subscribes to the row being inserted or deleted. When only a
subset of the columns in the table is subscribed to, the INSERT statements sent to the remote databases
contain only those columns.

Remote databases
SQL Remote copies each INSERT or DELETE statement from a remote database transaction log and sends
it to the consolidated database that subscribes to the row being inserted or deleted. The consolidated database
then applies the statement, which results in writing to its transaction log. When the consolidated database
transaction log is processed by SQL Remote, the changes are eventually propagated to the other remote sites.
SQL Remote ensures that statements are not sent to the remote user that initially executed them.

See also
● “Duplicate primary key errors” on page 54
● “Row not found errors” on page 50

Replicating UPDATE statements
UPDATE statements might not be replicated exactly as they are entered in the database. The following
scenarios describe how an UPDATE statement is replicated:

● When an UPDATE statement has the effect of updating a row in a given remote user's subscription, it
is sent to that user as an UPDATE statement.

SQL Remote replication design and set up

36 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● When an UPDATE statement has the effect of removing a row from a given remote user's subscription,
it is sent to that user as a DELETE statement.

● When an UPDATE statement has the effect of adding a row to a given remote user's subscription, it is
sent to that user as an INSERT statement.

To demonstrate how an UPDATE statement can be replicated, the following example uses a consolidated
database and three remote databases for the users: Ann, Marc, and ManagerSteve.

On the consolidated database, there is a publication, named cons, that is created with the following statement:

CREATE PUBLICATION "cons"."p1" (
 TABLE "DBA"."customers" ("ID", "Rep") SUBSCRIBE BY repid
);

Ann and Marc subscribe to the cons publication by their respective Rep column values. ManagerSteve
subscribes to the cons publication with both Ann and Marc's Rep column values. The following statements
subscribe the three users to the publication cons:

CREATE SUBSCRIPTION
 TO "cons"."p1"('Ann')
 FOR "Ann";
CREATE SUBSCRIPTION
 TO "cons"."p1"('Marc')
 FOR "Marc";
CREATE SUBSCRIPTION
 TO "cons"."p1"('Ann')
 FOR "ManagerSteve";
CREATE SUBSCRIPTION
 TO "cons"."p1"('Marc')
 FOR "ManagerSteve";

On the consolidated database, an UPDATE statement that changes the Rep value of a row from Marc to Ann
is replicated to:

● Marc as a DELETE statement.

● Ann as an INSERT statement.

● ManagerSteve as an UPDATE statement.

Understanding transaction log-based replication

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 37

This reassignment of rows among subscribers is sometimes called territory realignment because it is a
common feature of sales force automation applications, where customers are periodically reassigned among
representatives.

See also
● “Update conflicts” on page 43

Replicating procedures
SQL Remote replicates procedures by replicating the actions of a procedure. The procedure call is not
replicated. Instead, the individual actions (INSERT, UPDATE, and DELETE statements) of the procedure
are replicated.

Replicating triggers
Typically, remote databases have the same triggers defined as the consolidated database does.

By default, SQL Remote does not replicate the actions performed by the triggers. Instead, when an action
that fires a trigger on the consolidated database is replicated on the remote database, the duplicate trigger is
automatically fired on the remote database. This avoids permissions issues and the possibility of each action
occurring twice. There are some exceptions to this rule:

● Replication of RESOLVE UPDATE triggers The actions carried out by conflict resolution, or
RESOLVE UPDATE triggers are replicated from the consolidated database to all remote databases,
including the remote database that sent the message that created the conflict. See “Default resolution for
update conflicts” on page 43.

● Replication of BEFORE triggers The actions of a BEFORE trigger that modifies a row being
updated are replicated before the UPDATE statement actions.

For example, a BEFORE UPDATE trigger that increases a counter column in the row to keep track of
the number of times a row is updated would double count if replicated as the BEFORE UPDATE trigger
fires on the remote database when the UPDATE statement is replicated.

SQL Remote replication design and set up

38 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

A BEFORE UPDATE trigger that sets a column to the time of the last update also receives the time the
UPDATE statement is replicated.

To prevent this problem, you must ensure that, at the subscriber database, the BEFORE UPDATE trigger
is not present or does not perform the replicated action.

An option to replicate trigger actions
To replicate all trigger actions when sending messages, use the -t option for the Message Agent (dbremote).
See “Message Agent (dbremote)” on page 146.

When you use the -t option, ensure that the trigger actions are not carried out twice at remote databases, once
when the replicated trigger actions are applied, and once when the trigger is fired on the remote database.

To ensure that trigger actions are not carried out twice, use one of the following options:

● Wrap an IF CURRENT REMOTE USER IS NULL ... END IF statement around the body of the trigger.

● Set the SQL Anywhere fire_triggers option to Off for the SQL Remote user name. See “fire_triggers
option [compatibility]” [SQL Anywhere Server - Database Administration].

Avoiding trigger errors

If a publication includes only a subset of a database, a trigger at the consolidated database can refer to tables
or rows that are present at the consolidated database, but are not present on the remote databases. When such
a trigger is fired on the remote database, errors occur. To avoid these errors, use an IF statement to make the
trigger actions conditional, and:

● Have the actions of the trigger be conditional on the value of CURRENT PUBLISHER. See “CURRENT
PUBLISHER special value” [SQL Anywhere Server - SQL Reference].

● Have the actions of the trigger be conditional on the object_id function not returning NULL. The
object_id function takes a table or other object as argument, and returns the ID number of that object or
NULL if the object does not exist. See “System functions” [SQL Anywhere Server - SQL Reference].

● Have actions of the trigger be conditional on a SELECT statement that determines if the rows exist.

Extraction utility (dbxtract)
By default, the database Extraction utility (dbxtract) and the Extract Database Wizard extract the trigger
definitions.

See also
● “Using the CURRENT REMOTE USER special constant” on page 47

Data definition statements
Data definition statements (CREATE, ALTER, and DROP) are not replicated by SQL Remote unless they
are executed in passthrough mode.

See “SQL Remote passthrough mode” on page 137.

Understanding transaction log-based replication

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 39

Data types
SQL Remote does not perform any character set conversions.

Use compatible sort orders and character sets
The character set and collation used by the SQL Anywhere consolidated database must be the same as the
remote database's. For information about supported character sets, see “International languages and character
sets” [SQL Anywhere Server - Database Administration].

BLOBs
BLOBs include the LONG VARCHAR, LONG BINARY, TEXT, and IMAGE data types.

When SQL Remote replicates an INSERT or UPDATE statement, it uses a variable in place of the BLOB
value. That is, the BLOB is broken into pieces and replicated in chunks. At the recipient database, the pieces
are reconstituted by using a SQL variable and concatenated. The value of the variable is built up by a sequence
of statements of the form:

SET vble = vble || 'more_stuff';

The variable makes the size of the SQL statements involving long values smaller, so they fit within a single
message.

The SET statements are separate SQL statements, so that the BLOB is effectively split over several SQL
Remote messages.

Controlling replication of BLOBs
The SQL Anywhere blob_threshold option allows further control over the replication of long values. Any
value that is longer than the blob_threshold option is replicated as though it is a BLOB value. See
“blob_threshold option [SQL Remote]” [SQL Anywhere Server - Database Administration].

Using the verify_threshold option to minimize message size
The verify_threshold database option can prevent long values from being verified (in the VERIFY clause
of a replicated UPDATE statement). The default value for the option is 1000. When the data type of a column
is longer than the threshold, old values for the column are not verified when an UPDATE statement is
replicated. This reduces the size of SQL Remote messages, but has the disadvantage that conflicting updates
of long values are not detected.

Use the following technique to detect conflicts when the verify_threshold is being used to reduce the size
of messages.

To detect conflicts with BLOB values when the verify_threshold is set

1. Configure your databases so that whenever a BLOB is updated, a last_modified column in the same table
is also updated.

2. Configure your publications so that the last_modified column is replicated with the BLOB column.

SQL Remote replication design and set up

40 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

When the BLOB column and the last_modified column are replicated, the values in the last_modified
column can be verified. If there is a conflict with the last_modified column, then there is a conflict with
the BLOB column as well.

See “verify_threshold option [SQL Remote]” [SQL Anywhere Server - Database Administration].

Using a work table to avoid redundant updates
Repeated updates to a BLOB should be done in a work table, and the final version should be assigned to the
replicated table. For example, if a document in progress is updated 20 times throughout the day and SQL
Remote is run once at the end of the day, all 20 updates are replicated. If the document is 200 KB in length,
then 4 MB of messages are sent.

It is recommended that you use a document_in_progress table. When the user is done revising a document,
the application moves it from the document_in_progress table to the replicated table. This results in a single
update (200 KB of messages).

See also
● “SET statement” [SQL Anywhere Server - SQL Reference]

Dates and times
When date or time columns are replicated, SQL Remote uses the setting of the sr_date_format,
sr_time_format, and sr_timestamp_format database options to format the date.

For example, the following option setting instructs SQL Remote to send a date of May 2, 1998 as 1998-05-02.

SET OPTION sr_date_format = 'yyyy-mm-dd';

When replicating dates and times:

● The time, date, and timestamp formats must be consistent throughout the SQL Remote system.

● The order of the year, month, and day used for the date and timestamp formats must match the setting
of the date_order database option.

● The date_order option for the duration of each connection can be changed.

See also
● “sr_date_format option [SQL Remote]” [SQL Anywhere Server - Database Administration]
● “sr_time_format option [SQL Remote]” [SQL Anywhere Server - Database Administration]
● “sr_timestamp_format [SQL Remote]” [SQL Anywhere Server - Database Administration]
● “date_order option [database]” [SQL Anywhere Server - Database Administration]

Understanding transaction log-based replication

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 41

Replication conflicts and errors
SQL Remote allows databases to be updated at multiple databases. Careful design is required to avoid
replication errors, especially when the database has a complicated structure.

Replication conflicts

Replication conflicts are different from errors. When properly handled, conflicts are not a problem in SQL
Remote.

Conflicts occur in many systems. SQL Remote allows appropriate resolution of conflicts as part of the regular
operation of a SQL Remote system, using triggers and procedures. See “Default resolution for update
conflicts” on page 43.

Replication errors

Replication errors fall into the following categories:

● Row not found errors A user deletes a row (with a given primary key value.) A second user updates
or deletes the same row at another site. In this case, the second statement fails, as the row is not found.
See “Row not found errors” on page 50

● Referential integrity errors When a column containing a foreign key is included in a publication,
but the associated primary key is not included, INSERT statements that reference the foreign key fail.

Also, referential integrity errors can occur when a primary table has a SUBSCRIBE BY expression and
the associated foreign table does not: rows from the foreign table may be replicated, but the rows from
the primary table may be excluded from the publication.

See “Referential integrity errors” on page 51.

● Duplicate primary key errors Two users insert a row using the same primary key values, or one
user updates a primary key and a second user inserts a primary key of the new value. The second operation
to reach a given database in the replication system fails because it would produce a duplicate primary
key. See “Duplicate primary key errors” on page 54.

Delivery errors
For information about delivery errors and how they are handled, see “Understanding the Guaranteed Message
Delivery System” on page 103.

See also
● “Reporting and handling replication errors” on page 129

SQL Remote replication design and set up

42 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Update conflicts
Update conflicts cannot happen when data is shared for reading, or when each row (as identified by its
primary key) is updated at only one database. Update conflicts only occur when data is updated at more than
one database.

To replicate UPDATE statements, SQL Remote issues a separate UPDATE statement for each row. These
single-row statements can fail for one of the following reasons:

● The row to be updated differs in one or more of its columns When one of the values expected
to be present has been changed by some other user, an update conflict occurs.

On remote databases, the update takes place regardless of the values in the row.

On the consolidated database, SQL Remote allows conflict resolution operations to take place. For
example, when a conflict is detected, the consolidated database can:

○ Use the default conflict resolution.“Default resolution for update conflicts” on page 43.

○ Use a customized conflict resolution that uses the VERIFY clause.“Custom conflict resolution using
a VERIFY clause” on page 44.

○ Use a customized conflict resolution that uses triggers. “Custom conflict resolution using
triggers” on page 46.

Conflict resolution does not apply to primary key updates
UPDATE statement conflicts do not apply to primary key updates. You should not update primary keys
in a SQL Remote system. Primary key conflicts must be excluded from the system by proper design.

● The row to be updated does not exist Each row is identified by its primary key values. If the row
has been deleted or if a primary key has been altered by another user, the row to be updated cannot be
found.

On remote databases, the update does not occur.

On the consolidated database, the update does not occur.

● A table without a primary key or uniqueness constraint refers to all columns in the WHERE
clause of replicated updates When two remote databases make separate updates to the same row
and replicate the changes to the consolidated database, the first changes to arrive on the consolidated
database are applied; changes from the second database are not applied.

As a result, databases become inconsistent. All replicated tables should have a primary key or a
uniqueness constraint and the columns in the constraint should never be updated.

Default resolution for update conflicts
Update conflicts only occur when data is being updated at more than one site. For example:

1. User 1 updates a row at remote site 1.

2. User 2 updates the same row at remote site 2.

Update conflicts

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 43

3. The update from User 1 is sent and applied to the consolidated database.

4. The update from User 2 is sent to the consolidated database.

The default method for resolving this type of update conflict is the following:

a. The more recent operation (in this example that from User 2) succeeds. It becomes the value in the
consolidated database and it is the value that is replicated to all other databases subscribed to that
row.

b. All other updates (in this example that from User 1) are lost.

c. No report is made of the conflict.

Custom conflict resolution using a VERIFY clause
SQL Remote generates UPDATE statements in the messages that use the VERIFY clause. An UPDATE
statement changes the value of one or more rows from the existing value to a new value. UPDATE statements
that include a VERIFY clause also contain the existing value of the row.

When applying an UPDATE statement, the consolidated database compares its existing value of the row
with what the remote database expects the existing value of the row to be. An update conflict is detected by
the database server when the VERIFY clause values don't match the rows in the database.

For example, an update conflict occurs when the following sequence of events takes place:

SQL Remote replication design and set up

44 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

1. User 1 updates a row at remote site 1.

2. User 2 updates the same row at remote site 2.

3. The update from User 1 is sent and applied to the consolidated database.

4. The update from User 2 is sent to the consolidated database.

Because the UPDATE statement contains a VERIFY clause, the consolidated database can detect
conflicts. On the consolidated database, SQL remote compares the value in its row with the old row value
that User 2 sent. As these values are not the same, there is an update conflict.

When an update conflict is detected, the consolidated database:

a. Fires any conflict resolution triggers defined for the operation.

You define conflict resolution triggers to handle update conflicts. Conflict resolution triggers are
fired only at a consolidated database, when messages are applied by a remote user. See “Custom
conflict resolution using triggers” on page 46.

b. Executes the UPDATE statements takes place.

c. Sends any actions of the conflict resolution trigger and the UPDATE statement to all remote
databases, including the sender of the message that triggered the conflict.

Typically, SQL Remote does not replicate the actions of triggers; the trigger is assumed present on
the remote database. Conflict resolution triggers are fired only on consolidated databases, and so
their actions are replicated to remote databases.

5. The remote databases receives the UPDATE statements from the consolidated database.

On remote databases, RESOLVE UPDATE triggers are not fired when a message from a consolidated
database contains an update conflict.

6. On the remote database, the UPDATE statements are processed.

At the end of the process, the data is consistent throughout the system.

UPDATE statements with a VERIFY clause
An UPDATE statement with a VERIFY clause takes the following form:

UPDATE table-list
SET column-name = expression, ...
[VERIFY (column-name, ...)
 VALUES (expression, ...)]
[WHERE search-condition]
[ORDER BY expression [ASC | DESC], ...]

The VERIFY clause can be used only when the table-list parameter consists of a single table. It compares
the values of specified columns to a set of expected values, which are the values that were present in the
publisher database when the UPDATE statement was applied. When the VERIFY clause is specified, only
one table can be updated at a time.

Update conflicts

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 45

The VERIFY clause is useful only for single-row updates. However, a multi-row UPDATE statement
executed on a database is replicated as a set of single-row UPDATE statements by the SQL Remote, so this
imposes no constraints on client applications.

See also
● “UPDATE statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]

Using the VERIFY_ALL_COLUMNS option
By default, the database option verify_all_columns is Off. When it is set to Off, only those columns that are
updated are checked. When the verify_all_columns option is set to On, then:

● All columns are verified on replicated UPDATE statements.

● A RESOLVE UPDATE trigger is fired whenever any column is different.

● The size of messages is bigger, because more information is sent for each UPDATE statement.

You can set the verify_all_columns option either for the PUBLIC group or just for the user contained in the
SQL Remote connection string. See “verify_all_columns option [SQL Remote]” [SQL Anywhere Server -
Database Administration].

The Extraction utility (dbxtract)
When the verify_all_columns option is set on the consolidated database before the remote databases are
extracted, then the verify_all_columns option on the remote databases is set by Extraction utility (dbxtract)
and the Extract Database Wizard.

Custom conflict resolution using triggers
Custom conflict resolution can take several forms. For example, in some applications, resolution can:

● Compare the dates of the original transactions. See “Resolving date conflicts” on page 47.

● Perform calculations on the results of two or more updates. See “Resolving inventory
conflicts” on page 48.

● Report the conflict into a table. See “Using the CURRENT REMOTE USER special
constant” on page 47.

Custom conflict resolution requires you to write RESOLVE UPDATE triggers.

Using the RESOLVE UPDATE conflict resolution trigger

RESOLVE UPDATE triggers fire before each row is updated. The syntax for a RESOLVE UPDATE trigger
is as follows:

CREATE TRIGGER trigger-name
RESOLVE UPDATE
OF column-name ON table-name

SQL Remote replication design and set up

46 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

[REFERENCING [OLD AS old-val]
 [NEW AS new-val]
 [REMOTE AS remote-val]]
FOR EACH ROW
BEGIN
 ...
END

The REFERENCING clause allows access to the values in the row of the table to be updated (OLD), to the
values the row is to be updated to (NEW) and to the rows that should be present according to the VERIFY
clause (REMOTE). Only columns present in the VERIFY clause can be referenced in the REMOTE AS
clause; other columns return a column not found error.

Using the CURRENT REMOTE USER special constant

CURRENT REMOTE USER is set by DBREMOTE when it executes the undocumented REMOTE USER
statement. The value is NULL except for connections from DBREMOTE.

The CURRENT REMOTE USER can be used in RESOLVE UPDATE triggers that place reports of conflicts
into a table, to identify the user producing a conflict.

See also
● “CREATE TRIGGER statement” [SQL Anywhere Server - SQL Reference]
● “UPDATE statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]

Resolving date conflicts
To illustrate how you can resolve date conflicts, suppose a table in a contact management system has a
column holding the more recent contact with each customer.

One representative talks with a customer on a Friday, but does not upload his changes to the consolidated
database until Monday. Meanwhile, a second representative meets the customer on the Saturday, and updates
the changes that evening.

There is no conflict when the Saturday update is replicated to the consolidated database, but when the Monday
update arrives, it finds the row already changed.

By default, the Monday update would proceed, leaving the column with the incorrect information that the
more recent contact occurred on Friday. However, update conflicts on this column should be resolved by
inserting the more recent date in the row.

Implementing the solution

The following RESOLVE UPDATE trigger chooses the more recent of the two new values and enters it in
the database.

CREATE TRIGGER contact_date RESOLVE UPDATE
 ON Contacts
 REFERENCING OLD AS old_name
 NEW AS new_name
 FOR EACH ROW
 BEGIN

Update conflicts

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 47

 IF new_name.contact_date <
 old_name.contact_date THEN
 SET new_name.contact_date
 = old_name.contact_date
 END IF
 END;

If the value being updated is later than the value that would replace it, the new value is reset to leave the
entry unchanged.

Resolving inventory conflicts
Consider a warehouse system for a manufacturer of sporting goods. There is a table of product information,
with a Quantity column holding the number of each product left in stock. An update to this column typically
depletes the quantity in stock or, if a new shipment is brought in, adds to it.

A sales representative at a remote database enters an order, depleting the stock of small, tank top, tee shirts
by five, from 28 to 23, and enters this in her database. Meanwhile, before this update is replicated to the
consolidated database, another sales representative receives 40 returned tee shirts. This sales representative
enters the returns into his remote database and replicates the changes to the consolidated database at the
warehouse, adding 40 to the Quantity column to make it 68.

The warehouse entry is added to the database: the Quantity column now shows there are 68 small tank-top
tee shirts in stock. When the update from the first sales representative arrives, it causes a conflict—SQL
Anywhere detects that the update is from 28 to 23, but that the current value of the column is 68.

By default, the more recent update succeeds, and the inventory level is set to the incorrect value of 23.

SQL Remote replication design and set up

48 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

In this example, the conflict should be resolved by summing the changes to the inventory column to produce
the result, so that a final value of 63 is placed into the database.

Implementing the solution

A suitable RESOLVE UPDATE trigger for this situation would add the increments from the two updates.
For example:

CREATE TRIGGER resolve_quantity
 RESOLVE UPDATE OF Quantity
 ON "DBA".Products
 REFERENCING OLD AS old_name
 NEW AS new_name
 REMOTE AS remote_name
 FOR EACH ROW
 BEGIN
 SET new_name.Quantity = new_name.Quantity
 + old_name.Quantity
 - remote_name.Quantity
 END;

This trigger adds the difference between the old value in the consolidated database (68) and the old value in
the remote database when the original UPDATE statement was executed (28) to the new value being sent,
before the UPDATE statement is implemented. So, new_name.Quantity becomes 63 (= 23 + 68 - 28), and
this value is entered into the Quantity column.

Consistency is maintained on the remote database as follows:

1. The original remote UPDATE statement changed the value from 28 to 23.

2. The warehouse's entry is replicated to the remote database, but fails as the old value is not what was
expected.

3. The changes made by the RESOLVE UPDATE trigger are replicated to the remote database.

Update conflicts

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 49

Row not found errors
A user deletes a row (with a given primary key value.) A second user updates or deletes the same row at
another site. In this case, the second statement fails, as the row is not found.

To replicate UPDATE and DELETE statements correctly, you must include all of the primary key columns
in the article.

When an UPDATE or a DELETE statement is replicated, SQL Remote uses the primary key columns to
uniquely identify the row being updated or deleted. All tables being replicated must have a declared primary
key or uniqueness constraint. A unique index is not enough.

WHERE clause and primary keys
The primary key columns are used in the WHERE clause of replicated UPDATE and DELETE statements.
When a table has no primary key, the WHERE clause refers to all columns in the table. See “Replicating
INSERT and DELETE statements” on page 36.

See also
● “Reporting and handling replication errors” on page 129

SQL Remote replication design and set up

50 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Referential integrity errors
The tables in a relational database are often related through foreign key references. As a result, referential
integrity constraints ensure that the database remains consistent. See “Enforcing entity and referential
integrity” [SQL Anywhere Server - SQL Usage].

When you replicate only a part of a database, you must ensure that the replicated database still has referential
integrity.

You want to avoid unreplicated referenced table errors. Your remote databases should not contain foreign
keys that point to unreplicated tables.

For example, in a consolidated database the SalesOrders table has a foreign key to the Employees table.
SalesOrders.SalesRepresentative is the foreign key that references the primary key, Employees.EmployeeID.

A publication, PubSales, is created that excludes the Employees table, but includes the entire SalesOrder
table.

CREATE PUBLICATION PubSales (
 TABLE Customers,
 TABLE SalesOrders,
 TABLE SalesOrderItems,
);

A remote user, Rep1, subscribes to the PubSales publication. Then, you extract Rep1 from the consolidated
database and try to create a database for Rep1. However, the database creation fails because Rep1 is missing
the Employees table. To avoid this problem, you can:

Referential integrity errors

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 51

● Remove the foreign key reference To exclude foreign key references, specify the -xf option when
using the Extraction utility (dbxtract).

However, if you remove the foreign key reference from the remote database, then there is no constraint
in the remote database to prevent an invalid value from being inserted into the SalesRepresentative
column of the SalesOrders table.

If an invalid value is inserted in the SalesRepresentative column at the remote database, the replicated
INSERT statement fails on the consolidated database.

● Include the missing table in the publication Include the Employees table (or at least its primary
key) in the publication. For example:

CREATE PUBLICATION PubSales (
 TABLE Customers,
 TABLE SalesOrders,
 TABLE SalesOrderItems,
 TABLE Products,
 TABLE Employees
);

See also
● “Reporting and handling replication errors” on page 129

Insert errors
When replicating INSERT statements from a remote database to a consolidated database, you can only
exclude the following columns from the publication:

● Columns that allow NULL.

● Columns that have defaults.

If you exclude any column that does not satisfy one of these requirements, INSERT statements carried out
at a remote database fail when replicated on the consolidated database.

SQL Remote replication design and set up

52 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using BEFORE triggers as an alternative
An exception to this example is when a BEFORE trigger is used to maintain the columns that are not included
in the INSERT statement.

See also
● “Replication conflicts and errors” on page 42

Referential integrity errors

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 53

Duplicate primary key errors
When all users are connected to the same database, there is no problem ensuring that each INSERT statement
uses a unique primary key. If a user tries to re-use a primary key, the INSERT statement fails.

The situation is different in a replication system because users are connected to many databases. A potential
problem arises when two users, connected to different remote databases, insert a row using the same primary
key value. Each of their statements succeeds because the primary key value is unique on each remote
database.

However, when these two users replicate their databases with the same consolidated database, a problem
arises. The first database to replicate with the consolidated database succeeds. However, the second insert
to reach a given database in the replication system fails.

Primary key values must be unique
To avoid primary key errors, you must ensure that when a database inserts a row, its primary key is guaranteed
to be unique across all databases in the system. There are several techniques for achieving this goal, including:

1. Using the default global autoincrement feature of SQL Anywhere databases. See “Global autoincrement
columns” on page 54.

2. Using a primary key pool to maintain a list of unused, unique primary key values at each site. See “Using
primary key pools” on page 55.

These techniques can be used either separately or together to avoid duplicate primary keys.

See also
● “Reporting and handling replication errors” on page 129

Global autoincrement columns
Use the GLOBAL AUTOINCREMENT default to assign each remote database a unique global database
identification number.

When you specify the GLOBAL AUTOINCREMENT default for a column, the domain of values for that
column is partitioned. Each partition contains the same number of values. For example, if you set the partition
size for an integer column in a database to 1000, one partition extends from 1001 to 2000, the next from
2001 to 3000, and so on.

SQL Anywhere supplies default values in a database only from the partition uniquely identified by that
database's number. For example, if you assigned a remote database the identity number 10, the default values
in that database would be chosen in the range 10001-11000. Another remote database, assigned the
identification number 11, would supply default value for the same column in the range 11001-12000.

See also
● “The GLOBAL AUTOINCREMENT default” [SQL Anywhere Server - SQL Usage]

SQL Remote replication design and set up

54 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Declaring DEFAULT GLOBAL AUTOINCREMENT
You can set default values in your database by selecting the column properties in Sybase Central, or by
including the DEFAULT GLOBAL AUTOINCREMENT clause in a CREATE TABLE or ALTER TABLE
statement.

Partition size
Optionally, the partition size can be specified in parentheses immediately following the AUTOINCREMENT
keyword. The partition size may be any non-negative integer, although the partition size is generally chosen
so that the supply of numbers within any one partition is rarely exhausted.

For columns of type INT or UNSIGNED INT, the default partition size is 216 = 65536; for columns of other
types the default partition size is 232 = 4294967296. Since these defaults may be inappropriate, especially
if your column is not of type INT or BIGINT, it is recommended that you specify the partition size explicitly.

Example
The following statement creates a table with two columns: an integer that holds a customer identification
number and a character string that holds the customer's name. The identification number column, ID, uses
the GLOBAL AUTOINCREMENT default and has a partition size of 5000.

CREATE TABLE Customers (
 ID INT DEFAULT GLOBAL AUTOINCREMENT (5000),
 name VARCHAR(128) NOT NULL,
 PRIMARY KEY (ID)
);

See also
● “CREATE TABLE statement” [SQL Anywhere Server - SQL Reference]
● “ALTER TABLE statement” [SQL Anywhere Server - SQL Reference]

Using primary key pools
A primary key pool is a table that contains a set of primary key values for each database in a SQL Remote
system. A master primary key pool table is created and stored on the consolidated database. Remote users
subscribe to the consolidated database primary key pool table to receive their own set of primary key values.
When a remote user inserts a new row into a table, they use a stored procedure to select a valid primary key
from their pool. The pool is maintained by periodically running a procedure on the consolidated database
that replenishes the supply.

The primary key pool technique requires the following components:

● Primary key pool table On the consolidated database, you need a table to hold valid primary key
values for each database in the system. See “Create a primary key pool table” on page 56.

● Replenishment procedure On the consolidated database, you need a stored procedure to keep the
key pool table filled. See “Fill and replenish the key pool” on page 57.

Duplicate primary key errors

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 55

● Sharing of key pools Each remote database in the system must subscribe to its own set of valid
values from the consolidated database key pool table. See “Replicate the primary key
pool” on page 56.

● Data entry procedures On the remote databases, new rows are entered using a stored procedure that
picks the next valid primary key value from the pool and then deletes that value from the key pool. See
“Use the primary keys from the key pool” on page 58.

Create a primary key pool table
To create a primary key pool table (SQL)

1. On the consolidated database, execute the following statement to create a primary key pool table:

CREATE TABLE KeyPool (
 table_name VARCHAR(128) NOT NULL,
 value INTEGER NOT NULL,
 location CHAR(12) NOT NULL,
 PRIMARY KEY (table_name, value),
);

Column Description

table_name Holds the names of tables for which primary key pools must be maintained. For
example, if new sales representatives are added only on the consolidated database,
only the Customers table needs a primary key pool and this column is redundant.

value Holds a list of primary key values. Each value is unique for each table listed in
table_name.

location An identifier for the recipient. In some systems, this can be the same as the rep_key
value of the SalesReps table. In other systems, there are users other than sales
representatives; in such systems, the two identifiers should be distinct.

2. To increase performance, execute the following statement to create an index on the primary key table:

CREATE INDEX KeyPoolLocation
ON KeyPool (table_name, location, value);

Replicate the primary key pool
You can either incorporate the primary key pool into an existing publication or share it as a separate
publication. Use the following procedure to create a separate publication for the primary key pool and
subscribe users to it.

To replicate the primary key pool (SQL)

1. On the consolidated database, create a publication for the primary key pool data.

SQL Remote replication design and set up

56 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

CREATE PUBLICATION KeyPoolData (
 TABLE KeyPool SUBSCRIBE BY location
);

2. Create subscriptions for each remote database to the KeyPoolData publication.

CREATE SUBSCRIPTION
 TO KeyPoolData('user1')
 FOR user1;
CREATE SUBSCRIPTION
 TO KeyPoolData('user2')
 FOR user2;
...

The subscription argument is the location identifier.

See also
● “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “CREATE SUBSCRIPTION statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]

Fill and replenish the key pool
Every time a remote user adds a new customer, the remote user's pool of available primary keys is depleted
by one. Periodically, you need to replenish the contents of the primary key pool table on the consolidated
database and then replicate the new primary keys to the remote databases.

To initially fill the primary key pool (SQL)

1. On the consolidated database, create a procedure to fill the primary key pool.

Do not use a trigger to replenish the key pool
You cannot use a trigger to replenish the key pool, as trigger actions are not replicated.

For example:

CREATE PROCEDURE ReplenishPool()
BEGIN
 FOR EachTable AS TableCursor
 CURSOR FOR
 SELECT table_name
 AS CurrTable, max(value) as MaxValue
 FROM KeyPool
 GROUP BY table_name
 DO
 FOR EachRep AS RepCursor
 CURSOR FOR
 SELECT location
 AS CurrRep, COUNT(*) AS NumValues
 FROM KeyPool
 WHERE table_name = CurrTable
 GROUP BY location
 DO
 // make sure there are 100 values.
 // Fit the top-up value to your
 // requirements

Duplicate primary key errors

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 57

 WHILE NumValues < 100 LOOP
 SET MaxValue = MaxValue + 1;
 SET NumValues = NumValues + 1;
 INSERT INTO KeyPool
 (table_name, location, value)
 VALUES
 (CurrTable, CurrRep, MaxValue);
 END LOOP;
 END FOR;
 END FOR;
END;

2. Insert an initial primary key value in the primary key pool for each user.

The ReplenishPool procedure requires at least one primary key value to exist for each subscriber, so that
it can find the maximum value and add one to generate the next set.

To initially fill the pool, you can insert a single value for each user, and then call ReplenishPool to fill
up the rest. The following example illustrates this for three remote users and a single consolidated user
named Office:

INSERT INTO KeyPool VALUES('Customers', 40, 'user1');
INSERT INTO KeyPool VALUES('Customers', 41, 'user2');
INSERT INTO KeyPool VALUES('Customers', 42, 'user3');
INSERT INTO KeyPool VALUES('Customers', 43, 'Office');
CALL ReplenishPool();

The ReplenishPool procedure fills the pool for each user up to 100 values. The value you need depends
on how often users are inserting rows into the tables in the database.

3. Periodically run ReplenishPool.

The ReplenishPool procedure must be run periodically on the consolidated database to refill the pool of
primary key values in the KeyPool table.

