
MobiLink
Client Administration

February 2009

Version 11.0.1

Copyright and trademarks
Copyright © 2009 iAnywhere Solutions, Inc. Portions copyright © 2009 Sybase, Inc. All rights reserved.

This documentation is provided AS IS, without warranty or liability of any kind (unless provided by a separate written agreement between
you and iAnywhere).

You may use, print, reproduce, and distribute this documentation (in whole or in part) subject to the following conditions: 1) you must retain
this and all other proprietary notices, on all copies of the documentation or portions thereof, 2) you may not modify the documentation, 3) you
may not do anything to indicate that you or anyone other than iAnywhere is the author or source of the documentation.

iAnywhere®, Sybase®, and the marks listed at http://www.sybase.com/detail?id=1011207 are trademarks of Sybase, Inc. or its subsidiaries.
® indicates registration in the United States of America.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

http://www.sybase.com/detail?id=1011207

Contents

About this book ... xi

About the SQL Anywhere documentation .. xii

Introduction to MobiLink Clients .. 1

MobiLink clients .. 3
SQL Anywhere clients ... 4
UltraLite clients .. 5
UltraLiteJ clients .. 6
Specifying the network protocol for clients .. 7
System tables in MobiLink ... 8

MobiLink users ... 9
Introduction to MobiLink users ... 10
Remote IDs .. 14
Choosing a user authentication mechanism .. 16
User authentication architecture .. 17
Authentication process .. 18
Custom user authentication ... 20

MobiLink client utilities .. 25
Introduction to MobiLink client utilities ... 26
ActiveSync provider installation utility (mlasinst) ... 27
MobiLink file transfer utility (mlfiletransfer) .. 30

MobiLink client network protocol options .. 33
MobiLink client network protocol option summary ... 35
buffer_size ... 40
certificate_company ... 41
certificate_name .. 43
certificate_unit .. 45
client_port .. 46
compression .. 47
custom_header .. 48
e2ee_type .. 49
e2ee_public_key .. 50

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 iii

fips ... 51
host .. 53
http_password ... 54
http_proxy_password ... 55
http_proxy_userid .. 56
http_userid ... 57
identity_name .. 58
network_leave_open .. 59
network_name ... 60
persistent ... 62
port ... 63
proxy_host ... 64
proxy_port .. 65
set_cookie .. 66
timeout ... 67
tls_type .. 69
trusted_certificates ... 71
url_suffix .. 73
version ... 75
zlib_download_window_size .. 76
zlib_upload_window_size .. 77

Schema changes in remote clients ... 79
Introduction to MobiLink client schema changes ... 80
Schema upgrades for SQL Anywhere remote databases 81
Schema upgrades for UltraLite remote databases .. 83

SQL passthrough .. 85
Introduction to SQL passthrough ... 86

SQL Anywhere Clients for MobiLink .. 93

SQL Anywhere clients ... 95
Creating a remote database .. 96
Publishing data .. 100
Creating MobiLink users .. 107
Creating synchronization subscriptions ... 110
Initiating synchronization ... 113

MobiLink - Client Administration

iv Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using ActiveSync synchronization ... 117
Scheduling synchronization ... 121
Customizing dbmlsync synchronization ... 123
SQL Anywhere client logging ... 124
Running MobiLink on Mac OS X .. 125
Version considerations .. 127

MobiLink SQL Anywhere client utility (dbmlsync) .. 129
dbmlsync syntax .. 131
@data option ... 135
-a option ... 136
-ap option ... 137
-ba option ... 138
-bc option ... 139
-be option ... 140
-bg option ... 141
-c option ... 142
-d option ... 143
-dc option ... 144
-dl option .. 145
-do option ... 146
-drs option .. 147
-ds option ... 148
-e option ... 149
-eh option ... 150
-ek option ... 151
-ep option ... 152
-eu option ... 153
-is option .. 154
-k option (deprecated) .. 155
-l option .. 156
-mn option .. 157
-mp option .. 158
-n option ... 159
-o option ... 160
-os option ... 161

MobiLink - Client Administration

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 v

-ot option .. 162
-p option ... 163
-pc option ... 164
-pd option ... 165
-pi option .. 166
-pp option ... 167
-q option ... 168
-qc option ... 169
-r option .. 170
-sc option ... 171
-sp option ... 172
-tu option .. 173
-u option ... 175
-ui option .. 176
-uo option ... 177
-urc option .. 178
-ux option ... 179
-v option ... 180
-wc option .. 181
-x option ... 182

MobiLink SQL Anywhere client extended options .. 183
Introduction to dbmlsync extended options ... 185
CommunicationAddress (adr) extended option ... 187
CommunicationType (ctp) extended option ... 189
ConflictRetries (cr) extended option .. 190
ContinueDownload (cd) extended option ... 191
DisablePolling (p) extended option .. 192
DownloadBufferSize (dbs) extended option .. 193
DownloadOnly (ds) extended option .. 194
DownloadReadSize (drs) extended option .. 195
ErrorLogSendLimit (el) extended option .. 196
FireTriggers (ft) extended option ... 198
HoverRescanThreshold (hrt) extended option ... 199
IgnoreHookErrors (eh) extended option .. 200
IgnoreScheduling (isc) extended option .. 201

MobiLink - Client Administration

vi Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Increment (inc) extended option .. 202
LockTables (lt) extended option ... 203
Memory (mem) extended option .. 205
MirrorLogDirectory (mld) extended option ... 206
MobiLinkPwd (mp) extended option .. 207
NewMobiLinkPwd (mn) extended option ... 208
NoSyncOnStartup (nss) extended option .. 209
OfflineDirectory (dir) extended option .. 210
PollingPeriod (pp) extended option .. 211
Schedule (sch) extended option .. 212
ScriptVersion (sv) extended option .. 214
SendColumnNames (scn) extended option ... 215
SendDownloadACK (sa) extended option ... 216
SendTriggers (st) extended option .. 217
TableOrder (tor) extended option .. 218
TableOrderChecking (toc) extended option ... 220
UploadOnly (uo) extended option .. 221
Verbose (v) extended option .. 222
VerboseHooks (vs) extended option .. 223
VerboseMin (vm) extended option ... 224
VerboseOptions (vo) extended option ... 225
VerboseRowCounts (vn) extended option ... 226
VerboseRowValues (vr) extended option .. 227
VerboseUpload (vu) extended option .. 228

MobiLink SQL statements ... 229
MobiLink statements .. 230

MobiLink synchronization profiles .. 231
MobiLink synchronization profiles .. 232

Event hooks for SQL Anywhere clients ... 235
Introduction to dbmlsync hooks ... 237
sp_hook_dbmlsync_abort .. 243
sp_hook_dbmlsync_all_error ... 245
sp_hook_dbmlsync_begin ... 248
sp_hook_dbmlsync_communication_error .. 250
sp_hook_dbmlsync_delay ... 253
sp_hook_dbmlsync_download_begin .. 255

MobiLink - Client Administration

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 vii

sp_hook_dbmlsync_download_com_error (deprecated) 257
sp_hook_dbmlsync_download_end ... 259
sp_hook_dbmlsync_download_fatal_sql_error (deprecated) 261
sp_hook_dbmlsync_download_log_ri_violation ... 263
sp_hook_dbmlsync_download_ri_violation ... 265
sp_hook_dbmlsync_download_sql_error (deprecated) 267
sp_hook_dbmlsync_download_table_begin .. 269
sp_hook_dbmlsync_download_table_end ... 271
sp_hook_dbmlsync_end .. 273
sp_hook_dbmlsync_log_rescan .. 276
sp_hook_dbmlsync_logscan_begin ... 278
sp_hook_dbmlsync_logscan_end .. 280
sp_hook_dbmlsync_misc_error ... 282
sp_hook_dbmlsync_ml_connect_failed ... 285
sp_hook_dbmlsync_process_exit_code .. 288
sp_hook_dbmlsync_schema_upgrade .. 290
sp_hook_dbmlsync_set_extended_options ... 292
sp_hook_dbmlsync_set_ml_connect_info ... 293
sp_hook_dbmlsync_set_upload_end_progress .. 295
sp_hook_dbmlsync_sql_error .. 297
sp_hook_dbmlsync_upload_begin .. 299
sp_hook_dbmlsync_upload_end ... 301
sp_hook_dbmlsync_validate_download_file .. 304

Dbmlsync API ... 307
Introduction to the Dbmlsync API .. 308
Dbmlsync API for C++ ... 309
Dbmlsync API for .NET .. 322

Dbmlsync integration component (deprecated) ... 337
Introduction to Dbmlsync integration component ... 338
Setting up the Dbmlsync integration component ... 339
Dbmlsync integration component methods .. 340
Dbmlsync integration component properties ... 342
Dbmlsync integration component events ... 347
IRowTransferData interface ... 361

DBTools interface for dbmlsync ... 365
Introduction to DBTools interface for dbmlsync ... 366

MobiLink - Client Administration

viii Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Setting up the DBTools interface for dbmlsync .. 367
Scripted upload .. 373

Introduction to scripted upload ... 374
Setting up scripted upload ... 375
Design considerations for scripted upload ... 376
Defining stored procedures for scripted upload ... 383
Scripted upload example ... 388

Glossary .. 395

Glossary .. 397

Index .. 427

MobiLink - Client Administration

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 ix

x

About this book
Subject

This book describes how to set up, configure, and synchronize MobiLink clients. MobiLink clients can be
SQL Anywhere or UltraLite databases. This book also describes the Dbmlsync API, which allows you to
integrate synchronization seamlessly into your C++ or .NET client applications.

Audience
This book is for users who want to add synchronization to their information systems.

Before you begin
For a comparison of MobiLink with other synchronization and replication technologies, see “Overview of
data exchange technologies” [SQL Anywhere 11 - Introduction].

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 xi

About the SQL Anywhere documentation
The complete SQL Anywhere documentation is available in four formats that contain identical information.

● HTML Help The online Help contains the complete SQL Anywhere documentation, including the
books and the context-sensitive help for SQL Anywhere tools.

If you are using a Microsoft Windows operating system, the online Help is provided in HTML Help
(CHM) format. To access the documentation, choose Start » Programs » SQL Anywhere 11 »
Documentation » Online Books.

The administration tools use the same online documentation for their Help features.

● Eclipse On Unix platforms, the complete online Help is provided in Eclipse format. To access the
documentation, run sadoc from the bin32 or bin64 directory of your SQL Anywhere 11 installation.

● DocCommentXchange DocCommentXchange is a community for accessing and discussing SQL
Anywhere documentation.

Use DocCommentXchange to:

○ View documentation

○ Check for clarifications users have made to sections of documentation

○ Provide suggestions and corrections to improve documentation for all users in future releases

Visit http://dcx.sybase.com.

● PDF The complete set of SQL Anywhere books is provided as a set of Portable Document Format
(PDF) files. You must have a PDF reader to view information. To download Adobe Reader, visit http://
get.adobe.com/reader/.

To access the PDF documentation on Microsoft Windows operating systems, choose Start »
Programs » SQL Anywhere 11 » Documentation » Online Books - PDF Format.

To access the PDF documentation on Unix operating systems, use a web browser to open install-dir/
documentation/en/pdf/index.html.

About the books in the documentation set
The SQL Anywhere documentation consists of the following books:

● SQL Anywhere 11 - Introduction This book introduces SQL Anywhere 11, a comprehensive
package that provides data management and data exchange, enabling the rapid development of database-
powered applications for server, desktop, mobile, and remote office environments.

● SQL Anywhere 11 - Changes and Upgrading This book describes new features in SQL Anywhere
11 and in previous versions of the software.

● SQL Anywhere Server - Database Administration This book describes how to run, manage, and
configure SQL Anywhere databases. It describes database connections, the database server, database

About this book

xii Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://dcx.sybase.com/
http://get.adobe.com/reader/
http://get.adobe.com/reader/

files, backup procedures, security, high availability, replication with the Replication Server, and
administration utilities and options.

● SQL Anywhere Server - Programming This book describes how to build and deploy database
applications using the C, C++, Java, PHP, Perl, Python, and .NET programming languages such as Visual
Basic and Visual C#. A variety of programming interfaces such as ADO.NET and ODBC are described.

● SQL Anywhere Server - SQL Reference This book provides reference information for system
procedures, and the catalog (system tables and views). It also provides an explanation of the SQL
Anywhere implementation of the SQL language (search conditions, syntax, data types, and functions).

● SQL Anywhere Server - SQL Usage This book describes how to design and create databases; how
to import, export, and modify data; how to retrieve data; and how to build stored procedures and triggers.

● MobiLink - Getting Started This book introduces MobiLink, a session-based relational-database
synchronization system. MobiLink technology allows two-way replication and is well suited to mobile
computing environments.

● MobiLink - Client Administration This book describes how to set up, configure, and synchronize
MobiLink clients. MobiLink clients can be SQL Anywhere or UltraLite databases. This book also
describes the Dbmlsync API, which allows you to integrate synchronization seamlessly into your C++
or .NET client applications.

● MobiLink - Server Administration This book describes how to set up and administer MobiLink
applications.

● MobiLink - Server-Initiated Synchronization This book describes MobiLink server-initiated
synchronization, a feature that allows the MobiLink server to initiate synchronization or perform actions
on remote devices.

● QAnywhere This book describes QAnywhere, which is a messaging platform for mobile, wireless,
desktop, and laptop clients.

● SQL Remote This book describes the SQL Remote data replication system for mobile computing,
which enables sharing of data between a SQL Anywhere consolidated database and many SQL Anywhere
remote databases using an indirect link such as email or file transfer.

● UltraLite - Database Management and Reference This book introduces the UltraLite database
system for small devices.

● UltraLite - C and C++ Programming This book describes UltraLite C and C++ programming
interfaces. With UltraLite, you can develop and deploy database applications to handheld, mobile, or
embedded devices.

● UltraLite - M-Business Anywhere Programming This book describes UltraLite for M-Business
Anywhere. With UltraLite for M-Business Anywhere you can develop and deploy web-based database
applications to handheld, mobile, or embedded devices, running Palm OS, Windows Mobile, or
Windows.

● UltraLite - .NET Programming This book describes UltraLite.NET. With UltraLite.NET you can
develop and deploy database applications to computers, or handheld, mobile, or embedded devices.

● UltraLiteJ This book describes UltraLiteJ. With UltraLiteJ, you can develop and deploy database
applications in environments that support Java. UltraLiteJ supports BlackBerry smartphones and Java
SE environments. UltraLiteJ is based on the iAnywhere UltraLite database product.

About the SQL Anywhere documentation

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 xiii

● Error Messages This book provides a complete listing of SQL Anywhere error messages together
with diagnostic information.

Documentation conventions
This section lists the conventions used in this documentation.

Operating systems
SQL Anywhere runs on a variety of platforms. In most cases, the software behaves the same on all platforms,
but there are variations or limitations. These are commonly based on the underlying operating system
(Windows, Unix), and seldom on the particular variant (AIX, Windows Mobile) or version.

To simplify references to operating systems, the documentation groups the supported operating systems as
follows:

● Windows The Microsoft Windows family includes Windows Vista and Windows XP, used primarily
on server, desktop, and laptop computers, and Windows Mobile used on mobile devices.

Unless otherwise specified, when the documentation refers to Windows, it refers to all Windows-based
platforms, including Windows Mobile.

● Unix Unless otherwise specified, when the documentation refers to Unix, it refers to all Unix-based
platforms, including Linux and Mac OS X.

Directory and file names

In most cases, references to directory and file names are similar on all supported platforms, with simple
transformations between the various forms. In these cases, Windows conventions are used. Where the details
are more complex, the documentation shows all relevant forms.

These are the conventions used to simplify the documentation of directory and file names:

● Uppercase and lowercase directory names On Windows and Unix, directory and file names
may contain uppercase and lowercase letters. When directories and files are created, the file system
preserves letter case.

On Windows, references to directories and files are not case sensitive. Mixed case directory and file
names are common, but it is common to refer to them using all lowercase letters. The SQL Anywhere
installation contains directories such as Bin32 and Documentation.

On Unix, references to directories and files are case sensitive. Mixed case directory and file names are
not common. Most use all lowercase letters. The SQL Anywhere installation contains directories such
as bin32 and documentation.

The documentation uses the Windows forms of directory names. In most cases, you can convert a mixed
case directory name to lowercase for the equivalent directory name on Unix.

● Slashes separating directory and file names The documentation uses backslashes as the directory
separator. For example, the PDF form of the documentation is found in install-dir\Documentation\en
\PDF (Windows form).

About this book

xiv Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

On Unix, replace the backslash with the forward slash. The PDF documentation is found in install-dir/
documentation/en/pdf.

● Executable files The documentation shows executable file names using Windows conventions, with
a suffix such as .exe or .bat. On Unix, executable file names have no suffix.

For example, on Windows, the network database server is dbsrv11.exe. On Unix, it is dbsrv11.

● install-dir During the installation process, you choose where to install SQL Anywhere. The
environment variable SQLANY11 is created and refers to this location. The documentation refers to this
location as install-dir.

For example, the documentation may refer to the file install-dir\readme.txt. On Windows, this is
equivalent to %SQLANY11%\readme.txt. On Unix, this is equivalent to $SQLANY11/readme.txt or $
{SQLANY11}/readme.txt.

For more information about the default location of install-dir, see “SQLANY11 environment variable”
[SQL Anywhere Server - Database Administration].

● samples-dir During the installation process, you choose where to install the samples included with
SQL Anywhere. The environment variable SQLANYSAMP11 is created and refers to this location. The
documentation refers to this location as samples-dir.

To open a Windows Explorer window in samples-dir, from the Start menu, choose Programs » SQL
Anywhere 11 » Sample Applications And Projects.

For more information about the default location of samples-dir, see “SQLANYSAMP11 environment
variable” [SQL Anywhere Server - Database Administration].

Command prompts and command shell syntax

Most operating systems provide one or more methods of entering commands and parameters using a
command shell or command prompt. Windows command prompts include Command Prompt (DOS prompt)
and 4NT. Unix command shells include Korn shell and bash. Each shell has features that extend its
capabilities beyond simple commands. These features are driven by special characters. The special characters
and features vary from one shell to another. Incorrect use of these special characters often results in syntax
errors or unexpected behavior.

The documentation provides command line examples in a generic form. If these examples contain characters
that the shell considers special, the command may require modification for the specific shell. The
modifications are beyond the scope of this documentation, but generally, use quotes around the parameters
containing those characters or use an escape character before the special characters.

These are some examples of command line syntax that may vary between platforms:

● Parentheses and curly braces Some command line options require a parameter that accepts
detailed value specifications in a list. The list is usually enclosed with parentheses or curly braces. The
documentation uses parentheses. For example:

-x tcpip(host=127.0.0.1)

Where parentheses cause syntax problems, substitute curly braces:

-x tcpip{host=127.0.0.1}

About the SQL Anywhere documentation

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 xv

If both forms result in syntax problems, the entire parameter should be enclosed in quotes as required
by the shell:

-x "tcpip(host=127.0.0.1)"
● Quotes If you must specify quotes in a parameter value, the quotes may conflict with the traditional

use of quotes to enclose the parameter. For example, to specify an encryption key whose value contains
double-quotes, you might have to enclose the key in quotes and then escape the embedded quote:

-ek "my \"secret\" key"

In many shells, the value of the key would be my "secret" key.

● Environment variables The documentation refers to setting environment variables. In Windows
shells, environment variables are specified using the syntax %ENVVAR%. In Unix shells, environment
variables are specified using the syntax $ENVVAR or ${ENVVAR}.

Graphic icons
The following icons are used in this documentation.

● A client application.

● A database server, such as Sybase SQL Anywhere.

● A database. In some high-level diagrams, the icon may be used to represent both the database and the
database server that manages it.

● Replication or synchronization middleware. These assist in sharing data among databases. Examples are
the MobiLink server and the SQL Remote Message Agent.

About this book

xvi Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● A programming interface.

Contacting the documentation team
We would like to receive your opinions, suggestions, and feedback on this Help.

To submit your comments and suggestions, send an email to the SQL Anywhere documentation team at
iasdoc@sybase.com. Although we do not reply to emails, your feedback helps us to improve our
documentation, so your input is welcome.

DocCommentXchange
You can also leave comments directly on help topics using DocCommentXchange. DocCommentXchange
(DCX) is a community for accessing and discussing SQL Anywhere documentation. Use
DocCommentXchange to:

● View documentation

● Check for clarifications users have made to sections of documentation

● Provide suggestions and corrections to improve documentation for all users in future releases

Visit http://dcx.sybase.com.

Finding out more and requesting technical support
Additional information and resources are available at the Sybase iAnywhere Developer Community at http://
www.sybase.com/developer/library/sql-anywhere-techcorner.

If you have questions or need help, you can post messages to the Sybase iAnywhere newsgroups listed below.

When you write to one of these newsgroups, always provide details about your problem, including the build
number of your version of SQL Anywhere. You can find this information by running the following command:
dbeng11 -v.

The newsgroups are located on the forums.sybase.com news server.

About the SQL Anywhere documentation

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 xvii

mailto:iasdoc@sybase.com
http://dcx.sybase.com/
http://www.sybase.com/developer/library/sql-anywhere-techcorner
http://www.sybase.com/developer/library/sql-anywhere-techcorner

The newsgroups include the following:

● sybase.public.sqlanywhere.general
● sybase.public.sqlanywhere.linux
● sybase.public.sqlanywhere.mobilink
● sybase.public.sqlanywhere.product_futures_discussion
● sybase.public.sqlanywhere.replication
● sybase.public.sqlanywhere.ultralite
● ianywhere.public.sqlanywhere.qanywhere

For web development issues, see http://groups.google.com/group/sql-anywhere-web-development.

Newsgroup disclaimer
iAnywhere Solutions has no obligation to provide solutions, information, or ideas on its newsgroups, nor is
iAnywhere Solutions obliged to provide anything other than a systems operator to monitor the service and
ensure its operation and availability.

iAnywhere Technical Advisors, and other staff, assist on the newsgroup service when they have time. They
offer their help on a volunteer basis and may not be available regularly to provide solutions and information.
Their ability to help is based on their workload.

About this book

xviii Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

news://forums.sybase.com/sybase.public.sqlanywhere.general
news://forums.sybase.com/sybase.public.sqlanywhere.linux
news://forums.sybase.com/sybase.public.sqlanywhere.mobilink
news://forums.sybase.com/sybase.public.sqlanywhere.product_futures_discussion
news://forums.sybase.com/sybase.public.sqlanywhere.replication
news://forums.sybase.com/sybase.public.sqlanywhere.ultralite
news://forums.sybase.com/ianywhere.public.sqlanywhere.qanywhere
http://groups.google.com/group/sql-anywhere-web-development

Introduction to MobiLink Clients

This section introduces the clients you can use for MobiLink synchronization, and provides information common
to all types of MobiLink client.

MobiLink clients .. 3
MobiLink users ... 9
MobiLink client utilities .. 25
MobiLink client network protocol options .. 33
Schema changes in remote clients ... 79
SQL passthrough .. 85

MobiLink clients

Contents
SQL Anywhere clients ... 4
UltraLite clients .. 5
UltraLiteJ clients .. 6
Specifying the network protocol for clients .. 7
System tables in MobiLink ... 8

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 3

SQL Anywhere clients
To use a SQL Anywhere database as a MobiLink client, you add synchronization objects to the database.
The objects you need to add are publications, MobiLink users, and subscriptions that connect publications
to users. See:

● “Creating a remote database” on page 96
● “Publishing data” on page 100
● “Creating MobiLink users” on page 107
● “Creating synchronization subscriptions” on page 110

Synchronization is initiated by running a command line utility called dbmlsync. This utility connects to the
remote database and prepares the upload, typically using information contained in the transaction log of the
remote database. (Alternatively, you can implement scripted upload and not use the transaction log.) The
dbmlsync utility can use information stored in a synchronization publication and synchronization
subscription to connect to the MobiLink server and exchange data.

See “Initiating synchronization” on page 113.

For more information about SQL Anywhere clients, see “SQL Anywhere clients” on page 95.

For details of dbmlsync command line options, see “MobiLink SQL Anywhere client utility
(dbmlsync)” on page 129.

Customizing synchronization
See “Customizing dbmlsync synchronization” on page 123.

MobiLink clients

4 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UltraLite clients
UltraLite applications are automatically MobiLink-enabled whenever the application includes a call to the
appropriate synchronization function.

The UltraLite application and libraries handle the synchronization actions at the application end. You can
write your UltraLite application with little regard to synchronization. The UltraLite runtime keeps track of
changes made since the previous synchronization.

When using TCP/IP, HTTP, HTTPS, or ActiveSync, synchronization is initiated from your application by
a single call to a synchronization function. The interface for HotSync is slightly different. Once
synchronization is initiated from the application or from HotSync, the MobiLink server and the UltraLite
runtime control the actions that occur during synchronization.

See also
● UltraLite - Database Management and Reference
● “UltraLite clients” [UltraLite - Database Management and Reference]
● “UltraLiteJ clients” on page 6
● “Using ActiveSync and HotSync with UltraLite” [UltraLite - Database Management and Reference]
● “UltraLite synchronization parameters and network protocol options” [UltraLite - Database

Management and Reference]

UltraLite clients

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 5

UltraLiteJ clients
UltraLiteJ provides Java applications with a MobiLink synchronization client, together with change-tracking
and state tracking to ensure robust synchronization. UltraLiteJ applications are automatically MobiLink-
enabled whenever the application includes a call to the appropriate synchronization function.

The UltraLiteJ application and libraries handle the synchronization actions at the application end. You can
write your UltraLiteJ application with little regard to synchronization. The UltraLiteJ runtime keeps track
of changes made since the previous synchronization.

When using HTTP or HTTPS, synchronization is initiated from your application by a single call to a
synchronization function.

The MobiLink file transfer utility (mlfiletransfer) and SQL passthrough feature are not available for
UltraLiteJ clients.

See also
● “Data synchronization” [UltraLiteJ]
● “Using UltraLiteJ as a MobiLink client” [UltraLiteJ]
● UltraLite - Database Management and Reference
● “UltraLite clients” [UltraLite - Database Management and Reference]
● “UltraLite synchronization parameters and network protocol options” [UltraLite - Database

Management and Reference]

MobiLink clients

6 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Specifying the network protocol for clients
The MobiLink server uses the -x command line option to specify the network protocol or protocols for
synchronization clients to connect to the MobiLink server. The network protocol you choose must match
the synchronization protocol used by the client.

The syntax for the mlsrv11 command line option is:

mlsrv11 -c "connection-string" -x protocol(options)

In the following example, the TCP/IP protocol is selected with no additional protocol options.

mlsrv11 -c "dsn=SQL Anywhere 11 Demo" -x tcpip

You can configure your protocol using options of the form:

(keyword=value;...)

For example:

mlsrv11 -c "dsn=SQL Anywhere 11 Demo" -x tcpip(
 host=localhost;port=2439)

See also
Complete details about MobiLink network protocols and protocol options can be found in the following
locations:

To find... See...

How to set network options for the Mobi-
Link server

“-x option” [MobiLink - Server Administration]

All the network protocol options available
to MobiLink client applications

“MobiLink client network protocol option summa-
ry” on page 35

How to set options for SQL Anywhere cli-
ents

“CommunicationAddress (adr) extended op-
tion” on page 187

“CommunicationType (ctp) extended op-
tion” on page 189

How to set options for UltraLite clients “Stream Parameters synchronization parameter” [UltraLite
- Database Management and Reference]

“Stream Type synchronization parameter” [UltraLite - Da-
tabase Management and Reference]

“UltraLite Synchronization utility (ulsync)” [UltraLite -
Database Management and Reference]

Specifying the network protocol for clients

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 7

System tables in MobiLink
MobiLink server system tables

When you set up a database for use as a consolidated database, MobiLink system tables are created that are
required by the MobiLink server.

See “MobiLink server system tables” [MobiLink - Server Administration].

UltraLite system tables
See “UltraLite system tables” [UltraLite - Database Management and Reference].

SQL Anywhere system tables
SQL Anywhere system tables cannot be accessed directly, but are accessed via system views. See “System
views” [SQL Anywhere Server - SQL Reference].

The following SQL Anywhere system views are of particular interest to MobiLink users:

● “SYSSYNC system view” [SQL Anywhere Server - SQL Reference]
● “SYSPUBLICATION system view” [SQL Anywhere Server - SQL Reference]
● “SYSSUBSCRIPTION system view” [SQL Anywhere Server - SQL Reference]
● “SYSSYNCSCRIPT system view” [SQL Anywhere Server - SQL Reference]

SQL Anywhere also provides consolidated views that query system views to provide information that you
might need. See “Consolidated views” [SQL Anywhere Server - SQL Reference].

MobiLink clients

8 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MobiLink users

Contents
Introduction to MobiLink users ... 10
Remote IDs .. 14
Choosing a user authentication mechanism .. 16
User authentication architecture .. 17
Authentication process .. 18
Custom user authentication ... 20

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 9

Introduction to MobiLink users
A MobiLink user, also called a synchronization user, is the name you use to authenticate when you connect
to the MobiLink server.

For a user to be part of a synchronization system:

● A MobiLink user name must be created on the remote database.

● The MobiLink user name must be registered with the MobiLink server.

MobiLink user names and passwords are not the same as database user names and passwords. MobiLink
user names are used to authenticate the connection from the remote database to the MobiLink server.

You can also use user names to control the behavior of the MobiLink server. You do so using the
username parameter in synchronization scripts.

See “Using remote IDs and MobiLink user names in scripts” on page 15.

The MobiLink user name is stored in the name column of the ml_user MobiLink system table in the
consolidated database.

The MobiLink user name does not have to be unique within your synchronization system. If security is not
an issue, you can even assign the same MobiLink user name to every remote database.

UltraLite user authentication
Although UltraLite and MobiLink user authentication schemes are separate, you may want to share the values
of UltraLite user IDs with MobiLink user names for simplicity. This only works when the UltraLite
application is used by a single user.

See “UltraLite user authentication” [UltraLite - Database Management and Reference].

Creating and registering MobiLink users
You create a MobiLink user in the remote database and register it in the consolidated database.

Creating MobiLink users in the remote database
To add users to the remote database, you have the following options:

● For SQL Anywhere remote databases, use Sybase Central or the CREATE SYNCHRONIZATION
USER statement.

See “Creating MobiLink users” on page 107.

● For UltraLite remote databases, you set the User Name and Password synchronization parameters.

See “User Name synchronization parameter” [UltraLite - Database Management and Reference] and
“Password synchronization parameter” [UltraLite - Database Management and Reference].

MobiLink users

10 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Adding MobiLink user names to the consolidated database
Once user names are created in the remote database, you can use any of the following methods to register
the user names in the consolidated database:

● Use the mluser utility.

See “MobiLink user authentication utility (mluser)” [MobiLink - Server Administration].

● Use Sybase Central.

● Implement a script for the authenticate_user or authenticate_user_hashed events. When either of these
scripts are invoked, the MobiLink server automatically adds users that successfully authenticate.

See “authenticate_user connection event” [MobiLink - Server Administration] or
“authenticate_user_hashed connection event” [MobiLink - Server Administration].

● Specify the -zu+ command line option with mlsrv11. In this case, any existing MobiLink users that have
not been added to the consolidated database are added when they first synchronize. This option is useful
during development but is not recommended for deployed applications.

See “-zu option” [MobiLink - Server Administration].

Providing initial passwords for users
The password for each user is stored with the user name in the ml_user table. You can use Sybase Central
or the mluser command line utility to provide initial passwords.

Sybase Central is a convenient way of adding individual users and passwords. The mluser utility is useful
for batch additions.

If you create a user without a password, MobiLink does not authenticate the user and a password is not
required to connect and synchronize.

To provide an initial MobiLink password for a user (Sybase Central Admin mode)

1. Connect to the consolidated database from Sybase Central using the MobiLink plug-in.

2. Choose Mode » Admin.

3. Click Users.

4. Choose File » New » User.

5. Follow the instructions in the Create MobiLink User Wizard.

To provide initial MobiLink passwords (command line)

1. Create a file with a single user name and password on each line, separated by white space.

2. Open a command prompt and run the mluser command line utility. For example:

mluser -c "dsn=my_dsn" -f password-file

Introduction to MobiLink users

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 11

In this command line, the -c option specifies an ODBC connection to the consolidated database. The -f
option specifies the file containing the user names and passwords.

See “MobiLink user authentication utility (mluser)” [MobiLink - Server Administration].

Synchronizations from new users
Ordinarily, each MobiLink client must provide a valid MobiLink user name and password to connect to a
MobiLink server.

Setting the -zu+ option when you start the MobiLink server allows the server to accept and respond to
synchronization requests from unregistered users. When a request is received from a user not listed in the
ml_user table, the request is serviced and the user is added to the ml_user table.

When you use -zu+, if a MobiLink client synchronizes with a user name that is not in the current ml_user
table, MobiLink, by default, takes the following actions:

● New user, no password If the user supplied no password, then by default the user name is added
to the ml_user table with a null password. This user is allowed to synchronize without a password.

● New user, password If the user supplies a password, then the user name and password are both
added to the ml_user table and the new user name becomes a recognized name in your MobiLink system.
In future, this user must specify the same password to synchronize.

● New user, new password A new user may provide information in the new password field, or in the
password field. In either case, the new password setting overrides the old password setting, and the new
user is added to the MobiLink system using the new password. In future, this user must specify the same
password to synchronize.

See “-zu option” [MobiLink - Server Administration].

Preventing synchronization by unknown users
By default, the MobiLink server only recognizes users who are registered in the ml_user table. This default
provides two benefits. First, it reduces the risk of unauthorized access to the MobiLink server. Second, it
prevents authorized users from accidentally connecting using an incorrect or misspelled user name. Such
accidents should be avoided because they can cause the MobiLink system to behave in unpredictable ways.

Prompting end users to enter passwords
Each end user must supply a MobiLink user name and password each time they synchronize from a MobiLink
client, unless you choose to disable user authentication on your MobiLink server.

To prompt your end users to enter their MobiLink passwords

● The mechanism for supplying the user name and password is different for UltraLite and SQL Anywhere
clients.

MobiLink users

12 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● UltraLite When synchronizing, the UltraLite client must supply a valid value in the password field
of the synchronization structure. For built-in MobiLink synchronization, a valid password is one that
matches the value in the ml_user MobiLink system table.

Your application should prompt the end user to enter their MobiLink user name and password before
synchronizing.

See “UltraLite synchronization parameters and network protocol options” [UltraLite - Database
Management and Reference].

● SQL Anywhere Users can supply a valid password on the dbmlsync command line. If they do
not, they are prompted for one in the dbmlsync connection window. The latter method is more secure
because command lines are visible to other processes running on the same computer.

If authentication fails, the user is prompted to re-enter the user name and password.

See “-c option” on page 142.

Changing passwords
MobiLink provides a mechanism for end users to change their password. The interface differs between
UltraLite and SQL Anywhere clients.

To prompt your end users to enter MobiLink passwords

● The mechanism for supplying the user name and password is different for UltraLite and SQL Anywhere
clients.

● SQL Anywhere Supply a valid existing password together with the new password on the
dbmlsync command line, or in the dbmlsync connection window if you do not supply command line
parameters.

See “-mp option” on page 158 and “-mn option” on page 157.

● UltraLite When synchronizing, the application must supply the existing password in the password
field of the synchronization structure and the new password in the new_password field.

See “Password synchronization parameter” [UltraLite - Database Management and Reference] and
“New Password synchronization parameter” [UltraLite - Database Management and Reference].

An initial password can be set in the consolidated server or on the first synchronization attempt. See
“Providing initial passwords for users” on page 11 and “Synchronizations from new users” on page 12.

Once a password is assigned, you cannot reset the password to an empty string from the client side.

Introduction to MobiLink users

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 13

Remote IDs
The remote ID uniquely identifies a remote database in a MobiLink synchronization system.

When a SQL Anywhere or UltraLite database is created, it is given a remote ID of null. When the database
synchronizes with MobiLink, MobiLink checks for a null remote ID. If it finds a null remote ID, it assigns
a GUID as the remote ID. Once set, the database maintains the same remote ID until it is manually changed.

For SQL Anywhere remote databases, the MobiLink server tracks synchronization progress by remote ID
and subscription. For UltraLite databases, the MobiLink server tracks synchronization progress by remote
ID and publication. This information is stored in the ml_subscription system table. The remote ID is also
recorded in the MobiLink server log for each synchronization.

The MobiLink server issues an error if the same remote ID is used in two or more concurrent
synchronizations.

See also
● “ml_subscription” [MobiLink - Server Administration]

Setting the MobiLink remote ID
The remote ID is created as a GUID, but you can change it to a more meaningful name. For both SQL
Anywhere and UltraLite databases, the remote ID is stored in the database as a property called ml_remote_id.

For SQL Anywhere clients, see “Setting remote IDs” on page 97.

For UltraLite clients, see “UltraLite ml_remote_id option” [UltraLite - Database Management and
Reference].

When deploying a starter database to multiple locations, it is safest to deploy databases that have a null
remote ID. If you have synchronized the databases to pre-populate them, you can set the remote ID back to
null before deployment. This method ensures that the remote ID is unique because the first time the remote
database synchronizes, a unique remote ID is assigned. Alternatively, the remote ID can be set as a remote
setup step, but it must be unique.

Example
To simplify administrative duties when defining a MobiLink setup where you have one user per remote, you
might want to use the same number for all three MobiLink identifiers on each remote database. For example,
in a SQL Anywhere remote database you can set them as follows:

-- Set the MobiLink user name:
 CREATE SYNCHRONIZATION USER "1" ... ;
-- Set the partition number for DEFAULT GLOBAL AUTOINCREMENT:
 SET OPTION PUBLIC.GLOBAL_DATABASE_ID = '1';
-- Set the MobiLink remote ID:
 SET OPTION PUBLIC.ml_remote_id = '1';

MobiLink users

14 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using remote IDs and MobiLink user names in scripts
The MobiLink user identifies a person and is used for authentication. The remote ID uniquely identifies a
MobiLink remote database.

In many synchronization scripts, you have the option of identifying the remote database by the remote ID
(with the named parameter s.remote_id) or by the MobiLink user name (with s.username). Using the remote
ID has some advantages, especially in UltraLite.

When deployments have a one-to-one relationship between a remote database and a MobiLink user, and
when the MobiLink user name uniquely identifies a remote database, you can ignore the remote ID. In this
case MobiLink event scripts can reference the username parameter, which is the MobiLink user name used
for authentication.

If a MobiLink user wants to synchronize data in different databases but each remote has the same data, the
synchronization scripts can reference the MobiLink user name. But if the MobiLink user wants to
synchronize different sets of data in different databases, the synchronization scripts should reference the
remote ID.

In UltraLite databases, the same database can also be synchronized by different users, even if the previous
upload state is unknown, because the MobiLink server tracks synchronization progress by remote ID. In this
case, you can no longer reference the MobiLink user name in download scripts for timestamp-based
downloads, because some rows for each of the other users may be missed and never downloaded. To prevent
this, you need to implement a mapping table in the consolidated database with one row for each user using
the same remote database. You can make sure that all data for all users is being downloaded with a join of
the consolidated table and mapping table that is based on the remote ID for the current synchronization.

You can also use different script versions to synchronize different data to different remote databases. See
“Script versions” [MobiLink - Server Administration].

Remote IDs

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 15

Choosing a user authentication mechanism
User authentication is one part of a security system for protecting your data.

MobiLink provides you with a choice of user authentication mechanisms. You do not have to use a single
installation-wide mechanism; MobiLink lets you use different authentication mechanisms for different script
versions within the installation for flexibility.

● No MobiLink user authentication If your data is such that you do not need password protection,
you can choose not to use any user authentication in your installation. In this case, the MobiLink user
name must still be included in the ml_user table, but the hashed_password column is null.

● Built-in MobiLink user authentication MobiLink uses the user names and passwords stored in the
ml_user MobiLink system table to perform authentication.

The built-in mechanism is described in the following sections.

● Custom authentication You can use the MobiLink script authenticate_user to replace the built-in
MobiLink user authentication system with one of your own. For example, depending on your
consolidated database management system, you may be able to use the database user authentication
instead of the MobiLink system.

See “Custom user authentication” on page 20.

For information about other security-related features of MobiLink and its related products, see:

● “Encrypting MobiLink client/server communications” [SQL Anywhere Server - Database
Administration]

● UltraLite clients: “Securing UltraLite databases” [UltraLite - Database Management and Reference]
● SQL Anywhere clients: “Keeping your data secure” [SQL Anywhere Server - Database

Administration]

MobiLink users

16 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

User authentication architecture
The MobiLink user authentication system relies on user names and passwords. You can choose either to let
the MobiLink server validate the user name and password using a built-in mechanism, or you can implement
your own custom user authentication mechanism.

In the built-in authentication system, both the user name and the password are stored in the ml_user MobiLink
system table in the consolidated database. The password is stored in hashed form so that applications other
than the MobiLink server cannot read the ml_user table and reconstruct the original form of the password.
You add user names and passwords to the consolidated database using Sybase Central, using the mluser
utility, or by specifying -zu+ when you start the MobiLink server.

See “Creating and registering MobiLink users” on page 10.

When a MobiLink client connects to a MobiLink server, it provides the following values:

● user name The MobiLink user name. Mandatory. To synchronize, the user name must be stored in
the ml_user system table, or you must start the MobiLink server with the -zu+ option to add new users
to the ml_user table.

● password The MobiLink password. Optional only if the user is unknown or if the corresponding
password in the ml_user MobiLink system table is null.

● new password A new MobiLink password. Optional. MobiLink users can change their password by
setting this value.

Custom authentication
Optionally, you can substitute your own user authentication mechanism.

See “Custom user authentication” on page 20.

User authentication architecture

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 17

Authentication process
The following is an explanation of the order of events that occur during authentication.

1. A remote application initiates a synchronization request using a remote ID, a MobiLink user name, and
optionally a password and new password. The MobiLink server starts a new transaction and triggers the
begin_connection_autocommit event and begin_connection event.

2. MobiLink verifies that the remote ID is not currently synchronizing and presets the authentication_status
to be 4000.

3. If you have defined an authenticate_user script, then the following occurs:

a. If the authenticate_user script is written in SQL, then this script is called with the preset
authentication_status of 4000, the MobiLink user name you provided, and optionally the password
and new password.

If the authenticate_user script is written in Java or .NET and returns a SQL statement, then this SQL
statement is called with the preset authentication_status of 4000, the MobiLink user name you
provided, and optionally the password and new password.

b. If the authenticate_user script throws an exception or an error occurs in executing the script, the
synchronization process stops.

The authenticate_user script or the returned SQL statement must be a call to a stored procedure taking
two to four arguments. The preset authentication_status value is passed as the first parameter and may
be updated by the stored procedure. The returned value of the first parameter is the authentication_status
from the authenticate_user script.

4. If an authenticate_user_hashed script exists, then the following occurs:

a. If a password was provided, a hashed value is calculated for it. If a new password was provided, a
hashed value is calculated for it.

b. The authenticate_user_hashed script is called with the current value of authentication_status (either
the preset authentication_status if the authenticate_user script doesn't exist, or the
authentication_status returned from the authenticate_user script) and the hashed passwords. The
behavior is identical to step 3. The returned value of the first parameter is used as the
authentication_status of the authenticate_user_hashed script.

5. The MobiLink server takes the greater value of the auth_user status returned from the authenticate_user
script and authenticate_user_hashed script, if they exist, or the preset authentication_status if neither of
the scripts exist.

6. The MobiLink server queries the ml_user table for the MobiLink user name you provided.

a. If either of the custom scripts authenticate_user or authenticate_user_hashed was called but the
MobiLink user name you provided is not in the ml_user table and the authentication_status is valid
(1000 or 2000), the MobiLink user name is added to the MobiLink system table ml_user. If
authentication_status is not valid, ml_user is not updated and an error occurs.

b. If the custom scripts were not called and the MobiLink user name you provided is not in the ml_user
table, the MobiLink user name you provided is added to ml_user if you started the MobiLink server
with the -zu+ option. Otherwise, an error occurs and authentication_status is set to be invalid.

MobiLink users

18 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

c. If the custom scripts were called and the MobiLink user name you provided is in the ml_user table,
nothing happens.

d. If the custom scripts were not called and the MobiLink user name you provided is in the ml_user
table, the password is checked against the value in the ml_user table. If the password matches the
one in the ml_user table for the MobiLink user, the authentication_status is set to be valid. Otherwise
the authentication_status is set to be invalid.

7. If that authentication_status is valid and neither of the scripts authenticate_user or
authenticate_user_hashed was called and you provided a new password in the ml_user table for this
MobiLink user, the password is changed to the one you provided.

8. If you have defined an authenticate_parameters script and the authentication_status is valid (1000 or
2000), then the following occurs:

a. The parameters are passed to the authenticate_parameters script.

b. If the authenticate_parameters script returns an authentication_status value greater than the current
authentication_status, the new authentication_status overwrites the old value.

9. If authentication_status is not valid, the synchronization is aborted.

10. If you have defined the modify_user script, it is called to replace the MobiLink user name you provided
with a new MobiLink user name returned by this script.

11. The MobiLink server always commits the transaction after MobiLink user authentication, regardless of
the authentication_status. If the authentication_status is valid (1000 or 2000), synchronization continues.
If the authentication_status is invalid, the synchronization is aborted.

Authentication process

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 19

Custom user authentication
You can choose to use a user authentication mechanism other than the built-in MobiLink mechanism. The
following are some reasons for using a custom user authentication mechanism:

● To include integration with existing database user authentication schemes or external authentication
mechanisms.

● To supply custom features, such as minimum password length or password expiry, that do not exist in
the built-in MobiLink mechanism.

There are three custom authentication tools:

● mlsrv11 -zu+ option

● authenticate_user script or authenticate_user_hashed script

● authenticate_parameters script

The mlsrv11 -zu+ option allows you to control the automatic addition of users. For example, specify -zu+
to have all unrecognized MobiLink user names added to the ml_user table when they first synchronize. The
-zu+ option is only needed for built-in MobiLink authentication.

The authenticate_user, authenticate_user_hashed, and authenticate_parameters scripts override the default
MobiLink user authentication mechanism. Any user who successfully authenticates is automatically added
to the ml_user table.

You can use the authenticate_user script to create custom authentication of user IDs and passwords. If this
script exists, it is executed instead of the built-in password comparison. The script must return error codes
to indicate the success or failure of the authentication.

There are several predefined scripts for the authenticate_user event that are installed with MobiLink. These
make it easier for you to authenticate using LDAP, POP3, and IMAP servers. See “Authenticating to external
servers” on page 21.

Use authenticate_parameters to create custom authentication that depends on values other than user IDs and
passwords.

See also
● “-zu option” [MobiLink - Server Administration]
● “authenticate_user connection event” [MobiLink - Server Administration]
● “authenticate_user_hashed connection event” [MobiLink - Server Administration]
● “authenticate_parameters connection event” [MobiLink - Server Administration]

Java and .NET user authentication
User authentication is a natural use of Java and .NET synchronization logic because Java and .NET classes
allow you to reach out to other sources of user names and passwords used in your computing environment,
such as application servers.

MobiLink users

20 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

A simple sample is included in the directory samples-dir\MobiLink\JavaAuthentication. The sample code
in samples-dir\MobiLink\JavaAuthentication\CustEmpScripts.java implements a simple user authentication
system. On the first synchronization, a MobiLink user name is added to the login_added table. On subsequent
synchronizations, a row is added to the login_audit table. In this sample, there is no test before adding a user
ID to the login_added table. (For information about samples-dir, see “Samples directory” [SQL Anywhere
Server - Database Administration].)

For a .NET sample that explains user authentication, see “.NET synchronization example” [MobiLink -
Server Administration].

Authenticating to external servers
Predefined Java synchronization scripts are included with MobiLink that make it simpler for you to
authenticate to external servers using the authenticate_user event. Predefined scripts are available for the
following authentication servers:

● POP3 or IMAP servers using the JavaMail 1.2 API

● LDAP servers using the Java Naming and Directory Interface (JNDI)

How you use these scripts is determined by whether your MobiLink user names map directly to the user IDs
in your external authentication system.

Note
You can also set up authentication to external servers in Sybase Central Model mode, using the
Authentication tab. See “MobiLink models” [MobiLink - Getting Started].

If your MobiLink user names map directly to your user IDs
In the simple case where the MobiLink user name maps directly to a valid user ID in your authentication
system, the predefined scripts can be used directly in response to the authenticate_user connection event.
The authentication code initializes itself based on properties stored in the ml_property table.

To use predefined scripts directly in authenticate_user

1. Add the predefined Java synchronization script to the ml_scripts MobiLink system table. You can do
this using a stored procedure or in Sybase Central.

● To use the ml_add_java_connection_script stored procedure, run the following command:

call ml_add_java_connection_script(
 'MyVersion',
 'authenticate_user',
 'ianywhere.ml.authentication.ServerType.authenticate')

where MyVersion is the name of a script version, and ServerType is LDAP, POP3, or IMAP.

● To use the Add Connection Script Wizard in Sybase Central, choose authenticate_user as the
script type, and enter the following in the Code Editor:

ianywhere.ml.authentication.ServerType.authenticate

Custom user authentication

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 21

where ServerType is LDAP, POP3, or IMAP.

See “ml_add_java_connection_script system procedure” [MobiLink - Server Administration].

2. Add properties for this authentication server.

Use the ml_add_property stored procedure for each property you need to set:

call ml_add_property(
 'ScriptVersion',
 'MyVersion',
 'property_name',
 'property_value')

where MyVersion is the name of a script version, property_name is determined by your authentication
server, and property_value is a value appropriate to your application. Repeat this call for every property
you want to set.

See “External authenticator properties” on page 23 and “ml_add_property system procedure”
[MobiLink - Server Administration].

If your MobiLink user names do not map directly to your user IDs
If your MobiLink user names are not equivalent to your user IDs, the code must be called indirectly and you
must extract or map the user ID from the ml_user value. You do this by writing a Java class.

See “Writing synchronization scripts in Java” [MobiLink - Server Administration].

The following is a simple example. In this example, the code in the extractUserID method has been left out
because it depends on how the ml_user value maps to a userid. All the work is done in the "authenticate"
method of the authentication class.

package com.mycompany.mycode;
import ianywhere.ml.authentication.*;
import ianywhere.ml.script.*;
public class MLEvents
{
 private DBConnectionContext _context;
 private POP3 _pop3;
 public MLEvents(DBConnectionContext context)
 {
 _context = context;
 _pop3 = new POP3(context);
 }
 public void authenticateUser(
 InOutInteger status,
 String userID,
 String password,
 String newPassword)
 {
 String realUserID = extractUserID(userID);
 _pop3.authenticate(status, realUserID, password, newPassword);
 }
 private String extractUserID(String userID)
 {
 // code here to map ml_user to a "real" POP3 user

MobiLink users

22 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 }
}

In this example, The POP3 object needs to be initialized with the DBConnectContext object so that it can
find its initialization properties. If you do not initialize it this way, you must set the properties in code. For
example,

POP3 pop3 = new POP3();
pop3.setServerName("smtp.sybase.com");
pop3.setServerPort(25);

This applies to any of the authentication classes, although the properties vary by class.

External authenticator properties
MobiLink provides reasonable defaults wherever possible, especially in the LDAP case. The properties that
can be set vary, but following are the basic ones.

POP3 authenticator

mail.pop3.host the hostname of the server

mail.pop3.port the port number (can be omitted if default 110 is used)

See http://java.sun.com/products/javamail/javadocs/com/sun/mail/pop3/package-summary.html.

IMAP authenticator

mail.imap.host the hostname of the server

mail.imap.port the port number (can be omitted if default 143 is used)

See http://java.sun.com/products/javamail/javadocs/com/sun/mail/imap/package-summary.html.

LDAP authenticator

java.nam-
ing.provider.url

the URL of the LDAP server, such as ldap://ops-yourLocation/dn=syb-
ase,dn=com

For more information, see the JNDI documentation.

Custom user authentication

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 23

http://java.sun.com/products/javamail/javadocs/com/sun/mail/pop3/package-summary.html
http://java.sun.com/products/javamail/javadocs/com/sun/mail/imap/package-summary.html

24

MobiLink client utilities

Contents
Introduction to MobiLink client utilities ... 26
ActiveSync provider installation utility (mlasinst) ... 27
MobiLink file transfer utility (mlfiletransfer) .. 30

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 25

Introduction to MobiLink client utilities
There are two MobiLink client utilities:

● “ActiveSync provider installation utility (mlasinst)” on page 27
● “MobiLink file transfer utility (mlfiletransfer)” on page 30

In addition, see:

● UltraLite utilities: “UltraLite utilities” [UltraLite - Database Management and Reference]
● MobiLink server utilities: “MobiLink utilities” [MobiLink - Server Administration]
● Other SQL Anywhere utilities: “Database administration utilities” [SQL Anywhere Server - Database

Administration]

MobiLink client utilities

26 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ActiveSync provider installation utility (mlasinst)
Installs a MobiLink provider for ActiveSync (known as Windows Mobile Device Center on Windows Vista),
or registers and installs UltraLite applications on Windows Mobile devices.

Syntax
mlasinst [options] [[src] dst name class [args]]

Options Description

-d Initially disable the application.

-k path Specify the location of the desktop provider mlasdesk.dll.

By default, the file is located in install-dir\bin32.

End users (who generally do not have the full SQL Anywhere install) may need to
specify -k when installing the MobiLink ActiveSync provider.

-l filename Specify the name of the activity log file.

-n Register the application but do not copy it to the device.

In addition to installing the MobiLink ActiveSync provider, this option registers an
application but does not copy it to the device. This is appropriate if the application
includes more than one file (for example, if it is compiled to use the UltraLite runtime
library DLL rather than a static library) or if you have an alternative method of
copying the application to the device.

-t n Specify how long, in seconds, the desktop provider should wait for a response from
the client before timing out; the default is 30.

-u Uninstall the MobiLink provider for ActiveSync.

This option unregisters all applications that have been registered for use with the
MobiLink ActiveSync provider and uninstalls the MobiLink ActiveSync provider.
No files are deleted from the desktop computer or the device by this operation. If the
device is not connected to the desktop, an error is reported.

-v path Specify the location of the device provider mlasdev.dll. By default, the file is looked
for in a platform-specific directory in install-dir\CE.

End users (who generally do not have the full SQL Anywhere install) may need to
specify -v when installing the MobiLink ActiveSync provider.

ActiveSync provider installation utility (mlasinst)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 27

Other parameters Description

src Specify the source file name and path for copying an application to the device.
Supply this parameter only if you are registering an application and copying it to
the device. Do not supply the parameter if you use the -n option.

dst Specify the destination file name and path on the device for an application.

name Specify the name by which ActiveSync refers to the application.

class Specify the registered Windows class name of the application.

args Specify command line arguments to pass to the application when ActiveSync
starts the application.

Remarks
This utility installs a MobiLink provider for ActiveSync. The provider includes both a component that runs
on the desktop (mlasdesk.dll) and a component that is deployed to the Windows Mobile device
(mlasdev.dll). The mlasinst utility makes a registry entry pointing to the current location of the desktop
provider; and copies the device provider to the device.

If additional arguments are supplied, the mlasinst utility can also be used to register and install UltraLite
applications onto a Windows Mobile device. Alternatively, you can register and install UltraLite applications
using the ActiveSync software.

Subject to licensing requirements, you may supply this application together with the desktop and device
components to end users so that they can prepare their copies of your application for use with ActiveSync.

You must be connected to a remote device to install the ActiveSync provider.

For complete instructions on using the ActiveSync provider installation utility, see:

● SQL Anywhere: “Installing the MobiLink provider for ActiveSync” on page 118
● UltraLite: “ActiveSync on Windows Mobile” [UltraLite - Database Management and Reference]

Examples
The following command installs the MobiLink provider for ActiveSync using default arguments. It does not
register an application. The device must be connected to your desktop for the installation to succeed.

mlasinst

The following command uninstalls the MobiLink provider for ActiveSync. The device must be connected
to your desktop for the uninstall to succeed:

mlasinst -u

The following command installs the MobiLink provider for ActiveSync, if it is not already installed, and
registers the application myapp.exe. It also copies the c:\My Files\myapp.exe file to \Program Files
\myapp.exe on the device. The -p -x arguments are command line options for myapp.exe when started by
ActiveSync. The command must be entered on a single line:

MobiLink client utilities

28 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

mlasinst "C:\My Files\myapp.exe" "\Program Files\myapp.exe"
 "My Application" MYAPP -p -x

See also
● “Using ActiveSync synchronization” on page 117
● “UltraLite synchronization parameters and network protocol options” [UltraLite - Database

Management and Reference]

ActiveSync provider installation utility (mlasinst)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 29

MobiLink file transfer utility (mlfiletransfer)
Downloads a file through MobiLink.

Syntax
mlfiletransfer [options] file

Option Description

-ap param1, ... MobiLink authentication parameters. See “Authentication pa-
rameters” [MobiLink - Server Administration].

-dp path The local path where the downloaded file is to be stored. By
default, the downloaded file is stored in the root directory on
Windows Mobile, and in the current directory on other plat-
forms.

-df filename The local name of the downloaded file. Use this option if you
want to have a different name for the file on the client than the
one used on the server. By default, the server name is used.

-f Forces a download, even the local file is up to date. Any previous
partial download is discarded.

-g Shows download progress.

-p password The password for the MobiLink user name.

-q Quiet mode. Messages are not displayed.

-r Enables download resumption. When set, the utility resumes a
partial previous download that was interrupted because of a
communication error or because it was canceled by the user.
When the file on the server is newer than the partial file, the
partial file is discarded. The -f option overrides this option.

-u username MobiLink user name. This option is required.

-v version The script version. This option is required.

-x protocol(options) The protocol can be one of tcpip, tls, http, or https.This option
is required.

The protocol-options you can use depend on the protocol. For a
list of options for each protocol, see “MobiLink client network
protocol option summary” on page 35.

MobiLink client utilities

30 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

file The file to be transferred as named on the server. Do not include
a path, as the location of the file is determined by the mlsrv11 -
ftr option (which must be used when you start the MobiLink
server). MobiLink looks for the file in the username subdirectory
of the -ftr directory; if it doesn't find it there, it looks in the -ftr
directory. If the file is not in either place, MobiLink generates
an error.

See “-ftr option” [MobiLink - Server Administration].

Remarks
This utility is useful for downloading files when you first create a remote database, when you need to upgrade
software on your remote device, and so on.

To use this utility, you must start the MobiLink server with the -ftr option. The -ftr option creates a root
directory for the file to be transferred, and creates a subdirectory for every registered MobiLink user.

UltraLite users can also use the MLFileTransfer method in the UltraLite runtime. See “Using MobiLink file
transfers” [UltraLite - Database Management and Reference].

See also
● “-ftr option” [MobiLink - Server Administration]
● “authenticate_file_transfer connection event” [MobiLink - Server Administration]

Example
The following command connects the MobiLink server to the CustDB sample database. The -ftr
%SystemRoot%\system32 option tells the MobiLink server to start monitoring the Windows
\system32 directory for requested files. In this example the MobiLink server first looks for the file in the C:
\Windows\system32\mobilink-username directory. If the file does not exist, it looks in the C:\Windows
\system32 directory. In general you would not want to have the MobiLink server monitor your Windows
\system32 folder for files. This example uses the Windows\system32 directory so that it can transfer the
Notepad utility, which is located there.

mlsrv11 -c "dsn=SQL Anywhere 11 CustDB" -zu+ -ftr %SystemRoot%\system32

The following command runs the mlfiletransfer utility. It causes the MobiLink server to download
notepad.exe to your local directory.

MLFileTransfer -u 1 -v "custdb 10.0" -x tcpip notepad.exe

MobiLink file transfer utility (mlfiletransfer)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 31

32

MobiLink client network protocol options

Contents
MobiLink client network protocol option summary ... 35
buffer_size ... 40
certificate_company ... 41
certificate_name .. 43
certificate_unit ... 45
client_port .. 46
compression .. 47
custom_header .. 48
e2ee_type .. 49
e2ee_public_key .. 50
fips ... 51
host .. 53
http_password ... 54
http_proxy_password .. 55
http_proxy_userid .. 56
http_userid ... 57
identity_name .. 58
network_leave_open ... 59
network_name ... 60
persistent ... 62
port .. 63
proxy_host ... 64
proxy_port .. 65
set_cookie ... 66
timeout ... 67
tls_type .. 69
trusted_certificates .. 71
url_suffix .. 73
version ... 75
zlib_download_window_size ... 76

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 33

zlib_upload_window_size .. 77

MobiLink client network protocol options

34 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MobiLink client network protocol option summary
This section describes the network protocol options you can use when connecting a MobiLink client to the
MobiLink server. Several MobiLink client utilities use the MobiLink client network protocol options:

To use cli-
ent network
protocol
options
with...

See...

dbmlsync “CommunicationAddress (adr) extended option” on page 187

UltraLite “Stream Parameters synchronization parameter” [UltraLite - Database Management and
Reference] or -x option in “UltraLite Synchronization utility (ulsync)” [UltraLite - Data-
base Management and Reference]

UltraLiteJ “Network protocol options for UltraLiteJ synchronization streams” [UltraLiteJ]

Redirector ML directive in “Configuring Redirector properties (for Redirectors that support server
groups)” [MobiLink - Server Administration] or “Configuring Redirector properties (for
Redirectors that don't support server groups)” [MobiLink - Server Administration]

MobiLink
Monitor

“Starting the MobiLink Monitor” [MobiLink - Server Administration]

MobiLink
file transfer

“MobiLink file transfer utility (mlfiletransfer)” on page 30

MobiLink
Listener

-x in “Listener utility for Windows devices” [MobiLink - Server-Initiated Synchroniza-
tion]

QAnywhere
Agent

“-x option” [QAnywhere]

The network protocol you choose must match the synchronization protocol used by the client. For
information about how to set connection options for the MobiLink server, see “-x option” [MobiLink - Server
Administration].

Protocol options
● TCP/IP protocol options If you specify the tcpip option, you can optionally specify the following

protocol options:

TCP/IP protocol option For more information, see...

buffer_size=bytes “buffer_size” on page 40

client_port=nnnnn[-mmmmm] “client_port” on page 46

MobiLink client network protocol option summary

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 35

TCP/IP protocol option For more information, see...

e2ee_type={rsa|ecc} “e2ee_type” on page 49

e2ee_public_key=file “e2ee_public_key” on page 50

compression={zlib|none} “compression” on page 47

host=hostname “host” on page 53

network_leave_open={off|on} “network_leave_open” on page 59

network_name=name “network_name” on page 60

port=portnumber “port” on page 63

timeout=seconds “timeout” on page 67

zlib_download_window_size=window-bits “zlib_download_window_size” on page 76

zlib_upload_window_size=window-bits “zlib_upload_window_size” on page 77

● TCP/IP protocol with security If you specify the tls option, which is TCP/IP with TLS security,
you can optionally specify the following protocol options:

TLS protocol option For more information, see...

buffer_size=bytes “buffer_size” on page 40

certificate_company=company_name “certificate_company” on page 41

certificate_name=name “certificate_name” on page 43

certificate_unit=company_unit “certificate_unit” on page 45

client_port=nnnnn[-mmmmm] “client_port” on page 46

compression={zlib|none} “compression” on page 47

e2ee_type={rsa|ecc} “e2ee_type” on page 49

e2ee_public_key=file “e2ee_public_key” on page 50

fips={y|n} “fips” on page 51

host=hostname “host” on page 53

network_leave_open={off|on} “network_leave_open” on page 59

MobiLink client network protocol options

36 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

TLS protocol option For more information, see...

network_name=name “network_name” on page 60

port=portnumber “port” on page 63

timeout=seconds “timeout” on page 67

tls_type={rsa|ecc} “tls_type” on page 69

trusted_certificates=filename “trusted_certificates” on page 71

zlib_download_window_size=window-bits “zlib_download_window_size” on page 76

zlib_upload_window_size=window-bits “zlib_upload_window_size” on page 77

● HTTP protocol If you specify the http option, you can optionally specify the following protocol
options:

HTTP protocol option For more information, see...

buffer_size=number “buffer_size” on page 40

client_port=nnnnn[-mmmmm] “client_port” on page 46

compression={zlib|none} “compression” on page 47

custom_header=header “custom_header” on page 48

e2ee_type={rsa|ecc} “e2ee_type” on page 49

e2ee_public_key=file “e2ee_public_key” on page 50

http_password=password “http_password” on page 54

http_proxy_password=password “http_proxy_password” on page 55

http_proxy_userid=userid “http_proxy_userid” on page 56

http_userid=userid “http_userid” on page 57

host=hostname “host” on page 53

network_leave_open={off|on} “network_leave_open” on page 59

network_name=name “network_name” on page 60

persistent={off|on} “persistent” on page 62

MobiLink client network protocol option summary

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 37

HTTP protocol option For more information, see...

port=portnumber “port” on page 63

proxy_host=proxy-hostname-or-ip “proxy_host” on page 64

proxy_port=proxy-portnumber “proxy_port” on page 65

set_cookie=cookie-name=cookie-value “set_cookie” on page 66

timeout=seconds “timeout” on page 67

url_suffix=suffix “url_suffix” on page 73

version=HTTP-version-number “version” on page 75

zlib_download_window_size=window-bits “zlib_download_window_size” on page 76

zlib_upload_window_size=window-bits “zlib_upload_window_size” on page 77

● HTTPS protocol If you specify the https option, which is HTTP with RSA encryption, you can
optionally specify the following protocol options:

HTTPS protocol option For more information, see...

buffer_size=number “buffer_size” on page 40

certificate_company=company_name “certificate_company” on page 41

certificate_name=name “certificate_name” on page 43

certificate_unit=company_unit “certificate_unit” on page 45

client_port=nnnnn[-mmmmm] “client_port” on page 46

compression={zlib|none} “compression” on page 47

custom_header=header “custom_header” on page 48

e2ee_type={rsa|ecc} “e2ee_type” on page 49

e2ee_public_key=file “e2ee_public_key” on page 50

fips={y|n} “fips” on page 51

host=hostname “host” on page 53

http_password=password “http_password” on page 54

MobiLink client network protocol options

38 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

HTTPS protocol option For more information, see...

http_proxy_password=password “http_proxy_pass-
word” on page 55

http_proxy_userid=userid “http_proxy_userid” on page 56

http_userid=userid “http_userid” on page 57

network_leave_open={off|on} “network_leave_open” on page 59

network_name=name “network_name” on page 60

persistent={off|on} “persistent” on page 62

port=portnumber “port” on page 63

proxy_host=proxy-hostname-or-ip “proxy_host” on page 64

proxy_port=proxy-portnumber “proxy_port” on page 65

set_cookie=cookie-name=cookie-value “set_cookie” on page 66

timeout=seconds “timeout” on page 67

tls_type={rsa|ecc} “tls_type” on page 69

trusted_certificates=filename “trusted_certificates” on page 71

url_suffix=suffix “url_suffix” on page 73

version=HTTP-version-number “version” on page 75

zlib_download_window_size=window-size “zlib_download_win-
dow_size” on page 76

zlib_upload_window_size=window-bits “zlib_upload_win-
dow_size” on page 77

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption technologies
are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 11 - Introduction].

MobiLink client network protocol option summary

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 39

buffer_size
Specify the maximum number of bytes to buffer before writing to the network. For HTTP and HTTPS, this
translates to the maximum HTTP request body size.

Syntax
buffer_size=bytes

Protocols
● TCPIP, TLS, HTTP, HTTPS

Support notes
● Cannot be used in the ML directive of the Redirector.

Default
● Palm - 4K
● CE - 16K
● All other platforms - 64K

Remarks
In general for HTTP and HTTPS, the larger the buffer size, the fewer the number of HTTP request-response
cycles, but the more memory required.

For TCPIP and TLS, it is also the case that a larger size performs faster but requires more memory; however,
the performance difference is less significant than for HTTP.

Units are in bytes. Specify K for kilobytes, M for megabytes or G for gigabytes.

The maximum value is 1G.

This option controls the size of the requests from the client and has no bearing on the size of the responses
from MobiLink.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 187.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

Example
The following example sets the maximum number of bytes to 32K.

On a SQL Anywhere client, the implementation is:

dbmlsync -e "adr=buffer_size=32K"

In an UltraLite application written in embedded SQL or C++, the implementation is:

synch_info.stream_parms = TEXT("buffer_size=32K");

MobiLink client network protocol options

40 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

certificate_company
If specified, the application only accepts server certificates when the Organization field on the certificate
matches this value.

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption technologies
are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 11 - Introduction].

Syntax
certificate_company=organization

Protocols
● TLS, HTTPS

Default
None

Remarks
MobiLink clients trust all certificates signed by the certificate authority, so they may also trust certificates
that the same certificate authority has issued to other companies. Without a means to discriminate, your
clients might mistake a competitor's MobiLink server for your own and accidentally send it sensitive
information. This option specifies a further level of verification, that the Organization field in the identity
portion of the certificate also matches a value you specify.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 187.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

See also
● “Encrypting MobiLink client/server communications” [SQL Anywhere Server - Database

Administration]
● “Verifying certificate fields” [SQL Anywhere Server - Database Administration]
● “-x option” [MobiLink - Server Administration]
● “trusted_certificates” on page 71
● “certificate_name” on page 43
● “certificate_unit” on page 45

Example
The following examples tell a SQL Anywhere client to check all three identity fields and to accept only the
named values. This example verifies all three fields. You can instead choose to verify only one or two fields.

certificate_company

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 41

For example, if you have SQL Anywhere clients you can set up certificate verification in the subscription
as follows:

CREATE SYNCHRONIZATION SUBSCRIPTION
FOR 'user01'
TO test_pub
ADDRESS 'port=3333;
 trusted_certificates=certicom.crt;
 certificate_company=Sybase, Inc.;
 certificate_unit=iAnywhere;certificate_name=sample'

In an UltraLite application written in embedded SQL in C or C++, you can set up certificate verification as
follows, assuming that the trusted certificate was installed in the database when the database was created:

ul_synch_info info;
info.stream = "tls";
info.stream_parms = UL_TEXT("port=9999;")
 UL_TEXT ("certificate_company=Sybase, Inc.;")
 UL_TEXT ("certificate_unit=iAnywhere;")
 UL_TEXT ("certificate_name=sample;");
...
ULSynchronize(&info);

MobiLink client network protocol options

42 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

certificate_name
If specified, the application only accepts server certificates when the Common Name field on the certificate
matches this value.

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption technologies
are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 11 - Introduction].

Syntax
certificate_name=common-name

Protocols
● TLS, HTTPS

Default
None

Remarks
For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 187.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

See also
● “Encrypting MobiLink client/server communications” [SQL Anywhere Server - Database

Administration]
● “Verifying certificate fields” [SQL Anywhere Server - Database Administration]
● “-x option” [MobiLink - Server Administration]
● “trusted_certificates” on page 71
● “certificate_company” on page 41
● “certificate_unit” on page 45

Example
The following example sets up RSA encryption for an HTTPS protocol. This requires setup on the server
and client. Each command must be written on one line.

On the server, the implementation is:

mlsrv11
 -c "dsn=SQL Anywhere 11 Demo;uid=DBA;pwd=sql"
 -x https(
 port=9999;
 identity=c:\sa10\bin32\rsaserver.id;
 identity_password=test)

certificate_name

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 43

On a SQL Anywhere client, the implementation is:

dbmlsync
 -c "dsn=mydb;uid=DBA;pwd=sql"
 -e "ctp=https;
 adr='port=9999;
 trusted_certificates=c:\sa10\bin32\rsaroot.crt;
 certificate_name=RSA Server'"

On an UltraLite client, the implementation is:

 info.stream = "https";
 info.stream_parms = TEXT(
 "port=9999;
 trusted_certificates=\sa10\bin32\rsaroot.crt;
 certificate_name=RSA Server");

MobiLink client network protocol options

44 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

certificate_unit
If specified, the application only accepts server certificates when the Organization Unit field on the certificate
matches this value.

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption technologies
are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 11 - Introduction].

Syntax
certificate_unit=organization-unit

Protocols
● TLS, HTTPS

Default
None

Remarks
For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 187.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

See also
● “Encrypting MobiLink client/server communications” [SQL Anywhere Server - Database

Administration]
● “Verifying certificate fields” [SQL Anywhere Server - Database Administration]
● “-x option” [MobiLink - Server Administration]
● “trusted_certificates” on page 71
● “certificate_company” on page 41
● “certificate_name” on page 43

Example
For examples of security, see “certificate_name” on page 43 and “trusted_certificates” on page 71.

certificate_unit

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 45

client_port
Specify a range of client ports for communication.

Syntax
client_port=nnnnn[-mmmmm]

Protocols
● TCPIP, TLS, HTTP, HTTPS

Support notes
● Cannot be used in the ML directive of the Redirector.

Default
None

Remarks
Specify a low value and a high value to create a range of possible port numbers. To restrict the client to a
specific port number, specify the same number for nnnnn and mmmmm. If you specify only one value, the
end of the range is 100 greater than the initial value, for a total of 101 ports.

The option can be useful for clients inside a firewall communicating with a MobiLink server outside the
firewall.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 187.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

Example
The following example sets a 10000 port range of allowable client ports.

On a SQL Anywhere client, the implementation is:

dbmlsync -e "adr=client_port=10000-19999"

In an UltraLite application written in embedded SQL or C++, the implementation is:

synch_info.stream_parms = TEXT("client_port=10000-19999");

MobiLink client network protocol options

46 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

compression
Turns on or off compression of the synchronization stream between the MobiLink server and MobiLink
clients.

Syntax
compression= { zlib | none }

Protocols
● TCPIP, TLS, HTTP, HTTPS

Support notes
● Not supported on Palm OS or Symbian.
● Cannot be used in the ML directive of the Redirector.

Default
For UltraLite, compression is off by default.

For dbmlsync, zlib compression is used by default.

In SQL Anywhere clients, if you turn off compression the data is completely unobfuscated; if security is an
issue, you should encrypt the stream.

See “Transport-layer security” [SQL Anywhere Server - Database Administration].

Remarks
When you use zlib compression, you can configure the upload and download compression using the
zlib_download_window_size option and zlib_upload_window_size option. Using these options, you can
also turn off compression for either the upload or the download.

To use zlib compression in UltraLite, mlczlib10.dll must be deployed and for C++ only, applications must
call ULEnableZlibSyncCompression(sqlca).

See also
● “zlib_download_window_size” on page 76
● “zlib_upload_window_size” on page 77

Example
The following option sets compression for upload only, and sets the upload window size to 9:

"compression=zlib;zlib_download_window_size=0;zlib_upload_window_size=9"

compression

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 47

custom_header
Specify a custom HTTP header.

Syntax
custom_header=header

HTTP headers are of the form header-name: header-value.

Protocols
● HTTP, HTTPS

Support notes
● Cannot be used in the ML directive of the Redirector.

Default
None

Remarks
When you specify custom HTTP headers, the client includes the headers with every HTTP request it sends.
To specify more than one custom header, use custom_header multiple times, using the semicolon (;) as a
divider. For example: custom_header=header1:value1; customer_header=header2:value2

Custom headers are useful when your synchronization client interacts with a third-party tool that requires
custom headers.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 187.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

Example
Some HTTP proxies require all requests to contain special headers. The following example sets a custom
HTTP header called MyProxyHdr to the value ProxyUser in an embedded SQL or C++ UltraLite application:

info.stream = "http";
info.stream_parms = TEXT(
 "host=www.myhost.com;proxy_host=www.myproxy.com;
 custom_header=MyProxyHdr:ProxyUser");

MobiLink client network protocol options

48 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

e2ee_type
Specify the asymmetric algorithm to use for key exchange for end-to-end encryption.

Syntax
e2ee_type= { rsa | ecc }

Protocols
TCPIP, TLS, HTTP, HTTPS

Default
RSA

Remarks
Must be either rsa or ecc and must match the value specified on the server.

See also
● “e2ee_public_key” on page 50
● “-x option” [MobiLink - Server Administration]
● “Key Pair Generator utility (createkey)” [SQL Anywhere Server - Database Administration]

Example
The following example shows end-to-end encryption for an UltraLite client:

info.stream = "https";
info.stream_parms =
"tls_type=rsa;trusted_certificates=rsaroot.crt;e2ee_type=rsa;e2ee_public_key=
rsapublic.pem"

e2ee_type

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 49

e2ee_public_key
Specify the file containing the server's PEM-encoded public key for end-to-end encryption.

Syntax
e2ee_public_key=file

Protocols
TCPIP, TLS, HTTP, HTTPS

Default
None

Remarks
The key type must match the type specified in the e2ee_type parameter.

This option is required for end-to-end encryption to take effect.

End-to-end encryption can also be used the with TLS/HTTPS protocol option fips. This option is not
supported when using ECC. See “fips” on page 51.

See also
● “e2ee_type” on page 49
● “-x option” [MobiLink - Server Administration]
● “Key Pair Generator utility (createkey)” [SQL Anywhere Server - Database Administration]

Example
The following example shows end-to-end encryption for an UltraLite client:

info.stream = "https";
info.stream_parms =
"tls_type=rsa;trusted_certificates=rsaroot.crt;e2ee_type=rsa;e2ee_public_key=
rsapublic.pem"

MobiLink client network protocol options

50 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

fips
Use FIPS-approved encryption implementations for TLS encryption and end-to-end encryption.

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption technologies
are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 11 - Introduction].

Syntax
fips={ y | n }

Protocols
HTTPS, TLS

Default
No

Remarks
FIPS is only supported for RSA encryption.

Non-FIPS clients can connect to FIPS servers and vice versa.

This option can be used with end-to-end encryption. If fips is set to y, MobiLink clients use FIPS 140-2
certified implementations of RSA and AES. This option is not supported when using ECC. See
“e2ee_type” on page 49 and “e2ee_public_key” on page 50.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 187.

See also
● “tls_type” on page 69
● “e2ee_type” on page 49

Example
The following example sets up FIPS-approved RSA encryption for a TCP/IP protocol. This requires setup
on the server and client. Each command must be written on one line.

On the server, the implementation is:

mlsrv11
 -c "dsn=SQL Anywhere 11 Demo;uid=DBA;pwd=sql"
 -x tls(
 port=9999;
 tls_type=rsa;
 fips=y;
 identity=c:\sa10\bin32\rsaserver.id;
 identity_password=test)

fips

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 51

On a SQL Anywhere client, the implementation is:

dbmlsync -e
 "CommunicationType=tls;
 CommunicationAddress=
 'tls_type=rsa;
 fips=y;
 trusted_certificates=\rsaroot.crt;
 certificate_name=RSA Server'"

In an UltraLite application written in embedded SQL in C or C++, the implementation is:

 info.stream = "tls";
 info.stream_parms = TEXT(
 "tls_type=rsa;
 fips=y;
 trusted_certificates=\rsaroot.crt;
 certificate_name=RSA Server");

MobiLink client network protocol options

52 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

host
Specify the host name or IP number for the computer on which the MobiLink server is running, or, if you
are synchronizing through a web server, the computer where the web server is running.

Syntax
host=hostname-or-ip

Protocols
● TCPIP, TLS, HTTP, HTTPS

Default
● Windows Mobile - the default value is the IP address of the desktop computer the device has an

ActiveSync partnership with.
● All other devices - the default is localhost.

Remarks
On Windows Mobile, do not use localhost, which refers to the remote device itself. The default value allows
a Windows Mobile device to connect to a MobiLink server on the desktop computer to which the Windows
Mobile device has an ActiveSync partnership.

For the Palm Computing Platform, the default value of localhost refers to the device. You should supply an
explicit host name or IP address to connect to a desktop computer.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 187.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

Example
In the following example, the client connects to a computer called myhost at port 1234.

On a SQL Anywhere client, the implementation is:

dbmlsync -e "adr='host=myhost;port=1234'"

In an UltraLite application written in embedded SQL or C++, the implementation is:

synch_info.stream_parms = TEXT("host=myhost;port=1234");

host

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 53

http_password
Authenticate to third-party HTTP servers and gateways using RFC 2617 Basic or Digest authentication.

Syntax
http_password=password

Protocols
● HTTP, HTTPS

Support notes
● Cannot be used in the ML directive of the Redirector.

Default
None

Remarks
This feature supports Basic and Digest authentication as described in RFC 2617.

With Basic authentication, passwords are included in HTTP headers in clear text; however, you can use
HTTPS to encrypt the headers and protect this password. With Digest authentication, headers are not sent
in clear text but are hashed.

You must use http_userid with this option.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 187.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

See also
● “http_userid” on page 57
● “http_proxy_password” on page 55
● “http_proxy_userid” on page 56

Example
The following example of an embedded SQL or C++ UltraLite application provides a user ID and password
for basic authentication to a web server.

synch_info.stream = "https";
synch_info.stream_parms = TEXT("http_userid=user;http_password=pwd");

MobiLink client network protocol options

54 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http_proxy_password
Authenticate to third-party HTTP proxies using RFC 2617 Basic or Digest authentication.

Syntax
http_proxy_password=password

Protocols
● HTTP, HTTPS

Support notes
● Cannot be used in the ML directive of the Redirector.

Default
None

Remarks
This feature supports Basic and Digest authentication as described in RFC 2617.

With Basic authentication, passwords are included in HTTP headers in clear text; you can use HTTPS, but
the initial connection to the proxy is through HTTP, so this password is clear text. With Digest authentication,
headers are not sent in clear text but are hashed.

You must use http_proxy_userid with this option.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 187.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

See also
● “http_password” on page 54
● “http_userid” on page 57
● “http_proxy_userid” on page 56

Example
The following example of an embedded SQL or C++ UltraLite application provides a user ID and password
for basic authentication to a web proxy.

synch_info.stream = "https";
synch_info.stream_parms =
TEXT("http_proxy_userid=user;http_proxy_password=pwd");

http_proxy_password

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 55

http_proxy_userid
Authenticate to third-party HTTP proxies using RFC 2617 Basic or Digest authentication.

Syntax
http_proxy_userid=userid

Protocols
● HTTP, HTTPS

Support notes
● Cannot be used in the ML directive of the Redirector.

Default
None

Remarks
This feature supports Basic and Digest authentication as described in RFC 2617.

With Basic authentication, passwords are included in HTTP headers in clear text; you can use HTTPS, but
the initial connection to the proxy is through HTTP, so the password is clear text. With Digest authentication,
headers are not sent in clear text but are hashed.

You must use http_proxy_password with this option.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 187.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

See also
● “http_password” on page 54
● “http_userid” on page 57
● “http_proxy_password” on page 55

Example
The following example of an embedded SQL or C++ UltraLite application provides a user ID and password
for basic authentication to a web proxy.

synch_info.stream = "https";
synch_info.stream_parms =
TEXT("http_proxy_userid=user;http_proxy_password=pwd");

MobiLink client network protocol options

56 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http_userid
Authenticate to third-party HTTP servers and gateways using RFC 2617 Basic or Digest authentication.

Syntax
http_userid=userid

Protocols
● HTTP, HTTPS

Support notes
● Cannot be used in the ML directive of the Redirector.

Default
None

Remarks
This feature supports Basic and Digest authentication as described in RFC 2617.

With Basic authentication, passwords are included in HTTP headers in clear text; however, you can use
HTTPS to encrypt the headers and protect the password. With Digest authentication, headers are not sent in
clear text but are hashed.

You must use http_password with this option.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 187.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

See also
● “http_password” on page 54
● “http_proxy_password” on page 55
● “http_proxy_userid” on page 56

Example
The following example of an embedded SQL or C++ UltraLite application provides a user ID and password
for basic authentication to a web server.

synch_info.stream = "https";
synch_info.stream_parms = TEXT("http_userid=user;http_password=pwd");

http_userid

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 57

identity_name
This feature supports authentication using client identities (a certificate plus a private key) from Common
Access Cards (CACs). This feature is only supported for Windows Mobile.

This parameter is used to specify the common name of the public certificate.

Separately licensed component required
This feature is part of the CAC Authentication Add-on and requires a separate license. See “Separately
licensed components” [SQL Anywhere 11 - Introduction].

Syntax
identity_name=name

Protocols
● TLS, HTTPS

Default
None.

Remarks
This parameter can only be used with FIPS-approved RSA encryption.

The public certificate must be installed in the device's certificate store.

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption technologies
are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 11 - Introduction].

MobiLink client network protocol options

58 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

network_leave_open
When you specify network_name, you can optionally specify that the network connectivity should be left
open after the synchronization finishes.

Syntax
network_leave_open={ off | on }

Protocols
● TCPIP, TLS, HTTP, HTTPS

Support notes
● Cannot be used in the ML directive of the Redirector.

Default
On devices other than Palm, the default is off.

On the Palm, the default is on.

Remarks
You must specify network_name to use this option.

When this option is set to on, network connectivity is left open after the synchronization finishes.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 187.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

See also
● “network_name” on page 60

Example
In the following example, the client uses the network name MyNetwork and specifies that the connection
should be left open after the synchronization finishes.

On a SQL Anywhere client, the implementation is:

dbmlsync -e "adr='network_name=MyNetwork;network_leave_open=on'"

In an UltraLite application written in embedded SQL or C++, the implementation is:

synch_info.stream_parms =
TEXT("network_name=MyNetwork;network_leave_open=on");

network_leave_open

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 59

network_name
Specify the network name to start if an attempt to connect to the network fails.

Syntax
network_name=name

Protocols
● TCPIP, TLS, HTTP, HTTPS

Support notes
● Cannot be used in the ML directive of the Redirector.

Default
None

Remarks
Specify the network name so that you can use the MobiLink auto-dial feature. This allows you to connect
from a Windows Mobile device or Windows desktop computer without manually dialing. Auto-dial is a
secondary attempt to connect to the MobiLink server; first, the client attempts to connect without dialing,
and if that fails and a network_name is specified, auto-dial is activated. When used with scheduling, your
remote can synchronize unattended. When used without scheduling, this allows you to run dbmlsync without
manually dialing a connection.

On Windows Mobile, the name should be one of the network profiles from the dropdown list in Settings »
Connections » Connections. To use whatever you have set as your default for the internet network or work
network, set the name to the keyword default_internet or default_work, respectively.

On Windows desktop platforms, the name should be one of the network profiles from Network & Dialup
Connections.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 187.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

See also
● “Scheduling synchronization” on page 121
● “network_leave_open” on page 59

Example
In the following example, the client uses the network name MyNetwork and specifies that the connection
should be left open after the synchronization finishes.

On a SQL Anywhere client, the implementation is:

dbmlsync -e "adr='network_name=MyNetwork;network_leave_open=on'"

MobiLink client network protocol options

60 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

In an UltraLite application written in embedded SQL or C++, the implementation is:

synch_info.stream_parms =
TEXT("network_name=MyNetwork;network_leave_open=on");

network_name

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 61

persistent
Use a single TCP/IP connection for all HTTP requests in a synchronization.

Syntax
persistent={ off | on }

Protocols
● HTTP, HTTPS

Support notes
● Cannot be used in the ML directive of the Redirector.

Default
Off

Remarks
The On value means that the client attempts to use the same TCP/IP connection for all HTTP requests in a
synchronization. A setting of off is usually more compatible with intermediate agents.

Except on Palm devices, you should only set persistent to on if you are connecting directly to MobiLink. If
you are connecting through an intermediate agent such as a proxy or redirector, a persistent connection may
cause problems.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 187.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

MobiLink client network protocol options

62 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

port
Specify the socket port number of the MobiLink server.

Syntax
port=port-number

Protocols
● TCPIP, TLS, HTTP, HTTPS

Default
For TCP/IP, the default is 2439, which is the IANA-registered port number for the MobiLink server.

For HTTP, the default is 80.

For HTTPS, the default is 443.

Remarks
The port number must be a decimal number that matches the port the MobiLink server is set up to listen on.

If you are synchronizing through a web server, specify the web server port accepting HTTP or HTTPS
requests.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 187.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

Example
In the following example, the client connects to a computer called myhost at port 1234.

On a SQL Anywhere client, the implementation is:

dbmlsync -e "adr='host=myhost;port=1234'"

In an UltraLite application written in embedded SQL or C++, the implementation is:

synch_info.stream_parms = TEXT("host=myhost;port=1234");

port

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 63

proxy_host
Specify the host name or IP address of the proxy server.

Syntax
proxy_host=proxy-hostname-or-ip

Protocols
● HTTP, HTTPS

Support notes
● Cannot be used in the ML directive of the Redirector.

Default
None

Remarks
Use only if going through an HTTP proxy.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 187.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

Example
In the following example, the client connects to a proxy server running on a computer called myproxyhost
at port 1234.

On a SQL Anywhere Client, the implementation is:

dbmlsync -e "adr='proxy_host=myproxyhost;proxy_port=1234'"

In an UltraLite application written in embedded SQL or C++, the implementation is:

synch_info.stream_parms = TEXT("proxy_host=myproxyhost;proxy_port=1234");

MobiLink client network protocol options

64 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

proxy_port
Specify the port number of the proxy server.

Syntax
proxy_port=proxy-port-number

Protocols
● HTTP, HTTPS

Support notes
● Cannot be used in the ML directive of the Redirector.

Default
None

Remarks
Use only if going through an HTTP proxy.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 187.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

Example
In the following example, the client connects to a proxy server running on a computer called myproxyhost
at port 1234.

On a SQL Anywhere Client, the implementation is:

dbmlsync -e "adr='proxy_host=myproxyhost;proxy_port=1234'"

In an UltraLite application written in embedded SQL or C++, the implementation is:

synch_info.stream_parms = TEXT("proxy_host=myproxyhost;proxy_port=1234");

proxy_port

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 65

set_cookie
Specify custom HTTP cookies to set in the HTTP requests used during synchronization.

Syntax
set_cookie=cookie-name=cookie-value,...

Protocols
● HTTP, HTTPS

Support notes
● Cannot be used in the ML directive of the Redirector.

Default
None

Remarks
Custom HTTP cookies are useful when your synchronization client interacts with a third-party tool, such as
an authentication tool, that uses cookies to identify sessions. For example, you have a system where a user
agent connects to a web server, proxy, or gateway and authenticates itself. If successful, the agent receives
one or more cookies from the server. The agent then starts a synchronization and hands over its session
cookies through the set_cookie option.

If you have multiple name-value pairs, separate them with commas.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 187.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

Example
The following example sets a custom HTTP cookie in an embedded SQL or C++ UltraLite application.

info.stream = "http";
info.stream_parms = TEXT(
 "host=www.myhost.com;
 set_cookie=MySessionID=12345, enabled=yes;");

MobiLink client network protocol options

66 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

timeout
Specify the amount of time, in seconds, that the client waits for network operations to succeed before giving
up.

Syntax
timeout=seconds

Protocols
● TCPIP, TLS, HTTP, HTTPS

Default
240 seconds

Support notes
● Cannot be used in the ML directive of the Redirector.

Remarks
If any connect, read, or write attempt fails to complete within the specified time, the client fails the
synchronization.

Throughout the synchronization, the client sends liveness updates within the specified interval to let the
MobiLink server know that it is still alive, and MobiLink sends back liveness updates to let the client know
that it is still alive. To prevent slow networks from delaying the timeout past the specified time, MobiLink
clients send keep-alive bytes to the MobiLink server at an interval of half the timeout value. When this value
is set to 240 seconds, the keep-alive message is sent every 120 seconds.

You should be careful about setting the timeout to too low a value. Liveness checking increases network
traffic because the MobiLink server and the client must communicate within each timeout period to ensure
that the connection is still active. If the network or server load is very heavy and the timeout period is very
short, it is possible that a live connection could be abandoned because the MobiLink server and dbmlsync
were unable to confirm that the connection is still active. The liveness timeout should generally not be less
than 30 seconds.

The maximum timeout is 10 minutes. You can specify a larger number than 600 seconds, but it is interpreted
as 600 seconds.

The value 0 means that the timeout is 10 minutes.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 187.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

Example
The following example sets the timeout to 300 seconds.

On a SQL Anywhere client, the implementation is:

timeout

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 67

dbmlsync -e "adr=timeout=300"

In an UltraLite application written in embedded SQL or C++, the implementation is:

synch_info.stream_parms = TEXT("timeout=300");

MobiLink client network protocol options

68 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

tls_type
Specify the encryption cipher to use for synchronization.

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption technologies
are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 11 - Introduction].

Syntax
tls_type=cipher

Protocols
● TLS, HTTPS

Default
RSA

Remarks
All communication for this synchronization is to be encrypted using the specified cipher. The cipher can be
one of:

● ecc for elliptic-curve encryption.

● rsa for RSA encryption.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 187.

See also
● “Configuring MobiLink clients to use transport-layer security” [SQL Anywhere Server - Database

Administration]
● “fips” on page 51
● “Encrypting MobiLink client/server communications” [SQL Anywhere Server - Database

Administration]
● “-x option” [MobiLink - Server Administration]
● “certificate_company” on page 41
● “certificate_name” on page 43
● “certificate_unit” on page 45
● “trusted_certificates” on page 71

Example
The following example sets up RSA encryption for a TCP/IP protocol. This requires setup on the server and
client. Each command must be written on one line.

On the server, the implementation is:

tls_type

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 69

mlsrv11
 -c "dsn=SQL Anywhere 11 Demo;uid=DBA;pwd=sql"
 -x tls(
 port=9999;
 tls_type=rsa;
 identity=c:\sa10\bin32\rsaserver.id;
 identity_password=test)

On a SQL Anywhere client, the implementation is:

dbmlsync -e
 "CommunicationType=tls;
 CommunicationAddress=
 'tls_type=rsa;
 trusted_certificates=\rsaroot.crt;
 certificate_name=RSA Server'"

In an UltraLite application written in embedded SQL in C or C++, the implementation is:

 info.stream = "tls";
 info.stream_parms = TEXT(
 "tls_type=rsa;
 trusted_certificates=\rsaroot.crt;
 certificate_name=RSA Server");

MobiLink client network protocol options

70 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

trusted_certificates
Specify a file containing a list of trusted root certificates used for secure synchronization.

Separately licensed component required
ECC encryption and FIPS-certified encryption require a separate license. All strong encryption technologies
are subject to export regulations.

See “Separately licensed components” [SQL Anywhere 11 - Introduction].

Syntax
trusted_certificates=filename

Syntax 2 (Palm OS)
trusted_certificates=vfs:[volume-label:| volume-ordinal:]filename

Protocols
● TLS, HTTPS

Default
None

Remarks
When synchronization occurs through a Certicom TLS synchronization stream, the MobiLink server sends
its certificate to the client, and the certificate of the entity that signed it, and so on up to a self-signed root.

The client checks that the chain is valid and that it trusts the root certificate in the chain. This feature allows
you to specify which root certificates to trust.

For UltraLite clients, trusted roots can be provided to ulinit, ulcreate, and ulload when creating the database.
If the trusted_certificates parameter is provided, the trusted certificates found in the file replace those stored
in the database.

For 32-bit Windows and Windows Mobile, if no trusted certificates are specified, the client loads the
certificates from the operating system's trusted certificate store. This certificate store is used by web browsers
when they connect to secure web servers via HTTPS.

Trusted certificates are supported for the Palm OS file system (not record-based data stores). On Palm OS,
volume-label can be INTERNAL for the built-in drive, CARD for the expansion card, or the label name of
the volume. Alternatively, you can use volume-ordinal to identify the volume (the default is 0, which is the
first volume enumerated by the platform). The filename must be the full path to the file, following the
filename and path naming conventions of the Palm platform.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 187.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

trusted_certificates

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 71

See also
● “Specifying file paths in an UltraLite connection parameter” [UltraLite - Database Management and

Reference]
● “Encrypting MobiLink client/server communications” [SQL Anywhere Server - Database

Administration]
● “-x option” [MobiLink - Server Administration]
● “tls_type” on page 69
● “certificate_company” on page 41
● “certificate_name” on page 43
● “certificate_unit” on page 45

Example
The following example sets up RSA encryption for an HTTPS protocol. This requires setup on the server
and client. Each command must be written on one line.

The server implementation is:

mlsrv11
 -c "dsn=SQL Anywhere 11 Demo;uid=DBA;pwd=sql"
 -x https(
 port=9999;
 identity=c:\sa10\bin32\rsaserver.id;
 identity_password=test)

On a SQL Anywhere client, the implementation is:

dbmlsync
 -c "dsn=mydb;uid=DBA;pwd=sql"
 -e "ctp=https;
 adr='port=9999;
 trusted_certificates=c:\sa10\bin32\rsaroot.crt;
 certificate_name=RSA Server'"

On an UltraLite client, the implementation is:

 info.stream = "https";
 info.stream_parms = TEXT(
 "port=9999;
 trusted_certificates=\rsaroot.crt;
 certificate_name=RSA Server");

On an UltraLite client running Palm OS, the stream and stream_parms can be set like this:

info.stream = "https";
info.stream_parms = "trusted_certificates=vfs:/rsaroot.crt;port=9999";

MobiLink client network protocol options

72 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

url_suffix
Specify the suffix to add to the URL on the first line of each HTTP request sent during synchronization.

Syntax
url_suffix=suffix

The syntax of suffix depends on the type of Redirector you are using:

Redirector Syntax of suffix

ISAPI exe_dir/iaredirect.dll/ml/[server-group/]

where exe-dir is the location of iaredirect.dll.

NSAPI mlredirect/ml/[server-group/]

where mlredirect is a name mapped in your obj.conf file.

Apache whatever you chose in the Redirector's <location> tag in the httpd.conf file.

Servlet iaredirect/ml/

M-Business Anywhere whatever you chose in the Redirector's <location> tag in the sync.conf file.

Protocols
● HTTP, HTTPS

Support notes
● Cannot be used in the ML directive of the Redirector, but is set on the client for the Redirector.

Default
The default is MobiLink.

Remarks
When synchronizing through a proxy or web server, the url_suffix may be necessary to find the MobiLink
server.

Only some Redirectors support server groups. For details, see http://www.sybase.com/detail?id=1061837.

For information about how to set this option when using the Redirector, see “Configuring MobiLink clients
and servers for the Redirector” [MobiLink - Server Administration].

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 187.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

url_suffix

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 73

http://www.sybase.com/detail?id=1061837

See also
● “Configuring MobiLink clients and servers for the Redirector” [MobiLink - Server Administration]
● “MobiLink server groups” [MobiLink - Server Administration]

Example
The following SQL statement creates a synchronization user called sales5322 that synchronizes over HTTPS.
Assume that the MobiLink server runs behind the corporate firewall, and synchronization requests are
redirected to it using the Redirector (a reverse proxy to an NSAPI web server). The MobiLink user
synchronizes to the URL https://www.mycompany.com:80/mlredirect/ml/.

CREATE SYNCHRONIZATION USER sales5322
TYPE https
ADDRESS 'host=www.mycompany.com;port=80;url_suffix=mlredirect/ml/'

Example
The following example sets up HTTP through the ISAPI Redirector for an UltraLite client. Command lines
must be entered all on one line.

mlsrv11 -c "dsn=SQL Anywhere 11 CustDB"
 -dl -fr -ot mlserver.mls -zu+ -v+
 -x http(port=8081)

To synchronize with ulsync, run a command such as the following:

ulsync -c "dbf=custdb.udb"
 -v "MobiLinkUid=50;ScriptVersion=custdb 11.0;
 Stream=http(port=80;url_suffix=Scripts/iaredirect.dll/ml/)"

MobiLink client network protocol options

74 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

version
Specify the version of HTTP to use for synchronization.

Syntax
version=HTTP-version-number

Protocols
● HTTP, HTTPS

Support notes
● Cannot be used in the ML directive of the Redirector.

Default
The default value is 1.1.

Remarks
This option is useful if your HTTP infrastructure requires a specific version of HTTP. Values can be 1.0 or
1.1.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 187.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

Example
The following example sets the HTTP version to 1.0.

On a SQL Anywhere client, the implementation is:

dbmlsync -e "adr=version=1.0"

In an UltraLite application written in embedded SQL or C++, the implementation is:

synch_info.stream_parms = TEXT("version=1.0");

version

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 75

zlib_download_window_size
If you set the compression option to zlib, you can use this option to specify the compression window size
for download.

Syntax
zlib_download_window_size=window-bits

Protocols
● TCPIP, TLS, HTTP, HTTPS

Support notes
● Cannot be used in the ML directive of the Redirector.
● Not supported on Palm OS or Symbian.

Default
12 on Windows Mobile, otherwise 15

Remarks
To turn off compression for downloads, set window-bits to 0. Otherwise, the window size can be a value
between 9 and 15 inclusive. In general, better compression rates can be achieved with a higher window size,
but more memory is required.

window-bits is the base two logarithm of the window size (the size of the history buffer). The following
formulas can be used to determine how much memory is used on the client for each window-bits:

upload (compress): memory = 2(window-bits + 3)

download (decompress): memory = 2(window-bits)

To support zlib compression in UltraLite, an application must call
ULEnableZlibSyncCompression(sqlca) and mlczlib10.dll must be deployed.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 187.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

See also
● “compression” on page 47
● “zlib_upload_window_size” on page 77

Example
The following option sets compression for upload only:

"compression=zlib;zlib_download_window_size=0"

MobiLink client network protocol options

76 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

zlib_upload_window_size
If you set the compression option to zlib, you can use this option to specify the compression window size
for upload.

Syntax
zlib_upload_window_size=window-bits

Protocols
● TCPIP, TLS, HTTP, HTTPS

Support notes
● Cannot be used in the ML directive of the Redirector.
● Not supported on Palm OS or Symbian.

Default
12 on Windows Mobile, otherwise 15

Remarks
To turn off compression for uploads, set the window size to 0. Otherwise, the window size can be a value
between 9 and 15 inclusive. In general, better compression rates can be achieved with a higher window size,
but more memory is required.

window-bits is the base two logarithm of the window size (the size of the history buffer). The following
formulas can be used to determine how much memory is used on the client for each window-bits:

upload (compress): memory = 2(window-size + 3)

download (decompress): memory = 2(window-size)

To support zlib compression in UltraLite, an application must call
ULEnableZlibSyncCompression(sqlca) and mlczlib10.dll must be deployed.

For information about how to set network protocol options with dbmlsync, see “CommunicationAddress
(adr) extended option” on page 187.

For information about how to set network protocol options with UltraLite, see “Network protocol options
for UltraLite synchronization streams” [UltraLite - Database Management and Reference].

See also
● “compression” on page 47
● “zlib_download_window_size” on page 76

Example
The following option sets compression for download only:

"compression=zlib;zlib_upload_window_size=0"

zlib_upload_window_size

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 77

78

Schema changes in remote clients

Contents
Introduction to MobiLink client schema changes ... 80
Schema upgrades for SQL Anywhere remote databases ... 81
Schema upgrades for UltraLite remote databases .. 83

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 79

Introduction to MobiLink client schema changes
As your needs evolve, deployed remote databases may require schema changes. The most common schema
changes are adding a new column to an existing table or adding a new table to the database.

Caution
Perform a successful synchronization just before changing schema. There should be no open transactions
when you upgrade the schema.

Schema changes in remote clients

80 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Schema upgrades for SQL Anywhere remote
databases

You can change the schema of remote SQL Anywhere databases after they are deployed.

If you can ensure that there are no other connections to the remote database, you can use the ALTER
PUBLICATION statement manually to add new or altered tables to your publications. Otherwise, you must
use the sp_hook_dbmlsync_schema_upgrade hook to upgrade your schema.

See “sp_hook_dbmlsync_schema_upgrade” on page 290.

To add tables to SQL Anywhere remote databases

1. Add the associated table scripts in the consolidated database.

The same script version may be used for the remote database without the new table and the remote
database with the new table. However, if the presence of the new table changes how existing tables are
synchronized, then you must create a new script version, and create new scripts for all tables being
synchronized with the new script version.

2. Perform a normal synchronization. Ensure that the synchronization is successful before proceeding.

3. Use the ALTER PUBLICATION statement to add the table. For example,

ALTER PUBLICATION your_pub
 ADD TABLE table_name;

You can use this statement inside a sp_hook_dbmlsync_schema_upgrade hook. See
“sp_hook_dbmlsync_schema_upgrade” on page 290.

For more information, see “ALTER PUBLICATION statement [MobiLink] [SQL Remote]” [SQL
Anywhere Server - SQL Reference].

4. Synchronize. Use the new script version, if required.

Changing table definitions in remote databases

Changing the number or type of columns in an existing table must be done carefully. When a MobiLink
client synchronizes with a new schema, it expects scripts, such as upload_update or download_cursor, which
have parameters for all columns in the remote table. An older remote database expects scripts that have only
the original columns.

To alter a published table in a deployed SQL Anywhere remote database

1. At the consolidated database, create a new script version.

For more information, see “Script versions” [MobiLink - Server Administration].

2. For your new script version, create scripts for all tables in the publication(s) that contain the table that
you want to alter and that are synchronized with the old script version.

Schema upgrades for SQL Anywhere remote databases

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 81

3. Perform a normal synchronization of the remote database using the old script version. Ensure that the
synchronization is successful before proceeding.

4. At the remote database, use the ALTER PUBLICATION statement to temporarily drop the table from
the publication. For example,

ALTER PUBLICATION your_pub
 DROP TABLE table_name;

For more information, see “ALTER PUBLICATION statement [MobiLink] [SQL Remote]” [SQL
Anywhere Server - SQL Reference].

You can use this statement inside a sp_hook_dbmlsync_schema_upgrade hook. See
“sp_hook_dbmlsync_schema_upgrade” on page 290.

5. At the remote database, use the ALTER TABLE statement to alter the table.

For more information, see “ALTER TABLE statement” [SQL Anywhere Server - SQL Reference].

6. At the remote database, use the ALTER PUBLICATION statement to add the table back into the
publication.

For more information, see “ALTER PUBLICATION statement [MobiLink] [SQL Remote]” [SQL
Anywhere Server - SQL Reference].

You can use this statement inside a sp_hook_dbmlsync_schema_upgrade hook. See
“sp_hook_dbmlsync_schema_upgrade” on page 290.

7. Synchronize with the new script version.

Schema changes in remote clients

82 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Schema upgrades for UltraLite remote databases
You can change the schema of a remote UltraLite database by having your existing application execute DDL.

● If you deploy a new application with a new database, you need to repopulate the UltraLite database by
synchronizing with the MobiLink server.

● If you deploy a new application that contains DDL to upgrade the database, your data is preserved.

● If your existing application has a generic way to receive DDL statements, it can apply DDL to your
database and your data is preserved.

It is usually impractical to have all users upgrade to the new version of the application at the same time.
Therefore, you need to be able to have both versions co-existing in the field and synchronizing with a single
consolidated database. You can create two or more versions of the synchronization scripts that are stored in
the consolidated database and control the actions of the MobiLink server. Each version of your application
can then select the appropriate set of synchronization scripts by specifying the correct version name when
it initiates synchronization.

For information about UltraLite DDL, see “UltraLite SQL statements” [UltraLite - Database Management
and Reference].

See also
● “Deploying UltraLite schema upgrades” [UltraLite - Database Management and Reference]

Schema upgrades for UltraLite remote databases

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 83

84

SQL passthrough

Contents
Introduction to SQL passthrough ... 86

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 85

Introduction to SQL passthrough
The SQL Passthrough feature allows you to download scripts of SQL statements from a consolidated
database to a SQL Anywhere or UltraLite client, and have those SQL statements executed on the client at
an appropriate time. The scripts are numbered and are guaranteed to be executed on the client in order.

After a script is executed or an attempt is made to execute it, status is sent back to the consolidated database
with the next synchronization so that both successful runs and failures can be centrally monitored. When an
error occurs executing a script on a client, no further scripts are executed on that client until the status has
been uploaded to the consolidated database and the consolidated has downloaded instructions to the client
on how to proceed. These instructions may mean retrying the existing script, skipping it, or downloading a
new script to fix the error.

Below is an overview of the steps required to use SQL Passthrough:

● Create a script and store it in the consolidated database. See “Creating a script” on page 86 and
“ml_add_passthrough_script system procedure” [MobiLink - Server Administration].

● Create one or more passthrough entries for the script which identify the clients that should execute it.
See “Creating passthrough entries” on page 86 and “ml_add_passthrough system procedure”
[MobiLink - Server Administration].

● Download the script. See “Downloading scripts” on page 87 and “ml_add_passthrough system
procedure” [MobiLink - Server Administration].

● Execute the script. See “Executing scripts” on page 87.

● Capture the results. See “Capturing script results” on page 90.

● Review the results. See “Reviewing script results” on page 90.

● Handle errors, if necessary. See “Handling script errors” on page 91.

Creating a script
Scripts are created and stored on the consolidated database using the ml_add_passthrough_script stored
procedure. See “ml_add_passthrough_script system procedure” [MobiLink - Server Administration].

Creating passthrough entries
The ml_add_passthrough system procedure is used to specify which MobiLink clients should receive the
passthrough script that was created on the consolidated database. See “ml_add_passthrough system
procedure” [MobiLink - Server Administration].

SQL passthrough

86 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Downloading scripts
Scripts are downloaded from the consolidated database to the MobiLink client automatically during
synchronization. Scripts are not downloaded in the following situations:

● When a file-based download is performed.
● When a ping is performed.
● When a download is restarted.

SQL passthrough script storage on SQL Anywhere clients

SQL passthrough scripts downloaded from the consolidated database to a SQL Anywhere client are stored
in the dbo.sync_passthrough_script table.

SQL passthrough script storage on UltraLite clients

SQL passthrough scripts downloaded from the consolidated database to an UltraLite client are stored in the
syssql table.

Executing scripts
Once a script is stored on a MobiLink client database, it can be executed either automatically or manually.
Regardless of how scripts are executed, they must be executed in order by run_order.

For SQL Anywhere clients, scripts are always executed with DBA authority under the DBO account.

Executing a script manually on a SQL Anywhere client
Any script may be executed manually. For SQL Anywhere clients, scripts are executed manually using the
sync_get_next_passthrough_script and sync_execute_next_passthrough_script functions.

The sync_get_next_passthrough_script function takes no parameters and returns the run_order of the next
script to be executed. You can then find out about that script by querying the dbo.sync_passthrough_script
table.

dbo.sync_passthrough_script table
The dbo.sync_passthrough_script table is defined as follows:

Column name Description

run_order INTEGER. The run_order parameter determines the order in which scripts are
applied on the remote database. Scripts are always applied in order by run_order.

This value must be a non-negative integer.

script_id INTEGER. This value uniquely identifies the script.

Introduction to SQL passthrough

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 87

Column name Description

script_name VARCHAR(128). The name of the script. This column corresponds to the
script_name value specified for the script when ml_add_passthrough_script was
called on the consolidated database.

flags BIGINT. The flags column contains the information specified in the flags pa-
rameter passed to the ml_add_passthrough_script stored procedure. The flags
specified are encoded into an integer by converting each specified flag into the
value shown below, and combining the resultant values together with OR op-
erators.

● manual Indicates that the script may only be run in manual execution
mode. By default, all scripts can be run in either automatic or manual exe-
cution modes.

● exclusive Indicates that the script may only be automatically executed at
the end of a synchronization where exclusive locks were obtained on all
tables being synchronized. This option is ignored if the affected_ publica-
tions value lists no publications. This option is only meaningful to SQL
Anywhere remotes.

● schema_diff Indicates that the script should be run in schema-diffing
mode. In this mode, the database schema is altered to match the schema
described in the script. For example, a create statement for an existing table
is treated as an alter statement. This flag only applies to scripts run on Ul-
traLite remotes.

affected_pubs LONG VARCHAR. A list of publications that must be synchronized before the
script is run. This column corresponds to the affected_pubs value specified for
the script when ml_add_passthrough_script was called.

script LONG VARCHAR. The contents of the passthrough script. This column cor-
responds to the script value specified for the script when ml_add_pass-
through_script was called.

description VARCHAR(2000). A comment or description of the script. This column cor-
responds to the description value specified for the script when ml_add_pass-
through_script was called.

The sync_get_next_passthrough_script function returns null if there are no more scripts to execute or if the
last script executed generated an error and no instructions on how to proceed have yet be received from the
server.

The sync_execute_next_passthrough_script function takes no parameters. It executes the next script and
updates progress and status information in the database so that the results of the script can be uploaded to
the consolidated database later. No script is executed if the last script returned an error and no instructions
have yet been received from the MobiLink server on how to handle the error. If a script is executed, the run

SQL passthrough

88 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

order of that script is returned. If no script is executed, null is returned. See “Capturing script
results” on page 90.

Executing a script manually on an UltraLite client
For UltraLite clients, several ESQL API methods are available to manually apply scripts. The methods are:

● “GetSQLPassthroughScriptCount method” [UltraLite - .NET Programming]
● “ExecuteSQLPassthroughScripts method” [UltraLite - .NET Programming]
● “ExecuteNextSQLPassthroughScript method” [UltraLite - .NET Programming]

Equivalent methods are available for the C++, UltraLite.NET, and M-Business Anywhere interfaces.

Executing a script automatically on a SQL Anywhere client
On SQL Anywhere clients, an attempt is made to execute any waiting scripts at the end of each
synchronization. The available scripts are ordered by run_order and executed one at a time until one of the
following occurs:

● All the scripts have been executed.
● A script fails.
● A script is reached that cannot be executed automatically.

A script cannot be executed automatically if any of the following are true:

● The manual flag was specified when the script was created.

● The script has a non-empty affected publications value plus one or more of the following conditions:

○ No upload was performed.
○ The upload failed.
○ One or more publications listed in the affected publications value were not synchronized.
○ The exclusive flag was specified when the script was created and exclusive locks were not obtained

on all synchronizing tables when synchronization began.

Note
Download-only publications should never be listed as affected publications.

At the beginning of a synchronization, dbmlsync may choose to obtain locks on the synchronizing tables
that are more restrictive than those requested using the LockTables extended option to ensure that scripts
can be executed at the end of the synchronization. For example, if LockTables is set to SHARE but the
next script available for execution requires exclusive locks, then exclusive locks may be obtained.

Introduction to SQL passthrough

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 89

Executing a script automatically on an UltraLite client
On UltraLite clients, scripts that are not marked as manual are run automatically the next time that the
database is started, unless the connection parameter dont_run_scripts has been set.

Script execution progress can be provided during both manual and automatic execution if a progress observer
callback has been provided, which is defined as follows:

typedef void(UL_CALLBACK_FN *ul_sql_passthrough_observer_fn)
 (ul_sql_passthrough_status * status);

The ul_sql_passthrough_status structure is defined as follows:

typedef struct {
 ul_sql_passthrough_state state; // current state
 ul_u_long script_count; // total number of scripts to execute
 ul_u_long cur_script; // current script being executed (1-based)
 ul_bool stop; // set to true to stop script execution
 // can only be set in the starting state
 ul_void * user_data; // user data provided in register call
 SQLCA * sqlca;
} ul_sql_passthrough_status;

The progress observer callback is registered via the following method:

UL_FN_SPEC ul_ret_void UL_FN_MOD ULRegisterSQLPassthroughCallback(
SQLCA * sqlca,
ul_sql_passthrough_observer_fn callback,
ul_void * user_data);

Capturing script results
Regardless of whether a script is executed manually or automatically, the results of the script execution are
stored on the MobiLink client.

On SQL Anywhere clients, the results are stored in the dbo.sync_passthrough_status table. The results consist
of the time at the remote database when the script was executed and an indication of whether the script
succeeded or reported an error. In addition, if an error was reported the SQL code and the text of the error
message is stored.

On UltraLite clients the results are stored in the syssql table. The results consist of the time at the remote
database when the script was executed and an indication of whether the script succeeded or reported an error.
In addition, if an error was reported the SQL code, the line number in the script of the statement that failed,
and a list of error parameters is stored.

Reviewing script results
Both UltraLite and SQL Anywhere clients upload the results of scripts they have executed as part of each
synchronization. The MobiLink server stores the uploaded results in the ml_passthrough_status table in the
consolidated database. By examining this table you can determine the success of the passthrough scripts that
were distributed to the clients. See “ml_passthrough_status” [MobiLink - Server Administration].

SQL passthrough

90 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Handling script errors

Caution
The SQL passthrough feature is extremely powerful and must be used with caution. It is particularly
important that scripts be well tested because SQL passthrough script errors can potentially disable or damage
all of your remotes. Avoid errors with thorough testing.

When a SQL passthrough script on the client generates errors, the errors must be resolved at the consolidated
database or the client is not able to run any more SQL passthrough scripts.

The -vo server option for mlsrv11 can be used to capture SQL passthrough activity on the MobiLink server
that can help you resolve errors. See “-v option” [MobiLink - Server Administration].

The primary mechanism for resolving an error on a client is to add a row to the ml_passthrough_repair table
using the ml_add_passthrough_repair system procedure. Rows in the ml_passthrough_repair table describe
the action the client should take when a specific script generates a specific error code.

See also
● “ml_passthrough_repair” [MobiLink - Server Administration]
● “ml_add_passthrough_repair system procedure” [MobiLink - Server Administration]
● “ml_delete_passthrough_repair system procedure” [MobiLink - Server Administration]

Introduction to SQL passthrough

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 91

92

SQL Anywhere Clients for MobiLink

This section contains material that describes how to set up and run SQL Anywhere clients for MobiLink
synchronization.

SQL Anywhere clients ... 95
MobiLink SQL Anywhere client utility (dbmlsync) .. 129
MobiLink SQL Anywhere client extended options .. 183
MobiLink SQL statements ... 229
MobiLink synchronization profiles .. 231
Event hooks for SQL Anywhere clients ... 235
Dbmlsync API ... 307
Dbmlsync integration component (deprecated) ... 337
DBTools interface for dbmlsync ... 365
Scripted upload .. 373

SQL Anywhere clients

Contents
Creating a remote database .. 96
Publishing data .. 100
Creating MobiLink users .. 107
Creating synchronization subscriptions ... 110
Initiating synchronization ... 113
Using ActiveSync synchronization ... 117
Scheduling synchronization ... 121
Customizing dbmlsync synchronization ... 123
SQL Anywhere client logging .. 124
Running MobiLink on Mac OS X ... 125
Version considerations .. 127

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 95

Creating a remote database
Any SQL Anywhere database can be used as a remote database in a MobiLink system. All you need to do
is create a publication, create a MobiLink user, register the user with the consolidated database, and subscribe
the MobiLink user to the publication.

If you use the Create Synchronization Model Wizard to create your MobiLink client application, these
objects are created for you when you deploy the model. Even then, you should understand the concepts.

To use a SQL Anywhere database as a remote database

1. Start with an existing SQL Anywhere database, or create a new one and add your tables.

2. Create one or more publications in the remote database.

See “Publishing data” on page 100.

3. Create MobiLink users in the remote database.

See “Creating MobiLink users” on page 107.

4. Register users with the consolidated database.

See “Adding MobiLink user names to the consolidated database” on page 11.

5. Subscribe MobiLink users to one or more of the publications.

See “Creating synchronization subscriptions” on page 110.

Deploying remote databases
To deploy SQL Anywhere remote databases, you need to create the databases and add the appropriate
publications and subscriptions. To do this, you can customize a prototype remote database.

When deploying a starter database to multiple locations, it is safest to deploy databases that have a null
remote ID. If you have synchronized the databases to pre-populate them, you can set the remote ID back to
null before deployment. This method ensures that the remote ID is unique because the first time the remote
database synchronizes, a unique remote ID is assigned. Alternatively, the remote ID can be set as a remote
setup step, but it must be unique.

See “Setting remote IDs” on page 97.

To deploy MobiLink remote databases by customizing a prototype

1. Create a prototype remote database.

The prototype database should have all the tables and publications that are needed, but not the data that
is specific to each database. This information typically includes the following:

● The MobiLink user name.

● Synchronization subscriptions.

● The global_database_id option that provides the starting point for global autoincrement key values.

SQL Anywhere clients

96 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

2. For each remote database, perform the following operations:

● Create a directory to hold the remote database.

● Copy the prototype remote database into the directory.

If the transaction log is held in the same directory as the remote database, the log file name does not
need to be changed.

● Run a SQL script that adds the individual information to the database.

The SQL script can be a parameterized script. For information about parameterized scripts, see
“PARAMETERS statement [Interactive SQL]” [SQL Anywhere Server - SQL Reference], and “Using
SQL command files” [SQL Anywhere Server - SQL Usage].

When you use the Create Synchronization Model Wizard to create your MobiLink client application, you
can deploy your database using a wizard. See “Deploying models” [MobiLink - Getting Started].

See also
● “Deploying SQL Anywhere MobiLink clients” [MobiLink - Server Administration]
● “First synchronization always works” on page 99

Example
The following SQL script is taken from the Contact sample. It can be found in samples-dir\MobiLink\Contact
\customize.sql. (For information about samples-dir, see “Samples directory” [SQL Anywhere Server -
Database Administration].)

PARAMETERS ml_userid, db_id;
go
SET OPTION PUBLIC.global_database_id = {db_id}
go
CREATE SYNCHRONIZATION USER {ml_userid}
 TYPE 'TCPIP'
 ADDRESS 'host=localhost;port=2439'
 OPTION MEM=''
go
CREATE SYNCHRONIZATION SUBSCRIPTION TO "DBA"."Product"
 FOR {ml_userid}
go
CREATE SYNCHRONIZATION SUBSCRIPTION TO "DBA"."Contact"
 FOR {ml_userid}
go
commit work
go

The following command executes the script for a remote database with data source dsn_remote_1:

dbisql -c "dsn=dsn_remote_1" read customize.sql [SSinger] [2]

Setting remote IDs
The remote ID uniquely identifies a remote database in a MobiLink synchronization system. When a SQL
Anywhere database is created, the remote ID is null. When the database synchronizes with MobiLink,

Creating a remote database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 97

MobiLink checks for a null remote ID and if it finds one, it assigns a GUID as the remote ID. Once set, the
database maintains the same remote ID unless it is manually changed.

If you are going to reference remote IDs in MobiLink event scripts or elsewhere, you may want to change
the remote ID to a more meaningful name. To do this, you set the ml_remote_id database option for the
remote database. The ml_remote_id option is a user-defined option that is stored in the SYSOPTION system
table. You can change it using the SET OPTION statement or using the SQL Anywhere plug-in to Sybase
Central.

The remote ID must be unique within your synchronization system.

For more information about changing database options, see:

● “SET OPTION statement” [SQL Anywhere Server - SQL Reference]
● “Setting database options” [SQL Anywhere Server - Database Administration]
● “SYSOPTION system view” [SQL Anywhere Server - SQL Reference]

Caution
The safest time to change the remote ID is before the first synchronization. If you change it later, be sure
you have performed a complete, successful synchronization just before changing the remote ID. Otherwise
you may lose data and put your database into an inconsistent state.

See also
● “Remote IDs” on page 14

Example
The following SQL statement sets the remote ID to the value HR001:

SET OPTION PUBLIC.ml_remote_id = 'HR001'

Upgrading remote databases
If you install a new SQL Anywhere remote database over an older version, the synchronization progress
information in the consolidated database is incorrect. You can correct this problem by setting the progress
column of the ml_user table to 0 (zero) for this user.

For more information about the ml_user MobiLink system table, see “ml_user” [MobiLink - Server
Administration].

For more information about upgrading, see “Upgrading SQL Anywhere MobiLink clients” [SQL Anywhere
11 - Changes and Upgrading].

Progress offsets
The progress offset is an integer value that indicates the point in time up to which all operations for the
subscription have been uploaded and acknowledged. The dbmlsync utility uses the offset to decide what
data to upload. On the remote database, the offset is stored in the progress column of the SYS.ISYSSYNC

SQL Anywhere clients

98 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

system table. On the consolidated database, the offset is stored in the progress column of the ml_subscription
table.

For each remote, the remote and consolidated databases maintain an offset for every subscription. When a
MobiLink user synchronizes, the offsets are confirmed for all subscriptions that are associated with the
MobiLink user, even if they are not being synchronized at the time. This is required because more than one
publication can contain the same data. The only exception is that dbmlsync does not check the progress
offset of a subscription until it has attempted an upload.

If there is any disagreement between the remote and consolidated database offsets, the default behavior is
to update the offsets on the remote database with values from the consolidated database and then send a new
upload based on those offsets. In most cases, this default is appropriate. For example, it is generally
appropriate when the consolidated database is restored from backup and the remote transaction log is intact,
or when an upload is successful but communication failure prevented an upload acknowledgement from
being sent.

Most progress offset mismatches are resolved automatically using the consolidated progress values. In the
rare case that you must intervene to fix a problem with progress offsets, you can use the dbmlsync -r option.

For more information, see “-r option” on page 170.

First synchronization always works

The first time you attempt to synchronize a newly created subscription, the progress offsets for the
subscription are not checked against those on the consolidated database. This feature allows a remote
database to be recreated and synchronized without having to delete its state information, which is maintained
in the consolidated database.

The dbmlsync utility detects a first synchronization when the columns in the remote database system table
SYS.ISYSSYNC are as follows: the value for the progress column is the same as the value for the
created column, and the value for the log_sent column is null.

However, when you synchronize two or more subscriptions in the same upload, and one of the subscriptions
is not synchronizing for the first time, then progress offsets are checked for all subscriptions being
synchronized, including the ones that are being synchronized for the first time. For example, if you specify
the dbmlsync -n option with two publications (-n pub1,pub2), and pub1 has synchronized before but pub2
has not, then the progress offsets of both subscriptions are checked against the consolidated database values.

For more information, see:

● “ISYSSYNC system table” [SQL Anywhere Server - SQL Reference]
● “ml_subscription” [MobiLink - Server Administration]
● “Transaction log files” on page 114

Creating a remote database

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 99

Publishing data
A publication is a database object that identifies the data that is to be synchronized. It defines the data to be
uploaded, and it limits the tables that can be downloaded to. (The download is defined in the download_cursor
script.)

A publication consists of one or more articles. Each article specifies a subset of a table that is to be
synchronized. The subset may be the entire table or a subset of its rows and/or columns. Each article in a
publication must refer to a different table.

You create a subscription to link a publication to a user.

You create publications using Sybase Central or with the CREATE PUBLICATION statement.

In Sybase Central, all publications and articles appear in the Publications folder.

Notes about publications
● DBA authority is required to create and drop publications.

● You cannot create two publications containing different column subsets of the same table.

● The publication determines which columns are selected, but it does not determine the order in which
they are sent. Columns are always sent in the order in which they were defined in the CREATE TABLE
statement.

● Each article must include all the columns in the primary key of the table that it references.

● An article can limit the columns of a table that are synchronized. Using a WHERE clause, it can also
limit the rows.

● Views and stored procedures cannot be included in publications.

● Publications and subscriptions are also used by the Sybase message-based replication technology, SQL
Remote. SQL Remote requires publications and subscriptions in both the consolidated and remote
databases. In contrast, MobiLink publications appear only in SQL Anywhere remote databases.
MobiLink consolidated databases are configured using synchronization scripts.

See also
● “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]

Publishing whole tables
The simplest publication you can make consists of a set of articles, each of which contains all the rows and
columns in one table. These tables must already exist.

To publish one or more entire tables (Sybase Central Admin mode)

1. Connect to the remote database as a user with DBA authority, using the SQL Anywhere plug-in.

2. Open the Publications folder.

SQL Anywhere clients

100 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

3. Choose File » New » Publication.

4. In the What Do You Want To Name The New Publication field, enter a name for the new publication.
Click Next.

5. Click Next.

6. On the Available Tables list, select a table. Click Add.

7. Click Finish.

To publish one or more entire tables (SQL)

1. Connect to the remote database as a user with DBA authority.

2. Execute a CREATE PUBLICATION statement that specifies the name of the new publication and the
table you want to publish.

See “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL
Reference].

Example
The following statement creates a publication that publishes the whole customer table:

CREATE PUBLICATION pub_customer (
 TABLE customer
)

The following statement creates a publication including all columns and rows in each of a set of tables from
the SQL Anywhere sample database:

CREATE PUBLICATION sales (
 TABLE customer,
 TABLE sales_order,
 TABLE sales_order_items,
 TABLE product
)

Publishing only some columns in a table
You can create a publication that contains all the rows, but only some of the columns of a table from Sybase
Central or by listing the columns in the CREATE PUBLICATION statement.

Note
● If you create two publications that include the same table with different column subsets, then any user

that subscribes to both publications is unable to synchronize.

● An article must include all the primary key columns in the table.

To publish only some columns in a table (Sybase Central Admin mode)

1. Connect to the remote database as a user with DBA authority using the SQL Anywhere plug-in.

Publishing data

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 101

2. Open the Publications folder.

3. Choose File » New » Publication.

4. In the What Do You Want To Name The New Publication field, enter a name for the new publication.
Click Next.

5. Click Next.

6. On the Available Tables list, select a table. Click Add.

7. Click Next.

8. In the Available Columns list, expand the list of available columns. Select a column and click Add.

9. Click Finish.

To publish only some columns in a table (SQL)

1. Connect to the remote database as a user with DBA authority.

2. Execute a CREATE PUBLICATION statement that specifies the publication name and the table name.
List the published columns in parenthesis following the table name.

See “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL
Reference].

Example
The following statement creates a publication that publishes all rows of the id, company_name, and city
columns of the customer table:

CREATE PUBLICATION pub_customer (
 TABLE customer (id, company_name,
 city)
)

Publishing only some rows in a table
When no WHERE clause is specified in a publication definition, all changed rows in the publication are
uploaded. You can add WHERE clauses to articles in the publication to limit the rows to be uploaded to
those that have changed and that satisfy the search condition in the WHERE clause.

The search condition in the WHERE clause can only reference columns that are included in the article. In
addition, you cannot use any of the following in the WHERE clause:

● subqueries

● variables

● non-deterministic functions

These conditions are not enforced, but breaking them can lead to unexpected results. Any errors relating to
the WHERE clause are generated when the DML is run against the table referred to by the WHERE clause,
and not when the publication is defined.

SQL Anywhere clients

102 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To create a publication using a WHERE clause (Sybase Central Admin mode)

1. Connect to the remote database as a user with DBA authority using the SQL Anywhere plug-in.

2. Open the Publications folder.

3. Choose File » New » Publication.

4. In the What Do You Want To Name The New Publication field, enter a name for the new publication.
Click Next.

5. Click Next.

6. On the Available Tables list, select a table. Click Add.

7. Click Next.

8. Click Next.

9. In the Articles List, select a table and enter the search condition in the The Selected Article Has the
following WHERE clause pane.

10. Click Finish.

To create a publication using a WHERE clause (SQL)

1. Connect to the remote database as a user with DBA authority.

2. Execute a CREATE PUBLICATION statement that includes the tables you want to include in the
publication and a WHERE condition.

See “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL
Reference].

Example
The following example creates a publication that includes the entire employees table and all rows in the
SalesOrder table that have not been marked as archived.

CREATE PUBLICATION main_publication (
TABLE Employees,
TABLE SalesOrders
WHERE archived = 'N'
);

By changing the archived column in the table from any other value to an N, a delete is sent to the MobiLink
server during the next synchronization. Conversely, by changing the archived column from N to any other
value, an insert is sent. The update to the archived column is not sent to the MobiLink server.

Download-only publications
You can create a publication that only downloads data to remote databases, and never uploads data.
Download-only publications do not use a transaction log on the client.

Publishing data

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 103

Differences between download-only methods
There are two ways to specify that only a download (and not an upload) should occur:

● Download-only synchronization Use the dbmlsync options -e DownloadOnly or -ds.

● Download-only publication Create the publication with the FOR DOWNLOAD ONLY keyword.

The two approaches are quite different:

Download-only synchronizations Download-only publications

If the download attempts to change rows that have
been modified on the remote database and not yet
uploaded, the download fails.

The download can overwrite rows that have been
modified on the remote database and not yet uploa-
ded.

Uses a normal publication that can be uploaded and/
or downloaded. Download-only synchronization is
specified using dbmlsync command line options or
extended options.

Uses a download-only publication. All synchroni-
zations on these publications are download-only.
You cannot alter a normal publication to make it
download-only.

Requires a log file. Does not require a log file.

The log file is not truncated when these subscrip-
tions are not uploaded for a long time, and can con-
sume significant amounts of storage.

If there is a log file, the synchronization does not
affect the synchronization truncation point. This
means that the log file can still be truncated even if
the publication is not synchronized for a long time.
Download-only publications do not affect log file
truncation.

You need to do an upload occasionally to reduce
the amount of log that is scanned by the download-
only synchronization. Otherwise, the download-
only synchronization takes an increasingly long
time to complete.

There is no need to ever do an upload.

See also
● “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “Upload-only and download-only synchronizations” [MobiLink - Server Administration]

Altering existing publications
After you have created a publication, you can alter it by adding, modifying, or deleting articles, or by
renaming the publication. If an article is modified, the entire specification of the modified article must be
entered.

You can perform these tasks using Sybase Central or with the ALTER PUBLICATION statement.

SQL Anywhere clients

104 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Notes
● Publications can be altered only by the DBA or the publication's owner.

● Be careful. In a running MobiLink setup, altering publications may cause errors and can lead to loss of
data. If the publication you are altering has any subscriptions, then you must treat this change as a schema
upgrade. See “Schema changes in remote clients” on page 79.

To modify the properties of existing publications or articles (Sybase Central Admin mode)

1. Connect to the remote database as a user who owns the publication or as a user with DBA authority.

2. In the left pane, click the publication or article. The properties appears in the right pane.

3. Configure the properties.

To add articles (Sybase Central Admin mode)

1. Connect to the remote database as a user who owns the publication or as a user with DBA authority using
the SQL Anywhere plug-in.

2. Expand the Publications folder.

3. Select a publication.

4. Choose File » New » Article.

5. In the Create Article Wizard, do the following:

● In the Which Table Do You Want To Use For This Article list, select a table. Click Next.

● Click Selected Columns and select the columns. Click Next.

● In the You Can Specify a WHERE Clause For This Article pane, enter an optional WHERE clause.
Click Finish

To remove articles (Sybase Central Admin mode)

1. Connect to the database as a user who owns the publication or as a user with DBA authority using the
SQL Anywhere plug-in.

2. Expand the Publications folder.

3. Right-click the publication and choose Delete.

4. Click Yes.

To modify an existing publication (SQL)

1. Connect to the remote database as a user who owns the publication or as a user with DBA authority.

2. Execute an ALTER PUBLICATION statement.

See “ALTER PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL
Reference].

Publishing data

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 105

Example
● The following statement adds the customer table to the pub_contact publication.

ALTER PUBLICATION pub_contact (
 ADD TABLE customer
)

See also the “ALTER PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL
Reference].

Dropping publications
You can drop a publication using either Sybase Central or the DROP PUBLICATION statement. Before
dropping the publication, you must drop all subscriptions connected to it.

You must have DBA authority to drop a publication.

To delete a publication (Sybase Central Admin mode)

1. Connect to the remote database as a user with DBA authority using the SQL Anywhere plug-in.

2. Open the Publications folder.

3. Right-click a publication and choose Delete.

To delete a publication (SQL)

1. Connect to the remote database as a user with DBA authority.

2. Execute a DROP PUBLICATION statement.

See “DROP PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL
Reference].

Example
The following statement drops the publication named pub_orders.

DROP PUBLICATION pub_orders

SQL Anywhere clients

106 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Creating MobiLink users
A MobiLink user name is used to authenticate when you connect to the MobiLink server. You must create
MobiLink users in the remote database, and then register them on the consolidated database.

MobiLink users are not the same as database users. You can create a MobiLink user name that matches the
name of a database user, but neither MobiLink nor SQL Anywhere is affected by this coincidence.

To add a MobiLink user to a remote database (Sybase Central Admin mode)

1. Connect to the database from the SQL Anywhere plug-in as a user with DBA authority.

2. Click the MobiLink Users folder.

3. Choose File » New » User.

4. In the What Do You Want To Name The New User field, enter a name for the MobiLink user.

5. Click Finish.

To add a MobiLink user to a remote database (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a CREATE SYNCHRONIZATION USER statement. The MobiLink user name uniquely
identifies a remote database and so must be unique within your synchronization system.

The following example adds a MobiLink user named SSinger:

CREATE SYNCHRONIZATION USER SSinger

You can specify properties for the MobiLink user as part of the CREATE SYNCHRONIZATION USER
statement, or you can specify them separately with an ALTER SYNCHRONIZATION USER statement.

For more information, see “CREATE SYNCHRONIZATION USER statement [MobiLink]” [SQL
Anywhere Server - SQL Reference].

For information about setting MobiLink user properties, including the password, see “Storing extended
options for MobiLink users” on page 107.

For information about registering MobiLink users, see “Adding MobiLink user names to the consolidated
database” on page 11.

Storing extended options for MobiLink users
You can specify options for each MobiLink user in the remote database by using extended options. Extended
options can be specified on the command line, stored in the database, or specified with the
sp_hook_dbmlsync_set_extended_options event hook.

For a list of extended options, see “MobiLink SQL Anywhere client extended options” on page 183.

Creating MobiLink users

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 107

To store MobiLink extended options in the database (Sybase Central Admin mode)

1. Connect to the database from the SQL Anywhere plug-in as a user with DBA authority.

2. Open the MobiLink Users folder.

3. Right-click the MobiLink user name and choose Properties.

4. Change the properties as needed.

To store MobiLink extended options in the database (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute an ALTER SYNCHRONIZATION USER statement.

The following example changes the extended options for MobiLink user named SSinger to their default
values:

ALTER SYNCHRONIZATION USER SSinger
DELETE ALL OPTION

For more information, see “ALTER SYNCHRONIZATION USER statement [MobiLink]” [SQL
Anywhere Server - SQL Reference].

You can also specify properties when you create the MobiLink user name.

For more information, see “CREATE SYNCHRONIZATION USER statement [MobiLink]” [SQL
Anywhere Server - SQL Reference].

To specify MobiLink user properties with a client event hook

● You can programmatically customize the behavior of an upcoming synchronization.

For more information, see “sp_hook_dbmlsync_set_extended_options” on page 292.

See also
● “Using dbmlsync extended options” on page 113

Dropping MobiLink users
You must drop all subscriptions for a MobiLink user before you drop the user from a remote database.

To drop a MobiLink user from a remote database (Sybase Central Admin mode)

1. Connect to the database from the SQL Anywhere plug-in as a user with DBA authority.

2. Locate the MobiLink user in the MobiLink Users folder.

3. Right click the MobiLink user and choose Delete.

SQL Anywhere clients

108 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

To drop a MobiLink user from a remote database (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a DROP SYNCHRONIZATION USER statement.

The following example removes the MobiLink user named SSinger from the database:

DROP SYNCHRONIZATION USER SSinger

For more information, see “DROP SYNCHRONIZATION USER statement [MobiLink]” [SQL
Anywhere Server - SQL Reference].

Creating MobiLink users

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 109

Creating synchronization subscriptions
After creating MobiLink users and publications, you must subscribe at least one MobiLink user to one or
more pre-existing publications. You do this by creating synchronization subscriptions.

For information about creating publications, see “Publishing data” on page 100. For information about
creating MobiLink users, see “Creating MobiLink users” on page 107.

Note
You must ensure that all subscriptions for a MobiLink user are synchronized to only one consolidated
database. Otherwise, you may experience data loss and unpredictable behavior.

A synchronization subscription links a particular MobiLink user with a publication. It can also contain other
information needed for synchronization. For example, you can specify the address of the MobiLink server
and options for a synchronization subscription. Values for a specific synchronization subscription override
those set for MobiLink users.

Synchronization subscriptions are required only in MobiLink SQL Anywhere remote databases. Server logic
is implemented through synchronization scripts, stored in the MobiLink system tables in the consolidated
database.

A single SQL Anywhere database can synchronize with more than one MobiLink server. To allow
synchronization with multiple servers, create different MobiLink users for each server.

See “CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” [SQL Anywhere Server -
SQL Reference].

Example
To synchronize the customer and sales_order tables in the SQL Anywhere sample database, you could use
the following statements.

1. First, publish the customer and sales_order tables. Give the publication the name testpub.

CREATE PUBLICATION testpub
 (TABLE customer, TABLE sales_order)

2. Next, create a MobiLink user. In this case, the MobiLink user is demo_ml_user.

CREATE SYNCHRONIZATION USER demo_ml_user
3. To complete the process, create a subscription that links the user and the publication.

CREATE SYNCHRONIZATION SUBSCRIPTION TO testpub
 FOR demo_ml_user
 TYPE tcpip
 ADDRESS 'host=localhost;port=2439;'
 OPTION sv='version1'

SQL Anywhere clients

110 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Altering MobiLink subscriptions
Synchronization subscriptions can be altered using Sybase Central or the ALTER SYNCHRONIZATION
SUBSCRIPTION statement. The syntax is similar to that of the CREATE SYNCHRONIZATION
SUBSCRIPTION statement, but provides an extension to more conveniently add, modify, and delete options.

To alter a synchronization subscription (Sybase Central Admin mode)

1. Connect to the database as a user with DBA authority.

2. Open the MobiLink Users folder.

3. Click a user. The properties appear in the right pane.

4. In the right pane, click the Subscriptions tab. Right-click the subscription you want to change and select
Properties.

5. Change the properties as needed

To alter a synchronization subscription (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute an ALTER SYNCHRONIZATION SUBSCRIPTION statement.

See “ALTER SYNCHRONIZATION USER statement [MobiLink]” [SQL Anywhere Server - SQL
Reference].

Dropping MobiLink subscriptions
You can delete a synchronization subscription using either Sybase Central or the DROP
SYNCHRONIZATION SUBSCRIPTION statement.

You must have DBA authority to drop a synchronization subscription.

To delete a synchronization subscription (Sybase Central Admin mode)

1. Connect to the database as a user with DBA authority.

2. Open the MobiLink Users folder.

3. Select a MobiLink user.

4. Right-click a subscription and choose Delete.

To delete a synchronization subscription (SQL)

1. Connect to the database as a user with DBA authority.

2. Execute a DROP SYNCHRONIZATION SUBSCRIPTION statement.

Creating synchronization subscriptions

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 111

Example
The following statement drops the synchronization subscription of MobiLink user jsmith to a publication
named pub_orders.

DROP SYNCHRONIZATION SUBSCRIPTION
FOR jsmith TO pub_orders

See “DROP SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” [SQL Anywhere Server - SQL
Reference].

SQL Anywhere clients

112 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Initiating synchronization
The client always initiates MobiLink synchronization. In the case of a SQL Anywhere client, synchronization
is initiated by running the dbmlsync utility. This utility connects to and synchronizes a SQL Anywhere
remote database.

See “MobiLink SQL Anywhere client utility (dbmlsync)” on page 129.

You can specify connection parameters on the dbmlsync command line using the -c option. These parameters
are for the remote database. If you do not specify connection parameters, a connection window appears,
asking you to supply the missing connection parameters and startup options.

See “-c option” on page 142.

Client network protocol options can be stored in the synchronization subscription, publication or user in the
remote database; or can be specified on the dbmlsync command line. These are used to locate the appropriate
MobiLink server.

See “CommunicationAddress (adr) extended option” on page 187.

Permissions for dbmlsync
When dbmlsync connects to a database, it must have permissions to apply all the changes being made. The
dbmlsync command line contains the password for this connection. This could present a security issue.

To avoid security problems, grant a user (other than DBA) REMOTE DBA authority, and use this user ID
in the dbmlsync connection string. A user ID with REMOTE DBA authority has DBA authority only when
the connection is made from the dbmlsync utility. Any other connection using the same user ID is granted
no special authority.

See “GRANT REMOTE DBA statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL
Reference].

Customizing synchronization
See “Customizing dbmlsync synchronization” on page 123.

Using dbmlsync extended options
MobiLink provides several extended options to customize the synchronization process. Extended options
can be set for publications, users, and subscriptions. In addition, extended option values can be overridden
using options on the dbmlsync command line.

For a complete list of extended options, see “MobiLink SQL Anywhere client extended
options” on page 183.

To override an extended option on the dbmlsync command line

● Supply the extended option values in the -e or -eu dbmlsync options for dbmlsync, in the form option-
name=value. For example:

dbmlsync -e "v=on;sc=low"

Initiating synchronization

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 113

To set an extended option for a subscription, publication or user

● Add the option to the CREATE SYNCHRONIZATION SUBSCRIPTION statement or CREATE
SYNCHRONIZATION USER statement in the SQL Anywhere remote database.

Adding an extended option for a publication is a little different. To add an extended option for a
publication, use the ALTER/CREATE SYNCHRONIZATION SUBSCRIPTION statement and omit
the FOR clause.

Example
The following statement creates a synchronization subscription that uses extended options to set the cache
size for preparing the upload to 3 MB and the upload increment size to 3 KB.

CREATE SYNCHRONIZATION SUBSCRIPTION TO my_pub
FOR ml_user
ADDRESS 'host=test.internal;port=2439;'
OPTION memory='3m',increment='3k'

Note that the option values can be enclosed in single quotes, but the option names must remain unquoted.

Dbmlsync network protocol options
Dbmlsync connection information includes the protocol to use for communications with the server, the
address for the MobiLink server, and other connection parameters.

For more information, see:

● “CommunicationType (ctp) extended option” on page 189
● “CommunicationAddress (adr) extended option” on page 187

Transaction log files
In most cases, dbmlsync determines what to upload by using the SQL Anywhere transaction log. The offset
indicates the point to which all operations for a subscription have been uploaded and acknowledged.