Use the primary keys from the key pool
When a sales representative adds a new customer to the Customers table, the primary key value to be inserted
is obtained using a stored procedure. This example uses a stored procedure to supply the primary key value,
and a stored procedure to do the insert.

To use the primary keys (SQL)

1. Create a procedure to run on the remote databases to obtain a primary key from the primary key pool
table.

For example, the NewKey procedure supplies an integer value from the key pool and deletes the value
from the pool.

CREATE PROCEDURE NewKey(
 IN @table_name VARCHAR(40),
 OUT @value INTEGER)
BEGIN
 DECLARE NumValues INTEGER;

 SELECT COUNT(*), MIN(value)
 INTO NumValues, @value

SQL Remote replication design and set up

58 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 FROM KeyPool
 WHERE table_name = @table_name
 AND location = CURRENT PUBLISHER;
 IF NumValues > 1 THEN
 DELETE FROM KeyPool
 WHERE table_name = @table_name
 AND value = @value;
 ELSE
 // Never take the last value, because
 // ReplenishPool will not work.
 // The key pool should be kept large enough
 // that this never happens.
 SET @value = NULL;
 END IF;
END;

The NewKey procedure takes advantage of the fact that the Sales Representative identifier is the
CURRENT PUBLISHER of the remote database.

2. Create a procedure that runs on the remote databases to insert a new row in a subscribed table.

For example, the NewCustomers procedure inserts a new customer into the table, using the value obtained
by NewKey to construct the primary key.

CREATE PROCEDURE NewCustomers(
 IN customer_name CHAR(40))
BEGIN
 DECLARE new_cust_key INTEGER ;
 CALL NewKey('Customers', new_cust_key);
 INSERT
 INTO Customers (
 cust_key,
 name,
 location
)
 VALUES (
 'Customers ' ||
 CONVERT (CHAR(3), new_cust_key),
 customer_name,
 CURRENT PUBLISHER
);
);
END

You can enhance this procedure by testing the new_cust_key value obtained from NewKey to check that
it is not NULL, and prevent the insert if it is NULL.

Duplicate primary key errors

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 59

Partitioning rows among remote databases
Each remote database can contain a different subset of the data stored in the consolidated database. You can
create your publications and subscriptions so that data is partitioned among remote databases.

The partitioning can be disjoint, or it can contain overlaps. For example, if each employee has their own set
of customers, with no shared customers, the partitioning is disjoint. If there are shared customers who appear
in more than one remote database, the partitioning contains overlaps.

Sometimes, the rows of a table need to be partitioned even when the subscription expression does not exist
in the table. See “Using disjoint data partitions” on page 61.

Sometimes, when there is a many-to-many relationship in the database, the tables need to be partitioned.
See “Using overlap partitions” on page 67.

SQL Remote replication design and set up

60 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using disjoint data partitions
Data partitioning is disjoint when the remote databases do not share data. For example, each sales
representative has their own set of customers and they do not share customers with other sales representatives.

In the following example, three tables store information about the interactions between sales representatives
and customers: Customers, Contacts, and SalesReps. Each sales representative sells to several customers.
For some customers, there is a single contact, and for other customers there are multiple contacts.

Description of Contacts, Customers, and SalesReps tables
The following table describes the Customers, Contacts, and SalesReps database tables as described in “Using
disjoint data partitions” on page 61.

Table Description Table definition

Contacts All individual contacts that do business with the com-
pany. Each contact belongs to a single customer. The
Contacts table includes the following columns:

● contact_key An identifier for each contact.
This is the primary key.

● name The name of each contact.

● cust_key An identifier for the customer to
which the contact belongs. This is a foreign key to
the Customers table.

CREATE TABLE Contacts (
 contact_key CHAR(12)
NOT NULL,
 name CHAR(40) NOT
NULL,
 cust_key CHAR(12)
NOT NULL,
 FOREIGN KEY
REFERENCES Customers,
 PRIMARY KEY
(contact_key)
);

Customers All customers that do business with the company. The
Customers table includes the following columns:

● cust_key An identifier for each customer. This
is the primary key.

● name The name of each customer.

● rep_key An identifier for the sales representa-
tive in a sales relationship. This is a foreign key to
the SalesReps table.

CREATE TABLE Customers (
 cust_key CHAR(12) NOT
NULL,
 name CHAR(40) NOT
NULL,
 rep_key CHAR(12) NOT
NULL,
 FOREIGN KEY
REFERENCES SalesReps,
 PRIMARY KEY
(cust_key)
);

Using disjoint data partitions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 61

Table Description Table definition

SalesReps All sales representatives that work for the company.
The SalesReps table includes the following columns:

● rep_key An identifier for each sales represen-
tative. This is the primary key.

● name The name of each sales representative.

CREATE TABLE SalesReps (
 rep_key CHAR(12) NOT
NULL,
 name CHAR(40) NOT
NULL,
 PRIMARY KEY (rep_key)
);

A sales representative must subscribe to a publication that provides the following information:

● A list of the all the sales representatives working for the company The following statement
creates a publication that publishes the entire SalesRep table:

CREATE PUBLICATION SalesRepData (
 Table SalesReps ...)
);

● A list of customers assigned to them This information is available in the Customers table. The
following statement creates a publication that publishes the Customers table, which contains the rows
that match the value of the rep_key column in the Customers table:

CREATE PUBLICATION SalesRepData (
 TABLE Customers SUBSCRIBE BY rep_key ...
);

● A list of the contact information for their assigned customers This information is available
in the Contacts table. The Contacts table must be partitioned among the sales representatives, but there
is no reference to the rep_key value in the SalesRep table. To solve this problem, you can use a subquery
in the Contacts article that references the rep_key column of the Customers table.

The following statement creates a publication that publishes the Contacts table, which contains the rows
that reference the rep_key column of the Customers table.

CREATE PUBLICATION SalesRepData (...
 TABLE Contacts
 SUBSCRIBE BY (SELECT rep_key
 FROM Customers
 WHERE Contacts.cust_key = Customers.cust_key)
);

One row in the Customers table has the cust_key value in the current row of the Contacts table; the
WHERE clause in the SUBSCRIBE BY statement ensures that the subquery only returns a single value.

The following statement creates the complete publication:

CREATE PUBLICATION SalesRepData (
 TABLE SalesReps
 TABLE Customers
 SUBSCRIBE BY rep_key
 TABLE Contacts
 SUBSCRIBE BY (SELECT rep_key
 FROM Customers
 WHERE Contacts.cust_key = Customers.cust_key)
);

SQL Remote replication design and set up

62 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using BEFORE UDPATE triggers
In the following example, three tables store information about the interactions between sales representatives
and customers: Customers, Contacts, and SalesReps. Each sales representative sells to several customers.
For some customers, there is a single contact, and for other customers there are multiple contacts.

For detailed descriptions of the tables, see “Description of Contacts, Customers, and SalesReps
tables” on page 61.

A sales representative subscribes to a publication that provides a copy of the SalesRep table, a copy of the
Customers table with the details of the customers assigned to them, and a copy of the Contacts table with
the details of the contacts that correspond to their customers. For example, each sales representative
subscribes to the following publication:

CREATE PUBLICATION SalesRepData (
 TABLE SalesReps
 TABLE Customers
 SUBSCRIBE BY rep_key
 TABLE Contacts
 SUBSCRIBE BY (SELECT rep_key
 FROM Customers
 WHERE Contacts.cust_key = Customers.cust_key)
);

For a detailed description of this publication, see “Using disjoint data partitions” on page 61.

Maintaining referential integrity
This reassignment of rows among subscribers is sometimes called territory realignment because it is a
common feature of sales force automation applications, where customers are periodically reassigned among
representatives.

On the consolidated database, when a customer is reassigned to a new sales representative, the rep_key value
in the Customers table is updated.

The following statement reassigns a customer, cust1, to another sales representative, rep2.

UPDATE Customers
SET rep_key = 'rep2'
WHERE cust_key = 'cust1';

This update is replicated:

● As a DELETE statement to the Customers table on the old sales representative's remote database.

● As an INSERT statement to the Customers table on the new sales representative's remote database.

The Contacts table is not changed. There are no entries in the consolidated database transaction log about
the Contacts table. As a result, SQL Remote on the remote databases cannot reassign the cust_key rows of
the Contacts table. This inability causes the following referential integrity problem: the Contacts table on

Using disjoint data partitions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 63

the remote database of the old sales representative contains a cust_key value for which there is no longer a
customer.

A solution is to use a BEFORE UPDATE trigger. A BEFORE UPDATE trigger does not make any change
to the database tables, but does create an entry in the consolidated database transaction log.

This BEFORE UPDATE trigger must be fired:

● Before the UPDATE statement is run. so that the BEFORE value of the row is evaluated and added to
the transaction log.

● FOR EACH ROW rather than for each statement. The information provided by the trigger must be the
new subscription expression.

For example, the following statement creates a BEFORE UPDATE trigger.

CREATE TRIGGER "UpdateCustomer" BEFORE UPDATE OF "rep_key"
// only fire the trigger when we modify rep_key, not any other column
ORDER 1 ON "Cons"."Customers"
/* REFERENCING OLD AS old_name NEW AS new_name */
REFERENCING NEW AS NewRow
 OLD AS OldRow
FOR EACH ROW
BEGIN
// determine the new subscription expression
 // for the Customers table
 UPDATE Contacts
 PUBLICATION SalesRepData
 OLD SUBSCRIBE BY (OldRow.rep_key)
 NEW SUBSCRIBE BY (NewRow.rep_key)
 WHERE cust_key = NewRow.cust_key;
END
;

SQL Remote uses the information placed in the transaction log to determine which subscribers receive which
rows.

The consolidated database transaction log contains two entries after this statement is executed:

● INSERT and DELETE statements for the Contacts table generated by the BEFORE UPDATE trigger.

--BEGIN TRIGGER-1029-0000461705
--BEGIN TRANSACTION-1029-0000461708
BEGIN TRANSACTION
go
--UPDATE PUBLICATION-1029-0000461711 Cons.Contacts
--PUBLICATION-1029-0000461711-0002-NEW_SUBSCRIBE_BY-rep2
--PUBLICATION-1029-0000461711-0002-OLD_SUBSCRIBE_BY-rep1
--NEW-1029-0000461711
--INSERT INTO Cons.Contacts(contact_key,name,cust_key)
--VALUES ('5','Joe','cust1')
go
--OLD-1029-0000461711
--DELETE FROM Cons.Contacts
-- WHERE contact_key='5'
go
--END TRIGGER-1029-0000461743

SQL Remote replication design and set up

64 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● The original UPDATE statement that was executed, as well as INSERT and DELETE statements for
those users that gained or lost the row respectively.

--PUBLICATION-1029-0000461746-0002-NEW_SUBSCRIBE_BY-rep2
--PUBLICATION-1029-0000461746-0002-OLD_SUBSCRIBE_BY-rep1
--NEW-1029-0000461746
--INSERT INTO Cons.Customers(cust_key,name,rep_key)
--VALUES ('cust1','company1','rep2')
go
--OLD-1029-0000461746
--DELETE FROM Cons.Customers
-- WHERE cust_key='cust1'
go
--UPDATE-1029-0000461746
UPDATE Cons.Customers
 SET rep_key='rep2'
VERIFY (rep_key)
VALUES ('1')
 WHERE cust_key='cust1'
go
--COMMIT-1029-0000461785
COMMIT WORK

SQL Remote scans the transaction log for the BEFORE and AFTER tags. Based on this information, it can
determine which remote users get an INSERT, UPDATE, or DELETE statement.

● When a user is in the BEFORE list and not in the AFTER list, then a DELETE statement is sent on the
Contacts table.

● When a user is in the AFTER list and not the BEFORE list, then an INSERT statement is sent on the
Contacts table.

● When a user is in both the BEFORE and AFTER lists, nothing is done to the Contacts table but the
UPDATE statement on the Customers table is sent.

When the BEFORE and AFTER lists are identical, the remote user already has the row and an UPDATE
statement is sent.

Notes on the trigger
In the following example, you must use a BEFORE UPDATE trigger. In other contexts, BEFORE DELETE
and BEFORE INSERT are necessary.

UPDATE table-name
PUBLICATION pub-name
 SUBSCRIBE BY sub-expression
WHERE search-condition;

In this example, you use a BEFORE trigger.

UPDATE table-name
PUBLICATION publication-name
 OLD SUBSCRIBE BY old-subscription-expression
 NEW SUBSCRIBE BY new-subscription-expression
WHERE search-condition;

Using disjoint data partitions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 65

The UPDATE statement lists the affected publication and table. The WHERE clause in the statement
describes the affected rows. This UPDATE statement does not change the data in the table; it makes entries
in the transaction log.

In this example, the subscription expression returns a single value. However, subqueries returning multiple
values can also be used. The value of the subscription expression must be the value after the update.

In this example, the only subscriber to the row is the new sales representative. For an example of a row that
has existing and new subscribers, see “Using overlap partitions” on page 67.

SQL Remote replication design and set up

66 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using overlap partitions
Data partitioning overlaps when the remote databases share data. For example, sales representatives share
customers amongst themselves.

Suppose three tables store information about the interactions between sales representatives and customers:
Customers, Policy, and SalesReps. Each sales representative sells to several customers, and some customers
deal with more than one sales representative. The Policy table has foreign keys to both the Customers and
SalesReps tables. There is a many-to-many relationship between Customers and SalesReps.

Description of Customers, Policy, and SalesReps tables
The following table describes Customers, Policy, and SalesReps database tables as discussed in “Using
overlap partitions” on page 67.

Table Description

Customers All customers that do business with the company. The Customers table has the
following columns:

● cust_key A primary key column containing an identifier for each customer.

● name A column containing the name of each customer.

The following statements create this table:

CREATE TABLE Customers (
 cust_key CHAR(12) NOT NULL,
 name CHAR(40) NOT NULL,
 PRIMARY KEY (cust_key)
);

Using overlap partitions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 67

Table Description

Policy A three-column table that maintains the many-to-many relationship between cus-
tomers and sales representatives. The Policy table has the following columns:

● policy_key A primary key column containing an identifier for the sales
relationship.

● cust_key A column containing a foreign key for the customer representative
in a sales relationship.

● rep_key A column containing a foreign key for the sales representative in
a sales relationship.

The following statements create this table:

CREATE TABLE Policy (
 policy_key CHAR(12) NOT NULL,
 cust_key CHAR(12) NOT NULL,
 rep_key CHAR(12) NOT NULL,
 FOREIGN KEY (cust_key)
 REFERENCES Customers (cust_key)
 FOREIGN KEY (rep_key)
 REFERENCES SalesReps (rep_key),
 PRIMARY KEY (policy_key)
);

SalesReps All sales representatives that work for the company. The SalesReps table has the
following columns:

● rep_key An identifier for each sales representative. This is the primary key.

● name The name of each sales representative.

The following statements create this table:

CREATE TABLE SalesReps (
 rep_key CHAR(12) NOT NULL,
 name CHAR(40) NOT NULL,
 PRIMARY KEY (rep_key)
);

Partitioning data
The many-to-many relationship between customers and sales representatives introduces new challenges for
sharing information properly.

Sales representatives must subscribe to a publication that provides the following information:

● The entire SalesReps table There are no qualifiers to this article, so the entire SalesReps table is
included in the publication.

...
 TABLE SalesReps,
...

SQL Remote replication design and set up

68 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● Those rows from the Policy table that include sales relationships involving the sales
representative subscribed to the data This article uses a SUBSCRIBE BY subscription
expression to specify a column used to partition the data among the sales representatives:

...
 TABLE Policy
 SUBSCRIBE BY rep_key,
...

The subscription expression ensures that each sales representative receives only those rows in the table
for which the value of the rep_key column matches the value provided in the subscription.

The Policy table partitioning is disjoint: there are no rows that are shared with more than one subscriber.

● Those rows from the Customers table listing customers that deal with the sales
representative subscribed to the data The Customers table has no reference to the sales
representative value that is used in the subscriptions to partition the data. This problem can be addressed
by using a subquery in the publication.

Each row in the Customers table may be related to many rows in the SalesReps table, and shared with
many sales representatives' databases. That is, there are overlapping subscriptions.

A subscription expression with a subquery is used to define the partition. The article is defined as follows:

...
 TABLE Customers SUBSCRIBE BY (
 SELECT rep_key
 FROM Policy
 WHERE Policy.cust_key =
 Customers.cust_key
),
...

The Customers partitioning is non-disjoint: some rows are shared with more than one subscriber.

The following statement creates the complete publication:

CREATE PUBLICATION SalesRepData (
 TABLE SalesReps,
 TABLE Policy SUBSCRIBE BY rep_key,
 TABLE Customers SUBSCRIBE BY (
 SELECT rep_key FROM Policy
 WHERE Policy.cust_key =
 Customers.cust_key
)
);

Multiple-valued subqueries in publications
The subquery in the Customers article returns a single column (rep_key) in its result set, but may return
multiple rows, corresponding to all the sales representatives that deal with the particular customer. When a
subscription expression has multiple values, the row is replicated to all subscribers whose subscription
matches any of the values. This ability to have multiple-valued subscription expressions allows overlapping
partitioning of a table.

Using overlap partitions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 69

Maintaining referential integrity when reassigning rows
among subscribers

To cancel a sales relationship between a customer and a sales representative, a row in the Policy table is
deleted. In this example, the Policy table change is properly replicated to the old sales representative.
However, no change has been made to the Customers table, and so no changes to the Customers table are
replicated to the old sales representative.

In the absence of triggers, this can leave a subscriber with incorrect data in their Customers table. The same
kind of problem arises when a new row is added to the Policy table.

Using triggers to solve the problem
The solution is to write BEFORE triggers that fire when changes are made the Policy table These special
triggers makes no changes to the database tables, but they do make an entry in the transaction log that SQL
Remote uses to maintain data in subscriber databases.

A BEFORE INSERT trigger
For example, the following statements create a BEFORE INSERT trigger that tracks inserts into the Policy
table, and ensures that remote databases contain the proper data.

CREATE TRIGGER InsPolicy
BEFORE INSERT ON Policy
REFERENCING NEW AS NewRow
FOR EACH ROW
BEGIN
 UPDATE Customers
 PUBLICATION SalesRepData
 SUBSCRIBE BY (
 SELECT rep_key
 FROM Policy
 WHERE cust_key = NewRow.cust_key
 UNION ALL
 SELECT NewRow.rep_key
)
 WHERE cust_key = NewRow.cust_key;
END;

A BEFORE DELETE trigger
The following statements create a BEFORE DELETE trigger that tracks deletes from the Policy table:

CREATE TRIGGER DelPolicy
BEFORE DELETE ON Policy
REFERENCING OLD AS OldRow
FOR EACH ROW
BEGIN
 UPDATE Customers
 PUBLICATION SalesRepData
 SUBSCRIBE BY (
 SELECT rep_key
 FROM Policy
 WHERE cust_key = OldRow.cust_key
 AND Policy_key <> OldRow.Policy_key
)
 WHERE cust_key = OldRow.cust_key;
END;

SQL Remote replication design and set up

70 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The SUBSCRIBE BY clause of the UPDATE PUBLICATION statement contains a subquery, and this
subquery can be multiple-valued.

Multiple-valued subqueries
The subquery in the SUBSCRIBE clause of the UPDATE PUBLICATION is a UNION expression, and can
be multiple-valued:

...
SELECT rep_key
FROM Policy
WHERE cust_key = NewRow.cust_key
UNION ALL
SELECT NewRow.rep_key
...

● The first part of the UNION is the set of existing sales representatives dealing with the customer, taken
from the Policy table.

The result set of the subscription query must be all those sales representatives receiving the row, not just
the new sales representatives.

● The second part of the UNION is the rep_key value for the new sales representative dealing with the
customer, taken from the INSERT statement.

The subquery in the BEFORE DELETE trigger is multiple-valued:

...
SELECT rep_key
FROM Policy
WHERE cust_key = OldRow.cust_key
AND rep_key <> OldRow.rep_key
...

● The subquery takes rep_key values from the Policy table. The values include the primary key values of
all those sales representatives who deal with the customer being transferred (WHERE cust_key =
OldRow.cust_key), with the exception of the one being deleted (AND rep_key <> OldRow.rep_key).

The result set of the subscription query must be all those values matched by sales representatives
receiving the row following the delete.

Notes
● Data in the Customers table is not identified with an individual subscriber (by a primary key value, for

example) and is shared among more than one subscriber. This allows the possibility of the data being
updated at more than one remote site between replication messages, which can lead to replication
conflicts. You can address this issue either by permissions (allowing only certain users the right to update
the Customers table, for example) or by adding RESOLVE UPDATE triggers to the database to handle
the conflicts programmatically.

● Updates on the Policy table have not been described here. Either they should be prevented, or a BEFORE
UPDATE trigger must be created that combines features of the BEFORE INSERT and BEFORE
DELETE triggers shown in the example.

Using overlap partitions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 71

Using the subscribe_by_remote option with many-to-many
relationships

When the subscribe_by_remote option is set to On, operations from remote databases on rows with a
SUBSCRIBE BY value of NULL or an empty string assume the remote user is subscribed to the row. By
default, the subscribe_by_remote option is set to On.

The subscribe_by_remote option solves a problem that otherwise would arise with some publications. The
following publication uses a subquery for the Customers table subscription expression because customers
can belong to several sales representatives:

CREATE PUBLICATION SalesRepData (
 TABLE SalesReps,
 TABLE Policy SUBSCRIBE BY rep_key,
 TABLE Customers SUBSCRIBE BY (
 SELECT rep_key FROM Policy
 WHERE Policy.cust_key =
 Customers.cust_key
),
);

For example, Marc Dill is a Sales representative who has just arranged a policy with a new customer. He
inserts a new row in the Customers table and inserts a row in the Policy table to assign the new customer to
himself.

On the consolidated database, SQL Remote carries out the insert of the Customers row and SQL Anywhere
records the subscription value in the transaction log, at the time of the insert.

Later, when the SQL Remote scans the transaction log, it builds a list of subscribers from the subscription
expression, and Marc Dill is not on the list, as the row in the Policy table assigning the customer to him has
not yet been applied. If subscribe_by_remote were set to Off, the result would be that the new Customer is
sent back to Marc Dill as a DELETE statement.

As long as subscribe_by_remote is set to On, the SQL Remote assumes the row belongs to the Sales
representative who inserted it, the INSERT statement is not replicated back to Marc Dill, and the replication
system is intact.

If subscribe_by_remote is set to Off, you must ensure that the Policy row is inserted before the Customers
row, with the referential integrity violation avoided by postponing checking to the end of the transaction.

See also
● “subscribe_by_remote option [SQL Remote]” [SQL Anywhere Server - Database Administration]

SQL Remote replication design and set up

72 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Assigning unique identification numbers to each
database

You must assign a different identification number to each remote database. You can create and distribute
the identification numbers by a variety of means. One method is to place the values in a table and download
the correct row to each database based on some other unique property, such as user name.

Using the global_database_id option
The public option global_database_id in each database must be set to a unique, non-negative integer. The
range of default values for a particular database is pn + 1 to p(n + 1), where p is the partition size and n is
the value of the public option global_database_id. For example, if the partition size is 1000 and
global_database_id is set to 3, then the range is from 3001 to 4000.

When global_database_id is set to a non-negative integer, SQL Anywhere chooses default values by applying
the following rules:

● When the column contains no values in the current partition, the first default value is pn + 1.

● When the column contains values in the current partition, but all are less than p(n + 1), the next default
value is one greater than the previous maximum value in this range.

● Default column values are not affect by values in the column outside the current partition; that is, by
numbers less than pn + 1 or greater than p(n + 1). Such values may be present if they have been replicated
from another database via MobiLink synchronization.

If the public option global_database_id is set to the default value of 2147483647, a null value is inserted
into the column. Should null values not be permitted, the attempt to insert the row causes an error. This
situation arises, for example, when the column is contained in the table's primary key.

Because the public option global_database_id cannot be set to negative values, the values chosen are always
positive. The maximum identification number is restricted only by the column data type and the partition
size.

Null default values are also generated when the supply of values within the partition has been exhausted. In
this example, a new value of global_database_id should be assigned to the database to allow default values
to be chosen from another partition. Attempting to insert the null value causes an error when the column
does not permit nulls. To detect that the supply of unused values is low and handle this condition, create an
event of type GlobalAutoincrement.

Should the values in a particular partition become exhausted, you can assign a new database ID to that
database. You can assign new database ID numbers in any convenient manner. However, one possible
technique is to maintain a pool of unused database ID values. This pool is maintained in the same manner
as a pool of primary keys.“Using primary key pools” on page 55.

You can set an event handler to automatically notify the database administrator (or do some other action)
when the partition is nearly exhausted. See “Defining trigger conditions for events” [SQL Anywhere Server
- Database Administration].

See also
● “global_database_id option [database]” [SQL Anywhere Server - Database Administration]

Assigning unique identification numbers to each database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 73

Setting the global_database_id value

To set the global database identification number (SQL)

● Set the value of the global_database_id option. The identification number must be a non-negative integer.

For example, the following statement sets the database identification number to 20.

SET OPTION PUBLIC.global_database_id = 10;

If the partition size for a particular column is 5000, default values for this database are selected from the
range 100001-105000.

See also
● “global_database_id option [database]” [SQL Anywhere Server - Database Administration]

Setting unique database identification numbers when
extracting databases

If you use the Extraction utility (dbxtract) or the Extract Database Wizard to create your remote databases,
you can write a stored procedure to automate the task of setting unique database identification numbers.

To automate setting unique database identification numbers

1. Create a stored procedure named sp_hook_dbxtract_begin.

For example, to extract a database for remote user user2 with a user_id of 101, execute the following
statements:

SET OPTION "PUBLIC"."global_database_id" = '1';
CREATE TABLE extract_id (next_id INTEGER NOT NULL) ;
INSERT INTO extract_id VALUES(1);
CREATE PROCEDURE sp_hook_dbxtract_begin
AS
 DECLARE @next_id INTEGER
 UPDATE extract_id SET next_id = next_id + 1000
 SELECT @next_id = (next_id)
 FROM extract_id
 COMMIT
 UPDATE #hook_dict
 SET VALUE = @next_id
 WHERE NAME = 'extracted_db_global_id';

Each extracted or re-extracted database gets a different global_database_id. The first starts at 1001, the
next at 2001, and so on.

2. Run the Extraction utility (dbxtract) with the -v option or the Extract Database Wizard to extract your
remote databases. The Extraction utility does the following tasks:

a. Creates a temporary table name #hook_dict, with the following contents:

SQL Remote replication design and set up

74 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

name value

extracted_db_global_id user ID being extracted

When you write a sp_hook_dbxtract_begin procedure to modify the value column of the row, that
value is used as the global_database_id option of the extracted database, and marks the beginning of
the range of primary key values for DEFAULT GLOBAL AUTOINCREMENT values.

● When you do not define an sp_hook_dbxtract_begin procedure, the extracted database has a
global_database_id set to 101.

● When you define a sp_hook_dbxtract_begin procedure that does not modify any rows in the
#hook_dict, then the global_database_id is still set to 101.

b. Calls the sp_hook_dbxtract_begin.

c. Outputs the following information to assist in debugging procedure hooks:

● The procedure hooks found.

● The contents of #hook_dict before the procedure hook is called.

● The contents of #hook_dict after the procedure hook is called.

See also
● “The #hook_dict table” on page 164
● “SQL Remote system procedures” on page 164
● “global_database_id option [database]” [SQL Anywhere Server - Database Administration]

Assigning unique identification numbers to each database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 75

76

SQL Remote Deployment and
Administration

This section describes deployment and administration issues for SQL Remote.

SQL Remote Administration .. 79

SQL Remote Administration

Contents
Management overview of SQL Remote ... 80
Extracting remote databases ... 82
Extracting remote databases to a reload file ... 84
Understanding the Message Agent (dbremote) ... 89
Improving SQL Remote performance .. 94
Understanding the Guaranteed Message Delivery System 103
Controlling message size .. 108
SQL Remote message systems .. 110
Backing up SQL Remote systems ... 120
Recover consolidated databases manually ... 125
Recover consolidated databases automatically .. 127
Reporting and handling replication errors .. 129
Security .. 134
Upgrading and resynchronization .. 135
SQL Remote passthrough mode ... 137
Resynchronizing subscriptions .. 140

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 79

Management overview of SQL Remote
You deploy and administer a SQL Remote system from the consolidated database.

To deploy and administer a SQL Remote system

1. Set up the consolidated database.

See “Creating SQL Remote systems” on page 12.

2. Review and test your SQL Remote system.

Thorough testing of your SQL Remote system should be done before deployment, especially if you have
a large number of remote databases.

3. Create remote databases and deploying the design.

As the DBA of the consolidated database, you deploy SQL Remote by:

a. Creating a SQL Anywhere database for each remote user, with their own initial copy of the data, and
starting their subscriptions. See “Extracting remote databases” on page 82.

b. Installing on each remote user's computer the SQL Anywhere database server, the remote database,
SQL Remote, and the client application. See “Deploying embedded database applications” [SQL
Anywhere Server - Programming] and “Deploying SQL Remote” [SQL Anywhere Server -
Programming].

4. Run the Message Agent (dbremote) to exchange messages.

To exchange messages, you need to:

a. Decide whether to run the Message Agent (dbremote) in continuous mode or batch mode on the
consolidated and remote databases. “Choosing the Message Agent (dbremote) mode” on page 89.

b. Ensure that the system is properly configured with correct user names, Message Agent (dbremote)
connection strings, permissions, and so on. See “Understanding the Message Agent
(dbremote)” on page 89.

5. Manage messages.

Use the Guaranteed Message Delivery System to manage the messages being sent back and forth among
many databases. See “Understanding the Guaranteed Message Delivery System” on page 103.

6. Improve performance.

See “Improving SQL Remote performance” on page 94.

7. Implement a backup and recovery strategy.

You must create and implement a backup and recovery strategy for the consolidated database. See
“Backing up SQL Remote systems” on page 120.

8. Handle errors.

See “Reporting and handling replication errors” on page 129.

9. Upgrade the software and database schemas as required.

SQL Remote Administration

80 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See “Upgrading and resynchronization” on page 135.

Management overview of SQL Remote

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 81

Extracting remote databases
To create a database for a remote user, you extract the remote database from the consolidated database.

You can use either the Extract Database Wizard or the Extraction utility (dbxtract) to extract a remote
database from a consolidated database for a specified remote user. Either method allows you to do one or
more of the following tasks:

● Automatically extract and reload the schema and data directly into a new or existing
database This is an appropriate method to use when learning about SQL Remote. If you use this
method, no interim copy of the data is created on disk. This method provides greater security for your
data. However, it is more time consuming to implement. See “Automatically extract remote
databases” on page 82.

● Extract the schema and data to files, and then load them into a new or existing
database When deploying SQL Remote, this method is preferred. You can edit the schema file to
customize the extraction and creation of your remote databases. See “Extracting remote databases to a
reload file” on page 84.

To increase efficiency when creating more than one remote database, see “Creating multiple remote
databases” on page 87.

Automatically extract remote databases
For information about automatically extracting remote databases and its alternative, extracting remote
databases to a reload file, see “Extracting remote databases” on page 82.

Use the following procedure to extract a consolidated database and reload the schema and data into a new
database. No interim copy of the data is created on disk.

To automatically extract a remote database (Sybase Central)

1. Connect to the consolidated database as a user with DBA authority.

2. From the Tools menu, choose SQL Anywhere 11 » Extract Database.

3. When prompted, choose Extract And Reload Into A New Database.

When prompted, choose Extract Structure And Data.

4. Follow the instructions in the wizard and accept the defaults.

The new remote database is created with the appropriate schema, remote users, publications,
subscriptions, and triggers. By default, the data from the consolidated database is extracted to the remote
database and the subscriptions are started. However, the wizard does not start the Message Agent, so no
messages are exchanged. See “Understanding the Message Agent (dbremote)” on page 89.

To automatically extract a remote database (SQL)

1. Connect to the consolidated database as a user with DBA authority.

SQL Remote Administration

82 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

2. Run the Extraction utility (dbxtract) and specify the -ac option to extract to an existing database or the
-an option to extract to a new database. See “Extraction utility (dbxtract)” on page 154.

If you specify the -an option, you must create an empty database before running the Extraction utility
(dbxtract). For example, the following command creates an empty database named mydata.db:

dbinit c:\remote\mydata.db

Run the following command to extract a new remote database from a consolidated database located at
c:\consolidateddata.db. The new database is for the remote user named field_user and the new database
is created at c:\remote\mydata.db:

dbxtract -c "UID=DBA;PWD=sql;DBF=c:\consolidateddata.db"
-an c:\remote\mydata.db field_user

The new remote database, mydata.db, is created with the appropriate schema, remote users, publications,
subscriptions, and triggers. By default, the data from the consolidated database is extracted into the
remote databases and the subscriptions are started. However, the Extraction utility (dbxtract) does not
start the Message Agent, so no messages are exchanged. See “Understanding the Message Agent
(dbremote)” on page 89.

See also
● “Extracting remote databases to a reload file” on page 84

Extracting remote databases

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 83

Extracting remote databases to a reload file
For information about extracting remote databases to a reload file and its alternative automatically extracting
remote databases, see “Extracting remote databases” on page 82.

In most deployment scenarios, you need to customize the extraction and creation of remote databases. You
can create a custom extraction by choosing to extract the database into a command file and a series of text
files. Then, you can edit these files as required.