SQL Anywhere databases maintain transaction logs by default. You can determine where the transaction
log is located, or whether to have one, when you create the database.

The transaction log may not be required if you implement scripted upload or only use download-only
publications.

To prepare the upload, the dbmlsync utility requires access to all transaction logs written since the last
successful synchronization of all subscriptions for the MobiLink user who is synchronizing. However, SQL
Anywhere log files are typically truncated and renamed as part of regular database maintenance. In such a
case, old log files must be renamed and saved in a separate directory until all changes they describe have
been synchronized successfully.

You can specify the directory that contains the renamed log files on the dbmlsync command line. You may
omit this parameter if the working log file has not been truncated and renamed since you last synchronized,
or if you run dbmlsync from the directory that contains the renamed log files.

SQL Anywhere clients

114 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Backup and data recovery” [SQL Anywhere Server - Database Administration]
● “Progress offsets” on page 98
● “The transaction log” [SQL Anywhere Server - Database Administration]
● “Initialization utility (dbinit)” [SQL Anywhere Server - Database Administration]
● “Scripted upload” on page 373

Example
Suppose that the old log files are stored in the directory c:\oldlogs. You could use the following command
to synchronize the remote database.

dbmlsync -c "dbn=remote;uid=syncuser" c:\oldlogs

The path to the old logs directory must be the final argument on the command line.

Concurrency during synchronization
To ensure the integrity of synchronizations, dbmlsync must ensure that no rows in the download are modified
between the time the upload is built and the time the download is applied.

On all platforms except Windows Mobile, by default, dbmlsync obtains a shared lock on all tables mentioned
in any publication being synchronized. On Windows Mobile, by default, dbmlsync obtains an exclusive
lock. Dbmlsync obtains the lock before it begins building the upload, and it maintains the lock until the
download is applied.

For more information about locks, see “Row locks” [SQL Anywhere Server - SQL Usage].

The following options let you customize this locking behavior:

● -d option
● LockTables option

-d option
When using the locking mechanism, if other connections to the database exist and if these connections have
any locks on the synchronization tables, then synchronization fails. If you want to ensure that synchronization
proceeds immediately even if other locks exist, use the dbmlsync -d option. When this option is specified,
any connections with locks that would interfere with synchronization are dropped by the database so that
synchronization can proceed. Uncommitted changes on the dropped connections are rolled back.

For more information, see “-d option” on page 143.

LockTables option
An alternative way to protect data integrity is to set the extended option LockTables to OFF, which prevents
an article's tables from being locked. This causes dbmlsync to track all rows that are modified after the upload
has been built. When the download is received, it is not applied if any rows in the download have been
modified. Dbmlsync then retries the synchronization. The retry succeeds unless a new download conflict is
detected.

For more information, see “LockTables (lt) extended option” on page 203.

Initiating synchronization

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 115

If a conflict is detected, the download phase is canceled and the download operations rolled back to avoid
overwriting the new change. The dbmlsync utility then retries the synchronization, including the upload step.
This time, because the row is present at the beginning of the synchronization process, it is included in the
upload and therefore not lost.

By default, dbmlsync retries synchronization until success is achieved. You can limit the number of retries
using the extended option ConflictRetries. Setting ConflictRetries to -1 causes dbmlsync to retry until success
is achieved. Setting it to a non-negative integer causes dbmlsync to retry for not more than the specified
number of times.

For more information, see “ConflictRetries (cr) extended option” on page 190.

Initiating synchronization from an application
You may want to include the features of dbmlsync in your application, rather than provide a separate
executable to your remote users.

There are two ways to do this:

● Use the Dbmlsync Integration Component.

For more information, see “Dbmlsync integration component (deprecated)” on page 337.

● If you are developing in any language that can call a DLL, then you can access dbmlsync through the
DBTools interface. If you are programming in C or C++, you can include the dbtools.h header file,
located in the SDK\Include subdirectory of your SQL Anywhere 11 directory. This file contains a
description of the a_sync_db structure and the DBSynchronizeLog function, which you use to add this
functionality to your application. This solution works on all supported platforms, including Windows
and Unix.

For more information, see:

○ “DBTools interface for dbmlsync” on page 365
○ “DBSynchronizeLog function” [SQL Anywhere Server - Programming]
○ “a_sync_db structure” [SQL Anywhere Server - Programming]

SQL Anywhere clients

116 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Using ActiveSync synchronization
ActiveSync is synchronization software for Microsoft Windows Mobile handheld devices. ActiveSync
governs synchronization between a Windows Mobile device and a desktop computer. A MobiLink provider
for ActiveSync governs synchronization to the MobiLink server.

Setting up ActiveSync synchronization for SQL Anywhere clients involves the following steps:

● Configure the SQL Anywhere remote database for ActiveSync synchronization.

See “Configuring SQL Anywhere remote databases for ActiveSync” on page 117.

● Install the MobiLink provider for ActiveSync.

See “Installing the MobiLink provider for ActiveSync” on page 118.

● Register the SQL Anywhere client for use with ActiveSync.

See “Registering SQL Anywhere clients for ActiveSync” on page 119.

If you use ActiveSync synchronization, synchronization must be initiated from the ActiveSync software.
The MobiLink provider for ActiveSync can start dbmlsync or it can wake a dbmlsync that is sleeping as
scheduled by a schedule string.

You can also put dbmlsync into a sleep mode using a delay hook in the remote database, but the MobiLink
provider for ActiveSync cannot invoke synchronization from this state.

For information about scheduling synchronization, see “Scheduling synchronization” on page 121.

Configuring SQL Anywhere remote databases for
ActiveSync

To configure your SQL Anywhere remote database for ActiveSync

1. Select a synchronization type (TCP/IP, TLS, HTTP, or HTTPS).

The synchronization type can be set for a synchronization publication, for a synchronization user, or for
a synchronization subscription. It is set in a similar manner for each. Here is part of a typical CREATE
SYNCHRONIZATION USER statement:

CREATE SYNCHRONIZATION USER SSinger
TYPE tcpip
...

2. Supply an address clause to specify communication between the MobiLink provider for ActiveSync and
the MobiLink server.

For HTTP or TCP/IP synchronization, the ADDRESS clause of the CREATE SYNCHRONIZATION
USER or CREATE SYNCHRONIZATION SUBSCRIPTION statement specifies communication
between the MobiLink client and server. For ActiveSync, the communication takes place in two stages:
from the dbmlsync utility on the device to the MobiLink provider for ActiveSync on the desktop

Using ActiveSync synchronization

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 117

computer, and from the desktop computer to the MobiLink server. The ADDRESS clause specifies the
communication between MobiLink provider for ActiveSync and the MobiLink server.

The following statement specifies TCP/IP communication to a MobiLink server on a computer named
kangaroo:

CREATE SYNCHRONIZATION USER SSinger
TYPE tcpip
ADDRESS 'host=kangaroo;port=2439'

For more information, see “CREATE SYNCHRONIZATION USER statement [MobiLink]” [SQL
Anywhere Server - SQL Reference].

Installing the MobiLink provider for ActiveSync
Before you register your SQL Anywhere MobiLink client for use with ActiveSync, you must install the
MobiLink provider for ActiveSync using the installation utility (mlasinst.exe).

The SQL Anywhere for Windows Mobile installer installs the MobiLink provider for ActiveSync. If you
install SQL Anywhere for Windows Mobile you do not need to perform the steps in this section.

When you have installed the MobiLink provider for ActiveSync you must register each application
separately. For instructions, see “Registering SQL Anywhere clients for ActiveSync” on page 119.

To install the MobiLink provider for ActiveSync

1. Ensure that you have the ActiveSync software on your computer, and that the Windows Mobile device
is connected.

2. Run the following command to install the MobiLink provider:

mlasinst -k desk-path -v dev-path

where desk-path is the location of the desktop component of the provider (mlasdesk.dll) and dev-path is
the location of the device component (mlasdev.dll).

If you have SQL Anywhere installed on your computer, mlasdesk.dll is located in install-dir\bin32;
mlasdev.dll is located in install-dir\CE. If you omit -v or -k, these directories are searched by default.

If you receive a message telling you that the remote provider failed to open, perform a soft reset of the
device and repeat the command:

For more information, see “ActiveSync provider installation utility (mlasinst)” on page 27.

3. Restart your computer.

ActiveSync does not recognize new providers until the computer is restarted.

4. Enable the MobiLink provider.

For Windows versions prior to Vista:

● In the ActiveSync window, click Options.

● Check the MobiLink item in the list and click OK to activate the provider.

SQL Anywhere clients

118 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● To see a list of registered applications, click Options again, choose the MobiLink provider, and click
Settings.

For more information about registering applications, see “Registering SQL Anywhere clients for
ActiveSync” on page 119.

For Windows Vista:

● From the Windows Mobile Device Center window, click Mobile Device Settings and then click
Change Content Settings.

● Select MobiLink Clients and click Save to activate the provider.

● To see a list of registered applications, click Change Content Settings, click MobiLink Clients,
and then click Sync Settings.

Registering SQL Anywhere clients for ActiveSync
You can register your application for use with ActiveSync either by using the ActiveSync provider install
utility or using the ActiveSync software itself. This section describes how to use the ActiveSync software.

For information about the alternative approach, see “ActiveSync provider installation utility
(mlasinst)” on page 27.

To register the SQL Anywhere client for use with ActiveSync

1. Ensure that the MobiLink provider for ActiveSync is installed.

For information, see “Installing the MobiLink provider for ActiveSync” on page 118.

2. Start the ActiveSync software on your desktop computer.

3. For Windows prior to Vista:

● From the ActiveSync window, choose Options.

● From the list of information types, choose MobiLink and click Settings.

● In the MobiLink Synchronization window, click New.

For Windows Vista:

● From the Windows Mobile Device Center window, click Mobile Device Settings and then click
Change Content Settings.

● Click Change Content Settings.

● Click MobiLink Clients.

● Click Sync Settings.

4. Enter the following information for your application:

● Application name A name identifying the application to be displayed in the ActiveSync user
interface.

● Class name The class name for the dbmlsync client, as set using the -wc option.

Using ActiveSync synchronization

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 119

For more information, see “-wc option” on page 181.

● Path The location of the dbmlsync application on the device.

● Arguments Any command line arguments to be used when ActiveSync starts dbmlsync.

You start dbmlsync in one of two modes:

○ If you specify scheduling options, dbmlsync enters hover mode. In this case, use the dbmlsync -
wc option with a matching value in the class name setting.

For more information, see “-wc option” on page 181 and “Scheduling
synchronization” on page 121.

○ Otherwise, dbmlsync is not in hovering mode. In this case, use -k to shut down dbmlsync.

For more information, see “-k option (deprecated)” on page 155.

5. Click OK to register the application.

SQL Anywhere clients

120 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Scheduling synchronization
You can set up dbmlsync to synchronize periodically based on rules you define. There are two ways you
can set this up:

● Use the dbmlsync extended option SCHEDULE to initiate synchronization at specific times of the day
or week or at regular intervals. In this case, dbmlsync remains running until stopped by the user.

See “Setting up scheduling with dbmlsync options” on page 121.

● Use dbmlsync event hooks to initiate synchronization based on logic that you define. This is the best
way to implement synchronization at irregular intervals or in response to an event. In this case, you can
stop dbmlsync programmatically from your hook code.

See “Initiating synchronization with event hooks” on page 122.

Hovering

When scheduling options or hooks are specified, dbmlsync goes into hovering mode. Hovering is a feature
that reduces the amount of time spent scanning the log. You can improve the performance benefits of
hovering by setting the dbmlsync extended option HoverRescanThreshold or by using the dbmlsync stored
procedure sp_hook_dbmlsync_log_rescan.

For more information, see:

● “HoverRescanThreshold (hrt) extended option” on page 199
● “sp_hook_dbmlsync_log_rescan” on page 276

Setting up scheduling with dbmlsync options
Instead of running dbmlsync in a batch fashion, where it synchronizes and then shuts down, you can set up
a SQL Anywhere client so that dbmlsync runs continuously, synchronizing at predetermined times.

You specify the synchronization schedule as an extended option. It can be specified either on the dbmlsync
command line or it can be stored in the database for the synchronization user, subscription, or publication.

For more information about scheduling syntax, see “Schedule (sch) extended option” on page 212.

For more information about extended options, see:

● “MobiLink SQL Anywhere client extended options” on page 183
● “-eu option” on page 153

To add scheduling to the synchronization subscription

● Set the Schedule extended option in the synchronization subscription. For example,

CREATE SYNCHRONIZATION SUBSCRIPTION TO mypub
FOR mluser
ADDRESS 'host=localhost'
OPTION schedule='weekday@11:30am-12:30pm'

Scheduling synchronization

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 121

You can override scheduling and synchronize immediately using the dbmlsync -is option. The -is option
instructs dbmlsync to ignore scheduling that is specified with the scheduling extended option. For more
information, see “-is option” on page 154.

To add scheduling from the dbmlsync command line

● Set the schedule extended option. Extended options are set with -e or -eu. For example,

dbmlsync -e "sch=weekday@11:30am-12:30pm" ...

If scheduled synchronization is specified in either place, dbmlsync does not shut down after synchronizing,
but runs continuously.

Initiating synchronization with event hooks
There are dbmlsync event hooks that you can implement to control when synchronization occurs.

With the sp_hook_dbmlsync_end hook, you can use the Restart row in the #hook_dict table to decide at the
end of each synchronization if dbmlsync should repeat the synchronization.

For more information, see “sp_hook_dbmlsync_end” on page 273.

With the sp_hook_dbmlsync_delay hook you can create a delay at the beginning of each synchronization
that allows you to choose the time to proceed with synchronization. With this hook it is possible to delay
for a fixed amount of time or to poll periodically, waiting for some condition to be satisfied.

For more information, see “sp_hook_dbmlsync_delay” on page 253.

SQL Anywhere clients

122 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Customizing dbmlsync synchronization
dbmlsync client event hooks

Event hooks allow you to use SQL stored procedures to manage the client-side synchronization process for
dbmlsync. You can use client event hooks with the dbmlsync command line utility or the dbmlsync
programming interfaces.

You can use event hooks to log and handle synchronization events. For example, you can schedule
synchronizations based on logical events, retry connection failures, or handle specific errors and referential
integrity violations.

For more information about client event hooks, see “Event hooks for SQL Anywhere
clients” on page 235.

dbmlsync programming interfaces
You can use the following programming interfaces to integrate MobiLink clients into your applications and
start synchronizations. These interfaces provide an alternative to the dbmlsync command line utility.

● dbmlsync API The Dbmlsync API provides a programming interface that allows MobiLink clients
written in C++ or .Net to launch synchronizations and receive feedback about the progress of the
synchronizations they request. This new programming interface enables you to access a lot more
information about synchronization results and it also enables you to queue synchronizations, making
them easier to manage.

See “Introduction to the Dbmlsync API” on page 308.

● DBTools interface for dbmlsync You can use the DBTools interface for dbmlsync to integrate
synchronization functionality into your SQL Anywhere synchronization client applications. All the SQL
Anywhere database management utilities are built on DBTools.

See “DBTools interface for dbmlsync” on page 365.

Scripted upload
You can also override the use of the client transaction log and define your own upload stream. See “Scripted
upload” on page 373.

Customizing dbmlsync synchronization

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 123

SQL Anywhere client logging
When you create MobiLink applications with SQL Anywhere remote databases, there are two types of client
log file that you should be aware of:

● dbmlsync message log

● SQL Anywhere transaction log

dbmlsync message log
By default, dbmlsync messages are sent to the dbmlsync message window. In addition, you can send the
output to a message log file using the -o or -ot options. The following partial command line sends output to
a log file named dbmlsync.log.

dbmlsync -o dbmlsync.log ...

Logging dbmlsync activity is particularly useful during the development process and when troubleshooting.
Verbose output is not recommended for normal operation in a production environment because it can slow
performance.

You can control the size of log files, and specify what you want done when a file reaches its maximum size:

● Use the -o option to specify a log file and append output to it.

● Use the -ot option to specify a log file, but delete the contents the file before appending output to it.

● In addition to -o or -ot, use the -os option to specify the size at which the log file is renamed and a new
file is started with the original name.

For more information, see:

● “-o option” on page 160
● “-ot option” on page 162
● “-os option” on page 161

You can control what information is logged to the message log file and displayed in the dbmlsync messages
window using the -v option.

For more information, see “-v option” on page 180.

You can manage log files using the delete_old_logs option.

For more information, see “delete_old_logs option [MobiLink client] [SQL Remote] [Replication Agent]”
[SQL Anywhere Server - Database Administration].

When no message log file is specified, all output is displayed in the dbmlsync messages window. When a
message log file is specified, less output is sent to the dbmlsync messages window.

SQL Anywhere transaction log
See “Transaction log files” on page 114.

SQL Anywhere clients

124 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Running MobiLink on Mac OS X
You can run the MobiLink server and the SQL Anywhere MobiLink client on Mac OS X. You cannot run
UltraLite on Mac OS X.

To synchronize a MobiLink consolidated database on Mac OS X, you can use the SQL Anywhere ODBC
driver as the driver manager. See “Create an ODBC data source on Mac OS X” [SQL Anywhere Server -
Database Administration].

To start the MobiLink server on Mac OS X

1. Start SyncConsole.

In the Finder, double-click SyncConsole. The SyncConsole application is located in /Applications/
SQLAnywhere11.

2. Choose File » New » MobiLink Server.

3. Configure the MobiLink server:

a. In the Connection Parameters field, enter the following string:

dsn=dsn-name

The dsn-name is a SQL Anywhere ODBC Data Source name. For information on creating ODBC
data sources, see “Setting environment variables on Unix and Mac OS X” [SQL Anywhere Server -
Database Administration].
If dsn-name has spaces, surround the string with double quotes. For example:

dsn="SQL Anywhere 11 Demo"
b. Set options in the Options field, if desired.

The Options field allows you to control many aspects of MobiLink server behavior. For a complete
list of options, see “mlsrv11 syntax” [MobiLink - Server Administration].

4. Click Start to start the MobiLink server.

The database server messages window appears and displays messages, showing that the server is ready
to accept synchronization requests.

To start dbmlsync on Mac OS X

1. Start SyncConsole.

In the Finder, double-click SyncConsole. The SyncConsole application is located in /Applications/
SQLAnywhere11.

2. Choose File » New » MobiLink Client.

The client options window appears. It has many configuration options, which correspond to dbmlsync
command line options. For a complete listing, see “dbmlsync syntax” on page 131.

Running MobiLink on Mac OS X

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 125

The options on the Login, Database, Network, and Advanced tabs all define the connection from the
MobiLink client to the SQL Anywhere remote database. Often, you only need to specify an ODBC data
source on the Login tab to connect.

The options on the DBMLSync tab define aspects of the connection to the MobiLink server. If these
features are defined in a remote database publication and subscription, then you can leave the options
on this tab empty.

To run the sample database on Mac OS X

1. Source the sa_config configuration script.

For more information, see “Setting environment variables on Unix and Mac OS X” [SQL Anywhere
Server - Database Administration].

2. Set up an ODBC data source. For example:

dbdsn -w "SQL Anywhere 11 Demo"
-c "uid=DBA;pwd=sql;dbf=/Applications/SQLAnywhere11/System/demo.db"

3. Run the MobiLink server. For example:

mlsrv11 -c "dsn=SQL Anywhere 11 Demo"

SQL Anywhere clients

126 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Version considerations
In order for dbmlsync to function properly, both the major and minor versions of dbmlsync.exe must match
those of the database server. In addition, the major version of the database file must match that of
dbmlsync.exe, and the minor version of the database file must be equal to or less than the minor version of
dbmlsync.exe. The database file's version is the latest version to which it has been upgraded.

For example, the 9.0.2 version of dbmlsync should only be used with the 9.0.2 version of the database server
(dbeng9.exe) and it can work with database files from versions 9.00, 9.01 and 9.02.

Version considerations

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 127

128

MobiLink SQL Anywhere client utility
(dbmlsync)

Contents
dbmlsync syntax .. 131
@data option ... 135
-a option ... 136
-ap option ... 137
-ba option ... 138
-bc option ... 139
-be option ... 140
-bg option ... 141
-c option ... 142
-d option ... 143
-dc option ... 144
-dl option .. 145
-do option ... 146
-drs option .. 147
-ds option ... 148
-e option ... 149
-eh option ... 150
-ek option ... 151
-ep option ... 152
-eu option ... 153
-is option .. 154
-k option (deprecated) ... 155
-l option .. 156
-mn option .. 157
-mp option .. 158
-n option ... 159
-o option ... 160
-os option ... 161
-ot option .. 162

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 129

-p option ... 163
-pc option ... 164
-pd option ... 165
-pi option .. 166
-pp option ... 167
-q option ... 168
-qc option ... 169
-r option ... 170
-sc option ... 171
-sp option ... 172
-tu option .. 173
-u option ... 175
-ui option .. 176
-uo option ... 177
-urc option .. 178
-ux option ... 179
-v option ... 180
-wc option .. 181
-x option ... 182

MobiLink SQL Anywhere client utility (dbmlsync)

130 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

dbmlsync syntax
Use the dbmlsync utility to synchronize SQL Anywhere remote databases with a consolidated database.

Syntax
dbmlsync [options] [transaction-logs-directory]

Option Description

@data Read in options from the specified environment variable or configura-
tion file. See “@data option” on page 135.

-a Do not prompt for input again on error. See “-a option” on page 136

-ap Specify authentication parameters. See “-ap option” on page 137.

-ba filename Apply a download file. See “-ba option” on page 138.

-bc filename Create a download file. See “-bc option” on page 139.

-be string When creating a download file, add a string. See “-be op-
tion” on page 140.

-bg When creating a download file, make it suitable for new remotes. See
“-bg option” on page 141.

-c connection-string Supply database connection parameters in the form parm1=value1;
parm2=value2,... If you do not supply this option, a window appears
and you must supply connection information. See “-c op-
tion” on page 142.

-d Drop any other connections to the database whose locks conflict with
the articles to be synchronized. See “-d option” on page 143

-dc Continue a previously failed download. See “-dc option” on page 144.

-dl Display log messages on the dbmlsync messages window. See “-dl op-
tion” on page 145.

-do Disables scanning of offline transaction logs. See “-do op-
tion” on page 146.

-drs bytes For restartable downloads, specify the maximum amount of data that
may need to be resent after a communications failure. See “-drs op-
tion” on page 147.

-ds Perform a download-only synchronization. See “-ds op-
tion” on page 148.

dbmlsync syntax

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 131

Option Description

-e "option=value"... Specify extended options. See “MobiLink SQL Anywhere client exten-
ded options” on page 183.

-eh Ignore errors that occur in hook functions.

-ek key Specify encryption key. See “-ek option” on page 151.

-ep Prompt for encryption key. See “-ep option” on page 152.

-eu Specify extended options for upload defined by most recent -n option.
See “-eu option” on page 153.

-is Ignore schedule. See “-is option” on page 154.

-k Close window on completion. See “-k option (depreca-
ted)” on page 155.

-l List available extended options. See “-l option” on page 156.

-mn password Specify new MobiLink password. See “-mn option” on page 157.

-mp password Specify MobiLink password. See “-mp option” on page 158.

-n name Specify synchronization publication name(s). See “-n op-
tion” on page 159.

-o logfile Log output messages to this file. See “-o option” on page 160.

-os size Specify a maximum size for the message log file, at which point the log
is renamed. See “-os option” on page 161.

-ot logfile Delete the contents of the message log file and then log output messages
to it. See “-ot option” on page 162.

-p Disable logscan polling. See “-p option” on page 163.

-pc+ Maintain an open connection to the MobiLink server between synchro-
nizations. See “-pc option” on page 164

-pd dllname;... Preload specified DLLs for Windows Mobile. See “-pd op-
tion” on page 165.

-pi Test that you can connect to MobiLink. See “-pi option” on page 166.

-pp number Set logscan polling period. See “-pp option” on page 167.

-q Run in minimized window. See “-q option” on page 168.

MobiLink SQL Anywhere client utility (dbmlsync)

132 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Option Description

-qc Shut down dbmlsync when synchronization is finished. See “-qc op-
tion” on page 169.

-r[a | b] Use client progress values for upload retry. See “-r op-
tion” on page 170.

-sc Reload schema information before each synchronization. See “-sc op-
tion” on page 171.

-sp sync profile Add options from the synchronization profile to the synchronization
options specified on the command line. See “-sp option” on page 172.

-tu Perform transactional upload. See “-tu option” on page 173.

-u ml_username Specify the MobiLink user to synchronize. See “-u op-
tion” on page 175.

-ui For Linux with X window, starts dbmlsync in shell mode if a usable
display isn't available. See “-ui option” on page 176.

-uo Perform upload-only synchronization. See “-uo option” on page 177.

-urc row-estimate Specify an estimate of the number of rows to upload. See “-urc op-
tion” on page 178.

-ux For Solaris and Linux, open the dbmlsync messages window. See “-ux
option” on page 179.

-v[levels] Verbose operation. See “-v option” on page 180.

-wc classname Specify a window class name. See “-wc option” on page 181.

-x Rename and restart the transaction log. See “-x option” on page 182.

transaction-logs-directory Specify the location of the transaction log. See Transaction Log File,
below.

Remarks
Run dbmlsync to synchronize a SQL Anywhere remote database with a consolidated database.

To locate and connect to the MobiLink server, dbmlsync uses the information on the publication,
synchronization user, synchronization subscription, or the dbmlsync command line.

Transaction log file The transaction-logs-directory is the directory that contains the transaction log for
the SQL Anywhere remote database. There is an active transaction log and transaction log archive files, both
of which may be required by dbmlsync to determine what to upload. You must specify this parameter if the
following are all true:

dbmlsync syntax

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 133

● the contents of the working log file have been deleted and the file has been renamed since you last
synchronized

● you run the dbmlsync utility from a directory other than the one where the renamed log files are stored

For more information, see “Transaction log files” on page 114.

dbmlsync event hooks There are also dbmlsync client stored procedures that can help you customize
the synchronization process. For more information, see “Introduction to dbmlsync hooks” on page 237 and
“Event hooks for SQL Anywhere clients” on page 235.

Using dbmlsync For more information about using dbmlsync, see “Initiating
synchronization” on page 113.

See also
● “Initiating synchronization” on page 113
● “Event hooks for SQL Anywhere clients” on page 235
● “Dbmlsync API” on page 307
● “DBTools interface for dbmlsync” on page 365

MobiLink SQL Anywhere client utility (dbmlsync)

134 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

@data option
Reads in options from the specified environment variable or configuration file.

Syntax
dbmlsync @data ...

Remarks
With this option, you can put command line options in an environment variable or configuration file. If both
exist with the name you specify, the environment variable is used.

For more information about configuration files, see “Using configuration files” [SQL Anywhere Server -
Database Administration].

If you want to protect passwords or other information in the configuration file, you can use the File Hiding
utility to obfuscate the contents of the configuration file.

See “File Hiding utility (dbfhide)” [SQL Anywhere Server - Database Administration].

@data option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 135

-a option
Specifies that dbmlsync should not display a window prompt for input again on error.

Syntax
dbmlsync -a ...

MobiLink SQL Anywhere client utility (dbmlsync)

136 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-ap option
Supplies parameters to the authenticate_parameters script and to authentication parameters.

Syntax
dbmlsync -ap "parameters,..." ...

Remarks
Use when you use the authenticate_parameters connection script or authentication parameters. For example,

dbmlsync -ap "parm1,parm2,parm3"

The parameters are sent to the MobiLink server and passed to the authenticate_parameters script or other
events on the consolidated database.

See also
● “Authentication parameters” [MobiLink - Server Administration]
● “authenticate_parameters connection event” [MobiLink - Server Administration]

-ap option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 137

-ba option
Applies a download file.

Syntax
dbmlsync -ba "filename" ...

Remarks
Specify the name of an existing download file to be applied to the remote database. You can optionally
specify a path. If you do not specify a path, the default location is the directory where dbmlsync was started.

See also
● “MobiLink file-based download” [MobiLink - Server Administration]
● “-bc option” on page 139
● “-be option” on page 140
● “-bg option” on page 141

MobiLink SQL Anywhere client utility (dbmlsync)

138 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-bc option
Creates a download file.

Syntax
dbmlsync -bc "filename" ...

Remarks
Create a download file with the specified name. You should use the file extension .df for download files.

You can optionally specify a path. If you do not specify a path, the default location is the dbmlsync current
working directory, which is the directory where dbmlsync was started.

Optionally, in the same dbmlsync command line as you create the download file, you can use the -be option
to specify a string that can be validated at the remote database, and the -bg option to create a download file
for new remote databases.

See also
● “MobiLink file-based download” [MobiLink - Server Administration]
● “-ba option” on page 138
● “-be option” on page 140
● “-bg option” on page 141

-bc option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 139

-be option
When creating a download file, this option specifies an extra string to be included in the file.

Syntax
dbmlsync -bc "filename" -be "string" ...

Remarks
The string can be used for authentication or other purposes. It is passed to the
sp_hook_dbmlsync_validate_download_file stored procedure on the remote database when the download
file is applied.

See also
● “sp_hook_dbmlsync_validate_download_file” on page 304
● “MobiLink file-based download” [MobiLink - Server Administration]
● “-bc option” on page 139
● “-ba option” on page 138

MobiLink SQL Anywhere client utility (dbmlsync)

140 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-bg option
When creating a download file, this option creates a file that can be used with remote databases that have
not yet synchronized.

Syntax
dbmlsync -bc "filename" -bg ...

Remarks
The -bg option causes the download file to update the generation numbers on the remote database.

This option allows you to build a download file that can be applied to remote databases that have never
synchronized. Otherwise, you must perform a synchronization before you apply a download file.

Download files built with the -bg option should be snapshot downloads. Timestamp-based downloads do
not work with remote databases that have not synchronized because the last download timestamp on a new
remote is by default January 1, 1900, which is earlier than the last download timestamp in the download file.
For timestamp-based file-based downloads to work, the last download timestamp in the download file must
be the same or earlier than on the remote.

Do not apply -bg download files to remote databases that have already synchronized if your system depends
on functionality provided by generation numbers as this option circumvents that functionality.

See also
● “MobiLink file-based download” [MobiLink - Server Administration]
● “-ba option” on page 138
● “-bc option” on page 139
● “MobiLink generation numbers” [MobiLink - Server Administration]
● “Synchronizing new remotes” [MobiLink - Server Administration]

-bg option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 141

-c option
Specifies connection parameters for the remote database.

Syntax
dbmlsync -c "connection-string" ...

Remarks
The connection string must give dbmlsync permission to connect to the SQL Anywhere remote database
with DBA or REMOTE DBA authority. It is recommended that you use a user ID with REMOTE DBA
authority.

Specify the connection string in the form keyword=value, with multiple parameters separated by semicolons.
If any of the parameter names contain spaces, you need to enclose the connection string in double quotes.

If you do not specify -c, a dbmlsync Setup window appears. You can specify the remaining command line
options in the fields of the connection window.

For a complete list of connection parameters for connecting to SQL Anywhere databases, see “Connection
parameters” [SQL Anywhere Server - Database Administration].

MobiLink SQL Anywhere client utility (dbmlsync)

142 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-d option
Drops conflicting locks to the remote database.

Syntax
dbmlsync -d ...

Remarks
During synchronization, unless the LockTables extended option is set to OFF, all tables involved in the
publications being synchronized are locked to prevent any other processes from making changes. If another
connection has a lock on one of these tables, the synchronization may fail or be delayed. Specifying this
option forces SQL Anywhere to drop any other connections to the remote database that hold conflicting
locks so that synchronization can proceed immediately.

See also
● “Concurrency during synchronization” on page 115

-d option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 143

-dc option
Restart a previously failed download.

Syntax
dbmlsync -dc ...

Remarks
By default, if MobiLink fails during a download it doesn't apply any of the download data to the remote
database. However, it stores the part of the download it did receive in a temporary file on the remote device,
so that if you specify -dc the next time you start dbmlsync, it can more quickly complete the download.
When you specify -dc, dbmlsync restarts the download and attempts to download the part of the previous
download that it did not receive. If it is able to download the remaining data, it applies the complete download
to your remote database.

If there is any new data to be uploaded when you use -dc, the restartable download fails.

You can also restart a failed download using the ContinueDownload extended option or the
sp_hook_dbmlsync_end hook.

See also
● “Resuming failed downloads” [MobiLink - Server Administration]
● “ContinueDownload (cd) extended option” on page 191
● “sp_hook_dbmlsync_end” on page 273
● “DownloadReadSize (drs) extended option” on page 195

MobiLink SQL Anywhere client utility (dbmlsync)

144 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-dl option
Displays messages in the dbmlsync messages window or command prompt, and the message log file.

Syntax
dbmlsync -dl ...

Remarks
Normally when output is logged to a file, more messages are written to the log file than to the dbmlsync
window. This option forces dbmlsync to write information normally only written to the file to the window
as well. Using this option may have an effect on the speed of synchronization.

-dl option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 145

-do option
Disables scanning of offline transaction logs.

Syntax
dbmlsync -do ...

Remarks
If transaction log files for multiple databases are stored in a single directory, dbmlsync might not be able to
sync from any of these databases, even if there is no offline transaction log file for any of these databases.
If dbmlsync with the -do option is used, dbmlsync does not attempt to scan any offline transaction logs.
Therefore, dbmlsync with -do should be able to sync from a database that is stored with all the other databases
in a single directory, if this database does not have any offline transaction log files.

If this option is used and if offline transaction logs are required, dbmlsync is not be able to sync.

Cannot be used with -x option.

MobiLink SQL Anywhere client utility (dbmlsync)

146 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-drs option
For restartable downloads, specifies the maximum amount of data that may need to be resent after a
communications failure.

Syntax
dbmlsync -drs bytes ...

Remarks
The -drs option specifies a download read size that is only useful when doing restartable downloads.

Dbmlsync reads the download in chunks. The download read size defines the size of these chunks. When a
communication error occurs, dbmlsync loses the entire chunk that was being processed. Depending on when
the error occurs, the number of bytes lost ranges between 0 and the download read size -1. So for example,
if the DownloadReadSize is 100 bytes and an error occurs after reading 497 bytes, the last 97 bytes read are
lost. Bytes that are lost in this way are resent when the download is restarted.

In general, larger download read size values result in better performance on successful synchronizations but
result in more data being resent when an error occurs.

The typical use of this option is to reduce the default size when communication is unreliable.

The default is 32767. If you set this option to a value larger than 32767, the value 32767 is used.

You can also specify the download read size using the DownloadReadSize extended option.

See also
● “DownloadReadSize (drs) extended option” on page 195
● “Resuming failed downloads” [MobiLink - Server Administration]
● “ContinueDownload (cd) extended option” on page 191
● “sp_hook_dbmlsync_end” on page 273
● “-dc option” on page 144

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -drs 100

-drs option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 147

-ds option
Performs a download-only synchronization.

Syntax
dbmlsync -ds ...

Remarks
When download-only synchronization occurs, dbmlsync does not upload any row operations or data.
However, it does upload information about the schema and progress offset.

In addition, dbmlsync ensures that changes on the remote are not overwritten during download-only
synchronization. It does this by scanning the log to detect rows with operations waiting to be uploaded. If
any of these rows is modified by the download, the download is rolled back and the synchronization fails.
If the synchronization fails for this reason, you must do a full synchronization to correct the problem.

When you have remotes that are synchronized by download-only synchronization, you should regularly do
a full bi-directional synchronization to reduce the amount of log that is scanned by the download-only
synchronization. Otherwise, the download-only synchronizations take an increasingly long time to complete.

When -ds is used, the ConflictRetries extended option is ignored. dbmlsync never retries a download-only
synchronization. When a download-only synchronization fails, it continues to fail until a normal
synchronization is performed.

For a list of the scripts that must be defined for download-only synchronization, see “Required scripts”
[MobiLink - Server Administration].

See also
● “Upload-only and download-only synchronizations” [MobiLink - Server Administration]
● “DownloadOnly (ds) extended option” on page 194
● “Download-only publications” on page 103

MobiLink SQL Anywhere client utility (dbmlsync)

148 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-e option
Specifies extended options.

Syntax
dbmlsync -e extended-option=value; ...

extended-option:
adr cd cr ctp dbs dir drs ds eh el ft hrt inc isc lt mem mn mp p pp sa sc sch scn st sv toc tor uo v vn vm vo
vr vs vu

Parameters
Extended options can be specified by their long form or short form.

See “MobiLink SQL Anywhere client extended options” on page 183.

Remarks
Options specified on the command line with the -e option apply to all synchronizations requested on the
command line. For example, in the following command line the extended option sv=test applies to the
synchronization of both pub1 and pub2.

dbmlsync -e "sv=test" -n pub1 -n pub2

You can review extended options in the dbmlsync message log and the SYSSYNC system view.

To specify extended options for a single upload, use the -eu option.

See also
● “-eu option” on page 153
● “SYSSYNC system view” [SQL Anywhere Server - SQL Reference]
● “sp_hook_dbmlsync_set_extended_options” on page 292

Example
The following dbmlsync command line illustrates how you can set extended options when you start
dbmlsync:

dbmlsync -e "adr=host=localhost;dir=c:\db\logs"...

-e option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 149

-eh option
Ignores errors that occur in hook functions.

Syntax
dbmlsync -eh ...

MobiLink SQL Anywhere client utility (dbmlsync)

150 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-ek option
Allows you to specify the encryption key for strongly encrypted databases directly on the command line.

Syntax
dbmlsync -ek key ...

Remarks
If you have a strongly encrypted database, you must provide the encryption key to use the database or
transaction log in any way, including offline transactions. For strongly encrypted databases, you must specify
either -ek or -ep, but not both. The command fails if you do not specify a key for a strongly encrypted
database.

-ek option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 151

-ep option
Prompt for the encryption key.

Syntax
dbmlsync -ep ...

Remarks
This option causes a window to appear, in which you enter the encryption key. It provides an extra measure
of security by never allowing the encryption key to be seen in clear text. For strongly encrypted databases,
you must specify either -ek or -ep, but not both. The command fails if you do not specify a key for a strongly
encrypted database.

MobiLink SQL Anywhere client utility (dbmlsync)

152 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-eu option
Specifies extended upload options.

Syntax
dbmlsync -n publication-name -eu keyword=value;...

Remarks
Extended options that are specified on the command line with the -eu option apply only to the synchronization
specified by the -n option they follow. For example, on the following command line, the extended option
sv=test applies only to the synchronization of pub2.

dbmlsync -n pub1 -n pub2 -eu "sv=test"

For an explanation of how extended options are processed when they are set in more than one place, see
“MobiLink SQL Anywhere client extended options” on page 183.

For a complete list of extended options, see “MobiLink SQL Anywhere client extended
options” on page 183.

-eu option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 153

-is option
Ignores scheduling instructions so that synchronization is immediate.

Syntax
dbmlsync -is ...

Remarks
Ignore extended options that schedule synchronization.

For information about scheduling, see “Scheduling synchronization” on page 121.

MobiLink SQL Anywhere client utility (dbmlsync)

154 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-k option (deprecated)
Shuts down dbmlsync when synchronization is finished. This option is deprecated. Use -qc instead.

Syntax
dbmlsync -k ...

See also
● “-qc option” on page 169

-k option (deprecated)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 155

-l option
Lists available extended options.

Syntax
dbmlsync -l ...

Remarks
When used with the dbmlsync command line it shows you available extended options.

See also
● “MobiLink SQL Anywhere client extended options” on page 183

MobiLink SQL Anywhere client utility (dbmlsync)

156 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-mn option
Supplies a new password for the MobiLink user being synchronized.

Syntax
dbmlsync -mn password ...

Remarks
Changes the MobiLink user's password.

For more information, see “MobiLink users” on page 9.

See also
● “MobiLinkPwd (mp) extended option” on page 207
● “NewMobiLinkPwd (mn) extended option” on page 208
● “-mp option” on page 158

-mn option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 157

-mp option
Supplies the password of the MobiLink user being synchronized.

Syntax
dbmlsync -mp password ...

Remarks
Supplies the password for MobiLink user authentication.

For more information, see “MobiLink users” on page 9.

See also
● “MobiLinkPwd (mp) extended option” on page 207
● “NewMobiLinkPwd (mn) extended option” on page 208
● “-mn option” on page 157

MobiLink SQL Anywhere client utility (dbmlsync)

158 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-n option
Specifies the publication(s) to synchronize.

Syntax
dbmlsync -n pubname ...

Remarks
Name of synchronization publication.

You can supply more than one -n option to synchronize more than one synchronization publication, however
publication can only be specified once in a synchronization profile.

There are two ways to use -n to synchronize multiple publications:

● Specify -n pub1,pub2,pub3 to upload pub1, pub2, and pub3 in one upload followed by one
download.

In this case, if you have set extended options on the publications, only the options set on the first
publication in the list are used. Extended options set on subsequent publications are ignored.

● Specify -n pub1 -n pub2 -n pub3 to synchronize pub1, pub2, and pub3 in three separate
sequential synchronizations.

When successive synchronizations occur very quickly, such as when you specify -n pub1 -n
pub2, it is possible that dbmlsync may start processing a synchronization when the server is still
processing the previous synchronization. In this case, the second synchronization fails with an error
indicating that concurrent synchronizations are not allowed. If you run into this situation, you can define
an sp_hook_dbmlsync_delay stored procedure to create a delay before each synchronization. Usually a
few seconds to a minute is a enough delay.

For more information, see “sp_hook_dbmlsync_delay” on page 253.

-n option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 159

-o option
Sends output to the dbmlsync message log file.

Syntax
dbmlsync -o filename ...

Remarks
Append output to a log file. Default is to send output to the screen.

See also
● “-os option” on page 161
● “-ot option” on page 162

MobiLink SQL Anywhere client utility (dbmlsync)

160 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-os option
Specifies a maximum size for the dbmlsync message log file, at which point the log is renamed.

Syntax
dbmlsync -os size [K | M | G]...

Remarks
The size is the maximum file size for logging output messages, specified in units of bytes. Use the suffix k,
m or g to specify units of kilobytes, megabytes or gigabytes, respectively. By default, there is no size limit.
The minimum size limit is 10K.

Before the dbmlsync utility logs output messages to a file, it checks the current file size. If the log message
makes the file size exceed the specified size, the dbmlsync utility renames the output file to yymmddxx.dbr,
where yymmdd represents the year, month, and day, and xx are sequential characters ranging from AA to
ZZ.

This option allows you to manually delete old log files and free up disk space.

See also
● “-o option” on page 160
● “-ot option” on page 162

-os option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 161

-ot option
Deletes the contents of the message log file and then logs output messages to it.

Syntax
dbmlsync -ot logfile ...

Remarks
The functionality is the same as the -o option except the contents of the message log file are deleted when
dbmlsync starts up, before any messages are written to it.

See also
● “-o option” on page 160
● “-os option” on page 161

MobiLink SQL Anywhere client utility (dbmlsync)

162 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-p option
Disables logscan polling.

Syntax
dbmlsync -p ...

Remarks
To build an upload, dbmlsync must scan the transaction log. Usually it does this just before synchronization.
However, when synchronizations are scheduled or when the sp_hook_dbmlsync_delay hook is used,
dbmlsync by default scans the log in the pause that occurs before synchronization. This behavior is more
efficient because when synchronization begins the log is already at least partially scanned. This default
behavior is called logscan polling.

Logscan polling is on by default but only has an effect when synchronizations are scheduled using scheduling
options or when sp_hook_dbmlsync_delay hook is used. When in effect, polling occurs at set intervals; by
default this is 1 minute, but it can be changed with the dbmlsync -pp option.

This option is identical to the extended option DisablePolling=on.

See also
● “DisablePolling (p) extended option” on page 192
● “PollingPeriod (pp) extended option” on page 211
● “-pp option” on page 167

-p option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 163

-pc option
Maintain a persistent connection to the MobiLink server between synchronizations.

Syntax
dbmlsync -pc+ ...

Remarks
When this option is specified, dbmlsync connects to the MobiLink server as usual, but it then keeps that
connection open for use with subsequent synchronizations. A persistent connection is closed when any of
the following occur:

● An error occurs that causes a synchronization to fail.

● Liveness checking has timed out.

See “timeout” on page 67.

● A synchronization is initiated in which the communication type or address are different. This could mean
that the settings are different (for example, a different host is specified), or that they are specified in a
different way (for example, the same host and port are specified, but in a different order).

When a persistent connection is closed, a new connection is opened that is also persistent.

This option is most useful when the client synchronizes frequently and the cost of establishing a connection
to the server is high.

By default, persistent connections are not maintained.

MobiLink SQL Anywhere client utility (dbmlsync)

164 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-pd option
Preload specified DLLs for Windows Mobile.

Syntax
dbmlsync -pd dllname;...

Remarks
When running dbmlsync on Windows Mobile, if you are using encrypted communication streams you must
use the -pd option to ensure that the appropriate DLLs are loaded at startup. Otherwise, dbmlsync does not
attempt to load the DLLs until they are needed. Loading these DLLs late is prone to failure due to resource
limitations on Windows Mobile.

The following are the DLLs that need to be loaded for each communication protocol:

Protocol DLL

ECC mlcecc10.dll

RSA mlcrsa10.dll

FIPS mlcrsafips10.dll

You should specify multiple DLLs as a semicolon-separated list. For example:

-pd mlcrsafips10.dll;mlcrsa10.dll

-pd option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 165

-pi option
Pings a MobiLink server.

Syntax
dbmlsync -pi -c connection_string ...

Remarks
When you use -pi, dbmlsync connects to the remote database, retrieves information required to connect to
the MobiLink server, connects to the server, and authenticates the specified MobiLink user. When the
MobiLink server receives a ping, it connects to the consolidated database, authenticates the user, and then
sends the authenticating user status and value back to the client. If the MobiLink user name cannot be found
in the ml_user system table and the MobiLink server is running with the command line option -zu+, the
MobiLink server adds the user to the ml_user MobiLink system table.

To adequately test your connection, you should use the-pi option with all the synchronization options you
want to use to synchronize with dbmlsync. When -pi is included, dbmlsync does not perform a
synchronization.

If the ping succeeds, the MobiLink server issues an information message. If the ping does not succeed, it
issues an error message.

When you start dbmlsync with -pi, the MobiLink server can execute only the following scripts, if they exist:

● begin_connection

● authenticate_user

● authenticate_user_hashed

● authenticate_parameters

● end_connection

MobiLink SQL Anywhere client utility (dbmlsync)

166 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-pp option
Specifies the frequency of log scans.

Syntax
dbmlsync -pp number [h | m | s]...

Remarks
To build an upload, dbmlsync must scan the transaction log. Usually it does this just before synchronization.
However, when synchronizations are scheduled or when the sp_hook_dbmlsync_delay hook is used,
dbmlsync by default scans the log in the pause that occurs before synchronization. This behavior is more
efficient because when synchronization begins the log is already at least partially scanned. This default
behavior is called logscan polling.

This option specifies the interval between log scans. Use the suffix s, m, h, or d to specify seconds, minutes,
hours or days, respectively. The default is 1 minute. If you do not specify a suffix, the default unit of time
is minutes.

See also
● “PollingPeriod (pp) extended option” on page 211
● “DisablePolling (p) extended option” on page 192
● “-p option” on page 163

-pp option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 167

-q option
Starts the MobiLink synchronization client in a minimized window.

Syntax
dbmlsync -q ...

MobiLink SQL Anywhere client utility (dbmlsync)

168 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-qc option
Shuts down dbmlsync when synchronization is finished.

Syntax
dbmlsync -qc ...

Remarks
When used, dbmlsync exits after synchronization is completed if the synchronization was successful or if a
message log file was specified using the -o or -ot options.

See also
● “-o option” on page 160
● “-ot option” on page 162

-qc option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 169

-r option
Specifies that the remote offset should be used when there is disagreement between the offsets in the remote
and consolidated databases.

The -rb option indicates that the remote offset should be used if it is less than the consolidated offset (such
as when the remote database has been restored from backup). The -r option is provided for backward
compatibility and is identical to -rb. The -ra option indicates that the remote offset should be used if it is
greater than the consolidated offset. This option is provided only for very rare circumstances and may cause
data loss.

Syntax
dbmlsync { -r | -ra | -rb } ...

Remarks
For information about progress offsets, see “Progress offsets” on page 98.

-rb If the remote database is restored from backup, the default behavior may cause data to be lost. In this
case, the first time you run dbmlsync after the remote database is restored, you should specify -rb. When
you use -rb, the upload continues from the offset recorded in the remote database if the offset recorded in
the remote is less than that obtained from the consolidated database. If you use -rb and the offset in the
remote is not less than the offset from the consolidated database, an error is reported and the synchronization
is aborted.

The -rb option may result in some data being uploaded that has already been uploaded. This can result in
conflicts in the consolidated database and should be handled with appropriate conflict resolution scripts.

-ra The -ra option should be used only in very rare cases. If you use -ra, the upload is retried starting from
the offset obtained from the remote database if the remote offset is greater than the offset obtained from the
consolidated database. If you use -ra and the offset in the remote is not greater than the offset from the
consolidated database, an error is reported and the synchronization is aborted.

The -ra option should be used with care. If the offset mismatch is the result of a restore of the consolidated
database, changes that happened in the remote database in the gap between the two offsets are lost. The -ra
option may be useful when the consolidated database has been restored from backup and the remote database
transaction log has been truncated at the same point as the remote offset. In this case, all data that was
uploaded from the remote database is lost from the point of the consolidated offset to the point of the remote
offset.

MobiLink SQL Anywhere client utility (dbmlsync)

170 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-sc option
Specifies that dbmlsync should reload schema information before each synchronization.

Syntax
dbmlsync -sc...

Remarks
Prior to version 9.0, dbmlsync reloaded schema information from the database before each synchronization.
The information that was reloaded includes foreign key relationships, publication definitions, extended
options stored in the database, and information about database settings. Loading this information is time-
consuming and in most cases the information does not change between synchronizations.

Starting with version 9.0, by default dbmlsync loads schema information only at startup. Specify -sc if you
want the information to be loaded before every synchronization.

-sc option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 171

-sp option
When -sp is used, the options in the specified synchronization profile are added to those specified on the
command line for the synchronization.

Syntax
dbmlsync -sp sync profile

Remarks
If equivalent options are specified on the command line and in the synchronization profile, then the options
on the command line overrides those specified in the profile.

See also
● “CREATE SYNCHRONIZATION PROFILE statement [MobiLink]” [SQL Anywhere Server - SQL

Reference]
● “ALTER SYNCHRONIZATION PROFILE statement [MobiLink]” [SQL Anywhere Server - SQL

Reference]
● “DROP SYNCHRONIZATION PROFILE statement [MobiLink]” [SQL Anywhere Server - SQL

Reference]

MobiLink SQL Anywhere client utility (dbmlsync)

172 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-tu option
Specifies that each transaction on the remote database should be uploaded as a separate transaction within
one synchronization.

Syntax
dbmlsync -tu ...

Remarks
When you use -tu, you create a transactional upload: dbmlsync uploads each transaction on the remote
database as a distinct transaction. The MobiLink server applies and commits each transaction separately
when it is received.

When you use -tu, the order of transactions on the remote database is always preserved on the consolidated
database. However, the order of operations in a transaction may not be preserved, for two reasons:

● MobiLink always applies updates based on foreign key relationships. For example, when data is changed
in child and parent tables, MobiLink inserts data into the parent table before the child table, but deletes
data from the child before the parent. If your remote operations do not follow this order, the order of
operations differ on the consolidated database.

● Operations within a transaction are coalesced. This means that if you change the same row three times
in one transaction, only the final form of the row is uploaded.

If a transactional upload is interrupted, the data that was not sent is sent in the next synchronization. In most
cases, only the transactions that were not successfully completed are sent at that time. In some cases, such
as when the upload failure occurs during the first synchronization of a subscription, dbmlsync resends all
transactions.

When you do not use -tu, MobiLink coalesces all changes on the remote database into one transaction in the
upload. This means that if you change the same row three times between synchronizations, regardless of the
number of remote transactions, only the final form of the row is uploaded. This default behavior is efficient
and is optimal in many situations.

However, in certain situations you may want to preserve remote transactions on the consolidated database.
For example, you may want to define triggers on the consolidated database that act on transactions as they
occur in the remote database.

In addition, there are advantages to breaking up the upload into smaller transactions. Many consolidated
databases are optimized for small transactions, so sending a very large transaction is not efficient or may
cause too much contention. Also, when you use -tu you may not lose the entire upload if there are
communications errors during the upload. When you use -tu and there is an upload error, all successfully
uploaded transactions are applied.

The -tu option makes MobiLink behave in a manner that is very close to SQL Remote. The main difference
is that SQL Remote replicates all changes to the remote database in the order they occur, without coalescing.
To mimic this behavior, you must commit after each database operation on the remote database.

You cannot use -tu with the Increment extended option or with scripted uploads.

-tu option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 173

See also
● “-tx option” [MobiLink - Server Administration]
● “Uploading data from self-referencing tables” [MobiLink - Server Administration]

MobiLink SQL Anywhere client utility (dbmlsync)

174 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-u option
Specifies the MobiLink user name.

Syntax
dbmlsync -u ml_username ...

Remarks
You can specify one user in the dbmlsync command line, where ml_username is the name used in the FOR
clause of the CREATE SYNCHRONIZATION SUBSCRIPTION statement corresponding to the
subscription to be processed.

This option should be used in conjunction with -n publication to identify the subscription on which dbmlsync
should operate. Each subscription is uniquely identified by an ml_username, publication pair.

You can only specify one user name on the command line. All subscriptions to be synchronized in a single
run must involve the same user. The -u option can be omitted if each publication that is specified on the
command line with the -n option has only one subscription.

-u option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 175

-ui option
For Linux with X window server support, starts dbmlsync in shell mode if a usable display isn't available.

Syntax
mlsrv11 -c "connection-string" -ui ...

Remarks
When this option is used, dbmlsync tries to start with X Windows. If this fails, it starts in shell mode.

When -ui is specified, dbmlsync attempts to find a usable display. If it cannot find one, for example because
the X window server isn't running, then dbmlsync starts in shell mode.

MobiLink SQL Anywhere client utility (dbmlsync)

176 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-uo option
Specifies that synchronization only includes an upload.

Syntax
dbmlsync -uo...

Remarks
During upload-only synchronization, dbmlsync prepares and sends an upload to MobiLink exactly as it
would in a normal full synchronization. However, instead of sending a download back down, MobiLink
sends only an acknowledgement indicating if the upload was successfully committed.

For a list of the scripts that must be defined for upload-only synchronization, see “Required scripts”
[MobiLink - Server Administration].

See also
● “Upload-only and download-only synchronizations” [MobiLink - Server Administration]
● “DownloadOnly (ds) extended option” on page 194
● “UploadOnly (uo) extended option” on page 221

-uo option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 177

-urc option
Specifies an estimate of the number of rows to be uploaded in a synchronization.

Syntax
dbmlsync -urc row-estimate ...

Remarks
To improve performance, you can specify an estimate of the number of rows to upload in a synchronization.
This setting is especially useful when you are uploading a large number of rows. A higher estimate results
in faster uploads but more memory usage.

Synchronization proceeds correctly regardless of the specified estimate.

See also
● “Memory (mem) extended option” on page 205
● “For large uploads, estimate the number of rows” [MobiLink - Server Administration]

MobiLink SQL Anywhere client utility (dbmlsync)

178 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-ux option
On Linux, opens a dbmlsync messages window where messages are displayed.

Syntax
dbmlsync -ux...

Remarks
When -ux is specified, dbmlsync must be able to find a usable display. If it cannot find one, for example
because the DISPLAY environment variable is not set or because the X window server is not running,
dbmlsync fails to start.

To run the dbmlsync messages window in quiet mode, use -q.

On Windows, the dbmlsync messages window appears automatically.

See also
● “-q option” on page 168

-ux option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 179

-v option
Allows you to specify what information is logged to the message log file and displayed in the synchronization
window. A high level of verbosity may affect performance and should normally be used in the development
phase only.

Syntax
dbmlsync -v [levels] ...

Remarks
The -v options affect the message log file and synchronization window. You only have a message log if you
specify -o or -ot on the dbmlsync command line.

If you specify -v alone, a small amount of information is logged.

The values of levels are as follows. You can use one or more of these options at once; for example, -vnrsu
or -v+cp.

● + Turn on all logging options except for c and p.

● c Expose the connect string in the log.

● p Expose the password in the log.

● n Log the number of rows that were uploaded and downloaded.

● o Log information about the command line options and extended options that you have specified.

● r Log the values of rows that were uploaded and downloaded.

● s Log messages related to hook scripts.

● u Log information about the upload.

There are extended options that have similar functionality to the -v options. If you specify both -v and the
extended options and there are conflicts, the -v option overrides the extended option. If there is no conflict,
the verbosity logging options are additive—all options that you specify are used. When logging verbosity
is set by extended option, the logging does not take effect immediately, so startup information is not logged.
By the time of the first synchronization, the logging behavior is identical between the -v options and the
extended options.

See also
● “Verbose (v) extended option” on page 222
● “VerboseHooks (vs) extended option” on page 223
● “VerboseMin (vm) extended option” on page 224
● “VerboseOptions (vo) extended option” on page 225
● “VerboseRowCounts (vn) extended option” on page 226
● “VerboseRowValues (vr) extended option” on page 227
● “-o option” on page 160
● “-ot option” on page 162

MobiLink SQL Anywhere client utility (dbmlsync)

180 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-wc option
Specifies a window class name.

Syntax
dbmlsync -wc class-name ...

Remarks
This option specifies a window class name that can be used to poke dbmlsync and wake it up whenever it
is in hover mode, such as when scheduling is enabled or when you are using server-initiated synchronization.

In addition, the window class name identifies the application for ActiveSync synchronization. The class
name must be given when registering the application for use with ActiveSync synchronization.

This option applies only to Windows.

See also
● “Registering SQL Anywhere clients for ActiveSync” on page 119
● “Using ActiveSync synchronization” on page 117
● INFINITE keyword in “Schedule (sch) extended option” on page 212
● “Scheduling synchronization” on page 121

Example
dbmlsync -wc dbmlsync_$message_end...

-wc option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 181

-x option
Renames and restarts the transaction log after it has been scanned for outgoing messages.

Syntax
dbmlsync -x [size [K | M | G] ...

Remarks
The optional size means that the transaction log is renamed only if it is larger than the specified size. Use
the suffix k, m or g to specify units of kilobytes, megabytes or gigabytes, respectively. The default size is
0.

In some circumstances, synchronizing data to a consolidated database can take the place of backing up remote
databases, or renaming the transaction log when the database server is shut down.

If backups are not routinely performed at the remote database, the transaction log continues to grow. As an
alternative to using the -x option to control transaction log size, you can use a SQL Anywhere event handler
to control the size of the transaction log.

See also
● “Automating tasks using schedules and events” [SQL Anywhere Server - Database Administration]
● “delete_old_logs option [MobiLink client] [SQL Remote] [Replication Agent]” [SQL Anywhere Server

- Database Administration]
● “CREATE EVENT statement” [SQL Anywhere Server - SQL Reference]

MobiLink SQL Anywhere client utility (dbmlsync)

182 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MobiLink SQL Anywhere client extended
options

Contents
Introduction to dbmlsync extended options ... 185
CommunicationAddress (adr) extended option ... 187
CommunicationType (ctp) extended option ... 189
ConflictRetries (cr) extended option .. 190
ContinueDownload (cd) extended option .. 191
DisablePolling (p) extended option .. 192
DownloadBufferSize (dbs) extended option .. 193
DownloadOnly (ds) extended option ... 194
DownloadReadSize (drs) extended option .. 195
ErrorLogSendLimit (el) extended option .. 196
FireTriggers (ft) extended option ... 198
HoverRescanThreshold (hrt) extended option ... 199
IgnoreHookErrors (eh) extended option .. 200
IgnoreScheduling (isc) extended option .. 201
Increment (inc) extended option .. 202
LockTables (lt) extended option .. 203
Memory (mem) extended option .. 205
MirrorLogDirectory (mld) extended option ... 206
MobiLinkPwd (mp) extended option .. 207
NewMobiLinkPwd (mn) extended option ... 208
NoSyncOnStartup (nss) extended option .. 209
OfflineDirectory (dir) extended option .. 210
PollingPeriod (pp) extended option ... 211
Schedule (sch) extended option .. 212
ScriptVersion (sv) extended option .. 214
SendColumnNames (scn) extended option ... 215
SendDownloadACK (sa) extended option ... 216
SendTriggers (st) extended option .. 217
TableOrder (tor) extended option .. 218

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 183

TableOrderChecking (toc) extended option ... 220
UploadOnly (uo) extended option .. 221
Verbose (v) extended option ... 222
VerboseHooks (vs) extended option ... 223
VerboseMin (vm) extended option ... 224
VerboseOptions (vo) extended option ... 225
VerboseRowCounts (vn) extended option ... 226
VerboseRowValues (vr) extended option .. 227
VerboseUpload (vu) extended option .. 228

MobiLink SQL Anywhere client extended options

184 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Introduction to dbmlsync extended options
Extended options can be specified on the dbmlsync command line using the -e or -eu options, or they can
be stored in the database. You store extended options in the database by using Sybase Central, by using the
sp_hook_dbmlsync_set_extended_options event hook, or by using the OPTION clause in any of the
following statements:

● CREATE SYNCHRONIZATION SUBSCRIPTION

● ALTER SYNCHRONIZATION SUBSCRIPTION

● CREATE SYNCHRONIZATION USER

● ALTER SYNCHRONIZATION USER

● CREATE SYNCHRONIZATION SUBSCRIPTION without specifying a synchronization user (which
associates extended options with a publication)

Priority order
Dbmlsync combines options stored in the database with those specified on the command line. If conflicting
options are specified, dbmlsync resolves them as follows. In the following list, options specified by methods
occurring earlier in the list take precedence over those occurring later in the list.

1. Options specified in the sp_hook_dbmlsync_set_extended_options event hook.

2. Options specified in the command line that aren't extended options. (For example, -ds overrides -e
"ds=off".

3. Options specified in the command line with the -eu option.

4. Options specified in the command line with the -e option.

5. Options specified for the subscription, whether by a SQL statement or in Sybase Central. When you use
the Deploy Synchronization Model Wizard to deploy a MobiLink model, extended options are set for
you and are specified in the subscription.

6. Options specified for the MobiLink user, whether by a SQL statement or in Sybase Central.

7. Options specified for the publication, whether by a SQL statement or in Sybase Central.

Note
This priority order also affects connection parameters, such as those specified with the TYPE and ADDRESS
options in the SQL statements mentioned above.

You can review extended options in the log and the SYSSYNC system view.

For information about how extended options can be used to tune synchronization, see “Using dbmlsync
extended options” on page 113.

Introduction to dbmlsync extended options

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 185

See also
● “-e option” on page 149
● “-eu option” on page 153
● “CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” [SQL Anywhere Server -

SQL Reference]
● “ALTER SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” [SQL Anywhere Server -

SQL Reference]
● “CREATE SYNCHRONIZATION USER statement [MobiLink]” [SQL Anywhere Server - SQL

Reference]
● “ALTER SYNCHRONIZATION USER statement [MobiLink]” [SQL Anywhere Server - SQL

Reference]
● “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “ALTER PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “SYSSYNC system view” [SQL Anywhere Server - SQL Reference]
● “sp_hook_dbmlsync_set_extended_options” on page 292

Example
The following dbmlsync command line illustrates how you can set extended options when you start
dbmlsync:

dbmlsync -e "adr=host=localhost;dir=c:\db\logs"...

The following SQL statement illustrates how you can store extended options in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION TO mypub
 FOR mluser
 ADDRESS 'host=localhost'
 OPTION schedule='weekday@11:30am-12:30pm', dir='c:\db\logs'

The following dbmlsync command line opens the usage screen that lists options and their syntax:

dbmlsync -l

MobiLink SQL Anywhere client extended options

186 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

CommunicationAddress (adr) extended option
Specifies network protocol options for connecting to the MobiLink server.

Syntax
adr=protocol-option; ...

Parameters
See “MobiLink client network protocol option summary” on page 35.

Remarks
You must ensure that all subscriptions for a MobiLink user are synchronized to only one consolidated
database. Otherwise, you may experience data loss and unpredictable behavior.

If you are using the Redirector, see “Configuring MobiLink clients and servers for the Redirector” [MobiLink
- Server Administration].

This option has a short form and long form: you can use adr or CommunicationAddress.

This option can also be stored in the database using the SQL statement that creates or alters a publication,
subscription, or user. For more information, see:

● “CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” [SQL Anywhere Server -
SQL Reference]

● “CREATE SYNCHRONIZATION USER statement [MobiLink]” [SQL Anywhere Server - SQL
Reference]

Use the CommunicationType extended option to specify the type of network protocol.

See “CommunicationType (ctp) extended option” on page 189.

See also
● “MobiLink client network protocol options” on page 33
● “Configuring MobiLink clients and servers for the Redirector” [MobiLink - Server Administration]

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "adr=host=localhost"

To specify multiple network protocol options on the command line, enclose them in single quotes. For
example,

dbmlsync -e "adr='host=somehost;port=5001'"

To store the Address or CommunicationType in the database, you can use an extended option or you can
use the ADDRESS clause. For example,

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication

CommunicationAddress (adr) extended option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 187

 FOR ml_user1
 ADDRESS 'host=localhost;port=2439'

MobiLink SQL Anywhere client extended options

188 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

CommunicationType (ctp) extended option
Specifies the type of network protocol to use for connecting to the MobiLink server.

Syntax
ctp=network-protocol; ...

Remarks
network-protocol can be one of tcpip, tls, http, or https. The default is tcpip.

You must ensure that all subscriptions for a MobiLink user are synchronized to only one consolidated
database. Otherwise, you may experience data loss and unpredictable behavior.

This option has a short form and long form: you can use ctp or CommunicationType.

See also
● “Encrypting MobiLink client/server communications” [SQL Anywhere Server - Database

Administration]
● “CommunicationAddress (adr) extended option” on page 187

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "ctp=https"

To store the CommunicationType in the database, you can use an extended option or you can use the TYPE
clause. For example,

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 TYPE 'tcpip'

CommunicationType (ctp) extended option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 189

ConflictRetries (cr) extended option
Specifies the number of retries if the download fails because of conflicts.

Syntax
cr=number; ...

Remarks
When the extended option LockTables is set to OFF (preventing dbmlsync from obtaining locks on the tables
being synchronized), it is possible for operations to be applied to the database between the time the upload
is built and the time that the download is applied. If these changes affect rows that are also changed by the
download, dbmlsync considers this to be a conflict and does not apply the download stream. When this
occurs dbmlsync retries the entire synchronization. This option controls the number of retries that are
performed.

This option is useful only if the LockTables option is OFF, which is not the default.

The default is -1 (retries should continue indefinitely).

This option has a short form and long form: you can use cr or ConflictRetries.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

See also
● “Handling conflicts” [MobiLink - Server Administration]

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "cr=5"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION cr='5';

MobiLink SQL Anywhere client extended options

190 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ContinueDownload (cd) extended option
Restarts a previously failed download.

Syntax
cd={ ON | OFF }; ...

Remarks
If MobiLink fails during a download it does not apply any of the download data to the remote database.
However, it stores the part of the download it did receive in a temporary file on the remote device, so that
it can be restarted later. When you set the extended option cd=on, dbmlsync restarts the download and
attempts to download the part of the previous download that it did not receive. If it is able to download the
remaining data, it applies the complete download to your remote database.

If there is any new data to be uploaded when you set -cd=on, the restartable download fails.

You can also specify restartable downloads for SQL Anywhere remote databases with the -dc option or with
the sp_hook_dbmlsync_end hook.

This option has a short form and long form: you can use cd or ContinueDownload.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

See also
● “Resuming failed downloads” [MobiLink - Server Administration]
● “sp_hook_dbmlsync_set_extended_options” on page 292
● “-dc option” on page 144
● “sp_hook_dbmlsync_end” on page 273

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "cd=on"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION cd='on';

ContinueDownload (cd) extended option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 191

DisablePolling (p) extended option
Disables automatic logscan polling.

Syntax
p={ ON | OFF }; ...

Remarks
To build an upload, dbmlsync must scan the transaction log. Usually it does this just before synchronization.
However, when synchronizations are scheduled, dbmlsync by default scans the log in the time between
scheduled synchronizations; and when the sp_hook_dbmlsync_delay hook is used, dbmlsync by default
scans the log in the pause that occurs just before synchronization. This behavior is more efficient because
the log is already at least partially scanned when synchronization begins. This default behavior is called
logscan polling.

Logscan polling is on by default but only has an effect when synchronizations are scheduled or when
sp_hook_dbmlsync_delay hook is used. When in effect, polling occurs at set intervals: dbmlsync scans to
the end of the log, waits for the polling period, and then scans any new transactions in the log. By default,
the polling period is 1 minute, but it can be changed with the dbmlsync -pp option or the PollingPeriod
extended option.

The default is to not disable logscan polling (OFF).

This option is identical to dbmlsync -p.

This option has a short form and long form: you can use p or DisablePolling.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

See also
● “PollingPeriod (pp) extended option” on page 211
● “-p option” on page 163
● “-pp option” on page 167

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "p=on"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION p='on';

MobiLink SQL Anywhere client extended options

192 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

DownloadBufferSize (dbs) extended option
Specifies the size of the download buffer.

Syntax
dbs=number[K | M]; ...

Remarks
The buffer size is specified in units of bytes. Use the suffix k or m to specify units of kilobytes or megabytes,
respectively.

If you set this option to 0, dbmlsync does not buffer the download. If this option is greater than 0, the entire
download stream is read from the communication stream with the MobiLink server before it is applied to
the remote database. If the download stream fits in the space specified by the option then it is held entirely
in memory; otherwise some of it is written to a temporary file.

If the setting is greater than 0 but less than 4 KB, dbmlsync uses a 4 KB buffer size and issues a warning.
The default is 32k on Windows Mobile, and 1m on all other operating systems.

This option has a short form and long form: you can use dbs or DownloadBufferSize.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "dbs=32k"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION dbs='32k';

DownloadBufferSize (dbs) extended option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 193

DownloadOnly (ds) extended option
Specifies that synchronization should be download-only.

Syntax
ds={ ON | OFF }; ...

Remarks
When download-only synchronization occurs, dbmlsync does not upload any row operations or data.
However, it does upload information about the schema and progress offset.

In addition, dbmlsync ensures that changes on the remote are not overwritten during download-only
synchronization. It does this by scanning the log to detect rows with operations waiting to be uploaded. If
any of these rows is modified by the download, the download is rolled back and the synchronization fails.
If the synchronization fails for this reason, you must do a full synchronization to correct the problem.

When you have remotes that are synchronized by download-only synchronization, you should regularly do
a full synchronization to reduce the amount of log that is scanned by the download-only synchronization.
Otherwise, the download-only synchronizations take an increasingly long time to complete. If this is a
problem, you can alternatively use a download-only publication to avoid log issues during synchronization.

For a list of the scripts that must be defined for download-only synchronization, see “Required scripts”
[MobiLink - Server Administration].

The default is OFF (full synchronization of both upload and download).

This option has a short form and long form: you can use ds or DownloadOnly.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

See also
● “-ds option” on page 148
● “Download-only publications” on page 103
● “Upload-only and download-only synchronizations” [MobiLink - Server Administration]

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "ds=on"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION ds='ON';

MobiLink SQL Anywhere client extended options

194 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

DownloadReadSize (drs) extended option
For restartable downloads, specifies the maximum amount of data that may need to be resent after a
communications failure.

Syntax
drs=number[K]; ...

Remarks
The DownloadReadSize option is only useful when doing restartable downloads.

The download read size is specified in units of bytes. Use the suffix k to optionally specify units of kilobytes.

Dbmlsync reads the download in chunks. The DownloadReadSize defines the size of these chunks. When
a communication error occurs, dbmlsync loses the entire chunk that was being processed. Depending on
when the error occurs, the number of bytes lost range between 0 and the DownloadReadSize -1. So for
example, if the DownloadReadSize is 100 bytes and an error occurs after reading 497 bytes, the last 97 bytes
read are lost. Bytes that are lost in this way are resent when the download is restarted.

In general, larger DownloadReadSize values result in better performance on successful synchronizations but
result in more data being resent when an error occurs.

The typical use of this option is to reduce the default size when communication is unreliable.

The default is 32767. If you set this option to a value larger than 32767, the value 32767 is used.

This option has a short form and long form: you can use drs or DownloadReadSize.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

See also
● “-drs option” on page 147
● “Resuming failed downloads” [MobiLink - Server Administration]
● “ContinueDownload (cd) extended option” on page 191
● “sp_hook_dbmlsync_end” on page 273
● “-dc option” on page 144

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "drs=100"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION drs='100';

DownloadReadSize (drs) extended option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 195

ErrorLogSendLimit (el) extended option
Specifies how much of the remote message log file dbmlsync should send to the server when synchronization
error occurs.

Syntax
el=number[K | M]; ...

Remarks
This option is specified in units of bytes. Use the suffix k or m to specify units of kilobytes or megabytes,
respectively.

This option specifies the number of bytes of the message log that dbmlsync sends to the MobiLink server
when errors occur during synchronization. Set this option to 0 if you don't want any dbmlsync message log
to be sent.

When this option is non-zero, the error log is uploaded when a client-side error occurs. Not all client-side
errors cause the log to be sent: the log is not sent for communication errors or errors that occur when dbmlsync
is not connected to the MobiLink server. If the error occurs after the upload is sent, the error log is uploaded
only if the SendDownloadAck extended option is set to ON.

If ErrorLogSendLimit is set to be large enough, dbmlsync sends the entire message log from the current
session to the MobiLink server. For example, if the message log messages were appended to an old message
log file, dbmlsync only sends the new messages generated in the current session. If the total length of new
messages is greater than ErrorLogSendLimit, dbmlsync only logs the last part of the newly generated error
and log messages up to the specified size.

Note: The size of the message log is influenced by your verbosity settings. You can adjust these using the
dbmlsync -v option, or by using dbmlsync extended options starting with "verbose". For more information,
see “-v option” on page 180 and the -e verbose options:

● “Verbose (v) extended option” on page 222
● “VerboseHooks (vs) extended option” on page 223
● “VerboseMin (vm) extended option” on page 224
● “VerboseOptions (vo) extended option” on page 225
● “VerboseRowCounts (vn) extended option” on page 226
● “VerboseRowValues (vr) extended option” on page 227
● “VerboseUpload (vu) extended option” on page 228

The default is 32K.

This option has a short form and long form: you can use el or ErrorLogSendLimit.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "el=32k"

MobiLink SQL Anywhere client extended options

196 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION el='32k';

ErrorLogSendLimit (el) extended option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 197

FireTriggers (ft) extended option
Specifies that triggers should be fired on the remote database when the download is applied.

Syntax
ft={ ON | OFF }; ...

Remarks
The default is ON.

This option has a short form and long form: you can use ft or FireTriggers.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "ft=off"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION ft='off';

MobiLink SQL Anywhere client extended options

198 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

HoverRescanThreshold (hrt) extended option
When you are using scheduling, this limits the amount of discarded memory that is allowed to accumulate
before a rescan is performed.

Syntax
hrt=number[K | M]; ...

Remarks
Specifies memory in units of bytes. Use the suffix k or m to specify units of kilobytes or megabytes,
respectively. The default is 1m.

When more than one -n option is specified in the command line, dbmlsync may experience fragmentation
which results in discarded memory. The discarded memory can only be recovered by rescanning the database
transaction log. This option lets you specify a limit on the amount of discarded memory that is allowed to
accumulate before the log is rescanned and the memory recovered. Another way to control the recovery of
discarded memory is to implement the sp_hook_dbmlsync_log_rescan stored procedure.

This option has a short form and long form: you can use hrt or HoverRescanThreshold.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

See also
● “sp_hook_dbmlsync_log_rescan” on page 276

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "hrt=2m"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION hrt='2m';

HoverRescanThreshold (hrt) extended option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 199

IgnoreHookErrors (eh) extended option
Specifies that errors that occur in hook functions should be ignored.

Syntax
eh={ ON | OFF }; ...

Remarks
The default is OFF.

This option has a short form and long form: you can use eh or IgnoreHookErrors.

This option is equivalent to the dbmlsync -eh option.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "eh=off"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION eh='off';

MobiLink SQL Anywhere client extended options

200 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

IgnoreScheduling (isc) extended option
Specifies that scheduling settings should be ignored.

Syntax
isc={ ON | OFF }; ...

Remarks
If set to ON, dbmlsync ignores any scheduling information that is specified in extended options and
synchronizes immediately. The default is OFF.

This option is equivalent to the dbmlsync -is option.

This option has a short form and long form: you can use isc or IgnoreScheduling.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

See also
● “Scheduling synchronization” on page 121
● “Schedule (sch) extended option” on page 212

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "isc=off"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION isc='off';

IgnoreScheduling (isc) extended option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 201

Increment (inc) extended option
Enables incremental uploads and controls the size of upload increments.

Syntax
inc=number[K | M]; ...

Remarks
This option specifies a minimum incremental scan volume in units of bytes. Use the suffix k or m to specify
units of kilobytes or megabytes, respectively.

When this option is specified, uploads are sent to MobiLink in one or more parts. This could be useful if a
site has difficulty maintaining a connection for long enough to complete the full upload. When the option is
not set, uploads are sent as a single unit.

The value of this option specifies, very approximately, the size of each upload part. The value of the option
controls the size of each upload part as follows. Dbmlsync builds the upload by scanning the database
transaction log. When this option is set, dbmlsync scans the number of bytes that are set in the option, and
then continues scanning to the first point at which there are no outstanding partial transactions—the next
point at which all transactions have either been committed or rolled back. It then sends what it has scanned
as an upload part and resumes scanning the log from where it left off.

You cannot use the Increment extended option with scripted upload or transactional upload.

This option has a short form and long form: you can use inc or Increment.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "inc=32000"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION inc='32k';

MobiLink SQL Anywhere client extended options

202 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

LockTables (lt) extended option
Specifies that tables in the publications being synchronized should be locked before synchronizing.

Syntax
lt={ ON | OFF | SHARE | EXCLUSIVE }; ...

Remarks
SHARE means that dbmlsync locks all synchronization tables in shared mode. EXCLUSIVE means that
dbmlsync locks all synchronization tables in exclusive mode. For all platforms except Windows Mobile,
ON is the same as SHARE. For Windows Mobile devices, ON is the same as EXCLUSIVE.

The default is OFF. This means that by default, dbmlsync does not lock any synchronization tables except
for the following situations:

● If there is a publication that uses script-based upload in the current synchronization or if there is an
sp_hook_dbmlsync_schema_upgrade hook defined in the remote database, dbmlsync locks the
synchronization tables with ON.

● If there are passthrough scripts that were downloaded in the previous synchronization and these scripts
need to be executed automatically in the current synchronization, the synchronization tables are locked
with SHARE or EXCLUSIVE depending on the passthrough scripts' requirement.

Set to ON to prevent modifications during synchronization.

For more information about shared and exclusive locks, see “How locking works” [SQL Anywhere Server
- SQL Usage] and “LOCK TABLE statement” [SQL Anywhere Server - SQL Reference].

For more information about locking tables in MobiLink applications, see “Concurrency during
synchronization” on page 115.

When synchronization tables are locked in exclusive mode (the default for Windows Mobile devices), no
other connections can access the tables, and so dbmlsync stored procedures that execute on a separate
connection are not able to execute if they require access to any of the synchronization tables.

For information about hooks that execute on separate connections, see “Event hooks for SQL Anywhere
clients” on page 235.

This option has a short form and long form: you can use lt or LockTables.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "lt=on"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication

LockTables (lt) extended option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 203

 FOR ml_user1
 OPTION lt='on';

MobiLink SQL Anywhere client extended options

204 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Memory (mem) extended option
Specifies a cache size that is used by dbmlsync when building the upload.

Syntax
mem=number[K | M]; ...

Remarks
Specifies the size of the cache used for building the upload, in units of bytes. A larger cache means that
dbmlsync can keep more pages of data in memory, reduce the number of disk reads/writes, and improve
performance.

Use the suffix k or m to specify units of kilobytes or megabytes, respectively. The default is 1M.

This option has a short form and long form: you can use mem or Memory.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

See also
● “-urc option” on page 178
● “Performance tips” [MobiLink - Server Administration]

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "mem=2M"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION mem='2m';

Memory (mem) extended option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 205

MirrorLogDirectory (mld) extended option
Specifies the location of old transaction log mirror files so that they can be deleted.

Syntax
mld=filename; ...

Remarks
This option makes it possible for dbmlsync to delete old transaction log mirror files when either of the
following two circumstances occur:

● the offline transaction log mirror is located in a different directory from the transaction log mirror

or

● dbmlsync is run on a different computer from the remote database server

In a normal setup, the active transaction log mirror and renamed transaction log mirror files are located in
the same directory, and dbmlsync is run on the same computer as the remote database, so this option is not
required and old transaction log mirror files are automatically deleted.

Transaction logs in this directory are only affected if the delete_old_logs database option is set to On, Delay,
or n days.

This option has a short form and long form: you can use mld or MirrorLogDirectory.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

See also
● “delete_old_logs option [MobiLink client] [SQL Remote] [Replication Agent]” [SQL Anywhere Server

- Database Administration]

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "mld=c:\tmp\file"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION mld='c:\tmp\file';

MobiLink SQL Anywhere client extended options

206 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MobiLinkPwd (mp) extended option
Specifies the MobiLink password.

Syntax
mp=password; ...

Remarks
Specifies the password used to connect. This password should be the correct password for the MobiLink
user whose subscriptions are being synchronized. This user may be specified with the dbmlsync -u option.
The default is null.

If the MobiLink user already has a password, use the extended option -e mn to change it.

This option has a short form and long form: you can use mp or MobiLinkPwd.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

See also
● “NewMobiLinkPwd (mn) extended option” on page 208
● “-mn option” on page 157
● “-mp option” on page 158

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "mp=password"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION mp='SQL';

MobiLinkPwd (mp) extended option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 207

NewMobiLinkPwd (mn) extended option
Specifies a new password.

Syntax
mn=new-password; ...

Remarks
Specifies a new password for the MobiLink user whose subscriptions are being synchronized. Use this option
when you want to change an existing password. The default is not to change the password.

This option has a short form and long form: you can use mn or NewMobiLinkPwd.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

See also
● “MobiLinkPwd (mp) extended option” on page 207
● “-mn option” on page 157
● “-mp option” on page 158

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "mp=oldpassword; mn=newpassword"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION mn='SQL';

MobiLink SQL Anywhere client extended options

208 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

NoSyncOnStartup (nss) extended option
Prevents dbmlsync from synchronizing on startup when a scheduling option would otherwise cause that to
happen.

Syntax
nss={ on | off }; ...

Remarks
This option has an effect only when a schedule is used with the EVERY or INFINITE clause. These
scheduling options cause dbmlsync to automatically synchronize on startup.

The default is off.

When you set NoSyncOnStartup to on and use a schedule with the INFINITE clause, a synchronization does
not occur until a window message is received.

When you set NoSyncOnStartup to on and use a schedule with the EVERY clause, the first synchronization
after startup occurs after the amount of time specified in the EVERY clause.

This setting does not affect the behavior of the schedule in any way other than at dbmlsync startup.

This option has a short form and long form: you can use nss or NoSyncOnStartup.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

See also
● “Schedule (sch) extended option” on page 212
● “Scheduling synchronization” on page 121

Example
The following partial dbmlsync command line illustrates how you can set this option when you start
dbmlsync:

dbmlsync -e "schedule=EVERY:01:00;nss=off"...

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION nss='off', schedule='EVERY:01:00';

NoSyncOnStartup (nss) extended option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 209

OfflineDirectory (dir) extended option
Specifies the path containing offline transaction logs.

Syntax
dir=path; ...

Remarks
By default, dbmlsync checks for renamed logs in the same directory as the online transaction log. This option
only needs to be specified if the renamed offline transaction logs are located in a different directory.

This option has a short form and long form: you can use dir or OfflineDirectory.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "dir=c:\db\logs"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION dir='c:\db\logs';

MobiLink SQL Anywhere client extended options

210 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

PollingPeriod (pp) extended option
Specifies the logscan polling period.

Syntax
pp=number[S | M | H | D]; ...

Remarks
This option specifies the interval between log scans. Use the suffix s, m, h, or d to specify seconds, minutes,
hours or days, respectively. The default is 1 minute. If you do not specify a suffix, the default unit of time
is minutes.

Logscan polling occurs only when you are scheduling synchronizations or using the
sp_hook_dbmlsync_delay hook.

For an explanation of logscan polling, see “DisablePolling (p) extended option” on page 192.

This option is identical to dbmlsync -pp.

This option has a short form and long form: you can use pp or PollingPeriod.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

See also
● “DisablePolling (p) extended option” on page 192
● “-pp option” on page 167
● “-p option” on page 163
● “sp_hook_dbmlsync_delay” on page 253

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "pp=5"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION pp='5';

PollingPeriod (pp) extended option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 211

Schedule (sch) extended option
Specifies a schedule for synchronization.

Syntax
sch=schedule; ...

schedule : { EVERY:hhhh:mm | INFINITE | singleSchedule }

hhhh : 00 ... 9999

mm : 00 ... 59

singleSchedule : day @hh:mm[AM | PM] [-hh:mm[AM | PM]] ,...

hh : 00 ... 24

mm : 00 ... 59

day :
 EVERYDAY | WEEKDAY | MON | TUE | WED | THU | FRI | SAT | SUN | dayOfMonth

dayOfMonth : 0... 31

Parameters
EVERY The EVERY keyword causes synchronization to occur on startup, and then repeat indefinitely
after the specified time period. If the synchronization process takes longer than the specified period,
synchronization starts again immediately.

To avoid having a synchronization occur when dbmlsync starts, use the extended option NoSyncOnStartup.
See “NoSyncOnStartup (nss) extended option” on page 209.

singleSchedule Given one or more single schedules, synchronization occurs only at the specified days
and times.

An interval is specified as @hh:mm-hh:mm (with optional specification of AM or PM). If AM or PM is not
specified, a 24-hour clock is assumed. 24:00 is interpreted as 00:00 on the next day. When an interval is
specified, synchronization occurs, starting at a random time within the interval. The interval provides a
window of time for synchronization so that multiple remote databases with the same schedule do not cause
congestion at the MobiLink server by synchronizing at exactly the same time.

The interval end time is always interpreted as following the start time. When the time interval includes
midnight, it ends on the next day. If dbmlsync is started midway through the interval, synchronization occurs
at a random time before the end time.

EVERYDAY EVERYDAY is all seven days of the week.

WEEKDAY WEEKDAY is Monday through Friday.

Days of the week are Mon, Tue, and so on. You may also use the full forms of the day, such as Monday.
You must use the full forms of the day names if the language you are using is not English, is not the language
requested by the client in the connection string, and is not the language which appears in the server window.

MobiLink SQL Anywhere client extended options

212 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

dayOfMonth To specify the last day of the month regardless of the length of the month, set the
dayOfMonth to 0.

INFINITE The INFINITE keyword causes dbmlsync to synchronize on startup, and then not to synchronize
again until synchronization is initiated by another program sending a window message to dbmlsync. While
it waits, dbmlsync runs and scans the log periodically. You can use the dbmlsync extended option
NoSyncOnStartup to avoid the initial synchronization.

For more information, see “NoSyncOnStartup (nss) extended option” on page 209.

You can use this option in conjunction with the dbmlsync -wc option to wake up dbmlsync and perform a
synchronization.

For more information, see “-wc option” on page 181.

Remarks
If a previous synchronization is still incomplete at a scheduled time, the scheduled synchronization
commences when the previous synchronization completes.

The default is no schedule.

This option has a short form and long form: you can use sch or Schedule.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

The schedule option syntax is the same when used in the synchronization SQL statements and in the dbmlsync
command line.

The IgnoreScheduling extended option and the -is option instruct dbmlsync to ignore scheduling, so that
synchronization is immediate. For more information, see “IgnoreScheduling (isc) extended
option” on page 201.

For more information about scheduling, see “Scheduling synchronization” on page 121.

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "sch=WEEKDAY@8:00am,SUN@9:00pm"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION sch='WEEKDAY@8:00am,SUN@9:00pm';

Schedule (sch) extended option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 213

ScriptVersion (sv) extended option
Specifies a script version.

Syntax
sv=version-name; ...

Remarks
The script version determines which scripts are run by MobiLink on the consolidated database during
synchronization. The default script version name is default.

This option has a short form and long form: you can use sv or ScriptVersion.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "sv=SyaAd001"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION sv='SysAd001';

MobiLink SQL Anywhere client extended options

214 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SendColumnNames (scn) extended option
Specifies that column names should be sent in the upload for use by direct row handling.

Syntax
scn={ ON | OFF }; ...

Remarks
The column names are used by the MobiLink server for direct row handling. When using the row handling
API to refer to columns by name rather than by index, you should set this option. This is the only use of the
column names that are sent by this option.

See “Direct row handling” [MobiLink - Server Administration].

The default is OFF.

This option has a short form and long form: you can use scn or SendColumnNames.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "scn=on"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION scn='on';

SendColumnNames (scn) extended option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 215

SendDownloadACK (sa) extended option
Specifies that a download acknowledgement should be sent from the client to the server.

Syntax
sa={ ON | OFF }; ...

Remarks
It is recommended that SendDownloadAck be set to OFF. If the download fails, the remote uploads the same
timestamp over again, and no data is lost. This option is used to change the behavior of server-side scripts.
See “nonblocking_download_ack connection event” [MobiLink - Server Administration].

For more information about improving performance by turning off the download acknowledgement, see
“Use non-blocking download acknowledgement” [MobiLink - Server Administration].

Note: When SendDownloadAck is set to ON and you are in verbose mode, an acknowledgement line is
written to the client log.

The default is OFF.

This option has a short form and long form: you can use sa or SendDownloadACK.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "sa=off"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION sa='off';

MobiLink SQL Anywhere client extended options

216 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SendTriggers (st) extended option
Specifies that trigger actions should be sent on upload.

Syntax
st={ ON | OFF }; ...

Remarks
Cascaded deletes are also considered trigger actions.

The default is OFF.

This option has a short form and long form: you can use st or SendTriggers.

If two publications are overlapping, that is they both contain one or more of the same tables, then both
publications must be synchronized with the same setting for the SendTriggers option.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "st=on"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION st='on';

SendTriggers (st) extended option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 217

TableOrder (tor) extended option
Specifies the order of tables in the upload.

Syntax
tor=tables; ...

tables = table-name [,table-name], ...

Remarks
This option allows you to specify the order of tables on the remote database that are to be uploaded. Specify
tables as a comma-separated list. You must specify all tables that are to be uploaded. If you include tables
that are not included in the synchronization, they are ignored.

The table order that you specify must ensure referential integrity. This means that if Table1 has a foreign
key reference to Table2, then Table2 must be uploaded before Table1. If you do not specify tables in the
appropriate order, an error occurs, except in the two following cases:

● You set TableOrderChecking=OFF.

● Your tables have a cyclical foreign key relationship. (In this case, there is no order that satisfies the rule
and so the tables involved in the cycle can be uploaded in any order.)

If you do not specify TableOrder, then dbmlsync chooses an order that satisfies referential integrity.

The order of tables on the download is the same as the upload. Control of the upload table order may make
writing server side scripts simpler, especially if the remote and consolidated databases have different foreign
key constraints.

There are no cases where this option must be used. It is provided for users who want to ensure that tables
are uploaded in a specific order.

This option has a short form and long form: you can use tor or TableOrder.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

See also
● “TableOrderChecking (toc) extended option” on page 220
● “How the upload is processed” [MobiLink - Getting Started]
● “Referential integrity and synchronization” [MobiLink - Getting Started]

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "tor=admin,parent,child"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication

MobiLink SQL Anywhere client extended options

218 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 FOR ml_user1
 OPTION tor='admin,parent,child';

TableOrder (tor) extended option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 219

TableOrderChecking (toc) extended option
When you specify TableOrder, determines whether dbmlsync should check that no table is uploaded before
another table on which it has a foreign key.

Syntax
tor={ OFF | ON }; ...

Remarks
In most applications, tables on the remote and consolidated databases have the same foreign key
relationships. In these cases, you should leave TableOrderChecking at its default value of ON, and dbmlsync
ensures that no table is uploaded before another table on which it has a foreign key. This ensures referential
integrity.

This option is useful when the consolidated and remote databases have different foreign key relationships.
Use it with the TableOrder extended option to specify an order of tables that does not follow the rule that
no table is uploaded before one on which it has a foreign key.

This option is only useful when the TableOrder extended option is specified.

The default is ON.

This option has a short form and long form: you can use toc or TableOrderChecking.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

See also
● “TableOrder (tor) extended option” on page 218
● “How the upload is processed” [MobiLink - Getting Started]
● “Referential integrity and synchronization” [MobiLink - Getting Started]

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "toc=OFF"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION toc='Off';

MobiLink SQL Anywhere client extended options

220 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UploadOnly (uo) extended option
Specifies that synchronization should only include an upload.

Syntax
uo={ ON | OFF }; ...

Remarks
During upload-only synchronization, dbmlsync prepares and sends an upload to the MobiLink server exactly
as in a normal full synchronization. However, instead of sending a download back down, MobiLink sends
only an acknowledgement indicating if the upload was successfully committed.

For a list of the scripts that must be defined for upload-only synchronization, see “Required scripts”
[MobiLink - Server Administration].

The default is OFF.

This option has a short form and long form: you can use uo or UploadOnly.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

See also
● “Upload-only and download-only synchronizations” [MobiLink - Server Administration]
● “DownloadOnly (ds) extended option” on page 194

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "uo=on"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION uo='on';

UploadOnly (uo) extended option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 221

Verbose (v) extended option
Specifies full verbosity.

Syntax
v={ ON | OFF }; ...

Remarks
This option specifies a high level of verbosity, which may affect performance and should normally be used
in the development phase only.

This option is identical to dbmlsync -v+. If you specify both -v and the extended options and there are
conflicts, the -v option overrides the extended option. If there is no conflict, the verbosity logging options
are additive—all options that you specify are used. When logging verbosity is set by extended option, the
logging does not take effect immediately, so startup information is not logged. By the time of the first
synchronization, the logging behavior is identical between the -v options and the extended options.

For more information, see “-v option” on page 180.

The default is OFF.

This option has a short form and long form: you can use v or Verbose.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

See also
● “VerboseHooks (vs) extended option” on page 223
● “VerboseMin (vm) extended option” on page 224
● “VerboseOptions (vo) extended option” on page 225
● “VerboseRowCounts (vn) extended option” on page 226
● “VerboseRowValues (vr) extended option” on page 227
● “VerboseUpload (vu) extended option” on page 228

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "v=on"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION v='on';

MobiLink SQL Anywhere client extended options

222 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

VerboseHooks (vs) extended option
Specifies that messages related to hook scripts should be logged.

Syntax
vs={ ON | OFF }; ...

Remarks
This option is identical to dbmlsync -vs. If you specify both -v and the extended options and there are
conflicts, the -v option overrides the extended option. If there is no conflict, the verbosity logging options
are additive—all options that you specify are used. When logging verbosity is set by extended option, the
logging does not take effect immediately, so startup information is not logged. By the time of the first
synchronization, the logging behavior is identical between the -v options and the extended options.

For more information, see “-v option” on page 180.

The default is OFF.

This option has a short form and long form: you can use vs or VerboseHooks.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

See also
● “Event hooks for SQL Anywhere clients” on page 235
● “Verbose (v) extended option” on page 222
● “VerboseMin (vm) extended option” on page 224
● “VerboseOptions (vo) extended option” on page 225
● “VerboseRowCounts (vn) extended option” on page 226
● “VerboseRowValues (vr) extended option” on page 227
● “VerboseUpload (vu) extended option” on page 228

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "vs=on"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION vs='on';

VerboseHooks (vs) extended option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 223

VerboseMin (vm) extended option
Specifies that a small amount of information should be logged.

Syntax
vm={ ON | OFF }; ...

Remarks
This option is identical to dbmlsync -v. If you specify both -v and the extended options and there are conflicts,
the -v option overrides the extended option. If there is no conflict, the verbosity logging options are additive
—all options that you specify are used. When logging verbosity is set by extended option, the logging does
not take effect immediately, so startup information is not logged. By the time of the first synchronization,
the logging behavior is identical between the -v options and the extended options.

For more information, see “-v option” on page 180.

The default is OFF.

This option has a short form and long form: you can use vm or VerboseMin.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

See also
● “Verbose (v) extended option” on page 222
● “Verbose (v) extended option” on page 222
● “VerboseOptions (vo) extended option” on page 225
● “VerboseRowCounts (vn) extended option” on page 226
● “VerboseRowValues (vr) extended option” on page 227
● “VerboseUpload (vu) extended option” on page 228

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "vm=on"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION vm='on';

MobiLink SQL Anywhere client extended options

224 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

VerboseOptions (vo) extended option
Specifies that information should be logged about the command line options (including extended options)
that you have specified.

Syntax
vo={ ON | OFF }; ...

Remarks
This option is identical to dbmlsync -vo. If you specify both -v and the extended options and there are
conflicts, the -v option overrides the extended option. If there is no conflict, the verbosity logging options
are additive—all options that you specify are used. When logging verbosity is set by extended option, the
logging does not take effect immediately, so startup information is not logged. By the time of the first
synchronization, the logging behavior is identical between the -v options and the extended options.

For more information, see “-v option” on page 180.

The default is OFF.

This option has a short form and long form: you can use vo or VerboseOptions.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

See also
● “Verbose (v) extended option” on page 222
● “Verbose (v) extended option” on page 222
● “VerboseMin (vm) extended option” on page 224
● “VerboseRowCounts (vn) extended option” on page 226
● “VerboseRowValues (vr) extended option” on page 227
● “VerboseUpload (vu) extended option” on page 228

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "vo=on"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION vo='on';

VerboseOptions (vo) extended option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 225

VerboseRowCounts (vn) extended option
Specifies that the number of rows that are uploaded and downloaded should be logged.

Syntax
vn={ ON | OFF }; ...

Remarks
This option is identical to dbmlsync -vn. If you specify both -v and the extended options and there are
conflicts, the -v option overrides the extended option. If there is no conflict, the verbosity logging options
are additive—all options that you specify are used. When logging verbosity is set by extended option, the
logging does not take effect immediately, so startup information is not logged. By the time of the first
synchronization, the logging behavior is identical between the -v options and the extended options.

For more information, see “-v option” on page 180.

The default is OFF.

This option has a short form and long form: you can use vn or VerboseRowCounts.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

See also
● “Verbose (v) extended option” on page 222
● “Verbose (v) extended option” on page 222
● “VerboseMin (vm) extended option” on page 224
● “VerboseOptions (vo) extended option” on page 225
● “VerboseRowValues (vr) extended option” on page 227
● “VerboseUpload (vu) extended option” on page 228

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "vn=on"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION vn='on';

MobiLink SQL Anywhere client extended options

226 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

VerboseRowValues (vr) extended option
Specifies that the values of rows that are uploaded and downloaded should be logged.

Syntax
vr={ ON | OFF }; ...

Remarks
This option is identical to dbmlsync -vr. If you specify both -v and the extended options and there are
conflicts, the -v option overrides the extended option. If there is no conflict, the verbosity logging options
are additive—all options that you specify are used. When logging verbosity is set by extended option, the
logging does not take effect immediately, so startup information is not logged. By the time of the first
synchronization, the logging behavior is identical between the -v options and the extended options.

For more information, see “-v option” on page 180.

The default is OFF.

This option has a short form and long form: you can use vr or VerboseRowValues.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

See also
● “Verbose (v) extended option” on page 222
● “Verbose (v) extended option” on page 222
● “VerboseMin (vm) extended option” on page 224
● “VerboseOptions (vo) extended option” on page 225
● “VerboseRowCounts (vn) extended option” on page 226
● “VerboseUpload (vu) extended option” on page 228

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "vr=on"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION vr='on';

VerboseRowValues (vr) extended option

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 227

VerboseUpload (vu) extended option
Specifies that information about the upload steam should be logged.

Syntax
vu={ ON | OFF }; ...

Remarks
This option is identical to dbmlsync -vu. If you specify both -v and the extended options and there are
conflicts, the -v option overrides the extended option. If there is no conflict, the verbosity logging options
are additive—all options that you specify are used. When logging verbosity is set by extended option, the
logging does not take effect immediately, so startup information is not logged. By the time of the first
synchronization, the logging behavior is identical between the -v options and the extended options.

For more information, see “-v option” on page 180.

The default is OFF.

This option has a short form and long form: you can use vu or VerboseUpload.

You can also store extended options in the database. For more information about dbmlsync extended options,
see “Introduction to dbmlsync extended options” on page 185.

See also
● “Verbose (v) extended option” on page 222
● “Verbose (v) extended option” on page 222
● “VerboseMin (vm) extended option” on page 224
● “VerboseOptions (vo) extended option” on page 225
● “VerboseRowCounts (vn) extended option” on page 226
● “VerboseRowValues (vr) extended option” on page 227

Example
The following dbmlsync command line illustrates how you can set this option when you start dbmlsync:

dbmlsync -e "vu=on"

The following SQL statement illustrates how you can store this option in the database:

CREATE SYNCHRONIZATION SUBSCRIPTION
 TO sales_publication
 FOR ml_user1
 OPTION vu='on';

MobiLink SQL Anywhere client extended options

228 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MobiLink SQL statements

Contents
MobiLink statements .. 230

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 229

MobiLink statements
The following are the SQL statements used for configuring and running MobiLink SQL Anywhere clients:

● “ALTER PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL
Reference]

● “ALTER SYNCHRONIZATION PROFILE statement [MobiLink]” [SQL Anywhere Server - SQL
Reference]

● “ALTER SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” [SQL Anywhere Server -
SQL Reference]

● “ALTER SYNCHRONIZATION USER statement [MobiLink]” [SQL Anywhere Server - SQL
Reference]

● “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL
Reference]

● “CREATE SYNCHRONIZATION PROFILE statement [MobiLink]” [SQL Anywhere Server - SQL
Reference]

● “CREATE SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” [SQL Anywhere Server -
SQL Reference]

● “CREATE SYNCHRONIZATION USER statement [MobiLink]” [SQL Anywhere Server - SQL
Reference]

● “DROP PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL
Reference]

● “DROP SYNCHRONIZATION PROFILE statement [MobiLink]” [SQL Anywhere Server - SQL
Reference]

● “DROP SYNCHRONIZATION SUBSCRIPTION statement [MobiLink]” [SQL Anywhere Server - SQL
Reference]

● “DROP SYNCHRONIZATION USER statement [MobiLink]” [SQL Anywhere Server - SQL
Reference]

● “START SYNCHRONIZATION DELETE statement [MobiLink]” [SQL Anywhere Server - SQL
Reference]

● “STOP SYNCHRONIZATION DELETE statement [MobiLink]” [SQL Anywhere Server - SQL
Reference]

UltraLite clients
See “UltraLite SQL statements” [UltraLite - Database Management and Reference].

MobiLink SQL statements

230 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MobiLink synchronization profiles

Contents
MobiLink synchronization profiles .. 232

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 231

MobiLink synchronization profiles
Synchronization profiles allow you to place some dbmlsync options in the database. The synchronization
profile you create can contain a variety of synchronizations options.

Once you have created a synchronization profile and want to use it, use the dbmlsync -sp option and specify
the synchronization profile name. The options specified in the synchronization profile are merged with the
command line options you specified. If equivalent options are specified on the command line and in the
synchronization profile, then the options on the command line overrides those specified in the profile. See
“-sp option” on page 172.

Synchronization profiles can be created, altered and dropped using the following statements:

● “ALTER SYNCHRONIZATION PROFILE statement [MobiLink]” [SQL Anywhere Server - SQL
Reference]

● “CREATE SYNCHRONIZATION PROFILE statement [MobiLink]” [SQL Anywhere Server - SQL
Reference]

● “DROP SYNCHRONIZATION PROFILE statement [MobiLink]” [SQL Anywhere Server - SQL
Reference]

For information about using synchronization profiles in UltraLite, see “Synchronization profile options”
[UltraLite - Database Management and Reference].

The following options can be specified in a synchronization profile:

Long option
name

Short
name

Valid values Description

AuthParms ap String Supplies parameters to the authenticate_parameters script
and to authentication parameters. See “-ap op-
tion” on page 137.

ApplyDnldFile ba String Applies a download file. See “-ba option” on page 138.

ContinueDown-
load

dc Boolean Restarts a previously failed download. See “-dc op-
tion” on page 144.

CreateDnldFile bc String Creates a download file. See “-bc option” on page 139.

DnldFileExtra be String When creating a download file, this option specifies an
extra string to be included in the file. See “-be op-
tion” on page 140.

DownloadOnly ds Boolean Performs a download-only synchronization. See “-ds op-
tion” on page 148.

DownloadRead-
Size

drs Integer For restartable downloads, specifies the maximum
amount of data that may need to be resent after a commu-
nications failure. See “-drs option” on page 147.

MobiLink synchronization profiles

232 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Long option
name

Short
name

Valid values Description

ExtOpt e String Specifies extended options. See “-e option” on page 149.

IgnoreHookEr-
rors

eh Boolean Ignores errors that occur in hook functions. See “-eh op-
tion” on page 150.

IgnoreSchedul-
ing

is Boolean Ignores scheduling instructions so that synchronization is
immediate. See “-is option” on page 154.

KillConnections d Boolean Drops conflicting locks to the remote database. See “-d
option” on page 143.

LogRenameSize x An integer op-
tionally fol-
lowed by K or
M.

Renames and restarts the transaction log after it has been
scanned for upload data. See “-x option” on page 182.

MobiLinkPwd mp String Supplies the password of the MobiLink user. See “-mp
option” on page 158.

MLUser u String Specifies the MobiLink user name. See “-u op-
tion” on page 175.

NewMLPass-
word

mn String Supplies a new password for the MobiLink user. Use this
option when you want to change an existing password. See
“-mn option” on page 157.

Ping pi Boolean Pings a MobiLink server to confirm communications be-
tween the client and MobiLink. See “-pi op-
tion” on page 166.

Publication n String Specifies the publications(s) to synchronize. Note that
publication can only be specified once in a synchroniza-
tion profile but the command line option can be specified
multiple times. See “-n option” on page 159.

RemoteProgress-
Greater

ra Boolean Specifies that the remote offset should be used if it is
greater than the consolidated offset. This is equivalent to
the -ra option. See “-r option” on page 170.

RemoteProgress-
Less

rb Boolean Specifies that the remote offset should be used if it is less
than the consolidated offset (such as when the remote da-
tabase has been restored from backup). This is equivalent
to the -rb option. See “-r option” on page 170.

MobiLink synchronization profiles

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 233

Long option
name

Short
name

Valid values Description

Transactiona-
lUpload

tu Boolean Specifies that each transaction on the remote database
should be uploaded as a separate transaction within one
synchronization. See “-tu option” on page 173.

UpdateGenNum bg Boolean When creating a download file, this option creates a file
that can be used with remote databases that have not yet
synchronized. See “-bg option” on page 141.

UploadOnly uo Boolean Specifies that synchronization only includes an upload,
and that no downloads occur. See “-uo op-
tion” on page 177.

UploadRowCnt urc Integer Specifies an estimate of the number of rows to be uploaded
in a synchronization. See “-urc option” on page 178.

Verbosity String (a com-
ma separated
list of options)

Controls dbmlsync verbosity. Similar to the “-v op-
tion” on page 180. The value must be a comma separated
list of one or more of the following options, each of which
corresponds to an existing -v option as described below:

● BASIC - equivalent to -v
● HIGH - equivalent to -v+
● CONNECT_STR - equivalent to -vc
● ROW_CNT - equivalent to -vn
● OPTIONS - equivalent to -vo
● ML_PASSWORD - equivalent to -vp
● ROW_DATA - equivalent to -vr
● HOOK - equivalent to -vs

MobiLink synchronization profiles

234 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Event hooks for SQL Anywhere clients

Contents
Introduction to dbmlsync hooks ... 237
sp_hook_dbmlsync_abort .. 243
sp_hook_dbmlsync_all_error ... 245
sp_hook_dbmlsync_begin ... 248
sp_hook_dbmlsync_communication_error .. 250
sp_hook_dbmlsync_delay ... 253
sp_hook_dbmlsync_download_begin .. 255
sp_hook_dbmlsync_download_com_error (deprecated) ... 257
sp_hook_dbmlsync_download_end .. 259
sp_hook_dbmlsync_download_fatal_sql_error (deprecated) 261
sp_hook_dbmlsync_download_log_ri_violation .. 263
sp_hook_dbmlsync_download_ri_violation ... 265
sp_hook_dbmlsync_download_sql_error (deprecated) ... 267
sp_hook_dbmlsync_download_table_begin .. 269
sp_hook_dbmlsync_download_table_end ... 271
sp_hook_dbmlsync_end .. 273
sp_hook_dbmlsync_log_rescan .. 276
sp_hook_dbmlsync_logscan_begin ... 278
sp_hook_dbmlsync_logscan_end ... 280
sp_hook_dbmlsync_misc_error ... 282
sp_hook_dbmlsync_ml_connect_failed ... 285
sp_hook_dbmlsync_process_exit_code .. 288
sp_hook_dbmlsync_schema_upgrade .. 290
sp_hook_dbmlsync_set_extended_options ... 292
sp_hook_dbmlsync_set_ml_connect_info ... 293
sp_hook_dbmlsync_set_upload_end_progress .. 295
sp_hook_dbmlsync_sql_error .. 297
sp_hook_dbmlsync_upload_begin .. 299
sp_hook_dbmlsync_upload_end ... 301
sp_hook_dbmlsync_validate_download_file ... 304

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 235

Event hooks for SQL Anywhere clients

236 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Introduction to dbmlsync hooks
The SQL Anywhere synchronization client, dbmlsync, provides an optional set of event hooks that you can
use to customize the synchronization process. When a hook is implemented, it is called at a specific point
in the synchronization process.

You implement an event hook by creating a SQL stored procedure with a specific name. Most event-hook
stored procedures are executed on the same connection as the synchronization itself.

You can use event hooks to log and handle synchronization events. For example, you can schedule
synchronizations based on logical events, retry connection failures, or handle errors and referential integrity
violations.

In addition, you can use event hooks to synchronize subsets of data that cannot be easily defined in a
publication. For example, you can synchronize data in a temporary table by writing one event hook procedure
to copy data from the temporary table to a permanent table prior to the synchronization and another to copy
the data back afterwards.

Caution
The integrity of the synchronization process relies on a sequence of built-in transactions. You must not
perform an implicit or explicit commit or rollback within your event-hook procedures.

Also, changing connection settings in a hook may produce unexpected results. If you need to change
connection settings in a hook, the hook should restore the old value before the hook completes.

dbmlsync interfaces
You can use client event hooks with the dbmlsync command line utility or any programming interface used
to synchronize SQL Anywhere clients, including the dbmlsync API and the DBTools interface for dbmlsync.

See “Customizing dbmlsync synchronization” on page 123.

Synchronization event hook sequence
The following pseudo-code shows the available events and the point at which each is called during the
synchronization process. For example, sp_hook_dbmlsync_abort is the first event hook to be invoked.

Each hook is provided with parameter values that you can use when you implement the procedure. In some
cases, you can modify the value to return a new value; others are read-only. These parameters are not stored
procedure arguments. No arguments are passed to any of the event-hook stored procedures. Instead,
arguments are exchanged by reading and modifying rows in the #hook_dict table.

For example, the sp_hook_dbmlsync_begin procedure has a MobiLink user parameter, which is the
MobiLink user being synchronized. You can retrieve this value from the #hook_dict table.

Although the sequence has similarities to the event sequence at the MobiLink server, there is little overlap
in the kind of logic you would want to add to the consolidated and remote databases. The two interfaces are
therefore separate and distinct.

Introduction to dbmlsync hooks

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 237

If a *_begin hook executes successfully, the corresponding *_end hook is called regardless of any error that
occurred after the *_begin hook. If the *_begin hook is not defined, but you have defined an *_end hook,
then the *_end hook is called unless an error occurs prior to the point in time where the *_begin hook would
normally be called.

If the hooks change data in your database, all changes up to and including sp_hook_dbmlsync_logscan_begin
are synchronized in the current synchronization session; after that point, changes are synchronized in the
next session.

sp_hook_dbmlsync_abort
sp_hook_dbmlsync_set_extended_options
loop until return codes direct otherwise (
 sp_hook_dbmlsync_abort
 sp_hook_dbmlsync_delay
)
sp_hook_dbmlsync_abort
// start synchronization
sp_hook_dbmlsync_begin
// upload events
for each upload segment
// a normal synchronization has one upload segment
// a transactional upload has one segment per transaction
// an incremental upload has one segment per upload piece
 sp_hook_dbmlsync_logscan_begin //not called for scripted upload
 sp_hook_dbmlsync_logscan_end //not called for scripted upload
 sp_hook_dbmlsync_set_ml_connect_info //only called during first upload
 sp_hook_dbmlsync_upload_begin
 sp_hook_dbmlsync_set_upload_end_ progress //only called for scripted upload
 sp_hook_dbmlsync_upload_end
next upload segment
// download events
sp_hook_dbmlsync_validate_download_file (only called
 when -ba option is used)
for each download segment
sp_hook_dbmlsync_download_begin
for each table
 sp_hook_dbmlsync_download_table_begin
 sp_hook_dbmlsync_download_table_end
next table
sp_hook_dbmlsync_download_end
sp_hook_dbmlsync_schema_upgrade
// end synchronization
sp_hook_dbmlsync_end
sp_hook_dbmlsync_process_exit_code
sp_hook_dbmlsync_log_rescan

For more information about upload options, see “-tu option” on page 173 and “Increment (inc) extended
option” on page 202.

Using event-hook procedures
This section describes some considerations for designing and using event-hook procedures.

Event hooks for SQL Anywhere clients

238 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Notes
● Do not perform any COMMIT or ROLLBACK operations in event-hook procedures. The procedures

are executed on the same connection as the synchronization, and a COMMIT or ROLLBACK may
interfere with synchronization.

● Don't change connection settings. Changing connection settings in a hook may produce unexpected
results. If you need to change connection settings in a hook, the hook should restore the old value before
the hook completes.

● The event-hook connection calls the stored procedures without qualifying them by owner. The stored
procedures must therefore be owned by either the user name employed on the dbmlsync connection
(typically a user with REMOTE DBA authority), or a group ID of which the dbmlsync user is a member.

● A remote database can only have one instance of each hook. Do not create multiple instances of a hook
that have different owners.

● Hook procedures must be created by a user with DBA authority.

● If a *_begin hook executes successfully, the corresponding *_end hook is called regardless of any error
that occurred after the *_begin hook. If the *_begin hook is not defined, but you have defined an *_end
hook, then the *_end hook is called unless an error occurs prior to the point in time where the *_begin
hook would normally be called.

#hook_dict table
Immediately before a hook is called, dbmlsync creates the #hook_dict table in the remote database, using
the following CREATE statement. The # before the table name means that the table is temporary.

CREATE TABLE #hook_dict(
name VARCHAR(128) NOT NULL UNIQUE,
value VARCHAR(10240) NOT NULL)

The dbmlsync utility uses the #hook_dict table to pass values to hook functions, and hook functions use the
#hook_dict table to pass values back to dbmlsync.

Each hook receives parameter values. In some cases, you can modify the value to return a new value; others
are read-only. Each row in the table contains the value for one parameter.

For example, for the following dbmlsync command line, when the sp_hook_dbmlsync_abort hook is called,
the #hook_dict table contains the following rows:

dbmlsync -c 'dsn=MyDsn' -n pub1,pub2 -u MyUser

#hook_dict row Value

publication_0 pub1

publication_1 pub2

MobiLink user MyUser

Introduction to dbmlsync hooks

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 239

#hook_dict row Value

Abort synchronization false

Your abort hook can retrieve values from the #hook_dict table and use them to customize behavior. For
example, to retrieve the MobiLink user you would use a SELECT statement like this:

SELECT value
FROM #hook_dict
WHERE name = 'MobiLink user'

In/out parameters can be updated by your hook to modify the behavior of dbmlsync. For example, your hook
could instruct dbmlsync to abort synchronization by updating the abort synchronization row of the table
using a statement like this:

UPDATE #hook_dict
SET value='true'
WHERE name='abort synchronization'

The description of each hook lists the rows in the #hook_dict table.

Examples
The following sample sp_hook_dbmlsync_delay procedure illustrates the use of the #hook_dict table to pass
arguments. The procedure allows synchronization only outside a scheduled down time of the MobiLink
system between 18:00 and 19:00.

CREATE PROCEDURE sp_hook_dbmlsync_delay()
BEGIN
 DECLARE delay_val integer;
 SET delay_val=DATEDIFF(
 second, CURRENT TIME, '19:00');
 IF (delay_val>0 AND
 delay_val<3600)
 THEN
 UPDATE #hook_dict SET value=delay_val
 WHERE name='delay duration';
 END IF;
END

The following procedure is executed in the remote database at the beginning of synchronization. It retrieves
the current MobiLink user name (one of the parameters available for the sp_hook_dbmlsync_begin event),
and displays it on the SQL Anywhere messages window.

CREATE PROCEDURE sp_hook_dbmlsync_begin()
BEGIN
 DECLARE syncdef VARCHAR(150);
 SELECT '>>>syncdef = ' || value INTO syncdef
 FROM #hook_dict
 WHERE name ='MobiLink user name';
 MESSAGE syncdef TYPE INFO TO CONSOLE;
END

Event hooks for SQL Anywhere clients

240 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Connections for event-hook procedures
Each event-hook procedure is executed on the same connection as the synchronization itself. The following
are exceptions:

● sp_hook_dbmlsync_all_error

● sp_hook_dbmlsync_communication_error

● sp_hook_dbmlsync_download_com_error

● sp_hook_dbmlsync_download_fatal_sql_error

● sp_hook_dbmlsync_download_log_ri_violation

● sp_hook_dbmlsync_misc_error

● sp_hook_dbmlsync_sql_error

These procedures are called before a synchronization fails. On failure, synchronization actions are rolled
back. By executing on a separate connection, you can use these procedures to log information about the
failure, without the logging actions being rolled back along with the synchronization actions.

Handling errors and warnings in event hook procedures
You can create event hook stored procedures to handle synchronization errors, MobiLink connection failures,
and referential integrity violations. This section describes event hook procedures that are used to handle
errors and warnings. Once implemented, each procedure is automatically executed whenever an error of the
named type occurs.

Handling RI violations
Referential integrity violations occur when rows in the download violate foreign key relationships on the
remote database. Use the following event hooks to log and handle referential integrity violations:

● “sp_hook_dbmlsync_download_log_ri_violation” on page 263
● “sp_hook_dbmlsync_download_ri_violation” on page 265

Handling MobiLink connection failures
The sp_hook_dbmlsync_ml_connect_failed event hook allows you to retry failed attempts to connect to the
MobiLink server using a different communication type or address. If connection ultimately fails, dbmlsync
calls the sp_hook_dbmlsync_communication_error and sp_hook_dbmlsync_all_error hooks.

See “sp_hook_dbmlsync_ml_connect_failed” on page 285.

Handling dbmlsync errors
Each time a dbmlsync error message is generated, the following hooks are called:

● First, depending on the type of error, one of the following hooks is called:
sp_hook_dbmlsync_communication_error, sp_hook_dbmlsync_misc_error, or

Introduction to dbmlsync hooks

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 241

sp_hook_dbmlsync_sql_error. These hooks contain information specific to the type of error; for example,
sqlcode and sqlstate are provided for SQL errors.

● Next, sp_hook_dbmlsync_all_error is called. This hook is useful for logging all errors that occur.

See:

● “sp_hook_dbmlsync_communication_error” on page 250
● “sp_hook_dbmlsync_sql_error” on page 297
● “sp_hook_dbmlsync_misc_error” on page 282
● “sp_hook_dbmlsync_all_error” on page 245

If you want to restart a synchronization in response to an error, you can use the user state parameter in
sp_hook_dbmlsync_end.

See “sp_hook_dbmlsync_end” on page 273.

Ignoring errors
By default, synchronization stops when an error is encountered in an event hook procedure. You can instruct
the dbmlsync utility to ignore errors that occur in event hook procedures by supplying the -eh option.

See “IgnoreHookErrors (eh) extended option” on page 200.

Event hooks for SQL Anywhere clients

242 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

sp_hook_dbmlsync_abort
Use this stored procedure to cancel the synchronization process.

Rows in #hook_dict table

Name Value Description

abort synchronization (in|out) true | false If you set the abort synchronization row of the
#hook_dict table to true, then dbmlsync termi-
nates immediately after the event.

publication_n (in) publication The publications being synchronized, where n
is an integer. There is one publication_n entry
for each publication being uploaded. The num-
bering of n starts at zero.

MobiLink user (in) MobiLink user
name

The MobiLink user for which you are synchro-
nizing.

exit code (in|out) number When abort synchronization is set to TRUE,
you can use this value to set the exit code for
the aborted synchronization. 0 indicates a suc-
cessful synchronization. Any other number in-
dicates that the synchronization failed.

script version (in|out) script version name The MobiLink script version to be used for the
synchronization.

Remarks
If a procedure of this name exists, it is called at dbmlsync startup, and then again after each synchronization
delay that is caused by the sp_hook_dbmlsync_delay hook.

If the hook requests an abort by setting the abort synchronization value to true, the exit code is passed to the
sp_hook_dbmlsync_process_exit_code hook. If no sp_hook_dbmlsync_process_exit_code hook is defined,
the exit code is used as the exit code for the program.

Actions of this procedure are committed immediately after execution.

See also
● “Synchronization event hook sequence” on page 237
● “sp_hook_dbmlsync_process_exit_code” on page 288

Examples
The following procedure prevents synchronization during a scheduled maintenance hour between 19:00 and
20:00 each day.

CREATE PROCEDURE sp_hook_dbmlsync_abort()
BEGIN

sp_hook_dbmlsync_abort

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 243

 DECLARE down_time_start TIME;
 DECLARE is_down_time VARCHAR(128);
 SET down_time_start='19:00';
 IF datediff(hour,down_time_start,now(*)) < 1
 THEN
 set is_down_time='true';
 ELSE
 SET is_down_time='false';
 END IF;
 UPDATE #hook_dict
 SET value = is_down_time
 WHERE name = 'abort synchronization'
END;

Suppose you have an abort hook that may abort synchronization for one of two reasons. One of the reasons
indicates normal completion of synchronization, so you want dbmlsync to have an exit code of 0. The other
reason indicates an error condition, so you want dbmlsync to have a non-zero exit code. You could achieve
this with an sp_hook_dbmlsync_abort hook defined as follows.

BEGIN
 IF [condition that defines the normal abort case] THEN
 UPDATE #hook_dict SET value = '0'
 WHERE name = 'exit code';
 UPDATE #hook_dict SET value = 'TRUE'
 WHERE name = 'abort synchronization';
 ELSEIF [condition that defines the error abort case] THEN
 UPDATE #hook_dict SET value = '1'
 WHERE name = 'exit code';
 UPDATE #hook_dict SET value = 'TRUE'
 WHERE name = 'abort synchronization';
 END IF;
END;

Event hooks for SQL Anywhere clients

244 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

sp_hook_dbmlsync_all_error
Use this stored procedure to process dbmlsync error messages of all types. For example, you can implement
the sp_hook_dbmlsync_all_error hook to log errors or perform a specific action when a specific error occurs.

Rows in #hook_dict table

Name Value Description

publication_n (in) publication The publications being synchronized, where n
is an integer. There is one publication_n entry
for each publication being uploaded. The num-
bering of n starts at zero.

MobiLink user (in) MobiLink user name The MobiLink user for which you are synchro-
nizing.

script version (in) script version name The MobiLink script version that is used for the
synchronization.

error message (in) error message text This is the same text that is displayed in the
dbmlsync log.

error id (in) integer An ID that uniquely identifies the message. Use
this row to identify the error message, as the
error message text may change.

error hook user state (in|out) integer This value can be set by the hook to pass state
information to future calls to the
sp_hook_dbmlsync_all_error,
sp_hook_dbmlsync_communication_error,
sp_hook_dbmlsync_misc_error,
sp_hook_dbmlsync_sql_error, or
sp_hook_dbmlsync_end hooks. The first time
one of these hooks is called, the value of the
row is 0. If the hook changes the value of the
row, the new value is used in the next hook call.

When you use this hook to pass state informa-
tion to the sp_hook_dbmlsync_end hook, you
can cause the sp_hook_dbmlsync_end hook to
perform actions such as retrying the synchro-
nization.

Remarks
Each time a dbmlsync error message is generated, the following hooks are called:

sp_hook_dbmlsync_all_error

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 245

● First, depending on the type of error, one of the following hooks is called:
sp_hook_dbmlsync_communication_error, sp_hook_dbmlsync_misc_error, or
sp_hook_dbmlsync_sql_error. These hooks contain information specific to the type of error; for example,
sqlcode and sqlstate are provided for SQL errors.

● Next, the sp_hook_dbmlsync_all_error is called. This hook is useful for logging all errors that occurred.

If an error occurs during startup before a synchronization has been initiated, the #hook_dict entries for
MobiLink user and Script version are set to an empty string, and no publication_n rows are set in the
#hook_dict table.

This procedure executes on a separate connection to ensure that operations it performs are not lost if a rollback
is performed on the synchronization connection. If dbmlsync cannot establish a separate connection, the
procedure is not called.

By default on Windows Mobile devices, synchronization tables are locked in exclusive mode, which means
that this hook cannot successfully execute if it requires access to any of the synchronization tables. It also
cannot execute if it needs to access synchronization tables and you set the dbmlsync extended option
LockTables to EXCLUSIVE. See “LockTables (lt) extended option” on page 203.

Actions of this procedure are committed immediately after the hook completes.

See also
● “Handling errors and warnings in event hook procedures” on page 241
● “sp_hook_dbmlsync_communication_error” on page 250
● “sp_hook_dbmlsync_misc_error” on page 282
● “sp_hook_dbmlsync_sql_error” on page 297

Example
Assume you use the following table to log errors in the remote database.

CREATE TABLE error_log
(
 pk INTEGER DEFAULT AUTOINCREMENT PRIMARY KEY,
 err_id INTEGER,
 err_msg VARCHAR(10240),
);

The following example sets up sp_hook_dbmlsync_all_error to log errors.

CREATE PROCEDURE sp_hook_dbmlsync_all_error()
BEGIN
 DECLARE msg VARCHAR(10240);
 DECLARE id INTEGER;
 // get the error message text
 SELECT value INTO msg
 FROM #hook_dict
 WHERE name ='error message';
 // get the error id
 SELECT value INTO id
 FROM #hook_dict
 WHERE name = 'error id';
 // log the error information

Event hooks for SQL Anywhere clients

246 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 INSERT INTO error_log(err_msg, err_id)
 VALUES (msg, id);
END;

To see possible error id values, test run dbmlsync. For example, if dbmlsync returns the error "Unable to
connect to MobiLink server", sp_hook_dbmlsync_all_error inserts the following row in error_log.

1,14173,
 'Unable to connect to MobiLink server'

Now, you can associate the error "Unable to connect to MobiLink server" with the error id 14173.

The following example sets up hooks to retry the synchronization whenever error 14173 occurs.

CREATE PROCEDURE sp_hook_dbmlsync_all_error()
BEGIN
 IF EXISTS(SELECT value FROM #hook_dict
 WHERE name = 'error id' AND value = '14173')
 THEN
 UPDATE #hook_dict SET value = '1'
 WHERE name = 'error hook user state';
 END IF;
END;
CREATE PROCEDURE sp_hook_dbmlsync_end()
BEGIN
 IF EXISTS(SELECT value FROM #hook_dict
 WHERE name='error hook user state' AND value='1')
 THEN
 UPDATE #hook_dict SET value = 'sync'
 WHERE name='restart';
 END IF;
END;

See “sp_hook_dbmlsync_end” on page 273.

sp_hook_dbmlsync_all_error

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 247

sp_hook_dbmlsync_begin
Use this stored procedure to add custom actions at the beginning of the synchronization process.

Rows in #hook_dict table

Name Value Description

publication_n (in) publication The publications being synchronized, where n
is an integer. There is one publication_n entry
for each publication being uploaded. The num-
bering of n starts at zero.

MobiLink user (in) MobiLink user name The MobiLink user for which you are synchro-
nizing.

script version (in) script version name The MobiLink script version to be used for the
synchronization.

Remarks
If a procedure of this name exists, it is called at the beginning of the synchronization process.

Actions of this procedure are committed immediately after execution.

See also
● “Synchronization event hook sequence” on page 237

Examples
Assume you use the following table to log synchronization events on the remote database.

CREATE TABLE SyncLog
(
 "event_id" integer NOT NULL DEFAULT autoincrement ,
 "event_name" varchar(128) NOT NULL ,
 "ml_user" varchar(128) NULL ,
 "event_time" timestamp NULL,
 "table_name" varchar(128) NULL ,
 "upsert_count" varchar(128) NULL ,
 "delete_count" varchar(128) NULL ,
 "exit_code" integer NULL ,
 "status_retval" varchar(128) NULL ,
 "pubs" varchar(128) NULL ,
 "sync_descr " varchar(128) NULL ,
 PRIMARY KEY ("event_id"),
)

The following example compiles a list of publications. It logs the list of publications and other
synchronization information at the beginning of the synchronization process.

CREATE PROCEDURE sp_hook_dbmlsync_begin ()
BEGIN

 DECLARE pubs_list VARCHAR(1024);

Event hooks for SQL Anywhere clients

248 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 DECLARE temp_str VARCHAR(128);
 DECLARE qry VARCHAR(128);
-- insert publication list into pubs_list
 SELECT LIST(value) INTO pubs_list
 FROM #hook_dict
 WHERE name LIKE 'publication_%';
-- log publication and synchronization information
 INSERT INTO SyncLog(event_name,ml_user,pubs,event_time)
 SELECT 'dbmlsync_begin',#hook_dict.value,pubs_list,CURRENT TIMESTAMP
 FROM #hook_dict
 WHERE name='MobiLink user';
END

sp_hook_dbmlsync_begin

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 249

sp_hook_dbmlsync_communication_error
Use this stored procedure to process communications errors.

Rows in #hook_dict table

Name Value Description

publication_n (in) publication The publications being synchronized, where n
is an integer. There is one publication_n entry
for each publication being uploaded. The num-
bering of n starts at zero.

MobiLink user (in) MobiLink user name The MobiLink user for which you are synchro-
nizing.

script version (in) script version name The MobiLink script version that is used for the
synchronization.

error message (in) error message text This is the same text that is displayed in the
dbmlsync log.

error id (in) numeric An ID that uniquely identifies the message. Use
this row to identify the error message, as the
error message text may change.

error hook user state (in|out) integer This value can be set by the hook to pass state
information to future calls to the
sp_hook_dbmlsync_all_error,
sp_hook_dbmlsync_communication_error,
sp_hook_dbmlsync_misc_error,
sp_hook_dbmlsync_sql_error, or
sp_hook_dbmlsync_end hooks. The first time
one of these hooks is called, the value of the
row is 0. If the hook changes the value of the
row, the new value is used in the next hook call.

When you use this hook to pass state informa-
tion to the sp_hook_dbmlsync_end hook, you
can cause the _end hook to perform actions
such as retrying the synchronization.

stream error code (in) integer The error reported by the stream.

system error code (in) integer A system-specific error code.

Event hooks for SQL Anywhere clients

250 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
If an error occurs during startup before a synchronization has been initiated, the #hook_dict entries for
MobiLink user and Script version are set to an empty string, and no publication_n rows are set in the
#hook_dict table.

When communication errors occur between dbmlsync and the MobiLink server, this hook allows you to
access stream-specific error information.

The stream error code parameter is an integer indicating the type of communication error.

For a listing of possible error code values, see “MobiLink communication error messages” [Error
Messages].

This procedure executes on a separate connection to ensure that operations it performs are not lost if a rollback
is performed on the synchronization connection. If dbmlsync cannot establish a separate connection, the
procedure is not called.

By default on Windows Mobile devices, synchronization tables are locked in exclusive mode, which means
that this hook cannot successfully execute if it requires access to any of the synchronization tables. It also
cannot execute if it needs to access synchronization tables and you set the dbmlsync extended option
LockTables to EXCLUSIVE. See “LockTables (lt) extended option” on page 203.

Actions of this procedure are committed immediately after execution.

See also
● “Handling errors and warnings in event hook procedures” on page 241
● “sp_hook_dbmlsync_all_error” on page 245
● “sp_hook_dbmlsync_misc_error” on page 282
● “sp_hook_dbmlsync_sql_error” on page 297

Example
Assume you use the following table to log communication errors in the remote database.

CREATE TABLE communication_error_log
(
 error_msg VARCHAR(10240),
 error_code VARCHAR(128)
);

The following example sets up sp_hook_dbmlsync_communication_error to log communication errors.

CREATE PROCEDURE sp_hook_dbmlsync_communication_error()
BEGIN
 DECLARE msg VARCHAR(255);
 DECLARE code INTEGER;
 // get the error message text
 SELECT value INTO msg
 FROM #hook_dict
 WHERE name ='error message';
 // get the error code
 SELECT value INTO code
 FROM #hook_dict
 WHERE name = 'stream error code';

sp_hook_dbmlsync_communication_error

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 251

 // log the error information
 INSERT INTO communication_error_log(error_code,error_msg)
 VALUES (code,msg);
END

Event hooks for SQL Anywhere clients

252 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

sp_hook_dbmlsync_delay
Use this stored procedure to control when synchronization takes place.

Rows in #hook_dict table

Name Value Description

delay duration (in|out) number of seconds If the procedure sets the delay duration value
to zero, then dbmlsync synchronization pro-
ceeds. A non-zero delay duration value speci-
fies the number of seconds before the delay
hook is called again.

maximum accumulated delay
(in|out)

number of seconds The maximum accumulated delay specifies the
maximum number of seconds delay before
each synchronization. Dbmlsync keeps track of
the total delay created by all calls to the delay
hook since the last synchronization. If no syn-
chronization has occurred since dbmlsync star-
ted running, the total delay is calculated from
the time dbmlsync started up. When the total
delay exceeds the value of maximum accumu-
lated delay, synchronization begins without
any further calls to the delay hook.

publication_n (in) publication The publications being synchronized, where n
is an integer. There is one publication_n entry
for each publication being uploaded. The num-
bering of n starts at zero.

MobiLink user (in) MobiLink user
name

The MobiLink user for which you are synchro-
nizing.

script version (in) script version name The MobiLink script version to be used for the
synchronization.

Remarks
If a procedure of this name exists, it is called before sp_hook_dbmlsync_begin at the beginning of the
synchronization process.

Actions of this procedure are committed immediately after execution.

See also
● “Synchronization event hook sequence” on page 237
● “Initiating synchronization with event hooks” on page 122
● “sp_hook_dbmlsync_download_end” on page 259

sp_hook_dbmlsync_delay

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 253

Example
Assume you have the following table to log orders on the remote database.

CREATE TABLE OrdersTable(
 "id" INTEGER PRIMARY KEY DEFAULT AUTOINCREMENT,
 "priority" VARCHAR(128)
);

The following example delays synchronization for a maximum accumulated delay of one hour. Every ten
seconds the hook is called again and checks for a high priority row in the OrdersTable. If a high priority row
exists, the delay duration is set to zero to start the synchronization process.

CREATE PROCEDURE sp_hook_dbmlsync_delay()
BEGIN
 -- Set the maximum delay between synchronizations
 -- or before the first synchronization starts to 1 hour
 UPDATE #hook_dict SET value = '3600' // 3600 seconds
 WHERE name = 'maximum accumulated delay';
 -- check if a high priority order exists in OrdersTable
 IF EXISTS (SELECT * FROM OrdersTable where priority='high') THEN
 -- start the synchronization to process the high priority row
 UPDATE #hook_dict
 SET value = '0'
 WHERE name='delay duration';
 ELSE
 -- set the delay duration to call this procedure again
 -- following a 10 second delay
 UPDATE #hook_dict
 SET value = '10'
 WHERE name='delay duration';
 END IF;
END;

In the sp_hook_dbmlsync_end hook you can mark the high priority row as processed:

CREATE PROCEDURE sp_hook_dbmlsync_upload_end()
 BEGIN
 IF EXISTS(SELECT value FROM #hook_dict
 WHERE name = 'Upload status'
 AND value = 'committed') THEN
 UPDATE OrderTable SET priority = 'high-processed'
 WHERE priority = 'high';
 END IF;
 END;

See “sp_hook_dbmlsync_end” on page 273.

Event hooks for SQL Anywhere clients

254 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

sp_hook_dbmlsync_download_begin
Use this stored procedure to add custom actions at the beginning of the download stage of the synchronization
process.

Rows in #hook_dict table

Name Value Description

publication_n (in) publication The publications being synchronized, where n is an
integer. There is one publication_n entry for each
publication being uploaded. The numbering of n
starts at zero.

MobiLink user (in) MobiLink user name The MobiLink user for which you are synchronizing.

script version (in) script version name The MobiLink script version to be used for the syn-
chronization.

Remarks
If a procedure of this name exists, it is called at the beginning of the download stage of the synchronization
process.

Actions of this procedure are committed or rolled back when the download is committed or rolled back.

See also
● “Synchronization event hook sequence” on page 237

Example
Assume you use the following table to log synchronization events on the remote database.

CREATE TABLE SyncLog
(
 "event_id" INTEGER NOT NULL DEFAULT AUTOINCREMENT ,
 "event_name" VARCHAR(128) NOT NULL ,
 "ml_user" VARCHAR(128) NULL ,
 "event_time" TIMESTAMP NULL,
 "table_name" VARCHAR(128) NULL ,
 "upsert_count" VARCHAR(128) NULL ,
 "delete_count" VARCHAR(128) NULL ,
 "exit_code" INTEGER NULL ,
 "status_retval" VARCHAR(128) NULL ,
 "pubs" VARCHAR(128) NULL ,
 "sync_descr " VARCHAR(128) NULL ,
 PRIMARY KEY ("event_id"),
);

The following example compiles a list of publications. It logs the list of publications and other
synchronization information at the beginning of the download stage of the synchronization.

CREATE PROCEDURE sp_hook_dbmlsync_download_begin ()
BEGIN

sp_hook_dbmlsync_download_begin

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 255

 DECLARE pubs_list VARCHAR(1024);
 DECLARE temp_str VARCHAR(128);
 DECLARE qry VARCHAR(128);
-- insert publication list into pubs_list
 SELECT LIST(value) INTO pubs_list
 FROM #hook_dict
 WHERE name LIKE 'publication_%';
-- log publication and synchronization information
 INSERT INTO SyncLog(event_name,ml_user,pubs,event_time)
 SELECT 'dbmlsync_download_begin',#hook_dict.value,
 pubs_list,CURRENT TIMESTAMP
 FROM #hook_dict
 WHERE name='MobiLink user';
END;

Event hooks for SQL Anywhere clients

256 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

sp_hook_dbmlsync_download_com_error
(deprecated)

Use this stored procedure to add custom actions when communications errors occur while reading the
download sent by the MobiLink server.

This hook is deprecated. See “Handling errors and warnings in event hook procedures” on page 241.

Rows in #hook_dict table

Name Value Description

table name (in) table name The table to which operations were being ap-
plied when the error occurred. The value is an
empty string if dbmlsync is unable to identify
the table.

publication_n (in) publication The publications being synchronized, where n
is an integer. There is one publication_n entry
for each publication being uploaded. The num-
bering of n starts at zero.

MobiLink user (in) MobiLink user
name

The MobiLink user for which you are synchro-
nizing.

script version (in) script version name The MobiLink script version to be used for the
synchronization.

Remarks
If a procedure of this name exists, it is invoked when a communication error is detected during the download
phase of synchronization. The download is then terminated.

This procedure executes on a separate connection, so that failures can be logged. Otherwise, the action of
logging would be rolled back along with the synchronization actions. If dbmlsync cannot establish a separate
connection, the procedure is not called.

By default on Windows Mobile devices, synchronization tables are locked in exclusive mode, which means
that this hook cannot successfully execute if it requires access to any of the synchronization tables. It also
cannot execute if it needs to access synchronization tables and you set the dbmlsync extended option
LockTables to EXCLUSIVE. See “LockTables (lt) extended option” on page 203.

Actions of this procedure are committed immediately after execution.

See also
● “Synchronization event hook sequence” on page 237

Examples
Assume you use the following table to log communication errors.

sp_hook_dbmlsync_download_com_error (deprecated)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 257

CREATE TABLE SyncLogComErrorTable
(
 " user_name " VARCHAR(255) NOT NULL ,
 " event_time " TIMESTAMP NOT NULL ,
);

The following example logs the MobiLink user and current time stamp when communications errors occur
while reading the download sent by the MobiLink server. The information is stored on the
SyncLogComErrorTable table on the remote database.

CREATE PROCEDURE sp_hook_dbmlsync_download_com_error ()
BEGIN
 INSERT INTO SyncLogComErrorTable (user_name, event_time)
 SELECT #hook_dict.value, CURRENT TIMESTAMP
 FROM #hook_dict
 WHERE name = 'MobiLink user';
END;

Event hooks for SQL Anywhere clients

258 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

sp_hook_dbmlsync_download_end
Use this stored procedure to add custom actions at the end of the download stage of the synchronization
process.

Rows in #hook_dict table

Name Value Description

publication_n (in) publication The publications being synchronized, where n
is an integer. There is one publication_n entry
for each publication being uploaded. The num-
bering of n starts at zero.

MobiLink user (in) MobiLink user
name

The MobiLink user for which you are synchro-
nizing.

script version (in) script version name The MobiLink script version to be used for the
synchronization.

Remarks
If a procedure of this name exists, it is called at the end of the download stage of the synchronization process.

Actions of this procedure are committed or rolled back when the download is committed or rolled back.

See also
● “Synchronization event hook sequence” on page 237
● “Initiating synchronization with event hooks” on page 122
● “sp_hook_dbmlsync_delay” on page 253

Examples
Assume you use the following table to log synchronization events on the remote database.

CREATE TABLE SyncLog
(
 "event_id" INTEGER NOT NULL DEFAULT AUTOINCREMENT ,
 "event_name" VARCHAR(128) NOT NULL ,
 "ml_user" VARCHAR(128) NULL ,
 "event_time" TIMESTAMP NULL,
 "table_name" VARCHAR(128) NULL ,
 "upsert_count" VARCHAR(128) NULL ,
 "delete_count" VARCHAR(128) NULL ,
 "exit_code" INTEGER NULL ,
 "status_retval" VARCHAR(128) NULL ,
 "pubs" VARCHAR(128) NULL ,
 "sync_descr " VARCHAR(128) NULL ,
 PRIMARY KEY ("event_id"),
)

The following example compiles a list of publications. It logs the list of publications and other
synchronization information at the end of the download stage of a synchronization.

sp_hook_dbmlsync_download_end

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 259

CREATE PROCEDURE sp_hook_dbmlsync_download_end ()
BEGIN

 DECLARE pubs_list VARCHAR(1024);
 DECLARE temp_str VARCHAR(128);
 DECLARE qry VARCHAR(128);
-- insert publication list into pubs_list
 SELECT LIST(value) INTO pubs_list
 FROM #hook_dict
 WHERE name LIKE 'publication_%';
-- log publication and synchronization information
 INSERT INTO SyncLog(event_name,ml_user,pubs,event_time)
 SELECT 'dbmlsync_download_end',#hook_dict.value,
 pubs_list,CURRENT TIMESTAMP
 FROM #hook_dict
 WHERE name='MobiLink user';
END

Event hooks for SQL Anywhere clients

260 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

sp_hook_dbmlsync_download_fatal_sql_error
(deprecated)

Take action when a synchronization download is about to be rolled back because of a database error.

This hook is deprecated. See “Handling errors and warnings in event hook procedures” on page 241.

Rows in #hook_dict table

Name Value Description

table name (in) table name The table to which operations were being ap-
plied when the error occurred. The value is an
empty string if dbmlsync is unable to identify
the table.

SQL error code (in) SQL error code Identifies the SQL error code returned by the
database when the operation failed.

publication_n (in) publication The publications being synchronized, where n
is an integer. There is one publication_n entry
for each publication being uploaded. The num-
bering of n starts at zero.

MobiLink user (in) MobiLink user
name

The MobiLink user for which you are synchro-
nizing.

script version (in) script version name The MobiLink script version to be used for the
synchronization.

Remarks
If a procedure of this name exists, it is called immediately before a synchronization download is rolled back
because of a database error. This occurs whenever a SQL error is encountered that cannot be ignored, or
when the sp_hook_dbmlsync_download_SQL_error hook has already been called and has chosen not to
ignore the error.

This procedure executes on a separate connection, so that failures can be logged. Otherwise, the action of
logging would be rolled back along with the synchronization actions. If dbmlsync cannot establish a separate
connection, the procedure is not called.

By default on Windows Mobile devices, synchronization tables are locked in exclusive mode, which means
that this hook cannot successfully execute if it requires access to any of the synchronization tables. It also
cannot execute if it needs to access synchronization tables and you set the dbmlsync extended option
LockTables to EXCLUSIVE. See “LockTables (lt) extended option” on page 203.