When you extract the database into files, you decide whether to create:

● A SQL command file named reload.sql, which contains the statements necessary to build
the remote database schema. See -n option “Extraction utility (dbxtract)” on page 154.

For example, run the following command:

dbxtract -c "UID=DBA;PWD=sql;DBF=c:\cons\cons.db" -n "c:\remote
\reload.sql" UserName

● A series of data files, each of which contains the contents of a database table. A series of
data files, each of which contains the contents of a database table. A new directory is created, named
extract, to contain the data files. You can use these files to load data into an existing remote database.
See -d option “Extraction utility (dbxtract)” on page 154.

For example, run the following command:

dbxtract -c "UID=DBA;PWD=sql;DBF=c:\cons\cons.db" -d "c:\remote1\" UserName
● Both the reload.sql file and the data files. A new directory is created, named extract, to contain

the data files. The reload.sql file contains instructions to load the data files. For example, run the
following command:

dbxtract -c "UID=DBA;PWD=sql;DBF=c:cons\cons.db" "c:\remote1\reload.sql"
UserName

The reload.sql file
The reload.sql file contains the SQL statements to build the database schema, which includes the commands
to create:

● Publishers, remote, and consolidated users
● Publications and subscriptions
● Message types
● Tables
● Views
● Triggers
● Procedures

Editing of reload.sql may be needed
The Extraction utility (dbxtract) is intended to assist in preparing remote databases, but is not intended as a
black box solution for all circumstances. You should edit the reload.sql command file as needed when
creating remote databases. See “Editing the reload.sql file” on page 85.

SQL Remote Administration

84 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Use the following procedure to create a remote database using a reload.sql file.

To create a remote database from the reload.sql file (command line)

1. Use the Extraction utility (dbxtract) to extract the database schema and data to files. For example, run
the following command:

dbxtract -c "UID=DBA;PWD=sql;DBF=c:cons\cons.db" "c:\remote\reload.sql"
UserName

By default, subscriptions for the specified remote user are started automatically.

2. Edit the reload.sql, if required. See “Editing the reload.sql file” on page 85.

3. Create an empty SQL Anywhere database.

For example, run the following command:

dbinit c:\rem1\rem1.db
4. Connect to the database from Interactive SQL, and run the reload.sql command file.

For example, run the following command:

READ remote\reload.sql

The new remote database, rem1.db, is created with the appropriate schema, remote users, publications,
subscriptions, and triggers. However, the Extraction utility (dbxtract) does not start the Message Agent,
so no messages are exchanged. See “Understanding the Message Agent (dbremote)” on page 89.

See also
● “Automatically extract remote databases” on page 82

Editing the reload.sql file
You should edit the reload.sql command file as needed when creating remote databases. For example, you
must edit the reload.sql file in the following cases:

Adding unreplicated tables to remote database
Remote databases can have tables that are not present at their consolidated database as long as these tables
do not take part in replication. The Extraction utility (dbxtract) and Extract Database Wizard cannot extract
unreplicated tables from a consolidated database.

After extracting the database, you should edit reload.sql to add such tables.

Extracting procedures, triggers, and views
By default, the Extraction utility (dbxtract) and Extract Database Wizard extract all stored procedures,
triggers, and views from the database. While some of these views and procedures are likely to be required
on the remote site, others may not be required. For example, a procedure could refer to parts of the database
that are not included in the remote site.

After extracting the database, you should edit reload.sql to remove unnecessary procedures, triggers, and
views.

Extracting remote databases to a reload file

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 85

Using the Extraction utility (dbxtract) in multi-tiered systems
See “Extracting databases for a multi-tier hierarchy system” on page 86.

See also
● “Creating multiple remote databases” on page 87
● “Extracting remote databases to a reload file” on page 84

Extracting databases for a multi-tier hierarchy system
To understand the role of the Extraction utility (dbxtract) and the Extract Database Wizard in multi-tiered
arrangements, consider a three-tiered SQL Remote system. This system is illustrated in the following
diagram.

To create the remote databases for a three-tiered system

1. Use the Extraction utility (dbxtract) on the top-level, consolidated database, HQ, to create the second-
level databases Region 1 and Region 2.

2. Use the Extraction utility (dbxtract), on the second-level databases, Region 1 and Region 2, to create the
third-level databases for users Laptop 1, Laptop 2, and Laptop 3. The second-level databases are remote
databases to the first-level database, HQ, and are consolidated databases to the third-level databases,
Laptop 1, Laptop 2, and Laptop 3.

Re-extracting databases in a multi-tier hierarchy system
If you have to re-extract the schema for the second-level database from the top-level consolidated database,
the Extraction utility (dbxtract) deletes the remote users (Laptop 1, Laptop 2, and Laptop 3) along with their
subscriptions and permissions. As a result, you must recreate those third-level users and their subscriptions
manually.

SQL Remote Administration

86 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

If you only have to re-extract the data from the second-level databases from the top-level consolidated
database, the Extraction utility (dbxtract) does not affect the remote users. See the -d option “Extraction
utility (dbxtract)” on page 154.

Fully qualified publication definitions
Fully qualified publication definitions contain WHERE and SUBSCRIBE BY clauses. In most cases, you
do not need to extract fully qualified publication definitions for a remote database, since the remote database
typically replicates all rows back to the consolidated database.

See also
● “Creating multiple remote databases” on page 87
● “Extracting remote databases to a reload file” on page 84

Creating multiple remote databases
Use the following steps to increase efficiency when creating more than one remote database.

To create multiple remote databases

1. Make a copy of the consolidated database and start the subscriptions for the remote users from the
consolidated database. For example:

a. Start the subscriptions and then immediately shut down the consolidated database and the Message
Agent (if it is running).
The subscriptions must be started at the same time that the consolidated database copy is made. Any
operations that take place between copying the database and starting the subscriptions can be lost,
and can lead to errors at remote databases. Starting subscriptions on the consolidated database allows
messages to be packaged and sent to subscribers, even if the subscriber databases do not exist yet.
See “START SUBSCRIPTION statement [SQL Remote]” [SQL Anywhere Server - SQL
Reference] and “Start subscriptions” on page 142.
To start several subscriptions within a single transaction, use the REMOTE RESET statement. See
“REMOTE RESET statement [SQL Remote]” [SQL Anywhere Server - SQL Reference].

b. Copy the consolidated database.
By default, both the Extraction utility (dbxtract) and the Extract Database Wizard run at isolation
level 3. This isolation level ensures that data in the extracted database is consistent with data on the
database server; however, it can prevent other users from using the database. It is recommended that
you extract your remote database against a copy of the consolidated database.

c. Re-start the consolidated database, and if it was running, re-start the Message Agent on the
consolidated database.

2. Extract the remote database schema from the copy of the consolidated database. As the database is a
copy, there are no locking and concurrency problems; nevertheless, for a large number of remote
databases, this process can take a while.

When extracting the remote database schema, choose the following options:

a. Extract only the schema for the remote database.

Extracting remote databases to a reload file

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 87

By default, both the Extraction utility (dbxtract) and the Extract Database Wizard extract one
database at a time, including the schema and data for each user. However, in most deployment
scenarios the remote databases use the same schema but different data. Using the Extraction utility
(dbxtract) or the Extract Database Wizard to extract both schema and data for each user results in
repeatedly extracting the same schema. See the -n option “Extraction utility
(dbxtract)” on page 154.

b. Order the data by primary key.
By default, the data in each table is ordered by primary key. Loading data into the remote database
is faster when the data is ordered by primary key. See the -u option “Extraction utility
(dbxtract)” on page 154.

3. Create an empty remote database using the reload.sql file. Copy this database file to create the required
number of remote databases. See “Extracting remote databases to a reload file” on page 84.

4. For each remote database, define the SQL Remote definitions specific to each remote user. See “User
permissions” on page 21.

5. For each remote user, extract only their corresponding data from the consolidated database. See the -d
option “Extraction utility (dbxtract)” on page 154.

6. Load the data for each remote user into the corresponding remote database.

As each remote database is created, its data is out of date with the live consolidated database.

However, when you run the Message Agent (dbremote), each user can receive and apply messages that
have been sent from the live consolidated database to bring themselves up to date. See “Understanding
the Message Agent (dbremote)” on page 89.

See also
● “Extracting databases for a multi-tier hierarchy system” on page 86
● “Editing the reload.sql file” on page 85

SQL Remote Administration

88 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Understanding the Message Agent (dbremote)
The Message Agent (dbremote) is a key component in SQL Remote replication. It must be installed and run
on the every database in the system. The Message Agent (dbremote) handles both sending and receiving
messages.

It carries out the following functions:

● Message Agent (dbremote) tasks when sending messages

○ It scans the transaction log at each publisher database and translates the transaction log entries into
messages for subscribers.

○ It sends the messages to subscribers.

○ When it receives a request to resend messages, the Message Agent (dbremote) resends the messages
to the database that made the request.

○ It maintains message information in the system tables, and manages the Guaranteed Message
Delivery System.

See “Sending message tasks” on page 99.

● Message Agent (dbremote) tasks when receiving messages

○ It processes incoming messages, and applies them in the proper order to the database.

○ It requests that missing messages be resent.

○ It maintains the message information in the system tables, and manages the Guaranteed Message
Delivery System.

See “Receiving message tasks” on page 94.

Connections
The Message Agent (dbremote) uses several connections to the database server. These are:

● One global connection This connection is active all the time the Message Agent (dbremote) is
running.

● One connection for scanning the transaction log This connection is active during the scan phase
only.

● One connection for executing commands from the transaction log-scanning thread This
connection is active during the scan phase only.

● One connection for processing synchronize subscription requests This connection is active
during the send phase only.

● One connection for each worker thread These connections are alive during the receive phase
only.

Choosing the Message Agent (dbremote) mode
The Message Agent (dbremote) can be run in one of two modes:

Understanding the Message Agent (dbremote)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 89

● Continuous mode In continuous mode, the Message Agent (dbremote) periodically sends messages,
at times specified by the send frequency properties of each remote user. When it is not sending messages,
it receives messages as they arrive.

Continuous mode is useful at consolidated databases, where messages may be coming in and going out
at any time, to spread out the workload and to ensure prompt replication.

See “Run the Message Agent (dbremote) in continuous mode” on page 90.

● Batch mode In batch mode, the Message Agent (dbremote) receives and processes incoming
messages, scans the transaction log once, creates and sends the outgoing messages, and then stops.

Batch mode is useful at occasionally-connected remote databases, where messages can only be
exchanged with the consolidated database when a connection is made, for example, when the remote
database dials up to the main network.

See “Run the Message Agent (dbremote) in batch mode” on page 92.

Message Agent (dbremote) requirements

SQL Remote is very flexible. Within a system, you can run the Message Agent (dbremote) in both modes,
on multiple devices, and on multiple operating systems. However, SQL Remote has the following
requirements:

● REMOTE DBA authority or DBA authority required The Message Agent (dbremote) must be run
by a user with REMOTE DBA authority or DBA authority. See “Grant REMOTE DBA
authority” on page 30.

● The maximum message length must be the same for each Message Agent (dbremote) in the
system This length can be restricted by operating system memory allocation limits. Received
messages that are longer than the limit are deleted as corrupt messages. The default value is 50000 bytes.
This length is configurable, using the Message Agent (dbremote) -l option. See “Message Agent
(dbremote)” on page 146.

Run the Message Agent (dbremote) in continuous mode
Typically, the consolidated database is run in continuous mode. For information about continuous mode and
its alternative, batch mode, see “Understanding the Message Agent (dbremote)” on page 89.

To run the Message Agent (dbremote) in continuous mode

1. Ensure that every user with REMOTE authority either has a SEND AT or SEND EVERY frequency
specified.

In continuous mode, the Message Agent (dbremote) sends messages at times specified by the SEND AT
or SEND EVERY frequency in the properties of each remote user. See “Setting the send
frequency” on page 91.

2. Start the Message Agent (dbremote) without the -b option.

SQL Remote Administration

90 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

On Windows, the Message Agent (dbremote) is named dbremote.exe. On Unix, the name is dbremote.
On Mac OS X, you can also use SyncConsole to start the Message Agent (dbremote). See “Run the
Message Agent (dbremote) on Mac OS X” on page 93 and “Run the Message Agent (dbremote) on
Unix” on page 93.

For example, the following statement runs dbremote in continuous mode on a database file named c:
\mydata.db, connecting with user name ManagerSteve and password sql:

dbremote -c "UID=ManagerSteve;PWD=sql;DBF=c:\mydata.db" -l 40000

The user name, ManagerSteve, must have either REMOTE DBA authority or DBA authority. The
maximum message length, as defined by the -l option, must be the same for all databases in the system.
See “Message Agent (dbremote) requirements” on page 90.

For a complete list of dbremote options you can specify, see “Message Agent
(dbremote)” on page 146.

Running the Message Agent (dbremote) as a service in continuous mode

When you run the Message Agent (dbremote) in continuous mode, you can choose to keep the Message
Agent (dbremote) running whenever the database server is running. You can do this by running the Message
Agent (dbremote) as a Windows service. A service can be configured to keep running even when the current
user logs out and to start when the operating system is started.

For a full description of running programs as services, see “Service utility (dbsvc) for Windows” [SQL
Anywhere Server - Database Administration].

Setting the send frequency
To run the Message Agent (dbremote) in continuous mode, for example on the consolidated database, you
must ensure that every REMOTE user either has a send frequency specified. In continuous mode, the
Message Agent (dbremote) sends messages at the times specified with the SEND AT or SEND EVERY
property.

The Message Agent (dbremote) supports the following send frequency values:

● SEND EVERY Specifies a length of time to wait between sending messages.

When any user with SEND EVERY set is sent messages, all users with the same frequency are sent
messages at the same time. For example, all remote users who receive updates every twelve hours are
sent updates at the same time, rather than being staggered. This reduces the number of times the SQL
Anywhere transaction log has to be processed. You should use as few unique frequencies as possible.

A send frequency can be specified in hours, minutes, and seconds in the format HH:MM:SS.

● SEND AT Specifies a time of day at which messages are sent.

Updates are sent daily at the specified time. You should use as few distinct times as possible rather than
staggering the send times. You should choose times when the database is not busy.

Understanding the Message Agent (dbremote)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 91

● Default setting (no SEND clause) If any user has no SEND AT or SEND EVERY clause specified,
the Message Agent (dbremote) runs in batch mode, sending messages every time it is run, and then
stopping. See “Run the Message Agent (dbremote) in batch mode” on page 92.

Sending messages too frequently
If you send messages frequently, there is a greater chance of small messages being sent. Sending messages
less frequently allows more instructions to be grouped in a single message. If a large number of small
messages is a concern for your message system, then you should avoid using very small send frequency
periods.

To set the send frequency (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, select the SQL Remote Users directory.

3. Right-click a user and choose Properties.

4. Click the SQL Remote tab.

5. Select either Send Every or Send Daily At and specify a time.

See also
● “GRANT REMOTE statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]

Run the Message Agent (dbremote) in batch mode
Use the following procedure to run SQL Remote in batch mode. For information about batch mode and its
alternative, continuous mode, see “Understanding the Message Agent (dbremote)” on page 89.

To run the Message Agent (dbremote) in batch mode

1. Ensure that at least one remote user has neither a SEND AT nor a SEND EVERY option in their remote
properties.

If all of your remote users have a SEND AT or a SEND EVERY clause defined, and you want to send
and receive messages and then shut down, you must start the Message Agent (dbremote) using the -b
option.

2. Start the Message Agent (dbremote).

On Windows, the Message Agent (dbremote) is named dbremote.exe. On Unix, the name is dbremote.
On Mac OS X, you can also use SyncConsole to start the Message Agent (dbremote). See “Run the
Message Agent (dbremote) on Mac OS X” on page 93 and “Run the Message Agent (dbremote) on
Unix” on page 93.

For example, the following statement runs dbremote in batch mode on a database file named c:
\mydata.db, connecting with user name ManagerSteve and password sql:

dbremote -c "UID=ManagerSteve;PWD=sql;DBF=c:\mydata.db"

SQL Remote Administration

92 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The Message Agent (dbremote) receives and processes incoming messages, scans the transaction log
once, creates and sends the outgoing messages, and then stops.

The username, ManagerSteve, must have either REMOTE DBA authority or DBA authority. The
maximum message length, as defined by the -l option, must be the same for all databases in the system.
See “Message Agent (dbremote) requirements” on page 90.

See also
● “Message Agent (dbremote)” on page 146

Run the Message Agent (dbremote) on Mac OS X
SQL Anywhere includes an application called SyncConsole that can be used to start the Message Agent
(dbremote) on Mac OS X. You can also start the Message Agent on Mac OS X using the dbremote utility.

To start SyncConsole

1. In the Finder, go to /Applications/SQLAnywhere11.

2. Double-click SyncConsole.

3. Choose File » New » SQL Remote.

A client options window appears.

4. Specify the connection information for the Message Agent (dbremote).

For example, the following connection parameter uses an ODBC data source for the SQL Anywhere
sample database:

DSN="SQL Anywhere 11 Demo"

The user name must have either REMOTE DBA authority or DBA authority. The message length, as
defined by the -l option, must be the same on all databases in the system. See “Message Agent (dbremote)
requirements” on page 90.

For a complete list of dbremote options you can specify in the Options field, see “Message Agent
(dbremote)” on page 146.

Run the Message Agent (dbremote) on Unix
On Unix platforms, you run the Message Agent (dbremote) as a daemon by supplying the -ud option. See -
ud option “Message Agent (dbremote)” on page 146.

The user name must have either REMOTE DBA authority or DBA authority. The maximum message length,
as defined by the -l option, must be the same on all databases in the system. See “Message Agent (dbremote)
requirements” on page 90.

For a complete list of dbremote options you can specify, see “Message Agent (dbremote)” on page 146.

Understanding the Message Agent (dbremote)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 93

Improving SQL Remote performance
Each time a row in a table is inserted, deleted, or updated, a message is created for those users subscribed
to the row. In addition, an update may cause the subscription expression to change, so that the statement is
sent to some subscribers as a delete, some as an update, and some as an insert.

The task of determining who gets what is divided between the database server and the Message Agent
(dbremote).

The database server
The database server handles publications. See “The database server handles publications” on page 35.

The Message Agent (dbremote)
The Message Agent (dbremote) handles subscriptions.

The Message Agent (dbremote) reads the evaluated subscription expressions or subscription column entries
from the transaction log, and matches the before and after values against the subscription value for each
subscriber to the publication. In this way, the Message Agent (dbremote) sends the correct operations to
each subscriber.

While a large number of subscribers do not have any effect on database server performance, they can affect
Message Agent (dbremote) performance. The work in matching subscription values against large numbers
of subscription values, and the work in sending the messages, can be demanding.

Receiving message tasks
The Message Agent (dbremote) performs the following tasks when it receives messages:

● Polling for incoming messages To check for new messages that have arrived at a database, the
Message Agent (dbremote) polls for new messages. See “Adjusting the polling interval to check for new
messages” on page 95.

● Reading the messages When messages arrive, they are read and stored in cache memory by the
Message Agent (dbremote) until they can be applied. See “Adjusting throughput by caching
messages” on page 96.

If a message is missing and the Message Agent (dbremote) is running in continuous mode, then the
Message Agent (dbremote) waits for the message to arrive in a subsequent poll. The number of polls
that Message Agent (dbremote) waits is referred to as its patience, and is specified by the -rp option.

○ If the missing message arrives before the Message Agent (dbremote) patience expires, then the
missing message is added, in the correct order, to the cache.

○ If the missing message does not arrive and the Message Agent (dbremote) patience expires, then the
Message Agent (dbremote) sends a request to re-send the message from the publisher database.

Messages continue to be read and added to the cache until the cache memory usage is exceeded. When
the cache memory usage specified using the -m option is exceeded, messages are deleted.

See “Adjusting the requests to resend messages” on page 97.

SQL Remote Administration

94 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● Applying the messages The Message Agent (dbremote) applies the messages, in the correct order,
to the subscriber database. See “Adjusting the number of worker threads” on page 98.

● Waiting for confirmation that the messages are applied on the subscriber databases Once
the message has been received and applied at the subscribed database, confirmation is sent back to the
publisher. When the publisher Message Agent (dbremote) receives the confirmation, it keeps track of
the confirmation in a system table. See “Understanding the Guaranteed Message Delivery
System” on page 103.

Improving performance when receiving messages
The major bottleneck for total throughput in a SQL Remote system is generally receiving messages from
many remote databases and applying them to the database. To reduce this lag time, when running a Message
Agent (dbremote) in continuous mode, you can adjust the following variables:

● How often the Message Agent (dbremote) checks for incoming messages. See “Adjusting the polling
interval to check for new messages” on page 95.

● How much memory is used by the Message Agent (dbremote) for holding messages to be sent. See
“Adjusting throughput by caching messages” on page 96.

● How long the Message Agent (dbremote) waits for an out-of-order message to arrive before requesting
that the message be resent. See “Adjusting the requests to resend messages” on page 97.

● How many worker threads are used to process the received messages. See “Adjusting the number of
worker threads” on page 98.

Adjusting the polling interval to check for new messages
To check for new messages that have arrived at a database, the Message Agent (dbremote) polls for new
messages. The default polling interval from the end of one poll to the start of another is 1 minute. You can
configure the polling interval using the -rd option, but the default is generally sufficient.

Decreasing the polling interval
You can poll more frequently by using a value in seconds. For example, the following command polls every
thirty seconds:

dbremote -c "DSN=SQL Anywhere 11 Demo" -rd 30s

In general, do not use a small polling interval unless you have a specific reason for requiring a very quick
response time for messages. Setting a very small interval can have a detrimental effect on overall system
throughput because:

● You can waste resources polling when no messages are in the queue. For example, if you are using email,
each poll of the mail server places a load on your message system. Too frequent polling may affect your
message system and produce no benefits.

● You can overload your system with resend requests. When adjusting the polling interval, you should
also adjust the Message Agent (dbremote) patience. The patience is the number of polls the Message

Improving SQL Remote performance

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 95

Agent (dbremote) waits for an out-of-sequence message to arrive before requesting that it be sent again.
See “Adjusting the requests to resend messages” on page 97.

Increasing the polling interval
You can poll less frequently, as in the following command, which polls every five minutes:

dbremote -c "DSN=SQL Anywhere 11 Demo" -rd 5

Setting larger polling intervals can provide a better overall throughput of messages in your system, it can
increase the time it takes to apply an individual messages. For example, if your polling period for incoming
messages is too long, compared to the frequency with which messages are arriving, you can end up with
messages sitting in the queue, waiting to be processed.

See also
● “Improving performance when receiving messages” on page 95
● “Adjusting throughput by caching messages” on page 96
● “Adjusting the requests to resend messages” on page 97
● “Adjusting the number of worker threads” on page 98
● “Improving performance when sending messages” on page 100

Adjusting throughput by caching messages
When messages arrive, the Message Agent (dbremote) reads the messages and then stores them in cache
memory until they are applied. This caching of messages prevents:

● Rereading of out-of-order messages from the message system, which may lower performance on large
systems. Caching of messages is useful when messages are being read over a WAN (such as Remote
Access Services or POP3 through a modem).

● Contention between database worker threads reading messages (a single threaded task) because the
message contents are cached.

How messages are cached
Messages are stored in memory until they are applied by the Message Agent (dbremote) when one of the
following conditions occurs:

● The transactions are so large that they require multi-part messages.

● The messages arrive out of order.

Specifying the message cache size
Use the Message Agent (dbremote) -m option to specify the size of the message cache. The -m option
specifies the maximum amount of memory to be used by the Message Agent (dbremote) for holding
messages. The allowed size can be specified as n (in bytes), nK, or nM. The default is 2048K (2M). When
the specified cache memory usage is exceeded, messages are deleted.

The -m option is useful when you have a single consolidated database and a large number of remote databases.
See the -m option in “Message Agent (dbremote)” on page 146.

SQL Remote Administration

96 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Example
The following command starts a Message Agent (dbremote) using 12 MB of memory as a message cache:

dbremote -c "DSN=SQL Anywhere 11 Demo" -m 12M

See also
● “Improving performance when receiving messages” on page 95
● “Adjusting the polling interval to check for new messages” on page 95
● “Adjusting the requests to resend messages” on page 97
● “Adjusting the number of worker threads” on page 98
● “Improving performance when sending messages” on page 100

Adjusting the requests to resend messages
When a message is missing from a sequence, the Message Agent (dbremote) waits a specified number of
polls before requesting that the missing message be resent. The number of polls that the Message Agent
(dbremote) waits is referred to as its patience. By default, the Message Agent (dbremote) has a patience of
1.

If the Message Agent (dbremote) has a patience of 1 and it expects to receive message 6 but it receives
message 7, the Message Agent (dbremote) takes no action. Instead, the Message Agent (dbremote) waits for
the results of the next poll. If after the next poll, Message 6 is still missing, then the Message Agent (dbremote)
issues a resend request for Message 6.

Increasing the resend patience
Suppose you have a very small polling interval, and a message system that does not preserve the order in
which messages arrive. It may be common for out-of-sequence messages to arrive after two or three polls
have been completed. In this example, it is recommended that you use the -rp option to increase the Message
Agent (dbremote) patience so that a large number of unnecessary resend requests are not sent. The -rp option
is often used in conjunction with the -rd option that sets the polling interval. See “Adjusting the polling
interval to check for new messages” on page 95.

Example
There are two remote users, named user1 and user2, both of which run the Message Agent (dbremote) with
a polling interval of 30 seconds and a patience of 3 polls. For example, they use the following command to
run their Message Agents (dbremote):

dbremote -c "DSN=SQL Anywhere 11 Demo" -rd 30s -rp 3

In the following sequence of operations, messages are marked as userX.n where X is the user name and n is
the message number. For example, user1.5 is the fifth message from user1. The Message Agent (dbremote)
expects messages to start at number 1 for both users.

At time 0 seconds:

1. The Message Agent (dbremote) reads user1.1, user2.4

2. The Message Agent (dbremote) applies user1.1

Improving SQL Remote performance

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 97

3. The Message Agent (dbremote) patience is now user1: N/A, user2: 3, as an out of sequence message has
arrived from user 2

At time 30 seconds:

1. The Message Agent (dbremote) reads: no new messages

2. The Message Agent (dbremote) applies: nothing

3. The Message Agent (dbremote) patience is now user1: N/A, user2: 2

At time 60 seconds:

1. The Message Agent (dbremote) reads: user1.3

2. The Message Agent (dbremote) applies: no new messages

3. The Message Agent (dbremote) patience: user1: 3, user2: 1

At time 90 seconds:

1. The Message Agent (dbremote) reads: user1.4

2. The Message Agent (dbremote) applies: none

3. The Message Agent (dbremote) patience user1: 3, user2: 0

4. The Message Agent (dbremote) issues resend to user2

When a user receives a new message, it resets the Message Agent (dbremote) patience even if that message
is not the one expected.

At time 120 seconds:

1. The Message Agent (dbremote) reads: user1.2 and user2.2

2. The Message Agent (dbremote) applies user1.2, user1.3, user1.4, and user2.2

3. The Message Agent (dbremote) patience user1: N/A, user2: N/A

See also
● “Improving performance when receiving messages” on page 95
● “Adjusting the polling interval to check for new messages” on page 95
● “Adjusting throughput by caching messages” on page 96
● “Adjusting the number of worker threads” on page 98
● “Improving performance when sending messages” on page 100

Adjusting the number of worker threads
The following steps describe how the Message Agent (dbremote) applies incoming messages:

1. It reads the messages. Messages are read and the header information is examined (to determine the correct
order of application). Reading messages from the message system is single-threaded.

SQL Remote Administration

98 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

2. It applies the messages. Read messages are passed off to database worker threads to be applied.

On remote databases, the messages are usually applied serially. In a multi-tier system, a remote database
can also be a consolidated database for other remotes. On this type of a remote database, the messages
are applied as on a consolidated database.

On the consolidated database, the default is to apply the messages serially. You can use additional
database worker threads to apply incoming messages from remote users in parallel. See the -w option in
“Message Agent (dbremote)” on page 146.

When database worker threads are used on a consolidated database:

● Messages from different remote users are applied in parallel.

● Messages from a single remote user are applied serially.

For example, ten messages from a single remote user are applied by a single worker thread in the
correct order.

Advantages of using database worker threads
Using database worker threads on the consolidated database can improve throughput by allowing messages
to be applied in parallel rather than serially. The performance advantage is significant when the database
server is on a system with a striped drive array.

Disadvantages of using database worker threads
Using database worker threads on the consolidated database, can decrease throughput if they cause a lot of
locking between users.

A deadlock is handled by re-applying the rolled-back transaction later.

To set the number of database worker threads

● On the consolidated database, use the -w option to set the number of database worker threads.

For example, the following command sets the number of worker threads to 5:

dbremote -c "DSN=SQL Anywhere 11 Demo" -w 5

See also
● “Run the Message Agent (dbremote) in continuous mode” on page 90
● “Improving performance when receiving messages” on page 95
● “Adjusting the polling interval to check for new messages” on page 95
● “Adjusting throughput by caching messages” on page 96
● “Adjusting the requests to resend messages” on page 97
● “Improving performance when sending messages” on page 100

Sending message tasks
The Message Agent (dbremote) performs the following tasks to send messages:

Improving SQL Remote performance

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 99

● Scanning the publisher transaction log The Message Agent (dbremote) scans the transaction log
of the publisher database and translates the transaction log entries into messages for subscribers. The
maximum message length, as defined by the -l option, must be the same on all databases in the system.

For large transactions, the Message Agent (dbremote) creates multi-part messages. These messages each
contain a sequence number that keeps track of their place in the transaction. The Message Agent
(dbremote) on the subscriber database uses the sequence number to ensure that the messages are applied
in the correct order and that no message is lost.

● Sending messages to the remote databases The Message Agent (dbremote) sends messages at
times specified by the send frequency properties of each remote user. See “Adjusting the send
delay” on page 100.

The Message Agent (dbremote) sends messages earlier if its cache memory exceeds the set value. The
Message Agent (dbremote) stores its messages in cache memory. When the cache memory being used
exceeds the specified value, messages are sent. See “Adjusting throughput by caching
messages” on page 101.

● Processing resend requests from remote databases When a user requests that a message be
resent, the Message Agent (dbremote) on the publisher database interrupts the regular message sending
process to process the resend request.

You control the urgency with which these resend requests are processed with the -ru option. See
“Adjusting how quickly resent requests are processed” on page 102.

● Sending confirmations to the publisher database Once a message has been received and applied
at the subscribed database, confirmation is sent back to the publisher. See “Understanding the Guaranteed
Message Delivery System” on page 103.

Improving performance when sending messages
The major performance issue for sending messages is the turnaround time between when the data is entered
at one site to when it appears at other sites. To reduce this lag time, when sending messages with the Message
Agent (dbremote), you can adjust the following variables:

● How often messages are sent to remote databases. See “Adjusting the send delay” on page 100.

● The size of the messages. See “Improving performance when receiving messages” on page 95.

● How quickly resend requests are processed. See “Adjusting how quickly resent requests are
processed” on page 102.

Adjusting the send delay
To create messages to send, the Message Agent (dbremote) polls for new data from the transaction log. The
send delay is the time to wait between polls for more transaction log data to send. The default polling interval
from the end of one poll to the start of another is 1 minute. You can configure the send delay using the -sd
option, but the default is generally sufficient. The send delay should be less than or equal to the remote users'
send frequency.

SQL Remote Administration

100 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Decreasing the send delay
You can poll more frequently by using a value in seconds. For example, the following command polls every
thirty seconds:

dbremote -c "DSN=SQL Anywhere 11 Demo" -sd 30s ...

Increasing the send delay
You can poll less frequently, as in the following command, which polls every 60 minutes:

dbremote -c "DSN=SQL Anywhere 11 Demo" -sd 60

Setting larger intervals usually requires the Message Agent (dbremote) to do a majority of the message
creation work before it sends the messages. Smaller intervals are generally preferred as they spread out the
message creation work.

See “Message Agent (dbremote)” on page 146.

See also
● “Adjusting throughput by caching messages” on page 101
● “Adjusting how quickly resent requests are processed” on page 102

Adjusting throughput by caching messages
The Message Agent (dbremote) caches messages to be sent in a configurable area of memory.

When all remote databases are receiving unique subsets of the operations being replicated, a separate message
for each remote database is built up concurrently. Only one message is built for a group of remote users that
is receiving the same operations. Messages are sent when:

● The send frequency is reached.

● When the cache memory being used exceeds the -m value.

● When the size of the message reaches its maximum size (as specified by the -l option).

Specifying the message cache size
The size of the message cache is specified on the Message Agent (dbremote) command, using the -m option.

The -m option specifies the maximum amount of memory to be used by the Message Agent (dbremote) for
building messages. The allowed size can be specified as n (in bytes), nK, or nM. The default is 2048K (2M).

The -m option is useful when you have a single consolidated database and a large number of remote databases.
See the -m option “Message Agent (dbremote)” on page 146.

Example
The following command starts a Message Agent (dbremote) using 12 MB of memory as a message cache:

dbremote -c "DSN=SQL Anywhere 11 Demo" -m 12M

Improving SQL Remote performance

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 101

See also
● “Adjusting the send delay” on page 100
● “Adjusting how quickly resent requests are processed” on page 102

Adjusting how quickly resent requests are processed
Because resending a message interrupts the regular message sending process, the Message Agent (dbremote)
delays processing resend requests. By default, the Message Agent (dbremote) waits for a time that is half of
the send frequency of the remote user who requested the resend.