Actions of this procedure are committed immediately after execution.

sp_hook_dbmlsync_download_fatal_sql_error (deprecated)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 261

See also
● “Synchronization event hook sequence” on page 237
● “sp_hook_dbmlsync_download_sql_error (deprecated)” on page 267

Examples
Assume you use the following table to log SQL errors.

CREATE TABLE "DBA"."SyncLogComErrorTable"
(
 " error_code " VARCHAR(255) NOT NULL ,
 " event_time " TIMESTAMP NOT NULL ,
);

The following example logs the SQL error code and current time stamp when SQL errors occur while reading
the download. The information is stored in SyncLogSQLErrorTable on the remote database.

CREATE PROCEDURE sp_hook_dbmlsync_download_fatal_sql_error ()
BEGIN
 INSERT INTO SyncLogSQLErrorTable (error_code, event_time)
 SELECT #hook_dict.value, CURRENT TIMESTAMP
 FROM #hook_dict
 WHERE name = 'SQL error code';
END;

Event hooks for SQL Anywhere clients

262 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

sp_hook_dbmlsync_download_log_ri_violation
Logs referential integrity violations in the download process.

Rows in #hook_dict table

Name Value Description

publication_n (in) publication The publications being synchronized, where n
is an integer. There is one publication_n entry
for each publication being uploaded. The num-
bering of n starts at zero.

MobiLink user (in) MobiLink user
name

The MobiLink user for which you are synchro-
nizing.

foreign key table (in) table name The table containing the foreign key column for
which the hook is being called.

primary key table (in) table name The table referenced by the foreign key for
which the hook is being called.

role name (in) role name The role name of the foreign key for which the
hook is being called.

script version (in) script version name The MobiLink script version to be used for the
synchronization.

Remarks
A download RI violation occurs when rows in the download violate foreign key relationships on the remote
database. This hook allows you to log RI violations as they occur so that you can investigate their cause
later.

After the download is complete, but before it is committed, dbmlsync checks for RI violations. If it finds
any, it identifies a foreign key that has an RI violation and calls
sp_hook_dbmlsync_download_log_ri_violation (if it is implemented). It then calls
sp_hook_dbmlsync_download_ri_conflict (if it is implemented). If there is still a conflict, dbmlsync deletes
the rows that violate the foreign key constraint. This process is repeated for remaining foreign keys that have
RI violations.

This hook is called only when there are RI violations involving tables that are currently being synchronized.
If there are RI violations involving tables that are not being synchronized, this hook is not called and the
synchronization fails.

This hook is called on a separate connection from the one that dbmlsync uses for the download. The
connection used by the hook has an isolation level of 0 so that the hook can see the rows that have been
applied from the download that are not yet committed. The actions of the hook are committed immediately
after it completes so that changes made by this hook are preserved regardless of whether the download is
committed or rolled back.

sp_hook_dbmlsync_download_log_ri_violation

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 263

By default on Windows Mobile devices, synchronization tables are locked in exclusive mode, which means
that this hook cannot successfully execute if it requires access to any of the synchronization tables. It also
cannot execute if it needs to access synchronization tables and you set the dbmlsync extended option
LockTables to EXCLUSIVE. See “LockTables (lt) extended option” on page 203.

Do not attempt to use this hook to correct RI violation problems. It should be used for logging only. Use
sp_hook_dbmlsync_download_ri_violation to resolve RI violations.

See also
● “sp_hook_dbmlsync_download_ri_violation” on page 265
● “Synchronization event hook sequence” on page 237

Examples
Assume you use the following table to log referential integrity violations.

CREATE TABLE DBA.LogRIViolationTable
(
 entry_time TIMESTAMP,
 pk_table VARCHAR(255),
 fk_table VARCHAR(255),
 role_name VARCHAR(255)
);

The following example logs the foreign key table name, primary key table name, and role name when a
referential integrity violation is detected on the remote database. The information is stored in
LogRIErrorTable on the remote database.

CREATE PROCEDURE sp_hook_dbmlsync_download_log_ri_violation()
BEGIN
 INSERT INTO DBA.LogRIViolationTable VALUES(
 CURRENT_TIMESTAMP,
 (SELECT value FROM #hook_dict WHERE name = 'Primary key table'),
 (SELECT value FROM #hook_dict WHERE name = 'Foreign key table'),
 (SELECT value FROM #hook_dict WHERE name = 'Role name'));
END;

Event hooks for SQL Anywhere clients

264 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

sp_hook_dbmlsync_download_ri_violation
Allows you to resolve referential integrity violations in the download process.

Rows in #hook_dict table

Name Value Description

publication_n (in) publication The publications being synchronized, where n
is an integer. There is one publication_n entry
for each publication being uploaded. The num-
bering of n starts at zero.

MobiLink user (in) MobiLink user
name

The MobiLink user for which you are synchro-
nizing.

foreign key table (in) table name The table containing the foreign key column for
which the hook is being called.

primary key table (in) table name The table referenced by the foreign key for
which the hook is being called.

role name (in) role name The role name of the foreign key for which the
hook is being called.

script version (in) script version name The MobiLink script version to be used for the
synchronization.

Remarks
A download RI violation occurs when rows in the download violate foreign key relationships on the remote
database. This hook allows you to attempt to resolve RI violations before dbmlsync deletes the rows that are
causing the conflict.

After the download is complete, but before it is committed, dbmlsync checks for RI violations. If it finds
any, it identifies a foreign key that has an RI violation and calls
sp_hook_dbmlsync_download_log_ri_violation (if it is implemented). It then calls
sp_hook_dbmlsync_download_ri_conflict (if it is implemented). If there is still a conflict, dbmlsync deletes
the rows. This process is repeated for remaining foreign keys that have RI violations.

This hook is called only when there are RI violations involving tables that are currently being synchronized.
If there are RI violations involving tables that are not being synchronized, this hook is not called and the
synchronization fails.

This hook is called on the same connection that dbmlsync uses for the download. This hook should not
contain any explicit or implicit commits, because they may lead to inconsistent data in the database. The
actions of this hook are committed or rolled back when the download is committed or rolled back.

Unlike other hook actions, the operations performed during this hook are not uploaded during the next
synchronization.

sp_hook_dbmlsync_download_ri_violation

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 265

See also
● “sp_hook_dbmlsync_download_log_ri_violation” on page 263

Example
This example uses the Department and Employee tables shown below:

CREATE TABLE Department(
 "department_id" INTEGER primary key
);
CREATE TABLE Employee(
 "employee_id" INTEGER PRIMARY KEY,
 "department_id" INTEGER,
 FOREIGN KEY EMPLOYEE_FK1 (department_id) REFERENCES Department
);

The following sp_hook_dbmlsync_download_ri_violation definition cleans up referential integrity
violations between the Department and Employee tables. It verifies the role name for the foreign key and
inserts missing department_id values into the Department table.

CREATE PROCEDURE sp_hook_dbmlsync_download_ri_violation()
BEGIN
IF EXISTS (SELECT * FROM #hook_dict WHERE name = 'role name'
 AND value = 'EMPLOYEE_FK1') THEN
 -- update the Department table with missing department_id values
 INSERT INTO Department
 SELECT distinct department_id FROM Employee
 WHERE department_id NOT IN (SELECT department_id FROM Department)
END IF;

Event hooks for SQL Anywhere clients

266 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

sp_hook_dbmlsync_download_sql_error
(deprecated)

Handle database errors that occur while applying the download sent by the MobiLink server.

This hook is deprecated. See “Handling errors and warnings in event hook procedures” on page 241.

Rows in #hook_dict table

Name Value Description

table name (in) table name The table to which operations were being ap-
plied when the error occurred. The value is an
empty string if dbmlsync is unable to identify
the table.

continue (in|out) true | false Indicates whether the error should be ignored
and synchronization should continue. This pa-
rameter should be set to false to call the
sp_hook_dbmlsync_download_fatal_sql_er-
ror hook and stop synchronization. If you set
this parameter to true, dbmlsync ignores the
error and continues with synchronization,
which may result in data loss.

SQL error code (in) SQL error code Identifies the SQL error code returned by the
database when the operation failed.

publication_n (in) publication The publications being synchronized, where n
is an integer. There is one publication_n entry
for each publication being uploaded. The num-
bering of n starts at zero.

MobiLink user (in) MobiLink user
name

The MobiLink user for which you are synchro-
nizing.

script version (in) script version name The MobiLink script version to be used for the
synchronization.

Remarks
If a procedure of this name exists, it is invoked when a database error is detected during the download phase
of synchronization. The procedure is only invoked for errors where it is possible to ignore the error and
continue with synchronization. For fatal errors, the sp_hook_dbmlsync_download_fatal_SQL_error
procedure is called.

sp_hook_dbmlsync_download_sql_error (deprecated)

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 267

Caution
When continue is set to TRUE, dbmlsync simply ignores the database error and continues with
synchronization. There is no attempt to retry the operation that failed. As a result, some or all of the download
may be lost. The amount of data lost depends on the type of error encountered, when it occurred, and what
steps the hook took to recover. It is very difficult to predict which data is lost and so this feature must be
used with extreme caution. Most users would be best advised to not attempt to continue after a SQL error.

Actions of this procedure are committed or rolled back when the download is committed or rolled back.

See also
● “Synchronization event hook sequence” on page 237
● “sp_hook_dbmlsync_download_fatal_sql_error (deprecated)” on page 261

Event hooks for SQL Anywhere clients

268 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

sp_hook_dbmlsync_download_table_begin
Use this stored procedure to add custom actions immediately before each table is downloaded.

Rows in #hook_dict table

Name Value Description

table name (in) table name The table to which operations are about to be applied.

publication_n (in) publication The publications being synchronized, where n is an
integer. There is one publication_n entry for each pub-
lication being uploaded. The numbering of n starts at
zero.

MobiLink user (in) MobiLink user name The MobiLink user for which you are synchronizing.

script version (in) script version name The MobiLink script version to be used for the syn-
chronization.

Remarks
If a procedure of this name exists, it is called for each table immediately before downloaded operations are
applied to that table. Actions of this procedure are committed or rolled back when the download is committed
or rolled back.

See also
● “Synchronization event hook sequence” on page 237

Examples
Assume you use the following table to log synchronization events on the remote database.

CREATE TABLE SyncLog
(
 "event_id" INTEGER NOT NULL DEFAULT AUTOINCREMENT ,
 "event_name" VARCHAR(128) NOT NULL ,
 "ml_user" VARCHAR(128) NULL ,
 "event_time" TIMESTAMP NULL,
 "table_name" VARCHAR(128) NULL ,
 "upsert_count" VARCHAR(128) NULL ,
 "delete_count" VARCHAR(128) NULL ,
 "exit_code" INTEGER NULL ,
 "status_retval" VARCHAR(128) NULL ,
 "pubs" VARCHAR(128) NULL ,
 "sync_descr " VARCHAR(128) NULL ,
 PRIMARY KEY ("event_id"),
);

The following example logs the MobiLink user, table name, and current timestamp immediately before a
table is downloaded.

CREATE PROCEDURE sp_hook_dbmlsync_download_table_begin()
BEGIN

sp_hook_dbmlsync_download_table_begin

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 269

 DECLARE tbl VARCHAR(255);
 -- load the table name from #hook_dict
 SELECT #hook_dict.value
 INTO tbl
 FROM #hook_dict
 WHERE #hook_dict.name = 'table name';
 INSERT INTO SyncLog (event_name, ml_user, table_name
 ,event_time)
 SELECT 'download_table_begin', #hook_dict.value, tbl
 ,CURRENT TIMESTAMP
 FROM #hook_dict
 WHERE name = 'MobiLink user' ;
END;

Event hooks for SQL Anywhere clients

270 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

sp_hook_dbmlsync_download_table_end
Use this stored procedure to add custom actions immediately after each table is downloaded.

Rows in #hook_dict table

Name Value Description

table name (in) table name The table to which operations have just been
applied.

delete count (in) number of rows The number of rows in this table deleted by the
download.

upsert count (in) number of rows The number of rows in this table updated or
inserted by the download.

publication_n (in) publication The publications being synchronized, where n
is an integer. There is one publication_n entry
for each publication being uploaded. The num-
bering of n starts at zero.

MobiLink user (in) MobiLink user
name

The MobiLink user for which you are synchro-
nizing.

script version (in) script version name The MobiLink script version to be used for the
synchronization.

Remarks
If a procedure of this name exists, it is called immediately after all operations in the download for a table
have been applied.

Actions of this procedure are committed or rolled back when the download is committed or rolled back.

See also
● “Synchronization event hook sequence” on page 237

Examples
Assume you use the following table to log synchronization events on the remote database.

CREATE TABLE SyncLog
(
 "event_id" INTEGER NOT NULL DEFAULT AUTOINCREMENT ,
 "event_name" VARCHAR(128) NOT NULL ,
 "ml_user" VARCHAR(128) NULL ,
 "event_time" TIMESTAMP NULL,
 "table_name" VARCHAR(128) NULL ,
 "upsert_count" VARCHAR(128) NULL ,
 "delete_count" VARCHAR(128) NULL ,
 "exit_code" INTEGER NULL ,

sp_hook_dbmlsync_download_table_end

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 271

 "status_retval" VARCHAR(128) NULL ,
 "pubs" VARCHAR(128) NULL ,
 "sync_descr " VARCHAR(128) NULL ,
 PRIMARY KEY ("event_id"),
);

The following example logs the MobiLink user, the table name and the number of inserted or updated rows
immediately after a table is downloaded.

CREATE PROCEDURE sp_hook_dbmlsync_download_table_end()
BEGIN
 -- declare variables
 DECLARE tbl VARCHAR(255);
 DECLARE upsertCnt VARCHAR(255);
 DECLARE deleteCnt VARCHAR(255);
 -- load the table name from #hook_dict
 SELECT #hook_dict.value
 INTO tbl
 FROM #hook_dict
 WHERE #hook_dict.name = 'table name';
 -- load the upsert count from #hook_dict
 SELECT #hook_dict.value
 INTO upsertCnt
 FROM #hook_dict
 WHERE #hook_dict.name = 'upsert count';
 -- load the delete count from #hook_dict
 SELECT #hook_dict.value
 INTO deleteCnt
 FROM #hook_dict
 WHERE #hook_dict.name = 'delete count';
 INSERT INTO SyncLog (event_name, ml_user, table_name,
 upsert_count, delete_count, event_time)
 SELECT 'download_table_end', #hook_dict.value, tbl,
 upsertCnt, deleteCnt, CURRENT TIMESTAMP
 FROM #hook_dict
 WHERE name = 'MobiLink user' ;
END;

Event hooks for SQL Anywhere clients

272 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

sp_hook_dbmlsync_end
Use this stored procedure to add custom actions immediately before synchronization is complete.

Rows in #hook_dict table

Name Value Description

restart (out) sync | download |
none

If set to sync, then dbmlsync retries the syn-
chronization it just completed. The value
sync replaces true, which is identical but is
deprecated.

If set to none (the default), then dbmlsync shuts
down or restarts according to its command line
arguments. The value none replaces false,
which is identical but is deprecated.

If set to download and the restartable down-
load parameter is true, then dbmlsync attempts
to restart the download that just failed.

exit code (in) number If set to anything other than zero (the default),
this represents a synchronization error.

publication_n (in) publication The publications being synchronized, where n
is an integer. There is one publication_n entry
for each publication being uploaded. The num-
bering of n starts at zero.

MobiLink user (in) MobiLink user
name

The MobiLink user for which you are synchro-
nizing.

sp_hook_dbmlsync_end

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 273

Name Value Description

upload status (in) not sent | commit-
ted | failed

Specifies the status returned by the MobiLink
server when dbmlsync attempted to verify re-
ceipt of the upload. The status can be:

● not sent - No upload was sent to the Mo-
biLink server, either because an error pre-
vented it or because the requested synchro-
nization did not require it, which would
happen in cases such as download-only
synchronization, a restarted download, or
file-based download.

● committed - The upload was received by
the MobiLink server, and committed.

● failed - The MobiLink server did not com-
mit the upload. For a transactional upload,
the upload status is 'failed' when some but
not all the transactions were successfully
uploaded and acknowledged by the server.

script version (in) script version name The MobiLink script version to be used for the
synchronization.

restartable download (in) true|false If true, the download for the current synchro-
nization failed and can be restarted. If false, the
download was successful or it cannot be restar-
ted.

restartable download size (in) integer When the restartable download parameter is
true, this parameter indicates the number of
bytes that were received before the download
failed. When restartable download is false, this
value is meaningless.

error hook user state (in) integer This value contains information about errors
and can be sent from the hooks
sp_hook_dbmlsync_all_error,
sp_hook_dbmlsync_communication_error,
sp_hook_dbmlsync_misc_error, or
sp_hook_dbmlsync_sql_error.

Remarks
If a procedure of this name exists, it is called at the end of each synchronization.

Actions of this procedure are committed immediately after execution.

Event hooks for SQL Anywhere clients

274 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

If an sp_hook_dbmlsync_end hook is defined so that the hook always sets the restart parameter to sync, and
you specify multiple publications on the dbmlsync command line in the form -n pub1, -n pub2, and so on,
then dbmlsync repeatedly synchronizes the first publication and never synchronizes the second.

See also
● “Introduction to dbmlsync hooks” on page 237
● “Synchronization event hook sequence” on page 237
● “Resuming failed downloads” [MobiLink - Server Administration]
● “Handling errors and warnings in event hook procedures” on page 241

Examples
In the following example the download is manually restarted if the download for the current synchronization
failed and can be restarted.

CREATE PROCEDURE sp_hook_dbmlsync_end()
BEGIN
 -- Restart the download if the download for the current sync
 -- failed and can be restarted
 IF EXISTS (SELECT * FROM #hook_dict
 WHERE name = 'restartable download' AND value='true')
 THEN
 UPDATE #hook_dict SET value ='download' WHERE name='restart';
 END IF;
END;

sp_hook_dbmlsync_end

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 275

sp_hook_dbmlsync_log_rescan
Use this stored procedure to programmatically decide when a rescan is required.

Rows in #hook_dict table

Name Value Description

publication_n (in) publication The publications being synchronized, where n
is an integer. There is one publication_n entry
for each publication being uploaded. The num-
bering of n starts at zero.

MobiLink user (in) MobiLink user
name

The MobiLink user for which you are synchro-
nizing.

discarded storage (in) number The number of bytes of discarded memory after
the last synchronization.

rescan (in|out) true | false If set to True by the hook, dbmlsync performs
a complete rescan before the next synchroni-
zation. On entry, this value is set to False.

script version (in) script version name The MobiLink script version to be used for the
synchronization.

Remarks
When more than one -n option is specified in the command line, dbmlsync may experience fragmentation
which results in discarded memory. The discarded memory can be recovered by rescanning the database
transaction log. This hook allows you to decide if dbmlsync should rescan the database transaction log to
recover memory.

When no other condition has been met that would force a rescan, this hook is called immediately after the
sp_hook_dbmlsync_process_exit_code hook.

See also
● “HoverRescanThreshold (hrt) extended option” on page 199

Examples
The following example sets the rescan field in the #hook_dict table to TRUE if the discarded storage is
greater than 1000 bytes.

CREATE PROCEDURE sp_hook_dbmlsync_log_rescan ()
BEGIN
 IF EXISTS(SELECT * FROM #hook_dict
 WHERE name = 'Discarded storage' AND value>1000)
 THEN
 UPDATE #hook_dict SET value ='true' WHERE name='Rescan';

Event hooks for SQL Anywhere clients

276 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 END IF;
END;

sp_hook_dbmlsync_log_rescan

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 277

sp_hook_dbmlsync_logscan_begin
Use this stored procedure to add custom actions immediately before the transaction log is scanned for upload.

Rows in #hook_dict table

Name Value Description

starting log offset_n (in) number The log offset value where scanning is to begin.
There is one value for each publication being
uploaded. The numbering of n starts at zero.
This value matches the Publication-n. For ex-
ample, log offset_0 is the offset for publica-
tion_0.

log scan retry (in) true | false If this is the first time the transaction log has
been scanned for this synchronization, the val-
ue is false; otherwise it is true. The log is scan-
ned twice when the MobiLink server and
dbmlsync have different information about
where the scanning should begin.

publication_n (in) publication The publications being synchronized, where n
is an integer. There is one publication_n entry
for each publication being uploaded. The num-
bering of n starts at zero.

MobiLink user (in) MobiLink user
name

The MobiLink user for which you are synchro-
nizing.

script version (in) script version name The MobiLink script version to be used for the
synchronization.

Remarks
If a procedure of this name exists, it is called immediately before dbmlsync scans the transaction log to
assemble the upload.

Actions of this procedure are committed immediately after execution.

See also
● “Synchronization event hook sequence” on page 237

Examples
Assume you use the following table to log synchronization events on the remote database.

CREATE TABLE SyncLog
(
 "event_id" INTEGER NOT NULL DEFAULT AUTOINCREMENT ,
 "event_name" VARCHAR(128) NOT NULL ,

Event hooks for SQL Anywhere clients

278 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 "ml_user" VARCHAR(128) NULL ,
 "event_time" TIMESTAMP NULL,
 "table_name" VARCHAR(128) NULL ,
 "upsert_count" VARCHAR(128) NULL ,
 "delete_count" VARCHAR(128) NULL ,
 "exit_code" INTEGER NULL ,
 "status_retval" VARCHAR(128) NULL ,
 "pubs" VARCHAR(128) NULL ,
 "sync_descr " VARCHAR(128) NULL ,
 PRIMARY KEY ("event_id"),
);

The following example logs the MobiLink user and current timestamp immediately before the transaction
log is scanned for upload.

CREATE PROCEDURE sp_hook_dbmlsync_logscan_begin ()
BEGIN
 -- log the synchronization event
 INSERT INTO SyncLog (event_name, ml_user,event_time)
 SELECT 'logscan_begin', #hook_dict.value, CURRENT TIMESTAMP
 FROM #hook_dict
 WHERE name = 'MobiLink user' ;
END;

sp_hook_dbmlsync_logscan_begin

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 279

sp_hook_dbmlsync_logscan_end
Use this stored procedure to add custom actions immediately after the transaction log is scanned for upload.

Rows in #hook_dict table

Name Value Description

ending log offset (in) number The log offset value where scanning ended.

starting log offset_n (in) number The initial progress value for each subscription
you synchronize. The n values correspond to
those in Publication_n. For example, Starting
log offset_1 is the offset for Publication_1.

log scan retry (in) true | false If this is the first time the transaction log has
been scanned for this synchronization, the val-
ue is false; otherwise it is true. The log is scan-
ned twice when the MobiLink server and
dbmlsync have different information about
where the scanning should begin.

publication_n (in) publication The publications being synchronized, where n
is an integer. There is one publication_n entry
for each publication being uploaded. The num-
bering of n starts at zero.

MobiLink user (in) MobiLink user
name

The MobiLink user for which you are synchro-
nizing.

script version (in) script version name The MobiLink script version to be used for the
synchronization.

Remarks
If a procedure of this name exists, it is called immediately after dbmlsync has scanned the transaction log
to assemble the upload.

Actions of this procedure are committed immediately after execution.

See also
● “Synchronization event hook sequence” on page 237

Examples
Assume you use the following table to log synchronization events on the remote database.

CREATE TABLE SyncLog
(
 "event_id" INTEGER NOT NULL DEFAULT AUTOINCREMENT ,
 "event_name" VARCHAR(128) NOT NULL ,

Event hooks for SQL Anywhere clients

280 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 "ml_user" VARCHAR(128) NULL ,
 "event_time" TIMESTAMP NULL,
 "table_name" VARCHAR(128) NULL ,
 "upsert_count" VARCHAR(128) NULL ,
 "delete_count" VARCHAR(128) NULL ,
 "exit_code" INTEGER NULL ,
 "status_retval" VARCHAR(128) NULL ,
 "pubs" VARCHAR(128) NULL ,
 "sync_descr " VARCHAR(128) NULL ,
 PRIMARY KEY ("event_id"),
);

The following example logs the MobiLink user and current timestamp immediately after the transaction log
is scanned for upload. The #hook_dict log scan retry parameter indicates if the transaction log is scanned
more than one time.

CREATE PROCEDURE sp_hook_dbmlsync_logscan_end ()
BEGIN
 DECLARE scan_retry VARCHAR(128);

 -- load the scan retry parameter from #hook_dict
 SELECT #hook_dict.value
 INTO scan_retry
 FROM #hook_dict
 WHERE #hook_dict.name = 'log scan retry';

 -- Determine if the log is being rescanned
 -- and log the synchronization event
 IF scan_retry='true' THEN
 INSERT INTO SyncLog (event_name, ml_user,event_time,sync_descr)
 SELECT 'logscan_end', #hook_dict.value, CURRENT TIMESTAMP,
 'Transaction log rescanned'
 FROM #hook_dict
 WHERE name = 'MobiLink user' ;
 ELSE
 INSERT INTO SyncLog (event_name, ml_user,event_time,sync_descr)
 SELECT 'logscan_end', #hook_dict.value, CURRENT TIMESTAMP,
 'Transaction log scanned normally'
 FROM #hook_dict
 WHERE name = 'MobiLink user' ;
 END IF;
END;

sp_hook_dbmlsync_logscan_end

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 281

sp_hook_dbmlsync_misc_error
Use this stored procedure to process dbmlsync errors which are not categorized as database or communication
errors. For example, you can implement the sp_hook_dbmlsync_misc_error hook to log errors or perform
a specific action when a specific error occurs.

Rows in #hook_dict table

Name Value Description

publication_n (in) publication The publications being synchronized, where n
is an integer. There is one publication_n entry
for each publication being uploaded. The num-
bering of n starts at zero.

MobiLink user (in) MobiLink user name The MobiLink user for which you are synchro-
nizing.

script version (in) script version name The MobiLink script version to be used for the
synchronization.

error message (in) error message text This is the same text that is displayed in the
dbmlsync log.

error id (in) integer An ID that uniquely identifies the message. Use
this row to identify the error message, as the
error message text may change.

error hook user state (in|out) integer This value can be set by the hook to pass state
information to future calls to the
sp_hook_dbmlsync_all_error,
sp_hook_dbmlsync_communication_error,
sp_hook_dbmlsync_misc_error,
sp_hook_dbmlsync_sql_error, or
sp_hook_dbmlsync_end hooks. The first time
one of these hooks is called, the value of the
row is 0. If the hook changes the value of the
row, the new value is used in the next hook call.

When you use this hook to pass state informa-
tion to the sp_hook_dbmlsync_end hook, you
can cause the _end hook to perform actions
such as retrying the synchronization.

Remarks
If an error occurs during startup before a synchronization has been initiated, the #hook_dict entries for
MobiLink user and Script version are set to an empty string, and no publication_n rows are set in the
#hook_dict table.

Event hooks for SQL Anywhere clients

282 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

This procedure executes on a separate connection to ensure that operations it performs are not lost if a rollback
is performed on the synchronization connection. If dbmlsync cannot establish a separate connection, the
procedure is not called.

By default on Windows Mobile devices, synchronization tables are locked in exclusive mode, which means
that this hook cannot successfully execute if it requires access to any of the synchronization tables. It also
cannot execute if it needs to access synchronization tables and you set the dbmlsync extended option
LockTables to EXCLUSIVE. See “LockTables (lt) extended option” on page 203.

Actions of this procedure are committed immediately after execution.

See also
● “Handling errors and warnings in event hook procedures” on page 241
● “sp_hook_dbmlsync_communication_error” on page 250
● “sp_hook_dbmlsync_all_error” on page 245
● “sp_hook_dbmlsync_sql_error” on page 297

Examples
Assume you use the following table to log errors in the remote database.

CREATE TABLE error_log
(
 pk INTEGER DEFAULT AUTOINCREMENT PRIMARY KEY,
 err_id INTEGER,
 err_msg VARCHAR(10240),
);

The following example sets up sp_hook_dbmlsync_misc_error to log all types of error messages.

CREATE PROCEDURE sp_hook_dbmlsync_misc_error()
BEGIN
 DECLARE msg VARCHAR(10240);
 DECLARE id INTEGER;
 // get the error message text
 SELECT value INTO msg
 FROM #hook_dict
 WHERE name ='error message';
 // get the error id
 SELECT value INTO id
 FROM #hook_dict
 WHERE name = 'error id';
 // log the error information
 INSERT INTO error_log(err_msg,err_id)
 VALUES (msg,id);
END;

To see possible error id values, test run dbmlsync. For example, the following dbmlsync command line
references an invalid publication.

dbmlsync -c eng=custdb;uid=DBA;pwd=sql -n test

Now, the error_log table contains the following row, associating the error with the error id 9931.

1,9931,
 'There is no synchronization subscription to publication "test"'

sp_hook_dbmlsync_misc_error

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 283

To provide custom error handling, check for the error id 9931 in sp_hook_dbmlsync_misc_error.

ALTER PROCEDURE sp_hook_dbmlsync_misc_error()
BEGIN
 DECLARE msg VARCHAR(10240);
 DECLARE id INTEGER;
 // get the error message text
 SELECT value INTO msg
 FROM #hook_dict
 WHERE name ='error message';
 // get the error id
 SELECT value INTO id
 FROM #hook_dict
 WHERE name = 'error id';
 // log the error information
 INSERT INTO error_log(err_msg,err_id)
 VALUES (msg,id);
 IF id = 9931 THEN
 // handle invalid publication
 END IF;
END;

Event hooks for SQL Anywhere clients

284 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

sp_hook_dbmlsync_ml_connect_failed
Use this stored procedure to retry failed attempts to connect to the MobiLink server using a different
communication type or address.

Rows in #hook_dict table

Name Value Description

publication_n (in) publication The publications being synchronized, where n
is an integer. There is one publication_n entry
for each publication being uploaded. The num-
bering of n starts at zero.

MobiLink user (in) MobiLink user name The MobiLink user for which you are synchro-
nizing.

script version (in) script version name The MobiLink script version to be used for the
synchronization.

connection address (in|out) connection address When the hook is invoked, this is the address
used in the most recent failed communication
attempt. You can set this value to a new con-
nection address that you want to try. If retry is
set to true, this value is used for the next com-
munication attempt. For a list of protocol op-
tions, see “MobiLink client network protocol
option summary” on page 35.

connection type (in|out) network protocol When the hook is invoked, this is the network
protocol (such as TCPIP) that was used in the
most recent failed communication attempt.
You can set this value to a new network proto-
col that you want to try. If retry is set to true,
this value is used for the next communication
attempt. For a list of network protocols, see
“CommunicationType (ctp) extended op-
tion” on page 189.

user data (in|out) user-defined data State information to be used if the next con-
nection attempt fails. For example, you might
find it useful to store the number of retries that
have occurred. The default is an empty string.

allow remote ahead (in|out) true | false This is true only if dbmlsync was started with
the -ra option. You can use this row to read or
change the -ra option for the current synchro-
nization only. See “-r option” on page 170.

sp_hook_dbmlsync_ml_connect_failed

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 285

Name Value Description

allow remote behind (in|out) true | false This is true only if dbmlsync was started with
the -rb option. You can use this row to read or
change the -rb option for the current synchro-
nization only. See “-r option” on page 170.

retry (in|out) true | false Set this value to true if you want to retry a failed
connection attempt. The default is FALSE.

Remarks
If a procedure of this name exists, it is called if dbmlsync fails to connect to the MobiLink server.

This hook only applies to connection attempts to the MobiLink server, not the database.

When a progress offset mismatch occurs, dbmlsync disconnects from the MobiLink server and reconnects
later. In this kind of reconnection, this hook is not called, and failure to reconnect causes the synchronization
to fail.

Actions of this procedure are committed immediately after execution.

Examples
This example uses the sp_hook_dbmlsync_ml_connect_failed hook to retry the connection up to five times.

CREATE PROCEDURE sp_hook_dbmlsync_ml_connect_failed ()
BEGIN
 DECLARE idx integer;

 SELECT value
 INTO buf
 FROM #hook_dict
 WHERE name = 'user data';

 IF idx <= 5 THEN
 UPDATE #hook_dict
 SET value = idx
 WHERE name = 'user data';

 UPDATE #hook_dict
 SET value = 'TRUE'
 WHERE name = 'retry';
 END IF;
END;

The next example uses a table containing connection information. When an attempt to connect fails, the
hook tries the next server in the list.

CREATE TABLE conn_list (
 label INTEGER PRIMARY KEY,
 addr VARCHAR(128),
 type VARCHAR(64)
);
INSERT INTO conn_list
 VALUES (1, 'host=server1;port=91', 'tcpip');
INSERT INTO conn_list
 VALUES (2, 'host=server2;port=92', 'http');

Event hooks for SQL Anywhere clients

286 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

INSERT INTO conn_list
 VALUES (3, 'host=server3;port=93', 'tcpip');
COMMIT;
CREATE PROCEDURE sp_hook_dbmlsync_ml_connect_failed ()
BEGIN
 DECLARE idx INTEGER;
 DECLARE cnt INTEGER;
 SELECT value
 INTO idx
 FROM #hook_dict
 WHERE name = 'user data';

 SELECT COUNT(label) INTO cnt FROM conn_list;

 IF idx <= cnt THEN
 UPDATE #hook_dict
 SET value = (SELECT addr FROM conn_list WHERE label = idx)
 WHERE name = 'connection address';
 UPDATE #hook_dict
 SET value = (SELECT type FROM conn_list WHERE label=idx)
 WHERE name = 'connection type';

 UPDATE #hook_dict
 SET value = idx
 WHERE name = 'user data';

 UPDATE #hook_dict
 SET value = 'TRUE'
 WHERE name = 'retry';
 END IF;
END;

sp_hook_dbmlsync_ml_connect_failed

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 287

sp_hook_dbmlsync_process_exit_code
Use this stored procedure to manage exit codes.

Rows in #hook_dict table

Name Value Description

publication_n (in) publication The publications being synchronized, where n
is an integer. There is one publication_n entry
for each publication being uploaded. The num-
bering of n starts at zero.

MobiLink user (in) MobiLink user
name

The MobiLink user for which you are synchro-
nizing.

fatal error (in) true | false True when the hook is called because of an er-
ror that causes dbmlsync to terminate.

aborted synchronization (in) true | false True when the hook is called because of an
abort request from the
sp_hook_dbmlsync_abort hook.

exit code (in) number The exit code from the most recent synchroni-
zation attempt. 0 indicates a successful syn-
chronization. Any other value indicates that the
synchronization failed. This value can be set by
sp_hook_dbmlsync_abort when that hook is
used to abort synchronization.

last exit code (in) number The value stored in the new exit code row of
the #hook_dict table the last time this hook was
called, or 0 if this is the first call to the hook.

new exit code (in|out) number The exit code you choose for the process. When
dbmlsync exits, its exit code is the value stored
in this row by the last call to the hook. The value
must be -32768 to 32767.

script version (in) script version name The MobiLink script version to be used for the
synchronization.

Remarks
A dbmlsync session can run multiple synchronizations when you specify the -n option more than once in
the command line, when you use scheduling, or when you use the restart parameter in
sp_hook_dbmlsync_end. In these cases, if one or more of the synchronizations fail, the default exit code
does not indicate which failed. Use this hook to define the exit code for the dbmlsync process based on the
exit codes from the synchronizations. This hook can also be used to log exit codes.

Event hooks for SQL Anywhere clients

288 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

If an error occurs during startup before a synchronization has been initiated, the #hook_dict entries for
MobiLink user and Script version are set to an empty string, and no publication_n rows are set in the
#hook_dict table.

Example
Suppose that you run dbmlsync to perform five synchronizations and you want the exit code to indicate how
many of the synchronizations failed, with an exit code of 0 indicating that there were no failures, an exit
code of 1 indicating that one synchronization failed, and so on. You can achieve this by defining the
sp_hook_dbmlsync_process_exit_code hook as follows. In this case, if three synchronizations fail, the new
exit code is 3.

CREATE PROCEDURE sp_hook_dbmlsync_process_exit_code()
BEGIN
 DECLARE rc INTEGER;
 SELECT value INTO rc FROM #hook_dict WHERE name = 'exit code';
 IF rc <> 0 THEN
 SELECT value INTO rc FROM #hook_dict WHERE name = 'last exit code';
 UPDATE #hook_dict SET value = rc + 1 WHERE name = 'new exit code';
 END IF;
END;

See also
● “Synchronization event hook sequence” on page 237
● “sp_hook_dbmlsync_abort” on page 243

sp_hook_dbmlsync_process_exit_code

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 289

sp_hook_dbmlsync_schema_upgrade
Use this stored procedure to run a SQL script that revises your schema.

Rows in #hook_dict table

Name Value Description

publication_n (in) publication The publications being synchronized, where n
is an integer. There is one publication_n entry
for each publication being uploaded. The num-
bering of n starts at zero.

MobiLink user (in) MobiLink user name The MobiLink user for which you are synchro-
nizing.

script version (in) name of script version The script version used for the synchronization.

drop hook (out) never | always | on success The values can be:

never - (the default) Do not drop the
sp_hook_dbmlsync_schema_upgrade hook
from the database.

always - After attempting to run the hook, ,drop
the sp_hook_dbmlsync_schema_upgrade hook
from the database.

on success - If the hook runs successfully, drop
the sp_hook_dbmlsync_schema_upgrade hook
from the database. On success is identical to al-
ways if the dbmlsync -eh option is used, or the
dbmlsync extended option IgnoreHookErrors is
set to true.

Remarks
This stored procedure is intended for making schema changes to deployed remote databases. Using this hook
for schema upgrades ensures that all changes on the remote database are synchronized before the schema is
upgraded, which ensures that the database continues to synchronize. When this hook is being used you should
not set the dbmlsync extended option LockTables to off (LockTables is on by default).

During any synchronization where the upload was applied successfully and acknowledged by MobiLink,
this hook is called after the sp_hook_dbmlsync_download_end hook and before the sp_hook_dbmlsync_end
hook. This hook is not called during download-only synchronization or when a file-based download is being
created or applied.

Actions performed in this hook are committed immediately after the hook completes.

Event hooks for SQL Anywhere clients

290 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See also
● “Schema changes in remote clients” on page 79

Examples
The following example uses the sp_hook_dbmlsync_schema_upgrade procedure to add a column to the
Dealer table on the remote database. If the upgrade is successful the sp_hook_dbmlsync_schema_upgrade
hook is dropped.

CREATE PROCEDURE sp_hook_dbmlsync_schema_upgrade()
BEGIN
 -- Upgrade the schema of the Dealer table. Add a column:
 ALTER TABLE Dealer
 ADD dealer_description VARCHAR(128);
 -- If the schema upgrade is successful, drop this hook:
 UPDATE #hook_dict
 SET value = 'on success'
 WHERE name = 'drop hook';
END;

sp_hook_dbmlsync_schema_upgrade

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 291

sp_hook_dbmlsync_set_extended_options
Use this stored procedure to programmatically customize the behavior of an upcoming synchronization by
specifying extended options to be applied to that synchronization.

Rows in #hook_dict table

Name Value Description

publication_n (in) publication The publications being synchronized, where n
is an integer. There is one publication_n entry
for each publication being uploaded. The num-
bering of n starts at zero.

MobiLink user (in) MobiLink user name The MobiLink user for which you are synchro-
nizing.

extended options (out) opt=val;... Extended options to add for the next synchro-
nization.

Remarks
If a procedure of this name exists, it is called one or more times before each synchronization.

Extended options specified by this hook apply only to the synchronization identified by the publication and
MobiLink user entries, and they apply only until the next time the hook is called for the same synchronization.

Scheduling options may not be specified using this hook.

Actions of this procedure are committed immediately after execution.

See also
● “Synchronization event hook sequence” on page 237
● “MobiLink SQL Anywhere client extended options” on page 183
● “Priority order” on page 185

Examples
The following example uses sp_hook_dbmlsync_set_extended_options to specify the SendColumnNames
extended option. The extended option is only applied if pub1 is synchronizing.

CREATE PROCEDURE sp_hook_dbmlsync_set_extended_options ()
BEGIN
 IF exists(SELECT * FROM #hook_dict
 WHERE name LIKE 'publication_%' AND value='pub1')
 THEN
 -- specify the SendColumnNames=on extended option
 UPDATE #hook_dict
 SET value = 'SendColumnNames=on'
 WHERE name = 'extended options';
 END IF;
END;

Event hooks for SQL Anywhere clients

292 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

sp_hook_dbmlsync_set_ml_connect_info
Use this stored procedure to set the network protocol and network protocol options.

Name Value Description

publication_n (in) publication The publications being synchronized, where n
is an integer. There is one publication_n entry
for each publication being uploaded. The num-
bering of n starts at zero.

MobiLink user (in) MobiLink user
name

The MobiLink user for which you are synchro-
nizing.

script version (in) script version name The MobiLink script version to be used for the
synchronization.

connection type (in/out) tcpip, tls, http, or
https

The network protocol that is used to connect to
the MobiLink server.

connection address (in/out) protocol options The communication address that is used to con-
nect to the MobiLink server. See “MobiLink
client network protocol option summa-
ry” on page 35.

Remarks
You can use this hook to set the network protocol and network protocol options.

The protocol and options can also be set in the sp_hook_dbmlsync_set_extended_options, a hook that is
called at the beginning of a synchronization. sp_hook_dbmlsync_set_ml_connect_info is called immediately
before dbmlsync attempts to connect to the MobiLink server.

This hook is useful when you want to set options in a hook, but want to do so later in the synchronization
process than the sp_hook_dbmlsync_set_extended_options. For example, if the options should be set based
on the availability of signal strength of the network that is being used.

See also
● “Introduction to dbmlsync hooks” on page 237
● “Synchronization event hook sequence” on page 237
● “CommunicationType (ctp) extended option” on page 189
● “MobiLink client network protocol option summary” on page 35
● “sp_hook_dbmlsync_set_extended_options” on page 292

Example
CREATE PROCEDURE sp_hook_dbmlsync_set_ml_connect_info()
begin
 UPDATE #hook_dict
 SET VALUE = 'tcpip'
 WHERE name = 'connection type';

sp_hook_dbmlsync_set_ml_connect_info

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 293

 UPDATE #hook_dict
 SET VALUE = 'host=localhost'
 WHERE name = 'connection address';
end

Event hooks for SQL Anywhere clients

294 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

sp_hook_dbmlsync_set_upload_end_progress
This stored procedure can be used to define an ending progress when a scripted upload subscription is
synchronized. This procedure is called only when a scripted upload publication is being synchronized.

Rows in #hook_dict table

Name Value Description

generating download
exclusion list (in)

TRUE | FALSE TRUE if no upload is sent during the synchro-
nization (for example, in a download-only syn-
chronization or when a file-based download is
applied). In these cases, the upload scripts are
still called and the operations generated are used
to identify download operations that change
rows that need to be uploaded. When such an
operation is found, the download is not applied.

publication_n (in) publication The publications being synchronized, where n
is an integer. There is one publication_n entry
for each publication being uploaded. The num-
bering of n starts at zero.

start progress as time-
stamp_n

progress as timestamp The starting progress for each publication being
synchronized expressed as a timestamp, where
n is the same integer used to identify the publi-
cation.

start progress as bi-
gint_n

progress as bigint The starting progress for each publication being
synchronized expressed as a bigint, where n is
the same integer used to identify the publica-
tion.

script version (n) script version name The MobiLink script version to be used for the
synchronization.

MobiLink user (in) MobiLink user name The MobiLink user for which you are synchro-
nizing.

end progress is bigint
(in|out)

TRUE | FALSE When this row is set to TRUE, the end progress
value is assumed to be an unsigned bigint that
is represented as a string (for example, '12345').

When this row is set to FALSE, the end progress
value is assumed to be a timestamp that is rep-
resented as a string (for example, '1900/01/01
12:00:00.000').

The default is FALSE.

sp_hook_dbmlsync_set_upload_end_progress

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 295

Name Value Description

end progress (in|out) timestamp The hook can modify this row to change the
"end progress as bigint" and "end progress as
timestamp" values passed to the upload scripts.
These values define the point in time up to
which all operations are included in the upload
that is being generated.

The value of this row can be set as either an
unsigned bigint or as a timestamp according to
the setting of the "progress is bigint" row. The
default value for this row is the current time-
stamp.

Remarks
For a scripted upload, each time an upload procedure is called it is passed a start progress value and an end
progress value. The procedure must return all appropriate operations that occurred during the period defined
by those two values. The begin progress value is always the same as the end progress value from the last
successful synchronization, unless this is a first synchronization, in which case the begin progress is January
1, 1900, 00:00:00.000. By default, the end progress value is the time when dbmlsync began building the
upload.

This hook lets you override the default end progress value. You could define a shorter period for the upload
or you could implement a progress tracking scheme based on something other than timestamps (for example,
generation numbers).

If "end progress is bigint" is set to true, the end progress must be an integer less than or equal to the number
of milliseconds from 1900-01-01 00:00:00 to 9999-12-31 23:59:59:9999, which is 255,611,203,259,999.

See also
● “Custom progress values in scripted upload” on page 384
● “Synchronization event hook sequence” on page 237
● “Scripted upload” on page 373

Event hooks for SQL Anywhere clients

296 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

sp_hook_dbmlsync_sql_error
Use this stored procedure to handle database errors that occur during synchronization. For example, you can
implement the sp_hook_dbmlsync_sql_error hook to perform a specific action when a specific SQL error
occurs.

Rows in #hook_dict table

Name Value Description

publication_n (in) publication The publications being synchronized, where n
is an integer. There is one publication_n entry
for each publication being uploaded. The num-
bering of n starts at zero.

MobiLink user (in) MobiLink user name The MobiLink user for which you are synchro-
nizing.

script version (in) script version name The MobiLink script version to be used for the
synchronization.

error message (in) error message text This is the same text that is displayed in the
dbmlsync log.

error id (in) numeric An ID that uniquely identifies the message. Use
this row to identify the error message, as the
error message text may change.

error hook user state (in|out) integer This value can be set by the hook to pass state
information to future calls to the
sp_hook_dbmlsync_all_error,
sp_hook_dbmlsync_communication_error,
sp_hook_dbmlsync_misc_error,
sp_hook_dbmlsync_sql_error, or
sp_hook_dbmlsync_end hooks. The first time
one of these hooks is called, the value of the
row is 0. If the hook changes the value of the
row, the new value is used in the next hook call.

When you use this hook to pass state informa-
tion to the sp_hook_dbmlsync_end hook, you
can cause the _end hook to perform actions
such as retrying the synchronization.

SQL code (in) SQL error code The SQL error code returned by the database
when the operation failed. These values are de-
fined in sqlerr.h in the SDK\Include subdirec-
tory of your SQL Anywhere 11 installation.

sp_hook_dbmlsync_sql_error

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 297

Name Value Description

SQL state (in) SQLSTATE value The SQL state returned by the database when
the operation failed.

Remarks
If an error occurs during startup before a synchronization has been initiated, the #hook_dict entries for
MobiLink user and Script version are set to an empty string, and no publication_n rows are set in the
#hook_dict table.

You can identify SQL errors using the SQL Anywhere SQLCODE or the ANSI SQL standard SQLSTATE.
For a list of SQLCODE or SQLSTATE values, see “SQL Anywhere error messages” [Error Messages].

This procedure executes on a separate connection to ensure that operations it performs are not lost if a rollback
is performed on the synchronization connection. If dbmlsync cannot establish a separate connection, the
procedure is not called.

By default on Windows Mobile devices, synchronization tables are locked in exclusive mode, which means
that this hook cannot successfully execute if it requires access to any of the synchronization tables. It also
cannot execute if it needs to access synchronization tables and you set the dbmlsync extended option
LockTables to EXCLUSIVE. See “LockTables (lt) extended option” on page 203.

Actions of this procedure are committed immediately after execution.

See also
● “Handling errors and warnings in event hook procedures” on page 241
● “sp_hook_dbmlsync_all_error” on page 245
● “sp_hook_dbmlsync_communication_error” on page 250
● “sp_hook_dbmlsync_misc_error” on page 282
● “SQL Anywhere error messages” [Error Messages]

Event hooks for SQL Anywhere clients

298 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

sp_hook_dbmlsync_upload_begin
Use this stored procedure to add custom actions immediately before the transmission of the upload.

Rows in #hook_dict table

Name Value Description

Publication_n (in) publication The publications being synchronized, where n
is an integer. There is one publication_n entry
for each publication being uploaded. The num-
bering of n starts at zero.

MobiLink user (in) MobiLink user name The MobiLink user for which you are synchro-
nizing.

Script version (in) script version name The MobiLink script version to be used for the
synchronization.

Remarks
If a procedure of this name exists, it is called immediately before dbmlsync sends the upload.

Actions of this procedure are committed immediately after execution.

See also
● “Synchronization event hook sequence” on page 237

Examples
Assume you use the following table to log synchronization events on the remote database.

CREATE TABLE SyncLog
(
 "event_id" INTEGER NOT NULL DEFAULT AUTOINCREMENT ,
 "event_name" VARCHAR(128) NOT NULL ,
 "ml_user" VARCHAR(128) NULL ,
 "event_time" TIMESTAMP NULL,
 "table_name" VARCHAR(128) NULL ,
 "upsert_count" VARCHAR(128) NULL ,
 "delete_count" VARCHAR(128) NULL ,
 "exit_code" INTEGER NULL ,
 "status_retval" VARCHAR(128) NULL ,
 "pubs" VARCHAR(128) NULL ,
 "sync_descr " VARCHAR(128) NULL ,
 PRIMARY KEY ("event_id"),
);

The following example logs the MobiLink user and current timestamp immediately before the transmission
of the upload.

CREATE PROCEDURE sp_hook_dbmlsync_upload_begin ()
BEGIN
 INSERT INTO SyncLog (event_name, ml_user,event_time)
 SELECT 'upload_begin', #hook_dict.value, CURRENT TIMESTAMP

sp_hook_dbmlsync_upload_begin

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 299

 FROM #hook_dict
 WHERE name = 'MobiLink user';
END;

Event hooks for SQL Anywhere clients

300 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

sp_hook_dbmlsync_upload_end
Use this stored procedure to add custom actions after dbmlsync has verified receipt of the upload by the
MobiLink server.

Rows in #hook_dict table

Name Value Description

failure cause (in) See range of values in Re-
marks, below

The cause of failure of an upload. For more in-
formation, see Description.

upload status (in) retry | committed | failed |
unknown

Specifies the status returned by the MobiLink
server when dbmlsync attempted to verify re-
ceipt of the upload.

retry - The MobiLink server and dbmlsync had
different values for the log offset from which
the upload should start. The upload was not
committed by the MobiLink server. The
dbmlsync utility attempts to send another up-
load starting from a new log offset.

committed - The upload was received by the
MobiLink server and committed.

failed - The MobiLink server did not commit
the upload.

unknown - Dbmlsync was started with the -tu
option, causing transaction-level uploads. For
each transaction that is uploaded, the
sp_hook_dbmlsync_upload_begin and
sp_hook_dbmlsync_upload_end hooks are
called and the upload status value is unknown
- each time except the last one.

publication_n (in) publication The publications being synchronized, where n
is an integer. There is one publication_n entry
for each publication being uploaded. The num-
bering of n starts at zero.

MobiLink user (in) MobiLink user name The MobiLink user for which you are synchro-
nizing.

script version (in) script version name The MobiLink script version to be used for the
synchronization.

sp_hook_dbmlsync_upload_end

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 301

Name Value Description

authentication value (in) value This value is generated by the authenti-
cate_user, authenticate_user_hashed, or au-
thenticate_parameters script on the server. The
value is an empty string when the upload status
is unknown or when the upload_end hook is
called after an upload is resent because of a
conflict between the log offsets stored in the re-
mote and consolidated databases.

Remarks
If a procedure of this name exists, it is called immediately after dbmlsync has sent the upload and received
confirmation of it from the MobiLink server.

Actions of this procedure are committed immediately after execution.

The range of possible parameter values for the failure cause row in the #hook_dict table includes:

● UPLD_ERR_ABORTED_UPLOAD The upload failed due to an error that occurred on the remote.
Typical causes of the failure include communication errors and out-of-memory conditions.

● UPLD_ERR_COMMUNICATIONS_FAILURE A communication error occurred.

● UPLD_ERR_LOG_OFFSET_MISMATCH The upload failed because of conflict between log offset
stored on the remote and consolidated databases.

● UPLD_ERR_GENERAL_FAILURE The upload failed for an unknown reason.

● UPLD_ERR_INVALID_USERID_OR_PASSWORD The user ID or password was incorrect.

● UPLD_ERR_USERID_OR_PASSWORD_EXPIRED The user ID or password expired.

● UPLD_ERR_USERID_ALREADY_IN_USE The user ID was already in use.

● UPLD_ERR_DOWNLOAD_NOT_AVAILABLE The upload was committed on the consolidated but
an error occurred that prevented MobiLink from generating a download.

● UPLD_ERR_PROTOCOL_MISMATCH dbmlsync received unexpected data from the MobiLink
server.

● UPLD_ERR_SQLCODE_n Here, n is an integer. A SQL error occurred in the consolidated database.
The integer specified is the SQLCODE for the error encountered.

See also
● “Synchronization event hook sequence” on page 237

Examples
Assume you use the following table to log synchronization events on the remote database.

CREATE TABLE SyncLog(
 "event_id" INTEGER NOT NULL DEFAULT AUTOINCREMENT ,
 "event_name" VARCHAR(128) NOT NULL ,

Event hooks for SQL Anywhere clients

302 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 "ml_user" VARCHAR(128) NULL ,
 "event_time" TIMESTAMP NULL,
 "table_name" VARCHAR(128) NULL ,
 "upsert_count" VARCHAR(128) NULL ,
 "delete_count" VARCHAR(128) NULL ,
 "exit_code" INTEGER NULL ,
 "status_retval" VARCHAR(128) NULL ,
 "pubs" VARCHAR(128) NULL ,
 "sync_descr " VARCHAR(128) NULL ,
 PRIMARY KEY ("event_id"),
);

The following example logs the MobiLink user and current timestamp after dbmlsync verifies that the
MobiLink server has received the upload.

CREATE PROCEDURE sp_hook_dbmlsync_upload_end ()
BEGIN

 DECLARE status_return_value VARCHAR(255);
 -- store status_return_value
 SELECT #hook_dict.value
 INTO status_return_value
 FROM #hook_dict
 WHERE #hook_dict.name = 'upload status';
 INSERT INTO SyncLog (event_name, ml_user,
 status_retval, event_time)
 SELECT 'upload_end', #hook_dict.value,
 status_return_value, CURRENT TIMESTAMP
 FROM #hook_dict
 WHERE name = 'MobiLink user';
END;

sp_hook_dbmlsync_upload_end

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 303

sp_hook_dbmlsync_validate_download_file
Use this hook to implement custom logic to decide if a download file can be applied to the remote database.
This hook is called only when a file-based download is applied.

Rows in #hook_dict table

Name Value Description

publication_n (in) publication The publications being synchronized, where n
is an integer. There is one publication_n entry
for each publication being uploaded. The n in
publication_n and generation number_n match.
The numbering of n starts at zero.

MobiLink user (in) MobiLink user name The MobiLink user for which you are synchro-
nizing.

file last download time
(in)

The download file's last download time. (The
download file contains all rows that were
changed between its last download time and its
next last download time.)

file next last download
time (in)

The download file's next last download time.
(The download file contains all rows that were
changed between its last download time and its
next last download time.)

file creation time (in) The time when the download file was created.

file generation num-
ber_n (in)

number The generation numbers from the download
file. There is one file generation number_n for
each publication_n entry. The n in publica-
tion_n and generation number_n match. The
numbering of n starts at zero.

user data (in) string The string specified with the dbmlsync -be op-
tion when the download file was created.

apply file (in|out) True|False If true (the default), the download file is applied
only if it passes dbmlsync's other validation
checks. If false, the download file is not applied
to the remote database.

Event hooks for SQL Anywhere clients

304 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Name Value Description

check generation num-
ber (in|out)

True|False If true (the default), dbmlsync validates gener-
ation numbers. If the generation numbers in the
download file do not match those in the remote
database, dbmlsync does not apply the down-
load file. If false, dbmlsync does not check gen-
eration numbers.

setting generation num-
ber (in)

true | false True if the -bg option was used when the down-
load file was created. If -bg was used, the gen-
eration numbers on the remote database are up-
dated from the download file and normal gen-
eration number checks are not performed.

Remarks
Use this stored procedure to implement custom checks to decide if a download file can be applied.

If you want to compare the generation numbers or timestamps contained in the file with those stored in the
remote database, they can be queried from the SYSSYNC and SYSPUBLICATION system views.

This hook is called when the -ba option is specified. It is called before the download file is applied to the
remote database.

The actions of this hook are committed immediately after it completes.

See also
● “-be option” on page 140
● “-bg option” on page 141
● “MobiLink file-based download” [MobiLink - Server Administration]

Examples
The following example prevents application of download files that don't contain the user string 'sales manager
data'.

CREATE PROCEDURE sp_hook_dbmlsync_validate_download_file ()
BEGIN
 IF NOT exists(SELECT * FROM #hook_dict
 WHERE name = 'User data' AND value='sales manager data')
 THEN
 UPDATE #hook_dict
 SET value = 'false' WHERE name = 'Apply file';
 END IF;
END;

sp_hook_dbmlsync_validate_download_file

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 305

306

Dbmlsync API

Contents
Introduction to the Dbmlsync API .. 308
Dbmlsync API for C++ ... 309
Dbmlsync API for .NET .. 322

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 307

Introduction to the Dbmlsync API
The Dbmlsync API provides a programming interface that allows MobiLink client applications written in
C++ or .NET to launch synchronizations and receive feedback about the progress of the synchronizations
they request. The API is intended to integrate synchronization seamlessly into your applications.

This new programming interface enables you to access a lot more information about synchronization results
and it also enables you to queue synchronizations, making them easier to manage.

Architecture
When using the Dbmlsync API, the client application instantiates and calls methods in the DbmlsyncClient
class. This class communicates using TCP/IP with a separate process, dbmlsync server, that actually performs
the synchronization by connecting to the MobiLink server and the remote database. Status information
generated by synchronizations is communicated back to the client application through the GetEvent method
of the DbmlsyncClient class.

More than one client can share the same dbmlsync server. However, each dbmlsync server can only
synchronized a single remote database and each remote database can have only one dbmlsync server
synchronizing it.

The dbmlsync server performs synchronizations one at a time. If it receives a synchronization request while
it is already performing a synchronization, it queues that request and satisfies it later.

Dbmlsync API interfaces
There are 2 versions of the Dbmlsync API, one for C++ and one for .NET.

The C++ version is implemented in the DLL dbmlsynccli11.dll. Clients wishing to use this version should
include the header dbmlsynccli.hpp in their C++ code and link against the import library dbmlsynccli11.lib.
They must then distribute the dbmlsynccli11.dll file with their application. See “Dbmlsync API for C+
+” on page 309.

The .NET version of the API is implemented in the DLL iAnywhere.MobiLink.Client.dll. .NET applications
can use the interface by including a reference to the DLL. See “Dbmlsync API for .NET” on page 322.

Dbmlsync API

308 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Dbmlsync API for C++
This section describes the methods in the C++ implementation of the DbmlsyncClient class.

The sample below shows a typical application using the C++ version of the Dbmlsync API to perform a
synchronization to receive output events. The sample omits error handling for clarity. It is always good
indent practice to check the return value from each API call.

Dbmlsync C++ sample
#include <stdio.h>
#include "dbmlsynccli.h"

int main(void) {
 DbmlsyncClient *client;
 DBSC_SyncHdl syncHdl;
 DBSC_Event *ev1;
 client = DbmlsyncClient::InstantiateClient();
 if(client == NULL) return(1);
 client->Init();
 // Setting the "server path" is usually required on Windows Mobile/CE.
 // In other environments the server path is usually not required unless
 // you SA install is not in your path or you have multiple versions of
the
 // product installed
 client->SetProperty("server path", "C:\\SQLAnywhere\\bin32");
 client->StartServer(3426,
 "-c eng=remote;dbn=rem1;uid=dba;pwd=sql -v+ -ot c:\
\dbsync1.txt",
 5000, NULL);
 client->Connect(NULL, 3426, "dba", "sql");
 syncHdl = client->Sync("my_sync_profile", "");
 while(client->GetEvent(&ev1, 5000) == DBSC_GETEVENT_OK) {
 if(ev1->hdl == syncHdl) {
 //
 // Process events that interest you here
 //
 if(ev1->type == DBSC_EVENTTYPE_SYNC_DONE) {
 client->FreeEventInfo(ev1);
 break;
 }
 client->FreeEventInfo(ev1);
 }
 }
 client->ShutdownServer(DBSC_SHUTDOWN_ON_EMPTY_QUEUE);
 client->WaitForServerShutdown(10000);
 client->Disconnect();
 client->Fini();
 delete client;
 return(0);
}

The DbmlsyncClient class public methods in the C++ version of the API are shown below.

Dbmlsync API for C++

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 309

InstantiateClient method
Call the InstantiateClient method to instantiate a DbmlsyncClient class.

Syntax
static DbmlsyncClient *InstantiateClient();

Remarks
The pointer returned by this method can be used to call the remaining methods in the class. After you are
finished with the instance returned by InstantiateClient you can destroy it by calling delete on the pointer.

Returns
Returns a pointer to the new instance that has been created.

Returns null if an error occurs.

Init method
Initializes an instance of the class.

Syntax
bool Init();

Remarks
This method must be the first method called after a DbmlSyncClient class is instantiated using the
InstantiateClient method.

Returns
Returns true if the class instance was successfully initialized.

Returns false if the class instance was not successfully initialized. When false is returned, you can call the
GetErrorInfo method to get more information about the failure. Other methods cannot be called until you
have successfully initialized the instance. See “GetErrorInfo method” on page 317.

Fini method
Frees all resources used by this instance of the class.

Syntax
bool Fini

Remarks
You must call the Fini method before you delete an instance of the class.

Dbmlsync API

310 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Before you call the Fini method, you must call the Disconnect method if the instance is connected to a server.

Returns
Returns true if the method was successful.

Returns false if the method was not successful. When false is returned, you can call the GetErrorInfo method
to get more information about the failure. See “GetErrorInfo method” on page 317.

StartServer method
This method first checks to see if there is a dbmlsync server listening on the specified port. If a server is
present, the method sets the starttype parameter to DBSC_SS_ALREADY_RUNNING and returns without
further action. If no server is found, the method starts a new server using the options specified by the cmdline
argument and waits for it to start accepting requests before returning.

Note
In Windows Mobile devices, it is usually necessary to set the server path property before StartServer can be
successfully called. The server path property does not need to be set in the following instances:

● Your application is in the same directory as dbmlsync.exe.

● dbmlsync.exe is in the Windows directory.

Syntax
bool StartServer(unsigned port, const char *cmdline, unsigned timeout, DBSC_Starttype *starttype);

Parameters
● port The TCP port to check for an existing dbmlsync server. If a new server is started, it is set to

listen on this port.

● cmdline A valid command line for starting a dbmlsync server. The command line may contain only
the following options which have the same meaning that they do for the dbmlsync utility:

○ -a, -c, -dl, -do, -ek, -ep, -k, -l, -o, -os, -ot, -p, -pc+, -pc-, -pd, -pp, -q, -qi, -qc, -sc, -sp, -uc, -ud, -ui, -
um, -un, -ux, -v[cnoprsut], -wc, -wh. See “dbmlsync syntax” on page 131.

The -c option must be specified.

● timeout The maximum time in milliseconds to wait after a dbmlsync server is started for it to be ready
to accept requests. Use DBSC_INFINITY to wait forever.

● starttype This is an 'out' parameter. If starttype is non-null on entry and StartServer returns true, then
on exit the variable pointed to by starttype is set to one of the following values:

○ DBSC_SS_STARTED Indicates that a new dbmlsync server was started.

○ DBSC_SS_ALREADY_RUNNING Indicates that an existing dbmlsync server was found, so no
new server was started.

Dbmlsync API for C++

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 311

Returns
Returns true if the server was already running or was successfully started.

Returns false if the server was not successfully started or the server did not begin processing requests before
the timeout expired. When false is returned, you can call the GetErrorInfo method to get more information
about the failure. See “GetErrorInfo method” on page 317.

Connect method
Opens a connection with a dbmlsync server that is already running on this computer.

Syntax
bool Connect(const char *host, unsigned port, const char *uid, const char *pwd);

Remarks
The database user id and password passed in are used to validate whether this client has enough permissions
to synchronize the database. When synchronizations are performed, the user id that was specified with the
-c option when the dbmlsync server started is used.

Parameters
● host Reserved. Use NULL.

● port The TCP port on which the server is listening. Use the same port value that you specified when
the server was started using the StartServer method.

● uid A valid database user id with DBA or REMOTE DBA authority on the remote database that is to
be synchronized.

● pwd The database password for the user specified by uid.

Returns
Returns true if a connection to the server was established.

Returns false if a connection to the server could not be established. When false is returned, you can call the
GetErrorInfo method to get more information about the failure. See “GetErrorInfo method” on page 317.

Disconnect method
Breaks the connection with a dbmlsync server created using the Connect method.

Syntax
bool Disconnect()

Remarks
You should always call Disconnect when you are finished with a connection.

Dbmlsync API

312 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Returns
Returns true if the connection to the server is broken successfully.

Returns false if the connection to the server could not be broken. When false is returned, you can call the
GetErrorInfo method to get more information about the failure. See “GetErrorInfo method” on page 317.

Ping method
Sends a ping request to the dbmlsync server to check if the connection is good and if the server is live and
responding to requests.

Syntax
bool Ping(unsigned timeout)

Remarks
You must be connected to a server to call this method.

Parameters
● timeout The maximum number of milliseconds to wait for the server to respond to the ping request.

Use DBSC_INFINITY to wait forever.

Returns
Returns true if a response was received from the server to the ping request.

Returns false if a response to the ping request was not received. When false is returned, you can call the
GetErrorInfo method to get more information about the failure. See “GetErrorInfo method” on page 317.

Sync method
Request that the dbmlsync server perform a synchronization.

Syntax
DBSC_SyncHdl Sync(const char *profile_name, const char *extra_opts)

Remarks
You must be connected to the server before calling this method.

At least one of profile_name and extra_opts must be non-null.

Parameters
● profile_name The name of a synchronization profile defined in the remote database that contains the

options for the synchronization. If profile_name is null then no profile is used and the extra_opts
parameter should contain all the options for the synchronization.

Dbmlsync API for C++

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 313

● extra_opts A string formed according to the same rules used to define an option string for a
synchronization profile. If profile_name is non-null then the options specified by extra_opts are added
to those already in the synchronization profile specified by profile_name. If an option in the string already
exists in the profile, then the value from the string replaces the value already stored in the profile. If
profile_name is null then extra_opts should specify all the options for the synchronization.

Returns
Returns a DBSC_SyncHdl value which uniquely identifies this synchronization request. The returned handle
is only valid until the client disconnects from the server.

Returns NULL_SYNCHDL if an error prevents the synchronization request from being created. When
NULL_SYNCHDL is returned, you can call the GetErrorInfo method to get more information about the
failure. See “GetErrorInfo method” on page 317.

ShutdownServer method
Shuts down the dbmlsync server to which the client is connected.

Syntax
bool ShutdownServer(DBSC_ShutdownType how)

Remarks
The Shutdown method returns immediately but there may be some delay before the server actually shuts
down.

You must still call Disconnect after calling ShutdownServer.

The WaitForServerShutdown method can be used to wait until the server actually shuts down. See
“WaitForServerShutdown method” on page 315.

Parameters
● how Indicates how urgently the server should be shutdown. The following values are supported:

○ DBSC_SHUTDOWN_ON_EMPTY_QUEUE Indicates that the server should complete any
outstanding synchronization requests and then shutdown. Once the server receives the shutdown
request, it does not accept any more synchronization requests.

○ DBSC_SHUTDOWN_CLEANLY Indicates that the server should shutdown cleanly, as quickly
as possible. If there are outstanding synchronization requests, they are not performed and if there is
a running synchronization it may be interrupted.

Returns
Returns true if a shutdown request was successfully sent to the server.

Returns false if a shutdown request could not be sent. When false is returned, you can call the GetErrorInfo
method to get more information about the failure. See “GetErrorInfo method” on page 317.

Dbmlsync API

314 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

WaitForServerShutdown method
The WaitForServerShutdown method returns when the server has shutdown or when the timeout expires,
whichever comes first.

Syntax
bool WaitForServerShutdown(unsigned timeout)

Remarks
WaitForServerShutdown can only be called after the ShutdownServer method is called. See
“ShutdownServer method” on page 314.

Parameters
● timeout Indicates the maximum time in milliseconds to wait for the server to shutdown. Use

DBSC_INFINITY to wait forever.

Returns
Returns true if the method returned because the server shutdown.

Returns false otherwise. When false is returned, you can call the GetErrorInfo method to get more
information about the failure. See “GetErrorInfo method” on page 317.

CancelSync method
Allows a client to cancel a synchronization request previously made using the Sync method.

Syntax
bool CancelSync(DBSC_SyncHdl hdl)

Remarks
Only synchronization requests waiting to be serviced can be canceled. The server does not cancel a
synchronization once it has begun.

A connection must be established to the server before this method can be used. This method cannot be used
if the client has disconnected from the server since the Sync method was called.

Parameters
● hdl The synchronization handle returned by the Sync method when the synchronization was requested.

Returns
Returns true if the synchronization request was successfully canceled.

Returns false if the synchronization request was not canceled. When false is returned, you can call the
GetErrorInfo method to get more information about the failure. See “GetErrorInfo method” on page 317.

Dbmlsync API for C++

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 315

GetEvent method
As the dbmlsync server runs a synchronization it generates a series of events that contain information about
the progress of the synchronization. These events are sent from the server to the DbmlsyncClient class, which
queues them. When the GetEvent method is called, the next event in the queue is returned if there is one
waiting.

Syntax
DBSC_GetEventRet GetEvent(DBSC_Event **event, unsigned timeout)

Remarks
If there are no events waiting in the queue, this method waits until an event is available or until the specified
timeout has expired before returning.

The types of event that are generated for a synchronization can be controlled using properties. See
“SetProperty method” on page 319.

Parameters
● event If the return value is DBSC_GETEVENT_OK then the event parameter is filled in with a pointer

to a DBSC_Event structure containing information about the event that has been retrieved. When you
are finished with the event structure you must call the FreeEventInfo method to free memory associated
with it. See “DBSC_Event structure” on page 320 and “FreeEventInfo method” on page 316.

● timeout Specifies the maximum number of milliseconds to wait if no event is immediately available
to return. Use DBSC_INFINITY to wait forever.

Returns
Returns one of the following:

● DBSC_GETEVENT_OK Indicates that an event was successfully retrieved.

● DBSC_GETEVENT_TIMED_OUT Indicates that the timeout expired without any event being
available to return.

● DBSC_GETEVENT_FAILED Indicates that no event was returned because of an error condition.
When DBSC_GETEVENT_FAILED is returned, you can call the GetErrorInfo method to find out more
about why the method failed. See “GetErrorInfo method” on page 317.

FreeEventInfo method
Frees memory associated with a DBSC_Event structure returned by the GetEvent method.

Syntax
bool FreeEventInfo(DBSC_Event *event)

Remarks
FreeEventInfo must be called on each DBSC_Event structure returned by the GetEvent method.

Dbmlsync API

316 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Parameters
● event A pointer to the DBSC_Event structure to be freed.

Returns
Returns true if the memory was successfully freed.

Returns false if the memory could not be freed. When false is returned, you can call the GetErrorInfo method
to get more information about the failure. See “GetErrorInfo method” on page 317.

GetErrorInfo method
Use this method to retrieve additional information about the failure immediately after another method in the
interface fails.

Syntax
const DBSC_ErrorInfo *GetErrorInfo()

Returns
Returns a pointer to a DBSC_ErrorInfo structure that contains information about the failure. The
DBSC_ErrorInfo structure is defined as follows:

typedef struct {
 DBSC_ErrorType type;
 const char *str1;
 const char *str2;
 long int val1;
 long int val2;
 DBSC_SyncHdl hdl1;
} DBSC_ErrorInfo;

The contents of this structure may be overwritten the next time any class method is called.

Remarks
The type field contains a value that indicates the reason for the failure. Currently, type may take the following
values:

● DBSC_ERR_OK No error occurred.

● DBSC_ERR_NOT_INITIALIZED The class has not been initialized by calling the Init method.

● DBSC_ERR_ALREADY_INITIALIZED The Init method was called on a class that was already
initialized.

● DBSC_ERR_NOT_CONNECTED No connection to a dbmlsync server is in place.

● DBSC_ERR_CANT_RESOLVE_HOST Cannot resolve host information.