To resend a message, the Message Agent (dbremote) does the following tasks:

● It stops scanning the transaction log and stops building new messages.

● It deletes the current messages that are stored in its cache waiting to be sent. All of the work that the
Message Agent (dbremote) did in reading the transaction log and building those messages is lost.

● It re-reads the transaction log from the offset requested in the resend request. The Message Agent
(dbremote) builds the messages and stores them in its cache.

● It waits until the next send frequency time occurs and then sends the messages.

You must balance the urgency of sending requests for resent messages with the priority of processing regular
messages.

The -ru option controls the urgency of the resend requests. To delay processing resend requests until more
have arrived, set this option to a longer time. For example, the following command waits one hour before
processing a resend request:

dbremote -c "DSN=SQL Anywhere 11 Demo" -ru 1h

See “Message Agent (dbremote)” on page 146.

See also
● “Adjusting the send delay” on page 100
● “Adjusting throughput by caching messages” on page 101
● “Adjusting the requests to resend messages” on page 97

SQL Remote Administration

102 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Understanding the Guaranteed Message Delivery
System

The Guaranteed Message Delivery System ensures that:

● All replicated operations are applied in the correct order. See “Ensuring that operations are applied in
the correct order” on page 104.

● No replicated operations are missed. See “Resending lost or corrupt messages” on page 106.

● No replicated operation is applied twice. See “Ensuring that messages are applied only
once” on page 106.

The Guaranteed Message Delivery System uses the following information:

● The status information maintained in the SYSREMOTEUSER system table This table contains
a row for each subscriber, with status information for messages sent to and received by that subscriber.
For example:

○ On the consolidated database, the SYSREMOTEUSER system table contains a row for each remote
user.

○ On each remote database, the SYSREMOTEUSER system table contains a single row with
information about the consolidated database.

The SYSREMOTEUSER system table is maintained by the Message Agent (dbremote).

On the subscriber database, the Message Agent (dbremote) sends a confirmation to the publisher database
to ensure that the SYSREMOTEUSER system table is maintained correctly at each end of the
subscription.

See “ISYSREMOTEUSER system table” [SQL Anywhere Server - SQL Reference].

● The information in the header of the messages The Message Agent (dbremote) reads the header
information in the messages and uses this information to update the SYSREMOTEUSER system table.
A message includes the following information in its header:

○ Its resend_count A counter that keeps track of the number of times the receiving database has
lost messages.

In the following example, the resend_count is 1.

Current message's header: (1-0000942712-0001119170-0)
○ The transaction log offset of the last COMMIT in the previous message In the following

example, the transaction log offset of the last commit in the previous message is 0000942712.

Previous message's header:(0-0000923357-0000942712-0)
Current message's header: (0-0000942712-0001119170-0)

○ The transaction log offset of the last COMMIT in the current message In the following
example, the last commit in the current message is 0001119170:

Current message's header: (0-0000942712-0001119170-0)

Understanding the Guaranteed Message Delivery System

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 103

If a transaction spans several messages, both transaction log offsets can be identical until the final
message contains a COMMIT.

In the following example, the COMMIT does not occur until the fourth message:

(0-0000942712-0000942712-0)
(0-0000942712-0000942712-1)
(0-0000942712-0000942712-2)
(0-0000942712-0001119170-3)

○ A sequence number When a transaction spans several messages, this sequence number is used
to order the messages correctly.

A sequence number of zero can indicate that:

● The message is not part of a multi-part message if the transaction log offsets are different.

In the following example, the messages are not part of a multi-part message:

(0-0000923200-0000923357-0)
(0-0000923357-0000942712-0)

● The message is the first of a multi-part message if the transaction log offsets are the same.

In the following example, the first message is part of a multi-part message:

(0-0000942712-0000942712-0)
(0-0000942712-0000942712-1)
(0-0000942712-0000942712-2)
(0-0000942712-0001119170-3)

Ensuring that operations are applied in the correct order
To ensure that the replicated statements are applied in the correct order, the Guaranteed Message Delivery
System uses the transaction log offsets of the publisher and subscriber databases. Each COMMIT is marked
in the transaction log by a well-defined offset. The order of transactions can be determined by comparing
their transaction log offset values.

Each message includes the following transaction log offsets:

● The transaction log offset of the last COMMIT in the previous message. If a transaction spans several
messages, there is a sequence number within the transaction to order the messages correctly. “Ensuring
that operations are applied in the correct order” on page 104.

● The transaction log offset of the last COMMIT in the message.

Message ordering
When messages are sent, they are ordered by the offset of the last COMMIT of the preceding message. If a
transaction spans several messages, a sequence number within the transaction is used to order the messages
correctly.

SQL Remote Administration

104 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Sending messages

The log_sent column in the SYSREMOTEUSER system table holds the local transaction log offset for the
last message sent to the subscriber.

The following describes how the SYSREMOTEUSER system tables are updated when messages are sent.

1. When the publisher Message Agent (dbremote) sends a message to a subscriber, it also sets the log_sent
value to the transaction log offset value of the last COMMIT in the sent message.

For example, the publisher sends the following message to user1.

(0-0000923200-0000923357-0)

In the publisher's SYSREMOTEUSER system table, the publisher sets the log_sent value to 0000923357
for user1.

2. When the message is received and applied at the subscriber database, a confirmation is sent to the
publisher. The confirmation includes the last transaction log offset that was applied by the subscriber
database.

For example, the message confirms that user1 applied all of the transactions up to and including the
transaction log offset 0000923357.

3. When the publisher Message Agent (dbremote) receives the confirmation, it sets the confirm_sent
column to the value of the confirmation offset for the user in the SYSREMOTEUSER system table.

For example, the publisher sets the confirm_sent column to 0000923357 for user1 in the publisher's
SYSREMOTEUSER system table.

Both the log_sent and confirm_sent values contain transaction log offsets of the publisher's transaction log.
The confirm_sent value cannot be a later offset than log_sent value.

Receiving messages

The following describes how the SYSREMOTEUSER system tables are updated when messages are
received.

1. When the Message Agent (dbremote) at a subscriber database receives and applies a replication update,
it updates the log_received column in the SYSREMOTEUSER system table with the offset of the last
COMMIT in the message.

For example, when the subscriber receives and applies the following message, the log_received value
in the SYSREMOTEUSER system table is set to 0000923357.

(0-0000923200-0000923357-0)

The log_received column at any subscriber database contains a transaction log offset that exists in the
publisher database transaction log.

2. When the operations are received and applied, the subscriber Message Agent (dbremote) sets the
confirm_received value in its SYSREMOTEUSER system table, and then sends confirmation to the
publisher database.

Understanding the Guaranteed Message Delivery System

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 105

See also
● “Resending lost or corrupt messages” on page 106
● “Ensuring that messages are applied only once” on page 106

Resending lost or corrupt messages
The SYSREMOTEUSER system table contains two columns that manage resending messages:

● resend_count column A counter that keeps track of the number of times that the subscriber database
has lost messages.

● rereceive_count column A counter that keeps track of the number of times the Message Agent
(dbremote) has determined that messages from a publisher user have been lost.

When messages are received in the proper order at a subscriber database:

1. The subscriber Message Agent (dbremote) applies the messages in the correct order and updates its
SYSREMOTEUSER system table.

2. The subscriber Message Agent (dbremote) sends a confirmation message to the publisher.

3. When the publisher receives the confirmation, its Message Agent (dbremote) updates its
SYSREMOTEUSER system table.

When messages are not received in the proper order:

1. The subscriber Message Agent (dbremote) sends a resend request and increments the rereceive_count
value in its SYSREMOTEUSER system table.

2. When the publisher receives the resend request, it increments the resend_count value in its
SYSREMOTEUSER system table for the subscriber.

3. In the publisher's SYSREMOTEUSER system table, the log_sent value is set to the value in the
confirm_sent column. Resetting of the log_sent value causes operations to be resent.

See also
● “Ensuring that operations are applied in the correct order” on page 104
● “Ensuring that messages are applied only once” on page 106

Ensuring that messages are applied only once
The subscriber Message Agent (dbremote) compares the resend_count value in a messages header with the
rereceive_count in its local SYSREMOTEUSER system table. If the resend_count value is smaller than
rereceive_count, the message is not applied; it is deleted. This behavior ensures that operations are not applied
more than once.

SQL Remote Administration

106 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Ensuring that operations are applied in the correct order” on page 104
● “Resending lost or corrupt messages” on page 106

Understanding the Guaranteed Message Delivery System

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 107

Controlling message size
The following section discusses the message encoding and compression scheme in Message Agent
(dbremote).

The Message Agent provides the following encoding and compression features:

● Compatibility The system can be set to be compatible with previous versions of SQL Anywhere. See
“Upgrading SQL Remote” [SQL Anywhere 11 - Changes and Upgrading].

● Compression You can select a level of compression for your messages.

Message size affects the efficiency with which messages pass through a system. Compressed messages
can be processed more efficiently by a message system than uncompressed messages. However,
compression can take a significant amount of time. See “compression option [SQL Remote]” [SQL
Anywhere Server - Database Administration].

● Encoding SQL Remote encodes messages to ensure that they pass through message systems
uncorrupted. The encoding scheme can be customized to provide extra features. See “Encoding:
Preventing message corruption” on page 108.

For information about SQL Remote requirements for the maximum message length, see “Message Agent
(dbremote) requirements” on page 90.

Encoding: Preventing message corruption
SQL Remote encodes messages to ensure that they pass through message systems uncorrupted. The default
message-encoding behavior of SQL Remote is as follows:

● If the message system can use binary message formats, the messages are not encoded.

● If the message system, for example SMTP, requires text-based message formats, then an encoding DLL
(dbencod.dll) translates the messages into a text format before sending. The message format is unencoded
at the receiving end using the same DLL.

You can customize the encoding scheme to provide extra features. See “Creating custom encoding
schemes” on page 108.

● If the compression database option is set to -1, then a version 5 compatible encoding is used for all
message systems. See “Upgrading SQL Remote” [SQL Anywhere 11 - Changes and Upgrading].

Creating custom encoding schemes
To implement a custom encoding scheme, you can build a custom encoding DLL. You can use this custom
DLL to apply special features required for a particular messages system, or to collect statistics, such as how
many messages are sent to each user.

The header file dbrmt.h is installed in the install-dir directory. This file includes an application programming
interface that you can use to build a custom encoding scheme.

SQL Remote Administration

108 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To use your custom DLL, set the message control parameter encode_dll to a value that is the full path to the
custom DLL. For example:

SET REMOTE FTP OPTION "Public"."encode_dll" = 'c:\\sany11\\Bin32\\custom.dll';

Encoding and decoding must be compatible
If you implement a custom encoding, you must make sure that the DLL is present at the receiving end, and
that the DLL is in place to decode your messages properly.

See also
● “SET REMOTE OPTION statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]

Controlling message size

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 109

SQL Remote message systems
SQL Remote exchanges data among databases using one or more underlying message systems. SQL Remote
supports the following message systems:

● File sharing A simple system requiring no extra software. See “The FILE message
system” on page 114.

● FTP Internet file transfer protocol. See “The FTP message system” on page 115.

● SMTP/POP Internet email protocol. See “The SMTP message system” on page 117.

You choose a message system when you assign REMOTE or CONSOLIDATE permission to a user. See
“Grant REMOTE permission” on page 26 and “Grant CONSOLIDATE permission” on page 28.

Each message system that is used in a SQL Remote system has control parameters and other settings that
must be set up.

Not all message systems are supported on all operating systems. For a complete list of supported operating
systems, see “Supported platforms” [SQL Anywhere 11 - Introduction].

Setting up a message system

Before you can use a message system, you must set the publisher's address.

Each message type definition includes the message system type name (FILE, FTP, or SMTP) and the
address of the publisher under that message type.

The address supplied with a message type definition is closely tied to the publisher ID of the database.

Extraction utility (dbxtract)
The publisher address at a consolidated database is used by the Extraction utility (dbxtract) and the Extract
Database Wizard as a return address when creating remote databases. It is also used by the Message Agent
(dbremote) to identify the location of incoming messages for the FILE system.

See also
● “The FILE message system” on page 114
● “The FTP message system” on page 115
● “The SMTP message system” on page 117

Create message types

To add a message type (Sybase Central)

1. Connect to a database as a user with DBA authority.

2. In the left pane, expand the SQL Remote Users directory.

3. In the right pane, click the Message Types tab.

SQL Remote Administration

110 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

4. Choose File » New » Message Type.

5. In the What Do You Want To Name The New Message Type field, type a name for the message type.
The name should correspond to a message-type DLL already installed in your SQL Anywhere installation
directory. Click Next.

6. In the What Is The Publisher Address field, type a publisher address. Click Finish.

To create a message type (SQL)

1. Verify that you have created an address for the publisher under the message type.

2. Execute a CREATE REMOTE MESSAGE TYPE statement.

CREATE REMOTE MESSAGE TYPE message-type ADDRESS publisher-address

For example:

CREATE REMOTE MESSAGE TYPE FILE
ADDRESS 'company';

Create a remote message type on Windows Mobile
If you have Windows Mobile services installed, you can set up SQL Remote for ActiveSync synchronization
from Sybase Central. This option sets your directory for FILE message link messages to be the ActiveSync
directory. When you dock your Windows Mobile device to your desktop computer, ActiveSync keeps the
files in your desktop computer's ActiveSync directory synchronized with those in the Windows Mobile
ActiveSync directory.

To set up SQL Remote ActiveSync synchronization

1. Connect to a database as a user with DBA authority.

2. From Tools, choose SQL Anywhere 11 » Edit Windows Mobile Message Type.

See also
● “CREATE REMOTE MESSAGE TYPE statement [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “Alter message types” on page 111
● “Delete message types” on page 112

Alter message types
To change address of a publisher, alter its message type. You cannot change the name of an existing message
type; instead, you must delete it and create a new message type with the new name.

To alter a remote message type (Sybase Central)

1. Connect to a database as a user with DBA authority.

2. In the left pane, expand the SQL Remote Users directory for a database.

SQL Remote message systems

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 111

3. In the right pane, click the Message Types tab.

4. In the right pane, right-click the message type you want to alter and choose Properties.

5. Update the message type properties and click OK.

To alter a remote message type (SQL)

1. Connect to a database as a user with DBA authority.

2. Make sure you have decided on a new address for the publisher under the message type.

3. Execute an ALTER REMOTE MESSAGE TYPE statement.

See also
● “ALTER REMOTE MESSAGE TYPE statement [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “Create message types” on page 110
● “Delete message types” on page 112

Delete message types
Deleting a message type removes the publisher address from the definition.

To delete a message type (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, expand the SQL Remote Users directory for a database.

3. In the right pane, click the Message Types tab.

4. In the right pane, right-click the message type you want to remove and choose Delete.

5. Click Yes.

To delete a message type (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a DROP REMOTE MESSAGE TYPE statement.

See also
● “DROP REMOTE MESSAGE TYPE statement [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “Create message types” on page 110
● “Alter message types” on page 111

SQL Remote Administration

112 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Set remote message type control parameters
The message control parameters are held in the database. Use the following procedure to set the control
parameter.

To set a message control parameter (SQL)

● Execute a SET REMOTE OPTION statement.

For example, the following statement sets the FTP host to ftp.mycompany.com for the FTP link for user
myuser:

SET REMOTE FTP OPTION myuser.host = 'ftp.mycompany.com';

See “SET REMOTE OPTION statement [SQL Remote]” [SQL Anywhere Server - SQL Reference].

To view the message link parameters (SQL)

● Query the SYSREMOTEOPTION system view.

For example:

SELECT * from SYSREMOTEOPTION;

See “SYSREMOTEOPTION system view” [SQL Anywhere Server - SQL Reference].

Message link parameters stored on disk
Earlier versions of SQL Remote stored the message link parameters outside the database. The external storage
of message link parameters is not recommended.

The message link control parameters are stored in the following locations:

● Windows In the registry, at the following location:

\\HKEY_CURRENT_USER
 \Software
 \Sybase
 \SQL Remote

The parameters for each message link are stored in a key under the SQL Remote key, with the name of
the message link (4, SMTP, for example).

● Unix The FILE system directory setting is stored in the SQLREMOTE environment variable.

The SQL Remote environment variable stores a path that can be used as an alternative to one of the control
parameters for the FILE messaging system.

When the Message Agent (dbremote) loads a message link, the link uses the setting of the current publisher
or, if a setting is not specified, of groups to which the publisher belongs.

On Windows, when the Message Agent (dbremote) that supports storing the message link parameters in the
database is run for the first time, it copies the link options from the registry to the database.

SQL Remote message systems

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 113

See also
● “SET REMOTE OPTION statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]

The FILE message system
SQL Remote can be used even if you do not have an email or FTP system in place, by using the FILE message
system.

Addresses in the FILE message system
The FILE message system is a simple FILE-sharing system. A FILE address for a remote user is a
subdirectory into which all their messages are written. To retrieve messages, an application reads the
messages from the directory containing the user's files. Return messages are sent to the address (written to
the directory) of the consolidated database.

When running as a Windows service, the account under which the Message Agent (dbremote) is running
must have permissions to read from and write to all necessary directories. If the correct permissions are not
assigned, the Message Agent is unable to access network drives.

Root directory for addresses
Typically, the FILE message system addresses are subdirectories of a shared directory that is available to
all SQL Remote users, whether by modem or a local area network. Each user should have a registry entry,
initialization file entry, or SQLREMOTE environment variable pointing to the shared directory.

You can also use the FILE system to put the messages in directories on the consolidated and remote
computers. You can use a simple file transfer mechanism to exchange files and complete replication.

FILE message control parameters

The FILE message system uses the following control parameters:

● Directory The directory under which the messages are stored. The setting is an alternative to the
SQLREMOTE environment variable.

● Debug The setting for this parameter is either YES or NO. The default is NO. When set to YES, all
FILE system calls made by the FILE link are displayed.

● Encode_dll If you are using a custom encoding scheme, you must set this parameter to the full path
of the custom encoding DLL that you created. See “Controlling message size” on page 108.

● invalid_extensions A comma-separated list of file extensions that you do not want the Message
Agent (dbremote) to use when generating files in the messaging system.

● Unlink_delay The number of seconds to wait before attempting to delete a file if the previous attempt
to delete the file failed. If no value is defined for unlink_delay, then the default behavior is set to pause
for 1 second after the first failed attempt, 2 seconds after the second failed attempt, 3 seconds after the
third failed attempt, and 4 seconds after the fourth failed attempt.

SQL Remote Administration

114 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Windows Mobile and ActiveSync
The Message Agent (dbremote) searches in C:\My Documents\Synchronized Files for the FILE link. On the
consolidated database computer, the SQLREMOTE environment variable or directory message link
parameter for the FILE link should be set to the following directory where userid and Windows-mobile-
device-name are set to the appropriate values:

%SystemRoot%\Profiles\userid\Personal\Windows-mobile-device-name
\Synchronized Files

With this system, ActiveSync automatically synchronizes the message files between the consolidated
database computer and the Windows Mobile device.

To verify that FILE synchronization is activated, check Mobile Devices » Tools » ActiveSync Options.

For information on setting message link parameters, see “The FILE message system” on page 114.

See also
● “The FTP message system” on page 115

The FTP message system
In the FTP message system, messages are stored in directories under a root directory on an FTP host. The
FTP host and the root directory are specified by message system control parameters held in the registry or
initialization file, and the address of each user is the subdirectory where their messages are held.

For a list of operating systems for which FTP is supported, see “Supported platforms” [SQL Anywhere 11 -
Introduction].

FTP message control parameters
The FTP message system uses the following control parameters:

● host The host name of the computer where the FTP server is running. This parameter can be a host
name (such as FTP.ianywhere.com) or an IP address (such as 192.138.151.66).

● user The user name for accessing the FTP host.

● password The password for accessing the FTP host.

● root_directory The root directory within the FTP host site, under which the messages are stored.

● port The IP port number used for the FTP connection. This parameter is usually not required.

● debug This parameter is set either to YES or NO. The default is NO. When set to YES, debugging
output is displayed.

● active_mode This parameter is set either to YES or NO. The default is NO (passive mode).

● reconnect_retries The number of times the link should try to open a socket with the server before
failing. The default value is 4. When you set this parameter, only reconnections are affected. The initial
connection made by the FTP link is not affected.

SQL Remote message systems

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 115

● reconnect_pause The time in seconds to pause between each connection attempt. The default setting
is 30 seconds. When you set this parameter, only reconnections are affected. The initial connection made
by the FTP link is not affected.

● suppress_dialogs This parameter is set to TRUE or FALSE. If set to TRUE, the Connect window
does not appear after failed attempts to connect to the FTP server. Instead, an error is generated.

● invalid_extensions A comma-separated list of file extensions that you do not want dbremote to use
when generating files in the messaging system.

● encode_dll If you have implemented a custom encoding scheme, you must set this parameter to the
full path of the custom encoding DLL that you created.

See also
● “Controlling message size” on page 108

Troubleshooting FTP problems
Most problems with the FTP message link are caused by network system issues. This section provides a list
of tests you can use to troubleshoot problems.

● Set the DEBUG message control parameter Review the debug output to determine whether you
are connecting to the FTP server. If you are connecting, the debug output should indicate which FTP
commands are failing.

● Ping the FTP server If the FTP link is not able to connect to the FTP server, test your system network
configuration. For example, run the following command:

ping FTP-server-name

The IP address of the FTP server and the ping (round trip) time to the FTP server should be returned. If
you cannot ping the FTP server, then you have a network configuration problem, and you should contact
you network administrator.

● Check that passive mode works If the FTP link is connecting to the FTP server, but is unable to
open a data connection, make sure that an FTP client can use passive mode to transfer data with the
server.

Passive mode is the preferred transfer mode and the default for the FTP message link. In passive mode,
all data transfer connections are initiated by the client, in this case, the message link. In active mode, the
FTP server initiates all data connections. If your FTP server is behind an incorrectly configured firewall,
you may not be able to use the default passive transfer mode because the firewall blocks socket
connections to the FTP server on ports other than the FTP control port.

Using an FTP user program that allows you to set the transfer mode between active and passive, set the
transfer mode to passive and try to upload or download a file. If the client you are using cannot transfer
the file without using active mode then you should reconfigure the firewall and FTP server to allow
passive mode transfers or set the active_mode message control parameter to YES. Active mode transfers
may not work in all network configurations. For example, if your client is behind an IP masquerading
gateway incoming connections may fail depending on your gateway software.

SQL Remote Administration

116 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● Check permissions and directory structures If the FTP server is connecting and having problems
getting directory listings or manipulating files, make sure your permissions are set up correctly and the
required directories exist.

Log in to the FTP server using an FTP program. Change directories to the location stored in the
root_directory parameter. If the directories you need do not appear, the root_directory control parameter
may be set incorrectly or the directories may not exist.

Test permissions by fetching a file in your message directory and uploading a file to the consolidated
database directory. If errors are returned, your FTP server permissions are set up incorrectly.

The SMTP message system
With the SMTP system, SQL Remote sends messages using Internet mail. The messages are encoded in a
text format and sent in an email message to the target database. The messages are sent using an SMTP server,
and retrieved from a POP server.

For a list of operating systems for which SMTP is supported, see “Supported platforms” [SQL Anywhere 11
- Introduction].

SMTP addresses and user IDs
To use SQL Remote and an SMTP message system, each database participating in the system requires an
SMTP address and a POP3 user ID and password. These are distinct identifiers: the SMTP address is the
destination of each message, and the POP3 user ID and password are the name and password entered by a
user when they connect to their email server.

Separate email account recommended
It is recommended you use a separate POP email account to send and receive SQL Remote messages. See
“Sharing SMTP/POP addresses” on page 118.

SMTP message control parameters
Before the Message Agent (dbremote) connects to the message system to send or receive messages, the user
must have a set of control parameters already set on their computer, or the user is prompted to specify needed
information. This information is needed only on the first connection. It is saved and used as the default entries
for subsequent connections.

The SMTP message system uses the following control parameters:

● local_host The name of the local computer. It is useful on computers where SQL Remote is unable
to determine the local host name. The local host name is needed to initiate a session with any SMTP
server. In most network environments, the local host name can be determined automatically and this
entry is not needed.

● TOP_supported SQL Remote uses a POP3 command called TOP when enumerating incoming
messages. The TOP command may not be supported by all POP servers. When you set the
TOP_supported parameter to NO, SQL Remote uses the RETR command, which is less efficient but
works with all POP servers. The default is YES.

SQL Remote message systems

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 117

● smtp_authenticate Determines whether the SMTP link authenticates the user. The default value is
YES. Set this parameter to NO to turn off SMTP authentication.

● smtp_userid The user ID for SMTP authentication. By default, this parameter takes the same value
as the pop3_userid parameter. The smtp_userid only needs to be set if the user ID is different to that on
the POP server.

● smtp_password The password for SMTP authentication. By default, this parameter takes the same
value as the pop3_password parameter. The smtp_password only needs to be set if the user ID is different
to that on the POP server.

● smtp_host The name of the computer on which the SMTP server is running. It corresponds to the
SMTP host field in the SMTP/POP3 login window.

● pop3_host The name of the computer on which the POP host is running. Typically, it is the same
name as the SMTP host. It corresponds to the POP3 host field in the SMTP/POP3 login window.

● pop3_userid The user ID used to retrieve mail. The POP user ID corresponds to the user ID field in
the SMTP/POP3 login window. You must obtain a user ID from your POP host administrator.

● pop3_password The password used to retrieve mail. It corresponds to the password field in the
SMTP/POP3 login window.

● Debug When set to YES, all SMTP and POP3 commands and responses are displayed. This
information can be used for troubleshooting SMTP/POP support problems. The default is NO.

● Suppress_dialogs When this parameter is set to true, the Connect window does not appear after
failed attempts to connect to the mail server. Instead, an error is generated.

● encode_dll If you have implemented a custom encoding scheme, you must set this to the full path of
the custom encoding DLL that you created.

See “Controlling message size” on page 108.

Sharing SMTP/POP addresses
You should use a separate email account for SQL Remote messages. It is not recommended that you send
and receive SQL Remote messages through the same email account that you use for personal or business
email messages.

If you need to share the same email account for SQL Remote messages and regular email messages, then
you must ensure that your email program does not download and delete all messages from the mail server,
including SQL Remote email and personal messages. You must configure the email program so that it does
not alter or delete SQL Remote messages when it downloads your regular email messages. SQL Remote
messages contain the subject ---SQL Remote--.

Troubleshooting SMTP Link
If you cannot get the SMTP Link to work, connect to the SMTP/POP3 server from the same computer on
which the Message Agent (dbremote) is running, using the same account and password. Use an Internet
email program that supports SMTP/POP3. Disable this program once the SMTP message link is working.

SQL Remote Administration

118 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Check that email is working properly
If SQL Remote messages are not being sent and received properly and you are using an email message
system, you should confirm that email is working properly between the two computers.

SQL Remote message systems

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 119

Backing up SQL Remote systems
SQL Remote replication depends on access to operations in the transaction log, and access to old transaction
logs. Any backup strategy that you implement must incorporate the maintenance of the transaction logs for
SQL Remote.

The Message Agent (dbremote) must have access to the current and old transaction logs until they are no
longer needed.

A consolidated database no longer needs its transaction logs when all remote databases have received and
have confirmed that the messages contained in the transaction logs have been successfully applied.

A remote database no longer needs its transaction logs when the consolidated database has received and
confirmed that it has successfully applied the messages contained in the transaction logs.

Backing up remote databases
For your remote databases, you need to decide whether to:

● Rely on replication to the consolidated database as a backup method Backup procedures are
not as crucial on remote databases as on the consolidated database. You can rely on replication to the
consolidated database as a data backup method.

If you choose this method, then you should create a strategy for maintaining the remote database
transaction logs. See “Maintaining transaction logs for remote databases” on page 121.

● Create a backup strategy for the remote database If the changes made on the remote databases
are crucial, then you need to create a backup strategy for the remote databases that includes the
maintenance of the transaction logs. See “Back up remote databases” on page 121.

Backing up consolidated databases
You must have a backup strategy for your consolidated database that includes the maintenance of the
transaction logs. See “Protecting the consolidated database from media failures” on page 122.

The Backup utility (dbbackup) and the Message Agent (dbremote) -x option
On a database, you should never run both the Message Agent (dbremote) with the -x option and the Backup
utility (dbbackup).

The -x option is used to manage transaction logs for replication. The -x option ensures that Message Agent
has access to old transaction logs and deletes the transaction logs when they are no longer needed. The -x
option does not back up the transaction log.

The Backup utility (dbbackup) is used to back up the current transaction log. When the Backup utility
(dbbackup) is run with the -r and -n options, it backs up the current transaction log to a backup directory and
renames and restarts the current transaction log. The Backup utility (dbbackup) assumes that the current
transaction log is the same transaction log that it renamed and restarted after the previous back up.

If you try to run both the Message Agent -x option and the Backup utility (dbbackup) on the same database,
they interfere with each other. You can lose transaction logs when both are running.

Only run the Message Agent (dbremote) with the -x option on a remote database that is not being backed
up.

SQL Remote Administration

120 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Maintaining transaction logs for remote databases
Use the following procedure to maintain your remote database transaction logs when you are relying on
replication to the consolidated database to back up your remote databases. That is, you are not running the
Backup utility (dbbackup) on the remote databases and transaction logs.

Caution
Do not run the Message Agent (dbremote) with the -x option on a database that is being backed up.

To maintain remote database transaction logs

1. On the remote database, run the Message Agent (dbremote) with the -x option and specify a size for the
transaction log. This option causes the Message Agent (dbremote) to rename and restart the transaction
log when the transaction log exceeds the specified size.

The following deletes the transaction log when it is larger than 1 MB:

dbremote -x 1M -c "UID=ManagerSteve;PWD=sql;DBF=c:\mydata.db"
2. On the remote database, set the delete_old_logs option to On. Setting the delete_old_logs_option causes

the old transaction log files to be deleted automatically by the Message Agent (dbremote) when they are
no longer needed for replication.

A transaction log is no longer needed when all subscribers have confirmed that they have received and
successfully applied all the changes recorded in that transaction log file. You can set the delete_old_logs
option either for the PUBLIC group or just for the user contained in the Message Agent (dbremote)
connection string.

The following statement sets the public delete_old_logs option to delete logs that were created more than
10 days ago:

SET OPTION PUBLIC.delete_old_logs = '10 days';

Back up remote databases
Use the following procedure to back up your remote databases. This procedure includes a maintenance
strategy for the use of the transaction logs by SQL Remote. Do not use this procedure and run the Message
Agent (dbremote) with the -x option.

To back up remote databases using the Backup utility (dbbackup)

1. Make a full backup of the remote database.

a. Connect to the database as a user with DBA authority.

b. Run dbbackup with the -r and -n options.
For example, assume that the backup directory is e:\live, the database file is located in the c:\live
directory and its corresponding transaction log file is located in the d:\live directory:

dbbackup -r -n -c "UID=DBA;PWD=sql;DBF=c:\live\remotedatabase.db" e:
\archive

Backing up SQL Remote systems

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 121

The transaction logs in the d:\live directory are not altered by the full backup.

c. Copy the backup files located in the e:\archive directory to an off-site drive or to a DVD.

d. Run the Message Agent (dbremote) with access to the current transaction log files using the following
command:

dbremote -c "UID=DBA;PWD=sql;DBF=c:\live\database.db" d:\live

Caution
Do not run the Message Agent (dbremote) with the -x option on a database that is being backed up.

2. Set up the Backup utility (dbbackup) to make incremental backups of the remote database's transaction
log.

a. Connect to the database as a user with DBA authority.

b. Run dbbackup with the -r, -n, and -t options.
For example:

dbbackup -r -n -t -c "UID=DBA;PWD=sql;DBF=c:\live\remotedatabase.db" e:
\archive

c. Run the Message Agent (dbremote) with access to the current transaction log files using the following
command:

dbremote -c "UID=DBA;PWD=sql;DBF=c:\live\remotedatabase.db" d:\live

Protecting the consolidated database from media failures
To protect your SQL Remote replication system against media failure:

● Replicate only backed-up transactions Send messages that contain only backed-up transactions.
By sending only backed-up transactions, the replication system is protected against media failure on the
transaction log. You can accomplish this by:

○ Running the Message Agent (dbremote) with the -u option. When the Message Agent (dbremote) is
run with the -u option, only committed transactions that have been backed up are packaged into
messages to be sent.

The -u option provides additional protection against total site failure, if backups are carried out to
another site. See “Message Agent (dbremote)” on page 146.

● Use a transaction log mirror Using a transaction log mirror protects against media failure on the
transaction log device. See “Transaction log mirrors” [SQL Anywhere Server - Database
Administration].

● Do not run Message Agent (dbremote) with the -x option on the consolidated
database Never run the Message Agent (dbremote) with the -x option against a database that is being
backed up. The -x option maintains the transaction logs for replication, not for backup or recovery. To
back up your consolidated database, see “Back up the consolidated database” on page 123.

SQL Remote Administration

122 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Back up the consolidated database
Back up your consolidated database by making a full backup of the consolidated database and transaction
log, and then make incremental backups of the transaction log.

To back up SQL Remote consolidated databases

1. Make a full back up of the consolidated database and its transaction log.

a. Connect to the database as a user with DBA authority.

b. Run dbbackup with the -r and -n options.
For example:

dbbackup -r -n -c "UID=DBA;PWD=sql;DBF=c:\live\database.db" e:\archive
2. Make incremental backups of the consolidated database transaction log. When backing up the transaction

log, choose to rename and restart the transaction log.

a. Connect to the database as a user with DBA authority.

b. Run dbbackup with the -r and -n and -t options.
For example:

dbbackup -r -n -t -c "UID=DBA;PWD=sql;DBF=c:\live\database.db" e:
\archive

3. Run the Message Agent (dbremote) with access to the current transaction log.

For example:

dbremote -c "UID=DBA;PWD=sql;DBF=c:\live\database.db" d:\live

Caution
Do not run the Message Agent (dbremote) with the -x option on a database that is being backed up.

The figure below illustrates a database named database.db in the c:\live directory, with a transaction log
named database.log in the d:\live directory.

When you back up the transaction log to a backup directory e:\archive using the -r and -n options to rename
and restart the transaction log the Backup utility (dbbackup) carries out the following tasks:

1. Renames the current transaction log file to 971201xx.log, where xx are sequential characters ranging
from AA to ZZ.

2. Backs up the transaction log file to the backup directory, creating a backup file named 971201xx.log.

Backing up SQL Remote systems

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 123

Old transaction log names before 8.0.1
Prior to release 8.0.1 of SQL Anywhere, the old transaction log files were named yymmdd01.log,
yymmdd02.log, and so on. The name change was introduced to allow more old transaction logs to be
stored. As the Message Agent (dbremote) scans all the files in the specified directory, regardless of their
names, the name change should not affect existing applications.

3. Starts a new transaction log, as database.log.

After several backups, the live directory and the archive directory contain a set of sequential transaction
logs.

See also
● “Protecting the consolidated database from media failures” on page 122
● “Rename the backup copy of the transaction log during backup” [SQL Anywhere Server - Database

Administration]
● “Backup utility (dbbackup)” [SQL Anywhere Server - Database Administration]

SQL Remote Administration

124 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Recover consolidated databases manually
The following procedure describes how to recover a consolidated database by applying each transaction log
to the database. To have the SQL Anywhere database server automatically recover the consolidated database,
see “Recover consolidated databases automatically” on page 127.

To recover the database using the -a option

1. Make a copy of the database and transaction log file. This procedure assumes that previous backups of
the database file have been made and are available, for example on tape.

2. Create a temporary directory.

3. Restore the most recent back up of the database (.db) file, not the transaction log file, from tape into a
temporary directory.

In the temporary directory:

a. Start the backup copy of the database.

b. Apply the old transaction logs using the -a option.

c. Shut down the database.

d. Start the database using the current transaction log and the -a option to apply the transactions and
bring the database file up to date.

e. Shut down the database.

f. Back up the database.

4. Copy the database to the production directory.

5. Start the database.

Any new activity is appended to the current transaction log.

Example: Applying transaction logs individually
Suppose you have a consolidated database file named c:\dbdir\cons.db, a transaction log file c:\dbdir
\cons.log, and a transaction log mirror file d:\mirdir\cons.mlg.

Assume that you perform full backups weekly, and you perform incremental backups daily using the
following command:

dbbackup -c "UID=DBA;PWD=sql" -r -n -t e:\backdir

This command backs up the transaction log cons.log to the directory e:\backdir. The transaction log file is
then renamed to datexx.log, where date is the current date and xx is the next set of letters in sequence, and
a new transaction log is started. The directory e:\backdir is then backed up using a third-party utility.

In this scenario, you run the Message Agent (dbremote) with the optional directory to point to the renamed
transaction log files. For example:

dbremote -c "UID=DBA;PWD=sql" c:\dbdir

On the third day following the weekly backup, the database file is corrupted because of a bad disk block.

Recover consolidated databases manually

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 125

Use the following procedure to recover from a media failure.

To recover from media failure on the C drive

1. Back up the transaction log mirror file d:\mirdir\cons.mlg.

2. Create a temporary directory to perform the recovery in. In this example, the directory is called c:
\recover.

3. Restore the most recent backup of the database file, cons.db to c:\recover\cons.db.

4. Apply the renamed transaction logs in order, as follows:

dbeng11 -a c:\dbdir\dateAA.log c:\recover\cons.db
dbeng11 -a c:\dbdir\dateAB.log c:\recover\cons.db

5. Copy the current transaction log, d:\mirdir\cons.log to the recovery directory, giving c:\recover
\cons.log.

6. Start the database using the following command:

dbeng11 c:\recover\cons.db
7. Shut down the database server.

8. Back up the recovered database and transaction log from c:\recover.

9. Copy the files from c:\recover to the appropriate production directories:

● Copy c:\recover\cons.db to c:\dbdir\cons.db.

● Copy c:\recover\cons.log to c:\dbdir\cons.log, and to d:\mirdir\cons.mlg.

10. Restart your system as normal.

See also
● “-a database option” [SQL Anywhere Server - Database Administration]

SQL Remote Administration

126 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Recover consolidated databases automatically
The following procedure describes how to automatically recover a consolidated database. To apply the
transaction logs manually, see “Recover consolidated databases manually” on page 125.

To recover the database using the -ad option

1. Make a copy of the database and transaction log file. This procedure assumes that previous backups of
the database file have been made and are available, for example on tape.

2. Restore the most recent backed up copy of the database (.db) file, not the transaction log file, from tape
into a temporary directory.

3. In the temporary directory:

a. Start the database, applying the transaction logs using the -ad option.
When you specify the -ad option, the database server looks in the specified directory for the
transaction logs for the database. It then determines the correct order to apply the logs based on the
transaction log offsets.

b. Copy the current transaction log, to the temporary directory.

c. Start the database and apply the current transaction log.

d. Shut down the database server.

e. Back up the database and transaction log.

4. Copy database and transaction log files to the appropriate production directories.

5. Restart your system as normal.

Any new activity is appended to the current transaction log.

Example
Suppose you have a consolidated database file named c:\dbdir\cons.db, a transaction log file c:\dbdir
\cons.log, and a transaction log mirror file d:\mirdir\cons.mlg.

Assume that you perform full backups weekly using the following command:

dbbackup -c "UID=DBA;PWD=sql" -r -n e:\backdir

Assume that you also perform incremental backups daily using the following command:

dbbackup -c "UID=DBA;PWD=sql" -r -n -t e:\backdir

This command backs up the transaction log cons.log to the directory e:\backdir. The transaction log file is
then renamed to datexx.log, where date is the current date and xx is the next set of letters in sequence, and
a new transaction log is started. The directory e:\backdir is then backed up using a third-party utility.

In this scenario, you would run the Message Agent (dbremote) with the optional directory to point to the
renamed transaction log files. For example:

dbremote -c "UID=DBA;PWD=sql" c:\dbdir

On the third day following the weekly backup, the database file is corrupted because of a bad disk block.

Recover consolidated databases automatically

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 127

To recover from media failure on the c drive

1. Replace the c:\ drive.

2. Back up the transaction log mirror file d:\mirdir\cons.mlg.

3. Create a temporary directory to perform the recovery in. In this example, it is called c:\recover.

4. Restore the most recent backup of the database file, cons.db to c:\recover\cons.db.

5. Copy the backed up transaction logs to c:\dbdir.

6. Apply the renamed transaction logs:

dbeng11 c:\recover\cons.db -ad c:\dbdir
7. Copy the current transaction log, d:\mirdir\cons.log to the recovery directory, giving c:\recover

\cons.log.

8. Start the database using the following command:

dbeng11 c:\recover\cons.db
9. Shut down the database server.

10. Back up the recovered database and transaction log from c:\recover.

11. Copy the files from c:\recover to the appropriate production directories:

● Copy c:\recover\cons.db to c:\dbdir\cons.db.

● Copy c:\recover\cons.log to c:\dbdir\cons.log, and to d:\mirdir\cons.mlg.

12. Restart your system as normal.

See also
● “-ad database option” [SQL Anywhere Server - Database Administration]

SQL Remote Administration

128 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Reporting and handling replication errors
The following errors can occur on a SQL Remote system:

● Row not found errors See “Row not found errors” on page 50.

● Referential integrity errors See “Referential integrity errors” on page 51.

● Duplicate primary key errors See “Duplicate primary key errors” on page 54.

By default, when an error occurs, the Message Agent (dbremote) prints the error in its log output window.
The Message Agent (dbremote) can print more information in the output messages file than in the messages
window.

The Message Agent (dbremote) messages log file includes the following information:

● Applied messages.
● Failed SQL statements.
● Other errors.

To print an error to the output log file, run the Message Agent (dbremote) with the -o option. See “Message
Agent (dbremote)” on page 146.

When an error occurs, you can configure SQL Remote to:

● Run an error-handling procedure By default, no procedure is called. However, you can use the
replication_error database option to specify a stored procedure to be called by the Message Agent
(dbremote) when an error occurs. See “Run an error-handling procedure” on page 129.

For example, you can configure SQL Remote to:

○ Send portions of a remote database's output log to the consolidated database and written to a file. See
“Collect errors from the remote database” on page 130.

○ Send an email notification when an error occurs at a remote database. See “Receive email notification
about remote database errors” on page 131.

● Ignore the error There might be instances when you do not want to the Message Agent (dbremote)
to report an error. For example, you can choose to ignore an error when you know the conditions under
which the error occurs and you are sure that the error does not produce inconsistent data. See “Ignoring
replication errors” on page 133.

Run an error-handling procedure
Set the replication_error option to call a procedure when a SQL error occurs. By default, no procedure is
called when a SQL error occurs.

The procedure that is called must have a single argument type of CHAR, VARCHAR, or LONG VARCHAR.
The procedure is called once with the SQL error message and once with the SQL statement that causes the
error. See “replication_error option [SQL Remote]” [SQL Anywhere Server - Database Administration].

Reporting and handling replication errors

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 129

To set the replication_error option

● Execute the following statement. The remote-user is the publisher name on the Message Agent
(dbremote) command and procedure-name is the procedure called when a SQL error is detected.

SET OPTION
remote-user.replication_error
= 'procedure-name';

Collect errors from the remote database
Use the following procedure to send portions of a remote database's output log to the consolidated database.
The information is written to a file and the file can contain output logging information from some or all
remote databases in the system.

To configure SQL Remote to collect output log information from remote databases

1. Configure the remote databases to send output log information to the consolidated database.

a. Use the SET REMOTE statement with the output_log_send_on_error option to send log information
when an error occurs.
On the remote database, execute the following command:

SET REMOTE link-name OPTION
PUBLIC.output_log_send_on_error = 'Yes';

When the Message Agent (dbremote) reads any messages that start with the error indicator E, it sends
the output log information to the consolidated database. See “SET REMOTE OPTION statement
[SQL Remote]” [SQL Anywhere Server - SQL Reference].

b. This step is optional. Set the SET REMOTE statement with the output_log_send_limit option to limit
the amount of information that is sent to the consolidated database. The output_log_send_limit option
specifies the number of bytes at the end of the output log (that is, the most recent entries) that are
sent to the consolidated database. The default is 5K.
If you supply an output_log_send_limit value that exceeds the maximum message size, SQL Remote
overrides the output_log_send_limit value and sends only what can fit within the maximum message
size.
On the remote database, execute the following command:

SET REMOTE link-name OPTION
PUBLIC.output_log_send_limit = '7K';

See “SET REMOTE OPTION statement [SQL Remote]” [SQL Anywhere Server - SQL Reference].

2. Configure the consolidated database to receive log information.

On the consolidated database, run the Message Agent (dbremote) with either the -ro or the -rt options.

See “Message Agent (dbremote)” on page 146.

3. This step is optional. To test your configurations, set the output_log_send_now option to send output
log information to the consolidated database.

SQL Remote Administration

130 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

On the remote database, set the output_log_send_now option to YES.

On the next poll, the remote database sends the output log information and then resets the
output_log_send_now option to NO.

See also
● “Receive email notification about remote database errors” on page 131

Receive email notification about remote database errors
Use the following procedure to send email notification when an error occurs at a remote database. You can
use email or a paging system to receive the notifications.

To set up SQL Remote to send email notification of errors (SQL)

1. Connect to the consolidated database as user Cons.

2. Create a stored procedure that notifies the DBA user by email that an error has occurred.

For example, execute the following to create the sp_LogReplicationError procedure:

CREATE PROCEDURE cons.sp_LogReplicationError
 (IN error_text LONG VARCHAR)
BEGIN
 DECLARE current_remote_user CHAR(255);
 SET current_remote_user = CURRENT REMOTE USER;
 // Log the error
 INSERT INTO cons.replication_audit
 (remoteuser, errormsg)
 VALUES
 (current_remote_user, error_text);
 COMMIT WORK;
 //Now notify the DBA by email that an error has occurred
 // on the consolidated database. The email should contain the error
 // strings that the Message Agent is passing to the procedure.
 IF CURRENT PUBLISHER = 'cons' THEN
 CALL sp_notify_DBA(error_text);
 END IF
END;

3. Create a stored procedure that manages the sending of email.

For example, execute the following statement to create the sp_notifiy_DBA procedure:

CREATE PROCEDURE sp_notify_DBA(in msg long varchar)
BEGIN
 DECLARE rc INTEGER;
 rc=call xp_startmail(mail_user='davidf');
 //If successful logon to mail
 IF rc=0 THEN
 rc=call xp_sendmail(
 recipient='Doe, John; Smith, Elton',
 subject='SQL Remote Error',
 "message"=msg);
 //If mail sent successfully, stop
 IF rc=0 THEN
 call xp_stopmail()
 END IF

Reporting and handling replication errors

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 131

 END IF
END;

4. Set the replication_error database option to call the procedure that notifies the DBA by email that an
error occurs.

For example, execute the following statement to call the sp_LogReplicationError procedure when an
error occurs:

SET OPTION PUBLIC.replication_error =
 'cons.sp_LogReplicationError';

5. Create an audit table.

For example, execute the following to create the replication_audit table:

CREATE TABLE replication_audit (
 id INTEGER DEFAULT AUTOINCREMENT,
 pub CHAR(30) DEFAULT CURRENT PUBLISHER,
 remoteuser CHAR(30),
 errormsg LONG VARCHAR,
 timestamp DATETIME DEFAULT CURRENT TIMESTAMP,
 PRIMARY KEY (id,pub)
);

The following table describes the columns of the replication_audit table:

Column Description

pub Current publisher of the database (identifies the database in which the publisher
was inserted).

remoteuser Remote user applying the message (identifies the database from which the remote
user came from).

errormsg Error message passed to the replication_error procedure.

6. Test your procedures.

For example, insert a row on the consolidated database that uses the same primary key as a row on a
remote database. When this row from the consolidated database is replicated to the remote database, a
primary key conflict error occurs and:

● The remote database Message Agent (dbremote) prints the following message to its output log:

Received message from "cons" (0-0000000000-0)
SQL statement failed: (-193) primary key for table 'reptable' is not
unique
INSERT INTO cons.reptable(id,text,last_contact)
VALUES (2,'dave','1997/apr/21 16:02:38.325')
COMMIT WORK

● The following INSERT statement is sent to the consolidated database:

INSERT INTO cons.replication_audit
 (id,
 pub,
 remoteuser,
 errormsg,

SQL Remote Administration

132 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 "timestamp")
VALUES
 (1,
 'cons',
 'sales',
 'primary key for table ''reptable'' is not unique (-193)',
 '1997/apr/21 16:03:13.836');
COMMIT WORK;

● An email is sent to John Doe and Elton Smith with the following message:

primary key for table 'reptable' is not unique (-193)
INSERT INTO cons.reptable(id,text,last_contact) VALUES
(2,'dave','1997/apr/21 16:02:52.605')

See also
● “Collect errors from the remote database” on page 130

Ignoring replication errors
To ignore replication errors (SQL)

● Create a BEFORE trigger on the action that causes the known error. This trigger should signal the
REMOTE_STATEMENT_FAILED SQLSTATE (5RW09) or SQLCODE (-288) value.

For example, if you want to ignore INSERT statement errors that occur when a table is missing a
referenced column, create a BEFORE INSERT trigger that signals REMOTE_STATEMENT_FAILED
SQLSTATE when the referenced column does not exist. The INSERT statement fails, but this failure is
not reported in the Message Agent (dbremote) output log. See “Remote statement failed” [Error
Messages].

Reporting and handling replication errors

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 133

Security
Use the following features are available to protect your data.

● REMOTE DBA authority It is recommended that you connect to the Message Agent (dbremote) with
a user that has REMOTE DBA authority. See “Grant REMOTE DBA authority” on page 30.

● Database encryption You can encrypt your database using the -ek option. See “Extraction utility
(dbxtract)” on page 154.

● Message encryption The Message Agent (dbremote) uses a simple encryption algorithm to protect
the messages against casual snooping. However, this encryption scheme is not intended to provide full
protection against determined efforts to decipher them. For information about database encryption, see
“Encrypting and decrypting a database” [SQL Anywhere Server - Database Administration].

SQL Remote Administration

134 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Upgrading and resynchronization
Use caution when upgrading a SQL Remote system. You can upgrade a SQL Remote system in any of the
following ways:

● Upgrading software For information about upgrading SQL Remote, see “Upgrading SQL Remote”
[SQL Anywhere 11 - Changes and Upgrading].

● Changing the database schemas To make changes to the database schema, you can:

○ Use passthrough mode The passthrough mode allows schema changes to be sent to some or
all databases in a SQL Remote system, but it requires careful planning and execution. See “SQL
Remote passthrough mode” on page 137.

○ Re-synchronize subscriptions Re-synchronization involves copying new copies of the data
to the remote databases. When there are many remote databases, resynchronization can be a time-
consuming process involving work interruptions and possible data loss. See “Resynchronizing
subscriptions” on page 140.

Changes to avoid on a running system
The following changes should not be made to a deployed and running SQL Remote system, except under
the conditions stated:

● Changing publishers Problems can occur if you change the publisher user name on a consolidated
database of a deployed and running SQL Remote system. If you need to change the consolidated database
publisher user name, you must shut down the SQL Remote system and resynchronize all remote users.

Changing the user name of a publisher at a remote database causes problems for any subscriptions that
the remote database is involved in, including the loss of information. If you need to change a remote
database publisher user name, shut down the remote database and resynchronize the remote user. See
“Resynchronizing subscriptions” on page 140.

● Making restrictive changes to tables You cannot make restrictive changes to tables. For example,
do not drop a column or alter a column to disallow NULL values because messages can exist in the
system that reference these columns.

● Making permissive changes to tables You can make permissive changes using passthrough mode.
Use passthrough mode to make the changes to the remote database schema and publications. Permissive
changes include adding a new table or column, adding new users, resynchronizing users, dropping users,
and changing the address, message type, or send frequency for a remote user. See “SQL Remote
passthrough mode” on page 137.

● Altering publications Publication definitions must be maintained on both the consolidated and the
remote databases. Altering publications in a running SQL Remote system can cause replication errors
and can lead to a loss of data in the replication system.

● Deleting subscriptions You can delete a subscription, but you must use passthrough mode to remove
the data on the remote database. See “SQL Remote passthrough mode” on page 137.

Upgrading and resynchronization

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 135

● Unloading and reloading databases You must ensure that the transaction log is properly
maintained. See “Rebuild databases involved in synchronization or replication” [SQL Anywhere Server
- SQL Usage].

● Making changes in a multi-tier hierarchy For information about re-extracting database schemas
in a multi-tier hierarchy, see “Extracting databases for a multi-tier hierarchy system” on page 86.

For information about making schema changes using the passthrough mode, see “Passthrough mode
limitations” on page 137.

SQL Remote Administration

136 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Remote passthrough mode
Use passthrough mode to pass standard SQL statements to a remote database where they can be executed.

You can use passthrough mode to complete the following tasks on a running SQL Remote system:

● Add new users.
● Resynchronize users.
● Delete users from the system.
● Change the address, message type, or frequency for a remote user.
● Add a column to a table.

Caution

● SQL Remote relies on each database in the system having the same objects; when a table is altered at
some sites but not at others, attempts to replicate data changes fail. Additional schema changes executed
on a running SQL Remote system might cause problems. See “Changes to avoid on a running
system” on page 135.

● Always test your passthrough operations on a copy of the consolidated database with a copy of a remote
database subscribed. Never run untested passthrough scripts on a production database.

● You should always qualify object names with the owner name. PASSTHROUGH statements are not
executed on remote databases from the same user name. Object names without the owner name qualifier
may not be resolved correctly.

Passthrough mode limitations
● Passthrough works on only one level of a hierarchy In a multi-tier SQL Remote system, it is

important that passthrough statements work immediately below the current level. In a multi-tier system,
passthrough statements must be entered at each consolidated database, for the level beneath it.

● Calling procedures When a stored procedure is called in passthrough mode using a CALL or EXEC
statement:

○ The procedure must exist in the consolidated database that calls the passthrough command, even if
the procedure is not executed on the consolidated database. See “PASSTHROUGH statement [SQL
Remote]” [SQL Anywhere Server - SQL Reference].

○ The procedure must also exist on the remote database. The CALL or EXEC statement is replicated,
but none of the statements inside the procedure is replicated. It is assumed that the procedure on the
replicated database has the correct effect.

● Control statements Control statements such as IF and LOOP and any cursor operations, are not
replicated in passthrough mode. Any statements within the loop or control structure are replicated. See
“Control statements” [SQL Anywhere Server - SQL Usage].

● Cursor operations Operations on cursors are not replicated.

SQL Remote passthrough mode

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 137

● SQL SET OPTION statements Static embedded SQL SET OPTION statements are not replicated.
However, dynamic SQL statements are replicated. See “Static and dynamic SQL” [SQL Anywhere Server
- Programming].

For example, the following statement is not replicated in passthrough mode:

EXEC SQL SET OPTION ...

However, the following dynamic SQL statement is replicated:

EXEC SQL EXECUTE IMMEDIATE "SET OPTION ... "
● Batch statements Batch statements (a group of statements surrounded with a BEGIN and END) are

not replicated in passthrough mode. If you try to use batch statements in passthrough mode, an error
occurs.

See also
● “Resynchronizing subscriptions” on page 140

Start and stop passthrough mode
Passthrough mode is started using the PASSTHROUGH statement and the PASSTHROUGH STOP
statement. A passthrough session refers to the statements entered between the PASSTHROUGH statements.
Statements entered in a passthrough session:

● Are checked for syntax errors.

● Are executed at the consolidated database unless you supply the ONLY keyword. When ONLY is
specified, the statements are sent to the remote database without being executed on the consolidated
database.

The following statement starts a passthrough session, which passes the statements to a list of two named
subscribers, without being executed at the current database:

PASSTHROUGH ONLY
FOR userid_1, userid_2;

● Are passed to the identified subscriber database. Passthrough statements are replicated in sequence with
normal replication messages, in the order in which the statements are recorded in the transaction log.

● Are executed at the subscriber database.

Direct passthrough statements
The following statement starts a passthrough session that passes the statements to all users who are subscribed
to the pubname publication:

PASSTHROUGH ONLY
FOR SUBSCRIPTION TO [owner].pubname statement1;

Passthrough mode is additive. In the following example, statement_1 is sent to user_1, and statement_2 is
sent to both user_1 and user_2.

PASSTHROUGH ONLY FOR user_1 ;
statement_1;

SQL Remote Administration

138 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

PASSTHROUGH ONLY FOR user_2 ;
statement_2;

The following statement stops a passthrough session for all remote users:

PASSTHROUGH STOP;

Data modification language (DML)
Passthrough mode is commonly used to send data modification statements. In this case, replicated DML
statements use the before schema before the passthrough and the after schema following the passthrough.

The following example drops a table on the remote database and the consolidated database.

-- Drop a table on the remote database
-- and at the consolidated database
PASSTHROUGH TO Joe_Remote;
DROP TABLE CrucialData;
PASSTHROUGH STOP;

The following example drops a table on the remote database only.

-- Drop a table on the remote database only
PASSTHROUGH ONLY TO Joe_Remote;
DROP TABLE CrucialData;
PASSTHROUGH STOP;

See also
● “PASSTHROUGH statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “Data modification statements” [SQL Anywhere Server - SQL Usage]

SQL Remote passthrough mode

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 139

Resynchronizing subscriptions
When you create a remote database, you extract both the schema and data from the consolidated database
and use them to build the remote database. This process ensures that each database has an initial copy of the
data. After deployment, you might consider resynchronizing subscriptions in the following circumstances:

● After you complete significant maintenance to the consolidated database For example, you
make changes to the consolidated database, which updates every row in the database. By default, SQL
Remote creates and sends update messages to each subscribed remote. These update messages could
include the UPDATE, DELETE, and INSERT statements for each row.

If you chose to synchronize the subscription using a SYNCHRONIZE SUBSCRIPTION statement, you
only send the statements required to delete all the rows in the subscribed tables and the INSERT
statements to insert all new rows.

● When a remote database is out-of-step with the consolidated database If a remote database
becomes out-of-step with the consolidated database, you can try to use passthrough mode. See “SQL
Remote passthrough mode” on page 137.

If using passthrough mode doesn't work, you can synchronize the subscriptions. When you synchronize
subscriptions, you force the remote database into step with the consolidated database. A
SYNCHRONIZE SUBSCRIPTION statement includes statements to delete the contents of the
subscribed tables in the remote database and statements to insert the rows of the subscription from the
consolidated database to the remote database.

Limitations
● Synchronization applies to an entire subscription You cannot synchronize a single table.

● Data loss on synchronization Any data on the remote database that is part of the subscription,
which has not been replicated to the consolidated database, is lost.

Before synchronizing the database, use the Unload Database Wizard in Sybase Central or the Unload
utility (dbunload) to unload or back up the remote database. See “Export data with the Unload Database
Wizard” [SQL Anywhere Server - SQL Usage] and “Unload utility (dbunload)” [SQL Anywhere Server
- Database Administration].

Synchronize
It is recommended that you use either the Extraction utility (dbxtract) or the Extract Database Wizard to
extract the data for the specified remote database and then manually load the data into the remote database.

Caution
Do not run the Message Agent (dbremote) when running the Extraction utility (dbxtract) or the Extract
Database Wizard.

To synchronize a subscription (Sybase Central)

1. Shut down the Message Agent on the remote database and the consolidated database.

SQL Remote Administration

140 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

2. Connect to the consolidated database as a user with DBA authority.

3. In the left pane, expand the Publications directory.

4. Select a publication.

5. In the right pane, click the SQL Remote Subscriptions tab.

6. Manually synchronize subscriptions:

a. Right-click the user in the Subscribers list and choose Properties.

b. Click the Advanced tab.

c. Click Synchronize Now.
The subscriptions are affected when you click the Synchronize Now button. Subsequently clicking
Cancel on the properties window does not cancel the synchronize action.

7. Click OK.

Synchronize using the Message Agent (dbremote)
It is recommended that you use the Extraction utility (dbxtract) or the Extract Database Wizard to
synchronize subscriptions. See “Synchronize” on page 140.

Extracting a large number of subscriptions, or synchronizing subscriptions to large, frequently-used tables,
can slow database access. You can use the SEND AT clause to specify a time to synchronize when the
consolidated database is not in heavy use. See “Setting the send frequency” on page 91.

To synchronize a subscription with the message system (Interactive SQL)

1. Connect to the consolidated database as a user with DBA authority.

2. Execute a SYNCHRONIZE SUBSCRIPTION statement. See “SYNCHRONIZE SUBSCRIPTION
statement [SQL Remote]” [SQL Anywhere Server - SQL Reference].

The Message Agent (dbremote) on the consolidated database sends a copy of all rows in the subscription
to the subscriber. The Message Agent (dbremote) assumes that an appropriate database schema is in
place at the remote databases.

The Message Agent (dbremote) on the subscriber database receives the synchronization message and it
replaces the current contents of the subscribed tables with the new copy.

Cautions
● Do not execute a SYNCHRONIZE SUBSCRIPTION statement on a remote database Execute

SYNCHRONIZE SUBSCRIPTION statements at the consolidated database.

● Large volume of messages may result Synchronizing databases over a message system can
require large volumes of messages. Also, the size of the message can exceed the size of the remote
database. Synchronizing many subscriptions over a message link can increase the amount of message
traffic.

Often, it is recommended that you extract the remote databases and then manually load the data.

Resynchronizing subscriptions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 141

Start subscriptions
To start a subscription (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, expand the Publications directory.

3. Select a publication.

4. In the right pane, click the SQL Remote Subscriptions tab.

5. Manually synchronize subscriptions:

a. Right-click the user in the Subscribers list and choose Properties.

b. Click the Advanced tab.

c. Click Synchronize Now.
The subscriptions are affected when you click the Synchronize Now button. Subsequently clicking
Cancel on the properties window does not cancel the synchronize action.

To start a subscription (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a START SUBSCRIPTION statement. See “START SUBSCRIPTION statement [SQL
Remote]” [SQL Anywhere Server - SQL Reference].

To start several subscriptions within a single transaction, use the REMOTE RESET statement. See
“REMOTE RESET statement [SQL Remote]” [SQL Anywhere Server - SQL Reference].

Stop subscriptions
To stop a subscription (Sybase Central)

1. Connect to the database as a user with DBA authority.

2. In the left pane, expand the Publications directory.

3. Select the desired publication.

4. In the right pane, click the SQL Remote Subscriptions tab.

5. To manually synchronize subscriptions, select the user in the Subscribers list and choose Properties.

Click the Advanced tab. On this tab, click Stop Now to stop subscriptions.

The subscriptions are affected when you click the Stop Now button. Subsequently clicking Cancel on
the properties window does not cancel your stop synchronization action.

SQL Remote Administration

142 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Remote Reference

This section provides reference material for SQL Remote.

SQL Remote utilities and options reference .. 145
SQL Remote system objects ... 169
SQL Remote SQL statements ... 171

SQL Remote utilities and options reference

Contents
Message Agent (dbremote) ... 146
Extraction utility (dbxtract) ... 154
SQL Remote options ... 162
SQL Remote system procedures .. 164

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 145

Message Agent (dbremote)
Purpose

To send and apply SQL Remote messages, and to maintain the message tracking system to ensure message
delivery.

Syntax
dbremote [options] [directory]

Options

Option Description

@data Use this option to read in options from the specified environment
variable or configuration file. If both exist with the same name, the
environment variable is used. See “Using configuration files” [SQL
Anywhere Server - Database Administration].

If you want to protect passwords or other information in the config-
uration file, you can use the File Hiding utility to obfuscate the con-
tents of the configuration file. See “File Hiding utility (dbfhide)”
[SQL Anywhere Server - Database Administration].

The environment variable can contain any set of options. For exam-
ple, the first of the following pair of statements sets an environment
variable holding a set of options for a SQL Remote process that starts
with a cache size of 4 MB, receives messages only, and connects to
a database named field on a database server named myserver. The
SET statement should be entered all on one line:

SET envvar=-m 4096 -r
 -c "ENG=myserver;DBN=field;UID=sa;PWD=sysadmin"
dbremote @envvar

The configuration file contains line breaks, and can contain any set
of options. For example, the following command file holds a set of
options for a Message Agent that starts with a cache size of 4 MB,
sends messages only, and connects to a database named field on a
database server named myserver:

-m 4096
-s
-c "ENG=myserver;DBN=field;UID=sa;PWD=sysadmin"

If this configuration file is saved as c:\config.txt, it can be used in a
command as follows:

dbremote @c:\config.txt

SQL Remote utilities and options reference

146 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

-a Processes the received messages (those in the inbox) without apply-
ing them to the database. Used together with -v (for verbose output)
and -p (so the messages are not purged), this option can help detect
problems with incoming messages. Used without -p, this option
purges the inbox without applying the messages, which may be useful
if a subscription is being restarted.

-b Runs in batch mode. In this mode, the Message Agent processes in-
coming messages, scans the transaction log once, processes outgoing
messages, and then stops.

-c "keyword=value; ..." Specifies connection parameters. If this option is not specified, the
environment variable SQLCONNECT is used.

For example, the following statement runs dbremote on a database
file located at c:\mydata.db, connecting with user ID DBA and pass-
word sql:

dbremote -c "UID=DBA;PWD=sql;DBF=c:\mydata.db"

The Message Agent must be run by a user with REMOTE DBA au-
thority or DBA authority. See “Grant REMOTE DBA authori-
ty” on page 30.

The Message Agent supports the full range of SQL Anywhere con-
nection parameters. See “Connection parameters” [SQL Anywhere
Server - Database Administration].

-dl Displays messages in the Message Agent window or at the command
prompt and in the log file if specified.

-ek key Specifies that you want to be prompted at the command prompt for
the encryption key for strongly encrypted databases. If you have a
strongly encrypted database, you must provide the encryption key to
use the database or transaction log in any way, including offline
transaction logs. For strongly encrypted databases, you must specify
either -ek or -ep, but not both. The command fails if you do not spec-
ify a key for a strongly encrypted database.

-ep Specifies that you want to be prompted for the encryption key. This
option causes a window to appear, in which you enter the encryption
key. It provides an extra measure of security by never allowing the
encryption key to be seen in clear text. For strongly encrypted data-
bases, you must specify either -ek or -ep, but not both. The command
fails if you do not specify a key for a strongly encrypted database.