● DBSC_ERR_CONNECT_FAILED Connection failed.

● DBSC_ERR_INITIALIZING_TCP_LAYER Error initializing TCP layer.

Dbmlsync API for C++

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 317

● DBSC_ERR_ALREADY_CONNECTED Connect method failed because a connection was already
in place.

● DBSC_ERR_PROTOCOL_ERROR This is an internal error.

● DBSC_ERR_CONNECTION_REJECTED The connection was rejected by the dbmlsync server.

str1 points to a string returned by the server which may provide more information about why the
connection attempt was rejected.

● DBSC_ERR_TIMED _OUT The timeout expired while waiting for a response from the server.

● DBSC_ERR_STILL_CONNECTED Could not Fini the class because it is still connected to the server.

● DBSC_ERR_SYNC_NOT_CANCELED The server could not cancel the synchronization request,
probably because the synchronization was already in progress.

● DBSC_ERR_INVALID_VALUE An invalid property value was passed to the SetProperty method.

● DBSC_ERR_INVALID_PROP_NAME The specified property name is not valid.

● DBCS_ERR_VALUE_TOO_LONG The property value is too long. Properties must be less than
DBCS_MAX_PROPERTY_LEN bytes long.

● DBSC_ERR_SERVER_SIDE_ERROR There was an error on the server.

str1 points to a string returned by the server which may provide more information about the error.

● DBSC_ERR_CREATE_PROCESS_FAILED Unable to start a new dbmlsync server.

● DBSC_ERR_READ_FAILED Error occurred while reading data from the dbmlsync server.

● DBSC_ERR_WRITE_FAILED Error occurred while sending data to the dbmlsync server.

● DBSC_ERR_NO_SERVER_RESPONSE Failed to receive a response from the server that is
required to complete the requested action.

● DBSC_ERR_UID_OR_PWD_TOO_LONG The UID or PWD specified is too long.

● DBSC_ERR_UID_OR_PWD_NOT_VALID The UID or PWD specified is not valid.

● DBSC_ERR_INVALID_PARAMETER One of the parameters passed to the function was not valid.

● DBSC_ERR_WAIT_FAILED An error occurred while waiting for the server to shutdown.

● DBSC_SHUTDOWN_NOT_CALLED WaitForServerShutdown method was called without first
calling the ShutdownServer method.

● DBSC_ERR_NO_SYNC_ACK A synchronization request was sent to the server but no
acknowledgement was received. There is no way to tell if the server received the request.

hdl1 is the handle for the sync request that was sent. If the server received the request, this handle can
be used to identify events for the synchronization retrieved using the “GetEvent method” on page 316.

str1, str2, val1, val2 and hdl1 contain additional information about the failure, and their meaning depends
on the type value. For most type values there is no useful information in any of these fields. The exceptions
are noted in the above in the previous list.

Dbmlsync API

318 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

SetProperty method
Allows properties to be set on a class instance that modify various aspects of its behavior.

Syntax
bool SetProperty(const char *name, const char *value)

Remarks
Changes to property values only affect synchronization requests made after the property value was changed.

The server path property can be set to specify the directory from which the client should start
dbmlsync.exe when the StartServer method is called. When this property is not set, dbmlsync.exe is found
using the path environment variable. See “StartServer method” on page 311.

The following properties control the types of events that are returned by the GetEvent method. By disabling
events that you do not require you may be able to improve performance. An event type is enabled by setting
the corresponding property to "1" and disabled by setting the property to "0". See “GetEvent
method” on page 316.

The following is a list of the available properties and the event type that each controls:

Property name Event type(s) controlled Default

enable errors DBSC_EVENTTYPE_ERROR_MSG 1

enable warnings DBSC_EVENTTYPE_WARNING_MSG 1

enable info msgs DBSC_EVENTTYPE_INFO_MSG 1

enable progress DBSC_EVENTTYPE_PROGRESS_INDEX 0

enable progress
text

DBSC_EVENTTYPE_PROGRESS_TEXT 0

enable title DBSC_EVENTTYPE_TITLE 0

enable sync start DBSC_EVENTTYPE_SYNC_START 1

enable sync done DBSC_EVENTTYPE_SYNC_DONE 1

Parameters
● name The name of the property to set. This must be one of the property names defined above.

● value The value to set the property to. The string specified must contain less than
DBCS_MAX_PROPERTY_LEN bytes.

Returns
Returns true if the property was successfully set.

Dbmlsync API for C++

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 319

Returns false if the property was not successfully set. When false is returned, you can call the GetErrorInfo
method to get more information about the failure. See “GetErrorInfo method” on page 317.

GetProperty method
Retrieves the current value of a property.

Syntax
bool GetProperty(const char *name, char *value)

Parameters
● name The name of the property to retrieve the value of. For a list of valid property names, see

“SetProperty method” on page 319.

● value A buffer of at least DBSC_MAX_PROPERTY_LEN bytes where the value of the property is
stored.

Returns
Returns true if the property was successfully retrieved.

Returns false if the property could not be retrieved. When false is returned, you can call the GetErrorInfo
method to get more information about the failure. See “GetErrorInfo method” on page 317.

DBSC_Event structure
The DBSC_Event structure contains information about a synchronization that has been requested. The
structure is defined as follows:

typedef struct {
 DBSC_SyncHdl hdl;
 DBSC_EventType type;
 const char *str1;
 const char *str2;
 long int val1;
 long int val2;
 void *data;
} DBSC_Event;

The hdl field identifies the synchronization request for which the structure contains information. This value
matches the handle returned by the Sync method.

The type field identifies the type of event being reported.

The remaining fields contain additional data, the nature of which depends on the value of the type field. The
following is a list of the possible type values and the meaning of the remaining fields associated with each:

● DBSC_EVENTTYPE_ERROR_MSG An error was generated by the synchronization and str1 points
to the text of the error.

Dbmlsync API

320 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

● DBSC_EVENTTYPE_WARNING_MSG A warning was generated by the synchronization and str1
points to the text of the warning.

● DBSC_EVENTTYPE_INFO_MSG An information message was generated by the synchronization
and str1 points to the text of the message.

● DBSC_EVENTTYPE_PROGRESS_INDEX Provides information for updating a progress bar. val1
contains the new progress value. The percent done can be calculated by dividing val1 by 1000.

● DBSC_EVENTTYPE_PROGRESS_TEXT The text associated with the progress bar has been
updated and the new value is pointed to by str1.

● DBSC_EVENTTYPE_TITLE The title for the synchronization window/control has changed and the
new title is pointed to by str1.

● DBSC_EVENTTYPE_SYNC_START The synchronization has begun. There is no additional
information associated with this event.

● DBSC_EVENTTYPE_SYNC_DONE The synchronization is complete and val1 contains the exit
code from the synchronization. A 0 value indicates success. A non-zero value indicates that the
synchronization failed.

Dbmlsync API for C++

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 321

Dbmlsync API for .NET
This section describes the methods in the .NET implementation of the DbmlsyncClient class.

The sample below shows a typical application using the .NET version of the Dbmlsync API to perform a
synchronization to receive output events. The sample omits error handling for clarity. It is always good
indent practice to check the return value from each API call.

Dbmlsync .Net sample
using System;
using System.Collections.Generic;
using System.Text;
using iAnywhere.MobiLink.Client;
namespace ConsoleApplication6
{
 class Program
 {
 static void Main(string[] args)
 {
 DbmlsyncClient cli1;
 DBSC_StartType st1;
 DBSC_Event ev1;
 UInt32 syncHdl;
 cli1 = DbmlsyncClient.InstantiateClient();
 cli1.Init();
 // Setting the "server path" is usually required on Windows
 // Mobile/CE. In other environments the server path is usually
 // not required unless you SA install is not in your path or
 // you have multiple versions of the product installed
 cli1.SetProperty("server path", "d:\\sybase\\asa1100r\\bin32");
 cli1.StartServer(3426,
 "-c eng=cons;dbn=rem1;uid=dba;pwd=sql -ve+ -ot c:\
\dbsync1.txt",
 5000, out st1);
 cli1.Connect(null, 3426, "dba", "sql");
 syncHdl = cli1.Sync("sp1", "");
 while (cli1.GetEvent(out ev1, 5000)
 == DBSC_GetEventRet.DBSC_GETEVENT_OK)
 {
 if (ev1.hdl == syncHdl)
 {
 Console.WriteLine("Event Type : {0}", ev1.type);
 if (ev1.type == DBSC_EventType.DBSC_EVENTTYPE_INFO_MSG)
 {
 Console.WriteLine("Info : {0}", ev1.str1);
 }
 if (ev1.type == DBSC_EventType.DBSC_EVENTTYPE_SYNC_DONE)
 {
 break;
 }
 }
 }

cli1.ShutdownServer(DBSC_ShutdownType.DBSC_SHUTDOWN_ON_EMPTY_QUEUE);
 cli1.WaitForServerShutdown(10000);
 cli1.Disconnect();

Dbmlsync API

322 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 cli1.Fini();
 Console.ReadLine();
 }
 }
}

The DbmlsyncClient class public methods in the .NET version of the API are shown below.

InstantiateClient method
Call the InstantiateClient method to instantiate a DbmlsyncClient class.

Syntax
static DbmlsyncClient InstantiateClient()

Remarks
The object returned by this method can be used to call the remaining methods in the class.

Returns
Returns a new DbmlsyncClient instance that has been created. If an error occurs, null is returned.

Init method
Initializes an instance of the class.

Syntax
Boolean Init()

Remarks
This method must be the first method called after a class is instantiated using the InstantiateClient method.

Returns
Returns true if the class instance was successfully initialized.

Returns false if the class instance was not successfully initialized. When false is returned, you can call the
GetErrorInfo method to get more information about the failure. Other methods cannot be called until you
have successfully initialized the instance. See “GetErrorInfo method” on page 329.

StartServer method
This method first checks to see if there is a dbmlsync server listening on the specified port. If a server is
present, the method sets the starttype parameter to DBSC_SS_ALREADY_RUNNING and returns without
further action. If no server is found, the method starts a new server using the options specified by the cmdline
argument and waits for it to start accepting requests before returning.

Dbmlsync API for .NET

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 323

Note
In Windows Mobile devices, it is usually necessary to set the server path property before StartServer can be
successfully called. The server path property does not need to be set in the following instances:

● Your application is in the same directory as dbmlsync.exe.

● dbmlsync.exe is in the Windows directory.

Syntax
Boolean StartServer(Int32 port, String cmdline, UInt32 timeout, out DBSC_Starttype starttype)

Parameters
● port The TCP port to check for an existing dbmlsync server. If a new server is started, it is set to

listen on this port.

● cmdline A valid command line for starting a dbmlsync server. The command line may contain only
the following options which have the same meaning that they do for the dbmlsync utility:

○ -a, -c, -dl, -do, -ek, -ep, -k, -l, -o, -os, -ot, -p, -pc+, -pc-, -pd, -pp, -q, -qi, -qc, -sc, -sp, -uc, -ud, -ui, -
um, -un, -ux, -v[cnoprsut], -wc, -wh. See “dbmlsync syntax” on page 131.

The -c option must be specified.

● timeout The maximum time in milliseconds to wait after a dbmlsync server is started for it to be ready
to accept requests. Use DBSC_INFINITY to wait forever. The DBSC_INFINITY constant is defined
within the DbmlSyncClient class and not in the namespace, so you need to preface the constant. For
example, timeout = DbmlSyncClient.DBSC_INFINITY;.

● starttype This is an 'out' parameter. If StartServer returns true then on exit, starttype is set to one of
the following values:

○ DBSC_SS_STARTED Indicates that a new dbmlsync server was started.

○ DBSC_SS_ALREADY_RUNNING Indicates that an existing dbmlsync server was found, so no
new server was started.

Returns
Returns true if the server was already running or was successfully started.

Returns false if the server was not successfully started or the server did not begin processing requests before
the timeout expired. When false is returned, you can call the GetErrorInfo method to get more information
about the failure. See “GetErrorInfo method” on page 329.

Connect method
Opens a connection with a dbmlsync server that is already running on this computer.

Dbmlsync API

324 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Syntax
Boolean Connect(String host, Int32 port, String uid, String pwd)

Remarks
The database user id and password passed in are used to validate whether this client has enough permissions
to synchronize the database. When synchronizations are performed, the user id specified with the -c option
when the dbmlsync server started is used.

Parameters
● host Reserved. Use null.

● port The TCP port on which the server is listening. Use the same port value that you specified when
the server was started using the StartServer method.

● uid A valid database user id with DBA or REMOTE DBA authority on the remote database that is to
be synchronized.

● pwd The database password for the user specified by uid.

Returns
Returns true if a connection to the server was established.

Returns false if a connection to the server could not be established. When false is returned, you can call the
GetErrorInfo method to get more information about the failure. See “GetErrorInfo method” on page 329.

Disconnect method
Breaks the connection with a dbmlsync server created using the Connect method.

Syntax
Boolean Disconnect()

Remarks
You should always call Disconnect when you are finished with a connection.

Returns
Returns true if the connection to the server is broken successfully.

Returns false if the connection to the server could not be broken. When false is returned, you can call the
GetErrorInfo method to get more information about the failure. See “GetErrorInfo method” on page 329.

Ping method
Sends a ping request to the dbmlsync server to check if the connection is good and if the server is live and
responding to requests.

Dbmlsync API for .NET

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 325

Syntax
Boolean Ping(UInt32 timeout)

Remarks
You must be connected to a server to call this method.

Parameters
● timeout The maximum number of milliseconds to wait for the server to respond to the ping request.

Use DBSC_INFINITY to wait forever. The DBSC_INFINITY constant is defined within the
DbmlSyncClient class and not in the namespace, so you need to preface the constant. For example,
timeout = DbmlSyncClient.DBSC_INFINITY;.

Returns
Returns true if a response was received from the server to the ping request.

Returns false if a response to the ping request was not received. When false is returned, you can call the
GetErrorInfo method to get more information about the failure. See “GetErrorInfo method” on page 329.

Sync method
Request that the dbmlsync server perform a synchronization.

Syntax
UInt32 Sync(string profile_name, string extra_opts)

Remarks
You must be connected to the server before calling this method.

At least one of syncName and opts must be non-null.

Parameters
● profile_name The name of a synchronization profile defined in the remote database that contains the

options for the synchronization. If syncName is null then no profile is used and the extra_opts parameter
should contain all the options for the synchronization.

● extra_opts A string formed according to the same rules used to define an option string for a
synchronization profile. The options specified in the string are added to those already in the
synchronization profile specified by profile_name. If an option in the string already exists in the profile
then the value from the string replaces the value already stored in the profile. If profile_name is null,
then extra_opts should specify all the options for the synchronization.

Returns
Returns an integer value which uniquely identifies this synchronization request. The returned value is only
valid until the client disconnects from the server.

Dbmlsync API

326 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Returns NULL_SYNCHDL if an error prevents the synchronization request from being created. When this
happens, you can call the GetErrorInfo method to get more information about the failure. See “GetErrorInfo
method” on page 329.

ShutdownServer method
Shuts down the dbmlsync server to which the client is connected.

Syntax
Boolean ShutdownServer(DBSC_ShutdownType how)

Remarks
The Shutdown method returns immediately but there may be some delay before the server actually shuts
down.

The WaitForServerShutdown method can be used to wait until the server actually shuts down. See
“WaitForServerShutdown method” on page 327.

Parameters
● how Indicates how urgently the server should be shutdown. The following values are supported:

○ DBSC_SHUTDOWN_ON_EMPTY_QUEUE Indicates that the server should complete any
outstanding synchronization requests and then shutdown. Once the server receives the shutdown
request, it does not accept any more synchronization requests.

○ DBSC_SHUTDOWN_CLEANLY Indicates that the server should shutdown cleanly, as quickly
as possible. If there are outstanding synchronization requests, they are not performed and if there is
a running synchronization it may be interrupted.

Returns
Returns true if a shutdown request was successfully sent to the server.

Returns false if a shutdown request could not be sent. When false is returned, you can call the GetErrorInfo
method to get more information about the failure. See “GetErrorInfo method” on page 329.

WaitForServerShutdown method
The WaitForServerShutdown method returns when the server has shutdown or when the timeout expires,
whichever comes first.

Syntax
Boolean WaitForServerShutdown(UInt32 timeout)

Remarks
WaitForServerShutdown can only be called after the ShutdownServer method is called. See
“ShutdownServer method” on page 327.

Dbmlsync API for .NET

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 327

Parameters
● timeout Indicates the maximum time in milliseconds to wait for the server to shutdown. Use

DBSC_INFINITY to wait forever. The DBSC_INFINITY constant is defined within the
DbmlSyncClient class and not in the namespace, so you need to preface the constant. For example,
timeout = DbmlSyncClient.DBSC_INFINITY;.

Returns
Returns true if the method returned because the server shutdown.

Returns false otherwise. When false is returned, you can call the GetErrorInfo method to get more
information about the failure. See “GetErrorInfo method” on page 329.

CancelSync method
Allows a client to cancel a synchronization request previously made using the Sync method.

Syntax
Boolean CancelSync(UInt32 hdl)

Remarks
Only synchronization requests waiting to be serviced can be canceled. The server does not cancel a
synchronization once it has begun.

A connection must be established to the server before this method can be used. This method cannot be used
if the client has disconnected from the server since the Sync method was called.

Parameters
● hdl The synchronization handle returned by the Sync method when the synchronization was requested.

Returns
Returns true if the synchronization request was successfully canceled.

Returns false if the synchronization request was not canceled. When false is returned, you can call the
GetErrorInfo method to get more information about the failure. See “GetErrorInfo method” on page 329.

GetEvent method
As the dbmlsync server runs a synchronization it generates a series of events that contain information about
the progress of the synchronization. These events are sent from the server to the DbmlsyncClient class, which
queues them. When the GetEvent method is called, the next event in the queue is returned if there is one
waiting.

Syntax
DBSC_GetEventRet GetEvent(out DBSC_Event ev, UInt32 timeout)

Dbmlsync API

328 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
If there are no events waiting in the queue, this method waits until an event is available or until the specified
timeout has expired before returning.

The types of event that are generated for a synchronization can be controlled using properties. See
“SetProperty method” on page 332.

Parameters
● ev If the return value is DBSC_GETEVENT_OK then the event is filled in with information about

the event that has been retrieved. See “DBSC_Event structure” on page 320.

● timeout Specifies the maximum number of milliseconds to wait if no event is immediately available
to return. Use DBSC_INFINITY to wait forever. The DBSC_INFINITY constant is defined within the
DbmlSyncClient class and not in the namespace, so you need to preface the constant. For example,
timeout = DbmlSyncClient.DBSC_INFINITY;.

Returns
Returns one of the following:

Return value Description

DBSC_GETEVENT_OK Indicates that an event was successfully retrieved.

DBSC_GETE-
VENT_TIMED_OUT

Indicates that the timeout expired without any event being available
to return.

DBSC_GETEVENT_FAILED Indicates that no event was returned because of an error condition.
When DBSC_GETEVENT_FAILED is returned, you can call the
GetErrorInfo method to get more information about the failure. See
“GetErrorInfo method” on page 329.

GetErrorInfo method
Use this method to retrieve additional information about the failure immediately after another method in the
interface fails.

Syntax
DBSC_ErrorInfo GetErrorInfo()

Returns
Returns a pointer to a DBSC_ErrorInfo structure that contains information about the failure. The contents
of this structure may be overwritten the next time any class method is called. The DBSC_ErrorInfo structure
is defined as follows:

 public struct DBSC_ErrorInfo
 {
 public DBSC_ErrorType type;

Dbmlsync API for .NET

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 329

 public String str1;
 public String str2;
 public Int32 val1;
 public Int32 val2;
 public UInt32 hdl1;
 }

Remarks
The type field contains a value that indicates the reason for the failure. Currently, type may take the following
values:

Type value Description

DBSC_ERR_OK No error occurred.

DBSC_ERR_NOT_INITIALIZED The class has not been initialized by calling the init method.

DBSC_ERR_ALREADY_INITIALIZED The init method was called on a class that was already ini-
tialized.

DBSC_ERR_NOT_CONNECTED No connection to a dbmlsync server is in place.

DBSC_ERR_CANT_RESOLVE_HOST Cannot resolve host information.

DBSC_ERR_CONNECT_FAILED Connection failed.

DBSC_ERR_INITIALIZ-
ING_TCP_LAYER

Error initializing TCP layer.

DBSC_ERR_ALREADY_CONNECTED Connection failed because a connection was already in
place.

DBSC_ERR_PROTOCOL_ERROR This is an internal error.

DBSC_ERR_CONNECTION_REJEC-
TED

The connection was rejected by the dbmlsync server.

DBSC_ERR_TIMED _OUT The timeout expired while waiting for a response from the
server.

DBSC_ERR_STILL_CONNECTED Could not Fini the class because it is still connected to the
server.

DBSC_ERR_SYNC_NOT_CANCELED The server could not cancel the synchronization request,
probably because the synchronization was already in pro-
gress.

DBSC_ERR_INVALID_VALUE An invalid property value was passed to the SetProperty
method.

Dbmlsync API

330 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Type value Description

DBSC_ERR_INVALID_PROP_NAME The specified property name is not valid.

DBCS_ERR_VALUE_TOO_LONG The property value is too long. Properties must be less than
DBCS_MAX_PROPERTY_LEN bytes long.

DBSC_ERR_SERVER_SIDE_ERROR There was an error on the server.

DBSC_ERR_CREATE_PROC-
ESS_FAILED

Unable to start a new dbmlsync server.

DBSC_ERR_READ_FAILED Error occurred while reading data from the dbmlsync serv-
er.

DBSC_ERR_WRITE_FAILED Error occurred while sending data to the dbmlsync server.

DBSC_ERR_NO_SERVER_RESPONSE Failed to receive a response from the server that is required
to complete the requested action.

DBSC_ERR_UID_OR_PWD_TOO_LO
NG

The UID or PWD specified is too long.

DBSC_ERR_UID_OR_PWD_NOT_VA
LID

The UID or PWD specified is not valid.

DBSC_ERR_INVALID_PARAMETER One of the parameters passed to the function was not valid.

DBSC_ERR_WAIT_FAILED An error occurred while waiting for the server to shutdown.

DBSC_SHUTDOWN_NOT_CALLED WaitForServerShutdown method was called without first
calling the ShutdownServer method.

DBSC_ERR_NO_SYNC_ACK A synchronization request was sent to the server but no ac-
knowledgement was received. There is no way to tell if the
server received the request.

DBSC_ERR_CONNECTION_REJEC-
TED

str1 points to a string returned by the server which may
provide more information about why the connection at-
tempt was rejected.

DBSC_ERR_NO_SYNC_ACK hdl1 is the handle for the sync request that was sent. If the
server received the request, this handle can be used to iden-
tify events for the synchronization retrieved using the Ge-
tEvent method.

DBSC_ERR_SERVER_SIDE_ERROR str1 points to a string returned by the server which may
provide more information about the error.

Dbmlsync API for .NET

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 331

str1, str2, val1, val2 and hdl1 contain additional information about the failure and their meaning depends on
the type value. For most type values there is no useful information in any of these fields. The exceptions are:

● DBSC_ERR_CONNECTION_REJECTED
● DBSC_ERR_NO_SYNC_ACK
● DBSC_ERR_SERVER_SIDE_ERROR

SetProperty method
Allows properties to be set on a class instance that modify various aspects of its behavior.

Syntax
Boolean SetProperty(String name, String Value)

Remarks
Changes to property values only affect synchronization requests made after the property value was changed.

The server path property can be set to specify the directory from which the client should start
dbmlsync.exe when the StartServer method is called. When this property is not set, dbmlsync.exe is found
using the path environment variable. See “StartServer method” on page 323.

The following properties control the types of events that are returned by the “GetEvent
method” on page 328. By disabling events that you do not require you may be able to improve performance.
An event type is enabled by setting the corresponding property to "1" and disabled by setting the property
to "0". The following is a list of the available properties and the event type that each controls:

Property name Event type(s) controlled De-
fault

enable errors DBSC_EVENTTYPE_ERROR_MSG 1

enable warnings DBSC_EVENTTYPE_WARNING_MSG 1

enable info msgs DBSC_EVENTTYPE_INFO_MSG 1

enable progress DBSC_EVENTTYPE_PROGRESS_INDEX 0

enable progress
text

DBSC_EVENTTYPE_PROGRESS_TEXT 0

enable title DBSC_EVENTTYPE_TITLE 0

enable sync start DBSC_EVENTTYPE_SYNC_START 1

enable sync done DBSC_EVENTTYPE_SYNC_DONE 1

Dbmlsync API

332 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Parameters
● name The name of the property to set. This must be one of the property names defined above.

● value The value to set the property to.

Returns
Returns true if the property was successfully set.

Returns false if the property was not successfully set. When false is returned, you can call the GetErrorInfo
method to get more information about the failure. See “GetErrorInfo method” on page 329.

GetProperty method
Retrieves the current value of a property.

Syntax
Boolean GetProperty(String name, out String Value)

Parameters
● name The name of the property to retrieve the value of. For a list of valid property names, see

“SetProperty method” on page 332.

● value On exit, the value of the property is stored in this variable.

Returns
Returns true if the property was successfully retrieved.

Returns false if the property could not be retrieved. When false is returned, you can call the GetErrorInfo
method to get more information about the failure. See “GetErrorInfo method” on page 329.

Fini method
Frees all resources used by this instance of the class.

Syntax
Boolean Fini()

Remarks
You must call the Fini method before you delete an instance of the class.

Before you call the Fini method, you must call the Disconnect method if the instance is connected to a server.

Returns
Returns true if the method was successful.

Dbmlsync API for .NET

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 333

Returns false if the method was not successful. When false is returned, you can call the GetErrorInfo method
to get more information about the failure. See “GetErrorInfo method” on page 329.

DBSC_Event structure
The DBSC_Event structure contains information about a synchronization that has been requested. The
structure is defined as follows:

 public struct DBSC_Event
 {
 public UInt32 hdl;
 public DBSC_EventType type;
 public String str1;
 public String str2;
 public Int32 val1;
 public Int32 val2;
 }

The hdl field identifies the synchronization request for which the structure contains information. This value
matches the value returned by the Sync method.

The type field identifies the type of event being reported.

The remaining fields contain additional data, the nature of which depends on the value of the type field. The
following is a list of the possible type values and the meaning of the remaining fields associated with each:

Value Description

DBSC_EVENTTYPE_ER-
ROR_MSG

An error was generated by the synchronization and str1 contains the
text of the error.

DBSC_EVENTTYPE_WARN-
ING_MSG

A warning was generated by the synchronization and str1 contains
the text of the warning.

DBSC_EVENTTYPE_IN-
FO_MSG

An information message was generated by the synchronization and
str1 contains the text of the message.

DBSC_EVENTTYPE_PRO-
GRESS_INDEX

Provides information for updating a progress bar. val1 contains the
new progress value. The percent done can be calculated by dividing
val1 by 1000.

DBSC_EVENTTYPE_PRO-
GRESS_TEXT

The text associated with the progress bar has been updated and con-
tains the new value.

DBSC_EVENTTYPE_TITLE The title for the synchronization window/control has changed and
str1 contains the new title.

DBSC_EVEN-
TTYPE_SYNC_START

The synchronization has begun. There is no additional information
associated with this event.

Dbmlsync API

334 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Value Description

DBSC_EVEN-
TTYPE_SYNC_DONE

The synchronization is complete and val1 contains the exit code from
the synchronization. A 0 value indicates success. A non-zero value
indicates that the synchronization failed.

Dbmlsync API for .NET

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 335

336

Dbmlsync integration component (deprecated)

Contents
Introduction to Dbmlsync integration component .. 338
Setting up the Dbmlsync integration component ... 339
Dbmlsync integration component methods ... 340
Dbmlsync integration component properties ... 342
Dbmlsync integration component events ... 347
IRowTransferData interface ... 361

Note
The Dbmlsync integration component has been deprecated. In its place, use the dbmlsync programming
interface. See “Dbmlsync API” on page 307.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 337

Introduction to Dbmlsync integration component
Note
The Dbmlsync integration component has been deprecated. In its place, use the dbmlsync programming
interface. See “Dbmlsync API” on page 307.

The Dbmlsync integration component is an ActiveX that you can use to add synchronization to your
applications. It provides a set of properties, events, and methods to regulate the behavior of SQL Anywhere
clients.

The Dbmlsync integration component is available in two forms, both of which expose the same properties,
events and methods:

● A visual component that provides an easy way to integrate the standard dbmlsync user interface into
your applications.

● A non-visual component that allows you to access the component's functionality with no user interface
or with a custom user interface that you create yourself.

Using the Dbmlsync integration component, your application can initiate synchronization, receive
information about the progress of a synchronization, and implement special processing based on
synchronization events.

DBTools interface for dbmlsync
As an alternative to the Dbmlsync integration component, you can use DBTools interface for dbmlsync.

See “Database tools interface” [SQL Anywhere Server - Programming].

Supported platforms
You can use the Dbmlsync integration component on all MobiLink supported Windows operating systems,
including Windows Mobile versions supporting ActiveX.

Supported development environments include Microsoft Visual Basic 6.0, eMbedded Visual Basic, and
Visual Studio.

For a list of supported platforms, see http://www.sybase.com/detail?id=1002288.

Dbmlsync integration component (deprecated)

338 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

http://www.sybase.com/detail?id=1002288

Setting up the Dbmlsync integration component
The Dbmlsync integration component is an ActiveX and can be used in a wide variety of programming
environments. You should consult the documentation for your programming environment for information
about how to set it up.

Setting up the Dbmlsync integration component

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 339

Dbmlsync integration component methods
The following are methods implemented by the DbmlsyncCOM.Dbmlsync class.

Run method
Begins one or more synchronizations using dbmlsync command line options.

Syntax
Run(ByVal cmdLine As String)
Member of DbmlsyncCOM.Dbmlsync

Parameters
cmdLine A string specifying dbmlsync options.

Remarks
For a list of options, see “dbmlsync syntax” on page 131.

The run method returns immediately and does not wait for the synchronization to complete. You can use the
DoneExecution event to determine when your synchronization is complete.

The cmdLine parameter should contain the same options you would use if you were performing a
synchronization with the dbmlsync command line utility. For example, the following command line and Run
method invocation are equivalent:

dbmlsync -c uid=DBA;pwd=sql

dbmlsync1.Run "-c uid=DBA;pwd=sql"

Example
The following example initiates a synchronization for a remote database called remote1.

dbmlsync1.Run "-c eng=remote1;uid=DBA;pwd=sql"

Stop method
Requests active synchronizations to terminate.

Syntax
Stop()
Member of DbmlsyncCOM.Dbmlsync

Remarks
The Stop method issues a request to terminate any active synchronizations. It returns immediately.

The stop button built into the visual Dbmlsync integration component automatically invokes this method.

Dbmlsync integration component (deprecated)

340 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Example
The following example stops synchronizations being run by the Dbmlsync integration component instance
dbmlsync1.

dbmlsync1.Stop

Dbmlsync integration component methods

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 341

Dbmlsync integration component properties
Dbmlsync integration component properties let you customize the behavior of the component and examine
the state of a running synchronization.

Path property
Specifies the location of dbmlsync.exe.

Syntax
Public Property Path() As String
Member of DbmlsyncCOM.Dbmlsync

Remarks
You do not need to set this property if dbmlsync.exe is located in a directory specified by the Windows PATH
environment variable.

Example
The following example sets the path of a Dbmlsync integration component instance.

dbmlsync1.Path = "c:\program files\SQL Anywhere 11\bin32"

UploadEventsEnabled property
Enables the UploadRow event.

Syntax
Public Property UploadEventsEnabled() As Boolean
Member of DbmlsyncCOM.Dbmlsync

Remarks
If you handle the UploadRow event, you should set this property to true. The default is false, which disables
the UploadRow event. Setting the property to true reduces performance.

See “UploadRow event” on page 359.

Example
The following example sets UploadEventsEnabled to true:

dbmlsync1.UploadEventsEnabled = True

DownloadEventsEnabled property
Enables the DownloadRow event.

Dbmlsync integration component (deprecated)

342 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Syntax
Public Property DownloadEventsEnabled() As Boolean
Member of DbmlsyncCOM.Dbmlsync

Remarks
If you handle the DownloadRow event, you should set this property to true. The default is false, which
disables the DownloadRow event. Setting the property to true reduces performance.

See “DownloadRow event” on page 350.

Example
The following example sets DownloadEventsEnabled to true:

dbmlsync1.DownloadEventsEnabled = True

ErrorMessageEnabled property
Prevents the Message event from being called for messages of type MsgError.

Syntax
Public Property ErrorMessageEnabled() As Boolean
Member of DbmlsyncCOM.Dbmlsync

Remarks
If you do not handle error information in the Message event, you should set this property to false to improve
performance. The default is true, which enables messages of type MsgError to trigger the Message event.

See “Message event” on page 354.

Example
The following example sets ErrorMessageEnabled to false:

dbmlsync1.ErrorMessageEnabled = False

WarningMessageEnabled property
Prevents the Message event from being called for messages of type MsgWarning.

Syntax
Public Property WarningMessageEnabled() As Boolean
Member of DbmlsyncCOM.Dbmlsync

Remarks
If you do not handle warning information in the Message event, you should set this property to false to
improve performance. The default is true, which enables messages of type MsgWarning to trigger the
Message event.

Dbmlsync integration component properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 343

See “Message event” on page 354.

Example
The following example sets WarningMessageEnabled to false:

dbmlsync1.WarningMessageEnabled = False

InfoMessageEnabled property
Prevents the Message event from being called for messages of type MsgInfo.

Syntax
Public Property InfoMessageEnabled() As Boolean
Member of DbmlsyncCOM.Dbmlsync

Remarks
If you do not handle general progress information in the Message event, you should set this property to false
to improve performance. The default is true, which enables messages of type MsgInfo to trigger the Message
event.

See “Message event” on page 354.

Example
The following example sets InfoMessageEnabled to false:

dbmlsync1.InfoMessageEnabled = False

DetailedInfoMessageEnabled property
Prevents the Message event from being called for messages of type MsgDetailedInfo.

Syntax
Public Property DetailedInfoMessageEnabled() As Boolean
Member of DbmlsyncCOM.Dbmlsync

Remarks
If you do not handle detailed progress information in the Message event, you should set this property to false
to improve performance. The default is true, which enables messages of type MsgDetailedInfo to trigger the
Message event.

See “Message event” on page 354.

Example
The following example sets DetailedInfoMessageEnabled to false:

dbmlsync1.DetailedInfoMessageEnabled = False

Dbmlsync integration component (deprecated)

344 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

UseVB6Types property
If you are using Visual Basic 6, set this property to true to simplify handling of row data returned by the
UploadRow and DownloadRow events.

Syntax
Public Property DetailedInfoMessageEnabled() As Boolean
Member of DbmlsyncCOM.Dbmlsync

Remarks
Visual Basic 6 does not support unsigned 32 bit values and any 64 bit values. Data of these types may be
returned by the ColumnValue property of an IRowTransferData object. When UseVB6Types is set to true,
data of these types is converted to other types supported by Visual Basic 6 for easier processing. Uint32
values are converted to double; 64 bit values are converted to strings.

See also
● “IRowTransferData interface” on page 361
● “UploadRow event” on page 359
● “DownloadRow event” on page 350

Example
The following example enables data type coercion for a Dbmlsync integration component instance used in
Visual Basic 6.0:

dbmlsync1.UseVB6Types = True

ExitCode property
Returns the exit code from synchronizations started by the most recent Run method invocation.

Syntax
Public Property ExitCode() As Integer
Member of DbmlsyncCOM.Dbmlsync

Remarks
The ExitCode property returns the exit code for the synchronizations started by the last Run method
invocation. 0 indicates successful synchronizations. Any other value indicates that a synchronization failed.

Note
Retrieving the value of this property before the DoneExecution event is triggered may result in a meaningless
exit code value.

Example
The following example displays the exit code from the most recent synchronization attempt when the
DoneExecution event is triggered.

Dbmlsync integration component properties

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 345

Private Sub dbmlsync1_DoneExecution() Handles dbmlsync1.DoneExecution
 MsgBox(dbmlsync1.ExitCode)
 End Sub

EventChannelSize property
Specifies the size of an internal buffer used for processing method calls.

Syntax
Public Property EventChannelSize() As Integer
Member of DbmlsyncCOM.Dbmlsync

Remarks
Most users never have to change this property.

DispatchChannelSize property
Specifies the size of an internal buffer used for processing event information.

Syntax
Public Property DispatchChannelSize() As Integer
Member of DbmlsyncCOM.Dbmlsync

Remarks
Most users never have to change this property.

Dbmlsync integration component (deprecated)

346 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Dbmlsync integration component events
Events provide a mechanism for client applications to receive and act on information about the progress of
a synchronization.

BeginDownload event
The BeginDownload event is triggered at the beginning of the download stage of a synchronization.

Syntax
Public Event BeginDownload()
Member of DbmlsyncCOM.Dbmlsync

Remarks
Use this event to add custom actions at the beginning of the download stage of a synchronization.

Example
The following Visual Basic .NET example outputs a message when the BeginDownload event is triggered.

Private Sub dbmlsync1_BeginDownload()
Handles dbmlsync1.BeginDownload
 MsgBox("Beginning Download")
End Sub

BeginLogScan event
The BeginLogScan event is triggered immediately before dbmlsync scans the transaction log to assemble
the upload. This event is not fired for scripted uploads.

Syntax
Public Event BeginLogScan(ByVal rescanLog As Boolean)
Member of DbmlsyncCOM.Dbmlsync

Parameters
rescanLog If this is the first time the transaction log has been scanned for this synchronization, the value
is false; otherwise it is true. The log is scanned twice when the MobiLink server and dbmlsync have different
information about where scanning should begin.

Remarks
Use this event to add custom actions immediately before the transaction log is scanned for upload.

Example
The following Visual Basic .NET example outputs a message when the BeginLogScan event is triggered.

Dbmlsync integration component events

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 347

Private Sub dbmlsync1_BeginLogScan(
 ByVal rescanLog As Boolean
)
Handles dbmlsync1.BeginLogScan
 MsgBox("Begin Log Scan")
End Sub

BeginSynchronization event
The BeginSynchronization event is triggered at the beginning of each synchronization.

Syntax
Public Event BeginSynchronization(_
 ByVal userName As String, _
 ByVal pubNames As String _
)
Member of DbmlsyncCOM.Dbmlsync

Parameters
userName The MobiLink user for which you are synchronizing.

pubNames The publication being synchronized. If there is more than one publication this is a comma-
separated list.

Remarks
Use this event to add custom actions at the beginning of a synchronization.

Example
The following Visual Basic .NET example outputs a message when the BeginSynchronization event is
triggered. The message outputs the user and publication names.

Private Sub dbmlsync1_BeginSynchronization(
 ByVal userName As String,
 ByVal pubNames As String
)
Handles dbmlsync1.BeginSynchronization
 MsgBox("Beginning synchronization for: " + userName _
 + " publication: " + pubNames)
End Sub

BeginUpload event
The BeginUpload event is triggered immediately before the transmission of the upload.

Dbmlsync integration component (deprecated)

348 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Syntax
Public Event BeginUpload()
Member of DbmlsyncCOM.Dbmlsync

Remarks
Use this event to add custom actions immediately before the transmission of the upload to the MobiLink
server.

Example
The following Visual Basic .NET example outputs a message when the BeginUpload event is triggered.

Private Sub dbmlsync1_BeginUpload()
Handles dbmlsync1.BeginUpload
 MsgBox("Begin Upload")
End Sub

ConnectMobilink event
The ConnectMobilink event is triggered immediately before the component connects to the MobiLink server.

Syntax
Public Event ConnectMobilink()
Member of DbmlsyncCOM.Dbmlsync

Remarks
Use this event to add custom actions immediately before the remote database connects to the MobiLink
server. At this stage, dbmlsync has generated the upload.

The ConnectMobiLink event occurs after the BeginSynchronization event.

Example
The following Visual Basic .NET example outputs a message when the ConnectMobilink event is triggered.

Private Sub dbmlsync1_ConnectMobilink()
Handles dbmlsync1.ConnectMobilink
 MsgBox("Connecting to the MobiLink server")
End Sub

DisconnectMobilink event
The DisconnectMobilink event is triggered immediately after the component disconnects from the MobiLink
server.

Dbmlsync integration component events

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 349

Syntax
Public Event DisconnectMobilink()
Member of DbmlsyncCOM.Dbmlsync

Remarks
Use this event to add custom actions immediately after the remote database disconnects from the MobiLink
server.

Example
The following Visual Basic .NET example outputs a message when the DisconnectMobilink event is
triggered.

Private Sub dbmlsync1_DisconnectMobilink()
Handles dbmlsync1.DisconnectMobilink
 MsgBox("Disconnected from the MobiLink server")
End Sub

DoneExecution event
The DoneExecution event is triggered when all synchronizations started by a Run method invocation have
completed.

Syntax
Public Event DoneExecution()
Member of DbmlsyncCOM.Dbmlsync

Remarks
Use this event to add custom actions when all synchronizations started by a Run method invocation have
completed.

Example
Using the ExitCode property, the following Visual Basic .NET example outputs the exit code from the
synchronizations started by the last Run method invocation:

Private Sub dbmlsync1_DoneExecution()
Handles dbmlsync1.DoneExecution
 MsgBox(dbmlsync1.ExitCode)
End Sub

DownloadRow event
The DownloadRow event is triggered when a row is downloaded from the MobiLink server.

Dbmlsync integration component (deprecated)

350 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Syntax
Public Event DownloadRow(
 ByVal rowData As DbmlsyncCOM.IRowTransferData
)
Member of DbmlsyncCOM.Dbmlsync

Parameters
rowData An IRowTransferData object containing details about the downloaded row.

For more information about the IRowTransferData interface, see “IRowTransferData
interface” on page 361.

Remarks
Use this event to examine rows being downloaded from the MobiLink server.

To enable the DownloadRow event, use the DownloadEventsEnabled property.

See “DownloadEventsEnabled property” on page 342.

When a delete operation is encountered in the download row event, only primary key column values are
available.

Example
The following Visual Basic .NET example iterates through all the columns for a row in the DownloadRow
event. It determines if a column value is null, and outputs column names and values.

Private Sub dbmlsync1_DownloadRow(
 ByVal rowData As DbmlsyncCOM.IRowTransferData
)
Handles dbmlsync1.DownloadRow
Dim liX As Integer
For liX = 0 To rowData.ColumnCount - 1
 If VarType(rowData.ColumnValue(liX)) <> VariantType.Null Then
 ' output the non-null column value
 MsgBox("Column " + CStr(liX) + ": " + rowData.ColumnName(liX) + _
 ", " + CStr(rowData.ColumnValue(liX)))
 Else
 ' output 'NULL' for the column value
 MsgBox("Column " + CStr(liX) + ": " + rowData.ColumnName(liX) + _
 ", " + "NULL")
 End If
Next liX
End Sub

EndDownload event
The EndDownload event is triggered at the end of the download stage of the synchronization process.

Syntax
Public Event EndDownload(
 long upsertRows,

Dbmlsync integration component events

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 351

 long deleteRows
)
Member of DbmlsyncCOM.Dbmlsync

Parameters
upsertRows Indicates the number of rows updated or inserted by the download.

deleteRows Indicates the number of rows deleted by the download.

Remarks
Use this event to add custom actions at the end of the download stage of synchronization.

Example
The following Visual Basic .NET example outputs a message and the number of inserted, updated, and
deleted rows when the EndDownload event is triggered.

Private Sub dbmlsync1_EndDownload(
 ByVal upsertRows As Integer,
 ByVal deleteRows As Integer
)
Handles dbmlsync1.EndDownload
 MsgBox("Download complete." + _
 CStr(upsertRows) + "Rows updated or inserted" + _
 CStr(deleteRows) + "Rows deleted")
End Sub

EndLogScan event
The EndLogScan event is triggered immediately after the transaction log is scanned for upload. This event
is not fired for scripted uploads.

Syntax
Public Event EndLogScan()
Member of DbmlsyncCOM.Dbmlsync

Remarks
Use this event to add custom actions immediately after the transaction log is scanned for upload.

Example
The following Visual Basic .NET example outputs a message when the EndLogScan event is triggered.

Private Sub dbmlsync1_EndLogScan()
Handles dbmlsync1.EndLogScan
 MsgBox("Scan of transaction log complete...")
End Sub

Dbmlsync integration component (deprecated)

352 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

EndSynchronization event
The EndSynchronization event is triggered when a synchronization is complete.

Syntax
Public Event EndSynchronization(
 ByVal exitCode As Integer,
 ByRef restart As Boolean
)
Member of DbmlsyncCOM.Dbmlsync

Parameters
exitCode If set to anything other than zero, this indicates that a synchronization error occurred.

restart This value is set to false when the event is called. If the event changes its value to true, dbmlsync
restarts the synchronization.

Remarks
Use this event to add custom actions when a synchronization is complete.

Example
The following Visual Basic .NET example uses the EndSynchronization event to restart up to five failed
synchronization attempts. If all restart attempts failed, the message "All restart attempts failed" is output,
along with the exit code. If a synchronization is successful, the message "Synchronization succeeded " is
output, along with the exit code.

' Global variable for the number of restarts
Dim numberOfRestarts As Integer
Private Sub dbmlsync1_EndSynchronization(
 ByVal ExitCode As Integer,
 ByRef restart As Boolean
)
Handles dbmlsync1.EndSynchronization
 If numberOfRestarts < 5 Then
 MsgBox("Restart Number: " + CStr(numberOfRestarts + 1))
 If ExitCode <> 0 Then
 ' restart the failed synchronization
 restart = True
 numberOfRestarts = numberOfRestarts + 1
 Else
 ' the last synchronization succeeded
 MsgBox("Synchronization succeeded. " + _
 "Exit code: " + CStr(ExitCode))
 End If
 Else
 MsgBox("All restart attempts failed. " + _
 "Exit code: " + CStr(ExitCode))
 End If
End Sub

Dbmlsync integration component events

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 353

EndUpload event
The EndUpload event is triggered immediately after transmission of the upload to the MobiLink server.

Syntax
Public Event EndUpload()
Member of DbmlsyncCOM.Dbmlsync

Remarks
Use this event to add custom actions immediately after transmission of the upload from dbmlsync to the
MobiLink server.

Example
The following Visual Basic .NET example outputs a message when the EndUpload event is triggered.

Private Sub dbmlsync1_EndUpload()
Handles dbmlsync1.EndUpload
 MsgBox("End Upload")
End Sub

Message event
The Message event is triggered when dbmlsync logs information.

Syntax
Public Event Message(_
 ByVal msgClass As DbmlsyncCOM.MessageClass, _
 ByVal msgID As Integer, ByVal msg As String_
)
Member of DbmlsyncCOM.Dbmlsync

Parameters
msgClass indicates the severity of the message. Values can be:

● MsgInfo A message containing progress information about the synchronization.

● MsgDetailedInfo Like MsgInfo, but containing more details.

● MsgWarning A message indicating a potential problem but one that does not prevent successful
synchronization.

● MsgError A message indicating a problem that prevents successful synchronization.

msgID A unique identifier for the message. If msgID is zero, the message does not have a unique identifier.

msg The text of the message.

Dbmlsync integration component (deprecated)

354 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Remarks
Use this event to receive information logged by dbmlsync. If you want to add special processing when a
specific message is generated, check for it by MsgID. That way, your code continues to work if the text of
the message changes.

Example
The following Visual Basic .NET example adds messages logged by dbmlsync to a listbox control.

Private Sub dbmlsync1_Message(
 ByVal msgClass As DbmlsyncCOM.MessageClass,
 ByVal msgId As Integer, ByVal msg As String
)
Handles dbmlsync1.Message

 Select Case msgClass
 Case DbmlsyncCOM.MessageClass.MsgError
 lstMessages.Items.Add("Error: " + msg)
 Case DbmlsyncCOM.MessageClass.MsgWarning
 lstMessages.Items.Add("Warning: " + msg)
 Case DbmlsyncCOM.MessageClass.MsgInfo
 lstMessages.Items.Add("Info: " + msg)
 Case DbmlsyncCOM.MessageClass.MsgDetailedInfo
 lstMessages.Items.Add("DetInfo: " + msg)
 End Select
End Sub

Example
The following Visual Basic .NET example sets up the Message event to handle errors. Error messages are
added to a ListBox control called lstMessages.

Private Sub dbmlsync1_Message(ByVal msgClass As DbmlsyncCOM.MessageClass,
ByVal msgId As Integer, ByVal msg As String) Handles dbmlsync1.Message
 If msgClass = DbmlsyncCOM.MessageClass.MsgError Then
 lstMessages.Items.Add("Error: " + msgId.ToString() + " " + msg)
 End If
End Sub

To see possible error id values, test run the Dbmlsync integration component. For example, if dbmlsync
returns the error "Unable to connect to MobiLink server", the Message event inserts the following entry in
lstMessages:

Error: 14173 Unable to connect to MobiLink server.

Now, you can associate the error "Unable to connect to MobiLink server" with the error id 14173. The
following example sets up the Dbmlsync integration component to retry a synchronization whenever error
14173 occurs. The Message event sets a variable called restartSynchronization and resets a variable called
numberOfRestarts in response to error 14173. The EndSynchronization event retries the synchronization up
to five times.

' variables for restarting synchronization
Dim numberOfRestarts As Integer = 0
Dim restartSynchronization As Integer = 0

Private Sub dbmlsync1_Message

Dbmlsync integration component events

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 355

(
 ByVal msgClass As DbmlsyncCOM.MessageClass,
 ByVal msgId As Integer, ByVal msg As String) Handles dbmlsync1.Message

 If msgClass = DbmlsyncCOM.MessageClass.MsgError Then
 lstMessages.Items.Add("Error: " + msgId.ToString() + " " + msg)
 If msgId = 14173 Then
 restartSynchronization = 1
 numberOfRestarts = 0
 End If
 End If
End Sub
Private Sub dbmlsync1_EndSynchronization(ByVal ExitCode As Integer, _
 ByRef restart As Boolean _
) Handles dbmlsync1.EndSynchronization

 If restartSynchronization = 1 Then
 If numberOfRestarts < 5 Then
 restart = True
 numberOfRestarts = numberOfRestarts + 1
 End If
 End If
End Sub

ProgressIndex event
The ProgressIndex event is triggered when dbmlsync updates its progress bar.

Syntax
Public Event ProgressIndex(_
 ByVal index As Integer, _
 ByVal max As Integer _
)
Member of DbmlsyncCOM.Dbmlsync

Parameters
index An integer representing the progress of the synchronization.

max The maximum progress value. The percentage done = index/max x 100. If this value is zero,
the maximum value has not changed since the last time the event was fired.

Remarks
Use this event to update a progress indicator such as a progress bar.

Example
The following Visual Basic .NET example updates a progress bar control based on the Index value. The
maximum index value is set at the beginning of the synchronization.

Private Sub dbmlsync1_ProgressIndex(
 ByVal index As Integer,
 ByVal max As Integer

Dbmlsync integration component (deprecated)

356 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

)
Handles dbmlsync1.ProgressIndex
 If max <> 0 Then
 ProgressBar1.Maximum = max
 End If
 ProgressBar1.Value = index
End Sub

ProgressMessage event
The ProgressMessage event is triggered when synchronization progress information changes.

Syntax
Public Event ProgressMessage(ByVal msg As String)
Member of DbmlsyncCOM.Dbmlsync

Parameters
msg The new progress string.

Remarks
Use this event to receive the string normally displayed with the dbmlsync progress bar.

Example
The following Visual Basic .NET example sets the value of a progress label when the ProgressMessage
event is triggered.

Private Sub dbmlsync1_ProgressMessage(
 ByVal msg As String
)
Handles dbmlsync1.ProgressMessage
 lblProgressMessage.Text = msg
End Sub

SetTitle event
The SetTitle event is triggered when status information changes. In the dbmlsync utility, this information is
displayed in the title bar.

Syntax
Public Event SetTitle(ByVal title) As String
)
Member of DbmlsyncCOM.Dbmlsync

Parameters
title The title in the dbmlsync window title bar.

Dbmlsync integration component events

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 357

Remarks
Use this event to receive the title normally seen on the dbmlsync window when its value changes.

Example
The following Visual Basic .NET example sets the title of a Windows form when the SetTitle event is
triggered.

Private Sub dbmlsync1_SetTitle(
 ByVal title As String
)
Handles dbmlsync1.SetTitle
 Me.Text = title
End Sub

UploadAck event
The UploadAck event is triggered after the component has received acknowledgement of the upload from
the MobiLink server.

Syntax
Public Event UploadAck(_
 ByVal status As DbmlsyncCOM.UploadAckStatus _
)
Member of DbmlsyncCOM.Dbmlsync

Parameters
status Indicates the status returned by MobiLink to the remote after the upload is processed. Its value is
one of:

● StatCommitted Indicates that the upload was received by the MobiLink server and committed.

● StatRetry Indicates that the MobiLink server and the remote database had different values for the log
offset from which the upload should start. The upload was not committed by the MobiLink server. The
component attempts to send another upload starting from the MobiLink server's log offset.

● StatFailed Indicates that the MobiLink server did not commit the upload.

Remarks
Use this event to add custom actions after dbmlsync has received acknowledgement of the upload from the
MobiLink server.

Example
The following Visual Basic .NET example outputs a message if the upload has failed when the UploadAck
event is triggered.

Private Sub dbmlsync1_UploadAck(ByVal status As DbmlsyncCOM.UploadAckStatus)
Handles dbmlsync1.UploadAck

Dbmlsync integration component (deprecated)

358 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 If status = DbmlsyncCOM.UploadAckStatus.StatFailed Then
 MsgBox("Upload Failed")
 End If
End Sub

UploadRow event
The UploadRow event is triggered when a row is uploaded to the MobiLink server.

Syntax
Public Event UploadRow(
 ByVal rowData As DbmlsyncCOM.IRowTransferData
)
Member of DbmlsyncCOM.Dbmlsync

Parameters
rowData An IRowTransferData object containing details about the uploaded row.

See “IRowTransferData interface” on page 361.

Remarks
Use this event to examine rows being uploaded to the MobiLink server.

To enable the UploadRow event, use the UploadEventsEnabled property. See “UploadEventsEnabled
property” on page 342.

Example
The following Visual Basic .NET example iterates through all the columns for a row in the UploadRow
event. It determines if a column value is null and outputs column names and values.

Private Sub dbmlsync1_UploadRow(
 ByVal rowData As DbmlsyncCOM.IRowTransferData
)
Handles dbmlsync1.UploadRow
Dim liX As Integer
For liX = 0 To rowData.ColumnCount - 1
 If VarType(rowData.ColumnValue(liX)) <> VariantType.Null Then
 ' output the non-null column value
 MsgBox("Column " + CStr(liX) + ": " + rowData.ColumnName(liX) + _
 ", " + CStr(rowData.ColumnValue(liX)))
 Else
 ' output 'NULL' for the column value
 MsgBox("Column " + CStr(liX) + ": " + rowData.ColumnName(liX) + _
 ", " + "NULL")
 End If
Next liX
End Sub

Dbmlsync integration component events

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 359

WaitingForUploadAck event
The WaitingForUploadAck event is triggered when the component begins waiting for upload
acknowledgement from the MobiLink server.

Syntax
Public Event WaitingForUploadAck()
Member of DbmlsyncCOM.Dbmlsync

Remarks
Use this event to add custom actions when the component is waiting for upload acknowledgement from the
MobiLink server.

Example
The following Visual Basic .NET example outputs a message when the WaitingForUploadAck event is
triggered.

Private Sub dbmlsync1_WaitingForUploadAck()
Handles dbmlsync1.WaitingForUploadAck
 MsgBox("Waiting for Upload Acknowledgement")
End Sub

Dbmlsync integration component (deprecated)

360 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

IRowTransferData interface
Public Interface IRowTransferData
Member of DbmlsyncCOM

The UploadRow and DownloadRow events accept DbmlsyncCOM.IRowTransferData objects as parameters
to examine uploaded and downloaded rows. This interface defines detailed row information including the
table name, row operation, and column names.

RowOperation property
Specifies the operation performed on the row.

Syntax
Public Property RowOperation() As DbmlsyncCOM.RowEventOp
Member of DbmlsyncCOM.IRowTransferData

Remarks
This property has one of the following values:

OpInsert The row was inserted.

OpUpdate The row was updated.

OpDelete The row was deleted.

OpTruncate The table was truncated (all the rows in the table were deleted). When the RowOperation
property has this value, the ColumnName and ColumnValue properties return invalid information.

Note: For the DownloadRow event, upsert (update or insert) operations are given the OpInsert value.

TableName property
The name of the table on which an upload or download operation occurred.

Syntax
Public Property TableName() As String
Member of DbmlsyncCOM.IRowTransferData

Remarks
The TableName property specifies the name of the table on which an upload or download operation occurred.
The following example illustrates the use of the TableName property in the UploadRow event.

See “UploadRow event” on page 359.

Example
The following is a Visual Basic .NET example.

IRowTransferData interface

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 361

Private Sub dbmlsync1_UploadRow(
 ByVal rowData As DbmlsyncCOM.IRowTransferData
)
Handles dbmlsync1.UploadRow
 MsgBox ("Table name:" + rowData.TableName)
End Sub

ColumnName property
Retrieves the column names for a row on which an upload or download operation occurred.

Syntax
Public Property ColumnName(ByVal index As Integer) As Object
Member of DbmlsyncCOM.IRowTransferData

Parameters
index A zero based integer specifying the column name to be retrieved. Index values range from zero to
one less than the ColumnCount property value.

See “ColumnCount property” on page 363.

Remarks
Associated column values can be retrieved using the ColumnValue property with the same index.

Example
The following Visual Basic .NET example iterates through all the columns for a row in the UploadRow
event. It determines if a column value is null and outputs column names and values.

See “UploadRow event” on page 359.

Private Sub dbmlsync1_UploadRow(
 ByVal rowData As DbmlsyncCOM.IRowTransferData
)
Handles dbmlsync1.UploadRow
Dim liX As Integer
For liX = 0 To rowData.ColumnCount - 1
 If VarType(rowData.ColumnValue(liX)) <> VariantType.Null Then
 ' output the non-null column value
 MsgBox("Column " + CStr(liX) + ": " + rowData.ColumnName(liX) + _
 ", " + CStr(rowData.ColumnValue(liX)))
 Else
 ' output 'NULL' for the column value
 MsgBox("Column " + CStr(liX) + ": " + rowData.ColumnName(liX) + _
 ", " + "NULL")
 End If
Next liX
End Sub

Dbmlsync integration component (deprecated)

362 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ColumnValue property
Retrieves the value of columns on which an upload or download operation occurred.

Syntax
Public Property ColumnValue(ByVal index As Integer) As Object
Member of DbmlsyncCOM.IRowTransferData

Parameters
index The zero based integer specifying the column value to be retrieved. Index values range from zero
to one less than the ColumnCount property value.

See “ColumnCount property” on page 363.

Remarks
When an update operation is encountered, the column values given by this property are the values after the
update is applied.

Associated column names can be retrieved using the ColumnName property with the same index.

BLOB column values are not available through this property. When a BLOB column is encountered, the
ColumnValue is the string "(blob)".

Example
The following Visual Basic .NET example iterates through all the columns for a row in the UploadRow
event. It determines if a column value is null and outputs column names and values.

See “UploadRow event” on page 359.

Private Sub dbmlsync1_UploadRow(
 ByVal rowData As DbmlsyncCOM.IRowTransferData
)
Handles dbmlsync1.UploadRow
Dim liX As Integer
For liX = 0 To rowData.ColumnCount - 1
 If VarType(rowData.ColumnValue(liX)) <> VariantType.Null Then
 ' output the non-null column value
 MsgBox("Column " + CStr(liX) + ": " + rowData.ColumnName(liX) + _
 ", " + CStr(rowData.ColumnValue(liX)))
 Else
 ' output 'NULL' for the column value
 MsgBox("Column " + CStr(liX) + ": " + rowData.ColumnName(liX) + _
 ", " + "NULL")
 End If
Next liX
End Sub

ColumnCount property
The number of columns contained in a row on which an upload or download operation occurred.

IRowTransferData interface

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 363

Syntax
Public Property ColumnCount() As Integer
Member of DbmlsyncCOM.IRowTransferData

Remarks
The ColumnCount property specifies the number of columns for a row on which an upload or download
operation occurred. The following example illustrates the use of the ColumnCount property in the
UploadRow event.

See “UploadRow event” on page 359.

Example
The following is a Visual Basic .NET example.

Private Sub dbmlsync1_UploadRow(
 ByVal rowData As DbmlsyncCOM.IRowTransferData
)
Handles dbmlsync1.UploadRow
 MsgBox "Number of Columns:" + CStr(rowData.ColumnCount)
End Sub

Dbmlsync integration component (deprecated)

364 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

DBTools interface for dbmlsync

Contents
Introduction to DBTools interface for dbmlsync ... 366
Setting up the DBTools interface for dbmlsync ... 367

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 365

Introduction to DBTools interface for dbmlsync
Database tools (DBTools) is a library you can use to integrate database management, including
synchronization, into your applications. All the database management utilities are built on DBTools.

See “Database tools interface” [SQL Anywhere Server - Programming].

You can use the DBTools interface for dbmlsync to integrate synchronization functionality into your
MobiLink synchronization client applications. For example, you can use the interface to display dbmlsync
output messages in a custom user interface.

The DBTools interface for dbmlsync consists of the following elements that let you configure and run the
MobiLink synchronization client:

● a_sync_db structure This structure holds settings, corresponding to dbmlsync command line
options, that allow you to customize synchronization. This structure also contains pointers to callback
functions receiving synchronization and progress information.

See “a_sync_db structure” [SQL Anywhere Server - Programming].

● a_syncpub structure This structure holds publication information. You can specify a linked list of
publications for synchronization.

See “a_syncpub structure” [SQL Anywhere Server - Programming].

● DBSynchronizeLog function This function starts the synchronization process. Its only parameter
is a pointer to an a_sync_db instance.

See “DBSynchronizeLog function” [SQL Anywhere Server - Programming].

Dbmlsync Integration Component
As an alternative to the DBTools interface for dbmlsync, you can use the dbmlsync API.

See “Dbmlsync API” on page 307.

DBTools interface for dbmlsync

366 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Setting up the DBTools interface for dbmlsync
This section guides you through the basic steps for using the DBTools interface for dbmlsync.

For more information about the DBTools library, see “Introduction to the database tools interface” [SQL
Anywhere Server - Programming].

For more information about using import libraries for your development environment, see “Using the
database tools interface” [SQL Anywhere Server - Programming].

To configure and start dbmlsync using the DBTools interface in C or C++

1. Include the DBTools header file.

The DBTools header file, dbtools.h, lists the entry points to the DBTools library and defines required
data types.

#include "dbtools.h"
2. Start the DBTools interface.

● Declare and initialize the a_dbtools_info structure.

a_dbtools_info info;
short ret;
...
// clear a_dbtools_info fields
memset(&info, 0, sizeof(info));
info.errorrtn = dbsyncErrorCallBack;

The dbsyncErrorCallBack function handles error messages and is defined in step 4 of this procedure.

● Use the DBToolsInit function to initialize DBTools.

ret = DBToolsInit(&info);
if(ret != 0) {
 printf("dbtools initialization failure \n");
}

For more information about DBTools initialization, see:

○ “Using the database tools interface” [SQL Anywhere Server - Programming]
○ “a_dbtools_info structure” [SQL Anywhere Server - Programming]
○ “DBToolsInit function” [SQL Anywhere Server - Programming]

3. Initialize the a_sync_db structure.

● Declare an a_sync_db instance. For example, declare an instance called dbsync_info:

a_sync_db dbsync_info;
● Clear a_sync_db structure fields.

memset(&dbsync_info, 0, sizeof(dbsync_info));
● Set required a_sync_db fields.

dbsync_info.version = DB_TOOLS_VERSION_NUMBER;
dbsync_info.output_to_mobile_link = 1;

Setting up the DBTools interface for dbmlsync

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 367

dbsync_info.default_window_title
 = "dbmlsync dbtools sample";

● Set the database connection string.

dbsync_info.connectparms = "uid=DBA;pwd=sql";

For more information about database connection parameters, see “-c option” on page 142.

● Set other a_sync_db fields to customize synchronization.

Most fields correspond to dbmlsync command line options. For more information about this
correspondence, see dbtools.h.

In the example below, verbose operation is enabled.

dbsync_info.verbose_upload = 1;
dbsync_info.verbose_option_info = 1;
dbsync_info.verbose_row_data = 1;
dbsync_info.verbose_row_cnts = 1;

For more information about a_sync_db fields, see “a_sync_db structure” [SQL Anywhere Server -
Programming].

4. Create callback functions to receive feedback during synchronization and assign these functions to the
appropriate a_sync_db fields.

The following functions use the standard output stream to display dbmlsync error, log, and progress
information.

For more information about DBTools callback functions, see “Using callback functions” [SQL Anywhere
Server - Programming].

● For example, create a function called dbsyncErrorCallBack to handle generated error messages:

extern short _callback dbsyncErrorCallBack(char *str)
{
 if(str != NULL) {
 printf("Error Msg %s\n", str);
 }
 return 0;
}

● For example, create a function called dbsyncWarningCallBack to handle generated warning
messages:

extern short _callback dbsyncWarningCallBack(char *str)
{
 if(str != NULL) {
 printf("Warning Msg %s\n", str);
 }
 return 0;
}

● For example, create a function called dbsyncLogCallBack to receive verbose informational messages
that you might choose to log to a file instead of displaying in a window:

extern short _callback dbsyncLogCallBack(char *str)
{
 if(str != NULL) {
 printf("Log Msg %s\n", str);
 }

DBTools interface for dbmlsync

368 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 return 0;
}

● For example, create a function called dbsyncMsgCallBack to receive informational messages
generated during synchronization.

extern short _callback dbsyncMsgCallBack(char *str)
{
 if(str != NULL) {
 printf("Display Msg %s\n", str);
 }
 return 0;
}

● For example, create a function called dbsyncProgressMessageCallBack to receive the progress text.
In the dbmlsync utility, this text is displayed directly above the progress bar.

extern short _callback dbsyncProgressMessageCallBack(
 char *str)
{
 if(str != NULL) {
 printf("ProgressText %s\n", str);
 }
 return 0;
}

● For example, create a function called dbsyncProgressIndexCallBack to receive information for
updating a progress indicator or progress bar. This function receives two parameters:

○ index An integer representing the current progress of a synchronization.

○ max The maximum progress value. If this value is zero, the maximum value has not changed
since the last time the event was fired.

extern short _callback dbsyncProgressIndexCallBack
(a_sql_uint32 index, a_sql_uint32 max)
{
 printf("ProgressIndex Index %d Max: %d\n",
 index, max);
 return 0;
}

A typical sequence of calls to this callback is shown below

// example calling sequence
dbsyncProgressIndexCallBack(0, 100);
dbsyncProgressIndexCallBack(25, 0);
dbsyncProgressIndexCallBack(50, 0);
dbsyncProgressIndexCallBack(75, 0);
dbsyncProgressIndexCallBack(100, 0);

This sequence should result in the progress bar being set to 0% done, 25% done, 50% done, 75%
done, and 100% done.

● For example, create a function called dbsyncWindowTitleCallBack to receive status information. In
the dbmlsync utility, this information is displayed in the title bar.

extern short _callback dbsyncWindowTitleCallBack(
 char *title)
{
 printf("Window Title %s\n", title);

Setting up the DBTools interface for dbmlsync

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 369

 return 0;
}

● The dbsyncMsgQueueCallBack function is called when a delay or sleep is required. It must return
one of the following values, which are defined in dllapi.h.

○ MSGQ_SLEEP_THROUGH indicates that the routine slept for the requested number of
milliseconds. In most cases this is the value you should return.

○ MSGQ_SHUTDOWN_REQUESTED indicates that you would like the synchronization to
terminate as soon as possible.

○ MSGQ_SYNC_REQUESTED indicates that the routine slept for less than the requested
number of milliseconds and that the next synchronization should begin immediately if a
synchronization is not currently in progress.

extern short _callback dbsyncMsgQueueCallBack(
 a_sql_uint32 sleep_period_in_milliseconds)
{
 printf("Sleep %d ms\n", sleep_period_in_milliseconds);
 Sleep(sleep_period_in_milliseconds);
 return MSGQ_SLEEP_THROUGH;
}

● Assign callback function pointers to the appropriate a_sync_db synchronization structure fields.

// set call back functions
dbsync_info.errorrtn = dbsyncErrorCallBack;
dbsync_info.warningrtn = dbsyncWarningCallBack;
dbsync_info.logrtn = dbsyncLogCallBack;
dbsync_info.msgrtn = dbsyncMsgCallBack;
dbsync_info.msgqueuertn = dbsyncMsgQueueCallBack;
dbsync_info.progress_index_rtn
 = dbsyncProgressIndexCallBack;
dbsync_info.progress_msg_rtn
 = dbsyncProgressMessageCallBack;
dbsync_info.set_window_title_rtn
 = dbsyncWindowTitleCallBack;

5. Create a linked list of a_syncpub structures to specify which publications should be synchronized.

Each node in the linked list corresponds to one instance of the -n option on the dbmlsync command line.

● Declare an a_syncpub instance. For example, call it publication_info:

a_syncpub publication_info;
● Initialize a_syncpub fields, specifying publications you want to synchronize.

For example, to identify the template_p1 and template_p2 publications together in a single
synchronization session:

publication_info.next = NULL; // linked list terminates
publication_info.pub_name = "template_p1,template_p2";
publication_info.ext_opt = "sv=template_ver1";
publication_info.alloced_by_dbsync = 0;

This is equivalent to specifying -n template_p1,template_p2 on the dbmlsync command
line.

DBTools interface for dbmlsync

370 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

The associated script version specified using the ext_opt field, provides the same functionality as the
dbmlsync -eu option.

See “-eu option” on page 153.

● Assign the publication structure to the upload_defs field of your a_sync_db instance.

dbsync_info.upload_defs = &publication_info;
You can create a linked list of a_syncpub structures. Each a_syncpub instance in the linked list is
equivalent to one specification of the -n option on the dbmlsync command line.

See “-n option” on page 159 and “a_syncpub structure” [SQL Anywhere Server - Programming].

6. Run dbmlsync using the DBSynchronizeLog function.

In the following code listing, sync_ret_val contains the return value 0 for success or non-0 for failure.

short sync_ret_val;
printf("Running dbmlsync using dbtools interface...\n");
sync_ret_val = DBSynchronizeLog(&dbsync_info);
printf("\n Done... synchronization return value is: %I \n", sync_ret_val);

You can repeat step 6 multiple times with the same or different parameter values.

7. Shutdown the DBTools interface.

The DBToolsFini function frees DBTools resources.

DBToolsFini(&info);

See “DBToolsFini function” [SQL Anywhere Server - Programming].

Setting up the DBTools interface for dbmlsync

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 371

372

Scripted upload

Contents
Introduction to scripted upload .. 374
Setting up scripted upload ... 375
Design considerations for scripted upload ... 376
Defining stored procedures for scripted upload ... 383
Scripted upload example ... 388

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 373

Introduction to scripted upload
Scripted upload applies only to MobiLink applications that use SQL Anywhere remote databases.

Warning
When you implement scripted upload, dbmlsync does not use the transaction log to determine what to upload.
As a result, if your scripts do not capture all changes, data on remote databases can be lost. For these reasons,
log-based synchronization is the recommended synchronization method for most applications.

In most MobiLink applications, the upload is determined by the database transaction log so that changes
made to the remote database since the last upload are synchronized. This is the appropriate design for most
applications and ensures that data on the remote is not lost.

However, in some rare cases you may want to ignore the transaction log and define the upload yourself.
Using scripted upload you can define exactly what data you want to upload. When doing scripted upload
you do not have to maintain a transaction log for your remote database. Transaction logs take up space that
may be at a premium on small devices. However, transaction logs are very important for database backup
and recovery, and improve database performance.

To implement scripted upload, you create a special kind of publication that specifies the names of stored
procedures that you create. The stored procedures define an upload by returning result sets that contain the
rows to insert, update, or delete on the consolidated database.

Note: Do not confuse scripted upload with upload scripts. Upload scripts are MobiLink event scripts on the
consolidated database that you write to tell the MobiLink server what to do with the upload. When you use
scripted upload, you still need to write upload scripts to apply uploads to the consolidated database and
download scripts to determine what to download.

Scenarios
The following are some scenarios where scripted upload may be useful:

● Your remote database is running on a device with limited storage and there is not enough space for a
transaction log.

● You want to upload all the data from all your remote databases to create a new consolidated database.

● You want to write custom logic to determine which changes are uploaded to the consolidated database.