Message Agent (dbremote)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 147

Option Description

-g n Instructs the Message Agent to group transactions containing fewer
than n operations together with transactions that follow. The default
is twenty operations. Increasing the value of n can speed up process-
ing of incoming messages by doing less commits. However, it can
also cause deadlock and blocking by increasing the size of transac-
tions.

-l length Specifies the maximum length of each message to be sent, in bytes.
Longer transactions are split into more than one message. The default
is 50000 bytes and the minimum length is 10000.

Caution
The maximum message length must be the same at all sites in an
installation.

For platforms with restricted memory allocation, the value must be
less than the maximum memory allocation of the operating system.

-m size Specifies a maximum amount of memory to be used by the Message
Agent for building messages and caching incoming messages. The
allowed size can be specified as n (in bytes), nK, or nM. The default
is 2048 KB (2 MB).

When all remote databases are receiving unique subsets of the oper-
ations being replicated, a separate message for each remote database
is built up concurrently. Only one message is built for a group of
remote users that are receiving the same operations. When the mem-
ory being used exceeds the -m value, messages are sent before reach-
ing their maximum size (as specified by the -l option).

When messages arrive, they are stored in memory by the Message
Agent until they are applied. This caching of messages prevents re-
reading messages that are out of order from the message system,
which may lower performance on large installations. When the mem-
ory usage specified using the -m option is exceeded, messages are
flushed in a least-recently used fashion.

SQL Remote utilities and options reference

148 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

-ml directory Specifies the location of offline transaction log mirror files. This op-
tion makes it possible for dbremote to delete old transaction log mir-
ror files when either of the following two circumstances occur:

● the offline transaction log mirror is located in a different directory
from the transaction log mirror

● dbremote is run on a different computer from the remote database
server

In a typical setup, the active transaction log mirror and renamed
transaction log mirrors are located in the same directory, and dbre-
mote is run on the same computer as the remote database, so this
option is not required and old transaction log mirror files are auto-
matically deleted. Transaction logs in this directory are only affected
if the delete_old_logs database option is set to a value other than Off.

-o file Prints messages to an output log file. The default is to print output to
the screen.

-os size Specifies the maximum file size for logging output messages. The
allowed size can be specified as n (bytes), nK (KB), or nM (MB).
By default, there is no limit, and the minimum limit is 10000 bytes.

Before SQL Remote logs output messages to an output log file, it
checks the current file size. If the log message will make the file size
exceed the specified size, SQL Remote renames the output file to
yymmddxx.dbr, where xx are sequential characters ranging from AA
to ZZ, and yymmdd represents the current year, month, and date.

If the Message Agent is running in continuous mode for a long time,
this option allows you to manually delete old output log files and free
up disk space.

-ot file Truncates the output log file and then appends output messages to it.
The default is to send output to the screen.

-p Does not purge messages.

-q Starts the Message Agent with a minimized window. This option
applies for Windows operating systems only.

-qc Closes SQL Remote window on completion.

Message Agent (dbremote)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 149

Option Description

-r Receives messages. If neither -r or -s is specified, the Message Agent
executes both phases. Otherwise, only the indicated phases are exe-
cuted.

The Message Agent runs in continuous mode if it is run with the -r
option. To have the Message Agent shut down after receiving mes-
sages, use the -b option in addition to -r.

-rd minutes Specifies the polling frequency for incoming messages. By default,
the Message Agent polls for incoming messages every minute. This
option (rd stands for receive delay) allows the polling frequency to
be configured, which is useful when polling is expensive.

You can use a suffix of s after the number to indicate seconds, which
may be useful if you want frequent polling. For example, the fol-
lowing command polls every thirty seconds.

dbremote -rd 30s

The -rd option is often used in conjunction with the -rp option that
sets the number of polls for which the Message Agent waits before
requesting that a missing message be resent.

See “Improving performance when receiving messag-
es” on page 95.

-ro filename Logs remote output to file. This option is for use at consolidated sites.
When remote databases are configured to send output log informa-
tion to the consolidated database, this option writes the information
to a file. The option is provided to help administrators troubleshoot
errors at remote sites.

See “Collect errors from the remote database” on page 130.

-rp number Specifies the number of receive polls before a message is assumed
lost. When running in continuous mode, the Message Agent polls at
certain intervals for messages. After polling a set number of times
(by default, one), if a message is missing, the Message Agent assumes
it has been lost and requests that the message be resent. On slow
message systems, this behavior can result in many unnecessary re-
send requests. You can set the number of polls before a resend request
is issued using this option to minimize the number of resend requests.

For more information on configuring this option, see “Improving
performance when receiving messages” on page 95.

The -rp option is often used in conjunction with the -rd option that
sets the polling frequency for incoming messages.

SQL Remote utilities and options reference

150 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

-rt filename Truncates the output log file on startup, and then appends the log
output from the remote database to the file. This option is for use at
consolidated sites. It is identical to the -ro option except that the file
is truncated on startup.

-ru time Specifies the waiting period to re-scan log on receipt of a resend.

Control the resend urgency. This is the time between detection of a
resend request and when the Message Agent starts fulfilling the re-
quest. Use this option to help the Message Agent collect resend re-
quests from multiple users before rescanning the log. The time unit
can be s (seconds), m (minutes), h (hours), or d (days).

-s Sends messages. If neither -r or -s is specified, the Message Agent
executes both phases. Otherwise, only the indicated phases are exe-
cuted.

-sd time Controls the delay between polls of the database transaction log. The
-sd option is only used when running in continuous mode.

Controls the send delay that is the time to wait between polls for
more transaction log data to send.

-t Replicates all triggers. If you use this option, you must ensure that
the trigger actions are not carried out twice at remote databases, once
by the trigger being fired at the remote site, and once by the explicit
application of the replicated actions from the consolidated database.

To ensure that trigger actions are not carried out twice, you can wrap
an IF CURRENT REMOTE USER IS NULL ... END IF statement
around the body of the triggers. “Using the CURRENT REMOTE
USER special constant” on page 47.

-u Processes only transactions that exist in offline transaction logs. This
option prevents the Message Agent from processing transactions
since the latest backup. Using this option, outgoing transactions and
confirmation of incoming transactions are not sent until they exist in
offline transaction logs.

This means that only transactions from renamed logs are processed.

Message Agent (dbremote)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 151

Option Description

-ud Runs the Message Agent as a daemon on Unix platforms. If you run
the Message Agent as a daemon, you must also supply the -o or -ot
option to log output information.

If you run the Message Agent as a daemon and are using FTP or
SMTP message links, you must store the message link parameters in
the database because the Message Agent does not prompt the user
for these options when running as a daemon.

For information on message link parameters, see “Set remote mes-
sage type control parameters” on page 113.

-ux Opens the SQL Remote messages window on Solaris and Linux.

When -ux is specified, dbremote must be able to find a usable display.
If it cannot find one, for example because the DISPLAY environment
variable is not set or because the X window server is not running,
dbremote fails to start. On Windows, the SQL Remote messages
window appears automatically.

-v Displays verbose output. This option displays the SQL statements
contained in the messages to the messages window and, if the -o or
-ot option is used, to a log file.

-w n Specifies the number of database worker threads to apply incoming
messages. This option is not supported on Windows Mobile.

The default is zero, which means all messages are applied by the main
(and only) thread. A value of 1 (one) would have one thread receiving
messages from the message system and one thread applying mes-
sages to the database. The maximum number of database worker
threads is 50.

The -w option makes it possible to increase the throughput of in-
coming messages with hardware upgrades. Putting the consolidated
database on a device that can perform many concurrent operations (a
RAID array with a striped logical drive), can improve throughput of
incoming messages. Multiple processors in the computer running the
Message Agent could also improve throughput of incoming messag-
es.

The -w option does not improve performance significantly on hard-
ware that cannot perform many concurrent operations.

Incoming messages from a single remote database are never applied
on multiple threads. Messages from a single remote database are al-
ways applied serially in the correct order.

SQL Remote utilities and options reference

152 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

-x [size] Renames and restarts the transaction log after it has been scanned for
outgoing messages. In some circumstances, replicating data to a con-
solidated database can take the place of backing up remote databases,
or renaming the transaction log when the database server is shut
down.

If the optional size qualifier is supplied, the transaction log is renamed
only if it is larger than the specified size. The allowed size can be
specified as n (in bytes), nK, or nM. The default is 0.

Directory Specifies the directory in which old transaction logs are held.

The optional directory parameter specifies a directory in which old
transaction logs are held, so that the Message Agent has access to
events from before the current log was started.

Description
The Message Agent sends and applies messages for SQL Remote replication, and maintains the message
tracking system to ensure message delivery.

The name of the Message Agent executable is dbremote.

You can also run the Message Agent from your own application by calling into the DBTools library. For
more information, see the file dbrmt.h in the h subdirectory of your SQL Remote installation directory.

The user ID in the Message Agent command must have either REMOTE DBA or DBA authority.

The Message Agent uses several database connections. See “Message Agent (dbremote)” on page 146.

For information on REMOTE DBA authority, see “Grant REMOTE DBA authority” on page 30.

Message system control parameters
SQL Remote uses several registry settings to control aspects of message link behavior.

The message link control parameters are stored in the following places:

● Windows In the registry, at the following location:

\\HKEY_CURRENT_USER
 \Software
 \Sybase
 \SQL Remote

For a listing of registry settings, see the section for each message system under “SQL Remote message
systems” on page 110.

Message Agent (dbremote)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 153

Extraction utility (dbxtract)
To extract a remote database from a consolidated SQL Anywhere database.

Syntax

dbxtract [options] [directory] subscriber

Option Description

@data Read in options from a configuration file. See “@data server option”
[SQL Anywhere Server - Database Administration].

Use this option to read in options from the specified environment vari-
able or configuration file. If both exist with the same name, the envi-
ronment variable is used. See “Using configuration files” [SQL Any-
where Server - Database Administration].

If you want to protect passwords or other information in the configura-
tion file, you can use the File Hiding utility to obfuscate the contents of
the configuration file. See “File Hiding utility (dbfhide)” [SQL Any-
where Server - Database Administration].

-ac "keyword=value; ..." Connect to the database specified in the connection string to do the re-
load.

You can combine the operation of unloading a database and reloading
the results into an existing database using this option.

For example, the following command (entered all on one line) loads a
copy of the data for the field_user subscriber into an existing database
file named c:\field.db:

dbxtract -c "UID=DBA;PWD=sql;DBF=c:\cons.db"
-ac "UID=DBA;PWD=sql;DBF=c:\field.db" field_user

If you use this option, no copy of the data is created on disk, so you do
not specify an unload directory in the command. This provides greater
security for your data, but at some cost for performance.

-al filename Specify the transaction log file name for the new database if using the -
an option.

SQL Remote utilities and options reference

154 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

-an database Create a database file with the same settings as the database being ex-
tracted and automatically reload it.

You can combine the operations of unloading a database, creating a new
database, and loading the data using this option.

For example, the following command (entered all on one line) creates a
new database file named c:\field.db and copies the schema and data for
the field_user subscriber of c:\cons.db into it:

dbxtract -c "UID=DBA;PWD=sql;DBF=c:\cons.db"
-an c:\field.db field_user

If you use this option, no copy of the data is created on disk, so you do
not specify an unload directory in the command. This provides greater
security for your data, but at some cost for performance.

-ap size Set the page size of the new database. This option is ignored unless -an
is used. The page size for a database can be (in bytes) 2048, 4096, 8192,
16384, or 32768, with the default being the page size of the original
database. If there are already databases running on the database server,
the server's page size (set with the -gp option) must be large enough to
handle the new page size. See “-gp server option” [SQL Anywhere Server
- Database Administration].

-b Do not start subscriptions. If this option is specified, subscriptions at the
consolidated database (for the remote database) and at the remote data-
base (for the consolidated database) must be started explicitly using the
START SUBSCRIPTION statement for replication to begin. See
“START SUBSCRIPTION statement [SQL Remote]” [SQL Anywhere
Server - SQL Reference].

-c "keyword=value; ..." Supply database connection parameters, in a string:

The user ID should have DBA authority to ensure that the user has per-
missions on all the tables in the database.

For example, the following statement (entered all on one line) extracts
a database for remote user ID joe_remote from the sample database run-
ning on the sample_server database server, connecting as user ID DBA
with password sql. The data is unloaded into the c:\extract directory.

dbxtract -c "ENG=sample_server;DBN=demo;
UID=DBA;PWD=sql" c:\extract joe_remote

If connection parameters are not specified, connection parameters from
the SQLCONNECT environment variable are used, if set.

Extraction utility (dbxtract)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 155

Option Description

-d Extract data only. If this option is specified, the schema definition is not
unloaded and publications and subscriptions are not created at the re-
mote database. This option is used when a remote database already exists
with the proper schema, and only needs to be filled with data.

-ea alg Specify the encryption algorithm for the new database. This option al-
lows you to choose a strong encryption algorithm to encrypt your new
database. You can choose either AES (the default) or AES_FIPS for the
FIPS-approved algorithm. AES_FIPS uses a separate library and is not
compatible with AES.

For greater security, specify AES or AES256 for 128-bit or 256-bit
strong encryption, respectively. Specify AES_FIPS or AES256_FIPS
for 128-bit or 256-bit FIPS-approved encryption, respectively. For
strong encryption, you must also specify the -ek or -ep option. For more
information about strong encryption, see “Strong encryption” [SQL
Anywhere Server - Database Administration].

To create a database that is not encrypted, specify -ea none, or do not
include the -ea option (and do not specify -e, -et, -ep, or -et).

If you do not specify the -ea option, the default behavior is as follows:

● -ea none, if -ek, -ep, or -et is not specified
● -ea AES, if -ek or -ep is specified (with or without -et)
● -ea simple, if -et is used without -ek or -ep

Algorithm names are case insensitive.

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate li-
cense. All strong encryption technologies are subject to export regula-
tions.

See “Separately licensed components” [SQL Anywhere 11 - Introduc-
tion].

SQL Remote utilities and options reference

156 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

-ek key Specify the encryption key for the new database. This option allows you
to create a strongly encrypted database by specifying an encryption key
directly in the command. The algorithm used to encrypt the database is
AES or AES_FIPS as specified by the -ea option. If you specify the -ek
option without specifying -ea, the AES algorithm is used.

Caution
For strongly encrypted databases, be sure to store a copy of the key in a
safe location. If you lose the encryption key, there is no way to access
the data, even with the assistance of technical support. The database must
be discarded and you must create a new database.

-ep Prompt for the encryption key for the new database. This option specifies
that you want to create a strongly encrypted database by typing the en-
cryption key in a window. This provides an extra measure of security
by never allowing the encryption key to be seen in clear text.

You must input the encryption key twice to confirm that it was entered
correctly. If the keys don't match, the initialization fails. See “Strong
encryption” [SQL Anywhere Server - Database Administration].

-er Remove encryption from encrypted tables during an unload procedure.

When extracting from a database that has table encryption enabled, you
must specify either -er or -et to indicate whether the new database has
table encryption enabled, otherwise you get an error when attempting to
load the data into the new database.

The following command extracts a database (cons.db) that has encrypted
tables, into a new database (field.db) that does not have table encryption
enabled, removing encryption from any encrypted tables:

dbxtract -an c:\field.db -er -c
"UID=DBA;PWD=sql;DBF=c:\cons.db;DBKEY=29bN8cj1z
field_user"

Extraction utility (dbxtract)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 157

Option Description

-et Enable database table encryption in the new database (-an or -ar must
also be specified). If you specify the -et option without the -ea option,
the AES algorithm is used. If you specify the -et option, you must also
specify -ep or -ek. You can change the table encryption settings for the
new database to be different from those of the database you are unload-
ing.

When rebuilding a database that has table encryption enabled, you must
specify either -er or -et to indicate whether the new database has table
encryption enabled, otherwise you get an error when attempting to load
the data into the new database.

The following example unloads a database (cons.db) that has tables en-
crypted with the simple encryption algorithm, into a new database
(field.db) that has table encryption enabled, and uses AES_FIPS en-
cryption with the key 34jh:

dbxtract -an c:\field.db -et -ea AES_FIPS -ek 34jh -
c "UID=DBA;PWD=sql;DBF=c:\cons.db field_user"

-f Extract fully qualified publications. In most cases, you do not need to
extract fully qualified publication definitions for the remote database,
since it typically replicates all rows back to the consolidated database.

However, you may want fully qualified publications for multi-tier setups
or for setups where the remote database has rows that are not in the
consolidated database.

-ii Perform an internal unload and internal reload. Using this option forces
the reload script to use the internal UNLOAD and LOAD TABLE state-
ments rather than the Interactive SQL OUTPUT and INPUT statements
to unload and load data, respectively. This combination of operations is
the default behavior.

External operations take the path of the data files relative to the current
working directory of dbxtract, while internal statements take the path
relative to the database server.

-ix Perform an internal unload and external reload. Using this option forces
the reload script to use the internal UNLOAD statement to unload data,
and the Interactive SQL INPUT statement to load the data into the new
database.

External operations take the path of the data files relative to the current
working directory of dbxtract, while internal statements take the path
relative to the database server.

SQL Remote utilities and options reference

158 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

-l level Perform all extraction operations at specified isolation level. The default
setting is an isolation level of 0. If you are extracting a database from an
active database server, you should run it at isolation level 3 to ensure
that data in the extracted database is consistent with data on the database
server. Increasing the isolation level may result in large numbers of locks
being used by the Extraction utility (dbxtract), and may restrict database
use by other users. See “Extraction utility (dbxtract)” on page 154.

-n Extract the schema definition only. With this definition, none of the data
is unloaded. The reload file contains SQL statements to build the data-
base schema only. You can use the SYNCHRONIZE SUBSCRIPTION
statement to load the data over the messaging system. Publications, sub-
scriptions, PUBLISH, and SUBSCRIBE permissions are part of the
schema.

dbxtract -c "UID=DBA;PWD=sql;DBF=c:\remote\cons
\cons.db" -n "c:\remote\reload.sql" UserName

-nl Extract the structure (the same behavior as the -n option), but the re-
sulting reload.sql file also includes LOAD TABLE or INPUT state-
ments for each table. No user data is extracted when this option is used.
When you specify -nl, you must also include a data directory so that the
LOAD/INPUT statements can be generated, even though no files are
written to the directory. This option allows you to generate a reload script
without unloading data. You can extract the data by specifying -d. If a
database contains a table whose data should not be unloaded, you can
avoid unloading the data for that table by using dbxtract -d -e
table-name.

-o file Output messages to an output log file.

-p character Specify an escape character. The default escape character (\) can be re-
placed by another character using this option.

-q Operate quietly: do not display messages or show windows. When this
option is specified, -y must also be specified or the operation fails.

This option is available only for the command line utility.

-r file Specify the name of the generated reload Interactive SQL command file.

The default name for the reload command file is reload.sql in the current
directory. You can specify a different file name with this option.

-u Do not order data during the unload. By default, the data in each table
is ordered by primary key. Unloads are faster with the -u option, but
loading the data into the remote database is slower.

Extraction utility (dbxtract)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 159

Option Description

-v Display verbose messages. The name of the table being unloaded, the
number of rows unloaded, and the SELECT statement used.

-xf Exclude foreign keys. You can use this option if the remote database
contains a subset of the consolidated database schema, and some foreign
key references are not present in the remote database.

-xh Exclude procedure hooks.

-xi Perform an external unload and internal reload. The default behavior for
unloading the database is to use the UNLOAD statement, which is exe-
cuted by the database server. If you choose an external unload, dbxtract
uses the OUTPUT statement instead. The OUTPUT statement is exe-
cuted on the client.

External operations take the path of the data files relative to the current
working directory of dbxtract, while internal statements take the path
relative to the database server.

-xp Do not extract stored procedures from the database.

-xt Do not extract triggers from the database.

-xv Do not extract views from the database.

-xx Perform an external unload and an external load. Use the OUTPUT
statement to unload the data, and the INPUT statement to load the data
into the new database.

The default unload behavior is to use the UNLOAD statement, and the
default loading behavior is to use the LOAD TABLE statement. The
internal UNLOAD and LOAD TABLE statements are faster than OUT-
PUT and INPUT.

External operations take the path of the data files relative to the current
working directory of dbxtract, while internal statements take the path
relative to the database server.

-y Overwrite the command file without confirmation. Without specifying
this option, you are prompted to confirm the replacement of an existing
command file.

directory Specify the directory the files are written to. This is not needed if you
specify -an or -ac .

subscriber Specify the subscriber for whom the database is being extracted.

SQL Remote utilities and options reference

160 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
By default, the Extraction utility (dbxtract) runs at isolation level zero. If you are extracting a database from
an active database server, you should run it at isolation level 3 to ensure that data in the extracted database
is consistent with data on the database server. Running at isolation level 3 may hamper others' turnaround
time on the database server because of the large number of locks required. It is recommended that you run
the Extraction utility (dbxtract) when the database server is not busy, or run it against a copy of the database.

The Extraction utility (dbxtract) creates a command file and a set of associated data files. The command file
can be run against a newly-initialized database to create the database objects and load the data for the remote
database.

By default, the command file is named reload.sql.

If the remote user is a group, then all the user IDs that are members of that group are extracted. This allows
multiple users on a remote database with different user IDs, without requiring a custom extraction process.

When using the Extraction utility (dbxtract) or the Extract Database Wizard with a version 10.0.0 or later
database, the version of dbxtract used must match the version of the database server used to access the
database. If an older version of dbxtract is used with a newer database server, or vice versa, an error is
reported.

The Extraction utility (dbxtract) and Extract Database Wizard do not unload the objects created for the
dbo user ID during database creation. Changes made to these objects, such as redefining a system procedure,
are lost when the data is unloaded. Any objects created by the dbo user ID since the initialization of the
database are unloaded by the Extraction utility (dbxtract), and so these objects are preserved.

See also
● “Extracting remote databases” on page 82
● “Extracting databases” [SQL Anywhere Server - SQL Usage]

Extraction utility (dbxtract)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 161

SQL Remote options
Function

Replication options are database options included to provide control over replication behavior.

Syntax
SET [TEMPORARY] OPTION
[userid. | PUBLIC.]option-name = [option-value]

Parameters

Argument Description

option-name The name of the option being changed.

option-value A string containing the setting for the option.

Description
These options are used by the Message Agent, and should be set for the user ID specified in the Message
Agent command. They can also be set for general public use.

The following options are available.

Option Values Default

“blob_threshold option [SQL Remote]”
[SQL Anywhere Server - Database Ad-
ministration]

Integer (in bytes) 256

“compression option [SQL Remote]”
[SQL Anywhere Server - Database Ad-
ministration]

Integer, from -1 to 9 6

“delete_old_logs option [MobiLink cli-
ent] [SQL Remote] [Replication
Agent]” [SQL Anywhere Server - Data-
base Administration]

On, Off, Delay, n days Off

“external_remote_options [SQL Re-
mote]” [SQL Anywhere Server - Data-
base Administration]

On, Off Off

“qualify_owners option [SQL Remote]”
[SQL Anywhere Server - Database Ad-
ministration]

On, Off On

SQL Remote utilities and options reference

162 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Values Default

“quote_all_identifiers option [SQL Re-
mote]” [SQL Anywhere Server - Data-
base Administration]

On, Off Off

“replication_error option [SQL Re-
mote]” [SQL Anywhere Server - Data-
base Administration]

Stored procedure name (no procedure)

“replication_error_piece option [SQL
Remote]” [SQL Anywhere Server - Da-
tabase Administration]

Stored procedure name (no procedure)

“save_remote_passwords option [SQL
Remote]” [SQL Anywhere Server - Da-
tabase Administration]

On, Off On

“sr_date_format option [SQL Remote]”
[SQL Anywhere Server - Database Ad-
ministration]

date-string YYYY/MM/DD

“sr_time_format option [SQL Remote]”
[SQL Anywhere Server - Database Ad-
ministration]

time-string HH:NN:SS.SSSSSS

“sr_timestamp_format [SQL Remote]”
[SQL Anywhere Server - Database Ad-
ministration]

timestamp-string YYYY/MM/DD
HH:NN:SS.SSSSSS

“subscribe_by_remote option [SQL Re-
mote]” [SQL Anywhere Server - Data-
base Administration]

On, Off On

“verify_all_columns option [SQL Re-
mote]” [SQL Anywhere Server - Data-
base Administration]

On, Off Off

“verify_threshold option [SQL Re-
mote]” [SQL Anywhere Server - Data-
base Administration]

Integer (in bytes) 1000

SQL Remote options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 163

SQL Remote system procedures
The following stored procedure names and arguments provide the interface for customizing replication at
SQL Remote databases.

Notes
Unless otherwise stated, the following conditions apply to event-hook procedures:

● The stored procedures must have DBA authority.

● The procedure must not commit or rollback operations, or perform any action that performs an implicit
commit. The actions of the procedure are automatically committed by the calling application.

● You can troubleshoot the hooks by turning on the Message Agent verbose mode.

The #hook_dict table
The #hook_dict table is created immediately before a hook is called using the following CREATE statement:

CREATE TABLE #hook_dict(
NAME VARCHAR(128) NOT NULL UNIQUE,
value VARCHAR(255) NOT NULL);

The Message Agent uses the #hook_dict table to pass values to hook functions; hook functions use the
#hook_dict table to pass values back to the Message Agent.

sp_hook_dbremote_begin system procedure
Use this system procedure to add custom actions at the beginning of the replication process.

Rows in #hook_dict table

Name Values Description

send true or false Indicates if the process is performing the send phase of replica-
tion.

receive true or false Indicates if the process is performing the receive phase of repli-
cation.

Description
If a procedure of this name exists, it is called when the Message Agent starts.

sp_hook_dbremote_end system procedure
Use this system procedure to add custom actions just before the Message Agent exits.

SQL Remote utilities and options reference

164 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Rows in #hook_dict table

Name Values Description

send true or false Indicates if the process is performing the send phase of replica-
tion.

receive true or false Indicates if the process is performing the receive phase of repli-
cation.

exit code integer A non-zero exit code indicates an error.

Description
If a procedure of this name exists, it is called as the last event before the Message Agent shuts down.

sp_hook_dbremote_shutdown system procedure
Use this system procedure to initiate a Message Agent shutdown.

Rows in #hook_dict table

Name Values Description

send true or false Indicates if the process is performing the send phase of replica-
tion.

receive true or false Indicates if the process is performing the receive phase of repli-
cation.

shutdown true or false This row is false when the procedure is called. If the procedure
updates the row to true the Message Agent is shut down.

Description
If a procedure of this name exists, it is called when the Message Agent is neither sending nor receiving
messages, and permits a hook-initiated shutdown of the Message Agent.

sp_hook_dbremote_receive_begin system procedure
Use this system procedure to perform actions before the start of the receive phase of replication.

Rows in #hook_dict
None

SQL Remote system procedures

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 165

sp_hook_dbremote_receive_end system procedure
Use this system procedure to perform actions after the end of the receive phase of replication.

Rows in #hook_dict
None

sp_hook_dbremote_send_begin
Use this stored procedure to perform actions before the start of the send phase of replication.

Rows in #hook_dict
None

sp_hook_dbremote_send_end
Use this stored procedure to perform actions after the end of the send phase of replication.

Rows in #hook_dict
None

sp_hook_dbremote_message_sent
Use this stored procedure to perform actions after any message is sent.

Rows in #hook_dict

Name Values

remote user The message destination.

sp_hook_dbremote_message_missing
Use this stored procedure to perform actions when the Message Agent has determined that one or more
messages is missing from a remote user.

Rows in #hook_dict

Name Values

remote user The name of the remote user who will have to resend messages.

SQL Remote utilities and options reference

166 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

sp_hook_dbremote_message_apply_begin
Use this stored procedure to perform actions just before the Message Agent applies a set of messages from
a user.

Rows in #hook_dict

Name Values

remote user The name of the remote user who sent the messages about to be applied.

sp_hook_dbremote_message_apply_end
Use this stored procedure to perform actions just after the Message Agent has applied a set of messages from
a user.

Rows in #hook_dict

Name Values

remote user The name of the remote user who sent the messages that have been applied.

SQL Remote system procedures

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 167

168

SQL Remote system objects

Contents
SQL Remote system tables ... 170

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 169

SQL Remote system tables
SQL Remote system information is held in the SQL Anywhere catalog. A more comprehensible version of
this information is held in a set of system views. Following are the views you can use to access SQL Remote
data:

● “SYSARTICLE system view” [SQL Anywhere Server - SQL Reference]
● “SYSARTICLECOL system view” [SQL Anywhere Server - SQL Reference]
● “SYSPUBLICATION system view” [SQL Anywhere Server - SQL Reference]
● “SYSREMOTEOPTION system view” [SQL Anywhere Server - SQL Reference]
● “SYSREMOTEOPTIONTYPE system view” [SQL Anywhere Server - SQL Reference]
● “SYSREMOTETYPE system view” [SQL Anywhere Server - SQL Reference]
● “SYSREMOTEUSER system view” [SQL Anywhere Server - SQL Reference]
● “SYSSUBSCRIPTION system view” [SQL Anywhere Server - SQL Reference]

SQL Remote system objects

170 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SQL Remote SQL statements

Contents
SQL Remote statements ... 172

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 171

SQL Remote statements
Following are the SQL statements used for executing SQL Remote commands:

● “ALTER PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL
Reference]

● “ALTER REMOTE MESSAGE TYPE statement [SQL Remote]” [SQL Anywhere Server - SQL
Reference]

● “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL
Reference]

● “CREATE REMOTE MESSAGE TYPE statement [SQL Remote]” [SQL Anywhere Server - SQL
Reference]

● “CREATE SUBSCRIPTION statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “CREATE TRIGGER statement” [SQL Anywhere Server - SQL Reference]
● “DROP PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “DROP REMOTE MESSAGE TYPE statement [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “DROP SUBSCRIPTION statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “GRANT CONSOLIDATE statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “GRANT PUBLISH statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “GRANT REMOTE statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “GRANT REMOTE DBA statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “PASSTHROUGH statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “REMOTE RESET statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “REVOKE CONSOLIDATE statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “REVOKE PUBLISH statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “REVOKE REMOTE statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “REVOKE REMOTE DBA statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “SET REMOTE OPTION statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “START SUBSCRIPTION statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “STOP SUBSCRIPTION statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]
● “SYNCHRONIZE SUBSCRIPTION statement [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “UPDATE statement [SQL Remote]” [SQL Anywhere Server - SQL Reference]

SQL Remote SQL statements

172 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Glossary

Glossary .. 175

Glossary

Adaptive Server Anywhere (ASA)
The relational database server component of SQL Anywhere Studio, intended for use in mobile and
embedded environments or as a server for small and medium-sized businesses. In version 10.0.0, Adaptive
Server Anywhere was renamed SQL Anywhere Server, and SQL Anywhere Studio was renamed SQL
Anywhere.

See also: “SQL Anywhere” on page 199.

agent ID

See also: “client message store ID” on page 177.

article

In MobiLink or SQL Remote, an article is a database object that represents a whole table, or a subset of the
columns and rows in a table. Articles are grouped together in a publication.

See also:

● “replication” on page 197
● “publication” on page 194

atomic transaction

A transaction that is guaranteed to complete successfully or not at all. If an error prevents part of an atomic
transaction from completing, the transaction is rolled back to prevent the database from being left in an
inconsistent state.

base table

Permanent tables for data. Tables are sometimes called base tables to distinguish them from temporary
tables and views.

See also:

● “temporary table” on page 201
● “view” on page 203

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 175

bit array

A bit array is a type of array data structure that is used for efficient storage of a sequence of bits. A bit array
is similar to a character string, except that the individual pieces are 0s (zeros) and 1s (ones) instead of
characters. Bit arrays are typically used to hold a string of Boolean values.

business rule

A guideline based on real-world requirements. Business rules are typically implemented through check
constraints, user-defined data types, and the appropriate use of transactions.

See also:

● “constraint” on page 179
● “user-defined data type” on page 203

carrier

A MobiLink object, stored in MobiLink system tables or a Notifier properties file, that contains information
about a public carrier for use by server-initiated synchronization.

See also: “server-initiated synchronization” on page 198.

character set

A character set is a set of symbols, including letters, digits, spaces, and other symbols. An example of a
character set is ISO-8859-1, also known as Latin1.

See also:

● “code page” on page 177
● “encoding” on page 183
● “collation” on page 177

check constraint

A restriction that enforces specified conditions on a column or set of columns.

See also:

● “constraint” on page 179
● “foreign key constraint” on page 184
● “primary key constraint” on page 194
● “unique constraint” on page 202

checkpoint

The point at which all changes to the database are saved to the database file. At other times, committed
changes are saved only to the transaction log.

Glossary

176 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

checksum

The calculated number of bits of a database page that is recorded with the database page itself. The checksum
allows the database management system to validate the integrity of the page by ensuring that the numbers
match as the page is being written to disk. If the counts match, it's assumed that page was successfully written.

client message store

In QAnywhere, a SQL Anywhere database on the remote device that stores messages.

client message store ID

In QAnywhere, a MobiLink remote ID that uniquely identifies a client message store.

client/server

A software architecture where one application (the client) obtains information from and sends information
to another application (the server). The two applications often reside on different computers connected by
a network.

code page

A code page is an encoding that maps characters of a character set to numeric representations, typically an
integer between 0 and 255. An example of a code page is Windows code page 1252. For the purposes of this
documentation, code page and encoding are interchangeable terms.

See also:

● “character set” on page 176
● “encoding” on page 183
● “collation” on page 177

collation

A combination of a character set and a sort order that defines the properties of text in the database. For SQL
Anywhere databases, the default collation is determined by the operating system and language on which the
server is running; for example, the default collation on English Windows systems is 1252LATIN1. A
collation, also called a collating sequence, is used for comparing and sorting strings.

See also:

● “character set” on page 176
● “code page” on page 177
● “encoding” on page 183

command file

A text file containing SQL statements. Command files can be built manually, or they can be built
automatically by database utilities. The dbunload utility, for example, creates a command file consisting of
the SQL statements necessary to recreate a given database.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 177

communication stream

In MobiLink, the network protocol used for communication between the MobiLink client and the MobiLink
server.

concurrency

The simultaneous execution of two or more independent, and possibly competing, processes. SQL Anywhere
automatically uses locking to isolate transactions and ensure that each concurrent application sees a
consistent set of data.

See also:

● “transaction” on page 201
● “isolation level” on page 187

conflict resolution

In MobiLink, conflict resolution is logic that specifies what to do when two users modify the same row on
different remote databases.

connection ID

A unique number that identifies a given connection between a client application and the database. You can
determine the current connection ID using the following SQL statement:

SELECT CONNECTION_PROPERTY('Number');

connection-initiated synchronization

A form of MobiLink server-initiated synchronization in which synchronization is initiated when there are
changes to connectivity.

See also: “server-initiated synchronization” on page 198.

connection profile

A set of parameters that are required to connect to a database, such as user name, password, and server name,
that is stored and used as a convenience.

consolidated database

In distributed database environments, a database that stores the master copy of the data. In case of conflict
or discrepancy, the consolidated database is considered to have the primary copy of the data.

See also:

● “synchronization” on page 201
● “replication” on page 197

Glossary

178 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

constraint

A restriction on the values contained in a particular database object, such as a table or column. For example,
a column may have a uniqueness constraint, which requires that all values in the column be different. A table
may have a foreign key constraint, which specifies how the information in the table relates to data in some
other table.

See also:

● “check constraint” on page 176
● “foreign key constraint” on page 184
● “primary key constraint” on page 194
● “unique constraint” on page 202

contention

The act of competing for resources. For example, in database terms, two or more users trying to edit the
same row of a database contend for the rights to edit that row.

correlation name

The name of a table or view that is used in the FROM clause of a query—either its original name, or an
alternate name, that is defined in the FROM clause.

creator ID

In UltraLite Palm OS applications, an ID that is assigned when the application is created.

cursor

A named linkage to a result set, used to access and update rows from a programming interface. In SQL
Anywhere, cursors support forward and backward movement through the query results. Cursors consist of
two parts: the cursor result set, typically defined by a SELECT statement; and the cursor position.

See also:

● “cursor result set” on page 179
● “cursor position” on page 179

cursor position

A pointer to one row within the cursor result set.

See also:

● “cursor” on page 179
● “cursor result set” on page 179

cursor result set

The set of rows resulting from a query that is associated with a cursor.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 179

See also:

● “cursor” on page 179
● “cursor position” on page 179

data cube

A multi-dimensional result set with each dimension reflecting a different way to group and sort the same
results. Data cubes provide complex information about data that would otherwise require self-join queries
and correlated subqueries. Data cubes are a part of OLAP functionality.

data definition language (DDL)

The subset of SQL statements for defining the structure of data in the database. DDL statements create,
modify, and remove database objects, such as tables and users.

data manipulation language (DML)

The subset of SQL statements for manipulating data in the database. DML statements retrieve, insert, update,
and delete data in the database.

data type

The format of data, such as CHAR or NUMERIC. In the ANSI SQL standard, data types can also include a
restriction on size, character set, and collation.

See also: “domain” on page 182.

database

A collection of tables that are related by primary and foreign keys. The tables hold the information in the
database. The tables and keys together define the structure of the database. A database management system
accesses this information.

See also:

● “foreign key” on page 184
● “primary key” on page 194
● “database management system (DBMS)” on page 181
● “relational database management system (RDBMS)” on page 196

database administrator (DBA)

The user with the permissions required to maintain the database. The DBA is generally responsible for all
changes to a database schema, and for managing users and groups. The role of database administrator is
automatically built into databases as user ID DBA with password sql.

Glossary

180 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

database connection

A communication channel between a client application and the database. A valid user ID and password are
required to establish a connection. The privileges granted to the user ID determine the actions that can be
carried out during the connection.

database file

A database is held in one or more database files. There is an initial file, and subsequent files are called
dbspaces. Each table, including its indexes, must be contained within a single database file.

See also: “dbspace” on page 182.

database management system (DBMS)

A collection of programs that allow you to create and use databases.

See also: “relational database management system (RDBMS)” on page 196.

database name

The name given to a database when it is loaded by a server. The default database name is the root of the
initial database file.

See also: “database file” on page 181.

database object

A component of a database that contains or receives information. Tables, indexes, views, procedures, and
triggers are database objects.

database owner (dbo)

A special user that owns the system objects not owned by SYS.

See also:

● “database administrator (DBA)” on page 180
● “SYS” on page 201

database server

A computer program that regulates all access to information in a database. SQL Anywhere provides two
types of servers: network servers and personal servers.

DBA authority

The level of permission that enables a user to do administrative activity in the database. The DBA user has
DBA authority by default.

See also: “database administrator (DBA)” on page 180.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 181

dbspace

An additional database file that creates more space for data. A database can be held in up to 13 separate files
(an initial file and 12 dbspaces). Each table, together with its indexes, must be contained in a single database
file. The SQL command CREATE DBSPACE adds a new file to the database.

See also: “database file” on page 181.

deadlock

A state where a set of transactions arrives at a place where none can proceed.

device tracking

In MobiLink server-initiated synchronization, functionality that allows you to address messages using the
MobiLink user name that identifies a device.

See also: “server-initiated synchronization” on page 198.

direct row handling

In MobiLink, a way to synchronize table data to sources other than the MobiLink-supported consolidated
databases. You can implement both uploads and downloads with direct row handling.

See also:

● “consolidated database” on page 178
● “SQL-based synchronization” on page 199

domain

Aliases for built-in data types, including precision and scale values where applicable, and optionally
including DEFAULT values and CHECK conditions. Some domains, such as the monetary data types, are
pre-defined in SQL Anywhere. Also called user-defined data type.

See also: “data type” on page 180.

download

The stage in synchronization where data is transferred from the consolidated database to a remote database.

dynamic SQL

SQL that is generated programmatically by your program before it is executed. UltraLite dynamic SQL is
a variant designed for small-footprint devices.

EBF

Express Bug Fix. An express bug fix is a subset of the software with one or more bug fixes. The bug fixes
are listed in the release notes for the update. Bug fix updates may only be applied to installed software with
the same version number. Some testing has been performed on the software, but the software has not

Glossary

182 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

undergone full testing. You should not distribute these files with your application unless you have verified
the suitability of the software yourself.

embedded SQL

A programming interface for C programs. SQL Anywhere embedded SQL is an implementation of the ANSI
and IBM standard.

encoding

Also known as character encoding, an encoding is a method by which each character in a character set is
mapped onto one or more bytes of information, typically represented as a hexadecimal number. An example
of an encoding is UTF-8.

See also:

● “character set” on page 176
● “code page” on page 177
● “collation” on page 177

event model

In MobiLink, the sequence of events that make up a synchronization, such as begin_synchronization and
download_cursor. Events are invoked if a script is created for them.

external login

An alternate login name and password used when communicating with a remote server. By default, SQL
Anywhere uses the names and passwords of its clients whenever it connects to a remote server on behalf of
those clients. However, this default can be overridden by creating external logins. External logins are
alternate login names and passwords used when communicating with a remote server.

extraction

In SQL Remote replication, the act of unloading the appropriate structure and data from the consolidated
database. This information is used to initialize the remote database.

See also: “replication” on page 197.

failover

Switching to a redundant or standby server, system, or network on failure or unplanned termination of the
active server, system, or network. Failover happens automatically.

FILE

In SQL Remote replication, a message system that uses shared files for exchanging replication messages.
This is useful for testing and for installations without an explicit message-transport system.

See also:“replication” on page 197.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 183

file-based download

In MobiLink, a way to synchronize data in which downloads are distributed as files, allowing offline
distribution of synchronization changes.

file-definition database

In MobiLink, a SQL Anywhere database that is used for creating download files.

See also: “file-based download” on page 184.

foreign key

One or more columns in a table that duplicate the primary key values in another table. Foreign keys establish
relationships between tables.

See also:

● “primary key” on page 194
● “foreign table” on page 184

foreign key constraint

A restriction on a column or set of columns that specifies how the data in the table relates to the data in some
other table. Imposing a foreign key constraint on a set of columns makes those columns the foreign key.

See also:

● “constraint” on page 179
● “check constraint” on page 176
● “primary key constraint” on page 194
● “unique constraint” on page 202

foreign table

The table containing the foreign key.

See also: “foreign key” on page 184.

full backup

A backup of the entire database, and optionally, the transaction log. A full backup contains all the information
in the database and provides protection in the event of a system or media failure.

See also: “incremental backup” on page 186.

gateway

A MobiLink object, stored in MobiLink system tables or a Notifier properties file, that contains information
about how to send messages for server-initiated synchronization.

See also: “server-initiated synchronization” on page 198.

Glossary

184 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

generated join condition

A restriction on join results that is automatically generated. There are two types: key and natural. Key joins
are generated when you specify KEY JOIN or when you specify the keyword JOIN but do not use the
keywords CROSS, NATURAL, or ON. For a key join, the generated join condition is based on foreign key
relationships between tables. Natural joins are generated when you specify NATURAL JOIN; the generated
join condition is based on common column names in the two tables.

See also:

● “join” on page 188
● “join condition” on page 188

generation number

In MobiLink, a mechanism for forcing remote databases to upload data before applying any more download
files.

See also: “file-based download” on page 184.

global temporary table

A type of temporary table for which data definitions are visible to all users until explicitly dropped. Global
temporary tables let each user open their own identical instance of a table. By default, rows are deleted on
commit, and rows are always deleted when the connection is ended.

See also:

● “temporary table” on page 201
● “local temporary table” on page 188

grant option

The level of permission that allows a user to grant permissions to other users.

hash

A hash is an index optimization that transforms index entries into keys. An index hash aims to avoid the
expensive operation of finding, loading, and then unpacking the rows to determine the indexed value, by
including enough of the actual row data with its row ID.

histogram

The most important component of column statistics, histograms are a representation of data distribution.
SQL Anywhere maintains histograms to provide the optimizer with statistical information about the
distribution of values in columns.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 185

iAnywhere JDBC driver

The iAnywhere JDBC driver provides a JDBC driver that has some performance benefits and feature benefits
compared to the pure Java jConnect JDBC driver, but which is not a pure-Java solution. The iAnywhere
JDBC driver is recommended in most cases.

See also:

● “JDBC” on page 187
● “jConnect” on page 187

identifier

A string of characters used to reference a database object, such as a table or column. An identifier may
contain any character from A through Z, a through z, 0 through 9, underscore (_), at sign (@), number sign
(#), or dollar sign ($).

incremental backup

A backup of the transaction log only, typically used between full backups.

See also: “transaction log” on page 201.

index

A sorted set of keys and pointers associated with one or more columns in a base table. An index on one or
more columns of a table can improve performance.

InfoMaker

A reporting and data maintenance tool that lets you create sophisticated forms, reports, graphs, cross-tabs,
and tables, and applications that use these reports as building blocks.

inner join

A join in which rows appear in the result set only if both tables satisfy the join condition. Inner joins are the
default.

See also:

● “join” on page 188
● “outer join” on page 192

integrated login

A login feature that allows the same single user ID and password to be used for operating system logins,
network logins, and database connections.

Glossary

186 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

integrity

Adherence to rules that ensure that data is correct and accurate, and that the relational structure of the database
is intact.

See also: “referential integrity” on page 196.

Interactive SQL

A SQL Anywhere application that allows you to query and alter data in your database, and modify the
structure of your database. Interactive SQL provides a pane for you to enter SQL statements, and panes that
return information about how the query was processed and the result set.

isolation level

The degree to which operations in one transaction are visible to operations in other concurrent transactions.
There are four isolation levels, numbered 0 through 3. Level 3 provides the highest level of isolation. Level
0 is the default setting. SQL Anywhere also supports three snapshot isolation levels: snapshot, statement-
snapshot, and readonly-statement-snapshot.

See also: “snapshot isolation” on page 199.

JAR file

Java archive file. A compressed file format consisting of a collection of one or more packages used for Java
applications. It includes all the resources necessary to install and run a Java program in a single compressed
file.

Java class

The main structural unit of code in Java. It is a collection of procedures and variables grouped together
because they all relate to a specific, identifiable category.

jConnect

A Java implementation of the JavaSoft JDBC standard. It provides Java developers with native database
access in multi-tier and heterogeneous environments. However, the iAnywhere JDBC driver is the preferred
JDBC driver for most cases.

See also:

● “JDBC” on page 187
● “iAnywhere JDBC driver” on page 186

JDBC

Java Database Connectivity. A SQL-language programming interface that allows Java applications to access
relational data. The preferred JDBC driver is the iAnywhere JDBC driver.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 187

See also:

● “jConnect” on page 187
● “iAnywhere JDBC driver” on page 186

join

A basic operation in a relational system that links the rows in two or more tables by comparing the values
in specified columns.

join condition

A restriction that affects join results. You specify a join condition by inserting an ON clause or WHERE
clause immediately after the join. In the case of natural and key joins, SQL Anywhere generates a join
condition.

See also:

● “join” on page 188
● “generated join condition” on page 185

join type

SQL Anywhere provides four types of joins: cross join, key join, natural join, and joins using an ON clause.

See also: “join” on page 188.

light weight poller
In MobiLink server-initiated synchronization, a device application that polls for push notifications from a
MobiLink server.

See also: “server-initiated synchronization” on page 198.

Listener

A program, dblsn, that is used for MobiLink server-initiated synchronization. Listeners are installed on
remote devices and configured to initiate actions on the device when they receive push notifications.

See also: “server-initiated synchronization” on page 198.

local temporary table

A type of temporary table that exists only for the duration of a compound statement or until the end of the
connection. Local temporary tables are useful when you need to load a set of data only once. By default,
rows are deleted on commit.

See also:

● “temporary table” on page 201
● “global temporary table” on page 185

Glossary

188 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

lock

A concurrency control mechanism that protects the integrity of data during the simultaneous execution of
multiple transactions. SQL Anywhere automatically applies locks to prevent two connections from changing
the same data at the same time, and to prevent other connections from reading data that is in the process of
being changed.

You control locking by setting the isolation level.

See also:

● “isolation level” on page 187
● “concurrency” on page 178
● “integrity” on page 187

log file

A log of transactions maintained by SQL Anywhere. The log file is used to ensure that the database is
recoverable in the event of a system or media failure, to improve database performance, and to allow data
replication using SQL Remote.

See also:

● “transaction log” on page 201
● “transaction log mirror” on page 202
● “full backup” on page 184

logical index

A reference (pointer) to a physical index. There is no indexing structure stored on disk for a logical index.

LTM

Log Transfer Manager (LTM) also called Replication Agent. Used with Replication Server, the LTM is the
program that reads a database transaction log and sends committed changes to Sybase Replication Server.

See: “Replication Server” on page 197.

maintenance release

A maintenance release is a complete set of software that upgrades installed software from an older version
with the same major version number (version number format is major.minor.patch.build). Bug fixes and
other changes are listed in the release notes for the upgrade.

materialized view

A materialized view is a view that has been computed and stored on disk. Materialized views have
characteristics of both views (they are defined using a query specification), and of tables (they allow most
table operations to be performed on them).

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 189

See also:

● “base table” on page 175
● “view” on page 203

message log

A log where messages from an application such as a database server or MobiLink server can be stored. This
information can also appear in a messages window or be logged to a file. The message log includes
informational messages, errors, warnings, and messages from the MESSAGE statement.

message store

In QAnywhere, databases on the client and server device that store messages.

See also:

● “client message store” on page 177
● “server message store” on page 199

message system

In SQL Remote replication, a protocol for exchanging messages between the consolidated database and a
remote database. SQL Anywhere includes support for the following message systems: FILE, FTP, and
SMTP.

See also:

● “replication” on page 197
● “FILE” on page 183

message type

In SQL Remote replication, a database object that specifies how remote users communicate with the publisher
of a consolidated database. A consolidated database may have several message types defined for it; this
allows different remote users to communicate with it using different message systems.

See also:

● “replication” on page 197
● “consolidated database” on page 178

metadata

Data about data. Metadata describes the nature and content of other data.

See also: “schema” on page 198.

mirror log

See also: “transaction log mirror” on page 202.

Glossary

190 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MobiLink

A session-based synchronization technology designed to synchronize UltraLite and SQL Anywhere remote
databases with a consolidated database.

See also:

● “consolidated database” on page 178
● “synchronization” on page 201
● “UltraLite” on page 202

MobiLink client

There are two kinds of MobiLink clients. For SQL Anywhere remote databases, the MobiLink client is the
dbmlsync command line utility. For UltraLite remote databases, the MobiLink client is built in to the
UltraLite runtime library.

MobiLink Monitor

A graphical tool for monitoring MobiLink synchronizations.

MobiLink server

The computer program that runs MobiLink synchronization, mlsrv11.

MobiLink system table

System tables that are required by MobiLink synchronization. They are installed by MobiLink setup scripts
into the MobiLink consolidated database.

MobiLink user

A MobiLink user is used to connect to the MobiLink server. You create the MobiLink user on the remote
database and register it in the consolidated database. MobiLink user names are entirely independent of
database user names.

network protocol

The type of communication, such as TCP/IP or HTTP.

network server

A database server that accepts connections from computers sharing a common network.

See also: “personal server” on page 193.

normalization

The refinement of a database schema to eliminate redundancy and improve organization according to rules
based on relational database theory.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 191

Notifier

A program that is used by MobiLink server-initiated synchronization. Notifiers are integrated into the
MobiLink server. They check the consolidated database for push requests, and send push notifications.

See also:

● “server-initiated synchronization” on page 198
● “Listener” on page 188

object tree

In Sybase Central, the hierarchy of database objects. The top level of the object tree shows all products that
your version of Sybase Central supports. Each product expands to reveal its own sub-tree of objects.

See also: “Sybase Central” on page 200.

ODBC

Open Database Connectivity. A standard Windows interface to database management systems. ODBC is
one of several interfaces supported by SQL Anywhere.

ODBC Administrator

A Microsoft program included with Windows operating systems for setting up ODBC data sources.

ODBC data source

A specification of the data a user wants to access via ODBC, and the information needed to get to that data.

outer join

A join that preserves all the rows in a table. SQL Anywhere supports left, right, and full outer joins. A left
outer join preserves the rows in the table to the left of the join operator, and returns a null when a row in the
right table does not satisfy the join condition. A full outer join preserves all the rows from both tables.

See also:

● “join” on page 188
● “inner join” on page 186

package

In Java, a collection of related classes.

parse tree

An algebraic representation of a query.

PDB

A Palm database file.

Glossary

192 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

performance statistic

A value reflecting the performance of the database system. The CURRREAD statistic, for example,
represents the number of file reads issued by the database server that have not yet completed.

personal server

A database server that runs on the same computer as the client application. A personal database server is
typically used by a single user on a single computer, but it can support several concurrent connections from
that user.

physical index

The actual indexing structure of an index, as it is stored on disk.

plug-in module

In Sybase Central, a way to access and administer a product. Plug-ins are usually installed and registered
automatically with Sybase Central when you install the respective product. Typically, a plug-in appears as
a top-level container, in the Sybase Central main window, using the name of the product itself; for example,
SQL Anywhere.

See also: “Sybase Central” on page 200.

policy

In QAnywhere, the way you specify when message transmission should occur.

polling

In MobiLink server-initiated synchronization, the way a light weight poller, such as the MobiLink Listener,
requests push notifications from a Notifier.

See also: “server-initiated synchronization” on page 198.

PowerDesigner

A database modeling application. PowerDesigner provides a structured approach to designing a database or
data warehouse. SQL Anywhere includes the Physical Data Model component of PowerDesigner.

PowerJ

A Sybase product for developing Java applications.

predicate

A conditional expression that is optionally combined with the logical operators AND and OR to make up
the set of conditions in a WHERE or HAVING clause. In SQL, a predicate that evaluates to UNKNOWN
is interpreted as FALSE.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 193

primary key

A column or list of columns whose values uniquely identify every row in the table.

See also: “foreign key” on page 184.

primary key constraint

A uniqueness constraint on the primary key columns. A table can have only one primary key constraint.

See also:

● “constraint” on page 179
● “check constraint” on page 176
● “foreign key constraint” on page 184
● “unique constraint” on page 202
● “integrity” on page 187

primary table

The table containing the primary key in a foreign key relationship.

proxy table

A local table containing metadata used to access a table on a remote database server as if it were a local
table.

See also: “metadata” on page 190.

publication

In MobiLink or SQL Remote, a database object that identifies data that is to be synchronized. In MobiLink,
publications exist only on the clients. A publication consists of articles. SQL Remote users can receive a
publication by subscribing to it. MobiLink users can synchronize a publication by creating a synchronization
subscription to it.

See also:

● “replication” on page 197
● “article” on page 175
● “publication update” on page 194

publication update

In SQL Remote replication, a list of changes made to one or more publications in one database. A publication
update is sent periodically as part of a replication message to the remote database(s).

See also:

● “replication” on page 197
● “publication” on page 194

Glossary

194 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

publisher

In SQL Remote replication, the single user in a database who can exchange replication messages with other
replicating databases.

See also: “replication” on page 197.

push notification

In QAnywhere, a special message delivered from the server to a QAnywhere client that prompts the client
to initiate a message transmission. In MobiLink server-initiated synchronization, a special message delivered
from a Notifer to a device that contains push request data and internal information.

See also:

● “QAnywhere” on page 195
● “server-initiated synchronization” on page 198

push request

In MobiLink server-initiated synchronization, a row of values in a result set that a Notifier checks to
determine if push notifications need to be sent to a device.

See also: “server-initiated synchronization” on page 198.

QAnywhere

Application-to-application messaging, including mobile device to mobile device and mobile device to and
from the enterprise, that permits communication between custom programs running on mobile or wireless
devices and a centrally located server application.

QAnywhere agent

In QAnywhere, a process running on the client device that monitors the client message store and determines
when message transmission should occur.

query

A SQL statement or group of SQL statements that access and/or manipulate data in a database.

See also: “SQL” on page 199.

Redirector

A web server plug-in that routes requests and responses between a client and the MobiLink server. This
plug-in also implements load-balancing and failover mechanisms.

reference database

In MobiLink, a SQL Anywhere database used in the development of UltraLite clients. You can use a single
SQL Anywhere database as both reference and consolidated database during development. Databases made
with other products cannot be used as reference databases.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 195

referencing object

An object, such as a view, whose definition directly references another object in the database, such as a table.

See also: “foreign key” on page 184.

referenced object

An object, such as a table, that is directly referenced in the definition of another object, such as a view.

See also: “primary key” on page 194.

referential integrity

Adherence to rules governing data consistency, specifically the relationships between the primary and
foreign key values in different tables. To have referential integrity, the values in each foreign key must
correspond to the primary key values of a row in the referenced table.

See also:

● “primary key” on page 194
● “foreign key” on page 184

regular expression

A regular expression is a sequence of characters, wildcards, and operators that defines a pattern to search
for within a string.

relational database management system (RDBMS)

A type of database management system that stores data in the form of related tables.

See also: “database management system (DBMS)” on page 181.

remote database

In MobiLink or SQL Remote, a database that exchanges data with a consolidated database. Remote databases
may share all or some of the data in the consolidated database.

See also:

● “synchronization” on page 201
● “consolidated database” on page 178

REMOTE DBA authority

In SQL Remote, a level of permission required by the Message Agent (dbremote). In MobiLink, a level of
permission required by the SQL Anywhere synchronization client (dbmlsync). When the Message Agent
(dbremote) or synchronization client connects as a user who has this authority, it has full DBA access. The
user ID has no additional permissions when not connected through the Message Agent (dbremote) or
synchronization client (dbmlsync).

See also: “DBA authority” on page 181.

Glossary

196 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

remote ID

A unique identifier in SQL Anywhere and UltraLite databases that is used by MobiLink. The remote ID is
initially set to NULL and is set to a GUID during a database's first synchronization.

replication

The sharing of data among physically distinct databases. Sybase has three replication technologies:
MobiLink, SQL Remote, and Replication Server.

Replication Agent

See: “LTM” on page 189.

replication frequency

In SQL Remote replication, a setting for each remote user that determines how often the publisher's message
agent should send replication messages to that remote user.

See also: “replication” on page 197.

replication message

In SQL Remote or Replication Server, a communication sent between a publishing database and a subscribing
database. Messages contain data, passthrough statements, and information required by the replication system.

See also:

● “replication” on page 197
● “publication update” on page 194

Replication Server

A Sybase connection-based replication technology that works with SQL Anywhere and Adaptive Server
Enterprise. It is intended for near-real time replication between a few databases.

See also: “LTM” on page 189.

role

In conceptual database modeling, a verb or phrase that describes a relationship from one point of view. You
can describe each relationship with two roles. Examples of roles are "contains" and "is a member of."

role name

The name of a foreign key. This is called a role name because it names the relationship between the foreign
table and primary table. By default, the role name is the table name, unless another foreign key is already
using that name, in which case the default role name is the table name followed by a three-digit unique
number. You can also create the role name yourself.

See also: “foreign key” on page 184.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 197

rollback log

A record of the changes made during each uncommitted transaction. In the event of a ROLLBACK request
or a system failure, uncommitted transactions are reversed out of the database, returning the database to its
former state. Each transaction has a separate rollback log, which is deleted when the transaction is complete.

See also: “transaction” on page 201.

row-level trigger

A trigger that executes once for each row that is changed.

See also:

● “trigger” on page 202
● “statement-level trigger” on page 200

schema

The structure of a database, including tables, columns, and indexes, and the relationships between them.

script

In MobiLink, code written to handle MobiLink events. Scripts programmatically control data exchange to
meet business needs.

See also: “event model” on page 183.

script-based upload

In MobiLink, a way to customize the upload process as an alternative to using the log file.

script version

In MobiLink, a set of synchronization scripts that are applied together to create a synchronization.

secured feature

A feature specified by the -sf option when a database server is started, so it is not available for any database
running on that database server.

server-initiated synchronization

A way to initiate MobiLink synchronization from the MobiLink server.

server management request

A QAnywhere message that is formatted as XML and sent to the QAnywhere system queue as a way to
administer the server message store or monitor QAnywhere applications.

Glossary

198 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

server message store

In QAnywhere, a relational database on the server that temporarily stores messages until they are transmitted
to a client message store or JMS system. Messages are exchanged between clients via the server message
store.

service

In Windows operating systems, a way of running applications when the user ID running the application is
not logged on.

session-based synchronization

A type of synchronization where synchronization results in consistent data representation across both the
consolidated and remote databases. MobiLink is session-based.

snapshot isolation

A type of isolation level that returns a committed version of the data for transactions that issue read requests.
SQL Anywhere provides three snapshot isolation levels: snapshot, statement-snapshot, and readonly-
statement-snapshot. When using snapshot isolation, read operations do not block write operations.

See also: “isolation level” on page 187.

SQL

The language used to communicate with relational databases. ANSI has defined standards for SQL, the latest
of which is SQL-2003. SQL stands, unofficially, for Structured Query Language.

SQL Anywhere

The relational database server component of SQL Anywhere that is intended for use in mobile and embedded
environments or as a server for small and medium-sized businesses. SQL Anywhere is also the name of the
package that contains the SQL Anywhere RDBMS, the UltraLite RDBMS, MobiLink synchronization
software, and other components.

SQL-based synchronization

In MobiLink, a way to synchronize table data to MobiLink-supported consolidated databases using
MobiLink events. For SQL-based synchronization, you can use SQL directly or you can return SQL using
the MobiLink server APIs for Java and .NET.

SQL Remote

A message-based data replication technology for two-way replication between consolidated and remote
databases. The consolidated and remote databases must be SQL Anywhere.

SQL statement

A string containing SQL keywords designed for passing instructions to a DBMS.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 199

See also:

● “schema” on page 198
● “SQL” on page 199
● “database management system (DBMS)” on page 181

statement-level trigger

A trigger that executes after the entire triggering statement is completed.

See also:

● “trigger” on page 202
● “row-level trigger” on page 198

stored procedure

A stored procedure is a group of SQL instructions stored in the database and used to execute a set of operations
or queries on a database server

string literal

A string literal is a sequence of characters enclosed in single quotes.

subquery

A SELECT statement that is nested inside another SELECT, INSERT, UPDATE, or DELETE statement,
or another subquery.

There are two types of subquery: correlated and nested.

subscription

In MobiLink synchronization, a link in a client database between a publication and a MobiLink user, allowing
the data described by the publication to be synchronized.

In SQL Remote replication, a link between a publication and a remote user, allowing the user to exchange
updates on that publication with the consolidated database.

See also:

● “publication” on page 194
● “MobiLink user” on page 191

Sybase Central

A database management tool that provides SQL Anywhere database settings, properties, and utilities in a
graphical user interface. Sybase Central can also be used for managing other Sybase products, including
MobiLink.

Glossary

200 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

synchronization

The process of replicating data between databases using MobiLink technology.

In SQL Remote, synchronization is used exclusively to denote the process of initializing a remote database
with an initial set of data.

See also:

● “MobiLink” on page 191
● “SQL Remote” on page 199

SYS

A special user that owns most of the system objects. You cannot log in as SYS.

system object

Database objects owned by SYS or dbo.

system table

A table, owned by SYS or dbo, that holds metadata. System tables, also known as data dictionary tables, are
created and maintained by the database server.

system view

A type of view, included in every database, that presents the information held in the system tables in an
easily understood format.

temporary table

A table that is created for the temporary storage of data. There are two types: global and local.

See also:

● “local temporary table” on page 188
● “global temporary table” on page 185

transaction

A sequence of SQL statements that comprise a logical unit of work. A transaction is processed in its entirety
or not at all. SQL Anywhere supports transaction processing, with locking features built in to allow
concurrent transactions to access the database without corrupting the data. Transactions end either with a
COMMIT statement, which makes the changes to the data permanent, or a ROLLBACK statement, which
undoes all the changes made during the transaction.

transaction log

A file storing all changes made to a database, in the order in which they are made. It improves performance
and allows data recovery in the event the database file is damaged.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 201

transaction log mirror

An optional identical copy of the transaction log file, maintained simultaneously. Every time a database
change is written to the transaction log file, it is also written to the transaction log mirror file.

A mirror file should be kept on a separate device from the transaction log, so that if either device fails, the
other copy of the log keeps the data safe for recovery.

See also: “transaction log” on page 201.

transactional integrity

In MobiLink, the guaranteed maintenance of transactions across the synchronization system. Either a
complete transaction is synchronized, or no part of the transaction is synchronized.

transmission rule

In QAnywhere, logic that determines when message transmission is to occur, which messages to transmit,
and when messages should be deleted.

trigger

A special form of stored procedure that is executed automatically when a user runs a query that modifies the
data.

See also:

● “row-level trigger” on page 198
● “statement-level trigger” on page 200
● “integrity” on page 187

UltraLite

A database optimized for small, mobile, and embedded devices. Intended platforms include cell phones,
pagers, and personal organizers.

UltraLite runtime

An in-process relational database management system that includes a built-in MobiLink synchronization
client. The UltraLite runtime is included in the libraries used by each of the UltraLite programming interfaces,
and in the UltraLite engine.

unique constraint

A restriction on a column or set of columns requiring that all non-null values are different. A table can have
multiple unique constraints.

See also:

● “foreign key constraint” on page 184
● “primary key constraint” on page 194
● “constraint” on page 179

Glossary

202 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

unload

Unloading a database exports the structure and/or data of the database to text files (SQL command files for
the structure, and ASCII comma-separated files for the data). You unload a database with the Unload utility.

In addition, you can unload selected portions of your data using the UNLOAD statement.

upload

The stage in synchronization where data is transferred from a remote database to a consolidated database.

user-defined data type

See “domain” on page 182.

validate

To test for particular types of file corruption of a database, table, or index.

view

A SELECT statement that is stored in the database as an object. It allows users to see a subset of rows or
columns from one or more tables. Each time a user uses a view of a particular table, or combination of tables,
it is recomputed from the information stored in those tables. Views are useful for security purposes, and to
tailor the appearance of database information to make data access straightforward.

window

The group of rows over which an analytic function is performed. A window may contain one, many, or all
rows of data that has been partitioned according to the grouping specifications provided in the window
definition. The window moves to include the number or range of rows needed to perform the calculations
for the current row in the input. The main benefit of the window construct is that it allows additional
opportunities for grouping and analysis of results, without having to perform additional queries.

Windows

The Microsoft Windows family of operating systems, such as Windows Vista, Windows XP, and Windows
200x.