Warnings
Before implementing scripted upload, be sure to read this entire chapter. In particular, take note of the
following points:

● If you do not set up your scripted upload correctly, you can lose data.

● When you implement scripted upload, you need to maintain or reference things that dbmlsync normally
handles for you. These include pre- and post-images of data, and the progress of the synchronization.

● You need to lock tables on the remote database while synchronizing via scripted upload. With log-based
synchronization, locking is not required.

● Transactional uploads are extremely difficult to implement with scripted upload.

Scripted upload

374 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Setting up scripted upload
The following steps provide an overview of the tasks required to set up scripted upload, assuming that you
already have MobiLink synchronization set up.

Overview of setting up scripted upload

1. Create stored procedures that identify the rows to upload. You can define three stored procedures per
table: one each for upload, insert, and delete.

See “Defining stored procedures for scripted upload” on page 383.

2. Create a publication that contains the keywords WITH SCRIPTED UPLOAD and that specifies the
names of the stored procedures.

See “Creating publications for scripted upload” on page 386.

When using scripted upload, it is strongly recommended that you use the default setting for the dbmlsync
extended option LockTables.

You can avoid many problems with scripted uploads by using the default setting for LockTables, which
causes dbmlsync to obtain locks on all synchronization tables before the upload is built. This prevents other
connections from changing the synchronization tables while your scripts are building the upload. It also
ensures that there are no uncommitted transactions that affect synchronization tables open while your scripts
are building the upload.

Other resources for getting started
● “Scripted upload example” on page 388

Setting up scripted upload

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 375

Design considerations for scripted upload
One operation per row

The upload may not contain more than one operation (insert, update, or delete) for a single row. However,
you can combine multiple operations into a single upload operation; for example, if a row is inserted and
then updated you can replace the two operations with a single insert of the final values.

Order of operations
When the upload is applied to the consolidated database, insert and update operations are applied before
delete operations. You cannot make any other assumptions about the order of operations within a given table.

Handling conflicts
A conflict occurs when a row is updated on more than one database between synchronizations. The MobiLink
server can identify conflicts because each update operation in an upload contains the pre-image of the row
being updated. The pre-image is the value of all the columns in the row the last time it was successfully
uploaded or downloaded. The MobiLink server identifies a conflict when the pre-image does not match the
values in the consolidated database when the upload is applied.

If your application needs conflict detection and you are using scripted upload, then on the remote database
you need to keep track of the value of each row the last time it was successfully uploaded or downloaded.
This allows you to upload the correct pre-images.

One way to maintain pre-image data is to create a pre-image table that is identical to your synchronization
table. You can then create a trigger on your synchronization table that populates the pre-image table each
time an update executes. After a successful upload you can delete the rows in the pre-image table.

For an example that implements conflict resolution, see “Scripted upload example” on page 388.

Not handling conflicts
If you do not need to handle conflict detection, you can simplify your application considerably by not tracking
pre-images. Instead, you upload updates as insert operations. You can then write an upload_insert script on
the consolidated database that inserts a row if it does not already exist or updates the row if it does exist. If
you are using a SQL Anywhere consolidated database, you can achieve this with the ON EXISTING clause
in the INSERT statement in your upload_insert script.

See “INSERT statement” [SQL Anywhere Server - SQL Reference].

When you do not handle conflicts and two or more remote databases change the same row, the last one to
synchronize overrides the earlier changes.

Handling forced conflicts
For delete operations, it is essential that the primary key of a row that is uploaded is correct. However, in
most cases it doesn't matter if the values of the non-primary key columns match those in the consolidated
database. The only case where the value of non-primary key columns is important is when forced conflict
mode is used at the MobiLink server. In that case, all the column values are passed to the
upload_old_row_insert script on the consolidated database. Depending on how you have implemented this
script, it may be necessary for non-primary key column values to be correct.

Scripted upload

376 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

See “Forced conflicts” [MobiLink - Server Administration].

Locking
You can avoid many problems with scripted uploads by using the default setting for the dbmlsync extended
option LockTables, which causes dbmlsync to obtain exclusive locks on all synchronization tables before
the upload is built. This prevents other connections from changing the synchronization tables while your
scripts are building the upload. It also ensures that there are no uncommitted transactions that affect
synchronization tables open while your scripts are building the upload.

If you must turn off table locking, see “Scripted upload with no table locking” on page 379.

Redundant uploads
In most cases, you want to upload each operation on the remote database exactly once. To help you with
this, MobiLink maintains a progress value for each subscription. By default the progress value is the time
at which dbmlsync began building the last successful upload. This progress value can be overridden with a
different value using the sp_hook_dbmlsync_set_upload_end_progress hook.

See “sp_hook_dbmlsync_set_upload_end_progress” on page 295.

Each time one of your upload procedures is called, values are passed to it through the #hook_dict table.
Among these are the 'start progress' and 'end progress' values. These define the period of time for which the
upload being built should include changes to the remote database. Operations that occurred before the 'start
progress' have already been uploaded. Those that occur after the 'end progress' should be uploaded during
the next synchronization.

Unknown Upload Status
A common mistake in the implementation of scripted upload is creating stored procedures that can only tell
whether an upload was successfully applied to the consolidated database by using the
sp_hook_dbmlsync_upload_end or sp_hook_dbmlsync_end hooks. This approach is unreliable.

For example, the following example tries to handle inserts by using a bit on each row to keep track of whether
the row needs to be uploaded. The bit is set when a row is inserted, and it is cleared in the
sp_hook_dbmlsync_upload_end hook when the upload is successfully committed.

//
// DO NOT DO THIS!
//
CREATE TABLE t1 (
 pk integer primary key,
 val varchar(256),
 to_upload bit DEFAULT 1
);
CREATE PROCEDURE t1_ins()
RESULT(pk integer, val varchar(256))
BEGIN
 SELECT pk, val
 FROM t1
 WHERE to_upload = 1;
END;
CREATE PROCEDURE sp_hook_dbmlsync_upload_end()
BEGIN
 DECLARE upload_status varchar(256);

Design considerations for scripted upload

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 377

 SELECT value
 INTO upload_status
 FROM #hook_dict
 WHERE name = 'upload status';
 if upload_status = 'committed' THEN
 UPDATE t1 SET to_upload = 0;
 END IF
END;
 CREATE PUBLICATION p1 WITH SCRIPTED UPLOAD (
 TABLE t1 USING (PROCEDURE t1_ins FOR UPLOAD INSERT)
);

This approach works most of the time. It fails when a hardware or software failure occurs that stops dbmlsync
after the upload has been sent but before it has been acknowledged by the server. In that case, the upload
may be applied to the consolidated database but the sp_hook_dbmlsync_upload_end hook is not called and
the to_upload bits are not cleared. As a result, in the next synchronization, inserts are uploaded for rows that
have already been uploaded. Usually this causes the synchronization to fail because it generates a duplicate
primary key error on the consolidated database.

The other case where problems can occur is when communication with the MobiLink server is lost after the
upload is sent but before it has been acknowledged. In this case dbmlsync cannot tell if the upload was
successfully applied. Dbmlsync calls the sp_hook_dbmlsync_upload_end hook and sets the upload status
to unknown. As the hook is written this prevents it from clearing the to_upload bits. If the upload was not
applied by the server, this is correct. However, if the upload was applied then the same problem occurs as
in the previous paragraph. In both of these cases, the affected remote database is unable to synchronize again
until someone manually intervenes to resolve the problem.

Preventing data loss during download
When using scripted uploads, it is possible for data in the remote database that needs to be uploaded to be
overwritten by data being downloaded from the consolidated database. This results in the loss of changes
made to the remote database. Dbmlsync prevents this data loss if each upload built by your upload procedures
includes all changes that were committed in the remote database before the
sp_hook_dbmlsync_set_upload_end_progress hook was called.

The following example shows how data can be lost if you violate this rule:

Time

1:05:00 A row, R, that exists both in the consolidated and remote databases is updated with some
new values, R1, in the remote database and the change is committed.

1:06:00 The row R is updated in the consolidated database to some new values R2 and the change
is committed.

Scripted upload

378 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Time

1:07:00 A synchronization occurs. The upload scripts are written so that the upload only contains
operations committed before 1:00:00. This violates our rule because it prevents all opera-
tions that occurred before the upload was built from being uploaded. The change to row R
is not included upload because it occurred after 1:00:00. The download received from the
server contains the row R2. When the download is applied, the row R2 replaces the row R1
in the remote database. The update on the remote database is lost.

Dbmlsync uses several mechanisms to ensure that the download does not overwrite any change the was
uncommitted when the sp_hook_dbmlsync_set_upload_end_progress hook was called or was committed
after the sp_hook_dbmlsync_set_upload_end_progress hook was called.

Any change committed before the hook was called is not protected and may be overwritten when the
download is applied. However, as long as the change was included in the upload (which is sent before the
download is built) the change is sent to the MobiLink server and your server-side scripts are able to resolve
it with the data in the consolidated database before the download is built.

Scripted upload with no table locking
By default, dbmlsync locks the tables being synchronized before any upload scripts are called, and it
maintains these locks until the download is committed. You can prevent table locking by setting the extended
option LockTables to off.

When possible, it is recommended that you use the default table locking behavior. Doing scripted uploads
without table locking significantly increases the number of issues you must consider and the difficulty of
creating a correct and workable solution. This should only be attempted by advanced users with a good
understanding of database concurrency and synchronization concepts.

Using isolation levels with no table locks
When table locking is off, the isolation level at which your upload stored procedures run is very important
because it determines how uncommitted transactions are handled. This is not an issue when table locking is
on because table locks ensure that there are no uncommitted changes on the synchronized tables when the
upload is built.

Your upload stored procedures run at the default isolation level for the database user who is specified in the
dbmlsync command line unless you explicitly change the isolation level in your upload stored procedure.

Isolation level 0 is the default isolation level for the database, but it is recommended that you do not run
your upload procedures at isolation level 0 when using scripted upload with no table locks. If you implement
scripted upload without table locks and use isolation level 0, you may upload changes that are not committed,
which could result in the following problems:

● The uncommitted changes could be rolled back, which would result in incorrect data being sent to the
consolidated database.

● The uncommitted transaction may not be complete, in which case you might upload only part of a
transaction and leave the consolidated database in an inconsistent state.

Design considerations for scripted upload

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 379

Your alternatives are to use isolation levels 1, 2, 3, or snapshot. All of these isolation levels ensure that you
do not upload uncommitted transactions.

Using isolation levels 1, 2, or 3 could result in your upload stored procedures blocking if there are
uncommitted changes on the table. Since your upload stored procedures are called while dbmlsync is
connected to the MobiLink server, this could tie up server connections. If you use isolation level 1, you may
be able to avoid blocking by using the READPAST table-hint clause in your select statements.

Snapshot isolation is a good choice since it prevents both blocking and reads of uncommitted changes.

Losing Uncommitted Changes
If you choose to forgo table locking, you must have a mechanism for handling operations that are not
committed when a synchronization occurs. To see why this is a problem, consider the following example.

Suppose a table is being synchronized by scripted upload. For simplicity, assume that only inserts are being
uploaded. The table contains an insert_time column that is a timestamp that indicates the time when each
row was inserted.

Each upload is built by selecting all the committed rows in the table whose insert_time is after the last
successful upload and before the time when you started to build the current upload (which is the time when
the sp_hook_dbmlsync_set_upload_end_progress hook was called). Suppose the following takes place.

Time

1:00:00 A successful synchronization occurs.

1:04:00 Row R is inserted into the table but not committed. The insert_time column for R is
set to 1:04:00.

1:05:00 A synchronization occurs. Rows with insert times between 1:00:00 and 1:05:00 are
uploaded. Row R is not uploaded because it is uncommitted. The synchronization
progress is set to 1:05:00.

1:07:00 The row inserted at 1:04:00 is committed. The insert_time column for R continues to
contain 1:04:00.

1:10:00 A synchronization occurs. Rows with insert times between 1:05:00 and 1:10:00 are
uploaded. Row R is not uploaded because its insert_time is not in the range. In fact,
row R is never uploaded.

In general, any operation that occurs before a synchronization but is committed after the synchronization is
susceptible to loss in this way.

Handling uncommitted transactions
The simplest way to handle uncommitted transactions is to use the
sp_hook_dbmlsync_set_upload_end_progress hook to set the end progress for each synchronization to the
start time of the oldest uncommitted transaction at the time the hook is called. You can determine this time
using the sa_transactions system procedure as follows:

SELECT min(start_time)
FROM sa_transactions()

Scripted upload

380 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

In this case, your upload stored procedures must ignore the end progress that was calculated in the
sp_hook_dbmlsync_set_upload_end_progress hook using sa_transactions and passed in using the
#hook_dict table. The stored procedures should just upload all committed operations that occurred after the
start progress. This ensures that the download does not overwrite rows with changes that still need to be
uploaded. It also ensures that operations are uploaded in a timely manner even when there are uncommitted
transactions.

This solution ensures that no operations are lost, but some operations may be uploaded more than once. Your
scripts on the server side must be written to handle operations being uploaded more than once. Below is an
example that shows how a row can be uploaded more than once in this setup.

Time

1:00:00 A successful synchronization occurs.

2:00:00 Row R1 is inserted but not committed.

2:10:00 Row R2 is inserted and committed.

3:00:00 A synchronization occurs. Operations that occurred between 1:00 and 3:00 are uploa-
ded. Row R2 is uploaded and the progress is set to 2:00 because that is the start time
of the oldest uncommitted transaction.

4:00:00 Row R1 is committed.

5:00:00 A synchronization occurs. Operations that occurred between 2:00 and 5:00 are uploa-
ded and the progress is set to 5:00. The upload contains rows R1 and R2 because they
both have timestamps within the upload range. So, R2 has been uploaded twice.

If your consolidated database is SQL Anywhere, you can handle redundantly uploaded insert operations by
using the INSERT ... ON EXISTING UPDATE statement in your upload_insert script in the consolidated
database.

For other consolidated databases, you can implement similar logic in a stored procedure that is called by
your upload_insert script. Just write a check to see if a row with the primary key of the row being inserted
already exists in the consolidated database. If the row exists update it, otherwise insert the new row.

Redundantly uploaded delete and update operations are a problem when you have conflict detection or
resolution logic on the server side. If you write conflict detection and resolution scripts on the server side,
they must be able to handle redundant uploads.

Redundantly uploaded deletes can be a major concern if primary key values can be reused by the consolidated
database. Consider the following sequence of events:

1. Row R with primary key 100 is inserted into a remote database and uploaded to the consolidated database.

2. Row R is deleted on the remote database and the delete operation is uploaded.

3. A new row R' with primary key 100 is inserted into the consolidated database.

4. The delete operation on row R from step 2 is uploaded again from the remote database. This could easily
result in R' being deleted inappropriately from the consolidated database.

Design considerations for scripted upload

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 381

See also
● “sa_transactions system procedure” [SQL Anywhere Server - SQL Reference]
● “Set the isolation level” [SQL Anywhere Server - SQL Usage]

Scripted upload

382 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Defining stored procedures for scripted upload
To implement scripted upload, you create stored procedures that define the upload by returning result sets
that contain the rows to update, insert, or delete on the consolidated database.

When the stored procedures are called, a temporary table called #hook_dict is created that has two columns:
name and value. The table is used to pass name-value pairs to your stored procedures. Your stored procedures
can retrieve useful information from this table.

The following name-value pairs are defined:

Name Value Description

start progress timestamp as string The time up to which all changes on the remote
database have been uploaded. Your upload
should only reflect operations that occur after
this time.

raw start progress 64-bit unsigned integer The start progress expressed as an unsigned in-
teger.

end progress timestamp as string The end of the upload period. Your upload
should only reflect operations that occur before
this time.

raw end progress 64-bit unsigned integer The end progress expressed as an unsigned in-
teger.

generating download exclu-
sion list

true|false True if the synchronization is download-only
or file-based. In those cases no upload is sent,
and the download is not applied if it affects any
row selected by a scripted upload stored pro-
cedure. (This ensures that changes made at the
remote that need to be uploaded are not over-
written by the download.)

publication_n publication name The publications being synchronized, where n
is an integer. The numbering of n starts at zero.

script version version name The MobiLink script version to be used for the
synchronization.

MobiLink user MobiLink user name The MobiLink user for which you are synchro-
nizing.

See “#hook_dict table” on page 239.

Defining stored procedures for scripted upload

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 383

Custom progress values in scripted upload
By default, the start progress and end progress values passed to your scripted upload procedures represent
timestamps. By default the end progress is the time when dbmlsync starts to build the upload. The start
progress for a synchronization is always the end progress used for the most recent successful upload of that
subscription. This default behavior is appropriate for most implementations.

The sp_hook_dbmlsync_set_upload_end_progress hook is provided for the rare cases where different
behavior is required. Using this hook, you can set the end progress to be used for an upload. The end progress
you choose must be greater than the start progress. You cannot alter the start progress.

In the sp_hook_dbmlsync_set_upload_end_progress hook you can specify the end progress either as a
timestamp or as an unsigned integer. The value is available in either form to the upload stored procedures.
For your convenience, the sa_convert_ml_progress_to_timestamp and
sa_convert_timestamp_to_ml_progress functions can be used to convert progress values between the two
forms.

See:

● “sp_hook_dbmlsync_set_upload_end_progress” on page 295
● “sa_convert_ml_progress_to_timestamp system procedure” [SQL Anywhere Server - SQL Reference]
● “sa_convert_timestamp_to_ml_progress system procedure” [SQL Anywhere Server - SQL Reference]

Defining stored procedures for inserts
The stored procedures for inserts must return result sets containing all the columns to be uploaded, as defined
in the CREATE PUBLICATION statement, in the same order that the columns were declared in the CREATE
TABLE statement.

Column order
You can find the creation order of columns in a table called T1 with the following query:

SELECT column.name
FROM SYSTAB JOIN SYSTABCOL
 WHERE table_name = 't1'
ORDER BY column_id

Example
For a detailed explanation of how to define stored procedures for inserts, see “Scripted upload
example” on page 388.

The following example creates a table called t1 and a publication called p1. The publication specifies WITH
SCRIPTED UPLOAD and registers the stored procedure t1_insert as the insert procedure. In the definition
of the t1_insert stored procedure, the result set includes all columns listed in the CREATE PUBLICATION
statement but in the order in which the columns were declared in the CREATE TABLE statement.

CREATE TABLE t1(
 //The column ordering is taken from here
 pk integer primary key,
 c1 char(30),
 c2, float,

Scripted upload

384 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

 c3 double);
CREATE PROCEDURE t1_insert ()
RESULT(pk integer, c1 char(30), c3 double)
begin
 ...
end
CREATE PUBLICATION WITH SCRIPTED UPLOAD p1(
 // Order of columns here is ignored
 TABLE t1(c3, pk, c1) USING (
 PROCEDURE t1_insert FOR UPLOAD INSERT
)
)

Defining stored procedures for deletes
The stored procedures for deletes must return result sets containing all the columns to be uploaded, as defined
in the CREATE PUBLICATION statement, in the same order that the columns were declared in the CREATE
TABLE statement.

Column order
You can find the creation order of columns in a table called T1 with the following query:

SELECT column.name
FROM SYSTAB JOIN SYSTABCOL
 WHERE table_name = 't1'
ORDER BY column_id

Example
For a detailed explanation of how to define stored procedures for deletes, see “Scripted upload
example” on page 388.

The following example creates a table called t1 and a publication called p1. The publication specifies WITH
SCRIPTED UPLOAD and registers the stored procedure t1_delete as the delete procedure. In the definition
of the t1_delete stored procedure, the result set includes all columns listed in the CREATE PUBLICATION
statement but in the order in which the columns were declared in the CREATE TABLE statement.

CREATE TABLE t1(
 //The column ordering is taken from here
 pk integer primary key,
 c1 char(30),
 c2, float,
 c3 double);
CREATE PROCEDURE t1_delete ()
RESULT(pk integer, c1 char(30), c3 double)
begin
 ...
end
CREATE PUBLICATION WITH SCRIPTED UPLOAD p1(
 // Order of columns here is ignored
 TABLE t1(c3, pk, c1) USING (
 PROCEDURE t1_delete FOR UPLOAD DELETE

Defining stored procedures for scripted upload

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 385

)
)

Defining stored procedures for updates
The stored procedure for updates must return a result set that includes two sets of values:

● The first set of values specifies the pre-image for the update (the values in the row the last time it was
received from, or successfully uploaded to, the MobiLink server).

● The second set of values specifies the post-image of the update (the values the row should be updated
to in the consolidated database).

This means that the stored procedure for updates must return a result set with twice as many columns as the
insert or delete stored procedure.

Example
For a detailed explanation of how to define stored procedures for updates, see “Scripted upload
example” on page 388.

The following example creates a table called t1 and a publication called p1. The publication specifies WITH
SCRIPTED UPLOAD and registers the stored procedure t1_update as the update procedure. The publication
specifies three columns to be synchronized: pk, c1 and c3. The update procedure returns a result set with six
columns. The first three columns contain the pre-image of the pk, c1 and c3 columns; the second three
columns contain the post-image of the same columns. Note that in both cases the columns are ordered as
they were when the table was created, not as they are ordered in the CREATE PUBLICATION statement.

CREATE TABLE t1(
 //Column ordering is taken from here
 pk integer primary key,
 c1 char(30),
 c2 float,
 c3 double);
CREATE PROCEDURE t1_update ()
RESULT(preimage_pk integer, preimage_c1 char(30), preimage_c3 double,
postimage_pk integer, postimage_c1 char(30), postimage_c3 double)
BEGIN
 ...
END
CREATE PUBLICATION WITH SCRIPTED UPLOAD p1 (
 // Order of columns here is ignored
 TABLE t1(c3, pk, c1) USING (
 PROCEDURE t1_update FOR UPLOAD UPDATE
)
)

Creating publications for scripted upload
To create a scripted upload publication, use the keywords WITH SCRIPTED UPLOAD and specify the
stored procedures in the USING clause.

Scripted upload

386 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

If you do not define a stored procedure for a table in the scripted upload publication, no operations are
uploaded for the table. You cannot use ALTER PUBLICATION to change a regular publication into a
scripted upload publication.

Example
The following publication uses stored procedures to upload data for two tables, called t1 and t2. Inserts,
deletes, and updates are uploaded for table t1. Only inserts are uploaded for table t2.

CREATE PUBLICATION pub WITH SCRIPTED UPLOAD (
 TABLE t1 (col1, col2, col3) USING (
 PROCEDURE my.t1_ui FOR UPLOAD INSERT,
 PROCEDURE my.t1_ud FOR UPLOAD DELETE,
 PROCEDURE my.t1_uu FOR UPLOAD UPDATE
),
 TABLE t2 USING (
 PROCEDURE my.t2_ui FOR UPLOAD INSERT
)
)

See also
● “CREATE PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]
● “ALTER PUBLICATION statement [MobiLink] [SQL Remote]” [SQL Anywhere Server - SQL

Reference]

Defining stored procedures for scripted upload

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 387

Scripted upload example
This example shows you how to set up a scripted upload that provides conflict detection. The example creates
the consolidated and remote databases, stored procedures, publications and subscriptions that are required
by scripted upload. This example is presented in such a way that you can either just read through it, or you
can cut and paste the text to run the sample.

Create the consolidated database
Create a directory to hold the sample files. For example, call it scriptedupload. Open a command prompt
and navigate to that directory.

(In this example, we specify file names and assume they are in the current directory. In a real application,
you should specify the full path to the file.)

Run the following command to create a consolidated database:

dbinit consol.db

Next, run the following command to define an ODBC data source for the consolidated database:

dbdsn -w dsn_consol -y -c "uid=DBA;pwd=sql;dbf=consol.db;eng=consol"

To use a database as a consolidated database, you must run a setup script that adds system tables, views, and
stored procedures that are used by MobiLink. The following command sets up consol.db as a consolidated
database:

dbisql -c "dsn=dsn_consol" %sqlany11%\MobiLink\setup\syncsa.sql

Open Interactive SQL and connect to consol.db using the dsn_consol DSN. Run the following SQL
statements. They create the employee table on the consolidated database, insert values into the table, and
create the required synchronization scripts.

CREATE TABLE employee (
 id unsigned integer primary key,
 name varchar(256),
 salary numeric(9, 2)
);
INSERT INTO employee VALUES(100, 'smith', 225000);
COMMIT;
CALL ml_add_table_script('default', 'employee', 'upload_insert',
 'INSERT INTO employee (id, name, salary) VALUES (?, ?, ?)');
CALL ml_add_table_script('default', 'employee', 'upload_update',
 'UPDATE employee SET name = ?, salary = ? WHERE id = ?');
CALL ml_add_table_script('default', 'employee', 'upload_delete',
 'DELETE FROM employee WHERE id = ?');
CALL ml_add_table_script('default', 'employee', 'download_cursor',
 'SELECT * from employee');

Create the remote database
At a command prompt in your samples directory, run the following command to create a remote database:

Scripted upload

388 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

dbinit remote.db

Next, run the following command to define an ODBC data source:

dbdsn -w dsn_remote -y -c "uid=dba;pwd=sql;dbf=remote.db;eng=remote"

In Interactive SQL, connect to remote.db using the dsn_remote DSN. Run the following set of statements
to create objects in the remote database.

First, create the table to be synchronized. The insert_time and delete_time columns are not synchronized but
contain information used by the upload stored procedures to determine which rows to upload.

CREATE TABLE employee (
 id unsigned integer primary key,
 name varchar(256),
 salary numeric(9, 2),
 insert_time timestamp default '1900-01-01'
);

Next, you need to define stored procedures and other things to handle the upload. You do this separately for
inserts, deletes, and updates.

Handle inserts
First, create a trigger to set the insert_time on each row when it is inserted. This timestamp is used to determine
if a row has been inserted since the last synchronization. This trigger is not fired when dbmlsync is applying
downloaded inserts from the consolidated database because later in this example you set the FireTriggers
extended option to off. Rows inserted by the download get an insert_time of 1900-01-01, the default value
defined when the employee table was created. This value should always be before the start progress so those
rows are not treated as new inserts and are not uploaded during the next synchronization.

CREATE TRIGGER emp_ins AFTER INSERT ON employee
REFERENCING NEW AS newrow
FOR EACH ROW
BEGIN
 UPDATE employee SET insert_time = CURRENT TIMESTAMP
 WHERE id = newrow.id
END;

Next, create a procedure to return as a result set all the inserted rows to be uploaded. This procedure returns
all rows that (based on the insert_time) have been inserted since the last successful upload but were not
subsequently deleted. The time of the last successful upload is determined from the start progress value in
the #hook_dict table. This example uses the default setting for the dbmlsync extended option LockTables,
which causes dbmlsync to lock the tables being synchronized. As a result, you do not need to exclude rows
inserted after the end progress: the table locks prevent any operations from occurring after the end progress,
while the upload is built.

CREATE PROCEDURE employee_insert()
RESULT(id unsigned integer,
 name varchar(256),
 salary numeric(9,2)
)
BEGIN
 DECLARE start_time timestamp;
 SELECT value
 INTO start_time
 FROM #hook_dict
 WHERE name = 'start progress as timestamp';

Scripted upload example

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 389

 // Upload as inserts all rows inserted after the start_time
 // that were not subsequently deleted
 SELECT id, name, salary
 FROM employee e
 WHERE insert_time > start_time AND
 NOT EXISTS(SELECT id FROM employee_delete ed WHERE ed.id = e.id);
END;

Handle updates
To handle uploads, you need to ensure that the correct pre-image is used based on the start progress when
the upload was built.

First, create a table that maintains pre-images of updated rows. The pre-images are used when generating
the scripted upload.

CREATE TABLE employee_preimages (
 id unsigned integer NOT NULL,
 name varchar(256),
 salary numeric(9, 2),
 img_time timestamp default CURRENT TIMESTAMP,
 primary key(id, img_time)
);

Next, create a trigger to store a pre-image for each row when it is updated. As with the insert trigger, this
trigger is not fired on download.

Note that this trigger stores a pre-image row each time a row is updated (unless two updates come so close
together that they get the same timestamp). At first glance this looks wasteful. It would be tempting to only
store a pre-image for the row if there is not already one in the table, and then count on the
sp_hook_dbmlsync_upload_end hook to delete pre-images once they have been uploaded.

However, the sp_hook_dbmlsync_upload_end hook is not reliable for this purpose. The hook may not be
called if a hardware or software failure stops dbmlsync after the upload is sent but before it is acknowledged,
resulting in rows not being deleted from the pre-images table even though they have been successfully
uploaded. Also, when a communication failure occurs dbmlsync may not receive an acknowledgement from
the server for an upload. In this case, the upload status passed to the hook is 'unknown'. When this happens
there is no way for the hook to tell if the pre-images table should be cleaned or left intact. By storing multiple
pre-images, the correct one can always be selected based on the start progress when the upload is built.

CREATE TRIGGER emp_upd AFTER UPDATE OF name,salary ON employee
 REFERENCING OLD AS oldrow
 FOR EACH ROW
BEGIN
 INSERT INTO employee_preimages ON EXISTING SKIP VALUES(
 oldrow.id, oldrow.name, oldrow.salary, CURRENT TIMESTAMP);
END;

Next, create an upload procedure to handle updates. This stored procedure returns one result set that has
twice as many columns as the other scripts: it contains the pre-image (the values in the row the last time it
was received from, or successfully uploaded to, the MobiLink server), and the post-image (the values to be
entered into the consolidated database).

The pre-image is the earliest set of values in employee_preimages that was recorded after the start_progress.
Note that this example does not correctly handle existing rows that are deleted and then reinserted. In a more
complete solution, these would be uploaded as an update.

Scripted upload

390 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

CREATE PROCEDURE employee_update()
RESULT(
 preimage_id unsigned integer,
 preimage_name varchar(256),
 preimage_salary numeric(9,2),
 postimage_id unsigned integer,
 postimage_name varchar(256),
 postimage_salary numeric(9,2)
)
BEGIN
 DECLARE start_time timestamp;
 SELECT value
 INTO start_time
 FROM #hook_dict
 WHERE name = 'start progress as timestamp';
 // Upload as an update all rows that have been updated since
 // start_time that were not newly inserted or deleted.
 SELECT ep.id, ep.name, ep.salary, e.id, e.name, e.salary
 FROM employee e JOIN employee_preimages ep
 ON (e.id = ep.id)
 // Do not select rows inserted since the start time. These should be
 // uploaded as inserts.
 WHERE insert_time <= start_time
 // Do not upload deleted rows.
 AND NOT EXISTS(SELECT id FROM employee_delete ed WHERE ed.id = e.id)
 // Select the earliest pre-image after the start time.
 AND ep.img_time = (SELECT MIN(img_time)
 FROM employee_preimages
 WHERE id = ep.id
 AND img_time > start_time);
END;

Handle deletes
First, create a table to maintain a list of deleted rows:

CREATE TABLE employee_delete (
 id unsigned integer primary key NOT NULL,
 name varchar(256),
 salary numeric(9, 2),
 delete_time timestamp
);

Next, create a trigger to populate the employee_delete table as rows are deleted from the employee table.
This trigger is not called during download because later you set the dbmlsync extended option FireTriggers
to false. Note that this trigger assumes that a deleted row is never reinserted; therefore it does not deal with
the same row being deleted more than once.

CREATE TRIGGER emp_del AFTER DELETE ON employee
REFERENCING OLD AS delrow
FOR EACH ROW
BEGIN
 INSERT INTO employee_delete
VALUES(delrow.id, delrow.name, delrow.salary, CURRENT TIMESTAMP);
END;

The next SQL statement creates an upload procedure to handle deletes. This stored procedure returns a result
set that contains the rows to delete on the consolidated database. The stored procedure uses the

Scripted upload example

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 391

employee_preimages table so that if a row is updated and then deleted, the image uploaded for the delete is
the last one that was successfully downloaded or uploaded.

CREATE PROCEDURE employee_delete()
RESULT(id unsigned integer,
 name varchar(256),
 salary numeric(9,2)
)
BEGIN
 DECLARE start_time timestamp;
 SELECT value
 INTO start_time
 FROM #hook_dict
 WHERE name = 'start progress as timestamp';
 // Upload as a delete all rows that were deleted after the
 // start_time that were not inserted after the start_time.
 // If a row was updated before it was deleted, then the row
 // to be deleted is the pre-image of the update.
 SELECT IF ep.id IS NULL THEN ed.id ELSE ep.id ENDIF,
 IF ep.id IS NULL THEN ed.name ELSE ep.name ENDIF,
 IF ep.id IS NULL THEN ed.salary ELSE ep.salary ENDIF
 FROM employee_delete ed LEFT OUTER JOIN employee_preimages ep
 ON(ed.id = ep.id AND ep.img_time > start_time)
 WHERE
 // Only upload deletes that occurred since the last sync.
 ed.delete_time > start_time
 // Don't upload a delete for rows that were inserted since
 // the last upload and then deleted.
 AND NOT EXISTS (
 SELECT id
 FROM employee e
 WHERE e.id = ep.id AND e.insert_time > start_time)
 // Select the earliest preimage after the start time.
 AND (ep.id IS NULL OR ep.img_time = (SELECT MIN(img_time)
 FROM employee_preimages
 WHERE id = ep.id
 AND img_time > start_time));
END;

Clear out the pre-image table
Next, create an upload_end hook to clean up the employee_preimage and employee_delete tables when an
upload is successful. This example uses the default setting for the dbmlsync extended option LockTables,
so the tables are locked during synchronization. So, you do not have to worry about leaving rows in the
tables for operations that occurred after the end_progress. Locking prevents such operations from occurring.

CREATE PROCEDURE sp_hook_dbmlsync_upload_end()
BEGIN
 DECLARE val varchar(256);

 SELECT value
 INTO val
 FROM #hook_dict
 WHERE name = 'upload status';

 IF val = 'committed' THEN
 DELETE FROM employee_delete;
 DELETE FROM employee_preimages;
 END IF;
END;

Scripted upload

392 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

Create a publication, MobiLink user, and subscription
The publication called pub1 uses the scripted upload syntax (WITH SCRIPTED UPLOAD). It creates an
article for the employee table, and registers the three stored procedures you just created for use in the scripted
upload. It creates a MobiLink user called u1, and a subscription between v1 and pub1. The extended option
FireTriggers is set to off to prevent triggers from being fired on the remote database when the download is
applied, which prevents downloaded changes from being uploaded during the next synchronization.

CREATE PUBLICATION pub1 WITH SCRIPTED UPLOAD (
TABLE employee(id, name, salary) USING (
 PROCEDURE employee_insert FOR UPLOAD INSERT,
 PROCEDURE employee_update FOR UPLOAD UPDATE,
 PROCEDURE employee_delete FOR UPLOAD DELETE,
)
)
CREATE SYNCHRONIZATION USER u1;
CREATE SYNCHRONIZATION SUBSCRIPTION TO pub1 FOR u1
TYPE 'tcpip'
ADDRESS 'host=localhost'
OPTION FireTriggers='off';

Demonstrate the scripted upload
Connect to the remote database and insert data to synchronize using scripted upload. For example, run the
following SQL statements against the remote database in Interactive SQL:

INSERT INTO employee(id, name, salary) VALUES(7, 'black', 700);
INSERT INTO employee(id, name, salary) VALUES(8, 'anderson', 800);
INSERT INTO employee(id, name, salary) VALUES(9, 'dilon', 900);
INSERT INTO employee(id, name, salary) VALUES(10, 'dwit', 1000);
INSERT INTO employee(id, name, salary) VALUES(11, 'dwit', 1100);
COMMIT;

At a command prompt, start the MobiLink server:

mlsrv11 -c "dsn=dsn_consol" -o mlserver.mls -v+ -dl -zu+

Start a synchronization using dbmlsync:

dbmlsync -c "dsn=dsn_remote" -k -uo -o remote.mlc -v+

You can now verify that the inserts were uploaded.

Example cleanup
To clean up your computer after completing the example, perform the following steps:

mlstop -h -w
dbstop -y -c eng=consol
dbstop -y -c eng=remote
dberase -y consol.db
dberase -y remote.db
del remote.mlc mlserver.mls

Scripted upload example

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 393

394

Glossary

Glossary .. 397

Glossary

Adaptive Server Anywhere (ASA)
The relational database server component of SQL Anywhere Studio, intended for use in mobile and
embedded environments or as a server for small and medium-sized businesses. In version 10.0.0, Adaptive
Server Anywhere was renamed SQL Anywhere Server, and SQL Anywhere Studio was renamed SQL
Anywhere.

See also: “SQL Anywhere” on page 421.

agent ID

See also: “client message store ID” on page 399.

article

In MobiLink or SQL Remote, an article is a database object that represents a whole table, or a subset of the
columns and rows in a table. Articles are grouped together in a publication.

See also:

● “replication” on page 419
● “publication” on page 416

atomic transaction

A transaction that is guaranteed to complete successfully or not at all. If an error prevents part of an atomic
transaction from completing, the transaction is rolled back to prevent the database from being left in an
inconsistent state.

base table

Permanent tables for data. Tables are sometimes called base tables to distinguish them from temporary
tables and views.

See also:

● “temporary table” on page 423
● “view” on page 425

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 397

bit array

A bit array is a type of array data structure that is used for efficient storage of a sequence of bits. A bit array
is similar to a character string, except that the individual pieces are 0s (zeros) and 1s (ones) instead of
characters. Bit arrays are typically used to hold a string of Boolean values.

business rule

A guideline based on real-world requirements. Business rules are typically implemented through check
constraints, user-defined data types, and the appropriate use of transactions.

See also:

● “constraint” on page 401
● “user-defined data type” on page 425

carrier

A MobiLink object, stored in MobiLink system tables or a Notifier properties file, that contains information
about a public carrier for use by server-initiated synchronization.

See also: “server-initiated synchronization” on page 420.

character set

A character set is a set of symbols, including letters, digits, spaces, and other symbols. An example of a
character set is ISO-8859-1, also known as Latin1.

See also:

● “code page” on page 399
● “encoding” on page 405
● “collation” on page 399

check constraint

A restriction that enforces specified conditions on a column or set of columns.

See also:

● “constraint” on page 401
● “foreign key constraint” on page 406
● “primary key constraint” on page 416
● “unique constraint” on page 424

checkpoint

The point at which all changes to the database are saved to the database file. At other times, committed
changes are saved only to the transaction log.

Glossary

398 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

checksum

The calculated number of bits of a database page that is recorded with the database page itself. The checksum
allows the database management system to validate the integrity of the page by ensuring that the numbers
match as the page is being written to disk. If the counts match, it's assumed that page was successfully written.

client message store

In QAnywhere, a SQL Anywhere database on the remote device that stores messages.

client message store ID

In QAnywhere, a MobiLink remote ID that uniquely identifies a client message store.

client/server

A software architecture where one application (the client) obtains information from and sends information
to another application (the server). The two applications often reside on different computers connected by
a network.

code page

A code page is an encoding that maps characters of a character set to numeric representations, typically an
integer between 0 and 255. An example of a code page is Windows code page 1252. For the purposes of this
documentation, code page and encoding are interchangeable terms.

See also:

● “character set” on page 398
● “encoding” on page 405
● “collation” on page 399

collation

A combination of a character set and a sort order that defines the properties of text in the database. For SQL
Anywhere databases, the default collation is determined by the operating system and language on which the
server is running; for example, the default collation on English Windows systems is 1252LATIN1. A
collation, also called a collating sequence, is used for comparing and sorting strings.

See also:

● “character set” on page 398
● “code page” on page 399
● “encoding” on page 405

command file

A text file containing SQL statements. Command files can be built manually, or they can be built
automatically by database utilities. The dbunload utility, for example, creates a command file consisting of
the SQL statements necessary to recreate a given database.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 399

communication stream

In MobiLink, the network protocol used for communication between the MobiLink client and the MobiLink
server.

concurrency

The simultaneous execution of two or more independent, and possibly competing, processes. SQL Anywhere
automatically uses locking to isolate transactions and ensure that each concurrent application sees a
consistent set of data.

See also:

● “transaction” on page 423
● “isolation level” on page 409

conflict resolution

In MobiLink, conflict resolution is logic that specifies what to do when two users modify the same row on
different remote databases.

connection ID

A unique number that identifies a given connection between a client application and the database. You can
determine the current connection ID using the following SQL statement:

SELECT CONNECTION_PROPERTY('Number');

connection-initiated synchronization

A form of MobiLink server-initiated synchronization in which synchronization is initiated when there are
changes to connectivity.

See also: “server-initiated synchronization” on page 420.

connection profile

A set of parameters that are required to connect to a database, such as user name, password, and server name,
that is stored and used as a convenience.

consolidated database

In distributed database environments, a database that stores the master copy of the data. In case of conflict
or discrepancy, the consolidated database is considered to have the primary copy of the data.

See also:

● “synchronization” on page 423
● “replication” on page 419

Glossary

400 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

constraint

A restriction on the values contained in a particular database object, such as a table or column. For example,
a column may have a uniqueness constraint, which requires that all values in the column be different. A table
may have a foreign key constraint, which specifies how the information in the table relates to data in some
other table.

See also:

● “check constraint” on page 398
● “foreign key constraint” on page 406
● “primary key constraint” on page 416
● “unique constraint” on page 424

contention

The act of competing for resources. For example, in database terms, two or more users trying to edit the
same row of a database contend for the rights to edit that row.

correlation name

The name of a table or view that is used in the FROM clause of a query—either its original name, or an
alternate name, that is defined in the FROM clause.

creator ID

In UltraLite Palm OS applications, an ID that is assigned when the application is created.

cursor

A named linkage to a result set, used to access and update rows from a programming interface. In SQL
Anywhere, cursors support forward and backward movement through the query results. Cursors consist of
two parts: the cursor result set, typically defined by a SELECT statement; and the cursor position.

See also:

● “cursor result set” on page 401
● “cursor position” on page 401

cursor position

A pointer to one row within the cursor result set.

See also:

● “cursor” on page 401
● “cursor result set” on page 401

cursor result set

The set of rows resulting from a query that is associated with a cursor.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 401

See also:

● “cursor” on page 401
● “cursor position” on page 401

data cube

A multi-dimensional result set with each dimension reflecting a different way to group and sort the same
results. Data cubes provide complex information about data that would otherwise require self-join queries
and correlated subqueries. Data cubes are a part of OLAP functionality.

data definition language (DDL)

The subset of SQL statements for defining the structure of data in the database. DDL statements create,
modify, and remove database objects, such as tables and users.

data manipulation language (DML)

The subset of SQL statements for manipulating data in the database. DML statements retrieve, insert, update,
and delete data in the database.

data type

The format of data, such as CHAR or NUMERIC. In the ANSI SQL standard, data types can also include a
restriction on size, character set, and collation.

See also: “domain” on page 404.

database

A collection of tables that are related by primary and foreign keys. The tables hold the information in the
database. The tables and keys together define the structure of the database. A database management system
accesses this information.

See also:

● “foreign key” on page 406
● “primary key” on page 416
● “database management system (DBMS)” on page 403
● “relational database management system (RDBMS)” on page 418

database administrator (DBA)

The user with the permissions required to maintain the database. The DBA is generally responsible for all
changes to a database schema, and for managing users and groups. The role of database administrator is
automatically built into databases as user ID DBA with password sql.

Glossary

402 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

database connection

A communication channel between a client application and the database. A valid user ID and password are
required to establish a connection. The privileges granted to the user ID determine the actions that can be
carried out during the connection.

database file

A database is held in one or more database files. There is an initial file, and subsequent files are called
dbspaces. Each table, including its indexes, must be contained within a single database file.

See also: “dbspace” on page 404.

database management system (DBMS)

A collection of programs that allow you to create and use databases.

See also: “relational database management system (RDBMS)” on page 418.

database name

The name given to a database when it is loaded by a server. The default database name is the root of the
initial database file.

See also: “database file” on page 403.

database object

A component of a database that contains or receives information. Tables, indexes, views, procedures, and
triggers are database objects.

database owner (dbo)

A special user that owns the system objects not owned by SYS.

See also:

● “database administrator (DBA)” on page 402
● “SYS” on page 423

database server

A computer program that regulates all access to information in a database. SQL Anywhere provides two
types of servers: network servers and personal servers.

DBA authority

The level of permission that enables a user to do administrative activity in the database. The DBA user has
DBA authority by default.

See also: “database administrator (DBA)” on page 402.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 403

dbspace

An additional database file that creates more space for data. A database can be held in up to 13 separate files
(an initial file and 12 dbspaces). Each table, together with its indexes, must be contained in a single database
file. The SQL command CREATE DBSPACE adds a new file to the database.

See also: “database file” on page 403.

deadlock

A state where a set of transactions arrives at a place where none can proceed.

device tracking

In MobiLink server-initiated synchronization, functionality that allows you to address messages using the
MobiLink user name that identifies a device.

See also: “server-initiated synchronization” on page 420.

direct row handling

In MobiLink, a way to synchronize table data to sources other than the MobiLink-supported consolidated
databases. You can implement both uploads and downloads with direct row handling.

See also:

● “consolidated database” on page 400
● “SQL-based synchronization” on page 421

domain

Aliases for built-in data types, including precision and scale values where applicable, and optionally
including DEFAULT values and CHECK conditions. Some domains, such as the monetary data types, are
pre-defined in SQL Anywhere. Also called user-defined data type.

See also: “data type” on page 402.

download

The stage in synchronization where data is transferred from the consolidated database to a remote database.

dynamic SQL

SQL that is generated programmatically by your program before it is executed. UltraLite dynamic SQL is
a variant designed for small-footprint devices.

EBF

Express Bug Fix. An express bug fix is a subset of the software with one or more bug fixes. The bug fixes
are listed in the release notes for the update. Bug fix updates may only be applied to installed software with
the same version number. Some testing has been performed on the software, but the software has not

Glossary

404 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

undergone full testing. You should not distribute these files with your application unless you have verified
the suitability of the software yourself.

embedded SQL

A programming interface for C programs. SQL Anywhere embedded SQL is an implementation of the ANSI
and IBM standard.

encoding

Also known as character encoding, an encoding is a method by which each character in a character set is
mapped onto one or more bytes of information, typically represented as a hexadecimal number. An example
of an encoding is UTF-8.

See also:

● “character set” on page 398
● “code page” on page 399
● “collation” on page 399

event model

In MobiLink, the sequence of events that make up a synchronization, such as begin_synchronization and
download_cursor. Events are invoked if a script is created for them.

external login

An alternate login name and password used when communicating with a remote server. By default, SQL
Anywhere uses the names and passwords of its clients whenever it connects to a remote server on behalf of
those clients. However, this default can be overridden by creating external logins. External logins are
alternate login names and passwords used when communicating with a remote server.

extraction

In SQL Remote replication, the act of unloading the appropriate structure and data from the consolidated
database. This information is used to initialize the remote database.

See also: “replication” on page 419.

failover

Switching to a redundant or standby server, system, or network on failure or unplanned termination of the
active server, system, or network. Failover happens automatically.

FILE

In SQL Remote replication, a message system that uses shared files for exchanging replication messages.
This is useful for testing and for installations without an explicit message-transport system.

See also:“replication” on page 419.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 405

file-based download

In MobiLink, a way to synchronize data in which downloads are distributed as files, allowing offline
distribution of synchronization changes.

file-definition database

In MobiLink, a SQL Anywhere database that is used for creating download files.

See also: “file-based download” on page 406.

foreign key

One or more columns in a table that duplicate the primary key values in another table. Foreign keys establish
relationships between tables.

See also:

● “primary key” on page 416
● “foreign table” on page 406

foreign key constraint

A restriction on a column or set of columns that specifies how the data in the table relates to the data in some
other table. Imposing a foreign key constraint on a set of columns makes those columns the foreign key.

See also:

● “constraint” on page 401
● “check constraint” on page 398
● “primary key constraint” on page 416
● “unique constraint” on page 424

foreign table

The table containing the foreign key.

See also: “foreign key” on page 406.

full backup

A backup of the entire database, and optionally, the transaction log. A full backup contains all the information
in the database and provides protection in the event of a system or media failure.

See also: “incremental backup” on page 408.

gateway

A MobiLink object, stored in MobiLink system tables or a Notifier properties file, that contains information
about how to send messages for server-initiated synchronization.

See also: “server-initiated synchronization” on page 420.

Glossary

406 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

generated join condition

A restriction on join results that is automatically generated. There are two types: key and natural. Key joins
are generated when you specify KEY JOIN or when you specify the keyword JOIN but do not use the
keywords CROSS, NATURAL, or ON. For a key join, the generated join condition is based on foreign key
relationships between tables. Natural joins are generated when you specify NATURAL JOIN; the generated
join condition is based on common column names in the two tables.

See also:

● “join” on page 410
● “join condition” on page 410

generation number

In MobiLink, a mechanism for forcing remote databases to upload data before applying any more download
files.

See also: “file-based download” on page 406.

global temporary table

A type of temporary table for which data definitions are visible to all users until explicitly dropped. Global
temporary tables let each user open their own identical instance of a table. By default, rows are deleted on
commit, and rows are always deleted when the connection is ended.

See also:

● “temporary table” on page 423
● “local temporary table” on page 410

grant option

The level of permission that allows a user to grant permissions to other users.

hash

A hash is an index optimization that transforms index entries into keys. An index hash aims to avoid the
expensive operation of finding, loading, and then unpacking the rows to determine the indexed value, by
including enough of the actual row data with its row ID.

histogram

The most important component of column statistics, histograms are a representation of data distribution.
SQL Anywhere maintains histograms to provide the optimizer with statistical information about the
distribution of values in columns.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 407

iAnywhere JDBC driver

The iAnywhere JDBC driver provides a JDBC driver that has some performance benefits and feature benefits
compared to the pure Java jConnect JDBC driver, but which is not a pure-Java solution. The iAnywhere
JDBC driver is recommended in most cases.

See also:

● “JDBC” on page 409
● “jConnect” on page 409

identifier

A string of characters used to reference a database object, such as a table or column. An identifier may
contain any character from A through Z, a through z, 0 through 9, underscore (_), at sign (@), number sign
(#), or dollar sign ($).

incremental backup

A backup of the transaction log only, typically used between full backups.

See also: “transaction log” on page 423.

index

A sorted set of keys and pointers associated with one or more columns in a base table. An index on one or
more columns of a table can improve performance.

InfoMaker

A reporting and data maintenance tool that lets you create sophisticated forms, reports, graphs, cross-tabs,
and tables, and applications that use these reports as building blocks.

inner join

A join in which rows appear in the result set only if both tables satisfy the join condition. Inner joins are the
default.

See also:

● “join” on page 410
● “outer join” on page 414

integrated login

A login feature that allows the same single user ID and password to be used for operating system logins,
network logins, and database connections.

Glossary

408 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

integrity

Adherence to rules that ensure that data is correct and accurate, and that the relational structure of the database
is intact.

See also: “referential integrity” on page 418.

Interactive SQL

A SQL Anywhere application that allows you to query and alter data in your database, and modify the
structure of your database. Interactive SQL provides a pane for you to enter SQL statements, and panes that
return information about how the query was processed and the result set.

isolation level

The degree to which operations in one transaction are visible to operations in other concurrent transactions.
There are four isolation levels, numbered 0 through 3. Level 3 provides the highest level of isolation. Level
0 is the default setting. SQL Anywhere also supports three snapshot isolation levels: snapshot, statement-
snapshot, and readonly-statement-snapshot.

See also: “snapshot isolation” on page 421.

JAR file

Java archive file. A compressed file format consisting of a collection of one or more packages used for Java
applications. It includes all the resources necessary to install and run a Java program in a single compressed
file.

Java class

The main structural unit of code in Java. It is a collection of procedures and variables grouped together
because they all relate to a specific, identifiable category.

jConnect

A Java implementation of the JavaSoft JDBC standard. It provides Java developers with native database
access in multi-tier and heterogeneous environments. However, the iAnywhere JDBC driver is the preferred
JDBC driver for most cases.

See also:

● “JDBC” on page 409
● “iAnywhere JDBC driver” on page 408

JDBC

Java Database Connectivity. A SQL-language programming interface that allows Java applications to access
relational data. The preferred JDBC driver is the iAnywhere JDBC driver.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 409

See also:

● “jConnect” on page 409
● “iAnywhere JDBC driver” on page 408

join

A basic operation in a relational system that links the rows in two or more tables by comparing the values
in specified columns.

join condition

A restriction that affects join results. You specify a join condition by inserting an ON clause or WHERE
clause immediately after the join. In the case of natural and key joins, SQL Anywhere generates a join
condition.

See also:

● “join” on page 410
● “generated join condition” on page 407

join type

SQL Anywhere provides four types of joins: cross join, key join, natural join, and joins using an ON clause.

See also: “join” on page 410.

light weight poller
In MobiLink server-initiated synchronization, a device application that polls for push notifications from a
MobiLink server.

See also: “server-initiated synchronization” on page 420.

Listener

A program, dblsn, that is used for MobiLink server-initiated synchronization. Listeners are installed on
remote devices and configured to initiate actions on the device when they receive push notifications.

See also: “server-initiated synchronization” on page 420.

local temporary table

A type of temporary table that exists only for the duration of a compound statement or until the end of the
connection. Local temporary tables are useful when you need to load a set of data only once. By default,
rows are deleted on commit.

See also:

● “temporary table” on page 423
● “global temporary table” on page 407

Glossary

410 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

lock

A concurrency control mechanism that protects the integrity of data during the simultaneous execution of
multiple transactions. SQL Anywhere automatically applies locks to prevent two connections from changing
the same data at the same time, and to prevent other connections from reading data that is in the process of
being changed.

You control locking by setting the isolation level.

See also:

● “isolation level” on page 409
● “concurrency” on page 400
● “integrity” on page 409

log file

A log of transactions maintained by SQL Anywhere. The log file is used to ensure that the database is
recoverable in the event of a system or media failure, to improve database performance, and to allow data
replication using SQL Remote.

See also:

● “transaction log” on page 423
● “transaction log mirror” on page 424
● “full backup” on page 406

logical index

A reference (pointer) to a physical index. There is no indexing structure stored on disk for a logical index.

LTM

Log Transfer Manager (LTM) also called Replication Agent. Used with Replication Server, the LTM is the
program that reads a database transaction log and sends committed changes to Sybase Replication Server.

See: “Replication Server” on page 419.

maintenance release

A maintenance release is a complete set of software that upgrades installed software from an older version
with the same major version number (version number format is major.minor.patch.build). Bug fixes and
other changes are listed in the release notes for the upgrade.

materialized view

A materialized view is a view that has been computed and stored on disk. Materialized views have
characteristics of both views (they are defined using a query specification), and of tables (they allow most
table operations to be performed on them).

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 411

See also:

● “base table” on page 397
● “view” on page 425

message log

A log where messages from an application such as a database server or MobiLink server can be stored. This
information can also appear in a messages window or be logged to a file. The message log includes
informational messages, errors, warnings, and messages from the MESSAGE statement.

message store

In QAnywhere, databases on the client and server device that store messages.

See also:

● “client message store” on page 399
● “server message store” on page 421

message system

In SQL Remote replication, a protocol for exchanging messages between the consolidated database and a
remote database. SQL Anywhere includes support for the following message systems: FILE, FTP, and
SMTP.

See also:

● “replication” on page 419
● “FILE” on page 405

message type

In SQL Remote replication, a database object that specifies how remote users communicate with the publisher
of a consolidated database. A consolidated database may have several message types defined for it; this
allows different remote users to communicate with it using different message systems.

See also:

● “replication” on page 419
● “consolidated database” on page 400

metadata

Data about data. Metadata describes the nature and content of other data.

See also: “schema” on page 420.

mirror log

See also: “transaction log mirror” on page 424.

Glossary

412 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MobiLink

A session-based synchronization technology designed to synchronize UltraLite and SQL Anywhere remote
databases with a consolidated database.

See also:

● “consolidated database” on page 400
● “synchronization” on page 423
● “UltraLite” on page 424

MobiLink client

There are two kinds of MobiLink clients. For SQL Anywhere remote databases, the MobiLink client is the
dbmlsync command line utility. For UltraLite remote databases, the MobiLink client is built in to the
UltraLite runtime library.

MobiLink Monitor

A graphical tool for monitoring MobiLink synchronizations.

MobiLink server

The computer program that runs MobiLink synchronization, mlsrv11.

MobiLink system table

System tables that are required by MobiLink synchronization. They are installed by MobiLink setup scripts
into the MobiLink consolidated database.

MobiLink user

A MobiLink user is used to connect to the MobiLink server. You create the MobiLink user on the remote
database and register it in the consolidated database. MobiLink user names are entirely independent of
database user names.

network protocol

The type of communication, such as TCP/IP or HTTP.

network server

A database server that accepts connections from computers sharing a common network.

See also: “personal server” on page 415.

normalization

The refinement of a database schema to eliminate redundancy and improve organization according to rules
based on relational database theory.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 413

Notifier

A program that is used by MobiLink server-initiated synchronization. Notifiers are integrated into the
MobiLink server. They check the consolidated database for push requests, and send push notifications.

See also:

● “server-initiated synchronization” on page 420
● “Listener” on page 410

object tree

In Sybase Central, the hierarchy of database objects. The top level of the object tree shows all products that
your version of Sybase Central supports. Each product expands to reveal its own sub-tree of objects.

See also: “Sybase Central” on page 422.

ODBC

Open Database Connectivity. A standard Windows interface to database management systems. ODBC is
one of several interfaces supported by SQL Anywhere.

ODBC Administrator

A Microsoft program included with Windows operating systems for setting up ODBC data sources.

ODBC data source

A specification of the data a user wants to access via ODBC, and the information needed to get to that data.

outer join

A join that preserves all the rows in a table. SQL Anywhere supports left, right, and full outer joins. A left
outer join preserves the rows in the table to the left of the join operator, and returns a null when a row in the
right table does not satisfy the join condition. A full outer join preserves all the rows from both tables.

See also:

● “join” on page 410
● “inner join” on page 408

package

In Java, a collection of related classes.

parse tree

An algebraic representation of a query.

PDB

A Palm database file.

Glossary

414 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

performance statistic

A value reflecting the performance of the database system. The CURRREAD statistic, for example,
represents the number of file reads issued by the database server that have not yet completed.

personal server

A database server that runs on the same computer as the client application. A personal database server is
typically used by a single user on a single computer, but it can support several concurrent connections from
that user.

physical index

The actual indexing structure of an index, as it is stored on disk.

plug-in module

In Sybase Central, a way to access and administer a product. Plug-ins are usually installed and registered
automatically with Sybase Central when you install the respective product. Typically, a plug-in appears as
a top-level container, in the Sybase Central main window, using the name of the product itself; for example,
SQL Anywhere.

See also: “Sybase Central” on page 422.

policy

In QAnywhere, the way you specify when message transmission should occur.

polling

In MobiLink server-initiated synchronization, the way a light weight poller, such as the MobiLink Listener,
requests push notifications from a Notifier.

See also: “server-initiated synchronization” on page 420.

PowerDesigner

A database modeling application. PowerDesigner provides a structured approach to designing a database or
data warehouse. SQL Anywhere includes the Physical Data Model component of PowerDesigner.

PowerJ

A Sybase product for developing Java applications.

predicate

A conditional expression that is optionally combined with the logical operators AND and OR to make up
the set of conditions in a WHERE or HAVING clause. In SQL, a predicate that evaluates to UNKNOWN
is interpreted as FALSE.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 415

primary key

A column or list of columns whose values uniquely identify every row in the table.

See also: “foreign key” on page 406.

primary key constraint

A uniqueness constraint on the primary key columns. A table can have only one primary key constraint.

See also:

● “constraint” on page 401
● “check constraint” on page 398
● “foreign key constraint” on page 406
● “unique constraint” on page 424
● “integrity” on page 409

primary table

The table containing the primary key in a foreign key relationship.

proxy table

A local table containing metadata used to access a table on a remote database server as if it were a local
table.

See also: “metadata” on page 412.

publication

In MobiLink or SQL Remote, a database object that identifies data that is to be synchronized. In MobiLink,
publications exist only on the clients. A publication consists of articles. SQL Remote users can receive a
publication by subscribing to it. MobiLink users can synchronize a publication by creating a synchronization
subscription to it.

See also:

● “replication” on page 419
● “article” on page 397
● “publication update” on page 416

publication update

In SQL Remote replication, a list of changes made to one or more publications in one database. A publication
update is sent periodically as part of a replication message to the remote database(s).

See also:

● “replication” on page 419
● “publication” on page 416

Glossary

416 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

publisher

In SQL Remote replication, the single user in a database who can exchange replication messages with other
replicating databases.

See also: “replication” on page 419.

push notification

In QAnywhere, a special message delivered from the server to a QAnywhere client that prompts the client
to initiate a message transmission. In MobiLink server-initiated synchronization, a special message delivered
from a Notifer to a device that contains push request data and internal information.

See also:

● “QAnywhere” on page 417
● “server-initiated synchronization” on page 420

push request

In MobiLink server-initiated synchronization, a row of values in a result set that a Notifier checks to
determine if push notifications need to be sent to a device.

See also: “server-initiated synchronization” on page 420.

QAnywhere

Application-to-application messaging, including mobile device to mobile device and mobile device to and
from the enterprise, that permits communication between custom programs running on mobile or wireless
devices and a centrally located server application.

QAnywhere agent

In QAnywhere, a process running on the client device that monitors the client message store and determines
when message transmission should occur.

query

A SQL statement or group of SQL statements that access and/or manipulate data in a database.

See also: “SQL” on page 421.

Redirector

A web server plug-in that routes requests and responses between a client and the MobiLink server. This
plug-in also implements load-balancing and failover mechanisms.

reference database

In MobiLink, a SQL Anywhere database used in the development of UltraLite clients. You can use a single
SQL Anywhere database as both reference and consolidated database during development. Databases made
with other products cannot be used as reference databases.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 417

referencing object

An object, such as a view, whose definition directly references another object in the database, such as a table.

See also: “foreign key” on page 406.

referenced object

An object, such as a table, that is directly referenced in the definition of another object, such as a view.

See also: “primary key” on page 416.

referential integrity

Adherence to rules governing data consistency, specifically the relationships between the primary and
foreign key values in different tables. To have referential integrity, the values in each foreign key must
correspond to the primary key values of a row in the referenced table.

See also:

● “primary key” on page 416
● “foreign key” on page 406

regular expression

A regular expression is a sequence of characters, wildcards, and operators that defines a pattern to search
for within a string.

relational database management system (RDBMS)

A type of database management system that stores data in the form of related tables.

See also: “database management system (DBMS)” on page 403.

remote database

In MobiLink or SQL Remote, a database that exchanges data with a consolidated database. Remote databases
may share all or some of the data in the consolidated database.

See also:

● “synchronization” on page 423
● “consolidated database” on page 400

REMOTE DBA authority

In SQL Remote, a level of permission required by the Message Agent (dbremote). In MobiLink, a level of
permission required by the SQL Anywhere synchronization client (dbmlsync). When the Message Agent
(dbremote) or synchronization client connects as a user who has this authority, it has full DBA access. The
user ID has no additional permissions when not connected through the Message Agent (dbremote) or
synchronization client (dbmlsync).

See also: “DBA authority” on page 403.

Glossary

418 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

remote ID

A unique identifier in SQL Anywhere and UltraLite databases that is used by MobiLink. The remote ID is
initially set to NULL and is set to a GUID during a database's first synchronization.

replication

The sharing of data among physically distinct databases. Sybase has three replication technologies:
MobiLink, SQL Remote, and Replication Server.

Replication Agent

See: “LTM” on page 411.

replication frequency

In SQL Remote replication, a setting for each remote user that determines how often the publisher's message
agent should send replication messages to that remote user.

See also: “replication” on page 419.

replication message

In SQL Remote or Replication Server, a communication sent between a publishing database and a subscribing
database. Messages contain data, passthrough statements, and information required by the replication system.

See also:

● “replication” on page 419
● “publication update” on page 416

Replication Server

A Sybase connection-based replication technology that works with SQL Anywhere and Adaptive Server
Enterprise. It is intended for near-real time replication between a few databases.

See also: “LTM” on page 411.

role

In conceptual database modeling, a verb or phrase that describes a relationship from one point of view. You
can describe each relationship with two roles. Examples of roles are "contains" and "is a member of."

role name

The name of a foreign key. This is called a role name because it names the relationship between the foreign
table and primary table. By default, the role name is the table name, unless another foreign key is already
using that name, in which case the default role name is the table name followed by a three-digit unique
number. You can also create the role name yourself.

See also: “foreign key” on page 406.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 419

rollback log

A record of the changes made during each uncommitted transaction. In the event of a ROLLBACK request
or a system failure, uncommitted transactions are reversed out of the database, returning the database to its
former state. Each transaction has a separate rollback log, which is deleted when the transaction is complete.

See also: “transaction” on page 423.

row-level trigger

A trigger that executes once for each row that is changed.

See also:

● “trigger” on page 424
● “statement-level trigger” on page 422

schema

The structure of a database, including tables, columns, and indexes, and the relationships between them.

script

In MobiLink, code written to handle MobiLink events. Scripts programmatically control data exchange to
meet business needs.

See also: “event model” on page 405.

script-based upload

In MobiLink, a way to customize the upload process as an alternative to using the log file.

script version

In MobiLink, a set of synchronization scripts that are applied together to create a synchronization.

secured feature

A feature specified by the -sf option when a database server is started, so it is not available for any database
running on that database server.

server-initiated synchronization

A way to initiate MobiLink synchronization from the MobiLink server.

server management request

A QAnywhere message that is formatted as XML and sent to the QAnywhere system queue as a way to
administer the server message store or monitor QAnywhere applications.

Glossary

420 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

server message store

In QAnywhere, a relational database on the server that temporarily stores messages until they are transmitted
to a client message store or JMS system. Messages are exchanged between clients via the server message
store.

service

In Windows operating systems, a way of running applications when the user ID running the application is
not logged on.

session-based synchronization

A type of synchronization where synchronization results in consistent data representation across both the
consolidated and remote databases. MobiLink is session-based.

snapshot isolation

A type of isolation level that returns a committed version of the data for transactions that issue read requests.
SQL Anywhere provides three snapshot isolation levels: snapshot, statement-snapshot, and readonly-
statement-snapshot. When using snapshot isolation, read operations do not block write operations.

See also: “isolation level” on page 409.

SQL

The language used to communicate with relational databases. ANSI has defined standards for SQL, the latest
of which is SQL-2003. SQL stands, unofficially, for Structured Query Language.

SQL Anywhere

The relational database server component of SQL Anywhere that is intended for use in mobile and embedded
environments or as a server for small and medium-sized businesses. SQL Anywhere is also the name of the
package that contains the SQL Anywhere RDBMS, the UltraLite RDBMS, MobiLink synchronization
software, and other components.

SQL-based synchronization

In MobiLink, a way to synchronize table data to MobiLink-supported consolidated databases using
MobiLink events. For SQL-based synchronization, you can use SQL directly or you can return SQL using
the MobiLink server APIs for Java and .NET.

SQL Remote

A message-based data replication technology for two-way replication between consolidated and remote
databases. The consolidated and remote databases must be SQL Anywhere.

SQL statement

A string containing SQL keywords designed for passing instructions to a DBMS.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 421

See also:

● “schema” on page 420
● “SQL” on page 421
● “database management system (DBMS)” on page 403

statement-level trigger

A trigger that executes after the entire triggering statement is completed.

See also:

● “trigger” on page 424
● “row-level trigger” on page 420

stored procedure

A stored procedure is a group of SQL instructions stored in the database and used to execute a set of operations
or queries on a database server

string literal

A string literal is a sequence of characters enclosed in single quotes.

subquery

A SELECT statement that is nested inside another SELECT, INSERT, UPDATE, or DELETE statement,
or another subquery.

There are two types of subquery: correlated and nested.

subscription

In MobiLink synchronization, a link in a client database between a publication and a MobiLink user, allowing
the data described by the publication to be synchronized.

In SQL Remote replication, a link between a publication and a remote user, allowing the user to exchange
updates on that publication with the consolidated database.

See also:

● “publication” on page 416
● “MobiLink user” on page 413

Sybase Central

A database management tool that provides SQL Anywhere database settings, properties, and utilities in a
graphical user interface. Sybase Central can also be used for managing other Sybase products, including
MobiLink.

Glossary

422 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

synchronization

The process of replicating data between databases using MobiLink technology.

In SQL Remote, synchronization is used exclusively to denote the process of initializing a remote database
with an initial set of data.

See also:

● “MobiLink” on page 413
● “SQL Remote” on page 421

SYS

A special user that owns most of the system objects. You cannot log in as SYS.

system object

Database objects owned by SYS or dbo.

system table

A table, owned by SYS or dbo, that holds metadata. System tables, also known as data dictionary tables, are
created and maintained by the database server.

system view

A type of view, included in every database, that presents the information held in the system tables in an
easily understood format.

temporary table

A table that is created for the temporary storage of data. There are two types: global and local.

See also:

● “local temporary table” on page 410
● “global temporary table” on page 407

transaction

A sequence of SQL statements that comprise a logical unit of work. A transaction is processed in its entirety
or not at all. SQL Anywhere supports transaction processing, with locking features built in to allow
concurrent transactions to access the database without corrupting the data. Transactions end either with a
COMMIT statement, which makes the changes to the data permanent, or a ROLLBACK statement, which
undoes all the changes made during the transaction.

transaction log

A file storing all changes made to a database, in the order in which they are made. It improves performance
and allows data recovery in the event the database file is damaged.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 423

transaction log mirror

An optional identical copy of the transaction log file, maintained simultaneously. Every time a database
change is written to the transaction log file, it is also written to the transaction log mirror file.

A mirror file should be kept on a separate device from the transaction log, so that if either device fails, the
other copy of the log keeps the data safe for recovery.

See also: “transaction log” on page 423.

transactional integrity

In MobiLink, the guaranteed maintenance of transactions across the synchronization system. Either a
complete transaction is synchronized, or no part of the transaction is synchronized.

transmission rule

In QAnywhere, logic that determines when message transmission is to occur, which messages to transmit,
and when messages should be deleted.

trigger

A special form of stored procedure that is executed automatically when a user runs a query that modifies the
data.

See also:

● “row-level trigger” on page 420
● “statement-level trigger” on page 422
● “integrity” on page 409

UltraLite

A database optimized for small, mobile, and embedded devices. Intended platforms include cell phones,
pagers, and personal organizers.

UltraLite runtime

An in-process relational database management system that includes a built-in MobiLink synchronization
client. The UltraLite runtime is included in the libraries used by each of the UltraLite programming interfaces,
and in the UltraLite engine.

unique constraint

A restriction on a column or set of columns requiring that all non-null values are different. A table can have
multiple unique constraints.

See also:

● “foreign key constraint” on page 406
● “primary key constraint” on page 416
● “constraint” on page 401

Glossary

424 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

unload

Unloading a database exports the structure and/or data of the database to text files (SQL command files for
the structure, and ASCII comma-separated files for the data). You unload a database with the Unload utility.

In addition, you can unload selected portions of your data using the UNLOAD statement.

upload

The stage in synchronization where data is transferred from a remote database to a consolidated database.

user-defined data type

See “domain” on page 404.

validate

To test for particular types of file corruption of a database, table, or index.

view

A SELECT statement that is stored in the database as an object. It allows users to see a subset of rows or
columns from one or more tables. Each time a user uses a view of a particular table, or combination of tables,
it is recomputed from the information stored in those tables. Views are useful for security purposes, and to
tailor the appearance of database information to make data access straightforward.

window

The group of rows over which an analytic function is performed. A window may contain one, many, or all
rows of data that has been partitioned according to the grouping specifications provided in the window
definition. The window moves to include the number or range of rows needed to perform the calculations
for the current row in the input. The main benefit of the window construct is that it allows additional
opportunities for grouping and analysis of results, without having to perform additional queries.

Windows

The Microsoft Windows family of operating systems, such as Windows Vista, Windows XP, and Windows
200x.

Windows CE
See “Windows Mobile” on page 425.

Windows Mobile

A family of operating systems produced by Microsoft for mobile devices.

work table

An internal storage area for interim results during query optimization.