Windows CE
See “Windows Mobile” on page 203.

Windows Mobile

A family of operating systems produced by Microsoft for mobile devices.

work table

An internal storage area for interim results during query optimization.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 203

204

Index
Symbols
#hook_dict table

SQL Remote dbremote, 164
SQL Remote unique primary keys, 74

-a option
SQL Remote [dbremote], 146

-ac option
SQL Remote extraction [dbxtract] utility, 154

-al option
SQL Remote extraction [dbxtract] utility, 154

-an option
SQL Remote extraction [dbxtract] utility, 154

-ap option
SQL Remote extraction [dbxtract] utility, 154

-b option
SQL Remote [dbremote], 146
SQL Remote extraction [dbxtract] utility, 154

-c option
SQL Remote [dbremote], 146
SQL Remote extraction [dbxtract] utility, 154

-d option
SQL Remote extraction [dbxtract] utility, 154

-dl option
SQL Remote [dbremote], 146

-ea option
SQL Remote extraction [dbxtract] utility, 154

-ek option
SQL Remote [dbremote], 146
SQL Remote extraction [dbxtract] utility, 154

-ep option
SQL Remote [dbremote], 146
SQL Remote extraction [dbxtract] utility, 154

-er option
SQL Remote extraction [dbxtract] utility, 154

-et option
SQL Remote extraction [dbxtract] utility, 154

-f option
SQL Remote extraction [dbxtract] utility, 154

-g option
SQL Remote [dbremote], 146

-ii option
SQL Remote extraction [dbxtract] utility, 154

-ix option
SQL Remote extraction [dbxtract] utility, 154

-l option
Message Agent (dbremote), 90
SQL Remote [dbremote], 146
SQL Remote extraction [dbxtract] utility, 154

-m option
SQL Remote [dbremote], 146

-ml option
SQL Remote [dbremote], 146

-n option
SQL Remote extraction [dbxtract] utility, 154

-nl option
SQL Remote extraction [dbxtract] utility, 154

-o option
SQL Remote [dbremote], 146
SQL Remote extraction [dbxtract] utility, 154

-os option
SQL Remote [dbremote], 146

-ot option
SQL Remote [dbremote], 146

-p option
SQL Remote [dbremote], 146
SQL Remote extraction [dbxtract] utility, 154

-q option
SQL Remote [dbremote], 146
SQL Remote extraction [dbxtract] utility, 154

-qc option
SQL Remote [dbremote], 146

-r option
SQL Remote [dbremote], 146
SQL Remote extraction [dbxtract] utility, 154

-rd option
SQL Remote [dbremote], 146

-ro option
SQL Remote [dbremote], 146

-rp option
SQL Remote [dbremote], 146

-rt option
SQL Remote [dbremote], 146

-ru option
SQL Remote [dbremote], 146

-s option
SQL Remote [dbremote], 146

-sd option
SQL Remote [dbremote], 146

-t option
SQL Remote [dbremote], 146

-u option
SQL Remote [dbremote], 146

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 205

SQL Remote extraction [dbxtract] utility, 154
-ud option

SQL Remote [dbremote], 146
-ux option

SQL Remote [dbremote], 146
-v option

SQL Remote [dbremote], 146
SQL Remote extraction [dbxtract] utility, 154

-w option
SQL Remote [dbremote], 146

-x option
SQL Remote [dbremote], 146

-xf option
SQL Remote extraction [dbxtract] utility, 154

-xh option
SQL Remote extraction [dbxtract] utility, 154

-xi option
SQL Remote extraction [dbxtract] utility, 154

-xp option
SQL Remote extraction [dbxtract] utility, 154

-xt option
SQL Remote extraction [dbxtract] utility, 154

-xv option
SQL Remote extraction [dbxtract] utility, 154

-xx option
SQL Remote extraction [dbxtract] utility, 154

-y option
SQL Remote extraction [dbxtract] utility, 154

@data option
SQL Remote [db remote], 146
SQL Remote extraction [dbxtract] utility, 154

A
ActiveSync

SQL Remote synchronization for Windows Mobile,
115

addresses
SQL Remote FILE sharing, 114
SQL Remote FTP, 115

administering
SQL Remote, 80

administering SQL Remote
about, 80

agent IDs
glossary definition, 175

articles
glossary definition, 175

INSERT statements, 52
SQL Remote creation, 13

atomic transactions
glossary definition, 175

authorities
SQL Remote revoking REMOTE DBA, 31

B
backups

SQL Remote remote databases, 121
SQL Remote transaction log management, 121

base tables
glossary definition, 175

batch mode
SQL Remote Message Agent (dbremote), 92

BEFORE trigger
ignoring errors, 129

bit arrays
glossary definition, 176

BLOBS
SQL Remote, 40

bugs
providing feedback, xi

business rules
glossary definition, 176

C
cache

SQL Remote, 96, 101
carriers

glossary definition, 176
ccMail

SQL Remote, 110
character sets

glossary definition, 176
CHECK constraints

glossary definition, 176
checkpoints

glossary definition, 176
checksums

glossary definition, 177
client message store IDs

glossary definition, 177
client message stores

glossary definition, 177
client/server

glossary definition, 177

Index

206 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

code pages
glossary definition, 177

collations
glossary definition, 177

command files
glossary definition, 177

command prompts
conventions, ix
curly braces, ix
environment variables, ix
parentheses, ix
quotes, ix

command shells
conventions, ix
curly braces, ix
environment variables, ix
parentheses, ix
quotes, ix

communication streams
glossary definition, 178

concurrency
glossary definition, 178

confirm_received column
SQL Remote, 105

conflict resolution
glossary definition, 178
SQL Remote approaches, 43, 50
SQL Remote triggers, 44

conflicts
SQL Remote, 42
SQL Remote management, 43

connection IDs
glossary definition, 178

connection profiles
glossary definition, 178

connection-initiated synchronization
glossary definition, 178

connections
SQL Remote Message Agent, 146

CONSOLIDATE permission
SQL Remote, 28
SQL Remote granting, 28

consolidated databases
glossary definition, 178
setting, 28
SQL Remote, 9

constraints
glossary definition, 179

contacts SQL Remote example
about, 61

contention
glossary definition, 179

continuous mode
Message Agent (dbremote), 90

conventions
command prompts, ix
command shells, ix
documentation, viii
file names in documentation, viii

correlation names
glossary definition, 179

create article wizard
SQL Remote adding articles in , 19

create publication wizard
SQL Remote, 13

create SQL Remote message type wizard
adding message types in Sybase Central, 110

create SQL Remote subscription wizard
using, 33

CREATE SUBSCRIPTION statement
SQL Remote, 33

creator ID
glossary definition, 179

CURRENT REMOTE USER
about, 47

cursor positions
glossary definition, 179

cursor result sets
glossary definition, 179

cursors
glossary definition, 179

D
daemon

SQL Remote dbremote, 146
SQL Remote Message Agent, 146

data cube
glossary definition, 180

data exchange
SQL Remote, 4

data manipulation language
glossary definition, 180

data movement technologies
SQL Remote replication, 4

data recovery

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 207

SQL Remote, 121
data types

glossary definition, 180
SQL Remote replicating, 40

database administrator
glossary definition, 180

database connections
glossary definition, 181

database extraction utility
SQL Remote syntax, 154

database Extraction utility (dbxtract)
SQL Remote about, 154

database extraction utility (dbxtract)
SQL Remote, 154

database files
glossary definition, 181

database names
glossary definition, 181

database objects
glossary definition, 181

database owner
glossary definition, 181

database servers
glossary definition, 181

databases
glossary definition, 180
setting a consolidated database, 28

DBA authority
glossary definition, 181

DBMS
glossary definition, 181

dbo user
SQL Remote system objects, 154

dbremote
options, 146
SQL Remote #hook_dict table, 164
SQL Remote about, 89
SQL Remote introduction, 8
SQL Remote security, 134
starting on Mac OS X, 93
syntax, 146

dbspaces
glossary definition, 182

dbunload utility
SQL Remote, 135

dbxtract utility
SQL Remote, 154
SQL Remote about, 140

SQL Remote options, 154
SQL Remote sp_hook_dbxtract_begin procedure,
74
SQL Remote syntax, 154
syntax, 154

DCX
about, vi

DDL
glossary definition, 180

deadlocks
glossary definition, 182

debug control parameter
SQL Remote FILE message type, 114
SQL Remote FTP message type, 115
SQL Remote SMTP message type, 117

Deleting Corrupt Message error
SQL Remote, 108

deploying
SQL Remote databases, 82

design
SQL Remote many-to-many relationships, 67
SQL Remote principles, 35

design overview
SQL Remote, 35

developer community
newsgroups, xi

device tracking
glossary definition, 182

direct row handling
glossary definition, 182

directory control parameter
SQL Remote FILE message type, 114

directory option
SQL Remote [dbremote], 146
SQL Remote [dbxtract], 154

DLL
SQL Remote replicating, 39

DML
glossary definition, 180

DocCommentXchange (DCX)
about, vi

documentation
conventions, viii
SQL Anywhere, vi

domains
glossary definition, 182

downloads
glossary definition, 182

Index

208 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

dropping
SQL Remote message types, 112
SQL Remote publications, 20

dynamic SQL
glossary definition, 182

E
EBFs

glossary definition, 182
embedded SQL

glossary definition, 183
encode_dll control parameter

SQL Remote FILE message type, 114
SQL Remote FTP message type, 115

encoding
glossary definition, 183
SQL Remote custom, 108

encoding and compressing messages
SQL Remote, 108

encoding scheme
SQL Remote, 108

encryption
SQL Remote, 134

environment variables
command prompts, ix
command shells, ix
SQLREMOTE, 113

errors
SQL Remote default handling, 129
SQL Remote reporting by Message Agent
(dbremote), 129

event hooks
sp_hook_dbremote_message_sent stored procedure,
166
SQL Remote about, 164
SQL Remote sp_hook_dbremote_begin stored
procedure, 164
SQL Remote sp_hook_dbremote_end , 164
SQL Remote
sp_hook_dbremote_message_apply_begin stored
procedure, 167
SQL Remote
sp_hook_dbremote_message_apply_end stored
procedure, 167
SQL Remote sp_hook_dbremote_message_missing
stored procedure, 166

SQL Remote sp_hook_dbremote_receive_begin
stored procedure, 165
SQL Remote sp_hook_dbremote_receive_end
stored procedure, 166
SQL Remote sp_hook_dbremote_send_begin stored
procedure, 166
SQL Remote sp_hook_dbremote_send_end stored
procedure, 166
SQL Remote sp_hook_dbremote_shutdown stored
procedure, 165

event model
glossary definition, 183

external logins
glossary definition, 183

extracting
SQL Remote deploying databases, 82
SQL Remote reload files, 84

extraction
glossary definition, 183

extraction utility
SQL Remote options, 154
SQL Remote syntax, 154

Extraction utility (dbxtract)
SQL Remote synchronizing databases, 140

extraction utility (dbxtract)
SQL Remote [dbxtract], 154

F
failover

glossary definition, 183
feedback

documentation, xi
providing, xi
reporting an error, xi
requesting an update, xi

FILE
glossary definition, 183

FILE message type
glossary definition, 183
SQL Remote, 114
SQL Remote control parameters, 114
SQL Remote using, 110

file-based downloads
glossary definition, 184

file-definition database
glossary definition, 184

finding out more and requesting technical assistance

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 209

technical support, xi
foreign key constraints

glossary definition, 184
foreign keys

glossary definition, 184
foreign tables

glossary definition, 184
frequency

SQL Remote about, 91
FTP message system

about, 115
FTP message type

SQL Remote, 115
SQL Remote control parameters, 115
SQL Remote troubleshooting, 116
SQL Remote using, 110

full backups
glossary definition, 184

G
gateways

glossary definition, 184
generated join conditions

glossary definition, 185
generation numbers

glossary definition, 185
getting help

technical support, xi
global autoincrement

SQL Remote, 54
global temporary tables

glossary definition, 185
global_database_id option

SQL Remote, 74
glossary

list of SQL Anywhere terminology, 175
grant options

glossary definition, 185
GRANT PUBLISH statement

SQL Remote about, 23
GRANT REMOTE DBA statement

SQL Remote using, 30
guaranteed message delivery system

SQL Remote , 103

H
handling lost or corrupt messages

SQL Remote, 106
hash

glossary definition, 185
help

technical support, xi
histograms

glossary definition, 185
hooks

SQL Remote about, 164
host control parameter

SQL Remote FTP message type, 115

I
iAnywhere developer community

newsgroups, xi
iAnywhere JDBC driver

glossary definition, 186
icons

used in this Help, x
identifiers

glossary definition, 186
incremental backups

glossary definition, 186
indexes

glossary definition, 186
InfoMaker

glossary definition, 186
inner joins

glossary definition, 186
install-dir

documentation usage, viii
integrated logins

glossary definition, 186
integrity

glossary definition, 187
Interactive SQL

glossary definition, 187
invalid_extensions parameter

SQL Remote FILE message type, 114
SQL Remote FTP message type, 115

isolation levels
glossary definition, 187

J
JAR files

glossary definition, 187
Java classes

Index

210 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

glossary definition, 187
jConnect

glossary definition, 187
JDBC

glossary definition, 187
join conditions

glossary definition, 188
join types

glossary definition, 188
joins

glossary definition, 188

K
key joins

glossary definition, 185

L
Listeners

glossary definition, 188
local temporary tables

glossary definition, 188
locks

glossary definition, 189
log files

glossary definition, 189
log_received column

SQL Remote, 105
log_sent column

SQL Remote, 105
logical indexes

glossary definition, 189
Lotus Notes

SQL Remote supported message types, 110
LTM

glossary definition, 189

M
Mac OS X

running dbremote, 93
maintenance releases

glossary definition, 189
many-to-many relationships

SQL Remote publication design, 67
materialized views

glossary definition, 189
media failures

SQL Remote, 121

message
SQL Remote administration, 80

Message Agent
SQL Remote about, 89
SQL Remote administration, 80
SQL Remote connections, 146
SQL Remote daemon, 146
SQL Remote introduction, 8
SQL Remote options, 146

Message Agent (dbremote)
guaranteed message delivery system, 103
SQL Remote backup procedures, 121
SQL Remote batch mode, 92
SQL Remote continuous mode, 90
SQL Remote output , 129
SQL Remote performance, 95
SQL Remote reporting errors, 129
SQL Remote running as a service, 91
SQL Remote security, 134
SQL Remote settings, 90
SQL Remote transaction log management about,
121
SQL Remote tuning throughput, 98

message log
glossary definition, 190

message stores
glossary definition, 190

message systems
glossary definition, 190

message type control parameters
SQL Remote, 113

message types
glossary definition, 190
SQL Remote , 110
SQL Remote dropping, 112
SQL Remote FILE sharing, 114
SQL Remote FTP, 115
SQL Remote SMTP, 117
SQL Remote using, 110

messages
SQL Remote caching, 96, 101
SQL Remote synchronizing databases, 141

metadata
glossary definition, 190

mirror logs
glossary definition, 190

MobiLink
glossary definition, 191

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 211

MobiLink clients
glossary definition, 191

MobiLink Monitor
glossary definition, 191

MobiLink server
glossary definition, 191

MobiLink system tables
glossary definition, 191

MobiLink users
glossary definition, 191

multi-level hierarchies
SQL Remote passthrough mode limitation, 137
SQL Remote permissions, 22

multi-tier hierarchy
SQL Remote worker threads, 98

multi-tiered installations
SQL Remote permissions, 22

mutli-level hierarchies
SQL Remote database extraction, 86

N
natural joins

glossary definition, 185
network protocols

glossary definition, 191
network server

glossary definition, 191
newsgroups

technical support, xi
normalization

glossary definition, 191
Notes

(see also Lotus Notes)
SQL Remote, 110

Notifiers
glossary definition, 192

O
object trees

glossary definition, 192
ODBC

glossary definition, 192
ODBC Administrator

glossary definition, 192
ODBC data sources

glossary definition, 192
online books

PDF, vi
options

SQL Remote, 162
outer joins

glossary definition, 192
output_log_send_limit remote option

SQL Remote troubleshooting, 130
output_log_send_now remote option

SQL Remote troubleshooting, 130
output_log_send_on_error remote option

SQL Remote troubleshooting, 130

P
packages

glossary definition, 192
parse trees

glossary definition, 192
partitioning

SQL Remote, 13
passthrough mode

SQL Remote, 137
PASSTHROUGH statement

SQL Remote, 137
password control parameter

SQL Remote FTP message type, 115
patience

SQL Remote, 94
PDB

glossary definition, 192
PDF

documentation, vi
performance

SQL Remote Message Agent (dbremote), 95
SQL Remote publications, 13

performance statistics
glossary definition, 193

permission
SQL Remote revoking REMOTE, 29

permissions
SQL Remote granting CONSOLIDATE, 28
SQL Remote management, 28
SQL Remote multi-tier installations, 22
SQL Remote revoking REMOTE, 27

personal server
glossary definition, 193

physical indexes
glossary definition, 193

Index

212 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

plug-in modules
glossary definition, 193

policies
glossary definition, 193

policy example
SQL Remote publications, 67

polling
glossary definition, 193

pop3_host control parameter
SQL Remote SMTP message type, 117

pop3_password control parameter
SQL Remote SMTP message type, 117

pop3_userid control parameter
SQL Remote SMTP message type, 117

port control parameter
SQL Remote FTP message type, 115

PowerDesigner
glossary definition, 193

PowerJ
glossary definition, 193

predicates
glossary definition, 193

primary key constraints
glossary definition, 194

primary key pools
SQL Remote, 55

primary keys
glossary definition, 194
SQL Remote, 51
SQL Remote primary key pools, 55
SQL Remote unique values, 54

primary tables
glossary definition, 194

proxy tables
glossary definition, 194

publication updates
glossary definition, 194

publications
glossary definition, 194
SQL Remote alteration, 19
SQL Remote creation, 13
SQL Remote design, 13
SQL Remote dropping, 20
SQL Remote many-to-many relationships, 67
SQL Remote replication, 33

PUBLISH permission
SQL Remote, 28

publisher

glossary definition, 195
publishing

SQL Remote, 13
push notifications

glossary definition, 195
push requests

glossary definition, 195

Q
QAnywhere

glossary definition, 195
QAnywhere Agent

glossary definition, 195
queries

glossary definition, 195

R
RDBMS

glossary definition, 196
reconnect_pause parameter

SQL Remote FTP message type, 115
reconnect_retries parameter

SQL Remote FTP message type, 115
recovery

SQL Remote, 121
Redirector

glossary definition, 195
reference databases

glossary definition, 195
referenced object

glossary definition, 196
referencing object

glossary definition, 196
referential integrity

glossary definition, 196
SQL Remote, 51

regular expressions
glossary definition, 196

reload files
SQL Remote database extraction, 84

remote databases
glossary definition, 196

REMOTE DBA authority
glossary definition, 196

remote IDs
glossary definition, 197

REMOTE permission

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 213

SQL Remote, 28
replication

(see also SQL Remote)
about SQL Remote, 3
glossary definition, 197
publication design, 13
SQL Remote backup procedures, 121
SQL Remote backups, 121
SQL Remote BLOBs, 40
SQL Remote conflicts, 42
SQL Remote data definition statements, 39
SQL Remote data recovery, 121
SQL Remote data types, 40
SQL Remote dbremote, 146
SQL Remote files, 40
SQL Remote Message Agent, 146
SQL Remote passthrough mode, 137
SQL Remote primary key errors, 51
SQL Remote primary keys, 54
SQL Remote procedures, 38
SQL Remote publications, 33
SQL Remote referential integrity errors , 51
SQL Remote subscriptions, 33
SQL Remote transaction log management, 121
SQL Remote triggers, 38
SQL Remote triggers designing, 39
SQL statements, 137

Replication Agent
glossary definition, 197

replication conflicts
SQL Remote management, 43, 50

replication errors
SQL Remote, 42

replication errors and conflicts
SQL Remote, 42

replication frequency
glossary definition, 197

replication messages
glossary definition, 197

Replication Server
glossary definition, 197

replication_error option
SQL Remote error handling procedures, 129
tracking SQL errors, 129

reporting errors
SQL Remote Message Agent (dbremote), 129

rereceive_count column
SQL Remote, 106

resend requests
SQL Remote, 97

resend_count column
SQL Remote, 106

RESOLVE UPDATE
example, 47

RESOLVE UPDATE trigger
example, 46, 49

RESOLVE UPDATE triggers
CURRENT REMOTE USER, 47

REVOKE PUBLISH statement
SQL Remote about, 23

REVOKE REMOTE DBA statement
SQL Remote using, 31

REVOKE statement
SQL Remote, 27, 29

revoking REMOTE DBA authority
SQL Remote, 31

revoking remote permission
SQL Remote, 29

revoking remote permissions
SQL Remote, 27

role names
glossary definition, 197

roles
glossary definition, 197

rollback logs
glossary definition, 198

root control parameter
SQL Remote FTP message type, 115

row-level triggers
glossary definition, 198

S
samples

SQL Remote policy example, 67
samples-dir

documentation usage, viii
schemas

glossary definition, 198
script versions

glossary definition, 198
script-based uploads

glossary definition, 198
scripts

glossary definition, 198
secured features

Index

214 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

glossary definition, 198
selecting a send frequency

SQL Remote about, 91
SEND AT clause

SQL Remote frequency setting, 91
SEND EVERY clause

SQL Remote frequency setting, 91
send frequency

SQL Remote Message Agent (dbremote), 90, 92
SQL Remote selection, 91

server management requests
glossary definition, 198

server message stores
glossary definition, 199

server-initiated synchronization
glossary definition, 198

services
glossary definition, 199
SQL Remote Message Agent (dbremote), 91

session-based synchronization
glossary definition, 199

SMTP message type
SQL Remote, 117
SQL Remote control parameter, 117
SQL Remote using, 110

SMTP/POP
SQL Remote addresses, 118

smtp_authenticate control parameter
SQL Remote SMTP message type, 118

smtp_host control parameter
SQL Remote SMTP message type, 117

smtp_password control parameter
SQL Remote SMTP message type, 118

smtp_userid control parameter
SQL Remote SMTP message type, 118

snapshot isolation
glossary definition, 199

sp_hook_dbremote_begin stored procedure
SQL Remote syntax, 164

sp_hook_dbremote_end stored procedure
SQL Remote syntax, 164

sp_hook_dbremote_message_apply_begin stored
procedure

SQL Remote syntax, 167
sp_hook_dbremote_message_apply_end stored
procedure

SQL Remote syntax, 167

sp_hook_dbremote_message_missing stored
procedure

syntax, 166
sp_hook_dbremote_message_sent stored procedure

SQL Remote syntax, 166
sp_hook_dbremote_receive_begin stored procedure

SQL Remote syntax, 165
sp_hook_dbremote_receive_end stored procedure

SQL Remote syntax, 166
sp_hook_dbremote_send_begin stored procedure

SQL Remote syntax, 166
sp_hook_dbremote_send_end stored procedure

SQL Remote syntax, 166
sp_hook_dbremote_shutdown stored procedure

SQL Remote syntax, 165
sp_hook_dbxtract_begin procedure

SQL Remote, 74
specifying a consolidated database

about, 28
SQL

glossary definition, 199
SQL Anywhere

documentation, vi
glossary definition, 199

SQL Remote
(see also replication)
about, 4
ActiveSync and Windows Mobile, 115
administering, 80
administration overview, 80
backup procedures, 121
backup procedures at remote databases, 121
components, 8
concepts, 4
dbxtract utility, 154
deployment overview, 82
design principles, 35
event hooks, 164
glossary definition, 199
guaranteed message delivery system, 103
Message Agent (dbremote) performance, 95
Message Agent introduction, 8
mobile workforces, 4
publications, 33
receiving message tasks, 94
replicating data types, 40
replicating dates, 41
replicating DDL statements, 39

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 215

replicating deletes, 36
replicating inserts, 36
replicating procedures, 38
replicating times, 41
replicating triggers, 38
replicating updates, 36
replication system recovery procedures, 121
resolving date conflicts, 47
running as a service, 91
SQL Anywhere system tables, 170
SQL Remote trigger replication, 39
SQL statements, 172
subscribers, 4
subscriptions, 33
supported message systems, 110
system objects, 170
transaction log management, 121
unloading databases, 135
users removing, 27, 29
utilities and options reference, 145
Windows Mobile and ActiveSync, 115

SQL Remote administration
about, 79

SQL Remote components
about, 8

SQL Remote concepts
about, 4

SQL Remote options
about, 162

SQL statements
glossary definition, 199
SQL Remote list, 172

SQL-based synchronization
glossary definition, 199

SQLANY.INI
SQL Remote, 113

SQLREMOTE environment variable
alternative to, 114
setting message control parameters, 113

stable queue
SQL Remote cleaning, 146

statement-level triggers
glossary definition, 200

statements
SQL Remote, 172

stored procedures
glossary definition, 200

string literal

glossary definition, 200
subqueries

glossary definition, 200
subscriber option

SQL Remote [dbxtract], 154
subscription expressions

SQL Remote cost of evaluating, 35
SQL Remote using, 16

subscriptions
glossary definition, 200
SQL Remote creation, 33
SQL Remote replication, 33

support
newsgroups, xi

suppress_dialogs control parameter
SQL Remote SMTP message type, 117

suppress_dialogs parameter
SQL Remote FTP message type, 115

Sybase Central
glossary definition, 200
setting a consolidated database, 28

SyncConsole
starting dbremote, 93

synchronization
glossary definition, 201
SQL Remote, 140

synchronizing
SQL Remote synchronizing databases, 140

synchronizing data over a message system
SQL Remote, 141

SYS
glossary definition, 201

SYSREMOTEUSER
confirm_received column, 105
log_received column, 105
log_sent column, 105
rereceive_count column, 106
resend_count column, 106
SQL Remote, 103

system objects
glossary definition, 201
SQL Remote, 170
SQL Remote dbo user, 154

system tables
glossary definition, 201
SQL Remote, 170

system views
glossary definition, 201

Index

216 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

T
technical support

newsgroups, xi
temporary tables

glossary definition, 201
territory realignment

SQL Remote foreign keys, 63
SQL Remote many-to-many relationships, 70
SQL Remote UPDATES, 36

testing
SQL Remote deployments, 80

topics
graphic icons, x

tracking SQL errors
SQL Remote, 129

transaction log
glossary definition, 201
SQL Remote guaranteed message delivery, 104
SQL Remote Message Agent, 146
SQL Remote offsets, 103
SQL Remote publications, 94

transaction log mirror
glossary definition, 202
SQL Remote, 121

transactional integrity
glossary definition, 202

transactions
glossary definition, 201

transmission rules
glossary definition, 202

triggers
glossary definition, 202
SQL Remote, 39
SQL Remote designing, 65

troubleshooting
newsgroups, xi
SQL Remote errors, 129

U
UltraLite

glossary definition, 202
UltraLite runtime

glossary definition, 202
unique column values

SQL Remote, 54
unique constraints

glossary definition, 202

Unix
SQL Remote supported message types, 110

unlink_delay control parameter
SQL Remote FILE message type, 114

unload
glossary definition, 203

unloading
SQL Remote consolidated databases, 135

UPDATE conflicts
SQL Remote, 43, 50

UPDATE statement
SQL Remote territory realignment, 36

uploads
glossary definition, 203

user control parameter
SQL Remote FTP message type, 115

user-defined data types
glossary definition, 203

V
validate

glossary definition, 203
VERIFY_ALL_COLUMNS option

about, 46
views

glossary definition, 203

W
window (OLAP)

glossary definition, 203
Windows

glossary definition, 203
SQL Remote supported message types, 110

Windows Mobile
glossary definition, 203
SQL Remote, 115

work tables
glossary definition, 203

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 217

218

	SQL Remote™
	Contents
	About this book
	About the SQL Anywhere documentation
	About the books in the documentation set
	Documentation conventions
	Graphic icons
	Contacting the documentation team
	Finding out more and requesting technical support

	SQL Remote Replication Design
	SQL Remote introduction
	SQL Remote features
	Typical SQL Remote setups
	Server-to-remote database replication for mobile workforces
	Server-to-server database replication among offices

	SQL Remote components
	Understanding the SQL Remote replication process

	SQL Remote replication design and set up
	Creating SQL Remote systems
	Publications and articles
	Create publications
	Publish only some columns in a table
	Publish only some rows in a table
	Publish only some rows using the SUBSCRIBE BY clause
	Publish only some rows using a WHERE clause

	Alter publications
	Drop a publication

	User permissions
	Single-tiered hierarchy
	Multi-tiered hierarchy
	PUBLISH permission
	Create a publisher
	Revoke PUBLISH permission
	View the publisher

	REMOTE permission
	Grant REMOTE permission
	Revoke REMOTE permission

	CONSOLIDATE permission
	Grant CONSOLIDATE permission
	Revoke CONSOLIDATE permission

	Grant REMOTE DBA authority
	Revoke REMOTE DBA authority

	Subscriptions
	Subscribe to a publication

	Understanding transaction log-based replication
	Replicating INSERT and DELETE statements
	Replicating UPDATE statements
	Replicating procedures
	Replicating triggers
	Data definition statements
	Data types
	BLOBs
	Dates and times

	Replication conflicts and errors
	Update conflicts
	Default resolution for update conflicts
	Custom conflict resolution using a VERIFY clause
	UPDATE statements with a VERIFY clause
	Using the VERIFY_ALL_COLUMNS option

	Custom conflict resolution using triggers
	Resolving date conflicts
	Resolving inventory conflicts

	Row not found errors
	Referential integrity errors
	Insert errors

	Duplicate primary key errors
	Global autoincrement columns
	Declaring DEFAULT GLOBAL AUTOINCREMENT

	Using primary key pools
	Create a primary key pool table
	Replicate the primary key pool
	Fill and replenish the key pool
	Use the primary keys from the key pool

	Partitioning rows among remote databases
	Using disjoint data partitions
	Using BEFORE UDPATE triggers

	Using overlap partitions
	Maintaining referential integrity when reassigning rows among subscribers
	Using the subscribe_by_remote option with many-to-many relationships

	Assigning unique identification numbers to each database
	Setting the global_database_id value
	Setting unique database identification numbers when extracting databases

	SQL Remote Deployment and Administration
	SQL Remote Administration
	Management overview of SQL Remote
	Extracting remote databases
	Automatically extract remote databases

	Extracting remote databases to a reload file
	Editing the reload.sql file
	Extracting databases for a multi-tier hierarchy system
	Creating multiple remote databases

	Understanding the Message Agent (dbremote)
	Choosing the Message Agent (dbremote) mode
	Run the Message Agent (dbremote) in continuous mode
	Setting the send frequency

	Run the Message Agent (dbremote) in batch mode
	Run the Message Agent (dbremote) on Mac OS X
	Run the Message Agent (dbremote) on Unix

	Improving SQL Remote performance
	Receiving message tasks
	Improving performance when receiving messages
	Adjusting the polling interval to check for new messages
	Adjusting throughput by caching messages
	Adjusting the requests to resend messages
	Adjusting the number of worker threads

	Sending message tasks
	Improving performance when sending messages
	Adjusting the send delay
	Adjusting throughput by caching messages
	Adjusting how quickly resent requests are processed

	Understanding the Guaranteed Message Delivery System
	Ensuring that operations are applied in the correct order
	Resending lost or corrupt messages
	Ensuring that messages are applied only once

	Controlling message size
	Encoding: Preventing message corruption
	Creating custom encoding schemes

	SQL Remote message systems
	Create message types
	Alter message types
	Delete message types
	Set remote message type control parameters
	The FILE message system
	The FTP message system
	Troubleshooting FTP problems

	The SMTP message system
	Sharing SMTP/POP addresses
	Troubleshooting SMTP Link

	Backing up SQL Remote systems
	Maintaining transaction logs for remote databases
	Back up remote databases

	Protecting the consolidated database from media failures
	Back up the consolidated database

	Recover consolidated databases manually
	Recover consolidated databases automatically
	Reporting and handling replication errors
	Run an error-handling procedure
	Collect errors from the remote database
	Receive email notification about remote database errors

	Ignoring replication errors

	Security
	Upgrading and resynchronization
	Changes to avoid on a running system

	SQL Remote passthrough mode
	Passthrough mode limitations
	Start and stop passthrough mode

	Resynchronizing subscriptions
	Synchronize
	Synchronize using the Message Agent (dbremote)
	Start subscriptions
	Stop subscriptions

	SQL Remote Reference
	SQL Remote utilities and options reference
	Message Agent (dbremote)
	Extraction utility (dbxtract)
	SQL Remote options
	SQL Remote system procedures
	sp_hook_dbremote_begin system procedure
	sp_hook_dbremote_end system procedure
	sp_hook_dbremote_shutdown system procedure
	sp_hook_dbremote_receive_begin system procedure
	sp_hook_dbremote_receive_end system procedure
	sp_hook_dbremote_send_begin
	sp_hook_dbremote_send_end
	sp_hook_dbremote_message_sent
	sp_hook_dbremote_message_missing
	sp_hook_dbremote_message_apply_begin
	sp_hook_dbremote_message_apply_end

	SQL Remote system objects
	SQL Remote system tables

	SQL Remote SQL statements
	SQL Remote statements

	Glossary
	Glossary

	Index