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 425

426

Index
Symbols
#hook_dict table

about MobiLink, 239
dbmlsync, 239
scripted upload, 383

-a option
MobiLink client (dbmlsync), 136

-ap option
MobiLink client (dbmlsync), 137
MobiLink file transfer utility (mlfiletransfer), 30

-ba option
MobiLink client (dbmlsync), 138

-bc option
MobiLink client (dbmlsync), 139

-be option
MobiLink client (dbmlsync), 140

-bg option
MobiLink client (dbmlsync), 141

-c option
MobiLink client (dbmlsync), 142

-d option
MobiLink client (dbmlsync), 143

-dc option
MobiLink client (dbmlsync), 144

-df option
MobiLink file transfer utility (mlfiletransfer), 30

-dl option
MobiLink client (dbmlsync), 145

-do option
MobiLink client (dbmlsync), 146

-dp option
MobiLink file transfer utility (mlfiletransfer), 30

-drs option
MobiLink client (dbmlsync), 147

-ds option
MobiLink client (dbmlsync), 148

-e adr
dbmlsync extended option, 187
options for, 35

-e cd
dbmlsync extended option, 191

-e CommunicationAddress
dbmlsync extended option, 187
options for, 35

-e CommunicationType
dbmlsync extended option, 189

-e ConflictRetries
dbmlsync extended option, 190

-e ContinueDownload
dbmlsync extended option, 191

-e cr
dbmlsync extended option, 190

-e ctp
dbmlsync extended option, 189

-e dbs
dbmlsync extended option, 193

-e dir
dbmlsync extended option, 210

-e DisablePolling
dbmlsync extended option, 192

-e DownloadBufferSize
dbmlsync extended option, 193

-e DownloadOnly
dbmlsync extended option, 194

-e DownloadReadSize
dbmlsync extended option, 195

-e drs
dbmlsync extended option, 195

-e ds
dbmlsync extended option, 194

-e eh
dbmlsync extended option, 200

-e el
dbmlsync extended option, 196

-e ErrorLogSendLimit
dbmlsync extended option, 196

-e FireTriggers
dbmlsync extended option, 198

-e ft
dbmlsync extended option, 198

-e HoverRescanThreshold
dbmlsync extended option, 199

-e hrt
dbmlsync extended option, 199

-e IgnoreHookErrors
dbmlsync extended option, 200

-e IgnoreScheduling
dbmlsync extended option, 201

-e inc
dbmlsync extended option, 202

-e Increment
dbmlsync extended option, 202

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 427

-e isc
dbmlsync extended option, 201

-e LockTables
dbmlsync extended option, 203

-e lt
dbmlsync extended option, 203

-e mem
dbmlsync extended option, 205

-e Memory
dbmlsync extended option, 205

-e MirrorLogDirectory
dbmlsync extended option, 206

-e mld
dbmlsync extended option, 206

-e mn
dbmlsync extended option, 208

-e MobiLinkPwd
dbmlsync extended option, 207

-e mp
dbmlsync extended option, 207

-e NewMobiLinkPwd
dbmlsync extended option, 208

-e NoSyncOnStartup
dbmlsync extended option, 209

-e nss
dbmlsync extended option, 209

-e OfflineDirectory
dbmlsync extended option, 210

-e option
MobiLink client (dbmlsync), 149

-e p
dbmlsync extended option, 192

-e PollingPeriod
dbmlsync extended option, 211

-e pp
dbmlsync extended option, 211

-e sa
dbmlsync extended option, 216

-e sch
dbmlsync extended option, 212

-e Schedule
dbmlsync extended option, 212

-e scn
dbmlsync extended option, 215

-e ScriptVersion
dbmlsync extended option, 214

-e SendColumnNames
dbmlsync extended option, 215

-e SendDownloadACK
dbmlsync extended option, 216

-e SendTriggers
dbmlsync extended option, 217

-e st
dbmlsync extended option, 217

-e sv
dbmlsync extended option, 214

-e TableOrder
dbmlsync extended option, 218

-e TableOrderChecking
dbmlsync extended option, 220

-e toc
dbmlsync extended option, 220

-e tor
dbmlsync extended option, 218

-e uo
dbmlsync extended option, 221

-e UploadOnly
dbmlsync extended option, 221

-e v
dbmlsync extended option, 222

-e Verbose
dbmlsync extended option, 222

-e VerboseHooks
dbmlsync extended option, 223

-e VerboseMin
dbmlsync extended option, 224

-e VerboseOptions
dbmlsync extended option, 225

-e VerboseRowCounts
dbmlsync extended option, 226

-e VerboseRowValues
dbmlsync extended option, 227

-e VerboseUpload
dbmlsync extended option, 228

-e vm
dbmlsync extended option, 224

-e vn
dbmlsync extended option, 226

-e vo
dbmlsync extended option, 225

-e vr
dbmlsync extended option, 227

-e vs
dbmlsync extended option, 223

-e vu
dbmlsync extended option, 228

Index

428 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

-eh option
MobiLink client (dbmlsync), 150

-ek option
MobiLink client (dbmlsync), 151

-ep option
MobiLink client (dbmlsync), 152

-eu option
MobiLink client (dbmlsync), 153

-f option
MobiLink file transfer utility (mlfiletransfer), 30

-g option
MobiLink file transfer utility (mlfiletransfer), 30

-is option
MobiLink client (dbmlsync), 154

-k option
MobiLink ActiveSync provider (mlasinst), 27
MobiLink client (dbmlsync) (deprecated), 155

-l option
MobiLink client (dbmlsync), 156

-mn option
MobiLink client (dbmlsync), 157

-mp option
MobiLink client (dbmlsync), 158

-n option
MobiLink ActiveSync provider (mlasinst), 27
MobiLink client (dbmlsync), 159

-o option
MobiLink client (dbmlsync), 160

-os option
MobiLink client (dbmlsync), 161

-ot option
MobiLink client (dbmlsync), 162

-p option
MobiLink client (dbmlsync), 163
MobiLink file transfer utility (mlfiletransfer), 30

-pc option
MobiLink client (dbmlsync), 164

-pd option
MobiLink client (dbmlsync), 165

-pi option
MobiLink client (dbmlsync), 166

-pp option
MobiLink client (dbmlsync), 167

-q option
MobiLink client (dbmlsync), 168

-qc option
MobiLink client (dbmlsync), 169

-r option

MobiLink client (dbmlsync), 170
MobiLink file transfer utility (mlfiletransfer), 30

-ra option
MobiLink client (dbmlsync), 170

-rb option
MobiLink client (dbmlsync), 170

-sc option
MobiLink client (dbmlsync), 171

-sp option
MobiLink client (dbmlsync), 172

-tu option
MobiLink client (dbmlsync), 173

-u option
MobiLink ActiveSync provider (mlasinst), 27
MobiLink client (dbmlsync), 175
MobiLink file transfer utility (mlfiletransfer), 30

-ui option
MobiLink client (dbmlsync), 176

-uo option
MobiLink client (dbmlsync), 177

-urc option
MobiLink client (dbmlsync), 178

-ux option
MobiLink client (dbmlsync), 179

-v option
MobiLink ActiveSync provider (mlasinst), 27
MobiLink client (dbmlsync), 180
MobiLink file transfer utility (mlfiletransfer), 30

-v+ option
MobiLink client (dbmlsync), 180

-vc option
MobiLink client (dbmlsync), 180

-vn option
MobiLink client (dbmlsync), 180

-vo option
MobiLink client (dbmlsync), 180

-vp option
MobiLink client (dbmlsync), 180

-vr option
MobiLink client (dbmlsync), 180

-vs option
MobiLink client (dbmlsync), 180

-vu option
MobiLink client (dbmlsync), 180

-wc option
MobiLink client (dbmlsync), 181

-x option
MobiLink client (dbmlsync), 182

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 429

MobiLink file transfer utility (mlfiletransfer), 30
.NET

MobiLink user authentication, 20
@data option

MobiLink client (dbmlsync), 135

A
a_dbtools_info structure

initializing, 367
a_sync_db structure

initializing, 367
introduction, 366

a_syncpub structure
introduction, 366

ActiveSync
class name for dbmlsync, 181
CREATE SYNCHRONIZATION USER statement
for MobiLink SQL Anywhere clients, 117
installing the MobiLink provider, 27
installing the MobiLink provider for SQL Anywhere
clients, 118
MobiLink ActiveSync provider (mlasinst), 27
MobiLink SQL Anywhere clients, 117
registering applications for SQL Anywhere clients,
119

ActiveSync provider installation utility (mlasinst)
syntax, 27

ActiveX
MobiLink dbmlsync integration component, 337

add user wizard
MobiLink Admin mode, 11

adding
articles for MobiLink SQL Anywhere clients, 104
columns to remote MobiLink databases, 81
MobiLink users to a SQL Anywhere client, 107
MobiLink users to the consolidated database, 10
tables to remote MobiLink SQL Anywhere
databases, 81

adr dbmlsync extended option
about, 187
options for, 35

agent IDs
glossary definition, 397

altering
articles for MobiLink SQL Anywhere clients, 104
MobiLink publications for SQL Anywhere clients,
104

subscriptions for SQL Anywhere clients, 111
altering existing publications

MobiLink SQL Anywhere clients, 104
altering MobiLink subscriptions

SQL Anywhere clients, 111
APIs

Dbmlsync, 309
args option

MobiLink ActiveSync provider (mlasinst), 27
articles

adding for MobiLink SQL Anywhere clients, 104
altering for MobiLink SQL Anywhere clients, 104
creating for MobiLink SQL Anywhere clients, 100
glossary definition, 397
MobiLink synchronization subscriptions, 110
removing from MobiLink SQL Anywhere clients,
104

atomic transactions
glossary definition, 397

authenticate_user
about, 20
authentication process, 18
using predefined scripts, 21

authenticating
MobiLink to external servers, 21

authenticating MobiLink users
about, 9

authentication
MobiLink authentication process, 18
MobiLink users, 9

authentication process
MobiLink, 18

auto-dial
MobiLink client connection option, 60

AUTOINCREMENT
(see also GLOBAL AUTOINCREMENT)

B
backups

restoring remote databases, 170
base tables

glossary definition, 397
BeginDownload event

dbmlsync integration component, 347
BeginLogScan event

dbmlsync integration component, 347
BeginSynchronization event

Index

430 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

dbmlsync integration component, 348
BeginUpload event

dbmlsync integration component, 348
bit arrays

glossary definition, 398
buffer size

MobiLink client connection option, 40
buffer_size protocol option

MobiLink client connection option, 40
bugs

providing feedback, xvii
business rules

glossary definition, 398

C
C++ APIs

Dbmlsync, 309
cac option

MobiLink clients, 58
cache size

dbmlsync upload, 205
CancelSync method

Dbmlsync .NET API, 328
Dbmlsync C++ API, 315

carriers
glossary definition, 398

cd dbmlsync extended option
about, 191

certificate fields
MobiLink TLS certificate_company option, 41
MobiLink TLS certificate_name option, 43
MobiLink TLS certificate_unit option, 45

certificate option
MobiLink client connection option, 58

certificate_company protocol option
MobiLink client connection option, 41

certificate_name protocol option
MobiLink client connection option, 43

certificate_unit protocol option
MobiLink client connection option, 45

changing passwords
MobiLink, 13

character sets
glossary definition, 398

CHECK constraints
glossary definition, 398

checking table order

dbmlsync extended option, 220
checkpoints

glossary definition, 398
checksums

glossary definition, 399
class names

ActiveSync, 181
class option

MobiLink ActiveSync provider (mlasinst), 27
client databases

MobiLink dbmlsync options, 131
client event-hook procedures

MobiLink SQL Anywhere clients, 236
client message store IDs

glossary definition, 399
client message stores

glossary definition, 399
client network protocol options

MobiLink, 34
client/server

glossary definition, 399
client_port protocol option

MobiLink client connection option, 46
clients

dbmlsync, 131
SQL Anywhere as MobiLink, 4
SQL Anywhere MobiLink clients, 95
UltraLite applications as MobiLink, 5

code pages
glossary definition, 399

collations
glossary definition, 399

column-wise partitioning
MobiLink SQL Anywhere clients, 101

ColumnCount property
dbmlsync integration component, 363

ColumnName
dbmlsync integration component, 362

columns
adding to remote MobiLink databases, 81

ColumnValue property
dbmlsync integration component, 363

command files
glossary definition, 399

command line
starting dbmlsync, 131

command line utilities
mlasinst command line syntax, 27

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 431

MobiLink client (dbmlsync), 131
MobiLink clients, 25
MobiLink file transfer utility (mlfiletransfer), 30

command prompts
conventions, xv
curly braces, xv
environment variables, xv
parentheses, xv
quotes, xv

command shells
conventions, xv
curly braces, xv
environment variables, xv
parentheses, xv
quotes, xv

COMMIT statement
event-hook procedures, 238

communication streams
glossary definition, 400

CommunicationAddress dbmlsync extended option
about, 187
options for, 35

communications
MobiLink clients, 34
MobiLink dbmlsync -c option, 142
MobiLink dbmlsync adr option, 187
MobiLink dbmlsync ctp option, 189
specifying for MobiLink, 7

CommunicationType dbmlsync extended option
about, 189

components
MobiLink dbmlsync integration component, 337

compression
MobiLink client connection option, 47

compression protocol option
MobiLink client connection option, 47
UltraLite deployment requirements for, 39

concurrency
glossary definition, 400
MobiLink SQL Anywhere clients, 115

configuring
MobiLink user properties for SQL Anywhere
clients, 107
SQL Anywhere remote databases for ActiveSync,
117

conflict resolution
glossary definition, 400

ConflictRetries dbmlsync extended option

about, 190
concurrency during synchronization, 115

Connect method
Dbmlsync .NET API, 324
Dbmlsync C++ API, 312

connecting
MobiLink clients, 34
MobiLink dbmlsync -c option, 142
MobiLink dbmlsync adr option, 187
MobiLink dbmlsync ctp option, 189

connection failure
MobiLink dbmlsync clients, 241

connection IDs
glossary definition, 400

connection options
dbmlsync, 187

connection parameters
MobiLink clients, 34
MobiLink SQL Anywhere clients, 114
priority order for MobiLink SQL Anywhere clients,
185

connection profiles
glossary definition, 400

connection strings
MobiLink dbmlsync, 142

connection-initiated synchronization
glossary definition, 400

connections
MobiLink clients, 34
MobiLink dbmlsync -c option, 142
MobiLink dbmlsync adr option, 187
MobiLink dbmlsync ctp option, 189

connections for event-hook procedures
SQL Anywhere clients, 241

ConnectMobilink event
dbmlsync integration component, 349

consistency
(see also synchronization)

consolidated databases
glossary definition, 400

constraints
glossary definition, 401

contention
glossary definition, 401

ContinueDownload dbmlsync extended option
about, 191

conventions
command prompts, xv

Index

432 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

command shells, xv
documentation, xiv
file names in documentation, xiv

correlation names
glossary definition, 401

cr dbmlsync extended option
about, 190

create article wizard
using in MobiLink, 105

create MobiLink user wizard
MobiLink Admin mode, 11
using, 107

CREATE PUBLICATION statement
SQL Anywhere database usage, 100

create publication wizard
column-wise partitioning in MobiLink, 101
row-wise partitioning in MobiLink SQL Anywhere
clients, 103

CREATE SYNCHRONIZATION SUBSCRIPTION
statement

ActiveSync for MobiLink SQL Anywhere clients,
117

CREATE SYNCHRONIZATION USER statement
ActiveSync for MobiLink SQL Anywhere clients,
117

creating
articles for MobiLink SQL Anywhere clients, 100
MobiLink users, 10
MobiLink users in SQL Anywhere clients, 107
publications for MobiLink SQL Anywhere clients,
100
publications with column-wise partitioning for
MobiLink SQL Anywhere clients, 101
publications with row-wise partitioning for
MobiLink SQL Anywhere clients, 102
publications with whole tables for MobiLink SQL
Anywhere clients, 100
SQL Anywhere remote databases, 96

creating and registering MobiLink users
about, 10

creating MobiLink users
about, 10
about SQL Anywhere clients, 107

creating MobiLink users in the remote database
about, 107

creating publications for scripted upload
about, 386

creating remote databases

SQL Anywhere clients, 96
creating synchronization subscriptions

SQL Anywhere clients, 110
creator ID

glossary definition, 401
ctp dbmlsync extended option

about, 189
cursor positions

glossary definition, 401
cursor result sets

glossary definition, 401
cursors

glossary definition, 401
custom authentication

MobiLink clients, 20
custom headers

MobiLink client connection option, 48
custom user authentication

MobiLink clients, 20
custom_header protocol option

MobiLink client connection option, 48
customizing

SQL Anywhere client synchronization process, 237
customizing dbmlsync synchronization

MobiLink SQL Anywhere clients, 123
customizing the client synchronization process

SQL Anywhere clients, 237

D
data consistency

(see also synchronization)
data cube

glossary definition, 402
data manipulation language

glossary definition, 402
data types

glossary definition, 402
database administrator

glossary definition, 402
database connections

glossary definition, 403
database files

glossary definition, 403
database names

glossary definition, 403
database objects

glossary definition, 403

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 433

database owner
glossary definition, 403

database servers
glossary definition, 403

database tools interface
(see also DBTools interface)
dbmlsync, 365
setting up for dbmlsync, 367

database tools interface for dbmlsync
about, 365

databases
glossary definition, 402
MobiLink remote databases, 3

DBA authority
glossary definition, 403

dbmlsync
(see also dbmlsync utility)
connecting to the MobiLink server, 187
connecting to the remote database, 142
options, 131
programming interface, 308

Dbmlsync .NET API
CancelSync method, 328
Connect method, 324
DBSC_Event structure, 334
Disconnect method, 325
Fini method, 333
GetErrorInfo method, 329
GetEvent method, 328
GetProperty method, 333
Init method, 323
InstantiateClient method, 323
Ping method, 325
SetProperty method, 332
ShutdownServer method, 327
StartServer method, 323
Sync method, 326
WaitForServerShutdown method, 327

Dbmlsync API
.NET, 322
architecture, 308
C++, 309
interfaces, 308
introduction, 308

Dbmlsync C++ API
CancelSync method, 315
Connect method, 312
DBSC_Event structure, 320

Disconnect method, 312
Fini method, 310
FreeEventInfo method, 316
GetErrorInfo method, 317
GetEvent method, 316
GetProperty method, 320
Init method, 310
InstantiateClient method, 310
Ping method, 313
SetProperty method, 319
ShutdownServer method, 314
StartServer method, 311
Sync method, 313
WaitForServerShutdown method, 315

dbmlsync client event hooks
introducing, 123

dbmlsync error
handling, 241

dbmlsync extended options
about, 185
using, 113

dbmlsync integration component
about, 337
events, 347
IRowTransfer interface, 361
setup, 339
supported platforms, 338

dbmlsync integration component methods
about, 340

dbmlsync integration component properties
about, 342

dbmlsync message log
about, 124

dbmlsync network protocol options
about, 114

dbmlsync options
alphabetical list, 131
listed, 131

dbmlsync syntax
about, 131

dbmlsync utility
#hook_dict table, 239
ActiveSync for MobiLink SQL Anywhere clients,
117
changing passwords, 13
concurrency, 115
connecting to the MobiLink server, 187
connecting to the remote database, 142

Index

434 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

customizing MobiLink synchronization, 237
DBTools interface, 365
error handling event hooks, 241
event hooks, 236
extended options, 185
initiating synchronization from an application, 116
integration component, 337
Mac OS X, 125
options, 131
passwords, 12
permissions, 113
progress offsets, 98
sp_hook_dbmlsync_abort hook, 243
sp_hook_dbmlsync_all_error, 245
sp_hook_dbmlsync_begin, 248
sp_hook_dbmlsync_communication_error, 250
sp_hook_dbmlsync_delay, 253
sp_hook_dbmlsync_download_begin, 255
sp_hook_dbmlsync_download_end, 259
sp_hook_dbmlsync_download_log_ri_violation,
263
sp_hook_dbmlsync_download_ri_violation, 265
sp_hook_dbmlsync_download_table_begin, 269
sp_hook_dbmlsync_download_table_end, 271
sp_hook_dbmlsync_end, 273
sp_hook_dbmlsync_log_rescan, 276
sp_hook_dbmlsync_logscan_begin, 278
sp_hook_dbmlsync_logscan_end, 280
sp_hook_dbmlsync_misc_error, 282
sp_hook_dbmlsync_ml_connect_failed, 285
sp_hook_dbmlsync_process_exit_code, 288
sp_hook_dbmlsync_schema_upgrade, 290
sp_hook_dbmlsync_set_extended_options, 292
sp_hook_dbmlsync_set_ml_connect_info, 293
sp_hook_dbmlsync_set_upload_end_progress, 295
sp_hook_dbmlsync_sql_error, 297
sp_hook_dbmlsync_upload_begin, 299
sp_hook_dbmlsync_upload_end, 301
sp_hook_dbmlsync_validate_download_file, 304
syntax, 131
transaction logs, 114
using, 113

dbmlsynccom.dll
dbmlsync integration component, 338

dbmlsynccomg.dll
dbmlsync integration component, 338

DBMS
glossary definition, 403

dbs dbmlsync extended option
about, 193

DBSC_Event structure
Dbmlsync .NET API, 334
Dbmlsync C++ API, 320

dbspaces
glossary definition, 404

DBSynchronizeLog function
introduction, 366

DBTools interface
(see also database tools interface)
dbmlsync, 365
setting up for dbmlsync, 367
synchronizing SQL Anywhere clients, 116

DBTools interface for dbmlsync
about, 365

dbtools.h
synchronizing SQL Anywhere clients, 116

DBToolsFini function
using, 371

DBToolsInit function
starting dbtools, 367

DCX
about, xii

DDL
glossary definition, 402
remote MobiLink databases, 79

deadlocks
glossary definition, 404

debugging
MobiLink dbmlsync log, 124

default_internet
network_name protocol option setting, 60

default_work
network_name protocol option setting, 60

deleting
articles from MobiLink SQL Anywhere clients,
104
MobiLink users from SQL Anywhere clients, 108
publications from MobiLink SQL Anywhere clients,
106

deploying
MobiLink SQL Anywhere clients, 96
troubleshooting MobiLink deployment of SQL
Anywhere clients, 98

deploying remote databases
MobiLink SQL Anywhere clients, 96

DetailedInfoMessageEnabled property

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 435

dbmlsync integration component, 344
developer community

newsgroups, xvii
device tracking

glossary definition, 404
dial-up

dbmlsync connection, 187
MobiLink client protocol options, 34

dir dbmlsync extended option
about, 210

direct row handling
glossary definition, 404

DisablePolling dbmlsync extended option
about, 192

Disconnect method
Dbmlsync .NET API, 325
Dbmlsync C++ API, 312

DisconnectMobilink event
dbmlsync integration component, 349

DispatchChannelSize property
dbmlsync integration component, 346

dllapi.h
DBTools interface for dbmlsync, 370

DML
glossary definition, 402

DocCommentXchange (DCX)
about, xii

documentation
conventions, xiv
SQL Anywhere, xii

domains
glossary definition, 404

DoneExecution event
dbmlsync integration component, 350

download continues
dbmlsync -dc option, 144

download only
(see also download-only)

download only synchronization
(see also download-only synchronization)

download-only
dbmlsync -ds option, 148
dbmlsync DownloadOnly extended option, 194
differences between approaches, 103
publications, 103

download-only publications
about, 103

download-only synchronization

dbmlsync -ds option, 148
dbmlsync DownloadOnly extended option, 194

DownloadBufferSize dbmlsync extended option
about, 193

DownloadEventsEnabled property
dbmlsync integration component, 342

downloading rows
resolving MobiLink RI violations, 263

DownloadOnly dbmlsync extended option
about, 194

DownloadReadSize dbmlsync extended option
about, 195

DownloadRow event
dbmlsync integration component, 350

downloads
glossary definition, 404

DROP PUBLICATION statement
about, 106

DROP SYNCHRONIZATION SUBSCRIPTION
statement

about, 111
dropping

MobiLink subscriptions from SQL Anywhere
clients, 111
MobiLink users from SQL Anywhere clients, 108

dropping MobiLink subscriptions
SQL Anywhere clients, 111

dropping MobiLink users
SQL Anywhere clients, 108

dropping publications
MobiLink SQL Anywhere clients, 106

drs dbmlsync extended option
about, 195

ds dbmlsync extended option
about, 194

dst option
MobiLink ActiveSync provider (mlasinst), 27

dynamic SQL
glossary definition, 404

E
e2ee_public_key protocol option

MobiLink client connection option, 50
e2ee_type protocol option

MobiLink client connection option, 49
EBFs

glossary definition, 404

Index

436 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

ECC
MobiLink clients, 69

ECC protocol option
MobiLink clients, 69

eh dbmlsync extended option
about, 200

el dbmlsync extended option
about, 196

embedded SQL
glossary definition, 405

encoding
glossary definition, 405

end-to-end encryption public key
MobiLink client connection option, 50

end-to-end encryption type
MobiLink client connection option, 49

EndDownload event
dbmlsync integration component, 351

EndLogScan event
dbmlsync integration component, 352

EndSynchronization event
dbmlsync integration component, 353

EndUpload event
dbmlsync integration component, 354

environment variables
command prompts, xv
command shells, xv

ErrorLogSendLimit dbmlsync extended option
about, 196

ErrorMessageEnabled property
dbmlsync integration component, 343

errors
MobiLink dbmlsync clients, 241

event arguments
SQL Anywhere clients, 239

event hook sequence
SQL Anywhere clients, 237

event hooks
#hook_dict table, 239
about, 236
commits not allowed, 238
connections, 241
customizing the SQL Anywhere client
synchronization process, 237
error handling, 241
event arguments, 239
event hook sequence, 237
fatal errors, 241

ignoring errors, 242
procedure owner, 238
rollbacks not allowed, 238
sp_hook_dbmlsync_abort, 243
sp_hook_dbmlsync_all_error, 245
sp_hook_dbmlsync_begin, 248
sp_hook_dbmlsync_communication_error, 250
sp_hook_dbmlsync_delay, 253
sp_hook_dbmlsync_download_begin, 255
sp_hook_dbmlsync_download_log_ri_violation,
263
sp_hook_dbmlsync_download_ri_violation, 265
sp_hook_dbmlsync_download_table_begin, 269
sp_hook_dbmlsync_download_table_end, 271
sp_hook_dbmlsync_end, 273
sp_hook_dbmlsync_log_rescan, 276
sp_hook_dbmlsync_logscan_begin, 278
sp_hook_dbmlsync_logscan_end, 280
sp_hook_dbmlsync_misc_error, 282
sp_hook_dbmlsync_ml_connect_failed, 285
sp_hook_dbmlsync_process_exit_code, 288
sp_hook_dbmlsync_schema_upgrade, 290
sp_hook_dbmlsync_set_extended_options, 292
sp_hook_dbmlsync_set_ml_connect_info, 293
sp_hook_dbmlsync_set_upload_end_progress, 295
sp_hook_dbmlsync_sql_error, 297
sp_hook_dbmlsync_upload_begin, 299
sp_hook_dbmlsync_upload_end, 301
sp_hook_dbmlsync_validate_download_file, 304
using, 238

event hooks for SQL Anywhere clients
about, 236

event model
glossary definition, 405

event-hook procedure owner
SQL Anywhere clients, 238

event-hooks
sp_hook_dbmlsync_begin, 255
sp_hook_dbmlsync_download_end, 259

EventChannelSize property
dbmlsync integration component, 346

events
dbmlsync integration component, 347

examples
MobiLink scripted upload, 388

exit codes
dbmlsync [sp_hook_dbmlsync_abort], 243

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 437

dbmlsync [sp_hook_dbmlsync_process_exit_code],
288

ExitCode property
dbmlsync integration component, 345

extended options
configuring at SQL Anywhere clients, 107
dbmlsync, 185
priority order for SQL Anywhere clients, 185

external authenticator properties
MobiLink, 23

external logins
glossary definition, 405

external servers
authenticating to in MobiLink applications, 21

extraction
glossary definition, 405

F
failover

glossary definition, 405
MobiLink SQL Anywhere clients using
sp_hook_dbmlsync_ml_connect_failed, 285

feedback
documentation, xvii
providing, xvii
reporting an error, xvii
requesting an update, xvii

FILE
glossary definition, 405

FILE message type
glossary definition, 405

file transfers
MobiLink file transfer utility (mlfiletransfer), 30

file-based downloads
dbmlsync -bc option, 139
dbmlsync -be option, 140
dbmlsync -bg option, 141
glossary definition, 406

file-definition database
glossary definition, 406

finding out more and requesting technical assistance
technical support, xvii

Fini method
Dbmlsync .NET API, 333
Dbmlsync C++ API, 310

FIPS
MobiLink client connection option, 51

FIPS protocol option
MobiLink client connection option, 51
MobiLink clients, 69

FireTriggers dbmlsync extended option
about, 198

first synchronization always works
dbmlsync, 99

foreign key constraints
glossary definition, 406

foreign keys
glossary definition, 406

foreign tables
glossary definition, 406

FreeEventInfo method
Dbmlsync C++ API, 316

ft dbmlsync extended option
about, 198

full backups
glossary definition, 406

G
gateways

glossary definition, 406
generated join conditions

glossary definition, 407
generation numbers

glossary definition, 407
GetErrorInfo method

Dbmlsync .NET API, 329
Dbmlsync C++ API, 317

GetEvent method
Dbmlsync .NET API, 328
Dbmlsync C++ API, 316

GetProperty method
Dbmlsync .NET API, 333
Dbmlsync C++ API, 320

getting help
technical support, xvii

getting started
SyncConsole, 125

GLOBAL AUTOINCREMENT
(see also AUTOINCREMENT)

global temporary tables
glossary definition, 407

glossary
list of SQL Anywhere terminology, 397

grant options

Index

438 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

glossary definition, 407

H
handling errors

MobiLink dbmlsync clients, 241
handling errors and warnings in event hook procedures

MobiLink dbmlsync clients, 241
hash

glossary definition, 407
help

technical support, xvii
histograms

glossary definition, 407
hooks

about dbmlsync event hooks, 236
error handling, 241
ignoring errors, 200
sp_hook_dbmlsync_abort, 243
sp_hook_dbmlsync_all_error, 245
sp_hook_dbmlsync_begin, 248
sp_hook_dbmlsync_communication_error, 250
sp_hook_dbmlsync_delay, 253
sp_hook_dbmlsync_download_begin, 255
sp_hook_dbmlsync_download_end, 259
sp_hook_dbmlsync_download_log_ri_violation,
263
sp_hook_dbmlsync_download_ri_violation, 265
sp_hook_dbmlsync_download_table_begin, 269
sp_hook_dbmlsync_download_table_end, 271
sp_hook_dbmlsync_end, 273
sp_hook_dbmlsync_log_rescan, 276
sp_hook_dbmlsync_logscan_begin, 278
sp_hook_dbmlsync_logscan_end, 280
sp_hook_dbmlsync_misc_error, 282
sp_hook_dbmlsync_ml_connect_failed, 285
sp_hook_dbmlsync_process_exit_code, 288
sp_hook_dbmlsync_schema_upgrade, 290
sp_hook_dbmlsync_set_extended_options, 292
sp_hook_dbmlsync_set_ml_connect_info, 293
sp_hook_dbmlsync_set_upload_end_progress, 295
sp_hook_dbmlsync_sql_error, 297
sp_hook_dbmlsync_upload_begin, 299
sp_hook_dbmlsync_upload_end, 301
sp_hook_dbmlsync_validate_download_file, 304
synchronization event hook sequence, 237
synchronization event hooks, 236

host protocol option

MobiLink client connection option, 53
hovering

dbmlsync, 121
HoverRescanThreshold dbmlsync extended option

about, 199
hrt dbmlsync extended option

about, 199
HTTP

MobiLink client options, 37
HTTP synchronization

MobiLink client options, 37
http_password protocol option

MobiLink client connection option, 54
http_proxy_password protocol option

MobiLink client connection option, 55
http_proxy_userid protocol option

MobiLink client connection option, 56
http_userid protocol option

MobiLink client connection option, 57
HTTPS

MobiLink client options, 38
HTTPS synchronization

MobiLink client options, 38

I
iAnywhere developer community

newsgroups, xvii
iAnywhere JDBC driver

glossary definition, 408
icons

used in this Help, xvi
identifiers

glossary definition, 408
IDs

MobiLink remote IDs, 14
IgnoreHookErrors dbmlsync extended option

about, 200
IgnoreScheduling dbmlsync extended option

about, 201
ignoring errors in event-hook procedures

SQL Anywhere clients, 242
IMAP authentication

MobiLink scripts, 21
inc dbmlsync extended option

about, 202
Increment dbmlsync extended option

about, 202

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 439

incremental backups
glossary definition, 408

incremental uploads
MobiLink synchronization, 202

indexes
glossary definition, 408

InfoMaker
glossary definition, 408

InfoMessageEnabled property
dbmlsync integration component, 344

Init method
Dbmlsync .NET API, 323
Dbmlsync C++ API, 310

initiating
synchronization for SQL Anywhere clients, 113

initiating synchronization
SQL Anywhere clients, 113

initiating synchronization from an application
SQL Anywhere clients, 116

inner joins
glossary definition, 408

install-dir
documentation usage, xiv

installing
MobiLink provider for ActiveSync for SQL
Anywhere clients, 118

installing the MobiLink provider for ActiveSync
SQL Anywhere clients, 118

InstantiateClient method
Dbmlsync .NET API, 323
Dbmlsync C++ API, 310

integrated logins
glossary definition, 408

integration component
dbmlsync, 337

integrity
glossary definition, 409

Interactive SQL
glossary definition, 409

interfaces
DBTools for dbmlsync, 365

IRowTransferData interface
dbmlsync integration component, 361

isc dbmlsync extended option
about, 201

isolation levels
glossary definition, 409

J
JAR files

glossary definition, 409
Java

MobiLink user authentication, 20
Java and .NET user authentication

MobiLink, 20
Java classes

glossary definition, 409
java.naming.provider.url

MobiLink external authenticator properties, 23
jConnect

glossary definition, 409
JDBC

glossary definition, 409
join conditions

glossary definition, 410
join types

glossary definition, 410
joins

glossary definition, 410

K
key joins

glossary definition, 407

L
LDAP authentication

MobiLink scripts, 21
Listeners

glossary definition, 410
local temporary tables

glossary definition, 410
locking

MobiLink SQL Anywhere clients, 115
locks

glossary definition, 411
LockTables dbmlsync extended option

about, 203
concurrency during synchronization, 115

log files
glossary definition, 411
MobiLink [dbmlsync] transaction logs, 114
MobiLink SQL Anywhere clients, 124

log offsets
MobiLink SQL Anywhere clients, 98

logging

Index

440 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MobiLink client (dbmlsync) -v option, 180
MobiLink dbmlsync actions, 124
MobiLink RI violations, 263
MobiLink SQL Anywhere client transaction logs,
114

logging dbmlsync activity
about, 124

logical indexes
glossary definition, 411

logscan polling
about, 192

lt dbmlsync extended option
about, 203

LTM
glossary definition, 411

M
Mac OS X

MobiLink, 125
mail.imap.host

MobiLink external authenticator properties, 23
mail.imap.port

MobiLink external authenticator properties, 23
mail.pop3.host

MobiLink external authenticator properties, 23
mail.pop3.port

MobiLink external authenticator properties, 23
maintenance releases

glossary definition, 411
materialized views

glossary definition, 411
mem dbmlsync extended option

about, 205
Memory dbmlsync extended option

about, 205
Message event

dbmlsync integration component, 354
message log

glossary definition, 412
MobiLink [dbmlsync] about, 124

message log file
MobiLink client (dbmlsync) -o option, 160
MobiLink client (dbmlsync) -os option, 161
MobiLink client (dbmlsync) -ot option, 162

message stores
glossary definition, 412

message systems

glossary definition, 412
message types

glossary definition, 412
metadata

glossary definition, 412
mirror logs

deleting for dbmlsync, 206
glossary definition, 412

MirrorLogDirectory dbmlsync extended option
about, 206

ml_remote_id option
SQL Anywhere clients, 97

ml_user
installing a SQL Anywhere client over an old one,
98

ml_username
about, 10
creating, 10

mlasdesk.dll
installing, 27

mlasdev.dll
installing, 27

mlasinst utility
dbmlsync usage, 117
installing the MobiLink provider for ActiveSync for
SQL Anywhere clients, 118
syntax, 27

mld dbmlsync extended option
about, 206

mlfiletransfer utility
syntax, 30

mluser utility
using, 11

mn dbmlsync extended option
about, 208

Mobile Device Center (see ActiveSync)
MobiLink

connection parameters for clients, 34
dbmlsync event hooks, 236
dbmlsync options, 131
glossary definition, 413
hooks, 236
logging RI violations, 263
scheduling SQL Anywhere clients, 121
scripted upload, 373
SQL Anywhere clients, 95
users, 9
utilities for clients, 25

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 441

MobiLink ActiveSync provider installation utility
(mlasinst)

syntax, 27
MobiLink client (dbmlsync)

options, 131
MobiLink client network protocol options

about, 34
MobiLink client utilities

about, 25
MobiLink clients

glossary definition, 413
MobiLink file transfer utility (mlfiletransfer)

syntax, 30
MobiLink Monitor

glossary definition, 413
MobiLink performance

estimate number of upload rows, 178
MobiLink security

changing passwords, 13
choosing a user authentication mechanism, 16
custom user authentication, 20
new users, 12
passwords, 11
user authentication, 9
user authentication architecture, 17
user authentication passwords, 12

MobiLink server
glossary definition, 413
Mac OS X, 125

MobiLink SQL statements
listed, 230

MobiLink synchronization
scheduling SQL Anywhere clients, 121
scripted upload, 373
SQL Anywhere clients, 95

MobiLink synchronization client
options, 131

MobiLink synchronization profiles
introduction, 232

MobiLink synchronization subscriptions
SQL Anywhere clients, 110

MobiLink system tables
glossary definition, 413

MobiLink user names
about, 10
creating, 10
using in scripts, 15

MobiLink users

about, 9
configuring properties at SQL Anywhere clients,
107
creating, 10
creating in SQL Anywhere clients, 107
dropping from SQL Anywhere clients, 108
glossary definition, 413

MobiLink utilities
client, 25
MobiLink ActiveSync provider (mlasinst), 27
MobiLink file transfer utility (mlfiletransfer), 30

MobiLinkPwd dbmlsync extended option
about, 207

monitoring
logging MobiLink RI violations, 263

mp dbmlsync extended option
about, 207

MSGQ_SHUTDOWN_REQUESTED
DBTools interface for dbmlsync, 370

MSGQ_SLEEP_THROUGH
DBTools interface for dbmlsync, 370

MSGQ_SYNC_REQUESTED
DBTools interface for dbmlsync, 370

N
name option

MobiLink ActiveSync provider (mlasinst), 27
named parameters

remote_id, 15
username, 15

natural joins
glossary definition, 407

network parameters
MobiLink clients, 34

network protocol options
dbmlsync, 187
MobiLink clients, 34

network protocols
glossary definition, 413
MobiLink client options for HTTP, 37
MobiLink client options for HTTPS, 38
MobiLink client options for TCP/IP, 35
MobiLink client options for TLS, 36
specifying for dbmlsync, 189
specifying for MobiLink, 7
UltraLite support for, 39

network server

Index

442 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

glossary definition, 413
network_leave_open protocol option

MobiLink client connection option, 59
network_name protocol option

MobiLink client connection option, 60
new users

MobiLink user authentication, 12
NewMobiLinkPwd dbmlsync extended option

about, 208
newsgroups

technical support, xvii
normalization

glossary definition, 413
NoSyncOnStartup dbmlsync extended option

about, 209
Notifiers

glossary definition, 414
nss dbmlsync extended option

about, 209

O
object trees

glossary definition, 414
ODBC

glossary definition, 414
ODBC Administrator

glossary definition, 414
ODBC data sources

glossary definition, 414
OfflineDirectory dbmlsync extended option

about, 210
offsets

MobiLink SQL Anywhere clients, 98
online books

PDF, xii
options

dbmlsync, 131
MobiLink ActiveSync provider (mlasinst), 27
MobiLink client (dbmlsync), 131
MobiLink dbmlsync extended options, 185
MobiLink file transfer utility (mlfiletransfer), 30
UltraLite network protocols, 39

options for performance tuning
MobiLink SQL Anywhere clients, 113

order of tables
dbmlsync extended option, 218

outer joins

glossary definition, 414

P
p dbmlsync extended option

about, 192
packages

glossary definition, 414
parameters

MobiLink client connection, 34
parse trees

glossary definition, 414
partitioning

column-wise for MobiLink SQL Anywhere clients,
101
row-wise partitioning for MobiLink SQL Anywhere
clients, 102

passthrough mode
(see also SQL passthrough)

passwords
changing for MobiLink, 13
MobiLink authentication by end users, 12
MobiLink user authentication setup, 11

path property
dbmlsync integration component, 342

PDB
glossary definition, 414

PDF
documentation, xii

performance
MobiLink SQL Anywhere clients, 113

performance statistics
glossary definition, 415

persistent connections
dbmlsync -pc option, 164

persistent protocol option
MobiLink client connection option, 62

personal server
glossary definition, 415

physical indexes
glossary definition, 415

ping
dbmlsync synchronization parameter, 166

Ping method
Dbmlsync .NET API, 325
Dbmlsync C++ API, 313

pinging
MobiLink server, 166

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 443

plug-in modules
glossary definition, 415

policies
glossary definition, 415

polling
dbmlsync logscan polling, 192
glossary definition, 415

PollingPeriod dbmlsync extended option
about, 211

POP3 authentication
MobiLink scripts, 21

port protocol option
MobiLink client connection option, 63

PowerDesigner
glossary definition, 415

PowerJ
glossary definition, 415

pp dbmlsync extended option
about, 211

predicates
glossary definition, 415

preparing
remote databases for MobiLink, 97

primary key constraints
glossary definition, 416

primary keys
glossary definition, 416

primary tables
glossary definition, 416

priority order for extended options and connection
parameters

SQL Anywhere clients, 185
procedures

MobiLink dbmlsync event hooks, 236
programming interfaces

dbmlsync, 123
progress

scripted upload, 383
progress offsets

MobiLink SQL Anywhere clients, 98
ProgressIndex event

dbmlsync integration component, 356
ProgressMessage event

dbmlsync integration component, 357
properties

dbmlsync integration component, 342
protocol options

dbmlsync, 187

MobiLink clients, 34
protocols

(see also network protocols)
MobiLink client options for HTTP, 37
MobiLink client options for HTTPS, 38
MobiLink client options for TCP/IP, 35
MobiLink client options for TLS, 36
specifying for dbmlsync, 189
UltraLite list, 39

proxy tables
glossary definition, 416

proxy_host protocol option
MobiLink client connection option, 64

proxy_hostname option
MobiLink client connection option, 64

proxy_port protocol option
MobiLink client connection option, 65

proxy_portnumber option
MobiLink client connection option, 65

publication updates
glossary definition, 416

publications
about MobiLink SQL Anywhere clients, 100
altering for MobiLink SQL Anywhere clients, 104
column-wise partitioning for MobiLink SQL
Anywhere clients, 101
creating for MobiLink SQL Anywhere clients, 100
download-only, 103
dropping from MobiLink SQL Anywhere clients,
106
glossary definition, 416
MobiLink SQL Anywhere client offsets, 98
row-wise partitioning for MobiLink SQL Anywhere
clients, 102
simple publications for MobiLink SQL Anywhere
clients, 100
using a WHERE clause in MobiLink, 102

publisher
glossary definition, 417

publishing
MobiLink selected columns (SQL Anywhere
clients), 101
MobiLink selected rows (SQL Anywhere clients),
102
MobiLink whole tables (SQL Anywhere clients),
100
selected columns for MobiLink SQL Anywhere
clients, 101

Index

444 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

selected rows in MobiLink, 102
SQL Anywhere client tables, 100
SQL Anywhere client whole tables, 100

publishing data
MobiLink SQL Anywhere clients, 100

push notifications
glossary definition, 417

push requests
glossary definition, 417

Q
QAnywhere

glossary definition, 417
QAnywhere Agent

glossary definition, 417
queries

glossary definition, 417

R
RDBMS

glossary definition, 418
reconciling data (see synchronization)
Redirector

glossary definition, 417
reference databases

glossary definition, 417
referenced object

glossary definition, 418
referencing object

glossary definition, 418
referential integrity

glossary definition, 418
resolving MobiLink RI violations, 263

registering
MobiLink SQL Anywhere applications with
ActiveSync, 119
MobiLink users, 10

registering MobiLink users
about, 10

regular expressions
glossary definition, 418

remote databases
creating SQL Anywhere clients, 96
deploying SQL Anywhere clients, 96
glossary definition, 418
MobiLink SQL Anywhere clients, 95
restoring from backup, 170

transferring files, 30
REMOTE DBA authority

glossary definition, 418
remote DBA permissions

MobiLink synchronization of SQL Anywhere
clients, 113

remote IDs
about, 14
glossary definition, 419
setting in SQL Anywhere databases, 97

remote MobiLink databases
schema changes, 79

removing
articles from MobiLink SQL Anywhere clients,
104

replication
glossary definition, 419

Replication Agent
glossary definition, 419

replication frequency
glossary definition, 419

replication messages
glossary definition, 419

Replication Server
glossary definition, 419

restartable downloads
dbmlsync -dc option, 144
sp_hook_dbmlsync_end, 273

restoring
remote databases from backup, 170

return codes
dbmlsync [sp_hook_dbmlsync_abort], 243
dbmlsync [sp_hook_dbmlsync_process_exit_code],
288

RI violations
MobiLink dbmlsync clients, 241

role names
glossary definition, 419

roles
glossary definition, 419

rollback logs
glossary definition, 420

ROLLBACK statement
event-hook procedures, 238

row-level triggers
glossary definition, 420

row-wise partitioning
MobiLink SQL Anywhere clients, 102

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 445

RowOperation property
dbmlsync integration component, 361

RSA
MobiLink clients, 69

RSA protocol option
MobiLink clients, 69

run method
dbmlsync integration component, 340

S
s.remote_id

usage, 15
s.username

MobiLink use in scripts, 15
sa dbmlsync extended option

about, 216
samples-dir

documentation usage, xiv
sch dbmlsync extended option

about, 212
Schedule dbmlsync extended option

about, 212
schedules

MobiLink SQL Anywhere clients, 121
scheduling

ignore for dbmlsync, 201
MobiLink [dbmlsync] Schedule extended option,
212
MobiLink SQL Anywhere clients, 121
MobiLink using sp_hook_dbmlsync_delay, 253
MobiLink using sp_hook_dbmlsync_end, 273

scheduling synchronization
SQL Anywhere clients, 121

schema changes
remote MobiLink databases, 79

schema upgrades
sp_hook_dbmlsync_schema_upgrade event hook,
290
SQL Anywhere remote databases, 81
UltraLite remote databases, 83

schemas
glossary definition, 420

scn dbmlsync extended option
about, 215

script parameters
remote_id, 15
username, 15

script versions
glossary definition, 420

script-based upload
about MobiLink, 373

script-based uploads
glossary definition, 420

scripted upload
about MobiLink, 373
MobiLink custom progress values, 384
MobiLink defining stored procedures for inserts,
384
MobiLink defining stored procedures for scripted
upload, 383
MobiLink design, 376
MobiLink example, 388

scripted uploads
MobiLink defining stored procedures for deletes,
385
MobiLink defining stored procedures for updates,
386

scripts
glossary definition, 420
MobiLink remote_id parameter, 15

ScriptVersion dbmlsync extended option
about, 214

secured features
glossary definition, 420

security
changing MobiLink passwords, 13
MobiLink custom user authentication, 20
MobiLink new users, 12
MobiLink synchronization of SQL Anywhere
clients, 113
MobiLink user authentication, 9
user authentication passwords, 12

selecting
UltraLite network protocols, 39

send column names
dbmlsync extended option, 215

send download acknowledgement
dbmlsync extended option, 216

SendColumnNames dbmlsync extended option
about, 215

SendDownloadACK dbmlsync extended option
about, 216

SendTriggers dbmlsync extended option
about, 217

sequences

Index

446 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

synchronization event hooks, 237
server management requests

glossary definition, 420
server message stores

glossary definition, 421
server stored procedures

MobiLink dbmlsync event hooks, 236
server-initiated synchronization

glossary definition, 420
services

glossary definition, 421
session-based synchronization

glossary definition, 421
set_cookie protocol option

MobiLink client connection option, 66
SetProperty method

Dbmlsync .NET API, 332
Dbmlsync C++ API, 319

setting remote IDs
SQL Anywhere databases, 97

setting up
MobiLink DBTools interface for dbmlsync, 367
MobiLink scripted upload, 375

setting up the dbmlsync integration component
about, 339

SetTitle event
dbmlsync integration component, 357

ShutdownServer method
Dbmlsync .NET API, 327
Dbmlsync C++ API, 314

shutting down
dbmlsync automatically, 169

snapshot isolation
glossary definition, 421

sp_hook_dbmlsync_abort
syntax, 243

sp_hook_dbmlsync_all_error
syntax, 245

sp_hook_dbmlsync_begin
syntax, 248

sp_hook_dbmlsync_communication_error
syntax, 250

sp_hook_dbmlsync_delay
syntax, 253

sp_hook_dbmlsync_download_begin
syntax, 255

sp_hook_dbmlsync_download_com_error
(deprecated)

syntax, 257
sp_hook_dbmlsync_download_end

syntax, 259
sp_hook_dbmlsync_download_fatal_SQL_error
(deprecated)

syntax, 261
sp_hook_dbmlsync_download_log_ri_violation

syntax, 263
sp_hook_dbmlsync_download_ri_violation

syntax, 265
sp_hook_dbmlsync_download_sql_error (deprecated)

syntax, 267
sp_hook_dbmlsync_download_table_begin

syntax, 269
sp_hook_dbmlsync_download_table_end

syntax, 271
sp_hook_dbmlsync_end

syntax, 273
sp_hook_dbmlsync_log_rescan

syntax, 276
sp_hook_dbmlsync_logscan_begin

syntax, 278
sp_hook_dbmlsync_logscan_end

syntax, 280
sp_hook_dbmlsync_misc_error

syntax, 282
sp_hook_dbmlsync_ml_connect_failed

syntax, 285
sp_hook_dbmlsync_process_exit_code

syntax, 288
sp_hook_dbmlsync_schema_upgrade

syntax, 290
sp_hook_dbmlsync_set_extended_options

syntax, 292
sp_hook_dbmlsync_set_ml_connect_info

syntax, 293
sp_hook_dbmlsync_set_upload_end_progress

syntax, 295
sp_hook_dbmlsync_sql_error

syntax, 297
sp_hook_dbmlsync_upload_begin

syntax, 299
sp_hook_dbmlsync_upload_end

syntax, 301
sp_hook_dbmlsync_validate_download_file

syntax, 304
specifying the network protocol for clients

MobiLink, 7

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 447

SQL
glossary definition, 421

SQL Anywhere
as MobiLink clients, 4
documentation, xii
glossary definition, 421

SQL Anywhere client logging
about, 124

SQL Anywhere client utility (dbmlsync)
syntax, 131

SQL Anywhere clients
about MobiLink, 95
dbmlsync, 131
dbmlsync integration component, 337
introduction, 4
registering for ActiveSync, 119

SQL Anywhere remote databases
about MobiLink, 95

SQL passthrough
about, 86
automatic script execution, SQL Anywhere client,
89
automatic script execution, UltraLite client, 90
creating a script, 86
creating passthrough entries, 86
downloading scripts, 87
executing scripts, 87
manual script execution, 87
script results, 91
script results, capturing, 90
script results, reviewing, 90
SQL Anywhere clients, 86
UltraLite clients, 86

SQL Remote
glossary definition, 421

SQL statements
glossary definition, 421
MobiLink, 230

SQL-based synchronization
glossary definition, 421

src option
MobiLink ActiveSync provider (mlasinst), 27

st dbmlsync extended option
about, 217

StartServer method
Dbmlsync .NET API, 323
Dbmlsync C++ API, 311

state

MobiLink SQL Anywhere clients, 98
statement-level triggers

glossary definition, 422
statements

MobiLink, 230
stop method

dbmlsync integration component, 340
stored procedures

glossary definition, 422
MobiLink client procedures, 236
MobiLink dbmlsync event hooks, 236
sp_hook_dbmlsync_abort syntax, 243
sp_hook_dbmlsync_all_error syntax, 245
sp_hook_dbmlsync_begin syntax, 248
sp_hook_dbmlsync_communication_error syntax,
250
sp_hook_dbmlsync_delay syntax, 253
sp_hook_dbmlsync_download_begin syntax, 255
sp_hook_dbmlsync_download_end syntax, 259
sp_hook_dbmlsync_download_log_ri_violation,
263
sp_hook_dbmlsync_download_ri_violation, 265
sp_hook_dbmlsync_download_table_begin syntax,
269
sp_hook_dbmlsync_download_table_end syntax,
271
sp_hook_dbmlsync_end syntax, 273
sp_hook_dbmlsync_log_rescan syntax, 276
sp_hook_dbmlsync_logscan_begin syntax, 278
sp_hook_dbmlsync_logscan_end syntax, 280
sp_hook_dbmlsync_misc_error syntax, 282
sp_hook_dbmlsync_ml_connect_failed syntax, 285
sp_hook_dbmlsync_process_exit_code syntax, 288
sp_hook_dbmlsync_schema_upgrade syntax, 290
sp_hook_dbmlsync_set_extended_options syntax,
292
sp_hook_dbmlsync_set_ml_connect_info syntax,
293
sp_hook_dbmlsync_set_upload_end_progress
syntax, 295
sp_hook_dbmlsync_sql_error syntax, 297
sp_hook_dbmlsync_upload_begin syntax, 299
sp_hook_dbmlsync_upload_end syntax, 301
sp_hook_dbmlsync_validate_download_file
syntax, 304

storing SQL passthrough scripts
SQL Anywhere client, 87
UltraLite client, 87

Index

448 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

stream parameters
(see also protocol options)
MobiLink clients, 34

string literal
glossary definition, 422

subqueries
glossary definition, 422

subscriptions
glossary definition, 422
MobiLink SQL Anywhere clients, 110

support
newsgroups, xvii

supported network protocols
UltraLite list, 39

supported platforms
dbmlsync integration component, 338

sv dbmlsync extended option
about, 214

switches
MobiLink ActiveSync provider (mlasinst), 27
MobiLink client (dbmlsync), 131
MobiLink file transfer utility (mlfiletransfer), 30

Sybase Central
glossary definition, 422

Sync method
Dbmlsync .NET API, 326
Dbmlsync C++ API, 313

SyncConsole
getting started, 125

synchronization
ActiveSync for MobiLink SQL Anywhere clients,
117
changing passwords, 13
connection parameters for clients, 34
custom user authentication, 20
customizing, 236
dbmlsync first synchronization, 99
glossary definition, 423
initiating for SQL Anywhere clients, 113
MobiLink client utilities, 25
MobiLink dbmlsync event hooks, 236
scheduling dbmlsync, 212
scheduling MobiLink SQL Anywhere clients, 121
SQL Anywhere clients, 95
transactions, 238

synchronization event hook sequence
SQL Anywhere clients, 237

synchronization profiles

-sp option, 172
SQL Anywhere clients, 232

synchronization subscriptions
(see also subscriptions)
altering for SQL Anywhere clients, 111
dropping from SQL Anywhere clients, 111
priority order for extended options and connection
parameters, 185
SQL Anywhere clients, 110

synchronization users
about, 9
configuring properties at SQL Anywhere clients,
107
creating, 10
creating in SQL Anywhere clients, 107
dropping from SQL Anywhere clients, 108

synchronizing
(see also synchronization)
MobiLink new users, 12

syntax
MobiLink ActiveSync provider (mlasinst), 27
MobiLink client (dbmlsync), 131
MobiLink dbmlsync event hooks, 236
MobiLink file transfer utility (mlfiletransfer), 30
MobiLink synchronization utilities for clients, 25

SYS
glossary definition, 423

system objects
glossary definition, 423

system procedures
MobiLink dbmlsync event hooks, 236

system tables
glossary definition, 423

system tables in MobiLink
about, 8

system views
glossary definition, 423

T
table order

dbmlsync extended option, 218
TableName property

dbmlsync integration component, 361
TableOrder dbmlsync extended option

about, 218
TableOrderChecking dbmlsync extended option

about, 220

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 449

tables
adding to remote MobiLink SQL Anywhere
databases, 81
column-wise partitioning for MobiLink SQL
Anywhere clients, 101
publishing for MobiLink SQL Anywhere clients,
100
row-wise partitioning for MobiLink SQL Anywhere
clients, 102

TCP/IP
MobiLink client options, 35
MobiLink client options for TLS, 36

TCP/IP synchronization
MobiLink client options, 35
MobiLink client options for TLS, 36

technical support
newsgroups, xvii

temporary tables
glossary definition, 423

timeout protocol option
MobiLink client connection option, 67

TLS
MobiLink client options, 36

TLS synchronization
MobiLink client options, 36

tls_type protocol option
MobiLink client connection option, 69

toc dbmlsync extended option
about, 220

topics
graphic icons, xvi

tor dbmlsync extended option
about, 218

transaction log
glossary definition, 423
mirror log deletion for dbmlsync, 206
MobiLink [dbmlsync] , 114

transaction log files
MobiLink [dbmlsync], 114

transaction log mirror
deleting for dbmlsync, 206
glossary definition, 424

transaction-level uploads
dbmlsync -tu option, 173

transactional integrity
glossary definition, 424

transactional uploads (see transaction-level uploads)
transactions

glossary definition, 423
transferring files

MobiLink file transfer utility (mlfiletransfer), 30
transmission rules

glossary definition, 424
triggers

glossary definition, 424
troubleshooting

MobiLink dbmlsync log, 124
MobiLink deployment of SQL Anywhere clients,
98
newsgroups, xvii
restoring the remote database from backup, 170

trusted_certificates protocol option
MobiLink client connection option, 71

tutorials
MobiLink scripted upload, 388

U
UltraLite

glossary definition, 424
MobiLink clients, 5

UltraLite applications
as MobiLink clients, 5

UltraLite clients
introduction, 5

UltraLite network protocols
compression deployment requirements, 39
synchronization options for HTTP, 39
synchronization options for HTTPS, 39
synchronization options for TCP/IP, 39
synchronization options for TLS, 39

UltraLite protocols
synchronization options for HTTP, 39
synchronization options for HTTPS, 39
synchronization options for TCP/IP, 39
synchronization options for TLS, 39

UltraLite runtime
glossary definition, 424

UltraLite synchronization
compressed synchronization deployment
requirements, 39
HTTP client options, 39
HTTPS client options, 39
TCP/IP client options, 39
TLS client options, 39

UltraLiteJ

Index

450 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

MobiLink clients, 6
UltraLiteJ clients

introduction, 6
unique constraints

glossary definition, 424
unload

glossary definition, 425
uo dbmlsync extended option

about, 221
upgrading

schemas in MobiLink remote databases, 79
upgrading remote databases

MobiLink SQL Anywhere clients, 98
UPLD_ERR_ABORTED_UPLOAD

dbmlsync error message, 302
UPLD_ERR_COMMUNICATIONS_FAILURE

dbmlsync error message, 302
UPLD_ERR_DOWNLOAD_NOT_AVAILABLE

dbmlsync error message, 302
UPLD_ERR_GENERAL_FAILURE

dbmlsync error message, 302
UPLD_ERR_INVALID_USERID_OR_PASSWORD

dbmlsync error message, 302
UPLD_ERR_LOG_OFFSET_MISMATCH

dbmlsync error message, 302
UPLD_ERR_PROTOCOL_MISMATCH

dbmlsync error message, 302
UPLD_ERR_SQLCODE_n

dbmlsync error message, 302
UPLD_ERR_USERID_ALREADY_IN_USE

dbmlsync error message, 302
UPLD_ERR_USERID_OR_PASSWORD_EXPIRED

dbmlsync error message, 302
upload only synchronization

(see also upload-only synchronization)
upload-only synchronization

dbmlsync -uo option, 177
SQL Anywhere remote databases, 221

UploadAck event
dbmlsync integration component, 358

UploadEventsEnabled property
dbmlsync integration component, 342

uploading data
scripted upload in MobiLink, 373

UploadOnly dbmlsync extended option
about, 221

UploadRow event
dbmlsync integration component, 359

uploads
glossary definition, 425
MobiLink client (dbmlsync) -uo option for upload-
only synchronization, 177
MobiLink scripted upload, 373

url_suffix protocol option
MobiLink client connection option, 73

UseNaturalTypes property
dbmlsync integration component, 345

user authentication
.NET synchronization logic, 20
changing MobiLink passwords, 13
choosing a mechanism in MobiLink, 16
Java synchronization logic, 20
MobiLink architecture, 17
MobiLink custom mechanism, 20
MobiLink new users, 12
MobiLink passwords, 11
MobiLink security, 9
passwords, 12

user authentication architecture
MobiLink, 17

user names
MobiLink about, 10
MobiLink creating, 10
MobiLink use in scripts, 15

user-defined data types
glossary definition, 425

username
MobiLink about, 10
MobiLink creating, 10
MobiLink use in scripts, 15

users
MobiLink about, 10
MobiLink creating, 10
MobiLink creation in SQL Anywhere clients, 107

utilities
MobiLink ActiveSync provider (mlasinst), 27
MobiLink client (dbmlsync), 131
MobiLink file transfer utility (mlfiletransfer), 30
MobiLink list of client utilities, 25

V
v dbmlsync extended option

about, 222
validate

glossary definition, 425

Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1 451

Verbose dbmlsync extended option
about, 222

VerboseHooks dbmlsync extended option
about, 223

VerboseMin dbmlsync extended option
about, 224

VerboseOptions dbmlsync extended option
about, 225

VerboseRowCounts dbmlsync extended option
about, 226

VerboseRowValues dbmlsync extended option
about, 227

VerboseUpload dbmlsync extended option
about, 228

verbosity
MobiLink client (dbmlsync) setting, 180

verbosity option
MobiLink client (dbmlsync), 180

verifying certificate fields
MobiLink TLS certificate_company option, 41
MobiLink TLS certificate_name option, 43
MobiLink TLS certificate_unit option, 45

version protocol option
MobiLink client connection option, 75

views
glossary definition, 425

vm dbmlsync extended option
about, 224

vn dbmlsync extended option
about, 226

vo dbmlsync extended option
about, 225

vr dbmlsync extended option
about, 227

vs dbmlsync extended option
about, 223

vu dbmlsync extended option
about, 228

W
WaitForServerShutdown method

Dbmlsync .NET API, 327
Dbmlsync C++ API, 315

WaitingForUploadAck event
dbmlsync integration component, 360

WarningMessageEnabled property
dbmlsync integration component, 343

WHERE clause
MobiLink publications, 102

window (OLAP)
glossary definition, 425

Windows
glossary definition, 425

Windows CE (see Windows Mobile)
Windows Mobile

dbmlsync preloading DLLs, 165
glossary definition, 425

Windows Mobile Device Center (see ActiveSync)
work tables

glossary definition, 425

Z
zlib compression

MobiLink synchronization, 47
zlib_download_window_size protocol option

MobiLink client connection option, 76
zlib_upload_window_size protocol option

MobiLink client connection option, 77

Index

452 Copyright © 2009, iAnywhere Solutions, Inc. - SQL Anywhere 11.0.1

	MobiLink - Client Administration
	Contents
	About this book
	About the SQL Anywhere documentation
	About the books in the documentation set
	Documentation conventions
	Graphic icons
	Contacting the documentation team
	Finding out more and requesting technical support

	Introduction to MobiLink Clients
	MobiLink clients
	SQL Anywhere clients
	UltraLite clients
	UltraLiteJ clients
	Specifying the network protocol for clients
	System tables in MobiLink

	MobiLink users
	Introduction to MobiLink users
	Creating and registering MobiLink users
	Providing initial passwords for users
	Synchronizations from new users
	Prompting end users to enter passwords
	Changing passwords

	Remote IDs
	Setting the MobiLink remote ID
	Using remote IDs and MobiLink user names in scripts

	Choosing a user authentication mechanism
	User authentication architecture
	Authentication process
	Custom user authentication
	Java and .NET user authentication
	Authenticating to external servers
	External authenticator properties

	MobiLink client utilities
	Introduction to MobiLink client utilities
	ActiveSync provider installation utility (mlasinst)
	MobiLink file transfer utility (mlfiletransfer)

	MobiLink client network protocol options
	MobiLink client network protocol option summary
	buffer_size
	certificate_company
	certificate_name
	certificate_unit
	client_port
	compression
	custom_header
	e2ee_type
	e2ee_public_key
	fips
	host
	http_password
	http_proxy_password
	http_proxy_userid
	http_userid
	identity_name
	network_leave_open
	network_name
	persistent
	port
	proxy_host
	proxy_port
	set_cookie
	timeout
	tls_type
	trusted_certificates
	url_suffix
	version
	zlib_download_window_size
	zlib_upload_window_size

	Schema changes in remote clients
	Introduction to MobiLink client schema changes
	Schema upgrades for SQL Anywhere remote databases
	Schema upgrades for UltraLite remote databases

	SQL passthrough
	Introduction to SQL passthrough
	Creating a script
	Creating passthrough entries
	Downloading scripts
	Executing scripts
	Executing a script manually on a SQL Anywhere client
	Executing a script manually on an UltraLite client
	Executing a script automatically on a SQL Anywhere client
	Executing a script automatically on an UltraLite client

	Capturing script results
	Reviewing script results
	Handling script errors

	SQL Anywhere Clients for MobiLink
	SQL Anywhere clients
	Creating a remote database
	Deploying remote databases
	Setting remote IDs
	Upgrading remote databases
	Progress offsets

	Publishing data
	Publishing whole tables
	Publishing only some columns in a table
	Publishing only some rows in a table
	Download-only publications
	Altering existing publications
	Dropping publications

	Creating MobiLink users
	Storing extended options for MobiLink users
	Dropping MobiLink users

	Creating synchronization subscriptions
	Altering MobiLink subscriptions
	Dropping MobiLink subscriptions

	Initiating synchronization
	Using dbmlsync extended options
	Dbmlsync network protocol options

	Transaction log files
	Concurrency during synchronization
	Initiating synchronization from an application

	Using ActiveSync synchronization
	Configuring SQL Anywhere remote databases for ActiveSync
	Installing the MobiLink provider for ActiveSync
	Registering SQL Anywhere clients for ActiveSync

	Scheduling synchronization
	Setting up scheduling with dbmlsync options
	Initiating synchronization with event hooks

	Customizing dbmlsync synchronization
	SQL Anywhere client logging
	Running MobiLink on Mac OS X
	Version considerations

	MobiLink SQL Anywhere client utility (dbmlsync)
	dbmlsync syntax
	@data option
	-a option
	-ap option
	-ba option
	-bc option
	-be option
	-bg option
	-c option
	-d option
	-dc option
	-dl option
	-do option
	-drs option
	-ds option
	-e option
	-eh option
	-ek option
	-ep option
	-eu option
	-is option
	-k option (deprecated)
	-l option
	-mn option
	-mp option
	-n option
	-o option
	-os option
	-ot option
	-p option
	-pc option
	-pd option
	-pi option
	-pp option
	-q option
	-qc option
	-r option
	-sc option
	-sp option
	-tu option
	-u option
	-ui option
	-uo option
	-urc option
	-ux option
	-v option
	-wc option
	-x option

	MobiLink SQL Anywhere client extended options
	Introduction to dbmlsync extended options
	CommunicationAddress (adr) extended option
	CommunicationType (ctp) extended option
	ConflictRetries (cr) extended option
	ContinueDownload (cd) extended option
	DisablePolling (p) extended option
	DownloadBufferSize (dbs) extended option
	DownloadOnly (ds) extended option
	DownloadReadSize (drs) extended option
	ErrorLogSendLimit (el) extended option
	FireTriggers (ft) extended option
	HoverRescanThreshold (hrt) extended option
	IgnoreHookErrors (eh) extended option
	IgnoreScheduling (isc) extended option
	Increment (inc) extended option
	LockTables (lt) extended option
	Memory (mem) extended option
	MirrorLogDirectory (mld) extended option
	MobiLinkPwd (mp) extended option
	NewMobiLinkPwd (mn) extended option
	NoSyncOnStartup (nss) extended option
	OfflineDirectory (dir) extended option
	PollingPeriod (pp) extended option
	Schedule (sch) extended option
	ScriptVersion (sv) extended option
	SendColumnNames (scn) extended option
	SendDownloadACK (sa) extended option
	SendTriggers (st) extended option
	TableOrder (tor) extended option
	TableOrderChecking (toc) extended option
	UploadOnly (uo) extended option
	Verbose (v) extended option
	VerboseHooks (vs) extended option
	VerboseMin (vm) extended option
	VerboseOptions (vo) extended option
	VerboseRowCounts (vn) extended option
	VerboseRowValues (vr) extended option
	VerboseUpload (vu) extended option

	MobiLink SQL statements
	MobiLink statements

	MobiLink synchronization profiles
	MobiLink synchronization profiles

	Event hooks for SQL Anywhere clients
	Introduction to dbmlsync hooks
	Synchronization event hook sequence
	Using event-hook procedures
	#hook_dict table
	Connections for event-hook procedures
	Handling errors and warnings in event hook procedures

	sp_hook_dbmlsync_abort
	sp_hook_dbmlsync_all_error
	sp_hook_dbmlsync_begin
	sp_hook_dbmlsync_communication_error
	sp_hook_dbmlsync_delay
	sp_hook_dbmlsync_download_begin
	sp_hook_dbmlsync_download_com_error (deprecated)
	sp_hook_dbmlsync_download_end
	sp_hook_dbmlsync_download_fatal_sql_error (deprecated)
	sp_hook_dbmlsync_download_log_ri_violation
	sp_hook_dbmlsync_download_ri_violation
	sp_hook_dbmlsync_download_sql_error (deprecated)
	sp_hook_dbmlsync_download_table_begin
	sp_hook_dbmlsync_download_table_end
	sp_hook_dbmlsync_end
	sp_hook_dbmlsync_log_rescan
	sp_hook_dbmlsync_logscan_begin
	sp_hook_dbmlsync_logscan_end
	sp_hook_dbmlsync_misc_error
	sp_hook_dbmlsync_ml_connect_failed
	sp_hook_dbmlsync_process_exit_code
	sp_hook_dbmlsync_schema_upgrade
	sp_hook_dbmlsync_set_extended_options
	sp_hook_dbmlsync_set_ml_connect_info
	sp_hook_dbmlsync_set_upload_end_progress
	sp_hook_dbmlsync_sql_error
	sp_hook_dbmlsync_upload_begin
	sp_hook_dbmlsync_upload_end
	sp_hook_dbmlsync_validate_download_file

	Dbmlsync API
	Introduction to the Dbmlsync API
	Architecture
	Dbmlsync API interfaces

	Dbmlsync API for C++
	InstantiateClient method
	Init method
	Fini method
	StartServer method
	Connect method
	Disconnect method
	Ping method
	Sync method
	ShutdownServer method
	WaitForServerShutdown method
	CancelSync method
	GetEvent method
	FreeEventInfo method
	GetErrorInfo method
	SetProperty method
	GetProperty method
	DBSC_Event structure

	Dbmlsync API for .NET
	InstantiateClient method
	Init method
	StartServer method
	Connect method
	Disconnect method
	Ping method
	Sync method
	ShutdownServer method
	WaitForServerShutdown method
	CancelSync method
	GetEvent method
	GetErrorInfo method
	SetProperty method
	GetProperty method
	Fini method
	DBSC_Event structure

	Dbmlsync integration component (deprecated)
	Introduction to Dbmlsync integration component
	Supported platforms

	Setting up the Dbmlsync integration component
	Dbmlsync integration component methods
	Run method
	Stop method

	Dbmlsync integration component properties
	Path property
	UploadEventsEnabled property
	DownloadEventsEnabled property
	ErrorMessageEnabled property
	WarningMessageEnabled property
	InfoMessageEnabled property
	DetailedInfoMessageEnabled property
	UseVB6Types property
	ExitCode property
	EventChannelSize property
	DispatchChannelSize property

	Dbmlsync integration component events
	BeginDownload event
	BeginLogScan event
	BeginSynchronization event
	BeginUpload event
	ConnectMobilink event
	DisconnectMobilink event
	DoneExecution event
	DownloadRow event
	EndDownload event
	EndLogScan event
	EndSynchronization event
	EndUpload event
	Message event
	ProgressIndex event
	ProgressMessage event
	SetTitle event
	UploadAck event
	UploadRow event
	WaitingForUploadAck event

	IRowTransferData interface
	RowOperation property
	TableName property
	ColumnName property
	ColumnValue property
	ColumnCount property

	DBTools interface for dbmlsync
	Introduction to DBTools interface for dbmlsync
	Setting up the DBTools interface for dbmlsync

	Scripted upload
	Introduction to scripted upload
	Setting up scripted upload
	Design considerations for scripted upload
	Scripted upload with no table locking

	Defining stored procedures for scripted upload
	Custom progress values in scripted upload
	Defining stored procedures for inserts
	Defining stored procedures for deletes
	Defining stored procedures for updates
	Creating publications for scripted upload

	Scripted upload example

	Glossary
	Glossary

	Index

